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Abstract 

 

The epigenetic hypothesis argues that, in addition to genetic variation, 

epigenetics provides an additional set of mechanisms mediating the 

relationship between genotype and the environment that may contribute to the 

individual susceptibility to different disorders such as T2D. 

The aim of this study was to investigate the epigenetic profiling in two 

population at high risk of T2D, i) obese and ii) first degree relatives of type 2 

diabetic patients (T2D-FRDs), using a candidate gene study and an EWAS 

approach, respectively. 

i) In human Peripheral Blood Leucocytes (PBLs), the ANKRD26 gene 

expression inversely correlates with BMI (r=-0.436; p<0.01), and was lowered 

by about 25% in obese subjects compared with lean individuals (p<0.01). 

Additionally, in the same individuals a site specific CpG hyper-methylation of 

the ANKRD26 promoter occurred in obese compared with lean subjects 

(p<0.001) and inversely correlates with the ANKRD26 gene expression (r=-

0.850, p<0.05). 

ii) In Subcutaneous Adipose Tissue Stromal-Vascular Fraction cells (SVFs) 

from lean euglycaemic T2D-FDRs, 34 miRNAs and 84 genes were identified 

to be differentially expressed compared with the lean counterpart with no 

family history of T2D (control group) by Next Generation Sequencing. In 

addition, in the T2D-FDRs, the expression of the miRNAs, hsa-miR-23a-5p, -

193a-5p and -193b-5p, was down-regulated compared with the control subjects 

(p<0.01), and inversely correlates with adipocyte cell size (p<0.01). 

Interestingly, bio-informatic analysis of these data highlighted that the 

expression changes of the miRNAs, hsa-miR-23a-5p, -193a-5p and -193b-5p, 

enriched pathways associated to adipocyte commitment/differentiation and 

function. Furthermore, the expression of the miRNAs target gene IGF2 and 

MXRA5 was up-regulated in the T2D-FDRs compared with controls (p<0.01), 

and inversely correlates with miRNA expression (p<0.01) and positively with 

adipocytes cell size (p<0.01). 

In conclusion, in the first study I evidenced that the down-regulation of the 

ANKRD26 gene and the site specific CpG hyper-methylation of its promoter 

represent a common abnormality in obese patients. In the second study, I 

instead concluded that specific changes in the expression of the miRNAs, hsa-

miR-23a-5p, -193a-5p and -193b-5p, occurred in the individuals with 

familiarity for T2D and may cause adipose dysfunction and impaired adipose 

cell recruitment, which are typical in T2D-FDRs, by interfering with functions 

of adipocyte specific pathways. 
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Background 

 

1.1 Diabetes mellitus 

Diabetes mellitus (DM) is a group of metabolic diseases characterized by 

chronic hyperglycemia [1]. There are two main types of DM: i. Type 1 diabetes 

(T1D), once called insulin dependent diabetes mellitus (IDDM), caused by lack 

of insulin secretion by beta cells of the pancreas [1], and ii. Type 2 Diabetes 

(T2D), once called non-insulin dependent diabetes mellitus (NIDDM), mainly 

caused by decreased sensitivity of target tissues to insulin [1]. The 

classification of DM is reported in Table 1.  
 

Type 1 Diabetes 

 

A. Autoimmune 

B. Idiopathic 

Type 2 Diabetes 

 

 

 

1. Insulin resistance predominates over the relative defects in hormone 

secretion 

2. Defects in insulin secretion predominate over the presence of insulin 

resistance 

Other types of 

diabetes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Gestational diabetes  

B. Genetic defects in β-cell 

function: 

1. Chromosome 12,  

HNF-1α (MODY 3) 

2. Chromosome 7,  

glycosidase (MODY 2) 

3. Chromosome 20,  

HNF-4α (MODY 1) 

4. Mitochondrial DNA 

5. Others 

C. Genetic defects in insulin 

action 

1. Type A insulin resistance 

2. Leprechaunism 

3. Rabson-Mendenhall syndrome 

4. Lipotrophic diabetes 

5. Others 

D. Disease of the exocrine 

pancreas 

1. Pancreatitis 

2. Pancreatectomy/trauma 

3. Neoplasia 

4. Cystic fibrosis 

5. Hemochromatosis 

6. Fibrocalcific pancreatopathy 

7. Others 

E. Endocrinopathies 

1. Acromegaly 

2. Cushing syndrome 

3. Glucagonoma 

4. Pheochromocytoma 

5. Hyperthyroidism 

6. Somatostatinoma 

7. Aldosteronoma 

8. Other 

F. Pharmacologically or chemically 

induced 

1. Vacor 

2. Pentamidine 

3. Nicotinic acid 

4. Glucocorticoids 

5. Thyroid hormones 

6. Diazoxide 

7. β-adrenergic agonists 

8. Tiazides 

9. Dilantin 
10. α interferon 

11. Others 

G. Infections 

1. Congenital rubeola 

2. Cytomegalovirus 

3. Others 

H. Infrequent forms of autoimmune  

diabetes 

1. Stiff-man syndrome) 

2. Antibodies against insulin receptors 

3. Others 

I. Other syndromes occasionally  

associated with diabetes 

1. Down syndrome 

2. Klinefelter syndrome 

3. Turner syndrome 

4. Wolfram syndrome 

5. Friedreich ataxia 

6. Huntington’s chorea 

7. Lawrence-Moon-Biedel syndrome 

8. Myotonic dystrophy 

9. Porphyria 

10. Prader-Willi syndrome 

11. Others 

Table 1. Classification of diabetes. MODY: mature onset diabetes of the young. Modified 

from Diabetes Care. 2009;32(Suppl 1):S62-S67. 
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Since the origin and etiology may be different, the DM types share the 

existence of defects in insulin secretion, insulin action, or both. The reduced 

sensitivity to insulin is often called insulin resistance. The basic effect of 

insulin lack or insulin resistance on glucose metabolism is an impairment of 

the efficient uptake and utilization of glucose by most cells of the body, except 

those of the brain [2]. As a result of this, blood glucose concentration 

increases, cell utilization of glucose falls and utilization of fats and proteins 

increases [3]. The classic symptoms in T1D, are excessive secretion of urine 

(polyuria), thirst (polydipsia), weight loss and tiredness; these symptoms may 

be less marked in T2D [1]. Indeed, in this form, no early symptoms appear and 

the disease is diagnosed several years after its onset, when complications are 

already present. T2D represents the more frequently occurring form, which 

accounts for ∼90% of all diabetes cases worldwide [4]. It occurs commonly in 

adults, but is being noted increasingly in adolescents as well. The International 

Diabetes Federation revealed that about 382 million people worldwide, or 

8.3% of adults, are estimated to have diabetes. If these trends continue, by 

2035, some 592 million people, or one adult in 10, will have diabetes [5]. 

These numbers make it clear the high interest about the pathogenesis of T2D, 

both in the scientific research and in the field of clinical trials.  

 

1.2 Type 2 Diabetes 

T2D is a complex multifactorial disease whose incidence has increased in both 

developed and developing countries worldwide. The combined effect of 

population aging, urbanization, dietary changes, physical inactivity and 

unhealthy behaviors, are driving the emerging pandemic of T2D [6]. The 

pathology is characterized by sustained elevations of plasma glucose levels 

resulting in chronic hyperglycemia. The onset of chronic hyperglycemia is 

associated with long-term damage and dysfunction and typically results when 

insulin secretion from the islets fails to keep pace with increasing insensitivity 

to the action of circulating insulin on its target tissues [1]. Insulin resistance is 

an early feature of T2D. The major sites of insulin resistance include liver and 

the peripheral tissues, skeletal muscle and fat. In the Figure 1 is represented the 

cross-talk between tissues in the regulation of glucose metabolism. In muscle 

and fat, insulin resistance is manifested by decreased glucose uptake. In 

particular, in muscle, insulin resistance impaired the utilization of glucose by 

non-oxidative pathways and by the decrease in glucose oxidation as well. In 

the fat, insulin resistance increase free fatty acid (FFA) flux from adipose 

tissue to non-adipose tissue, resulting in abnormalities of fat metabolism, while 

in the liver insulin resistance leads to failure of insulin to suppress hepatic 

glucose production, which is fueled by glycogen breakdown and particularly 

by gluconeogenesis [7]. T2D often remains asymptomatic and undetected for 

years. The failed diagnosis is connected to serious complications, which can 

result in early death. Long-term complications of diabetes include retinopathy 

with potential loss of vision; nephropathy leading to renal failure; peripheral 

neuropathy; autonomic neuropathy and cardiovascular disease. 
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Figure 1. Cross-talk between tissues in the regulation of glucose metabolism. Nature. 2001 

Dec 13;414(6865):799-806. 

 

Nevertheless, diabetic-patients have an increased incidence of atherosclerotic 

cardiovascular, peripheral arterial, and cerebrovascular diseases, besides 

hypertension and abnormalities of lipoprotein metabolism as well [1]. 

Although the pathogenesis of diabetes is complex, several risk factors have 

been identified. Among these, obesity, family history of diabetes, aging, 

physical inactivity, impaired glucose tolerance, history of gestational diabetes 

are the most relevant [6]. In Table 2 are reported the odds ratio score for T2D 

risk. 

 

 

Variable 
Diabetes (95%CI) 

odds 

Age ≥45 years 3.3 (2.4‑4.6) 

Female gender 1.6 (1.2‑2.2) 

Family history of diabetes 1.9 (1.3‑2.0) 

BMI 25-30 

30-35 

35-40 

>40 

1.6 (1.5‑1.8) 

3.2 (2.9-3.5) 

5.9 (5.3-6.5) 

11.6 (10.5-12.8) 

Central obesity 2.4 (1.8‑3.3) 

Physical inactivity 1.4 (1.1‑1.9) 

 
Table 2. Odds ratio score for diabetes risk. BMI: Body mass index, CI: Confidence 

interval. Modified from J Family Med Prim Care. 2015 Jul-Sep;4(3):399-404, Diabetol Metab 

Syndr. 2014 Apr 3;6(1):50. 
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1.3 Risk factors of T2D 

 

1.3.1 Obesity 

The increasing global prevalence of T2D is tied to rising rates of obesity in part 

as consequence of social trends toward alterations of the energy homeostasis in 

terms of balance among energy intake, expenditure and storage [8]. Obesity is 

one of the major risk factors for T2D and it has shown a parallel increase in 

global prevalence. Indeed, the estimated 205 million men and 297 million 

women worldwide (as of 2008) to be obese (body mass Index, BMI ≥30-35 

kg/m2) are at 10-40 fold higher risk of T2D [9]. The relatively recent rise in 

obesity appears to be related to gene-environment interactions where the 

genetic background, coupled with the current obesogenic environment, and the 

rewarding nature of palatable foods, tends to promote obesity [10]. 

Nevertheless, some obese people never develops T2D, and some T2 diabetics 

are extremely lean. It is now recognized that among obese people 1 on 3 are 

“metabolically healthy”, which means that their fasting glucose, triglycerides, 

and other metabolic markers are normal. This population is at no higher risk 

for T2D or cardiovascular disease (CVD) than their metabolically healthy lean 

counterparts [11]. How this might be possible is still unclear. Recent growing 

evidences have raised much interest in the potential role of regional adipose 

tissue (AT) distribution in the contribution to T2D. AT is an endocrine organ 

involved in a number of processes including the communication between the 

brain and peripheral tissues by secreting hormones which regulate appetite and 

metabolism [12]. These functions appear to be modulated by the location of the 

visceral AT (VAT) and subcutaneous AT (scAT), by the size of the average 

adipocyte in the tissue, and by adipocyte metabolism of glucose and 

corticosteroids. Thus, fat distribution plays an important role in metabolic risk. 

Indeed, increase in intra-abdominal visceral fat promotes a high risk of 

metabolic disease, whereas increased subcutaneous fat in the thighs and hips 

exerts little or no risk [13]. Nevertheless, it is now known that abdominal 

subcutaneous fat cell size in humans is negatively correlated with insulin 

sensitivity independently to degree of obesity [14] and abdominal 

subcutaneous adipose cell size has been shown to be an independent predictor 

of future T2D in perspective studies [15].  

 

1.3.2 Family history of T2D 

A family history of diabetes is associated with a range of metabolic 

abnormalities and is a strong risk factor for the development of T2D [16]. 

Familiarity for T2D has long been adopted as an argument supporting the 

genetic origin of diabetes, indeed, first degree relatives of T2D patients (T2D-

FDRs) have up to 10-fold higher risk of developing the disease than age- and 

weight-matched subjects without a clear family history of the disease [17, 18]. 

In support of this, the 39 % of T2 diabetic individuals have at least one affected 

parent and among the monozygotic twin pairs with one affected twin, 

approximately the 70 % of unaffected twins eventually develop the disease 
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[18]. It is likely that this elevated risk is mediated, in part, by both genetic and 

shared environmental components among family members, but the precise 

factors accounting for this increased risk are poorly understood. Different 

studies suggest that T2D risk depends not only on the number of affected 

relatives but on the age at diagnosis and on whether maternal or paternal 

history is present as well [19]. Particularly, maternal diagnosis provides further 

insight into individual risk of T2D. Indeed, it has been reported that individuals 

with a young maternal age at diagnosis of T2D had a greatly increased odds of 

impaired glucose tolerance differently for individual with younger paternal 

diagnosis [20]. Scott et al. have also observed in their study that the family 

history associated-risk is 17% for maternal diabetes and less than 1% for 

paternal diabetes [20]. This evidence suggests that the risk of T2D attributable 

to family history may have a distinct etiology depending on the family member 

affected. In addition, T2D-FDRs frequently have an impaired nonoxidative 

glucose metabolism (indicative of insulin resistance) long before the onset of 

T2D and may have also beta-cell dysfunction, as evidenced by decreases in 

insulin and amylin release in response to glucose stimulation [18]. 

Furthermore, recent evidence suggests that family history of T2D is 

accompanied by scAT dysfunction, as well [21]. 

 

1.3.3 scAT dysfunction: the connecting bridge among obesity and 

familiarity of T2D 

It is now well recognized that a limited expandability of the scAT leads to 

inappropriate adipose cell expansion (adipocyte hypertrophy) with local 

inflammation and dysregulated insulin-resistant AT [22] (Figure 2). 

Furthermore, obesity with abdominal subcutaneous adipose cell enlargement is 

also characterized by a reduced number of pre-adipocytes that can undergo 

differentiation [23]. This is due to specific inability of the pre-adipocytes in 

abdominal scAT to differentiate into mature adipocytes and/or of the 

progenitor cells to be committed into adipocyte lineage. This intriguing finding 

explains in part why there is differential lipid partitioning and why abdominal 

obesity is closely linked to insulin resistance. Thus, the inability to store excess 

fat in the scAT is likely a key mechanism for promoting ectopic fat 

accumulation in tissues and areas where fat can be stored, including the intra-

abdominal and visceral areas, the liver, epi/pericardial area, around vessels, the 

myocardium, and skeletal muscle tissue [24]. It was also demonstrated that pre-

adipocytes of T2D subjects display an intrinsic gene expression profile of 

decreased differentiation capacity. Indeed, the decreased expression of genes 

involved in differentiation can provide a molecular basis for the reduced 

adipogenesis of pre-adipocytes from T2D subjects, leading to reduced 

formation of adipocytes in subcutaneous fat depots and ultimately to ectopic fat 

storage in these subjects [25]. Recent evidence revealed that even non-obese 

T2D-FDRs are less insulin-sensitive and have considerably larger 

subcutaneous fat cells than individuals with the same age, BMI, amount of 

body fat but lacking a known family history of diabetes. This finding indicates 
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that T2D-FDRs, also when non-obese, have a dysfunctional scAT 

characterized by inappropriate hypertrophy of the adipose cells. Overall the 

combinations of these observations suggest that familiarity for T2D, as well as 

obesity and T2D itself, presents in the scAT a common feature due to an 

impaired ability to recruit and/or differentiate new adipose cells [23, 25-26]. 

The reasons for this inability are currently unclear and deserve further 

investigations. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Metabolically healthy white adipose tissue expansion versus unhealthy 

pathological expansion. a) Healthy WAT expansion displays high insulin sensitivity and is 

characterized by an anti-inflammatory state due to elevated levels of Treg cells and M2 

adipose tissue macrophages (ATMs), sufficient vasculature to support tissue expansion and 

adipocyte hyperplasia. b) Unhealthy WAT expansion, instead, displays a heightened state of 

inflammation (high levels of infiltrating pro-inflammatory M1 ATMs and NK cells), impaired 

formation of new vasculature to support WAT growth, and enhanced fibrosis and hypoxia. 

Such events contribute to the development of WAT insulin resistance. Nat Rev Drug Discov. 

2016 Sep;15(9):639-60. 

 

1.3.4 The genetic basis of T2D and obesity 

Until 2012, more than 175 loci have been associated with common forms of 

T2D and closely related continuous traits such as fasting glucose, BMI, and fat 

distribution [27-29]. Population and family (including twins) studies have 

extensively documented the familial aggregation of both T2D and obesity [18]. 

In particular for T2D risk, linkage studies in parallel with candidate gene 

studies have reported many T2D-associated loci (Figure 2) [30]. Among them, 

the strongest known T2D-associated locus, with an odds ratio for T2D of 1.4-

fold per allele, was mapped at the TCF7L2 (transcription factor 7-like 2) locus 

[31]. This gene was attested to modulate the pancreatic islet function. Indeed, 

most studies suggest that the predominant intermediate phenotype associated 

with TCF7L2 variation is the impaired insulin secretion [31].This is consistent 

with the replicated observation that the TCF7L2 association is greater among 
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lean than obese T2D subjects [31]. The first genome-wide association study 

(GWAS) for T2D provided the evidence that GWAS would work for complex 

disease and beside TCF7L2, single nucleotide polymorphisms (SNPs) in the 

zinc transporter SLC30A8 and variants in HHEX were identified, as well [32]. 

This study was successively followed by other that found novel associations at 

CDKAL1, IGF2BP2 and CDKN2A/B genes [32]. The Diabetes and Genetics 

Replication and Meta-Analysis (DIAGRAM) consortium identified other six 

new loci JAZF1, CDC123-CAMK1D, TSPAN8-LGR5, THADA, ADAMTS9 and 

NOTCH2 [30]. Subsequently, the Meta-Analyses of Glucose and Insulin-

related traits Consortium (MAGIC) with a large-scale meta-analyses of GWAS 

for glycaemic phenotypes in persons without diabetes, identified other nine 

novel associations loci for fasting glucose (ADCY5, MADD, ADRA2A, CRY2, 

FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting 

insulin and HOMA-IR near the IGF1 locus. Evaluating the impact on T2D 

risk, the MAGIC investigators found novel associations with T2D in additional 

five loci (ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195) and replicates 

the known signals at TCF7L2 and SLC30A8 loci [32]. Therefore, the 

identification of KCNQ1 in East-Asian samples illustrated how studies from 

populations of different ancestry might uncover additional T2D loci. Indeed, 

KCNQ1 was previously unidentified in samples of European descent. 

Differences in risk–allele frequency meant that the East-Asian studies were 

better powered to detect an effect [33]. In support of this, recent studies in 

populations of Asian ancestry have also found novel association loci reaching 

genome-wide significance at PTPRD, SRR, UBE2E2 and CDC4A-CDC4B 

[33]. Summarizing, to date, 76 T2D susceptibly variants have been identified, 

explaining only the ∼10% of observed familial clustering in Europeans (Figure 

3). 

 
Figure 3. Trans-ethnic meta-analysis of T2D risk-associated loci. 26,488 T2D cases and 

83,964 controls from populations of European, East Asian, South Asian, and Mexican and 

Mexican American ancestry. Nat Genet. 2014 Mar;46(3):234-44. 
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Alongside T2D risk-associated loci, the noncoding variation in SNPs within 

introns 1 and 2 of FTO (fat mass and obesity associated) gene is also the 

strongest genetic association with risk to polygenic obesity in humans [34]. 

After the previously reported variants in FTO gene, the other strongest 

association signal mapped 188 kb downstream of MC4R (melanocortin-4 

receptor) gene, mutations of which are the leading cause of monogenic obesity 

in humans [35]. In the 2009, a meta-analysis of GWAS by the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium confirmed the 

FTO and MC4R genes as BMI associated-loci and identified six additional loci 

as genome-wide significant: TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 

and NEGR1[36]. Another study by Thorleifsson et al. published in the same 

issue of Nature Genetics replicated their findings confirming known 

associations to BMI of variants in or near the loci FTO, MC4R, as well as for 

the loci NEGR1, TMEM18, KCTD15 and SH2B1 and identified additional two 

new loci: ETV5 and BDNF [37]. Some obesity-related genes are reported in 

Table 3 [38]. Thus, substantial efforts have been made to define loci and 

variants contributing to the individual risk of both T2D and obesity, however, 

the overall risk explained by genetic variation is very modest. 
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Nearest gene Full gene name Chr Trait 

ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif 9 3 WHR 

BDNF Brain-derivedneurotrophicfactor 11 BMI 

C12orf51 Chromosome 12 openreadingframe 51 12 WHR 
CADM2 Cell adhesion molecule 2 3  BMI 

CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 6   BMI  

CPEB4 Cytoplasmicpolyadenylation element binding protein 4 5 WHR 
DNM3/PIGC Dynamin 3 – phosphatidylinositol glycan anchor biosynthesis class C 1 WHR 

ETV5 Ets variant 5 3 BMI 

FAIM2 Fas apoptoticinhibitorymolecule 2 12 BMI 

FANCL Fanconi anemia complementation group L 2 BMI 

FLJ35779 POC5 centriolar protein homolog 5 BMI 

FTO Fat mass and obesity associated 16 BMI 
GNPDA2 Glucosamine-6-phosphate deaminase 2 4 BMI 

GP2 Glycoprotein 2zymogengranulemembrane 16 BMI 

GPRC5B G protein-coupled receptor family C group 5 member B 16 BMI 
GRB14 Growth factor receptor-bound protein 14 2 WHR 

HOXC13 Homeobox C13 12 WHR 

IRS1 Insulin receptor substrate 1 2 Fat % 
ITPR2/SSPN Inositol 1,4,5trisphosphate receptor type 2/sarcospan Kras 

oncogeneassociated gene 

12 WHR 

KCTD15 Potassium channel tetramerisation domain containing 15 19 BMI 
KLF9 Kruppel-like factor 9 9 BMI 

LRP1B Low density lipoprotein receptor-related protein 1B 2 BMI 

LRRN6C Leucine rich repeat neuronal 6 C 9 BMI 
LY86 Lymphocyte antigen 86 6 WHR 

LYPLAL1 Lysophospholipase-like 1 1 WHR 

MAP2K5 Mitogen-activated protein kinase kinase 5 15 BMI 
MC4R Melanocortin 4 receptor 18 BMI  

MRPS22 Mitochondrialribosomal protein S22 3 BMI 

MSRA Methioninesulfoxidereductase A 8 WAIST 
MTCH2 Mitochondrialcarrier 2 11 BMI 

MTIF3 Mitochondrialtranslational initiation factor 3 13 BMI 

NEGR1 Neuronal growth regulator 1 1 BMI 
NFE2L3 Nuclear factor (erythroid-derived 2)-like 3 7 WHR 

NISCH/STAB1 Nischarin/stabilin 1  3 WHR 

NRXN3 Neurexin 3 14 BMI 
NUDT3 Nudix (nucleoside diphosphate linked moiety X)-type motif 3 6 BMI 

PAX5 Paired box 5  9 Fat mass 

PCSK1 Proproteinconvertasesubtilisin/kexin type 1 5 BMI 
PRKD1 Protein kinase D1 14 BMI 

PTBP2 Polypyrimidinetractbinding protein 2 1 BMI 

QPCTL/GIPR Glutaminyl-peptide cyclotransferase-like/gastric inhibitory polypeptide 

receptor 

19 

19 

BMI  

BMI 

POMC/ADCY3 Proopiomelanocortin/adenylatecyclase3 2 BMI 

RPL27A Ribosomal protein L27a 11 BMI 
RSPO3 R-spondin3 6 WHR 

SEC16B SEC16 homolog B 1 BMI 

SH2B1 SH2B adaptor protein 1 16 BMI 

SLC39A8 Solute carrier family 39 member 8 4 BMI 
SPRY2 Sprouty homolog 2 13 Fat % 

TBX15/WARS2 T-box 15/tryptophanyltRNA synthetase 2 mitochondrial 1 WHR 
TFAP2B Transcription factor AP-2 beta (activating enhancer binding protein 2 

beta) 

6 BMI 

TMEM160 Transmembrane protein 160 19 BMI 
TMEM18 Transmembrane protein 18 2 BMI 

TNNI3K TNNI3 interactingkinase 1 BMI 

VEGFA Vascular endothelial growth factor A 6 WHR 
ZNF608 Zinc finger protein 608 5 BMI 

ZNRF3-

KREMEN1 

Zinc and ring finger 3/kringle containing transmembrane protein 1 22 WHR 

Table 3. SNPs reported to be associated to BMI, waist circumference, waist–hip ratio, fat 

percentage or fat mass in GWAS. Chr: chromosome, BMI: body mass index, WHR: waist 

to hip ratio. Mol Cell Endocrinol. 2014 Jan 25;382(1):740-57. 
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2.1 Epigenetics 

Substantial evidence has brought to light that environmental factors including 

diet, physical activity, drugs and smoking, affect the phenotype and provide a 

major contribution to susceptibility to most chronic non communicable 

diseases [39]. Epigenetics represents the fastest growing research areas in 

biomedicine, acting at the interface between the genome and environmental 

factors. It might be broadly defined as the sum of all the mechanisms necessary 

to unfold the genetic program into development [40]. In the early 1940s, 

Conrad Waddington linked genetics and developmental biology coining the 

term epigenetics, defining it as “the branch of biology which studies the causal 

interactions between genes and their products which bring the phenotype into 

being” [41]. However, the meaning of the word has gradually changed over the 

following years, and epigenetics is known today as “the study of changes in 

gene function that are mitotically and/or meiotically heritable and that do not 

entail a change in DNA sequence” [42]. Differently from traditional genetics, 

based on cell lineages and clonal inheritance, epigenetic changes often occur in 

groups of cells while some epigenetic event is clonal. In addition, genetic 

changes are, almost by definition, stable, whereas epigenetic changes are 

plastic events [40]. Epigenetic mechanisms are plastic genomic processes that 

change genome function under endogenous and exogenous influences [43-44], 

and may propagate modifications of gene activity from one cell generation to 

the next [45]. These mechanisms imply chemical modifications of DNA, such 

as DNA methylation, post-traslational changes in histone proteins altering 

chromatin conformation, and transcriptional gene silencing mediated by non-

coding RNAs (ncRNAs) [46] (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Schematic representation of epigenetic modifications. Epigenetic modifications 

include DNA methylation, histone modifications and miRNAs. Ac: acetylation, Me: 

methylation, P: phosphorylation. J Endocrinol Invest. 2016 Oct;39(10):1095-103. 
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Abnormalities in one or more of these mechanisms can lead to inappropriate 

expression or silencing of genes, resulting in imbalance of the epigenetic 

network and may result in metabolic disorders such as T2D and obesity [47-

48]. DNA methylation is the best characterized epigenetic mark. In mammals, 

it is essential during development and is involved in a variety of biological 

processes, including genomic imprinting and X chromosome inactivation [49]. 

It has long been recognized as an epigenetic silencing mechanism [50] which 

preferentially occurs at CpG di-nucleotides that are usually clustered in the 

CpG islands (CGIs) [51]. Quite often, un-methylated CpG sites (CpGs) at gene 

promoters create a transcriptionally permissive chromatin state by destabilizing 

nucleosomes and facilitating the recruitment of transcription factors [52]. On 

the other hand, dense DNA methylation of CpGs mediates stable long-term 

gene silencing by direct inhibition of binding of transcription factors or by a 

combination of events mediated by methyl-CpG binding domain proteins 

(MBDs) which recruit methylated DNA mediators of chromatin remodeling, 

such as histone deacetylases (HDACs), or other repressors of gene expression 

[50, 53-54]. Furthermore, findings over the past ten years have progressively 

revealed the relevance of ncRNAs in most epigenetically-controlled events. 

The most extensively studied ncRNAs are the miRNAs, that are critical 

regulators of post-transcriptional gene expression. In particular, miRNAs are 

able to suppress the target gene expression binding the 3’ Untranslated Region 

(3’UTR) of the target mRNA Figure 5. Moreover miRNAs are susceptible to 

epigenetic modulation, indeed, are able to regulate both DNA methylation and 

histone modifications by controlling the expression of important epigenetic 

regulators, including DNA methyltransferases (DNMTs) and HDACs thereby 

impacting on the entire gene expression profile [55]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5. miRNA action. The single-stranded mature miRNAs then act as the core of the 

RNA-induced silencing (RISK) complex. This complex guides the miRNA to its target 

sequence located at the 3’-UTR of the target mRNA. Incomplete or complete base-pairing 

results in degradation of the mRNA or inhibition of translation. Anesthesiology. 2014 

Aug;121(2):409-17. 
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2.2 Epigenetics in T2D and obesity 

As previously discussed, T2D and obesity reached epidemic proportions 

globally [56-57]. Population and family studies have extensively documented 

the familial aggregation of these diseases [58-63] with more than 175 genetic 

loci conclusively associated [64] but the impact of these loci, even in 

combination, on risk is very modest (5-10 % for T2D and ~ 2% for body mass 

index, BMI), leaving the heritability issue unsolved [65]. Technical limitations 

might, in part, account for this situation [66]. More likely, inheritance may be 

explained by epigenetics. Indeed, familial aggregation may reflect not only 

genetic influences, but also represent the effects of a shared family 

environment and thus of common environmentally-induced epigenetic 

modifications [65]. In addition, while not been proved in humans yet, in 

rodents, environmentally-induced epigenetic modifications can be trans-

generationally transmitted to the offspring [67-68]. For instance, 

environmentally-induced epigenetic modifications may further explain the 

global epidemics of T2D and obesity, whose exponential rise in the past 

decades have been related to rapid cultural and social changes, such as socio-

economic status, dietary changes, physical inactivity and unhealthy behaviours, 

all of which tend to cluster in family groups [56, 69]. Finally, epigenetics may 

help to understand the identical twin discordance for obesity and T2D [70-71]. 

For example, the concordance rates for T2D among monozygotic twins is only 

~ 70 % [74]. In these metabolic disorders the incomplete concordance may be, 

in part, due to stochastic or environmentally determined epigenetic 

modifications that change over the lifetime and is responsible for the 

phenotypic differences and susceptibility to disease. Thus, epigenetic processes 

may therefore contribute to the development of T2D and obesity and mediate 

the effects of environmental exposure on risk [46, 73].  

 

2.2.1 Epigenetic event in T2D 

To date substantial evidence indicates that environmentally-induced epigenetic 

changes contribute to diabetes prevalence (Table 4). Ling et al. have recently 

demonstrated that the promoter of the transcriptional co-activator Peroxisome 

proliferator activated receptor gamma coactivator-1 alpha (PGC1-α) gene, 

mainly involved in mitochondrial function, is highly methylated in pancreatic 

islets obtained from diabetic patients compared with non-diabetic controls [74]. 

Additionally, Barrès et al., have shown that the hyper-methylation of the PGC-

1α promoter occurs even in the skeletal muscle from T2 diabetic subjects 

compared with normal glucose-tolerant (NGT) individuals. PGC-1α hyper-

methylation negatively correlates with its mRNA expression in these subjects 

[75]. In addition, the exposure of primary human skeletal muscle cells from 

NGT individuals to external factors, such as free FFAs and tumor necrosis 

factor-alpha (TNF-α) directly and acutely alters the methylation status of PGC-

1α promoter. These findings illustrate how alterations in the extracellular 

milieu may predispose to T2D by inducing DNA methylation changes [75]. 

Furthermore, a genome-wide DNA methylation analysis of skeletal muscle 



 

 

17 

from obese subjects before and after bariatric surgery provides evidence that 

the promoter methylation of PGC-1α is altered by obesity and restored after 

weight loss. DNA methylation inversely correlates to BMI, leptin, triglyceride 

and insulin levels in these subjects, which supports the role of DNA 

methylation in the physiological control of PGC-1α gene transcription [75-76]. 

More recently, a genome-wide analysis of differentially methylated sites in 

genomic regions associated to T2D has revealed that the FTO gene is hypo-

methylated in a CpG site within the first intron in T2 diabetics compared with 

control subjects in human peripheral blood. The T2D predictive power of this 

mark is significantly greater than all genetic variants so far described [77]. In 

the same investigation Toperoff et al. have also prospectively established, that, 

in an independent cohort hypo-methylation at the FTO intron is observed in 

young subjects that later progress to T2D. This further finding provides 

evidence that methylation changes may predispose to T2D and deserve to be 

considered and further investigated as T2D marker. Even miRNAs have been 

associated to T2D onset and have been involved in the regulation of multiple 

pathways including insulin signaling and release [78]. For instance, the 

miRNA-375 has been recently identified to have a specific role in the 

pancreatic islets [79]. Its overexpression in the rat insulinoma INS-1E cells 

reduces the glucose-induced insulin secretion, while its inhibition results in an 

increased insulin release [79]. The up-regulation of the miR-222, miR-29a, and 

miR-335 have instead a functional and biological relevance in the WAT of 

diabetic rats [80]. Furthermore, through a microarray based approach the up-

regulation of the miR-335 has been also identified in the liver of diabetic rats 

contributing to the fatty liver disease and associated phenotypes [81]. 

Altogether these findings provide further evidence that both DNA methylation 

and miRNAs expression changes might predispose to T2D and its related 

phenotypes. 

 

2.2.2 Epigenetic event in obesity control 

It has been extensively documented both in humans and animal models that a 

relationship exists between obesity and the epigenetic regulation of genes 

involved in the control of food intake (Table 4) [68, 82-86]. In humans, DNA 

methylation of the Pre-proopiomelanocortin (POMC) gene which encodes the 

anorexigenic hormone α-MSH produced by neurons of hypothalamic arcuate 

nucleus has been associated with the individual risk of childhood obesity [87]. 

In particular, using peripheral blood cells, Kuenen et al. have found hyper-

methylation at the Intron 2/Exon 3 boundary of the POMC gene in obese 

compared with normal weight children. In particular, in these obese children, 

the Alu elements, which are known to influence methylation in their genomic 

proximity at the Intron 2, trigger a default state methylation at the Intron 

2/Exon 3 boundary, interfering with binding of the histone 

acetyltransferase/transcriptional coactivator p300 and reducing POMC 

expression [87]. In addition, several studies suggest a critical role of epigenetic 

marks also as predictors of susceptibility to obesity and metabolic disease in 
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humans and animal models [88-89]. A further example of this concept in 

humans has been provided by studies on the retinoid X receptor-alpha 

(RXRA) gene. Godfrey at al., designed a perinatal epigenetic analysis of the 

methylation status of CpG sites at the promoters of 78 selected candidate genes 

in DNA from umbilical cord tissue of children who were assessed for adiposity 

at age 6 and 9 years. These authors have established that the variation of 

adiposity and the onset of obesity in pre-pubertal children was associated with 

the specific hyper-methylation of a CpG site at the RXRA chr9:1363558885+ 

at birth [89]. Furthermore, in the same population, it was demonstrated that this 

neonatal epigenetic mark was associated with lower maternal carbohydrate 

intake in pregnancy first trimester, providing a further example of how 

epigenetic processes may link the early prenatal life with the predisposition to 

obesity and other phenotypic outcomes [89]. Dysregulated post-transcriptional 

gene silencing contributes to the development of obesity-induced insulin 

resistance as well. For example, a microarray analysis on serum from young 

adult has highlighted that elevated levels of the circulating miRNA-122 are 

positively associated with obesity and insulin resistance and that the increase of 

this miRNA correlates with BMI, triglycerides, HDL-cholesterol and 

homeostasis model assessment of insulin resistance (HOMA-Index) in humans 

[90]. Additionally, the overexpression of miRNA-143 inhibits the insulin-

stimulated Pkb activation and impairs glucose metabolism in the liver of obese 

mice [91]. Furthermore, miRNA-143 is also involved in adipocyte biology. 

Indeed, the transfection of an antisense miRNA-143 oligonucleotide in 

cultured human preadipocytes inhibits adipocyte differentiation of about 40% 

by reducing the expression of specific markers such as the Glucose transporter 

4 (GLUT4), the Fatty acid-binding protein aP2, and the Peroxisome 

proliferator-activated receptor γ2 (PPARγ2) [92]. On the other hand, the 

ectopically expression of the miR-143 causes the opposite effect by 

upregulating the same adipogenesis markers. [93]. 

 
Genes Regions Epigenetic modification Phenotypes Tissues/Cells 

PGC1α Promoter ↑ DNA Methylation T2D Pancreatic islets, 

Skeletal muscle 

PDX-1 Promoter ↑ DNA Methylation T2D Pancreatic islets 

FTO Intron 1 ↓ DNA Methylation T2D PBLs 

POMC Intron 2-Exon 3 ↑ DNA Methylation Obesity PBLs 

RXRA Promoter ↑ DNA Methylation Obesity Umbilical cord 

Leptin Promoter ↑ DNA Methylation Obesity Adipose tissue 

 

Table 4.  DNA methylation in T2D and Obesity T2D: Type 2 Diabetes, PBLs: Peripheral 

Blood Leucocytes, PGC1α: Peroxisome Proliferator Activated Receptor Gamma Coactivator-

1 alpha, PDX-1: Pancreatic duodenal homeobox1, FTO: Fat mass and Obesity-associated, 

POMC: Preproopiomelanocortin, RXRA: Retinoid X receptor-alpha. J Endocrinol Invest. 

2016 Oct;39(10):1095-103. 
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3.1 Approaches for the identification of disease risk-associated genes 

Understanding the genetic basis of susceptibility to disease has become 

increasingly important for research. The main approaches for the identification 

of novel risk-associated genes are basically two: candidate gene study and 

GWAS; both approaches have a combination of benefits and drawbacks [94]. 

Candidate gene study is the most common method for associating human 

genetic variations with phenotypes. Historically, association studies to detect 

alleles conferring increased or decreased risk to common diseases have 

employed markers in candidate genes, or in all the genes belonging to a 

biological pathway or having a similar biological function [95]. These 

approaches are relatively cheap and quick to perform and the success of the 

analysis depends on the correct choice of which genes/pathways to study. 

Therefore, a priori hypothesis about biological function is definitely required 

[96]. Candidate genes can be identified by several methods including GWAS 

and linkage studies. A combination of linkage mapping and candidate gene 

study has been the most successful method for identifying disease genes to date 

[97]. On the other hand, the GWAS represents a method for the identification 

of genes implicated in several human diseases. It has been made possible by 

the development of high-density genotyping arrays that leverage the 

knowledge generated from the International HapMap project [98]. This 

approach involves a rapid scanning of markers across genomes of many people 

to find genetic variations associated with several diseases. The idea that 

common diseases have a different underlying genetic architecture than rare 

disorders, coupled with the discovery of several susceptibility variants for 

common disease with high minor allele frequency (including alleles of PPARγ 

gene for T2D), led to the development of the common variant (CV) hypothesis 

[98]. This hypothesis states that common disorders are likely influenced by 

genetic variation and are common in the population. Therefore, over the last 

five years, the CV hypothesis has been tested for a variety of common diseases, 

and while much of the heritability for these conditions is not yet explained, 

common alleles certainly play a role in susceptibility [98]. Thus, combined 

with advances in technology as the next generation sequencing approaches 

(NGS), genome-wide genotyping can now be readily carried out to accurately 

‘tag’ the vast majority of the diversity in the genome. However, some 

drawbacks are to be considered. Indeed, for GWAS approach, a large cohort 

size is an important factor to ensure sufficient statistical power. Thus, a large 

study population is a necessary pre-requisite and the results needs replication in 

independent samples. GWAS are also able to identify a specific location and 

not complete genes, and are able to detects only common variants (>5%) as 

well [98]. Furthermore, the interpretation of the data is not a simple matter and 

appropriate statistical methods are necessary to reduce the risk of multiple false 

positive results. Although, relatively few studies have explored the epigenetic 

characterization of humans T2D or obesity risk, in Table 5 are summarized the 

methylation status of selected CpG sites in candidate genes and in the 

epigenome-wide association study (EWAS) [66].  
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Candidate genes/EWAS Phenotypes Tissue Ref. 

CCL2 T2D Peripheral blood 

mononuclear cells 

Liu (2011) 

 

INS T2D Pancreatic islets Yang (2011) 

PDX1 T2D Pancreatic isle Yang (2012) 

PPARGC1A T2D Pancreatic islets Ling (2008) 

EWAS T2D Skeletal muscle Barres 

(2009) 

EWAS T2D Whole blood Bell (2010) 

EWAS T2D Whole blood Toperoff 

(2012) 

EWAS T2D Pancreatic islets Volkmar 

(2012) 

ALOX12, ALPL, BCL2A1, CASP10, 

CAV1,CCL3,CD9, CDKN1C, DSC2, 

EPHA1, EVI2A, HLA, IRF5,KRT1, 

LCN2, MLLT4, MMP9, MPL, NID1, 

NKX31,PMP22, S100A12, TAL1, 

VIM 

BMI, fat 

mass, and 

lean mass 

Umbilical cord 

blood 

Relton 

(2012) 

KCNQ1OT1, H19, IGF2, 

GRB10,MEST,SNRPN,GNAS 

BMI 

(discordance 

in twins) 

Saliva Souren 

(2011) 

MCHR1 BMI Whole blood Stepanow 

(2011) 

POMC Obesity Whole blood Kuehnen 

(2012) 

IL8, NOS3, PIK3CD, RXRA, SOD1 Fat mass and 

% fat mass 

Umbilical cord 

tissue 

Godfrey 

(2011) 

SLC6A4 BMI, weight, 

and waist 

circumference 

Peripheral blood 

leukocytes 

Zhao (2012) 

TACSTD2 

EWAS 

Fat mass 

BMI 

Whole blood 

Lymphocytes 

Groom 

(2012) 

Feinberg 

(2010) 

EWAS Obesity Peripheral blood 

leukocytes 

Wang 

(2010) 

EWAS Obesity Whole blood Almen 

(2012) 

 

Table 5. DNA methylation candidate gene and EWAS for T2D and Obesity. BMI: body 

mass index, EWAS: epigenome-wide association study, T2D: Type 2 Diabetes. Clin 

Pharmacol Ther. 2012 Dec;92(6):707-15. 
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4.1 GWAS analysis identified Ankrd26 as a candidate gene for the study of 

obesity and T2D risk 

The Ankyrin repeat domain 26 (ANKRD26) is a newly described gene located 

at 10p12, a locus identified with some forms of hereditary obesity in humans. 

The gene encodes a ~190 kDa protein that is highly abundant in the 

hypothalamus and other regions of the brain known to play a key role in 

regulation of feeding behavior, as well as in many tissues and organs, including 

insulin target tissues like liver, skeletal muscle and withe AT (WAT). It has 

been demonstrated that Ankrd26 gene takes part in the development of both 

obesity and T2D in mice. Indeed, mice with a partial inactivation of this gene 

show an obese phenotype which results from a marked hyperphagia rather than 

a reduction of the energy expenditure and activity [99]. Furthermore, when 

deleted at its C-terminus, Ankrd26 leads to excessive food intake and obesity 

due to severe region-specific changes in primary cilia in the brain [100]. In 

addition to its function in appetite control, the Ankrd26 gene has a role in the 

regulation of adipocyte differentiation in mouse embryonic fibroblasts and in 

3T3-L1 cells [101-102]. Beside this, through methylated DNA immuno-

precipitation sequencing (MeDIP-seq) approach we have recently identified 

Ankrd26 as a gene sensitive to nutrition-induced epigenetic changes. We 

showed that hyper-methylation of the Ankrd26 promoter occurs in VAT from 

obese mice upon prolonged high fat diet (HFD) feeding compared to age- and 

sex-matched standard chow diet (STD) fed mice and directly interferes with 

the binding of the histone acetyltransferase/transcriptional coactivator p300 to 

this same region. These events result in promotion of chromatin condensation 

with consequent down regulation of the Ankrd26 gene expression (Figure 6) 

[103]. We have further reveled that Ankrd26 silencing alters secretion of pro-

inflammatory adipokines in vitro, indicating that the epigenetic silencing of 

Ankrd26 gene might be one of the mechanisms responsible for VAT 

inflammation in response to HFD [103]. Additionally, computational data from 

a genome-wide DNA methylation analysis in scAT revealed that ANKRD26 

gene is included in a list of 2825 genes where both DNA methylation and 

mRNA expression levels significantly correlate with BMI in humans [104]. 

These observations paved the way to supports the hypothesis that the 

epigenetic regulation of ANKRD26 gene may occur in humans, as well as in 

mice, and may represent a pathogenic mechanism by which environmental 

exposures to nutrients contribute to disease susceptibility through epigenetic 

modifications. 
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Figure 6.  Schematic representation of the epigenetic regulation at the Ankrd26 promoter 

gene in mice. The strong reduction of the Ankrd26 mRNA expression in VAT of HFD fed 

mice is due to an epigenetic regulation that involve the hyper-methylation of two specific CpG 

sites by Dnmts 3a and 3b, the bind of Mbd2 to the methylated CpG sites that in turn crowd out 

the HAT p300 recruitment to the Ankrd26 promoter, resulting in hypo-acetylation of histone 

H4 and reduced binding of RNA Pol II on the TSS of the Ankrd26 gene. 
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Aim of the study 

 

This thesis concerns the investigation of the “Epigenetic profiling” in 

individuals at high risk of Type 2 Diabetes (T2D), a common metabolic 

disorder, which now reached epidemic proportions globally. 

To date, the known genetic loci associated with this phenotype do not account 

either for the current epidemics of the pathology or for the family transmission. 

However, recent clinical, epidemiological and experimental evidence indicates 

that environmental factors have an extraordinary impact on the natural history 

of this disorder. Furthermore, different studies have also documented that the 

familial aggregation typical of T2D reflects not only genetic influences, but the 

effects of a shared family environment too, and that environmental hits bring to 

epigenetic changes, which alter the function of genes affecting disease 

susceptibility. 

Thus, epigenetics may in part explain the environmental origin as well as the 

familial aggregation of T2D and fill the genetic lack. 

In this context, I have addressed with two separate approaches whether: i) 

changes of the DNA methylation status of the ANKRD26 gene occur in human 

obesity; and ii) altered miRNA expression may precede adipocyte hypertrophy 

in First Degree Relatives of T2D patients. 

For the first point, I analyzed using a candidate gene study the expression of 

the ANKRD26 gene and the DNA methylation status of its promoter in lean and 

obese subjects, and I also evaluated the correlation between these two events in 

different obesity sub-phenotypes. 

For the second point, I analyzed by an EWAS approach the epigenetic profiling 

of lean euglycaemic first degree relatives of Type 2 diabetic subjects (T2D-

FDRs) looking at the correlation between miRNA expression and adipocyte 

hypertrophy. Furthermore, I also looked for specific target genes that may be 

regulated by changes of the miRNA expression and may be responsible for 

adipocyte hypertrophy in T2D-FDRs. 
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Materials and Methods 

 

Subjects 

For the candidate gene study, 14 lean and 20 severely obese subjects were 

recruited at the “Federico II” University of Naples. The complete clinical 

characteristics of the subjects that participated in this study are given in Table 

6, Table 7 and Table 8. For the genome wide study, 11 lean individuals without 

familiarity for T2D and 9 lean T2D-FRDs were recruited at the Sahlgrenska 

University Hospital of Göteborg. The characteristics of subjects are detailed in 

Table 10. Leanness was defined as BMI < 25 kg/m2, while severely obesity as 

BMI ≥ 35 kg/m2. The 75-g oral glucose tolerance test (OGTT) was performed 

to assess the glucose tolerance and the diagnosis of diabetes has been carried 

out according to the American Diabetes Association (ADA) criteria [105]. The 

degree of insulin sensitivity was measured by the euglycemic-hyperinsulinemic 

clamp over 120 min and expressed as glucose infusion rate (GIR) normalized 

by total body weight. Participants with metabolic and endocrine disorders, 

inflammatory diseases, previous or current malignancies, and/or treated with 

drugs able to interfere with the epigenome were excluded from the study. Each 

active ingredient has been evaluated using the The Comparative 

Toxicogenomics Database (CTD). Both the studies adhered to the Declaration 

of Helsinki, the gene candidate study has been reviewed and approved by the 

Ethics Committee of the “Federico II” University of Naples (Ethics Approval 

Number: No. 225_2013), while the EWAS were approved by the local Ethical 

Committees at the Sahlgrenska Academy and the Karolinska Institute. 

Informed consent was obtained from all of enrolled individuals.  

 

Stromal vascular fraction cells isolation 

Adipose tissue biopsies were obtained from the abdominal subcutaneous 

adipose tissue around the umbilicus. Following careful dissection, tissues were 

digested with 0.8 mg/ml collagenase in Dulbecco's modified Eagle's medium 

(DMEM) and Ham's F12 (1:1) for 45 min at 37°C. The solution were then 

filtered through a 250-m nylon mesh. The medium was collected and 

centrifuged for 10 min at 200g. The cell pellet containing the SVFs was 

washed twice and the erythrocytes were lysed with 155 mmol/l NH4Cl for 5 

min before seeding the cells in a 55-cm2 petri dish. After 3 days, when the cells 

had started to proliferate, the progenitor or inflammatory cells were isolated 

with magnetic immune separation. The remaining cells were then cultured at 

37°C with DMEM and F12 (1:1) with 10% fetal bovine serum (FBS), 2 mmol/l 

glutamine, 100 units/ml penicillin, and 100 μg/ml streptavidin. After 2 weeks 

cells were trypsinized and any remaining inflammatory cells removed by 

magnetic immune separation of CD14 and CD45 positive cells [23].  
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Sampling 

Tissues from obese subjects were homogenized by TissueLyser LT (Qiagen, 

Hilden, Germany) according to the manufacturer’s protocol. Total RNA and 

genomic DNA were isolated using the AllPrep DNA/RNA/miRNA Universal 

kit (Qiagen). Peripheral blood leucocytes (PBLs) from lean and obese subjects 

were isolated from whole blood. Samples were incubated in ice for 15 min 

with 5 volume of erythrocyte lysis buffer (KHCO3 10 mM, NH4Cl 155 mM, 

EDTA 0.1 mM) and centrifuged at 400 x g for 10 min. Total RNA and 

genomic DNA were isolated as above. SVFs were lysate through a 20-gauge 

needle and fitted to an RNase-free syringe. Total RNA and genomic DNA were 

isolated as above 

 

RNA sequencing and quantitative Real Time PCR (qPCR) 
Total RNA was isolated from PBLs and SVFs as above. cDNA synthesis and 

qPCR were performed as described [106]. For RNA sequencing 5 µg of pooled 

total RNA from SVFs of each one of the 4 experimental groups (2 group of 

T2D-FDR and 2 Control groups) was analyzed. The sequencing was carryout 

by Illumina’s HiSeq technology generating 8G clean 90bp paired-end reads per 

sample. 

Primers sequences: hs28S F: 5’-cccagtgctctgaatgtcaa-3’, hs28S R: 5’-

agtgggaatctcgttcatcc-3’; hsANKRD26 F: 5’-gtatgctagtagtggtcctgc-3’, 

hsANKRD26 R: 5’-gtaggccttccttcatcctcat-3’; hsRPL13A F: 5’-

ctttccgctcggctgttttc-3’, hsRPL13A R: 5’-gccttacgtctgcggatctt-3’; hsPTPRD F: 

5’-tttacacgaacacccgttga-3’, hsPTPRD R: 5’-cggagtccgtaagggttgta-3’; hsIGF2 

F: 5’-ggaagtgagcaaaactgccg-3’, hsIGF2 R: 5’-aagatgctgctgtgcttcct-3’;  hsINMT 

F:  5’-aattcgcctgtgagctggaa-3’, hsINMT R: 5’-aggtggacatcgcacttgag-3’; 

hsMXRA5 F: 3’-tccaccagagcagctcaaag-5’, hsMXRA5 R: 5’-

acacagtgtctgtctcagcg-3’; hsOXTR F: 5’-tggcataagtgctctgctcc-3’, hsOXTR R: 

5’-ccaaggaggggagggataca-3’; hsRGS4 F: 5’- aggcagagggatgaaatgcc-3’, 

hsRGS4 R: 5’-agtgactcacacatggcagg-3’; hsSYNPO2L F: 5’-

gatggtggaagggaggtgtg-3’, hsSYNPO2L R: 5’-gatggggtgggactgaaagg-3’; 

hsPRELP F: 5’-cctccccaccccaataggat-3’, R: 5’- ctgcctctcctctcagctct-3’. 

 

miRNA reverse transcription miRNAs sequencing and qPCR 

Total RNA was isolated from SVFs. Than 3 µg of pooled total RNA enriched 

in small RNA from each one of the 4 experimental groups (2 group of T2D-

FDR and 2 Control groups) was used for the miRNA sequencing. The 

miRNome was analyzed by NGS using Miseq™ Platform (Illumina®). In a 

single run, more than 1 million reads were generated for each pool and the 

miRNA sequencing data were aligned to human mature microRNA sequences 

(from miRBase Version 21). The differential expression of miRNAs was then 

validated by qPCR. After quantification with NanoDrop 2000 

spectrophotometer (Thermo Scientific, Waltham, MA) total RNA was reverse 

transcribed using the miScript II RT Kit (QIAGEN) and analyzed using the 

miScript SYBR Green PCR Kit (QIAGEN) with specific miScript Primer 
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Assays. The levels of all differential expressed miRNAs were quantified as 

absolute expression units and 95snRNA was used as housekeeping small RNA. 

Specific primers used for amplification were purchased from QIAGEN: 

MS0003164 hs_miR-23a*_2 miScript Primer Assay; MS00008932 hs_miR-

193a-5p_1 miScript Primer Assay, MS00008939 hs_miR-193b*_1 miScript 

Primer Assay, MS00033726 hs_SNORD95_11 miScript Primer Assay. 

 

DNA methylation analysis by bisulfite conversion 

Genomic DNA from PBLs was prepared as described above. Bisulfite 

treatment of 350 ng of genomic DNA for each sample was converted with the 

EZ DNA Methylation Kit (Zymo Research, Orange, CA), following the 

manufacturer's instructions. For the analysis the ANKRD26 promoter was 

divided into 5 regions: Site 1 (S1), -786/-722 bp; Site 2 (S2), -716/-370 bp; Site 

3 (S3), -349/-48 bp; Site 4 (S4), -68/+147 bp and Site 5 (S5), +134/+390 bp 

from the transcription start site (TSS). Bisulfite-converted genomic DNA was 

amplified by PCR using specific primers for each site. The PCR fragments 

were then cloned into the pGEM T-Easy vector system (Promega, Madison, 

WI). To determine methylation status, 10 clones for each sample were 

sequenced on AB 3500 genetic analyzer (Life Technologies) and the 

percentage of methylation was calculated using the following formula: 

(CpGmethylated / CpGtotal) x 100. Primers sequences:  

ANKRD26 sub-region S1 F: 5’-gtaatttttgttgagattttatttga-3’, ANKRD26 sub-

region S1 R: 5’-actacaatctccacctcctaaactc-3’, ANKRD26 sub-region S2 F: 5’-

agtttaggaggtggagattgtagtg-3’, ANKRD26 sub-region S2 F: 5’-

acaaatacaacaacaaaaaacacaaa-3’, ANKRD26 sub-region S3 F: 5’-

gtatttaaagggatatggaaggg-3’, ANKRD26 sub-region S3 R: 5’-

cccaataatcaaatatactccatac-3’, ANKRD26 sub-region S4 F: 5’-

tggagtatatttgattattgggtttt-3’, ANKRD26 sub-region S4 R: 5’-

aacttcaaaaacacctcatatctctct-3’, ANKRD26 sub-region S5 F: 5’-

agagagatatgaggtgtttttgaagtt-3’, ANKRD26 sub-region S5 R: 5’-

caaaccattcttcctaaacaaaaaa-3’. 

 

Statistical procedures 
Data are expressed as mean ± SD. Comparison between groups were 

performed using Student's t-test or the one-way analysis of variance. 

Correlation between two variables was calculated using the parametric Pearson 

r-test. Pathway analysis was performed using PANTHER™ (Protein ANalysis 

THrough Evolutionary Reationships) (http://pantherdb.org). For all the 

procedures, p˂0.05 was considered statistically significant. 

 

http://pantherdb.org/
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Results and discussion 

 

To investigate and establish the “Epigenetic profiling” of individuals at high 

risk of Type 2 Diabetes (T2D), during my PhD program I have simultaneously 

performed two distinct investigations. The first one was a candidate gene 

analysis performed in lean and obese individuals; while the second one was an 

Epigenome Wide analysis performed in a population of first degree relatives of 

T2D patients. 

 

 

Specific CpGs hyper-methylation relates to ANKRD26 gene down-regulation 

in human obesity 

Concerning the first study, as I mentioned before, Ankrd26 was identified as a 

gene sensitive to nutrition/obesity-induced epigenetic changes in mice. Indeed, 

in mice HFD feeding/obesity causes hyper-methylation of the Ankrd26 

promoter in VAT depots. This increased CpGs methylation in turn, directly 

interferes with the binding of the histone acetyltransferase/transcriptional 

coactivator p300 resulting in Ankrd26 gene down regulation.  

 

In this context, I investigated whether down-regulation of the ANKRD26 gene 

expression and increased DNA methylation of the ANKRD26 promoter relate 

to body mass even in humans and predominantly occur in obese individuals. 

Also, I evaluated the correlation between these two events in different obesity 

sub-phenotypes. 

 

I initially began to address these questions by measuring the ANKRD26 mRNA 

levels by qPCR in VAT biopsies from 10 subjects with wide differences of 

BMI (range: 35-65 kg/m2). VAT is indeed in humans a fat depot strongly 

associated with metabolic abnormalities [107], and the Ankrd26 gene 

expression is epigenetically altered in this tissue in obese mice [103]. The 

clinical characteristics of the analyzed individuals are detailed in Table 6. In 

these subjects, the expression of VAT ANKRD26 gene negatively correlates to 

BMI (n=10; r=-0.770; p<0.01) (Figure 7), indicating that the VAT ANKRD26 

down-regulation is associated with increased body mass in humans.  

 
n 10 

Sex 4M\6F 

Age, years                                                    37.5 ±5.7 

BMI, Kg/m2                                                  42.2 ± 4.6 

fb-glucose, mg/dL 84.4 ± 5.6 

fb-triglycerides, mg/dL 128.8 ± 56.0 

fb-total cholesterol, mg/dL 190.2 ± 36.8 

HDL, mg/dL 48.8 ±10.3 

LDL, mg/dL   125.6 ± 30.2 

 

Table 6. Metabolic parameters of 10 subjects. BMI: Body Mass Index, fb: fasting blood, 

HDL: High Density Lipoprotein, LDL: Low Density Lipoprotein.  
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Figure 7. Correlation analysis between VAT ANKRD26 gene expression and BMI. n=10; 

r=-0.770; p<0.01. 

 

Therefore, to expand and improve the feasibility of this study, I measured the 

ANKRD26 mRNA levels in the Peripheral Blood Leucocytes (PBLs) of the 

same subjects. Circulating biomarkers compared to tissue biomarkers give 

indeed the advantages of being more readily accessible, minimally invasive 

and easily utilized for follow-up after treatment modalities [108]. Interestingly, 

a positive correlation was found between VAT and PBLs ANKRD26 mRNA 

levels (n=10; r=0.8021; p<0.01) indicating that PBLs ANKRD26 gene 

expression relates to the VAT ANKRD26 gene expression. This suggests that, 

although PBLs do not represent a system where ANKRD26 function has been 

already described, blood samples represent a valid non-invasive proxy system 

for the study of the relationship between body mass and the ANKRD26 gene 

expression (Figure 8). These data, thus, paved the way for the use of PBLs 

instead of VAT biopsies in the following analysis. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 8. Correlation analysis between VAT ANKRD26 mRNA levels and PBLs 

ANKRD26 mRNA levels. n=10; r=0.8021; p<0.01. 
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Based on the previous results, I thus determined whether the ANKRD26 gene 

expression might be indicative of leanness or obesity. To address the last 

question, I extended my study to a population of 34 subjects, including lean 

and obese individuals. The clinical characteristics of the lean and obese groups 

are detailed in Table 7. While there were no significant differences in age, 

obese subjects had a significant increase in BMI (p<0.001), triglycerides 

(p<0.001), low density lipoprotein (LDL) (p<0.001) and a significant decrease 

in high density lipoprotein (HDL) (p<0.001) compared with lean individuals. 
 

 

 Lean Obese 

n 14 20 

Sex 7M/7F 9M/11F 

Age, years                                                    35.2 ± 4.6 38.8± 7.2 

BMI, Kg/m2                                                  21.8 ± 2.1 44.8 ± 6.3*** 

fb-glucose, mg/dL 85.7 ± 6.4 99.5 ± 40.6 

fb-triglycerides, mg/dL 52.8 ± 13.5 132.5 ± 46.9*** 

fb-total cholesterol, mg/dL 166.0 ± 16.8 195.2 ± 37.3 

HDL, mg/dL 81.0 ± 9.8 47.0 ± 9.3*** 

LDL, mg/dL   74.3 ± 10.5 127.3± 30.4*** 

 

Table 7. Metabolic parameters of the lean and obese groups. BMI: Body Mass Index, fb: 

fasting blood, HDL: High Density Lipoprotein, LDL: Low Density Lipoprotein. Values are 

mean ± SD. Significances (by t-test) were calculated between the two groups. *p<0.05, 

**p<0.01, ***p<0.001. 

 

The analysis of the ANKRD26 mRNA levels in the PBLs of 14 lean and 20 

severely obese selected subjects further proved that the expression of the 

ANKRD26 gene in PBLs negatively correlates to BMI (n=34; r=-0.436; 

p<0.01) (Figure 9a), and revealed that ANKRD26 mRNA is reduced by about 

25% in the obese group compared with the lean control group (lean group 

ANKRD26 mRNA: 0.063 ± 0.040 AU x 10-3; obese group ANKRD26 mRNA: 

0.034 ± 0.012 AU x 10-3; p<0.01) (Figure 9b). These data are consistent with 

our previous findings in mice and support the hypothesis that the down-

regulation of the ANKRD26 mRNA levels not only negatively correlates with 

BMI in humans but it is a common abnormality in obese individuals and may 

represent a pathogenic mechanism by which the increase of body mass 

contribute to disease susceptibility.  

 

As previously mentioned, obese individuals can be classified based on their 

metabolic parameters in healthy and unhealthy obese. Thus, I searched for 

phenotype differences determining the obesity-related ANKRD26 gene down-

regulation. According to the ADA criteria [105], I classified the previous 

analyzed obese population based on glucose tolerance in three categories: 

normo-glucose tolerant (NGT; n=10), impaired glucose tolerant (IGT; n=5) 

and T2D (n=5) individuals. The characteristic of the three obese groups are 

reported in Table 8. 
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Figure 9. ANKRD26 mRNA levels in PBLs of lean and obese subjects. a) Correlation 

analysis of PBLs ANKRD26 gene expression in relation to BMI. n=34; r=-0.436; p<0.01; b) 

ANKRD26 mRNA levels in 14 lean and 20 obese subjects. Values are mean ± SD. 

Significances (by t-test) were calculated between lean and obese group. **p<0.01. 
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As expected, the T2D obese subjects have increased levels of the fasting 

glycaemia (p<0.05) and the glycated hemoglobin (HbA1c) (p<0.001), and are 

less sensitive to insulin and less tolerant to glucose, as shown by the higher 

value of the homeostatic model assessment of insulin resistance (HOMA-IR) 

(p<0.05) and the Oral Glucose Tolerance Test (OGTT) after 2h (p<0.001), 

respectively, compared with both the NGT and the IGT obese subjects; while 

the IGT obese individuals show increased HbA1c (p<0.001) and reduced 

glucose tolerance by OGTT (p<0.001) compared with the NGT obese subjects. 

No significant differences were, instead, found in fasting blood glucose levels 

and on the sensitivity to insulin by HOMA-IR among the IGT and NGT obese 

groups. 
 

 Obese Subjects 

 NGT IGT T2D 

n 10 5 5 

Sex 4M/6F 3M/2F 2M/3F 

Fb-Glucose, mg/dL 84.4 ± 5.5 92.5 ± 39.6 135.4 ± 62.9*,# 

HOMA – IR                                                     3.1  ± 1.6 3.9  ± 0.8 7.5 ± 4.6*,# 

Hba1c, % 5.5  ± 0.1 5.7 ± 0.2*** 6.6 ± 0.6***,### 

 OGTT p-Glucose 2h, mg/dL 119.3 ± 12.8 145.0 ± 2.6*** 281.9 ± 82.0***,### 

 

Table 8. Classification of the obese population. NGT: Normal glucose tolerant, IGT: 

Impaired glucose tolerant, T2D: Type 2 Diabetic, HOMA-IR: Homeostatic Model 

Assessment of Insulin Resistance, HbA1c: Glycated Hemoglobin, OGTT: Oral Glucose 

Tolerance Test. Values are mean ± SD. Significances (by t-test) were calculated between T2D 

and IGT groups Vs. NGT group *p<0.05,***p<0.001 and between T2D group Vs. IGT group # 

p<0.05, ###p<0.001. 

 

The analysis of the ANKRD26 mRNA levels in the PBLs of the obese 

population classified as above revealed that no significant differences were 

found in ANKRD26 gene expression within the NGT, IGT, T2D obese 

subjects. Nevertheless, ANKRD26 mRNAs tended to be lower in the IGT and 

T2D obese compared with the NGT obese individuals, indicating that the 

ANKRD26 gene expression not only is negatively related in humans to 

increased body mass but it might be further down-regulated by the fluctuations 

of glucose levels, which are common in glucose intolerant and in diabetic 

subjects (Figure 10). However, no conclusive statement may be assumed from 

these data and further studies in more numerous obese sub-phenotype groups 

will be required to address this last question. 
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Figure 10. ANKRD26 mRNA levels in PBLs of lean and obese sub-phenotypes. ANKRD26 

mRNA levels by qPCR in 14 lean controls and 10 NGT, 5 IGT and 5 T2D obese subjects. 

Values are mean ± SD. Significances (by t-test) were calculated between lean and obese group. 

**p<0.01 Vs. lean group. NGT: Normal glucose tolerant, IGT: Impaired glucose tolerant, 

T2D: Type 2 Diabetic 
 

In the meantime, I began to investigate also the question whether the DNA 

methylation at the ANKRD26 promoter occurs even in humans and is related to 

changes in the body mass. I thus addressed this point by measuring the DNA 

methylation status of the whole ANKRD26 promoter using a bisulfite 

sequencing approach in the PBLs genomic DNA from 6 subjects, 3 featuring 

the lowest BMI (lean) and an equal number of subjects exhibiting the largest 

BMI (obese). For the analysis, the whole ANKRD26 promoter was arbitrarily 

divided in 5 CpGs rich sub-regions, which also include the 5’ Untranslated 

Region (5’-UTR) and the first exon, as follows: sub-region S1, -991/-693 bp; 

S2, -716/-370 bp; S3, -349/-48 bp; S4, -68/+157 bp and S5, +134/+390 bp 

(Figure 11).  

 

 
 
Figure 11. Schematic representation of the ANKRD26 promoter. Sub-region S1: -991/-693 

bp; S2: -716/-370 bp; S3: -349/-48 bp; S4: -68/+157 bp and S5: +134/+390 bp. CpG island: -

250/-50 bp. TSS: Transcription Start Site, 5’UTR: 5’ Untraslated Region, Ex 1: first exon. 
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In the 3 lean subjects, the bisulfite sequencing analysis of the ANKRD26 

promoter revealed that a high density of CpGs methylation at the sub-region S1 

(~85%), a low/moderate CpGs methylation at the sub-rigion S2 (~20%) and no 

CpGs methylation at the sub-regions S3, S4 and S5 (Table 9). Interestingly, in 

the 3 obese individuals, the same analysis showed almost similar CpGs 

methylation pattern at the sub-region S1, which results hyper-methylated, and 

at the sub-regions S3, S4 and S5, which are characterized by a global DNA 

hypo-methylation. Differently, the sequencing analysis revealed a massively 

increased methylation levels at the sub-region S2 (~35%) in these latter 

individuals. 
 

Position % of DNA Methylation 

 Lean Obese 

S1; -991/-693 85.9±2.1 85.2±3.6 

S2; -716/-370 21.1±9.7 33.7±10.0 

S3; -349/-48 3.7±4.6 1.0±0.9 

S4; -68/+157 0.3±0.5 0.5±0.1 

S5; +134/+390 0.2±0.1 0.4±0.2 
 

Table 9. DNA methylation enrichment in the ANKRD26 promoter. Percentage of DNA 

methylation of the 5 sub-regions analyzed in lean and obese subjects. S1: sub-region 1, S2: 

sub-region 2, S3: sub-region 3, S4: sub-region 4 and S5: sub-region 5. Values are mean ± SD. 

 

Indeed, in the 3 subjects with the higher BMI compared with 3 individuals with 

the lower BMI, the sub-region S2 featured a higher density of DNA 

methylation in 3 close CpG dinucleotides at -689 bp, -659 bp and -651 bp from 

the ANKRD26 TSS (Figure 12a). In addition, plotting the combined percentage 

of the DNA methylation at these 3 cytosine residues of the 6 selected subjects 

in relation with their ANKRD26 gene expression revealed that this specific 

DNA methylation at the ANKRD26 promoter inversely correlates with the 

amounts of the ANKRD26 mRNA levels in humans (n=6, r=-0.850, p<0.05) 

(Figure 12b). These data indicate that in the obese individuals the ANKRD26 

mRNA down-regulation is accompanied by a specific increase of the 

ANKRD26 promoter DNA methylation status in a specific restricted region and 

confirm my hypothesis that fat mass increase may modulate the ANKRD26 

gene expression through epigenetic changes in humans. DNA methylation 

often induces gene silencing by inhibiting transcriptional activator binding to 

promoters [109]. Interestingly, a bioinformatic analysis for the identification of 

transcription factor binding sites on the ANKRD26 promoter region, predicted 

also in humans a consensus sequence within the sub-region S2 (-702 bp/-687 

bp) for the histone acetyltransferase/transcriptional coactivator p300, 

hypothetically  suggesting that hyper-methylation at this region could interfere 

with p300 binding to the ANKRD26 promoter and in turn may contribute to the 

ANKRD26 down-regulation. However, whether p300 is also involved in the 

epigenetic regulation of the ANKRD26 gene and whether a direct causal 

relationship between the promoter DNA methylation and the transcription of 

the ANKRD26 gene exists are not yet known and are currently under 

investigation. 
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Figure 12. DNA methylation status at the sub-region S2. a) Methylation analysis of the 

whole S2, which includes 9 CpG sites: -689, -659, -651, -522, -482, -452, -445, -409, -402 bp 

from the TSS of the ANKRD26 gene. Values are mean ± SD. Significances (by t-test) were 

calculated between lean and obese group. **p<0.01, ***p<0.001 b) Correlation analysis of the 

CpGs -689, -659, -651 in relation to the ANKRD26 mRNA levels. Values are the sum of the 

percentage of the 3 CpG sites in lean and obese subjects Vs. the ANKRD26 mRNA levels (n=6, 

r=-0.850, p<0.05). Red circles are related to lean subjects, black circles are related to obese 

subjects. 
 

In conclusion, this study allowed me to demonstrate that the ANKRD26 gene is 

sensitive to epigenetic regulation even in humans and that the down-regulation 

of the ANKRD26 gene expression and the site specific CpG hyper-methylation 

of its promoter represent a common abnormality in obese patients. 

Furthermore, my study allowed me also to demonstrate that PBLs are a valid 

non-invasive proxy system for the evaluation of changes of gene expression 

and DNA methylation occurring on ANKRD26 gene in humans. However, 

whether the epigenetic down-regulation of the ANKRD26 gene precedes or is 

subsequent to obesity and thus whether the evaluation of the ANKRD26 

promoter methylation status in blood samples may be used for prediction of 

obesity onset are still opened question that in the future I will address with ad 

hoc investigations. 
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Altered expression of the miRNAs hsa-miRNA-23a-5p, -193a-5p, and -193b-

5p precedes adipocyte hypertrophy in First Degree Relatives of T2D patients 
Concerning the second study, as I previously reported, a family history of 

diabetes is associated with a range of metabolic abnormalities and is a strong 

risk factor for the development of T2D [16]. Indeed, first degree relatives of 

T2D patients (T2D-FDRs) have up to 10-fold higher risk of developing the 

disease than age- and weight-matched subjects without a clear family history of 

the disease [17, 18], and frequently have an impaired nonoxidative glucose 

metabolism long before the onset of T2D, and decreases in insulin and amylin 

release in response to glucose stimulation [18]. Furthermore, similarly to obese 

individuals, T2D-FDRs show larger scAT cells characterized by inappropriate 

hypertrophy due to an impaired ability to recruit and/or differentiate new 

adipose cells to store excessive lipids [21]. The mechanisms driving the 

restricted adipogenesis occurring in T2D-FDRs are currently unclear but may 

depend on epigenetic changes rather than genetic origins.  

 

In this context, I investigated by an Epigenome Wide analysis whether changes 

in the miRNAs expression occurs in individuals with familiarity for T2D and 

whether those changes relate with hypertrophy of subcutaneous mature 

adipocyte size. 

 

To address these questions, I selected and analyzed a group of 20 well-

characterized lean euglycemic subjects, 9 of them with a known family history 

of T2D and 11 exhibiting no familiarity for the disease. While there were no 

significant differences in age, BMI and body fat percentage (%) among the 2 

groups, the T2D-FDRs had elevated fasting blood glucose (p<0.05) and fasting 

insulin (p<0.001) levels compared with the individuals lacking familiarity for 

T2D. Furthermore, the OGTT and the euglycemic clamp tests (GIR/bw) 

revealed a reduced glucose tolerance (p<0.05) and insulin sensitivity (p<0.01), 

respectively, in individuals with family history of T2D. It is noteworthy that 

the T2D-FDRs had larger subcutaneous fat cells (p<0.001) when compared to 

the control subjects, remarking that an inappropriate enlargement of the 

abdominal adipose cells is a common feature in subjects with family history of 

T2D. The clinical characteristics of the two analyzed cohorts are detailed in 

Table 10.  

 

Then, in order to evaluate the miRNAs profile and investigate the epigenetic 

mechanisms driving the restricted adipogenesis associated to familiarity of 

T2D, I evaluated by a NGS approach (miRNAs-seq) the miRNAome of the 

stromal-vascular fraction cells (SVFs), obtained from the scAT biopsies of 

both the healthy T2D-FDRs and the individuals with no family history of T2D. 

The human SVFs are indeed a specific sub-population of cells of the adipose 

tissue, which are rich in pre-adipocytes, and are commonly used to evaluate 

adipocyte commitment and/or differentiation in vitro [110]. This makes these 

cells the ideal cellular model for this study. 
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Measure CTRLs T2D-FDRs 

N 11 9 

Age, years 39.4 ± 7.8 42.3 ± 8.7 

BMI, Kg/m2 24.5 ± 2.2 25.4 ± 1.5 

Fat percent, % 24.3 ± 6.3 26.9 ± 7.3 

Cell size, µm 89.6 ± 6.0 100.2 ± 5.2*** 

GIR/bw, mg/min 11.3 ± 2.5 7.9 ± 1.7** 

f-insulin, μU/mL 34.0 ± 13.3 60.1 ± 22.7** 

fb-glucose, mmol/L 4.4 ± 0.4 4.8 ± 0.4* 

OGTT p-glucose 2h, mmol/L 4.9 ± 1.2 6.6 ± 1.7* 

 

Table 10. Characteristics of the analyzed population.  BMI: body mass index, GIR/bw: 

glucose infusion rate/body weight, fb: fasting blood, OGTT: oral glucose tolerance test. 

Values are mean ± SD. Significances (by t-test) were calculated between the two groups. 

*p<0.05, **p<0.01, ***p<0.001. 

 

The analysis of the miRNAs profile in the SVFs pooled total RNA preparations 

from the lean euglycemic subjects with a known family history of T2D and of 

their counterpart exhibiting no familiarity for the disease revealed that 34 

miRNAs were found to be differentially expressed (false discovery rate-

adjusted p-value cut-off of 0.05) among the two groups, of which 23 were 

down-regulated and 11 were up-regulated in the T2D-FDRs compared with the 

control individuals. Then, to confirm these computational data, I proceeded my 

profiling analysis by validating the expression of 11 out of 34 miRNAs by 

qPCR assay in 18 subjects of the selected population for individual testing. The 

11 miRNAs were selected applying the arbitrary chosen cut-off of a 50% 

increased or decreased expression in the T2D-FDRs compared with the control 

subjects. From this analysis resulted that the expression of 3 miRNAs, the hsa-

miR-23a-5p, the hsa-miR-193a-5p and the hsa-miR-193b-5p, were down-

regulated in the T2D-FDRs and was in line with the data obtained by the 

sequencing. In particular, the hsa-miR-23a-5p was decreased of about 40% 

(Ctrl group: 0.0055 ± 0.0013 AU; T2D-FDR group: 0.0035 ± 0.0012 AU; 

p<0.01), the hsa-miR-193a-5p resulted to be decreased of about 30% (Ctrl 

group: 0.0415 ± 0.0129 AU; T2D-FDR group: 0.0295 ± 0.0100 AU; p<0.05), 

and the hsa-miR-193b-5p was down-expressed of about 25% (Ctrl group: 

0.0386 ± 0.0082 AU; T2D-FDR group: 0.0282 ± 0.0083 AU; p<0.01) in the 

T2D-FDR group compared with the controls (Figure 13). These data suggest 

that specific changes in the miRNAs expression profile occur in individuals 

with familiarity for T2D. 
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Figure 13. Validation of miRNA-seq data. The hsa-miR23a-5p, hsa-miR193a-5p and hsa-

miR193b-5p levels by qPCR in 8 T2D-FDRs and 10 subjects without family history of T2D. 

Values are mean ± SD. Significances (by t-test) were calculated between the two groups. 

*p<0.05, **p<0.01. 

 

Furthermore, to investigate the biological relevance of these 3 miRNAs, I 

explored the significance of the altered expression of the hsa-miR-23a-5p, hsa-

miR-193a-5p and hsa-miR-193b-5p in relation to human adipose tissue 

development and function. I thus plotted the expression of each identified 



 

 

38 

miRNA in the 18 selected subjects in relation with their subcutaneous mature 

adipocyte size to have an indirect esteem of the effect of each identified 

miRNA on adipocyte precursor cell commitment/differentiation. Indeed, as I 

previously reported in this thesis, restricted adipogenesis in human 

subcutaneous adipose tissue is determined by impaired adipocyte precursor cell 

commitment and results in hypertrophy of adipocytes which are resident in the 

adipose tissue [26]. Furthermore, recent reports revealed that these 

abnormalities predict T2D independently of obesity [75]. Notably, the hsa-

miR-23a-5p expression in the preadipocytes exhibited a significant negative 

correlation with the size of the mature subcutaneous adipose cells from these 

same individuals (Figure 14a; n=18, r=-0.4998, p<0.05). Similarly, significant 

negative correlation were between subcutaneous adipocyte size and hsa-miR-

193a-5p expression (Figure 14b; n=18, r=-0.6491, p<0.01), and between 

subcutaneous adipocyte size and hsa-miR-193b-5p expression (Figure 14c; 

n=18, r=-0.4826, p<0.05). These data indicate that low expression of the hsa-

miR-23a-5p, hsa-miR-193a-5p and hsa-miR-193b-5p not only is a common 

feature in T2D-FDRs, but also precedes development of excessive 

subcutaneous adipocyte size in subjects with familiarity of T2D and might 

predict hypertrophy. 

 

Then, based on the last results, I investigated whether the selected 3 miRNAs 

may potentially modulate gene pathways in such manner involved in adipose 

tissue development and function (Figure 15). To this aim, by using 4 well-

known tools for miRNA target prediction (miRanda, Targetscan, RNA22 and 

miRWalk) I identified the combined target mRNAs for each selected miRNA 

and I questioned each list of combined target mRNAs for pathway prediction 

by a Protein ANnotation Through Evolutionary Relationship (PANTHER) 

classification analysis. In accordance with the PANTHER classification system 

(p<0.05), for the hsa-miR-23a-5p I identified, among several pathways, as the 

most enriched the WNT signaling pathway, which plays a key role in the 

regulation of the adipocyte commitment and differentiation, and the 

inflammation mediated by chemokine and cytokine signaling pathway, which 

includes gene regulating adipocyte secreting properties (Figure 15a). 

Interestingly, the same analysis made for the combined target mRNAs of the 

hsa-miR-193a-5p and hsa-miR-193b-5p revealed the WNT signaling pathway 

and the inflammation mediated by chemokine and cytokine signaling pathway 

as the most enriched (Figure 15b and c). Altogether, these data suggest that the 

changes in the miRNAs expression profile which occurs in the individuals with 

familiarity for T2D may represent a mechanism responsible for the impaired 

adipose cell recruitment by interfering with functions of adipocyte specific 

pathways. 
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Figure 14. Correlation analysis between miRNAs expression and adipocyte cell size. a) 
hsa-miR-23a-5p Vs. adipocyte cell size (n=18, r=-0.4998, p<0.05). b) hsa-miR-193a-5p Vs. 

adipocyte cell size (n=18, r=-0.6491, p<0.01). c) hsa-miR-193b-5p and adipocyte cell size 

(n=18, r=-0.4826, p<0.05). 
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Figure 15. PANTHER analysis on the combined target mRNAs of the 3 selected miRNAs. 

a) PANTHER analysis of the mRNA target of the hsa-miR-23a-5p. b) PANTHER analysis of 

the mRNA target of the hsa-miR-193a-5p. c) PANTHER analysis of the mRNA target of the 

hsa-miR-193b-5p. 
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Lastly, I searched for association between the specific epigenetic marks 

previously identified with the miRNA-seq and specific functional 

consequences on gene expression investigating the genome-wide expression 

changes associated with familiarity for T2D by RNA-seq. The analysis of the 

transcriptome in the SVFs pooled total RNA preparations from the lean 

euglycemic subjects with a known family history of T2D and of their 

counterpart exhibiting no familiarity for the disease revealed that 84 gene were 

found to be differentially expressed (DEGs) among the two groups (false 

discovery rate-adjusted p-value cut-off of 0.05), of which 24 were down-

regulated and 60 were up-regulated in the T2D-FDRs compared with the 

control individuals. Furthermore, to investigate the biological relevance of the 

identified DEGs, I performed a PANTHER classification analysis. Notably, 

according with the PANTHER classification system (p<0.05), as in the case of 

the previous analysis on the miRNA-target genes I identified among several 

pathways closely related to metabolic and differentiation processes the WNT 

signaling pathway and the inflammation mediated by chemokine and cytokine 

signaling pathways (Figure 16). Altogether, these computational data suggest 

that changes in the gene expression profile also occurs in individuals with 

familiarity for T2D and that these alterations of gene expression may in part 

account for the impaired adipose cell recruitment typical of T2D-FDRs. 
 

Figure 16. PANTHER analysis on the 84 DEGs.  

 

Then, I proceeded my profiling analysis by validating the expression of 8 

DEGs of out 84, which resulted using the miRWalk software to be target of at 

least 1 of the previous 3 identified miRNAs, in 18 subjects of the selected 

population for individual testing. From this analysis resulted that the 

expression of the PTPRD, IGF2, INMT, MXRA5, RGS4, SYNPOL2L and 

PRELP genes, but not OXTR gene, was up-regulated in healthy T2D-FDRs 

compared with the individuals with no family history of T2D (Figure 17), 

confirming thus the hanging trends of gene expression from the RNA-Seq 

analysis. 
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Figure 17. Validation of RNA-seq data. The mRNA expression of the 8 DEGs levels was 

determined by qPCR in 8 T2D-FDRs and 10 subjects without family history of T2D. Values 

are mean ± SD. Significances (by t-test) were calculated between the two groups. *p<0.05, 

**p<0.01. DEGs: Differentially expressed genes. 
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In particular, in the subjects with familiarity of T2D, PTPRD gene expression 

was increased of about 2.7 fold (Ctrl group: 0.0192 ± 0.0133 AU; T2D-FDR 

group: 0.0525 ± 0.0253 AU; p<0.01); IGF2 gene resulted to be increased of 

about 3.8 fold (Ctrl group: 0.0246 ± 0.0222 AU; T2D-FDR group: 0.0959 ± 

0.0718 AU; p<0.01); INMT gene expression was increased of about 2.3 fold 

(Ctrl group: 0.02158 ± 0.0149 AU; T2D-FDR group: 0.0494 ± 0.0235 AU; 

p<0.01); MXRA5 mRNA levels were increased of about 1.8 fold (Ctrl group: 

0.2814 ± 0.1470 AU; T2D-FDR group: 0.5140 ± 0.1729 AU; p<0.01); RGS4 

gene was up-regulated of about 1.9 fold (Ctrl group: 1.459 ± 0.731 AU; T2D-

FDR group: 3.067 ± 1.277 AU; p<0.01); SYNPOL2L gene expression was 

increased of about 3.1 fold (Ctrl group: 0.0029 ± 0.0018 AU; T2D-FDR group: 

0.0092 ± 0.0070 AU; p<0.05); PRELP gene expression was increased of about 

2.2 fold (Ctrl group: 0.0011 ± 0.0009 AU; T2D-FDR group: 0.0026 ± 0.0019 

AU; p<0.05) No statistical differences were observed among the 2 groups for 

OXTR gene expression (Ctrl group: 0.3604 ± 0.3578 AU; T2D-FDR group: 

0.5759 ± 0.5842 AU) (Figure 17). 

 

Furthermore, to define the association between the miRNAs, hsa-miR-23a-5p, 

hsa-miR-193a-5p and hsa-miR-193b-5p, and their target genes, I performed a 

correlation analysis between the expression levels of each miRNA and its 

target gene (Table 11). This analysis revealed that the hsa-miR-23a-5p 

expression inversely correlates with the mRNA levels of IGF2, MXRA5, OXTR 

and RGS4 genes; while both the hsa-miR-193a-5p and hsa-miR-193b-5p 

expressions inversely correlate with the mRNA levels of IGF2 gene. These 

data suggest that the 3 identified miRNAs not only may effectively bind their 

target genes, but in the context of my study the low expression of the hsa-miR-

23a-5p, hsa-miR-193a-5p and hsa-miR-193b-5p represent a common feature in 

T2D-FDRs, that may predispose to adipocyte hypertrophy by modulating in the 

pre-adipocytes the expression of specific genes such as IGF2 and MXRA5.  
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Table 11. Correlation analysis between miRNAs and mRNA target genes. hsa-miR-23a-

5p, -193a-5p, and -193b-5p expression Vs. target gene expression (n=18). 

 

In support of the last hypothesis, the expression levels of both the IGF2 (n=18, 

r=0.4718, p<0.05) and the MXRA5 genes (n=18, r=0.5848, p<0.01) positively 

correlate with adipocyte cell size (Figure 18a and b). Notably, elevated 

concentrations of the Insulin like Growth Factor 2 (IGF2) prevent terminal 

adipocyte differentiation in hemangioma stem cells in vitro [111], and, 

interestingly, increasing levels of serum IGF2 occur in obese individuals 

compared with lean subjects, and the hormone concentrations are even higher 

in subjects which present both obesity and T2D [112-113]. Overall, the 

combinations of the last observations with my findings showing increased 

IGF2 gene expression in pre-adipocytes from individuals with family history 

of T2D suggest that familiarity for T2D, as well as obesity and T2D itself, 

presents in the up-regulation of IGF2 a common feature which may cause 

impaired ability to recruit and/or differentiate new adipose cells. 

Regarding the Matrix Remodeling Associated 5 (MXRA5) gene, recent studies 

instead revealed that the MXRA5 gene is predominantly expressed in human 

pre-adipocytes compared with its expression in human mature adipocytes 

[114], and furthermore, that the MXRA5 gene was in a list of 15 top ranked 

down-regulated genes in scAT biopsies from obese subjects upon weight loss 

and weight maintenance [115]. Therefore, even though not much is known 

about the function of this gene, these observations may suggest a potential role 

 hsa-miR-23a-5p 

Genes n r p value 

IGF2 18 -0.588 <0.01 

MXRA5 18 -0.696 <0.001 

OXTR 18 -0.454 <0.05 

RGS4 18 -0.465 <0.05 

PRELP 18 0.061 n.s. 

  

 hsa-miR-193a-5p 

Genes n r p value 

IGF2 18 -0.556 <0.01 

INMT 18 -0.425 n.s. 

OXTR 18 -0.376 n.s. 

RGS4 18 -0.040 n.s. 

SYNPOL2L 18 -0.232 n.s. 

PRELP 18 0.188 n.s. 

  

 hsa-miR-193b-5p 

Genes n r p value 

IGF2 18 -0.515 <0.05 

PTPRD 18 -0.287 n.s 

INMT 18 -0.408 n.s 

SYNPOL2L 18 -0.314 n.s 

PRELP 18 0.129 n.s 
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of MXRA5 in the extracellular matrix regulation in pre-adipocytes, and my 

findings may sustain a potential role of MXRA5 gene in the impaired 

recruitment and/or differentiation of new adipose cells in T2D-FDRs. 

However, whether in T2D-FDRs the altered expression of the miRNAs, hsa-

miR-23a-5p, -193a-5p and -193b-5p, may actually predispose to adipocyte 

hypertrophy by modulating in the pre-adipocytes the expression of IGF2 and 

MXRA5 is not yet known and will be object of further investigations. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Correlation analysis between IGF2 and MXRA5 mRNA expression and 

adipocytes cell size. a) IGF2 mRNA expression levels Vs. adipocyte cell size (n=18, 

r=0.4718, p<0.05). b) MXRA5 mRNA expression levels Vs. adipocyte cell size (n=18, 

r=0.5848, p<0.01). 
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In conclusion, this second study allowed me to demonstrate that the specific 

down-regulation of the miRNAs, hsa-miR-23a-5p, -193a-5p and -193b-5p, is a 

common feature in individuals with familiarity of T2D, and inversely correlate 

to adipocyte hypertrophy in humans. Furthermore, my data suggest that the 

altered expression of the miRNAs, hsa-miR-23a-5p, -193a-5p and -193b-5p, 

may actually predispose to adipocyte hypertrophy by impairing pre-adipocytes 

commitment and/or differentiation through the modulation in these cells of the 

mRNA expression of specific target genes, such as IGF2 and MXRA5. Follow-

up studies of T2D-FDR individuals are necessary to further elucidate the effect 

of hsa-miR-23a-5p, -193a-5p, and -193b-5p levels in the progression to T2D. 

Moreover, future investigations, extended in T2 diabetics and in other subjects 

with high risk of T2D, will give the opportunity to figure out whether the 

evaluation of the expression of these 3 miRNAs will be a reliable system for 

prediction of T2D and will offer new chance for the development of novel 

pharmacological strategies for the treatment of diabetes. 
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Conclusions and future perspectives 

 

The epigenome undergoes continuous transformations throughout our own 

lifetime leading to changes in genome function. The epigenetic hypothesis 

argues that, in addition to genetic variation, epigenetics provides an additional 

set of mechanisms mediating the relationship between genotype and the 

environment, contributing to the individual susceptibility to different disorders. 

During the past decades, the study of epigenetic modifications has been one of 

the most emerging and novel areas in fundamental as well as in clinical 

research and currently represents a very productive field of study, which has 

already provided a framework for the search of etiological factors in 

environment-associated diseases such as T2D and obesity. In my PhD thesis, I 

dealt the issue of the epigenetic profiling with two distinct and separate 

approaches in populations at high risk of T2D. 

 

From the first part of my experiments (candidate gene analysis), I can conclude 

that the ANKRD26 gene expression inversely correlate with BMI and its down-

regulation represents a common abnormality in obese patients. Furthermore, in 

these individuals, the ANKRD26 mRNA levels are strongly negatively 

correlated with the DNA methylation status of a specific region of the 

ANKRD26 promoter, suggesting that this gene is sensitive to epigenetic 

regulation in human obesity. Whether the epigenetic down-regulation of the 

ANKRD26 gene precedes or is subsequent to obesity and thus whether the 

increased CpG methylation of the ANKRD26 promoter may be predictive of 

obesity onset is not yet known and deserves further and ad hoc investigation. 

 

From the second part of experiments (EWAS), I can conclude that the down-

regulation of the hsa-miR-23a-5p, -193a-5p, and -193b-5p is common in First 

Degree Relatives of T2D patients and their expression levels inversely 

correlate with subcutaneous adipocyte cell size. Furthermore, the bioinformatic 

analysis of the miRNA-target mRNA highlighted specific enrichments for 

pathways associated to adipocyte commitment and differentiation. I might thus 

hypothesize that in T2 diabetic FDRs changes of the hsa-miR-23a-5p, -193a-

5p, and -193b-5p expression not only precede adipocyte hypertrophy, but it 

might be responsible for restricted adipogenesis in these individuals. Thus, 

follow-up studies of T2D-FDR individuals are necessary to further elucidate 

the effect of hsa-miR-23a-5p, -193a-5p, and -193b-5p levels in the progression 

to T2D. 

 

However, even though we are still far from the understanding of the 

epigenetics of this complex disease, the work made by us and by other groups 

will pave the way to novel and more effective strategies aimed at diabetes 

prevention and at personalized epigenetic treatment. Indeed, it becomes clear 

that getting a full picture of the epigenetic events involved in this disease will 

(1) represent a powerful tool for predicting and preventing future disease onset 
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in the population; (2) provide additional stimuli for the development of clinical 

epigenetic biomarkers, which will generate novel relevant information for 

diagnosis, prognosis and therapy optimization; and (3) drive advancement in 

epigenetic drug discovery with the generation of more effective epi-drugs, 

selective for specific epi-targets, which in the forthcoming future might be 

used in combination with conventional therapeutics and/or might get the 

opportunity to develop epigenetic treatment personalized to the patient’s 

epigenetic traits. 
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Hoxa5 undergoes dynamic DNA methylation and
transcriptional repression in the adipose tissue of mice exposed
to high-fat diet
L Parrillo1,2, V Costa3,5, GA Raciti1,2,5, M Longo1,2, R Spinelli1,2, R Esposito3, C Nigro1,2, V Vastolo1,2, A Desiderio1,2, F Zatterale1,2,
A Ciccodicola3,4, P Formisano1,2, C Miele1,2 and F Beguinot1,2

BACKGROUND/OBJECTIVES: The genomic bases of the adipose tissue abnormalities induced by chronic positive calorie excess
have been only partially elucidated. We adopted a genome-wide approach to directly test whether long-term high-fat diet (HFD)
exposure affects the DNA methylation profile of the mouse adipose tissue and to identify the functional consequences of these
changes.
SUBJECTS/METHODS: We have used epididymal fat of mice fed either high-fat (HFD) or regular chow (STD) diet for 5 months and
performed genome-wide DNA methylation analyses by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mouse
Homeobox (Hox) Gene DNA Methylation PCR, RT-qPCR and bisulphite sequencing analyses were then performed.
RESULTS:Mice fed the HFD progressively expanded their adipose mass accompanied by a significant decrease in glucose tolerance
(Po0.001) and insulin sensitivity (Po0.05). MeDIP-seq data analysis revealed a uniform distribution of differentially methylated
regions (DMR) through the entire adipocyte genome, with a higher number of hypermethylated regions in HFD mice (Po0.005).
This different methylation profile was accompanied by increased expression of the Dnmt3a DNA methyltransferase (Dnmt; Po0.05)
and the methyl-CpG-binding domain protein Mbd3 (Po0.05) genes in HFD mice. Gene ontology analysis revealed that, in the HFD-
treated mice, the Hox family of development genes was highly enriched in differentially methylated genes (P= 0.008). To validate
this finding, Hoxa5, which is implicated in fat tissue differentiation and remodeling, has been selected and analyzed by bisulphite
sequencing, confirming hypermethylation in the adipose tissue from the HFD mice. Hoxa5 hypermethylation was associated with
downregulation of Hoxa5mRNA and protein expression. Feeding animals previously exposed to the HFD with a standard chow diet
for two further months improved the metabolic phenotype of the animals, accompanied by return of Hoxa5 methylation and
expression levels (Po0.05) to values similar to those of the control mice maintained under standard chow.
CONCLUSIONS: HFD induces adipose tissue abnormalities accompanied by epigenetic changes at the Hoxa5 adipose tissue
remodeling gene.

International Journal of Obesity (2016) 40, 929–937; doi:10.1038/ijo.2016.36

INTRODUCTION
Through the second half of the past century, obesity established
as an increasingly prevalent response to the unhealthy environ-
ment and nutrition, both in the developed and in developing
countries.1 Obesity is associated with increased risk of a number of
different metabolic complications, and with increased mortality.2

In part, the excess morbidity accompanying obesity is determined
by dysfunctional adipose tissue.3

While most caloric excess is stored in the subcutaneous adipose
tissue, chronically positive caloric balance may induce ectopic
storage of lipids and involve intra-abdominal, pericardial, perivas-
cular and intramuscular adipose tissue (visceral adipose tissue).
Increased visceral adipose tissue is well recognized as an
independent risk factor for most obesity-associated comorbidities,
with the distribution of adipose tissue, their anatomical, cellular
and molecular features determining their occurrence.4 However, it

has been proposed that visceral adiposity represents a surrogate
marker for global body fat dysfunction. 3

Recent genome-wide association studies in humans led to the
identification of 4100 common gene variants determining
individual propensity to adiposity. Most of them have an unknown
function at the present.5 In addition, the effect size of these
variants is small compared with the large effect of unhealthy
nutrition on the development of obesity.6 Even in the case of this
effect, however, the genomic bases of the visceral fat abnormal-
ities induced by chronically positive calorie excess have been only
partially elucidated.
It has become progressively clearer that environmental factors,

including the quality of nutrition, may affect individual pheno-
types by causing epigenetic modifications of the DNA.7,8 These
occur in the absence of DNA sequence alterations and include
variations in the methylation status at specific regions of the
genome, as well as posttranslational histone changes and
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differential miRNA expression.9,10 Studies in humans have also
revealed that specific epigenotypes have a very large effect on
adiposity variance. Godfrey and co-workers11 reported a positive
correlation between the degree of RXRα methylation at one
specific site in the promoter and childhood body adiposity at
age 6 and 9 years. These findings were replicated in both within-
cohort and between-cohort replicates. In contrast to the small
effect sizes typically seen with genetic polymorphisms associated
with metabolic disease risk, this single site epigenotype accounted
for at least 25% of the variance in childhood adiposity. However,
genes for which polymorphisms have strong associations with
disease risk might be anticipated to have epimutations.12 One
such gene is FTO, that acts as a nucleic acid demethylase,13

a co-substrate of which is α-ketoglutarate (a product of the Krebs
cycle), recently described as a biomarker of obesity-associated
non-alcoholic fatty liver disease.14 The FTO gene has been first
identified by genome-wide association studies as being involved
in the risk of obesity. In a prospective study of nonsymptomatic
individuals of a mean age of 30 years, Toperoff et al.15 showed
that those who featured hypomethylation at an intronic CpG site
at FTO had an increased risk of developing impaired glucose
metabolism.
However, the majority of these studies have focused on

methylation at specific genes rather than adopting an unbiased
approach, although functionally relevant DNA methylation
changes may be located in different areas of the genome.16,17

Thus, a comprehensive analysis of the genome methylation profile
in response to changes in the nutritional status is necessary to
interpret the epigenetic mechanisms accompanying diet-induced
obesity.
In this work, we have adopted methylated DNA immunopre-

cipitation sequencing (MeDIP-seq) to identify whole-genome
methylation changes occurring in the adipose tissue of
mice exposed to a long-term treatment with fat-enriched diet.
We have identified and cataloged several differentially methylated
genes (DMGs) whose function is modulated by this nutritional
regimen. We have further demonstrated that return of the animals
to a standard chow diet caused improvement of the metabolic
derangement, accompanied by rescue of both the epigenetic
modifications and the function of selected genes. Some of them
might therefore enable to quantify individual response to lifestyle
intervention in humans as well as in mice.

MATERIALS AND METHODS
Animals and diet
Male 5-week-old C57BL/6 J mice were obtained from Charles Rivers
(Deisenhofen, Germany) and housed in a temperature-controlled room
(22± 2 °C) with 12- h light-dark cycle. Mice were enabled ad libitum access
to food and water. Animals were randomly assigned to a standard chow
diet (STD about 10% energy as fat) or a high-fat diet (HFD about 60%
energy as fat) for 5 months. The composition of these diets is reported in
Supplementary Table S1. Body weight was recorded weekly. For insulin
tolerance testing, mice were fasted for 4 h and then subjected to
intraperitoneal injection with insulin (0.75 mIU g− 1 of body weight).
Venous blood was subsequently drawn by tail clipping at 0, 15, 30, 45,
60, 90 and 120 min as previously described.18 For intraperitoneal glucose
tolerance testing, mice were fasted overnight and then subjected to
intraperitoneal injection with glucose (2.0 g kg− 1 of body weight). Venous
blood was subsequently drawn by tail clipping at 0, 15, 30, 45, 60, 90 and
120 min as previously described.18 Blood glucose levels were measured
with Accu-Chek glucometers (Roche Applied Science, Penzberg, Germay).
The total area under the curve and the inverse area under the curve for
glucose response during glucose tolerance testing and insulin tolerance
testing were calculated as previously described.18 At the end of the
experiment, the animals were killed; the epididymal white adipose tissue
(WAT) was carefully dissected and stored at − 80 °C until analyzed. For
histology, epididymal WAT was fixed in 10% neutral buffered formalin and
embedded in paraffin. Sections of 5 μm were obtained and stained with
hematoxylin and eosin. Images captured by an Olympus BX51 microscope

equipped with an Olympus (Shinjuku, Japan) DP-21 digital camera were
processed using the ImageJ software.
All the procedures performed were in agreement with the National and

Institutional Guidelines of the Animal Care and Use Committee at the
University of Naples Medical School.

Fractionation of adipose tissue
WAT was washed and minced in Dulbecco's modified Eagle's medium and
then incubated for 1 h at 37 °C with the same medium containing
collagenase (1 mg ml− 1; Sigma–Aldrich, St Louis, MO, USA). The mixture
was passed through a nylon filter (pore size, 250 μm) to remove
undigested material. The filtrate was centrifuged for 5 min at 1500 g and
floating cells and the pellet were recovered as the mature adipocyte
fraction and the stromal vascular fraction, respectively, and were used for
RNA extraction.

DNA preparation and MeDIP-Seq
Genomic DNA was isolated from WAT of STD and HFD mice using the
AllPrep DNA/RNA Mini Kit (Qiagen, Hilden-Düsseldorf, Germany) according
to the manufacturer's instructions. The quality of each DNA sample was
analyzed for integrity, purity and concentration on a NanoDrop 2000c
Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Purified DNA (450 ng per sample) was then sent to Beijing Genomics
Institute (BGI at Shenzhen, China) for MeDIP-seq analysis by a Illumina
HiSeq 2000 (Illumina Inc., San Diego, CA, USA), and their detailed protocol
was published in the study by Li et al.19 DNA methylation data have been
deposited in GEO database under accession number GSE71476.

Reads alignment and pre-processing
Data filtering was applied to remove adapter sequences, contamination
and low-quality reads from raw reads. About 73 million of filtered
fragments—36.5 million 50 bp paired-end reads—were obtained for each
sample from MeDIP-seq experiments.
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was

used to assess the quality of sequenced reads. Raw reads were aligned to
the reference mouse genome (UCSC mm9) using BWA20 with default
parameters for paired-end mapping. Reads alignments in SAM format were
converted to BAM for further analyses using SAMtools.20 Statistics of
mapping quality was assessed by SAMStat on SAM/BAM input files.
Nucleotide composition, length distribution, base quality distribution,
mapping statistics, mismatches, insertions/deletions and error profiles
were reported in html5 format including unmapped, poorly and accurately
mapped reads. Only uniquely mapped reads were extracted from the.
sam file by a custom shell script and were used for further analyses.
BEDtools were used first to convert mapped reads in BED format and then
to create files in Bedgraph format (.wiggle). These files were uploaded in
UCSC Genome Browser (http://genome.ucsc.edu) for visual inspection and
for gene-specific analysis.

Peak calling and identification of differentially methylated regions
(DMRs)
The distribution of MeDIP-Seq reads on each mm9 chromosome was
analyzed. The genome was divided into windows of the arbitrary 10 kb
length, and read depth for each window was calculated. Read count within
each window was normalized using the following equation: RC*106/UMR
(RC= Read count in the 10 kb window; UMR=uniquely mapped reads).
Results are shown in Supplementary Figure S1. Reads coverage analysis
has been performed using BEDtools21 to test the number of CpGs covered
by sequenced reads, looking at the depth of coverage. The global
distribution of MeDIP-Seq-generated reads on specific genomic elements
of mouse genome (CGIs, shores and shelves, exons, introns, CDS, 5' and 3'
untranslated regions (UTRs), as well as repeat elements) has been
independently evaluated for both samples (Supplementary File S1).
Annotations of the genomic elements of interest were downloaded from
the Table Browser of UCSC Genome Browser for mm9 genome release.
Genomic coordinates of CGIs in mm9 genome release were obtained from
Smallwood et al.22 Shores and shelves genomic coordinates were
automatically computed from CGIs coordinates of.22 We annotated CpG
shores considering a range of ± 2 kb from the start and end positions of
each CGI, and CpG shelves in the range of ± 2 kb from start and end of
each CpG shore. MeDIP-Seq datasets from HFD and STD mice groups were
independently analyzed with model-based analysis of ChIP-Seq23 to find
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significant methylation peaks in both samples, and with the MEDIPS
package21 to identify DMRs. For both samples, the P-valueo10− 10 was
used to select significant peaks computed by model-based analysis of
ChIP-Seq. Using MEDIPS package, uniquely mapped reads were extended
in the sequencing direction to a length of 300 nt. For the identification of
DMRs, we used the MEDIPS option that enables to compute differential
methylation within fixed genome-wide frames. Mean r.p.m. (reads per
million) values were computed for genome-wide 500 bp windows over-
lapping of 250 bp using MEDIPS ('frame_size = 500' and 'step = 250'
parameters were used). DMRs calculated by the MEDIPS software were
converted with custom scripts in BED format and loaded on Genome
Browser for immediate visualization. DMRs were mapped to known genes
or gene-associated elements (CGIs, shores and shelves, exons, introns, CDS,
5' and 3' UTRs, repeat elements) using SAMtools.20 BED files of each
annotated gene (or gene-associated elements) were downloaded from the
Table Browser of UCSC. ChipPeakAnno was used to assign each CGIs to
RefSeq genes based on the proximity of each gene transcription start site
to the nearest CGI. A similar approach was extended to associate all DMRs
to the above-mentioned gene-related elements. Protein Analysis THrough
Evolutionary Relationships (PANTHER) Classification System (http://www.
pantherdb.org) was used to determine whether hypermethylated CGIs are
mostly associated with specific gene pathways and ontology terms. An
false discovery rateo0.05 was considered significant.

Bisulphite sequencing analysis
Genomic DNA bisulphite modification was performed using the EZ DNA
Methylation Kit (Zymo Research, Irvine, CA, USA) according to the
manufacturer’s instruction. The following primer pairs were designed by
Methprimer24 to amplify DMR-associated Hoxa5 locus: sense 5'-TTGGA
GTTGTTTAGGGAGTTTTTT-3'; antisense 5'-CCTCTAAAAATCATCAAACAA
AATTTAC-3'. PCR products were purified using Min Elute Gel Extraction Kit
(Qiagen) and cloned into the pGEM T-Easy vector (Promega, Fitchburg, WI,
USA). Individual clones were grown and plasmids purified using the
NucleoSpin Plasmid Kit (Macherey-Nagel, Düren, Germany). For each
condition, 10 clones were sequenced using SP6 promoter primer on AB
3500 genetic analyzer (Applied Biosystem, Waltham, MA, USA). The proportion
of methylation for each individual was calculated by dividing the total
number of methylated sites in all clones by the total number of CG sites.

Methylated DNA immunoprecipitation (MeDIP)
MeDIP assay was performed as described by Weber et al.25 Sonicated pooled
genomic DNA from WAT was immunoprecipitated using anti-5meCpG
(#ab10805, Abcam, Cambridge, MA, USA) or mouse IgG with anti-mouse
IgG beads (#10003D, Life Technologies, Waltham, MA, USA). DNA methylation
enrichment on recovered DNA was evaluated by qPCR. Samples were
normalized to their respective input using the 2-ΔCT method. The following
primer sequences were used: sense 5′-GTGCTTGATTTGTGGCTCGC-3′; anti-
sense 5′-TCCACCCAACTCCCCCATTA-3′.

RNA isolation, reverse transcription and quantitative RT-PCR
Analysis
Total RNA was isolated from WAT using AllPrep DNA/RNA Mini Kit (Qiagen).
cDNA was synthesized by reverse transcription using Superscript III Reverse
Transcriptase (Invitrogen, Waltham, MA, USA), according to the manufac-
turer’s protocol. Real-time RT-qPCR was performed on an iCycler IQ
multicolor Real Time PCR Detection System (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA) using the comparative CT method (2-DDCT) with a
Platinum SYBR Green qPCR Super-UDG mix (Bio-Rad Laboratories, Inc.; 26).
All reactions were performed in triplicate, and the relative mRNA
expression levels of target genes were normalized to cyclophilin A. The
primer sequences used are shown in Supplementary Table S2.

Mouse Hox Genes DNA methylation PCR array
The Mouse Homeobox (Hox) Genes DNA Methylation PCR Array
(SABiosciences, Hilden-Düsseldorf, Germany) has been used to profile
DNA methylation levels of Hox genes (n= 22). This novel restriction
enzyme-based technology was described by Kim et al.27 Briefly, genomic
DNA is treated with a combination of methylation-sensitive and/or
methylation-dependent enzymes. Subsequent RT-qPCR enabled compar-
ison of Ct values between particular enzymatic reactions and thus
assessment of DNA methylation levels. PCR reactions were performed
using iCycler IQ multicolor Real Time PCR Detection System (Bio-Rad

Laboratories, Inc.). Detailed description of sample preparation and PCR
reaction conditions are provided in the manufacturer's protocol.

Western blot analyses
Adipose tissues were lysed in T-PER reagent (#78510, Thermo-Scientific,
Waltham, MA, USA) with a protease inhibitor cocktail (#05892791001,
Roche) and a phosphatase inhibitor (#04906837001, Roche). Twenty
micrograms of protein extracts were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred to polyvinyli-
dene difluoride membranes (Millipore, Billerica, MA, USA). Upon incubation
with primary Hoxa5 (1:1000; #ab82645, Abcam), α-tubulin (1:1000;
#SC5546, Santa Cruz, Dallas, TX, USA) and secondary antibodies (Bio-Rad
Laboratories, Inc.), immunoreactive bands were detected by enhanced
chemiluminescence according to the manufacturer’s instructions (Pearce
ECL Western Blotting Substrate, # 32106, Thermo-Scientific).

Cell culture, treatments and transfection
3T3-L1 cells were grown and were allowed to differentiate into mature
adipocytes as described Bezy et al.28 Subsequently, adipocytes were
exposed to palmitate (0.25 mM; Sigma–Aldrich) and harvested 96 h later
for DNA and RNA extraction. For Hoxa5 silencing during adipogenesis,
3T3-L1 cells were transfected with 25 nmol l− 1 of Hoxa5 siRNA (OriGene,
Rockville, MD, USA), and subsequently induced to differentiate into mature
adipocytes. Transfection was repeated as on day − 2 every 48 h until day 8.
Then, lipid accumulation was assessed by Oil Red O staining as previously
described.29

Statistical analysis
Data are expressed as mean± s.e.m. Comparison between groups were
performed using Student's t-test or the one-way analysis of variance
followed by Tukey multiple comparison tests, as appropriate, using
GraphPad Software (version 6.00 for Windows, San Diego, CA, USA): a
P-value⩽ 0.05 was considered significant. Statistical significance of DMRs—
in HFD compared with STD mice—in genomic regions was performed with
chi-square test.

RESULTS
HFD changes the global DNA methylation profile in adipose tissue
from C57BL/6 J mice
Five-week-old male mice were fed either standard chow (STD) or
fat-enriched diets (HFD) for 5 months followed by metabolic
phenotyping. Despite comparable food intake in the two groups,
mice exposed to the HFD exhibited a 37% increase in body weight
(Po0.001). Fasting glucose levels were increased in the HFD
treated mice (Po0.05). Glucose and insulin tolerance tests
revealed, respectively, decreased glucose tolerance (Po0.001)
and insulin sensitivity (Po0.05) in these animals (Table 1).
HFD treatment induced an increase in the individual adipose

cell size, accompanied by an elevated expression of macrophage
marker genes, including F4/80, Cd68 and Mcp-1. Moreover, HFD
exposure determined an upregulation of Fabp4 and Fas mRNA

Table 1. Metabolic phenotypes of high-fat- and standard chow
diet-exposed mice

STD (n=16) HFD (n= 16) P-value

Body weight 30.78± 0.9 42.18± 1.1 Po0.001
AUC GTT
(mg dl− 1*120 min)

11150± 1463 23686± 1783 Po0.001

AUC inv. ITT
(mg dl− 1*120 min)

10986± 920.12 6702.85± 1136.34 Po0.05

Glucose (mg dl− 1) 106± 12.7 163± 14.1 Po0.05

Abbreviations: AUC, area under the curve; GTT, glucose test tolerance; ITT,
insulin test tolerance; HFD, high-fat diet mice; STD, standard diet mice. All
values are means ± s.e.m.
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levels, together with a significant reduction of adiponectin mRNA
levels, whereas Ppary2 expression showed no significant variation
between HFD- and STD-fed mice, similar as described
previously29,30 (Supplementary Figure S1).
We have subsequently compared global methylation profiles in

epididymal fat from STD- and HFD-treated animals. By immuno-
precipitation of methylated DNA followed by massively parallel
sequencing (MeDIP-seq25,31), we generated 73 million reads in
each condition. Alignment to the mouse genome (mm9) revealed
that about 50% of the reads mapped in unique regions
(Supplementary Table S3). In addition, these reads were uniformly
distributed through the entire mouse genome, as indicated by the
detection of methylation events in most chromosomal regions
(Supplementary Figure S2), and were found to be mainly located
within introns and exons regions of the gene-associated elements
(Supplementary Table S4A).
About 17.6 × 104 and 16.7 × 104 methylation peaks were

identified, respectively, in HFD- and STD-maintained mice
(Bonferroni corrected Po0.01). Most of these peaks (52%)
were within the gene bodies, with 36% in intronic regions and
9% in CpG islands (Supplementary Table S4B). Analysis of different
repeat types revealed that methylation peaks were abundant in
LTR and LINE classes of the mouse genome (Supplementary Table
S4C).
About 14.8 × 103 DMRs were also identified in the genomes

from HFD- and STD-exposed mice (Po0.005), about 53% of which
were hypermethylated while 47% were hypomethylated in the
HFD compared with the STD mice. The highest frequency of DMR
occurrence was detected in gene bodies, particularly in the
intronic sequences where hypermethylation events were more
common (Figure 1a). Significant DMR hypermethylation was also
noted in the CpG islands of HFD-fed mice, while no significant
difference was observed in the CpG shores and shelves

(Figure 1b). At variance with the gene-associated elements, repeat
type analysis identified an increased number of hypomethylated
DMR in LTR and LINE classes of the HFD mouse genome
(Supplementary Figure S3).

Effect of HFD on expression of DNA-methylating enzymes in
adipose tissue
We then sought to explore whether the changes in DNA
methylation profile observed in mice exposed to HFD could be
attributed to changes in the expression of DNA-methylating enzymes
and focused our attention on DNA methyltransferases32,33

and methyl-CpG-binding domain proteins (Mbd34). Interestingly,
quantitative real-time PCR analysis of mRNA from adipose tissue
revealed a specific twofold increase in the abundance of Dnmt3a
transcript in the HFD-fed mice (Po0.05; Figure 2a). The Mbd3, but
not the Mbd1, Mbd2 or Mbd4 genes was also significantly
overexpressed in the adipose tissue of HFD-fed mice (Po0.05;
Figure 2b), suggesting a role Dnmt3a and Mbd3 genes in
mediating diet-induced hypermethylation events.

Diet-induced methylation changes affect developmental
processes
For the purpose of the present study, genes whose nearest CpG
island, shelf and/or shore overlap a DMR were termed differen-
tially methylated genes, which allowed us to identify 1.673 × 103

DMG. To initially address their functional significance, we
performed gene set enrichment analysis both for the gene
ontology categories and the canonical pathways.
This analysis enabled us to identify the 'Ppar signaling pathway'

as the most significantly enriched pathway among DMG (false
discovery rateo5%; Supplementary Table S5). DMG were also
enriched in the 'PI3k-Akt', 'Insulin resistance', 'Cytokine-cytokine

Figure 1. DMR distribution in mice subjected to HFD feeding.
Distribution of hypermethylated and hypomethylated DMRs (a) across
different gene elements (promoter, 5-UTR, exons, cds, introns, 3-UTR
and gene body) and (b) CpG-Island, -Shores and -Shelves. A CpG-Island
is defined 200 bp (or larger) fragment of DNA with a C+G content of
450% and an observed CpG/expected CpG ratio4of 0.6. Shores: the
flanking regions of the CpG-Islands, 0–2000 bp. Shelves: the regions
flanking the island shores, i.e., covering 2000–4000 bp distant from the
CpG-Island. **Po0.005 and ***Po0.0005.

Figure 2. Expression of Dnmt and Mbd in WAT from HFD-exposed
mice. qRT-PCR analysis of mRNA expression levels of WAT Dnmt1,
Dnmt3a, Dnmt3b (a), and Mbd1, Mbd2, Mbd3 and Mbd4 (b). All data
are expressed as means± s.e.m. (n= 8 for STD; n= 8 for HFD).
*Po0.05, HFD vs STD.
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receptor interaction' and 'MAPK' pathways (false discovery
rateo5%; Supplementary Table S5A–D).
Gene ontology analysis indicated a strong enrichment in genes

involved in metabolic, transcription and developmental processes
in samples from HFD-exposed mice (Supplementary Figure S4).
Interestingly, a distinct set of genes belonging to the Hox family of
transcription factors was highly significantly enriched among DMG
(P= 0.008). Aberrant methylation of transcription factor promoters
induce a wide array of downstream effects on gene expression. In
addition, increasing evidence indicate a role of Hox genes in
adipose tissue function and metabolic disorders.35 Therefore, we
focused on this cluster of genes for further investigation. We have

adopted a DNA methylation PCR array and systematically
examined the promoter methylation of 22 Hox genes. Whereas
most of these genes featured no significant methylation
differences in DNA from HFD and STD-exposed mice, Hoxa5 and
Hoxa11 featured significant promoter hypermethylation in DNA
from HFD compared with STD-fed mice (Figure 3a). At variance,
Hoxb1, Hoxb9, Hoxc6 and Hoxc8 showed reduced methylation in
the HFD-exposed animals.
Increased DNA methylation at the 5'-UTR promoter region is

often accompanied by transcriptional repression, whereas activa-
tion commonly follows hypomethylation.36 To directly test the
significance of the observed methylation changes in Hox genes,

Figure 3. (a) DNA methylation and expression levels of Hox genes in WAT from HFD and STD-treated mice. A mouse Hox gene DNA
methylation array was used to profile the indicated Hox methylation levels as described under Materials and methods. Un, unmethylated; Me,
methylated. RT-qPCR analysis of mRNA expression levels of WAT Hoxc8 (b) and Hoxa5 (c). All mRNA expression data are expressed as
means± s.e.m. (n= 8 for STD; n= 8 for HFD). (d) MeDIP-seq signals at Hoxa5 gene locus and bisulfite analysis of the Hoxa5-associated DMR.
Blue bar indicates hypermethylated DMR at Hoxa5 locus in HFD. CpG-Island (in green) overlapping Hoxa5 locus (in black). Start codon ATG
(gray) and transcription start (purple) sites are also indicated. Graphic representation and results of the bisulphite-sequenced portion of the
DMR (red arrows) relative to the Hoxa5 locus. Each horizontal row represents a single clone; the methylation percentages of 10 individual
clones are indicated, with unmethylated (○) and methylated (●) CpG sites. Representative image of n= 3 mice per group. (e) Immunoblot
analysis of Hoxa5 protein level (n= 2); α-tubulin was used as a loading control. ***Po0.001 and *Po0.05.
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we performed RT-qPCR assays. On the basis of this approach,
Hoxc8mRNA levels in adipose tissue from HFD-exposed mice were
found to be significantly higher compared with control
mice (Figure 3b). At variance, Hoxa5 mRNA levels were decreased
in the adipose tissue of HFD-fed mice (Figure 3c). To further
validate the HFD-induced methylation changes occurring at the
Hoxa5 gene, we have subjected to bisulphite treatment and then
directly sequenced the Hoxa5-associated DMR, which encom-
passes a significant portion of the 5'-UTR promoter region of the
Hoxa5 gene. As shown in Figure 3d, this procedure revealed an
average 25% increased methylation of the region from HFD
compared with STD-exposed mice (Po0.01), validating the
MeDIP-seq data. Furthermore, the amounts of the Hoxa5 protein
in WAT were decreased in the HFD-fed mice compared with
controls (Figure 3e).
To investigate whether diet-induced obesity or specific fats is

responsible for the changes in Hoxa5 methylation and expression
associated to exposure to HFD, we analyzed the effect of different
fat components on Hoxa5 in cultured 3T3-L1 cells. Supplementa-
tion of the culture medium with 0.25 mM palmitate, a major
component of the HFD, increased Hoxa5 promoter methylation
and decreased the expression of the gene to a similar extent as
that observed in WAT from HFD-treated mice (Supplementary
Figure S5A and B). Medium supplementation with 0.25 mM oleate
did not elicit any significant effect.

Reversibility of HFD effect on Hoxa5 function
Current evidence indicates that, once established, epigenetic
modifications may be persistent.37 We therefore sought to assess
the stability of HFD-induced changes in promoter methylation and
expression of Hoxa5. To this end, we have prolonged the
nutritional intervention in animals exposed to HFD by returning
them to a STD for a further 2-month period, followed by
re-assessment of the metabolic phenotype. This diet change was
accompanied by a 50% reduction in the excess weight caused by
the previous HFD regimen (Po0.01; Figure 4a). Fasting plasma
glucose levels and IP glucose tolerance test were also significantly
improved, indicative of improved glucose tolerance (Figures 4b and c).
Importantly, Hoxa5-associated DMR featured an almost twofold
decreased global methylation (Figure 5a). This effect was
accompanied by an almost complete rescue of Hoxa5 mRNA
expression in the adipose tissue (Figure 5b).

Expression of Hoxa5 is modulated during in vitro adipogenesis
In HFD-fed mice, Hoxa5 expression was downregulated in isolated
adipocytes but remained unchanged in stromal vascular fraction
cells (Supplementary Figure S6A). To investigate the role of Hoxa5
in WAT biology, we first evaluated Hoxa5 expression during
adipogenesis, and found that Hoxa5mRNA was induced in parallel
with differentiation in 3T3-L1 preadipocytes (Supplementary
Figure S6B). Consistently, the expression of Hoxa5 mRNA was
higher in the adipocyte fraction than in WAT stromal vascular
fraction from mice maintained under standard chow diet
(Supplementary Figure S6A).
3T3-L1 cells were subsequently transfected with Hoxa5-specific

siRNA and then induced to differentiate into mature adipocytes
(Supplementary Figure S6C). Oil Red O staining revealed a
decrease in lipid accumulation in the Hoxa5-siRNA treated
compared with control cells (Figure 5c). In parallel, the expression
of the adipogenic markers Ppary2 and C/ebpα was reduced in
Hoxa5-siRNA-treated cells (Figure 5d), suggesting that, at least
in the 3T3-L1 cells, Hoxa5 is important for adipocyte
differentiation.

DISCUSSION
We have adopted MeDIP-seq25,31 analysis to directly test whether
long-term HFD exposure affects the DNA methylation profile of
the mouse adipose tissue and to identify the consequences of
these changes. We have shown a greater number of hypermethy-
lated compared with hypomethylated regions in the gene
elements of the HFD-exposed animals indicating that, in associa-
tion with obesity, this nutritional regimen induces increased DNA
methylation in this part of the genome. Consistent with our
finding, human obesity has been shown to be associated with
gene element hypermethylation in the skeletal muscle.38 In
addition, very recent analysis of global DNA methylation profiles
of adipose tissue from severely obese individuals showed
increased methylation in the gene bodies and 3' UTRs compared
with the same subjects examined upon bariatric surgery
and weight loss.39

Figure 4. Metabolic parameters of HFD-treated mice upon STD
rescue. Mice were either maintained under STD for 7 months
(STD/STD) or returned (and maintained for two further months) to a
STD after 5-month HFD treatment. Animals maintained under STD
or HFD for 5 months (respectively, STD, HFD) are also shown for
comparison. (a) Body weight; (b) fasting blood glucose; (c) glucose
AUC during GTT. Data are means± s.e.m. (n= 8 for STD; n= 8 for
HFD; n= 8 for STD/STD; n= 8 for HFD/STD). **Po0.01 ***Po0.001,
****Po0.0001. STD/STD mice maintained on STD diet through the
entire protocol; HFD/STD, HFD-treated mice returned to STD; AUC,
area under the curve; GTT, glucose tolerance test.
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Maunakea and co-workers40,41 have recently reported that, in
mammals, methylation occurring in the gene-associated regions
mainly involve gene bodies rather than promoter 5' CGI, as o3%
of promoter-associated CGI are methylated. Similarly, our MeDIP-
seq analysis revealed that most methylated sites identified in the
mouse adipose tissue falls within the gene bodies, while
methylation peaks at the 5'-UTR and gene promoter regions only
account for a small fraction of the total number of the genome-
wide methylated regions. Our data further revealed that only a
small proportion of methylated CGI undergo methylation changes
in response to HFD exposure, suggesting that CGI methylation is
specifically affected by the nutritional intervention. In addition,
despite the important role in gene regulation of the CGI shores
and shelves,42 our study did not reveal any significant difference
in the methylation of these regions in response to HFD, indicating
that CGI, rather than their surrounding regions, are involved in
mediating the impact of the diet on genome plasticity.

At variance from the gene-associated elements, repeated
elements, particularly the LTR and LINE families, are hypomethy-
lated in the HFD mice. Interestingly, in mice, LTR hypomethylation
is responsible for the agouti phenotype,43 while in humans, LINE
hypomethylation in the visceral adipose tissue is associated with
increased risk of metabolic syndrome in the presence of obesity.44

All together, these findings underline the potential importance of
these repetitive elements in determining pathological traits in
humans as well as in mouse models.
The level and pattern of DNA methylation are regulated by both

DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and
demethylating proteins.45 In addition, the effects of DNA
methylation on chromatin and gene expression are largely
mediated by methylated DNA reader proteins, including Methyl-
CpG-binding domain protein 3 (Mbd3 (ref. 46)). In this study, we
report that the increased methylation of several genomic regions
in adipose tissue of HFD-exposed mice is accompanied by the

Figure 5. Hoxa5 DMR methylation status and mRNA levels after STD rescue and the effect of Hoxa5 silencing on adipogenesis in vitro.
(a) Graphic representation of bisulphite sequencing of the Hoxa5-DMR in WAT from animals maintained under HFD or returned to a standard
chow diet (STD). Each horizontal row represents a single clone; the methylation percentages of 10 individual clones are indicated, with
unmethylated (○) and methylated (●) CpG sites. The data shown are representative of three mice per group. (b) qRT-PCR analysis of mRNA
expression levels of WAT Hoxa5 after returning the HFD mice to STD. Data are means± s.e.m. (n= 8 for STD; n= 8 for HFD; n= 8 for STD/STD;
n= 8 for HFD/STD). *Po0.05 ***Po0.001. (c) Effect of Hoxa5 knockdown on the extent of adipocyte differentiation was assessed by Oil Red O
staining of intracellular triglyceride, and measuring the extract’s absorbance at 490 nm. (d) qRT-PCR analysis of mRNA expression levels of
Ppary2 and C/ebpα in 3T3-L1 treated with Hoxa5-specific siRNA and controls, at different time point during differentiation. All data are
represented as means± s.e.m. of triplicates. *Po0.05.
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upregulation of MBd3 and Dnmt3a. It is possible that a causal
relationship exists between this increased MBd3 and Dnmt3a
expression and the observed hypermethylation at specific genes/
gene-associated elements occurring in mice in response to HFD
treatment. It is equally possible that the enhanced MBd3 and
Dnmt3a function impair the DNA demethylation machinery which
is, in turn, responsible for the hypermethylation revealed in the
HFD mice. Both mechanisms may also simultaneously occur.
Interestingly, however, recent studies by Kohno and co-workers47

have provided evidence for an important role of Dnmt3a in linking
environmental determinants to altered energy homeostasis.
Independent investigations have further identified evidence that
this methylase is involved both in the development of obesity and
in the obesity-related inflammation caused by HFD exposure.48

Demethylation events also seemed to affect several genomic
regions in the HFD-treated mice. The impact of these changes is
presently under investigation in the laboratory, as available
evidence indicates that they may well have effects on cell
phenotype.49

Investigating the functional consequences of the genome-wide
changes in DNA methylation accompanying HFD exposure led us
to recognize that most DMG that we have identified encode for
transcription factors. Interestingly, the class I Homeobox family of
transcription factors (Hox genes35) revealed a very significant DMG
enrichment in mice treated with HFD. In these same mice, a
perturbation in the methylation of genes included into the Ppar
signaling, PI3K-AKT and insulin resistance pathways was also
detected. However, different considerations led us to focus our
attention on the Hox genes in the context of the present work.
First, besides the well-described role in controlling tissue regional
development,35 increasing evidence indicates that Hox genes are
highly expressed in the adipose tissue35 and have an active role in
controlling adipocyte functions, including differentiation,
and body fat distribution.50,51 Second, human studies further
revealed that different members of the HOX subfamily are
upregulated upon the severe weight loss following bariatric
surgery, indicating that they respond to changes in body fat
mass.39,52 Third, current evidence indicates epigenetic control of
Hox genes during neurogenesis, development and disease.53 Thus,
the contribution of diet-induced epigenetic modifications to the
control of Hox gene function in the adipose tissue deserved to be
clarified. Indeed, an aberrant methylation of transcription factor
promoters may potentially trigger a completely distinct transcrip-
tional program in the hit tissues, producing a broad spectrum of
downstream transcriptional events.
In this work, we have shown that long-term HFD exposure

simultaneously changes methylation and expression of several
Hox genes. Among these genes, Hoxa5 exhibited the more robust
repression in response to diet-induced hypermethylation. The
transcriptional repression accompanying the epigenetic dysregu-
lation of Hoxa5 may have been, at least in part, caused by the
saturated fat enrichment of the diet rather than representing a
consequence of obesity, as it can be mimicked by exposing 3T3-L1
adipocytes to palmitate. It remains possible, however, that obesity
per se or specific obesity-associated traits further contribute to
Hoxa5 dysregulation.
The downregulation of Hoxa5 expression may contribute to the

adipose tissue functional changes and remodeling that accom-
pany weight gain determined by HFD exposure. Indeed, HOXA5
expression increases during differentiation of human primary
adipocytes and is differentially regulated in various adipose tissue
districts.54,55 Consistently, we report that the expression of Hoxa5
is modulated during in vitro adipogenesis in 3T3-L1 and its mRNA
levels were higher in the adipocyte fraction than in the stromal
vascular fraction of WAT from lean mice. In addition, Hoxa5
silencing was accompanied by an impaired differentiation,
paralleled by an altered adipogenic gene expression and
decreased lipid accumulation. These findings, and the crucial role

of the Hox genes in developmental processes, highlight the
potential role of Hoxa5 as regulator of differentiation and/or
commitment of adipogenic precursor cells.
Previous studies reported that Hoxa5 inhibits angiogenesis,56

while angiogenesis inhibitors improve obesity in animal models.51

Blood vessels not only supply nutrients and oxygen to individual
adipose cells, they also serve as a cellular reservoir to provide
adipose precursor and stem cells that control adipose tissue mass
and function.57 It is possible therefore that HFD-induced down-
regulation of Hoxa5 negatively affects recruitment of new adipose
cell precursors or contribute to the adipose cell dysfunction that
often accompany adipose tissue expansion in response to caloric
excess.
HFD-exposed mice returned to a standard chow diet for a

further 2-month period underwent simultaneous weight loss and
almost complete rescue of Hoxa5 mRNA levels. Importantly, Hoxa5
methylation also returned to levels comparable with control
animals fed the standard chow diet for an identical period of time.
This finding supported the role of diet-induced Hoxa5 methylation
in controlling mRNA expression of this gene. Similar to the HFD-
exposed mice, obese human individuals achieving profound
weight loss after bariatric surgery treatment also revealed
improved HOXA5 expression in adipose tissue.52 Whether
quantification of Hoxa5 expression can be exploited to assess
response to caloric restriction in animals and in humans, is
presently being investigated in the laboratory.
In conclusion, we have used MeDIP-seq analysis to verify

whether the exposure to HFD modifies the DNA methylation
profile in mouse adipose tissue and obtain indications on the
consequence of these changes on adipocyte function. Our work
reveals that the level of Hoxa5 mRNA expression, whose function
is implicated in fat tissue remodeling in response to changes
in body fat mass, is repressed in association with the methylation
changes caused by the nutritional intervention. Thus, environ-
mental cues may generate adipose tissue dysfunction by inducing
epigenetic modifications. Rescue of Hoxa5 methylation and
function in response to standard chow diet indicates that its
expression may represent a potential tool to quantify obesity
response to nutritional intervention.
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defined epigenetics as “the branch of biology which stud-
ies the causal interactions between genes and their products 
which bring the phenotype into being” [3]. However, the 
meaning of the word has gradually changed over the following 
years, and epigenetics is known today as “the study of changes 
in gene function that are mitotically and/or meiotically herita-
ble and that do not entail a change in DNA sequence” [4]. Dif-
ferently from traditional genetics, based on cell lineages and 
clonal inheritance, epigenetic changes often occur in groups 
of cells while some epigenetic events are clonal. In addition, 
genetic changes are, almost by definition, stable, whereas epi-
genetic changes are plastic events [2]. An example of the lat-
ter concept is provided by genomic imprinting, where DNA 
methylation may be lost during development, or when persist-
ing, it is erased and re-setted during gametogenesis [5]. Epige-
netic mechanisms are plastic genomic processes that change 
genome function under endogenous and exogenous influences 
[6, 7], and may propagate modifications of gene activity from 
one cell generation to the next [8]. These mechanisms imply 
chemical modification of DNA, such as DNA methylation, 
post-traslational changes in histone proteins altering chroma-
tin conformation, and transcriptional gene silencing mediated 
by non-coding RNAs (ncRNAs) [9] (Fig. 1). Abnormalities 
in one or more of these mechanisms can lead to inappropriate 
expression or silencing of genes, resulting in imbalance of the 
epigenetic network and may result in metabolic disorders such 
as T2D and obesity [10, 11].

Epigenetic mechanisms and gene function

DNA methylation

DNA methylation is a covalent modification of DNA that 
occurs at position 5 of the cytosine pyrimidine ring [12]. 

Abstract Type 2 diabetes (T2D) and obesity are the major 
public health problems. Substantial efforts have been made 
to define loci and variants contributing to the individual risk 
of these disorders. However, the overall risk explained by 
genetic variation is very modest. Epigenetics is one of the 
fastest growing research areas in biomedicine as changes in 
the epigenome are involved in many biological processes, 
impact on the risk for several complex diseases including 
diabetes and may explain susceptibility. In this review, we 
focus on the role of DNA methylation in contributing to the 
risk of T2D and obesity.

Keywords Epigenetics · DNA methylation · Type 2 
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Epigenetics: current status of knowledge

It is now well recognized that environmental factors including 
diet, physical activity, drugs and smoking, affect the pheno-
type and provide a major contribution to susceptibility to most 
chronic non communicable diseases [1]. Epigenetics acts at 
the interface between the genome and environmental factors, 
and might be broadly defined as the sum of all the mechanisms 
necessary to unfold the genetic program into development 
[2]. In the early 1940 s, Conrad Waddington linked genetics 
and developmental biology coining the term epigenetics. He 
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Nearly four decades ago, DNA methylation was identified 
as hotspot for spontaneous base substitutions [13]. Indeed, 
while spontaneous deamination of cytosine produces ura-
cil, a nitrogenous base that does not belong to DNA and 
that is immediately recognized and corrected by the sys-
tem of DNA repair; deamination of 5-methyl cytosine pro-
duces thymine, causes C:G to T:A transitions, and creates 
a mismatch that the system of DNA repair does not always 
preserve [10, 14]. DNA methylation is the better character-
ized epigenetic mark. In mammals, it is essential during 
development and is involved in a variety of biological pro-
cesses, including genomic imprinting and X chromosome 
inactivation [15]. DNA methylation is established during 
embryogenesis by de-methylation and de novo methyla-
tion events that can be inherited and maintained clonally 
by the action of specific enzymes termed DNA methyl-
transferases (DNMTs) [15, 16]. DNMT1 faithfully and 
symmetrically propagates cytosine methylation through 
recognition of methylated cytosines from an existing DNA 
strand to its novel partner upon replication and is primar-
ily responsible for the maintenance of DNA methylation 
in cells. DNMT3A and DNMT3B are mainly involved in 

de novo methylation and establish new methylation pat-
terns [4]. DNA methylation has long been recognized as an 
epigenetic silencing mechanism [17] which preferentially 
occurs at CpG di-nucleotides that are usually clustered in 
the CpG islands (CGIs) [18]. Quite often, un-methylated 
CpG sites at gene promoters create a transcriptionally per-
missive chromatin state by destabilizing nucleosomes and 
facilitating the recruitment of transcription factors [19]. 
On the other hand, dense DNA methylation of CpGs medi-
ates stable long-term gene silencing by direct inhibition of 
transcription factors binding or by a combination of events 
mediated by methyl-CpG binding domain proteins (MBDs) 
which recruit methylated DNA mediators of chromatin 
remodeling, such as histone deacetylases (HDACs), or 
other repressors of gene expression (Table 1) [17, 20, 21].

Histone modifications

In eukaryotic cells, nucleosomes are the repeating and 
functional structural units of chromatin. They are com-
posed of DNA wrapped around eight histone proteins, two 
homo-dimers histones H3 and H4, and two hetero-dimers 
histones H2A/H2B. Nucleosomes are mutually connected 
among themselves by the stretches of variable length of 
DNA linker conveyed by histone H1 [22, 23]. Histone 
modifications, such as acetylation, methylation, phospho-
rylation, ubiquitination, sumoylation and ADP ribosylation, 
are reversible epigenetic modifications, occurring at the 
histone tails. These modifications regulate gene expression 
by dynamically altering chromatin conformation causing 
electrostatic change and/or modulating binding proteins to 
chromatin [22, 24]. Even more extensively than other types 
of modifications, acetylation and methylation mediate for-
mation of the condensed transcriptionally silent hetero-
chromatin and of the transcriptionally active euchromatin. 
In mammalian cells, heterochromatin prevails and is gener-
ally characterized by high levels of DNA methylation and 
histone de-acetylation, and is enriched in tri-methylation of 
H3-Lys9, H3-Lys27, and H4-Lys20 [25, 26]. On the other 
hand, euchromatin exhibits lower levels of DNA methyla-
tion, and is typically enriched in acetylation of lysine resi-
dues at histones H3 and H4 and in mono- and tri-methyla-
tion of H3-Lys4 (Table 1) [27, 28].

NcRNAs

Findings over the past ten years have progressively revealed 
the relevance of ncRNAs in most epigenetically controlled 
events including modulation of gene transcription, trans-
poson activity and silencing, X-chromosome inactivation 
and paramutation [29]. NcRNAs include multiple classes 
of RNA transcripts that do not encode proteins but rather 
regulate gene expression at the post-transcriptional level 

Fig. 1  Schematic representation of epigenetic modifications. Epi-
genetic modifications include DNA methylation, histone modifica-
tions and miRNAs. DNA methylation preferentially occurs at CpG 
di-nucleotides and is generally recognized as an epigenetic silencing 
mechanism. Histone modifications, instead, influence gene expression 
by directly altering the chromatin conformation through the passage 
from a condensed transcriptionally silent heterochromatin to tran-
scriptionally active euchromatin and vice versa. Different types of 
modifications are known and include acetylation (Ac), methylation 
(Me), and phosphorylation (P) of histones tails. Finally, miRNAs act 
at post-transcriptional level by suppressing target gene expression or, 
through a non-perfect complementarity between miRNA and target 
mRNA that causes translation inhibition of the target or through near-
perfect complementarity which results in the degradation of the target 
mRNA
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[30]. The most extensively studied ncRNAs are the miR-
NAs, small RNA molecules (21–25 nucleotides in length) 
often implicated in cell- and tissue-specific differentia-
tion and development and associated to different disorders 
[31]. In the human genome, the exact number of reported 
sequences coding for these regulatory molecules contin-
ues to rise. In 2015, an analysis of 13 human cell types has 
revealed the existence of 3707 novel miRNA sequences, in 
addition to the 1900 sequences previously described [32]. 
miRNAs in the human genome are transcribed from both 
introns and exons of non-coding genes and from introns of 
protein coding genes as well [33]. In addition, some mam-
malian miRNAs derived from various transposons and pro-
cessed pseudogenes [34]. miRNAs are critical regulators 
of post-transcriptional gene expression. In particular, sup-
pression of the target gene expression mediated by miR-
NAs occurs based on the degree of complementarity of 
the miRNA with the 3’ Untranslated Region (3’UTR) of 
the target mRNA. Non-perfect complementarity between 
miRNA and target RNA, generally due to a pairing of only 
six to eight nucleotides, causes translation inhibition of the 
target mRNA, while near-perfect complementarity results 
in the degradation of the target mRNA by the RNA-induced 
silencing complex (Table 1) [35]. Interestingly, miRNAs 
are also susceptible to epigenetic modulation. Aberrant 
DNA methylation of miRNA gene promoters frequently 
occurs in human cancer and results in miRNAs expres-
sion down-regulation [36]. On the other hand, miRNAs are 

able to regulate both DNA methylation and histone modi-
fications. Indeed, miRNAs may control the expression of 
important epigenetic regulators including DNMTs and 
HDACs thereby impacting on the entire gene expression 
profile [37].

Epigenetics in T2D and obesity

T2D and obesity are common metabolic disorders, which 
have reached epidemic proportions globally [38, 39]. Popu-
lation and family (including twins) studies have extensively 
documented the familial aggregation of these diseases [40–
45] with more than 175 genetic loci conclusively associ-
ated [46, 47]. Nevertheless, the impact of these loci, even 
in combination, on risk is very modest (5–10 % for T2D 
and ~2% for body mass index, BMI), leaving the heritabil-
ity issue unsolved [48]. Technical limitations might, in part, 
account for this situation [49]. More likely, inheritance 
may be explained by epigenetics. Indeed, familial aggrega-
tion may reflect not only genetic influences, but also rep-
resent the effects of a shared family environment and thus 
of common environmentally induced epigenetic modifica-
tions [48]. In addition, while not been proved in humans 
yet, in rodents, certain environmentally induced epigenetic 
modifications can be trans-generationally transmitted to 
the offspring [50–52]. Environmentally induced epigenetic 
modifications may further explain the global epidemics of 

Table 1  Epigenetic modifications

Overview of the epigenetic modifications and of the different classes of enzymes involved in these processes

DNMTs DNA methyltransferases, TET ten–eleven translocation enzymes family, HATs histone acetyltransferases, HDACs histone deacetylases, 
HMTs histone N-methyl transferases, HDMs histone demethylases, MSK1 mitogen-and-stress activated protein kinase-1, H3 histone 3, H4 his-
tone 4, K lysine residue, S serine residue, Me2 di-methylation, Me3 tri-methylation

Epigenetic modifications Enzymes Type of modification Effect on gene expression References

DNA Methylation DNMT1
DNMT3A, DNMT3B

Methylation maintenance
de novo methylation

Suppression
Suppression

[17]

TET family De-methylation Activation [16]

Histone modifications HATs Acetylation Activation
e.g., H3K9, H3K14, H3K18, H3K56, H4K5, 

H4K8, H4K12, H4K16.

[25–28]

HDACs De-Acetylation Repression [25–28]

HMTs Methylation Activation
e.g., H3K4me2, H3K4me3, H3K36me3, 

H3K79me2
Repression
e.g., H3K9me3, H3K27me3, H4K20me3.

[25–28]

HDMs De-methylation Activation or repression based on the lysine 
residue

[25–28]

MSK1 Phosphorilation Activation
e.g., H3S28

[26]

miRNAs Non-perfect complementarity Inhibition of the mRNA target translation [35]

Perfect complementarity Degradation of the mRNA target [35]



1098 J Endocrinol Invest (2016) 39:1095–1103

1 3

T2D and obesity, whose exponential rise in the past dec-
ades have been related to rapid cultural and social changes, 
such as socio-economic status, dietary changes, physical 
inactivity and unhealthy behaviors, all of which tend to 
cluster in family groups [38, 53]. Finally, epigenetics may 
help to understand the identical twin discordance for obe-
sity and T2D [54, 55]. For example, the concordance rates 
for T2D among monozygotic twins are only ~ 70 % [56]. 
In these metabolic disorders, the incomplete concordance 
may be in part due to stochastic or environmentally deter-
mined epigenetic modifications that change over the life-
time and is responsible for the phenotypic differences and 
susceptibility to disease. Epigenetic processes may, there-
fore, contribute to the development of T2D and obesity and 
mediate the effects of environmental exposure on risk [9, 
57]. In the following paragraphs, examples from our own 
as well as other investigators will be presented supporting 
the evidence linking epigenetic modifications, in particular 
DNA methylation, to T2D and obesity in both humans and 
rodents.

T2D and DNA methylation

T2D is a metabolic abnormality characterized by elevated 
plasma glucose levels. T2D typically occurs when insulin 
secretion fails to keep pace with reduced sensitivity to the 
action of circulating insulin [38]. There is now substantial 
evidence indicating that environmentally induced epige-
netic changes contribute to diabetes prevalence (Table 2). 
Ling et al. have recently demonstrated that the promoter 
of the transcriptional co-activator Peroxisome proliferator 
activated receptor gamma coactivator-1 alpha (PGC1-α) 
gene, mainly involved in mitochondrial function, is highly 
methylated in pancreatic islets obtained from diabetic 
patients compared with non-diabetic controls [58]. Addi-
tionally, Barrès et al. have shown that the hyper-meth-
ylation of the PGC-1α promoter occurs even in the skel-
etal muscle from type 2 diabetic subjects compared with 

normal glucose-tolerant (NGT) individuals. Hyper-meth-
ylation negatively correlates with PGC-1α mRNA expres-
sion in these subjects [59]. In addition, the exposure of pri-
mary human skeletal muscle cells from NGT individuals to 
external factors, such as free fatty acids and tumor necrosis 
factor-alpha (TNF-α) directly and acutely alters the methyl-
ation status of PGC-1α promoter. These findings illustrate 
how alterations in the extracellular milieu may predispose 
to T2D by inducing DNA methylation changes [59]. Also, a 
genome-wide DNA methylation analysis of skeletal muscle 
from obese subjects before and after bariatric surgery pro-
vides evidence that the promoter methylation of PGC-1α 
is altered by obesity and restored after weight loss. DNA 
methylation inversely correlates to BMI, leptin, triglyceride 
and insulin levels in these subjects, which supports the role 
of DNA methylation in the physiological control of PGC-
1α gene transcription [60]. The Pancreatic duodenal home-
obox 1 (PDX-1) promoter is also methylated. PDX-1 is a 
homeodomain-containing transcription factor that plays a 
key role in pancreas development and function. In humans, 
mutations of PDX-1 cause maturity onset diabetes of the 
young 4 (MODY4) [61], while Pdx-1 silencing in pancre-
atic β-cells causes diabetes in mice [62]. In humans pan-
creatic islets, Yang et al. have shown that 10 CpG sites in 
the PDX-1 promoter and enhancer regions are hyper-meth-
ylated in type 2 diabetics compared with healthy individu-
als and that glycosylated hemoglobin (HbA1c) negatively 
correlates with mRNA expression of PDX-1 and positively 
correlates with DNA methylation, suggesting a role of 
chronic hyperglycemia in the modulation of PDX-1 expres-
sion through epigenetic events [63]. In support of this con-
cept, these authors also found an increased DNA methyla-
tion of the Pdx-1 gene in clonal rat β-cells exposed to high 
levels of glucose associated to increased mRNA expres-
sion and binding of the Dnmt1 on Pdx-1 promoter [63]. 
More recently, a genome-wide analysis of differentially 
methylated sites in genomic regions associated to T2D has 
recently revealed that the Fat mass and Obesity-associated 

Table 2  DNA methylation in T2D and Obesity

Examples of epigenetically modulated genes in T2D and obesity

T2D type 2 diabetes, PBLs peripheral blood lymphocytes, PGC1α peroxisome proliferator activated receptor gamma coactivator-1 alpha, PDX-1 
pancreatic duodenal homeobox1, FTO fat mass and obesity-associated, POMC pre-proopiomelanocortin, RXRA retinoid X receptor-alpha

Genes Regions Epigenetic modification Phenotypes Tissues/cells References

PGC1α Promoter ↑ DNA Methylation T2D Pancreatic islets, Skeletal muscle [58]
[59]

PDX-1 Promoter ↑ DNA Methylation T2D Pancreatic islets [63]

FTO Intron 1 ↓ DNA Methylation T2D PBLs [64]

POMC Intron 2-Exon 3 ↑ DNA Methylation Obesity PBLs [72]

RXRA Promoter ↑ DNA Methylation Obesity Umbilical cord [74]
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(FTO) gene is hypo-methylated in a CpG site within the 
first intron in type 2 diabetics compared with control sub-
jects in human peripheral blood. The T2D predictive power 
of this mark is significantly greater than all genetic vari-
ants so far described [64]. In the same investigation Top-
eroff et al. have also prospectively established, that, in an 
independent cohort hypo-methylation at the FTO intron is 
observed in young subjects that later progress to T2D. This 
further finding provides evidence that methylation changes 
predispose to T2D and deserve to be considered further 
investigated as T2D markers.

Obesity and DNA methylation

Obesity is a complex disorder resulting in an abnormal 
accumulation of fat in the organism due to alterations 
in energy homeostasis in terms of balance among energy 
intake, expenditure and storage [65]. It has been extensively 
documented in both humans and animal models that a rela-
tionship exists between obesity and the epigenetic regula-
tion of genes involved in the control of food intake (Table 2) 
[51, 66–70]. In this context, the epigenetic modulation of 
the Agouti gene is a paradigmatic example of this associa-
tion in mice. The Agouti gene encodes the paracrine-sign-
aling molecule “Agouti signalling peptide” (ASIP), which 
antagonizes the melanocortin 1 receptor (MC1R) and leads 
melanocytes to produce yellow rather than black coat pig-
ments. Additionally, ASIP acts as antagonist of the hypo-
thalamic MC4R, inhibiting the anorexigenic neuropeptide 
alpha-melanocyte-stimulating hormone (α-MSH) signaling, 
thereby promoting the activation of orexigenic pathways 
which make mice hyperphagic and prone to develop obe-
sity and diabetes [67]. It is now known that the Agouti gene 
is sensitive to cytosine methylation [69]. When its promoter 
is un-methylated, the Agouti gene is in an “ON” state, ASIP 
protein is abundant and mice show the typical agouti yel-
low coat and a tendency to develop obesity and diabetes 
[70]. On the contrary, when the promoter is heavily methyl-
ated, the Agouti gene is in an “OFF” state, ASIP levels are 
low resulting in mice that are lean and exhibit black coat. 
Interestingly, the Agouti gene is sensitive to environmental 
stimuli [51, 68, 71]. Nutrients and environmental pollutants 
impact on Agouti gene expression altering disease suscep-
tibility through epigenetic modifications. Agouti pregnant 
mice fed diets supplemented with the methyl donors folic 
acid, vitamin B12 or choline generate lean brown offspring 
which show increased DNA methylation on the Agouti 
gene promoter and decreased ASIP protein levels [71]. 
In addition, the effects on coat color induced by maternal 
methyl-donor supplemented diet are also inherited in the 
F2 generation, indicating a germline propagation of the 
epigenetic modifications [51]. On the other hand, maternal 
exposure to the environmental pollutant bisphenol A, which 

is commonly present in many items such as food and plas-
tic beverage containers and baby bottles, shifted the coat 
color of the offspring toward yellow by decreasing DNA 
methylation of CpG sites within the Agouti promoter [68]. 
Maternal supplementation with methyl donors abolished 
the bisphenol A-induced hypo-methylation of the Agouti 
gene in the offspring, demostrating the potential protec-
tive effect of simple dietary interventions against effect of 
an unhealthy environment effects on the fetal epigenome 
[68]. In humans, DNA methylation of the Pre-proopi-
omelanocortin (POMC) gene which encodes the anorexi-
genic hormone α-MSH produced by hypothalamic arcuate 
nucleus neurons has been associated with the individual 
risk of childhood obesity [72]. In particular, using periph-
eral blood cells, Kuenen et al. have found hyper-methyla-
tion at the Intron 2/Exon 3 boundary of the POMC gene in 
obese compared with normal weight children. In particular, 
in these obese children, the Alu elements, which are known 
to influence methylation in their genomic proximity at the 
Intron 2, trigger a default state methylation at the Intron 
2/Exon 3 boundary, interfering with binding of the his-
tone acetyltransferase/transcriptional coactivator p300 and 
reducing POMC expression [72]. In addition, several stud-
ies suggest a critical role of epigenetic marks also as pre-
dictors of susceptibility to obesity and metabolic disease 
in humans and animal models [73, 74]. A further example 
of this concept in humans has been provided by studies on 
the Retinoid X receptor-alpha (RXRA) gene. Godfrey et al., 
designed a perinatal epigenetic analysis of the methylation 
status of CpG sites at the promoters of 78 selected candi-
date genes in DNA from umbilical cord tissue of children 
who were assessed for adiposity at age 6 and 9 years. These 
authors have established that the variation of adiposity and 
the onset of obesity in pre-pubertal children were associ-
ated with the specific hyper-methylation of a CpG site at 
the RXRA chr9:1363558885+ at birth [74]. Furthermore, 
in the same population, it was demonstrated that this neo-
natal epigenetic mark was associated with lower maternal 
carbohydrate intake in pregnancy first trimester, providing 
a further example of how epigenetic processes may link 
the early prenatal life with the predisposition to obesity 
and other phenotypic outcomes [74]. In the future, perina-
tal identification of individuals that present DNA methyla-
tion changes at specific genes may help in preventing later 
obesity. In accordance to this concept, a recent bioinfor-
matic analysis, performed to search for epigenetic obesity 
biomarkers, has established potential regions of interest 
which have a high density of CGIs in the promoter of sev-
eral obesity-related genes (epiobesigenes), such as Leptin, 
Phosphatase and tensin homolog (PTEN), and Fibroblast 
growth factor 2 (FGF2) or genes implicated in adipogen-
esis, such as Peroxisome proliferator-activated receptor 
gamma (PPARG), in inflammation, such as Suppressors of 
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cytokine signaling 1 and 3 (SOCS1/SOCS3), and insulin 
signaling, like Lipoprotein lipase (LPL), Fatty acid binding 
protein 4 (FABP4), and Insulin-like growth factor binding 
protein-3 (IGFBP3) [75].

Epigenetics and nutrition: lessons from recent 
studies

Nutritional epigenetics has become an attractive field 
of study since it associates nutrients and bioactive food 
components with epigenetic modifications of gene func-
tion. As reported in this review, a variety of evidence, 
in both humans and animal models, supports the asso-
ciation between changes in nutritional status, epigenetic 
modifications and predisposition to T2D and obesity [76]. 
Shen et al. have demonstrated that high fat diet (HFD) 
feeding impacts on the Leptin gene by inducing pro-
moter CGI hyper-methylation in murine white adipose 
tissue (AT) [66]. Consistent with this observation, data 
obtained by our own group have further highlighted the 
role of over-nutrition in contributing to the gene function 
de-regulations occurring in obesity through epigenetic 
modification. By methylated DNA immuno-precipitation 
sequencing (MeDIP-seq), we have recently revealed that, 
HFD triggers a massive DNA methylation reprogramming 
in AT [77]. In particular, about 14.8 × 103 regions were 
found to be differentially methylated (DMRs) in mice 
fed a HFD. Interestingly, we have demonstrated that pro-
longed HFD regimen promotes a specific DMR distribu-
tion in mice [77]. DMR occurrence was increased in the 
gene-associated elements, particularly introns, and in the 
CGIs, while the number of DMRs identified in genomic 
repeat elements including long terminal repeats (LTRs) 
and long interspersed elements (LINEs) was decreased 
in obese compared with lean mice. Gene ontology analy-
sis indicates that HFD feeding promotes DMRs enrich-
ment in genes involved in developmental, metabolic and 
transcriptional processes in mice. In this same study, it 
has also been revealed that, among several differentially 
methylated pathways, the Hox family of transcription 
factors was highly enriched in differentially methylated 
genes in HFD-fed compared with STD-fed mice. In par-
ticular, the Hoxa5 gene, which is implicated in fat tis-
sue differentiation and remodeling [78, 79], was highly 
methylated at its 5′UTR and transcriptionally repressed 
in AT from obese compared with lean mice. In addition, 
the exposure of murine 3T3-L1 adipocytes to palmitate, 
a major component of the HFD, enhances methylation 
at the Hoxa5 5′UTR and causes Hoxa5 mRNA down-
regulation, suggesting that in AT the epigenetic silencing 
of Hoxa5 gene may be dependent, at least in part, on the 
effect of saturated fats rather than on obesity per se [79]. 

Interestingly, when obese mice exposed to chronic HFD 
treatment were returned to standard chow diet for two fur-
ther months, Hoxa5 DNA methylation and expression lev-
els returned to values similar to those of mice maintained 
under STD, emphasizing the plasticity of these epigenetic 
events [79] (Fig. 2).

This same MeDIP-seq approach has also identified the 
Ankyrin repeat domain 26 (Ankrd26) as a gene sensitive to 
nutrition-induced epigenetic changes. ANKRD26, a gene 
highly expressed in different areas of the hypothalamus, 
has been related to specific forms of hereditary obesity in 
humans [80] and was demonstrated to be involved in the 
regulation of feeding behavior and in the development 
of both obesity and diabetes in mice [81–83]. Mice with 
a partial inactivation of this gene show an obese pheno-
type which results from a marked hyperphagia rather than 
a reduction of the energy expenditure and activity [81]. 
When deleted at its C-terminus, Ankrd26 leads to exces-
sive food intake and obesity due to severe region-specific 
changes in primary cilia in the brain [83]. In addition to 
its function in appetite control, the Ankrd26 gene has a 
role in the regulation of adipocyte differentiation in mouse 
embryonic fibroblasts and in 3T3-L1 cells [84, 85]. We 
have demonstrated that hyper-methylation of the Ankrd26 
promoter occurs in obese mouse AT upon prolonged HFD 
feeding compared to age- and sex-matched STD-fed 
mice and directly interferes with the binding of the his-
tone acetyltransferase/transcriptional coactivator p300 to 

Fig. 2  High fat feeding: DNA methylation at the Hoxa5 gene in vivo. 
DNA methylation analysis performed on the AT from mice fed chow 
diet or high fat diet reveals the presence of a DMR relative to the 
Hoxa5 locus among high fat fed- and chow diet fed-mice. This event 
is associated with a strong reduction of the Hoxa5 mRNA expression 
levels in obese mice compared with lean mice. Interestingly, re-feed-
ing obese mice a chow diet for 2 further months reverted the Hoxa5 
DNA methylation and its expression to levels similar to those in lean 
control fed a standard chow diet
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this same region. These events result in the down regula-
tion of the Ankrd26 gene expression [unpublished obser-
vations]. We have further reveled that Ankrd26 silencing 
alters secretion of pro-inflammatory adipokines in vitro. 
These findings indicate that the epigenetic silencing of the 
Ankrd26 gene might be one of the mechanisms respon-
sible for AT inflammation in response to HFD [unpub-
lished observations]. In humans, computational data from 
a genome-wide DNA methylation analysis in subcutane-
ous white AT revealed that ANKRD26 gene is included 
in a list of 2825 genes where both DNA methylation and 
mRNA expression levels significantly correlate with BMI 
[86]. According to these findings, our preliminary data in 
human peripheral blood leukocytes underline a negative 
correlation between ANKRD26 mRNA expression levels 
and BMI, supporting the hypothesis that an epigenetic 
regulation of ANKRD26 gene may occur in humans, as 
well as in mice, and represent a pathogenic mechanism by 
which environmental exposures to nutrients contribute to 
disease susceptibility through epigenetic modifications.

Conclusions and future perspectives

The epigenome undergoes continuous transformations 
throughout our own lifetime leading to changes in genome 
function. The epigenetic hypothesis argues that, in addition 
to genetic variation, epigenetics provides an additional set 
of mechanisms mediating the relationship between geno-
type and the external environment and potentially contrib-
uting to the individual susceptibility to different disorders. 
During the past decades, the study of epigenetic modifica-
tions has been one of the most emerging and novel areas 
in fundamental as well as in clinical research and cur-
rently represents a very productive field of study, which has 
already provided a framework for the search of etiological 
factors in environment-associated diseases such as T2D and 
obesity. It is, indeed, clear that genetic variability only mar-
ginally contributes to the pathogenesis and family risk of 
these disorders. In this review, we have presented important 
acquisitions on the epigenetic network in T2D and obesity, 
mostly focusing on changes of the DNA methylation sta-
tus of specific genes. However, understanding of the epi-
genetics of these two complex diseases is still limited. Fur-
ther work is needed to clarify the molecular mechanisms 
responsible for the epigenetic control of gene activity and 
their interactions and alterations, and to establish the role 
of epigenetics in the risk stratification of these diseases. In 
the near future, further hints on how epigenetic changes are 
involved in the etiopathogenesis of T2D and obesity will 
be attained from studies accomplished on other epigenetic 
modifications, such as histone modifications and ncRNAs, 
which may selectively affect the expression of specific 

genes, and from epigenome-wide analysis extended to spe-
cific human cell types, e.g., stem, precursor and differenti-
ated cells, or to particular tissues, e.g., fat, skeletal muscle, 
liver and pancreatic islets. It is expected that these studies 
will pave the way to novel and more effective strategies 
aimed at diabetes and obesity prevention and at personal-
ized epigenetic treatment. Indeed, it becomes clear that 
getting a full picture of the epigenetic events involved in 
these two diseases will (1) represent a powerful tool for 
predicting and preventing future disease onset in the popu-
lation; (2) provide additional stimuli for the development of 
clinical epigenetic biomarkers, which will generate novel 
relevant information for diagnosis, prognosis and therapy 
optimization; and (3) drive advancement in epigenetic drug 
discovery with the generation of more effective epi-drugs, 
selective for specific epi-targets, which in the forthcom-
ing future might be used in combination with conventional 
therapeutics and/or might get the opportunity to develop 
epigenetic treatment personalized to the patient’s epige-
netic traits.
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Specific CpG hyper-methylation 
leads to Ankrd26 gene down-
regulation in white adipose tissue 
of a mouse model of diet-induced 
obesity
Gregory A. Raciti1,2,*, Rosa Spinelli1,2,*, Antonella Desiderio1,2, Michele Longo1,2, 
Luca Parrillo1,2, Cecilia Nigro1,2, Vittoria D’Esposito1,2, Paola Mirra1,2, Francesca Fiory1,2, 
Vincenzo Pilone3, Pietro Forestieri4, Pietro Formisano1,2, Ira Pastan5, Claudia Miele1,2 & 
Francesco Beguinot1,2

Epigenetic modifications alter transcriptional activity and contribute to the effects of environment on 
the individual risk of obesity and Type 2 Diabetes (T2D). Here, we have estimated the in vivo effect of a 
fat-enriched diet (HFD) on the expression and the epigenetic regulation of the Ankyrin repeat domain 
26 (Ankrd26) gene, which is associated with the onset of these disorders. In visceral adipose tissue 
(VAT), HFD exposure determined a specific hyper-methylation of Ankrd26 promoter at the −436 and 
−431 bp CpG sites (CpGs) and impaired its expression. Methylation of these 2 CpGs impaired binding 
of the histone acetyltransferase/transcriptional coactivator p300 to this same region, causing hypo-
acetylation of histone H4 at the Ankrd26 promoter and loss of binding of RNA Pol II at the Ankrd26 
Transcription Start Site (TSS). In addition, HFD increased binding of DNA methyl-transferases 
(DNMTs) 3a and 3b and methyl-CpG-binding domain protein 2 (MBD2) to the Ankrd26 promoter. More 
importantly, Ankrd26 down-regulation enhanced secretion of pro-inflammatory mediators by 3T3-L1 
adipocytes as well as in human sera. Thus, in mice, the exposure to HFD induces epigenetic silencing of 
the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by 
high-fat regimens.

Obesity and T2D are two common non-communicable diseases, which are now reaching epidemic proportions 
globally1–3. Epigenetic processes may contribute to the development of these disorders and mediate the effects 
of environmental exposure on risk of both diseases. Indeed, studies in humans and animal models support the 
association between changes in the nutritional status, epigenetic modifications and predisposition to obesity and 
T2D4–7.

White adipose tissue (WAT) is a major endocrine tissue actively involved in the maintenance of the meta-
bolic homeostasis in response to nutrition and other environmental clues through changes in fat storage, tissue 
expansion and adipokine secretion8. In disease states, the failure of compensatory response results in an impaired 
endocrine function which leads to insulin resistance and metabolic derangement9. In particular, fat stored in 
VAT strongly correlates with metabolic alterations and has been shown to be an independent risk factor for 
obesity-associated comorbidities10–12.
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Ankrd26 was recently identified as a gene involved in the regulation of the feeding behavior and in the devel-
opment of both obesity and T2D in mice13–15. ANKRD26 maps at chromosome 10p12 in humans, a region 
associated with certain forms of hereditary obesity16. In mice, Ankrd26 gene is highly expressed in both the 
hypothalamus and WAT and its partial inactivation induces marked hyperphagia, severe obesity and diabetes  
in vivo13,14. In addition, in vitro evidence indicates Ankrd26 as a regulator of adipogenesis17,18. A methylome anal-
ysis of mouse epididymal WAT (eAT)19, the largest and easy accessible VAT depots in rodents20,21, has identified 
promoter hyper-methylation of Ankrd26 gene in HFD-fed compared to age- and sex-matched chow diet-fed 
mice, suggesting that Ankrd26 gene is amenable to nutritionally-induced epigenetic modifications. In this study, 
we aimed at establishing whether and how HFD modulates Ankrd26 gene expression in VAT in vivo through 
epigenetic processes.

Results
HFD affects body weight, glucose homeostasis and insulin sensitivity in mice. HFD-fed mice 
were heavier than standard chow diet (STD)-fed mice and reached a 50% increase of body weight compared 
with controls after 22 weeks of diet regimens (Table 1). These mice also exhibited increased fasting blood glucose 
levels, impaired glucose tolerance upon glucose loading and reduced insulin sensitivity after insulin injection 
compared with control mice (Supplementary Fig. S1).

HFD impairs Ankrd26 expression in mice. To establish whether HFD modulates in vivo Ankrd26 expres-
sion, mRNA and protein levels were measured in eAT. Treatment with HFD for 22 weeks led to a significant 
decrease in both Ankrd26 mRNA (p <  0.001) and protein (p <  0.01) levels in obese mice compared with con-
trols (Fig. 1a and b). Similarly, HFD lowered Ankrd26 mRNA levels in mesenteric VAT (Supplementary Fig. S2). 
HFD treatment for 4 additional weeks did not elicit any further decrease in Ankrd26 mRNA expression in the 
HFD-fed mice (34 week-old STD, Ankrd26 mRNA: 2.29 ×  10−3 ±  0.11 ×  10−3 AU; 34 week-old HFD, Ankrd26 
mRNA: 1.36 ×  10−3 ±  0.19 ×  10−3 AU; p <  0.001). Differently from the long-term treatment, both Ankrd26 
mRNA and protein levels showed no differences between HFD- and STD-fed mice upon 8 weeks of diet regimens 
(Supplementary Fig. S3a and b). Next, the Ankrd26 gene expression was assessed in vitro by exposing 3T3-L1 
adipocytes to either palmitate or oleate, representing saturated and unsaturated fatty acid species, which are 
abundant in the HFD, or alternatively to leptin, whose levels raise through obesity development22. Quantitative 
real-time PCR (qPCR) analysis showed that palmitate, but not oleate or leptin, reduced Ankrd26 expression by 
about 25% (Supplementary Fig. S4a and b), suggesting that, at least in part, excess of saturated fats accounts for 
HFD-induced Ankrd26 gene repression.

HFD induces DNA methylation at the Ankrd26 promoter in mice. To discover whether HFD induces 
DNA methylation changes at the Ankrd26 promoter and 5′ -untraslated region (5′  UTR), we performed Methylated 
DNA Immunoprecipitation (MeDIP) assay on pooled eAT genomic DNA from STD- and HFD-fed mice. This 
analysis revealed a 2-fold increase in DNA methylation at a segment of the promoter region (S1; − 462 bp/− 193 
bp) in HFD-fed mice, while no DNA methylation enrichment was observed in a second segment (S2; − 158 bp/  
+  140 bp; Fig. 1c). Consistently, palmitate but not oleate or leptin, enhanced S1 DNA methylation at the Ankrd26 
promoter in 3T3-L1 adipocytes (Supplementary Fig. S4c and d), as showed by MeDIP assay. To further deter-
mine the specific HFD-induced DNA methylation profile occurring at 9 CpGs located at − 436 and − 221 bp 
from the Ankrd26 TSS, we adopted bisulfite sequencing analysis. High CpG methylation density was detected 
in obese mice compared with controls in 2 close cytosine residues at − 436 and − 431 bp from the Ankrd26 
TSS (Fig. 1d). The combined percentage of methylation at these sites was inversely related to the amount of 
Ankrd26 mRNA (Fig. 1e). In parallel with mRNA expression, mice fed HFD or STD for 8 weeks showed no 
difference in the Ankrd26 DNA methylation state (Supplementary Fig. S3c). In addition, in 16 week-old and 
30 week-old STD-fed mice, no difference in both Ankrd26 mRNA levels (16 week-old STD, Ankrd26 mRNA: 
2.10 ×  10−3 ±  0.20 ×  10−3 AU; 30 week-old STD, Ankrd26 mRNA: 1.96 ×  10−3 ±  0.23 ×  10−3 AU; p =  0.126) and 
DNA methylation (16 week-old STD, DNA methylation: 51.7 ±  2.9%; 30 week-old STD, DNA methylation: 
51.3 ±  4.8%; p =  0.900) were observed. All together, these data indicate that the long-term exposure to calorie 
overload, rather than aging, affects eAT Ankrd26 expression and DNA methylation in mice.

Variable

16 week-old 30 week-old

STD (n = 12) HFD (n = 12) STD (n = 12) HFD (n = 12)

Body weight (g) 24.7 ±  2.1 34.4 ±  3.2a 26.4 ±  2.8 38.8 ±  3.3b,c

Fasting glucose (mmol/l) 5.9 ±  0.9 7.7 ±  1.7a 5.8 ±  1.2 9.1 ±  1.8b

GTT AUC (mmol/l 120 min−1) 725.7 ±  103.3 1290.7 ±  162.4a 653.6 ±  150.0 1344.2 ±  172.2b

ITT AUCi (mmol/l 120 min−1) 741.6 ±  127.0 355.7 ±  132.2a 681.0 ±  128.9 312.9 ±  117.6b

Table 1. Metabolic characteristics of HFD- and STD-fed mice. 8-week-old male C57BL/6 J mice were fed 
a high-fat diet (HFD) or a standard chow diet (STD) for 8 and 22 weeks. Body weight, fasting blood glucose, 
glucose tolerance test (GTT) Area Under the Curve (AUC) and insulin tolerance test (ITT) AUCi were 
reported. Data are mean ±  SD of determinations. ap <  0.001, 16-week-old HFD vs 16-week-old STD; bp <  0.001, 
30-week-old HFD vs 30-week-old STD; and cp <  0.001, 30-week-old HFD vs 16-week-old HFD.
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Methylation at the CpGs −436 and −431 bp modulates Ankrd26 promoter activity. To evalu-
ate the causal relationship between the promoter DNA methylation and transcription of Ankrd26 gene, a lucif-
erase assay was performed in NIH-3T3 cells transfected with in vitro methylated (me) or un-methylated (unme) 
pCpG-Ankrd26 luciferase reporter vectors, in which a selected region of the Ankrd26 promoter was cloned, 

Figure 1. Ankrd26 expression and DNA methylation in eAT from mice upon 22 weeks of HFD or STD 
treatments. (a) qPCR of Ankrd26 mRNA for HFD- (n =  12) and STD-fed (n =  12) mice. mRNA levels are 
expressed in absolute units (AU). (b) Representative western blot for ANKRD26 and α -Tubulin. Uncut western 
blot images are in the Supplementary Fig. S5. (c) MeDIP-qPCR of segment 1 (S1; − 462 bp/− 193 bp) and 
segment 2 (S2; − 158 bp/+ 140 bp) of Ankrd26 promoter region. (d) Bisulfite sequencing of Ankrd26 promoter 
region (− 436 bp/− 221 bp) in HFD- (n =  4) and STD-fed (n =  4) mice. Each row indicates sequencing results 
of ten independent clones. White circles, un-methylated CpGs; black circles, methylated CpGs. CpG position 
relative to Ankrd26 TSS is shown above each column. (e) Correlation between DNA methylation percentage 
at CpGs − 436 and − 431 bp and Ankrd26 mRNA levels. r and p values are indicated on graph. (b,c) Results are 
mean ±  SD from three independent experiments. (a–c), *p <  0.05, **p <  0.01, and ***p <  0.001 vs STD.
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containing the CpGs − 436, − 431 and − 391 bp. The un-methylated Ankrd26 promoter induced a 2.5-fold increase 
in the luciferase activity compared with the empty vector (Fig. 2a), indicating that this selected fragment is suffi-
cient to mediate promoter activity. In addition, methylation of the Ankrd26 promoter caused a 35% decrease of 
luciferase activity compared with the un-methylated Ankrd26 promoter (Fig. 2a), indicating that methylation of 
this region has a negative impact on Ankrd26 gene expression. Next, to define whether the CpGs − 436 or − 431 
bp or both is/are responsible for the regulation of the Ankrd26 promoter activity, luciferase assays were performed 
in NIH-3T3 cells transfected with un-methylated site-specific mutagenized vectors. The un-methylated Ankrd26 
promoter mutagenized at the − 436 bp CpG site (Ankrd26− 436unme), similarly to the wild type (Wt) methylated 
Ankrd26 promoter, showed a 40% reduction of the luciferase activity compared with the un-methylated Ankrd26 
Wt fragment (Fig. 2b). Similar data were obtained when the Ankrd26 promoter was mutagenized at the − 431 bp 
CpG site (Fig. 2b). Conversely, when the Ankrd26 promoter was mutagenized at the − 391 bp CpG site, the lucif-
erase activity of the un-methylated Ankrd26− 391 promoter was comparable to the un-methylated Wt promoter 
(Fig. 2b). Thus, specific methylation at the − 436 and − 431 bp CpGs in the Ankrd26 promoter modulates Ankrd26 
gene expression in vitro.

Figure 2. Ankrd26 promoter activity in NIH-3T3 cells. (a) Luciferase activity of pCpG-Ankrd26 constructs 
in vitro methylated (me) or un-methylated (unme) and of pCpG empty vector. Firefly luciferase activity 
was normalized to Renilla luciferase activity. Luciferase activity was measured in relative light units (RLU). 
***p <  0.001 vs pCpG; ###p <  0.001 vs pCpG-Ankrd26unme. (b) Luciferase activity of unme mutagenized 
vectors, pCpG-Ankrd26-436, pCpG-Ankrd26-431 and pCpG-Ankrd26-391. Firefly luciferase activity was 
normalized to Renilla luciferase activity. Luciferase activity was measured in relative light units (RLU). 
***p <  0.001 vs Wt unme. (a,b) results are mean ±  SD from three independent experiments.
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Methylation at the CpGs −436 and −431 bp impairs p300 binding to the Ankrd26 promoter.  
DNA methylation often induces gene silencing by inhibiting transcriptional activator binding to promoters23. 
TFBIND analysis of the Ankrd26 promoter region spanning the CpGs − 436 and − 431 bp, predicted a consensus 
sequence (− 442 bp/− 429 bp) for the histone acetyltransferase/transcriptional coactivator p30024,25. The recruit-
ment of p300 to this putative binding site and its relevance to the regulation of the Ankrd26 gene expression 
was therefore investigated. Chromatin Immunoprecipitation (ChIP) analysis showed a 40% decrease in p300 
binding to the Ankrd26 promoter in eAT of obese compared with lean mice (Fig. 3a). In addition, Electrophoretic 
Mobility Shift Assay (EMSA) with a double-stranded labeled probe containing the p300 consensus sequence 
on the Ankrd26 promoter revealed that the addition of p300 antibody to the probe/Nuclear Extract (NE) mix 
super-shifted one of the complexes formed by interaction of the probe with the NE proteins (Fig. 3b). Also, the 
presence of an un-methylated competitor to the probe/NE mix effectively displaced p300 binding to the probe, 
while the probe/p300 complex was not affected by the addition of both a methylated or a mutagenized competitor 
(Fig. 3c). The in vitro over-expression of p300 in NIH-3T3 cells caused a 3-fold increase of the un-methylated 
Ankrd26 promoter activity (Fig. 3d). At variance, when p300 was over-expressed, the luciferase activity of the 
methylated Ankrd26 promoter was 60% lower compared with the un-methylated Ankrd26 promoter (Fig. 3d). All 
together, these data indicate that p300 binding to Ankrd26 promoter regulates Ankrd26 gene expression and is 
dependent on the methylation state of the CpGs − 436 and − 431 bp.

HFD induces hyper-methylation of the Ankrd26 promoter through DNMT3a and DNMT3b in 
mice. The molecular events upstream and downstream methylation-induced displacement of p300 binding 
to the Ankrd26 promoter were subsequently analyzed. ChIP analysis revealed that binding of DNMT3a and 
DNMT3b, but not of DNMT1, to the Ankrd26 promoter was increased in HFD-fed mice compared to controls 

Figure 3. p300 binding and activity on Ankrd26 promoter. (a) ChIP of p300 binding on Ankrd26 promoter in 
eAT from HFD- (n =  3) and STD-fed (n =  3) mice, upon 22 weeks of diet regimens. ChIP enrichment is relative 
to Input chromatin. ***p <  0.001 vs STD. (b,c) Representative EMSA for double-stranded biotinylated Ankrd26 
probe with Nuclear Extract (NE) from NIH-3T3 cells. Uncut gel images are in the Supplementary Fig. S5.  
(b) EMSA super-shift assay with an anti-p300 antibody (lane 3) or a rabbit IgG (lane 4). (c) EMSA competition 
assay with 200-fold molar excess of un-labeled un-methylated (unme; lane 3), methylated (me; lane 4) or 
mutagenized (mut; lane 5) competitor. (d) Luciferase activity of in vitro methylated (me) or un-methylated 
(unme) pCpG-Ankrd26 vector in NIH-3T3 cells co-transfected with pCl.p300 vector. Firefly luciferase activity 
was normalized to Renilla luciferase activity. Luciferase activity was measured in relative light units (RLU). 
***p <  0.001 vs pCpG-Ankrd26 unme; ###p <  0.001 vs pCpG-Ankrd26 unme +  pCl.p300; §§§p <  0.001 vs pCpG-
Ankrd26 me. (a and d), results are mean ±  SD from three independent experiments.
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(Fig. 4a). Interestingly, HFD increased the binding of methylation-dependent transcriptional repressor MBD2 as 
well (Fig. 4b)23.

HFD affects histone acetylation, nucleosome positioning and RNA Pol II binding at the Ankrd26 
promoter in mice. Further analysis of the Ankrd26 promoter using the NuPoP software predicted 2 nucle-
osomes (Nuc), Nuc-2 (− 288 bp/− 132 bp) and Nuc-1 (− 105 bp/ +  41 bp), positioned between the p300 consensus 
sequence and the Ankrd26 TSS. Micrococcal Nuclease (MNase) treatment of eAT chromatin from HFD- and 
STD-fed mice followed by qPCR revealed that HFD rendered the Ankrd26 promoter less sensitive to nuclease 
digestion, increasing Nuc-2 and Nuc-1 positioning (Fig. 4c). Consistently, ChIP analysis showed that HFD feed-
ing significantly lowered histone H4 acetylation at both nucleosomes in the HFD- compared to STD-fed mice 
(p <  0.001; Fig. 4d). The RNA Pol II binding to the Ankrd26 TSS was also significantly lower in HFD-fed mice 
(p <  0.001; Fig. 4e). All together, these data indicate that methylation at the CpGs − 436 and − 431 bp and the 
subsequent p300 displacement from this region silenced Ankrd26 expression through nucleosome remodeling at 
the Ankrd26 promoter.

Figure 4. Epigenetic changes and protein binding at Ankrd26 promoter in eAT from mice upon 22 weeks  
of HFD. ChIP of DNMT1, DNMT3a, DNMT3b (a) and MBD2 (b) binding at Ankrd26 promoter region  
(− 553 bp/− 348 bp). (c) MNase for Nuc-2 (− 257 bp/− 198 bp) and Nuc-1 (− 84 bp/− 25 bp) occupancy at 
Ankrd26 promoter. (d) ChIP for acetyl-H4 enrichment at Nuc-2 and Nuc-1. (e) ChIP of RNA Pol II binding at 
Ankrd26 TSS (+ 16 bp/+ 159 bp). (a,b) and (d,e), ChIP enrichment is relative to Input chromatin. (a–e), results 
are mean ±  SD from three independent experiments. **p <  0.01 and ***p <  0.001 vs STD.
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Ankrd26 silencing promotes secretion of pro-inflammatory chemokines by cultured adipo-
cytes. To assess the functional consequences of the HFD-induced epigenetic silencing of the Ankrd26 
gene, Ankrd26 mRNA was reduced by about 35% by transfecting Ankrd26-specific siRNA in 3T3-L1 adi-
pocytes (Fig. 5a). Silenced adipocytes showed enhanced secretion of the pro-inflammatory chemokines, 
Keratinocyte-derived Cytokine/Interleukine 8 (KC/IL-8), Eotaxin, Monocyte chemotactic protein 1 (MCP1) and 
Rantes (Table 2). These changes were accompanied by increased mRNA levels of Eotaxin and Mcp1 with no 
change in Kc/Il-8 and Rantes mRNAs (Fig. 5b,c,d and e). It appeared therefore that Ankrd26 physiologically con-
trols the adipocyte pro-inflammatory secretion profile through effects occurring at different levels.

ANKRD26 expression negatively correlates with Body Mass Index (BMI) and inflammation 
markers in humans. mRNA expression of ANKRD26 in VAT was further examined in human obese sub-
jects (Supplementary Table S1) in relation to BMI and inflammatory parameters. Interestingly, in obese subjects 
with normal glucose tolerance (NGT), ANKRD26 expression in VAT was found to negatively correlate with BMI 
(Fig. 6a), with serum levels of the pro-inflammatory chemokines, IL-8 and RANTES and with serum levels of the 
inflammatory markers, IL-6 and C-reactive protein (CRP) (Fig. 6b,c,d and e). Altogether, these data indicate that, 
in obese humans, the reduction of ANKRD26 gene expression is associated with increased body weight and with 
a pro-inflammatory status.

Figure 5. Ankrd26 mRNA expression in Ankrd26-silenced mature adipocytes. 3T3-L1 mature adipocytes 
were silenced with 25 nmol/l of scrambled-siRNA or Ankrd26-siRNA for 48 h. Un-transfected cells were used 
to exclude transfection interference on mRNA expression. Ankrd26 (a), Eotaxin (b), Mcp1 (c), Kc/Il-8 (d) and 
Rantes (e) mRNA levels were evaluated at the end of the experiment and expressed in Relative Expression Units 
(REU). Data are mean ±  SD of determinations from three independent experiments. ***p <  0.001, vs  
Un-trasfected; ###p <  0.001, vs Scrambled-siRNA.
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Variable

3T3-L1 Adipocytes

Un-transfected Scrambled-siRNA Ankrd26-siRNA

Eotaxin (pg/ml) 514.34 ±  73.25 521.16 ±  82.90 705.92 ±  98.99b,d

G-CSF (pg/ml) 6.45 ±  0.96 7.11 ±  0.22 7.14 ±  0.90

IL-4 (pg/ml) 3.41 ±  0.32 3.21 ±  0.44 3.81 ±  0.51

IL-5 (pg/ml) 0.88 ±  0.14 0.79 ±  0.16 0.83 ±  0.33

KC/IL-8 (pg/ml) 565.39 ±  15.32 588.67 ±  30.86 702.58 ±  34.08a,c

IL-17 (pg/ml) 1.44 ±  0.62 1.72 ±  0.51 1.56 ±  0.42

MCP1 (pg/ml) 1758.04 ±  72.31 1718.77 ±  248.29 2500.31 ±  225.38b,d

MIP1β  (pg/ml) 1.32 ±  0.75 1.14 ±  0.52 1.17 ±  0.37

Rantes (pg/ml) 27.95 ±  2.74 33.31 ±  8.88 53.45 ±  2.35b,d

TNFα  (pg/ml) 4.98 ±  1.46 5.29 ±  1.31 5.57 ±  1.81

Table 2. Effect of Ankrd26 gene silencing on adipocyte-released chemokines/cytokines. 3T3-L1 mature 
adipocytes were silenced with 25 nmol/l of scrambled-siRNA or Ankrd26-siRNA for 48 h. Conditioned media 
were collected for 24 h in Dulbecco’s modified Eagle’s medium without serum and with 0.5% BSA. Adipokines 
were then assayed using the Bio-Plex Pro Mouse Cytokine Immunoassay. Un-transfected cells were also used 
to exclude transfection interference on adipokine secretion. Detectable adipokines are reported. Data are 
mean ±  SD of determinations from three independent experiments. ap <  0.001 and bp <  0.01, vs Un-transfected; 
cp <  0.001 and dp <  0.01, vs Scrambled-siRNA. Granulocyte-colony stimulating factor, G-CSF; Interleukin, IL; 
Keratinocyte-derived Cytokine/Interleukine 8, KC/IL-8; Monocyte chemotactic protein 1, MCP1; Macrophage 
inflammatory protein 1 beta, MIP1β ; Tumor necrosis factor alpha, TNFα .

Figure 6. Associations between VAT ANKRD26 mRNA expression, BMI and systemic inflammatory 
parameters in humans. Correlations of the human VAT ANKRD26 mRNA expression with BMI (a) and with 
serum inflammatory markers, IL-8 (b), RANTES (c), IL-6 (d) and CRP (e) in normal glucose tolerant obese 
individuals (n =  11; 5 M/6 F). r, Pearson’s coefficient; p <  0.05 were considered statistically significant.
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Discussion
Epigenetic modifications represent a common mechanism through which both genetic and environmental expo-
sures impact on the susceptibility to obesity and T2D26–28. Recent evidence has underlined the potential impor-
tance of epigenetic regulation of gene expression and function in obesity26. Methylation changes at the promoter 
of several genes have been identified in both human and rodent obesity29. Additionally, the exposure to high 
calorie diets, which promotes DNMT expression and enzymatic activities, impacts on DNA methylation profiles 
both at specific genes and at genome-wide level22,30, suggesting that DNA methylation changes play a role in the 
responses to fat and high-calorie diets31.

Our study revealed HFD-induced methylation of the Ankrd26 promoter. We have no clue at the moment 
on the detailed mechanisms causing the increased methylation of Ankrd26 in HFD-fed mice, but our results 
indicate that the HFD-induced hyper-methylation at Ankrd26 promoter was concomitant with enhanced bind-
ing of de novo DNMT3a and DNMT3b to the same Ankrd26 promoter region. These changes were followed by 
down-regulation of Ankrd26 expression in the eAT. The epigenetic silencing of Ankrd26 gene in eAT appear to 
depend, at least in part, on saturated fats, abundant in the HFD. Indeed, we found increased promoter DNA 
methylation and down-regulation of Ankrd26 in 3T3-L1 adipocytes upon exposure to palmitate, a major compo-
nent of the HFD, but not to oleate. At the variance with palmitate, cell exposure to leptin, whose serum concen-
tration increases in relation to obesity22, showed no effect on Ankrd26 expression and methylation. These findings 
suggest that specific nutritional components of the HFD may contribute to the epigenetic silencing of Ankrd26 
gene.

The HFD-induced changes in DNA methylation at Ankrd26 promoter and gene expression result from 
a long-term diet exposure. Indeed, cytosine hyper-methylation at the Ankrd26 promoter and gene silencing 
appeared in eAT from obese mice after a prolonged HFD feeding, while no evident difference was observed at 
earliest time-point. This time effect was associated with the eAT compensatory remodeling occurring in response 
to HFD. Indeed, eAT, along with other VAT depots, contributes to the inflammatory and metabolic compli-
cations in murine obesity32, and responds to HFD through different time-dependent changes33,34. Early upon 
HFD exposure (8–12 weeks), eAT expansion is accompanied by a major increase in adipocyte size. Upon more 
prolonged HFD exposure (20 weeks), however, eAT expansion is mainly sustained by increased adipogenesis 
and accompanied by enhanced secretion of inflammatory mediators, including Tumor necrosis factor alpha 
(TNF-α), IL-6, MCP1 and Rantes33–35. The mechanisms triggering this compensatory response in eAT have not 
been clarified yet but the present work now shows that they may involve HFD-induced Ankrd26 down-regulation. 
Along with its role in feeding behavior and body fat accumulation13–15, Ankrd26 has been identified as a regu-
lator of adipogenesis in vitro17,18. Firstly, adipogenesis of 3T3-L1 cells is enhanced by selective silencing of the 
Ankrd26 gene with an Ankrd26-specific shRNA18. Secondly, Mouse Embryonic Fibroblasts from Ankrd26 mutant 
mice (MEFs Ankrd26−/−) have a higher rate of adipocyte differentiation. Indeed, the mRNA expression of the 
master regulator genes of differentiation process, CCAAT enhancer-binding protein α (C/ebpα), and Peroxisome 
proliferator-activated receptor γ (Pparγ), are up-regulated in MEFs Ankrd26−/−, indicating that this gene is 
involved in regulating both the pre-adipocyte commitment and differentiation17.

In this work, we further demonstrated enhanced expression and/or secretion of the pro-inflammatory 
chemokines Eotaxin, MCP1, KC/IL-8, and Rantes by 3T3-L1 adipocytes whose Ankrd26 expression was silenced 
to levels similar to those occurring in response to HFD. These cytokines have been reported to contribute to adi-
pose tissue inflammation36,37. Since secretion of Eotaxin, MCP1, KC/IL-8, and Rantes by the eAT also increases 
upon prolonged exposure to HFD33,34, our findings suggest the involvement of Ankrd26 down-regulation in rais-
ing and/or sustaining the low-grade inflammatory response which occursin the eAT after long-termHFD feeding 
and is implicated in the development of insulin resistance and T2D33–35. This might represent a mechanism by 
which environmental cues are integrated at specific genomic loci, contributing to the metabolic disorder. The 
relevance of these observations to humans is supported by our further findings in obese individuals with nor-
mal glucose tolerance, revealing that the reduction of ANKRD26 expression in VAT negatively correlates with 
the serum concentrations of inflammatory markers and pro-inflammatory chemokines, which are associated to 
obesity in humans38,39 and whose increased levels predict occurrence of T2D38–43. Cardamone et al. have recently 
shown in the adipose tissue the relevance of the cytosolic function of the Ankrd26 partner GPS2 (G protein path-
way suppressor 2) to the prevention of uncontrolled activation of inflammatory programs44. Even though this 
issue deserves further mechanistic investigation, we suggest that Ankrd26 might work as a molecular regulator 
of inflammatory signaling pathways, at least in part, by facilitating the cytoplasmic localization of its interact-
ing partner GPS218. Therefore, ANKRD26 down-regulation might represent an early event triggering chronic 
low-grade inflammatory response in human adipose tissue.

Detailed methylation analysis of the Ankrd26 promoter showed that HFD induced specific methylations at 
− 436 and − 431 bp CpGs, thereby exerting a suppressive effect on Ankrd26 promoter activity. Similar to DNA 
methylation, mutagenesis at the Ankrd26 promoter showed that introduction of C →  T mutation at − 436 or − 431 
bp CpGs significantly reduces Ankrd26 promoter activity. These results provide evidence that i., these cytosine 
residues have functional significance to the Ankrd26 gene expression; and ii., the DNA methylation at these spe-
cific CpGs plays a functional role in the epigenetic repression of Ankrd26 gene.

Current evidence supports a role for epigenetic changes in the regulation of metabolic diseases and in some 
cases, as in our study, it has been demonstrated that small methylation changes are associated with gene expres-
sion variability with significant effects on the phenotype45–48. In support of this concept, Barrès et al.46 have 
recently shown that hyper-methylation of the Peroxisome proliferator-activated receptor γ coativator 1 α (PGC1α) 
promoter modulates PGC1α expression, implying a mechanism for decreased mitochondrial content in skeletal 
muscle from T2D patients. Also, using a gene reporter assay, these same authors have demonstrated that the  
in vitro methylation of a single cytosine residue at the PGC1α promoter is responsible for the reduction of gene 
activity46.
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CpG methylation generally affects transcription directly, by blocking the binding of transcriptional activators24,49,  
or indirectly, by recruiting DNA-binding proteins and co-repressor complexes that occupy the methylated pro-
moters and facilitate the formation of heterochromatin50. In this study, we have further demonstrated that i.,  
in vitro, the histone acetyltransferase/transcriptional coactivator p300 directly binds the consensus sequence at 
the Ankrd26 promoter, containing the methylation sensitive cytosines − 436 and − 431 bp; ii., hyper-methylation 
of these sites affects p300 binding and activity in vivo and in vitro. p300 regulates gene expression by acetylating 
both histones and transcriptional factors and plays a key role in modulating chromatin structure and function25,26. 
In this paper, we have also reported that HFD reduces histone H4 acetylation, increases nucleosome occupancy at 
the Ankrd26 promoter, and impairs RNA Pol II binding to the Ankrd26 TSS, suggesting that the HFD-dependent 
p300 displacement from the Ankrd26 promoter silences Ankrd26 gene. These findings are consistent with recent 
studies demonstrating that CpG methylation suppresses transcription of several genes by direct inhibition of 
p300 binding to their promoter sequences51–53. In conjunction with the inhibition of p300 binding, HFD induced 
the binding of MBD2 to the Ankrd26 promoter in mice. MBD2 is a methyl-CpG binding protein and causes 
gene silencing by recruiting histone deacetylase at the methylated promoter regions31,50. Accordingly, we propose 
that the specific CpG methylation at the Ankrd26 promoter leads to HFD-induced epigenetic gene silencing by 
triggering a cascade of events which involves DNA-associated regulatory proteins, such as p300 and MBD2, and 
changes in chromatin structure.

The potential relevance to humans of the findings reported in the present work is supported by our further 
evidence that VAT ANKRD26 mRNA levels were negatively correlated with BMI in humans. Consistent with our 
results, very recent computational data from a genome-wide DNA methylation analysis in human adipose tissue 
have revealed that ANKRD26 DNA methylation and mRNA expression correlate with BMI53. Thus, epigenetic 
regulation of ANKRD26 gene may occur in humans as well.

In conclusion, our work reveals that the methylation of specific CpGs at the Ankrd26 promoter occurs in mice 
during HFD treatment and causes the down-regulation of Ankrd26 expression, at least in part, by impairing p300 
binding to its promoter. We propose that the epigenetic silencing of the Ankrd26 gene contributes to VAT inflam-
mation following unhealthy dieting.

Methods
Animals, diets and tests. Animal experiments were performed in accordance with the Guide for the Care 
and Use of Laboratory Animals published by the National Institutes of Health (publication no. 85–23, revised 
1996). Protocols were approved by the ethics committee of the “Federico II” University of Naples. Six-week-
old C57BL/6 J male mice (n =  48) from Charles River Laboratories International, Inc. (Wilmington, MA) were 
housed in a temperature-controlled (22 °C) room with a 12 h light/dark cycle. Two weeks after arrival, mice were 
randomly divided into two groups of 12 mice each and were fed either a HFD (60 kcal% fat content; Research 
Diets formulas D12331; Research Diets, Inc., New Brunswick, NJ) or a standard chow diet (STD; 11 kcal% fat 
content; Research Diets formulas D12329; Research Diets, Inc.) for 8 and 22 weeks. The composition of these 
diets is reported in Supplementary Table S2. Body weight was recorded weekly throughout the study. The glucose 
tolerance test (GTT) and insulin tolerance test (ITT) were performed as described14,16. Blood glucose levels were 
measured using a glucometer (One Touch Lifescan, Milan, Italy). Mice were killed by cervical dislocation. eAT 
was collected from each mouse, snap frozen in liquid nitrogen and stored at − 80 °C.

Quantitative real-time PCR (qPCR) and western blot analysis. Tissues were homogenized by 
TissueLyser LT (Qiagen, Hilden, Germany) following manufacturer’s protocol. RNA and DNA were isolated 
using AllPrep DNA/RNA/miRNA Universal kit (Qiagen). cDNA synthesis and qPCR were performed as 
described19,54. Immunoblotting was carried out as indicated14. Antibodies against ANKRD26 (#SC-82505, Santa 
Cruz Biotechnology, Inc., Dallas, TX), and α -Tubulin (#MA1-19162, Sigma-Aldrich, St. Louis, MO) were used 
for protein detection.

Methylated DNA Immuoprecipitation (MeDIP). MeDIP assay was performed as described19. DNA 
methylation enrichment was evaluated on genomic DNA isolated from eAT of STD- and HFD-fed mice and 
from 3T3-L1 adipocytes. Sonicated pooled genomic DNA from eAT or cells was immuno-precipitated using 
anti-5meCpG (#ab10805, Abcam, Cambridge, MA) or mouse IgG (#I8765, Sigma-Aldrich) with anti-mouse IgG 
beads (Life Technologies, Carlsbad, CA). DNA methylation enrichment on recovered DNA was evaluated by 
qPCR. Samples were normalized to their respective input using the 2−ΔCT method.

Bisulfite sequencing. For bisulfite sequencing analysis, we used genomic DNA isolated from eAT of 
STD- and HFD-fed mice. Bisulfite conversion of DNA was performed with the EZ DNA Methylation Kit (Zymo 
Research, Orange, CA), following manufacturer’s instructions. Converted DNA was amplified by PCR. PCR 
products were cloned into the pGEM T-Easy vector (Promega, Madison, WI) and 10 clones for sample were 
sequenced on AB 3500 genetic analyzer (Life Technologies). DNA methylation percentage at the − 436 and − 431 
bp CpGs for each mouse was calculated using the formula: DNA methylation % =  [methylated CpGs/(methylated 
CpGs +  unmethylated CpGs)]*100.

Cloning strategy, site-direct mutagenesis and in vitro methylation. Ankrd26 promoter (− 733 
bp/− 344 bp) was amplified by PCR. The purified PCR fragment was cloned into the firefly luciferase reporter 
pCpGfree-promoter-Lucia vector (Invivogen, Toulouse, France). The following site-specific mutated constructs 
were generated by PCR-based mutagenesis: pCpG-Ankrd26-436, pCpG-Ankrd26-431, pCpG-Ankrd26-391. The 
wilde type (Wt) pCpG-Ankrd26 vector, used as template, was removed from the PCR reaction by DpnI diges-
tion (New England BioLabs, Ipswich, MA). Wt and mutated (mut) vectors were amplified into E. coli GT115 
cells (Invivogen). Site-specific mutagenesis of each construct was validated by sequencing. In vitro methylation 



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:43526 | DOI: 10.1038/srep43526

was performed using the M.SsI CpG methyltransferase following manufacturer’s protocol (New England 
BioLabs). Un-methylated DNA was obtained in the absence of M.SsI. Methylation was confirmed by resistance to 
HpyCH4IV digestion (New England BioLabs).

Luciferase assay. NIH-3T3 cells were transfected with methylated or un-methylated Wt or mutagenized 
pCpG-Ankrd26 vector and Renilla control vector (Promega) by lipofectamine (Life Technologies), following man-
ufacturer’s instructions. Where indicated, cells were co-transfected with pCl.p300 expression vector (Promega). 
Firefly luciferase activity of each transfection was normalized for transfection efficiency against Renilla luciferase 
activity.

Chromatin Immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) assays. ChIP and 
MNase assays were performed as described55,56. Briefly, 100 mg of eAT were cross-linked with 1% formalde-
hyde for 15 min at 37 °C. For ChIP assay, sonicated chromatin was immuno-precipitated with the following 
antibodies: anti-p300 (#SC-585, Santa Cruz Biotechnology), anti-Ac-H4-K16 (#07-329, Millipore, Temecula, 
CA), anti-DNMT1 (#NB100-56519) and anti-DNMT3b (#NB300-516) from Novus Biologicals (Littleton, CO), 
anti-DNMT3a (#ab2850), anti-MBD2 (#ab38646), and anti-RNA Pol II (#ab5408) from Abcam and anti-rabbit 
IgG (#I8140) and anti-mouse IgG (#I8765) from Sigma-Aldrich. For MNase assay, nuclei were isolated from 
100 mg of eAT, suspended in wash buffer (100 mmol/L Tris-HCl, 15 mmol/L NaCl, 60 mmol/L KCl, 1 mmol/L 
CaCl2) and treated with 200 U of MNase for 20 min at 37 °C. Cross-link reversal was performed at 65 °C for at 
least 16 h followed by an RNase and subsequent proteinase K digestion. DNA was purified by phenol–chloroform. 
Samples were then run on 1% agarose gel and the resulting mononucleosomal DNA fragments (~150 bp) were gel 
purified. For both assays, relative protein binding and nucleosome occupancy to the Ankrd26 gene were evaluated 
on recovered DNA by qPCR. Samples were normalized to their respective input using the 2−ΔCT method.

Electrophoretic mobility shift assay (EMSA). Protein-DNA complexes were detected using unlabe-
led or biotin end-labeled double-stranded DNA probes by annealing complementary oligonucleotides. Biotin 
3′ -end oligonucleotides, spanning the Ankrd26 promoter sequence from − 455 bp to − 425 bp relative to the 
Ankrd26 TSS, were from Sigma-Aldrich and, where indicated, were synthesized to incorporate methylated cyto-
sines (meC). Binding reactions, consisting of biotin-labeled probe and NE, were performed using the LightShift 
kit (Thermo Fisher Scientific, Waltham, MA) following manufacturer’s instructions. Biotin-labeled probe  
(20 fmol) was added and the reaction was allowed to incubate for 20 min at room temperature. In the competi-
tion experiments, the nuclear extracts were preincubated with 200 molar excess of unlabeled probes for 20 min 
on ice. In super-shift experiments, 2 μ g of p300 antibody (#SC-585, Santa Cruz Biotechnology) or 2 μ g of rabbit 
IgG (#I8140, Sigma-Aldrich) was preincubated with nuclear extracts for 60 min on ice. Protein-DNA complexes 
were separated on native polyacrylamide gel, transferred onto nylon membrane and detected by the LightShift 
Chemiluminescent EMSA kit (Thermo Fisher Scientific) following manufacturer’s procedure.

Primer Sequences. The list of oligonucleotides used for PCR, qPCR, MeDIP, bisulfite sequencing, ChIP, 
MNase, EMSA can be found as Supplementary Table S3.

Fatty Acid/BSA complex solution preparation. Palmitate and oleate have been conjugated to fatty 
acid-free BSA (2:1 molar ratio Fatty Acid/BSA) as described in ref. 57. Briefly, a stock solution of palmitate 
(100 nM) was dissolved at 70 °C in 50% ethanol in a shaking water bath. In parallel, a fatty acid-free BSA solution 
was prepared at 55 °C in NaCl in a shaking water bath. Finally, the palmitate and the fatty acid-free BSA solutions 
were complexed at 55 °C in a shacking water bath, cooled to room temperature and sterile filtered. Oleate was 
complexed to the fatty acid-free BSA solutions following the same protocol. For fatty acid cell treatment, control 
adipocytes were treated with diluent only, corresponding concentrations of BSA and ethanol.

Cell culture and transfection. 3T3-L1 cells were grown and allowed to differentiate in mature adipocytes 
as described19. Mature adipocytes were i. silenced with 25 nmol/l of scrambled-siRNA or Ankrd26-siRNA for 48 h, 
or ii. treated with palmitate (0.250 mM; Sigma-Aldrich), or oleate (0.250 mM; Sigma-Aldrich) or corresponding 
vehicle (diluent solution with the same concentrations of BSA and ethanol of the Fatty Acid/BSA complex solu-
tion) for 96 h, or iii. treated with leptin (100 nM; R&D Systems, Minneapolis, CDN) or corresponding vehicle 
(20 mM Tris-HCl, pH 8.0) for 24 h. Adipokines were assayed in media from silenced cells by Bio-Plex Pro Mouse 
Cytokine Immunoassay following the manufacturer’s protocol (Bio-Rad, Hercules, CA). Ankrd26 promoter 
methylation and gene expression were analyzed as previously described in this section.

Patient enrollment and tests. Abdominal VAT biopsies and serum samples were from patients under-
going bariatric surgery. Eleven normal glucose tolerance (NGT) obese subjects were selected. Population char-
acteristics are in Supplementary Table S1. Participants with metabolic and endocrine disorders, inflammatory 
diseases, previous or current malignancies, and/or treated with drugs able to interfere with the epigenome were 
excluded. Secreted mediators were assayed in serum samples by Bioplex multiplex Human Cytokine, Chemokine 
and Growth factor kit (Bio-Rad) following manufacturer’s protocol. ANKRD26 gene expression was analyzed in 
VAT as previously described in this section.

Ethics statement. This study adhered to the Declaration of Helsinki and has been reviewed and approved 
by the Ethics Committee of the “Federico II” University of Naples (Ethics Approval Number: No. 225_2013). 
Informed consent was obtained from all of enrolled individuals.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:43526 | DOI: 10.1038/srep43526

Statistical procedures. The area under the curve (AUC) was calculated using the trapezoidal rule. Data are 
expressed as mean ±  SD. Comparison between groups were performed using Student’s t-test or the one-way anal-
ysis of variance, as appropriate, using GraphPad Software (version 6.00 for Windows, La Jolla, CA). Correlation 
between two variables was calculated using the parametric Pearson r-test. p < 0.05 was considered statistically 
significant.
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