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 When we administer medicine, we administer the whole world: 

that is, all the virtue of heaven and earth, air and water. 

Therefore, your medicine must contain the whole firmament of 

both upper and lower spheres. Think with what energy the 

Nature takes heaven and earth with all their powers when she 

strives against death. 

 

Theophrastus Bombastus von Hohenheim, 1530: Das Buch 

Paragranum 
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1. Introduction 

 

1.1 ‘-Omics’ technologies 

 

Over the past few years, the ‘-omics’ fields have seen an explosive growth opening new 

perspectives for biological research purpose. The development of analytical instrumentations, 

data processing and chemometric tools simplify the study of complex biological systems on a 

large-scale. Metabolomic, together with other ‘-omics’ disciplines such as genomic, 

transcriptomic, and proteomic, is becoming an integral part of a system biological approach for 

investigating organisms. Fig. 1.1 reports the classification of the ‘-omics’ technologies and the 

correlation among them. Although transcriptome represents the process for protein synthesis, 

an increase in mRNA levels does not always correspond with an increase in proteins due to 

numerous post-transcriptional regulation mechanisms (Kendrick 2014; Vogel et al. 2012). 

Therefore, changes in transcriptome or proteome do not always reflect alterations in 

biochemical phenotypes. For this reason, the association of metabolomic with the other 

analytical areas of genomic, transcriptomic and proteomic constitute a very powerful method 

to study biological systems. 
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Fig. 1.1 General classification of ‘-omics’ technologies 

 

1.1.1 Genomic and transcriptomic 

Genomic is considered a discipline of genetics able to define the overall genome of organisms, 

that includes genes, noncoding DNA and also the genomes from mitochondria and chloroplasts. 

On the other side, transcriptomic aims to determine the expression level of genes (mRNA and 

noncoding mRNA). Genome and transcriptome consist of linear polymers of five nucleotides 

with highly similar chemical properties. Several technologies have been developed to determine 

and quantify simultaneously a high number of genes and significant changes of their mRNA. 

In the late 90’s and 2000’s, DNA array technology progressed rapidly as a new method in which 

the hybridization plays an important role to measure the expression levels of genes (Bumgarner 

2013). More recently, sequence-based approaches directly determine the cDNA sequences and 

the changing of the cellular transcriptome. Although RNA-seq is a tool still under development, 

it offers several advantages, such as the use of low amount of RNA, the ability to distinguish 
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allelic expressions and different isoforms and the high levels of reproducibility for both 

technical and biological replicates (Hrdlickova et al. 2017). 

 

1.1.2 Proteomic 

The number of proteins is normally higher than the number of genes and this happens because 

a single gene codes for multiple proteins (Vogel et al. 2012). For this reason, the proteome 

cannot be studied sufficiently by gene expression thus leading to the development of proteomic. 

This area of study aims to characterize and quantify which proteins are present in a biological 

organism under given conditions. One of the most used technique to analyse the proteome is 

the two-dimensional polyacrylamide gel electrophoresis (2-DE) that can differentiate a large 

number of proteins on the base of their relative mass and isoelectric point. Nowadays, the 

development of functional tools allows parallel analysis between gene and protein expression. 

 

1.1.3 Metabolomic 

Metabolomic is the ‘-omic’ that study the whole metabolome in a cell, tissue or organism from 

both qualitative and quantitative point of view. The interest in using metabolomic for nutrition, 

agriculture, food science, human health and drug discovery has seen an exponential increase 

reaching a peak on 2016. Fig. 1.2 shows how the number of publications containing the term 

“metabolomic”, taken from PubMed, is constantly growing. 

In the metabolome, there are two kind of compounds, the primary metabolites and the secondary 

metabolites. The primary metabolites are compounds involved in the basic functions such as 

respiration, growth and maintenance of the cell. Basically, all organisms share the same type of 

primary metabolites. The secondary metabolites are species specific and play a role in the 

interaction of a cell with other cells or with environment. Secondary metabolites are responsible 

of plant flavour or colour and are associate to plant resistance against pests and diseases.  
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Fig. 1.2 A research on PubMed showing the number of publications containing the term “metabolomic”  

 

The chemical complexity of metabolites ranges from ionic inorganic species to complex natural 

products, from hydrophilic to lipophilic compounds, from volatile to non-volatile molecules 

and from low to high molecular weight. Their production is not only regulated by gene 

expression but also by environmental conditions where metabolomic is able to define the 

biochemical phenotype of a cell or tissue.  

During the metabolomic analysis, both primary and secondary metabolites will be detected after 

a snapshot of all metabolome and relative or absolute quantification can be done. This approach 

is applied on several topics which include:  

• Studying fingerprints of different species, varieties, genotypes or ecotypes to obtain 

more information about taxonomy or biochemistry (Brahmi et al. 2015). 

• Comparing several classes of metabolites in response to external chemical or physical 

treatments (Catola et al. 2016). 

• Highlighting differences and similarities between the metabolite content of mutants or 

transgenic plants and that of their wild-type counterparts (Kristensen et al. 2005). 
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• Monitoring developmental processes such as metabolic transition from immature to ripe 

fruit (Aharoni et al. 2002). 

Generally, in the metabolomic studies there are four critical steps (Fig. 1.3). The first one is 

sample preparation. At this step, it is necessary to control time and temperature which influence 

the accuracy and the reproducibility of results. Metabolic reactions are extremely rapid, so the 

freezing and storage of the sample at -80°C is required.  

 

Fig. 1.3 Simplified workflow of the process for metabolomics analyses  

The second step is the extraction that aims to maximize the number and the content of 

metabolites of interest. A recent study on Arabidopsis thaliana showed that a particular 

combination of MeOH/H2O/CHCl3 is the best solvents mixture in comparison to others 

(Gullberg et al. 2004). Ultrasonic treatment is also used as a disruption method to reduce the 

time and to improve the efficiency of the extraction. Following this, several detection 

techniques can be used to analyse the extracts. A high amount of data is generated from the 

acquisition and compounds identification; therefore, data analysis is the fourth crucial step, 

briefly discuss in paragraph 1.3. A further separation or purification of metabolites after their 
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extraction is also possible, but in many applications, samples are analysed directly. Whether 

this intermediate step is necessary, depends on the kind of research that is done. Nowadays, two 

main strategies are used for metabolomics investigations: untargeted (non-targeted) 

metabolomics and targeted metabolomics. The untargeted approach aims to compare the whole 

metabolite profiles among different sample groups, whereas targeted metabolomics focuses on 

a tiny fraction of the metabolome analysing a specific group of compounds related to a specific 

metabolic pathway (e.g., fatty acids, amino acids or phytochemicals) (Son et al. 2008; Vrhovsek 

et al. 2012). For this purpose, one or few metabolites are selected after a high level of 

purification and all other compounds are ignored.  

 

1.2 Analytical approaches 

Metabolomic aims to identify and quantify the overall metabolome. To achieve this objective, 

several analytical approaches can be used, each with their own advantages and disadvantages. 

They can be grouped as follows:  

• chromatographic methods: liquid chromatography (LC), high-performance LC (HPLC); 

ultra-high performance LC (UHPLC), gas chromatography (GC), capillary 

electrophoresis (CE), thin layer chromatography (TLC); 

• mass spectrometry (MS); 

• spectroscopy: nuclear magnetic resonance spectroscopy (NMR); Fourier transform 

infra-red (FT-IR); ultraviolet methods (UV).   

Each technique, mentioned above, provides two steps. The first step is a qualitative study in 

which the signals observed are assigned to a specific metabolite with the help of standard 

compounds, data literature and different libraries (Smith et al. 2005; 

http://www.hdscience.com). Consequently, the second step is a measurement of relative or 

absolute amounts of each single component based on calibration curves of internal standard. A 
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compromise between speed, selectivity and sensitivity should be found between all these 

methods to select the most suitable approach, although a combination of two or more of them 

is also used to provide complementary information and to reduce sample complexity. For 

example, LC/MS with atmospheric pressure ionization (API) is also applied to metabolomic 

study, but only a relatively small number of analytes can be detected. Specifically, the 

production of pseudo-molecular ions ([M+H]+ or [M-H]-) depends on several factors and it is 

not always easy to predict which one will be produced. In addition to this, many compounds do 

not ionize optimally and for this reason LC/MS is more suited for metabolites which ionize 

similarly under the same condition. A rapid and non-destructive technique is FT-IR based on 

the stretching and bending vibration of chemical bonds irradiated by the light (usually 4000–

400 cm-1). Although it does not require a difficult preparation of the sample, its sensitivity is 

not as high as that of the other methods. However, in the last few years, several studies have 

been undertaken using FT-IR to diagnose disease or dysfunction and to acquire metabolic 

profiling of body fluids (Lemes et al. 2016; Isogawa et al. 2014). On the contrary, in other 

research fields, such as food chemistry, metabolomics studies with NMR and MS have been 

mostly applied. For this reason, the limitations and advantages of 1H NMR and GC-MS, which 

have been used in this study to analyse the whole metabolome of two plants extracts, will be 

discussed below. In detail, NMR spectroscopy is a physical measurement of the resonances of 

atoms with a non-zero magnetic moment, such as 1H, 13C, 15N, 19F, 31P in a strong magnetic 

field. The application of a magnetic field on the nuclei of these atoms causes the promotion of 

electrons from low-energy to high-energy spin states and the subsequent emission of radiation 

during the relaxation process. It is a non-destructive technique with high reproducibility in 

which compounds and extracts have a highly specific spectrum. Its sensitivity can be improved 

by the application of high and uniform magnetic fields (frequencies commonly used range 

between 300-700 MHz) and also by the use of a cryogenic probe-heads. The sensitivity of NMR 

also depends on the abundance of isotope studied and time of analysis. The most sensitive 
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isotopes are 1H, 19F and 31P, but the last two nuclei can only be found in a restricted number of 

compounds. For this reason, 1H is the preferred one to study metabolites fingerprinting. The 

only variables are the solvents used which depend on the polarity of the extract that should be 

analysed. In the 1H NMR sample there is always much more solvent than substance, so 

deuterated solvent, such as D2O, CD3OD, CDCl3, should be used to minimize the signal solvent 

in the spectra. The chemical shifts in 1H NMR spectra (0-10 ppm) are assigned to a specific 

metabolite. The signals can be reported along two frequency axis to produce a two-dimensional 

spectrum (2D) which can be either homonuclear, if the correlation comes from the same nucleus 

(usually 1H-1H), or heteronuclear if on the frequency axis there are 2 different nuclei (usually 

1H-13C).  

A more sensitive tool is GC-MS, which is widely applied in metabolomic because of its high 

specificity and sensitivity for suitable analyte classes. This technique, similarly to the LC/MS, 

is based on the separation and detection of ions according to their mass-charge (m/z) ratio. A 

limitation of gas chromatography coupled with mass spectrometry is that not all injected 

components will pass through the column, because of different physico-chemical properties of 

the analytes (polarity, stability, molecular mass, volatility, etc). Components can therefore 

remain in the injector or in the column, causing the whole system to respond differently after 

each injection. However, this can be avoided if all samples are derivatized at room or elevated 

temperature before the analysis in order to reduce their polarity. After derivatization, the 

volatility and thermal stability of the compounds is also provided allowing their elution at high 

temperatures without decomposition.  

In particular, compounds containing active hydrogens, such as -OH, -SH, -NH and -COOH 

should be derivatized prior to GC-MS analysis. Derivatization can be achieved by three general 

reactions, which are alkylation, acylation and silylation (Orata et al. 2012).  Usually, silylation 

is the most suitable reaction for non-volatile compounds for GC analysis. As shown in Fig. 1.4 

(A and B), after silylation, an active hydrogen is substituted by a silyl group. Prior to silylation, 
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an oximation reaction is recommended in polar extracts, especially if there could be sugars in 

the sample. It is well known that sugars like fructose and glucose have different structures in a 

water solution with a predominance of the cyclic form. To reduce the tautomerism, which can 

produce multiple peaks for the same compound on the chromatogram, the oximation is required 

(Shepherd et al. 2007) and the carbonyl functional groups of aldehydes and ketones will be 

converted in oximes (see the reaction in Fig. 1.4 C and D). There are several oximation and 

silylation reagents which can be used, but recent studies have shown that methoxyamine 

hydrochloride and N-methyl-N-(trimethylsilyl)-trifluoroacetamide are the most appropriate for 

metabolomics studies (Dettmer et al. 2007; Ruiz-Matute et al. 2011).  

These reactions are moisture sensitive, for this reason the sample must be completely dried. 

Another advantage of using GC-MS is that a very small amount of derivatised samples is 

analysed (typical injection volumes of 1 µl) to give high resolution spectra.  

In conclusion, GC-mass spectrometry and NMR spectroscopy have limitations and advantages. 

GC-MS has a detection threshold of 10-12mol, which is more sensitive of 1H NMR spectroscopy 

where a value of 10-6mol is observed (Sumner et al. 2003). In both analytical methods, 

extraction step is required, but all classes of compounds need to be derivatized in GC-MS 

analysis, which takes additional time, processing, and variance in comparison to the NMR tool.  
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Fig. 1.4 Derivatization steps prior to GC-MS analysis: (A) silylation reactions between hydrophilic 

groups and trimethylsilyl (TMS) reagent (Nu = nucleophile). (B) silylation reaction mechanism. (C) 

oximation reaction of aldehyde and ketone (e.g. open chain form of glucose and fructose). (D) reaction 

mechanism between methoxyamine hydrochloride and a generic aldehyde. 

 

1.3 Data analysis 

The untargeted metabolomic data, obtained by the identification and quantification of as many 

metabolites as possible, is subsequently statistically processed. Statistical approaches require 

replicates of samples preparation. Usually, multivariate data analysis (MVDA) techniques are 

used to maximize classification of samples. Principal components analysis (PCA), partial least 

square (PLS), hierarchical cluster analysis (HCA) and self-organizing mapping (SOM) have 

been extensively employed as statistical tools for metabolomics. PCA is a useful approach to 

reduce the dimensionality of a large data set and is the most used chemometric tool as clustering 

technique. PCA describes the variance between original variables (in this case metabolites 
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concentrations) through a linear combination of new variables, which are principal components 

(PC), identifying how samples are different from each other and which variables (metabolites 

concentrations) contribute most to this difference. On the contrary, PLS regression is more used 

to create a prediction model in metabolomics studies (Tarachiwin et al. 2008). HCA is also used 

frequently in metabolomics and measures the distance between rows or columns of a data 

matrix. This approach can be employed with an agglomerative or a divisive method and data 

are presented in a diagram known as dendrogram. SOM is a noncluster method widely used for 

genomic and transcriptomic (Abe et al. 2003; Hirai et al. 2004), but more recently it was also 

applied to monitor metabolic dynamics in rice leaves (Sato et al. 2008). 

 

1.4 Aim of the study 

Metabolomic analysis of food plants allows to obtain a fingerprinting of plant extracts by using 

different techniques, such as NMR spectroscopy and mass spectrometry, in order to obtain a 

snapshot of the metabolome of different groups of samples. This dissertation gave rise to three 

objectives.  

The first objective was to characterise the metabolic profile of fourteen artichoke populations 

belonging to “Romaneschi” group (Cynara cardunculus L. var. scolymus L. Fiori) and one 

cultivated cardoon (Cynara cardunculus L. var. altilis DC) all collected in the Campania region 

of Italy. The investigation of the major nutraceuticals in artichoke using 1H NMR was recently 

applied to Jerusalem artichoke (Helianthus tuberosus L.) (Clausen et al. 2012) but to the best 

of our knowledge this is the first time that proton NMR spectroscopy is used to provide a 

metabolic fingerprinting of C. cardunculus.  

The second objective was to evaluate and compare the chemical composition of wild-types and 

mutant samples of chia seeds (Salvia hispanica L.). While, chia is a short-day flowering specie 

and it can produce seeds only in a restricted range of latitudes, breeding efforts have produce 

longer-day genotypes in order to extend this crop to other areas (Jamboonsri et al. 2012).  
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Mutations are introduced to wild-type chia seeds at University of Kentucky Research 

Foundation (Lexington, US) and more detailed information is made available under patent 

application number US 20130007909 A1. Mutant genotypes were made available from 

University of Kentucky to University of Naples Federico II through an agreement with 

University of Basilicata. A comparative analysis between commercial short-day flowering 

genotypes and mutant chia seeds was carried out in order to define possible differences in the 

chemical composition due to mutations. The analysis was also extended to two samples of chia 

seeds wild-types grown in Basilicata (Southern Italy) in order to evaluate the effect of 

fertilization with mineral nitrogen, on the metabolite composition. 

The third objective is to determine the biological effect of irrigation on the metabolome of two 

genotypes of chia seeds. For this purpose, the chemical composition and antioxidant activity of 

a short-day flowering commercial chia genotype and a long-day flowering mutant grown with 

additional irrigation were compared to those of the untreated samples. This last experimental 

plan was developed during a visiting period of 5 months at the Abertay University of Dundee 

(Scotland, UK).  

The study is organised in seven Chapters, where Chapters 2-6 are written as self-contained 

research papers.  
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2. Artichoke: botanical, agronomical, phytochemical 

and pharmacological overview* 

 

2.1 Introduction

The species Cynara cardunculus is a component of the Mediterranean diet and consists of the 

globe artichoke, C. cardunculus subsp. scolymus, the cultivated cardoon, C. cardunculus subsp. 

altilis, and the wild cardoon, C. cardunculus subsp. sylvestris. The globe artichoke, formerly 

named Cynara scolymus L. is a perennial herbaceous crop, originating from the Mediterranean 

region, where it has been grown for thousands of years and from where it was diffused all over 

the world. The scientific name of the plant originates from the Greek ‘‘skolymos’’ meaning 

pointed stake, because of its spines, whereas ‘‘Kynara’’ possibly comes from the name of an 

Aegean Island where it was grown or from the recommendation of Columella to fertilize this 

crop with ashes (Cineres) (Chevallier 1996). The common name of artichoke comes from the 

Arabic ‘‘al Quarshuff’’. Artichoke was used as food and medicine by ancient Egyptians, 

Greeks, and Romans. In the fourth century AD the greek Teophrastus reports that artichoke was 

grown in Sicily and in thereafter the Egyptian king Ptolemy Euergetes recommended his army 

to eat artichokes because they were considered a source of strength and braveness. Historical 

sources include mosaics from the roman empire at the Bardo Museum of Tunis, and the roman 

authors Varo, Plinius, Columella and Dioscorides, who recommended the application of 

mashed roots on the body to sweeten offensive odours (Chevallier 1996). Between 800 and 

1500 AD several sources report that artichokes brought from North Africa were grown in Sicily 

and Spain, and as a rarity in Florence and Venice, and in the same period breeding was 

                                                 
* de Falco, B., Incerti, G., Amato, M., & Lanzotti, V. (2015). Artichoke: botanical, agronomical, phytochemical, 

and pharmacological overview. Phytochemistry reviews, 14(6), 993-1018. 



Chapter 2 Artichoke: botanical, agronomical, phytochemical and pharmacological overview 

 

18 

 

conducted in monasteries in Europe. In his ‘‘Italian Journey’’ Goethe reports that Italian 

farmers eat artichokes as a curiosity, but artichoke was known in Europe since the fifteenth 

century and in the eighteenth and nineteenth century it was brought to the Americas by 

European immigrants. Production of artichokes amounts to 1,793,015 tones year-1 (FAO 2013), 

more than 60% of which in Europe (FAO 2013). The first world producer is Italy, and the 

country where artichoke production has most recently acquired commercial importance is 

China. The edible parts of the plant are large immature inflorescences, named capitula or heads, 

with edible fleshy leaves (bracts) and receptacle that has been shown to be a rich source of 

bioactive compounds (Fratianni et al. 2007; Lattanzio et al. 2009) and used as herbal medicine 

since ancient times for their beneficial and therapeutic effects. Artichoke has been used in the 

folk medicine against several diseases, such as hepatic diseases, jaundice, dyspepsia, chronic 

albuminuria, postoperative anemia, and used as diuretic and liver tonic (Schauenberg and Paris 

1977). Extracts from artichoke have been used for hepatoprotection (Adzet et al. 1987) as a 

choleretic (Preziosi et al. 1959) and lipid-lowering agents (Gebhardt 1998). The flower head, 

cooked and eaten as a delicacy, contains a sweetener taste enhancing flavour perception, while 

the leaves contain a bitter taste used in the preparation of aperitif liqueurs (Fleming 1998). 

Nutritional and pharmacological properties of artichoke heads and leaves are attributed mainly 

to caffeoylquinic acid compounds and inulin present at high concentration. Other classes of 

chemical compounds, including flavonoids, anthocyanins, sesterpenes, triterpenes have been 

also found in the plant at lower amounts. In this paper the chemical composition of the artichoke 

has been reviewed with particular attention to the agronomical and pharmacological importance 

of the plant and to the methods of analysis, including the recently developed metabolomic 

studies.  
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2.2 Origin and classification 

Included in the Astereaceae or Compositae family, subfam. Tubuliflorae, tribe Cynareae, the 

genus Cynara is made of diploid (2n = 2x = 34) species. According to molecular data, a wild 

ancestor of all species in the Cynara genus moved from the Mediterranean coast to the region 

of Sahara during the 4th glaciations of Pleistocene (Pignone and Sonnante 2009), due to its high 

thermal requirements. Towards the end of the glaciations (between 30,000 and 20,000 years 

ago) it moved back to the north coast of Africa and around 18,000 years ago it started to 

differentiate, and two groups of species were originated. In both groups genotypes did not 

equally diffuse in the whole Mediterranean basin, therefore some species and subspecies are 

preferentially found in the west and others in the centre-east regions. According to Pignone and 

Sonnante (2009), the first group includes seven wild species:  

• C. baetica (Spreng.), C. algarbiensis Coss. ex Mariz, C. humilis L. more widespread in 

the West Mediterranean regions; 

• C. syriaca Boiss, C. cornigera Lind., C. cyrenaica Maire and Weiller, in the Center-

East of the Mediterranean basin; 

• C. aurantica Pos., more equally distributed than other species. 

The second group encompasses the C. cardunculus complex of species: 

• C. cardunculus (L.) subsp. or var. scolymus (L) Hegi, the globe artichoke 

• C. cardunculus (L.) subsp. or var. altilis DC, the cultivated cardoon, 

• C. cardunculus (L.) subsp. sylvestris Lam., the wild artichoke or cardoon. This 

subspecies has been further divided into two types with different genetic pools and 

geographical distribution: one located in the Western Mediterranean basin, which is 

likely to be the progenitor of cultivated cardoon due to a breeding pressure towards 

larger leaves; the other located in Central-East Mediterranean, which is probably the 
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ancestor of globe artichoke due to a breeding pressure towards a larger inflorescence 

(Pignone and Sonnante 2009).  

Within the whole C. cardunculus complex, intercrossing is entirely possible since all genetic 

types share the same primary gene pool, and are therefore interfertile, whereas only the 

secondary gene pool is shared within the whole Cynara genus (Rottenberg and Zohary 1996). 

Domestication of globe artichoke can be dated back to around the Roman Imperial age possibly 

in Sicily, whereas cultivated cardoon was likely domesticated in Spain in the middle ages. Food 

uses of cultivated cardoon are related to the large stems and leaf petioles. Propagation is largely 

based on seeds contained in a dry indehiscent fruit typical of the Asteraceae family. The edible 

part of globe artichoke is the capitulum or head, an inflorescence which is eaten immature, 

before flowering. Propagation is traditionally vegetative. The richest cultivated primary gene-

pool of globe artichoke is found in Italy, where domestication occurred (Pignone and Sonnante 

2004). To date more than 120 varietal types are reported (Lanteri and Portis 2008), and 

classification is based on harvest time and capitulum morphological traits (Portis et al. 2005). 

Edible heads may be produced in autumn and spring by early varieties, and only in spring-

summer by late varieties. Four variety groups are described based on capitulum morphology: 

1. the Spinosi group, bearing spines on capitulum bracts and leaves;  

2. the Violetti group, with purple and less spiny heads;  

3. the Romaneschi group, with spherical or subspherical non-spiny heads;  

4. the Catanesi, with small, elongated and non-spiny capitulum. 

Another classification is found in France with two main groups (Breton with large green 

capitula and Midi with smaller pigmented capitula). Many local landraces are found, and both 

phenotypic and genetic diversity are large even within varietal groups and populations (Portis 

et al. 2005), and this has been ascribed to traditional methods of propagation, based on on-farm 

vegetative reproduction, resulting in multi-clonal populations (Portis et al. 2005), and on 

accidental crossing with local wild artichokes, which also exhibit a high genetic variability. The 
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absence of spines in cultivated types is due to a dominant allele, whereas yield traits have a 

polygenic determination, and are strongly affected by the environment and management 

techniques, especially fertilization and water availability. Capitula pigmentation is due to 

antocyanic compounds, determined by a few genes and affected by the onset of cold 

temperatures as well as fertilization. Other quality traits are linked to genetics (Fratianni et al. 

2007), environmental and agronomical factors, and are affected by plant phenological stage. 

 

2.3 Morphology, ecology and use 

Artichoke is an allogamous and entomophylous erect herbaceous perennial, with lifecycle 

exceeding 10 years, which may be reduced to 2–4 years due to loss of productivity in intensive 

growing systems. The stem is very short and leaves may reach 50–200 cm of length. The 

inflorescence (capitulum or head) consist in a very long peduncle, (up to 180 cm), a receptacle 

where flowers are inserted, and external bracts. A main head and 4–20 secondary and tertiary 

heads are produced per plant. Heads are harvested in the early stages of their development and 

represent 30–40% of artichoke fresh weight. Considering that only the central portion is eaten, 

the ratio of edible fraction/total biomass decrease to 15–20% of total plant biomass. This ratio 

decreases further if the contribution to the total biomass represented by offshoots, removed 

from the field by common cultural procedures, is also considered (Marzi and Lattanzio 1981; 

Lattanzio 1982). Thus, leaves, external bracts and stems discarded by the artichoke processing 

industry, represent a huge amount of discarded material (about 80–85% of the total biomass of 

the plant), which could be used as a source of food additives and nutraceuticals (Llorach et al. 

2002; Lopez-Molina et al. 2005) or as a raw material in the green chemistry industry such as 

paper–pulp production, biofuels or plant dyes (De Falco and di Novella 2011). This is 

commercially viable given the high biomass production of the plant, up to 33 t ha-1 

(Archontoulis et al. 2010). 
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Flowers contain proteolytic enzymes and act as natural coagulants used as a substitute of rennet 

(Amato et al. 2011) and plant stems and leaves are traditionally a forage (Christaki et al. 2012). 

The dry indehiscent fruits (achenes) have a high content of polyphenols and other antioxidants 

so they have been proposed for industrial extraction (Durazzo et al. 2013). 

The plant has a large root system which may reach up to 5 m (Archontoulis et al. 2010) and 

amounts to about 50% of the residual plant biomass after head harvest (Raccuia et al. 2004). 

After head harvest plant leaves are left on the plant to replenish root reserves with 

photosynthates and thereafter grazed or chopped and vegetation restarts from basal gems at the 

expenses of below-ground reserves after the first fall precipitations or summer irrigation. Due 

to its role of both resource uptake and reserve, the root contains a percentage of sugars of about 

25%, 89.4% of which is inulin (Raccuia et al. 2004), an important prebiotic compound. 

Offshoots from basal gems need to be thinned, and are traditionally used for vegetative 

propagation. Due to problems of genetic variability and infections, and the high labour 

requirements of vegetative reproduction, in vitro culture or seed propagation are increasingly 

used. Seed production occurs through free pollination (producing a high genetic, phenotypic 

and phenological variability) or creation of F1 hybrids which are more uniform in behaviour. 

Artichoke phenology has been described by Archontoulis et al. (2010) according to the BBCH 

scale and Virdis et al. (2009, 2014) have studied the genetic factors and environmental 

requirements for timing of leaf emission (phyllochron) and head production. Flower induction 

requires a critical photoperiod of at least 10.5 h and a thermal sum of at least 200–250 °C with 

a base temperature of 7–9 °C, and artichoke does not survive at less than -10 °C (Bianco 1990). 

At high temperatures (>30 °C) the quality of edible heads decreases. The plant is moderately 

tolerant to salinity with genotypic variability, and may endure values of soil electrical 

conductivity between 2.6 and 6.1 dS m-1 without yield losses (Cantore and Boari 2009). 

Artichokes are grown in consociation with other Mediterranean crops such as olive orchards or 

in specialized fields (Fratianni et al. 2007). In both systems artichoke plants provide ecological 
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services like carbon storage and an effective form of land protection from erosion since they 

develop a considerable ground cover due to a large leaf area reaching a Leaf Area Index up to 

6 m2 of leaves per m2 of soil, and a root density of over 10 cm of roots per cm3 of soil (Amato 

et al. 2011). 

 

2.4 Nutritional quality 

From a nutritional point of view globe artichoke heads have around 7% of carbohydrates, 3% 

of proteins and less than 0.3% of lipids. Due to the high content of fiber (5.5%) and 

nutraceuticals (see following sections) artichoke is also a functional food and a folk medicine. 

Nutritional value of artichoke heads is due to its chemical composition characterized by high 

levels of phenolic compounds. Caffeoylquinic acids are the main phenolic compounds of 

artichoke. The other phenolics belong to the classes of flavonoids and anthocyanins (see 

following sections). 

The 75% of the total sugar content in artichoke edible parts is attributed to the water-soluble 

polysaccharide inulin whose structure and biological activities are described in a following 

section. In addition, the content of inulin increase with the plant development reaching the 30% 

of the edible portion in artichoke heads of marketable quality (Lattanzio et al. 2009). Inulin has 

considered a dietary fiber because, reaching the colon as intact molecule, serve as substrate for 

bifidobacteria growth and makes them the predominant species (Robenfroid 1999). 

 

2.5 Chemical constituent 

Artichoke is a rich source of polyphenolic compounds, mainly caffeoylquinic acids and 

flavonoids, isolated in the polar extracts of the plant, together with the polysaccharide inulin. 

Concerning the lipophilic fraction, it is composed by fatty acids, triterpenes and sesquiterpenes 

as major metabolites. The amounts of such components are extremely variable and may depend 

on several aspects, such as environment, genetic factors, stress, harvest time, agronomical 
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processes, parts of artichoke analysed (inner, intermediate or outer bracts, receptacles, stems, 

capitula and leaves) as well as by different drying method (Lattanzio and Morone 1979; 

Lattanzio and Van Sumere 1987; Lombardo et al. 2010). 

 

2.6 Caffeoylquinic acids 

Table 2.1 summarizes the caffeic acids derivatives isolated from artichoke whose chemical 

structure is reported in Fig. 2.1. This class of compounds, named also hydroxycinnamic acids, 

is composed by a wide range of derivatives, of which chlorogenic and 1,5-O-dicaffeoylquinic 

acids are the most abundant components (Wang et al. 2003; Schütz et al. 2004; Pandino et al. 

2013). The characterization of phenolic compounds between leaves, outer bracts, heads and 

stems was compared by Romani et al. (2006) on the two globe artichoke accessions, Violetto 

di Toscana and Terom. They reported caffeoylquinic acids both in leaves and stems with 1,5-

dicaffeoylquinic acid as the most abundant compound. Higher amounts of chlorogenic acid was 

also found by Fratianni et al. (2007) in the inner bracts of three different genotypes of globe 

artichoke, Tondo di Paestum, Bianco di Pertosa and Violet de Provence. Analogous data have 

been reported by Pandino et al. (2011b) that found such compounds at higher amounts in the 

artichoke receptacles than in the outer bracts. 

 

2.6.1 Biological activity of caffeoylquinic acids 

Table 2.2 shows the biological activity of the isolated caffeoylquinic acids that are responsible 

of the beneficial effects demonstrated for artichoke. One of the most important activity of this 

class of compounds is ascribed to their antioxidant activity and Pandino et al. (2011a) 

demonstrated that this property is correlated with the content of caffeoylquinic acids which are 

the main components of the floral stem. 
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It is well known that caffeoylquinic acids have several biological effects and among them a 

higher inhibition of lipoxygenase has been found (Nishizawa and Fujimoto 1986; Nishizawa et 

al. 1987). 

Gebhardt (1997) reported the activity of artichoke extracts as antioxidant and protective against 

hydroperoxide-induced oxidative stress with chlorogenic and 1,5 dicaffeoylquinic acids that 

were the main responsible of this effect. Fritsche et al. (2002) showed radical scavenging 

activities on DPPH (1,1-diphenyl-2-picrylhydrazyl) of chlorogenic acid and 3,5-

dicaffeoylquinic acid. The anti-oxidative and anti-apoptotic activity of the latter molecule in 

HMEC-1 (human dermal microvascular endothelial cells) was reported by Zha et al. (2007), 

where the concentration of MDA decreases with administration of 3,5-dicaffeoyl quinic acid 

due to its scavenging of intracellular ROS. In addition, the level of apoptotic cells treated with 

this compound also decreases due to the inactivation of the enzyme caspase-3. More recently, 

the antioxidant activity of chlorogenic acid was also reported by Sato et al. (2011). 

The antioxidant activity was also studied in human leukocytes by Pérez-Garcìa et al. (2000) 

who reported the inhibition of oxidative stress generated by reactive oxygen species (ROS) by 

cynarin, caffeic acid, chlorogenic acid and by the flavonoid luteolin. 

Concerning 1,5-dicaffeoylquinic acid, Cao et al. (2010) demonstrated its protection of 

astrocytes from cell death in an in vitro model of ischemia/reperfusion. Recently, Xiao et al. 

(2011) indicated the dose-dependent neuro-protective mechanism of this compound against 

amyloid  1–42 that induces apoptosis on neuronal culture. 

Furthermore, cynarin, one of the most important caffeoylquinic acid, but not the most abundant 

one, reveals choleretic activity (Gebhardt 1997) and hepato-protective properties (Adzet et al. 

1987) and it was demonstrated that it does not compromise transaminase activity. 

The antibacterial activities of leaves extracts were also tested by Falleh et al. (2008), reporting 

activity against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, and Escherichia 
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coli, and no activity against Salmonella thyphymurium. This antibacterial activity may be 

related to the high level of phenolic components in the leaves. 

 

 

Fig. 2.1 Chemical structures: caffeoylquinic acids 
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Table 2.1 Phenolic compounds isolated from artichoke 

Compounds Species References 

Caffeoylquinic acids 

1-O-caffeoylquinic acid 
Cynara scolymus Green globe, Imperial Star, Violet Wang et al. (2003) 

 Cynara scolymus Violetto di Toscana and Terom Romani et al. (2006) 

Chlorogenic acid (common: 3-O-

caffeoylquinic acid; IUPAC: 5-O-

caffeoylquinic acid) 

Cynara scolymus L. 

Cynara cardunculus scolymus Tondo di Paestum, Bianco  

di Pertosa, Violet de Provence, Violetto di Toscana. 

Adzet and Puigmacia (1985) 

Fratianni et al. (2007),  

Romani et al. (2006) 

 Cynara cardunculus (L.) subsp. scolymus Hayek Garbetta et al. (2014) 

Cryptochlorogenic acid (4-O- 

caffeoylquinic acid) 

Neochlorogenic acid  

(5-O-caffeoylquinic acid) 

C.c altilis, C.c. scolymus Blanc Hye`rois, Nobre, Tondo di 

Paestum, Tema 2000, Violetto di Sicilia, Violetto di 

Toscana, C.c sylvestris Creta. 

Pandino et al. (2011a, b, 2013) 

Cynarin (1,3-dicaffeoylquinic acid) Cynara cardunculus var. scolymus Panizzi and Scarpati (1954) 

 Cynara scolymus Green globe, Imperial Star, Violet Wang et al. (2003) 

1,4-Dicaffeoylquinic acid Cynara cardunculus L. var. altilis (DC) Ramos et al. (2014) 

3,4-Dicaffeoylquinic acid Cynara cardunculus L. var. altilis (DC) Ramos et al. (2014) 

3,5-Dicaffeoylquinic acid Cynara cardunculus scolymus, Violetto di Sicilia Pandino et al. (2013) 

 Cynara cardunculus (L.) subsp. scolymus Hayek Garbetta et al. (2014) 

1,5-Dicaffeoylquinic acid Cynara scolymus L. Nobre, Tema 2000, Violetto di Sicilia, 

Violetto di Toscana and Terom 

Pandino et al. (2011a, b, 2013), 

Romani et al. (2006) 

 

 

Cynara cardunculus (L.) subsp. scolymus Hayek Garbetta et al. (2014) 

Flavonoids 

Luteolin 

 

Cynara cardunculus altilis, Cynara cardunculus scolymus 

Blanc Hye`rois, Nobre, Tempo F1, Tondo di Paestum, Tema 

2000, Violetto di Sicilia, Violetto di Toscana, Spinoso di 

Palermo, C.c. sylvestris Creta, C.c. sylvestris Kamaryna 

 

 

Pandino et al. (2011a, b),  

Romani et al. (2006) 

 

 

C.c scolymus Blanca de Tudela Abu-Reidah et al. (2013) 

 Cynara cardunculus L. subsp. scolymus (L.) Dranik and Chernobai (1966), 

Dranik et al. (1964) 

 C.c scolymus Violet de Provence and Bianco di Pertosa Fratianni et al. (2007) 

Cynaroside (luteolin 7-O-- 

D glucopyranoside) 

Cynara scolymus L. 

C.c. altilis, C.c scolymus Blanc Hye`rois, Tempo F1, Tondo di 

Paestum, Tema 2000, Violetto di Sicilia, Spinoso di 

Palermo, C.c sylvestris Creta, Kamaryna. 

Adzet and Puigmacia (1985) 

Shimoda et al. (2003) 

Pandino et al. (2011a, b) 

 Cynara scolymus Green globe, Imperial Star, Violet, Violetto 

di Toscana 

Wang et al. (2003), Romani et al. 

(2006) 

 C.c scolymus Blanca de Tudela Abu-Reidah et al. (2013) 

 Cynara scolymus American Green globe, French Hyrious, 

Egyptian Baladi 

Farag et al. (2013) 

Luteolin 7-O-glucoronide C.c altilis, C.c scolymus Nobre, C.c Sylvestris Kamaryna Pandino et al. (2011a) 
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Table 2.1 Continued   

Compounds Species References 

 C.c scolymus Blanca de Tudela, Violetto di Toscana, Spinoso 

di Palermo 

Abu-Reidah et al. (2013), Romani 

et al. (2006), Pandino et al. 

(2011a, b, 2013) 

Scolymoside (luteolin 7-O--Lrhamnosyl 

(1→ 6) --D- 

glucopyranoside; luteolin-7-O-rutinoside) 

Cynara scolymus Green globe, Imperial Star, Violet, Violetto 

di Toscana 

C.c scolymus Blanc Hye`rois, Nobre, Tempo F1, Tondo di 

Paestum, Tema 2000, Violetto di Sicilia, Spinoso di 

Palermo, C.c sylvestris Creta, Kamaryna. 

Wang et al. (2003), Romani et al. 

(2006) 

Pandino et al. (2011a, b, 2013) 

 C.c scolymus Blanca de Tudela Abu-Reidah et al. (2013) 

Luteolin acetyl hexoside C. cardunculus L. var. altilis (DC) Ramos et al. (2014) 

Luteolin 7-O-malonylglucoside C.c scolymus Blanc Hye`rois, Nobre Tempo F1, Tondo  

di Paestum, Tema 2000, Violetto di Sicilia, Violetto di Toscana 

Pandino et al. (2011a, b), Romani 

et al. (2006) 

Apigenin C.c altilis, C.c sylvestris Creta, Kamaryna, C.c scolymus 

Tondo di Paestum, Blanc Hyerois, Nobre, Tempo F1, 

Tema 2000, Violetto di Sicilia 

Pandino et al. (2011a, b), Romani 

et al. (2006) 

 C.c scolymus Blanca de Tudela Abu-Reidah et al. (2013) 

 C.c scolymus Violet de Provence and Bianco di Pertosa Fratianni et al. (2007) 

 C.c scolymus Spinoso di Palermo Pandino et al. (2013) 

Apigenin 7-O-glucoside (apigenin 

 7-O--glucopyranoside) 

C.c altilis, C. c sylvestris Creta, C.c scolymus Tondo di 

Paestum. 

Pandino et al. (2011a, b) 

 C.c. scolymus Blanca de Tudela Abu-Reidah et al. (2013) 

 Cynara scolymus American Green globe, French Hyrious, 

Egyptian Baladi 

Farag et al. (2013) 

Apigenin 7-O-glucoronide C.c altilis, C.c scolymus Nobre, Blanc Hyerois, Tempo F1, 

Tema 2000, Violetto di Sicilia C.c sylvestris Creta 

Pandino et al. (2011a, b) 

 C.c. scolymus Blanca de Tudela, Violetto di Toscana Abu-Reidah et al. (2013) 

Apigenin 7-O-rutinoside  

(apigenin 7-O--L-rhamnosyl 

 (1 → 6) --D-glucopyranoside) 

C.c altilis, C.c scolymus Nobre, Tondo di Paestum C.c 

Sylvestris Creta, Kamaryna. 

Cynara cardunculus scolymus Green globe, Imperial Star, 

Violet 

Pandino et al. (2011a, b) 

Wang et al. (2003) 

Apigenin acetyl hexoside C. cardunculus L. var. altilis (DC) Ramos et al. (2014) 

Naringenin Cynara scolymus L. cv. Green globe Sanchez-Rabaneda et al. (2003) 

Naringenin 7-O-glucoside Cynara scolymus L. cv. Green globe Sanchez-Rabaneda et al. (2003) 

Narirutin (naringenin 7-O-rutinoside) Cynara scolymus Green globe, Imperial Star, Violet Wang et al. (2003) 

Scopoletin C. cardunculus L. var. altilis (DC) Ramos et al. (2014) 

   

Anthocyanins 

Cyanidin 3,5-diglucoside 

Cyanidin 3-sophoroside 

Cyanidin 3-glucoside 

Cyanidin 3,5-malonyldiglucoside 

Cyanidin 3-(3II-malonyl) glucoside 

Delphinidin glycoside 

Peonidin 3-glucoside 

Cyanidin malonylsophoroside 

Cyanidin pentoside 

Cyanidin 3-(6II-malonyl) glucoside 

Peonidin 3-(6II-malonyl) glycoside 

Cynara scolymus L. cv.‘‘Camus’’,‘‘Green globe’’, ‘‘Le 

Castel’’, and ‘‘Petit Violet’’ 

Schütz et al. (2006) 
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2.7 Flavonoids 

Flavonoids, together with anthocyanins, are minor constituents of artichoke, representing less 

than 10% of the total phenolic compounds. However, it was shown that the phenolic content of 

artichoke varies depending on the plant age. In general, immature heads have higher phenol 

contents than mature heads, where total polyphenols, detected in different cultivars of C. 

cardunculus var. scolymus, increased from external to internal parts (Pandino et al. 2011b). 

Table 2.1 shows the main flavonoids found in artichoke based on the structure of the free genin, 

luteolin, apigenin and naringenin and their mono and diglycosides whose chemical structure is 

reported in Figs. 2.2 and 2.3.  

A study by Schütz et al. (2004) on globe artichoke heads led to the detection of apigenin-7-O-

glucuronide, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside as the main flavonoids. 

Pandino et al. (2010) analysed and compared the phenolic profile between capitula of wild 

cardoon, globe artichoke and cultivated cardoon. They reported apigenin and its 7-O-

glucuronide as predominant in cultivated plant, thus confirming their potential use as source of 

such flavonoids. Romani et al. (2006) studied in detail all phenolic compounds present in two 

characteristic accessions of Tuscany (Italy), that were Violetto di Toscana and Terom, and 

demonstrated that flavonoids are present at higher amounts in leaves followed by heads, while 

stems are completely devoid of flavonoids.  

Finally, the capitula of artichoke is a natural source of apigenins, one of the most important 

flavonoids which have several biological and pharmacological activities (see Table 2.1 for 

details and the following section).  

Few studies focused on about the anthocyanidins group of phenols. Preliminary reports on the 

detection of anthocyanins in Cynara were those of Foury and Aubert (1977), Pifferi and Vaccari 

(1978) and Aubert and Foury (1981). Later on, Schütz et al. (2006) reported in detail antocyanin 

profile of globe artichoke inner bracts characterized by a violet colour. High performance liquid 

chromatography coupled with electrospray ionization mass spectrometry were used to identify 
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cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3,5- malonyldiglucoside, cyanidin 

3(3II-malonyl) glucoside and cyanidin 3-(6II-malonyl) glucoside as major compound. 

 

 

 

Fig.2.2 Chemical structures: flavonoids and flavonoid glycosides 
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2.7.1 Biological activity of flavonoids 

Table 2.2 shows the biological activities of the isolated flavonoids including antioxidant, 

vasorelaxant, antibacterial, anti-hyperlipidemic, hepatoprotective and chemopreventive agent. 

In particular, it was shown antioxidant property for polyphenols that depends on the position 

and number of hydroxyl groups on the aromatic ring (Chen and Ho 1997).  

According to Pandino et al. (2011a) the antioxidant capacity of the leaves was correlated with 

luteolin content, whereas in the floral stem, it was correlated with the content of caffeoylquinic 

acids. Lipid peroxidation was quantified by the production of MDA (malondialdehyde) that 

increases, in addition to hydroperoxide agents, when water-soluble extracts of artichoke leaves 

are added to primary rat hepatocyte cultures (Gebhardt 1997). Interestingly, by exposure to 

hydroperoxide the MDA production was inhibited, indicating a large prevention against 

hepatocyte necrosis of phenolic fractions of artichoke leaves. Cynaroside and its corresponding 

aglycon inhibit cholesterol biosynthesis in rat hepatocytes (Gebhardt 1998) also showing 

hypolipidemic activity. Brown and Rice-Evans (1998) also studied the dose-dependent effect 

of luteolin and its less active glucoside on prevention of reduction of LDL oxidation, reporting 

that both act as hydrogen donors and metal ion chelators. 

Furthermore, flavonoids, especially luteolin and its 7-O--D-glycopyranoside, inhibit the 

function of the multi-drug-resistance transporter. The binding interaction of these molecules to 

recombinant NBD2 (nucleotide binding domain of mouse-MDR) was investigated by Nissler 

et al. (2004), showing that the polar groups on C-5, C-4, and C-3I are responsible for the 

chemical bond. In addition, the glycon part reduces this interaction compared to the aglycon 

compound. The higher activity of luteolin, compared to its glucoside, was also demonstrated 

by Gebhardt (2001) that showed biliary secretion and potent anticholestatic action of this 

compound. 

Moreover, antimicrobial activity of artichoke leaves extract was investigated by Zhu et al. 

(2004). Results indicated that chlorogenic acid, 1,3-O-dicaffeoylquinic acid, luteolin-7-
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rutinoside, and cynaroside have a high activity against bacteria, including Bacillus. subtilis, 

Staphylococcus. aureus, Agrobacterium tumefaciens, Micrococcus luteus, Escherichia coli, 

Salmonella typhimurium, Psudomonas aeruginosa, yeasts such as Candida albicans, C. 

lusitaniae, Saccharomyces cerevisiae, S. carlsbergensis, and the fungi Aspergillus niger, 

Penicillium oxalicum, Mucor mucedo and Cladosporium cucumerinum. The antimicrobial 

activity of the apigenin and its 7-O-glucoside against B. subtilis was tested by Aljancic et al. 

(1999) that also reported the activity only of the aglycon compound against C. albicans and E. 

coli. It is well known that HMG-CoA reductase is the enzyme responsible of cholesterol 

biosynthesis. Fritsche et al. (2002) demonstrated that chlorogenic acid, luteolin and its 

glucoside has a strong inhibitory effect on the enzyme, suggesting a possible use of these 

molecules to prevent atherosclerosis diseases. Rossoni et al. (2005) studied the vasomodulator 

effect of wild artichoke (C. cardunculus) and its main components, luteolin and apigenin, on 

aortic endothelial cells and on isolated rat aortic rings, showing the power of these compounds 

to increase the production of NO (nitric oxide-vasorelaxant factor) and to promote dose-

dependent aortic relaxation. 
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Table 2.2 Biological activity of the isolated phenolic compounds 

Compounds Activity References 

Caffeoylquinic acids 

 

Chlorogenic acid (common: 3-O-caffeoylquinic acid; 
IUPAC: 5-O-caffeoylquinic acid) 

Cryptochlorogenic acid (4-O-caffeoylquinic acid) 

 

 

Hepato protective, antioxidant and 

anticarcinogenic 

Gonthier et al. (2003), Pérez- 
Garcı´a et al. (2000) 

Garbetta et al. (2014), Sato et al. 
(2011) 

Pandino et al. (2011a) 

Cynarin (1,3-Dicaffeoylquinic acid) Hepato protective Adzet et al. (1987) 

 Antioxidant Pandino et al. (2011a), Wang et 

al. (2003) 

Pe´rez-Garcı´a et al. (2000) 

 Anti-HIV Robinson et al. (1996) 

 Choleretic, anticholestatic, diuretic Gebhardt (2000, 2001) 

3,4-Dicaffeoylquinic acid Anti-influenza viral activity Takemura et al. (2012) 

3,5-Dicaffeoylquinic acid Antioxidant and anti-apoptotic Zha et al. (2007), Fritsche et al. 

(2002) 

1,5-Dicaffeoylquinic acid Protection of astrocytes from cell 

death 
Cao et al. (2010) 

 Prevention of neuron apoptosis in 

Alzheimer’s disease 
Xiao et al. (2011) 

 Anticarcinogenic Clifford (2000) 

 

 

Antioxidant Garbetta et al. (2014) 

Flavonoids 

 

Luteolin Anticholestatic, choleretic Gebhardt (1998, 2000, 2001) 

 Antioxidatant Pandino et al. (2011a), Pérez-

Garcìa et al. (2000) 

 Antimicrobial activity Zhu et al. (2004) 

 Vasorelaxant Rossoni et al. (2005) 

 Inhibition of lipid peroxidation Brown and Rice-Evans (1998) 

 Inhibition of multidrug-resistant Nissler et al. (2004) 

Cynaroside (luteolin 7-O-glucoside) Hepato protective, anticholestatic, 

choleretic 
Adzet et al. (1987) 

Gebhardt (1998) 

 Inhibition of lipid peroxidation Brown and Rice-Evans (1998) 

Scolymoside (luteolin 7-O-rutinoside) Anti-hyperlipidemic Shimoda et al. (2003) 

Apigenin Vasorelaxant Rossoni et al. (2005) 

 Antioxidant Garbetta et al. (2014) 

 Chemopreventive agent Shukla and Gupta (2010) 

 Antibacterial Aljancic et al. (1999) 
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Fig. 2.3 Chemical structures: anthocyanin glycosides 

 

2.8 Triterpenes and sesquiterpenes 

Triterpenes (Figs. 2.4 and 2.5) and sesquiterpene lactones (Fig. 2.6) were found to be the major 

class of lipophilic components of cultivated cardoon (Table 2.3). Sesquiterpenes are mainly 

concentrated in the leaves and present in low amounts in the stalks and capitula, in contrast 
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triterpenes are present at lower amounts in the leaves (Ramos et al. 2013). The authors also 

identified cynaropicrin as predominant sesquiterpene in the leaves. Cyanoropicrin was isolated 

for the first time by Suchy et al. (1960) as the bitter principle of artichoke. Recently, Ramos et 

al. (2013) also reported for the first time in C. cardunculus L. var. altilis (DC) the presence of 

the following components: deacylcynaropicrin, lupenyl acetate and -taraxasteryl acetate, the 

latter triterpene being the most abundant one. 

 

 

Fig. 2.4 Chemical structures: triterpenes 
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Fig.2.5 Chemical structures: saponins, triterpene glycosides 

  



Chapter 2 Artichoke: botanical, agronomical, phytochemical and pharmacological overview 

 

37 

 

2.8.1 Biological activity of triterpenes and sesquiterpenes 

Triterpenes and sesquiterpenes (cynaropicrin, cynarascolosides A, B, and C) were isolated by 

Shimoda et al. (2003) as the active artichoke components. Particularly, it was demonstrated that 

the oxygen at position 3 and 8, and the exo-methylene group are essential for anti-

hyperlipidemic activity (Fig. 2.6). The most abundant sesquiterpene in artichoke is cynaropicrin 

that showed several biological effects (Table 2.4), such as inhibition of contraction of rabbit 

isolated thoracic aorta (Hay et al. 1994) and antihyperlipidemic activity (Shimoda et al. 2003). 

Similar activity has been found for aguerin B and grosheimin. Interestingly, a cytotoxic activity 

of cynaropicrin and aguerin B against cultured human tumour cell lines was later showed by 

Choi et al. (2005), though the two sesquiterpene lactones were not isolated from artichoke, but 

from a different plant species (i.e. Saussurea calcicola Nakai). In this respect, Tanaka et al. 

(2013) tested several plants extracts in order to study their inhibitory effect on the nuclear factor 

Kappa B (NF-kB), which is one of the most important transcription factors activated in 

keratinocytes by UV irradiation, which can lead to cancer onset. C. scolymus L. was found as 

the most active plant. After isolation of bioactive compounds, it was reported that cynaropicrin 

had the greatest suppressive effect, suggesting that such metabolite can be considered as a 

protector of skin aging, particularly against epidermal hyperproliferation and melanocyte 

proliferation induced by UVB (Table 2.4). Yasukawa et al. (2010) reported an inhibitory effect 

of triterpenes and their acetates on the inflammation induced by TPA (12-O-

tetradecanoylphorbol-13-acetate-tumour promoter) on mouse skin. The active constituents of 

artichoke flower extracts (C. cardunculus L.) were separated, tested and compared to 

indomethacin: and  amyrin, taraxasterol, -taraxasterol and their acetates exerted anti-

inflammatory activity, with  and  amyrin more active than indomethacin. It is interesting to 

underline that the anticarcinogenic activity of taraxasterol against TPA on mouse skin had 

already been tested (Yasukawa et al. 1996).  
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Fig. 2.6 Chemical structures: sesquiterpene and sesquiterpene glycosides 

In addition,  and  amyrin showed antiinflammatory properties in mouse induced colitis (Vitor 

et al. 2009), with both of these triterpenes diminishing interleukin (IL)-1, cytokines and COX-

2 levels. In addition, -amyrin acetate was more active in decreasing the secretion of tumor 

necrosis factor (TNF-) even at low concentration (Ding et al. 2009) and also showed inhibitory 

activity against human breast and ovarian cancer cell line. Triterpenoid compounds were also 

extracted from involucres bracts of C. cardunculus L. by Krimkova et al. (2004) in order to 
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verify the antimutagenic activity of cynarasaponins against acridine orange (AO) induced 

damage of chloroplast DNA in the green alga Euglena gracilis. 

Table 2.3 Terpenoid compounds isolated from artichoke 

Compounds Species References 

Sesquiterpenes 

 

Aguerin A, B 
Cynara scolymus L. Shimoda et al. (2003) 

Grosheimin C. cardunculus L. var. altilis (DC) 

C. cardunculus L. var. scolymus 

Shimoda et al. (2003) 

Cynaropicrin Cynara scolymus L. 

Cynara cardunculus L. 

Tanaka et al. (2013) 

Shimoda et al. (2003) 

Deacylcynaropicrin Cynara cardunculus L. var. altilis (DC) Ramos et al. (2013) 

Cynarascoloside A, B, C Cynara scolymus American Green globe, French Hyrious, 

Egyptian Baladi 

Farag et al. (2013) 

-Cubebene Cynara scolymus L. Hadaruga et al. (2009) 

 

 

Guaianolides (sesquiterpene lactones) 

11-H-13 methylsulfonylgrosheimin 

8-deoxy-11-hydroxy-13 chlorogrosheimin 

8-deoxy-11,13-dihydroxygrosheimin 

8-epigrosheimin 

Sibthorpine 

 

 

 

 

 

Cynara scolymus L. 

 

 

 

 

                   Barbetti et al. (1993) 

Triterpenes 

Cynarasaponins C. cardunculus L. 

Cynara scolymus American Green globe, French Hyrious, 

Egyptian Baladi 

Krimkova et al. 

(2004) 

Farag et al. (2013) 

 and  amyrin C. cardunculus L. var. altilis (DC) Akihisa et al. (1996) 

Ramos et al. (2013) 

 and  amyrin acetate C. cardunculus L. var. altilis (DC) Ramos et al. (2013) 

Lupeol C. cardunculus L. var. altilis (DC) Ramos et al. (2013) 

Lupenyl acetate C. cardunculus L. var. altilis (DC) Ramos et al. (2013) 

-Taraxasterol C. cardunculus L. var. altilis (DC) Akihisa et al. (1996) 

Taraxasterol C. cardunculus L. var. altilis (DC) Akihisa et al. (1996) 

Yasukawa et al. (1996) 

-Taraxasteryl acetate C. cardunculus L. var. altilis (DC) Ramos et al. (2013) 

Taraxasteryl acetate C. cardunculus L. var. altilis (DC) Ramos et al. (2013) 
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Table 2.4 Biological activity of the isolated terpenoid compounds 

 

2.9 Inulin and its biological activity 

Inulin is a polysaccharide belonging to the family of fructans whose chemical structure is based 

on linked fructose units -(1 → 2) that end with a -(1 → 2) glucose (Fig. 2.7). It has been 

detected in the edible artichoke heads in a concentration ranging from 18.9 to 36.2% of dry 

weight (Lattanzio et al. 2009). Inulin is a polydisperse polymer with different degree of 

polymerization that is expressed by the general formula GFn (G = glucose; F = fructose; n = 

number of fructose units) with n ranging from 4 to 100. It is important to determine its degree 

of polymerization because it influences several properties, such as solubility (high degrees are 

less water-soluble), thermal stability (high degrees are more stable), sweetness and prebiotic 

Compounds Activity References 

Sesquiterpenes 

Grosheimin 
Anti-hyperlipidemic Shimoda et al. (2003) 

 Cytotoxic Choi et al. (2005) 

 Anti-hyperlipidemic Shimoda et al. (2003) 

Cynaropicrin Antiphotoaging agent; Tanaka et al. (2013) 

 Anti-hyperlipidemic Shimoda et al. (2003) 

Fritsche et al. (2002) 

 Inhibition of thoracic aorta contraction Hay et al. (1994) 

 Cytotoxic Choi et al. (2005) 

Triterpenes 

Cynarasaponins Antimutagenic Krimkova et al. (2004) 

 and amyrin Anti-inflammatory Akihisa et al. (1996) 

Yasukawa et al. (2010) 

Vitor et al. (2009) 

 Anticarcinogenic Ding et al. (2009) 

 and  amyrin acetate Anti-inflammatory Yasukawa et al. (2010) 

-Taraxasterol Anti-inflammatory Akihisa et al. (1996) 

Yasukawa et al. (2010) 

Taraxasterol Anti-inflammatory 

Inhibitor of skin tumor 

Inhibitor of skin tumor 

Akihisa et al. (1996) 

Yasukawa et al. (1996) 

-Taraxasteryl acetate Anti-inflammatory Yasukawa et al. (1996) 

Taraxasteryl acetate Anti-inflammatory Yasukawa et al. (1996) 
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activity. Inulin belongs to non-digestible oligosaccharides (NDO), because its special linkages 

cannot be degraded by human digestive system. Therefore, the assumed dose does not increase 

the level of sugar blood because the molecule is not absorbed in the gastrointestinal tract where 

it acts by increasing water flow (osmotic process), consequently it is fermented by microflora. 

For this reason, artichoke can be considered as a functional food composed by inulin, a most of 

important dietary fibre (Robenfroid 1999). Gibson et al. (1995) demonstrated in vivo that inulin 

administration selectively stimulates the Bifidobacterium in the human colon, also reporting an 

increase in daily stool output when inulin was introduced into the diet. Van Loo et al. (1999) 

also studied the effect of inulin on the microflora colonies. In particular, he demonstrated its 

prebiotic effect and how it enhances bacterial biomass with a consequent increase in faecal 

output. This was confirmed by the production of short-chain fatty acids (final products of the 

fermentation process), especially acetate and butyrate. A decreased concentration of tumour-

promoting substances, such as ammonia, for fructooligosaccharide administration was also 

reported (Gallaher et al. 1996). 

 

Fig. 2.7 Chemical structure: inulin 
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Stewart et al. (2008) tested whether the chain length could influence the fermentation of inulin 

and demonstrated that short chains are more rapidly fermented than long chains, while Tarrega 

et al. (2010) and Meyer et al. (2011) suggested a mixture of short and long chains inulin in order 

to improve its use in commercial prebiotic products and prolong its prebiotic activity in the 

colon. Further demonstrated biological effects include a reduction of serum triglycerides in men 

volunteers after inulin administration (Causey et al. 2000). Finally, it was shown both by 

experimental data and human observations that inulin-type fructans are able to reduce the colon 

cancer risk (Pool-Zobel et al. 2002; Pool-Zobel 2005). 

 

2.10 Comparative analysis of phytochemistry and pharmacology studies 

A comparative analysis of the studies reporting on qualitative and/or quantitative analysis, as 

well as biological activity of metabolites found in C. cardunculus s. lat. was carried out. Starting 

from the 100 references cited in the present review, 81 studies were selected, whereas 19 items 

were discarded since reporting not relevant information. These included an international on-

line database on crop production (FAO 2013), 3 books of general interest about medicinal plants 

(Schauenberg and Paris 1977; Chevallier 1996) and herbs (Fleming 1998), 2 monographs on 

the Cilento National Park (SouthWest Italy) dealing with dyeing plants (De Falco and di 

Novella 2011) and multifunctional sustainable agriculture (Amato et al. 2011), respectively, a 

review (Verpoorte et al. 2008) and a methodological paper (Incerti et al. 2013) on plant 

metabolomics, and 11 book chapters and research articles reporting on artichoke horticulture 

(Bianco 1990, Cantore and Boari 2009), breeding (Lanteri and Portis 2008), phenology (Virdis 

et al. 2009, 2014; Archontoulis et al. 2010), origin and evolution (Rottenberg and Zohary 1996; 

Pignone and Sonnante 2004, 2009), and population genetics (Portis et al. 2005; Sonnante et al. 

2008). The 81 selected papers were further subdivided into two datasets of 26 and 55 items, 



Chapter 2 Artichoke: botanical, agronomical, phytochemical and pharmacological overview 

 

43 

 

corresponding to phytochemistry and health effect studies, respectively, based on the presence 

of information on the biological activity of targeted metabolites. 

 

2.10.1 Comparative analysis of studies on artichoke metabolites identification 

In the phytochemistry comparative analysis, we considered the number of experiments 

reporting evidence of extraction, purification, and characterization of metabolites from specific 

plant parts of the three C. cardunculus subspecies (i.e. scolymus, altilis, sylvestris). We have 

also taken into account the occurrences of different analytical techniques, in order to provide a 

view of the methods most and least used in previous studies, which could be useful for scientist 

working in the field. Many of the 26 studies reported experiments on different plant parts (e.g. 

Ramos et al. 2013) and/or class of compounds (e.g. Farag et al. 2013), so that a total of 104 

reports of artichoke and cardoon metabolites were reviewed. Polyphenols are by far the most 

often reported compounds (Table 2.5), with very similar occurrences of both caffeoylquinic 

acids and flavonoids, which in most studies were searched together. Such compounds were 

mostly searched in artichoke leaves and in the edible heads and bracts, and found in all plant 

parts with the exception of flowers and roots. Anthocyanins and the oligofructan inulin were 

much rarely searched, and selectively found in edible (heads, bracts) and discarded (stems, 

leaves, and roots) parts of the plant, respectively. Sesquiterpenes were rarely searched, but 

ubiquitarily found, as well as triterpenes and fatty acids. Expectedly, the most studied plant 

parts are the edible head and the leaves, with a total of 27 and 28 reports, respectively, that 

taken together correspond to over 50% of the total reports. Bracts (16 reports), receptacles (13) 

and stems (11) were less explored, while flowers (5 reports, only 2 of globe artichoke) and roots 

(2 reports) were likely overlooked. The analytical tools used in the reviewed studies (Table 2.5) 

vary over a wide range, resembling the historical advancement in the field of analytical 

chemistry. From traditional precipitation, purification, and crystallization methods, as in the 
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classic pioneeristic study of Panizzi and Scarpati (1954), or the simple Column 

Chromatography followed by TLC, as in Dranik and Chernobai (1966) the instrumental 

evolution allowed the recent application of Ultra High Performance Liquid Chromatography 

techniques for compounds separation, coupled to advanced tools and Mass Spectrometry for 

specific molecule detection, that was recently used to quickly characterize different class of 

compounds in globe artichoke (Farag et al. 2013). However, most studies were based on HPLC– 

MS, used to isolate polyphenols (Table 2.5). Terpenes and fatty acids were mostly searched by 

GC–MS, as in Ramos et al. (2013), while inulin was found in leaves, stems, and roots of globe 

artichoke by Raccuia et al. (2004) in the unique application of high-performance anion-

exchange chromatography (Table 2.5). Interestingly, a high throughput technique such as NMR 

spectroscopy, widely used to characterize plant metabolomics coupled with multivariate 

statistics (e.g. Verpoorte et al. 2008; Incerti et al. 2013) was rarely used in the case of artichoke, 

and only once as a metabolomics tool (de Falco et al. 2015). In two further cases a metabolomic 

analysis of artichoke was tentatively proposed based on a multivariate approach: both Farag et 

al. (2013) and Hadarugaa et al. (2009) used the Principal Component Analysis method, in order 

to analyse UHPLC–MS data from three cultivars of globe artichoke, and GC–MS data from 

four species of Asteraceae (including globe artichoke), respectively. 
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Table 2.5 Comparative analyisis of 25 papers on artichoke and cardoon phytochemistry 

Class of compounds       

Caffeoylquinic  

                    acids 

Flavonoids Anthocyanins Triterpenes Sesquiterpenes Fatty 

acids 

Inulin Total 

C. cardunculus parts 

 

 
Heads 7 (2) [1] 7 (2) 4 (1) (1) [1] (1) 

 

18 (7) [2] 

Bracts 5 (1) 5 (1) 1 (1) (1) (1)  11 (5) 

Flower   1 (1) 1 (1) (1)  2 (3) 

Receptacle 4 (1) 4 (1)  (1) (1) (1)  8 (5) 

Stems 3 3  (1) 1 (1) (1) 1 8 (3) 

Leaves 9 (1) 7 (1)  1 (1) 4 (1) 1 (1) 1 23 (5) 

Roots     1  1 2 

Juice, pomace 1 1      2 

Total 29 (5) [1] 27 (5) 6 1 (6) 7 (6) [1] 1 (6) 3 74 (28) [2] 

Analytical methods* 

 
CC 2 2 3 6 7 6 

 

26 

TLC 2 3      5 

Vis, UV, AA 4 4      8 

MS 20 20      40 

HPLC 30 29      59 

HPLC–DAD– ESI–

MS 

2 2 3    
 

7 

UHPLC–QTOF– MS 2 2 

 

1 1 1  7 

IR     1   1 

NMR    6 7 6  19 

GC–MS    6 14 6  26 

HPAEC       3 3 

Total 62 62 6 19 30 19 3 201 

Table shows the number of reports on extraction, purification and characterization of metabolites from C. 

cardunculus subsp. scolymus, according to plant parts and class of compounds. Values in round and square 

brackets refer to experiments on C. cardunculus subsp. altilis, and C. cardunculus subsp. sylvestris, respectively. 

Occurrences of analytical methods in the experiments are also shown. 

Please note that number of reports does not correspond to the number of papers, the since one paper can report 

experiments on different plant parts and/or class of compounds.  

*Methods abbreviations: CC column chromatography, TLC thin layer chromatography, Vis, UV, AA visible, ultra-

violet, and atomic absorption spectroscopy, MS mass spectrometry, HPLC high performance liquid 

chromatography, DAD–ESI diode array detection– electrospray ionisation, UHPLC–QTOF ultra high 

performance liquid chromatography–quadrupole time-of-flight, IR infra-red spectroscopy, NMR nuclear magnetic 

resonance spectroscopy, GC gas chromatography, HPAEC high-performance anion-exchange chromatography 
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2.10.2 Comparative analysis of studies of metabolites health effects 

We considered the number of experiments, from the 55 reviewed papers, reporting evidence of 

biological activity of C. cardunculus metabolites, even when derived from different plants, also 

taking into account the type of effect, the active principles, the target biological system in vitro 

and/or in vivo in the original studies. In this respect, a proper meta-analysis of the results from 

previous studies on health effects by artichoke metabolites was avoided, due to the high number 

of different compounds and tested biological activities reported in the literature (Tables 2.6 and 

2.7), as compared to the limited total number of reports. Indeed, also considering the 

methodological differences among different previous studies, the number of available outcomes 

on specific effects was limited, preventing from consistent and informative result comparisons 

(Table 2.7). On the other hand, we considered the occurrences of different methods used to 

assess the biological effects of artichoke metabolites, in order to highlight the most used 

techniques, as well as the least or not yet tested approaches, which could help to immediately 

detect the specific topics needing to be addressed by further studies. A total of 91 reports of 

biological activity of artichoke and cardoon metabolites were reviewed. Thirty-nine 

experiments were performed using active principles extracted from C. cardunculus, mostly 

from the scolymus subspecies (26 cases), but also from the altilis subspecies (2), while in 11 

cases the subspecies was not indicated (Table 2.6). In 26 cases the active compounds, known 

for artichoke, were not directly derived from plants, but acquired from commercials. In the 

remaining 26 experiments, the metabolites were derived from 21 different plant species, all 

belonging to the Asteraceae family, with the exceptions of two species from Anacardiaceae and 

Rubiaceae, respectively (Table 2.6). When arranged according to the type of biological activity 

and the related assessment methods (Table 2.7) the 91 reports were very variable, with 17 

different targeted activities.  
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Table 2.6 Comparative analyisis of 55 papers on artichoke and cardoon pharmacology 

Source taxa Caffeoylquinic 

acids 

Flavonoids Sesquiterpenes Triterpenes Fatty 

acids 

Inulin Total 

None (compounds acquired from commercial) 14 4  1  7 26 

Asteraceae 

C. cardunculus L. s. lat. 3 5 

 

3 

  

11 

C. cardunculus L. subsp. scolymus (L.)  

Hegi 

10 9 3 2 1 1 26 

C. cardunculus L. subsp. altilis DC. 1 1     2 

Achillea atrata L.  1 1    2 

Achyrocline alata (Kunth) DC. 1      1 

Arctium lappa L.    1   1 

Baccharis genistelloides Pers. 1      1 

Calendula officinalis L.    1   1 

Carthamus tinctorius L.    1   1 

Centaurea solstitialis L.   1    1 

Chrysanthemum morifolium Ramat.    2   2 

Cichorium intybus L.      3 3 

Cirsium nipponicum Makino    1   1 

Cirsium tanakae Matsum.    1   1 

Cosmos bipinnatus Cav.    1   1 

Helianthus annuus L.    1   1 

Helianthus debilis Nutt.    1   1 

Matricaria matricarioides Porter.    1   1 

Saussurea calcicola Nakai   1    1 

Silybum marianum Gaerm.    1   1 

Taraxacum officinale Weber.    1   1 

Taraxacum platycarpum Dahlst.    1   1 

Anacardiaceae 

Toxicodendron sylvestre Kuntze 

   

1 

  

1 

Rubiaceae 

Gardenia jasminoides J.Ellis 2 

     

2 

Total 32 20 6 21 1 11 91 

Table shows the number of reports on biological activity of metabolites found in C. cardunculus subsp. scolymus, 

according to class of compounds and plant taxa used as source 

 

The most investigated (35 reported experiments, corresponding to over 38% of the total) was 

certainly the antioxydant activity of polyphenols, both caffeoylquinic acids and flavonoids. 

However, the methodological approaches followed in these experiments were highly variable, 
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with 27 types of in vitro assays based on 13 different targets-i.e. malondialdehyde (MDA), 

hydrogen peroxyde (H2O2), lactate dehydrogenase (LDH), tetrazolium (MTT), dichloro-

dihydro-fluorescein diacetate (DCFH), Rancimat, phorbol-12-myristate-13-acetate (PMA), 

formyl-methionyl-leucyl-phenylalanine (FMLP), fluorescence recovery after photobleaching 

(FRAP), trolox-equivalent antioxidant capacity (TEAC), 2,2- diphenyl-1-picrylhydrazyl 

(DPPH), ferric thiocyanate (FTC), low-density lipoprotein (LDL). In addition, 7 in vitro 

bioassays were performed on 5 different human and rat cell lines (Table 2.7), and one in vivo 

test on rats. Interestingly, notwithstanding such wide experimental background, a systematic 

review on the antioxidant activity of artichoke polyphenols has not yet been compiled, while, 

for example, nine reviews on nutrition, metabolism and functional food properties of artichoke 

metabolites were found, with only three experimental studies, two on inulin and oligofructans 

and one on caffeoylquinic acids (Table 2.7). Other well documented biological activities of 

polyphenols include anticholestatic, choleretic, and hepatoprotective functions (eight reports, 

both in vitro and in vivo) and anti-microbial activity (seven reports). Among the most relevant 

biological functions, antitumour activity was investigated in vitro for triterpenes (Yasukawa et 

al. 2010) and sesquiterpenes (Choi et al. 2005) and in vivo for oligofructans (Gallaher et al. 

1996). However, no recent papers were found following those promising outcomes. 

Considering the most advanced experiments on possible uses of artichoke metabolites, clinical 

trials on human have been successfully presented for the anti-hyperlipidemic (Causey et al. 

2000) and colon microfloraenhancing (Gibson et al. 1995) activities of inulin and oligofructans 

(Table 2.7). 
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Table 2.7 Comparative analysis of 55 papers on artichoke and cardoon pharmacology 

Biological activity and experimental method Caffeoyl 

quinic 

acids 

Flavonoids Sesqui- 

terpenes 
Tri- 

terpenes 
Fatty 

acids 
Inulin Total 

Anti skin photo-ageing 

In vivo Bioassay (mices) 
  

1 

   

1 

Anticholestatic, choleretic, hepatoptotective 

In vitro CCl4 assay, bioassay (rat hepatocytes) 2 5 

    

7 

In vivo Bioassay (rats) 1      1 

Anti-hyperlipidemic (cholesterol, triglycerides) 

In vitro Rancimat assay 1 1  
   

2 

In vivo Bioassay (olive oil-loaded mices)   1    1 

Human Clinical trial      1 1 

Anti-inflammatory 

In vitro Bioassay (rat macrophage cell line) 
   

1 

  

1 

In vivo Bioassay (mices)    3   3 

Antimicrobial 

In vitro DPPH assay, bioassays (bacteria, yeasts, fungi) 2 3 1 

   

6 

Antimutagenic 

In vitro Bioassay (Euglena gracilis) 
   

1  
 

1 

Antioxydant 

In vitro 
 

MDA, H2O2, LDH, MTT, DCFH, Rancimat assays 9 5 

    

14 

In vitro PMA, FMLP, FRAP, TEAC, DPPH, FTC, LDL 

assays 
6 7     13 

In vitro Bioassays (Caco-2, human neutrophil and intestinal, 

rat hepatocytes and astrocytes cell lines) 
6 1     7 

In vivo Intestinal ischemia–reperfusion model (rats) 1      1 

Anti-tumoral 

In vitro Bioassay (human tumor cell line) 
  

1 1 

  

1 

In vivo Bioassay (mices, rats)    1  1 3 

Review  1    2 3 

Anti-viral (HIV) 

In vitro Bioassay (T cell lines, tissue culture) 1 

     

1 

Anti-viral (IAV) 

In vivo Bioassay (mices) 1 

     

1 

Inhibition of multi-drug-resistence transporter 

In vitro Tryptophan fluorescence-quenching assay 
 

1 

    

1 

Inhibition of smooth muscle contractility 

Ex Bioassay (rabbit aorta rings) 

vivo 

  
1 

   
1 

Lipoxygenase inhibitor 

In vitro Lipoxygenase assay 2 

     

2 

Neuroprotective 

In vitro Bioassay (rat cultured cortical neurons) 1 

     

1 

Nutrition, metabolism and functional food properties 

In vitro Rheological and sensory assay, batch fermentation 
     

1 1 
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Table 2.7 Continued 

Biological activity and experimental method Caffeoyl-

quinic 

acids 

Flavonoids Sesqui-

terpenes 
Tri- 

terpenes 
Fatty 

acids 
Inulin Total 

In vivo Bioassay (rats) 1     1 2 

Review 2 1 1 1 1 3 9 

Prevention of endothelial and vasomotor function loss 

In vitro Bioassays (rat aortic endothelial cell line) 
 

1 

    

1 

In vitro DNA fragmentation analysis, Caspase-3 assay 1      1 

Protection from colitis, stimulation of microflora 

In vitro Bioassay (bifidumbacterium, mixed colonic bacteria) 
     

1 1 

In vivo Bioassay (mices, rats)    1  1 2 

Human Clinical trial      1 1 

Total 37 26 6 9 1 12 91 

Table shows the number of reports on biological activity of metabolites found in C. cardunculus subsp. scolymus, 

according to type of activity, experimental method, and class of compounds 

 

2.11 Conclusion 

Artichoke is a food plant known since ancient times as medicine and component of 

Mediterranean diet. In fact, it was known in Europe since the 15th century and later on brought 

to the Americas by European immigrants. Production of artichokes amounts to 1,793,015 tones 

year-1, more than 60% of which in Europe (FAO 2013) with Italy as the first world producer, 

followed by China, where this species has acquired commercial importance in the last two 

decades. To overcome the problems related to genetic variability and infections, and to reduce 

the labour requirements for its reproduction, in vitro culture or seed propagation are 

increasingly used. Seed production occurs through free pollination thus producing a high 

genetic, phenotypic and phenological variability. The capitulum or heads, constituting the 

immature inflorescence, are the edible part of the plant and constitute the 15–20% of the total 

biomass. All parts of the plant have been shown to be a rich source of nutraceutical that belong 

to different classes of organic compounds such as polyphenols, fructans, flavonoids, 

anthocyanins, triterpenes and sesquiterpenes. These compounds were isolated by classical 

procedures based on chromatographic purification steps, followed by structure elucidation 

studies. Recent high throughput approaches by UHPLC– MS and NMR spectroscopy, followed 
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by principal component analysis, were recently used to characterize the artichoke metabolome 

of different cultivars (Farag et al. 2013; de Falco et al. 2015), being these rapid and efficient 

methodologies. The main biological activities attributed to the artichoke metabolites were 

hepatoprotection (Adzet et al. 1987), choleretic (Preziosi et al. 1959), lipid-lowering (Gebhardt 

1998), and colon cancer protection (Pool-Zobel 2005). However, further studies are needed to 

fully clarify the biological activity of the artichoke metabolites and their mechanism of action. 
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3. Metabolomic Fingerprinting of Romaneschi Globe 

Artichokes by NMR Spectroscopy and Multivariate 

Data Analysis† 

 

3.1 Introduction 

 

The Cynara cardunculus L. species is a highly polymorphic taxon of the Asteraceae family, 

and includes both the globe artichoke (Cynara cardunculus L. var. scolymus L. Fiori), and the 

cultivated cardoon (Cynara cardunculus L. var. altilis DC). Many studies support the important 

role of the edible parts of both globe artichoke and cultivated cardoon in human nutrition (de 

Falco et al., 2015). Besides, they can be considered functional foods due to their protective 

effects on the liver, and their anticarcinogenic, antioxidative, anticholesterol, anti-

hyperlipidemic, coleretic and diuretic properties (Adzet et al., 1987; Gebhardt, 2000; Lattanzio 

et al., 2009; Wang et al., 2003; Shimoda et al., 2003). Globe artichoke and cardoon produce an 

inflorescence called capitulum or head which is partly edible and both edible and non-edible 

parts are a source of nutraceuticals and bio-active compounds. Some of the most characteristic 

ones are mono-caffeoylquinic and dicaffeoylquinic acid (Adzet and Puigmacia, 1985; 

Lombardo et al., 2010; Pandino et al., 2010, 2011; Schutz et al., 2004) and compounds which 

are not widespread such as apigenin (Pandino et al., 2013; Romani et al., 2006). The richest 

cultivated primary gene-pool of the globe artichoke is found in Italy, where most likely 

domestication occurred (Pignone and Sonnante, 2004). Classification is based on harvest time 

and capitulum morphological traits (Portis et al., 2005). Early varieties start producing heads in 

                                                 
† de Falco, B., Incerti, G., Pepe, R., Amato, M., & Lanzotti, V. (2016). Metabolomic Fingerprinting of Romaneschi 

Globe Artichokes by NMR Spectroscopy and Multivariate Data Analysis. Phytochemical Analysis, 27(5), 304-

314. 
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autumn and through spring, whereas late varieties produce heads in spring–summer only. Four 

groups are described based on capitulum morphology: (1) the Spinosi, bearing spines on 

capitulum bracts and leaves; (2) the Violetti, with purple and less spiny heads; (3) the 

Romaneschi, with spherical or sub-spherical non-spiny heads; (4) the Catanesi, with small, 

elongated and non-spiny capitulum. 

Sonnante et al. (2002) and Lanteri et al. (2004) showed that morphological classifications 

correspond to genotypic classifications based on different genetic fingerprinting methods and 

principal component analysis (PCA). Nevertheless, a large genetic diversity exists within 

varietal groups and many local populations are found. In many cases, such populations have 

been collected in biodiversity lists where landraces are named after a geographical location. 

A genetic analysis of local populations of Sicilian Globe artichoke within varietal groups has 

shown that most of the populations are genetically distinct, probably due to limited exchange 

of propagation materials between farmers; nevertheless, “the majority of the genetic variation 

is present within, rather than between populations” (Portis et al., 2005). This was ascribed by 

Portis et al. (2005) to different causes such as: (i) traditional methods of propagation, based on 

on-farm vegetative reproduction not from the best individuals, but rather from the whole field, 

resulting in multi-clonal populations; (ii) spontaneous mutations which are then conserved in 

the population due to vegetative reproduction in the absence of the meiotic sieve; (iii) 

reproduction from mother plants which are chimeras. While the extent of between and within-

populations variability is controversial (Lanteri et al., 2001; Raccuia et al., 2004; Portis et al., 

2005; Ciancolini et al., 2013), studies on the chemical composition of artichoke landraces are 

beginning in different areas (Lombardo et al., 2013). This is owing to the fact that the 

characterisation of the content of nutrients and nutraceuticals and its variability is of great 

interest in order to support programmes of germplasm preservation and reproduction of the best 

materials. Campania is one of the regions in Italy where a large number of landraces is found 
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and genetic characterisation has only recently begun (Rofrano et al., 2013), while studies on 

chemical composition are few (Dosi et al., 2013; Fratianni et al., 2007, 2014) and the 

comparison of landraces based on metabolic fingerprinting by NMR and chemometrics has not 

been performed yet. 

This work aims at tracing the metabolic profile of 14 different artichoke populations within the 

“Romaneschi” late varietal group collected in Campania (southern Italy) and investigating the 

variability of the major nutraceuticals described in the artichoke. The analysis was extended to 

one cultivated cardoon collected in the same area. While studies on specific artichoke 

metabolites and the related biological activity are widespread (de Falco et al., 2015), to the best 

of our knowledge this is the first time that a NMR based metabolomics is used to characterise 

artichoke heads. 

 

3.2 Materials and methods 

3.2.1 Chemicals 

First-grade dichloromethane (CH2Cl2) and methanol (MeOH) were purchased from Delchimica 

Scientific Laboratories (Naples, Italy). Deuterium oxide (99.8 atom %D) was obtained from 

ARMAR Chemicals (Döttingen, Switzerland) and chloroform-d (99.8 atom %D) contains 

0.03% (v/v) TMS was purchased from Sigma-Aldrich (Italy).  

 

3.2.2 Plant materials 

The study was conducted on heart, internal and intermediate bracts of cultivated cardoon 

(Cynara cardunculus L.var. altilis DC) and globe artichoke (Cynara cardunculus L.var. 

scolymus L. Fiori) landraces which are traditionally grown in different areas of the Campania 

region in southern Italy and are classified under the “Romaneschi” late varietal group. Nine 

landraces were included in the study, and for two of them vegetative on-farm propagation has 
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resulted in different clones, which were also collected so the total population list is: Bianco di 

Pertosa with clones Bianco di Pertosa, zia B, zia C and zia E, Castellamare with clones Gen A, 

Gen B and Gen C, Capuanella, Montoro, Natalina, Pietralcina, Rosso di Paestum, Tondo 

Alfano, Tondo di Paestum. All populations were grown at the ex situ field for the 

characterisation of artichoke populations of the Campania region at CRA-ORT in Pontecagnano 

(southern Italy, Latitude 40°37′ N, Longitude 14°52′ E). Artichoke and cardoon heads were 

collected on May 2014 in triplicates and before extraction, plant materials were dried overnight 

under controlled temperature (60°C), powdered finely with a pestle and mortar and preserved 

at 4°C until use. 

 

3.2.3 Extraction procedure 

The extraction of all metabolites was made according to the procedure previously applied 

(Incerti et al., 2013). The dried samples (300 mg) were dissolved in 5 mL of 

CH2Cl2/MeOH/H2O in the ratio of 2:1:1. After sonication (1 min), each mixture was centrifuged 

at 3000 rpm for 30 min at room temperature and then the aqueous and the organic fractions 

were accurately separated. The extraction was repeated twice and the solvents of each extract 

were pooled and evaporated to dryness under vacuum (Rotavapor R114, Büchi, Switzerland). 

The obtained dry residues were kept at 4°C until NMR analysis. To evaluate the reproducibility 

of sample preparation, three samples of each plant landrace were used to perform three 

replicated extractions. Samples were prepared as described earlier and analysed by NMR, and 

the intensity of selected signals was measured. The obtained values showed a very good 

repeatability, with coefficient of variation among replicates <2.5% for all signals. 
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3.2.4 Spectroscopic analysis 

Dried aqueous fractions were diluted in 600 μL of deuterium oxide (99.8% D2O) while dried 

organic fractions dissolved in 600 μL of chloroform-d (99.8% CDCl3) and transferred into a 5 

mm NMR tube. Dimethyl-4silapentane sodium sulfonate (DSS) (Merck, Darmstadt, Germany), 

added at a concentration of 0.2 mg/mL, was used as an internal standard. The NMR spectra 

were recorded at 298 K on a Varian Unity Inova spectrometer operating at 400 MHz. The 1H 

NMR measurements were carried out with 128 transients and 16 K complex data point. The 

recycle time was set to 5 s, and a 45 pulse angle was used. Chemical shifts were referred to 

internal standard signals (δ 0.00 ppm). All spectra were processed using iNMR program (www. 

inmr.net), phased and baseline corrected. In total, 90 spectra (15 plant population × 2 extracted 

fractions × 3 replicates) were acquired. Quantification was performed by signal integration 

relative to the internal standard, DSS. The region of the solvent peaks was excluded from the 

analysis. Spectral peak assignments of all amino acids and the flavonoids, luteolin-7-rutinoside, 

narirutin, cyanidin-3-glucoside were obtained on the basis of pure standards, purchased by 

Sigma-Aldrich. Spectral peak assignments of the other detected metabolites were obtained by 

two-dimensional (2D) NMR experiments, and comparison with published data (de Falco et al., 

2015). Metabolites were identified using pure standards and 2D 1H-1H correlation spectroscopy 

(COSY) and 1H-13C heteronuclear singlequantum correlation (HSQC). The 1H connectivities 

were determined by 2D COSY spectra. The COSY spectra were acquired with a spectral width 

of 6130 Hz in both dimensions, 8 K data points, and 512 increments with 32 transients per 

increment. The HSQC spectra were acquired with spectral widths of 8000 Hz in the F2 

dimension and 25000 Hz in the F1 dimension, a data matrix with a size of 1 K × 256 data points, 

and 64 transients per increment. All spectra were manually phased and baseline corrected. 

 

http://www.inmr.net/
http://www.inmr.net/
http://www.inmr.net/
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3.2.5 Multivariate data analysis 

Multivariate analyses were applied to 1H NMR spectral data from both polar and organic 

extracts of plant materials. The 1H NMR spectra were preliminarily normalised and reduced to 

integrated regions of equal widths (bins = 0.01 ppm), corresponding to 0–10 ppm and 

subsequently reduced to ASCII files using iNMR. Two data matrices were considered for 

aqueous and organic extracts, respectively, including the spectral signals recorded for each 

artichoke and cardoon population at each binning interval. Matrices were submitted to PCA 

ordination using the STATISTICA 7 Software (StatSoft Inc., Tulsa, OK, USA). In a more 

detailed analysis on spectral data from the polar fraction, a submatrix limited to the spectral 

data from the resonance region roughly corresponding to aromatic compounds (δ> 5.5) was 

considered, and submitted to PCA. 

 

3.3 Results and discussions 

3.3.1 Metabolite profile 

The 1H NMR analysis of the aqueous and organic extracts of the studied artichoke landraces, 

in comparison with cardoon, showed detailed metabolite profiles. The organic extracts 

contained unsaturated and saturated fatty acids as the major compounds. In fact, the 1H NMR 

spectra of the studied landraces (Fig. 3.1) showed signals characteristic for ω3 (δ 1.02, ω1-CH3) 

and ω6 (δ 0.90, ω1-CH3) series, in addition to saturated (δ 0.80, ω1-CH3) fatty acids. The 

sesquiterpene cynaropicrin and related metabolites, reported as major components of the outer 

artichoke bracts of artichoke and not detected in the capitula (Ramos et al., 2013) were 

undetectable in the spectra. The aqueous extracts (Fig. 3.2) showed an interesting profile with 

the presence of metabolites belonging to different classes. Their assignment, reported in Tables 

3.1–3.3, was obtained on the basis of pure standards, 2D experiments, and comparison with 

published data (de Falco et al., 2015). In Fig. 3.3 is reported the 1H NMR spectrum of Bianco 
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di Pertosa zia E with signal assignment. Fig. 3.4 reports the chemical structure of the main 

detected metabolites. 

 

Fig. 3.1 1H NMR spectra in CDCl3 solvent at 400 MHz of 14 globe artichokes and one cultivated 

cardoon. Spectral region from 0 to 10 ppm. 

 

3.3.2 Organic acids 

In the 1H NMR spectra of the aqueous extracts of artichoke populations the following organic 

acids were identified by their diagnostic chemical shift value: succinic acid (SU) with 

characteristic singlet at δ 2.42 (α,β-CH2), malic acid (MA) with its characteristics double 

doublets resonating at δ 2.39 (dd, 15.0, 10.0 Hz, βΙ-CH), 2.68 (dd, 15.0, 3.0 Hz, β-CH) and 4.31 

(dd, 10.0, 3.0 Hz, α-CH), formic acid (FO) with the singlet δ 8.42 (HCOOH), fumaric acid (FU) 

with a 2H singlet at δ 6.49 (α,β-CH = CH), citric acid (CI) with signals at δ 2.56 (d, 15.0 Hz, 

α,γ-CH), 2.88 (αΙ,γΙ-CH). Diagnostic signals for quinic acid (QU) and shikimic acid (SH) were 

also detected in the 1H NMR spectra and are reported in Fig. 3.3 and Table 3.1. 
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Fig.3.2 1H NMR spectra in D2O solvent at 400 MHz of 14 globe artichokes and one cultivated cardoon: 

(A) spectral region from 0.5 to 5.5 ppm; (B) spectral region from 5.0 to 9.4 vertically expanded four 

times. 

 

3.3.3 Free amino acids 

The 1H NMR spectra of artichoke aqueous extracts showed signals characteristics of the 

following free amino acids: isoleucine (Ile) with signals at δ 0.94 (t, 7.0 Hz, δ-CH3) and 1.01 

(d, 7.0, γΙ-CH3), leucine (Leu) with signal at δ 0.96 (d, 7.0 Hz, δ-CH3), threonine (Thr) with 

signal δ 1.29 (d, 6.0 Hz, CH3), and alanine (Ala) with the typical methyl signals at δ 1.44 (d, 

7.0 Hz, β-CH3). Regarding lysine (Lys) and arginine (Arg), their β, γ and δ methylene groups 
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were also visible in the 1H NMR spectra (Table 3.1). The amino acid asparagine (Asn) was 

easily identified in the 1H NMR spectra because of its typical signals resonating each as dd at 

δ 2.82 (17.0, 10.0 Hz), 2.93 (17.0, 5.0 Hz) and 4.01, assigned to the methine β, βI and α, 

respectively. In addition, signals of the aromatic amino acids phenylalanine (Phe), tyrosine 

(Tyr) and tryptophan (Trp) resonated in a crowded region of the spectra because of the presence 

of other aromatic compounds, such as polyphenols and flavonoids, present in the edible parts 

of artichoke at higher amounts (Table 3.1). Finally, signal attributed to glutamic acid (Glu), 

glutamine (Gln), and γ-aminobutyric acid (GABA) were also identified in the 1H NMR spectra 

of the artichoke population samples (Table 3.1). 
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Table 3.1 1H NMR chemical shifts, assignment and multiplicity in 400 MHz spectrum of artichoke’s 

organic acids and amino acids.  

Compounds Assignment 1H (ppm) Multiplicity [J (Hz)] 

Organic acids    
Citric acid (CI) -CH 2.56 d [15.0] 

-CH 2.88 d [15.0] 

Formic acid (FO) HCOOH 8.42 s 
Fumaric acid (FU) -CH=CH 6.49 s 

Malic acid (MA) -CH 2.39 dd [15.0, 10.0] 

-CH 2.68 dd [15.0, 3.0] 

-CH 4.28 dd [10.0, 3.0] 

Quinic acid (QU) CH2-1,1I 1.88, 2.09  

CH2-5,5I 2.0, 2.05  
CH-3 3.55  

CH-2 4.02  

CH-4 4.15  

Shikimic acid (SH) CH2-7
 2.76, 2.22  

CH-5 3.75 

CH-6 4.02 
CH-4 4.43 

CH-3 6.69 

Succinic acid (SU) α,β-CH2 2.42 s 

Amino acids    
Alanine (Ala) -CH3 1.44 d [7.0] 

γ-Aminobutyric acid  
(GABA) 

 

-CH2 1.95 m 

α-CH2 2.30 t [7.0] 

-CH2 3.01 t [7.0] 

Arginine (Arg) 
 

-CH2 1.69  

-CH2 1.92  

-CH2 3.33 t [7.0] 

α-CH2 3.77  
Aspartic acid (Asp) 

 
-CH2 2.71  

-CH 2.79 dd [ 3.5, 17.0] 

Asparagine (Asn) 

 
-CH 2.82 dd [17.0, 10.0] 

-CH 2.93 dd [17.0, 5.0] 

α-CH 4.01 a 

Glutamic acid (Glu) -CH 2.05, 2.10 m 

-CH2 2.36 m 

α-CH 3.77  

Glutamine (Gln) -CH2 2.15 m 

-CH 2.47 m 

α-CH 3.63  

Isoleucine (Ile) -CH3 

-CH3 

0.94 
1.01 

t [7.0] 
d [7.0] 

Leucine (Leu) -CH3 0.96 d [7.0] 

Lysine (Lys) -CH2 1.48 d [7.0] 

-CH2 1.69  

-CH2 1.88  

Phenylalanine (Phe) CH-2,6 7.32 m 
CH-4 7.36 m 

CH-3,5 7.42 m 

Threonine (Thr) CH3 1.29 d [6.0] 
Tryptophan (Trp) CH-10 7.19  

CH-11 7.29  

CH-8 7.55  
CH-9 7.77 d [8.0] 

Tyrosine (Tyr) CH-5,9 6.90 m 

CH-6,8 7.21 m 

Note: Amino acids were identified by comparison with authentic standards.  
aOverlapped by other signals. 
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Table 3.2. 1H NMR chemical shifts, assignment and multiplicity in 400 MHz spectrum of artichoke’s 

carbohydrates and polyphenols. 

Compounds Assignment 1H (ppm) Multiplicity [J (Hz)] 

Carbohydrates    

-Glucose (-Glc) CH-4 3.25  

CH-2  3.53   
CH-5  3.83   

CH-3 4.65  

CH-1 5.21 d [4.0] 

-Glucose (-Glc) CH-2 3.25  

CH-4 3.39  

CH-5  3.46   
CH-3 3.52  

CH-1 4.63  d [8.0] 

-Fructofuranose (-Fruf) CH-5 4.05  
CH-3 4.10  

-Fructofuranose (-Fruf) CH2-6,6I 3.81, 3.65  

CH-4 4.10  

CH-3  4.10  

-Fructopyranose (-Frup) CH2-1,1I 3.56, 3.70   

CH-3 3.79  
CH2-6,6I 3.81, 3.65  

CH-4  3.88  

CH-5  3.99  

-Rhamnose (-Rha) CH3 1.30 d [6.0] 

CH-1 5.10 d [1.0] 
Inulin (Inu) Fru-H5  3.79 a 

Fru-H1  3.83 a 

Fru-H6 3.76 a 

Fru-H4  4.08 a 

Fru-H3  4.23 a 

Glc-H1I 5.38 d [5.0] 

Caffeoyl derivatives    
3-caffeoylquinic acid CH2-6 1.94, 2.11  

CH2-2 2.15, 2.18   
CH-4 3.64  

CH-5 4.12  

CH-3 5.35  
CH-8I 6.31 d [16.0] 

CH-5I  6.76  

CH-6I 6.93  
CH-2I 7.03  

CH-7I 7.59 d [16.0] 

5-caffeoylquinic acid CH2-6 2.06, 2.23  
CH2-2 2.04, 2.16  

CH-4 3.72  

CH-3 4.16  
CH-5 5.33  

CH-8I 6.28 d [16.0] 

CH-5I  6.77  
CH-6I 6.93  

CH-2I 7.04  

CH-7I 7.55 d [16.0] 
1,3-dicaffeoylquinic acid Cynarin (Cyn) CH2-6 1.83, 2.53  

CH2-2 2.29, 2.88  
CH-4 3.62  

CH-5 4.23  

CH-3 5.36  
CH-8I, II 6.32 d [16.0] 

CH-6I, II 6.58  

CH-2I, II 6.81  
CH-5I, II 6.88  d [8.0] 

CH-7I, II 7.58 d [16.0] 

3,5-dicaffeoylquinic acid CH2-6 2.19, 2.23  
CH2-2 2.15, 2.31  

CH-4 3.96  

CH-5 5.37  
CH-3 5.42  

CH-8I, II 6.28 d [16.0] 

CH-6I, II 6.95  
CH-2I, II 7.05  

CH-7I, II 7.56 d [16.0] 
aOverlapped by other signals. 
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Table 3.3. 1H NMR chemical shifts, assignment and multiplicity in 400 MHz spectrum of artichoke’s 

flavonoids, terpenes and other compounds.  

Compounds Assignment 1H (ppm) Multiplicity [J (Hz)] 

Flavonoids    
Apigenin 7-rutinoside (Api) Rha-6 1.30 d [6.5] 

CH-6 6.40 br s 

CH-8 6.44 br s  
CH-3 6.87  

CH-3I, 5I 7.37 d [8.0] 

CH-2I, 6I  7.83 d [8.0] 
Luteolin 7-rutinoside (Lut) Rham-6  1.30 d [6.5] 

CH-6 6.40 br s 

CH-8 6.44 br s 
CH-3 6.74  

CH-5 I 7.13 d [9.0] 

CH-2 I 7.41 br s 

CH-6 I 7.44  

Luteolin 7-O-β-D glucopyranoside CH-6 6.40 br s 

CH-8 6.44 br s 
CH-3 6.74  

CH-5 I 6.88  

CH-2 I 7.41 br s  
CH-6 I 7.44 br d [8.0] 

Narirutin (Nar) Rham-6 1.07 d [6.0] 

CH-3  2.72  
CH-2 5.52  

CH-6, 8 6.13  

CH-3I, 5I 6.79  
CH-2I, 6I 7.34 d [8.0] 

Cyanidin 3-O-β-glucoside (Cya) CH-6 6.32  

CH-8 6.68  
CH-5I 6.86  

CH-2I 7.53  

CH-6I 7.79  
CH-4 8.46 s 

Terpenes    

Cynarasaponins (Cns) CH3-23 0.89 s 

CH3-24 0.92 s 

CH3-25 0.96 s 
CH3-26 0.99 s 

CH3-27 1.00 s 

CH3-28 1.04 s 
CH2-12 5.41  

Other compounds    
adenosine (A) Rib CH-1I 6.03 d 

CH-8 8.29 s 

CH-2 8.51  
guanosine (G) Rib CH-1I 5.87 s 

CH-8 8.01  

uridine (U) Rib CH-1I 5.88  
CH-5 7.87  

betaine (bet) N(CH3)
3+ 3.27 s 

choline (cho)  N(CH3)
3+ 3.19 s 

myo-inositol (myo) CH-4 3.27  

CH-2,5 3.52  

CH-3,6 3.61  
CH-1 4.05  

Trigonelline (Tri) CH3 4.43 s 

CH-4 8.08  
CH-3,5 8.80  

CH-1 9.08  

Note: The flavonoids Api, Lut, Nar, and Cya were identified by comparison with authentic standards. 
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3.3.4 Carbohydrates 

Different sugars were identified in the 1H NMR spectra of aqueous extracts and were attributed 

to simple and complex saccharide units linked to different aglycones, such as the flavonoid 

apigenin and luteolin or in an oligosaccharide chain as in the case of inulin. The key proton 

signals of the main sugars found in artichoke are shown in Fig. 3.3 for Bianco di Pertosa zia E, 

taken as model spectrum, while the assignments are reported in Table 3.2.  

Fructose and glucose were easily identified in the 1H NMR spectra by means of their diagnostic 

anomeric proton signals (Table 3.2 and Fig. 3.3). In particular, the anomeric proton of β-D-

glucose resonated at δ 4.63 as a doublet with coupling constants of 8.0 Hz, while the anomeric 

proton of α-D-glucose appeared at δ 5.21 as doublet with a small J coupling of 4.0 Hz. In 

addition, α-L-rhamnose was also identified by means of its anomeric proton signal at δ 5.10 (d, 

1.0 Hz) and the typical methyl group resonating as doublet at δ 1.26 with a J value of 6 Hz. It 

is interesting to note in the spectrum of Bianco di Pertosa zia E (Fig. 3.3) the signals 

corresponding to the fructose and glucose units of inulin, resonating in the region between 3.79 

and 4.23 ppm, whose intensity in the spectra is correlated with the signal at δ 5.38, thus 

attributed to the anomeric proton of the terminal glucose residue α-(1,2)-linked to the fructose 

polymer. 

 

3.3.5 Polyphenols 

Caffeoylquinic acid compounds are reported in artichoke as major metabolites (Pandino et al., 

2011). Diagnostic signals of 1,3-dicaffeoylquinic acid, named cynarin (Cyn) and other mono- 

and dicaffeoylquinic acids were also present in the low-field region of 1H NMR spectra of the 

population studied. In particular, signals at δ 6.28–6.32 (CH-8I, CH-8II) and δ 7.55–7.59 (CH-

7I, CH-7II), both as doublets with J = 16 Hz, indicated the presence of the trans hydroxyl-

cinnamoyl vinyl groups (Fig. 3.3 and Table 3.2). Moreover, the presence of a broad doublet 
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resonating at δ 6.88 confirmed the spin system typical of the caffeoyl moiety substituted at 

position 3I,4I and 3II,4II by hydroxyl groups. 

 

Fig. 3.3 1H NMR spectrum (D2O, 400 MHz) of the artichoke landrace Bianco di Pertosa zia E with the 

identification of the compounds detected 
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3.3.6 Flavonoids  

It is well known that the content of flavonoids is less than 10% and they are more concentrated 

in the leaves (Lattanzio et al., 2009). The main flavonoids found in the artichoke heads are 

apigenin, luteolin, naringenin and their related glycosides (Fig. 3.4). Signals for these 

metabolites were evidenced in the 1H NMR spectra of the studied population. In particular, as 

reported in Fig. 3.3 and Table 3.3, key signals were found at δ 7.37 and 7.83 (each 2H, d, 8 Hz) 

for apigenin 7-rutinoside and at δ 7.41 (1H, bs), and 7.13 (1H, d, 9 Hz) for luteolin 7-rutinoside. 

Minor amounts of narirutin were also found as indicated by the signals at δ 7.34 (2H, d, 8 Hz) 

and 5.52 (1H), attributed to CH-2I,6I and CH-2, respectively. In addition, the anthocyanin 

cyanidin 3-O-β-glucoside was also detected in the water-soluble artichoke extracts because of 

the characteristic singlet resonating at δ 8.46 attributed to CH-4. The remaining proton signals 

of the cyanidin nucleus are reported in Table 3.3. 

 

Fig. 3.4 Chemical structures of characteristic compounds found in artichoke. 
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3.3.7 Terpenoid glycosides 

The analysis of the 1H NMR spectra of the population studied showed signals characteristic of 

the triterpenoid saponin, cynarasaponin (Fig. 3.3). In particular, methyl signals resonated in a 

clear spectral zone of the spectra and therefore were easily assigned (Table 3.3). 

 

3.3.8 PCA results 

The PCA of the cardoon and artichoke landraces based on 1H NMR spectral data highlighted 

remarkable differences among the 15 plant populations, related to their metabolomic 

differences. The first two components were satisfactorily explicative of the samples spectral 

variability, with the first two eigenvalues accounting for 86.4% (71.1 and 15.3%) and 70.4% 

(50.9 and 19.5%) of the total variance for the polar and apolar fractions, respectively (Fig. 3.5). 

In the case of apolar fraction, artichoke landraces in the PCA plot were mostly distributed along 

a continuous gradient, with the exception of Bianco di Pertosa zia B and Pietralcina, plotted at 

the top and bottom of the bidimensional space defined by the first two principal components, 

respectively (Fig. 3.5). For the other landraces, limited to apolar compounds, such pattern 

indicates a general similarity of metabolomic fingerprinting among all samples. Indeed, the 

main differences were determined by only three spectral signals, resonating at δ 0.9, δ 1.3 and 

δ 1.4. The first signal, diagnostic of ω1-CH3 of the ω6 series, was positively correlated to the 

second PCA axis, consistent with the highest and lowest content of these fatty acids in Bianco 

di Pertosa zia B and Pietralcina landraces, respectively, compared to the other samples. 

Differently, the signal resonating at δ 1.3, related to saturated alkyl chain of fatty acids, was 

negatively correlated to the first PCA axis, indicating a high content in most of the landraces, 

and a lower content in Bianco di Pertosa zia B and Pietralcina, which showed positive loadings 

on that axis. Finally, the signal resonating at δ 1.4, negatively related to both PCA axes, 

although not easily associable to types of compounds, indicated protons eventually more 
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abundant in Pietralcina landraces, as well as in all samples plotted in the left bottom quadrant 

of the PCA space. 

 

 

Fig. 3.5 Principal component analysis (PCA) ordination of 14 artichoke landraces and one cardoon based 

on 1H NMR resonance spectra from aqueous (left, top and bottom) and organic (right, top and bottom) 

fractions. Top: variable loadings; bottom: signal scores. 
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The bidimensional PCA plot of the 1H NMR spectral data from the aqueous fraction (Fig. 3.5) 

clearly separated the samples based on two main gradients, corresponding to increasing content 

of compounds resonating at δ 3.7–4.3 and δ 5.0–5.3, pointing to the bottom-left and top in the 

bidimensional space defined by the first two principal components, respectively. The first 

spectral region includes signals corresponding to H-1, H-3, H-4, H-5 and H-6 of inulin, most 

abundant in Bianco di Pertosa zia E and Natalina (Table 3.4). The signals resonating at δ 5.0–

5.3, corresponding to other glycosides, are most abundant in all Bianco di Pertosa artichokes, 

with the exception of zia E. Conversely, cardoon, showing the lowest content of inulin and 

other glycosides, was found at the bottom rightmost location in the principal component space 

(Fig. 3.5). The artichoke landraces plotted near the principal component space origin were 

hardly separated, showing a more homogeneous distribution of spectral signals corresponding 

to aromatic compounds (Fig. 3.5).  

 

Table 3.4 Relative abundance (in mg/mL of the sample tube) of major metabolites identified by 1H-

NMR analysis in aqueous extracts of artichoke cultivars and cardoon, as calculated from 1H NMR peaks 

intensity 

Plant cultivar Inu other glycosides Api, Lut Cyn A, G, U Total (mg/mL) 

Bianco di Pertosa 4.271±0.195 0.921±0.016 0.025±0.001 0.025±0.001 0.085±0.001 5.327±0.128 

Bianco di Pertosa zia B 4.125±0.006 1.145±0.020 0.111±0.002 0.171±0.008 0.015±0.001 5.567±0.167 

Bianco di Pertosa zia C 8.394±0.095 1.534±0.067 0.211±0.007 0.242±0.007 0.034±0.001 10.415±0.046 

Bianco di Pertosa zia E 16.231±0.337 0.445±0.008 0.111±0.005 0.131±0.006 0.175±0.005 17.093±0.305 

Castellam gen A 4.537±0.046 0.654±0.025 0.016±0.001 0.043±0.001 0.067±0.001 5.317±0.010 

Castellam gen B 5.411±0.034 0.591±0.022 0.051±0.002 0.061±0.001 0.015±0.001 6.129±0.009 

Castellam gen C 3.936±0.034 0.334±0.009 0.021±0.001 0.016±0.001 0.012±0.001 4.319±0.183 

Capuanella 7.711±0.050 0.715±0.019 0.045±0.002 0.055±0.001 0.081±0.001 8.607±0.174 

Montoro 11.434±0.024 0.881±0.039 0.081±0.001 0.074±0.003 0.067±0.003 12.537±0.272 

Natalina 18.667±0.493 0.686±0.002 0.134±0.006 0.106±0.002 0.221±0.008 19.814±0.258 

Pietralcina 6.845±0.055 0.855±0.037 0.031±0.001 0.015±0.001 0.035±0.002 7.781±0.184 

Rosso di Paestum 4.752±0.201 0.297±0.011 0.022±0.001 0.018±0.001 0.018±0.001 5.107±0.033 

Tondo Alfano 7.985±0.249 0.781±0.002 0.061±0.001 0.071±0.002 0.085±0.003 8.983±0.252 

Tondo di Paestum 7.271±0.312 0.525±0.025 0.061±0.002 0.075±0.001 0.045±0.001 7.977±0.340 

Cardoon 0.911±0.040 0.054±0.001 0.004±0.001 0.008±0.001 0.001±0.001 0.978±0.040 

Note: For each metabolite, peaks reported in Tables 3.1–3.3 were considered. Cultivars are ranked as in Fig. 3.1 

to facilitate a comparison between tabulated data and 1H NMR spectra. Data refers to mean and standard deviation 

of three replicated spectra for each cultivar. 
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Indeed, such signals, resonating at δ higher than 5.5, were all grouped in a dense cloud close to 

the centre of the principal component space (Fig. 3.5). The PCA of the samples based on the 

1H NMR spectral data from the aromatics resonance region extended the previous findings, 

showing metabolomic differences among the artichoke populations related to different 

abundance of specific aromatic compounds (Fig. 3.6).  

 

Fig. 3.6 Principal component analysis (PCA) ordination of 1H NMR resonance intervals from δ 5.7 to δ 

10.0, roughly corresponding to aromatic compounds, based on values recorded in artichoke landraces 

and cardoon: (A) sample scores; (B) loading vectors. Resonance intervals are coloured according to 1H 

NMR signal assignment and labelled by centre of parts per metre range. Explained variance was 41.9% 

and 21.3% for principal component I and II (PCI and PCII), respectively. 
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Considering the flavonoids apigenin and luteolin, as well as the cynarin 1,3-dicaffeoylquinic 

acid, their diagnostic signals (see Table 3.3) were distributed in the bottom-left direction of the 

principal component space, extending along a gradient of increasing content of such compounds 

in the artichoke samples (please compare the spectral peaks intensity in Table 3.4 with the 

sample scores in Fig. 3.6). Indeed, such compounds showed only some slight differences of 

relative abundance in the tested artichoke populations, being most abundant in the Bianco di 

Pertosa Zia B, Zia C, and Zia E landraces, relatively abundant in the Natalina, Tondo Alfano, 

and Tondo di Paestum populations, and rather rare in the Rosso di Paestum and Pietralcina 

artichokes, as well as in the cardoon (Table 3.2). Interestingly, a restricted interval of signals 

resonating at δ 5.8-6.1, possibly associated with nitrogen bases of nucleic acids (i.e. adenosine, 

guanosine, uridine, Table 3.1) were distributed along the top-left direction in the principal 

component space, indicating a gradient of increasing abundance of the corresponding 

compounds in the tested plant samples. Such signals showed important differences of relative 

abundance in the artichoke samples compared to flavonoids and caffeoylquinic acids, being 

mostly abundant in Bianco di Pertosa Zia E and Natalina, and lowest in cardoon (Table 3.4). 

 

3.4 Conclusion  

Metabolomic approach coupling NMR spectroscopy with multivariate data analysis allowed 

for a detailed metabolite profile of the tested cardoon and artichoke populations to be provided. 

Considering the taxonomic relatedness of the studied plant materials, we observed relevant 

differences in relative content of several types of organic compounds, including organic acids, 

amino acids, carbohydrates, caffeoyl derivatives, flavonoids, sesquiterpenes, triterpenes, and 

nucleosides. Our findings are generally consistent with previous studies on metabolites 

identification in artichoke heads (de Falco et al., 2015) that reported inulin and caffeoyl 

derivatives as the main bioactive metabolites. However, few studies specifically reported on 

artichoke metabolic profiling at landrace and population level. Among these, the study by Dosi 
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et al. (2013) reported a detailed nutritional profile obtained by classical methods of the 

“Capuanella” landrace, also included in our analysis. In particular, Dosi et al. (2013) reported 

n-6 linoleic and palmitic acids as the most abundant fatty acid (72% of the total fatty acids), 

and lower content of ascorbic (13.70 mg/100 g), and folic acid (65.00 μg/ 100 g). Phenolic 

compounds, mainly the chlorogenic acid (425.46 mg/100 g) were relatively abundant. Leucine 

(Leu) and lysine (Lys) were the most abundant essential amino acids while Asx (aspartic acid 

plus asparagine) and Glx (glutamic acid plus glutamine) were the most representative non-

essential amino acids. A direct quantitative comparison with our results is not to be 

recommended, due to methodological differences related to both plant growth conditions and 

analytical techniques and tools (Lattanzio and Morone, 1979; Lattanzio and Van Sumere, 1987; 

Lombardo et al., 2010). However, all the metabolites detected by Dosi et al. (2013) were here 

recognised by NMR spectroscopy and in comparable amounts. In particular, as general 

examples, the amino acid asparagine (Asn) was easily identified in the 1H NMR spectra because 

of the typical signals of the methine β, βI and α, with a high intensity of such signals reflecting 

the high amount of this amino acid in the artichoke heads (Dosi et al., 2013) and in other food 

plants (Lea et al., 2007). 

The majority of phytochemistry studies reporting on Cynara scolymus investigated specific 

classes of compounds (de Falco et al., 2015). Among these, the works by Pandino et al. (2010) 

and Pinelli et al. (2007) are of particularly interest reporting on edible parts of different globe 

artichokes, focusing on caffeoylquinic acids and flavonoids. In particular, Pandino et al. (2010), 

analysed “Tondo di Paestum” together with two Sicilian globe artichoke varieties and wild and 

cultivated cardoon, showing the highest content of luteolin glucoside among the studied 

samples, as well as moderate content of apigenin glucuronide and caffeoylquinic acids. Caution 

should be posed in comparing such findings with our results, due to relevant methodological 

differences between the studies and the difference in the plant materials. However, the 

observations by Pandino et al. (2010) are consistent with ours (Table 3.4) for “Tondo di 
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Paestum” that in our study has intermediate values of polyphenols among the 14 different set 

of studied populations and high value, as found by Pandino et al. (2010) compared to cardoon. 

In a pharmacological analysis of antimicrobial and quorum quenching activity of the extract of 

the Montoro artichoke, an ecotype also included in our analysis, Fratianni et al. (2014) found a 

good content of polyphenols, among which a high amount of chlorogenic acid and cynarin was 

detected by ultra-pressure liquid chromatography (UPLC). Our results are consistent with such 

findings, with characteristic 1H NMR spectral peaks of these polyphenols (Table 3.1) being 

recognisable in the spectra of our plant materials. In our data, variation in metabolites is not 

only found among landraces but also between different clones collected within the Bianco di 

Pertosa and Castellammare landraces. This is consistent with results of Lombardo et al. (2013) 

who report large differences in polyphenol content and antioxidant activity between clones of 

two Sicilian artichoke landraces, and suggest to use this information for the selection of elite 

clones and to choose the appropriate clone for different uses (e.g. fresh consumption or food 

processing). The obtained results represent a wider metabolic fingerprinting and can therefore 

provide the basis for improving the selection of reproductive materials. Within the Bianco di 

Pertosa landrace, for instance, clone Zia E has shown the highest content of nutraceuticals and 

can therefore be proposed as an interesting material for vegetative reproduction. While no 

similar studies are found on metabolic fingerprinting among and within artichoke landraces, the 

general finding that a large variability exists among clones within artichoke landraces is 

supported by the genetic studies of Portis et al. (2005), where differences within landraces are 

shown to be large, and this is attributed to farmers’ methods of vegetative reproduction, 

resulting in multi-clonal populations. 

Under a general perspective, our results showed that the combined approach of 1H NMR 

spectroscopy and multivariate data analysis can provide very detailed metabolomic profiles of 

biological samples. As an example, previous studies showed that, among the minor compounds 

in the plant, terpenoid glycosides are found in artichoke, generally based on sesquiterpenoid 
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and triterpenoid aglycon (Ramos et al., 2013). Our findings of signal characteristics in the 

artichoke heads of the triterpenoid saponin cynarasaponin are consistent with such 

observations, showing that our approach can be used not only to assess major compounds in 

biological samples, but also to detect small fractions of specific, minor molecules. From a 

methodological point of view, previous metabolomic studies on artichoke were mostly based 

on advanced ultra-high performance liquid chromatography (UHPLC) techniques, both coupled 

(Farag et al., 2013; El Senousy et al., 2014) or uncoupled (Abu-Reidah et al., 2013) with 

multivariate statistics. The use of 1H NMR as an analytical technique and multivariate data 

analysis as an exploratory statistical tool have been widely used to characterise plant 

metabolomics (e.g. Verpoorte et al., 2008; Incerti et al., 2013), and recently applied to 

Jerusalem artichoke (Helianthus tuberosus L.) to assess metabolic changes in overwintering 

tubers of three plant varieties (Clausen et al., 2012). In this respect, our work is the first 

application coupling 1H NMR with multivariate statistics to provide a metabolomic 

fingerprinting of Cynara scolymus. 
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4. Chia seeds products: an overview‡ 

 

4.1 Introduction 

 

Salvia hispanica L. (Lamiaceae), also known as chia, is an annual herbaceous plant, native of 

southern Mexico and northern Guatemala. The genus Salvia consists of ca 900 species (Ayerza, 

2005) and its name comes from the latin word “salvere”, referring to the curative properties of 

the well known culinary and medicinal herb Salvia officinalis (Dweck, 2005). Nowadays, some 

species are still used all over the world for their nutritional properties and their beneficial effect 

on human health. The species S. hispanica produces numerous dry indehiscent fruits which are 

commonly called seeds. These small white and dark seeds in pre-Columbian times, along with 

corn, beans and amaranth, were one of the basic foods in the diet of several Central American 

civilizations including Mayan and Aztec populations. The seeds had also been used like a 

tribute to the capital of Aztec Empire (Codex Mendoza 1542) and offered to Aztec gods (de 

Sahagun 1579). Due to its religious implications, chia was banned under the rule of the 

European conquerors and was re-discovered in the 1990s. since then it has spread in Argentina, 

Australia, Bolivia, Colombia, Guatemala, Mexico and Peru and outside America, in Australia, 

Africa and Europe (Bochicchio et al. 2015). Chia is a macrothermal short-day flowering plant. 

This means that chia needs to be sown in late spring and will not flower until late summer or 

fall at high latitudes; therefore, its chances of producing seed are low since grain filling is 

hampered by frost (Ayerza and Coates 2005). As there was no source of natural long day chia 

available, Jamboonsri et al. 2012 developed early flowering chia germplasm by genetic 

mutations. The metabolomic profile of four chia seeds early flowering genotype, G3, G8, G17, 

                                                 
‡ de Falco, B., Amato, M., & Lanzotti, V. (2017). Chia seeds products: an overview. Manuscript submitted 
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W13.1, was studied by de Falco et al. (2016) and compared to the profile of commercial black 

and white seeds by 1H NMR spectroscopy coupled with multivariate data analysis. Results 

showed that commercial black seeds have highest content of carbohydrates, while commercial 

white and long-day flowering genotypes showed a lower content of these metabolites. The 

relative content of the identified amino acids was significantly lowest in the G3 and highest in 

G17 which also showed the highest content of saturated and unsaturated fatty acids. Chia seeds 

commercialized today have a coat color ranges from black and black spotted to white. Ayerza 

2013a showed that there is no difference in the chemical composition between two genotypes 

Tzotzol and Iztac, which produce black-spotted and white seeds, respectively. Chia seeds is 

also used to increase the ω–3 fatty acid content of animal products like eggs, poultry and rabbit 

(Peiretti et al. 2008). Several classes of secondary metabolites belong to the sage seeds such as 

flavonoids and their glycosides, polyphenols, which are mainly composed by caffeic acid 

building block, anthocyanins and proanthocyanidins. Fiber is one important component of chia 

seeds studied for its insoluble and soluble fraction. It can be used as foam stabiliser, suspending 

agent and emulsifier for food and pharmaceutical purpose due to its physical properties (Reyes-

Caudillo et al. 2008) including water holding capacity and viscosity (Vázquez-Ovando et al. 

2009). However, the chemical composition and the amount of each class of compounds in chia 

seeds vary depending on several factors including genetic modifications, environmental 

conditions and agricultural practices.  

 

4.2 Chemical constituent 

Chia seeds have a very important role as functional food and nutritional supplement (Coelho et 

al. 2014). The composition and the concentration of their bioactive compounds depend on 

several factors: climatic conditions, geographical origin and by the extraction methods (Ayerza 

& Coates, 2004, 2009a, b, 2011; Capitani et al. 2012; Ixtaina et al. 2011). Seeds are composed 
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by total dietary fiber from 47.1 to 59.8% (Weber et al. 1991) and contain up to 40% of oil with 

high content of unsaturated fatty acids, of which α-linolenic acid represents up to 68% (Ayerza 

1995; Taga et al. 1984). Moreover, they are a good source of proteins (12 - 26%), dietary fiber, 

vitamins, minerals and antioxidants (Bushway et al. 1981). These data capture the attention of 

researchers because in the last few years there was an increasing interest in all of these 

compounds (Capitani et al. 2012; Ayerza and Coates 2004, 2011). Furthermore, chia seeds do 

not contain toxic compounds and gluten, thus making seeds a safe ingredient also for gluten 

free diets (Menga et al. 2017).  

 

4.3 Caffeic acid derivatives 

Caffeic acid plays an important role from both chemical and biological point of view in chia 

seeds extract. This phenolic acid, composed by a dihydroxy-phenyl group linked with acrylic 

acid, represents the molecular skeleton of several metabolites in the Lamiaceae family. Caffeic 

acid, also classified as hydroxycinnamic acid, can be bound to quinic acid in different positions 

to give rise to a class of metabolites named caffeoylquinic acids, of which chlorogenic acid is 

the most abundant in the polar extract of chia seeds (Martínez-Cruz et al. 2014). Moreover, in 

the metabolome of chia seeds, are presents monomers of caffeic acid building block but also 

condensation products such as polymers (Table 4.1). Monomeric derivatives, including caffeic 

acid itself and ferulic acid, have been isolated from chia seeds (Ixtlahuacán, Colima, Mexico) 

by ultra-high performance liquid chromatography (UHPLC) (Martínez-Cruz et al. 2014). The 

authors found a concentration of caffeic acid (0.0274 mg/g) higher than that reported for mango 

(0.0077 mg/g), papaya (0.0159 mg/g) and blueberry (0.0216 mg/g), but lower than that reported 

for peach (0.0371 mg/g) (Balasundram et al., 2006). Ayerza 2013a, after HPLC analysis, also 

reported the chlorogenic acid as the most abundant phenol (0.222 mg/g) followed by caffeic 

acid (0.144 mg/g). These results are in agreement with those reported by Reyes-Caudillo et al. 
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2008, who also analyzed chia seeds from Mexico using by HPLC. Particularly, he found 

chlorogenic acid as the most abundant phenols followed by caffeic acid, but the concentrations 

are slightly lower (0.102 and 0.003 mg/g respectively) if compared to Ayerza results. On the 

contrary, Coelho et al. 2014 showed a high content of caffeic acid among phenols. Caffeic acid 

dimers are also frequent in chia samples and among them rosmarinic acid is the most abundant 

one. Martínez-Cruz et al. 2014 also reported the rosmarinic acid as the major phenolic 

compound of chia seeds (0.9267 mg/g). Several biological activities have been described for 

rosmarinic acid such as antioxidant, astringent, anti-inflammatory, antithrombotic, 

antimutagen, antibacterial and antiviral (Huang and Zhang, 1991; Parnham and Kesselring, 

1985; Zou et al. 1992). Trimers and tetramers of caffeic acid building block, including 

salvianolic acid A-K and lithospermic acid, were reported from other Salvia species such as S. 

miltiorrhiza, S. officinalis, S. cavaleriei, S. flava, S. chinensis (Ai et al. 1994; Ai and Li 1992; 

Lo and Foo 1999 and 2001; Zhang and Li 1994). However, from the best of our knowledge, 

there are no reports showing the presence of salvianolic and lithospermic acids in chia seeds. 

 

4.4 Flavonoids 

Flavonoids, ubiquitous compounds present in plants, belong to a polyphenolic subclass having 

a fifteen-carbon skeleton which consist of two benzene rings (A and B) linked via a heterocyclic 

pyrane ring (C). They are the major responsible for color, taste and prevention of fat oxidation 

in food (Yao et al., 2004). Flavonoids have many biochemical activities such as antioxidant, 

hepatoprotective, antibacterial, anti-inflammatory, anticancer and antiviral (Critchfield et al. 

1996; Cushnie et al. 2005; Li et al. 2000; Zandi et al. 2011, Zhu et al. 2012). They are widely 

distributed in chia seeds and their synthesis increase as a result of microbial infection (Dixon et 

al. 1983). Taga et al. 1984 reported the presence of myrcetin, quercetin and kaempferol in 

methanolic hydrolyzed extracts of chia seeds and evaluated their antioxidant activity (see below 
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and Table 4.1). Reyes-Caudillo et al. (2008) also studied both hydrolyzed and crude extracts of 

chia seeds obtained from two different regions of Mexico. They identified quercitin-phenolic 

glycosides and kaempferol-phenolic glycosides as the major components of the crude extract. 

After hydrolysis of the extract the authors quantified the free aglycon forms as quercitin 0.150 

mg/g and 0.268 mg/g and kaempferol 0.360 mg/g e 0.509 mg/g in Jalisco and Sinaloa seeds, 

respectively. On the contrary, Ayerza 2013a reported myrcetin as the major flavonols in the 

Tzotzol and Iztac chia seeds genotypes (0.115 and 0.121 mg/g respectively) followed by 

kaempferol and quercitin. Another research on chia seeds var. Chionacalyx from Mexico was 

achieved by Martínez-Cruz et al., 2014, who detected daidzin, glycitin, genistin, glycitein, and 

genistein as the major isoflavones in the phenolic extract. Daidzin was found at the 

concentration of 0.066 mg/g of sample. To note that recently Lowe et al., 2008 reported such 

compound at high concentration (4.685 mg/g) in Kudzu roots, Pueraria lobate, as naturally 

occurring anti-alcohol-addiction agent in complex with human mitochondrial aldehyde 

dehydrogenase.   
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Table 4.1 Caffeic acids derivatives and flavonoids from Salvia hispanica seeds 

 
Chemical constituent 

 
Quantification 

 
Origin 

 
Analytical 
technique 

 
Reference 

Caffeic acids derivatives     

Caffeic acid 
 

 
 
 

0.0274 mg/g 
 

Chionacalyx 
(Mexico) 

UHPLC Martínez-
Cruz et al. 

2014 
 

0.139 - 0.149 
mg/g 

 

Tzotzol and 
Iztac 

(Ecuador) 
 

HPLC 
 

Ayerza 
2013b 

 

0.003 – 0.006 
mg/g 

 

Jalisco and 
Sinaloa 
(Mexico) 

 

HPLC 
 

Reyes-
Caudillo et 

al. 2008 
 

0.030 mg/g 
 

l.m. (São 
Paulo, 
Brazil) 

 

UPLC 
 

Coelho et 
al. 2014 

 

6.6 x 10-3 

mol/kg 
l.m. (West 
Lafayette, 

US) 

TLC, GLC 
and UV 

Taga et al. 
1984 

Ferulic acid 
 

 
 
 

T Chionacalyx 
(Mexico) 

 

UHPLC Martínez-
Cruz et al. 

2014 

Chlorogenic acid 
 

 
 

0.226 – 0.218 
mg/g 

 

Tzotzol and 
Iztac 

(Ecuador) 

HPLC 
 
 

Ayerza 
2013b 

0.102 – 0.045 
mg/g 

 

Jalisco and 
Sinaloa 
(Mexico) 

 

HPLC 
 

Reyes-
Caudillo et 

al. 2008 
 

0.004 mg/g 
 

l.m. (São 
Paulo, 
Brazil) 

 

UPLC 
 

Coelho et 
al. 2014 

 

Rosmarinic acid 
 

 
 

0.9267 mg/g 
 
 

Chionacalyx 
(Mexico) 

 

UHPLC 
 
 

Martínez-
Cruz et al. 

2014 
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Flavonoids     
Myricetin 
 

 
 

3,1 x 10-3 

mol/kg 
 

l.m. (West 
Lafayette, 

US) 
 

TLC, GLC 
and UV 

 

Taga et al. 
1984 

 

0.115 – 0.121 
mg/g 

Tzotzol and 
Iztac 

(Ecuador) 
 

HPLC 
 

Ayerza 
2013b 

 

    

Quercetin 
 

 
 

0.2 x 10-3 
mol/kg 

 

l.m. (West 
Lafayette, 

US) 

TLC, GLC 
and UV 

 

Taga et al. 
1984 

 

0.150 – 0.268 
mg/g 

 

Jalisco and 
Sinaloa 
(Mexico) 

 

HPLC 
 

Reyes-
Caudillo et 

al. 2008 
 

0.007 – 0.006 
mg/g 

Tzotzol and 
Iztac 

(Ecuador) 
 

HPLC Ayerza 
2013b 

 

0.17 µg/g l.m. (São 
Paulo, 
Brazil) 

 

UPLC 
 

Coelho et 
al. 2014 

 

Kaempferol 
 

 

1.1 x 10-3 

mol/kg 
 
 

l.m. (West 
Lafayette, 

US) 
 
 
 

TLC, GLC 
and UV 

 
 

Taga et al. 
1984 

 
 

0.360 – 0.509 
mg/g 

Jalisco and 
Sinaloa 
(Mexico) 

 

HPLC Reyes-
Caudillo et 

al. 2008 
 

0.025 – 0.024 
mg/g 

Tzotzol and 
Iztac 

(Ecuador) 
 

HPLC Ayerza 
2013b 

 

Daidzin 
 

 
 

0.006 mg/g Chionacalyx 
(Mexico) 

 

UHPLC 
 

Martínez-
Cruz et al. 

2014 

Glycitein 
 

 
 
 

0.0005 mg/g Chionacalyx 
(Mexico) 

 

UHPLC 
 

Martínez-
Cruz et al. 

2014 
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Glycitin 
 

 

0.0014 mg/g Chionacalyx 
(Mexico) 

 

UHPLC 
 

Martínez-
Cruz et al. 

2014 

Genistein 
 

 
 
 

0.0051 mg/g Chionacalyx 
(Mexico) 

 

UHPLC 
 

Martínez-
Cruz et al. 

2014 

Genistin 
 

 
 

0.0034 mg/g Chionacalyx 
(Mexico) 

 

UHPLC 
 

Martínez-
Cruz et al. 

2014 

Note: T = traces, l.m. = purchased from local market 

 

4.5 Oil composition 

Since ancient times oil extracted from chia seeds has been used in traditional medicine against 

eye infections and for the treatment of stomach disorders (Lu and Foo 2002; Reyes-Caudillo et 

al. 2008). The oil content of the seeds ranges from 25% to 50% and contains high concentrations 

of polyunsaturated fatty acids (Bushway et al. 1981; Taga et al. 1984) (Table 4.2 and Fig. 4.1). 

Research demonstrated that oil extracted from chia seeds also contain several phenolic 

compounds such as tocopherols, phytosterols and carotenoids with their related antioxidant 

activity that play a very important role in the deterioration of the oil due to lipid oxidation 

(Matthaus 2002; Ixtaina et al. 2011). It was widely demonstrated that in S. hispanica seeds ω-

3 is the most abundant component among fatty acids, in particular, the content of α-linolenic 

acid (C18:3) is over than 50% of all fatty acids (Palma et al. 1947; Ayerza 1995, 2011; Segura-

Campos et al. 2014). Therefore, chia seed can be considered as a natural source of ω-3 which 
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play a very important role in human nutrition and in human health due to its anti-inflammatory, 

antiarrhythmic and antithrombotic activity (Garg et al., 2006; Geelen et al. 2004; Din et al. 

2004, Wall et al. 2010). Da Silva Marineli et al. 2014 characterized the chia seed oil from Chile 

using the positive ion easy ambient sonic-spray ionization mass spectrometry (EASI MS) 

technique and reported ranks of fatty acids abundance in the following order: -linolenic acid 

(62.8%), linoleic acid (18.23%), palmitic acid (7.07%), oleic acid (7.04%) and stearic acid 

(3.36%). These results are in agreement with those reported in other studies (Ayerza, 1995; 

Ayerza & Coates, 2004). Amato et al. (2015) reported the first data on the quality of chia seeds 

produced in Europe, from an experiment conducted in Basilicata (South Italy), particularly the 

oil extracted from Italian chia seeds was not significantly different from those grown in 

traditional area (Peru) and in a new area (Australia). However, the oil extracted in Italy was 

more rich in chlorophyll, carotenoids and α-linolenic acid but showed a higher free acidity and 

peroxides. As mentioned previously, chemical composition and oil yield can be affected by 

several factors such as extraction technique and geographical area. For example, Ixtaina el al. 

2011 used two extraction techniques to obtain oil from chia seeds purchased from different 

source, Argentina and Guatemala. In both seeds, the oil yield was much lower in pressing than 

in solvent extraction (20.30% and 24.8% compared to 26.70% and 33.6%, respectively). 

Another important example is the study conducted on the effect of six different ecosystems of 

South America on the protein and oil contents, fatty acid composition and peroxide index of 

chia seeds from Argentina (Ayerza and Coates 2004; Ayerza 2013b). The authors demonstrated 

that the chemical composition of the seeds is widely affected by the location and environmental 

factors such as temperature, light and soil type. 
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Table 4.2 Chemical constituents from Oil of chia seeds 

 
Chemical 
constituent 

 
Quantification % 

 
Origin 

 
Analytical 
technique 

 
Reference 

Polyunsaturated fatty 
acids 

    

Arachidonic acid 
(C20:4) 
 

0.13 l.m. (Yucatan, 
Mexico) 

 GC-MS 
 

Segura-Campos 
et al. 2014 

Eicosatrienoic acid 
(C20:3) 
 
 
 

0.01 l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

0.03 l.m. (São Paulo, 
Brazil) 

 

GC Coelho et al. 2014 
 

-linolenic acid 
(C18:3) 
 
 

62.02 l.m. (São Paulo, 
Brazil) 

 

GC Coelho et al. 2014 
 

64.5 and 63.3 Tzotzol and Iztac 
(Ecuador) 

 

HPLC 
 

Ayerza 2013b 
 

57.71 and 58.39 Peru and Australia HPLC-MS 
 

Amato et al. 2015 
 

68.52 l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

69.0 l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

62.80 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

63.4 
62.7 
62.4 
52.0 
60.7 

Catamarca 
(Argentina) 

GLC Ayerza 1995 

    
63.20 
57.50 
58.55 
54.20 
62.00 
62.20 
61.65 
64.20 

Northwestern 
Argentina 

GLC Ayerza & Coates, 
2004 

    

64.5 and 66.7 
65.6 and 69.3 

Argentina and 
Guatemala 

Pressing and solvent 
extract,   

GC 
 

Ixtaina el al. 2011 

Linoleic acid (C18:2) 
 
 
 
 
 

17.5 and 18.4 Tzotzol and Iztac HPLC 
 

Ayerza 2013b 

18.82 and 20.74 Peru and Australia HPLC-MS 
 
 

Amato et al. 2015 

17.36 l.m. (São Paulo, 
Brazil) 

 

GC Coelho et al. 2014 
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15.3 l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

20.40 l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

18.23 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

19.8 
20.2 
20.8 
20.3 
20.3 

Catamarca 
(Argentina) 

GLC Ayerza 1995 

    
18.00 
19.25 
19.10 
20.50 
20.30 
20.10 
21.05 
18.35 

Northwestern 
Argentina 

GLC Ayerza & Coates, 
2004 

    

20.3 and 17.5 
19.7 and 16.6 

Argentina and 
Guatemala 

Pressing and solvent 
extract,   

GC 

Ixtaina el al. 2011 

Monounsaturated 
fatty acids 

    

Oleic acid (C18:1) 
 
 

 
 

6.65 and 6.8 
 

Tzotzol and Iztac 
(Ecuador) 

HPLC 
 
 

Ayerza 2013b 

10.55 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 
 

7.30 and 7.04 Peru and Australia  HPLC-MS 
 

Amato et al. 2015 

7.6 l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

2.43 l.m. (l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

7.04 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

7.3 
7.8 
7.3 
7.6 
8.2 

Catamarca 
(Argentina) 

GLC Ayerza 1995 

    
3.40 
3.50 

10.30 
13.25 
7.15 
6.75 
6.85 
6.90 

Northwestern 
Argentina 

GLC Ayerza & Coates, 
2004 
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5.4 and 5.5 
5.3 and 5.8 

Argentina and 
Guatemala 

Pressing and solvent 
extract,   

GC 
 

Ixtaina el al. 2011 

Palmitoleic acid 
(C16:1) 
 

 
 

0.09 
 

l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 

T l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

0.06 l.m. (l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

0.08 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

     

Saturated fatty acids     
Stearic acid (C18:0) 
 

 
 

2.67 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 

3.65 and 4.1 Tzotzol and Iztac 
(Ecuador) 

 

HPLC 
 

Ayerza 2013b 
 

2.99 and 3.19 Peru and Australia HPLC-MS 
 

Amato et al. 2015 
 

2.9 l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

0.29 l.m. (l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

3.36 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

3.3 
3.1 
3.1 
3.1 
3.7 

Catamarca 
(Argentina) 

GLC Ayerza 1995 

    
3.40 
3.50 
3.55 
3.55 
2.95 
2.75 
2.75 
3.00 

Northwestern 
Argentina 

GLC Ayerza & Coates, 
2004 

    
3.1 and 4.4 
3.0 and 2.7 

Argentina and 
Guatemala 

Pressing and solvent 
extract,   

GC 
 

Ixtaina el al. 2011 

Margaric acid (C17:0) 
 

0.06 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 

0.07 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 
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Palmitic acid (C16:0) 
 

 
 

12.32 and 10.17 
 

Peru and Australia HPLC-MS 
 

Amato et al. 2015 
 

5.2 
 

l.m. (West 
Lafayette, US) 

GLC Taga et al. 1984 

6.5 and 6.2 Tzotzol and Iztac 
(Ecuador) 

 

GC 
 

Ayerza 2013b 
 

6.69 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 
 

7.47 l.m. (Yucatan, 
Mexico) 

GC-MS 
 

Segura-Campos 
et al. 2014 

7.07 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

6.2 
6.3 
6.4 
7.1 
6.9 

Catamarca 
(Argentina) 

GLC Ayerza 1995 

    
7.25 
7.65 
7.60 
7.65 
6.55 
7.40 
6.95 
7.15 

Northwestern 
Argentina 

GLC Ayerza & Coates, 
2004 

    
6.6 and 5.9 
6.2 and 5.5 

Argentina and 
Guatemala 

Pressing and solvent 
extract,  

 GC 
 

Ixtaina el al. 2011 

Pentadecanoic acid 
(C15:0) 
 

0.05 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

0.03 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 
 

Myristic acid (C14:0) 
 

0.07 l.m. (Santiago, 
Chile) 

GC-EASI(+)-MS da Silva Marineli 
et al. 2014 

0.03 l.m. (São Paulo, 
Brazil) 

 

GC 
 

Coelho et al. 2014 
 

Tocopherols     

α-Tocopherol 

 
7.53 - 7.46 mg/kg 

 
Peru and Australia 

 
 

HPLC 
 
 

Amato et al. 2015 
 
 

δ-Tocopherol 

 
 

12.99 - 13.45 
mg/kg 

Peru and Australia HPLC 
 

Amato et al. 2015 
 

γ-Tocopherol 
 
 
 

457.38 - 489.52 
mg/kg 

Peru and Australia HPLC 
 

Amato et al. 2015 
 

225 and 325 
mg/kg 

250 and 410 
mg/kg 

Argentina and 
Guatemala 

Pressing and solvent 
extract,   
HPLC 

Ixtaina el al. 2011 

Pigment     

Chlorophyll 
 

1.80 - 2.40 mg/kg Peru and Australia spectrophotometry Amato et al. 2015 
 

Note: % of total fatty acids; mg/kg of oil chia seed; T = trace; l.m. = purchased from local market 
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Fig. 4.1 Chemical structures of fatty acids from chia seeds 

 

4.6 Fibers 

Chia seeds constitute a potential ingredient in food industry applications due to its dietary fiber 

content. Since the early 1950s, it was discovered the importance of the fibers for human health 

and nutrition. On 1953, Hipsley first coined the multiple term “dietary fiber”. Later on, Trowell 

redefined the term as the remnants of plant components that are resistant to hydrolysis by human 

alimentary enzymes (Hipsley 1953, Trowell 1976). Nowadays the definition is broader 

including not only the plant components but all the carbohydrate polymers with ≥10 monomeric 

units, which are not hydrolyzed by the endogenous enzymes in the small intestine of humans 

(Codex Alimentarius Commission, 2009). Dietary fiber is a class of compounds including 

oligosaccharides and polysaccharides such as cellulose and hemicellulose that may be 

associated with other components (e.g., lignin, pectins, gums and mucilage). The total dietary 

fiber (TDF) has become an important component of the diet, especially for their physiological 

functionality based on the swelling property after water absorption, due to the presence of 

carbohydrates with free polar groups that interact with hydrophilic links within the matrix 

leading to formation of gel and consequent increase of peristalsis. Published reports indicate 



Chapter 4  Chia seeds products: an overview  

 

101 

 

that many health benefits are associated to the intake of TDF. In fact, the fiber has prebiotic 

effect and it is active on coronary heart disease, stroke, hypertension, diabetes, obesity and 

gastrointestinal disorders (Lairon et al. 2005; Liu et al. 1999; Montonen et al. 2003; Petruzziello 

et al. 2006; Steffen et al. 2003; Whelton et al. 2005). Chia seed is a good source of TDF, which 

are composed by soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Particularly, the 

SDF are partially expelled from the seed as mucilaginous gel when it comes in contact with 

water, and fermented in the colon. On the contrary, IDF may only be fermented to a limited 

extent in the colon (Anderson et al. 2009). TDF in chia seeds from Chile were analysed using 

enzymatic gravimetric AOAC method by da Silva Marineli et al. 2014 which reported higher 

amount of TDF (37.50 g/100g) with predominant IDF (35.07 g/100g), these findings agree with 

other reports (Capitani et al. 2012; Craig and Sons 2004; Weber et al. 1991), but lower amount 

were reported by Ayerza 2013a (TDF 24.56 g/100g with IDF 14.35 g/100g). The same 

analytical technique was used by Reyes-Caudillo et al. 2008, who characterized TDF in Jalisco 

and Sinaloa seeds (S. hispanica L.), particularly, the SDF and IDF content of Jalisco seeds were 

6.84 and 34.9 g/100g, respectively, while in Sinaloa seeds 6.16 and 32.87 g/100g, respectively. 

The main component found in IDF was the Klason lignin, which plays an important role in the 

protection of unsaturated fats and it is responsible for the hypocholesterolemic activity 

associated with fiber intake (Tolba et. 2011). The percentage of neutral sugars was also reported 

in both fractions, 13.79–14.97% and 4.69-5.12% for IDF and SDF, respectively. Highest 

amount of fiber-rich fraction (FRF) was also detected in S. hispanica seeds from Mexico by 

Vázquez-Ovando et al. 2009. Particularly they evaluated the FRF obtained by dry processing 

of defatted flour of chia seeds and reported 29.56 g/100g of crude fiber content and 56.46 

g/100g of TDF content, of which 53.45 g/100g was IDF. Compared to other reports, these 

values clearly show that dry fractionation with 100 mesh effectively concentrated TDF content.  

A part of the fiber in chia is located in the outer cells of the fruit and is partly extruded from the 

fruit surface upon hydration in the form of a clear mucilaginous capsule which adheres firmly 
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to the fruit itself. Capitani et al. 2013 described this process using scanning electron microscopy 

(SEM) after 5, 10, 30 and 60 min after chia seeds become wetted. Chia mucilage is part of the 

SDF (Ayerza and Coates 2001; Reyes-Caudillo et al. 2008) and in order to obtain high amount 

of mucilage, Muñoz et al. (2012a) performed the extraction with different seeds/distilled water 

ratio, pH and temperature condition. An optimum yield value (7%) was achieved at 80°C with 

pH = 8 and seed/water ratio of 1:40. Mucilage is mainly composed by sugars as xylose, glucose 

and glucuronic acid, but little is known about whole chemical structure. From the best of our 

knowledge, the only tentative structural identification was proposed by Lin et al. 1994, who 

obtained -D-xylose, -D-glucose and 4-O-methyl--D-glucuronic acids by acid hydrolysis 

and characterized a tetrasaccharide with 4-O- methyl --D-glucoronopyranosyl residues 

occurring as branches of -D-xylopyranosyl on the main chain by using mass spectrometry and 

13C NMR spectroscopy.  

 

4.7 Total polyphenolic content and their antioxidant activity 

Chia seeds and oil contain a large number of natural antioxidant such as tocopherols, 

phytosterols, carotenoids (Álvarez-Chávez et al. 2008), polyphenolic compounds which are 

mainly constructed from the caffeic acid building block and flavonoids, including the flavones 

myricetin, quercetin and kaempferol. This class of compounds is the main responsible for the 

antioxidant activity of chia seeds due to their ability to scavenge free-radicals, to chelate metal 

ions and to donate hydrogens. In particular, the B ring of flavones is the major responsible of 

ROS and RNS scavenging activity because the transfer of a hydrogen and an electron to 

hydroxyl, peroxyl, and peroxynitrite radicals, that stabilize them giving rise to a relatively stable 

flavonoid radical (Cao et al. 1997). Antioxidant compounds reduce the risk of chronic diseases 

including cancer and heart disease, they offer protection against some disorders such 

atherosclerosis, stroke, diabetes and neurodegenerative diseases such as Alzheimer and 
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Parkinson (Vuksan et al. 2007; Wu et al. 1998; Yagi et al. 1989; Zhao et al. 1996). The highest 

amount of total polyphenol was found by Martínez-Cruz et al. 2014 (1.6398 ± 0.2081 mgGAE/g 

of chia seed, S. hispanica L var. Chionacalyx) who developed an ultrahigh performance liquid 

chromatography (UHPLC) method for the analysis of phenolic compounds and isoflavones 

content. Although, the results of Amato et al., 2015 are lower (0.53-0.98 mgGAE/g of chia 

seed), they are in agreement with other studies (de Falco et al. 2017; da Silva Marineli et al. 

2014; Porras-Loaiza et al. 2014; Reyes-Caudillo et al. 2008; Coelho et al. 2014). The 

antioxidant activity of hydrolysed and nonhydrolyzed extract of chia seeds was also evaluated 

by using the oxidation reaction of -carotene and linoleic acid (Miller 1971). Results showed 

flavanols glycosides as the major antioxidant in the nonhydrolyzed extract followed by 

chlorogenic acid and caffeic acid, while in the hydrolysed fraction caffeic acid is the major 

antioxidant source and myricetin has ca. 1.5 times the activity of quercetin followed by 

kaempferol (Taga et al. 1984). Other methods were used over the years to evaluate the 

antioxidant activity, for example ABTS•+, DPPH•, and FRAP were used by Sargi et al. 2013 to 

analyse chia seeds obtained from Brazil and they reported 2.56 ± 0.03; 1.72 ± 0.09 and 2.86 ± 

0.10 mmol TEAC/g, respectively. Antioxidant activity, quantified with the ABTS•+ 

decolorization assay, was also evaluated on chia seeds obtained from Mexico and Argentina, 

but lower amount was detected, 0.446 and 0.488 mmol TEAC/g, respectively (Capitani el al. 

2012; Vázquez-Ovando et al. 2009). 

 

4.8 Industrial uses 

Dietary fibers in chia seeds have not only physiological functionality for their beneficial effect 

on human health but also technological functionality which greatly depends on hydration 

properties (Borderìas et al. 2005). These are water-holding and absorption capacity, solubility 

and swelling, viscosity and gelling. Gum can be extracted from dietary fiber fraction of chia 
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seeds for use as an additive to control viscosity, stability, texture, and consistency in food 

systems. Segura-Campos et al. 2014 highlighted important physicochemical properties of chia 

gum for the food industry such as a very good ability to water holding (110.5 g/g). They also 

compared functional properties of fatted and defatted chia gum reporting lower oil holding 

ability (11.67 g/g) and water absorption (36.26 g/g) in defatted gum, and greater retention oil 

holding (25.79 g/g) and water absorption (44.08 g/g) in fatted gum. Vazquez-Ovando et al. 

2009 obtained FRF from defatted chia flour to determine its possible applications in products 

requiring hydration. The FRF water-holding capacity was 15.41 g/g, higher than reported for 

soy bean, wheat and maize hulls (Mongeau & Brassard, 1982; Yeh et al. 2005). This may be 

due to the particular structure of the mucilage and to hemicellulose and lignin ratio. In contrast, 

chia FRF had a low oil-holding capacity of 2.02 g oil/g sample. They also evaluated other two 

important properties of chia FRF, that were the emulsifying activity, which is the ability to 

facilitates the solubilization or dispersion of two immiscible liquids, and the emulsifying 

stability, the ability to maintain an emulsion (53.26 mL/100 mL and 94.84 mL/100 mL, 

respectively).  Its emulsifying activity may be due to the high content of protein 28.14 g/100g 

in FRF, which are strong emulsifying agents (Pearce et al. 1978). It can be therefore a valid 

alternative in foods as foam stabilizer and emulsifier. Microstructural features of chia seeds 

were also studied by light and scanning electron microscopy by Muñoz et al. 2012a, who 

explained the great capacity of chia mucilage hydration reporting a water retention of 27 times 

of its own weight, almost double that those reported by Vázquez-Ovando et al. (2009), in which 

only the FRF was hydrated. Later on, they produced a mixture of mucilage of S. hispanica and 

whey protein concentrates in proportions 1:3 and 1:4 as a new source of polymer blends to 

develop coatings and edible films which may be used as protective water vapor barrier (Muñoz 

et al., 2012b). It is also used as such or in whole-seeds as a component of biodegradable film 

(Capitani et al. 2016), thickening agent for bread and pasta, especially in gluten-free 
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formulations (e.g. Menga et al. 2017), and for anti-corrosion (Hermoso-Diaz et al. 2014), 

cosmetic use and medical uses (Vuksan et al. 2010). 

 

4.9 Conclusion 

Salvia hispanica L. is a plant known since ancient times whose seeds were used as a basic food 

in the diet of Mayan and Aztec populations. Chia seeds are a good source of nutraceuticals and 

a number of reports have shown their beneficial effects on human health due to their chemical 

composition. They are rich in dietary fiber and polyunsaturated fatty acids, especially -

linolenic acid. S. hispanica seeds also contain high amount of polyphenols, including caffeic 

and chlorogenic acids, myricetin, quercetin and kaempferol, which give rise to high antioxidant 

activity. Due to its mucilaginous gel, chia seeds can be also used in cosmetic, pharmaceutical 

and food companies as protective agent against moisture, foam stabilizer and emulsifier agents 

for its particular composition rich in carbohydrates. However, further studies are needed to fully 

clarify the molecular structure of chia mucilage.  
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5. Metabolomic Analysis of Salvia hispanica Seeds 

Using NMR Spectroscopy and Multivariate Data 

Analysis§ 

 

5.1 Introduction 

 

The re-discovery of chia (Salvia hispanica L.), an ancient crop from Central America, dates 

back to the 1990s, when Gentry et al. (1990) and Coates and Ayerza (1996) pointed out the 

high content of ω-3 in its fruits (commonly called seeds). The plant belongs to the Lamiaceae 

family, and originates between Mexico and Guatemala (Cahill 2004). Very recently, 

Bochicchio et al. (2015a) reviewed findings on genetics, quality, uses and agronomy of the 

crop. In particular, most of the published papers addressed the amount and composition of fatty 

acids in chia oil in their area of origin (Ayerza 1995; Ayerza and Coates 2011; Segura-Campos 

et al., 2014) or in new areas such as Africa (Yeboah et al., 2014) and Europe (Amato et al., 

2015), and showed that the plant is one of the richest ω -3 seed source in nature.  

Seeds are also an important source of protein, with reports of 12 to 26% in whole seeds (Ayerza 

and Coates 2004, 2009a, b, 2011, Capitani et al., 2012). A high amount of dietary fiber is also 

reported (e.g.  chia meal contains 33.9–39.9% of dietary fiber, Capitani et al., 2012). Seeds are 

rich in vitamin B (Bushway et al., 1984) and in antioxidant compounds such as tocopherols, 

phytosterols, carotenoids, and phenolics. These include chlorogenic and caffeic acids, 

myricetin, quercetin, and kaempferol (e.g., Reyes-Caudillo et al., 2008; Marineli et al., 2014; 

Amato et al., 2015). Because of their unique chemical composition, the seeds are also used in 

                                                 
§ de Falco, B., Incerti, G., Bochicchio, R., Phillips, T.D., Amato, M., & Lanzotti, V. (2017). Metabolomic Analysis 

of Salvia hispanica Seeds Using NMR Spectroscopy and Multivariate Data Analysis. Industrial Crops and 

Products, 99: 86-96. 
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cosmetics (Muñoz et al. 2013) and in ethnic medicine for the treatment of eye infections (Lu 

and Foo 2002; Reyes-Caudillo et al., 2008).  

Moreover, Hermoso-Diaz et al. (2014) found that a methanol extract of S. hispanica can be a 

good green corrosion inhibitor for carbon steel in sulfuric acid, and therefore the plant is a 

promising substitute for toxic organic inhibitors. Authors attributed corrosion inhibition to the 

formation of a protective barrier film by active components of the extracts adsorbed on the 

surface of carbon steel inside oxide layer via the lone pairs of electrons present on their oxygen-

bearing functional groups, OH and COOH. To this purpose, linoleic and -linolenic acids were 

identified as the most likely compounds involved in the inhibition mechanism (Hermoso-Diaz 

et al., 2014). 

The research on leaves composition highlighted the presence of essential oils (Ahmed et al., 

1994), polyunsaturated fatty acids (PUFA), proteins and fiber (Peiretti and Gai, 2009). Amato 

et al. (2015) found flavonoids in the leaves and reported in addition the presence of two 

uncommon compounds, acetyl vitexin and acetyl orientin. 

The center of origin and of genetic and phenotypic diversity of chia populations ranges from 

semi-temperate and temperate highlands of western Mexico to the trans-volcanic belt and 

Puebla, between 1,400 and 2,200 metres above sea level. (m.a.s.l.) (Cahill 2004; Hernandez-

Gomez and Miranda-Colın 2008; Miranda-Colin 1978). It is originally a short-day flowering 

specie; therefore, it can viably produce seeds in a restricted range of latitudes. Nevertheless, 

breeding efforts have produced longer-day flowering genotypes in order to extend the range of 

this crop to other temperate areas (Jamboonsri et al., 2012). Most of these new lines are mutants 

capable of flower induction between 13 and 16 h of daylength and a few are day-length 

insensitive. As the growing area and the market of the crop expand, there is interest in further 

identification of seed metabolites, and in characterizing possible differences due to genotype 

and crop management.  
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Thus, we have undertaken a comparative analysis of the seeds of commercial short-day 

flowering black and white genotypes and the long-day and early flowering mutants G3, G8, 

G17 and W13.1. The study was also extended to the seeds of two black populations grown at 

different nitrogen supply. 

The analysis was done by using a metabolomic approach based on the identification and 

quantification of all metabolites in the plant material by 1H NMR spectroscopy, followed by 

multivariate data analysis (Verpoorte et al., 2007, Kim et al., 2010, Incerti et al., 2013, de Falco 

et al., 2015).  

This work aims at evaluating the chemical composition of commercial and mutant genotypes 

of chia seeds through the identification of the major classes of organic compounds by NMR 

analysis and from a quantitative point of view through integration of the NMR spectra followed 

by chemometrics. The effect of mineral fertilization, on the metabolome of field-grown chia 

was also evaluated. Results demonstrate the usefulness of 1H NMR coupled with chemometrics 

for sample classification according to seed source. 

 

5.2 Materials and methods 

5.2.1 Chemicals 

First-grade dichloromethane and methanol were purchased from Delchimica Scientific 

Laboratories Glassware (Naples, Italy). Deuterium oxide (99.8 atom %D) and dimethyl-4-

silapentane sodium sulfonate (DSS) was obtained from ARMAR Chemicals (Switzerland), 

chloroform-d (99.8 atom %D) contains 0.03% (v/v) TMS was purchased from Sigma-Aldrich 

(Italy). Pure standard amino acids, caffeic acid, chlorogenic acid, genistein and quercetin were 

used as references (Sigma-Aldrich, Italy). 
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5.2.2 Seeds obtained with different nitrogen supply 

Samples of Salvia hispanica L. were grown in 2013 at Masserie Saraceno (Atella - PZ, Southern 

Italy, Lat. N 40° 51’ 37.59”, Long. E 15° 38’ 49.43”) on a Luvi-vertic Phaeozem (Iuss working 

group, 2006) loamy clay soil periodically amended with the solid fraction of on-farm biogas-

digested materials. Before sowing the soil, chemical characteristics were: pH 6.8; N 1.9 g kg–1; 

phosphates (P2O5) 50.3 g kg–1; potassium oxide (K2O) 1430 g kg–1. Rainfall during the growing 

period was 322.4 mm and temperature minimum, maximum and mean during the period were 

38.1, −2.3 and 16.9 °C, respectively. Black S. hispanica commercial seeds (B2012) available at 

Eichenhain (Hofgeismar - DE) were sowed on 21/06/2013 and grown with non-limiting water 

supply (drip irrigation). A field randomized block design with three replications was established 

to test two strategies of mineral nitrogen fertilization: B0 (no mineral fertilization); BM (mineral 

supplement fertilization 60 days after sowing with NH4NO3 at 20 kg ha−1 of N).  

 

5.2.3 Commercial and long-day flowering chia 

Two black (B2012 and B2013) and one white (W) chia commercial seeds were purchased from 

Eichenhain (Hofgeismar - DE). Four long-day mutant genotypes, of which three black (G3, G8, 

G17) and one white (W13.1) obtained as described in Jamboonsri (2010) and Jamboonsri et al. 

(2012) were made available to the University of Basilicata through an agreement with the 

University of Kentucky. All seeds were grown in triplicate in 0.35 m diameter pots with 

10:30:60 w:w:w vermiculite, sand and wood litter compost. Plants were grown with non-

limiting water supply and fertilized with commercial potting liquid fertilizer with a total amount 

corresponding to 0.53 g plant-1 N. 
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5.2.4 Extraction procedure 

Seeds were dried at room temperature and powdered finely with a pestle in a mortar. The 

extraction of all metabolites was made according to the procedure previously applied (Incerti 

et al., 2013). The sample (300 mg, each) was dissolved in 10 ml of CH2Cl2/MeOH/H2O (2:1:1), 

mixed by vortex and incubated 15 minutes at room temperature. To ensure efficient lysis of cell 

membranes and to promote the escape of all metabolites, solution was sonicated for 1 minute 

at 25 °C with a Bandelin Sonoplus HD 2070. After centrifugation (5000 rpm, 30 minutes, 25 

°C), the aqueous and organic fractions were accurately separated, with particular attention to 

discard the interphase. The extraction and subsequent centrifugation were repeated a second 

time and solvents evaporated to dryness under vacuum (Rotavapor R-114, Büchi, Switzerland) 

keeping the temperature at 30 °C to inhibit the decomposition of thermolabile compounds. The 

dried samples were stored at 4 °C until analysis. All experiments were performed in triplicate 

to assure their reproducibility. 

 

5.2.5 Spectroscopic analysis 

1H NMR spectra were acquired both on the aqueous and organic fractions: 600 μl of deuterium 

oxide (99.8% D2O) was used to solubilize the aqueous fractions while chloroform-d (99.8% 

CDCl3) was added to the organic fractions and transferred into a 5 mm NMR tube following 

the protocol developed by Choi et al. (2004, 2005). DSS and TMS were used as an internal 

standard for aqueous and organic fractions, respectively. In particular, the pH of aqueous 

fractions was adjusted to 6.0 by using KH2PO4 as a buffering agent and 1N NaOD (Choi et al., 

2004, 2005). All spectra were acquired at 298 K with Varian Unity Inova spectrometer 

operating at a 1H frequency of 400.422 MHz. The recycle time was set to 5 s, and a 45 pulse 

angle was used. Chemical shifts were referred to DSS and TMS signals (both δ 0.00 ppm). All 

spectra were processed using iNMR program (www.inmr.net), phased and baseline corrected 
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manually. Quantification was performed by signal integration relative to the internal standard, 

DSS and TMS. The region of the solvent peaks was excluded from the analysis. Spectral peak 

assignments of fatty acids, organic acids, amino acids, carbohydrates, choline, the flavonoids 

genistein and quercetin, the caffeoyl derivatives caffeic acid, chlorogenic acid and rosmarinic 

acid were obtained on the basis of pure standards purchased by Sigma-Aldrich. Spectral peak 

assignments of these and the other detected metabolites were obtained by two-dimensional (2D) 

NMR experiments, including 1H−1H correlation spectroscopy (COSY) and 1H−13C 

heteronuclear single-quantum correlation (HSQC) and comparison with data reported in the 

literature (Dai et al., 2010; Jiang et al., 2014; Mattoli et al., 2006; Brahmi et al., 2015). 

Tanshinone I and 15,16-dihydrotanshinone were detected in the aqueous fractions and the 

spectral peak assignments obtained by comparison of the NMR data with those of pure 

standards purchased by Sigma-Aldrich. The COSY spectra were acquired with a spectral width 

of 6130 Hz in both dimensions, 8K data points, and 512 increments with 32 transients per 

increment. The HSQC spectra were acquired with spectral widths of 8000 Hz in the F2 

dimension and 25000 Hz in the F1 dimension, a data matrix with a size of 1K × 256 data points, 

and 64 transients per increment. All spectra were manually phased and baseline corrected. 

 

5.2.6 Multivariate data analysis 

Multivariate analysis were applied to 1H NMR spectral data from both polar and organic 

extracts of seeds, leaving out signals from residual solvent. 1H NMR spectra were preliminarily 

normalized and reduced to integrated regions of equal widths (bins = 0.01 ppm), corresponding 

to 0 – 10 ppm and subsequently reduced to ASCII files using the software package iNMR v. 

5.1.2 (Mestrelab Research, Molfetta, Italy). Peak quantification was performed by signal 

integration relative to the internal standard, with peak intensity expressed as parts per thousand 

with respect to the whole spectrum once the region of the residual solvent peaks was excluded. 
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For general, exploratory purpose, two data matrices were considered, for aqueous and organic 

extracts respectively, including peak data from the whole 1H NMR spectra, averaged over the 

replicated spectra for each studied population. Each data matrix was submitted to Principal 

Component Analysis (PCA) ordination using the STATISTICA 7 Software (StatSoft Inc., 

Tulsa, Oklahoma, USA). In a more detailed PCA analysis on spectral data from the polar 

fraction, a submatrix was considered, obtained by excluding spectral data from the resonance 

region δ 3.2-4.1, corresponding to carbohydrates, the most abundant compounds in the samples. 

In this way, limited to less abundant polar compounds, it was possible to explore overall 

chemical differences among populations. 

 

5.2.7 Chemometrics 

Quantitative data from both polar and organic extracts of chia seed samples were compared 

through one-way analysis of variance, followed by post-hoc Tukey’s HSD test at p<0.05. The 

analysis was separately performed for each metabolite identified in the replicated samples, 

using spectral signals reported in Table 5.1, under the null hypothesis that the amount of single 

metabolites was not different among lines. Effects of supplemental mineral nitrogen 

fertilization were separately tested for single metabolites, comparing mean amounts in BM and 

B0 seeds by two-tails Student's t test for independent samples. In order to control for type I 

statistical error due to multiple comparisons, the threshold value of p for statistical significance 

was set to α' = 0.05/N = 0.00156, with N=32 being the number of comparisons (i.e. metabolites 

simultaneously tested), following the Bonferroni's correction method; p-values ranging 

between 0.00156 and 0.05, since possibly affected by Type I statistical error, were considered 

marginally significant. All statistics were calculated using the Software STATISTICA 7 

(StatSoft Inc., Tulsa, Oklahoma, USA). 
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5.3 Results and discussions 

5.3.1 Metabolite profile 

In the present study, the metabolome of different genotypes from chia (Salvia hispanica L.) 

seeds was analyzed. While the 1H NMR spectra of organic extracts mostly showed unsaturated 

fatty acids as the major compounds (Fig. 5.1A, Table 5.1), the spectra of the aqueous extracts 

showed the presence of metabolites belonging to different chemical classes (Fig. 5.1B, Table 

5.1). Their identification is showed on the 1H NMR spectrum of B2012, taken as model (Fig. 5.2) 

and described hereafter, with reference to specific diagnostic chemical shift values from Table 

5.1.  

 

5.3.2 Organic acids 

Several organic compounds were identified in the 1H NMR spectrum of the aqueous extracts 

(Table 5.1).  In particular, the presence of lactic acid was confirmed by its methyl group 

resonating at δ 1.20 as a doublet with a J of 7 Hz. The characteristic signals of citric acid due 

to the methylene hydrogens (AB spin system) were clearly visible at δ 2.63 and 2.79 with a 

coupling constant of 17.5 Hz. Singlets at δ 2.41 and 3.16, relative to CH2 between two carboxyl 

groups, were identified in the spectrum and attributed to succinic and malonic acid, 

respectively. A further singlet, resonating in the low field region of the spectra at δ 8.48, 

indicated the presence of formic acid. The identification and spectral assignments of these 

metabolites was obtained by comparison with the NMR data of standard organic acids (see 

Materials and methods). To the best of our knowledge, this is the first report on the detection 

of these compounds in S. hispanica seeds.  
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Fig. 5.1 1H NMR spectra at 400 MHz of the seeds of nine chia (Salvia hispanica L.) populations. A) 

spectra in CDCl3 at 400 MHz. Spectral regions where no peaks were observed are not indicated, and 

reported as scale breaks on the x-axis. B) spectra in D2O solvent; the vertical scale in the spectral regions 

from 0.5 to 3.0 ppm and from 5.5 to 10 ppm is expanded five times for better visibility. 
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5.3.3 Free amino acids 

In the 1H NMR spectra of the aqueous extracts of the analyzed seeds several free amino acids 

were identified by their diagnostic chemical shift values (Table 5.1). In the region ranging from 

δ 0.91 to 1.10, signals related to the methyl groups of the aliphatic amino acids leucine, 

isoleucine and valine were observed. In addition, the signal of the alanine β-CH3 resonated at δ 

1.45 as a doublet (J = 7 Hz) for its proximity to the amino group. Further diagnostic signals 

included those found for γ-aminobutyric acid resonating at δ 2.33 and 2.98 (both t, J = 7 Hz), 

and for the α-CH of aspartic acid resonating at 2.84 ppm (dd, J = 4.0; 18.0 Hz). This 

methodology does not allow to identify all free amino acids present in the extract because the 

signals of many of them were overlapped in the spectra. The identification and spectral 

assignments of the detected amino acids was confirmed by comparison with the NMR data of 

standard amino acids (see Materials and methods). However, previous report by Ayerza (2013) 

on the analysis of seeds, genotypes Tzotzol and Iztac, by classical methods identified all the 

free amino acids, including those here reported. 

 

5.3.4 Carbohydrates 

In the spectra of seeds aqueous extracts, overlapped signals for sugar protons were observed 

from 3.40 to 4.10 ppm, that is a very crowded region of the 1H NMR spectra. Outside such 

region, diagnostic anomeric proton signal (H1) of glucose was identified at δ 4.96 (d, J = 4.0 

Hz), while the anomeric protons of sucrose and raffinose appeared at δ 5.38 and 5.40 

respectively (both d, J = 4.0 Hz). The identification and spectral assignments of glucose, sucrose 

and raffinose (Table 5.1) have been obtained by comparison with NMR data of standard sugars 

(see Materials and methods). This is the first report on the analysis of carbohydrates from S. 

hispanica seeds.  
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Table 5.1 1H-NMR chemical shifts, assignment and multiplicity at 400 MHz of organic compounds 

found in extracts of chia seeds in D2O (A) and in CDCl3 (B). 

Compounds Assignment 
1H 

(ppm) 

Multiplicity 

[J (Hz)] 
 Compounds Assignment 

1H 

(ppm) 

Multiplicity 

[J (Hz)] 

A) D2O extracts             

Organic acids         Caffeoyl derivatives       

Acetic acid (AC) CH3 1.91 s   Caffeic Acid (CA) CH-8 6.34 d [16.0] 

Citric acid (CI) α,γ-CH 2.63 d [17.5]     CH-5 6.76 d [8.0] 

  αI,γI -CH 2.79 d [17.5]     CH-6 6.94 dd [2.0, 8.0] 

Malonic acid (MA) CH2 3.16 s     CH-2 7.20 d [2.0] 

Lactic acid (LA) CH3 1.20 d [7.0]     CH-7 7.50 d [16.0] 

Succinic acid (SU) α,β-CH2 2.41 s   Chlorogenic acid (Chlo)  CH-8I 6.32 d [16.0] 

Formic acid (FO) HCOOH 8.48 s   5-caffeoylquinic acid CH-5I 6.95 d [8.0] 

Fumaric acid (FU) α,β -CH=CH 6.49 s     CH-6I 7.04 d [2.0, 8.0] 

Amino acids           CH-2I 7.16 d [2.0] 

Alanine (Ala) β-CH3 1.45 d [7.0]     CH-7I 7.55 d [16.0] 

γ-aminobutyric acid (GABA) β-CH2 1.90 m    Rosmarinic Acid (RO) CH-7Ia 2.97 dd [10.0, 14.0] 

  α-CH2 2.33 t [7.0]    CH-7Ib 3.06 dd [4.0, 14.0] 

  γ-CH2 2.98 t [7.0]     CH-8 6.30 d [16.0] 

Aspartic acid (Asp) β-CH2 2.71       CH-6I 6.76 dd [2.0, 8.0] 

  α-CH 2.84 dd [ 4.0, 18.0]     CH-5I  6.81 d [7.8] 

Isoleucine (Ile) δ-CH3 0.91 t [7.0]     CH-5 6.82 d [8.0] 

  γI-CH3 1.01 d [7.0]     CH-2I 6.88 d [3.0] 

Leucine (Leu) δ-CH3 0.95 d [7.0]     CH-6 7.00 dd [2.0, 8.0] 

N-acetylglutamic acid 

(NAcGlu) 
CH2 1.90       CH-2 7.11 d  [2.0] 

  -COCH3 2.05       CH-7 7.51 d  [16.0] 

  γ-CH2 2.33 t [7.0]   Other compounds       

Proline (Pro) γ-CH2 2.08 m   choline (Cho)  N(CH3)
3+ 3.19 s 

  CH2 2.29 m   15,16-Dihydrotanshinone  CH-17 1.37 d [7.0] 

Valine (Val) γI-CH3 0.99 d [7.0]    CH-18 2.62 s 

  γ-CH3 1.01 d [7.0]     CH-3 7.37 d [7.0] 

Carbohydrates           CH-2 7.50 dd [8.0, 7.0] 

Glucose (Glc) CH-4 3.25       CH-7 7.83 d [8.0] 

  CH-2  3.53       CH-6 8.22 d [8.0] 

  CH-5  3.83       CH-1 9.19 d [8.0] 

  CH-3 4.65       CH.17 2.28   

  CH-1 4.96 d [4.0]   Tanshinone I CH-18 2.62 s 

Raffinose (Raff) Glc-C2H 3.55       CH-3 7.32 d [7.0] 

  Glc-C3H 3.78       CH-2 7.50 dd [8.0, 7.0] 

  Glc-C5H 4.08       CH-7 7.82 d [8.0] 

  Glc-C1H 5.40 d [4.0]     CH-6 8.18 d [8.0] 

Sucrose (Sucr) Glc-C2H 3.55       CH-1 8.98 d [8.0] 

  Glc-C3H 3.82         

  Glc-C1H 5.38 d [4.0]   B) CDCl3 extracts       

Flavonoids         Fatty acids ω1-CH3 0.89   

Genistein (GE) CH-6 6.30 d [2.0]     ω3-CH3 0.97 t [8.0] 

 CH-8 6.46 d [2.0]     -(CH2)n- 1.28   

  CH-3I, 5I 7.04 d [8.0]     γ-CH2 1.61   

  CH-2I, 6I 7.44 d [9.0]     allylic C  2.07 m 

  CH-2 8.29 s     β-CH2 2.32 t [7.0] 

 Quercetin (QUE) CH-6 6.03 d [2.0]     diallylic C 2.81   

 CH-8 6.50 d [2.0]   glycerol CH- 4.22   

  CH-5I 7.02 d [8.0]   MUFA CH=CH 5.28   

  CH-6I 7.69 dd [2.0, 8.0]   PUFA CH=CH 5.37   
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5.3.5 Flavonoids 

As reported in the literature (Taga et al., 1984), the content of flavonoids, such as genistein and 

quercetin (Fig. 5.3), is very low in chia seeds. However, signals for genistein at δ 6.46 (CH-8, 

d, 2 Hz) and 8.29 (CH-2, s) were still visible in the spectra (Fig. 5.2), while characteristic signals 

of quercetin were present at δ 6.50 (CH-8, d, 2 Hz) and δ 7.69 (CH-6I, dd, 2.0, 8.0 Hz) (Table 

5.1). The identification of genistein and quercetin was confirmed by comparison with NMR 

data of standard flavonoids (see Materials and methods). 

 

5.3.6 Polyphenols 

It is well known that S. hispanica seeds contain a large number of polyphenolic compounds 

which are constructed from the caffeic acid building block (Marineli et al., 2014; Martínez-

Cruz et al., 2014). In the 1H NMR spectra of aqueous extracts, diagnostic signals of caffeic acid 

derivatives were detected in the low-field region. In particular, signals at δ 6.30, 6.32, 6.34 (CH-

8, CH-8I) and δ 7.51, 7.55, 7.50 (CH-7, CH-7I) resonating all as doublets with a coupling 

constant of 16 Hz, indicated the presence of the trans hydroxyl-cinnamoyl vinyl groups 

belonging to rosmarinic, chlorogenic and caffeic acids (Fig. 5.3). Moreover, the presence of 

double doublets at δ 6.76, 6.95 and 7.04 confirmed the typical spin system of the aromatic ring 

of caffeoyl moiety. The identification of caffeic, chlorogenic and rosmarinic acids was 

confirmed by comparison with NMR data of standards (see Materials and methods). The 

presence of 5-caffeoyl quinic acid have been proposed on the basis of 2D COSY and HSQC 

data.  
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Fig. 5.2 1H NMR spectrum (D2O, 400 MHz) of B2012 with identification of the compounds detected. A) 

spectral region from 0.7 to 2.9 ppm; B) spectral region from 2.9 to5.7; C) spectral region from 5.7 to 10 

ppm. Vertical scale in A and C is expanded five times for better visibility. * Possible signals for 

tanshinone I. ** Possible signals for15,16-dihydrotanshinone. 
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5.3.7 Other compounds 

In addition to the polar compounds described above, 1H NMR spectra from the polar extracts 

of seeds suggested the presence of choline identified by comparison with pure standards (see 

Materials and methods). In addition, Tanshinone I {1,6-dimethylnaphtho[1,2-g][1]benzofuran-

10,11-dione} and 15,16 dihydro Tanshinone I (Fig. 5.3) have been detected because of their 

characteristic signals in the low field region of the spectrum (Table 5.1) in comparison with 

NMR data of pure standards, as reported in Materials and methods. While such molecules were 

previously found in roots of Salvia miltiorrhiza (Dai et al., 2010), this is the first report showing 

their occurrence in chia seeds.  

 

Fig. 5.3 Chemical structures of characteristic compounds found in chia seeds. 

 

5.3.8 Fatty acids 

1H NMR spectra were also acquired on the organic extracts of all samples (Fig. 5.1A). 

According to others published data, Amato et al., (2015) reported that the apolar fraction is 

mainly composed of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids 

(PUFA). Their diagnostics chemicals shifts were shown in the Table 5.1. In particular, terminal 
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methyl group protons were detected at δ 0.89, excepted for α-linolenic acid (18:3; ALA) whose 

methyl group resonates at  0.97 due to proximity of the omega-3 double bond. The proton 

signals attached to the allylic carbons were also identified (2.07). While, the diagnostics peaks 

of protons attached of diallylic carbons resonating at 2.81 ppm which confirmed the presence 

of PUFA. Furthermore, olefinic protons were identified at  5.28-5.37. Identification and peak 

assignments of fatty acids (Table 5.1) have been obtained by comparison with NMR data of 

standards (see Materials and methods). 

 

5.3.9 Exploratory multivariate analysis 

The Principal Component Analysis (PCA) based on proton nuclear magnetic resonance from 

apolar and aqueous fractions produced opposite results, in terms of differences among the 

studied populations. Concerning the apolar fraction, PCA of all spectral signals from CDCl3 

extracts of chia seeds showed a certain similarity among them. All chias were negatively related 

with the first PC axis, which explained 94.5% of the total variance in the dataset (Fig. 5.4), 

consistent with high peak of signals corresponding to fatty acids (Table 5.1). Minor differences 

among the samples were recorded in the relative content of these compounds, with the second 

PC axis, which separated W and G17 seeds from the others, only explaining a residual 3.7% of 

the total variance (Fig. 5.4).  

On the contrary, the PCA plot of the 1H NMR spectral data from the aqueous fractions (Fig. 

5.4) clearly separated the samples along the first ordination axis, which explained 59% of the 

total variance and was negatively related to all protons resonating in the spectral region from δ 

3.2 to 4.1. These signals correspond to carbohydrates, which were overall most abundant in 

commercial black populations placed at the leftmost of the ordination space (B2012 and B2013), 

while commercial white and long-day flowering mutants placed at the rightmost of the space 

(W, G8, G17 and W13.1) showed a lower content of these metabolites. G3 showed an 
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intermediate pattern. The result on black grown in the field in Basilicata showed that the non-

fertilized B0, compared to the fertilized BM, was closer to commercial black grown in pots (B2012 

and B2013), thus indicating a lower content of total carbohydrates in seeds due to fertilization.  

 

Fig. 5.4 Principal Component Analysis (PCA) of seeds from nine chia populations based on 1H NMR 

spectra from CDCl3 (left) and D2O (right) fractions. Top: vector loadings of chia seeds; bottom: factorial 

scores of resonance intervals of 0.01 ppm. Explained variance of principal components is reported in 

brackets on the axis labels. 

 

The second ordination axis, explaining 20% of the total variance, was positively and negatively 

related to the protons resonating at δ 3.83 and 3.32. Even though in these spectral regions 

different overlapping signals for sugar protons were observed (Fig. 5.1B, 5.2B), that at δ 3.82 
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is diagnostic of the CH-5 of glucose (Table 5.1). Hence, the distribution of chia population 

along the second ordination axis, with G3 and BM clearly separated from the others, and placed 

at top and bottom of the ordination space, respectively, is consistent with the content of glucose 

in their seeds, highest in G3 and lowest in fertilized BM. When excluding main diagnostic 

signals (i.e. δ 3.2-4.1) from the analysis of 1H NMR spectra from the aqueous fractions, the 

PCA based on the remaining spectral signals showed restricted regions diagnostic of specific 

compounds characterizing chia populations (Fig. 5.5). The first ordination axis was negatively 

related to signals diagnostic of formic acid (δ 8.48, s), and of anomeric proton of raffinose ( 

5.40, d, J = 4.0 Hz) and sucrose ( 5.38, d, J = 4.0 Hz). The same signals were positively and 

negatively related to the second ordination axis, respectively. The relative abundance of the 

corresponding metabolites separated the seeds grown in the field (B0 and BM) from those grown 

in pots. Indeed, B0 and BM, placed at the left-bottom of the ordination space, compared to the 

other populations, showed higher content of formic acid, as well as of other organic acids, and 

lower content of raffinose and sucrose (Table 5.2). Notably, these two populations, differing 

only by the fertilization treatment, were relatively close in the ordination space, indicating that 

their metabolic fingerprinting, except the above-mentioned production of carbohydrates, were 

relatively similar. Differently, the populations placed at the top of the ordination space (B2012, 

B2013 and G3) showed high content of raffinose and sucrose, being also separated by the content 

of formic acid and organic acids (low in G3, placed at the top-left of the ordination space, 

intermediate in B2012, B2013, placed at the top-right). G8, G17, W and W13.1 were all positively 

related to the first ordination axis. However, their metabolic fingerprinting was different, with 

G8 and W showing lower content of organic acids and higher content of sucrose and raffinose, 

and vice-versa for G17 and W13.1. Spectral signals diagnostic of other compounds, such as 

caffeoyl derivatives and some amino acids (compare Fig. 5.5 with Table 5.1), were less related 

to the first two principal components compared to carbohydrates and organic acids. However, 
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the relative abundance of many different compounds was different among chia populations, as 

hereafter described. 

 

Fig. 5.5 PCA of chia seeds based on 1H NMR spectra in D2O, excluding the spectral region from 3.20 

to 4.10 ppm. Left: vector loadings of chia seeds; Right: factorial scores of resonance intervals of 0.01 

ppm, symbolized according to 1H NMR signal assignment. Explained variance of principal components 

is reported in brackets on the axis labels.  

 

 

5.3.10 Chemometrics for single metabolites 

The ANOVA results showed that the content of all the tested metabolites was significantly 

different among the populations grown in pots, with the only exception of glucose (Table 5.2). 

This was linked to the low variability of the three replicated spectra within each chia line. 

Considering the relative abundance of single metabolites in the samples, post-hoc pair-wise 

comparisons showed an interesting pattern for different classes of compounds, selectively most 

or least abundant in the seeds of specific chias (Table 5.2). In particular, the content of all 

detected amino acids was significantly highest and lowest in the seeds of long-day genotypes 

G17 and G3, respectively, with the exception of aspartic acid, being most abundant in 

commercial seeds (B2012, B2013, W) and showing the minimum value in the seeds of long-day 
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genotype W13.1 (Table 5.2). Interestingly, this genotype showed the highest content of many 

compounds, such as the carbohydrates sucrose and raffinose, (but not of glucose) and the 

flavonoids genistein and quercetin, as well as the caffeoyl derivatives caffeic, chlorogenic, and 

rosmarinic acids (Table 5.2). For the same metabolites, the minimum content was observed in 

the seeds of long-day genotypes G3 (for sucrose and raffinose) and G8 (for caffeoyl derivatives 

and genistein), with the exception of quercetin, being most abundant in the commercial black 

B2012 and B2013 (Table 5.2). Considering previous reports, Marineli et al. (2014) found that the 

content of carbohydrates in chia seeds is about 34.57 g/100g. Our results are compatible with 

this value, given that, limited to glucose, sucrose and raffinose, the total content recorded in our 

study ranges from 20.8 g/100g in the seeds of W13.1 to 25.5 g/100g in G3 (i.e. 208 to 255‰, 

Table 5.2). Even though a direct comparison with our data is complicated by the overlapping 

signals for sugar protons that we observed in the spectral region from 3.40 to 4.10 ppm, an 

indirect estimate, based on the total integral of this spectral region, produced values, ranging 

between 60.1% in G17 and 75.8% in G8. In the case of amino acids, Weber et al. (1991) 

reported that total content of protein in seeds of three different chia populations ranged between 

19.0 to 26.5%. Our results are not directly comparable with those previous reports, since our 

assessment is limited to the total content of specific free amino acids detected from 1H NMR 

spectra (Table 5.1), rather than to the total protein content. Such value, in our dataset, ranged 

from 1.56% in G3 to 2.87% in G17 (i.e. 15.6 to 28.7‰, Table 5.2). Differently from other 

metabolites, maximal and minimal values of the content of single organic acids were unevenly 

distributed among populations (Table 5.2). In particular, citric acid was most and least abundant 

in the seeds of long-day genotypes G8 and G3, respectively; seeds of W13.1 showed the highest 

content of malonic acid and lactic acid, G17 of succinic and formic acids, and B2013 of fumaric 

acid. The lowest content of malonic, lactic, succinic, formic and fumaric acid was recorded in 

the seeds of B2013, G3, G3, G8 and W13.1 Chias, respectively (Table 5.2). To the best of our 

knowledge, no direct evidence can be found in the literature for comparison, and this report 
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represents the first finding of short-chain carboxylic acids in chia seeds. This is important 

because organic acids besides the key role in the metabolism of cells, including amino acid 

biosynthesis, energy production and adaptation of the plant to the environment, also participate 

in the mechanisms used by plants to cope with nutrient lack, metal tolerance and plant-microbe 

interactions, operating at the root-soil interface (Lòpez-Bucio et al., 2000). Considering 

differences among seeds in the content of fatty acids (Table 5.2), the long-day genotype G17 

showed by far the highest content of MUFA, PUFA, and allylic and diallylic carbons, as well 

as the highest and lowest abundance of ω3-CH and ω1-CH3, respectively. Commercial black 

chias, particularly B2012, showed a different pattern, with highest content of ω1-CH3 and lowest 

of ω3-CH, and the highest content of β-CH2 and γ-CH2 in B2012 and in B2013, respectively. Seed 

oils from major oilseed crops contain five fatty acids in high abundance (16:0, 18:0, 18:1, 18:2, 

and 18:3) although many other minor fatty acids are present and may have importance for 

industrial applications (Liu et al., 2015). Our approach did not allow to determine the length of 

the fatty acids chain but showed differences in the saturated and omega series of the analyzed 

material (Table 5.2).  

 

5.3.11 Effects of mineral fertilization 

Our chemometric analysis of the content of single metabolites in the seeds of commercial black 

treated with mineral nitrogen supply, as compared to untreated control, showed that mineral 

fertilization had a general reducing effect on the content of carbohydrates and flavonoids, 

positive while the effects on organic acids, polyphenols and fatty acids were highly dependent 

on the single metabolite considered (Table 5.2). Moreover, the magnitude of such effects was 

highly variable for single different compounds. In the case of the carbohydrates glucose, 

sucrose and raffinose, all showing higher mean content in B0 compared to BM, the difference 

due to fertilization was only marginally significant for sucrose, and not significant for glucose 

http://www.sciencedirect.com/science/article/pii/S0926669014007067?np=y#bib0080
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and raffinose (Table 5.2). Interestingly, the content of these three sugars in both B0 and BM were 

much lower than in chias grown in pots, thus indicating a higher production and/or a different 

partitioning of photosynthates in such conditions. Differences in flavonoid content due to 

fertilization, although relatively small, were statistically significant in the case of genistein, and 

marginally significant for quercetin (Table 5.2). Comparison on the total amino acids content 

could not be done because many signals of amino acids are overlapped by other signals 

belonging to different classes of metabolites (e.g. flavonoids, phenols and carbohydrates). 

Those quantified were only a limited number of the total amino acids. However, all amino acids 

detected in the samples were most abundant in fertilized seeds, but the content increase due to 

nitrogen mineral supply was statistically significant only for aspartic acid and proline (Table 

5.2). Caffeoyl derivatives were evenly distributed between B0 and BM seeds, with the exception 

of chlorogenic acid, showing higher content in un-fertilized samples. Similarly, organic acids 

showed not significant or marginally significant differences due to fertilization in 5 cases out 

of 6, the exception being lactic acid, with a higher content in fertilized seeds (Table 5.2). 

Finally, differences in the content of fatty acids were mostly non-significant, with some 

exceptions for specific metabolites: MUFA and diallylic carbons were significantly more 

abundant in un-fertilized samples, while the allylic carbons showed the opposite pattern. 

Considering differences in chemical composition due to environmental factors and/or 

experimental treatments, the literature on chia reports an important effect of elevation, with an 

increase in oil content (Ayerza 2009b) and a decrease in protein level (Ayerza and Coates, 

2009a, b, 2011) at high altitutes. Ayerza and Coates (2011) also reported an increase in the 

levels of α-linolenic and linoleic fatty acid and a decrease in saturated fatty acids, as well as a 

decrease in the ω-6:ω-3 fatty acid ratio, as elevation increases. Amato et al. (2015) showed a 

higher concentration of chlorophyll, carotenoids and α-linolenic acid in chia grown in Italy than 

in commercial black and white chias. The same authors demonstrated a higher concentration of 

pigments and a lower oxidative stability in chia grown with mineral fertilization. Heuer et al. 
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(2002) found a reduction on the amount of oil content with an increase in palmitic and linoleic 

acid content, in chia grown with saline irrigation. Ixtaina et al. (2011) found -carotene by 

HPLC analysis. Amato et al. (2015) found carotenes and chlorophyll in oil, as well as 

tocopherols, with -tocopherol as the main component, followed by - and -tocopherol, 

whereas -tocopherol was not detected, in accordance with other reports (Ixtaina et al., 2011, 

Capitani et al., 2012). Finally, according to Amato et al. (2015), nitrogen supply did not affect 

either the fatty acid composition or oil content of chia seed, which is consistent with our results.  
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Table 5.2. Relative abundance (‰) of main metabolites detected by 1H NMR analysis. Data refer to mean and standard deviation of 3 replicates. Results of 

ANOVA (F and p) and post-hoc Tukey’s HSD (letters, highest values underlined) testing for single-metabolite differences between chia seeds, as well as t-test 

for differences between fertilized (BM) and non-fertilized (B0) chias, are also reported. Significant (p < 0.00156) and marginally significant (0.00156 < p < 0.05) 

p-values in bold. 

Metabolite 
Chia populations ANOVA Effect of mineral N fertilization 

    W13.1 G17 G8 G3 B2013 B2012 W F p B0 BM t p 

Organic acids                     

Citric acid (CI) 5.9±0.4 b 6.2±0.3 bc 7.4±0.3 c 3.3±0.2 a 5.6±0.7 b 4.9±0.6 b 5.8±0.6 b 20.5 <0.0001 7.7±0.6 8.5±1 1.12 0.3271 

Malonic acid (MA) 2.0±0.1 e 1.8±0.2  e 1.3±0.1 bc 1.6±0.1 de 0.7±0.0 a 1.4±0.1 cd 1.0±0.1 b 44.0 <0.0001 1.9±0.2 2.8±0.2 5.20 0.0065 

Lactic acid (LA) 1.7±0.1 d 1.6±0.0  cd 1.6±0.2 cd 0.5±0.1 a 1.3±0.1 bc 1.1±0.0 b 1.6±0.1 cd 37.8 <0.0001 1.4±0.1 2.1±0.1 9.01 0.0008 

Succinic acid (SU) 3.0±0.4 d 3.8±0.3 e 2.6±0.3 bcd 1.6±0.2 a 2.0±0.1 ab 2.2±0.2 abc 2.7±0.2 cd 22.2 <0.0001 4.1±0.3 5.1±0.6 2.61 0.0593 

Formic acid (FO) 0.8±0.1  b 4.2±0.2  e 0.1±0.0 a 0.2±0.1 a 1.6±0.2 c 2.8±0.3 d 0.2±0.1 a 296.7 <0.0001 6.3±0.6 4.2±0.2 -5.66 0.0048 

Fumaric acid (FU) 0.2±0.1  a 4.5±0.4  cd 2.5±0.1 b 6.3±0.3 de 9.1±1.0 f 8.0±1.2 ef 3.8±0.7 bc 64.1 <0.0001 4.9±0.8 3.1±0.2 -3.51 0.0247 

Free Amino acids                     

Alanine (Ala) 4.2±0.4 c 4.0±0.2 c 4.1±0.3 c 1.5±0.2 a 3.6±0.1 c 2.8±0.1 b 3.9±0.2 c 47.7 <0.0001 3.6±0.4 4.6±0.5 2.52 0.0654 

γ-aminobutyric (GABA) 3.9±0.7 c 4.7±0.3 c 4.0±0.1 bc 2.4±0.1 a 3.0±0.3 ab 3.3±0.2 ab 4.0±0.7 bc 9.5 0.0003 3.9±0.4 6.8±0.6 7.14 0.0020 

Aspartic acid (Asp) 1.9±0.1 a 2.6±0.4 abc 2.0±0.1 ab 2.3±0.3 abc 2.7±0.2 bc 2.9±0.5 c 2.7±0.1 bc 6.1 0.0025 2.4±0.1 3.7±0 28.72 < 0.0001 

Isoleucine (Ile) 1.9±0.2 a 3.2±0.2 c 2.3±0.2 ab 1.8±0.0 a 2.1±0.2 a 2.0±0.3 a 2.8±0.5 bc 11.0 0.0001 1.8±0.2 2.5±0.3 3.29 0.0301 

Leucine (Leu) 0.8±0.1 a 1.2±0.1 b 0.9±0.0 a 0.7±0.1 a 0.7±0.1 a 0.9±0.1 a 1.2±0.1 b 25.8 <0.0001 0.5±0 0.8±0.1 7.48 0.0017 

N-acetylglutamic (NAcGlu) 3.9±0.6 cd 4.8±0.5 d 3.6±0.4 bc 2.4±0.2 a 2.6±0.2 ab 3.2±0.4 abc 3.6±0.3 bc 12.8 <0.0001 4.4±0.8 6.8±0.9 3.44 0.0264 

Proline (Pro) 3.0±0.0 b 3.7±0.3 c 3.1±0.1 b 1.8±0.1 a 2.3±0.2 a 2.3±0.2 a 3.0±0.2 b 38.0 <0.0001 3±0.1 5.1±0.4 9.18 0.0008 

Valine (Val) 3.6±0.5 ab 4.5±0.2 b 4.2±0.3 b 2.7±0.2 a 3.7±0.4 ab 3.5±0.5 ab 4.3±0.5 b 7.6 0.0009 3.6±0.5 4.3±0.3 2.20 0.0928 

Carbohydrates                     

Glucose (Glc) 65±2.3 a 69.3±3.7 a 63.2±8.3 a 72.3±6.1 a 64.5±1.4 a 73.3±6.5 a 72.8±3.1 a 2.2 0.1059 59.5±1.9 47.8±8.1 -2.44 0.0710 

Raffinose (Raff) 82.4±8.1 a 84.7±7.2 a 101±8.5 ab 103.8±7.0 b 100.8±2.2 ab 90.8±11.5 ab 91.3±10.8 ab 3.0 0.0407 82.2±3.8 75.5±4.7 -1.92 0.1275 

Sucrose (Sucr) 59.5±9.0 a 67.7±4.7 ab 64.0±1.3 ab 78.5±5.5 b 67.0±7.0 ab 73.6±5 ab 67.4±4.2 ab 3.6 0.0228 53.7±3.6 41.6±3.1 -4.36 0.0121 

Flavonoids                     

Genistein (GE) 1.4±0.2 a 2.2±0.0 bc 3.0±0.2 d 1.9±0.1 ab 2.0±0.2 bc 2.0±0.2 bc 2.4±0.2 c 25.8 <0.0001 2.7±0.2 2±0.1 -5.49 0.0053 

Quercetin (QUE) 1.2±0.1 a 2.2±0.1 bc 2.3±0.4 bc 2.3±0.2 bc 2.7±0.1 c 2.6±0.2 c 2.0±0.1 b 20.4 <0.0001 1.6±0.2 1.3±0.1 -2.81 0.0484 

Caffeoyl derivatives                     

Caffeic acid (CA) 2.2±0.2 a 3.6±0.3 b 4.6±0.3 c 3.1±0.2 b 3.1±0.5 ab 3.8±0.3 b 3.3±0.3 b 18.3 <0.0001 1.8±0.2 1.6±0.1 -1.39 0.2381 

Chlorogenic acid (Chlo) 4.0±0.4 a 5.5±0.4 b 6.9±0.6 c 5.5±0.3 b 4.6±0.6 ab 4.9±0.6 ab 4.6±0.2 ab 11.5 0.0001 2.9±0.1 2.1±0.2 -5.70 0.0047 

Rosmarinic acid (RO) 9.2±0.9 a 12.9±2.0 b 14.0±0.3 b 9.8±1.1 a 9.4±0.6 ab 11.2±0.9 ab 11.4±0.4 ab 9.5 0.0003 7.7±0.8 9.3±0.5 2.75 0.0513 

Fatty acids                     

ω1-CH3 36±4.2 bc 23.5±2.3 a 32.5±3.8 ab 36.5±6.1 bc 30.5±2.5 abc 39±5.3 c 26.8±1.5 ab 5.9 0.0031 37.6±3.5 36.5±5.5 -0.31 0.7699 
ω3-CH 20.1±1.5 bc 27.1±1.9 d 19.3±2.0 abc 19±1.6 bc 15.6±2.7 ab 14.8±1.3 a 23.9±1.9 cd 16.2 < 0.0001 21.2±2.2 17.6±1.8 -2.23 0.0901 

-(CH2)n- 90.8±5.3 bc 72.6±0.7 a 78.3±6.2 ab 98.2±8.6 c 70.6±6.6 a 96.2±6.6 c 65.8±5.9 a 13.8 < 0.0001 73.1±12.6 70.7±6.4 -0.29 0.7880 

γ-CH2 59.2±5.1 bc 42.9±3.7 a 53.4±2.0 abc 62.8±0.5 c 48.7±5.7 ab 82.2±9.1 d 40.4±2.8 a 25.5 < 0.0001 49.9±5.7 66.2±4.2 3.96 0.0166 

allylic carbon 11.1±1.5 c 41.5±3.1 d 10.4±0.4 bc 5.4±0.4 ab 0.6±0.1 a 7.4±0.5  bc 36.5±3.3 d 229.8 < 0.0001 3±0.2 13.3±0.4 36.82 < 0.0001 

β-CH2 53.5±2.3 cd 43.6±3.2 bc 12±0.3 a 37.2±0.8 b 62.4±9.9 d 43.5±3.3 bc 37.4±3.8 b 37.5 < 0.0001 46.5±6.6 53.5±2 1.76 0.1527 

diallylic carbon 11.4±1.0 b 47.9±7.2 d 1.6±0.2 a 5.6±0.6 ab 3.4±0.4 a 0.5±0.1 a 34.7±1.7 c 129.5 < 0.0001 6.7±0.5 0.3±0 -20.25 0.0000 

glycerol 2.7±0.3 bc 2.4±0.2 ab 3.7±0.5 c 3±0.3 bc 3.3±0.5 bc 3.4±0.4 c 1.6±0.1 a 11.0 0.0001 3.7±0.4 4.3±0.6 1.41 0.2322 

MUFA 8.2±1.1 cd 19.9±1.7 e 3.9±0.5 a 8.1±0.3 c 5±0.3 ab 7.1±0.1 bc 10.4±0.6 d 124.2 < 0.0001 5.9±0.5 5.2±0.4 -1.86 0.1360 
PUFA 13.1±1.8 b 51.9±2.7 d 1.8±0.3 a 9.4±0.9 b 0.3±0 a 1.2±0.1 a 46±2 c 665.5 < 0.0001 8.2±0.9 1.2±0.1 -14.00 0.0002 
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5.4 Conclusion 

The NMR metabolomic study followed by chemometrics of nine chia (Salvia hispanica L.) 

seeds genotypes was performed. Samples analysed included three commercial (two black, and 

one white), four early flowering (G3, G8, G17, W13.1), and two black genotypes grown with 

different mineral nitrogen supply. The research aimed at evaluating the chemical composition 

of the different populations. Results showed that apolar organic extracts were mainly composed 

of mono- and polyunsaturated fatty acids, such as α-linolenic acid, while polar organic extracts 

contained glucose, raffinose and sucrose as main metabolites along with caffeoyl derivatives 

and flavonoids. Several organic acids and free amino acids were also identified in the seed 

extracts. The nor-diterpenoid, Tashinone I and 15,16 dihydro Tanshinone I were detected in 

chia seeds for the first time. From the quantitative point of view, the PCA based on proton 

nuclear magnetic resonance from apolar and aqueous fractions produced opposite results, in 

terms of differences among the populations. Concerning the apolar fraction, PCA of all spectral 

signals from CDCl3 extracts showed a certain similarity among the studied seeds. Minor 

differences among the samples were only recorded in the relative content of these compounds. 

Concerning the polar fractions, PCA clearly separated the samples showing significant 

differences for signals related to carbohydrates, which were overall most abundant in 

commercial black, while commercial white and long-day flowering genotypes showed a lower 

content of these metabolites. The genotype G3 showed an intermediate pattern. In addition, the 

analysis of blackseeds, cultivated at different nitrogen supply, showed a decrease in the content 

of carbohydrates and flavonoids, an increase of aliphatic amino acids and no change in the 

content of organic acids. The obtained results showed that the combined approach of 1H NMR 

spectroscopy and multivariate data analysis can provide a detailed metabolomic profiles of 

biological samples defining the main classes of metabolites both from qualitative and 

quantitative point of view. Furthermore, the finding of signals characteristics for Tashinone I 

and 15,16 dihydro Tanshinone I shows that this approach can be used not only to assess major 
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compounds of the organic extracts, but also to detect metabolites also present in minor amounts. 

The use of 1H NMR coupled with multivariate data analysis has been widely used to 

characterize plant metabolomics (e.g. Verpoorte, 2008; Incerti, 2013). However, to the best of 

our knowledge, this is the first application of such approach to provide a metabolomic 

fingerprinting of chia seeds. 
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6. Metabolomic Analysis by UAE-GC MS and 

antioxidant activity of Salvia hispanica seeds grown 

under different irrigation regimes** 

 

6.1 Introduction 

 

Chia (Salvia hispanica L.) is an ancient short-day flowering crop from Central America, re-

discovered in the1990s, (Gentry et al., 1990; Coates and Ayerza 1996) and thereafter spreading 

in several areas of the world, at first due to a favorable market placement linked to its 

nutraceutical properties, and more recently as a source of compounds of cosmetic, medical and 

industrial interest (Muñoz et al., 2013; Lu and Foo 2002; Hermoso-Diaz et al., 2014). The 

product of chia is an indehiscent dry fruit, commonly referred to as “seed”, and it is rich in oil 

and known as one of the richest natural sources of omega 3 fatty acids (Ayerza 1995; Ayerza 

and Coates 2011). Chia seeds show a high content of protein with a balanced composition in 

essential amino acids (Ayerza, 2013) and fiber (Capitani et al., 2012). A part of the fiber is 

located in the outer cells of the fruit and it is extruded at the fruit surface upon hydration (Muñoz 

et al., 2012), forming a mucilaginous capsule with rheological properties that make it promising 

for industrial and medical uses: it is highly hygroscopic, viscous and adhesive (Svec et al., 

2016). Many antioxidants have been identified in chia seeds and extracted oil and mucilage, 

and especially phenolic acids and flavonoids, besides poly-unsaturated fatty acids (e.g. Marineli 

et al., 2014; Amato et al., 2015, Menga et al., 2017). Chia seeds or their products are therefore 

increasingly proposed not only as food but also as a component for biodegradable film (Muñoz 

                                                 
** de Falco, B., Fiore, A., Bochicchio, R., Amato, M., and Lanzotti V. Metabolomic Analysis by UAE-GC MS and 

antioxidant activity of Salvia hispanica seeds grown under different irrigation regimes. Manuscript submitted 
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et al., 2012; Capitani et al., 2016), thickening agents (Iglesias-Puig and Haros 2013; Felisberto 

et al., 2015; Coelho and Salas-Mellado 2015, Menga et al., 2017), and for anti-corrosion 

(Hermoso-Diaz et al., 2014), cosmetic use (Muñoz et al., 2013) and medical uses (Vuksan et 

al., 2010). A strong variation in chia seeds composition has been reported: for instance, oil 

content ranges from little over 20 to over 40% (Ayerza 1995, Ixtaina et al., 2011; Ayerza and 

Coates, 2004; da Silva Marineli et al., 2014; Coelho et al., 2014). Variability has mainly been 

researched in relation to genotype and environment: Ayerza (2009) reports a range in total 

content of fat from 25.93 to 33.50% for the same genotype of chia grown in five different 

environments. The fatty acids profile, and especially the content of α-linolenic acid is also 

affected by elevation in seeds of this species, even within the same genotype (Ayerza 1995; 

Ayerza and Coates 2004; Ayerza and Coates 2011; Martínez-Cruz and Paredes-López 2014; 

Ayerza and Coates 2011), and in general levels of unsaturation of fatty acids are found to 

increase at cooler temperatures as for other oil seed crops. In an experiment spanning across 

different countries in America Ayerza (2009) reports a direct relation between elevation an oil 

content and an inverse relation between elevation and the content of proteins. Ayerza and 

Coates (2011) suggest that relations of oil and protein content and oil saturation with elevation 

are strong enough that they could be used to trace the growing environment of chia. Ayerza and 

Coates (2009) also found differences in protein content for the same genotypes grown in 

different environments, but could not prove differences among genotypes within a site, except 

for one variety in one site. In a further study, Ayerza (2013) could not find significant 

differences between two genotypes of different seed coat color for protein, oil, fiber, amino 

acids, and antioxidant content. Silva et al., (2016) found that a white and a black seed crop with 

the same seed yield produced different amount of unsaturated fatty acids: the white seed 

genotype yielded more linoleic and -linolenic acids (6.0 and 17.0 kg ha-1 respectively) than 

the black seed one. (4.4 and 16.7 kg ha-1 respectively). De Falco et al. (2017) studied the 

metabolic profile of the seeds of seven chia populations, including commercial and early 
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flowering mutant genotypes and showed significant differences in the metabolic fingerprinting 

of the different populations.  

Very little information is available about the variation in chia seeds composition with 

agronomic management: Amato et al. (2015) compared nitrogen fertilization regimes on chia 

seed composition and found a higher p-Anisidine value, content of phenols and oxidative 

stability in plots fertilized with organic N only, whereas the addition of mineral nitrogen in 

topdressing increased free acidity, chlorophyll and carotenoids content. De Falco et al. (2017) 

reported that the effect of mineral nitrogen supply on chia positively affects the content of 

aliphatic free amino acids, and negatively that of the main carbohydrates and flavonoids. Heuer 

et al. (2002) found that salinity of irrigation water decreases the oil content of chia seeds and 

increased their content of palmitic and linoleic acids.  

Irrigation is one of the major agronomical factors conditioning crop yield and composition, and 

namely that of oilseeds (Flagella et al., 2002). Silva et al. (2016) reported that irrigation did not 

affect significantly yield in terms of whole seeds and linoleic and -linolenic acids of chia, in 

an experiment where very low seed yield was recorded even in a fully irrigated treatment, and 

commented that their results were affected by the fact that a short-day flowering genotype was 

used at a latitude higher than optimal. More information is therefore needed on the response of 

chia to irrigation taking photoperiod sensitivity into account. 

We compared the response to irrigation of a traditional short-day flowering commercial chia 

genotype with a long-day flowering mutant at high latitude aiming at the whole metabolic 

profile, with the hypothesis that irrigation would affect the fatty acid profile and the production 

of secondary metabolites found in the polar and non-polar extracts of seeds. 
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6.2 Materials and methods 

6.2.1 Chemicals 

Reagents used for the extraction procedure and chemical characterization, methanol anhydrous 

(99.8%), n-hexane anhydrous (95%), 2,2`-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) 

diammonium salt (ABTS), derivatizating agents methoxyamine hydrochloride and N-methyl-

N-trimethylsilyltrifuoroacetamide (MSTFA) were obtained from Sigma-Aldrich (Dorset, UK). 

N, O-Bis(trimethylsilyl)trifluoroacetamide, Trimethylchlorosilane (BSTFA with 1% TMCS) 

was purchased from Supelco Analytical (Bellefonte, PA). Pyridine, sodium carbonate 

anhydrous, Folin–Ciocalteu’s reagent and gallic acid were obtained from Fischer Scientific 

(Loughborough, UK). Sugars, amino acids, organic acids and polyphenols used for 

identification and quantification were purchased from Sigma-Aldrich (Dorset, UK).   

 

6.2.2 Plant materials 

Black chia (Salvia hispanica L.) seeds (B) were obtained from a commercial retailer 

(Eichenhain– Hofgeismar–DE) and seeds of one long-day flowering mutant genotype (G8), 

were obtained as described in Jamboonsri et al., (2012) and were kindly supplied through an 

agreement between the University of Basilicata and the University of Kentucky (US). 

 

6.2.3 Growth conditions 

Plants were grown in Basilicata (Southern Italy-Lat. N 40° 51′ 37,59″ Lon. E 15° 38′ 49,43″) 

on a Luvi-vertic Phaeozem (Iuss working group, 2006), loam soil, in the period June-December 

2014. A field factorial randomized block design with three replications was established to test 

the two genotypes B and G8 with two levels of irrigation: I (irrigation at 100% of ET0) and NI 

(no irrigation). The crop was sown on June 26, 2014 and irrigation treatments were 
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differentiated at 51 DAS. Precipitation was 197 mm during the experiment, and the I treatment 

received 224 mm of irrigation. Seeds of G8 and B were harvested respectively at 132 and 173 

DAS.  

 

6.2.4 Extraction procedure of the organic phase 

Chia seeds were strained in order to remove extraneous matter as dust and straw. The clean 

seeds were blended in a laboratory mill (IKA Works MF10, Scotland, UK) in order to obtain a 

fine powder of the organic material. Subsequently, 15 g of the powder were extracted with 80 

ml of n-hexane for 2 h under stirring. The mixture was centrifuged at 3700 rpm for 10 min and 

the supernatant was immediately stored at -80 °C in dark conditions until further analysis. The 

pellet was washed twice with 20 ml of n-hexane and then centrifuged at 3700 rpm for 10 min. 

The supernatant was added to the previous fraction and the leftover pellet was stored overnight 

in a fume hood in order to remove the excess of n-hexane. 

 

6.2.5 Ultrasound assisted extraction (UAE) 

Ten grams of defatted chia seeds were extracted with 100 ml of methanol/water (60:40). 

Sonication was performed at 20 kHz with 50% of power using a Fischer Scientific Ultrasound 

(model FB705, 700W, 2000 Park Lane, Pittsburgh, PA) under continuous stirring. The probe 

was a horn-type (model CL-334), which was kept at constant deep into the mixture using a glass 

beaker of standard geometry. During the extraction, the temperature was monitored and kept 

constant (25 °C ± 1) using a thermostatic bath. Five ml of each sample were collected after 2, 

20, 40 min and centrifugation was carried out at 2500 rpm for 10 min. The supernatant was 

stored at -80 ºC until further analysis.  
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6.2.6 Total polyphenol content 

Total polyphenolic content (TPC) was determined by spectrophotometry according to the 

method described by Singleton and Rossi (1965) with some modifications described below: 

125 µl of diluted sample (1:10) were mixed with 500 µl of distilled water and 125 µl of Folin-

Ciocalteu reagent. After 6 min, 1.25 ml of sodium carbonate solution at 7.5% were added to the 

mixture and brought to a final volume of 3 ml with distilled water. The test tubes were then 

allowed to stand at dark for 90 min at room temperature. The absorbance was read at 760 nm 

(Thermo Scientific Genesys 10S UV-Vis Spectrophotometer) and TPC was expressed in terms 

of gallic acid equivalents (GAE/g). A calibration curve ranging from 20 to 200 µg ml-1 was 

used to quantify the TPC content in the seeds extracts. All determinations were performed in 

triplicate. 

 

6.2.7 Antioxidant activity 

The free radical-scavenging activity was determined according to Re et al., 1999 using the 

reduction of radical cation ABTS•+. A mixture of 2.5 ml ABTS 7 mM and 44 µl potassium 

persulfate 140 mM was prepared and leaved overnight in the dark. The spectrophotometer 

wavelength was set at 734 nm. The stock solution of ABTS was diluted to 1:80 until a final OD 

reaches a value between 0.7 and 0.8 nm. 100 µl of diluted sample (1:10) were added to 1 ml of 

ABTS solution and after 2.5 min its reduction was measured as the percentage of inhibition. 

Results were expressed in mmol Trolox equivalent antioxidant capacity (TEAC/g) and referred 

to a calibration curve ranging from 25 to 250 µM. All determinations were performed in 

triplicate. 
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6.2.8 Derivatization and GC/MS analysis 

In order to obtain volatile and stable compounds, both polar and non-polar extracts were 

derivatized before the GC/MS analysis. For this purpose, 200 µl of the organic phase were dried 

under nitrogen stream and a stock solution was prepared. A subsample of 75 µl (500 ppm) was 

dissolved in 300µl of pyridine/BSTFA + 1% TMCS (1:1) the vials were vortexed, leaved at 

25°C for 15 min and analyzed by GC/MS (Shareef et al., 2006). The metabolomic analysis of 

the polar extract need of two steps processes, starting with oximation to reduce tautomerism of 

aldehydes and ketones, followed by OH, SH and NH silylation (Gullberg et al., 2004). An 

aliquot (200 µl) of diluted sample (1:50) was evaporated to dryness in a vacuum centrifuge 

(Eppendorf Concentrator 5301) and oxymated with 50 µl of methoxyamine hydrochloride (20 

mg ml-1) in pyridine at 60°C for 45 min. Samples were then silylated with MSTFA at 60°C for 

45 min. Both polar and non-polar extracts were analyzed by gas mass spectrophotometer 

similarly. One µl of each derivatized sample was injected in a pulsed splitless mode into an 

Agilent-7820A GC system with 5977E MSD operating in EI mode at 70 eV. The system was 

equipped with a 30 m x 0.25 mm id fused-silica capillary column with 0.25 µm HP-5MS 

stationary phase (Agilent technologies, UK). The injection temperature was set at 270°C. 

Helium was used as carrier gas at a constant flow rate of 1 ml min-1. Separation of non-polar 

extract was achieved with a temperature program of 80°C for 1 min, then ramped at 10°C/min 

to 320°C and hold for 1 min. The analysis of the polar compounds was performed under the 

following temperature program: 2 min of isothermal heating at 70°C, followed by a 10°C/min 

oven temperature ramp to 320°C, and a final 2 min heating at 320°C. The system was then 

temperature equilibrated for 1 min at 70°C before injection of the next sample. All spectra were 

recorded in the mass range 50 to 800 m/z. Both chromatograms and mass spectra were evaluated 

using the MassHunter Qualitative Analysis B.07.00. Mass spectra of all detected compounds 

were compared with standard compounds and with spectra in National Institute of Standard and 

Technologies library NIST MS Search 2.2. Data were processed with the AMDIS software to 
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deconvolute co-eluting peaks. Artifact peaks, such as peaks due to derivatizing agents, were not 

considered in the final analysis. Peak areas of multiple peaks belonging to the same compound 

were summed together. The relative amount of separated metabolites was calculated from Total 

Ion Chromatography (TIC) by the computerized integrator and with internal standard, malonic 

acid and 1-oleoyl-rac-glycerol, respectively added to polar and non-polar extract. 

 

6.2.9 Statistical analysis 

Relative quantification was done by integrating the peak areas of the chromatographic profiles 

for each compound and normalizing the data to internal standards. The effect of genotype, 

irrigation and their interaction on the chemical composition of chia seeds was evaluated through 

the analysis of variance with the R software (R Development Core Team, 2008). 

 

6.3 Results and discussions 

6.3.1 Seeds production and chemical properties 

The genotype x irrigation interaction for seed yield is reported in Fig. 6.1 left. Yields of G8 

were in the high yielding end of the range of productive data reported for chia worldwide 

(Bochicchio et al., 2015a) and were significantly higher than those of B. Irrigated plots yielded 

more than NI but statistical significance of this difference was reached in G8 only. Results 

confirm first reports of growing traditional genotypes of chia at high latitudes, where short-day 

flower induction results in late summer flowering and seed ripening occurs in fall-winter and is 

hampered by low temperatures, therefore yields are low (Bochicchio et al., 2015b; Silva et al., 

2016). In case of low yields a lack of significance of irrigation is also reported by Silva et al. 

(2016). Oil yield (Fig. 6.1 left) was 39.6% on average without significant differences between 

treatments. This values is in the high range of chia seeds oil content (Bochicchio et al., 2015a). 
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The TPC of different chia seeds was evaluated using the Folin–Ciocalteu method (Fig. 6.1 right 

top). The results, expressed as mg GAE/g of defatted chia seed, are in agreement with Amato 

et al. (2015) and with other previous reports (Reyes-Caudillo et al., 2008; Coelho et al., 2014) 

but lower compared to data reported by da Silva Marineli et al. (2014). The polyphenol content 

increased after 40 min of UAE (p<0.01). Although in many cases values were lower in irrigated 

treatments, differences were statistically significant (p<0.01) only for the commercial variety 

at 2 minutes, and sample variability did not allow to reach significance in the other instances. 

A negative effect of irrigation on TPC for different species is reported in the literature (Dag et 

al., 2008; Esteban et al., 2001; Patumi et al., 1999 and 2002).  

 

6.3.2 Antioxidant activity 

The antioxidant activity of seeds extract was also evaluated and the Fig. 6.1 right bottom shows 

the TEAC results for Black chia and G8 seeds. The values ranged from 1.317 ± 0.027 to 2.174 

± 0.010 mmol TEAC/g of defatted chia seed, measured after 2 and 40 min, respectively. These 

results are in agreement with Sargi et al. (2013), but higher than those reported by other authors 

(Capitani et al., 2012; Vazquez-Ovando et al., 2009). Values were lower in irrigated treatments, 

but differences were statistically significant (p<0.01) only for G8 at 2 minutes. In many plant 

species, the amount of antioxidants and/or antioxidant activity is shown to increase (e.g. Wu et 

al., 2017) or remain unaffected (Kyraleou et al., 2016) with reduced water supply. Zhang and 

Kirkham (1996) show that the degree to which the activities of antioxidant enzymes and the 

amount of antioxidants change under drought stress is variable with plant species. 

 

 



Chapter 6 Metabolomic of chia seeds grown under different irrigation regimes  

 

152 

 

 

 

Fig. 6.1 Interaction of genotype x irrigation for yield and chemical properties of chia seeds (Salvia 

hispanica L.). Left: seed yield and oil content. Different lower case letters indicate significant 

differences (p<0.05) at the post-hoc Tukey’s test. Right: Total polyphenol content (top) and Antioxidant 

activity (bottom) of defatted chia seeds. Within each time different upper case letters indicate highly 

significant differences (p<0.01) at the post-hoc Tukey’s test. 

 

6.3.3 Metabolite profile 

A whole metabolome profile of two different genotypes (G8 and black chia) of Salvia hispanica 

L. seeds was evaluated by GC-MS analysis. Metabolomic fingerprinting of both genotypes 

supplemented with irrigation was also studied and compared with untreated samples. Each 

sample was analyzed in triplicate and a total of 34 metabolites, including carbohydrates, amino 

acids, organic acids and fatty acids, were identified by comparing the GC-MS data with 

commercial mass spectral libraries, literature data and reference compounds, run under the same 

experimental conditions. The auto-sampler in GC instrument was used to minimize the effect 
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of variation during the injections. All compounds of polar and non-polar extract with their 

respective retention times and m/z values are listed in Table 6.1, and representative total ion 

chromatograms (TIC) for both fractions are reported in Fig. 6.2.  

 

Fig. 6.2 Representative TIC of the polar (A) and non-polar (B) fractions of BNI seeds extracts. Peaks 

correspond to numbering of compounds in Table 6.1 

 

6.3.4 Apolar phase 

The main fatty acids detected in chia seeds were linolenic acid (18:3), linoleic acid (18:2), 

stearic acid (18:0), palmitic acid (16:0) and oleic acid (18:1), determined as TMS derivatives. 

These compounds were previously detected in other reports (Amato et al., 2015; da Silva 
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Marineli et al., 2014; Peiretti et al., 2009). A preliminary analysis of chromatograms showed 

C18:3 as the most abundant fatty acid in all samples. On the contrary, 10-heptadecenoic acid 

(17:1), also reported by Gören et al., 2006 in three species of Turkish Salvia, was detected in 

slightest amount. MS spectrum of saturated fatty acids trimethylsilyl esters such as C16:0 and 

C18:0 have a base peak at m/z 313 and 341 respectively, which represents the loss of methyl 

group from TMS ester group, while m/z 132 represents the McLafferty rearrangement ion. In 

the MS spectrum of monounsaturated and polyunsaturated TMS fatty acids, such as C18:1, 

C18:2 and C18:3 characteristic peaks for each of them were detected at m/z 339, 337 and 335, 

respectively. Also in these spectra, a base peak at m/z 73, due to TMS was always detected. As 

shown in Fig. 6.3, the most abundant fatty acid is α-linolenic acid (C18:3) in all samples, and 

this is in agreement with those of other reports (de Falco et al., 2017; Amato et al., 2015; da 

Silva Marineli et al., 2014; Coelho et al., 2014). Analysis of variance on the non-polar fraction 

(Table 6.2) shows that the main effects of genotype and irrigation were significant in many 

cases. In particular, the total amount of fatty acids was found higher in G8 than in B, except for 

C17:1 which was higher in B, and oleic acid (C18:1) and glycerol monostearate (GMS) which 

were not significantly different between genotypes. Although irrigation treatment affected the 

fatty acids composition of both genotypes of chia seeds, an interaction was significant in C18:1 

where values of the irrigated treatment were higher than NI only for G8, and in GMS where 

I<NI in G8 and I>NI in B. Silva et al. (2016) reported that irrigation did not affect significantly 

the content of linoleic and -linolenic acids of chia, but their experiment tested less extreme 

levels of irrigation, ranging between 40% and 100% of ET0, whereas in our case 100% of ET0 

is compared with rainfed conditions. In other species irrigation is reported to affect fatty acids 

composition but results are often contrasting.  Erdemoglu et al. (2003) found a decrease in the 

content linoleic and oleic acids with irrigation in sunflower seed oil. Sezen et al. (2011) found 

an increase in linoleic, palmitic and stearic acid concentrations with irrigation. Bellaloui et al. 
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(2015) report that irrigation affects soybean oil composition differently according to the degree 

and stage of differentiation of water treatments.  

 

Fig. 6.3 Metabolites belonging to different classes of compounds of non-polar extract of chia seeds 

detected by GC-MS analysis top left: main effects of genotype; top right: main effect of irrigation; 

bottom left: interaction of genotype x irrigation. Within each compound different upper case letters 

indicate highly significant differences (p<0.01) and different lower case letters indicate significant 

differences (p<0.05) at the analysis of variance for main effects and at the post-hoc Tukey’s test for the 

interaction. 

 

The percentages of oleic and linoleic acid in plant fats have a reverse relationship, and in chia 

this has been found by Ayerza (2009). This is linked to the dynamics of oleate desaturases with 

an increase of desaturation in cold conditions and therefore a decrease of the oleic/linoleic acids 

ratio in cooler environmental temperatures (Aparicio et al., 1994). In our data, although the 

amount of many fatty acids increases in response to irrigation, the response is proportionally 

lower in oleic acid, and the oleic/linoleic ratio decreases from 47.4 in the rainfed samples to 

39.6 in the irrigated treatments. Flagella et al. (2002) observed a decrease in the oleic/linoleic 
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acid ratio in sunflower in response to irrigation, and suggested that a possible thermal effect of 

irrigation may have affected the activity of oleate desaturase. 

 

6.3.5 Polar phase 

In the aqueous extracts sugars are the principal class of compounds and the disaccharide sucrose 

(m/z 361) represents the major component followed by methyl galactose as the major 

monosaccharide component (Table 6.1). Other sugars identified were glucose, galactose, 

fructose, mannitol and glucuronic acids. In particular, TMS derivatives of monosaccharides 

such as glucose and galactose showed a very similar GC-MS profiles, due to their 

stereoisomery, with characteristic ions observed at m/z 147, 205, 319 and 364. The final 

identification of these compounds was achieved by comparing their elution order with literature 

data (Gómez-González et al., 2010) and by injection of a standard samples. Other compounds 

detected were the polyphenol caffeic acid, the polyol myo-inositol and a series of carboxylic 

acids and amino acids (Table 6.1). These data are in agreement with assignments obtained by 

de Falco et al. (2017) on the metabolomic analysis of G8 and black chia seeds by NMR and 

chemometrics. A base peak at m/z 73, typical of silylated compounds, was always detected in 

the chromatograms due to [(CH3)3Si] group. In the polar fraction (Fig. 6.4) sucrose (Sucr) and 

methyl-galactoside (mGal) are the most abundant sugars present in all samples, while within 

organic acids, lactic acid (LA) and citric acid (CI) have the highest value, following by quinic 

acid (QUI). Caffeic acid (CA) did not exhibit variation within genotype, but even if statistically 

not significant, its level is higher in black chia than G8. Values were more variable than those 

of the apolar phase, and statistical significance of the differences between genotype and 

irrigation treatments was not reached for many compounds (Fig. 6.4 top left). A genotype effect 

was significant for some compounds (Fig. 6.4 top right): G8 showed a significantly higher 

amount of lactic acid (LA), benzoic acid (BE), serine (Ser) and aspartic acid (Asp), while B 
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showed a significantly higher amount of glucuronic acid (GLUC), arabitol (Arab) and mannitol 

(Man). Irrigation main effects were not significant but interactions were found for some 

compounds (Fig. 6.4 bottom left): irrigated samples showed significantly higher values of LA 

and glycine (Gly) in G8 only, and significantly lower values of Asp and phenylalanine (Phe) in 

B only.  

 

Fig. 6.4 Metabolites belonging to different classes of compounds of non-polar extract of chia seeds 

detected by GC-MS analysis top left: overall average for compounds not significantly different between 

treatments; top right: main effect of genotype for compounds significantly different between G8 and B; 

bottom left: interaction of genotype x irrigation; within each compound different lower case letters 

indicate significant differences (p<0.05) at the post-hoc Tukey’s test for the interaction.  
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Table 6.1 Polar and non-polar metabolites assigned in chia seeds by GC-MS  

Peak  Detected 

metabolites 

Abbreviation RT 

(min) 

Molecular 

formula 

                m/z 

Polar 
     

1 Lactic Acid LA 7.25 C9H22O3Si2 219, 191, 147, 133, 117, 73, 45 

2 Methyl 2-ethyl 

malonate 

Me-MA 7.32 C9H18O4Si 175, 89, 73 

3 L-Alanine, N-

methyl-N-

(trifluoroacetyl)-, 

butyl ester 

Ala, Nm-Tfa-

Obu 

9.99 C10H16F3NO3 154, 110 

4 Benzoic Acid BE 10.03 C10H14O2Si 194, 179, 135, 105, 77 

5 Glycerol GLY 10.46 C12H32O3Si3 218, 205, 147, 117, 89, 73, 45 

6 L-serine Ser 11.74 C12H31NO3Si3 218, 204, 147, 100, 73 

7 L-Threonine Thr 12.14 C13H33NO3Si3 291, 218, 147, 117, 73 

8 N-α-Acetyl-L-

Lysine 

AcLys 13.04 C17H40N2O3Si3 404, 287, 73 

9 Malic acid MA 13.52 C13H30O5Si3 245, 233, 147, 133, 73 

10 L-Aspartic acid Asp 13.97 C13H31NO4Si3 232, 218, 147, 100, 73 

11 L-5-Oxoproline PCA 14.00 C11H23NO3Si2 258, 230, 156, 133, 73, 45 

12 L-Glutamic acid Glu 15.21 C14H33NO4Si3 246, 147, 128, 73 

13 Phenylalanine Phe 15.35 C15H27NO2Si2 218, 192, 147, 100, 73 

14 Tartaric acid TA 15.54 C28H62O6Si4 549, 417, 389, 147, 73 

15 Citric acid CI 17.69 C18H40O7Si4 273, 147, 73, 45 

16 Methyl galactoside mGal 17.77 C19H46O6Si4 243, 217, 204, 133, 73 

17 Quininic acid QUI 18.24 C22H52O6Si5 345, 255, 191, 147, 73 

18 D-Fructose MEOX FRU 18.37 C22H55NO6Si5 217, 307 

19 Arabitol Arab 18.48 C20H52O5Si5 307, 277, 217, 189, 147, 103, 73 

20 D-Galactose 

MEOX 

Gal 18.61 C22H55NO6Si5 319, 205, 147, 103, 73 

21 D-Glucose MEOX Glc 18.67 C22H55NO6Si5 364, 319, 205, 147, 73 

22 D-Mannitol MAN 19.04 C24H62O6Si6 421, 345, 319, 205, 147, 103, 73 

23 D-Gluconic acid GLUC 19.77 C24H60O7Si6 333, 292, 205, 147, 103, 73 

24 Trimethylsilyl 

catechollactate 

tris(trimethylsilyl) 

ether 

Cat 20.30 C21H42O5Si4 396, 267, 179, 147, 73 

25 Myo-Inositol Myo 20.69 C24H60O6Si6 305, 217, 147, 129, 73 

26 Caffeic acid CA 20.91 C18H32O4Si3 396, 381, 219, 191, 73 

27 Sucrose Sucr 25.66 C36H86O11Si8 437, 361, 319, 271, 217, 147, 103, 73 
      

Apolar 
     

28 Palmitic Acid C16:0 17.88 C19H40O2Si 328, 313, 145, 117, 73 

29 Linoleic acid C18:2 19.54 C21H40O2Si 337, 129, 95, 75, 73 

30 α-Linolenic acid C18:3 19.61 C21H38O2Si 335, 129, 95, 75, 73 

31 Stearic acid C18:0 19.80 C21H44O2Si 356, 341, 132, 117, 73 

32 Oleic acid C18:1 22.07 C21H42O2Si 354, 339, 129, 117, 73 

33 10-Heptadecenoic 

acid 

C17:1 24.05 C20H40O2Si 340, 325, 145, 129, 117, 73 

34 Glycerol 

monostearate 

GMS 24.34 C27H58O4Si2 487, 399, 147, 73 
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Table 6.2 Analysis of variance on polar and non-polar fraction to evaluate the effect of genotype and 

irrigation on chia seeds 

Compounds Genotype Irrigation 
Genotype x 

Irrigation 

Polar    

LA p<0.05 n.s. p<0.05 

Me-MA n.s. n.s. n.s. 

Ala-Obu n.s. n.s. n.s. 

BE p<0.05 n.s. n.s. 

GLY n.s. n.s. p<0.05 

Ser p<0.05 n.s. n.s. 

Thr n.s. n.s. n.s. 

AcLys n.s. n.s. n.s. 

MA n.s. n.s. n.s. 

Asp p<0.01 n.s. p<0.05 

PCA n.s. n.s. n.s. 

Glu n.s. n.s. n.s. 

Phe n.s. n.s. p<0.05 

TA n.s. n.s. n.s. 

CI n.s. n.s. n.s. 

mGal n.s. n.s. n.s. 

QUI n.s. n.s. n.s. 

FRU n.s. n.s. n.s. 

Arab p<0.05 n.s. n.s. 

Gal n.s. n.s. n.s. 

Glc n.s. n.s. n.s. 

MAN p<0.01 n.s. n.s. 

GLUC p<0.01 n.s. n.s. 

Cat n.s. n.s. n.s. 

Myo n.s. n.s. n.s. 

CA n.s. n.s. n.s. 

Sucr n.s. n.s. n.s. 

    

Apolar    

C16:0 P<0.05 P<0.001 n.s. 

C18:2 P<0.01 P<0.0001 n.s. 

C18:3 P<0.01 P<0.0001 n.s. 

C18:0 P<0.01 P<0.0001 n.s. 

C18:1 n.s. P<0.0001 P<0.01 

C17:1 P<0.01 P<0.0001 n.s. 

GMS n.s. n.s. P<0.01 
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6.4 Conclusion 

This work provides a high-throughput analysis of metabolomic fingerprinting including total 

polyphenolic content (TPC) and antioxidant activity (TEAC), on commercial black chia and 

early flowering G8 seeds. The analytical approach performed by UAE GC-MS allowed to detect 

and quantify a high number of metabolites.   

The aim of the paper was to evaluate the difference in organic compounds between a wild plant, 

black chia, and the recently developed mutant G8. The species were grown at different level of 

irrigation to evaluate the effect of water supply on the metabolite content. Results showed an 

increase of TPC and antioxidant activity (expressed as TEAC) in all samples after 40 minutes 

of UAE. On the contrary, a decrease of TPC and TEAC levels was observed after irrigation 

treatments. Concerning the apolar phase, quantitative analysis showed a higher yield and 

content of many fatty acids. including ω-3 (-linolenic), in the early flowering G8 mutant, with 

a decrease of the ratio of oleic/linoleic acids. Concerning the polar fraction, sugars were found 

as main metabolites with sucrose and methyl galactose as the major component. The genotype 

effect has more influence on the aqueous extract than the irrigation treatment. G8 showed a 

significantly higher amount of some organic acids and amino acids, such us LA, BE, Ser and 

Asp, while GLUC, Arab and Mann are mainly present in the wild-type.  

The obtained results showed how Gas Chromatography-Mass Spectrometry can provide a 

detailed metabolic profile of chia seeds extracted with ultrasounds. Furthermore, this study 

highlighted for the first time the effects of irrigation on a late flowering and an early flowering 

mutant chia genotypes. 
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7. General conclusion 

 

Metabolomic fingerprinting by spectroscopic and spectrometric techniques is a modern 

approach to study the whole metabolome of a biological sample. The purpose of this 

dissertation has been to demonstrate the usefulness of this approach coupled with chemometric 

analysis for sample classification and metabolite detection. Metabolomic analysis was carried 

out on two plants of great interest in food industry: the artichoke and sage.  

In particular, for the first time, NMR spectroscopy and multivariate data analysis were used to 

define metabolite composition of different Cynara varieties. The obtained data confirmed the 

genetic distance between the edible globe artichoke and cardoon. Findings showed that an 

untargeted metabolomic approach may be an effective tool for chemotaxonomy classification 

when limited information are available. Moreover, in this research the level of nutraceuticals 

was found to be highest in Bianco di Pertosa zia E and Natalina landraces, which can be 

proposed as raw materials for the development of new functional products.  

In the second part of this dissertation, a comparative analysis between commercial short-day 

flowering chia (S. hispanica) seeds and mutant genotypes was achieved. Results demonstrated 

how the metabolomic study can be applied on different biological samples to analyse the effect 

on the metabolite composition of external chemical or physical treatments, such as mutation, 

fertilization and irrigation. This approach also proved that chia seeds of mutant genotypes can 

be cultivated in other temperate areas at high latitude without loss in nutraceuticals. 

Metabolomics could be used as monitoring technique to control the agronomic management 

and its non-invasive features make it an ideal tool for pharmaceutical, agricultural and food 

industries.



 

 

 

 


