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Two-Step Reconciliation of Time Series

New Formulation and Validation

Enrico Infante

Abstract

Two-step reconciliation methods solve the temporal constraint in the

first step, while in the second step the contemporaneous constraint is

satisfied without altering the temporal constraint. Both in Quenneville

and Rancourt and in Di Fonzo and Marini methods, the methodology

used applies the Denton benchmarking technique in the first step.

The work done in this study is based on an alternative two-step procedure

for the reconciliation of systems of time series, proposing an algorithm

which allows to choose one of the two different solutions for the second

step, and introduces the possibility of using well-known established tech-

niques in the first step, such a Chow and Lin, Fernández and Litterman.

Furthermore, a way of dealing with the reconciliation of hierarchical sys-

tems of time series is presented. An innovative test for detecting common

seasonal patterns in time series is also presented. Such test could be used

for deciding at which level to seasonally adjust an aggregated time series

before applying reconciliation.

Moreover, together with a simulation study, several aspects of the valida-

tion of a reconciliation technique are shown, including a new methodology

for detecting whether the outliers at the end of series are consistent. Two

real examples using the European industrial production index and the

euro area quarterly sector accounts data will also be presented.
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Chapter 1

Introduction

Time series reconciliation techniques are widely used in practice. The

most common applications are in official statistics, and in particular in

national accounts, or after performing seasonal adjustment. Usually the

data obtained by a direct seasonal adjustment procedure do not sum up

to the total series and the annual totals are not in line with the non-

seasonally adjusted figures. Two data restrictions are encountered in

these cases.

The first restriction is referred to as the contemporaneous constraint: the

linear, or non-linear, combinations of the variables under examination

are to be fulfilled for each observed period. Techniques for solving the

contemporaneous constraints are called balancing techniques.

The second restriction is referred to as the temporal constraint: the high

frequency time series are to be in line with the low frequency aggregates.

1



2 Introduction

Techniques for solving the temporal constraints are called benchmarking

or temporal disaggregation techniques.

This dissertation refers to high frequency (HF) and low frequency (LF)

time series, indicating at which frequencies the time series are observed

(e.g. HF is quarterly and LF is annual). In other words, HF and LF are

used to distinguish between higher and lower frequencies respectively,

and do not indicate the very high frequency time series which are dealt

with big data analytics. This is in line with the literature in the field

(see, for example, Ciammola et al., 2005). Moreover it must be possible

to entirely aggregate the HF to the LF (for example the HF and the LF

cannot be bi-monthly and quarterly, respectively).

Benchmarking and temporal disaggregation techniques are in theory two

different types of techniques, but in practice they often overlap. Bench-

marking techniques are designed to solve the temporal constraints start-

ing from preliminary HF estimations. Temporal disaggregation tech-

niques are designed to obtain HF figures starting from LF values. How-

ever, in the majority of the cases, the temporal disaggregation techniques

use at least one related time series, which could be used to derive pre-

liminary HF estimations or HF benchmarked data directly. In view of

this, benchmarking techniques could be considered as a subset of the

temporal disaggregation techniques. In this dissertation the two terms

will be used synonymously.

Finally, reconciliation techniques are defined as the statistical processes

that aim to restore consistency in a system of time series as regards to
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both contemporaneous and temporal constraints. Therefore, according

to this definition, reconciliation techniques embed both balancing and

temporal disaggregation methods.

Balancing and temporal disaggregation techniques have both been long

discussed in the literature.

A balancing framework, which takes into account the differences in the

accuracy of the preliminary estimates of the variables in the system, has

been developed by Stone et al. (1942). Bacharach (1970) discussed the

RAS method for matrix balancing, which was introduced in the first

half of the nineteenth century, also referred to as the bi-proportional

adjustment (see also Stone, 1961).

A very well established literature is available for temporal disaggrega-

tion methods. Boot et al. (1967) proposed a smoothing technique in

order to preserve the trend of the LF series, while Denton (1971) de-

veloped a methodology which reallocates the discrepancies of HF series

using preliminary estimates. However, the Denton method is often con-

sidered as a mathematical (mechanical) method, while Chow and Lin

(1971) worked on optimal regression models in the sense of least squares.

Starting from the latter, several methodological variants have been de-

veloped, Fernández (1981) and Litterman (1983) being the most predom-

inant. Techniques using dynamic models have also been discussed (see,

particularly, Santos Silva and Cardoso, 2001).

Reconciliation techniques have been recently discussed by several au-
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thors. Simultaneous approaches, as generalisations of either the Denton

or the Chow-Lin methodology, have been presented by some authors (see

Di Fonzo and Marini, 2003 and Di Fonzo, 1990, respectively). Two-step

approaches, which deal first with the temporal constraint and then by

the contemporaneous constraint, have been proposed by Quenneville and

Rancourt (2005) and by Di Fonzo and Marini (2011b). Both approaches

have the first step in common, whereby the Denton methodology is ap-

plied. The reason for applying two-step approaches is justified by the

authors since the computational burden might be significant using a si-

multaneous approach, and also because this more simple approach pre-

serves the original movements of the time series in the second steps.

The work done in this dissertation is based on an alternative two-step

procedure for the reconciliation of systems of time series, proposing an

algorithm, developed with Java, which allows the choice of one of the two

different solutions for the second step, and introduces the possibility of

using well-known established techniques in the first step. Although the

general reconciliation and balancing techniques deal with both linear and

non-linear accounting restrictions, the methodology presented here takes

into account only the case of linear combinations, avoiding the non-linear

case, which for instance arises when the aggregates are expressed in both

current and constant prices (Di Fonzo and Marini, 2007). A schematic

presentation of the most used methods for benchmarking, balancing and

reconciliation is proposed together with a methodology for validating the

results of such approaches, which could be used in general for time series.

This study also focuses on practical problems encountered by statistical
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agencies when dealing with a reconciliation problem in the production of

official statistics, ranging from timeliness to validation of the results.

This dissertation is divided into six chapters.

In Chapter 2, a critical review of the literature on temporal disaggre-

gation, balancing and reconciliation of time series will be presented, in-

cluding an innovative schematic presentation of the mostly used methods.

Such kind of schematic overview does not exist in the literature, and it

will help putting some order in the field.

Chapter 3 will present an innovative two-step approach for the reconcil-

iation of systems of time series, which keeps the second step unchanged,

as presented by the above mentioned authors, while an optimal method-

ology is applied in the first step. The method is also able to deal with

multiple systems of time series when they are nested, using a hierar-

chical dependent reconciliation procedure. The algorithm used will also

be presented. Particular attention will be given to the case of the rec-

onciliation of time series after the seasonal adjustment, presenting the

statistical test proposed by Infante et al. (2015), which would help the

user to obtain preliminary seasonally adjusted series closer to the con-

temporaneous constraints.

In Chapter 4, the validation and assessment criteria of reconciliation

techniques will be presented, starting from a set of measures of the dis-

tance between the preliminary and the reconciled series. An innovative

methodology for assessing the quality of time series, including results of a
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reconciliation technique, will be discussed. Finally, a simulation study of

the methodology presented in the previous chapter will also be discussed

in this section.

Chapter 5 will be dedicated to the application of the methods on real

data sets: the European industrial production index, seasonally adjusted

according to a geographical direct approach, and the European quarterly

sector accounts. These are typical examples of reconciliation problems

encountered in official statistics.

Finally, the conclusions will be discussed in Chapter 6.



Chapter 2

Temporal Disaggregation,

Balancing and Reconciliation

Techniques for adjusting a matrix of provisional data are widely used

for estimation purposes, where the final estimation should be consistent

with the marginal totals of the matrix. One of the possible applications

is when dealing with time series in official statistics, for example in na-

tional accounts (Eurostat, 2013). In this case, the marginal totals are

the contemporaneous constraints and the temporal constraints, meaning

that each LF period has its marginal total. The most common case is

when the temporal marginal total is the annual figure and the HF series

are measured at quarterly or monthly level.

As described in the introduction, temporal disaggregation (or bench-

marking) techniques are used to solve the temporal constraints, while

balancing techniques are used to solve the contemporaneous constraints

7



8 Temporal Disaggregation, Balancing and Reconciliation

(or accounting constraints, as they are sometimes referred to in national

accounts). Finally, reconciliation techniques are used when both tempo-

ral and contemporaneous constraints are to be solved.

A description of some the techniques which will be described here is in

Dagum and Cholette (2006).

2.1 Temporal Disaggregation

Temporal disaggregation techniques could be broadly divided into two

main categories: techniques which use a related HF indicator (or series),

and techniques which only use the original LF series. Other possible

ways of classifications could be done. For example, one can classify the

techniques which either use statistical models or not. The ones which do

not use statistical models, such as the Denton procedure, are sometimes

referred to as mathematical methods. However, all methods have certain

statistical properties. Thus, categorising the different methodologies ac-

cording to whether they use or they do not use a related indicator seems

to be the best approach.

Related indicators are sometime referred to as preliminary series. A

preliminary series is a preliminary estimate of the variable of interest,

expressed in the same measurement unit. A related series is a proxy of

the variable of interest, possibly not expressed in the same measurement

unit (even more than one related series could be used). Since preliminary

series could be used as related series, and related series could be used to
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derive preliminary series, there is no general difference among the two

to be considered, and in this study the expressions of preliminary and

related series will be considered synonymous, unless otherwise specified.

A description of temporal disaggregation techniques should involve dis-

tribution, interpolation and extrapolation. However, according to Chow

and Lin (1971), from the theoretical point of view, the distinction be-

tween distribution and interpolation is not justified and therefore they

demonstrate how to obtain results in the same framework.

Temporal disaggregation techniques are associated with flow or index

(average stock) series, whereby the LF data correspond to the sums or

averages of the HF data for each LF observation. Since in this case, HF

data are obtained from temporal distribution of LF data, this matter is

referred to a distribution problem.

An interpolation problem occurs when dealing with end-of-period (EOP)

or beginning-of-period (BOP) stock time series, whereby the LF values

are equal to that of the last (or first, respectively) HF observations in

the LF times (e.g. the yearly value is equal to the fourth quarter).

Finally, extrapolation refers to the generation of values outside the tem-

poral range of the data, and can be both backward or forward. In other

words, estimates of HF data are needed when the related LF value is not

yet available.
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Notation

When dealing with temporal disaggregation techniques, it is important

to identify a notation which holds for all the methods described. Fortu-

nately, a common notation has been identified by many authors: Chow

and Lin (1971) introduced the matrix C, while Ciammola et al. (2005)

or Chamberlin (2010) provide a good explanation.

Given:

• yH,t, t = 1, 2, ..., n the HF series.

• yL,T , T = 1, 2, ..., N the LF series.

• s the temporal aggregation order (for example if LF is annual and

HF is quarterly, it will be s = 4).

• pH,t, t = 1, 2, ..., n the preliminary series.

• XH,t, t = 1, 2, ..., n matrix of k related indicators.

According to the nature of the series, different temporal aggregation

constraints are defined:

• Flow series:
∑
t∈T

yH,t = yL,T .

• Index series:
1

s

∑
t∈T

yH,t = yL,T .

• Stock, EOP series: yH,sT = yL,T .

• Stock, BOP series: yH,s(T−1)+1 = yL,T .
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Such constraints could be shown as linear combinations, for each period

T = 1, . . . , N :

yL,T = c1yH,s(T−1)+1 + . . .+ csyH,s(T−1)+s =
s∑
i=1

ciyH,s(T−1)+i

Where the s×1 vector c assumes different forms according to the nature

of the series:

• Flow series: c = (1, 1, . . . , 1, 1)′.

• Index series: c =

(
1

s
,
1

s
, . . . ,

1

s
,
1

s

)′
.

• Stock, EOP series: c = (1, 0, . . . , 0, 0)′.

• Stock, BOP series: c = (0, 0, . . . , 0, 1)′.

Hence it is possible to define the temporal aggregation matrix as:

C = In ⊗ c′ (2.1)

Where ⊗ is the Kronecker product.

The formulation of the temporal aggregation with the C matrix will

therefore change according to the nature of the data:
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• Flow series:

C =



1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1


• Index series:

C =



1/s
1/s · · · 1/s 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 1/s
1/s · · · 1/s · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 1/s
1/s · · · 1/s



• Stock, EOP series:

C =



0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1


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• Stock, BOP series:

C =



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0


• In case of extrapolation, there is a need of adding extra n − sN

columns of zeroes to the matrix:

C =



· · · 0 0 · · · 0

· · · 0 0 · · · 0

. . .
...

...
. . .

...

· · · 0 0 · · · 0


Where the first part of the matrix depends on the nature of the data as

described above.

Thus, the problem could be defined as the estimation of a vector ŷH such

that the following equation holds:

CŷH = yL (2.2)
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2.1.1 No indicators available

In the event when neither related indicators nor preliminary series are

available, there are only two possible ways of dealing with temporal

disaggregation: either applying some kind of mathematical smoothing

method, or using statistical models.

The mathematical smoothing methods are the most used, and in many

cases they are also the most effective. Näıve and related methods be-

longing to this group are all attempts of interpolating the unknown HF

series with the known LF series. The methodology developed by Boot

et al. (1967) (hereafter ”BFL”, as it is generally called by its authors:

Boot, Feibes and Lisman), together with its variants, is probably the

most effective and it is often considered as the best approach when no

preliminary series or indicators are available (Eurostat, 2010).

Statistical methods developed by Al-Osh (1989) and Wei and Stram

(1990) are very interesting from the theoretical point of view, but of-

ten very difficult to apply in practice.

2.1.1.1 Näıve and related methods

The näıve method is the very basic and simple way of dealing with tem-

poral disaggregation and it is often used as reference criteria when other

methods are used and checked (see, for example, Rodŕıquez Feijoó and

Rodŕıquez Caro, 2000 or Rodŕıquez Feijoó et al., 2003). It is clearly not

a good method as it introduces a constant step in the HF series and
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its use in practice should be avoided. This method is often referred to

as the ”divided by four” method, since statistical institutes often work

with annual flow series which should be disaggregated in quarterly series.

However, this name does not include all general situation for flow series

and all the cases with index or stock series.

In the case of flow series, the HF values can be estimated as follows:

ŷH,t =
1

s
yL,b(t−1)/sc+1 (2.3)

While in the case of index and stock series, there is no need to divide the

LF value for the temporal aggregation order:

ŷH,t = yL,b(t−1)/sc+1

For stock series a slightly better way to proceed is to make a linear

interpolation. However, in case no extrapolation is done (via a forecast

or backcast of the LF series), it is not possible to interpolate the first s

observations for EOP series and the last s observations for BOP series.

For EOP series:

ŷH,t =



yL,b(t−1)/sc+1 ∀ t = 1, . . . , s

yL,b(t−1)/sc +
yL,b(t−1)/sc+1 − yL,b(t−1)/sc

s
×

× (t− s(b(t− 1)/sc − 1))

∀ t = s+ 1, . . . , n
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For BOP series:

ŷH,t =



yL,b(t−1)/sc+1 +
yL,b(t−1)/sc+2 − yL,b(t−1)/sc+1

s
×

(t− 1− s(b(t− 1)/sc − 1)) ∀ t = 1, . . . , n− s

yL,b(t−1)/sc+1 ∀ t = n− s+ 1, . . . , n

Linear interpolation for flow series cannot be done in a trivial way, as

different weights could be assigned to the HF values of a given LF period.

The näıve method is a special case of a linear interpolation, where all

the weights are equal.

Lisman and Sandee (1964) propose a method of linear interpolation for

annual series which links the quarterly series of a given year T to the

annual benchmarks of the year before and after. This is done considering

that:

1. The year constraint is respected.

2. The results for a given year are symmetric when inverting the year

before and the year after.

3. The results follow a linear trend, meaning that if the yearly totals

rise by equal steps (i.e. yL,T−yL,T−1 = yL,T+1−yL,T ), the quarterly

figures of year T should also rise by equal steps of length yL,T −

yL,T−1/16.

4. In case yL,T − yL,T−1 = yL,T − yL,T+1, the quarterly figures of year

T should lie on a sinusoid.
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The results for year T are unique:



ŷH,1

ŷH,2

ŷH,3

ŷH,4


=



0.073 0.198 −0.021

−0.010 0.302 −0.042

−0.042 0.302 −0.010

−0.021 0.198 0.073




yL,T−1

yL,T

yL,T+1

 (2.4)

As for the interpolation of the stock series, if there is no extrapolation

via a forecast and a backcast of the LF series, it is not possible to inter-

polate the first and the last s observations of the series. Although the

methodology is presented with the special case of s = 4, it is possible to

derive different schemes.

A similar approach is followed by Zani (1970), which proposes a quadratic

interpolation for quarterly series, getting the following results:



ŷH,1

ŷH,2

ŷH,3

ŷH,4


=



0.0547 0.2344 −0.0391

0.0078 0.2656 −0.0234

−0.0234 0.2656 0.0078

−0.0391 0.2344 0.0547




yL,T−1

yL,T

yL,T+1

 (2.5)
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2.1.1.2 Boot, Feibes and Lisman method and further develop-

ments

The BFL, proposed for the first time by Boot et al. (1967), is the most

known and used method for temporal disaggregation when no indicator

is available. This smoothing approach has had different attempts for

generalisations to the multivariate case (see, for example, Quenneville

et al., 2013).

Boot et al. (1967) describe the methodology for a constraint minimisa-

tion of the squared first and second differences. The method will be

described from a more general point of view, showing a constraint min-

imisation of the squared d-th differences, as presented also in Jacobs and

Wansbeek (1992), with examples for the first differences case. Although

the original technique was presented for deriving quarterly series from

annual benchmarks, the methodology could easily be adapted for gener-

alising the derivation of HF series from LF benchmarks. This has been

shown in Cohen et al. (1971), which, on one hand, they dealt with any

pair of possible combinations of HF and LF, and, on the other hand,

they considered the minimization of the sum of the squared of the d-th

differences between successive sub-period values.

The basic idea is very simple. In order to obtain a smooth series, the

authors propose to minimise the sum of squares of the differences of

the HF values, subject to the temporal aggregation constraint. Thus,
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mathematically:

min
yH

n∑
t=d+1

((1− L)dyH,t)
2

s.t.
∑
t∈T

yH,t = yL,T

Which in case of d = 1 becomes:

min
yH

n∑
t=2

(yH,t − yH,t−1)2

s.t.
∑
t∈T

yH,t = yL,T

In matrix form:

min
yH

y′HByH

s.t. CyH = yL

(2.6)

Where B = D′D and D is the matrix performing the d-th difference.

Thus for d = 1 they assume the following forms:

D =



−1 1

−1 1

. . .
. . .

−1 1

−1 1


B =



1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1


Which becomes B = D′D′DD in case of d = 2 and so on.



20 Temporal Disaggregation, Balancing and Reconciliation

By applying the Lagrange function, it could be demonstrated that the

solution is given by the following linear system:B C′

C 0


ŷH

λ

 =

 0

yL

 (2.7)

Where the solution is given by:

ŷH = B−1C′
(
CB−1C′

)−1
yL (2.8)

In general, all the smoothing methods have the possibility to work with-

out an indicator or preliminary estimates available. However, they are

normally difficult to implement if there are null values. Since they all

need one LF observation more at the end and at the beginning of the

series, which often means that forecasts are needed, the border effect

problem occurs.

2.1.1.3 Other methods

Other methodologies which do not use any preliminary or related series

have been suggested by different authors.

A similar approach to the BFL has been proposed by Marcellino (1999),

which minimises a different loss function given by the mean squared
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disaggregation error:

min
ŷH

tr
(
E (yH − ŷH) (yH − ŷH)′

)
s.t. CyH = yL

(2.9)

If on one hand this method has the advantage to be able to deal with

missing observations and can be extended to the case when an indica-

tor is available, on the other hand it has the big drawback that requires

the use of the covariance matrix of yH , which is normally unknown and

should thus be estimated. The author proposes to derive a disaggregated

ARIMA process starting from the aggregated process. This approach cre-

ates some doubts when considering that very often in official statistics

the LF series are annual series and are only available for very few obser-

vations, which generates problems in the identification of the aggregated

ARIMA process.

A similar problem is present in the methodology proposed by Stram and

Wei (1986) and Wei and Stram (1990), which use the residuals of a pre-

liminary OLS estimation of the LF model in order to estimate the param-

eters of the HF ARIMA model, obtaining the estimation of the covariance

matrix. Similarly, Guerrero (1990) proposes to derive a preliminary es-

timate of the HF target series and to derive the covariance matrix by

applying the traditional methodology of Box and Jenkins (1976). Again,

the methods proposed can be also used when an indicator is available.

However, because it uses only the N residuals of the LF OLS regressions,

it is not applicable unless the number of LF periods is enough to fit an
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ARIMA model with a reasonable accuracy (Santos Silva and Cardoso,

2001). An extension of the method to the bivariate case is provided by

Hodgess and Wei (2000).

Finally, Al-Osh (1989) proposed a dynamic linear model, using an ap-

propriate state space representation of the the HF ARIMA model, esti-

mating the covariance matrix by applying a Kalman filter to the state

space representation. Again, the number of observations plays a big role,

making the methodology proposed, as all the ones described in this sec-

tion, very interesting from a statistical point of view, but with a very

limited practical use.

2.1.2 Indicator available

Several options are applicable when a preliminary estimate of the tar-

get variable or an indicator is available. Amongst them, the movement

preservation principle method firstly developed by Denton (1971), and

the set of the optimal regression-based techniques firstly proposed by

(Chow and Lin, 1971) are the ones which have been mostly used in prac-

tice, in particular by statistical agencies. In all the cases which will be

described in this section, the overall quality of the final estimates de-

pends on the quality of the indicator (preliminary series) used, and to

the variable’s relation with the objective variable to estimate.
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2.1.2.1 Näıve and related methods

When a preliminary series is available, it is always possible to equally dis-

tribute the discrepancies between the LF benchmark and the HF target

series.

By defining the discrepancies dL,T as follows:

∑
t∈T

pH,t − yL,T = dL,T

The näıve solution is given by:

ŷH,t = pH,t +
1

s
dL,b(t−1)/sc+1 (2.10)

Although in practice this solution has to be avoided because the simple

equally distribution of the discrepancies among the HF periods creates

a step between the estimate of the last HF period of one LF period and

first HF period of the next LF period, it still has a statistical meaning

since it could be seen as a solution of the following minimisation problem:

min
yH

n∑
t=1

(yH,t − pH,t)2

s.t.
∑
t∈T

yH,t = yL,T

(2.11)

A better (less näıve) solution is to proportionally allocate the intra-LF
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discrepancies of the indicator in each HF period to the target variable:

ŷH,t = yL,T
pH,t∑

t∈T
pH,t

(2.12)

However this approach also creates a step problem between the last HF

period of one LF period and the first HF period of the next LF period,

thus it should not be used (Eurostat, 2013).

2.1.2.2 Denton method and further developments

One of the most widely used methods for temporal benchmarking is the

one which was originally developed by Denton (1971). This approach

follows the movement preservation principle obtained by minimising a

quadratic penalty (loss) function.

In the original method proposed by Denton, two different functions are

proposed. The first one is on levels, with the Additive First Differences

(AFD), while the second one is on proportional levels, with the Propor-

tional First Differences (PFD).

In the case of the AFD, the problem can be expressed as follows:

min
yH

n∑
t=1

((yH,t − pH,t)− (yH,t−1 − pH,t−1))2 ; yH,0 = pH,0

s.t.
∑
t∈T

yH,t = yL,T

(2.13)
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With this specification, the function includes also the first term, being:

∆ (yH,1 − pH,1) = (yH,1 − pH,1)− (yH,0 − pH,0)

Where yH,0 and pH,0 are outside the range over which the series is to be

adjusted, and thus are generally unknown. In order to solve this problem,

Denton propose to take yH,0 = pH,0, so that:

∆ (yH,1 − pH,1) = (yH,1 − pH,1)

This solution, however, does not maximise the parallelism between the

observed and adjusted series, as shown by Cholette (1984).

The specification given by Denton minimises the size of the first cor-

rection (yH,1 − pH,1), and pulls the correction curve towards zero at the

beginning of the series.

The solution proposed is to remove the first term and thus the equality

of the period 0, obtaining the following problem (which is often referred

to as modified Denton, or Cholette) in case of PFD:

min
yH

n∑
t=2

((
(yH,t − pH,t)

pH,t

)
−
(

(yH,t−1 − pH,t−1)

pH,t−1

))2

=

n∑
t=2

(
yH,t
pH,t

−
yH,t−1

pH,t−1

)2

s.t.
∑
t∈T

yH,t = yL,T

(2.14)

It is clear that the AFD formulation is very similar to the BFL method.

Both the AFD and the PFD variants could be seen as a special case when
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the preliminary series is equal to 1:

n∑
t=2

((yH,t − 1)− (yH,t−1 − 1))2 ≡
n∑
t=2

(yH,t
1
−
yH,t−1

1

)2
=

n∑
t=2

(yH,t − yH,t−1)2

Similarly to the BFL method, it is also possible to define different penalty

functions by using the Additive Second Differences (ASD) or the Pro-

portional Second Differences (PSD).

In a general framework, the problem is expressed by the following matrix

formulation:

min
yH

(yH − pH)′M (yH − pH)

s.t. CyH = yL

(2.15)

Which is solved by applying the lagrangean:

L = (yH − pH)′M (yH − pH) + 2λ′ (CyH − yL)

The results will be obtained by the solution of the following system:

ŷH,t =


∂L

∂yH
= 0

∂L

∂λ
= 0

⇒


MyH + C′λ = MpH

CyH = yL

Therefore, in the case where the matrix M is singular, the solution of

the benchmarking problem is part of the solution of the following linear
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system: M C′

C 0


ŷH

λ

 =

MpH

yL

 (2.16)

That is: ŷH

λ

 =

M C′

C 0


−1 MpH

yL


ŷH = pH + M−1C′

(
CM−1C′

)−1
(yL −CpH)

Where different solutions are obtained by changing the nature of M and

pH :

• If M = I and pH = 1, the solution corresponds to the näıve without

indicator.

• If M = I, the solution corresponds to the näıve with indicator.

• If M = D′D and pH = 1, the solution corresponds to the BFL.

• If M = D′D, the solution correspond to the modified Denton AFD.

• If M = P−1
H D′DP−1

H , where PH = diag (pH), the solution corre-

spond to the modified Denton PFD.

For BFL and Denton methods, one can also easily to derive the specifi-

cations when using differences higher than one.

As for the extrapolation, the form of the matrix C implies that the HF

benchmark-to-indicator ratios

(
yH,t
pH,t

)
for all the extrapolated periods
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are equal to the benchmark-to-indicator ratios of the last HF observation

of the last available LF period. In other words, the growth rates of the

extrapolated values estimated by Denton correspond to the growth rates

of the preliminary series. It is clear that by using this approach the

back data of the preliminary time series are not considered at all for the

estimation of the extrapolated values.

For this reason, Bloem et al. (2001) propose to modify the Denton PFD

method by applying the so-called enhanced Denton PFD method, which

introduce a new formulation of the constraints, with the possibility of

adding an explicit forecast of the benchmark-to-indicator ratios for the

extrapolated periods. A matrix formulation of the problem is derived by

Di Fonzo and Marini (2012b). This kind of approach introduces some

control from the user in the extrapolation practice, which will depend

from the forecast of the benchmark-to-indicator ratios.

The Denton method is sometimes referred to as a two-step or indirect

method. This is because the methodology needs the use of a preliminary

series, which is somehow close to satisfying the temporal constraints and

is expressed in the same unit measure. When only a related indicator is

available, than a procedure to derive a preliminary estimate to bench-

mark is needed.

This could be done by a simple extrapolation, which assumes that that

an available indicator xH,t has the same growth rates of the preliminary

estimate of yH,t. The preliminary estimates are very often derived ac-

cording to a linear regression at LF level between the target series and
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the related indicators (Eurostat, 2013):

yL = XLβ + εL

The OLS estimator β̂ of β is then used with the HF related indicators in

order to derive the preliminary series:

pH = XH β̂

In this last expression, it is important to correctly deal with the constant

term, so that for flow series the first column in XL has all values equal

to 1, while for index series the first column in XH has all values equal to

1/s.

More complex models could be used, for example, the user could use

a regression in first differences (dynamic models) or assume that the

residual term follows a first order autoregressive model.

2.1.2.3 Regression-based techniques

Optimal regression-based methods for temporal disaggregation have been

firstly introduced by Chow and Lin (1971), which also provided a first

general formulation of the interpolation, distribution and extrapolation

problems. In this class of methods static models are used, in the sense

that the dynamics are only present in the disturbances.
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It is assumed that the following regression model holds at HF level:

yH = XHβ + uH (2.17)

With:

E [uH | XH ] = 0

E
[
uHu′H | XH

]
= VH

Where β is a vector of regression coefficients, uH is the disturbances

series and VH is the covariance matrix of the disturbances.

This model is clearly not observable, as yH is the target series. However,

when pre-multiplying by C, the following is obtained:

CyH = CXHβ + CuH

yL = XLβ + uL (2.18)

With:

E
[
uLu′L | XH

]
= VL = CVHC′

This model is observable as it only contains LF variables. The optimal

solutions will depend on the hypothesis regarding the disturbances uH .

The matrix C has basically the role of transforming the variables from

HF to LF.

It is worth noting that it must be n ≥ sT , and in the case when n > sT ,

there is an extrapolation problem as well.



Temporal Disaggregation, Balancing and Reconciliation 31

The solution in the BLUE sense is given by:

β̂ =
(
X′LV−1

L XL

)−1
X′LV−1

L yL (2.19)

ŷH = XH β̂ + VHC′V−1
L

(
yL −XLβ̂

)
(2.20)

Considering that:

ûL = yL −XLβ̂

And by setting L = VHC′V−1
L , solution 2.20 can be written as follows:

ŷH = XH β̂ + LûL (2.21)

With:

E
[
(ŷH − yH) (ŷH − yH)′

]
=

(In − LC) VH + (XH − LXL)
(
X′LV−1

L XL

)−1
(XH − LXL)′

Expression 2.21 can thus be seen as the sum of a systematic part, XH β̂,

which gives the dynamic profile of the HF related series to the final es-

timate, and an adjustment part, LûL, which recovers the temporal con-

straints (Santos Silva and Cardoso, 2001). This expression encompasses

distribution, interpolation and extrapolation, according to the definition

of the matrix C.

It is clear that solution 2.20 depends on VH , which is often unknown

and should be identified and estimated.

The simplest case is to assume that the model is an OLS, thus the distur-
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bances are serially uncorrelated with constant variance. So, considering

VH = σ2It, and since CC′ = sIt, the solution is:

ŷH = XH β̂ + σ2ItC
′ (σ2CC′

)−1
(
ŷL −XLβ̂

)
= XH β̂ +

1

s
C′
(
ŷL −XLβ̂

)
(2.22)

Which corresponds to the näıve solution. This result is not surprising, as

the OLS model does not deal with serial correlation and thus is normally

not fit for time series.

Chow and Lin (1971) propose that the residual term uH,t of model 2.17

follows a first order autoregressive process, AR (1):

uH,t = ρuH,t−1εt (2.23)

With:

E [εt] = 0

E
[
ε2
t

]
= σ2

ε

With this formulation, the covariance matrix assumes the following form:

VH =
σ2
ε

1− ρ2



1

ρ 1

ρ2 ρ
. . .

...
...

. . . 1

ρt−1 ρt−2 . . . ρ 1


(2.24)
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This is the GLS model in case ρ is known. It is also important noticing

that in case ρ = 0, the model becomes the OLS, leading to the näıve solu-

tion. If ρ < 0, the smoothing might introduce large volatility in the series

and alter its temporal profile because of the negative autocorrelation.

However, in most cases, ρ is unknown and should be estimated. Litera-

ture on the matter refers to at least three alternative approaches.

The first approach is the one originally proposed by Chow-Lin, which

used the idea of Cochrane and Orcutt (1949) starting from the relation

between ρ and the first order autocorrelation coefficient of the residual

term for the annual model φL, which in case of interpolation is simply

equal to ρ, while in case of distribution is equal to:

φL =
ρ (ρ+ 1)

(
ρ2 + 1

)2
2 (ρ2 + ρ+ 2)

Therefore, starting from an initial estimate of φL, obtained by applying

the OLS to model 2.18, ρ is iteratively computed by replacing the new

values of φL until convergence.

However, as shown in Bournay and Laroque (1979), this approach is not

feasible, as the function φL is not monotonic in ρ in the interval [−1, 1],

since there are two solutions for −0.13 < φL ≤ 0 and no solutions for

φL < −0.13. As mentioned by Ciammola et al. (2005), this is because, for

example, the aggregation of a quarterly AR (1) process yields to an an-

nual ARMA (1, 1) process, so that there is no biunivocal correspondence

between φL and ρ.
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A better alternative is the one suggested by Bournay and Laroque (1979),

which follow the maximum likelihood (ML) approach assuming the nor-

mality of the residuals. Thus, the problem is stated as:

max
ρ
L
(
ρ, β̂
)

=
t

2

(
−1− log

(
2π

t

))
− t

2
log
(
ûLV−1

L û′L
)
− 1

2
log|VL|

The authors also demonstrate the existence of a maximum in the interval

]−1, 1[. In practice, the estimation is performed by calculating VH , β̂

and ûL for a grid of values of ρ, and choosing the value ρ̂ for which

L
(
ρ, β̂
)

is a maximum over the grid.

The third approach is the one proposed by Barbone et al. (1981), which

estimate the parameter ρ by minimising the sum of squared residuals

(SSR), using thus an EGLS estimator. The statement of the problem is:

min
ρ
SSR

(
ρ, β̂
)

= ûLV−1
L û′L =

(
yL −XLβ̂

)′
V−1
L

(
yL −XLβ̂

)
The estimation is performed by applying the algorithm proposed by Hil-

dreth and Lu (1960), calculating SSR
(
ρ, β̂
)

in a initial grid of values

for ρ, and continuing iteratively until convergence.

A different solution to avoid the estimation problem is given by Fernández

(1981), which proposes a random walk model, ARIMA (0, 1, 0), for the

HF noise:

uH,t = uH,t−1 + εt (2.25)
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With:

uH,0 = 0

E [εt] = 0

E
[
ε2
t

]
= σ2

ε

The covariance matrix can be written:

VH = σ2
ε

(
D̃′D̃

)−1
=



1 1 . . . 1 1

1 2 . . . 2 2

1 2 . . . 3 3

...
...

. . .
...

...

1 2 . . . t− 1 t


(2.26)

Where the matrix D̃ is an approximate first difference matrix, with the

following form:

D̃ =



1

−1 1

−1 1

. . .
. . .

−1 1


It is important to notice that D̃ is not to be confused with the matrix

D used so far (for example in the BFL method), which is the exact first

difference matrix, while D̃ is the approximate first difference matrix,

changed because of the initial condition imposed by the Fernández model.
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The biggest advantage of the Fernández approach is that the covariance

matrix is completely known.

A slightly different approach is followed by Di Fonzo (2003b), which

builds on the Chow-Lin model and its variants proposing a deltalog

model, using a Taylor approximation for the additivity of the variables,

getting the following model:

∆ log yH = ∆XHβ + εH (2.27)

The author gives an economic interpretation of the deltalog model when

applied using the Fernández model as the target HF variable is estimated

so that the rates of change of the target HF variable are approximatively

coherent with the LF counterpart.

A different approach is given by Litterman (1983), which suggest that

the residual term of model 2.17 follows a random walk Markov model:

uH,t = uH,t−1 + eH,t

eH,t = αeH,t−1 + εt

(2.28)

With:

uH,0 = eH,0 = 0

E [εt] = 0

E
[
ε2
t

]
= σ2

ε

Which basically corresponds to a first differentiation of model 2.17 in

order to recover the stationarity of the residual term, using an ARIMA
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(1, 1, 0) model.

In this case the covariance matrix is given by:

VH = σ2
ε

(
D̃′H′HD̃

)−1
(2.29)

Where:

H =



−α 1

−α 1

. . .
. . .

−α 1

−α 1


The Fernández approach can also be seen as a particular case of Litter-

man when α = 0. As for the estimation of the parameter α, the same

SSR and ML approaches seen in Chow-Lin can be followed.

2.1.2.4 Dynamic models

Chow-Lin’s method and related approaches base their methodology on a

static model, in the sense that the dynamics are only left in the residual

term, and focus on the problem of the estimation of the covariance matrix

of the residuals. Building on the work done by Hendry and Mizon (1978),

which shows that models with autoregressive residuals can be seen as

restricted dynamic models, some authors have provided solutions using

dynamic models to the temporal disaggregation problem.
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A first attempt to identify a dynamic model has been done by Palm and

Nijman (1984). Solutions have been also proposed by Salazar et al. (1997)

and Gregoir (2003) which work on the minimisation of a quadratic loss

function. However, these do not provide direct estimates of the target

variable as the estimation is made conditional to the first observation

of the LF variable, obtaining results which depend on unknown initial

conditions. Poissonier (2013) focused more on stock variables.

From a practical point of view, Santos Silva and Cardoso (2001), here-

after SSC, provide a more interesting dynamic extension of the Chow-Lin

approach.

Starting from model 2.17, the dynamic extension is the following:

yH,t = κyH,t−1 + x′H,tβ + εt (2.30)

Where |κ| < 1 in order to achieve stationarity, and in the special case

where κ = 0, model 2.30 becomes equal to 2.17.

Building on Tserkezos (1991) and Klein (1958), a recursive substitution

can be used:

yH,t =

(
+∞∑
i=0

κix′H,t−i

)
β +

(
+∞∑
i=0

κiεt−i

)

yH,t =

(
t−1∑
i=0

κix′H,t−i

)
β + κtyH,0 +

(
t−1∑
i=0

κiεt−i

)
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With:

yH,0 =

(
+∞∑
i=0

κix′H,−i

)
β +

(
+∞∑
i=0

κiε−i

)

η = E [yH,0 | x0,x0, . . .] =

(
+∞∑
i=0

κix′H,−i

)

κx
′
H,t =

(
t−1∑
i=0

κix′H,t−i

)

Thus, model 2.30 can be written as:

yH,t = κx
′
H,tβ + κtη + uH,t (2.31)

With:

uH,t = κuH,t−1 + εt

uH,0 = 0

In matrix form it becomes:

yH = κXHβ + κqη + uH (2.32)

Where κq =
(
κ, κ2, . . . , κn

)′
.

By considering:

κD =



1

−κ 1

−κ 1

. . .
. . .

−κ 1


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Model 2.32 can be rewritten as follows:

κDyH = XHβ + qη + εH = ZHγ + εH

Where q = (κ, 0, . . . , 0)′, ZH = [XH | q] and γ = [β′ | γ]′.

Pre-multiplying by κD
−1:

yH = κD
−1ZHγ + κD

−1εH = κZγ + uH (2.33)

With:

E [uH | ZH ] = 0

E
[
uHu′H | ZH

]
= VH

And the covariance matrix of the residual term is expressed as following:

VH = σ2
ε

(
κD
′
κD
)−1

= σ2
ε



1 κ κ2 · · · κn−2 κn−1

κ 1 κ · · · κn−3 κn−2

κ2 κ 1 · · · κn−4 κn−3

...
...

...
. . .

...
...

κn−2 κn−3 κn−4 · · · 1 κ

κn−1 κn−2 κn−3 · · · κ 1


The model observed at LF is given by:

yL = C κZHγ + CuH (2.34)
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With:

κZL = C κZH

κVL = C κVHC′

Santos Silva and Cardoso (2001) suggest to estimate the parameter κ

using the ML approach. The statement of the problem is:

maxκ L
(
κ, β̂

)
=
T

2
log 2π − 1

2
|κVL| −

1

2
(κyL − κZLβ)′ κV

−1
L (κyL − κZLβ)

In practice, the authors propose to calculate the ML function in a grid

of admissible values of κ, and take the value which maximises the ML

function. Di Fonzo (2003b) derives a solution in line with the classical

Chow-Lin approach:

κγ̂ =
(
κZ
′
L κV

−1
L κZL

)′
κZ
′
L κV

−1
L yL

ŷH = κZH κγ̂ + κVHC′ κV
−1
L (yL − κZL κγ̂) (2.35)

By setting κL = κVHC′ κV
−1
L , the covariance matrix of the estimated

values is given by:

E
[
(ŷH − yH) (ŷH − yH)′

]
=

(In − κLC) κVH + (XH − κLXL)
(
X′L κV

−1
L XL

)−1
(XH − κLXL)′

In their paper, Santos Silva and Cardoso (2001) mention that the speci-

fication of model 2.30 could be done also by including further lags of the

dependent variable. However such enriched models have not been exten-

sively discussed in the literature, and the estimation of the parameters
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could be cumbersome.

A good resume of methods using dynamic models is in Di Fonzo (2003b).

2.1.2.5 Other methods

A very interesting method which minimises a loss function, is the growth

rates preservation (GRP) principle (Bozik and Otto, 1988; Causey and

Trager, 1982; Trager, 1982). The idea is that the growth rates are a

natural measure of the movements of a time series, and thus should be

used instead of the movements preservation principle given by the AFD

or PFD Denton variants.

The minimisation problem can be expressed as follows:

min
yH

n∑
t=2

(
yH,t
yH,t−1

−
pH,t
pH,t−1

)2

s.t.
∑
t∈T

yH,t = yL,T

(2.36)

It is clear that in this case the function to minimise is non-linear, and

it is impossible to find an explicit analytical expression for the solution

(Di Fonzo and Marini, 2010). In order to find a solution, different minimi-

sation algorithms can be used (Di Fonzo and Marini, 2011a). However,

the final estimates will depend in any case from the algorithm used.

Many interesting studies have been conducted using the GRP method

(see, inter alia, Daalmans and Di Fonzo, 2014; Di Fonzo and Marini,
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2013; Hood, 2005; Reber and Park, 2014).

Temurshoev (2012) presents entropy-based versions of the Denton and

GRP methods, which ensure that the sign of the estimated values are

the same of the corresponding preliminary series.

Finally, in the last class of methods the LF series is considered as the

realisation of an ARIMA process, and the HF values are considered as

missing observations (Jones, 1980). The original idea was based on the

ML approach, were the function was built excluding the prediction errors

associated to the missing observations and proposed to use forecasts ob-

tained by applying Kalman filter. Among other extensions, Gomez and

Marvall (1994) proposed to use an approach which is able to deal also

with non-stationary time series.

Building on the theory of structural time series models (see, for exam-

ple, Harvey, 1990), some authors provided temporal disaggregation tech-

niques which are basically in the class of missing observations methods

(Proietti, 1999). The main advantage of this class of methods is the

possibility to perform simultaneously seasonal adjustment and temporal

disaggregation, as shown by Moauro and Savio (2005). Proietti (2005)

provides a good resume of the main optimal models revisited in the state-

space form.

Jun et al. (2016) propose to use an indirect method which extrapolates

the preliminary series according to a regression model, and benchmarks

the series using a state space model.
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2.2 Balancing

Balancing techniques are used in order to realign a set of variables to

contemporaneous, or accounting, constraints. They are often used in of-

ficial statistics, particularly in national accounts, where there are three

approaches for measuring the gross domestic product (GDP): the pro-

duction or output approach (the value of all goods and services produced

within the economy less production costs), the expenditure approach (all

the expenditure on goods and services which are not used up or trans-

formed in a productive process), and the income approach (the sum of

all income generated by production activity).

Normally, there are discrepancies between the three approaches, as they

are normally calculated using different sources (Eurostat, 2013). Thus,

in order to publish only one figure for the GDP, they have to be balanced

for the sake of consistency.

As will be shown in this section, the methodology for balancing has been

developed in the first half of the previous century, and the main work

has been done by Stone et al. (1942) and Bacharach (1970).

2.2.1 Adjustment schemes

At least three different adjustment schemes can be considered, given ai,t,

i = 1, . . . ,m, the provisional values of the m target variables yi,t (in this

specific framework there is no need for the variables to be time series),
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zt, a constraint such that
m∑
i=1

yi,t = zt, and the observed discrepancy

dt = zt −
m∑
i=1

yi,t.

The first one is the näıve approach, which simply distributes the discrep-

ancies evenly:

ŷi,t = ai,t +
1

m

(
zt −

m∑
i=1

ai,t

)
= ai,t +

1

m
dt (2.37)

This approach is obviously not a good practice, as it distributes the

discrepancies without considering the values (size) of the target variable.

The proportional allocation of the discrepancies (often called pro-rata

approach), which was first used by Matuszewski et al. (1964), seems to

be a better approach:

ŷi,t = ai,t +
ai,t
m∑
i=1

ai,t

(
zt −

m∑
i=1

ai,t

)
= ai,t

zt
m∑
i=1

ai,t

(2.38)

In matrix form, this solution can be written as follows:

Ŷ = RA

Where Y is the matrix with the target variables, R is a diagonal matrix

with the adjustment factors and A is the matrix with the preliminary

series.

It is important to note that solution 2.38 cannot be used if negative

values are present. This is why some authors (see, for instance, ABS,
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2009) suggested to use a plus-minus proportional adjustment:

ŷi,t = ai,t +
|ai,t|
m∑
i=1
|ai,t|

(
zt −

m∑
i=1

ai,t

)

Which brings to different adjustment factors for positive and negative

values:

ŷ+
i,t = ai,t

1 +
dt

m∑
i=1
|ai,t|



ŷ−i,t = ai,t

1− dt
m∑
i=1
|ai,t|


Finally, the third approach is the so called proportional squared:

ŷi,t = ai,t +
a2
i,t

m∑
i=1

a2
i,t

(
zt −

m∑
i=1

ai,t

)
(2.39)

To better show the statistical meaning of the proportional scheme, the

general problem could be seen as a least squares adjustment of the data:

min
yi,t

m∑
i=1

ωi,t (yi,t − ai,t)

s.t.

m∑
i=1

yi,t = zt

Which is solved using the lagrangean multiplier:

L =
m∑
i=1

ωi,t (yi,t − ai,t)− 2λ

(
zt −

m∑
i=1

yi,t

)
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ŷi,t =


∂L

∂yi,t
= 0

∂L

∂λ
= 0

⇒ ŷi,t = ai,t +

1

ωi,t
m∑
i=1

1

ωi,t

(
zt −

m∑
i=1

ai,t

)

It can be easily seen that according to the form of ωi,t, the solution of the

minimisation problem can lead to the mentioned schemes. In particular:

• If ωi,t = 1, the näıve approach is used.

• IF ωi,t = 1/ai,t, the proportional approach is used.

• If ωi,t = 1/a2
i,t, the proportional squared approach is used.

The weights ωi,t are often linked to the variability of the variables to

be adjusted, as can be seen, for example, in Van Tongeren and Magnus

(2011).

In the case of the proportional scheme, this is implicitly done by using

the variance, which means that larger variables are considered relatively

more reliable than smaller ones. Hence, it seems that the (normalised)

Coefficient of Variation (CV) is a better measure of the reliability.

The implied variance in the three approaches is equal to 1, ai,t and a2
i,t,

respectively, while the implied reliability index (in percentage) is equal

to 1/ai,t, 1/
√
ai,t and 1, respectively. Basically both the näıve and the

proportional approaches assume that the bigger the variable, the bigger

the reliability, adjusting relatively more the smaller variables. This is not

the case when using the proportional squared scheme, which assumes a

constant reliability of the variables (in terms of CV).
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2.2.2 Standard techniques for matrix balancing

The issue of matrix balancing dates back to the first half of the previous

century, even before the very famous paper by Stone et al. (1942). The

techniques used can be divided at least in two big groups: bi-proportional

methods (see, above all, Stone, 1961 and Bacharach, 1970) and con-

strained optimisation methods. Among other domains, they are very

often used in national accounts in order to balance input-output tables

(Eurostat, 2008b).

2.2.2.1 Bi-proportional adjustment: RAS

One of the most widely used techniques for balancing a table with fixed

marginal totals is the so called RAS method, which has been introduced

in the thirties and has been heavily discussed in literature (Bacharach,

1970; Lahr and De Mesnard, 2004; Stone, 1961). The methodology is

largely applied in the balancing of the Input Output tables in national

accounts (Eurostat, 2008b).

Given A, a m × n matrix of preliminary values whose generic element

is aij , X, the objective matrix to be estimated, u, the m × 1 vector of

observed row totals, and v, the n × 1 vector of observed column totals
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such that:

ui =
n∑
j=1

xij

vj =
m∑
i=1

xij

T =
m∑
i=1

ui =
n∑
j=1

uj

The objective is to find a matrix X̂ such that:

n∑
j=1

x̂ij = ui

m∑
i=1

x̂ij = vj

The RAS algorithm proceeds with an iterative calculation of the x̂ij ,

until convergence, in the following way:

Starting value

x̂
(0)
ij = aij

First iteration

Firstly, consistency is achieved with the u vector:

r
(1)
i =

ui
n∑
j=1

x̂
(0)
ij

x̂
(1)
ij = r

(1)
i x̂

(0)
ij

Secondly, consistency is achieved with the v vector (albeit loosing the

consistency achieved with u):
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s
(1)
j =

vj
m∑
i=1

x̂
(1)
ij

x̂
(2)
ij = s

(1)
j x̂

(1)
ij

k-th iteration

r
(k)
i =

ui
n∑
j=1

x̂
(2k−2)
ij

x̂
(2k−1)
ij = r

(k)
i x̂

(2k−2)
ij

s
(k)
j =

vj
m∑
i=1

x̂
(2k−1)
ij

x̂
(2k)
ij = s

(k)
j x̂

(2k−1)
ij

End of the procedure

The procedure will be stopped when either:∣∣∣∣ m∑
i=1

x̂
(2k−1)
ij − vj

∣∣∣∣ < δ

Or:∣∣∣∣∣ n∑j=1
x̂

(2k)
ij − ui

∣∣∣∣∣ < δ

For a given small tolerance δ > 0.

It has to be noted that in case of k complete iterations, the generic

estimated value is:

x̂ij = r
(k)
i . . . r

(1)
i aij s

(1)
j . . . s

(k)
j (2.40)

From this last expression it is clear why the RAS method is referred

to as a bi-proportional adjustment, since basically it is an extension

of the proportional adjustment for two dimensions, with ri being the
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proportions for the row and sj being the proportions for the columns.

In matrix form, expression 2.40 assumes the following form:

X̂ = RAS (2.41)

R being the diagonal matrix with the ri values, and S the diagonal

matrix with the sj values. From expression 2.41 it is very clear where

the method takes its name.

Uribe et al. (1965) and Theil (1967) have shown that the RAS approach

generates a solution which could be seen as the same solution of the

following minimisation problem:

min
xi,j

m∑
i=1

n∑
j=1

xi,j log
xi,j
ai,j

s.t.
n∑
j=1

xij = ui

m∑
i=1

xij = vj

Which is minimising an entropic distance between xi,j and ai,j , also de-

fined as surprise (Bacharach, 1970).

The RAS approach has some good properties. The results x̂i,j preserve

the zeroes and the positivity of the preliminary values ai,j , while it is

possible to easily introduce a priori information by fixing any known

x̂i,j (Israilevich, 1986). However, it is important to mention that the

RAS methodology is not invariant to linear transformation of the matrix.
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Finally Gilchrist and St. Louis (1999) have developed a method (TRAS)

to use known information beyond that for the column and row totals.

The original RAS methodology is uncapable of dealing with negative

values. For this reason ABS (2009) has developed a methodology to avoid

this problem, following the same concept of the plus-minus adjustment

scheme. In practice, the proportional iterations are done according to

the sign of each preliminary value. Therefore, for the k -th iteration, the

values to be calculated are the following:

+r
(k)
i = 1 +

ui −
n∑
j=1

x̂
(2k−2)
ij )

n∑
j=1

∣∣∣x̂(2k−2)
ij

∣∣∣ −r
(k)
i = 1−

ui −
n∑
j=1

x̂
(2k−2)
ij

n∑
j=1

∣∣∣x̂(2k−2)
ij

∣∣∣

+s
(k)
j = 1 +

vj −
m∑
i=1

x̂
(2k−1)
ij

m∑
1=1

∣∣∣x̂(2k−1)
ij

∣∣∣ −s
(k)
j = 1−

vj −
m∑
i=1

x̂
(2k−1)
ij

m∑
1=1

∣∣∣x̂(2k−1)
ij

∣∣∣
Other kind of bi-proportional balancing procedures have been developed.

Above all, it is worth mentioning the diagonal similarity scaling algorithm

(see for example Eaves et al., 1985), which starts dealing with the element

ai,j , for which the row sum differs greatly from the column sum. If on

one hand this approach is able to handle upper and lower bounds on the

margin totals, on the other hand it requires column sums to be equal to

row sums (Lahr and De Mesnard, 2004).
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2.2.2.2 The approach by Stone and further developments

As an alternative to bi-proportional approaches, the matrix balancing can

be performed by constrained optimisation of a function, which is often

quadratic. The approach was firstly introduced by Stone et al. (1942)

and have been discussed by many authors (see, inter alia, Bacharach,

1970, Lahr and De Mesnard, 2004 and Di Fonzo and Marini, 2007).

In general terms, a good feature of the optimisation approach is that it

can also deal with endogenous constraints, meaning that a preliminary

row vector u is available and has to be adjusted as well. This case is not

covered by the RAS method (Di Fonzo and Marini, 2007). On the other

hand, this class of methods does not always preserve the positive sign of

the preliminary variables.

Many different functions to be minimised have been proposed in the lit-

erature. Extensive lists can be found in Lahr and De Mesnard (2004) and

Jackson and Murray (2004). Almon (1968) suggests to use the Euclidean

distance:
m∑
i=1

n∑
j=1

(xi,j − ai,j)2 (2.42)

Which is a particular case of the Hölder norm for θ = 2:

m∑
i=1

n∑
j=1

|xi,j − ai,j |θ



54 Temporal Disaggregation, Balancing and Reconciliation

Lahr (2001) suggests to use the weighted absolute differences:

m∑
i=1

n∑
j=1

(ai,j |xi,j − ai,j |) (2.43)

While Matuszewski et al. (1964) had suggested to use the weighted

squared differences:

m∑
i=1

n∑
j=1

(
ai,j (xi,j − ai,j)2

)
(2.44)

A different approach is to use the normalised absolute differences:

m∑
i=1

n∑
j=1

|xi,j − ai,j |
ai,j

(2.45)

Finally Deming and Stephan (1940) and Friedlander (1961) propose to

use the normalised squared difference, which is the χ2 of Pearson:

m∑
i=1

n∑
j=1

(xi,j − ai,j)2

ai,j
(2.46)

Criteria 2.42 and 2.46 can be seen as quadratic positive definite (QDP)

functions (Di Fonzo, 2003b) of the form:

(x̃− ã)′Q−1 (x̃− ã) (2.47)

Where ã and x̃ are the vectorised data of the preliminary matrix A and

the objective matrix X, respectively.

In the cases of Q = Imn and Q = diag (p) criteria 2.47 becomes equal to
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criteria 2.42 and 2.46, respectively.

The least square adjustment subject to linear restrictions of Stone et al.

(1942) can be expressed by the following simple linear model:

a = x + ε (2.48)

With:

E [ε] = 0

E
[
εε′
]

= V

Where V is known and a is a mn× 1 vector of preliminary values which

do not fulfil the set of linear constraints:

Bx = b

Where B is a known matrix of order k ×mn with k < mn and b is a

k × 1 known vector.

Under this constraints, Di Fonzo and Marini (2007) shows that, for Q =

V, x̂ is an efficient estimator of a:

x̂ = a + VB′ (BVB)−1 (b−Ba) (2.49)

With:

E
[
(x̂− x) (x̂− x)′

]
= V −VA′

(
AVA′

)−1
V

Basically, in order to satisfy the constraints, the data are adjusted con-

sidering their relative variances. Weale (1988) shows that the estimates
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are ML in case of normality assumption.

The main drawback of the approach by Stone et al. (1942) is that the

covariance matrix V is assumed as being known and must be somehow

specified.

2.2.3 Balancing in practice

While the multivariate proportional adjustment seems to be a simple

and fairly reasonable approach (Di Fonzo, 2003a), and it is often used by

statistical agencies, other more complex and effective methods are also

available.

Probably, one of the most used balancing procedures is the so called

ad hoc balancing, which means that the balancing is done according to

known qualitative indicators on the variables to be balanced. A usual

example of this approach is the balancing of the preliminary values of

the GDP when different results have been obtained from the output and

expenditure approaches (Eurostat, 2013), and the discrepancies are often

all added to the variable ”Changes in inventories and net acquisition of

valuables”, which is considered as the weakest one.

In practice, the ad hoc balancing is often used together with other kinds of

(statistical) balancing techniques, making the best use of all qualitative

and quantitative information available to the user. This happens, for

example, when part of the data come from a source which is considered

of a higher level (quality), or is given from a different domain and cannot
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be modified for consistency reasons.

2.3 Reconciliation

The balancing techniques which have been discussed in the previous sec-

tion, such as the pure bi-proportional approach, are not designed to be

applied to time series, thus in most cases, if used on time series, they

do not preserve the dynamics of the related indicator(s). It is clear,

however, that when dealing with more time series, the contemporane-

ous constraints show up together with temporal constraints, and both

constraints should be handled.

A first attempt to develop a multivariate regression-based temporal dis-

aggregation technique has been done by Rossi (1982), while a complete

formulation of the problem is given by Di Fonzo (1990). Some authors

have tried to develop a multivariate approach following Denton’s ap-

proach (Bikker et al., 2010; Di Fonzo and Marini, 2003, 2011b). Finally,

two-step approaches have been introduced by Quenneville and Rancourt

(2005) and further extended by Di Fonzo and Marini (2011b).

2.3.1 Simultaneous approaches

While the multivariate proportional adjustment described before is able

to solve only the contemporaneous constraints, and thus is strictly a

balancing procedure, different formulations have been given in order to
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develop a multivariate approach which deals with both the contempora-

neous and temporal constraints.

2.3.1.1 Multivariate Denton

The approach by Denton has been expanded to the multivariate case in

order to also deal with the contemporaneous constraints (Di Fonzo and

Marini, 2003).

Given yH,j,t, pH,j,t and yL,j,T , with j = 1, . . . ,m, three sets of m time

series denoting the objective HF series to be reconciled, the observed HF

preliminary series and the LF benchmarks,, respectively and given zH,t

the observed HF contemporaneous benchmark (accounting constraint),

the multivariate formulation of the Denton AFD problem is the following:

min
yH,j

m∑
j=1

n∑
t=2

((yH,j,t − pH,j,t)− (yH,j,t−1 − pH,j,t−1))2 (2.50)

s.t.
∑
t∈T

yH,j,t = yL,j,T ∀j = 1, . . . ,m

m∑
j=1

yH,j,t = zH,t ∀t = 1, . . . , n
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And the relative PFD problem:

min
yH,j

m∑
j=1

n∑
t=2

((
(yH,j,t − pH,j,t)

pH,j,t

)
−
(

(yH,j,t−1 − pH,j,t−1)

pH,j,t−1

))2

(2.51)

s.t.
∑
t∈T

yH,j,t = yL,j,T ∀j = 1, . . . ,m

m∑
j=1

yH,j,t = zH,t ∀t = 1, . . . , n

In order to define the matrix notation of the constraints, let’s consider

the following quantities:

• yH = (yH,1, . . . ,yH,j , . . . ,yH,m)′, the mn × 1 vector with the m

series to be reconciled.

• pH = (pH,1, . . . ,pH,j , . . . ,pH,m)′, the mn × 1 vector with the m

preliminary time series.

• yL = (yL,1, . . . ,yL,j , . . . ,yL,m)′, the mN × 1 vector with the m LF

temporal benchmark series.

• zH , the n×1 time series with the whole set of HF contemporaneous

benchmarks (constraints).

• ya =

zH

yL

 the (n+mN) × 1 vector containing the n contem-

poraneous HF benchmarks (accounting constraints) and the mN

temporal LF benchmarks.
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• H =

1′m ⊗ In

Im ⊗C

 the aggregation matrix, where 1′m is m× 1 vector

of unitary elements.

The whole set of temporal and contemporaneous constraints are ex-

pressed in matrix form by the following expression:

HyH = ya (2.52)

So the multivariate version of the Denton problem is expressed by the

following:

min
yH

(yH − pH)′Ω (yH − pH)

s.t. HyH = ya

(2.53)

Which is solved by applying the lagrangean, as for the univariate case:

L = (yH − pH)′Ω (yH − pH) + 2λ′ (HyH − ya)

ŷH,t =


∂L

∂yH
= 0

∂L

∂λ
= 0

⇒


ΩyH + H′λ = ΩpH

HyH = yaΩ H′

H 0


ŷH

λ

 =

ΩpH

ya

 (2.54)
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Leading to the following solution:

ŷH = pH + Ω−1H′
(
HΩ−1H′

)−
(ya −HpH) (2.55)

Where
(
HΩ−1H′

)−
is the Moore-Penrose generalised inverse of the ma-

trix
(
HΩ−1H′

)
, being not invertible (see Di Fonzo and Marini, 2003 for

its derivation).

As for the univariate case, according to the choice of the matrix Ω,

different solutions can be found (Di Fonzo, 2003a):

• If Ω = Im ⊗ (D′D), the solution corresponds to the multivariate

Denton AFD.

• If Ω = Im⊗ (D′D′DD), the solution corresponds to the multivari-

ate Denton ASD.

• If Ω = P−1
H (Im ⊗ (D′D)) P−1

H , where PH = diag (pH), the solu-

tion corresponds to the multivariate Denton PFD.

• If Ω = P−1
H (Im ⊗ (D′D′DD)) P−1

H , the solution corresponds to the

multivariate Denton PSD.

Di Fonzo and Marini (2003) give also the results for two systems of

time series and split the cases into whether the constraints are binding

or unbinding (exogenous or endogenous, respectively). However, using

partitioned matrices, the calculations given are rather cumbersome and

mathematically complex.
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A better solution for generalising the problem to more systems of time

series and to include the case of endogenous constraint, seems to be the

one proposed by Di Fonzo and Marini (2011b). It builds on the general

constraints proposed in the problem 2.53, by replacing contemporaneous

constraints zH with the set of k HF contemporaneous (accounting) con-

straints for each of the k systems, z̃H = (zH,1, . . . , zH,i, . . . , zH,k)
′, and

the vector 1′m of matrix H, with a k ×m matrix G, which specify the k

linear constraints between yH and z̃H , so that:

ỹa =

z̃H

yL



H̃ =

G⊗ In

Im ⊗C


The authors provide some examples on how to build the matrix G in

different practical cases, and specify that normally it contains values

equal to 0, 1 and −1. As mentioned, this specification of the whole set

of constraints (temporal and contemporaneous) encompasses the cases

of a set of k systems of time series with both exogenous and endogenous

constraints.

Problem 2.53 can thus be re-written as follows:

min
yH

(yH − pH)′Ω (yH − pH)

s.t.H̃yH = ỹa

(2.56)
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It is easy to note that in case k = 1 and G = 1′m, problem 2.56 becomes

2.53, being a particular case.

The first element of system 2.54 is symmetric, indefinite, singular sparse

and large, making the adoption of the Moore-Penrose generalised inverse

difficult from a computational point of view. In order to obtain the

direct solution 2.55, Di Fonzo and Marini (2011b) suggest to apply the

matrix factorisation algorithm proposed by Duff (2004), reducing the

computational time.

Di Fonzo and Marini (2015) propose an alternative simultaneous ap-

proach based on a multivariate generalisation of the GRP principle. The

authors state that such approach gives the best results for the preserva-

tion of growth rates of the preliminary series.

2.3.1.2 Multivariate optimal methods

Some authors have tried to generalise the Chow-Lin temporal disaggrega-

tion method to the multivariate case. A first specification of the problem

has been done by Rossi (1982), while a complete discussion is in Di Fonzo

(1990), Di Fonzo (2003a) and Eurostat (2013).

The set of m HF regression models is given by:

yH,j = XH,jβj + uH,j (2.57)
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With:

E [uH,j ] = 0

E
[
uH,iu

′
H,j

]
= VH,i,j ∀i, j = 1, . . . ,m

Where XH,j are the m matrices including the related series of yH,j .

Models 2.57 can be grouped and re-written in the following form:



yH,1

...

yH,j

...

yH,m


=



XH,1

. . .

XH,j

. . .

XH,m





β1

...

βj

...

βm


+



uH,1

...

uH,j

...

uH,m


Or, more compactly:

yH = XHβ + uH (2.58)

Which is not directly observable. Similarly to what was done to model

2.17, it is possible to pre-multiply for H:

HyH = HXHβ + HuH

yL = XLβ + uL (2.59)

With:

E
[
uLu′L | XH

]
= VL = HVHH′
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The solutions are given:

β̂ =
(
X′LV−LXL

)−1
X′LV−LyL (2.60)

ŷH = XH β̂ + VHH′V−L

(
yL −XLβ̂

)
(2.61)

Where V−L is the Moore-Penrose generalised inverse of VL. By setting

L = VHH′V−L , and considering that ûL = yL −XLβ̂, solution 2.61 can

be written as follows:

ŷH = XH β̂ + LûL (2.62)

Which corresponds to solution 2.21 in the multivariate case and has the

same interpretation.

Finally we can express the covariance matrix of the estimated values:

E
[
(ŷH − yH) (ŷH − yH)′

]
=

(In − LH) VH + (XH − LXL)
(
X′LV−LXL

)−1
(XH − LXL)′

As the matrices VH,i,j are normally unknown, they have to be estimated

by making assumptions on the residuals uH . Considering also the com-

putational aspects, at least two approaches have been considered in the

literature (Di Fonzo, 2003a; Eurostat, 2013):

1. Multivariate white noise.

In this case the covariances are expressed by:

E
[
uH,iu

′
H,j

]
= σi,j
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Which is:

E
[
uHu′H

]
= Σ⊗ In (2.63)

Where the elements σi,j of the matrix Σ can be estimated using

the OLS residuals ûL. Di Fonzo (1990) shows that in this case the

inversion of the matrix VL is simplified by a suitable partition of

Σ obtained by deleting the last row and the last column.

2. Multivariate random walk.

This is the multivariate generalisation of the method proposed by

Fernández (1981):

uH,t = uH,t−1 + εt

uH,0 = 0

E [εt] = 0

E
[
εrε
′
s

]
=


0 if r 6= s

Σ if r = s r, s = 1, . . . , n

Thus:

E [uH,t] = 0

E
[
uH,ru

′
H,s

]
= Σ min {r, s}

Which means:

E
[
uHu′H

]
= Σ⊗D′D (2.64)

Where the elements σi,j of the matrix Σ are again estimated using

the OLS residuals ûL.
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As for the univariate case, an extrapolation problem is faced when n >

sN . In this case, the extra k observations for the m time series are the

following:

yH,e =



yH,e,sN+1

...

yH,e,sN+h

...

yH,e,sN+k


Where sN + k = n.

Being also XH,e and uH,e, the correspondent matrix of related series

and vector of disturbances, respectively, the model could be expressed as

follows:  yH

yH,e

 =

 XH

XH,e

β +

 uH

uH,e


Or, in compact form:

ỹH = X̃Hβ + ũH (2.65)

With:

E [ũH ] = 0

E
[
ũH ũ′H

]
= ṼH =

VH Γ′

Γ VH,e


Where Γ = E [uH,eu

′
H ] and VH,e = E

[
uH,eu

′
H,e

]
.
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Di Fonzo (1990, 2003a) distinguishes the cases when a vector of contem-

poraneous constraints is present and also when it is not.

If there is no contemporaneous constraint he refers to pure extrapolation.

In this case the solution of model 2.65 is given by:

ŷH,e = XH,eβ̂ + ΓH′V−L

(
yL −XLβ̂

)
(2.66)

It is obvious that this is not the solution for a reconciliation problem,

but it can be considered as a multivariate method for temporal disaggre-

gation.

When the contemporaneous constraint zH is present, the author refers to

constrained extrapolation. In this case, given zH,e, the last k observations

of zH such that HeyH,e = zH,e, the solution of the reconciliation problem

is given by:

˜̂
β =

(
X̃′LṼ−L X̃L

)−1
X̃′LṼ−L ỹL (2.67)

˜̂yH = X̃H
˜̂
β + ṼHH̃′Ṽ−L

(
ỹL − X̃L

˜̂
β
)

(2.68)

Where ỹL = H̃ỹH , X̃L = H̃X̃H , ṼL = H̃ṼHH̃′ and H̃ =

H 0

0 He

.

Solution 2.68 encompasses distribution, interpolation and extrapolation,

and it is the solution of a reconciliation problem because it solves both

temporal and contemporaneous constraints.
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2.3.2 Two-Step reconciliation techniques

Two-step reconciliation methods have been firstly introduced by Quen-

neville and Rancourt (2005), in order to reconcile series which have been

seasonally adjusted using a direct approach, and further developed by

Di Fonzo and Marini (2011b). This approach has the advantage of be-

ing very simple and effective, and does not require big computational

problems. The basic idea is to divide the reconciliation problem in two

steps:

1. Use the univariate modified PFD Denton technique on each variable

of the system, solving the temporal constraint.

2. Balance the system of time series in each LF period, solving the

contemporaneous constraint.

The methodology has been developed in order to reconcile a system of

time series with binding exogenous constraints.

2.3.2.1 The first step

In the first step (which is basically the same in all the two-step proce-

dures proposed in the literature so far), the univariate modified Dentond

PFD is applied to the m series, obtaining the benchmarked (temporally

disaggregates) HF series bH,j , such that:

CbH,j = yL,j
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Or, in compact form:

(Im ⊗C) bH = yL

Where bH = (bH,1, . . . ,bH,j , . . . ,bH,m)′.

However, given an already benchmarked contemporaneous constraint zH ,

the series bH,j do not satisfy the contemporaneous constraints:

m∑
j=1

bH,j 6= zH

Or, in compact form: (
1′m ⊗ In

)
bH 6= zH

Generally speaking, it is believed that after the first step, the discrepan-

cies between the sum of the bH,j and the contemporaneous constraints

zH are reduced. This is because the contemporaneous constraints are

already temporally benchmarked and satisfy the contemporaneous con-

straint at LF level:

CzH = zL

CzH =

m∑
j=1

yL,j

2.3.2.2 The second step

In the second step the balancing procedure is applied to each of the N

LF periods, keeping the temporal constraint satisfied. Denoting bH,j ,

the m reconciled series, both temporal and contemporaneous constraints
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will be satisfied:

CrH,j = yL,s ∀j = 1, . . . ,m

m∑
j=1

rH,j = zH

Or, in compact matrix form:

HrH = ya

Where rH = (rH,1, . . . , rH,j , . . . , rH,m)′.

In order to solve the contemporaneous constraints, a constrained opti-

misation of a quadratic function is applied, following the approach by

Stone et al. (1942).

Quenneville and Rancourt (2005) propose to solve the following problem:

min
rH,j

m∑
j=1

Ts∑
t=(T−1)s+1

(rH,j,t − bH,j,t)2

bH,j,t
∀T = 1, . . . , N

s.t.
m∑
j=1

rH,j,t = zH,t ∀t = (T − 1) s+ 1, . . . , T s

(2.69)

Which basically corresponds to balancing the N intra-LF tables accord-

ing to criteria 2.46.

A slightly different approach has been proposed by Dagum and Cholette

(2006), which, building on Beaulieu and Bartelsman (2004), propose the
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following criteria (Di Fonzo and Marini, 2011b):

min
rH,j

m∑
j=1

Ts∑
t=(T−1)s+1

(rH,j,t − bH,j,t)2

|bH,j,t|
∀T = 1, . . . , N

s.t.
m∑
j=1

rH,j,t = zH,t ∀t = (T − 1) s+ 1, . . . , T s

(2.70)

This approach has the advantage that can be applied also when one or

more bH,j,t are negative, a situation which is often encountered in practice

(see for example the balancing done in national accounts Eurostat, 2010).

Finally, in order to preserve the reliability of the variables, Di Fonzo and

Marini (2011b), building on Stuckey et al. (2004), consider the following

problem:

min
rH,j

m∑
j=1

Ts∑
t=(T−1)s+1

(
rH,j,t − bH,j,t

bH,j,t

)2

∀T = 1, . . . , N

s.t.
m∑
j=1

rH,j,t = zH,t ∀t = (T − 1) s+ 1, . . . , T s

(2.71)

In matrix form, the problem can be written as follows:

min
rH,T

(rH,T − bH,t)
′Ω (rH,T − bH,T ) ∀T = 1, . . . , N

s.t. HrH,T = ya,T

(2.72)

Where:
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• rH,T = (rH,T,1, . . . , rH,T,j , . . . , rH,T,m)′, ∀T = 1, . . . , N , is the ms×

1 vector including the values of the m reconciled variables for the

LF value T .

• bH,T = (bH,T,1, . . . ,bH,T,j , . . . ,bH,T,m)′, ∀T = 1, . . . , N , is the

ms × 1 vector including the values of the m balanced variables

for the LF value T , as obtained after the first step.

• ya,T =

zH,T
yL,T

, with yL,T = (yL,T,1, . . . , yL,T,j , . . . , yL,T,m)′, is the

(m+ 1) × 1 vector containing all the the contemporaneous and

temporal constraints of the LF value T .

• H is built considering only one LF period.

The ms ×ms matrix Ω is chosen according to the approach applied in

the second step. For problems 2.69, 2.70 and 2.71, Ω is a diagonal matrix

with non-zero entries equal to
1

bH,T,j
,

1

|bH,T,j |
and

1

b2H,T,j
respectively.

The final solution is then given by the following expression:

r̂H,T = bH,T + Ω−1H′
(
HΩ−1H′

)−1
(ya,T −HbH,T ) (2.73)

Di Fonzo and Marini (2011b) suggest using covariance matrices of the

variables to be balanced or alterability coefficients defined by the users

for each series, in a subjective way.

However, this kind of information is normally unavailable. Hence, in or-

der to decide which two-step approach to follow, the implicit assumption
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of approaches 2.69 and 2.70 is that smaller series are of lower quality than

larger ones. This is because smaller series are adjusted relatively more

than bigger ones, independently from their relative reliabilities. If this

assumption is not true, it might result in an alteration of the temporal

profile of the smaller series moving between different LF values which

causes a step problem.

If the same reliability (in terms of coefficient of variations) is assumed for

all the series of the system, the second step of the reconciliation should

be performed according to approach 2.71.

The authors also specify that approach 2.71 gives results which are very

close to the multivariate Denton method.

Di Fonzo and Marini (2012a, 2015) extended the two-step reconciliation

methods by applying the GRP method in the first step. Such approach

gives results which are very similar to the multivariate version of the

GRP method.

2.4 Conclusions

Some concluding remarks could be done regarding the techniques avail-

able in the literature for temporal disaggregation, balancing and recon-

ciliation. If from one hand, according to the different situations, one

should search for the best technique to be used from a statistical point of

view, it is also important to mention practical problems which statistical
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agencies face during the production of official statistics.

Temporal disaggregation and benchmarking techniques have been nowa-

days widely discussed in the literature and they are ordinarily used in

practice. Still some remarks are to be done, in order not to make the

mistake of using the wrong method in a certain situation.

The approaches by Fernández and Litterman imply that uH,t is non-

stationary, so that the estimation is basically performed using differenced

series. In this case, the assumption is that there is no long term rela-

tionship between the LF series and the relative indicator(s), making the

two variants unsuitable for stationary or co-integrated time series. With-

out considering the co-integration, OLS or GLS techniques could lead to

spurious regressions. Although for domains like national accounts this

could be a small problem, because the indicators used normally approx-

imate the variables to be estimated, it cannot be ignored. The problem

is principally related to the extrapolation part, where the absence of

co-integration when using a non-differentiate model (such as Chow-Lin),

may lead to large revisions when the extrapolated values are later re-

placed by the LF series.

Thus, for stationary or co-integrates series, the original Chow-Lin ap-

proach is to be used (Santos Silva and Cardoso, 2001; Sax and Steiner,

2013). Alternatively, a good solution is to use the dynamic model, which

could reduce the probability of misspecification.

Regarding the revisions which occur when a new LF benchmark is avail-
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able, all the methods described here produce a completely revised HF

series. A solution which is sometimes used when applying the Denton

methodology, is to apply the procedure on a moving window so that past

data are not revised at all. If from one point of view this is an effective

solution, it is not completely correct from a statistical point of view. It is

a matter of fact that revisions to the past data are normally very close to

zero and, moreover, the availability of new information can only generate

better results.

It is also very important to mention that Denton’s approach follows a

movement preservation principle of the related indicator (preliminary

series), generating an estimate of the target series which is similar to

the indicator even if this indicator is not correlated with the target HF

series.

When seen as an indirect approach, the Denton method could lead to

good results, and various approaches could be envisaged (see, inter alia,

the French approach described in Eurostat, 2013). However, this nor-

mally foresees the application of a regression model at LF level. Thus, in

this case it seems better to proceed directly with a regression expressed

at HF level by using an optimal regression-based approach.

As regards to the extrapolation, it is quite clear that the Denton method

has drawbacks, since the extrapolation is performed using only the latest

LF and related HF periods. Whilst the enhanced Denton methodology

could be used to bypass this problem, the issue of how to estimate the

benchmark-to-ratios remains. On the other hand, a regression-based
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approach might perform very well, but generates unsatisfying results

when the model is misspecified.

As a conclusion, the optimal methods seem to be more appropriate from

a statistical point of view, giving results according to the correlation be-

tween the indicator and the final estimate. However, it must be stressed

that, in general, optimal methods would require more attention from the

user, who has to evaluate the model estimated, and they also need a suffi-

cient number of observed periods in order to be able to estimate a model.

This problem is not encountered when applying the Denton method, as

the results can be obtained also when the number of available LF periods

is very low.

Balancing is a very known issue, and the techniques which are still used

basically are related to the work done by Stone et al. (1942). Indeed the

papers by Sir Richard Stone are big milestones in the field of balancing

(for more information about the contributions of the author in the field,

see Marangoni and Rossignoli, 2014).

Statistical and mathematical balancing techniques are probably the best

choice when qualitative information is unavailable, and both the general

approach proposed by Stone et al. (1942) and the multivariate propor-

tional adjustment seem to perform well. The ad hoc balancing is however

often chosen at least to solve part of the balancing problem, and this is

the best choice given that the qualitative information is correct.

Reconciliation techniques are definitely less used in practice, or done
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only by those statistical agencies which have the luck of having some

expert in the field. Simultaneous approaches have been developed since

the early nineties, but their use in practice has been limited due to the

computational issue, while two-step reconciliation techniques have been

only recently developed and seem to be a very good alternative.

All two-step reconciliation methods have the initial assumption that

there is no need to look at the dynamics in the second step of the pro-

cedure because the temporal profiles are preserved in the first step and

not altered in the second step. In their paper, Di Fonzo and Marini

(2011b) show that this is generally true in practical problems. Moreover,

the authors state that approach 2.71 gives results which are very close

to the simultaneous Denton method and that ”very good performances

have been registered”.

Thus, two-step reconciliation practices appear to be very convenient be-

cause of their simplicity and low computational time. It is a matter of

fact that statistical agencies have to also deal with a third constraint:

the time constraint. Very often, preliminary estimates (such as season-

ally adjusted data directly obtained) have to be reconciled and validated

within hours (maybe due to a specific regulation, see for example Euro-

stat, 2010), creating big challenges for the users.

Finally, it must be stressed that all benchmarking, balancing and recon-

ciliation techniques are designed to adjust series (variables) which are in

any case close to the constraints to be fulfilled. In other words, the qual-

ity of the results are inversely proportioned to the discrepancies between
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the preliminary series and the constraints.

2.4.1 A schematic resume

In the literature, some kind of classifications have been done for temporal

disaggregation and balancing techniques (see, for example, Marcellino,

1999 and Lahr and De Mesnard, 2004). An interesting survey of all the

methods developed for temporal disaggregation can be found in Pav́ıa-

Miralles (2010), which, however, does not present a schematic view of

the available methods.

Here an innovative schematic resume of the techniques for temporal dis-

aggregation, balancing and reconciliation is presented. If, on one hand,

it does not differ too much from the classifications already done, on the

other hand for the first time it represents the methods in a schematic

way.

Table 2.1 presents the techniques for temporal disaggregation and bench-

marking, classifying them according to the use or not of a related indica-

tor (or preliminary series). Table 2.2 presents the available methodology

for balancing, and finally the techniques for reconciliation are classified

in table 2.3.
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Table 2.1: Techniques for temporal disaggregation

Methodology for
Temporal Disaggregation

Without indicators

Näıve

Interpolation

– Lisman-Sandee
– Zani

Min. of a loss function

– BFL
– Marcellino

Time series methods

– Wei-Stram
– Al-Osh
– Guerrero

With indicators

Näıve

Pro-rata

Min. of a loss function

– Denton
– Cholette (modified Denton)
– GRP

Regression-
based models

Static

– Chow-Lin
– Fernández
– Litterman

Dynamic

– Salazar
– Gregoir
– SSC

Missing observations

– Jones
– Gomez-Maravall

Structural models

– Moauro-Savio
– Proietti
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Table 2.2: Techniques for balancing

Methodology for
Balancing

Näıve

Proportional (including plus-minus)

Proportional squared

Bi-proportional methods

– RAS (including plus-minus)
– TRAS

Minimisation of a loss function: Stone
Approaches by:

– Almon
– Lahr
– Matuszewski
– Deming
– Dagum-Cholette
– Stuckey

Ad hoc balancing
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Table 2.3: Techniques for reconciliation

Methodology for
Reconciliation

Simultaneous

Multivariate Denton

– Di Fonzo-Marini
– Bikker et. al

Multivariate BLUE

– Rossi
– Di Fonzo

Two-Step

First step

– Modified Denton PFD
– GRP

Second Step

– Quenneville-Rancourt
– Dagum-Cholette
– Di Fonzo-Marini



Chapter 3

An alternative two-step

reconciliation method

Two-step reconciliation methods described in Chapter 2 seem to be very

promising thanks to their simplicity and efficiency, and have no prob-

lems with the computational burden. On the other hand, the techniques

presented so far in the literature are not very flexible.

In this chapter, an alternative methodology for the two-step reconcilia-

tion methods is presented. This methodology could be seen as a general-

isation of all the methods described in the literature, which are extended

to the possibility of using different techniques in both the first and the

second steps, adding a clear flexibility to the two-step reconciliation tech-

niques. Such methodology has been implemented in Java, as a plug-in

of JDemetra+ (Grudkowska, 2015), the official European tool designed

83



84 An alternative two-step reconciliation method

for seasonal adjustment.1

Finally, the focus will be given to the case when reconciliation is applied

after seasonal adjustment, presenting a statistical test for identifying

common seasonal patterns between different series, which could be used

to determine at which level the series need to be adjusted, and thus

determine the system(s) of series which will be reconciled.

A short description of the topics presented in this chapter can be found

in Infante and Scepi (2017).

3.1 Regression-based two-step reconciliation

When developing the two-step reconciliation methods, all the literature

to date focuses on the second step. They all use the univariate modified

Denton approach in the first step (and in particular they work with the

PFD variant), with the exception of Di Fonzo and Marini (2012a), which

propose to use the GRP approach in the first step.

However, as seen in Chapter 2, other temporal disaggregation methods

could be used in the first step, according to the different situations en-

countered in practice. In particular, the movement preservation principle

followed by the Denton methodology might not be appropriate when the

1JDemetra+ has been officially recommended, since 2 February 2015, to the mem-
bers of the European Statistical System (ESS) and the European System of Central
Banks (ESCB) as software for seasonal and calendar adjustment of official statistics.
More details regarding the tool and how to download and install are on the CROS
portal (https://ec.europa.eu/eurostat/cros/).

https://ec.europa.eu/eurostat/cros/content/jdemetra-seasonal-adjustment-software_en
https://ec.europa.eu/eurostat/cros/content/jdemetra-seasonal-adjustment-software_en
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user is unsure about the correlation between the target unknown series

and the relative indicator, or when there are many HF periods to ex-

trapolate. Thus, in these cases, a methodology which also detects the

degree of correlation should be used, like the regression-based optimal

approaches.

From this perspective, two-step approaches are very flexible, making pos-

sible the application of whatever temporal disaggregation (benchmark-

ing) technique in the first step.

Given a set of m HF time series which need be to be reconciled to their

LF counterparts yL,j and to the accounting constraint zH , it is possible

to apply a univariate regression-based technique in order to estimate the

benchmarked HF series:

yH,j = XH,jβ + uH,j ∀j = 1, . . . ,m (3.1)

Obtaining the following results:

β̂j =
(
X′L,jV

−1
L,jXL,j

)−1
X′L,jV

−1
L,jyL,j (3.2)

ŷH,j = bH,j = XH,j β̂j + VH,jC
′V−1

L,j

(
yL,j −XL,j β̂j

)
(3.3)

Where the covariance matrices VH,j are estimated according to the

Chow-Lin, Fernández or Litterman solutions.

The m solutions are grouped in the vector:

ŷH = bH = (bH,1, . . . ,bH,j , . . . ,bH,m)′
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Such vector bH is then balanced for each LF period T :

min
rH,T

(rH,T − bH,t)
′Ω (rH,T − bH,T ) ∀T = 1, . . . , N

s.t.HrH,T = ya,T

Obtaining the following results:

r̂H,T = bH,T + Ω−1H′
(
HΩ−1H′

)−1
(ya,T −HbH,T )

Where Ω is, for example, the diagonal matrix with generic term
1

b2H,T,j
,

according to the approach suggested by Di Fonzo and Marini (2011b).

Alternatively, the approaches by Quenneville and Rancourt (2005) or

Dagum and Cholette (2006) could be used.

Such way of dealing with reconciliation of the time series allows the user

to use qualitative information by partially applying an ad hoc balancing

in the second step, leaving only a sub-set of the variables to be finally

reconciled and changing the contemporaneous constraints accordingly.

Although not expressively foreseen by Di Fonzo and Marini (2011b), the

contemporaneous constraints zH could also be the result of a temporal

disaggregation technique. Thus, given the LF series of the contempora-

neous constraints zL, and a set (usually one) of related indicators which

are included in XH,z, it is easy to estimate zH by applying, for example,
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a regression-based technique:

zH = XH,zβ + uH,z

β̂z =
(
X′L,zV

−1
L,zXL,z

)−1
X′L,zV

−1
L,zyL,z

ẑH = XH,zβ̂z + VH,zC
′V−1

L,z

(
yL,z −XL,zβ̂z

)
Following this method, it is possible to implement a cascade approach

for reconciling more systems of time series when they are nested.

Given that ẑH =
m∑
j=1

yH,j , the m series yH,j might be the contempora-

neous constraints of m systems of time series (or less), so that:

yH,j =
∑
h∈j

aH,j,h

Where yH,j are the time series of the first layer (total, one system of time

series), and aH,j,h are the time series of the second layer (ah, m systems

of time series). A generic example of a hierarchical chart is presented in

Figure 3.1.

It is clear that the results obtained in the second layer of the systems will

be dependent from the results obtained on the temporal disaggregation

of the contemporaneous constraint in the first layer. However this is a

drawback only in theory, while it could actually be a good solution when

the overall quality of the time series in the second layer is low, which is

often the case in official statistics, especially when going to very detailed

series.
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Figure 3.1: Generic hierarchical chart

More details regarding hierarchical time series are in Hyndman et al.

(2011) and Taieb et al. (2017).

While here only a formal presentation of the case of two layers has been

given, the procedure can be applied to whatever number of layers, keep-

ing in mind that the results obtained in the lower layers will be dependent

on all the results obtained by the temporal disaggregation of the contem-

poraneous constraints of all the higher layers.

Two practical examples are presented in Chapter 5: a small scale case

after seasonal adjustment (monthly industrial production index), and a

medium-large scale case for the aggregation of euro area quarterly sector

accounts data.
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3.2 Algorithm and software

In recent years, Eurostat developed a tool for temporal disaggregation,

JEcotrim, composed of a set of plug-ins of the official tool for seasonal

adjustment, JDemetra+, version 1.2.0. Different plug-ins have been de-

veloped in order to perform each available method: modified Denton,

Chow-Lin, Fernández, Litterman, RAS-PM and two-step reconciliation

(always using the modified PFD Denton approach in the first step). An

additional plug-in has also been developed in order to perform batch jobs

of the available methods. In this case, after the job is initiated by the

user, the program is run in the background without interaction by the

user. Such way of working with statistical methods, which is also avail-

able for the standard seasonal adjustment functionalities of JDemetra+,

is very useful in practice when the user has to run a big number of series

with very limited time (the so called time constraint), but could also

bring to non-satisfactory results when the initial specifications are not

correct for specific time series.

In order to be useful in an official statistics’ framework, where the time

constraint is often a real problem, it is very important that a good tool

for two-step reconciliation is able to:

1. Handle more systems of time series at the same time.

2. Be flexible enough, so that different choices are available on both

the first and the second steps.
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While the first point is handled by the original JEcotrim solution (only

in batch mode), for the first step of the reconciliation procedure, the tool

obliges the user to use a modified Denton PFD technique. In order to

solve this problem, a new, more flexible, version of JEcotrim has been

developed.

The first very important improvement is on the compatibility of JEcotrim

with the latest version of JDemetra+, 2.1.0. The original JEcotrim was

only able to work with version 1.2.0, a beta version which was not yet

recommended as official tool by Eurostat.

The original code is based on a general model, which is called as shown in

the box below, where ”phi1 ” and ”phi2 ” correspond to the Chow-Lin’s

ρ and Litterman’s α, respectively.

public abstract class GlobalMethod extends TemporalDisaggregationMethod {

. . .

@Override

public TemporalDisaggregationMethodResult p roce s s ( ) throws Exception {

compute ( ) ;

// Es t imat ion scanning phi , e l s e ph i i s g i v en by t he user

double phi = 0 . 0 ;

ScanningResult scanning = new ScanningResult ( ) ;

i f ( a r f l a g ) {

scanning = Scanning . scanning ( y0 , X, C, em, nbStep , phi1 , phi2 ,

method ) ;

phi = scanning . getPhi ( ) ;

} else {

phi = a r f i x ;

scanning . setPhi ( phi ) ;

}

// Ge t t i n g HF and LF cova r i ance matrix , annua l i s e d p r e l im ina r y

V( phi ) ;

X0( ) ;

V0( ) ;

Genera lLeastSquaresResul t g l s = GeneralLeastSquares . g l s ( y0 , X0 , V0) ;
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// GLS f i n a l e s t ima t e s o f t h e parameters c o n d i t i o n a l t o t h e e s t ima t ed

ph i

TemporalDisaggregationMethodResult eco = f i n a l i z e d ( g l s . getBeta ( ) , g l s .

g e tSs r ( ) ) ;

eco . s e tGl s ( g l s ) ;

eco . setScanning ( scanning ) ;

return eco ;

}

. . .

}

The method to be applied is than recalled according to different func-

tions. The box below shows the case of Chow-Lin.

public class ChowlinMethod extends GlobalMethod {

. . .

@Override

protected void V(double phi ) {

// Compute Chow−Lin cova r i ance matr ix

V = null ;

{

HDPMatrix sequent ia lMat = new HDPMatrix (n , 1) ;

sequent ia lMat . seqm (1 . 0 , phi ) ;

V = HDPMatrix . Convert2Toepl i tz ( sequent ia lMat . i n t e rna l S t o r ag e ( ) ,

fa l se ) ;

V. mul ( 1 . 0 / ( 1 . 0 − Math . pow( phi , 2) ) ) ;

}

}

@Override

protected void X() {

// Compute X matr ix w i th or w i t hou t i n t e r c e p t

i f (hfm == HighFreqDisturb .WITH) {

Matrix o = new Matrix (n , 1) ;

o . s e t ( 1 . 0 ) ;

X = Functions . concatenat i onHor i zonta l e ( o , X) ;

}

}

}

A similar code is provided for the Litterman method, while for the
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Fernández method the general model is replaced since the parameters

of the residual term are fixed and thus do not need estimation.

In this study, three new plug-ins have been created, in order to allow the

user to choose between Chow-Lin, Fernández and Litterman in the first

step, without forcing the use of modified PFD Denton, as described in

the previous section. The Java code which recalls the Chow-Lin method

in the first step is shown in the box below.

// Step 1

private MMatrix compute (MMatrix LF, MMatrix HF, FreqAggrOrder s ) throws

Exception {

Matrix mat = null ;

for ( int i = 0 ; i < LF. getColumnsCount ( ) ; i++) {

// INPUT (LF and HF s e r i e s )

Matrix m l f = LF. getSubMatrixFullRows ( i , i + 1) ;

Matrix m hf = HF. getSubMatrixFullRows ( i , i + 1) ;

// Chow−Lin p ro c e s s f o r each s e r i e s

PrintMatrix .ACTIVE LOG = fa l se ;

ChowlinMethod chowlin = new ChowlinMethod ( m lf , m hf ,

HighFreqDisturb .WITH, s , taggr , EstimMethod .ML, 100 , 0 . 00 ,

0 . 99 , true , 0 . 0 ) ;

TemporalDisaggregationMethodResult r = chowlin . p roce s s ( ) ;

PrintMatrix .ACTIVE LOG = true ;

i f (mat == null ) {

mat = r . getYdisag ( ) ;

} else {

mat = Functions . concatenat i onHor i zonta l e (mat , r . getYdisag ( ) ) ;

}

}

// Re su l t s f i r s t s t e p u s ing Chow−Lin

MMatrix mmat = new MMatrix (mat , null ) ;

return mmat ;

}

As it is, the process estimates the Chow-Lin model with intercept, us-

ing the maximum likelihood approach, scanning in 100 equally distant

possible values of ρ between 0 and 0.99.
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Similar coding has been developed for the Fernández and Litterman

methods, by changing the process function as shown in the boxes be-

low. In the case of Litterman, there is no scanning as the parameter of

the residual AR process is fixed to be equal to 1.

FernandezMethod fernandez = new FernandezMethod ( m lf , m hf ,

HighFreqDisturb .WITH, s , taggr ) ;

TemporalDisaggregationMethodResult r = fernandez . p roce s s ( ) ;

LittermanMethod l i t t e rman = new LittermanMethod ( m lf , m hf ,

HighFreqDisturb .WITH, s , taggr , EstimMethod .ML, 100 , 0 . 00 ,

0 . 99 , true , 0 . 0 ) ;

TemporalDisaggregationMethodResult r = l i t t e rman . p roce s s ( ) ;

3.3 Seasonal adjustment before reconciliation

Benchmarking techniques are often used in order to transform the results

of a seasonal adjustment procedure so that the annual totals for season-

ally adjusted and row series are equal. When applicable, the annual

totals of seasonally adjusted estimates are benchmarked to the annual

totals of the calendar adjusted series, leaving discrepancies between the

calendar adjusted and the row series. In the event where more series

linked by an accounting constraint are seasonally adjusted, the bench-

marking problem becomes a reconciliation problem if the constraint is

also the result of a seasonal adjustment procedure (direct approach).

A generic aggregated time series yt can be expressed as follows:

yt = f (x1,t, . . . , xk,t, . . . , xS,t) (3.4)
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A special case is when the function f(·) is additive, which can be gener-

alized as follows:

yt = ω1x1,t + . . .+ ωkxk,t + . . .+ ωSxS,t =
S∑
k=1

ωkxk,t (3.5)

Where ω1, . . . , ωS are general weights.

A very simple example of this kind of aggregate is the European Union

GDP, which is the sum of the GDPs of the 28 EU countries (in this case

the weights ωk are all equal to 1).

Seasonal adjustment is a well-known topic that has been studied by many

authors (see, for example, Granger, 1978). Amongst others, two classes

of methods are systematically used in many statistical agencies (Euro-

stat, 2015): the model-based approach (TRAMO/SEATS, see Gómez

and Maravall, 2001; Maravall and Pérez, 2011) and the filter-based ap-

proach (X11 family, see, for instance, Findley and Hood, 2000 or Findley,

2005). For practical analysis, consult Buono (2004) or Gysels and Osborn

(2001).

In this study a new test is proposed. It is based on a three-way ANOVA

model, which aims at identifying whether disparate series have a com-

mon seasonal pattern. The main advantage of this test is that it gives

information about which series have a common seasonal pattern before

seasonally adjusting them, so that it can be considered as an a priori

method. A first elaboration of this idea is in Buono and Infante (2012),

while a more complete formulation is in Infante et al. (2015). The need
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of such kind of test is also stated in Cristadoro and Sabbatini (2000).

3.3.1 The innovative test

The classical test for moving seasonality (Higginson, 1975) is based on

a two-way ANOVA model, where the two factors are the time frequency

(usually months or quarters) and the years, respectively. A Bartlett-

type test for moving seasonality has been proposed by Surtradhar and

Dagum (1998). A test based on a three-way ANOVA model (see Cohen,

2007) is presented in this study, in order to test the presence of a moving

seasonality between different series, and not between the years of the

same series, as established by the classic moving seasonality test. The

three factors are the time frequency, the years and the series.

The tested variable in the classical test for moving seasonality is the

final estimation of the unmodified Seasonal-Irregular differences absolute

value if the decomposition model is an additive one, or the Seasonal-

Irregular ratio minus one absolute value, if the decomposition model is a

multiplicative one. The series of the Seasonal-Irregular ratios, using the

tool X-13 ARIMA, is presented in table D8, see Ladiray and Quenneville

(2001) for a detailed explanation of the X-13 tables.

As the test needs to be performed a priori (e.g. before running a seasonal

adjustment procedure), it is impossible to use the Seasonal-Irregular dif-

ferences (or ratios) as used in the test for moving seasonality. Thus,

for creating the trend series THPkt , a Hodrick-Prescott filter is applied to
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each series xkt. Such filter is widely used, especially for macroeconomic

series, and it seems to be the most appropriate trend estimation when

dealing with these kinds of series (Harvey and Trimbur, 2008; Hodrick

and Prescott, 1997). Other trend estimation methods may be applied

for different types of series.

Thus, it is possible to calculate the variable obtained by subtracting the

trend series from the original one:

SIijk = xijk − THPijk (3.6)

The notation SI is kept in order to remark the fact that it is a de-

trended series. As such, the tested variable is a three-dimensional array

(cube), where in the rows there is the i-th time frequency, in the columns

there is the j-th year, and in the depth there is the j-th series. As the

series involved in the test can be added up before or after the seasonal

adjustment procedure, it is evident that they must have the same scale.

The test is performed only on the part of the time series that covers all

the observations of entire years.

The model is specified as follows:

SIijk = ai + bj + ck + eijk (3.7)

This equation implies that the value SIijk represents the sum of:

• A term ai, i = 1, . . . ,M , representing the numerical contribution

due to the effect of the i-th time frequency (usually M = 12, for
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monthly series, or M = 4, for quarterly series).

• A term bj , j = 1, . . . , N , representing the numerical contribution

due to the effect of the j-th year.

• A term ck, k = 1, . . . , S, representing the numerical contribution

due to the effect of the k-th series of the aggregate.

• A residual component term eijk, which is assumed to be normally

distributed with zero mean, constant variance and zero covariance.

It represents the effect, on the values of the SI, of the whole set of

factors not explicitly taken into account in the model.

The test is based on the decomposition of the variance of the observa-

tions:

S2 = S2
M + S2

N + S2
S + S2

R (3.8)

Denoting:

• The general mean: x̄ =
1

MNS

M∑
i=1

N∑
j=1

S∑
k=1

|SIijk|.

• The M time frequency means: x̄i•• =
1

NS

N∑
j=1

S∑
k=1

|SIijk|.

• The N yearly means: x̄•j• =
1

MS

M∑
i=1

S∑
k=1

|SIijk|.

• The S series means: x̄••k =
1

MN

M∑
i=1

N∑
j=1
|SIijk|.

Then it is possible to compute the following quantities:
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• S2
M =

NS

M − 1

M∑
i=1

(x̄i•• − x̄)2 is the between time frequencies vari-

ance. It is the effect that measures the magnitude of the seasonality.

• S2
N =

MS

N − 1

N∑
j=1

(x̄•j• − x̄)2 is the between years variance. It is the

effect that measures the movement of the seasonality in the same

series.

• S2
S =

MN

S − 1

S∑
k=1

(x̄••k − x̄)2 is the between series variance. It is

the effect that measures the movement of the seasonality between

different series.

• S2
R =

M∑
i=1

N∑
j=1

S∑
k=1

(|SIijk| − x̄i•• − x̄•j• − x̄••k + 2x̄)2

(MNS − 1)− (M − 1)− (N − 1)− (S − 1)
is the residual

variance.

Hence, the null hypothesis is the following:

H0 : c1 = c2 = . . . = cS (3.9)

When H0 is not rejected, it implies that there is no change in the sea-

sonality over the series, i.e. it is not possible to exclude that the series

have a common similar seasonal pattern.

If the null hypothesis is true, the relative test statistics is required to

follow a Fisher-Snedecor distribution with (S − 1) and (MNS − 1) −

(M − 1)− (N − 1)− (S − 1) degrees of freedom and can be written as:

F =
S2
S

S2
R

(3.10)
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In the case that the null hypothesis is rejected, an option could be to

run the test on sub-groups of the series, in order to discover which ones

present similar seasonal movements. The use of a cluster analysis could

also be explored in order to group these series which present common

seasonal patterns. In any case, the number of series tested at the same

time should not be too high.

The test power analysis, together with a simulation study and a practical

application, is presented in Infante et al. (2015).

3.3.2 The use and possible improvements

One possible practical application of the test is to choose which approach

to use for seasonal adjustment.

To obtain seasonally adjusted figures, at least two different approaches

can be applied (for more details see Astolfi et al., 2001a,b):

• Direct Approach: the seasonally adjusted data are computed di-

rectly by seasonally adjusting the aggregate yt.

• Indirect Approach: the seasonally adjusted data are computed indi-

rectly by seasonally adjusting data per each series xkt. The season-

ally adjusted yt is then given by the sum of the seasonally adjusted

components.

A third option could be the mixed approach. If it is possible to define a

criterion in order to separate the series in groups, creating sub-aggregates
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(e.g. these series have common seasonal pattern), then it is possible

to compute the seasonally adjusted figures by summing the seasonally

adjusted data of these sub-aggregates.

The direct and the indirect approaches have been discussed for many

years, and there is no consensus on which is the best approach (see, for

instance, Maravall, 2006 or Hood and Findley, 2001).

To date, many authors presented a posteriori analysis on the results of

the different approaches (Bušs, 2009; Geweke, 1979; Hindrayanto, 2004;

Otranto and Triacca, 2000). For an overview of seasonality tests, refer to

Busetti and Harvey (2003) and Rau (2006). As seasonal adjustment deals

with unobserved components, the evaluation criteria of an a posteriori

analysis depends on many factors (e.g. the method used) and could be

a bit weak.

The main drawback to be considered as regards to the direct approach

is that there is no accounting consistency between the aggregate and

individual series. Another drawback of the direct approach is the direc-

tional inconsistency, as for some periods it could be that the components

move in one direction while the aggregate moves in the opposite one. A

controversial point with the direct approach is the so called cancel-out

effect. If there are two series with opposite patterns of seasonality, then

the aggregated series will possibly show no seasonality. For example, the

aggregated series can show no seasonality even if all the individual series

have seasonality. According to Maravall (2006), this is not a drawback.
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On the other hand, the indirect approach also has some drawbacks. First

of all, the presence of residual seasonality should always be carefully

checked in all of the indirectly seasonally adjusted aggregates. In that

case, applying an indirect approach means working with a larger number

of series, and therefore the calculation burden could be quite big.

The numerical results obtained by performing the different approaches

are usually close in terms of medium and long term evolution, but they

can still diverge in terms of signs of the growth rates in the short term

period. They are likely to coincide if the aggregate is an algebraic sum,

the decomposition model is additive, there are no outliers and the filters

used is the same for all the series. These conditions are rarely met in a

real data set.

According to the ESS guidelines on seasonal adjustment (Eurostat, 2015),

the indirect adjustment is preferred if the series xkt do not show similar

seasonal patterns. Otherwise, the direct approach is preferred if the series

show common seasonal patterns and approximately the same timing in

their peaks and troughs. In this case, the aggregation will produce a

smoother series with no loss of information on the seasonal patterns.

The direct approach is preferred for transparency and accuracy, while

the indirect approach is preferred for consistency.

Rejecting the null hypothesis means that the direct approach should be

avoided, and the indirect one should be taken in consideration. Once

the sub-groups of the series with common similar seasonal pattern are

determined, a mixed approach can be used.
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As mentioned, the decision between direct and indirect (or mixed) ap-

proach is relevant in order to understand whether the series could be

reconciled or only benchmarked. By using any kind of direct or mixed

approach, the reconciliation problem arises. It is clear that the user

may decide not to reconcile the system, as suggested by some authors

(Maravall, 2006), but it is sometimes the recommended policy, especially

in certain domains, like national accounts or unemployment (Eurostat,

2015).

In this case, the test presented in this section could be used in order

to determine whether the series have to be seasonally adjusted directly

(and thus reconciled) or indirectly (and hence there is no reconciliation

problem). By applying a mixed approach, the series have to still be

reconciled in each of the subgroups identified.

As it stands, the test could still be improved by carrying out some more

in-depth analysis, which would ideally include:

• Seasonal co-movements test (Centoni and Cubadda, 2011): the sea-

sonal co-movements test could be used in order to assess that the

test presented here is well-detecting the seasonal movements of the

different time series.

• The use of a different filter for trend estimation. In particular the

selection of the parameter λ could follow different methodologies

(see for example Maravall and Del Rio, 2001).

• The testing of the assumptions made on the residual term of model
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3.7.

• Outliers: a detailed study on how the presence of outliers impacts

on the test performance. In seasonal adjustment, usually three dif-

ferent kinds of outliers are considered: the Additive Outlier (AO),

the Transitory Change (TC) and the Level Shift (LS). It may be in-

teresting to see how the different outliers (and their combinations)

would impact the results of the test.

3.4 Conclusions

Two-step reconciliation practices are getting more and more applied by

different users, especially in the world of official statistics.

As several well-established methodologies for temporal disaggregation

are considered to be good practices (minimisation of a loss function,

regression-based models, etc.), a two-step reconciliation method should

allow the user to choose amongst them in the first step.

The methodology presented in this chapter not only permits the appli-

cation of different methods in both the first and the second steps of the

procedure, but also allows the reconciliation of more systems of time se-

ries in the case they are nested. This cascade approach is justified from

a practical expectation, which is that the lower series are normally of a

lower quality.

Moreover, the tool JEcotrim has been modified in order to allow the
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user to chose between different methods in the first step. In particular,

three new plug-ins have been developed, which perform the Chow-Lin,

Fernández and Litterman methods respectively.

An important remark on direct and indirect approach for seasonal ad-

justment has to be noted. Without delving into the philosophical debate

on which of the two approaches is the best in absolute terms, it is impor-

tant to note that the results of a seasonal adjustment procedure will in

any case depend on the quality of the time series to be adjusted. When

trying to adjust component series which are of too low quality, it is obvi-

ous that summing them up would not lead to satisfactory results for the

aggregates series since there could be a cancel-out effect (seasonality is

present in the component series but not in the aggregate, or vice-versa),

or simply the seasonality in the component series is not regular. Hence, a

direct approach is to be followed in these cases, creating a reconciliation

problem.

From this point of view, the test for common seasonal patterns presented

here is a useful tool in order to decide at which level the seasonal adjust-

ment is to be performed, helping the practitioner to get a reconciliation

problem where the discrepancies to be adjusted are smaller.



Chapter 4

Validation

The results of a reconciliation procedure should be assessed according to

given criteria. This is basically done by taking in consideration two main

aspects: the distance and the differences in the dynamics between the

preliminary series and the reconciled ones.

Taking into examination these two aspects, several summary indices are

presented in this chapter, as well as an innovative technique for assessing

the impact of possible outliers in the system of time series.

The validation of the methodology proposed in Chapter 3 is an important

part of the research performed. For this reason, a simulation study is

presented in this chapter.

105
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4.1 Validation and assessment criteria

Many assessment criteria could be followed in order to evaluate the per-

formances of reconciliation techniques. According to Stuckey et al. (2004)

and Di Fonzo and Marini (2011b), three main principles should be fol-

lowed: 1. The levels of the reconciled series should be as close as possible

to the levels of the preliminary series; 2. The movements of the reconciled

series should be as close as possible to the movements of the preliminary

series; 3. Highly volatile series are altered more than less volatile series.

While it is evident that the distance between the preliminary (related)

series and the reconciled series should be small, it is important to use

adequate measures of such distance. Amongst other possibilities, this

study follows the approaches suggested by Ladiray and Mazzi (2003)

and Di Fonzo and Marini (2011b).

As regarding to the levels, the absolute percentage differences (APD)

and the squared percentage differences (SPD) could be easily computed.

Given:

APDj,t =

∣∣∣∣ rH,j,tpH,j,t
− 1

∣∣∣∣
For each of the m time series, the mean and maximum absolute percent-

age difference, as well as the mean squared percentage difference are,
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respectively:

meanAPDj =
1

n

n∑
t=1

APDj,t =
1

n

n∑
t=1

∣∣∣∣ rH,j,tpH,j,t
− 1

∣∣∣∣ (4.1)

maxAPDj = max
t
APDj,t = max

t

∣∣∣∣ rH,j,tpH,j,t
− 1

∣∣∣∣ (4.2)

meanSPDj =

√√√√ 1

n

n∑
t=1

APD2
j,t =

√√√√ 1

n

n∑
t=1

(
rH,j,t
pH,j,t

− 1

)2

(4.3)

The mean absolute percentage difference and the mean squared percent-

age difference could also be computed for the whole system of series:

meanAPD =
1

mn

m∑
j=1

n∑
t=1

∣∣∣∣ rH,j,tpH,j,t
− 1

∣∣∣∣ (4.4)

meanSPD =

√√√√ 1

mn

m∑
j=1

n∑
t=1

(
rH,j,t
pH,j,t

− 1

)2

(4.5)

If more systems are reconciled together (for example after applying a

cascade approach) it would be very useful to compute these indices for

the whole set of systems, given that the unit measure is the same.

As regards the movements, the mean and maximum absolute percent-

age difference of the growth rates (APDG), as well as the mean squared

absolute percentage difference of the growth rates (SPDG) and the con-

cordance of growth rates (C1) could be calculated. Hence, starting from
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the absolute percentage difference of the growth rates:

APDGj,t =

∣∣∣∣ rH,j,trH,j,t−1
−

pH,j,t
pH,j,t−1

∣∣∣∣
The indices are computed as follows:

meanAPDGj =
1

n− 1

n∑
t=2

APDGj,t =
1

n− 1

n∑
t=2

∣∣∣∣ rH,j,trH,j,t−1
−

pH,j,t
pH,j,t−1

∣∣∣∣
maxAPDGj = max

t
APDGj,t = max

t

∣∣∣∣ rH,j,trH,j,t−1
−

pH,j,t
pH,j,t−1

∣∣∣∣
meanSPDGj =

√
1

n− 1

n∑
t=2

APDG2
j,t =

√
1

n− 1

n∑
t=2

(
rH,j,t
rH,j,t−1

−
pH,j,t
pH,j,t−1

)2

C1j =
1

n− 1

n∑
t=2

∣∣∣∣sign( rH,j,t
rH,j,t−1

− 1

)
+ sign

(
pH,j,t
pH,j,t−1

− 1

)∣∣∣∣
2

And the relative indices for the whole system of series are given by:

meanAPDG =
1

m (n− 1)

m∑
j=1

n∑
t=2

∣∣∣∣ rH,j,trH,j,t−1
−

pH,j,t
pH,j,t−1

∣∣∣∣
meanSPDG =

√√√√ 1

m (n− 1)

m∑
j=1

n∑
t=2

(
rH,j,t
rH,j,t−1

−
pH,j,t
pH,j,t−1

)2

C1 =
1

m (n− 1)

m∑
j=1

n∑
t=2

∣∣∣∣sign( rH,j,t
rH,j,t−1

− 1

)
+ sign

(
pH,j,t
pH,j,t−1

− 1

)∣∣∣∣
2

Regarding the movements, a very important point is that there is com-

mon seasonality between each preliminary indicator and the correspon-

dent reconciled series. In other words, there should be no residual sea-
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sonality in the reconciled seasonally adjusted series (see Evans, 2004) and

the seasonality should remain the same when reconciliation is performed

on non-seasonally adjusted series.

Finally, taking into consideration the larger components of the systems,

it could be interesting to compute a weighted version of the absolute

and squared percentage differences of the series and of the growth rates,

where the weights ωj,t are given by the shares of the values of the series in

the grand totals (contemporaneous constraints). In this case the indices

become:

meanWAPD =
1

n

m∑
j=1

n∑
t=1

ωj,t

∣∣∣∣ rH,j,tpH,j,t
− 1

∣∣∣∣ (4.6)

meanWSPD =

√√√√ 1

n

m∑
j=1

n∑
t=1

ωj,t

(
rH,j,t
pH,j,t

− 1

)2

(4.7)

meanWAPDG =
1

n− 1

m∑
j=1

n∑
t=2

ωj,t

∣∣∣∣ rH,j,trH,j,t−1
−

pH,j,t
pH,j,t−1

∣∣∣∣ (4.8)

meanWSPDG =

√√√√ 1

n− 1

m∑
j=1

n∑
t=2

ωj,t

(
rH,j,t
rH,j,t−1

−
pH,j,t
pH,j,t−1

)2

(4.9)

These kind of indices could only be correctly computed if the contempo-

raneous constraints are given by a simple summation of the series.
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4.2 Outlier identification as validation criteria

In general terms, the user would expect that the outliers identified in the

preliminary series are unchanged after applying a reconciliation technique

(especially in the last observations), otherwise important information

would be lost.

In this section, a methodology for identifying outliers at the end of the

series is presented. Such methodology has been firstly discussed by In-

fante and Buono (2013) and Buono et al. (2016), which developed it in

order to identify commodity risk in price statistics. Similar ideas have

been discussed by Maravall and Caporello (2003); Revilla and Rey del

Castillo (1999, 2000).

When analysing market price data (Eurostat, 2008a), it is important to

identify the factors causing their fluctuations. Such fluctuations are often

due to the market price risk, which can be broadly defined as the threat of

losses due to changes in market parameters. Market risk can be affected

by the commodity risk, defined as the threat that a change in the price

of a production input will adversely impact a producer who uses that

input. Commodity production inputs are usually raw materials (cotton,

corn, wheat, copper, etc.). Factors that can affect commodity prices

include political and regulatory changes, seasonal variations, technology

and market conditions. These factors have an impact on the volatility of

the data, and may affect the predictability, generating uncertainty. For

more details regarding commodity and market risk see, one ca refer to

Dusak (1973) or Giot and Laurent (2003).
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With a special focus on the end-series observations, a new technique is

presented in the following section, in order to face such uncertainty by

detecting the degree of the possibility of having a commodity risk oc-

curring in the series. The underlining idea is that when the observed

data differs considerably from the expected forecasted trend, the com-

modity risk may be present. In the same way, it is also possible to detect

potential outliers within end series observations.

While the original application was done on price statistics, nothing pre-

vents the use of this technique as outlier detection method in any other

domain.

4.2.1 Proposed methodology

Given a time series xt, the procedure follows three main steps: iden-

tification of the seasonal ARIMA model; estimating forecast intervals;

and detecting the volatility degree. The idea is to fit a seasonal ARIMA

model to the series, where the last r observations are removed within the

sample, estimating the forecast confidence intervals on those values not

considered in the first step, and checking whether the observed values

fall inside or outside the confidence bands.

1. Identification of the model:

The first step of the procedure is to model the series without the last

r observations. Here a seasonal ARIMA(p, d, q)(P,D,Q)s model is
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used:

φp (B) ΦP (Bs) (1−B)d (1−Bs)D xt? = θq (B) ΘP (Bs) εt?

(4.10)

Where t? = t− r and B is the lag operator.

All the validation checks should be performed as per usual prac-

tice. If calendar effects and outliers are present in the series xt? , a

RegARIMA model could be used.

2. Estimating forecast intervals:

In the second step, the seasonal ARIMA forecast intervals are com-

puted for r observations which were not taken into account during

the first step:

x̂t? (h)± zα/2
√
V AR [et? (h)] (4.11)

where x̂t? is the punctual forecast at time t? + h, zα/2 is the per-

centile of a standardized normal distribution and et? is the forecast

error at time t? + h. Commonly, the interval is taken at 95% level.

A detailed analysis of such kind of forecast intervals is in Chatfield

(2001).

The intervals are computed for each h = 1, . . . , r, in order to obtain

r intervals, for all observations not considered in the model during

the first step.

3. Detecting the volatility degree:

In the third step the observed values at time t? + h, with h =

1, . . . , r, are compared with the forecast intervals computed during



Validation 113

the second step. If the observed value at time t?+h is not inside the

forecast interval at time t? + h, then the commodity risk (outlier)

is detected due to the volatility of the series.

4.2.2 Some considerations

In a general framework, the number r should not be too high, otherwise

the forecasted observations would be too far from the ones used for mod-

elling the series. On the other hand, it should neither be too low, given

the need to analyse as much information possible. From this perspective,

in the original paper, the authors suggest to consider r = 3 in the case

of monthly series.

When applied to the preliminary series and to the correspondent results

of a reconciliation technique, it appears natural to consider r equal to

the number of periods which are extrapolated.

When a given observed value falls outside the interval, it may be classified

as an outlier. The idea is that, as the dynamics and the outliers of the

preliminary series should be the same, this methodology is applied to

both the preliminary and the reconciled estimates, and the results are

checked whether they are the same. If one or more outliers are observed

in the preliminary series, but not in the reconciled series (or vice versa),

then the reconciliation performed is not considered as being satisfactory.

Information about the type of the identified outlier is given by looking

at all the r intervals together.
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Three different cases, regarding additive outliers, transitory changes and

level shifts are considered in this study:

• If in a given period t?+h?, the observed value is outside the interval,

while all the other r − 1 observed values are inside the respective

intervals, then the observed value at time t? + h? is considered as

an additive outlier.

• If in the given periods t?+h? and t?+h?+1, the observed values are

outside the respective intervals on the same side, but the observed

value at time t?+h?+2 is inside its respective the interval, then the

observed value at time t? + h? is classified as a transitory change.

• If, starting from a given period t? + h?, all the observed values are

outside the respective intervals on the same side, then the observed

value at time t? + h? is classified as a level shift.

Further improvements to the methodology may include the use of a mul-

tivariate model for a group of series and changing the way of setting

up the forecast intervals, which could be done by considering just one

observation ahead, and thus changing the number of observations in the

model for each h.

4.3 Simulations

A simulation can be broadly defined as an imitation of a system (Robin-

son, 2014). A simulation predicts the performance of an operations sys-
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tem under a specific set of inputs. As such, simulation is an experimental

approach to modelling, that is, a ”what-if” analysis tool, and should be

seen as a form of decision support system with the aim of finding an

optimum scenario.

Simulation models are able to explicitly represent the variability, inter-

connectedness and complexity of a system, such as a reconciliation prob-

lem. As a result, with a simulation it is possible to predict a system

performance, to compare alternative system designs and to determine

the effect of alternative policies on the system performance.

In this section, simulations are carried out in order to explore the be-

haviours of two-step reconciliation practices, and especially to evaluate

their performances when changing the temporal disaggregation technique

applied in the first step.

4.3.1 Scheme

Five different schemes have been created for simulating different cases

of reconciliation. In particular, amongst all possible dimensions which

could be taken into account, two aspects of the problem are here consid-

ered: the size of the series, and the size of the discrepancies between the

preliminary series and the constraints.

The procedure for simulating the reconciliation problem follows four

steps:
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1. Creating sets of four monthly series which follow a seasonal ARIMA

(1, 1, 0)(0, 1, 0)12 model, using random significant coefficients and

relative sizes changing according to the schemes. The series span

is 15 years and 9 months, in order to allow analysis for the extrap-

olation.

2. Aggregating the time series created in the first step, to obtain the

temporal constraints.

3. Calculating the total series by summing up the series created in

the first step, in order to obtain the contemporaneous constraints.

4. Creating preliminary time series by artificially increasing the series

created in the first step. The increasing factor is chosen randomly

in a relatively small interval for all observations of each time series.

The size of the factor changes according to the schemes.

The procedure, done using R (R Core Team, 2017), has been repeated

in order to create 100 systems, of four time series each, to be reconciled.

Once created, the systems are than reconciled in JEcotrim.

The simulation schemes are presented in Table 4.1. The discrepancies

inserted have to always be considered as averages, as they are randomly

fluctuating between plus and minus one percentage extra point.

The R code used for generating the series for scheme 1A is shown in the

box below. A very similar code is used for the other schemes.
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## Ca l l i n g t h e l i b r a r y

l ibrary ( f o r e c a s t )

l ibrary ( t imeSe r i e s )

## Se t t i n g t h e seed f o r r e p l i c a t i n g t h e random numbers

set . seed (101)

## I n i t i a t i n g t h e matr ix w i th t h e q u a r t e r l y s e r i e s

sy s t <− 100

n s e r i e s <− 4∗ sy s t

Xquart <− matrix (nrow=189 ,ncol=n s e r i e s )

Xprel <− matrix (nrow=189 ,ncol=ns e r i e s )

## Crea t ing t h e v e c t o r w i th t h e ARIMA c o e f f i c i e n t s , in i n t e r v a l s [ a , b ] or [ c , d

]

nco e f f <− 4∗ sy s t

par <− numeric ( n c o e f f )

a = −0.9

b = −0.5

c = 0.5

d = 0.9

for ( i in 1 : n c o e f f ){

g <− runif (1 , 0 , b−a+d−c )

i f ( g < (b−a ) ){

par [ i ] <− a + g

} else{

par [ i ] <− c + g − (b−a )

}

}

## I n i t i a t i n g t h e s i z e o f t h e s e r i e s o f t h e sys tem f o r scheme 1A

s i z <− numeric ( n s e r i e s )

for ( i in 1 : n s e r i e s ){

s i z [ 4∗ i −3] <− 5000

s i z [ 4∗ i −2] <− 5000

s i z [ 4∗ i −1] <− 5000

s i z [ 4∗ i ] <− 5000

}

## Crea t ing t h e sys tem o f t ime s e r i e s u s ing a i r l i n e models

for ( i in 1 : n s e r i e s ){

model1 <− Arima ( ts (rnorm(189)+s i z [ i ] , f r e q =12) , order=c (1 , 1 , 0 ) , s ea sona l=c

(0 , 1 , 0 ) , f i x ed=c ( phi=par [ i ] ) )

model1 [ 2 ] <− 400

Xquart [ , i ] <− s imulate (model1 , nsim=189)

}

Xquart = ts (Xquart , frequency=12, start=2001)

## Ca l c u l a t i n g t h e annual c o n s t r a i n t s
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Y0 <− aggregate (Xquart , nfrequency=1)

## Ca l c u l a t i n g t h e contemporaneous c o n s t r a i n t s

Zquart <− matrix (nrow=189 ,ncol=sys t )

for ( i in 1 : sy s t ){

Zquart [ , i ] <− Xquart [ , 4∗ i−3]+Xquart [ , 4∗ i−2]+Xquart [ , 4∗ i−1]+Xquart [ , 4∗ i ]

}

Zquart = ts ( Zquart , frequency=12, start=2001)

## Simu la t i n g t h e p r e l im ina r y s e r i e s f o r scheme 1A

rand <− matrix (nrow=189 ,ncol=ns e r i e s )

rand [ , seq (1 , n s e r i e s , 4) ] <− runif (189∗( n s e r i e s /4) , 1 . 09 , 1 . 11 )

rand [ , seq (2 , n s e r i e s , 4) ] <− runif (189∗( n s e r i e s /4) , 1 . 09 , 1 . 11 )

rand [ , seq (3 , n s e r i e s , 4) ] <− runif (189∗( n s e r i e s /4) , 1 . 09 , 1 . 11 )

rand [ , seq (4 , n s e r i e s , 4) ] <− runif (189∗( n s e r i e s /4) , 1 . 09 , 1 . 11 )

Xprel <− Xquart ∗ rand

Table 4.1: Simulation schemes

Schemes S1 S2 S3 S4

Size

A1 25% 25% 25% 25%

A2 25% 25% 25% 25%

B1 40% 40% 10% 10%

B2 40% 40% 10% 10%

B3 40% 40% 10% 10%

Discrepancies

A1 9-11% 9-11% 9-11% 9-11%

A2 9-11% 9-11% 1-3% 1-3%

B1 9-11% 9-11% 9-11% 9-11%

B2 1-3% 1-3% 9-11% 9-11%

B3 9-11% 9-11% 1-3% 1-3%
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4.3.2 Results

In order to read the results of the simulations, it is important to clarify

that according to the way the schemes are built, by using discrepancies

with a fixed average, they should generate results which are very similar

in all the four methods applied. From this perspective, even very small

differences in the results are important for determining which approach

generates best results.

The results for the five schemes are presented in Tables 4.2, 4.3, 4.4,

4.5 and 4.6 for the whole exercise and for the extrapolations only. Very

extreme results have been eliminated from the analysis because they were

simply generated by values very close to zero, which were exploiting the

ratios.

Although it is clear that in all the cases the four different combinations

of methods for the first and the second steps are performing well, hence

are all reliable approaches, some differences are still observable.

In terms of growth rates, the Quenneville-Rancourt (QR) approach is

always performing worse than the Di Fonzo-Marini (FM) approach. This

is particularly true for schemes 2A, 2B and 2C, where the sizes of the

series are different and the QR approach has more difficulties to keep

the size of the growth rates for the smaller series. This is evident since

the method is the worst performing in terms of signs of the growth rates

(C1) for scheme 2B, where the discrepancies assigned to the small series

are big, while the discrepancies in the big series are small.
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Regarding the differences between the Chow-Lin (CL) and the modified

Denton (PFD) methods, it is clear that by applying the CL method, the

results of the extrapolations are always better. This is again particularly

true for schemes 2A, 2B and 2C, as the sizes of the series are not the

same, hence the CL method manages to get better extrapolated values

(i.e. closer to fulfil the contemporaneous constraints).

Similar conclusions could be made by looking at the boxplots of the

results, which are shown in Chart 4.1 for scheme 1A, in Charts 4.2 and

4.3 for scheme 1B, in Chart 4.4 for scheme 2A, in Charts 4.5 and 4.6 for

scheme 2B and in Charts 4.7 and 4.8 for scheme 2C. Two different charts

are needed if the sizes of the discrepancies amongst the four series of the

system have been assigned differently.

The results obtained by using the Chow-Lin approach in the first step are

slightly better in terms of volatility, and the lower parts of the boxes are

always smaller than the higher parts (apart from the small discrepancies

of scheme 1B). Additionally, the Denton method shows more extreme

values than the Chow-Lin method, which is therefore more stable. No

big differences are visible in the comparison between the results of the

Quenneville-Rancourt and the Di Fonzo-Marini methods.



Validation 121

Table 4.2: Simulations results: scheme 1A

Scheme 1A
Chow-Lin Denton PFD

QR FM QR FM

Complete

MeanAPD 9.08% 9.08% 9.09% 9.09%

MeanSPD 9.09% 9.09% 9.09% 9.09%

MeanAPDG 0.33% 0.29% 0.32% 0.28%

MeanSPDG 0.49% 0.46% 0.41% 0.36%

C1 92.24% 92.30% 92.33% 92.41%

Extrapolation

MeanAPD 9.10% 9.10% 9.16% 9.13%

MeanSPD 9.11% 9.10% 9.18% 9.13%

MeanAPDG 0.37% 0.28% 0.36% 0.27%

MeanSPDG 0.45% 0.38% 0.45% 0.38%

C1 93.83% 93.83% 93.52% 93.52%

Table 4.3: Simulations results: scheme 1B

Scheme 1B
Chow-Lin Denton PFD

QR FM QR FM

Complete

MeanAPD 5.52% 5.52% 5.52% 5.52%

MeanSPD 5.53% 5.53% 5.54% 5.53%

MeanAPDG 0.34% 0.30% 0.33% 0.29%

MeanSPDG 0.51% 0.49% 0.42% 0.37%

C1 92.12% 92.24% 92.17% 92.27%

Extrapolation

MeanAPD 5.54% 5.53% 5.60% 5.57%

MeanSPD 6.59% 6.58% 6.67% 6.61%

MeanAPDG 0.38% 0.29% 0.38% 0.28%

MeanSPDG 0.47% 0.40% 0.47% 0.40%

C1 92.90% 93.21% 93.21% 93.21%
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Table 4.4: Simulations results: scheme 2A

Scheme 2A
Chow-Lin Denton PFD

QR FM QR FM

Complete

MeanAPD 9.08% 9.08% 9.09% 9.09%

MeanSPD 9.09% 9.09% 9.09% 9.09%

MeanAPDG 0.36% 0.27% 0.35% 0.26%

MeanSPDG 0.52% 0.43% 0.44% 0.32%

C1 87.13% 88.50% 87.22% 88.45%

Extrapolation

MeanAPD 9.09% 9.08% 9.17% 9.17%

MeanSPD 9.09% 9.09% 9.18% 9.18%

MeanAPDG 0.38% 0.28% 0.38% 0.27%

MeanSPDG 0.46% 0.39% 0.46% 0.39%

C1 90.12% 90.12% 90.12% 89.81%

Table 4.5: Simulations results: scheme 2B

Scheme 2B
Chow-Lin Denton PFD

QR FM QR FM

Complete

MeanAPD 5.52% 5.52% 5.52% 5.52%

MeanSPD 5.53% 5.54% 5.54% 5.53%

MeanAPDG 0.39% 0.28% 0.38% 0.27%

MeanSPDG 0.55% 0.45% 0.48% 0.34%

C1 86.60% 87.99% 86.47% 87.96%

Extrapolation

MeanAPD 5.52% 5.52% 5.61% 5.61%

MeanSPD 6.58% 6.58% 6.69% 6.68%

MeanAPDG 0.41% 0.30% 0.40% 0.29%

MeanSPDG 0.49% 0.41% 0.49% 0.42%

C1 89.20% 89.20% 88.27% 88.27%
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Table 4.6: Simulations results: scheme 2C

Scheme 2C
Chow-Lin Denton PFD

QR FM QR FM

Complete

MeanAPD 5.52% 5.52% 5.52% 5.52%

MeanSPD 5.53% 5.53% 5.54% 5.53%

MeanAPDG 0.36% 0.27% 0.36% 0.26%

MeanSPDG 0.53% 0.44% 0.44% 0.32%

C1 87.16% 88.34% 87.19% 88.46%

Extrapolation

MeanAPD 5.52% 5.52% 5.61% 5.61%

MeanSPD 6.58% 6.58% 6.64% 6.65%

MeanAPDG 0.38% 0.28% 0.38% 0.28%

MeanSPDG 0.46% 0.39% 0.46% 0.39%

C1 89.51% 89.20% 89.20% 88.89%

Figure 4.1: APD: boxplots for scheme 1A
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Figure 4.2: APD: boxplots for scheme 1B, small discrepancies

Figure 4.3: APD: boxplots for scheme 1B, big discrepancies
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Figure 4.4: APD: boxplots for scheme 2A

Figure 4.5: APD: boxplots for scheme 2B, small discrepancies
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Figure 4.6: APD: boxplots for scheme 2B, big discrepancies

Figure 4.7: APD: boxplots for scheme 2C, small discrepancies
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Figure 4.8: APD: boxplots for scheme 2C, big discrepancies

4.4 Conclusions

Validation and assessment criteria are of great importance when eval-

uating the performances of a given methodology and when comparing

different methodologies. This is also true for reconciliation techniques.

In this chapter, a number of indices which measure the distance between

the preliminary and the reconciled series have been presented, taking

into account different aspects such as levels, movements and volatility

of the series. Apart from computing these indices on single series and

on a single system of time series, it is also possible to do so on a set of

systems, giving a single evaluation value (for a given aspect) to the whole

problem. These indices are fundamental tools for evaluating the results

of the reconciliation techniques.
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An innovative validation assessment has also been presented, which could

be seen as a generic tool for detecting outliers in the last observations of

the time series. Such tool is particularly helpful in order to evaluate the

performances of the extrapolations. Outliers should not be present in the

extrapolated reconciled results, unless they have already been observed

in the related (preliminary) series.

The simulations performed on the different two-step reconciliation prac-

tices have shown that the possibility to choose among different methods

in both the first and the second step could help the user to obtain bet-

ter results. In particular, in the first step, the CL method is generating

better results for the extrapolations than the PFD method, while in the

second step the FM method performs slightly better than the QR method

in terms of growth rates. From this point of view, it seems that the two-

step reconciliation procedure which is performing better is the one using

the CL method in the first step and the FM method in the second step.

However, this is not always true, and it should always depend on the

situation and on the choice of the user. For example, in the case of

estimating missing back data at HF level, the user might not need to

extrapolate any data, and thus could prefer to use the PFD method in

the first step.

In addition, when only few LF values are available, the performance of

the CL model could be poor (or it could even be impossible to estimate

the values), which would increase the risk of generating big revisions each

time a new LF observation is available.



Validation 129

Finally, the user might need to focus mainly on the biggest items of the

system to be reconciled, leaving the smaller variables with worse results

than the bigger ones, and thus preferring the use of the QR method in

the second step.





Chapter 5

Empirical applications

The innovative two-step reconciliation technique described in Chapter 3

is here applied in two different empirical case studies, and it is compared

to the original two-step methods.

The first empirical application is performed on a relatively small sized

system of time series, which is the directly seasonally adjusted European

Union industrial production index. This index series is the aggregation

of the 28 indices of the European Union’s member states. This is a

typical example of a reconciliation problem, where the directly adjusted

benchmarked aggregated series is the contemporaneous constraint, and

the annual totals of the original member states series are the temporal

constraints.

The second application is medium-large sized. The euro area quarterly

sector accounts are calculated in such a way that the aggregation process

131
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is not a simple sum of the national components. Many inconsistencies

arise after such a process, meaning that accounting relationships between

the variables are not fulfilled. Moreover, in many cases, the quarterly

data are not in line with the corresponding annual figures, generating

a reconciliation problem. As more nested contemporaneous constraints

are present, the cascade approach will be used. This is a complex recon-

ciliation problem which is treated with a partial ad hoc balancing of the

accounts.

5.1 Industrial production index

The industrial production index (IPI, sometimes also called industrial

output index or industrial volume index) is a business cycle indicator

which measures monthly changes in the price-adjusted output of industry

(mining and quarrying; manufacturing; electricity, gas, steam and air

conditioning supply).

It is one of the most important short-term statistics indicators. It is

used to identify turning points in the economic development in the early

stages, and to assess the future development of GDP. For this purpose, at

the European level it is available on a monthly basis, in a detailed activity

breakdown and with a rather short delay (1 month and 10 days).

The objective of the production index is to measure changes in the volume

of output at close and regular intervals, normally monthly. It provides a

measure of the volume trend in value added over a given reference period.
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The production index is a theoretical measure that must be approxi-

mated by practical measures. Value added at basic prices can be calcu-

lated from turnover (excluding VAT and other similar deductible taxes

directly linked to turnover), adding capitalised production, other operat-

ing income and the changes in stocks, subtracting purchases of goods and

services and the difference between taxes on products which are linked

to turnover but not deductible and any subsidies on products received.

More details about how the IPI is compiled in the European Union coun-

tries are available on the Commission Regulation 1503/2006.2

5.1.1 Description of the problem

Eurostat requires European Union member states to transmit calendar

adjusted data for the IPI. Additionally, member states are encouraged

to transmit seasonally adjusted indices. If they do not, Eurostat calcu-

lates the seasonally adjusted indices using TRAMO/SEATS method in

JDemetra+ v. 2.0.0 software for the individual member states.

In 2012, the method for seasonal adjustment of European Union (EU28)

IPI data was changed from a direct to an indirect approach.

Therefore, the European indices are currently calculated from national

indices, taking into account the relative share of each member state in

the appropriate geographical aggregate, for the gross and calendar ad-

justed forms. This is done at each level of the activity classification.

2http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1503.
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Table 5.1: European Union weights for aggregating the IPI

Country Weight Country Weight Country Weight

Belgium 2.92 Croatia 0.39 Poland 3.63

Bulgaria 0.32 Italy 12.39 Portugal 1.19

Czech Rep. 1.94 Cyprus 0.08 Romania 1.01

Denmark 1.88 Latvia 0.11 Slovenia 0.37

Germany 27.18 Lithuania 0.16 Slovakia 0.65

Estonia 0.13 Luxembourg 0.14 Finland 1.63

Ireland 1.77 Hungary 1.06 Sweden 3.09

Greece 1.08 Malta 0.04 UK 11.88

Spain 6.66 Netherlands 3.97 EA19 74.80

France 11.61 Austria 2.72 EU28 100.00

In other words, seasonally adjusted series for the European aggregates

are calculated from corresponding national series (geographically indirect

seasonal adjustment).

Each member state’s share in the European aggregates (European Union

or euro area), in terms of weights, is given for each activity or group of

activities. The weights by country for the total industry are given in

Table 5.1.

The main reason for which the European statistical office decided to

move towards an indirect geographical approach is to achieve consis-

tency. However, without benchmarking the results obtained at countries

level, the consistency is only achieved according to the contemporane-

ous constraint and not according to the temporal constraints. Moreover,

by doing this Eurostat gives more importance to the data adjusted at

country level then to the aggregates data.
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Basically, the aggregates will be different from the direct adjusted series.

From this point of view, the adjustment is not done at the level of the

aggregated series, but at the level of the countries’ data.

A different approach is possible. The European IPI series could be ad-

justed directly and benchmarked according to either the modified Denton

approach, or to a regression-based technique. Subsequently, the system of

time series could be reconciled by applying a two-step method, choosing

between the modified Denton approach and a regression-based approach

in the first step, and between the Quenneville-Rancourt method and the

Di Fonzo-Marini method in the second step.

The index variables are compiled at monthly level, and comprehensive

data are available from January 2000 to November 2016.3 A first im-

portant consideration is that due to the fact that data are available till

November, a big number of monthly observations (11) is to be extrapo-

lated in the first step of the procedure. The complete set of dimensions

for the IPI reconciliation problem is expressed in Table 5.2.

For the purpose of this exercise, the calendar adjusted series published

by Eurostat have been seasonally adjusted, instead of using the season-

ally adjusted series published by the European statistical office. This

has been done using TRAMO/SEATS as available on the JDemetra+

2.1.0. A complete automatic modelling has been chosen (without cal-

endar effects, as the series are already calendar adjusted), with manual

intervention for the cases where the results were not satisfactory.

3Industrial production data have been downloaded in January 2017 from the Eu-
rostat database (http://ec.europa.eu/eurostat/data/database).

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
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Table 5.2: Dimensions of the IPI reconciliation

Dimension Notation Value

Type of variables type INDEX

Number of LF observations N 16

Temporal aggregation order s 12

Number of HF observations n 203

Number of extrapolated observations n− sN 11

Number of variables m 28

Number of accounting relationships k 1

5.1.2 Results

Different two-step reconciliation methods have been applied to the IPI

case, varying the methods used in both the first and the second step. In

particular, four different combinations have been performed by using the

modified Denton PFD (PFD) or the Chow-Lin (CL) approaches in the

first step, and the Quenneville-Rancourt (QR) or the Di Fonzo-Marini

(FM) methods in the second step.

The first important aspect of such reconciliation problem is that the

discrepancies to be distributed are very small, which is usual when rec-

onciling seasonally adjusted data.

Detailed results of the mean squared percentage differences by country

are shown in Table 5.3. From the table it is evident that the series

which have been adjusted the most are the indices of Germany, Italy,

UK and France, which are the four countries with the highest weights in
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the system.

While it is clear that there are almost no differences between the four

methods used, it is also important to note that Chow-Lin always performs

equal or very slightly better than Denton. The only case where this is

not true is for the Netherlands, where if the approach QR is applied in

the second step, the Denton method performs slightly better than the

Chow-Lin method. Moreover, for Ireland and Slovakia, the Chow-Lin

method performs definitely better than the Denton method.

No real differences have been observed between the Quenneville-Rancourt

and the Di Fonzo-Marini methods. This is mainly because the bench-

marked series obtained after the first step are already very close to sat-

isfying also the contemporaneous constraints, resulting in very small ad-

justments in the second step.

The statistics for the whole system are presented in Table 5.4.

Once again, it is clear that the results are very similar for all combinations

of the methods in the two steps. However, the regression-based approach

has always equal or slightly better results than the Denton approach.

The weighted statistics are much higher than the non-weighted ones.

This is because, as shown in Table 5.3, the countries with higher weights

have been adjusted more than the countries with lower weights.

Chart 5.1 shows the mean absolute percentage differences of the total

EU28, obtained by using the the Di Fonzo-Marini approach in the sec-
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ond step and Chow-Lin (CL-FM) or modified Denton PFD (PFD-FM)

methods in the first step. Similar results have been obtained by apply-

ing the Quenneville-Rancourt method in the second step. It is clear from

the chart that the differences between the two approaches are very small,

and that they are basically concentrated on the last periods of the series,

where the figures are extrapolated.

In order to compare the performances of the extrapolation for the various

methods, the same statistics are also reported in Table 5.5 for the extrap-

olated data only. Once again all the statistics are equal or better in the

case of the Chow-Lin approach. However, although they are very low, on

the levels, the results obtained using the Chow-Lin method are clearly

better than the ones obtained by using the Denton method. Again, no

real differences have been observed between the Quenneville-Rancourt

and the Di Fonzo-Marini methods.

Finally, a methodology for outlier detection has been applied as described

in Chapter 4, in order to check whether the outliers detected in the ex-

trapolation span of the preliminary series are the same as those detected

in the reconciled series. Table 5.6 presents the detailed results obtained

for those observations which are flagged as outliers in the preliminary se-

ries but not in the reconciled estimates, or vice-versa. Such inconsistency

has been noted in three observations when using the Chow-Lin method,

and in four observations when using the Denton method.
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Table 5.3: Mean SPD by country

Country
Chow-Lin Denton PFD

QR FM QR FM

Belgium 0.07% 0.07% 0.07% 0.07%

Bulgaria 0.12% 0.12% 0.12% 0.12%

Czech Republic 0.06% 0.06% 0.10% 0.10%

Denmark 0.06% 0.07% 0.07% 0.07%

Germany 0.60% 0.59% 0.61% 0.60%

Estonia 0.06% 0.06% 0.07% 0.07%

Ireland 0.10% 0.10% 0.26% 0.26%

Greece 0.05% 0.06% 0.05% 0.06%

Spain 0.19% 0.20% 0.19% 0.20%

France 0.26% 0.27% 0.27% 0.27%

Croatia 0.06% 0.06% 0.07% 0.07%

Italy 0.37% 0.38% 0.38% 0.38%

Cyprus 0.12% 0.12% 0.12% 0.12%

Latvia 0.17% 0.17% 0.17% 0.17%

Lithuania 0.03% 0.03% 0.06% 0.06%

Luxembourg 0.07% 0.07% 0.07% 0.07%

Hungary 0.09% 0.09% 0.10% 0.10%

Malta 0.12% 0.12% 0.13% 0.13%

Netherlands 0.14% 0.13% 0.13% 0.13%

Austria 0.09% 0.09% 0.09% 0.09%

Poland 0.09% 0.09% 0.10% 0.09%

Portugal 0.12% 0.12% 0.12% 0.12%

Romania 0.11% 0.11% 0.12% 0.12%

Slovenia 0.14% 0.14% 0.14% 0.14%

Slovakia 0.20% 0.20% 0.41% 0.41%

Finland 0.22% 0.22% 0.22% 0.22%

Sweden 0.12% 0.12% 0.12% 0.12%

United Kingdom 0.26% 0.26% 0.27% 0.27%
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Table 5.4: Statistics of the IPI problem

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 0.12% 0.12% 0.12% 0.12%

MeanSPD 0.19% 0.19% 0.21% 0.21%

MeanAPDG 0.06% 0.06% 0.06% 0.06%

MeanSPDG 0.14% 0.14% 0.14% 0.14%

C1 98.51% 98.53% 98.51% 98.46%

MeanWAPD 0.84% 0.83% 0.85% 0.84%

MeanWSPD 0.70% 0.70% 0.71% 0.71%

MeanWAPDG 0.66% 0.66% 0.67% 0.67%

MeanWSPDG 0.61% 0.61% 0.62% 0.61%

Table 5.5: Statistics of the IPI extrapolations

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 0.11% 0.11% 0.23% 0.23%

MeanSPD 0.17% 0.17% 0.40% 0.40%

MeanAPDG 0.07% 0.07% 0.09% 0.08%

MeanSPDG 0.14% 0.13% 0.15% 0.15%

C1 97.73% 97.73% 97.73% 97.73%

MeanWAPD 0.78% 0.78% 0.94% 0.94%

MeanWSPD 0.60% 0.61% 0.73% 0.73%

MeanWAPDG 0.85% 0.85% 0.89% 0.89%

MeanWSPDG 0.60% 0.61% 0.62% 0.63%
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Figure 5.1: Mean APD for the total EU28
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Table 5.6: Outlier consistency for the IPI extrapolations

Observation
Chow-Lin Denton PFD

QR FM QR FM

IE M5 3 3 7 7

HR M11 7 7 7 7

UK M6 7 7 7 7

UK M8 7 7 7 7

5.1.3 An alternative approach

In order to obtain the reconciled figures of the European Union, a dif-

ferent solution can be the use of a mixed approach for the seasonal ad-

justment of the 28 member states, choosing the countries to be adjusted

together according to the reccomendations of Eurostat (2015). This can

be easily done by applying the test proposed in Chapter 3, so that groups

of series with the same seasonal patterns are selected.

Among all the possible groups which could have been selected by applying

the test iteratively on all possible combinations of countries, in this case

the combinations which minimise the number of groups have been chosen.

The results have generated a total of seven groups, four of which are

composed of single series, since their seasonal patterns are different from

all the other series: Italy, Netherlands, Poland and the United Kingdom.

The other three groups are composed as follows (the total weights of the

groups are indicated in parenthesis):

1. AGG1 (35.12%): Belgium, Bulgaria, Czech Republic, Germany,
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Greece, Croatia, Latvia, Lithuania and Romania.

2. AGG2 (19.78%): Denmark, Estonia, France, Luxembourg, Hun-

gary, Malta, Austria, Portugal, Slovenia and Slovakia.

3. AGG3 (13.23%): Ireland, Spain, Cyprus, Finland and Sweden.

As all countries have to be adjusted, the problem becomes a hierarchi-

cal reconciliation problem, whereby the three reconciled series of each

group are the results of the first layer, and thus, following the approach

described in Chapter 3, the contemporaneous constraints of the series in

the second layer. The overall hierarchical chart is shown in Chart 5.2.

The results obtained by country, including the ones obtained on the three

groups, are listed in Table 5.7. While it is evident that in some cases the

results are different from the ones obtained by using the indirect method

for seasonal adjustment, it is still evident that the results obtained by

using the Chow-Lin approach in the first step are always better than the

ones obtained when using the Denton method.

Finally, the overall statistics of the problem are shown in Table 5.8, while

the statistics of the extrapolations are shown in Table 5.9. In order to

read the tables it is important to note that the weighted statistics are

not directly comparable to the ones derived when the indirect approach

was used, since the number of variables of the reconciliation problem is

different.

Overall, the results obtained by applying the mixed approach to the sea-

sonal adjustment process are worse than the results obtained by applying
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Figure 5.2: Hierarchical chart of the IPI (mixed approach)

the indirect approach. It is also evident that the results obtained by using

the Chow-Lin method in the first step are better than the ones obtained

when using the Denton method. No clear distinction can be done for

the methodology applied in the second step. However, the discrepancies

to the preliminary series are still very small, and thus, in general, the

methods applied produce good results.
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Table 5.7: Mean SPD by country (mixed approach)

Country
Chow-Lin Denton PFD

QR FM QR FM

Belgium 0.07% 0.07% 0.08% 0.07%

Bulgaria 0.12% 0.12% 0.12% 0.12%

Czech Republic 0.06% 0.06% 0.11% 0.11%

Denmark 0.09% 0.09% 0.09% 0.09%

Germany 0.64% 0.63% 0.65% 0.64%

Estonia 0.05% 0.05% 0.07% 0.07%

Ireland 0.15% 0.17% 0.26% 0.26%

Greece 0.05% 0.05% 0.06% 0.06%

Spain 0.49% 0.49% 0.50% 0.50%

France 0.44% 0.44% 0.44% 0.45%

Croatia 0.06% 0.06% 0.07% 0.07%

Italy 0.31% 0.31% 0.31% 0.31%

Cyprus 0.12% 0.12% 0.12% 0.12%

Latvia 0.16% 0.16% 0.17% 0.17%

Lithuania 0.03% 0.03% 0.06% 0.06%

Luxembourg 0.06% 0.06% 0.07% 0.07%

Hungary 0.09% 0.09% 0.10% 0.10%

Malta 0.12% 0.12% 0.13% 0.13%

Netherlands 0.11% 0.11% 0.12% 0.12%

Austria 0.12% 0.12% 0.12% 0.12%

Poland 0.07% 0.07% 0.08% 0.07%

Portugal 0.12% 0.12% 0.12% 0.13%

Romania 0.11% 0.11% 0.12% 0.12%

Slovenia 0.13% 0.13% 0.14% 0.14%

Slovakia 0.20% 0.20% 0.41% 0.41%

Finland 0.24% 0.24% 0.25% 0.25%

Sweden 0.24% 0.23% 0.24% 0.24%

United Kingdom 0.17% 0.17% 0.17% 0.17%

AGG1 0.50% 0.49% 0.50% 0.49%

AGG2 0.29% 0.29% 0.29% 0.29%

AGG3 0.19% 0.20% 0.19% 0.20%
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Table 5.8: Statistics of the IPI problem (mixed approach)

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 0.17% 0.17% 0.18% 0.18%

MeanSPD 0.27% 0.27% 0.27% 0.27%

MeanAPDG 0.12% 0.13% 0.12% 0.12%

MeanSPDG 0.21% 0.21% 0.21% 0.21%

C1 96.53% 96.39% 96.53% 96.32%

MeanWAPD 3.35% 3.34% 3.37% 3.36%

MeanWSPD 1.33% 1.32% 1.34% 1.33%

MeanWAPDG 2.64% 2.63% 2.63% 2.62%

MeanWSPDG 1.08% 1.08% 1.08% 1.07%

By looking to the results on the extrapolations, it is clear that they are

worse when applying the Chow-Lin approach in the first step than when

using the mixed approach On the other hand, when applying the Denton

approach, the results are better, and therefore the gap between the two

methods is reduced.

The results are also confirmed by Chart 5.3, which shows the mean APD

for the total EU28 in the case the mixed approach has been applied for

the seasonal adjustment procedure.



Empirical applications 147

Figure 5.3: Mean APD for the total EU28 (mixed approach)
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Table 5.9: Statistics of the IPI extrapolations (mixed approach)

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 0.14% 0.14% 0.18% 0.17%

MeanSPD 0.21% 0.21% 0.23% 0.23%

MeanAPDG 0.15% 0.15% 0.15% 0.15%

MeanSPDG 0.21% 0.21% 0.21% 0.21%

C1 97.40% 97.40% 97.40% 97.40%

MeanWAPD 2.90% 2.90% 3.12% 3.12%

MeanWSPD 1.07% 1.08% 1.12% 1.14%

MeanWAPDG 3.27% 3.26% 3.30% 3.29%

MeanWSPDG 1.07% 1.08% 1.09% 1.10%

5.2 The European sector accounts

European sector accounts group together economic subjects with similar

behaviour into institutional sectors, such as:

• Non-financial corporations (S11).

• Financial corporations (S12).

• Government (S13).

• Households and non-profit institutions serving households (S1M).

• Rest of the world (S2).
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Additionally, there are flows belonging to the so called unspecified total

economy (S1N), while the total economy (S1) is normally given by the

sum of the other domestic sectors. Grouping economic subjects in this

way greatly helps to understand the functioning of the economy.

European sector accounts present a complete and consistent set of data

for all the resident sectors. Apart from providing comprehensive infor-

mation on the economic activities of the institutional sectors, they also

provide information on the interactions between these sectors and the

rest of the world.

The institutional sectors combine institutional units with broadly simi-

lar characteristics and behaviours (Eurostat, 2010): households and non-

profit institutions serving households (NPISHs), non-financial corpora-

tions, financial corporations, and the government. Transactions with

non-residents and the financial claims of residents on non-residents, or

vice versa, are recorded in the rest of the world account.

The households sector comprises of all households, and includes house-

hold firms. These cover sole proprietorships and most partnerships that

do not have an independent legal status. Hence, the households sector,

in addition to consumption, also generates output and entrepreneurial

income. In the European accounts, NPISHs, such as charities and trade

unions, are grouped with households. Their economic weight is relatively

limited. A detailed discussion about the split between the household and

the NPISH sectors is in Gregorini et al. (2016).
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The non-financial corporations sector comprises of all the private and

public corporate enterprises that produce goods or provide non-financial

services to the market.

The government sector excludes public enterprises and comprises central,

state (regional) and local government and social security funds.

The financial corporations sector comprises of all the private and public

entities engaged in financial intermediation, such as monetary financial

institutions (broadly equivalent to banks), investment funds, insurance

corporations and pension funds.

Complete and consistent quarterly rest of the world accounts for the

euro area and the European Union (EU) are compiled. This means that

cross-border transactions and financial claims amongst the euro area/EU

member states have been removed from the rest of the world accounts

and, in particular, the asymmetries in the bilateral trade statistics have

been eliminated. Consequently, imports and exports are much smaller

than they would have been if a simple aggregation of the national data

had been used. About half of the external trade of the individual member

states is within the euro area/EU.

5.2.1 Description of the problem

As already mentioned, the European Quarterly Sector Accounts (QSA)

are compiled in such a way that they are not a simple sum of the coun-

tries’ data. This is because of different reasons:
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1. Estimations:

According to the European regulation (Eurostat, 2010), the mem-

ber states whose GDP at current prices represents less than 1%

of the corresponding Union total are not obliged to transmit the

whole set of QSA data to Eurostat. Thus, these missing figures

have to be estimated in order to compile the aggregates.

Moreover, not all member states are 100% compliant with the

transmission regulation, which in facts results in more figures to

be estimated for the compilation of the aggregates.

2. General government sector:

The data for the general government sector (S13) are replaced

by the data obtained from the short-term public finance statis-

tics (STPFS) collection at aggregated level, as the countries’ data

follow a more strict validation process and are considered of higher

quality.

3. Intra flows:

It is clear that when aggregating variables related to the rest of the

world sector, a simple sum of the countries’ data would not give

the correct figures, as the definition of the rest of the world sector

changes according to the geographical area. Thus, the figures for

S2 have to be replaced by an estimation of the extra flows.

4. European institutions:

Apart from the countries, the European aggregates also include

the European institutions, which are international organisations
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belonging to the European Union. The euro area aggregates in-

clude only two institutions: the European Central Bank (ECB)

and the European Stability Mechanism (ESM), which have a rela-

tively small impact on the total.

Preliminary QSA estimates are hence obtained by summing up the coun-

tries’ data, including the estimations, replacing the S13 sector with the

STPFS aggregates, and replacing the S2 sector with a proportional al-

location of intra and extra flow according to the Balance of Payments

(BoP) statistics to the rest of the world total. In this case, only the euro

area is considered. The estimation has been performed according to sea-

sonal ARIMA models, when possible. ECB and ESM accounts have not

been included to the preliminary estimates due to their confidentiality

and their small weight in the euro area total.

Annual Sector Accounts (ASA) data are in principle available for all

the member states, although some estimations for missing data are also

needed. They could be used for benchmarking the QSA data. Because

of various reasons, like discrepancies between QSA and ASA data at

countries level, or estimations of missing data, the differences between the

annualised preliminary QSA estimates and the ASA benchmarks could

be very large.

Tables 5.10 and 5.11 contain the list of the existing QSA production vari-

ables for each sector and both uses (paid) and resources (received) sides,

while Tables 5.12 and 5.13 contain the list of the distributive variables.

The cells shaded in gray indicate when the variables do not exist, while
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the check (3) and x (7) symbols denote variables for which the European

aggregates are compiled or not, respectively. In few cases, the variables

are constrained to be equal to zero.

The first important differentiation to be done is between the production

(P) and distributive (D) transactions.

Distributive transactions need to be balanced, which means that the total

uses (pay) must be equal to the total resources (rec). For all distributive

transactions, it should be:

S1pay + S2pay = S1rec+ S2rec (5.1)

The total S1 is given by the sum of the sectors:

S1pay = S1Npay + S11pay + S12pay + S13pay + S1Mpay

S1rec = S1Nrec+ S11rec+ S12rec+ S13rec+ S1Mrec
(5.2)

Thus, equation 5.1 can be written as:

S1Npay + S11pay + S12pay + S13pay + S1Mpay + S2pay =

= S1Nrec+ S11rec+ S12rec+ S13rec+ S1Mrec+ S2rec

Or:

S1Npay + S11pay + S12pay + S1Mpay+

− S1Nrec− S11rec− S12rec− S1Mrec =

= S13rec+ S2rec− S13pay − S2pay

(5.3)
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The right elements of this last expression are actually known (as they

cannot be modified), and thus they can be used as contemporaneous

constraints. From this point of view, the balancing of the QSA data is

done by partially using an ad hoc balancing procedure.

Transactions P51C and NP are here considered together with the dis-

tributive transactions for completeness, but are actually not reconciled.

P51C has no discrepancies at all, while NP has no annual constraint.

It should be noted that equation 5.3 represents the most generic situation,

when all the variables exist for both uses and resources. Actually, in most

of the cases, equation 5.3 has less elements, as shown in Table 5.12.

Moreover, this approach is followed only for the one digit series, while

the lower digits series will be reconciled according to the hierarchical

approach shown in Chapter 3, leaving sector S12 as a residual. This

is because for non-financial sector accounts, sector S12 is often the less

interesting from an economic point of view, while more interesting indica-

tors, such as the households saving rate or the non-financial corporations

investment rate, could be computed on other sectors.

As regards to production transactions, the main equation to be consid-

ered is the so called goods and services balancing for the total economy:

P2 + P3 + P5 + P6 = P1 + P7 + D21pay −D31rec (5.4)
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The gross value added (B1G) is obtained from the countries’ data, and

it is used to derive P1 and P2:

B1G = P1− P2

So, equation 5.4 could be written as:

P3 + P5 = P1− P2 + P7− P6 + D21pay −D31rec (5.5)

Where the right part of this expression is known, and thus could be used

as contemporaneous constraints.

Once P5 is known for the total economy, the figures for the sectors are

derived by considering the values for S1 as the contemporaneous con-

straints. Once this is done, for each sector other than S13 (and S12,

which is again derived as a residual), a two-step reconciliation is applied

to the lower digit transactions:

P5 = P51G + P5M

The complete hierarchical chart for the QSA problem shown in 5.4.

Finally, it is worth mentioning that in this exercise no balancing trans-

actions have been considered. This is because the balancing transactions

can always be calculated starting from the distributive and production

transactions. Of course, different ways of proceeding are possible. For

example, the user could fix the balancing transactions and reconcile the

other variables to them.
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The QSA variables, expressed in millions of euros, are compiled at quar-

terly level, with data available from the first quarter of 1999 to the third

quarter of 2016, while ASA data are available until year 2015.4 The com-

plete set of dimensions for the QSA reconciliation problem is expressed

in Table 5.14.

5.2.2 Results

As done for the IPI problem, four different two-step reconciliation meth-

ods have been applied to the QSA case, varying the methods used in

both the first step (modified Denton PFD or Chow-Lin) and the second

step (Quenneville-Rancourt or Di Fonzo-Marini). Table 5.15 shows the

detailed mean squared percentage differences for each of the system con-

sidered, where it is clear that different systems bring to different results.

Generally (but not always), the Di Fonzo-Marini method performs better

than the Quenneville-Rancourt one, while nothing generic could be said

regarding the differences between the Chow-Lin and Denton methods.

It is also worth to note that while all discrepancies are in general terms

small, contrary to what has happened to the IPI problem (which was

one single system of time series), here the situation varies from system

to system, with discrepancies between the preliminary series and the

annual constraints which in same cases reach 15%. Moreover, it should

be noted that for some specific series, the first step of the procedure does

4QSA and ASA data have been downloaded in January 2017 from the Eurostat
database (http://ec.europa.eu/eurostat/data/database).

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
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Table 5.10: List of the QSA production variables

Code
Uses Resources

S1N S11 S12 S13 S1M S2 S1N S11 S12 S13 S1M S2

P1 7 7 7 7

P1O 7

P2 7 7 7 7

P3 3 3

P31 3 3

P32 3

P5 3 3 3 3

P51G 3 3 3 3

P5M 3 3 3 3

P6 3

P61 3

P62 3

P7 3

P71 3

P72 3

not have to be performed since the series are already benchmarked to

the annual totals.

A very interesting example, which clearly shows how the different meth-

ods perform, is given by the reconciliation of the system for the break-

down of P5 in P51G and P5M for sector S11, whose results are given

in Table 5.16, while the charts of the preliminary variables are shown in

Charts 5.5 and 5.6.

In order to interpret the results, it is important to note that the two vari-

ables of the system have quite different sizes, with P51G being quite big,

and P5M being smaller, and it alternates negative and positive values.

Moreover, the discrepancies between the quarterly preliminary series and

the annual constraints are smaller before 2009 and start increasing in the

last years.
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Figure 5.4: Hierarchical chart of the QSA problem
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Table 5.11: Codes of QSA production variables

Code Description

P1 Intermediate consumption

P1 Output

P1O Market output, output for final use and payments for other non-market output

P2 Intermediate consumption

P3 Final consumption expenditure

P31 Individual consumption expenditure

P32 Collective consumption expenditure

P5 Gross capital formation

P51G Gross fixed capital formation

P5M Changes in inventories and acquisitions less disposals of valuables

P6 Exports of goods and services

P61 Exports of goods

P62 Exports of services

P7 Imports of goods and services

P71 Imports of goods

P72 Imports of services

Charts 5.7 and 5.8 show the absolute percentage differences of the recon-

ciled results of P51G obtained using the Quenneville-Rancourt and the

Di Fonzo-Marini techniques, respectively. The two charts clearly show

that the results obtained are much better in terms of stability, when us-

ing the Chow-Lin technique in the first step. Moreover, the results of

the Denton approach deteriorate in the latest years, when the differences

between the preliminary series and the annual constraints are bigger,

creating also a problem in the extrapolated values. Finally, it could be

noted that the stability is actually higher for the results obtained using

the Di Fonzo-Marini approach in the second step.

While for P51G the results are presented according to the method applied

in the second step, the results obtained for P5M are instead reported
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Table 5.12: List of the QSA distributive variables

Code
Uses Resources

S1N S11 S12 S13 S1M S2 S1N S11 S12 S13 S1M S2

D1 3 3 3 3 3 3 3

D2 3 3 3 3 3 3 3

D21 3 3 3

D211 7

D29 3 3 3 3 3 3

D3 3 3 3 3 3 3 3

D31 3 3 3

D39 3 3 3 3 3 3

D4 3 3 3 3 3 3 3 3 3 3

D41 3 3 3 3 3 3 3 3 3 3

D4N 3 3 3 3 3 3 3 3 3 3

D42 3 3 3 3 3 3 3 3

D43 3 3 3 3 3 = 0 = 0 3

D44 = 0 3 = 0 3 3 3 3 3 3

D45 3 3 3 3 3 = 0 3 3

D41G 3 3 3 3 3 3 3 3 3 3

D5 3 3 3 3 3 3 3

D6 3 3 3 3 3 3 3 3 3 3

D61 3 3 3 3 3 3 3

D62 3 3 3 3 3 3 3

D63 3 3 3

D631 7 7

D632 7 7

D7 3 3 3 3 3 3 3 3 3 3

D71 3 3 3 3 3 3 = 0 3

D72 3 = 0 3 3 3 3 3 3

D7N 3 3 3 3 3 3 3 3 3 3

D74 7 7 7 7

D75 7 7 7 7 7 7 7 7 7 7

D76 7 7

D8 3 3 3 3 3 3 3

D9 3 3 3 3 3 3 3 3 3 3

D91 3 3 3 3 3 3

D9N 3 3 3 3 3 3 3 3 3 3

D92 7 7 7 7 7 7 7

D99 7 7 7 7 7 7 7 7 7 7

P51C 3 3 3 3 3 3 3 3

NP 3 3 3 3 3



Empirical applications 161

Table 5.13: Codes of QSA distributive variables

Code Description

D1 Compensation of employees

D2 Taxes on production and imports

D21 Taxes on products

D211 Value added type taxes (VAT)

D29 Other taxes on production

D3 Subsidies

D31 Subsidies on products

D39 Other subsidies on production

D4 Property income

D41 Interest

D4N Property income other than interest

D42 Distributed income of corporations

D43 Reinvested earnings on direct foreign investment

D44 Property income attributed to insurance policy holders

D45 Rents

D41G Total interest before FISIM allocation

D5 Current taxes on income, wealth, etc.

D6 Social contributions and benefits

D61 Net social contributions

D62 Social benefits other than social transfers in kind

D63 Social transfers in kind

D631 Social transfers in kind - non-market production

D632 Social transfers in kind - purchased market production

D7 Other current transfers

D71 Net non-life insurance premiums

D72 Non-life insurance claims

D7N Other current transfers (excl. transfers within general government)

D74 Current international cooperation

D75 Miscellaneous current transfers

D76 VAT and GNI - based EU own resources

D8 Adjustment for the change in pension entitlements

D9 Capital transfers

D91 Capital taxes

D9N Investment grants and other capital transfers

D92 Investment grants

D99 Other capital transfers

P51C Consumption of fixed capital

NP Acquisitions less disposals of non-financial non-produced assets
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Table 5.14: Dimensions of the QSA reconciliation

Dimension Notation Value

Type of variables type FLOW

Number of LF observations N 17

Temporal aggregation order s 4

Number of HF observations n 71

Number of extrapolated observations n− sN 3

Number of variables m 89

Number of accounting relationships k 28

according to the approach followed in the first step, using the Chow-

Lin method for Chart 5.9 and the modified Denton PFD method for

Chart 5.10. In this case, it is very clear that by applying the Chow-Lin

method, the results obtained are much better than when the modified

Denton PFD method is used. Moreover, by using the PFD method, the

results are again worsening in the latest periods.

These results are somehow not surprising. As the preliminary series are

not much in line with the annual benchmarks in the latest periods, the

results obtained by using the modified Denton PFD method are not very

good. This is because the Chow-Lin approach is able to capture the

autocorrelation of the series, while the Denton approach simply mathe-

matically redistributes the discrepancies according to the minimisation

function. This creates results which are more stable (less volatile) when

using the Chow-Lin technique. Moreover, the Denton approach has a

negative effect on the extrapolations, since it does not perform well if
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there is any shock in the series.

Regarding the second step, the main noticeable thing is that the quality

of the results obtained by using the Di Fonzo-Marini method are cor-

related negatively with the size of the variables. This is because the

implied reliability of the variables is exactly the same when using the

Di Fonzo-Marini technique, while it depends on the size of the variables

when using the Quenneville-Rancourt method. Consequently, by using

the Di Fonzo-Marini approach, the smaller variables will be adjusted less

than when using the Quenneville-Rancourt one.

For this reason, the user has to make a choice. If the interpretation and

the quality of all the series of the system have the same importance, then

the Di Fonzo-Marini approach should be used. Otherwise, by applying

the Quenneville-Rancourt method, the results obtained on the smaller

series would be of a lower quality than the results obtained on bigger

series.

Finally, by looking at the complete results in Table 5.17, it seems clear

that the method performing better is the one using the Chow-Lin tech-

nique in the first step and the Di Fonzo-Marini technique in the second

step.

These results are even more clear in Table 5.18, where the statistics

are calculated on extrapolated values only. Once again, the Chow-Lin

method is better indicated for dealing with the extrapolation of the data.
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Table 5.15: Mean squared percentage differences by system

System
Chow-Lin Denton PFD

QR FM QR FM

D1 0.02% 0.02% 0.02% 0.02%

D2 1.64% 1.67% 1.37% 1.37%

D3 7.99% 6.63% 7.92% 6.58%

D4 0.64% 0.62% 0.64% 0.61%

D4 S11pay 0.88% 0.83% 0.84% 0.81%

D4 S1Mpay 0.86% 0.74% 0.86% 0.74%

D4 S11rec 0.98% 0.94% 0.90% 0.84%

D4 S1Mrec 0.87% 0.79% 0.84% 0.79%

D4N S11pay 0.89% 0.79% 0.86% 0.78%

D4N S11rec 0.84% 0.77% 0.78% 0.69%

D4N S1Mrec 0.96% 0.87% 0.92% 0.86%

D41G 1.00% 0.99% 1.00% 0.99%

D5 0.95% 0.92% 0.95% 0.93%

D6 0.07% 0.07% 0.07% 0.07%

D6 S1Mrec 0.18% 0.19% 0.19% 0.19%

D7 2.35% 2.34% 2.30% 2.29%

D7 S11pay 3.18% 3.18% 3.10% 3.10%

D7 S1Mpay 3.10% 3.10% 3.10% 3.10%

D7 S11rec 4.11% 4.07% 3.93% 3.91%

D7 S1Mrec 3.95% 3.96% 3.93% 3.94%

D8 0.21% 0.21% 0.22% 0.21%

D9 3.88% 3.59% 3.79% 3.50%

D9 S11pay 0.37% 1.00% 0.37% 1.00%

D9 S1Mpay 2.22% 1.38% 2.24% 1.41%

G&S 0.89% 0.88% 0.89% 0.88%

P5 1.27% 1.24% 1.26% 1.24%

P5 S11 1.58% 1.56% 8.21% 8.54%

P5 S1M 0.25% 0.04% 0.25% 0.04%
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Figure 5.5: P51G for S11, preliminary series
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Figure 5.6: P5M for S11, preliminary series
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Figure 5.7: APD of reconciled P51G for S11, Quenneville-Rancourt
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Figure 5.8: APD of reconciled P5M for S11, Di Fonzo-Marini



Empirical applications 169

Figure 5.9: APD of reconciled P5M for S11, Chow-Lin
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Figure 5.10: APD of reconciled P5M for S11, PFD
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Table 5.16: Statistics of the P5 reconciliation in S11

Index
Chow-Lin Denton PFD

QR FM QR FM

P51G

MeanAPD 2.19% 2.18% 2.16% 2.17%

MaxAPD 3.11% 2.93% 3.28% 3.66%

MeanSPD 2.22% 2.20% 2.22% 2.22%

MeanAPDG 0.45% 0.32% 0.54% 0.52%

MaxAPDG 1.22% 0.77% 4.21% 4.97%

MeanSPDG 0.53% 0.36% 0.92% 1.02%

C1 100.00 % 100.00 % 100.00 % 100.00 %

P5M

MeanAPD 0.22% 0.01% 5.14% 5.20%

MaxAPD 0.93% 0.02% 40.46% 41.66%

MeanSPD 0.28% 0.01% 11.40% 11.87%

MeanAPDG 27.39% 0.43% 32.21% 14.43%

MaxAPDG 1766.22 % 26.11% 1710.09 % 461.74 %

MeanSPDG 211.26 % 3.13% 206.73 % 63.95%

C1 100.00 % 100.00 % 100.00 % 100.00 %

Table 5.17: Statistics of the QSA problem

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 1.17% 1.00% 1.20% 1.04%

MeanSPD 2.44% 2.20% 2.68% 2.49%

MeanAPDG 1.38% 0.66% 1.29% 0.73%

MeanSPDG 22.92% 3.62% 22.23% 7.78%

C1 97.61% 98.51% 97.61% 98.56%
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Table 5.18: Statistics of the QSA extrapolations

Index
Chow-Lin Denton PFD

QR FM QR FM

MeanAPD 1.21% 0.92% 1.62% 1.34%

MeanSPD 2.06% 1.73% 4.57% 4.62%

MeanAPDG 1.12% 0.65% 1.14% 0.65%

MeanSPDG 2.43% 1.49% 2.66% 1.54%

C1 97.80% 98.53% 98.53% 98.90%

5.3 Conclusions

In this chapter, two applications on real data sets have been presented:

a relatively small sized reconciliation problem, as well as a complex

medium-large sized one, have been handled with the use of different

two-step techniques.

A large emphasis was given to the differences in the results when a

regression-based temporal disaggregation method has been applied in-

stead of the modified Denton one. Extra focus has been given to the

effects of the extrapolation on the final results.

In the case of the industrial production index, the results have clearly

shown that the performances of the two-step reconciliation techniques

using a regression-based method in the first step, are better than when

the modified Denton method is applied, especially for the extrapolations.

These results are not entirely surprising, since many observations are

extrapolated and the developments in the last available year have been
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particularly different than the ones from the previous years, and from

the current year from which the data are extrapolated.

Similar results have been obtained by performing the reconciliation tech-

niques after using a mixed approach for seasonal adjustment.

As for the QSA case, the results differ internally to the problem, as its

complexity is quite larger than the IPI case. However, once again the

best results have been obtained by using the Chow-Lin method in the

first step and the the Di Fonzo-Marini one in the second step. Moreover,

if the Denton approach is applied in the first step, there is a risk of being

unable to capture the correct movements in the extrapolation part.

Finally, the choice between the two approaches in the second step should

be done according to the reliability of the variables. Thus, at the decision-

making stage, different aspects should probably be considered by the

user, including the needs of the data, the importance and the quality of

the series to be reconciled.





Chapter 6

Conclusions

The most used techniques for temporal disaggregation, balancing and

reconciliation have been described in detail in Chapter 2. The main

frameworks for temporal disaggregation have been developed in the sev-

enties, in the well known papers by Chow and Lin (1971) and Denton

(1971), and were improved mainly in the eighties, especially by Fernández

(1981), Litterman (1983) and Cholette (1984). These techniques are cur-

rently widely used at least across statistical offices, mainly due to their

simplicity and efficiency.

Balancing techniques date back to the first half of the last century, mainly

due to the work done by Stone et al. (1942), who initiated a framework

which is still valid and widely used. The approach to balancing, includ-

ing bi-proportional matrix balancing, such as the RAS methodology, has

than been completely formulated by Bacharach (1970). Although it is
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not a statistical approach, ad hoc balancing is often a good solution,

which could help the user in deciding on qualitative basis where discrep-

ancies should be allocated, and could also be used in combination with

quantitative statistical techniques.

The work done by the above mentioned authors is of extreme importance

and validity, and it represents the milestones of the temporal disaggrega-

tion, benchmarking and balancing techniques. Although not very recent,

these methods are still amongst the most valid and used ones. However,

they only consider one dimension, which is either the time frequencies

(temporal disaggregation) or the variables (balancing).

Reconciliation techniques manage to solve both the temporal and the

contemporaneous constraints, and therefore are to be considered as mul-

tidimensional methods. The work done in the nineties by Di Fonzo (1990)

helped to formulate a framework for reconciliation in the regression based

approach, while a more complete framework for simultaneous methods is

in Di Fonzo (2003a) and Di Fonzo and Marini (2011b). Moreover, two-

step reconciliation methods have been lately developed by Quenneville

and Rancourt (2005), followed by Di Fonzo and Marini (2011b).

In Chapter 2, a new classification of the methods described is provided.

Such innovative classification is done for temporal disaggregation, balanc-

ing and reconciliation techniques, and includes all the principal methods

developed so far.

It was only in recent years that two-step reconciliation methods have
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started to be used in the production of official statistics by national sta-

tistical institutes, and the interest keeps growing. This group of methods

are indeed a valid alternative, and could bring value added to statistical

agencies.

However, the applications have been limited to the use of a modified Den-

ton method in the first step, and in particular, the first proportionate

differences version. If on one hand, the Denton methodology is a well es-

tablished practice for dealing with benchmarking problems, on the other

hand, it has been highlighted that it has some drawbacks, especially

in the performances of the extrapolations, as well as when the results

are obtained from problematic series. This has also been verified in the

simulation exercise performed in Chapter 4 and in the two empirical ap-

plications presented in Chapter 5. For this reason, a valid alternative

is the use of regression-based techniques in the first step, and it is ac-

tually preferable in certain conditions, specifically when the user is not

sure about the relationship between the related and the target reconciled

series and when there are many observations to be extrapolated.

Such a two-step reconciliation technique, which allows the user to decide

which technique to use in both the first and the second step, has been

described in Chapter 3, together with the possibility of adjusting nested

systems of time series. If on one hand, the results of the lower layers

will depend on the results obtained at higher layers, on the other hand,

the use of such cascade approach is justified by the fact that in official

statistics the series in the lower layers are often also of a lower quality.
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From a practical point of view, three new plug-ins have been developed

in the JEcotrim tool, dealing with Chow-Lin, Fernández and Litterman,

respectively, in the first step, and allowing the user to choose between the

approaches by Quenneville-Rancourt and Di Fonzo-Marini in the second

step. The algorithms implemented in the tool are very user friendly and

therefore could help all kind of users in applying such techniques.

In order to reduce the discrepancies before the reconciliation of a system

obtained after a seasonal adjustment process, an innovative test has also

been presented. This test has been designed in order to identify com-

mon seasonal patterns in a set of time series, so that the user can have

an indication regarding at which level the seasonal adjustment is to be

performed.

Regarding the validation of the reconciliation techniques, several ways

for assessing the quality of the results have been presented in Chapter 4.

Together with a wide set of important statistics for measuring the sizes

of the distance between the preliminary and the reconciled series, a new

methodology for detecting outliers at the end of the series has been in-

troduced. Such methodology can also be seen as a validation criteria for

reconciliation techniques, since the outliers identified in the final series

should be the same as the one identified in the preliminary or related

series, in order to preserve the movements.

Moreover, a simulation study has been presented in order to verify the

validity of four possible combinations of methods between the first and
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the second step, varying the Chow-Lin and the modified Denton PFD

methods in the first step and the Quenneville-Rancourt and the Di Fonzo-

Marini methods in the second step. The results clearly showed that

all the methods are actually valid and that the possibility of choosing

amongst them in different situations would definitely help the user in

getting better results.

Finally, two empirical applications have been performed on a relatively

small sized system (the industrial production index) and on a more com-

plex medium-large sized set of systems (the quarterly sector accounts).

In particular, the results obtained in both cases have shown that from a

practical point of view, applying the Chow-Lin method in the first step

would improve the extrapolation results. Also, it seems that in all the

cases where the size of the series is not similar across variables, applying

the Di Fonzo-Marini method would lead to better overall results. How-

ever, it should still be the user to decide whether obtaining better results

for the small series is a good compromise, or if it would be enough to

focus on the big series of the systems, which might be of greater impor-

tance. In the latter case the Quenneville-Rancourt approach has to be

preferred.

Certain areas mentioned in this study could be analysed further. In par-

ticular, a comparison of the results after the first step with the structural

models methods could be envisaged, as well as regard to the simultane-

ous approaches for reconciliation. Furthermore, the simulations could be

expanded to analyse how the methods behave with the variations of dif-

ferent dimensions such as the temporal aggregation order or the length of
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the series. Moreover, different ways of producing the preliminary series

could be explored. Finally, the work done could be extended to the case

of non-linearity of the contemporaneous constraints.

The tools developed are very practical to use and could be quickly

adopted for the production of official statistics by statistical agencies,

which too often lack the methodological competence for applying more

complicate methods. Moreover, this kind of approach would definitely

be useful in tackling what can be considered as a third constraint: the

time constraint. As timeliness is one of the dimensions of quality in of-

ficial statistics (European Statistical System, 2011), it is very common

that there is literally no time for in-depth analysis when producing these

statistics (the reconciliation part of the production is often completed in

few hours), and a technique such as the two-step reconciliation approach

presented here is a very good alternative, because it could also help in

reducing the processing time, when compared to techniques such as the

simultaneous approach.

In conclusion, reconciliation techniques are of a great interest in the world

of official statistics, especially in domains such as national accounts or un-

employment, where the reconciliation of the data is normally requested.

In these cases, flexible two-step reconciliation methods can be easily im-

plemented in the production flow, improving the quality of the data in

terms of reducing the distance between the preliminary and the recon-

ciled series, and helping in improving the timeliness of the data. In

particular, using the Chow-Lin method in the first step, would improve

the quality of the results in many practical circumstances.
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Bušs, G. (2009). Comparing forecasts of Latvia’s GDP using simple sea-

sonal ARIMA models and direct versus indirect approach. In Munich

Personal RePEc Archive.

Causey, B. and Trager, M. (1982). Derivation of solution to the bench-

marking problem: Trend revision. Unpublised research notes, U.S.

Bureau of the Census.

Centoni, M. and Cubadda, G. (2011). Modelling comovements of eco-

nomic time series: a selective survey. Statistica (Bologna), 71(2):267–

294.

Chamberlin, G. (2010). Temporal disaggregation. Economic & Labour

Market Review - Methods Explained, pages 106–121.



184 Bibliography

Chatfield, C. (2001). Principles of Forecasting: A Handbook for Re-

searchers and Practitioners, chapter Prediction Intervals. J. Scott

Armstrong, Kluwer Academic.

Cholette, P. (1984). Adjusting sub-annual series to yearly benchmarks.

Survey Metholody, 10(1):35–49.

Chow, G. and Lin, A. (1971). Best linear unbiased interpolation, distri-

bution, and extrapolation of time series by related series. The Review

of Economics and Statistics, 53(4):372–375.

Ciammola, A., Di Palma, F., and Marini, M. (2005). Temporal disag-

gregation techniques of time series by related series: a comparison by

a Monte Carlo experiment. Working Papers and Studies. European

Commission.

Cochrane, D. and Orcutt, G. (1949). Application of least squares regres-

sion to relationships containing auto-correlated error terms. Journal

of the American Statistical Association, 44(245):32–61.

Cohen, B. (2007). Explaining Psychological Statistics, chapter Three-way

ANOVA, pages 688–746. John Wiley & Sons, New York.

Cohen, K., Muller, W., and Padberg, M. (1971). Autoregressive ap-

proaches to disaggregation of time series by related series data. Applied

Statistics, 20:119–129.

Cristadoro, R. and Sabbatini, R. (2000). The seasonal adjustment of the

harmonised index of consumer prices for the euro area: a comparison of



Bibliography 185

direct and indirect method. Banca d’Italia Econocmi Working Paper,

371.

Daalmans, J. and Di Fonzo, T. (2014). Denton PFD and GRP bench-

marking are friends. An empirical evaluation on Dutch supply and use

tables. Unpublished paper presented at the 22nd International Input-

Output conference.

Dagum, E. and Cholette, P. (2006). Benchmarking, Temporal Distri-

bution, and Reconciliation Methods for Time Series. Springer, New

York.

Deming, E. and Stephan, F. (1940). On a least squares adjustment of a

sampled frequency table when the expected marginal totals are known.

The Annals of Mathermatical Statistics, 11(4):427–444.

Denton, F. (1971). Adjustment of monthly or quarterly series to annual

totals: An approach based on quadratic minimization. Journal of the

American Statistical Association, 66(99-102).

Di Fonzo, T. (1990). The estimation of m disaggregate time series when

contemporaneous and temporal aggregates are known. The Review of

Economics and Statistics, 72(1):178–182.

Di Fonzo, T. (2003a). Temporal disaggregation of a system of time series

when the aggregate is known: Optimal vs. adjustment methods. In

Workshop on Quarterly National Accounts, pages 63–77.

Di Fonzo, T. (2003b). Temporal disaggregation of economic time series:



186 Bibliography

towards a dynamic extension. Working Papers and Studies. European

Commission.

Di Fonzo, T. and Marini, M. (2003). Benchmarking systems of season-

ally adjusted time series according to Denton’s movement preservation

principle. Working paper 2003.9. Dipartimento di Scienze Statistiche,
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Gómez, V. and Maravall, A. (2001). A Course in Time Series Analysis,

chapter Seasonal Adjustment and Signal Extraction in Economic Time

Series. J. Wiley & Sons, New York.

Gomez, V. and Marvall, A. (1994). Estimation, prediction, and inter-

polation for nonstationary series with the Kalman filter. Journal of

American Statistical Association, pages 611–624.

Granger, C. W. J. (1978). Seasonality: Causation, Interpretation, and

Implications, pages 33–56. NBER.

Gregoir, S. (2003). Propositions pour une désagrégation temporelle basée
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degli aggregate della contabilità nazionale. Studi e Ricerche, Facoltà
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