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Abstract

This thesis proposes a flexible nonlinear alternative to the PLSPM algo-

rithm which tackles two main issues identified and motivated throughout

this study: (i) the presence of linearity assumptions; and (ii) the path

direction’s incoherence within the inner model estimation phase.

The proposed approach can be seen, when it comes to the inner model,

as a data-driven estimation approach. In fact, the algorithm adapts to

the form assumed by the inner relationships among composites by means

of a piecewise estimation method. As detailed and motivated along this

work, another added value is represented by the possibility of defining a

non-symmetrical weighting system designed to accommodate a coherent

path direction modelling among composites.

The customer satisfaction application to the energy supply market shows

how using the proposed nonlinear approach to PLSPM allows the defi-

nition of a more precise business strategy.

The results obtained are very promising and the proposed Nonlinear

PLSPM approach achieved two main goals: (i) the relation defined in

the theoretical model are free from the linearity assumption; (ii) the

results provided set the basis for a more suitable interpretation of the

relation between composites, based on the natural patterns present in

the data.

Keywords: PLS Path Modelling, Nonlinear PLSPM, Component-Based

approach, ECSI, Customer Satisfaction, Energy Supply Market
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Introduction

All models are wrong, but some models are useful.

George E.P. Box

Statistics researchers and business practitioners are constantly confronted

with new challenges characterised by an ever-growing size and complex-

ity.

Efron (2009) describes the current century as a period where the relation

between data size and challenge complexity is characterised by large data

sets and more sophisticated and targeted questions.

Hastie et al. (2009) explain that vast amounts of data are being gen-

erated in many fields, and the statistician’s job is to make sense of it

all: to extract important patterns and trends, and understand “what the

data says”. The authors believe that the growing complexity associated

to the process of “learning from data” have led to a revolution in the

statistical sciences. Since computation plays such a key role, much of

the new development has been done by researchers in other fields such

as computer science and engineering. This “cross-pollination” made new
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developments possible setting the foundations for a multidisciplinary re-

search area: Computational Statistics, which is today a consolidated field

aiming at analysing complex real phenomena using advanced computa-

tional techniques.

The complexity of real phenomena is related to both the larger data

set available and the amount of unknown influential factors present in

real world. These changes in paradigm require the design of analyses

that have to be customised and flexible, focussed on unveiling the real

structure underlying the available data.

A real phenomenon can be analysed by identifying its main dimensions

and defining a set of influential factors related to them. Scientific mod-

elling aims at making a particular feature of the world easier to under-

stand, define, quantify and visualise. As referred above, this process

requires selecting and identifying relevant aspects of a situation in the

real world and then applying di↵erent types of models based on the main

goal; these models include conceptual models to better understand, op-

erational models to operationalise, mathematical models to quantify and

graphical models to visualise the phenomenon under analysis.

However, when the analysed phenomenon presents sources of heterogene-

ity, comes from several sub-populations or is influenced by other distur-

bance factors, traditional methods often fail to recover the real structure

underlying the data and more sophisticated procedures are required.

This situation is no di↵erent for models like Partial Least Squares Path

Modelling (PLSPM); this model aims at estimating the relationships

among blocks of observable variables, which in turn are expression of

latent (unobservable) variables.
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The PLSPM algorithm is characterised by a system of interdependent

equations based on simple and multiple linear regressions. The algorithm

estimates the dependence relationships among latent variables (inner or

structural model) as well as the relationships between manifest variables

and their own latent variable (outer or measurement model). All the

relations present in both inner and outer models are estimated under the

assumption of linearity.

Although attractively simple, the traditional linear model often fails in

some situations: in real life, e↵ects are often not linear (Hastie et al.,

2009).

The objective of this thesis is to propose a flexible data-driven alternative

to the PLSPM algorithm tackling two main issues: (i) break the linearity

assumptions present in the standard PLSPM algorithm; and (ii) accom-

modate path direction within the inner model estimation phase through

a non-symmetrical weighting estimation technique.

Thesis Outline Chapter 1 presents an historical overview of PLSPM

from its origins up to the latest developments; followed by theoretical

analysis on measurement and structural models. Section 1.2.3 presents a

state of the art on PLSPM algorithm and its extensions. The following

section shows an overview on model validation techniques and comments

the main issues related to the current assessment metrics. The chap-

ter ends with a thorough study on open issues and sets the ground for

the following chapters introducing the challenges related with linearity

assumption and path direction incoherence.

Chapter 2 starts with an introduction on the linear assumptions made
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in PLSPM and motivates the need for new developments focussed at

answering the aforementioned questions. The subsequent sections show

an overview on nonlinear modelling techniques and a detailed critical

analysis on the available nonlinear approaches to PLSPM. Section 2.4

introduces and draws up the proposed approach, developed as part of

this thesis; the final part of this section compares Nonlinear PLSPM

results against the standard PLSPM model.

The algorithm presented in chapter 2 is tested for convergence and sta-

bility in chapter 3. This chapter presents a wide Monte Carlo simulation

analysis based on a comprehensive scenarios design phase. The results

are then analysed and compared with the standard PLSPM algorithm.

Chapter 4 presents an application focussed on a Customer Satisfaction

study developed at EDP Comercial, one of the leaders in the Portuguese

liberalised energy supply market. This application introduces a novel

results interpretation tool provided by the proposed nonlinear approach

to PLSPM.

The EQS code for the Monte Carlo simulated data and the R code for

the nonlinear approach to PLSPM are provided in the appendix.



Chapter 1

PLS Path Modelling

1.1 Historical Review

Partial Least Squares (PLS) methods made their first appearance in the

1960s when a research group at the Uppsala University, led by Herman

Wold, developed the foundations of all modern PLS tools.

Herman Wold work was focussed on estimation methods for systems of

simultaneous equations using least squares (LS) rather than Maximum-

Likelihood (ML) (Mateos-Aparacio, 2011). His developments led him to

a di↵erent estimation technique using iterative procedures, from which

he created a new method called the Fixed-Point algorithm. This method

uses an iterative ordinary least squares (OLS) algorithm to estimate the

coe�cients in a system of simultaneous equations (Wold, 1965).

Based on a comment received in 1964, during a conference on the Fixed-

Point at the University of North Carolina, Wold steered the algorithm

in order to calculate Principal Components (PCA) using an iterative
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process (Fornell, 1982). Later developments led Wold to apply the al-

gorithm for calculating Canonical Correlations (CCA) (Hotelling, 1936).

Fornell and Larcker (1987, p 408) define these approaches as belonging

to a “second generation of multivariate analysis”.

The Fixed-Point algorithm, some years later, led him to his final do-

main of interest: multivariate analysis and projection methods (Prin-

cipal Components Analysis and its extension, PLS projection to latent

structures) (Johnson and Kotz, 1998).

Herman Wold formalised the idea of partial least squares in his work

on principal component analysis (Wold, 1966a,b) where the NILES al-

gorithm, short for “Nonlinear Iterative LEast Squares”, was introduced.

The latter paper presented a collage of examples solved by means of

iterative procedures based on steps of least squares regressions.

Wold (1973) and Noonan and Wold (1977) works strengthen the founda-

tions of PLS methods and renamed the category of methods from NILES

to NIPALS (“Nonlinear Iterative PArtial Least Squares”). Given the

fact that these first publications emphasised the iterative least squares

approach to PCA, most authors refer to NIPALS as the PLS algorithm

for PCA.

These first NIPALS procedures were never tagged as a single method-

ology. On the contrary, they were seen as a collection of di↵erent algo-

rithms for solving a diversity of methods such as PCA, CCA, regressions,

and systems of econometric equations. The common goal of these pro-

cedures was to linearise problems that were originally nonlinear in their

parameters.

The 1970s started with some turbulence for all NIPALS related proce-
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dures. In fact, a Wold’s former Ph.D. student, Karl Jöreskog, designed

a novel approach to path modelling with latent variables based on ML

estimation (i.e., models connecting two blocks of variables). Although

Wold’s and Jöreskog’s proposals present an approach to path modelling

with latent variables, there are several di↵erences between the two ap-

proaches (see Astrachan et al. (2014); Dolce (2015); Dolce and Lauro

(2015); Rigdon (2012, 2016); Vilares et al. (2010)).

Jöreskog’s major accomplishments came from a multidisciplinary re-

search that merged econometric simultaneous equations models, psycho-

metric latent variable models, sociology causal analysis, and biometric

path analysis in a computer algorithm using the ML approach for pa-

rameters estimation (Jöreskog, 1970).

The combination of latent variables modelling and path models opened

a whole new range of opportunities for researchers in the latent variables

modelling area. Wold realised that some of the NIPALS procedures could

be adapted for this new type of models.

In 1973, Wold re-branded again his methods from NIPALS procedures to

NIPALS modelling with the intent of presenting NIPALS as a modelling

framework (Wold, 1973). He positioned NIPALS modelling as “a design

for the linearisation of models that are not linear in the parameters.

The design is an ad hoc combination of (i) model specification in terms

of causal and/or predictive relations, and (ii) parameters estimation”.

That being said, NIPALS modelling was thus clearly reflecting a more

mature but still incomplete modelling framework.

Still on the completeness of the NIPALS modelling framework, Joseph

Kruskal once asked Wold “whether an explicit definition can be given
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for the class of nonlinear models that constitute the scope of NIPALS

modelling” (Wold, 1973). Wold answered that “NIPALS modelling is

highly flexible, allowing the combined used of several devices, includ-

ing parameter grouping and relaxation; auxiliary transformation of the

model; and modelling the predictors in terms of indirectly observed man-

ifest variables and other hypothetical constructs”, identifying “NIPALS

modelling as an open ended array of models with unlimited complexity

in the combined use of several devices”.

In mid-1970s, Wold and his team at the University of Göteborg refined

and published several versions of a common methodology to estimate

path models by using an iterative algorithm of least squares regressions.

It is worth mentioning: (i) an extension of the algorithm that allows

handling three blocks (as opposed to the previous two blocks algorithm);

and (ii) the extension of handling more than one between-block relation

(Wold, 1974, 1975a,b).

During the same period Wold encased his modelling framework based on

the PLS approach under the “Soft Modelling” insignia (Wold, 1975b).

The NIPALS approach is applied to the “soft” type of model used in

social sciences in the last years, specifically path models a↵ecting latent

variables which serve as proxies for blocks of indirectly observed variables.

“Soft modelling” implies the idea of modelling in “complex situations

where data and prior information are relatively scarce and without spec-

ifying assumptions about the stochastic-distributional properties of vari-

ables and residuals” (Wold, 1975b).

Johnson and Kotz (1998) describes Herman Wold as “a very practical

man, and wanted estimation and modelling methods to work with a
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minimum of assumptions, for incomplete data, with many variables and

collinear variables, etc.; and he developed PLS accordingly”. This practi-

cality is confirmed in “Path Models with Latent Variables: The NIPALS

Approach” (Wold, 1975a), where Wold states that sometimes “the model

builder has little or no more prior information at disposal for the model

construction than its intended operative use. The NIPALS models are

designed with particular view to applications in such low-information

situations”.

After several adjustments made during the 1970s, Wold and his team ar-

rive to a more defined framework and the acronym NIPALS is shortened

to PLS. The end of the 1970s decade sees the o�cial presentation of the

so-called Basic Design for PLS path modelling.

The Basic Design represents the basic method for PLS Path Analy-

sis with Latent Variables and it has been firstly published in “Causal-

Predictive Analysis of Problems with High Complexity and Low Informa-

tion: Recent Developments of Soft Modelling” and then in Wold (1980).

This method represents the main reference on top of which all extensions

and modifications are based on. More theoretical details can be found in

Wold (1982a,b,c) and a practical application to the chemometric area is

provided in Gerlach et al. (1979). Geometric interpretations are provided

by Fred Bookstein (Bookstein, 1980, 1982).

Also in 1979, Karl Jöreskog and Herman Wold organised a meeting that

brought together the LISREL1 (or SEM-ML community) and PLS com-

1LISREL (LInear Structural RELations) is the “informal” name that the commu-
nity gave to the ML approach to Structural Equations Modelling published by Jöreskog
in Jöreskog (1970). The term LISREL was the name given to the implemented soft-
ware (Jöreskog and Sorbom, 1993). However, it had such a rapid development that the
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munity generating interesting contents then published in the form of the

classic two-volume book: “Systems under indirect observation: Causal-

ity, structure, prediction”.

In 1989, Jan-Bernd Lohmöller published the book “Latent Variable Path

Modeling with Partial Least Squares” (Lohmöller, 1989) where he pre-

sented the basic PLS Path Modelling (PLSPM) algorithm and his ex-

tended version. For many years LVPLS 1.8 (developed by Lohmöller,

1984) was the unique available software on PLS Path Modelling. What

is perhaps the first pseudo-code description of the basic algorithm is also

provided in Lohmöller (1989) (p. 29).

As mentioned in the previous paragraph, Lohmöller extended the basic

PLS algorithm in various directions. More details can be found in section

1.2.

Strangely enough, during the 1990s, the theoretical developments on PLS

Path Modelling slowed down dramatically. One of the most interesting

work was presented on the computational side with the development of

PLS-Graph by Wynne Chin (Chin, 1998b).

The beginning of the XXI century saw a renewed interest in PLSPM

and major contributions were made. The main reference in this pe-

riod was the paper “PLS path modeling” by Tenenhaus, Esposito Vinzi,

Chatelin, and Lauro (2005). Other relevant authors in this field are

Ringle, Henseler and Dijkstra.

In 2005 a new software was made available by Ringle et al. (2005b) and

their work has been an on-going process with a series of versions (the

current one being SmartPLS 3).

methodology and the software have been associated to each other (Trinchera, 2008).
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On the theoretical side, Hanafi (2007) and Tenenhaus and Hanafi (2010)

presented two fundamental works that aimed at better understanding

the PLSPM algorithm. They developed extensions to the multi-block

approach initiated by Lohmöller and Hanafi has resolved some of the

issues around the convergence of the PLSPM algorithm. An interesting

work on the convergence issue has been provided by Krämer (2007). Its

findings will be presented with more detail in section 1.3.

Other alternative approaches to PLSPM have been proposed. Namely,

the Generalised Maximum Entropy (GME) presented by Al-Nasser (2003)

and the Generalised Structured Component Analysis (GSCA) by Hwang

and Takane (2004).

Two interesting reviews on PLS path modelling empirical applications

can be found in Marcoulides et al. (2009) and Ringle et al. (2012).

More recently, Tenenhaus and Tenenhaus (2011) proposed the Regu-

larised Generalised Canonical Correlation Analysis (RGCCA), a new

modification to the PLSPM algorithm in such a way that convergence

is guaranteed; additionally, PLS Regression2 is presented as one of its

special cases. This approach represents a generalisation of regularised

canonical correlation analysis to three or more sets of variables. It con-

stitutes a general framework for many multi-block data analysis methods

and combines the power of multi-block data analysis methods, such as

the maximisation of well identified criteria, and the flexibility of PLS

path modelling. The big achievement is the fact that this paper, extend-

ing Hanafi (2007) work on convergence, presents a new monotonically

2PLS Regression (PLS-R) (Tenenhaus, 1998; Wold et al., 1983) represents a slightly
modified PLSPM algorithm with the objective of obtaining a regularised component
based regression tool Tenenhaus (1998); Wold et al. (1983).
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convergent algorithm very similar to the PLS algorithm proposed by

Herman Wold. This new proposal achieves convergence introducing a

modified Mode A in which the outer weights are normalised to unitary

variance at each step of the algorithm. Contrary to classical Mode A,

this new estimation mode has the major advantage to maximise a known

criterion.

During the last year, a set of papers discussed the di↵erences between the

SEM-ML approach and the PLS approach to Structural Equation Mod-

elling. The review papers by Rigdon (2012) and Ronkko and Evermann

(2013) started two interesting and active discussion streams.

The first critical review published by Rigdon in 2002 (Rigdon, 2012)

states that PLS path modelling “has strengths as a tool for prediction

which have not been fully appreciated” and “can move forward by freeing

itself entirely of its heritage as ‘something like but not quite factor anal-

ysis’, by fleshing out inferential tools appropriate for a purely composite

method and by developing approaches for assessing measurement valid-

ity that properly recognise the distinction between theoretical concepts

and empirical proxy”.

The paper published by Sarstedt, Ringle, Henseler, and Hair (2014) criti-

cises the comments made by Rigdon in the aforementioned review, giving

“their version of the truth” focussing mainly on prediction, explanation

and model assessment. The authors clarify that there should not be a

dichotomy between predictive and explanatory modelling and that PLS

path modelling (referred as PLS-SEM in their paper) should not be forced

to “choose a side”.

Dijkstra (2014) also commented the review made by Rigdon going through
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the PLS genesis and focussing on two main topics: (i) suitability of PLS

path modelling as a tool for estimating structural relationships; and (ii)

whether the factor scores produced by PLS path modelling can be deter-

mined unambiguously or they should be obtained by using composites

instead. Other critics to Rigdon’s strong statements are presented in

Bentler and Huang (2014).

This sequence of comments ends, at least for now, with a “closing” and

clarifying paper presented by Rigdon (2014). The author tries to answer

all the comments and flaws highlighted in the previous reviews. Rigdon

subdivides the challenges in nine main arguments described in his work.

In addition to the previous paper, Rigdon (2016) published a thorough

analysis on the practical use of PLS path modelling identifying: (i) flaws

related to invalid arguments in favour of using PLSPM; and (ii) invalid

arguments opposing its use within the context of a unifying framework

to be used as an analytical method in European management research.

Other authors focussed on developing a unified framework are Sarst-

edt et al. (2016). The authors validated their conceptual considerations

based on a simulation study, highlighting the biases that occur when us-

ing (i) composite-based partial least squares path modelling to estimate

common factor models, and (ii) common factor-based covariance-based

structural equation modelling to estimate composite models. Their re-

sults show that the use of PLSPM is preferable, particularly when it is un-

known whether the data’s nature is common factor-based or composite-

based.

Ronkko and Evermann (2013) presented a review on the application and

applicability side of PLS path modelling. This paper strongly criticises
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PLS path modelling suitability for di↵erent applications and presents the

authors’ doubts regarding its e↵ectiveness in building and testing theory

in organisational research. This review generated a detailed answer from

Henseler et al. (2014) who pointed out that “the shortcomings of PLS

are not due to problems with the technique, but instead to three prob-

lems with Ronkko and Evermann (2013) study: (i) the adherence to the

common factor model; (ii) a very limited simulation design; and (iii)

over-stretched generalisations of their findings”.

The result of such a rich amount of ideas and views allows us to get a

deeper view on PLS path modelling capability and suitability in di↵erent

situations and application areas.

More recently, a group of researchers shifted their focus on PLSPM pre-

diction capabilities. Shmueli et al. (2016) stated that, so far, PLSPM

literature has not made a full use of these predictive proprieties, using

instead an explanatory approach focussed on statistical significance and

power (Becker et al., 2013). Shmueli and Koppius (2010, 2011) reinforced

the previous statements saying that quantitative research in management

has been dominated by causal-explanatory statistical modelling at the

expense of predictive modelling. More details on this topic are presented

in section 1.2.5.

Our position with regards to the aforementioned papers is that PLS path

modelling is often discussed and used as if it was a kind of factor analysis

but, as mathematically shown by Rigdon, it is a purely composite-based

method. Also, the fact that PLS path modelling represents a better

model for prediction does not imply that the same cannot be used for

explanatory analysis. The PLS path modelling community needs to em-
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brace the method’s character as a composite-based method; this requires

shedding the factor-based jargon, perspectives, evaluation tools and mea-

surement framework of factor-based SEM and developing alternatives.

Another important set of opportunities is related to the predictive as-

sessment of PLSPM. The latest steps toward prediction-driven PLSPM

applications and the formalisation of a predictive assessment framework

are widening the possibilities associated to the use of PLSPM.

The next sections present the original algorithm by Herman Wold, its

extensions and open issues.

1.2 PLS Path Modelling

As discussed in the previous sections, PLS path modelling can be de-

scribed as a composite-based estimation method which aims at analysing

the complexity existent in a specific system by estimating the causal rela-

tions between latent variables (LVs) defined as components or composites

and measured by a set of manifest variables (MVs).

Formalising the previous concepts, PLS path modelling focusses on study-

ing the relationships among J blocks X1, . . . , Xj, . . . , XJ of MVs,

which represent J latent variables ⇠1, . . . , ⇠j, . . . , ⇠J , defined as com-

posites.

PLSPM adhere to a specific graphical convention (see Figure 1.1) based

on the drawing principles defined in the path analysis (Wright, 1921,

1934). More in detail, ellipses or circles represent the latent variables, and

rectangles or squares refer to manifest variables, whereas unidirectional

arrows are used to relate MVs with LVs and also causations among LVs.
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Figure 1.1: PLSPM Graphical Notation

A PLS path model (see Figure 1.2) is made up of two elements: (i) the

measurement model (or outer model) which describes the relationships

between the MVs and their respective LVs; and (ii) the structural model

(or inner model) which describes the relationships between the LVs. Both

models are described in the next sections.

Figure 1.2: PLSPM Graphical Representation
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1.2.1 The Measurement Model

A LV ⇠j is an unobservable variable (also named composite or construct)

indirectly described by a block of observable variables Xj which are

called MVs or indicators. There are several ways to relate the MVs to

their LVs:

– The reflective way (or outwards directed way);

– The formative way (or inwards directed way);

– The MIMIC way (a combination of both reflective and formative).

Reflective Way

In the reflective way each MV reflects the corresponding LV (see Figure

1.3). A block is defined as reflective if the LV is assumed to be a common

factor that reflects itself in its respective MVs.

Figure 1.3: Measurement Model: the Reflective Way

In this model each MV is related with its LV by a simple linear regression.

xpj = ⇡p0 + ⇡pj⇠j + ✏p (1.1)
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where ⇠j has mean m and standard deviation equal to 1.

The model defined in equation 1.1 has to follow only one hypothesis

named predictor specification and defined by H. Wold in his seminal

papers:

E (xpj |⇠j) = ⇡p0 + ⇡pj⇠j (1.2)

This hypothesis implies that the residual ✏p has a zero mean and is un-

correlated with the LV ⇠j .

In the reflective model each block of MVs Xj , has to be unidimensional

in the sense of factor analysis. The ultimate goal is that all the MVs

belonging to one block have to present a strong correlation.

When working with real data and using a reflective model, it is very

important to check the unidimensionality for each block of MVs.

There are three main techniques used to check the unidimensionality:

– Principal Component Analysis: a block can be considered unidi-

mensional if the first eigenvalue of the correlation matrix, built

based on all the MVs related to the block, is greater than 1 and

the second one smaller than 1, or at least far enough from the first

one. After checking the eigenvalues, it is important to verify that

all the MVs are positively correlated with the first factor (in the

sense of PCA). A MV becomes inadequate to measure the LV when

its correlation with the first factor is negative.

– Cronbach’s ↵: this statistic can be used to check unidimensionality

in a block of Pj manifest variables Xj , when they are all posi-
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tively correlated. Cronbach proposed the following procedure for

standardised variables:

The variance of
PPj

p=1 xpj is developed as follows:

V ar

0

@
PjX

p=1

xpj

1

A = Pj +
X

p 6=p0

corr
⇣
xpj , xp0j

⌘
(1.3)

The larger
P

p 6=p0 corr
⇣
xpj , xp0j

⌘
the more the block Xj is unidi-

mensional.

Based on equation 1.3 is possible to calculate the following ratio:

↵
0
=

P
p 6=p0 corr

⇣
xpj , xp0j

⌘

Pj +
P

p 6=p0 corr
⇣
xpj , xp0j

⌘ (1.4)

When all correlations corr
⇣
xpj , xp0j

⌘
are equal to 1, ↵

0
reaches its

maximum value, i.e., (Pj � 1)Pj .

The maximum value is then used to obtain the Cronbach’s ↵ di-

viding ↵
0
by its maximum value:

↵ =

P
p 6=p0 corr

⇣
xpj , xp0j

⌘

Pj +
P

p 6=p0 corr
⇣
xpj , xp0j

⌘ ⇥ Pj

Pj � 1
(1.5)

When working with the original manifest variables (non-standardised),

Cronbach’s ↵ is calculated as follows:

↵ =

P
p 6=p0 corr

⇣
xpj , xp0j

⌘

V ar
⇣PPj

p=1 xpj
⌘ ⇥ Pj

Pj � 1
(1.6)
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The following table (Cortina, 1993) can help assessing ↵’s values:

Cronbach’s ↵ Internal Consistency

↵ � 0.9 Excellent

0.9 > ↵ � 0.8 Good

0.8 > ↵ � 0.7 Acceptable

0.7 > ↵ � 0.6 Questionable

0.6 > ↵ � 0.5 Poor

0.5 > ↵ Unacceptable

Table 1.1: Cronbach’s ↵ Assessment

In accordance with (Cortina, 1993) a block can be considered uni-

dimensional when ↵ is larger than 0.7.

– Dillon-Goldstein’s ⇢: by construction, the correlation signs between

manifest variables xpj and the latent variable ⇠j have to be positive,

that is, in the equation 1.1 all loadings ⇡pj are positive. A block

can be defined unidimensional when all loadings are large.

The first step is represented by defining the variance of
PPj

p=1 xpj .

For this specific case the variance is calculated from equation 1.1

assuming that the residual terms ✏p are independent:
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The larger
⇣PPj

p=1 ⇡pj
⌘2

the more the block Xj is unidimensional.

The Dillon-Goldstein’s ⇢ is defined as:

⇢ =

⇣PPj

p=1 ⇡pj
⌘2

V ar (⇠j)
⇣PPj

p=1 ⇡pj
⌘2

V ar (⇠j) +
PPj

p=1 V ar (✏p)
(1.8)

In an initial stage, the values of ⇠j are not available and an approx-

imation is needed. Based on the assumption that all MVs xpj and

the LV ⇠j are standardised, it is possible to obtain a LV approx-

imation using the first factor t1 from a PCA on all MVs related

with the block.

The loading ⇡pj can be estimated by corr (xpj , t1) and, based on

equation 1.1, the a V ar (✏p) is estimated by 1� corr2 (xpj , t1).

The estimated Dillon-Goldstein’s ⇢ can be calculated as:

⇢̂ =

hPPj

p=1 corr (xpj , t1)
i2

hPPj

p=1 corr (xpj , t1)
i2

+
PPj

p=1 [1� corr2 (xpj , t1)]
(1.9)
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A block can be considered unidimensional when ⇢̂ is larger than

0.7.

This statistics is considered to be a better option to check unidi-

mensionality for a block of manifest variables (Chin, 1998a).

Formative Way

In a formative model the latent variable ⇠j is obtained through a lin-

ear combination of the related manifest variables (see Figure 1.4) and a

residual term:

⇠j =

PjX

p=1

!pjxpj + �j (1.10)

Using this measurement model scheme, unidimensionality of the block is

not required (i.e., a block of manifest variables is allowed to be multidi-

mensional).

Figure 1.4: Measurement Model: the Formative Way

The hypothesis related to the predictor specification for the equation

1.10 is:
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E
�
⇠j |x1, . . . , xPj

�
=

PjX

p=1

!pjxpj (1.11)

This hypothesis implies that the residuals �j has mean 0 and is not

correlated with the manifest variables xpj .

In this scheme the LV is generated from a linear combination of its MVs

and there is no sign constraints on the weights !pj , but unexpected signs

show problems in data that might be related to multicollinearity. If the

model’s results present unexpected signs the user can remove the MV

from input data or, as shown in Tenenhaus, Esposito Vinzi, Chatelin, and

Lauro (2005), sign constraints can be easily added to the PLS algorithm.

MIMIC (Multiple Indicators for Multiple Causes)

In a MIMIC scheme the latent variables are seen as a mix of formative

and reflective relationships. The measurement model for a specific block

Xj is defined as follows.

Let PR represent the set of MVs following the reflective scheme,

when the arrows are outward directed (reflective scheme) the simple re-

gression on xpj can be written as:

xpj = ⇡p0 + ⇡pj⇠j + ✏p for p 2 PR (1.12)

when the MVs are inward directed (formative scheme), the latent variable

⇠j can be determined as:

⇠j =
X

p/2PR

!pjxpj + �j (1.13)
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The predictor specification hypothesis for equations 1.12 and 1.13 are

the same mentioned in the previous sections.

Thoughts on Measurement Model’s Schemes

The previous paragraphs presented three measurement model schemes

related, in some way, to the assumed directions of the connections be-

tween manifest and latent variables.

The “reflective” measurement scheme is used to describe an outer model

where manifest variables act as dependent upon an unmeasured variable.

Reverting the direction of the outer relation, the unobserved variable is

modelled as dependent from the manifest variables; this scheme is known

as “formative”. A mixture of inward and outward directed connection

belonging to the same block corresponds to the MIMIC scheme.

It is important to separate the conceptual analysis of these measurement

schemes from the technique used to calculate the latent variables proxies

(or composites).

The PLS path modelling presents several options to calculate the latent

variables proxies; the most known techniques are “Mode A” and “Mode

B” (explained in detail throughout this chapter). For years Mode A and

Mode B have been associated to reflective and formative schemes, respec-

tively. As Rigdon (2016) strongly a�rms, “this is an illusion”. In fact,

both modes create composites and the only di↵erence standing between

the two is the way how weights are obtained (using Mode A instead

of Mode B means using correlation weights instead of OLS regression

coe�cients).

Di↵erently from OLS regression coe�cients, correlation weights ignore



PLS Path Modelling 27

collinearity among predictors. This di↵erence represents an advantage

for the users that prefer correlation weights because this technique does

not experience unexpected weights signs driven by collinearity.

As confirmed by Becker et al. (2013) for PLS path modelling, Dana

and Dawes (2004) demonstrated that, while correlation weights yield a

somewhat lower in-sample R2 than OLS regression weights, they yield

a higher out-of-sample R2 when sample size and true predictability are

moderate, potentially covering a much larger range of practice than the

special conditions required for OLS regression weights to stand out.

There can be good reasons to choose Mode A or Mode B within a PLS

path modelling; this choice has nothing to do with the conceptual scheme

idealised for the measurement model (choice between “formative” and

“reflective”).

The real choices a researcher faces whilst implementing a PLS path model

are between common factor proxies and composite proxies, and between

regression weighted composites and correlation weighted composites.

In summary, this work shares Rigdon’s position on this matter: “the

the terms formative and reflective only obscure the statistical reality”

(Rigdon, 2016).

The MIMIC conceptual scheme is di�cult to implement within a PLSPM

context (Fornell and Bookstein, 1982), but the problem may be faced by

splitting the MIMIC variable into two blocks of manifest variables (an

endogenous and an exogenous one) with a known relationship between

original and new path coe�cients.
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1.2.2 The Structural Model

The causal model shown in figure 1.2 presents three latent variables con-

nected by a causal relationship. These relationships build the structural

model (or inner model) and can be formalised as follows:

⇠j = �j0 +
X

j 6=j0

�jj0 ⇠j0 + ⌫j (1.14)

The predictor specification hypothesis also applies for equation 1.14.

A latent variable which never appears as dependent in equation 1.14 is

known as exogenous variable. The other LVs are defined as endogenous

variables.

The causality model must be a causal chain. That means that there is

no loop in the model. This kind of model is called recursive, from the

Latin Recursio, which means I can return (Tenenhaus et al., 2005).

Every structural model can be described through a square matrix con-

taining binary values (see Figure 1.5). Its dimension is equal to the

number of latent variables J . Lohmöller defines this matrix as inner

design matrix (Lohmöller, 1989).

Figure 1.5: Inner Design Matrix
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Let l and k be respectively rows and columns indexes of the aforemen-

tioned matrix, cell (l, k) has value of 1 when latent variable ⇠k causes ⇠l;

0 otherwise.

The structural model estimation process is shown in the next sections.

1.2.3 Algorithm: State of the Art

PLS path modelling has been firstly developed byWold (1975b). Lohmöller

(1989) presented new theoretical and computational developments (LV-

PLS software). A first software with graphical interface (PLS-Graph) has

been developed by Chin (1998a,b). PLS-Graph is based on Lohmöller’s

proposed algorithm presenting some new and improved validation tech-

niques.

The current work is based on the algorithm proposed by Lohmöller (1989)

which is described in the next paragraphs.

As discussed in the previous sections, PLS path modelling aims to esti-

mate relationships among J (j = 1, . . . , J) blocks of variables, which are

expression of unobservable constructs. The algorithm is composed by a

system of interdependent equations based on simple and multiple linear

regressions. The algorithm estimates the causal e↵ects among LVs as

well as the relationships between MVs and their own LVs.
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Starting Weights Definition

The first step of the PLSPM algorithm regards the definition of a set of

arbitrary weights wpj to be used as starting point. The weights are then

normalised in order to produce LVs with unitary variance.

There are several ways to define the starting weights. One of the most

common choices is wpj = sign [corr (xpj , ⇠j)]; this is applied in practice

by setting wpj = sign [corr (xpj , ⇠j)] when p = 1 and 0 otherwise.

As of today, the starting weights choice does not seem to interfere with

the final results but it does have an impact on how quickly the algorithm

reaches convergence.

Measurement Model: Latent Variables Calculation

Once defined the initial weights the algorithm moves to the outer estimate

yj of the standardised (with mean = 0 and standard deviation = 1) latent

variables (⇠j �mj). The composites are calculated as linear combination

of their centered MVs:

yj / ±

2

4
PjX

p=1

wpj (xpj � x̄pj)

3

5 (1.15)

where the / symbol means that the variables on the left is proportional

to the operator on the right; the ± sign represents the sign ambiguity.

This problem is solved by selecting the sign that makes the variable yj

positively correlated with the majority of manifest variables xpj .

The j-th estimated latent variable (or composite) is obtained as follows:
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yj =

PjX

p=1

w̃pj (xpj � x̄pj) (1.16)

The coe�cients wpj and w̃pj are called outer weights.

The mean value mj is estimated as:

m̂j =

PjX

p=1

w̃pj x̄pj (1.17)

and the latent variable ⇠j is estimated by:

⇠̂j =

PjX

p=1

w̃pjxpj = yj + m̂j (1.18)

Structural Model: Inner Weights Estimation

The structural model aims to give an estimate of the LVs based on the

causal relations present in the inner model. The inner weights ejj0 can

be estimated through several techniques.

Centroid Scheme The centroid scheme represents the original tech-

nique proposed by H. Wold and is also one of the most used techniques

to estimates inner weights. Following this technique ejj0 can be obtained

as:

ejj0 = sign
h
corr

⇣
yj , yj0

⌘i
(1.19)

In this case ejj0 are expressed as the correlation sign between yj and the

latent variable yj0 connected to yj (see Equation 1.19). Two LVs are
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connected if they are linked in the structural model (i.e., an arrow goes

from one variable to the other describing their causality relation).

The centroid scheme presents some inconvenience when correlations be-

tween LVs are very close to 0. In fact, when this situation happens, corre-

lations fluctuate between positive and negative values creating apparent

instability. Tenenhaus, Esposito Vinzi, Chatelin, and Lauro (2005) state

that this choice does not seem to be a problem in practical applications.

Factorial Scheme The Factorial Scheme is one of the two tech-

niques proposed by Lohmöller where inner weights ejj0 are calculated as

follows:

ejj0 = rjj0 = corr
⇣
yj , yj0

⌘
(1.20)

By choosing this technique, the inner weights correspond to the cor-

relation between latent variables. According to Lohmöller (1989), this

technique should solve the drawbacks presented by the Centroid Scheme.

Even though this new scheme do not significantly influence the results, it

is very important for theoretical reasons. In fact, as shown in Tenenhaus,

Esposito Vinzi, Chatelin, and Lauro (2005), it allows to relate PLS path

modelling to usual multiple table analysis methods.

Path Weighting (or Structural) Scheme The Path Weighting

Scheme is the second technique proposed by Lohmöller. The LVs con-

nected to ⇠j are divided into two groups: the predecessors of ⇠j which

are LVs explaining ⇠j , and the followers which are LVs explained by ⇠j .

For a predecessor ⇠j0 of the LV ⇠j , the inner weight ejj0 is equal to the
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regression coe�cient of yj0 in the multiple regression of yj on all the yj0 ’s

related to the predecessors of ⇠j . If ⇠j0 is a successor of ⇠j then the inner

weight ejj0 is equal to the correlation between yj0 and yj .

Summarising, when using the Path Weighting scheme, inner weights ejj0

are calculated as:

ejj0 = regression coe�cient of yj on all yj0 if ⇠j0 explains ⇠j

= rjj0 if ⇠j explains ⇠j0
(1.21)

The Path Weighting Scheme represents the only scheme where the di-

rection of structural relations is taken into account (Dolce, 2015). As

referred for the Factorial Scheme, this technique also allows to relate

PLS path modelling to usual multiple table analysis methods.

Structural Model: Latent Variables Calculation

In the inner LVs calculation stage, the standardised (⇠j �mj) latent

variables inner estimation zj is given by:

zj /
X

j0 : ⇠
j
0 adjacent to ⇠j

ejj0 � yj0 (1.22)

where � denotes the Hadamard product.

Measurement Model: Outer Weights Estimation

There are several ways to estimate the outer weights wjh. Originally, H.

Wold’s algorithm included two estimation techniques: Mode A, Mode B



34 PLS Path Modelling

(Wold, 1975b). Later on, Lohmöller proposed a third technique: Mode

C (Lohmöller, 1989). More recently, two more techniques have been

proposed: Mode PLS (Esposito Vinzi, 2008, 2009; Esposito Vinzi and

Russolillo, 2013) and New Mode A (Tenenhaus and Tenenhaus, 2011).

Mode A Each outer weight wpj is the regression coe�cient in the

simple linear regression of the p-th MV xpj , belonging to the j-th block

Xj , on the composite zj of the j-th LV. As a matter of fact, as zj is

standardised, the generic outer weight wpj is represented by the regres-

sion coe�cient associated to zj in the simple linear regression of xpj on

zj . In more detail:

wpj = cov (xpj , zj) (1.23)

where, as referred above, the estimated latent variable zj is standardised.

Mode B In mode B, the outer vector wj of weights wpj is composed

by the regression coe�cient vector in the multiple regression of zj on the

centered manifest variables (xpj � x̄pj) related to the same latent variable

⇠j :

wj =
�
Xt

jXj

��1
Xt

jzj (1.24)

where Xj is a matrix having on the columns the centered manifest vari-

ables (xpj � x̄pj) related with the same latent variable ⇠j .

Mode C Lohmöller added a new mode C for the calculation of the

outer weights (Lohmöller, 1989). In mode C, the weights are all equal in
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absolute value and reflect the signs of the correlations between the MVs

and their LVs:

wpj = sign (corr (xpj , zj)) (1.25)

These weights are then normalised so that the resulting LV has unitary

variance. Mode C actually refers to a formative way of linking MVs to

their LVs and represents a specific case of mode B whose comprehension

is very intuitive to practitioners.

Mode PLS In order to solve the problems related with multi-

collinearity a new way to compute outer weights, in the case of a forma-

tive block, has been recently proposed by Esposito Vinzi (2008, 2009);

Esposito Vinzi and Russolillo (2013). This approach involves using PLS

Regression (PLS-R) (Tenenhaus, 1998; Wold et al., 1983) in order to

compute significant outer weights. In particular, Esposito Vinzi (2009)

proposes to calculate at each iteration the outer weights as coe�cients

in a PLS Regression of the LV inner composite on the MVs linked to

the same LV. PLS-R method has been extensively described in literature

(Tenenhaus, 1998; Wold et al., 1983). PLS-R is a linear regression tech-

nique that allows relating a set of predictor variables to one or several

response variables. PLS-R shrinks the predictor matrix by sequentially

extracting orthogonal components which, at the same time, summarise

the explanatory variables and allow modelling and predicting the re-

sponse variables. Finally, it provides a classical regression equation, in

which the response is estimated as a linear combination of the predictor
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variables.

New Mode A Traditional Mode A applied to all the blocks does

not seem to optimise any criterion; as Krämer (2007) showed, Wold’s

Mode A technique does not lead to a stationary equation related to the

optimisation of a twice di↵erentiable function. However, Tenenhaus and

Tenenhaus (2011) recently extended the results of Hanafi (Hanafi, 2007)

to a slightly adjusted Mode A in which a normalisation constraint is

placed on outer weights rather than on LV composites. In particular,

they showed that Wold’s procedure, applied to a PLS path model where

the new Mode A is used in all the blocks, monotonically converges to the

following criterion:

argmax
||wj ||2=||w

j
0 ||2=1

X

j 6=j0

cjj0g
⇣
cov

⇣
Xjwj ,Xj0wj0

⌘⌘
(1.26)

where g is defined as:

g (x) =

8
><

>:

x2 if factorial

|x| if centroid
(1.27)

In the new mode A, the outer vector wj of weights wpj is

wj =
Xt

jzj

||Xt
jzj ||

(1.28)

We may note that the outer composite yj = Xjaj is the first PLS com-

ponent in the PLS regression (Tenenhaus, 1998; Wold et al., 1983) of

the inner composite zj on block Xj . In the original mode A of the PLS
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approach, the outer weights are computed in the same way as formula

1.23 but normalised so that the outer component yj = Xjaj is stan-

dardised. This new mode A shrinks the intra-block covariance matrix to

the identity. This shrinkage is probably too strong, but is useful for very

high-dimensional data because it avoids the inversion of the intra-block

covariance matrix.

Iterative Process and Convergence

After the first cycle the algorithm iterates the following steps:

1. Measurement Model: Latent Variables Calculation

2. Structural Model: Inner Weights Estimation

3. Structural Model: Latent Variables Calculation

4. Measurement Model: Outer Weights Estimation

5. Outer Weights Convergence Check

The aforementioned algorithm is described in figure 1.6 and its pseudo-

code is shown in Algorithm 1.

After reaching the algorithm convergence, the outer weights wjh are used

to obtain the final estimation of ⇠j calculated as ⇠̂j =
P

wjhxjh.

In the last step of PLSPM algorithm, path coe�cients are estimated

through an OLS multiple regression among the estimated latent vari-

ables composites, according to path diagram structure. Denoting ⇠j

(j = 1, . . . , J) as the generic endogenous LV and ⌅!j as the matrix
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Figure 1.6: PLSPM Iterative Estimation Process

of the corresponding latent predictors, the path coe�cient vector �j for

each ⇠j is obtained as:

�j =
⇣
⌅

0
!j⌅!j

⌘�1
⌅

0
!j ⇠̂j (1.29)

Algorithm Convergence As previously mentioned, PLS path mod-

elling is mostly used to analyse complex relationships among latent vari-

ables.

Many fields of research have embraced the specific advantages of PLSPM,

behavioural sciences for instance (Bass et al., 2003) as well as many

disciplines of business research such as marketing (Anderson et al., 1994;

Fornell and Larcker, 1987; Matzler et al., 2004) and many others. The

PLSPM advantages highlighted in these papers are confirmed in practice

by its wide adoption in many organisations.



PLS Path Modelling 39

Algorithm 1: PLS Path Modelling (Lohmöller’s Algorithm)

Input : X = [X1, . . . ,Xj , . . . ,XJ ]

Output: wpj , ⇠̂j ,�j

1 Arbitrary Weights Initialisation: wpj = w(0)
pj

2 while Convergence of wpj is not reached (or max number of
iterations) do

3 Latent Variables Composites Calculation (Measurement
Model):

yj / ± [
P

wpj (xpj � x̄pj)]
4 Inner Weights Estimation (Structural Model):

ejj0 = f
⇣
yj , yj0

⌘
according to the chosen scheme

5 Latent Variables Composites Calculation (Structural
Model):

zj /
P

j0 : ⇠
j
0 adjacent to ⇠j

⇣
ejj0 � yj0

⌘

6 Outer Weights Estimation (Measurement Model):
wpj = f (X,Z) according to the chosen estimation technique

7 Final Latent Variables Composites Calculation:

⇠̂j =
P

wpjxpj
8 Path Coe�cients Calculation:

�j =
⇣
⌅

0
!j⌅!j

⌘�1
⌅

0
!j ⇠̂j

Henseler (2010) in his paper states that the popularity of PLSPM among

scientists and practitioners results from four genuine advantages:

– Can be used when distributions are highly skewed (Bagozzi and Yi,

1994), because “there are no distributional requirements” (Fornell

and Bookstein, 1982);

– Can be used to estimate relationships between latent variables with

several indicators when sample size is small (Chin and Newsted,

1999);
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– Availability of modern and easy-to-use software with graphical

user-interface, like SmartPLS (Ringle et al., 2005b) and PLS-Graph

(Chin, 1998b), have contributed to increase the attractiveness of

PLSPM;

– PLSPM is preferred over covariance-based structural equation mod-

elling when improper or non-convergent results are likely, as for

instance in more complex models, when the number of latent and

manifest variables is high in relation to the number of observations

and the number of indicators per latent variable is low.

Notwithstanding the fact that the algorithm saw its first formalisation

decades ago, the scientific and professional community mainly focussed

on its practical implementations and standard algorithm expansions.

When it comes to a thorough analysis of convergence the literature is

scarce.

Tenenhaus et al. (2005) state that convergence is “always verified in

practice but mathematically proven only for the two-block case”; Hanafi

(2007) reinforces the previous statement adding that the ”convergence

. . . is always verified in practice”. Henseler (2010) presented in his work

six cases where convergence is not reached under a set of specific circum-

stances; the author also states that “PLS does not always converge” and

“the further search for a proof of convergence, at least for the general

PLS path modelling algorithm, can thus be abandoned”.

Analysing the di↵erent developments made during the last decades, it is

possible to say that when first developed byWold one of the advantages of

its procedure was the monotonic propriety. More recently Hanafi (2007)
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demonstrated, for the case of Mode B, that Wold’s procedure is mono-

tonically convergent for more than two blocks of manifest variables; the

author also demonstrated that Wold’s PLSPM reaches a stable solution

faster than Lohmöller’s procedure.

Henseler (2010) presented a exhaustive summary of the PLSPM conver-

gence across several configurations shown in table 1.2.

Inner

scheme

One or two LVs More than two LVs

Mode A Mode B Mode A Mode B

Wold

Centroid Converges Converges Unproven Converges

Factorial Converges Converges Unproven Converges

Path Converges Converges Unproven Unproven

Lohmöller

Centroid Converges Converges Unproven Unproven

Factorial Converges Converges Not Always Unproven

Path Converges Converges Not Always Unproven

Table 1.2: Convergence Scenarios for the PLSPM Algorithm (Henseler, 2010)

In his paper, Henseler (2010) showed that using Lohmöller algorithm,

factorial or path weighting schemes and Mode A, the convergence is not

proven.

Analysing in detail the summary presented in table 1.2, it is possible to

conclude that the e↵orts related to the convergence of PLSPM can be

focussed on cases where this situation is still to be proven. For these cases

there are two possible future developments: (i) empirical proof through

simulation techniques; and (ii) mathematical proof of the procedure’s

convergence.

Future studies are needed in order to better understand PLSPM and
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assess its limitations related to how the structure of the used inner model

or the manifest variables a↵ect convergence.

1.2.4 Model Validation

PLSPM produces several analytical results for both measurement (re-

lations between manifest and latent variables) and structural models

(causal relations between latent composites).

These indicators allow a comparison between empirical results and the

theoretical models built on top of the input data. In other words, we can

determine how well the theory fits the data.

The quality of a PLS path model should be assessed in di↵erent ways

based on the analysis’ main goals. For instance, when the main objec-

tive is to use PLSPM for predictive purposes, researchers often rely on

measures indicating the model’s predictive capabilities to judge the over-

all model quality. Those indicators are di↵erent from the ones used for

model assessment when the objective is to validate a causal theory.

The next sections present several assessment indicators and show details

on how and when they should be used.

The aforementioned evaluation measures build a set of non-parametric

evaluation criteria and use procedures such as bootstrapping and blind-

folding. These two techniques require a separate assessment for the mea-

surement model and the structural model.

Measurement Model

This section presents the model assessment measures related with the

measurement model. Their main objective is to enable researchers to



PLS Path Modelling 43

evaluate the reliability and validity of the composite measurement.

When evaluating the measurement model, it is mandatory to distinguish

between reflectively and formatively measured composites because they

are based on di↵erent underlying concepts.

Reflective measurement models are evaluated on their internal consis-

tency, reliability and validity. These measures include composite relia-

bility (addressed to assess internal consistency), convergent validity, and

discriminant validity.

When working with formative measures, the first step is to ensure content

validity even before collecting data and estimating the PLSPM model.

Once the model reaches its convergence, the formative measures are as-

sessed for their convergent validity, significance and relevance. Addi-

tionally to these measures, it is important to check for the presence of

collinearity among the indicators.

Outward Directed Model As described in the previous paragraphs,

the assessment of reflective measurement models includes composite reli-

ability to evaluate the internal consistency, individual indicator reliabil-

ity, and Average Variance Extracted (AVE) to evaluate the convergent

validity. In addition to the previous techniques, the Fornell-Larcker cri-

terion (Fornell and Larcker, 1981) and cross loadings are also used to

assess the discriminant validity.

Internal consistency and individual indicator reliability have already been

described in section 1.2.1.
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Convergent Validity The main goal of convergent validity is to

assess the extent to which a measure correlates positively with alternative

measures of the same construct. Therefore, the MVs that are indicators

of a specific construct should converge or share a high proportion of

variance (Hair et al., 2014).

To establish convergent validity, researchers mainly consider the outer

loadings associated to the indicators and the Average Variance Extracted

(AVE).

High outer loadings on a construct indicate that the associated indicators

have much in common, which is captured by the construct. This charac-

teristic is also commonly called indicator reliability. At a minimum, all

indicators outer loadings should be statistically significant.

A common measure to establish convergent validity on the construct

level is the AVE (Fornell and Larcker, 1981) that expresses the degree of

variance of the block explained by ⇠̂j :

AV Ej =

PPj

p=1 �̂
2
pj

PPj

p=1 var(xpj)
(1.30)

This criterion is defined as the overall average of the squared loadings

associated to the indicators belonging to the j-th construct.

When the AV Ej � 0.5 is possible to state that, on average, the j-th

construct explains more than half of the variance of its indicators. Con-

versely, an AV Ej < 0.5 indicates that, on average, more error remains

in the items than the variance explained by the j-th construct.

Therefore, the AVE can be interpreted as the communality of a construct.

In a well defined measurement model, each MV is well represented by its
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own LV. So, for each block j, the Communality Index is computed as:

Comj =
1

Pj

PjX

p=1

cor2(xpj , ⇠̂j) =
1

Pj

PjX

p=1

�̂2
pj (1.31)

that is the average of the communalities between each MV belonging to

the j-th block and ⇠̂j .

The communality index measures the capability of the LV to explain the

variance of its MVs. When the manifest variables are standardised, AVE

and Communality coincide for less than the constant 1/Pj .

Goodness of the whole measurement model could be measured by using

the Average Communality index, that is the weighted average of all J

blocks specific Communality indices, with weights equal to the number

of MVs in each block:

Com =
1

P

JX

j=1

PjComj (1.32)

where Pj is total number of MVs in the j-th block and P is the total

number of MVs present in the model (considering all blocks J).

Discriminant validity The discriminant validity lies on the prin-

ciple that a construct is truly distinct from other constructs by empirical

standards. In other words, a construct is unique and captures phenomena

not represented by other constructs in the model. Alternative measures

of discriminant validity have been proposed. One of the proposed meth-

ods for assessing discriminant validity is based on the examination of

the indicators’ cross loadings. Specifically, an indicator’s outer loading
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on the associated construct should be greater than all of its loadings on

other constructs (i.e., the cross loadings):

H0 : cor(⇠j , ⇠j0) = 1 against the H1 : cor(⇠j , ⇠j0) < 1 (1.33)

The presence of cross loadings exceeding the indicators’ outer loadings

represents a discriminant validity problem. This criterion is generally

considered rather liberal in terms of establishing discriminant validity

(Hair et al., 2011). This means that it is very likely to indicate that two

or more constructs exhibit discriminant validity.

Another approach for assessing discriminant validity has been proposed

by Fornell and Larcker (1981). This approach compares the square root

of the AVE values with the LVs correlations.

Specifically, the square root of each composite’s AVE should be greater

than its highest correlation with any other construct. The logic of this

method is based on the idea that a construct shares more variance with

its associated indicators than with any other construct:

(
p

AV Ej and
p
AV Ej0) > cor(⇠̂j , ⇠̂j0) (1.34)

This means that each latent variable explains better the MVs belonging

to its block than other LVs in the model.

Inward Directed Model A review on PLSPM studies in the strategic

management and marketing disciplines presented by Hair et al. (2012b)

showed that many researchers incorrectly use validity measures built for
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outward directed models (shown in the previous paragraphs) to assess

the quality of inward directed models.

In the original PLSPM conception, researchers focussed on establishing

content validity before empirically evaluating formatively measured con-

structs. One of the main concerns for the inward directed models is to

ensure that the conceptually formative indicators capture as many facets

as possible of the LV. In creating composites, content validity issues are

addressed by the content specification in which the researcher clearly

specifies the domain’s content the indicators are intended to measure.

Researchers must include a comprehensive set of indicators that fully

covers the formative blocks’ domain. Failing to gather all facets of the

construct may lead to the exclusion of important parts of the construct

itself.

The evaluation of inward directed measurement models mandates the

establishment of convergent validity measures, the assessment of indica-

tors’ collinearity, and an analysis of the indicators’ relative and absolute

contributions, including their significance.

Convergent Validity The main goal of convergent validity is to

assess whether each measure correlates positively with other measures

of the same construct. In other words, it is important to test whether

the measured construct is highly correlated with an outward directed

measure of the same construct. This analysis is also known as redundancy

analysis (Chin, 1998c). The term redundancy analysis stems from the

information in the model being redundant in the sense that it is included

in the inward directed construct ⇠1 and again in the outward directed
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one ⇠2 (see Figure 1.7).

Figure 1.7: Redundancy Analysis for Convergent Validity

The strength of the path coe�cient linking the two blocks (⇠1 and ⇠2)

indicates the validity of the designated set of inward directed indicators

in tapping the LV of interest.

If the analysis exhibits a lack of convergent validity (i.e., the R2 value

of ⇠2 < 0.6), then the inward directed indicators belonging to the block

⇠1 do not contribute at a su�cient level to its intended content. In this

situations, the block needs to be theoretically and conceptually refined

by removing, exchanging and/or adding indicators.

In order to assess collinearity among indicators the researchers can use

several statistics. The most used are: Tolerance (TOL) and Variance

Inflation Factor (VIF). The Tolerance represents the amount of variance

of one indicator not explained by the other indicators in the same block.

It can be obtained by following a two steps approach:

1. The first indicator x1 is regressed on all the remaining indicators

in the same block and it is calculated its proportion of variance

associated with the other indicators R2
x1
;
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2. Tolerance for the indicator (TOLx1) is computed:

TOLx1 = 1�R2
x1

(1.35)

The Variance Inflation Factor (VIF), is defined as the reciprocal of the

tolerance:

V IF =
1

TOLx1

(1.36)

A tolerance value of 0.20 or lower and a VIF value of 5 and higher

respectively indicate a potential collinearity problem (Hair et al., 2011).

Significance and Relevance of the Formative Indicators Sig-

nificance and relevance represent important criteria to evaluate the con-

tribution of a formative indicator. The values of the outer weights can be

compared with each other and can therefore be used to determine each

indicator’s relative contribution to the block, or its relative importance.

We must test if the outer weights in inward directed measurement models

are significantly di↵erent from zero by means of the bootstrapping pro-

cedure. It is important to note that the values of the indicators’ weights

are influenced by other relationships in the model (see Section 1.2.3).

Non-significant indicators’ weights should not be automatically inter-

preted as indicative of poor measurement model quality. Conversely, re-

searchers should consider an inward directed indicator’s absolute contri-

bution to its block. The absolute contribution is given by the indicator’s

outer loading, which is always provided along with the indicator weights.

Di↵erently from the outer weights, the outer loadings come from simple

linear regressions of each indicator on its corresponding LV. When an in-
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dicator’s outer weight is non-significant but its outer loading is high (i.e.,

above 0.5), the indicator should be interpreted as absolutely important

but not as relatively important. In this situation, the indicator would

generally be kept in the model. When an indicator has a non-significant

weight and the outer loading is below 0.5, the researcher should decide

whether to keep or delete the indicator by examining its theoretical rele-

vance and the potential content overlap with other indicators of the same

construct.

Structural Model

The structural model estimates are not examined until the reliability and

validity of the constructs have been established. If the assessment of re-

flective and formative measurement models provides evidence of su�cient

quality in the measurement model then the structural model estimates

are evaluated.

The assessment of the structural model is focussed on the model’s pre-

dictive power. Once the measurement model has been analysed, the

first evaluation criteria for the inner model are the coe�cients of deter-

mination (R2 values) as well as the level and significance of the path

coe�cients.

The assessment of the PLSPM outcomes can be extended to more ad-

vanced analyses such as examining the mediating and/or moderating

e↵ects, considering any unobserved heterogeneity, multi-group testing,

and common method variance (Cataldo, 2016).

The structural model assessment can be done once the construct mea-

sures are reliable. This assessment is done by focussing on two main
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parts: (i) the model’s predictive capabilities; and (ii) the relationships

between the constructs.

The key criteria for assessing the structural model in PLSPM are the

significance of the path coe�cients, the level of the R2 values, the f2

e↵ect size, the predictive relevance Q2 and the q2 e↵ect size.

Path Coe�cients In a structural model the paths represent the

hypothesised relationships among the LVs. In order to asses the signifi-

cance of a coe�cient the researchers need to rely on the path coe�cients

standard error obtained by means of bootstrapping.

The bootstrap standard error allows a computation of an empirical t-

value:

t =
�̄⇤

��⇤
(1.37)

where �̄⇤ =
Pn

i=1 �
⇤
i

n , ��⇤ =

r
Pn

i=1 (�̄⇤
i ��̄⇤)2

n�1 and �⇤
i represents the pa-

rameter’s bootstrap estimation � in the i-th simulation.

When the empirical t-value is larger than the critical value, the coe�-

cient is significant at a certain error probability (i.e., significance level);

commonly used critical values for two-tailed tests are 1.65 (significance

level = 10%), 1.96 (significance level = 5%), and 2.57 (significance level

= 1%). In addition to calculating the t and p values, the bootstrapping

confidence interval for a pre-specified probability of error can also be

determined.
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Coe�cient of Determination The coe�cient of determination

(more commonly known as R2) is a measure of the model fit and is cal-

culated as the squared correlation between a specific endogenous compos-

ite’s actual and predicted values. It represents the amount of variance in

the endogenous constructs explained by all of the exogenous constructs

linked to it. The R2 value ranges from 0 to 1 with higher levels indicating

higher levels of model fit; the acceptable R2 value depends on the model

complexity and the research discipline (Hair et al., 2012b).

E↵ect Size The e↵ect size (f2) represents an additional measure

in evaluating the R2 value of all endogenous constructs. The change in

R2 is explored to see whether a specific exogenous LV has a substantive

impact on the R2:

f2 =
R2

included �R2
excluded

1�R2
included

(1.38)

where R2
included and R2

excluded are the R
2 value of the endogenous LV when

a selected exogenous LV is respectively included in or excluded from the

model. Guidelines for assessing f2 are proposed by Cohen (1988):

– if f2 ⇡ 0.02 ! small impact

– if f2 ⇡ 0.15 ! medium impact

– if f2 ⇡ 0.35 ! large impact

Predictive Relevance The last indicator is known as predictive

relevance (Q2) and it has been developed by Stone (1974) and Geisser

(1975).
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The PLSPM adaptation of this approach follows a blindfolding proce-

dure. Given a block of n cases and P manifest variables, the procedure

extracts a portion of the considered block during the parameters estima-

tion steps and then attempts to estimate the omitted part by using the

estimated parameters. In order to estimate the model, omitted values

are typically replaced with the variable mean (even though other impu-

tation techniques may be used (Chin, 1998a)). Based on the model’s

outcomes, the estimates obtained for the omitted value are compared to

the observed values, using the squared di↵erence (E). At the same time,

the di↵erence between the variable mean (or otherwise imputed value)

and the observed values are also compared using the squared di↵erence

(O). This procedure is repeated until every data point has been omitted

and estimated. The predictive measure Q2 is then calculated as:

Q2 = 1�
P

mEmP
mOm

(1.39)

where m is the number of times the procedure is repeated in order to

ensure that every data point has been omitted.

Q2 measures how well observed values are reconstructed by the model and

its parameters estimates (Chin, 2010). When PLSPM exhibits predictive

relevance, it accurately predicts the data points of indicators in outward

directed measurement models of endogenous constructs and endogenous

single-item constructs (this procedure does not apply for inward directed

endogenous constructs). Q2 > 0 implies that the model has predictive

relevance whereas Q2  0 represents the lack of predictive relevance.

In the structural model, Q2 values greater than zero for a certain outward
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directed endogenous LV indicate the path model’s predictive relevance

for a particular composite. In contrast, values of 0 and below indicate

the lack of predictive relevance.

Similar to the f2 e↵ect size approach for assessing R2 values, the relative

impact of predictive relevance can be compared by means of the q2 e↵ect

size, formally defined as follows:

q2 =
Q2

included �Q2
excluded

1�Q2
included

(1.40)

where Q2
included and Q2

excluded are the Q2 values of the endogenous LV

when a selected exogenous LV is respectively included or excluded from

the model. Similarly to the aforementioned e↵ect size statistic, as a

relative measure of predictive relevance, values of 0.02, 0.15 and 0.35

indicate that an exogenous construct has a respectively small, medium

or large predictive relevance for a certain endogenous construct (Hair

et al., 2012b).

Di↵erent forms of Q2 can be obtained through di↵erent procedures for

predicting observations from the model. In the cross-validated commu-

nality Q2, the prediction of observations is obtained by the computed

composite and the estimated loadings. The cross-validated redundancy

Q2 is also based on the estimated loadings but the composites are pre-

dicted from the structural model using the estimated path coe�cients.

The redundancy-based Q2 is applicable only to observations of MVs of

the endogenous blocks, while the communality-based Q2 can be applied

to all MVs (Chin, 2010).

Tenenhaus, Esposito Vinzi, Chatelin, and Lauro (2005) and Tenenhaus,
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Amato, and Esposito Vinzi (2004) proposed a PLSPM Goodness-of-Fit

(GoF) as an operational solution to validate the PLSPM model globally.

The GoF can be proposed as the geometric mean of the average commu-

nality and the average of R2:

GoF =

q
Com⇥R2 (1.41)

where R2 =
PJ

j=1 R
2
j

J .

The GoF has been positioned as a compromise between the quality of the

outer model and the quality of the inner model, so that the normalised

index is obtained by bringing each part to its maximum value. In partic-

ular, for the outer estimation (represented by the first part of the formula

with the average communality) for each block the maximum is the first

eigenvalue; while for the inner estimation, the maximum is given by the

square of first canonical correlation. To verify the GoF significance it is

possible to build a confidence interval with the Bootstrap technique, as

done for the R2.

Henseler and Sarstedt (2013) criticise the usefulness of the GoF both

conceptually and empirically. Their research shows that the GoF does

not represent a goodness-of-fit criterion for PLSPM (referred as PLS-

SEM in the original paper). Using simulated data, they illustrated that

the GoF is not suitable for model validation. Since the GoF is also

not applicable to inward directed measurement models and does not

penalise over-parametrisation e↵orts, researchers are advised not to use

this measure.
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1.2.5 Thoughts on PLSPM Predictive Power

As previously mentioned, many authors criticise the lack of a global

validation measure in PLSPM (Dijkstra and Henseler, 2015; Henseler

and Sarstedt, 2013; Sharma et al., 2015). In addition to this gap, there

is another topic that is driving a large production of scientific research:

the assessment of predictive power in PLSPM.

Analysing historical scientific works related to PLSPM and its adoptions

in business research, it is possible to see that its use resemble a descrip-

tive approach where explanation and exploration are key. This usage is

slightly contradictory to the PLSPM nature, which can be summarised as

a non-parametric estimation procedure that is “slated” to be predictive

(Hair et al., 2011). Also, Evermann and Tate (2014) note that “Herman

Wold, who originally developed PLSPM, clearly and explicitly positioned

it as a method for prediction (Dijkstra, 1983, 2010; Wold, 1982c)”.

Shmueli et al. (2016) stated that, so far, PLSPM literature has not made

a full use of these predictive proprieties, using instead an explanatory ap-

proach focussed on statistical significance and power (Becker et al., 2013).

Shmueli and Koppius (2010, 2011) reinforced the previous statements

saying that quantitative research in management has been dominated

by causal-explanatory statistical modelling at the expense of predictive

modelling.

In the last five years the PLSPM community has shown an increasing

interest in exploiting the predictive nature of PLSPM and recognising

the insu�ciency of considering only its theoretical validity as a statis-

tical model fit; it is fundamental to assess its predictive performance



PLS Path Modelling 57

(Armstrong, 2012; Woodside, 2013).

Additionally, as stated by Gregor (2006), explanation and prediction are

the two main purposes of theories and statistical methods.

In every statistical application, explanation is primarily concerned with

testing the faithful representation of causal mechanisms by the statistical

model and making valid inferences to population parameters. In contrast,

prediction is synthesised as the ability to predict values for individual

cases based on a statistical model whose parameters have been estimated

from a suitable training sample (Evermann and Tate, 2016).

Shmueli and Koppius (2010, 2011) believe that emphasising predictive

approaches on existing and new data sources can generate fresh insights

for business practitioners and driving new theoretical hypothesis to be

studied from a business and management research perspective.

When the focus is pointed at building a predictive model, the objective is

to retrieve a predictive function (classification or regression, Hastie et al.

(2009)) that can be applied to new observations. With that in mind,

one of the most important elements to consider is making sure that the

predictive function is generalisable.

Sharma et al. (2015) identify several types of generalisations:

– Statistical Generalisation: where the model estimated from the

sample generalises to the population from which the sample was

drawn;

– Scientific Generalisation: where the model estimated from the

sample generalises to other populations (e.g., to other contexts);

– Predictive Generalisation: where the model estimated from the
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sample provides su�ciently accurate predictions for new records

from that population (out-of-sample prediction).

Focussing on predictive generalisation, Shmueli et al. (2016) proposed a

framework based on three dimension where the prediction measures in

PLSPM can be defined: (i) Construct-Level versus Item-Level; (ii) In-

Sample versus Out-of-Sample; and (iii) Average Case versus Case-wise.

Changing slightly the design proposed by the authors, this framework is

summarised in figure 1.8.

Figure 1.8: A Prediction Framework for PLSPM Assessment Measures

From the eight available types of predictions presented in figure 1.8,

only two allow for evaluating predictive performance in the sense of the

aforementioned predictive generalisation: (Item-Level, Out-of-Sample,

Case-wise) and (Item-Level, Out-of-Sample, Average Case).
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Shmueli et al. (2016) also present a deep analysis on the existing ap-

proaches highlighting their main limitations and some of the available

opportunities. The authors reinforced that R2 in PLSPM allows to

assess the in-sample predictability (or fit) of endogenous average case

composite scores and it is not concerned with each of the other seven

prediction options presented in figure 1.8. In order to assess the pre-

dictive power, Becker et al. (2013) defined and used an “out-of-sample

R2” which is based on case-wise, out-of-sample predictions of the en-

dogenous composites scores. Shmueli et al. (2016) also commented on

the Q2 and on the Operative Prediction Approach proposed by Ever-

mann and Tate (2014): the first only concerns with an aggregate sense

of predictability of a dataset, rather than gauging the predictability of

particular cases and it is also considered, together with the q2, as ad-hoc

metrics that do not provide highly interpretable results in terms of error

magnitude; the second (Operative Prediction Approach) is classified as

a case-wise, out-of-sample technique that produces operative predictions

at item-level. Shmueli et al. (2016) find that this approach still presents

several challenges to overcome before being considered as a truly useful

and informative predictive evaluation for PLSPM.

Shmueli et al. (2016) presented a new procedure for evaluating predictive

performance for PLSPM model with the aim of diagnosing whether the

PLSPMmodel is overfitting the training data. The approach proposed by

the authors generates item-level case-wise and average case predictions

for both out-of-sample and in-sample cases. The out-of-sample allows

assessing predictive performance on new data and its comparison with

the in-sample results allows to assess the aforementioned issue related to
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the overfitting of the training data.

The last years highlighted some insu�ciency related to the assessment

measures present in the PLSPM literature. These limitations open a

whole new set of opportunities related to the predictive assessment of

PLSPM. These steps towards prediction-driven PLSPM applications and

the formalisation of a predictive assessment framework are widening the

possibilities associated to the use of PLSPM and reducing the gap be-

tween PLSPM and the predictive analysis world.

1.3 Open Issues

This section summarises the open issues discussed through this chapter

and some other research challenges worth mentioning.

– Algorithm Optimisation Criteria: as discussed in the previ-

ous sections, PLSPM does not have an overall scalar function to

optimise. This is mainly due to the di↵erent available options in

the inner and outer estimation steps, but also to the fact that

PLSPM can be present in several configuration (number of latent

variables, inner relationships, etc.) (Esposito Vinzi and Russolillo,

2013). Hanafi (2007) proved that the PLSPM iterative procedure

is monotonically convergent to a specific criteria. Traditional Mode

A applied to all the blocks does not seem to optimise any criterion,

as Krämer (2007) showed that Wold’s Mode A technique does not

lead to a stationary equation related to the optimisation of a twice

di↵erentiable function. However, Tenenhaus and Tenenhaus (2011)

recently extended the results of Hanafi (Hanafi, 2007) to a slightly
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adjusted Mode A in which a normalisation constraint is placed on

outer weights rather than on LV composites. In particular, they

showed that Wold’s procedure, applied to a PLS path model where

the new Mode A is used for all the blocks, monotonically converges

to the criterion shown in equation 1.26.

– Sample Size: one of the main reasons justifying the use of PLSPM

found in literature is the minimal demands in terms of sample size

(Chin, 1998a). This topic has been widely debated in recent re-

search (Hair et al., 2012a; Henseler et al., 2014; Marcoulides and

Saunders, 2006; Ronkko and Evermann, 2013; Rönkkö et al., 2016)

and has been empirically studied in several simulation studies (e.g.,

Hulland et al. (2010); Vilares and Coelho (2013)). Within the

PLSPM community, there seems to be a common belief that sam-

ple size does not a↵ect PLSPM estimation in practice applications

(Henseler et al., 2014). Many authors follow the “ten times” rule

of thumb according to which the sample size should be equal to the

larger of the following: (i) ten times the largest number of forma-

tive indicators used to measure one construct; or (ii) ten times the

largest number of inner model paths directed at a particular con-

struct in the inner model (Barclay et al., 1995). However, this rule

of thumb does not take into account several important factors (i.e.,

the magnitude of the relationships, the reliability, the number of in-

dicators, distributional characteristics of the data, etc.) and its use

could a↵ect the model’s statistical power. Some authors (Henseler

et al., 2009; Marcoulides and Saunders, 2006) stated that this rule
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cannot be applied indiscriminately.

– Model Quality Assessment: another important challenge is to

fine-tune the model assessment measures. These measures, as pre-

sented in the previous section, can be focussed on the inner model,

outer model or on the PLSPM as a whole. When the goal is to use

PLSPM for descriptive or explanatory analysis, the priority should

be focussed on finding a measure for global fit. Henseler and Sarst-

edt (2013) criticise the usefulness of the GoF both conceptually and

empirically. Their research shows that the GoF does not represent

a goodness-of-fit criterion for PLSPM. Using simulated data, they

have illustrated that the GoF is not suitable for model validation.

Since the GoF is also not applicable to inward directed measure-

ment models and does not penalise over-parametrisation e↵orts,

researchers are advised not to use this measure and to propose

alternative ones.

– Prediction Assessment Techniques: when the objective is to

use PLSPM as a predictive model, there is a need for defining

a new framework to assess its predictive power. Dolce (2015)

stated that frequently composite-based methods are preferred to

factor-based methods since their objective is to develop a predic-

tive model. In the last five years, many researchers focussed their

e↵orts to present new procedures and frameworks for evaluating

predictive performance (Becker et al., 2013; Evermann and Tate,

2014; Shmueli et al., 2016). These researches set the foundations

for future works. New techniques should allow model generalisa-
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tion to new data (out-of-sample testing) and avoid situations where

the PLSPM model is overfitting the training data.

– Multicollinearity: another issue to take into account concerns the

situation in which input data presents multicollinearity. This issue

a↵ects solely Mode B (Diamantopoulos and Winklhofer, 2001); in

fact, being based on multiple regression, the stability of the MVs

outer weights is a↵ected by the strength of the manifest variables

inter-correlations and by the sample size (Dolce, 2015). In case

of perfect collinearity between two formative MVs (i.e., one MV

can be expressed as a linear combination of another MV belonging

to the same block), PLSPM cannot estimate the model’s parame-

ters since the covariance matrix is singular and cannot be inverted

(action required in a multiple regression model when using Mode

B).

– Path Direction Incoherence: the previous sections presented

three main options to calculate the inner weights: Centroid scheme,

Factorial scheme and Path weighting scheme. One of the main ad-

vantages appointed to the path weighting scheme is the fact that

this technique takes into account both strength and direction of

the paths present in the inner model. Dolce (2015) shows that

the path direction is only taken into account in the way the inner

weights are computed, but each LV is still defined as a function of

all the connected LVs. These steps of the algorithm lead to some

inconsistencies when it comes to the relationships’ directions spec-

ified in the path diagram. This same situation is verified for all the
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inner weighting schemes. The same author adds that the PLSPM

estimation process amplifies interdependence among blocks and, as

a consequence, it fails to distinguish between dependent and ex-

planatory latent variables.

– Unobserved Heterogeneity: an important topic related to the

input data structure is the unobserved heterogeneity. Usually, in

order to understand heterogeneity the researchers use various mar-

keting research techniques (i.e., interviews, focus groups, surveys,

etc.) to identify a priori segments upon which subsequent research

and analysis is based (Hahn et al., 2002). Henseler et al. (2009)

verified that, based on their review of PLSPM applications in inter-

national marketing, there is a mixed picture regarding the examina-

tion of heterogeneity. Although a significant number of studies take

observed heterogeneity into account by means of multi-group com-

parisons, none of the studies analysed by the authors account for

unobserved heterogeneity. In literature there are several PLSPM-

based techniques that approach the detection of unobserved het-

erogeneity (Esposito Vinzi et al., 2008; Hahn et al., 2002; Ringle

et al., 2010a,b; Trinchera, 2008). This situation shows the need

for an exhaustive analysis (theoretical and empirical) of all avail-

able techniques aiming at building a reference framework to use

when there is a need to detect and handle situations of unobserved

heterogeneity.

– Linear and Nonlinear Moderation Variables: another topic

that is awakening interest within the PLSPM community is the in-
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troduction of linear and nonlinear moderation (Hair et al., 2017).

As presented in this chapter, PLSPM algorithm is an iterative pro-

cess based on simple and multiple OLS regressions aiming at ob-

taining a unique system of weights for the computation of scores

calculated as linear combinations of the corresponding items. These

scores are then used to estimate relationships between composites.

Although attractively simple, traditional linear models often fail

in these situations: in real life, e↵ects are often not linear (Hastie

et al., 2009).

Many authors decided to tackle the linearity assumption by us-

ing moderating e↵ects within the PLSPM algorithm (Chin et al.,

2003; Henseler and Chin, 2010; Henseler et al., 2008, 2012; Krämer,

2005), others used nonlinear functions to fit the inner relationships

(Jakobowicz, 2007a,b; Jakobowicz and Saporta, 2007) and other

presented approaches that subdivide the nonlinearity present in

the data by using a set of linear submodels (Esposito Vinzi et al.,

2008; Farooq et al., 2013; Hahn et al., 2002; Mart́ınez-Ruiz and

Aluja-Banet, 2013; Ringle et al., 2005a; Sánchez and Aluja-Banet,

2006; Trinchera, 2008).

The objective of this work is to propose a flexible alternative to the

PLSPM algorithm which tackles two of the aforementioned issues by: (i)

breaking the linearity assumptions present in the inner model estimation

phase; and (ii) accommodating path direction within the inner model

estimation phase.





Chapter 2

Nonlinear Approach to

PLSPM

2.1 Introduction and Motivations

PLS path modelling is a statistical approach for modelling complex mul-

tivariate relationships among observed and latent variables. It allows

to model a system of relationships that are separated in: relations be-

tween manifest and latent variables (measurement model) and relations

between latent variables (structural model).

The algorithm is represented by an iterative process based on simple

and multiple OLS regressions that aim at obtaining a unique system of

weights for the computation of the composites as linear combinations

of the corresponding manifest variables. These scores are then used to

estimate relationships between composites.

Although attractively simple, the traditional linear model often fails in
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some situations: in real life, e↵ects are often not linear (Hastie et al.,

2009). The following paragraphs present a set of concrete examples on

the underlying relations among composites.

Crainer and Dearlove (2004) verified that most customer-driven organ-

isations’ goal is to have satisfied and loyal customers. Many of these

companies fail to find a positive link between customer satisfaction and

loyalty. This situation often leads to poor return on investments caused

in part by the intrinsic relation among customer satisfaction and loyalty

which is often nonlinear. The linearity assumption about this specific

relation can lead to wrong assessments and inappropriate marketing ini-

tiatives.

Paulssen and Sommerfeld (2006) a�rm that, despite high rates of sat-

isfied customers, organisations experience high rates of customer defec-

tion. In general, the relationship between satisfaction and loyalty has

often been assumed to be linear and symmetrical. However, this linear-

ity assumption has recently been questioned in studies from Mittal et al.

(1998) and Matzler et al. (2004).

Matzler et al. (2004) presented an interesting work on the relation be-

tween customer satisfaction, investments and profitability. They found

several empirical studies confirming a positive relationship between cus-

tomer satisfaction and profitability (e.g., Anderson et al. (1994); Eklof

et al. (1999)).

Matzler et al. (2004) also stated that, in order to build a loyal relationship

with their customers, organisations must identify the critical factors that

determine satisfaction and loyalty. An e↵ective method to set priorities

is given by the Importance–Performance Analysis (IPA).
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Two implicit assumptions underlie the IPA: (i) attribute performance

and attribute importance are two independent variables; and (ii) the

relationship between quality attribute performance and overall perfor-

mance is linear and symmetrical. Research in the customer satisfaction

field, however, suggests that quality attributes fall into three categories:

basic factors, performance factors, and excitement factors (Anderson and

Mittal (2000); Johnston (1995); Matzler et al. (1996)). In the model of

customer satisfaction presented by Kano et al. (1984), the relationship

between performance and importance of basic and excitement factors is

nonlinear and asymmetrical.

Other interesting works questioning the linearity assumption often de-

fined between satisfaction and loyalty are: Kumar (2007), Tuu and Olsen

(2010) and Zhang and Li (2009).

The current thesis is based on the assumption that the application of

nonlinear transformations represents a better fit when estimating some

of the relationships among the variables (manifest and/or latent) present

in the model.

In PLSPM, the nonlinear model can be applied to relationships belong-

ing to the measurement model and/or to the structural model. Several

bibliographic references on the application of nonlinear techniques will

be presented in section 2.3.1.

Two interesting papers were presented by Emancipator and Kroll (1993)

and Kroll and Emancipator (1993) which proposed a quantitative mea-

sure of nonlinearity based on a comparison between a straight line and

a curve function. In their work they fit curvilinear relationships between

variables using extensions of linear regression models (they used stepwise
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polynomial regression as curve-fitting function).

The next section presents several nonlinear estimation techniques based

on the well-known linear regression model.

2.2 Nonlinear Modelling Techniques

Nonlinear models can be classified into two main categories:

1. The first category includes models that are nonlinear in the vari-

ables, but linear in terms of the unknown parameters. This cate-

gory includes models which become linear in the parameters after

a transformation. For example, the Cobb-Douglas (Cobb and Dou-

glas, 1928) production function that relates output (Y ) to labour

(L) and capital (K) can be formalised as:

Y = ↵L�K� (2.1)

Applying a logarithmic transformation gives:

lnY = � + � ln (L) + � ln (K) (2.2)

where � = ln (↵).

This function is nonlinear in the variables Y , L, and K, but it is

linear in the parameters �, � and �. Models of this kind can be

estimated using the least squares technique.
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2. The second category of nonlinear models contains models which are

nonlinear in the parameters and which cannot be made linear in

the parameters using a transformation. These models are usually

estimated using an extension of the least squares technique known

as nonlinear least squares.

The next sections briefly present these two modelling category using the

regression as baseline model and showing its extensions to fit nonlinear

relationships among variables.

2.2.1 Nonlinear in the Variables but Linear in Parameters

When a regression model is nonlinear in the variables but linear in the

parameters, data transformations are often used to describe curvature

and can sometimes be usefully employed to correct for the violation of the

assumptions related to a multiple linear regression model (particularly

the linearity1 and equal variances2 assumptions).

Let x be a matrix containing P input variables x = (x1, x2, ..., xP ), and

let the objective be the prediction of a real-valued output y. The linear

regression model has the following form:

y = �0 + �1x1 + �2x2 + . . .+ �pxp + . . .+ �PxP + ✏ (2.3)

The linear model either assumes that the regression function E (y|x) is

linear, or that the linear model is a reasonable approximation. The �p are

1The mean of the response , E(yi), at each value of the predictor, xi, is a linear
function of the xi.

2The errors, ✏i, at each value of the predictor, xi, have equal variances (denoted
�

i)
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unknown parameters or coe�cients, and the variables xp in a linear re-

gression are usually defined as quantitative inputs and no transformation

is needed because the relation between target variable and predictors is

linear (Draper et al., 2014). There are cases where the relation between

target variable and predictors is not linear but linearisable. In these cases

the variables xp can be linearised as follows:

– Transformations of quantitative inputs, such as logarithmic, square-

root or square;

– Numeric or “dummy” encoding of the levels of qualitative inputs.

For instance, if G is a five-level factor input we might create xp, p =

1, . . . , 5, such that xp = I (G = p). Together this group of xp rep-

resents the e↵ect of G by a set of level-dependent constants, since

in
P5

p=1 xp�p, one of the xp’s is equal to one, and the others are

set to zero;

– Interactions between variables, for instance, x3 = x1 ⇥ x2;

– Basis expansions, such as x2 = x21, x3 = x31 , leading to a polynomial

representation.

Independently of which of the aforementioned forms of the xp is used,

the model is still linear in the parameters.

Variables Transformations The issues related with nonlinear rela-

tionships among variables might be solved by replacing the predictor xp

values with a transformation technique. This is usually the first approach

tried when lack of linear trend in data is found. In fact, transforming
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the xp values is appropriate when nonlinearity is the only problem and

the independence, normality and equal variance conditions are met.

One of the most used data transformation techniques is the “logarithmic”

transformation. The default logarithmic transformation merely involves

taking the natural logarithm, denoted ln or loge or simply log, of each

data value. One could consider taking a di↵erent base for the logarithm,

such as log base 10 or log base 2. However, the natural logarithm, which

can be thought of as log base e (where e is the constant 2.718282 . . .)

represents the most common logarithmic scale used in scientific works.

When using the natural logarithmic transformation, small values that

are close together are spread further out and large values that are spread

out are brought closer together.

Other predictors transformations are exponential (expxp), reciprocal (1/xp),

square root (
p
xp), square (x2p), etc. and their use depends on the type

of relationship existing between a predictor and its response variable.

Numeric or Dummy Encoding of Categorical Variables When

a predictor is categorical, such as gender or academic level, it is common

to decompose the predictor into separate variables, each one containing

a part of the variable information. In order to use a categorical predictor

in a model, the categories need to be re-encoded into smaller bits of

information called “dummy” variables. Usually, each category get its

own dummy (binary) variable. When the predictor has 5 levels, this

encoding process creates 4 dummy variables. This approach goes by the

name of “full-rank” encoding and the dummy variables do not always

add up to 1 (Kuhn and Johnson, 2013).
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Sometimes a similar transformation is applied to continuous variables.

This process is also known as discretisation and is not generally recom-

mended due to the loss of information. Royston et al. (2006) and Harrell

(2008) discussed drawbacks to categorising continuous variables, includ-

ing loss of power and sensitivity to the choice of cut-points. One of the

strong points they made is related with the fact that it is a risky strategy

to estimate cut-points for discretisation based on the response variable,

y. In addition to that, even when the cut-points are set based on the

predictor x, there is generally a loss of e�ciency compared to its use as a

continuous variable when fitting a regression model (Gelman and Park,

2009).

An example of dummy encoding is presented in table 2.1 where the orig-

inal categorical variable “Hair” is encoded in three dummy variables.

Hair Brown Red Black

Brown 1 0 0

Black 0 0 1

Brown 1 0 0

Brown 1 0 0

Red 0 1 0

Black 0 0 1

Brown 1 0 0

Red 0 1 0

Table 2.1: An example of Dummy Encoding
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Variables Interactions Jaccard and Turrisi (2003) stated that there

are many ways in which interaction e↵ects have been conceptualised in

the social sciences and there is controversy about the best way to think

about this concept. They also define the moderated relationships as one

of the most popular interaction e↵ects. This configuration is illustrated

in figure 2.1 by using a three variables system: a first variable (y) as

dependent, a second (x) declared as independent variable and a third

one (z) viewed as a moderator variable. An interaction e↵ect is said

to exist when the e↵ect of the independent variable on the dependent

variable di↵ers depending on the value of a third variable (moderator

variable).

Figure 2.1: Moderated Causal Relationship

In other words, interaction e↵ects represent the combined e↵ects of vari-

ables on the dependent measure. When an interaction e↵ect is present,

the impact of one variable depends on the level of the moderator vari-

able. As Pedhazur (1997) noted, the idea of multiple e↵ects should be

studied in research rather than the isolated e↵ects of single variables.

When interaction e↵ects are present, it means that interpretation of the

individual variables may be incomplete or misleading.
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In a regression model in the form of equation 2.3 with only two predictors

x1 and x2, the interaction e↵ects can be built as follows:

y = �0 + �1x1 + �2x2 + �3x1x2 + ✏ (2.4)

where �3 represents the coe�cient measuring the impact of the interac-

tion e↵ect on the dependent variable y.

Interaction terms can be created between categorical (or binary) vari-

ables and quantitative predictors to allow for di↵erent slopes for levels of

the categorical predictor. Interactions can also be created between quan-

titative predictors. This allows the relationship between the response and

one predictor to vary with the values of another quantitative predictor.

Interestingly, this provides a di↵erent way to introduce curvature into a

multiple linear regression model.

Regression models that include interactions between quantitative pre-

dictors adhere to the hierarchy principle, which states that if the model

includes an interaction term, x1x2, and this is shown to be a statistically

significant predictor of y, then the model should also include the “main

e↵ects”, x1 and x2, whether or not the coe�cients for these main e↵ects

are significant. Depending on the subject area, there may be circum-

stances where a main e↵ect could be excluded, but this tends to be the

exception.

Basic Expansions One of the most common ways to identify a nonlin-

ear relationship among variables is during a visual check for the linearity

assumption (i.e., scatter plot of the residuals versus the fitted values,
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scatter plot of the residuals versus each predictor, etc.).

A potential way to take into account this type of relationship is through

the use of a polynomial regression model. Such a model for a single

predictor, x, can be defined as:

y = �0 + �1x+ �2x
2 + . . .+ �dx

d + ✏ (2.5)

where d is called the degree of the polynomial. For lower degrees, the

relationship has a specific name (i.e., d = 2 is called quadratic, d = 3 is

called cubic, d = 4 is called quartic, and so on). Although this model

allows for a nonlinear relationship between y and x, polynomial regression

is still considered linear regression since it is linear in the parameters

(regression coe�cients): �0,�1,�2, . . . ,�d.

In order to estimate equation 2.5, only two variables are needed (i.e.,

response variable y and the predictor variable x). The basic equation for

the aforementioned polynomial regression model is relatively simple, but

the model can grow depending on the specific case under analysis.

Some guidelines to take into account when estimating a polynomial re-

gression model are:

– The fitted model is more reliable when it is built on a larger sample

size;

– The results should not be used to extrapolate beyond the limits of

the observed values present in the model;

– From a computational perspective, it is important to consider how

large the size of the predictors will be when incorporating higher
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degree terms (this may cause numerical overflow for the statistical

software used);

– It is important to be parsimonious when thinking about incorpo-

rating a higher degree term. This is a situation where it is funda-

mental to make a good trade o↵ between “practical significance”

versus “statistical significance”;

– The models should adhere to the hierarchy principle, which states

that if the model includes xd, and this variable is shown to be a

statistically significant predictor of y, then the model should also

include each xk for all k < d, whether or not the coe�cients for

these lower-order terms are significant.

2.2.2 Nonlinear in Parameters

All of the models presented in the previous sections are linear in the pa-

rameters (i.e., linear in the �’s). For example, the polynomial regression

model is often used to model curvature in the data by using higher-

ordered values of the predictors. However, the final regression model

was just a linear combination of higher-ordered predictors.

The least squares theory discussed in the previous sections is applicable

when a model is linear or can assume a linear form via transformation

techniques. For other non-normal error terms, di↵erent techniques need

to be employed.

First, let
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Q =
nX

i=1

(yi � f (Xi,�))
2 . (2.6)

In order to find

�̂ = argmin
�

Q, (2.7)

the first step is to calculate the partial derivatives of Q with respect to �j .

Then, each of the partial derivatives are set to 0 and the parameters �k

are replaced by �̂k. In this case, the functions to be solved are nonlinear in

the parameter estimates �k and, in order to be solved, iterative numerical

methods are often employed.

Algorithms for nonlinear least squares estimation include:

– Newton-Raphson’s method is a classical method based on a gra-

dient approach. The drawbacks related to this technique are: (i)

can be computationally challenging; and (ii) heavily dependent on

good starting values;

– The Gauss-Newton algorithm represents a modification of New-

ton’s method giving a good approximation of the solution reached

by the latter method. The drawback is related to the fact that the

convergence is not guaranteed;

– The Levenberg-Marquardt method which can take care of compu-

tational di�culties arising with the other methods. The drawback

resides on the fact that it might require a tedious search for the

optimal value of a tuning parameter.
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A more detailed review on these methods can be found in Kutner et al.

(2005).

In addition to the nonlinear least squares there are other modelling op-

tion such as “generalised additive models”3 or neural networks4. These

techniques work better with large amounts of variables and observations.

More details can be found in Hastie et al. (2009).

From the large set of available nonlinear modelling techniques, it has

been decided to use polynomial functions as the underlying technique

for the proposed approach presented in the next sections. This decision

is mostly related with the simplicity of polynomial functions and on its

scalability to higher order functions.

2.3 Nonlinear Approaches in PLSPM: State-of-

the-Art

2.3.1 Historical Review

This section aims to present the di↵erent nonlinear approaches developed

for PLSPM and other interesting developments built for Covariance-

Based SEM and PLS Regression.

3Generalised additive models can be seen more as automatic flexible statistical
methods that may be used to identify and characterise nonlinear regression e↵ects.

4Neural network can be thought of as a nonlinear generalisation of the linear model,
both for regression and classification. By introducing the nonlinear transformations,
it greatly enlarges the class of linear models.
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In the PLSPM research field, several authors presented techniques to take

into account nonlinear e↵ects in the original PLSPM algorithm. Some

of these approaches present a novel technique, others are adapted from

developments made in covariance-based SEM and PLS Regression.

The presence of nonlinear transformations in the PLS path modelling

algorithm are still marginal, however Wold (1982c) proposed the use of

a variable transformation technique applied to the manifest variables.

H. Wold suggested modelling nonlinear relationships in the structural

model by using an additional step to the classical PLSPM algorithm.

In particular, after the computation of each latent variable in the mea-

surement model, Wold proposed computing interaction term proxies as

an element-wise product of the outer estimates of the latent variables.

Then the structural model is augmented in order to obtain inner esti-

mates of endogenous latent variables by considering also the interaction

term composites. The inner estimates of the latent variables are then

used to update the outer weights as in the original PLSPM algorithm.

One of the main critics made to this approach is that it does not take

into account nonlinear links between the manifest and latent variables

(Ingrassia and Trinchera, 2008).

Chin et al. (2003) presented an approach linkable to a “nonlinear” tech-

nique for PLSPM based on the so called product-indicator approach pro-

posed by Kenny and Judd (1984) in which measures of latent constructs

are cross-multiplied to form interaction terms that are used to estimate

the underlying latent interaction construct within the LISREL algorithm.

After the seminal paper from Kenny and Judd (1984), several covariance-

based SEM specifications have been conducted (Jöreskog and Yang, 1996).
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However, Ping Jr. (1996, p. 166) noted that covariance-based procedures

“may produce specification tedium, errors, and estimation di�culties in

larger structural equations models”. Part of the di�culty involves the

need to calculate and specify in the software the required set of nonlinear

constraints, which increase exponentially with the number of indicators.

In agreement, Bollen and Paxton (1998, p. 267), stated that “the best

known procedures for models with interactions of latent variables are

technically demanding. Not only does the potential user needs to be

familiar with structural equation modelling (SEM), but the researcher

must be familiar with programming nonlinear and linear constraints and

must be comfortable with fairly large and complicated models”. Again,

these constraints tend to grow exponentially with the number of interac-

tion terms.

Additionally Chin et al. (2003) showed that, based on their results, it

is possible to achieve additional findings around known PLSPM biases,

influences of di↵erent reliabilities, extensions for nonlinear indicators and

use of formative indicators. In summary, the new PLSPM product-

indicator approach, presented in their paper, seems to yield promising

results for researchers interested in assessing interaction e↵ects within

the composite-based modelling area.

Ingrassia and Trinchera (2008) consider that Chin’s approach presents

two main weaknesses: (i) the number of indicators for the latent in-

teraction terms directly increases the number of manifest variables in

the model; and (ii) the latent interaction terms obtained by its indica-

tors does not coincide with the product of the exogenous latent variable

scores.
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Another approach for handling nonlinear relations in PLSPM has been

proposed by Krämer (2005). The author’s underlying hypothesis is that

the nonlinearity a↵ects the outer model. In other words, nonlinear rela-

tions are supposed to exist among each manifest variable and the corre-

sponding latent variable and these are modelled by means of a suitable

data transformation called “kernel trick”. In this approach each relation

in the measurement model can be considered as a simple/multiple regres-

sion problem according to the chosen outer model scheme. This means

that a kernel transformation is considered for each block of manifest

variables and, after applying the transformation, the standard PLSPM

algorithm is executed on the transformed data. Here the choice of a

suitable kernel function can be considered as an additional parameter in

the model. The kernel function should be identified for each block in

the model but, for simplicity, Krämer (2005) suggested using only one

family of kernels for all of the blocks present in the model. One of the

drawbacks of this approach is related to the interpretability. In fact, the

proposed algorithm does not provide any estimation of the outer weights.

In order to overcome the issues related to the approach proposed by Chin

et al. (2003) (i.e., exponential growth of the number of manifest vari-

ables), Henseler and Chin (2010); Henseler et al. (2008, 2012) proposed

a two-stage procedure to model interaction e↵ects. More in detail, the

first stage presents a standard PLSPM analysis which aims to estimate

the direct e↵ect of each exogenous latent variable as well as the latent

variable scores. In a second stage, the interaction e↵ect is obtained as

the product of endogenous latent variables scores. Then, the exogenous

latent variable scores (estimated in the first-stage), and the interaction
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e↵ect (obtained in the second-stage), are used as exogenous variables in

a multiple linear regression to obtain path coe�cients.

One of the principal criticism associated to the approach presented by

Henseler et al. (2008) is related to the fact that the algorithm does not

take into account nonlinear relationships among manifest and latent vari-

ables.

Recently Jakobowicz (2007a,b); Jakobowicz and Saporta (2007) pro-

posed a modified version of the original PLSPM algorithm by adding

an additional step. Based on an idea of Coolen et al. (1982), who com-

bined optimal scaling techniques with B-splines, Jakobowicz applied a

B-spline transformation to some of the latent variables in the model. In

other words, the objective is to transform nonlinear variables into linear

variables using monotonic B-spline transformations and alternating least

squares (ALS). All exogenous construct of an endogenous unobservable

variable are transformed such that the square multiple correlation coef-

ficient of this endogenous construct is maximised. The ALS procedure

is used to estimate the parameters of the monotonic B-spline function

and the path coe�cients for the inner model. However, this approach

requires identifying a well-established target latent variable in the model.

In particular, once the target latent variable is chosen, a B-spline trans-

formation is applied to each exogenous latent variable impacting on the

chosen target latent variable.

The approach developed by Jakobowicz (2007b) presents some di�culties

related to its practical implementation, in fact, when working with com-

plex models, the identification of a well-established target latent variable

is not trivial.
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Ingrassia and Trinchera (2008) concluded saying that the nonlinear trans-

formations PLSPM approaches proposed by Krämer (2005) and Jakobow-

icz (2007b) did not improve the quality of the results when these are

compared with the standard PLSPM algorithm.

In order to tackle the nonlinearity issue for the PLSPM, several re-

searchers presented new approaches aiming at reaching a nonlinear ap-

proximation by using a set of linear submodels. Hahn et al. (2002) and

Ringle et al. (2005a) presented two approaches for capturing unobserved

customer heterogeneity in PLSPM using a modified finite-mixture dis-

tribution approach.

Another approach has been proposed by Sánchez and Aluja-Banet (2006)

and consists of building a path model having a decision tree-like struc-

ture by means of the PATHMOX (Path Modelling Segmentation Tree)

algorithm. This algorithm is specifically designed when prior informa-

tion in form of external variables (such as socio-demographic variables)

is available.

Trinchera (2008) and Esposito Vinzi et al. (2008) presented an approach

called REBUS-PLS capable of estimating at the same time both the

unit memberships to latent classes and the class specific parameters of

the local models without making any kind of distributional assumption

neither on the manifest variables nor on the latent variables. In other

words this algorithm has been designed to “discover” latent classes inside

a PLSPM global model by applying clustering principles.

Farooq et al. (2013) presented an interesting application of the REBUS-

PLS algorithm applied to corporate social responsibility.

More recently Mart́ınez-Ruiz and Aluja-Banet (2013) developed a two-
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step PLS path modelling MODE B procedure to estimate nonlinear

and interaction e↵ects among formative constructs. The procedure pre-

serves the convergence properties of PLS MODE B with centroid scheme

(Wold’s algorithm) and o↵ers a way to build proper indexes for linear,

nonlinear and interaction terms, all of which are unobservable, and to

estimate the relationships between them.

Other Nonlinear Approaches Many other nonlinear approaches have

been proposed for covariance-based SEM and for PLS Regression. Some

of these works were used as guideline for the proposals presented in the

previous paragraphs.

Some of the most cited works in the covariance-based SEM field are:

Kenny and Judd (1984), Bollen (1995),Jöreskog and Yang (1996), Wall

and Amemiya (2003), Lee et al. (2004), Little et al. (2006), Paulssen and

Sommerfeld (2006), Moosbrugger et al. (2006), Lee et al. (2007), Klein

and Muthén (2007) and Mooijaart and Bentler (2010).

On te nonlinearity approach under the PLS Regression umbrella, it is

worth mentioning Wilson et al. (1997), Ba� et al. (1999), Ba� et al.

(2000), Rosipal and Trejo (2002) and Rosipal (2011).

Thoughs on Nonlinearity in PLSPM

As presented in the previous paragraphs, several approaches have been

proposed to add nonlinear estimation as part of the PLSPM algorithm.

Some researchers proposed to introduce the nonlinear estimation into the

algorithm by changing the inner or outer model, by adding new compos-

ites built based on the product-interaction approach or by segmenting
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the observations prior to the algorithm.

Ingrassia and Trinchera (2008) see as a weakness the fact that some ap-

proaches do not account for nonlinear relationships among manifest and

latent variables (i.e., considering only nonlinearity links in the structural

model).

The approach proposed in this work, presented in the next sections, intro-

duces a change in the structural model which is solving the nonlinearity

by using a piecewise technique. The method does not apply nonlinear

estimation for the measurement model even if the proposed technique is

easily extensible to the outer model estimation phase.

2.4 Proposed Approach for Nonlinear PLSPM

As referred in the previous section, the proposed approach is based on a

modification of the inner estimation process. As shown in the previous

chapter (see section 1.2.3), the PLSPM algorithm presents three separate

techniques to estimate inner weights estimation, several schemes have

been showed (Centroid, Factorial and Path Weighting).

Independently from the estimation scheme selected, the relationship among

two latent variables is always assumed to be linear even when empirical

studies (see section 2.1) confirm the presence of nonlinearity.

Let us consider the relationship among two latent variables ⇠j and ⇠j0 and

define yj as the composite associated to the endogenous LV ⇠j and, yj0

as the composite associated to the exogenous LV ⇠j0 directly connected

to ⇠j .

Using the standard algorithm and following the factorial scheme, the
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inner weights ejj0 are calculated as ejj0 = rjj0 = corr
⇣
yj , yj0

⌘
and cor-

respond to the correlations between sets of two composites. Since the

composites are standardised, the correlation coe�cient corresponds to

the �1 coe�cient of the following regression model: yj = �0 + �1yj0 + ✏.

The way how weights ejj0 are calculated performs adequately when the

relation between the two composites is linear as shown on the scatter

plot in figure 2.2.

Figure 2.2: Structural relation between endogenous variable yj and exogenous
variable yj0

The latter weight estimation technique shows some flaws when the re-

lationship among the two variables is closer to a nonlinear relation. In

those cases, the linear regression does not appear to be a good fit (see

Figure 2.3) and better options are demanded by researchers.

Figure 2.3 presents a linear regression fit to clearly nonlinear data be-

longing to two composites and, in this case, the R2 is equal to 0.3673.
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2.4.1 Step-by-Step Introduction to Piecewise Inner Weights

Estimation

This work presents a new technique aiming at improving the inner weights

estimation phase in cases like the one presented in figure 2.3. From the

vast set of nonlinear modelling techniques presented in section 2.2, it

has been decided to estimate nonlinear relation using a custom approach

based on polynomial functions.

Given the composites yj calculated in the measurement model, the pro-

posed inner weights estimation technique is composed of the following

four steps:

1. Fit Polynomial Functions: the first step of the inner weights

estimation process is focussed on understanding the nature of all

the connections (paths) present in the structural model.

In order to fit the data representing the relationship among each

pair of composites, the proposed algorithm fits several polynomial

functions: first (see Figure 2.3), second (see Figure 2.4) and third

(see Figure 2.5) order.

The three polynomial functions can be defined as follows:

– First Order Polynomial

yj = �0 + �1yj0 + ✏ (2.8)
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Figure 2.3: Linear Regression fit to nonlinear data

– Second Order Polynomial

yj = �0 + �1yj0 + �2y
2
j0
+ ✏ (2.9)

Figure 2.4: Second Order Polynomial Function fit to nonlinear data



Nonlinear Approach to PLSPM 91

– Third Order Polynomial

yj = �0 + �1yj0 + �2y
2
j0
+ �3y

3
j0
+ ✏ (2.10)

Figure 2.5: Third Order Polynomial Function fit to nonlinear data

Analysing the three di↵erent polynomial functions and their fit to

the data, it is possible to understand that the third order polyno-

mial presents a better fit to the actual data. In fact, when moving

from a first degree function to a higher degree polynomial the fit

shows an improvement even if the model is less parsimonious than

the second degree function.

The second order polynomial (figure 2.4) presents an R2 of 0.7617

and the third order polynomial (figure 2.5) presents anR2 of 0.8761.

The next phase will assess all fitting functions and select the poly-

nomial that best represents the structural relation.
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2. Evaluate and Select Polynomial Functions: The second stage

of the proposed inner weights estimation process aims to assess the

aforementioned functions and select the one presenting the best fit.

The first decision to make is related to the criterion to be used for

model selection. The proposed algorithm allows the use of three

statistics: Bayesian Information Criterion (BIC) or Schwarz crite-

rion, Akaike Information Criterion (AIC) and R-Squared.

Assuming that the R-Squared is the statistic used for model se-

lection, the choice falls on third order polynomial with an R2 of

0.8761.

3. Find Stationary Points: once the best model (in the sense of

the chosen statistic) is selected, the proposed algorithm moves to

a function analysis focussed on determining stationary points.

A stationary point can be defined as a point yj00 at which the

derivative of a function f(yj0 ) vanishes, f
0
⇣
yj00

⌘
= 0.

A stationary point may be a minimum, a maximum, or an inflection

point.

Each structural relation present in the models will have its set of

stationary points and, based on those values, the f(yj0 ) is seg-

mented by dividing the domain of yj0 into H contiguous intervals

as shown in figure 2.6. From this point, the letter H will repre-

sent the number of segments created from the piecewise process

introduced in the proposed algorithm.

The model selected in the previous step is the third order polyno-
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mial (first and second order piecewise functions are only shown for

information purposes).

Figure 2.6: Piecewise Approach to nonlinear data based on First, Second and
Third Order Polynomial Function

4. Calculate Piecewise Correlations: at this stage, for each con-

nection present in the structural model, the algorithm has H sub-
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sets of data originated byH�1 stationary points. When the chosen

function is linear, there are no stationary points and H is equal to

1; for second order polynomial functions there is 1 stationary point

and the algorithm identifies 2 subsets of data (i.e., H = 2); when

the chosen function is a third degree polynomial, the 2 stationary

points generate 3 subsets of data.

Given a n⇥ 3 matrix Yjj0 containing the n observations of the two

connected composites under analysis and the subset to which each

observation belongs, defined as follows:

Yjj0 =

2

66666666666664

y1j y1j0 h1

y2j y2j0 h1
...

...
...

yij yij0 hh
...

...
...

ynj ynj0 hH

3

77777777777775

(2.11)

where H represent the number of subsets present in the relation

between yj and yj0 (also corresponds to the order of the selected

polynomial function). For a third degree polynomial function (H =

3), the matrix Yjj0 will have a set of observations falling in the

subset h1, another group falling under h2 and the remaining ones

under h3.

Once the previous matrix is built, it is possible to define a function

Sh
�
Yjj0

�
defined as a generic piecewise function between yj and yj0

applied on each subset h. This function returns a n⇥ 1 vector and
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its i-th value represents the weight obtained using function S for

the subset h to which the observation belongs. Figure 2.7 shows an

example where the function Sh
�
Yjj0

�
corresponds to the piecewise

correlation corrh
�
Yjj0

�
.

Figure 2.7: Piecewise Correlation built from a Third Order Polynomial Function

The next paragraphs present how these steps are embedded in the pro-

posed algorithm. The main advantages of this technique when compared

to the standard PLSPM inner weight estimation are:

– Allows to fit nonlinear estimation using a dynamic and scalable

data-driven piecewise approach;

– Allows the definition of a non-symmetrical structural model estima-

tion, where the step 1 (Fit Polynomial Functions) can be executed

switching the dependent variable with the independent;
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– Allows for the original inner weights estimation techniques to be

applied through a data partitioning technique;

– When the relations among the composites is linear (i.e., the first

order polynomial represents the best choice), the algorithm delivers

the same results as the original PLSPM algorithm.

More details on the previous list of claims attributed to the proposed

algorithm are presented in the next sections.

The next section will also present the full algorithm using the piecewise

inner weights estimation process.

2.4.2 The PLSPM Algorithm using Piecewise Inner Weights

Estimation

As discussed in the previous chapter, PLS path modelling aims to esti-

mate the relationships among J (j = 1, . . . , J) blocks of manifest vari-

ables, which are expression of unobservable variables. The algorithm is

characterised by a system of interdependent equations based on simple

and multiple linear regressions. The algorithm estimates the dependence

relationships among LVs as well as the relationships between MVs and

their own LVs.

This section will present the proposed algorithm using piecewise inner

weights estimation process, showing how this part is embedded in the

standard algorithm.

With the aim of ease the readability of the proposed algorithm some of

the steps presented in the previous chapter will be repeated.
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Starting Weights Definition

The first step of the PLSPM algorithm regards the definition of a set

of arbitrary weights wpj to be used as starting point. These weights are

then normalised in order to produce LVs with unitary variance. Common

choices for starting weights are presented in subsection 1.2.3.

Measurement Model: Latent Variables Calculation

Once defined the initial weights the algorithm moves to the outer estimate

yj of the standardised (with mean = 0 and standard deviation = 1) latent

variables (⇠j �mj). The composites are estimated as linear combination

of their centered MVs:

yj / ±

2

4
PjX

p=1

wpj (xpj � x̄pj)

3

5 (2.12)

where the / symbol means that the variables on the left is proportional to

the operator on the right; the ± operator represents the sign ambiguity.

This problem is solved by selecting the sign that makes the variable yj

positively correlated with the majority of manifest variables xpj .

The j-th estimated latent variable is obtained as follows:

yj =

PjX

p=1

w̃pj (xpj � x̄pj) (2.13)

The coe�cients wpj and w̃pj are called outer weights.

The mean value mj is estimated as:
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m̂j =

PjX

p=1

w̃pj x̄pj (2.14)

and the latent variable ⇠j is estimated by:

⇠̂j =

PjX

p=1

w̃pjxpj = yj + m̂j (2.15)

Structural Model: Piecewise Inner Weights Estimation

The structural model aims to give an estimate of the LVs based on the

causal relations present in the inner model. Those relationship may

present nonlinear patterns. In order to correctly estimate nonlinearity,

the inner weights can be estimated by using the piecewise inner weight

estimation process presented in the previous sections. This process can

be applied transversally to most of the existing techniques referred in the

standard algorithm.

Based on these assumptions, the piecewise inner weights eh
jj0

can be

estimated in di↵erent ways presented in the next paragraphs.

The piecewise inner weights eh
jj0

can be defined as a vector of dimensions

n⇥ 1. The i-th value of eh
jj0

corresponds to the weight estimated for the

subset (defined in the third column of the matrix Yjj0) to which the i-th

observation belongs.

Piecewise Centroid Scheme The piecewise centroid scheme rep-

resents an adaptation of the original technique proposed by H. Wold.

The n⇥ 1 vector eh
jj0

can be defined as having the i-th value correspond-

ing to the sign of the correlation calculated in the subset h where the
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i-th observation belongs. This can be obtained as:

eh
jj0

= sign
h
corrh

�
Yjj0

�i
(2.16)

where Yjj0 represents the matrix shown in 2.11 and the function corrh

represents the piecewise correlation function among the two latent vari-

ables j and j0. As referred in the previous section, the piecewise function

returns a n⇥1 vector where the generic value i belonging to the h-th sub-

set, represents the correlation calculated within the subset h. In this case

eh
jj0

are the signs of this piecewise correlations (see Figure 2.7) between

yj and the latent variable yj0 connected to yj (see Equation 2.16).

Piecewise Factorial Scheme The Piecewise Factorial Scheme rep-

resents the proposed approach to one of the two techniques proposed by

Lohmöller where inner weights eh
jj0

are calculated as follows:

eh
jj0

= corrh
�
Yjj0

�
(2.17)

where Yjj0 represents the matrix shown in 2.11 and the function corrh

represents the piecewise correlation function among the two latent vari-

ables j and j0. As referred in the previous sections, the piecewise function

returns a n ⇥ 1 vector where the generic value i belonging to the h-th

subset, represents the correlation calculated within the subset h.

Some Observation It has been decided that the Path Weighting

scheme proposed by Lohmöller would not be adapted to be included as

a potential scheme for the proposed nonlinear approach.
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The biggest argument in favour of Path Weighting scheme is the fact

that this takes into account the path direction.

The proposed nonlinear approach presents the possibility of switching

the inner weights estimation from symmetrical to non-symmetrical.

If a symmetrical approach is chosen, then the weighting system obtained

to calculate the composite zj is calculated using a symmetrical square

matrix of dimensions J⇥J . In this case, all weights present in the upper

diagonal matrix are exactly the same as the ones present in the lower

diagonal matrix.

In case the researcher wants to use the non-symmetrical approach, the

weights present in the upper diagonal matrix are di↵erent from the ones

in the lower diagonal matrix. In this situation, when estimating the

weights, if j > j
0
(lower diagonal matrix), then the weight is calculated

using yj as dependent and yj0 as independent. When j < j
0
(upper

diagonal matrix), then the weight is calculated using yj0 as dependent

and yj as independent.

Given to its flexibility, the proposed approach can be applied to other ex-

isting techniques and allow the development of novel customised weights

estimation techniques.

Structural Model: Latent Variables Calculation

In the inner LVs calculation stage, the standardised (⇠j �mj) latent

variables inner estimation zj is given by:

zj /
X

j0 : ⇠
j
0 adjacent to ⇠j

eh
jj0

� yj0 (2.18)
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where � denotes the Hadamard product.

Starting from this stage, the algorithm is exactly the same as the stan-

dard algorithm presented in section 1.2. The remaining step is the outer

weights estimation related to the measurement model.

Iterative Process and Convergence

After the first cycle the algorithm iterates the following steps:

1. Measurement Model: Latent Variables Calculation

2. Structural Model: Piecewise Inner Weights Estimation

3. Structural Model: Latent Variables Calculation

4. Measurement Model: Outer Weights Estimation

5. Outer Weights Convergence Check

The aforementioned algorithm is described in figure 2.8 and its pseudo-

code is shown in Algorithm 2.

After reaching the algorithm convergence, the outer weights wpj are used

to obtain the final estimation of ⇠j calculated as ⇠̂j =
P

wpjxpj .

In the last step of the proposed nonlinear approach to PLSPM, path

polynomial functions are estimated. The final output is a function for

each relationship existing in the path diagram structure. The generic

function �jj0 representing the relation between yj (i.e., the composite

for the endogenous LV ⇠j) and yj0 (i.e., the composite for the exogenous

LV ⇠j0 directly connected to ⇠j), is obtained as:
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Figure 2.8: PLSPM Iterative Estimation Process using Piecewise Inner Weights
Estimation

�jj0 = �0 + �1yj0 + �2y
2
j0 + . . .+ �dy

H
j0 (2.19)

where the degree H is defined following the same proprieties used in the

second step of the proposed algorithm (Evaluate and Select Polynomial

Functions). These polynomial functions �jj0 are not easy to interpret.

For this reason the algorithm produces a set of scatter plots (one for each

inner relation) with the �jj0 function. An example can be seen in figure

2.9.

The algorithm convergence is analysed in the next chapter using several

simulation scenarios.
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Algorithm 2: Nonlinear PLSPM

Input : X = [X1, . . . ,Xj , . . . ,XJ ]

Output: wpj , ⇠̂j ,�jj0

1 Arbitrary Weights Initialisation: wpj = w(0)
pj

2 while Convergence of wpj is not reached (or max number of
iterations) do

3 Latent Variables Proxies Calculation (Measurement
Model):

yj / ±
hP

pwpj (xpj � x̄pj)
i

4 Piecewise Inner Weights Estimation (Structural Model):
for Every structural connection between yj and yj0 do

Fit Polynomial Functions
Evaluate and Select Polynomial Functions
Find Stationary Points

Calculate Piecewise Correlations as eh
jj0

= fh
⇣
yj , yj0

⌘

5 Latent Variables Proxies Calculation (Structural Model):

zj /
P

j0 : ⇠
j
0 adjacent to ⇠j

⇣
ejj0 � yj0

⌘

6 Outer Weights Estimation (Measurement Model):
wpj = f (X,Z) according to the chosen estimation technique

7 Final Latent Variables Proxies Calculation:

⇠̂j =
P

wpjxpj
8 Path Polynomial Functions Estimation:
�jj0 = �0 + �1yj0 + �2y2j0 + . . .+ �dyHj0 according to the chosen
degree

2.4.3 A Practical Example on Simulated Data

The main objective of this section is to test the proposed algorithm

presented in the previous sections, using data generated from a Monte

Carlo simulation conducted in EQS 6.1 for Windows.

The data generation process is consistent with the procedure described
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Figure 2.9: Nonlinear function �jj0 output example

in Paxton et al. (2001) for a Monte Carlo SEM study.

The generated data has been used for the analysis presented in this chap-

ter and in a more detailed simulation study focussed on the algorithm

convergence presented in chapter 3.

For this specific case, the desired target SEMmodel has been pre-specified

and configured with a set of given parameters and then the data has been

simulated following the previous assumptions and configuration.

The designed measurement model has 16 manifest variables xp (p =

1, . . . , 16) equally distributed across four reflective measurement blocks.

The structural model has been configured as follows:

⌘2 = 0.3⇠1 + ⇣2

⌘3 = 0.3⇠1 + 0.3⌘2 + ⇣3

⌘4 = 0.5⇠1 + 0.5⌘2 + 0.5⌘3 + ⇣4

(2.20)
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The variances of ⇠1 and the three endogenous latent variables (i.e., ⌘2, ⌘3, ⌘4)

have been fixed to 1 and the errors’ variances associated to the reflective

measurement model equations have been set to 0.01.

The path diagram for the aforementioned model is presented in figure

2.10.

Figure 2.10: Simulated Structural Equation Model

The next sections present a comparison analysis between the proposed

approach and the standard PLSPM algorithm, based on the Monte Carlo

simulation described above.

Comparison Study

The comparative analysis has been developed on four simulated datasets

generated using the aforementioned configuration. The only di↵erence

existing between the 4 datasets is the sample size; for this analysis the
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sample sizes used are 50, 100, 200 and 500.

The results for the standard PLSPM have been obtained using the plspm

package developed by Sánchez (2013) with Mode A for outer weights es-

timation and Factorial Scheme for inner weights estimation. The nonlin-

ear PLSPM algorithm has been executed with Mode A for outer weights

estimation and Piecewise Factorial Scheme for inner weights estimation.

All of the indicators and results are subdivided in three sections: Model

Performance, Measurement Model Assessment and Structural Model As-

sessment.

Model Performance The first results to be analysed are the iterations

to reach convergence. Even if the standard PLSPM presents a faster

convergence in three out of four executions, the di↵erences do not seem

to be large enough to evidence a potential issue in the proposed algorithm

(see Figure 2.11).

Figure 2.11: Model Performance: Iterations to Convergence
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Measurement Model Assessment The main di↵erence between the

proposed approach and the standard algorithm is the way how the inner

weights are estimated. Even though the new approach should mainly

impact the structural model, the latent variable scores calculated inter-

nally impact in an indirect way the measurement model. This section

presents the results obtained for communality and redundancy.

Figure 2.12 shows the communality results for both standard and Non-

linear PLSPM. The statistics are quite similar when n = 50 and n = 500.

The sample size presents bigger di↵erences when n = 200.

Figure 2.12: Measurement Model Comparison: Communality

Another way to assess the main di↵erences between the two algorithms

in the measurement model is by analysing the redundancy in figure 2.13.

This graphical output, for sample sizes of at least 200 observations, shows
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that the Nonlinear PLSPM presents higher redundancy values when com-

pared with the standard algorithm, even if not for all indicators.

Figure 2.13: Measurement Model Comparison: Redundancy

Structural Model Assessment This section presents a comparison

between the statistics related to the structural model. The assessment

is based on a set of inner model statistics (such as R2, Average Commu-

nality and Average Redundancy5).

Analysing the results in figure 2.14 it is possible to state that the pro-

posed approach, for the selected samples, presents slightly higher results

in terms of R2, average communality and average redundancy. Whilst

5Average Variance Extracted (AVE) is not presented because when the variables
are standardised AVE corresponds to the Communality multiplied by a constant pa-
rameter.
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communality and redundancy results are quite similar, the R2 presented

by the proposed approach for endogenous latent variables ⌘2, ⌘3 and

⌘4 are most of the times consistently higher than the standard PLSPM

algorithm.

Figure 2.14: Structural Model Comparison: Latent Variables Statistics

2.5 Conclusions

As previously mentioned, PLS path modelling algorithm is an iterative

process based on simple and OLS regressions. Although attractively

simple, the traditional linear model often fails in these situations: in real

life, e↵ects are often not linear (Hastie et al., 2009).

The proposed nonlinear approach to the standard PLSPM can be seen,

when it comes to the inner model, as a data-driven estimation approach.
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In fact, the algorithm adapts to the form assumed by the inner relation-

ships among latent variables defining a piecewise estimation method. Its

flexibility allows using di↵erent inner weights estimation methods taking

advantage of the piecewise algorithm’s architecture. As detailed in the

previous sections, another added value related to the proposed nonlin-

ear algorithm is the possibility of defining a non-symmetrical weighting

system in the structural model estimation.

The results obtained on the comparison study are promising and require

a deeper analysis for other scenarios and model configurations.

The next chapter presents a Monte Carlo simulation to assess the algo-

rithm stability and convergence.



Chapter 3

A Simulation Study on

Nonlinear PLSPM

3.1 Introduction

This chapter presents a Monte Carlo simulation study focussed on assess-

ing the algorithm’s convergence and the stability of its estimates obtained

by using the algorithm proposed in the previous chapter.

Monte Carlo computer simulations are used to model a variety of real-

world statistical and psychometric processes. The value of a simulation

is closely tied to the fidelity with which it represents the real-world envi-

ronment that it attempts to model. All Monte Carlo procedures require

the generation of random numbers. Random number generators typi-

cally available are limited to generating random numbers with uniform

or normal distributions. However, to adequately replicate the real-world

environment, random numbers with distinctly non-normal distributions



112 A Simulation Study on Nonlinear PLSPM

are often required (Vale and Maurelli, 1983).

In this work the data has been generated using EQS 6.1 (Bentler and Wu,

1995) and imported in R for the model estimation phase. More details

on the scenarios and the theoretical model hypothesised are presented in

the next sections.

3.2 Simulation and Scenarios Design

In order to build a systematic simulation process, this work approaches

several questions related to model configuration, sample size and repeti-

tions.

The following paragraphs present in detail the SEM model used to gen-

erate the simulated data in EQS and the several configuration considered

for each scenario.

Simulated SEM Theoretical Model The designed measurement

model has 16 manifest variables (x1 to x16) equally distributed among

four reflective measurement blocks.

The structural model has been configured as follows:

⌘2 = �21⇠1 + ⇣2

⌘3 = �31⇠1 + �32⌘2 + ⇣3

⌘4 = �41⇠1 + �42⌘2 + �43⌘3 + ⇣4

(3.1)

The variances of ⇠1 and the three endogenous latent variables (i.e., ⌘2, ⌘3, ⌘4)

have been fixed to 1 and the errors’ variances associated to the reflective

measurement model equations have been fixed to 0.01.
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The path diagram for the aforementioned model is presented in figure

3.1.

Figure 3.1: Simulated Structural Equation Model

In addition to the aforementioned model and configuration, the simula-

tion scenarios di↵er on theoretical loadings (⇡ij), path coe�cients (�jj0 )

and sample size.

Loadings Configurations Starting from the loadings, the simulation

scenarios may follow two principal configurations: one where each block is

heterogeneous, i.e., for each block j, the loadings are defined as ⇡1j = 0.3,

⇡2j = 0.5, ⇡3j = 0.7 and ⇡4j = 0.9. The other configuration defines each

block as homogeneous; in this case, for each block j, the loadings are
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defined as ⇡1j = 0.9, ⇡2j = 0.9, ⇡3j = 0.9 and ⇡4j = 0.9.

Path Coe�cients Configurations Another set of parameters that

have been tested are the path coe�cients. Similarly to the definitions

presented for the loadings, two configurations have been used in order

to build the simulation scenarios: one where all path coe�cients �jj0 are

equal to 0.3 with exception for paths connected with ⌘4 that are equal to

0.5; in the second configuration, all path coe�cients �jj0 are set to 0.3.

Sample Size The simulations have been processed with four di↵erent

sample sizes: n = 50, n = 100, n = 200 and n = 500.

Simulation Scenarios Definition Once all the configuration needed

in order to assess several characteristics of the proposed algorithm are

defined, it is fundamental to build a simulation structure composed by

scenarios.

A scenario can be defined as a combination of the aforementioned con-

figurations. In the end all scenarios must exhaustively cover all possible

combinations between the model configurations.

The information presented in the previous paragraphs can be summarised

as:

– Sample Size Configurations

Configuration 1: n = 50;

Configuration 2: n = 100;

Configuration 3: n = 200;

Configuration 4: n = 500.
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– Loadings Configurations

Configuration 1: heterogeneous blocks;

Configuration 2: homogeneous blocks.

– Path Coe�cients Configurations

Configuration 1: all path coe�cients �jj0 are equal to 0.3

with exception for paths connected with ⌘4 that are equal to 0.5;

Configuration 2: all path coe�cients �jj0 are set to 0.3.

The combination of the aforementioned configurations generate the 16

scenarios presented in table 3.1. For each one of the 16 scenarios it has

been decided to generate 1000 repetitions.

Scenario Sample Loadings Path
Number Size Coe�cients
1 50 Configuration 1 Configuration 1
2 50 Configuration 1 Configuration 2
3 50 Configuration 2 Configuration 1
4 50 Configuration 2 Configuration 2
5 100 Configuration 1 Configuration 1
6 100 Configuration 1 Configuration 2
7 100 Configuration 2 Configuration 1
8 100 Configuration 2 Configuration 2
9 200 Configuration 1 Configuration 1
10 200 Configuration 1 Configuration 2
11 200 Configuration 2 Configuration 1
12 200 Configuration 2 Configuration 2
13 500 Configuration 1 Configuration 1
14 500 Configuration 1 Configuration 2
15 500 Configuration 2 Configuration 1
16 500 Configuration 2 Configuration 2

Table 3.1: Simulation Scenarios



116 A Simulation Study on Nonlinear PLSPM

The following sections present a set of summarised results for each one

of the simulation scenarios with the aim of analysing convergence and

stability of the proposed algorithm.

3.3 Simulation Results: Analysis and Comments

The simulation results presented in this section are obtained by executing

the proposed algorithm with the following configurations:

– Outer Weights Estimation Method: Mode A for all blocks

– Algorithm Convergence Tolerance: 1e� 05

– Algorithm Convergence Maximum Number of Iterations: 100

– Nonlinear Polynomial Degree Selection Statistic: BIC

The next two subsections present a detailed analysis on the simulation

results for each scenario tested and some thoughts on the results obtained

for the proposed algorithm.

3.3.1 Results Analysis

This section presents the main finding related with the simulation anal-

ysis separated in three main blocks: Algorithm Convergence, Estimates

Stability and Predictive In-Sample Assessment.

Algorithm Convergence

The 16 scenarios designed in the previous section generated 16000 sam-

ples (1000 samples per scenario). The main objective of this section is
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to study the convergence patterns for each scenario and analyse if there

is a particular configuration causing lower convergence rates.

The results for this analysis are summarised in table 3.2.

Scenario Sample Loadings Path Convergent
Number Size Coe�cients Repetitions
1 50 Heterogeneous Blocks 0.3, 0.5 982 (98.2%)
2 50 Heterogeneous Blocks 0.3 979 (97.9%)
3 50 Homogeneous Blocks 0.3, 0.5 979 (97.9%)
4 50 Homogeneous Blocks 0.3 970 (97.0%)
5 100 Heterogeneous Blocks 0.3, 0.5 997 (99.7%)
6 100 Heterogeneous Blocks 0.3 995 (99.5%)
7 100 Homogeneous Blocks 0.3, 0.5 997 (99.7%)
8 100 Homogeneous Blocks 0.3 1000 (100.0%)
9 200 Heterogeneous Blocks 0.3, 0.5 1000 (100.0%)
10 200 Heterogeneous Blocks 0.3 1000 (100.0%)
11 200 Homogeneous Blocks 0.3, 0.5 1000 (100.0%)
12 200 Homogeneous Blocks 0.3 1000 (100.0%)
13 500 Heterogeneous Blocks 0.3, 0.5 1000 (100.0%)
14 500 Heterogeneous Blocks 0.3 1000 (100.0%)
15 500 Homogeneous Blocks 0.3, 0.5 1000 (100.0%)
16 500 Homogeneous Blocks 0.3 1000 (100.0%)

Table 3.2: Algorithm Convergence Analysis

The results presented in table 3.2 trigger two main warnings related

with sample size and the path coe�cients values hypothesised in the

theoretical model. From the empirical tests emerges that (i) the pro-

posed algorithm seems to reach convergence when the sample size is at

least 100 and that (ii) the choice of similar path coe�cients (instead

of higher coe�cients for the fourth latent variable ⌘4) leads to slightly

worse convergence rates. For sample sizes lower than 100 the minimum

convergence rate is 97%.
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Estimates Stability

Another important characteristic to be tested for the proposed algorithm

is the stability related with the estimation process. This study aims

to analyse the distribution of the estimated loadings. The theoretical

model shown in this chapter presents 16 loadings (4 for each block). The

distributions are analysed using box plots and the loadings are named

sequentially from 1 to 16 (where 1 to 4 are related to the first block and

are placed on the first row, 5 to 8 to the second block and placed on the

second row and so on).

In order to avoid redundancy in the results presented, this section only

shows two examples considered as representative of the whole simulation

analysis. The full set of results can be found in the appendix section A.3.

Case 1 Figure 3.2 presents the distribution of �31 (loading that relates

x3 to ⇠1) for the simulation scenario number 1 (sample size = 50, hetero-

geneous blocks and path coe�cients equal to 0.3 and 0.5 when connected

to ⌘4).

Figure 3.2: Simulation Scenario 1: Distribution of Loading related to ⇠1 using
the proposed algorithm
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The box plot shows some dispersion and presents several outliers between

0.2 and 0.8. The results obtained by all simulation study when sample

size is equal to 50, present the same dispersion patterns.

In order to assess if the dispersion is related to the proposed algo-

rithm, the same distribution analysis is presented for the standard PLS

path modelling algorithm using the plspm package developed by Sánchez

(2013) with Mode A for outer estimation and Factorial Scheme for inner

weights estimation (see Figure 3.3).

Figure 3.3: Simulation Scenario 1: Distribution of Loading related to ⇠1 using
the standard PLSPM

Figure 3.3 highlights that the dispersion seen in figure 3.2 is not generated

by the proposed algorithm since the results obtained by the standard

PLSPM algorithm are very similar.

As referred above, all simulation scenario with sample size equal to 50

observations present distributions similar to the one presented in figure

3.2.

Case 2 The second case presents the distribution of �31 (loading that

relates x3 to ⇠1) for the simulation scenario number 16 (sample size = 500,

homogeneous blocks and all path coe�cients equal to 0.3.
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As presented in figure 3.4, the distribution is concentrated between 0.99

and 1.

Figure 3.4: Simulation Scenario 16: Distribution of Loading related to ⇠1 using
the proposed algorithm

All simulations executed with a sample dimension greater or equal to 100

present similar distributions where estimates have little variance.

Predictive In-Sample Assessment

The previous sections aimed to verify the algorithm convergence and

the stability of its estimations. This section completes the simulation

analysis by verifying the structural model performance.

As mentioned in the previous chapters, there are several ways to assess

the structural model. Given that the proposed algorithm does not have

the concept of path coe�cient as known in the PLS path modelling, the

inner model performance is analysed through the R2. The R2 has been

calculated for both proposed and standard PLSPM algorithms and then

compared.

The structural model used for the simulation exercise, presents 3 endoge-

nous variables: ⌘2, ⌘3 and ⌘4 and the structural equations are summarised
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in equation 3.1.

The R2 results obtained for the 16 simulation scenarios, are promising,

in fact, the R2 obtained for the Nonlinear PLSPM approach are always

higher than the R2 presented by the standard algorithm.

With the objective of avoiding redundancy in the results presented, this

section only shows one of the 16 R2 distributions for Nonlinear and stan-

dard PLSPM. The full set of results can be found in the appendix section

A.4.

Figure 3.5 shows a comparison between the R2 distributions obtained in

the Nonlinear PLSPM (in green) and in the standard PLSPM algorithm

(in blue). The dashed lines represent the average value for each one

of the algorithms used in this study. The results are obtained using

the data generated for the simulation scenario number 13 (sample size

= 500, heterogeneous blocks and path coe�cients equal to 0.3 and 0.5

when connected to ⌘4).

Figure 3.5: Simulation Scenario 13: R2 Distribution Comparison: PLSPM vs.
NL-PLSPM

Based on the results obtained for the R2, it is possible to state that
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the proposed algorithm presents a better fit for the structural model

estimation process.

3.3.2 Thoughts on Simulations Results

The simulation approach presented in this chapter aimed to assess con-

vergence, inner and outer model estimated stability.

After analysing the results obtained in these three blocks, it seems clear

that this approach is stable, becoming more consistent when the sample

size is greater than or equal to 100 observations.

Even if the results are promising, there are several reflections that may

lead to future developments and fine-tuning of the proposed algorithm.

The two main improvement points identified for future development are:

– Analysis of Convergence: in this topic, the main objective is

to study the few non-convergence cases obtained when the sample

size is equal to 50 observations. As an input for future develop-

ments, this sections presents one specific sample where the algo-

rithm stopped reaching the maximum number of iterations defined

by the user. This example is obtained using sample number 23

in the simulation scenario 1. The convergence criterion used is
P

(wt � wt+1)
2 (where t represents the iteration number) and the

convergence behaviour is presented in figure 3.6.

Given to the scale used in figure 3.6 it is not possible to clearly

identify the patterns characterising the convergence criterion. For

this reason it has been decided to plot only the last 50 iterations

obtained for this same sample (see figure 3.7).
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Figure 3.6: A non-convergence example: sample number 23 in Simulation Sce-
nario 1

Figure 3.7: A non-convergence example: sample number 23 in Simulation Sce-
nario 1 (last 50 iterations)

The previous plots show some instability that leads to non conver-

gence. This case is similar to the other non convergence verified in

the simulation analysis, mostly happening for n = 50.

This is a point that requires attention in further developments.

– Misspecification Analysis: another important topic that re-

quires further simulation analysis is related to model misspecifi-

cation. In more detail, the main objective would be to analyse
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how the model behaves when it is specified di↵erently from the

theoretical model.



Chapter 4

An Energy Customer

Satisfaction Study

This chapter presents an application focussed on a Customer Satisfac-

tion study on EDP Comercial, one of the top players of the Portuguese

liberalised energy supply market.

4.1 Company and Market Overview

The data used in this document belongs to a customer satisfaction project

conducted at EDP (Energias de Portugal).

EDP Group is an Energy Solutions Operator which operates in the busi-

ness areas of generation, supply and distribution of electricity and supply

and distribution of gas.

In the supply market, the process of liberalisation of the electricity sec-

tors of most European countries was carried out in a phased manner,
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and started by including customers with higher consumptions and higher

voltage levels.

In Portugal, an identical methodology was followed, and since the 4th of

September 2006 all consumers in mainland Portugal have been able to

choose their electricity supplier (ERSE). The evolution of the liberalised

market is shown in figure 4.1 (Source: ERSE, 2007, 2008, 2009, 2010,

2011, 2012, 2013, 2014, 2015, 2016).

Figure 4.1: Evolution of the Number of Customers in the Portuguese Energy
Supply Market (Regulated and Liberalised) between 2006 and 2016

Associated with the liberalisation and the construction of the internal

electricity market there is an expected increase in competition, reflected

in the level of prices and in the service quality improvement, which should

lead to higher levels of customer satisfaction.

In Portugal, EDP Comercial is market leader in the liberalised electric-

ity market. The company’s leadership position is driven by its strat-
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egy, which is focused on three business units: companies and institutions

(B2B business unit), residential and small business customers (B2C busi-

ness unit) and finally added value Energy Services business unit.

In Portugal, EDP supplies electricity to customers who decided to move

to the liberalised market through EDP Comercial.

The application studied in this chapter is focussed on customers with

at least one active electricity or gas contract in the liberalised market.

More details are presented in the next sections.

4.2 Business Challenge

The business challenge is related to the change of paradigm driven by the

liberalisation process. The first results after this process were promising,

in fact, EDP was able to be considered as customer’s first choice when

these were leaving the regulated market to join the liberalised market.

As the years passed by EDP’s competitors started increasing their pres-

sure and built several strategies to gain a piece of the liberalised energy

(electricity and gas) market.

The liberalised energy market is in a maturity growth process and, when

compared to the telecommunications market, is evident that the path to

a competitive and saturated market is still long and full of challenges.

Among the future challenges there are some related to what EDP repre-

sents for its customers and other energy customers with active contracts

in the competition.

During the last years, EDP’s strategy reinforced the need for a customer-

centric approach where every product, service or action has to be made
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around the customer needs.

EDP’s ultimate goal is to be Portugal’s favourite company due to its

o↵ering and service excellence, keeping the customer at the centre of its

work.

One of the initiatives related to the customer-centric behaviour is the

analysis and the monitoring of customer satisfaction and loyalty through

market research studies.

In this direction, EDP started participating in an European project

named ECSI Portugal1. Its objective is to measure quality and estimat-

ing customers satisfaction at several levels (i.e., company, sector, country,

etc.)

The ECSI Portugal project follows a methodology based on PLSPM,

where customers interviews are structured and used to estimate the sat-

isfaction model (Anderson et al., 1994; Bayol et al., 2000; Fornell, 1992).

The objective of this work is to propose an alternative estimation ap-

proach (see section 2.4) that breaks the linearity assumption made in

the original PLSPM model (used in the ECSI Portugal project). This

approach allows for nonlinear relations among latent variables (motiva-

tions can be found in section 2.1).

The application of a nonlinear approach aims to inform business decisions

providing more details than the original PLSPM algorithm on the nature

of the causal relations and guiding a set of targeted business strategy.

1More information at http://www.ecsiportugal.pt
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4.3 Data and Model Description

This application focusses on the estimation of a Nonlinear PLSPM model

for residential EDP customers with at least one active electricity or gas

contract in the liberalised market. As referred above, EDP Group oper-

ates in the liberalised market through EDP Comercial (EDPC).

In the ECSI model a customer is defined as an individual (at least 18

years old at the moment of the interview) with exposure to consumption

and acquisition of products and/or services provided by EDPC over the

six months prior to the interview.

4.3.1 Sampling Plan

The sampling plan is composed by a stage where household phone num-

ber are selected through a plan comparable to random sampling with

equal probabilities and without replacement. For each household the

objective is to select the decision-maker in all matters related with the

electricity contract. Once the individual is identified, it is classified as

customer through a set of questions. In addition to the landline numbers,

the sampling plan also used a set of mobile numbers randomly selected.

The interviews were carried using CATI (Computer-Assisted Telephone

Interviewing) surveying technique between April and June of 2016 and,

by the end of that period EDPC had 750 respondents.

4.3.2 ECSI Model

The ECSI model follows the same notation used in the original method-

ology. In fact, the overall model is composed by structural and measure-
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ment models.

The structural or inner model is composed by eight latent variables con-

nected as shown in figure 4.2.

Figure 4.2: ECSI Model for EDPC: Structural Model

The measurement model presents eight blocks composed by the following

indicators:

– Image

Image 1: Trustworthy company in what it says and does

Image 2: Stable and market-based company

Image 3: Company with a positive contribution to society

Image 4: Company that cares about customers

Image 5: Innovative and forward-looking company

– Expectations

Expectations 1: Overall expectations about the company

Expectations 2: Expectations about the company’s ability to o↵er

products and services that meet customer needs
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Expectations 3: Expectations regarding reliability, that is, how

often things can go wrong

– Perceived Quality

Perceived Quality 1: Overall perceived quality

Perceived Quality 2: Quality of electricity supply

Perceived Quality 3: Clarity and transparency in the information

provided on safety, emergencies and consumption estimates

Perceived Quality 4: Counselling and customer care

Perceived Quality 5: Billing and payment services’ reliability and

quality

Perceived Quality 6: Accessibility via digital channels to the pro-

vided services

Perceived Quality 7: Stores and agents accessibility and availabil-

ity

Perceived Quality 8: Clarity and transparency in the information

provided on contracting, billing and payment, complaints and com-

mercial information

Perceived Quality 9: Products and services’ diversification

– Perceived Value

Perceived Value 1: Evaluation of the price paid, given the quality

of products and services

Perceived Value 2: Evaluation of the quality of products and ser-

vices, given the price paid

– Satisfaction

Satisfaction 1: Overall satisfaction with the company
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Satisfaction 2: Satisfaction compared to expectations (realisation

of expectations)

Satisfaction 3: Distance to the ideal electricity company

– Complaints

Complaints 1a: Identification of complaining customers

Complaints 1b: Evaluation of last resolved complaint (for those

who complained)

Complaints 1c: Perceived evaluation of a potential complaint (for

those who did not complain)

– Trust

Trust 1: Overall trust

Trust 2: Confidence in Company’s performance

Trust 3: Honesty in service providing

– Loyalty

Loyalty 1: Intention to remain as a customer

Loyalty 2: Price sensitivity

Loyalty 3: Intention to recommend the company to colleagues and

friends

4.3.3 Input Data

The input matrix X has 750 observations and 29 variables described in

the previous paragraphs. Table 4.1 presents the summary statistics for

the manifest variables.

With exception made for the variable Loyalty 2 (Price sensitivity), all the

manifest variables present in this study show a negative skewed curve. A
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Sample Size Mean Standard Dev. Median Min Max Skewness Kurtosis

Image 1 749 7.76 1.78 8.00 1.00 10.00 -0.96 4.30

Image 2 749 8.63 1.29 9.00 2.00 10.00 -0.83 3.66

Image 3 749 7.64 1.73 8.00 1.00 10.00 -0.90 4.34

Image 4 749 6.96 2.08 7.00 1.00 10.00 -0.74 3.53

Image 5 749 8.02 1.52 8.00 1.00 10.00 -0.90 4.47

Expectation 1 749 7.50 1.63 8.00 1.00 10.00 -0.72 4.36

Expectation 2 749 7.64 1.55 8.00 1.00 10.00 -0.61 3.78

Expectation 3 749 7.61 1.61 8.00 1.00 10.00 -0.91 4.81

Perceived Quality 1 749 7.71 1.72 8.00 1.00 10.00 -1.07 4.86

Perceived Quality 2 749 8.50 1.40 9.00 1.00 10.00 -1.31 6.13

Perceived Quality 3 749 7.10 2.02 7.04 1.00 10.00 -1.01 4.24

Perceived Quality 4 749 7.53 1.84 8.00 1.00 10.00 -1.07 4.83

Perceived Quality 5 749 7.95 1.84 8.00 1.00 10.00 -1.36 5.55

Perceived Quality 6 749 7.85 1.45 8.00 1.00 10.00 -1.51 7.92

Perceived Quality 7 749 7.16 1.83 7.16 1.00 10.00 -1.01 4.83

Perceived Quality 8 749 7.45 1.82 8.00 1.00 10.00 -0.93 4.29

Perceived Quality 9 749 7.51 1.62 8.00 1.00 10.00 -0.88 4.67

Perceived Value 1 749 5.48 2.24 6.00 1.00 10.00 -0.27 2.67

Perceived Value 2 749 6.50 2.01 7.00 1.00 10.00 -0.44 3.21

Satisfaction 1 749 7.56 1.65 8.00 1.00 10.00 -0.77 4.40

Satisfaction 2 749 7.20 1.93 8.00 1.00 10.00 -1.04 4.37

Satisfaction 3 749 7.07 2.04 7.00 1.00 10.00 -0.79 3.82

Complaints 1 749 6.71 2.39 7.00 1.00 10.00 -0.80 3.27

Trust 1 749 7.63 2.01 8.00 1.00 10.00 -1.02 4.18

Trust 2 749 7.71 1.91 8.00 1.00 10.00 -1.00 4.19

Trust 3 749 7.39 2.17 8.00 1.00 10.00 -0.94 3.74

Loyalty 1 749 7.57 2.41 8.00 1.00 10.00 -0.99 3.47

Loyalty 2 749 3.13 2.95 2.23 1.00 10.00 1.75 4.34

Loyalty 3 749 7.52 2.30 8.00 1.00 10.00 -0.95 3.54

Table 4.1: EDP’s Input Data: Summary Statistics for the Manifest Variables

more detailed graphical analysis for the manifest variables is presented

in the appendix A.5.

Another interesting analysis can be done by getting the correlations be-

tween manifest variables. Figure 4.3 presents graphically the correlations

between all manifest variables; each block of variables is represented by

a black outlined box.
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Figure 4.3: EDP’s Input Data: Correlations between Manifest Variables

The correlation matrix presents high correlations for almost all variables

in the eight block analysed. The lowest correlation appears to be the one

between variable Loyalty 2 (Price sensitivity) and the other two vari-

ables in the same block. Given the fact that Loyalty 2 represents the

percentage of price discount needed for the customer to switch to a com-

petitor, it should present a positive correlation with the others belonging



An Energy Customer Satisfaction Study 135

to the same group (i.e., the higher the price sensitivity score given by

the customer, the less likely the customer will switch to a competitor).

This variable’s relevance and sign coherence will be analysed in the next

section.

4.4 Results

Disclaimer Due to confidentiality reasons, some results such as latent vari-

ables average values and other data that could jeopardise EDP’s position can

not be disclosed.

The data presented in the previous sections has been used as input data

for the proposed Nonlinear PLSPM algorithm using the inner model

structure presented in figure 4.2 and with the following configurations:

– Outer Weights Estimation Technique: for all eight blocks

present in the analysed model, it has been decided to set Mode

A as outer estimations weights method;

– Inner Weights Estimation Technique: the structural weights

have been estimated using piecewise inner weights estimation based

on first and second degree polynomial functions. The best fit se-

lection between first and second degree has been done using BIC

(Bayesian Information Criterion, Schwarz (1978)). As presented in

section 2.4.2, there are several ways to adapt the available weight-

ing estimation techniques in a piecewise estimation process; for
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this specific business case the method used is Piecewise Factorial

Scheme (see equation 2.17);

– Algorithm Convergence Details: the algorithm stopping crite-

ria are: (i) outer weights stopping criterion < 1⇥ 10�6; or (ii) the

number of iterations becomes greater than 150.

As presented in chapter 1, when the outer estimation method is mode A,

it is important to check the unidimensionality of the block. In this sense,

before executing the proposed Nonlinear PLSPM alternative approach,

follows an analysis of the three main techniques used to check the unidi-

mensionality: Principal Component Analysis (PCA), Chronbach’s ↵ and

Dillon-Goldstein’s ⇢.

Principal Component Analysis (PCA)

With this technique, a block can be considered unidimensional if the first

eigenvalue of the correlation matrix built based on all the MVs related

to the block is greater than 1 and the second one smaller than 1, or at

least far enough from the first one.

Analysing the results in figure 4.4 it is possible to state that the block is

unidimensional in the sense of the PCA.

Chronbach’s ↵

This index can be used to check unidimensionality in a block of manifest

variables, when they are all positively correlated. In practice, a block

can be considered unidimensional when ↵ is larger than 0.7.
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Figure 4.4: Unidimensionality Check: Principal Components

Figure 4.5: Unidimensionality Check: Chronbach’s ↵

Analysing the results from figure 4.5 and crossing it with the Chronbach’s

↵ reference levels in table 1.1 it is possible to conclude that the blocks

are unidimensional. The only block that presents a lower but acceptable

↵ is Loyalty.
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Dillon-Goldstein’s ⇢

For this index, by construction, the correlation signs between manifest

variables and the latent variable have to be positive (i.e., all loadings are

positive). A block can be defined unidimensional when all loadings are

large. A block can be considered unidimensional when ⇢̂ is larger than

0.7. As mentioned in chapter 1, this statistics is considered to be the

best option to check unidimensionality for a block of manifest variables

(Chin, 1998a).

Figure 4.6: Unidimensionality Check: Dillon-Goldstein’s ⇢

Analysing the results related to Dillon-Goldstein’s ⇢ is clear that all

blocks can be considered as unidimensional.

The aforementioned analysis concludes that the manifest variables’ blocks

are unidimensional; the only change that could be applied is associated

to the Loyalty block where the MV Loyalty 2 (Price sensitivity) could
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be dropped in order to increase the block’s unidimensionality.

After carefully analysing the variables and given the importance of price

sensitivity for retention matters, it has been decided to keep all the initial

manifest variables.

4.4.1 Outer Model Summary and Global Metrics

The outer model can be analysed through loadings and communalities.

Another interesting measure commonly used in these studies is the re-

dundancy.

A loading represents the strength of a relation between an observed vari-

able and its component. The communality index measures the compo-

nent’s capability to explain the variance of its manifest variables. The

redundancy represents the capability of a component belonging to an

exogenous block to explain the variance of an endogenous block to which

is connected. Given the fact that the calculation of the redundancy in-

dex takes into account both measurement and structural models, this

measure can be used as a global metric in PLSPM applications.

The results presented in table 4.2 are useful to understand each manifest

variable’s contribution to the construction of the composite. As seen for

the unidimensionality checks, the manifest variable Loyalty 2 presents

the lowest loading (0.60) and the blocks presenting the highest loadings

are Perceived Value, Trust and Expectation.

Appendix A.6 presents the cross-loadings obtained from the estimation

of this model.
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Manifest Variable Loadings Communality Redundancy

Image 1 0.87 0.76

Image 2 0.68 0.47

Image 3 0.84 0.70

Image 4 0.87 0.75

Image 5 0.82 0.67

Expectation 1 0.91 0.83 0.42

Expectation 2 0.93 0.86 0.43

Expectation 3 0.88 0.77 0.39

Perceived Quality 1 0.83 0.70 0.37

Perceived Quality 2 0.61 0.37 0.20

Perceived Quality 3 0.79 0.62 0.32

Perceived Quality 4 0.82 0.68 0.36

Perceived Quality 5 0.77 0.60 0.31

Perceived Quality 6 0.71 0.50 0.26

Perceived Quality 7 0.69 0.47 0.25

Perceived Quality 8 0.85 0.71 0.38

Perceived Quality 9 0.78 0.61 0.32

Perceived Value 1 0.92 0.84 0.38

Perceived Value 2 0.93 0.86 0.38

Satisfaction 1 0.84 0.71 0.51

Satisfaction 2 0.90 0.82 0.59

Satisfaction 3 0.89 0.79 0.57

Complaints 1 1.00 1.00 0.43

Trust 1 0.95 0.90 0.61

Trust 2 0.95 0.89 0.61

Trust 3 0.93 0.86 0.59

Loyalty 1 0.91 0.82 0.54

Loyalty 2 0.60 0.36 0.23

Loyalty 3 0.90 0.81 0.53

Table 4.2: Outer Model Summary: Loadings, Communality and Redundancy
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4.4.2 Inner Model Summary

Up to this point the way results are calculated by the proposed approach

is no di↵erent from the standard PLSPM algorithm.

The innovation related to the proposed nonlinear approach to PLSPM

impacts directly on the results obtained in the structural model and on

how they are presented; this alternative approach a↵ects the outer model

only in an indirect manner when the composites calculated as part of the

inner estimation process are passed to the measurement model.

When analysing the results related to the structural model the most

commonly used metric is the path coe�cient that allows, through a nu-

merical value, to get an idea about the strength (or intensity) of the

linear relation among two latent variables. For example, if EDP wants

to define actions in order to improve customer loyalty, it will look at all

the composites connected to Loyalty and select the ones that present the

largest path coe�cient (this can be translated as selecting the composite

with the biggest impact on customer loyalty).

This work’s motivation is built on top of what in section 2.1 is defined

as a potential flaw: the presence of a nonlinear relation. When the ex-

isting relation between two variables is nonlinear, a single number (path

coe�cient) may be insu�cient or even misleading when defining business

actions and setting priorities.

The next paragraphs present some of the examples obtained from this

application (the causal relations omitted in this chapter can be found in

appendix A.7).
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Perceived Value explained by Perceived Quality

This section presents the relation between Perceived Value and Perceived

Quality. The algorithm selected a second order polynomial function to

fit the relation between these two latent variables.

Figure 4.7: Inner Model Summary: Perceived Value explained by Perceived
Quality

Figure 4.7 shows that there is no linear relationship between perceived

Quality and Value dimensions. From positive evaluations in perceived

Quality (� 6 on a scale of 1 to 10), the ratio is approximately 1.2 points

(e.g., to a perceived Quality equal to 8 corresponds a perceived Value of

6.5), so EDP can bet on more targeted communications in order to opti-
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mise resources and obtain a more immediate potential. Some initiatives

are proposed in this direction are:

– Take an active role in supporting energy savings, especially by ad-

vising contracted power and sending alerts when consumption ap-

proaches the predefined maximum value;

– Develop new tools and facilitate the use of consumer simulators

(adjust contracted voltage level, tari↵s, potential services adjusted

to customer needs);

– Monitor the impact of energy e�ciency measures through e↵ec-

tive savings communication potentially reflected on the customer

invoice.

Perceived Value explained by Expectation

This section presents the relation between Perceived Value and Expec-

tation. The algorithm selected a second order polynomial function to fit

the relation between these two latent variables.

Figure 4.8 presents high expectations compared to lower perceived value.

Managing and meeting customer expectations can be challenging since

they are not just related to price. In order to better handle customer

expectations, EDP could present more information to the consumer,

namely consumption curve and the possibility to compare the household

consumption to households with similar characteristics.

Campaigns and promotions might be interesting drivers to improve the

perceived value. EDP could better clarify the commercial o↵ering, as well

as information on the composition of the energy price. Some initiatives,
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Figure 4.8: Inner Model Summary: Perceived Value explained by Expectation

such as launching a new invoice layout can have a strong impact on

improving value perception.

Perceived Quality explained by Expectation

This section presents the relation between Perceived Quality and Expec-

tation. The algorithm selected a second order polynomial function to fit

the relation between these two latent variables.

Figure 4.7 shows a need to improve the expectations or guarantee deliv-

ery of high quality service. This could be achieved through a letter of

commitments (e.g., resolution of problems in x hours, tracking customer
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Figure 4.9: Inner Model Summary: Perceived Quality explained by Expectation

processes, inform about technical support team expected arrival time or

other information useful to the customer).

EDP should also proactively o↵er customised solutions and facilitate

contact with the company, namely through greater personalisation in

the contact team (i.e., record of customer contacts history). Addition-

ally, the relationship with the client can be improved by providing a

high-quality customer management service (complaints, questions, etc.)

through online channels.
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Satisfaction explained by Expectation

This section presents the relation between Satisfaction and Expectation.

The algorithm selected a second order polynomial function to fit the

relation between these two latent variables.

Figure 4.10: Inner Model Summary: Satisfaction explained by Expectation

Figure 4.10 presents an almost linear relation between the two com-

posites. It is possible to conclude that Expectations are always above

Satisfaction level.

Managing customer expectations can be challenging because of di↵erent

factors. One of those factors is driven by the customer perception about

EDP; they consider EDP an innovative and forward-looking organisation,
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and as a consequence they expect a customised customer approach. In

fact, customers are changing and they expect a lot from EDP mostly

when it comes to information that the “new” customer wants to see.

From the data perspective, EDP needs to take advantage of the internal

customer information and start sharing it with them in a collaborative,

digital and useful manner.

Another important point is related to omni-channel management. EDP

needs to ensure active listening and bet on responses homogenisation

(i.e., ensuring the same answer independently from the channel used by

the customer).

Expectations have to be met through a strong commitment made with

the customers and making sure they play an active role in their relation

with EDP.

Loyalty explained by Trust

This section presents the relation between Loyalty and Trust. The al-

gorithm selected a second order polynomial function to fit the relation

between these two latent variables.

Trust is a very present attribute in EDP’s brand and it is partially “in-

herited” from the strong presence of EDP in the regulated market. In

order to maintain and reinforce customer Trust, the company should bet

on loyalty programs that could promote positive word of mouth among

brand promoters.

Many companies drive internal activities focussed on empowering em-

ployees in order to become brand ambassadors.
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Figure 4.11: Inner Model Summary: Loyalty explained by Trust

4.4.3 Main Business Findings and Conclusions

The application detailed in this chapter represents a di↵erent approach to

a common business issue. In fact, as previously mentioned, one of EDP’s

objectives is to get a better understanding on a set of latent variables

(i.e., Satisfaction, Loyalty, Trust, etc.) and on the influential factors

driving their changes (i.e., Image, Perceived Quality, Perceived Value,

Complaints, etc.).

In order to get the most from the data retrieved and analysed by the ECSI

Portugal project, it has been decided to use the proposed alternative

composite based approach: Nonlinear PLSPM.
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The results obtained are very promising and the causal relation defined

in the theoretical model are free from the linearity assumption present

in the original PLSPM algorithm.

When graphically presenting a nonlinear relation between two compos-

ites it is possible to define strategies for specific needs identified by the

Nonlinear PLSPM (i.e., the relation between perceived quality and value

presented two linear sub-behaviour: (i) one with a 1 to 1 relation be-

tween the two composites; and (ii) another with a 1 to approximately

1.2 ratio).

This application set the basis for new interpretation of the relation be-

tween composites based on the natural patterns present in the data.





Conclusions and Future

Perspectives

Most real life statistical problems

have one or more nonstandard features.

There are no routine statistical question;

only questionable statistical routines.

David R. Cox

The PLSPM algorithm is characterised by a system of interdependent

equations based on simple and multiple linear regressions. The algorithm

estimates the dependence relationships among latent variables (inner or

structural model) as well as the relationships between manifest variables

and their own latent variable (outer or measurement model). All the

relations present in both inner and outer models are estimated under the

assumption of linearity.

This thesis proposes a flexible nonlinear alternative to the PLSPM al-
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gorithm which tackles two of the issues discussed in chapter 1 by: (i)

breaking the linearity assumptions present in the inner model estimation

phase; and (ii) accommodating path direction within the inner model

estimation phase through a novel non-symmetrical approach for inner

weights estimation.

This approach can be seen, when it comes to the inner model, as a

data-driven estimation approach. In fact, the algorithm adapts to the

form assumed by the inner relationships among composites by means

of a piecewise estimation method. Its flexibility allows using di↵erent

inner weights estimation methods taking advantage of the piecewise al-

gorithm’s architecture.

As detailed and motivated along this work, another added value is repre-

sented by the possibility of defining a non-symmetrical weighting system

in the inner model estimation phase. This systems has been designed to

accommodate a coherent path direction modelling among composites.

The results obtained in the simulation analysis show that, from an em-

pirical perspective, the proposed approach is stable, becoming more con-

sistent when the sample size is greater than or equal to 100 observations.

The application to the energy supply market at EDP proved that the

proposed approach adds value when it comes to analyse relations among

composites.

The results obtained are very promising, and by using the Nonlinear

PLSPM approach the causal relation defined in the theoretical model

are free from the linearity assumption present in the original PLSPM

algorithm.

Another advantage of this approach concerns its output; in fact, the
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nonlinear polynomial function that relates two composites allows the

definition of a more precise business strategy.

This application sets the basis for a more suitable interpretation of the

relation between composites, based on the natural patterns present in

the data.

Future Developments Even if the results are promising, there are

several reflections that may lead to future developments and fine-tuning

of the proposed algorithm.

The main improvement points identified are:

– Comprehensive Business Framework: to build a comprehen-

sive business framework aiming at defining a customised business

strategy. This framework should be able to combine results based

on the following features: (i) prioritisation of business actions by

measuring the impact of each exogenous variable on a connected

endogenous variable by means of a multivariate nonlinear model;

and (ii) understand company’s maturity at a latent dimension level

by identifying the company’s position (in the sense of average di-

mension level) in the nonlinear curve, in order to anticipate the ex-

pected response in the endogenous dimension. This feature would

allow to customise business actions based on the company’s current

situation.

– Winsorisation-based Nonlinear Estimation: to introduce a

winsorisation (Dixon, 1960; Hastings Jr et al., 1947; Tukey, 1962)

phase before fitting the polynomial function. This stage would
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estimate several polynomial functions by limiting extreme values

in the input data in order to reduce the e↵ect of possibly spuri-

ous outliers. This technique is named after the engineer turned

biostatistician Charles P. Winsor (1895–1951). The analysed rela-

tions can be heavily influenced by outliers. A typical strategy is

to set all outliers to a specified percentile of the data; for example,

a 90% winsorisation would see all data below the 5-th percentile

set to the 5-th percentile, and data above the 95-th percentile set

to the 95-th percentile. Winsorised estimators are usually more

robust to outliers than their more standard forms, although there

are alternatives, such as trimming, that lead to a similar e↵ect.

– Nonlinear Measurement Model: to apply the piecewise weight-

ing estimation methodology to the measurement model.

– Graphical Results: to improve graphical outputs with the aim

of supporting analysis and evaluation of the model’s results. All

the developed outputs should be focussed on improving the model’s

applicability to concrete business challenges.

– Nonlinear PLSPM GUI: to build a graphical user interface for

the proposed Nonlinear PLPSM.

– Analysis of Convergence: in this topic, the main objective is to

study the few non-convergence cases obtained when the sample size

is equal to 50 observations. The instability example presented in

chapter 3 represents a good starting point for further developments.

– Misspecification Analysis: another important topic that re-
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quires further simulation analysis is related to model misspecifi-

cation. In more detail, the main objective would be to analyse

how the model behaves when it is specified di↵erently from the

theoretical model.
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Lohmöller, Jan-Bernd. Latent Variable Path Modeling with Partial Least

Squares, volume 1. Springer-Verlag Berlin Heidelberg, Heidelberg,

1989. ISBN 978-3-642-52514-8. doi: 10.1007/978-3-642-52512-4. URL

http://link.springer.com/10.1007/978-3-642-52512-4.

Marcoulides, George A. and Saunders, Carol. Editor’s com-

ments: PLS: a silver bullet? MIS Quarterly, 30(2):iii–

ix, 2006. ISSN 0276-7783. doi: 10.2307.25148727. URL

citeulike-article-id:10723370{%}5Cnhttp://portal.acm.

org/citation.cfm?id=2017308.

Marcoulides, George A., Chin, Wynne W., and Saunders, Carol. A crit-

ical look at partial least squares modeling. MIS Quarterly, 33(1):171–

175, 2009. ISSN 0276-7783. doi: Article.

Mart́ınez-Ruiz, Alba and Aluja-Banet, Tomas. Two-step PLS path mod-

eling MODE B: Nonlinear and interaction e↵ects between formative

constructs. Springer Proceedings in Mathematics and Statistics, 56:

187–199, 2013. ISSN 21941009. doi: 10.1007/978-1-4614-8283-3 12.

Mateos-Aparacio, Gregoria. Partial least squares (PLS) methods: Ori-

gins, evolution, and application to social sciences. Communications



176 Bibliography

in Statistics-Theory and Methods, 40(13):1–18, 2011. ISSN 0361-0926.

doi: 10.1080/03610921003778225.

Matzler, Kurt, Hinterhuber, Hans H., Bailom, Franz, and Sauerwein,

Elmar. How to delight your customers. Journal of Product &

Brand Management, 5(2):6–18, 1996. ISSN 1061-0421. doi: 10.

1108/10610429610119469. URL http://www.emeraldinsight.com/

doi/abs/10.1108/10610429610119469.

Matzler, Kurt, Bailom, Franz, Hinterhuber, Hans H., Renzl, Birgit, and

Pichler, Johann. The Asymmetric Relationship Between Attribute-

Level Performance and Overall Customer Satisfaction: A Reconsid-

eration of the Importance-Performance Analysis. Industrial Mar-

keting Management, 33(4):271–277, 2004. ISSN 00198501. doi:

10.1016/S0019-8501(03)00055-5.

Mittal, Vikas, Ross, William T., and Baldasare, Patrick M. The Asym-

metric Impact of Negative and Positive Attribute-Level Performance

on Overall Satisfaction and Repurchase Intentions. Journal of Mar-

keting, 62(1):33–47, 1998.

Mooijaart, Ab and Bentler, Peter M. An Alternative Approach for Non-

linear Latent Variable Models. Structural Equation Modeling, 17(3):

357–373, 2010. ISSN 1070-5511. doi: 10.1080/10705511.2010.488997.

Moosbrugger, Helfried, Schermelleh-engel, Karin, Kelava, Augustin, and

Klein, Andreas G. Testing Multiple Nonlinear E↵ects In Structural

Equation Modeling: A Comparison of Alternative Estimation. Struc-



Bibliography 177

tural Equation Modeling in Educational Research: Concepts and Ap-

plications, pages 103–136, 2006.

Noonan, Richard and Wold, Herman. NIPALS Path Modelling with

Latent Variables, 1977. ISSN 0031-3831.

Paulssen, Marcel and Sommerfeld, Angela. Modeling the Nonlinear Re-

lationship Between Satisfaction and Loyalty with Structural Equa-

tion Models. In Spiliopoulou, Myra, Kruse, Rudolf, Borgelt, Chris-

tian, Nürnberger, Andreas, and Gaul, Wolfgang, editors, Data and

Information Analysis to Knowledge Engineering: Proceedings of the

29th Annual Conference of the Gesellschaft f{ü}r Klassifikation e.V.
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Appendix

A.1 Nonlinear PLS Path Modelling: R Code

#================================================|

# Nonl inear PLS Path Mode l l i n g

# Author : Francesco C o s t i g l i o l a

#================================================|

#������������������������������������������������|

# I n s t a l l a l l r e q u i r e d packages

#������������������������������������������������|

i n s ta l lRequ i r edPackage s <� function ( ) {

i f ( ! require (GGally ) ) { i n s ta l l . packages ( ”GGally” )}

i f ( ! require ( polynom ) ) { i n s ta l l . packages ( ”polynom” )}

i f ( ! require ( p ly r ) ) { i n s ta l l . packages ( ” p ly r ” )}

i f ( ! require ( earth ) ) { i n s ta l l . packages ( ” earth ” )}

i f ( ! require ( p ly r ) ) { i n s ta l l . packages ( ” g r id ” )}

i f ( ! require ( earth ) ) { i n s ta l l . packages ( ” ggplot2 ” )}

}

#������������������������������������������������|

# Load a l l r e q u i r e d packages

#������������������������������������������������|

loadRequiredPackages <� function ( ) {

l ibrary (GGally )

l ibrary ( polynom )

l ibrary ( p ly r )

l ibrary ( earth )

l ibrary ( grid )

l ibrary ( ggp lot2 )

}

#������������������������������������������������|

# Given a dependent and an independen t v a r i a b l e ,

# f i t s a s e t o f po l ynomia l f u n c t i o n s r e t u rned in
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# a l i s t

#������������������������������������������������|

f i tPo lynomia l <� function (Dep , Ind ) {

Poly . 1 <� lm(Dep ˜ Ind ) #1 s t deg r ee

Poly . 2 <� lm(Dep ˜ poly ( Ind , 2 , raw=TRUE) ) #2nd deg ree

#Poly . 3 <� lm (Dep ˜ po l y ( Ind , 3 , raw=TRUE) ) #3nd deg ree

out <� l i s t ( ” f i r s tD e g r e e ” = Poly . 1 , ” secondDegree ” = Poly . 2 ) #, ” t h i r dDeg r e e ”

,! = Poly . 3 )

return ( out )

}

#������������������������������������������������|

# Given a l i s t w i t h a l l t h e f i t t e d po l ynomia l s ,

# re t u rn the one w i th t h e b e s t f i t based on inpu t

# c r i t e r i o n

#������������������������������������������������|

evaluatePolynomia l <� function ( Poly . List , c r i t e r i o n , ind i , ind j , i t e r ) {

n . Poly <� length ( Poly . L i s t )

a s s i gn ( ”Assess ” ,matrix (0 , n . Poly , 7 ) , env i r = . GlobalEnv )

a s s i gn ( ” Se l e c t ed ” ,matrix (0 , 1 , 4 ) , env i r = . GlobalEnv )

Assess [ , 1 ] = i t e r

Assess [ , 3 ] = ind i

Assess [ , 4 ] = ind j

Se l e c t ed [ 1 , 1 ] = i t e r

Se l e c t ed [ 1 , 2 ] = ind i

Se l e c t ed [ 1 , 3 ] = ind j

for ( k in 1 : n . Poly ) {

Assess [ k , 2 ] <� k

Assess [ k , 5 ] <� BIC( Poly . L i s t [ [ k ] ] )

Assess [ k , 6 ] <� AIC( Poly . L i s t [ [ k ] ] )

Assess [ k , 7 ] <� summary( Poly . L i s t [ [ k ] ] ) [ [ ” adj . r . squared ” ] ]

}

i f ( c r i t e r i o n == ”BIC” ) {

Se l e c t ed [ 1 , 4 ] <� which .min( Assess [ , 5 ] )

out <� l i s t ( ” bestPolynomial ” = Poly . L i s t [ [ which .min( Assess [ , 5 ] ) ] ] , ”

,! polynomialDegree ” = which .min( Assess [ , 5 ] ) , ”Assess ” = Assess , ” Se l e c t ed ”

,! = Se l e c t ed )

}

else i f ( c r i t e r i o n ==”AIC” ) {

Se l e c t ed [ 1 , 4 ] <� which .min( Assess [ , 6 ] )

out <� l i s t ( ” bestPolynomial ” = Poly . L i s t [ [ which .min( Assess [ , 6 ] ) ] ] , ”

,! polynomialDegree ” = which .min( Assess [ , 6 ] ) , ”Assess ” = Assess , ” Se l e c t ed ”

,! = Se l e c t ed )

}

else i f ( c r i t e r i o n ==”RSQ” ) {

Se l e c t ed [ 1 , 4 ] <� which .max( Assess [ , 7 ] )
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out <� l i s t ( ” bestPolynomial ” = Poly . L i s t [ [ which .max( Assess [ , 7 ] ) ] ] , ”

,! polynomialDegree ” = which .max( Assess [ , 7 ] ) , ”Assess ” = Assess , ” Se l e c t ed ”

,! = Se l e c t ed )

}

else {

stop ( ”ERROR: No Polynomial assesment c r i t e r i a de f ined ! ” )

}

return ( out )

}

#������������������������������������������������|

# Given the b e s t f i t t i n g po lynomia l , r e t u rn

# s t a t i o n a r y p o i n t s

#������������������������������������������������|

s t a t i ona ryPo in t s <� function ( Poly ) {

formattedPoly <� polynomial ( Poly [ [ 1 ] ] [ [ ” c o e f f i c i e n t s ” ] ] )

out <� summary( formattedPoly ) [ [ ” s t a t i ona ryPo in t s ” ] ]

return ( out )

}

#������������������������������������������������|

# Given a matr ix w i th two l a t e n t v a r i a b l e s and a

# group ing v a r i a b l e r e t u rn s t h e c o r r e l a t i o n

#������������������������������������������������|

corrByGroup <� function (rawLV){

#re tu rn ( data . frame (COR = s i gn ( cor ( rawLV [ , 1 ] , rawLV [ , 2 ] ) ) ) )

return (data . frame (COR = cor (rawLV [ , 1 ] , rawLV [ , 2 ] ) ) )

}

#������������������������������������������������|

# Given the e s t ima t e d Laten t Va r i a b l e s r e t u rn s

s t a t i s t i c s about p r ed i c t i on power and f i t

#������������������������������������������������|

GetRSquared <� function (Tbl , n . lvs , IDMat , n) {

Rsqd <� matrix (0 ,nrow=n . lvs , ncol=4)

for ( rw in 2 : n . l v s ) {

# Get number o f exogenous v a r i a b l e s

n . exog <� sum( IDMat [ rw , ] )

i f (n . exog != 0) {

# Create a matr ix t h a t w i l l c on ta in data fom endogenous and exogenous

,! v a r i a b l e s

data . for .LM <� matrix (NA, nrow = n , ncol = n . exog+1)

# Place t h e endogenous v a r i a b l e in t h e f i r s t column

data . for .LM[ , 1 ] <� Tbl [ , rw ]

# I n i t i a l i z e an index to g e t t h e exogenous v a r i a b l e s

ind . col <� 1

lim . diag <� rw�1
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for ( c l in 1 : l im . diag ){

i f ( IDMat [ rw , c l ] == 1){

# Co l l e c t a l l exogenous v a r i a b l e s

data . for .LM[ , ind . col+1] <� Tbl [ , c l ]

ind . col <� ind . col + 1

}

}

y <� data . for .LM[ , 1 ]

x <� data . for .LM[ , �1]

# Est imate r e g r e s s i o n model

lm . f i t <� lm( y˜x )

# Get R�Squared

Rsqd [ rw , 4 ] <� summary(lm . f i t )$ r . squared

# Get Re s i dua l s Sum o f Squares

Rsqd [ rw , 3 ] <� sum(summary(lm . f i t )$residuals ˆ2)

# Ca l c u l a t e Tota l Sum o f Squares

Rsqd [ rw , 1 ] <� � (Rsqd [ rw , 3 ] / (Rsqd [ rw , 4 ] � 1) )

# Get an e s t ima t e o f t h e p r e d i c t i v e power o f t h e model

Rsqd [ rw , 2 ] <� Rsqd [ rw , 1 ] � Rsqd [ rw , 3 ]

}

}

return (Rsqd )

}

#������������������������������������������������|

# Assess Un i d imen s i ona l i t y f o r each b l o c k o f

# man i f e s t v a r i a b l e s

#������������������������������������������������|

AssessUnidim <� function ( dts , blk set , b lk l en )

{

dts <� scale ( dts )

l v s = length ( blk set )

Alpha = rep (1 , l v s )

Rho = rep (1 , l v s )

e i g . 1 s t = rep (1 , l v s )

e i g . 2 nd = rep (0 , l v s )

for ( aux in 1 : l v s )

{

dts part = dts [ , b lk set [ [ aux ] ] ]

i f ( blk l en [ aux ] != 1)

{

# PCA depend ing on b l o c k d imens ions

i f (nrow( dts part ) < ncol ( dts part ) ) {

# more columns than rows

X pca = princomp ( t ( dts part ) )

X rho = t ( dts part )

} else {
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# more rows than columns

X pca = princomp ( dts part )

X rho = dts part

}

# Cronbach ’ s a l pha

p = ncol ( dts part )

c o r r e c t i o n = sqrt ( (nrow( dts part )�1) / nrow( dts part ) )

alpha denom = var ( rowSums( dts part ) )

alpha numer = 2 ⇤ sum( cor ( dts part ) [ lower . t r i ( cor ( dts part ) ) ] )

alpha = ( alpha numer / alpha denom) ⇤ (p / (p � 1) )

Alpha [ aux ] <� i f e l s e ( alpha < 0 , 0 , alpha )

# Rho

p = ncol (X rho )

rho numer = colSums ( cor (X rho , X pca$ s c o r e s [ , 1 ] ) ) ˆ2

rho denom = rho numer + (p � colSums ( cor (X rho , X pca$ s c o r e s [ , 1 ] ) ˆ2) )

Rho [ aux ] = rho numer / rho denom

# Eig enva l u e s

e i g . 1 s t [ aux ] = X pca$sdev [ 1 ] ˆ 2

e i g . 2 nd [ aux ] = X pca$sdev [ 2 ] ˆ 2

}

}

# outpu t

data . frame (C. alpha = Alpha ,

DG. rho = Rho ,

e i g . 1 st ,

e i g . 2 nd)

}

#������������������������������������������������|

# Co l l e c t Path C o e f f i c i e n t s

#������������������������������������������������|

getPathCoef f <� function ( paths , s c o r e s )

{

s c o r e s <� scale ( s c o r e s )

n . l v s <� ncol ( paths )

checkEndo <� as . log ica l ( rowSums( paths ) )

Path = paths

for ( aux in 1 : n . l v s )

{

i f ( checkEndo [ aux ] == 1) {

X <� s c o r e s [ ,which ( paths [ aux ,]==1) ]

Y <� s c o r e s [ , aux ]

Path [ aux ,which ( paths [ aux ,]==1) ] = solve ( t (X)%⇤%X) %⇤% t (X)%⇤%Y

}

}
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return ( Path )

}

#������������������������������������������������|

# Plo t Path Model w i t h Non l inear f i t

#������������������������������������������������|

plotPaths <� function (IDM, LVScores ) {

dim <� nrow(IDM)

for ( i in 1 :dim) {

print ( paste0 ( ” i = ” , i ) )

for ( j in 1 : i ) {

print ( paste0 ( ” j = ” , j ) )

i f ( j <= i & IDM[ i , j ]==1){

print ( ” i n s i d e ” )

Dep <� 1 +(LVScores [ , i ] � min( LVScores [ , i ] ) ) / (max( LVScores [ , i ] ) � min(

,! LVScores [ , i ] ) ) ⇤ 9

Ind <� 1 +(LVScores [ , j ] � min( LVScores [ , j ] ) ) / (max( LVScores [ , j ] ) � min(

,! LVScores [ , j ] ) ) ⇤ 9

Polys <� f i tPo lynomia l (Dep , Ind )

Poly <� evaluatePolynomia l ( Polys , ”BIC” ,1 , 1 , 1 )

FinalPoly <� polynomial ( Poly$bestPolynomial$coef f i c ients )

plot ( Ind ,

Dep ,

main=paste0 (colnames ( LVScores ) [ i ] , ” exp la ined by ” , colnames ( LVScores ) [ j ] ) ,

col=”grey ” ,

xlab = colnames ( LVScores ) [ j ] ,

y lab = colnames ( LVScores ) [ i ] ,

xl im = c (0 ,10) ,

xaxs =” i ” ,

yaxs =” i ” ,

ylim = c (0 ,10)

)

l ines ( FinalPoly , col=”green2 ” , lwd=3)

}

}

}

}

#������������������������������������������������|

# THIS FUNCTION RUNS THE NONLINEAR PARTIAL LEAST

# SQUARES PATH MODELLING

#

# INPUTS ARE:

# inData : INPUT DATA
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# IDM: INNER DESIGN MATRIX

# t o l e r a n c e TOLERANCE VALUE FOR CONVERGENCE

# i t e r L im i t MAXIMUM NUMBER OF ITERATION FOR

# CONVERGENCE

# l v s . names : LATENT VARIABLES NAMES

# mvs . names : MANIFEST VARIABLES NAMES

# s e t s : SET OF MANIFEST VARIABLES FOR

# EACH BLOCK

# modes : SET OF MEASUREMENT MODEL

# ESTIMATION MODES

# NLse lCr i t : NONLINEAR SELECTION CRITERION

# (AIC ,BIC ,RSQ)

# a c t i v a t e LVp l o t s : ACTIVATES SCATTER PLOT MATRIX

# BETWEEN LATENT VARIABLES FOR

# EVERY MODEL ITERATION

#������������������������������������������������|

NLPLSPM <� function ( inData , IDM, to l e rance , i t e rL imi t , l v s .names , mvs .names , s e t s ,

,! modes , NLselCrit , ac t ivateLVplot s ) {

# Ver i f y and I n s t a l l a l l r e q u i r e d packages

i n s ta l lRequ i r edPackage s ( )

# Load a l l r e q u i r e d packages

loadRequiredPackages ( )

# Get number o f o b s e r v a t i o n s

n . obs = nrow( inData )

#X = s c a l e ( as . da ta . frame ( inData ) , c en t e r=TRUE, s c a l e=TRUE)

# Sca l e i npu t data

X <� apply ( inData , MARGIN=2,

FUN = function (X) (X � mean(X) )/ ( sd (X) ⇤ sqrt ( ( n . obs�1)/n . obs ) ) )

# Get number o f man i f e s t v a r i a b l e s

mvs = ncol (X)

# Set column and row names to t h e Inner Design Matr ix

dimnames(IDM) = l i s t ( l v s .names , l v s .names)

# Get number o f l a t e n t v a r i a b l e s

l v s = nrow(IDM)

# Create v a r i a b l e s b l o c k s

b locks = unlist ( lapply ( s e t s , length ) )

# Create empty Outer Design Matr ix s t r u c t u r e

ODM = matrix (0 , mvs , l v s )

# Set Outer Design Matr ix v a r i a b l e s names

colnames (ODM)=lv s .names

# I n i t i a l i z e index v a r i a b l e

aux = 1

# �> S t a r t l oop on ’ k ’ t o c r e a t e t h e Outer Design Matr ix (ODM)

for ( k in 1 : l v s ){

# Set i n i t i a l w e i g h t s w i th v a l u e s e qua l t o 1

ODM[ aux :sum( b locks [ 1 : k ] ) , k ] = rep (1 , b locks [ k ] )

# Inc r ea s e index
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aux = sum( b locks [ 1 : k ] ) + 1

# �| End loop on ’ k ’

}

# Def ine f i r s t s e t o f ou t e r we i g h t s

W = ODM %⇤% diag (1/ ( ( apply (X %⇤% ODM,2 , sd )⇤sqrt ( ( n . obs�1)/n . obs ) ) ) , lvs , l v s )

t e s t .w <� t (matrix ( as . l i s t (W[which (W!=0) ] , 1 , 1 6 ) ) )

t e s t . c <� t (matrix (0 , 1 , 1 ) )

# Store ou t e r we i g h t s f o r f u t u r e comparison

w. old = rowSums(W)

# I n i t i a l i z e a s c a l a r f o r ch e c k i n g we i g h t s convergence

w. d i f = 1

# I n i t i a l i z e an index o f number o f i t e r a t i o n s

i termax = 1

# I n i t i a l i z e h i s t o r i c a l w e i g h t s convergence c r i t e r i o n matr i x

w. hist = matrix (c (0 ,w. d i f ) ,ncol=2,nrow=1)

# I n i t i a l i z e matr ix to s t o r e h i s t o r i c a l po l ynomia l a s s e s smen t s

Asses sPo lySe l . hist = matrix (NA,nrow=1,ncol=7)

# I n i t i a l i z e matr ix to s t o r e h i s t o r i c a l po l ynomia l a s s e s smen t s

Se l ec tedPo ly . hist = matrix (NA,nrow=1,ncol=4)

# �> S t a r t wh i l e l oop on we i gh t and number o f i t e r a t i o n s c r i t e r i a

while (w. d i f > t o l e r an c e && i termax < i t e rL im i t ){

# Perform e x t e r n a l e s t ima t i on o f l a t e n t v a r i a b l e s ’Y’

Y = X %⇤% W

# Set column names f o r l a t e n t v a r i a b l e s matr i x ’Y’

colnames (Y)=lv s .names

# [NEW] Bui l d t h e f u l l IDM matr ix based on the e x p r e s s i o n : IDM + IDM’

fullIDM <� IDM + t (IDM)

# [NEW] Create an empty matr i x t h a t w i l l c on ta in t h e inner e s t ima t i o n s

Z = matrix (NA, nrow(Y) , l v s )

# [NEW] �> S t a r t a l oop on ’ i ’ t o go t rough a l l endogenous v a r i a b l e s

for ( i in 1 : l v s ){

# [NEW] Create a temporary v e c t o r c on t a i n i n g t h e inner e s t ima t i on done by row

tempLV <� matrix (0 ,nrow(Y) ,1)

# [NEW] �> S t a r t a l oop on ’ j ’ t o go t rough a l l exogenous v a r i a b l e s

for ( j in 1 : l v s ){

# [NEW] Goes th rough i f IDM pr e s e n t s a r e l a t i o n between ’ i ’ and ’ j ’

i f ( fullIDM [ i , j ] == 1) {

# [NEW] Checks whether ( i , j ) p o s i t i o n i s in t h e l ower t r i a n g u l a r matr ix

i f ( i <= j ) {

# [NEW] I f ( i , j ) in l ower t r i a n g u l a r matr ix then Y[ , i ] i s endogenous

i i = i

# [NEW] I f ( i , j ) in l ower t r i a n g u l a r matr ix then Y[ , j ] i s exogenous

j j = j

# [NEW] Close IF

}

# [NEW] Checks whether ( i , j ) p o s i t i o n i s in t h e upper t r i a n g u l a r matr ix

else {

# [NEW] I f ( i , j ) in upper t r i a n g u l a r matr ix then Y[ , j ] i s endogenous (

,! SYMMETRIC APPROACH)



Appendix 197

i i = j

# [NEW] I f ( i , j ) in upper t r i a n g u l a r matr ix then Y[ , i ] i s exogenous (SYMMETRIC

,! APPROACH)

j j = i

# [NEW] Close ELSE

}

# [NEW] F i t po l ynomia l f u n c t i o n to inner r e l a t i o n s

a s s i gn (paste ( ”Poly” , i , j , sep=” . ” ) , f i tPo lynomia l (Y[ , i i ] ,Y[ , j j ] ) )

# [NEW] S e l e c t s t h e po l ynomia l d eg r ee t h a t p r e s e n t s t h e b e s t f i t

a s s i gn (paste ( ” bestPoly ” , i , j , sep=” . ” ) ,

eva luatePolynomia l (get (paste ( ”Poly” , i , j , sep=” . ” ) ) ,

c r i t e r i o n = NLselCrit ,

ind i = i , ind j = j ,

i t e r = itermax ) )

# [NEW] SIMULATION: Get v a l u e s f o r a l l s t a t i s t i c s and a l l po l ynomia l d e g r e e s

Asses sPo lySe l . hist <� rbind ( Asses sPo lySe l . hist ,

get (paste ( ” bestPoly ” , i , j , sep=” . ” ) ) [ [ 3 ] ] )

# [NEW] SIMULATION: Get t h e deg r ee f o r t h e s e l e c t e d po l ynomia l

Se l ec tedPo ly . hist <� rbind ( Se l ec tedPo ly . hist ,

get (paste ( ” bestPoly ” , i , j , sep=” . ” ) ) [ [ 4 ] ] )

# [NEW] Get i n f l e c t i o n and s t a t i o n a r y p o i n t s f o r t h e po l ynomia l f u n c t i o n s

,! f i t t e d

a s s i gn (paste ( ” s t a tPo in t s ” , i , j , sep=” . ” ) ,

s t a t i ona ryPo in t s ( get (paste ( ” bestPoly ” , i , j , sep=” . ” ) ) ) )

# [NEW] S p l i t s v a r i a b l e s to c a l c u l a t e c o r r e l a t i o n matr ix

a s s i gn (paste ( ”preCorrData” , i , j , sep=” . ” ) ,

cbind (Y[ , i i ] ,Y[ , j j ] ,

f i n d I n t e r v a l (Y[ , i i ] ,

get (paste ( ” s t a tPo in t s ” , i , j , sep=” . ” ) ) ) ) )

i f (min( table ( get (paste ( ”preCorrData” , i , j , sep=” . ” ) ) [ , 3 ] ) ) == 1) {

temp . preCorrData <� get (paste ( ”preCorrData” , i , j , sep=” . ” ) )

temp . preCorrData [ , 3 ] [ temp . preCorrData [ , 3 ] == 1 ] <� 0

a s s i gn (paste ( ”preCorrData” , i , j , sep=” . ” ) , temp . preCorrData )

}

# [NEW] Prepares t h e s t r u c t u r e to c a l c u l a t e c o r r e l a t i o n matr ix

LV0 <� data . frame ( get (paste ( ”preCorrData” , i , j , sep=” . ” ) ) [ , 1 ] ,

get (paste ( ”preCorrData” , i , j , sep=” . ” ) ) [ , 2 ] ,

group = get (paste ( ”preCorrData” , i , j , sep=” . ” ) ) [ , 3 ] )

# [NEW] Ca l c u l a t e s c o r r e l a t i o n s by group

a s s i gn (paste ( ” Co r r e l a t i on s ” , i , j , sep=” . ” ) , ddply (LV0 , . ( group ) , corrByGroup ) )

# [NEW] Join c o r r e l a t i o n s based on the group d e f i n e d above

a s s i gn (paste ( ”LV” , i , j , sep=” . ” ) , j o i n ( as . data . frame (LV0) ,

as . data . frame ( get (paste ( ” Co r r e l a t i on s ” , i , j , sep=” . ” ) ) ) , by=”group” ) )

# [NEW] Laten t v a r i a b l e inner e s t ima t i on

tempLV [ , 1 ] <� tempLV [ , 1 ] + (Y[ , j j ] ⇤
get (paste ( ”LV” , i , j , sep=” . ” ) ) [ , length ( get (paste ( ”LV” , i , j , sep=” . ” ) ) ) ] )

# [NEW] Close IF to check i f IDM pr e s e n t s a r e l a t i o n between ’ i ’ and ’ j ’

}

# [NEW] �| End a l oop on ’ j ’
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}

# [NEW] Add e s t ima t e d l a t e n t v a r i a b l e to t h e f i n a l matr i x Z

Z [ , i ] <� apply (tempLV , MARGIN=2,FUN = function (X) (X � mean(X) )/ ( sd (X) ⇤ sqrt

,! ( ( n . obs�1)/n . obs ) ) )

# [NEW] �| End a l oop on ’ i ’

}

# I n i t i a l i z e index ’ aux ’

aux = 1

# �> S t a r t l oop to c a l c u l a t e ou t e r we i g h t s ’W’

for ( k in 1 : l v s ){

# Check whether s e l e c t e d mode f o r l a t e n t v a r i a b l e ’ k ’ i s Mode A

i f (modes [ k]==”A” ){

# Ca l c u l a t e ou t e r we i g h t s as s imp l e l i n e a r r e g r e s s i o n

ODM[ aux :sum( b locks [ 1 : k ] ) , k ] =

solve ( t (Z [ , k ] )%⇤%Z [ , k ] )%⇤%Z [ , k ] %⇤% X[ , aux :sum( b locks [ 1 : k ] ) ]

# Close IF Mode A

}

# Check whether s e l e c t e d mode f o r l a t e n t v a r i a b l e ’ k ’ i s Mode B

else i f (modes [ k]==”B” ){

# Bui ld b l o c k o f v a r i a b l e s f o r mu l t i p l e l i n e a r r e g r e s s i o n

X. blok = X[ , aux :sum( b locks [ 1 : k ] ) ]

# Ca l c u l a t e ou t e r we i g h t s as mu l t i p l e l i n e a r r e g r e s s i o n

ODM[ aux :sum( b locks [ 1 : k ] ) , k ] = solve ( t (X. blok )%⇤%X. blok )%⇤%t (X. blok ) %⇤% Z [ , k ]

# Close ELSE

}

# Inc r ea s e index ’ aux ’

aux = sum( b locks [ 1 : k ] ) + 1

# �| End loop on ’ k ’

}

# Standa rd i s e Outer Weights ( t h r e e t y p e s bu t u s ing s tandard approach )

W = ODM %⇤% diag (1/ ( ( apply (X %⇤% ODM,2 , sd )⇤sqrt ( ( n . obs�1)/n . obs ) ) ) , lvs , l v s )

#W = ODM %⇤% d iag (1/as . da ta . frame ( l a p p l y ( as . da ta . frame (X %⇤% ODM) , f u n c t i o n ( x )

,! Matrix : : norm( as . matr ix ( x ) ,”F”) ) ) , l v s , l v s )

#W = ODM / norm(X %⇤% ODM,”F”)

# Store we i g h t s in column in order to perform a comparison wi th p r e v i o u s

w.new = rowSums(W)

t e s t .w = rbind ( t e s t .w, t (matrix ( as . l i s t (W[which (W!=0) ] , 1 ,mvs) ) ) )

t e s t . c = rbind ( t e s t . c , (sum( cor (Z) ˆ2)�l v s )/2)

# Compute ou t e r we i g h t s d i f f e r e n c e

w. d i f = sum( (w. old � w.new) ˆ2)

# Update l a s t w e i g h t s f o r nex t i t e r a t i o n

w. old = w.new

# Add a new row wi th t h e updated convergence c r i t e r i o n

w. hist = rbind (w. hist ,matrix (c ( itermax ,w. d i f ) ,nrow=1,ncol=2) )

# Inc r ea s e index f o r t h e number o f i t e r a t i o n s ’ i termax ’

i termax = itermax + 1

# [NEW] Checks whether i s asked to produce a s c a t t e r p l o t matr ix f o r l a t e n t

,! v a r i a b l e s

i f ( ac t ivateLVplot s == TRUE){
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# [NEW] Def ine l a t e n t v a r i a b l e s names

colnames (Z)=l v s .names

# [NEW] P lo t s c a t t e r p l o t matr i x f o r l a t e n t v a r i a b l e s

print ( ggpa i r s (data=Z , t i t l e=”Latent Var iab l e s : Inner Model” ) )

# [NEW] Close IF

}

# �| End wh i l e l oop on we i gh t and number o f i t e r a t i o n s c r i t e r i a

}

#������������������������������������������������|

BUILD OUTPUT VARIABLES

#������������������������������������������������|

# OUTPUT 1 : I t e r a t i o n to Convergence

IterToConvergence <� i termax

# OUTPUT 2 : Get a l l w e i g h t s in one column

OuterWeights <� matrix ( rowSums(W) ,mvs , 1 )

# OUTPUT 2 : Def ine rows names

rownames( OuterWeights ) <� mvs .names

# OUTPUT 2 : Def ine column names

colnames ( OuterWeights ) <� ”Outer Weights”

# OUTPUT 3 : C o l l e c t convergence c r i t e r i o n h i s t o r i c a l v a l u e s

Convergence <� w. hist

# OUTPUT 3 : Def ine columns names

colnames ( Convergence ) <� c ( ” I t e r a t i o n #” , ”Convergence Cr i t e r i on ” )

# OUTPUT 4 : Polynomia l Degree Choice

PolynomialAssessment <� Asses sPo lySe l . hist [ 2 :nrow( Asses sPo lySe l . hist ) , ]

# OUTPUT 4 : Def ine columns names

colnames ( PolynomialAssessment ) <� c ( ” I t e r a t i o n #” ,

”Polynomial Degree” ,

”Endogenous LV” ,

”Exogenous LV” ,

”BIC” ,

”AIC” ,

”Adjusted R2” )

# OUTPUT 5 : Get e s t ima t e d Laten t Va r i a b l e s

LatentVar iab le s <� scale (X %⇤% W)

# OUTPUT 5 : Def ine columns names

colnames ( LatentVar iab le s ) <� l v s .names

# OUTPUT 6 : Ca l c u l a t e R Squared and o t h e r P r e d i c t i v e Power S t a t i s t i c s

RSquared <� GetRSquared ( LatentVar iab les , lvs , IDM, n . obs )

# OUTPUT 6 : Def ine rows names

rownames(RSquared ) <� l v s .names

# OUTPUT 6 : Def ine columns names

colnames (RSquared ) <� c ( ”SSTotal ” ,

”SSModel” ,

”SSError ” ,

”Rsquared” )

# OUTPUT 7 : Get S t anda rd i z e d Mani f e s t Va r i a b l e s

StdMVs <� X

# OUTPUT 7 : Def ine columns names
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colnames (StdMVs) <� mvs .names

# OUTPUT 8 : Copy s t r u c t u r e from ODM matr ix c on t a i n i n g i n i t i a l w e i g h t s

ODMatrix <� ODM

# OUTPUT 8 : Se t a l l i n i t i a l w e i g h t s to 1 to g e t t h e c l e an matr ix w i th ou t e r

,! r e l a t i o n s

ODMatrix [ ODMatrix != 0 ] = 1

# OUTPUT 8 : Get a l l Loadings u s ing c o r r e l a t i o n because v a r i a b l e s are

,! s t a n da r d i z e d

Loadings <� matrix ( rowSums(ODMatrix⇤cor (StdMVs , LatentVar iab le s ) ) ,mvs , 1 )

# OUTPUT 8 : Def ine rows names

rownames( Loadings ) <� mvs .names

# OUTPUT 9 : Get Cross Loadings

CrossLoadings <� cor (StdMVs , LatentVar iab le s )

# OUTPUT 10 : S e l e c t e d Polynomia l Degree

Se l ec tedPo ly . hist <� Se l ec tedPo ly . hist [ 2 :nrow( Se l ec tedPo ly . hist ) , ]

# OUTPUT 10 : Def ine columns names

colnames ( Se l ec tedPo ly . hist ) <� c ( ” I t e r a t i o n #” ,

”Endogenous LV” ,

”Exogenous LV” ,

” Se l e c t ed Polynomial ” )

# OUTPUT 11 : Ca l c u l a t e communality

Communality <� Loadings ˆ2

# OUTPUT 11 : Def ine rows names

rownames(Communality ) <� mvs .names

# OUTPUT 12 : Ca l c u l a t e redundancy

Redundancy <� Loadings ˆ2 ⇤ rowSums(ODMatrix%⇤%RSquared [ , 4 ] )

# OUTPUT 12 : Def ine rows names

rownames(Redundancy ) <� mvs .names

# OUTPUT 13 : Ca l c u l a t e Average Communality

Av. Communality <� t ( colSums (matrix ( rep (Communality , l v s ) ,mvs , l v s ) ⇤
ODMatrix )/colSums (ODMatrix ) )

# OUTPUT 14 : Ca l c u l a t e Average Redundancy

Av. Redundancy <� t ( colSums (matrix ( rep (Redundancy , l v s ) ,mvs , l v s ) ⇤
ODMatrix )/colSums (ODMatrix ) )

# OUTPUT 15 : Ca l c u l a t e GoF

GoF <� sqrt (mean(Communality )⇤mean(RSquared [ , 4 ] ) )

# OUTPUT 16 : Assess Un i d imen s i ona l i t y

Unidim <� AssessUnidim ( inData , s e t s , b locks )

# OUTPUT 17 : Get Path C o e f f i c i e n t s

PathCoeff <� getPathCoef f (IDM, LatentVar iab le s )

# OUTPUT 17 : Def ine columns names

colnames ( PathCoeff ) <� l v s .names

# OUTPUT 17 : Def ine rows names

rownames( PathCoeff ) <� l v s .names

# Bui ld l i s t o f ou tpu t to r e t u rn

output <� l i s t ( ” IterConv” = IterToConvergence ,

”Weights” = OuterWeights ,

”ConvCrit” = Convergence ,
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”PolyAssess ” = PolynomialAssessment ,

”LatentVars ” = LatentVar iab les ,

”RSquared” = RSquared ,

”StdMVs” = StdMVs ,

”Loadings ” = Loadings ,

” xLoadings ” = CrossLoadings ,

” Se lPoly ” = Se lec tedPo ly . hist ,

”Commun” = Communality ,

”Redund” = Redundancy ,

”AvCommun” = Av . Communality ,

”AvRedund” = Av . Redundancy ,

”GoF” = GoF,

”Unidim” = Unidim ,

”PathCoeff ” = PathCoeff ,

”HistWgts” = t e s t .w,

”HistCorr ” = t e s t . c

)

# Return ou tpu t l i s t

plotPaths (IDM, LatentVar iab le s )

return ( output )

# End f un c t i o n

}

#====================================|
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A.2 EQS Code for Generating Simulated Data

Simulation Scenario 1

/TITLE Simulat ion Scenar io # 1

/SPECIFICATIONS VARIABLES=16; CASES=50; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM1 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 2

/TITLE Simulat ion Scenar io # 2

/SPECIFICATIONS VARIABLES=16; CASES=50; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM2 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END
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Simulation Scenario 3

/TITLE Simulat ion Scenar io # 3

/SPECIFICATIONS VARIABLES=16; CASES=50; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM3 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 4

/TITLE Simulat ion Scenar io # 4

/SPECIFICATIONS VARIABLES=16; CASES=50; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM4 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 5
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/TITLE Simulat ion Scenar io # 5

/SPECIFICATIONS VARIABLES=16; CASES=100; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM5 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 6

/TITLE Simulat ion Scenar io # 6

/SPECIFICATIONS VARIABLES=16; CASES=100; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM6 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 7

/TITLE Simulat ion Scenar io # 7

/SPECIFICATIONS VARIABLES=16; CASES=100; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;
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/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM7 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 8

/TITLE Simulat ion Scenar io # 8

/SPECIFICATIONS VARIABLES=16; CASES=100; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM8 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 9

/TITLE Simulat ion Scenar io # 9

/SPECIFICATIONS VARIABLES=16; CASES=200; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;
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V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM9 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 10

/TITLE Simulat ion Scenar io # 10

/SPECIFICATIONS VARIABLES=16; CASES=200; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM10 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 11

/TITLE Simulat ion Scenar io # 11

/SPECIFICATIONS VARIABLES=16; CASES=200; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;
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V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM11 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 12

/TITLE Simulat ion Scenar io # 12

/SPECIFICATIONS VARIABLES=16; CASES=200; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM12 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 13

/TITLE Simulat ion Scenar io # 13

/SPECIFICATIONS VARIABLES=16; CASES=500; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;
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V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM13 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 14

/TITLE Simulat ion Scenar io # 14

/SPECIFICATIONS VARIABLES=16; CASES=500; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .3⇤F1 + E1 ; V2 = .5⇤F1 + E2 ; V3 = .7⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .3⇤F2 + E5 ; V6 = .5⇤F2 + E6 ;

V7 = .7⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .3⇤F3 + E9 ;

V10 = .5⇤F3 + E10 ; V11 = .7⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .3⇤F4 + E13 ; V14 = .5⇤F4 + E14 ; V15 = .7⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM14 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 15

/TITLE Simulat ion Scenar io # 15

/SPECIFICATIONS VARIABLES=16; CASES=500; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;
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F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .5⇤F2 + .5⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM15 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END

Simulation Scenario 16

/TITLE Simulat ion Scenar io # 16

/SPECIFICATIONS VARIABLES=16; CASES=500; METHOD=ML; ANALYSIS=COV; MATRIX=RAW;

/EQUATIONS

V1 = .9⇤F1 + E1 ; V2 = .9⇤F1 + E2 ; V3 = .9⇤F1 + E3 ;

V4 = .9⇤F1 + E4 ; V5 = .9⇤F2 + E5 ; V6 = .9⇤F2 + E6 ;

V7 = .9⇤F2 + E7 ; V8 = .9⇤F2 + E8 ; V9 = .9⇤F3 + E9 ;

V10 = .9⇤F3 + E10 ; V11 = .9⇤F3 + E11 ; V12 = .9⇤F3 + E12 ;

V13 = .9⇤F4 + E13 ; V14 = .9⇤F4 + E14 ; V15 = .9⇤F4 + E15 ;

V16 = .9⇤F4 + E16 ;

F2 = .3⇤F1 + D2 ;

F3 = .3⇤F1 + .3⇤F2 + D3 ;

F4 = .5⇤F1 + .3⇤F2 + .3⇤F3 + D4 ;

/VARIANCES F1 = 1⇤ ; E1 TO E16 = 0 . 0 1 ; D2 TO D4 = 1⇤ ;

/COVARIANCES

/SIMULATION

POPULATI/OUTPUT ALL; ON=MODEL; SEED=987654321;

REP=1000; DATA=’SIM16 ’ ; SAVE=CONCATENATE;

/TECHNICAL CON=.0001;

/PRINT FIT=ALL; COVA=YES; TABLE=EQUATION; DIGITS=4;

/END
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A.3 Simulation Results: Loadings Distributions

Figure A.3.1: Simulation Scenario 1 - Loadings Estimates Distribution

Figure A.3.2: Simulation Scenario 2 - Loadings Estimates Distribution
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Figure A.3.3: Simulation Scenario 3 - Loadings Estimates Distribution

Figure A.3.4: Simulation Scenario 4 - Loadings Estimates Distribution
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Figure A.3.5: Simulation Scenario 5 - Loadings Estimates Distribution

Figure A.3.6: Simulation Scenario 6 - Loadings Estimates Distribution
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Figure A.3.7: Simulation Scenario 7 - Loadings Estimates Distribution

Figure A.3.8: Simulation Scenario 8 - Loadings Estimates Distribution
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Figure A.3.9: Simulation Scenario 9 - Loadings Estimates Distribution

Figure A.3.10: Simulation Scenario 10 - Loadings Estimates Distribution
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Figure A.3.11: Simulation Scenario 11 - Loadings Estimates Distribution

Figure A.3.12: Simulation Scenario 12 - Loadings Estimates Distribution
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Figure A.3.13: Simulation Scenario 13 - Loadings Estimates Distribution

Figure A.3.14: Simulation Scenario 14 - Loadings Estimates Distribution
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Figure A.3.15: Simulation Scenario 15 - Loadings Estimates Distribution

Figure A.3.16: Simulation Scenario 16 - Loadings Estimates Distribution
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A.4 Simulation Results: In-Sample Predictive

Power Distributions

Figure A.4.1: Simulation Scenario 1 - R2 Distribution Comparison

Figure A.4.2: Simulation Scenario 2 - R2 Distribution Comparison
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Figure A.4.3: Simulation Scenario 3 - R2 Distribution Comparison

Figure A.4.4: Simulation Scenario 4 - R2 Distribution Comparison

Figure A.4.5: Simulation Scenario 5 - R2 Distribution Comparison
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Figure A.4.6: Simulation Scenario 6 - R2 Distribution Comparison

Figure A.4.7: Simulation Scenario 7 - R2 Distribution Comparison

Figure A.4.8: Simulation Scenario 8 - R2 Distribution Comparison
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Figure A.4.9: Simulation Scenario 9 - R2 Distribution Comparison

Figure A.4.10: Simulation Scenario 10 - R2 Distribution Comparison

Figure A.4.11: Simulation Scenario 11 - R2 Distribution Comparison
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Figure A.4.12: Simulation Scenario 12: R2 Distribution Comparison

Figure A.4.13: Simulation Scenario 13 - R2 Distribution Comparison

Figure A.4.14: Simulation Scenario 14 - R2 Distribution Comparison
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Figure A.4.15: Simulation Scenario 15 - R2 Distribution Comparison

Figure A.4.16: Simulation Scenario 16 - R2 Distribution Comparison
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A.5 Application: Input Data Distribution

Figure A.5.1: Density Plot: Trustworthy company in what it says and what it
does (Image 1)

Figure A.5.2: Density Plot: Stable and market-based company (Image 2)
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Figure A.5.3: Density Plot: Company with a positive contribution to society
(Image 3)

Figure A.5.4: Density Plot: Company that cares about customers (Image 4)
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Figure A.5.5: Density Plot: Innovative and forward-looking company (Image 5)

Figure A.5.6: Density Plot: Overall expectations about the company (Expec-
tations 1)
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Figure A.5.7: Density Plot: Expectations about the company’s ability to o↵er
products and services that meet customer needs (Expectations 2)

Figure A.5.8: Density Plot: Expectations regarding reliability, that is, how
often things can go wrong (Expectations 3)
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Figure A.5.9: Density Plot: Overall perceived quality (Perceived Quality 1)

Figure A.5.10: Density Plot: Quality of electricity supply (Perceived Quality 2)
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Figure A.5.11: Density Plot: Clarity and transparency in the information pro-
vided on safety, emergencies and consumption estimates (Perceived Quality 3)

Figure A.5.12: Density Plot: Counselling and customer care (Perceived Quality
4)
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Figure A.5.13: Density Plot: Billing and payment services’ reliability and qual-
ity (Perceived Quality 5)

Figure A.5.14: Density Plot: Accessibility via digital channels to the provided
services (Perceived Quality 6)
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Figure A.5.15: Density Plot: Stores and agents accessibility and availability
(Perceived Quality 7)

Figure A.5.16: Density Plot: Clarity and transparency in the information pro-
vided on contracting, billing and payment, complaints and commercial informa-
tion (Perceived Quality 8)
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Figure A.5.17: Density Plot: Products and services’ diversification (Perceived
Quality 9)

Figure A.5.18: Density Plot: Evaluation of the price paid, given the quality of
products and services (Perceived Value 1)
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Figure A.5.19: Density Plot: Evaluation of the quality of products and services,
given the price paid (Perceived Value 2)

Figure A.5.20: Density Plot: Overall satisfaction with the company (Satisfac-
tion 1)
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Figure A.5.21: Density Plot: Satisfaction compared to expectations (realization
of expectations) (Satisfaction 2)

Figure A.5.22: Density Plot: Distance to the ideal electricity company (Satis-
faction 3)
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Figure A.5.23: Density Plot: Evaluation or Perceived evaluation of a complaint
(Complaints 1)

Figure A.5.24: Density Plot: Overall trust (Trust 1)
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Figure A.5.25: Density Plot: Confidence in Company’s performance (Trust 2)

Figure A.5.26: Density Plot: Honesty in service providing (Trust 3)



Appendix 237

Figure A.5.27: Density Plot: Intention to remain as a customer (Loyalty 1)

Figure A.5.28: Density Plot: Price sensitivity (Loyalty 2)
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Figure A.5.29: Density Plot: Intention to recommend the company to colleagues
and friends (Loyalty 3)
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A.6 Application Outer Model Summary: Cross-

Loadings

Manifest Variable Image Expectation Perceived Quality Perceived Value Satisfaction Complaints Trust Loyalty

Image 1 0.87 0.65 0.72 0.51 0.73 0.52 0.74 0.60

Image 2 0.68 0.49 0.50 0.30 0.43 0.31 0.41 0.38

Image 3 0.84 0.58 0.61 0.47 0.60 0.41 0.57 0.48

Image 4 0.87 0.60 0.72 0.54 0.73 0.55 0.70 0.58

Image 5 0.82 0.58 0.66 0.50 0.64 0.45 0.60 0.56

Expectation 1 0.66 0.91 0.65 0.50 0.64 0.45 0.61 0.51

Expectation 2 0.65 0.93 0.68 0.50 0.63 0.44 0.62 0.52

Expectation 3 0.61 0.88 0.64 0.48 0.61 0.42 0.58 0.49

Perceived Quality 1 0.79 0.73 0.83 0.59 0.82 0.60 0.79 0.67

Perceived Quality 2 0.47 0.53 0.61 0.46 0.49 0.34 0.48 0.42

Perceived Quality 3 0.63 0.57 0.79 0.51 0.62 0.46 0.63 0.51

Perceived Quality 4 0.66 0.57 0.82 0.52 0.69 0.54 0.69 0.60

Perceived Quality 5 0.59 0.53 0.77 0.47 0.61 0.44 0.61 0.54

Perceived Quality 6 0.50 0.46 0.71 0.43 0.52 0.42 0.54 0.45

Perceived Quality 7 0.47 0.45 0.69 0.46 0.51 0.42 0.48 0.39

Perceived Quality 8 0.66 0.57 0.85 0.54 0.71 0.55 0.69 0.58

Perceived Quality 9 0.61 0.57 0.78 0.56 0.63 0.50 0.61 0.53

Perceived Value 1 0.49 0.47 0.56 0.92 0.60 0.44 0.55 0.49

Perceived Value 2 0.57 0.53 0.66 0.93 0.69 0.50 0.64 0.61

Satisfaction 1 0.72 0.62 0.69 0.53 0.84 0.51 0.67 0.61

Satisfaction 2 0.66 0.60 0.75 0.67 0.90 0.60 0.74 0.68

Satisfaction 3 0.68 0.60 0.72 0.63 0.89 0.62 0.82 0.74

Complaints 1 0.56 0.48 0.63 0.51 0.66 1.00 0.70 0.63

Trust 1 0.71 0.63 0.76 0.59 0.81 0.66 0.95 0.74

Trust 2 0.71 0.65 0.75 0.62 0.80 0.63 0.95 0.72

Trust 3 0.70 0.61 0.78 0.60 0.78 0.68 0.93 0.70

Loyalty 1 0.58 0.54 0.66 0.60 0.73 0.57 0.71 0.91

Loyalty 2 0.25 0.19 0.23 0.20 0.28 0.22 0.27 0.60

Loyalty 3 0.67 0.57 0.70 0.58 0.79 0.67 0.80 0.90

Table 3: Outer Model Summary: Cross-Loadings
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A.7 Application: Inner Model Summary

Figure A.7.1: Inner Model Summary: Expectation explained by Image

Figure A.7.2: Inner Model Summary: Perceived Quality explained by Expecta-
tion
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Figure A.7.3: Inner Model Summary: Perceived Value explained by Expectation

Figure A.7.4: Inner Model Summary: Perceived Value explained by Perceived
Quality
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Figure A.7.5: Inner Model Summary: Satisfaction explained by Image

Figure A.7.6: Inner Model Summary: Satisfaction explained by Expectation



Appendix 243

Figure A.7.7: Inner Model Summary: Satisfaction explained by Perceived Qual-
ity

Figure A.7.8: Inner Model Summary: Satisfaction explained by Perceived Value
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Figure A.7.9: Inner Model Summary: Complaints explained by Satisfaction

Figure A.7.10: Inner Model Summary: Trust explained by Image
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Figure A.7.11: Inner Model Summary: Trust explained by Satisfaction

Figure A.7.12: Inner Model Summary: Trust explained by Complaints
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Figure A.7.13: Inner Model Summary: Loyalty explained by Image

Figure A.7.14: Inner Model Summary: Loyalty explained by Satisfaction
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Figure A.7.15: Inner Model Summary: Loyalty explained by Complaints

Figure A.7.16: Inner Model Summary: Loyalty explained by Trust




