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ABSTRACT 

Drought is a natural disaster that occurs in all climatic regions, and is responsible for food 

insecurity in majority of developing countries. Globally, interventions to mitigate drought 

impacts have focused in semi-arid and arid areas.  However, increased climatic variations have 

become more frequent in the recent past causing sporadic agricultural droughts with the end 

results being food shortages even in areas that receive relatively high rainfall. Many of such 

areas are occupied by vulnerable communities lacking strategic coping mechanisms for 

mitigation of drought impacts.  

The aim of this study was to develop a simplified approach for computing a Soil Moisture 

Deficit Index (SMDI) that integrates limited climatic records common in developing countries 

together with freely available tools for supporting soil water management decisions under 

rainfed agriculture. Most soil moisture based drought indices are derived from long term 

records of measured soil moisture time series. However, such long-term soil moisture records 

are scarcely available in African countries where they could be of greatest benefit in designing 

techniques for mitigating drought impacts. Therefore, the main objective of this research was 

to evaluate the performance of simulated soil moisture time series to develop a SMDI with 

minimal requirements of input data. 

To this aim, the study was organized in four consecutive objectives, namely: to identify 

and adapt a suitable drought indicator in relation to the data availability.  Secondly, to assess 

the feasibility of using a calibrated agro-hydrological model for producing long time series of 

soil water dynamics and derive SMDI for monitoring agricultural droughts. The third objective 

was to upscale the SMDI through energy balance modeling using a case study in Northern 

Uganda. And the fourth objective was, to formulate a soil water management decision support 

scheme for mitigation of agricultural droughts in rain fed farming systems through application 

of SMDI. 

The study is based on agro-hydrological data collected in a dairy farm of 10 ha in Northern 

Uganda equipped with Mateo station and low cost commercial soil sensors to monitor soil 

water dynamics in the root zone during two seasons under rain fed maize crops in 2015. 

Because of the importance of Evapotranspiration in agro-hydrological studies and limited 

reported research on it at the study site, 13 different simplified reference evapotranspiration 

(ET0) models were compared with FAO-56 Penman-Monteith to select the best performing 

simplified model for application in the study area. Evaluation of the 13 ET0 models showed 
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that the Makkink radiation model gave the best prediction of ET0 with Root Mean Squared 

Error (RMSE) = 0.6 mm, Mean Absolute Error (MAE) = 0.4 mm, Nash Sutcliffe Efficiency 

(NSE) = 0.8, Coefficient of Agreement (d) = 0.90 and Coefficient of Determination (r2) = 0.7. 

All temperature based models overestimated ET0 with Thornthwaite giving the worst 

prediction in all the test statistics. 

To address the first objective, the state of the art on soil moisture based drought indices 

were reviewed and the information gathered applied to formulate a new approach to define 

SMDI. The second objective was addressed through application of 1-dimensional water flow 

model (Hydrus 1D); firstly, in inverse mode to derive the soil hydraulic properties and secondly 

in direct mode to generate soil moisture time series by using the ET0 model selected in the 

previous step in conjunction with gridded climatic data combined with limited weather 

observations. In the calibration phase, Landsat 8 OLI satellite images were used to estimate 

crop growth variables. In the second objective, published crop coefficients where used to 

generate continuous boundary conditions for 21-year agro-hydrological simulations. 

Calibration results showed good agreement between simulations and observations of water 

storage in the root zone with r2 = 0.73 during calibration and r2 = 0.70 during validation. The 

results of the long-time series simulations were used to derive threshold parameters for SMDI 

definition, following the statistical approach suggested by Hunt et al. (2009). Generation of the 

threshold parameters; i.e.: water content at field capacity (θFC) and water content at wilting 

point (θWP), through agro-hydrological simulations gave good comparison with the laboratory 

determined values through a pressure plate apparatus on undisturbed soil core samples; with r2 

= 0.95. Comparison between number of times SMDI<0, within a growing season and maize 

yields between 2007 to 2015, showed a negative linear correlation with r2 = 0.64. Precipitation 

(P) and precipitation deficit (D) were fitted on theoretical probability distributions to calculate 

reference drought indices i.e. Standardized Precipitation Index (SPI) and Standardized 

Precipitation Evapotranspiration Index (SPEI). The fitting distributions (a 2-parameter gamma 

distribution for P, and a 3-parameter log-logistic distribution for D) gave an acceptable 

Kolmogorov-Smirnov goodness of fit test at 95% level of significance in both cases. All the 

reference indices [i.e. SPI, SPEI and Atmospheric Water Deficit (AWD)] showed positive 

correlation with SMDI demonstrating the robustness of SMDI for agricultural drought 

monitoring in the study area.  

The third objective involved analysis of Landsat 8 thermal images to generate evaporative 

fraction (Λ) through energy balance modeling. A SMDI- Λ regression equation was developed 
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to spatialize SMDI. A comparison between SMDI and Λ through linear regression showed good 

agreement with r2 = 0.84. An independent check with different sets of images were performed 

between the SMDI calculated using the SMDI-Λ regression equation and SMDI generated 

through agro-hydrological simulations provided a good agreement with r2 = 0.85.  

The last objective involved integration of the results obtained from objectives (i) to (iii) to 

formulate a decision support scheme. SMDI was found useful to delineate dry and the wet 

season in Northern Uganda; it showed that the dry season begins between November 25 to 

December 10 and the wet season begins between March 26 to April 5 of each year. A SMDI-

based management decision support scheme was proposed, although it would need further 

investigations to verify its effectiveness. In conclusion, the approaches developed to define 

SMDI can easily be implemented in any developing country that experiences similar problems 

in rain fed farming. 
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ABSTRACT IN ITALIAN  

La siccità è un fenomeno naturale tipico di qualunque area climatica, ed è responsabile 

dell’insicurezza alimentare nella maggior parte dei paesi in via di sviluppo. Dal punto di vista 

mondiale, gli interventi volti a mitigare gli impatti della siccità sono stati focalizzati sulle zone 

aride e semi-aride. Tuttavia, in tempi recenti, le crescenti alterazioni climatiche sono divenute 

più frequenti, causando sporadiche siccità agricole che hanno generato carenze alimentari 

anche in aree che ricevono precipitazioni relativamente elevate. Le popolazioni in molte di 

queste aree sono particolarmente esposte ai rischi derivanti da eventi siccitosi poiché sprovviste 

di meccanismi di adattamento che ne possano mitigare l’impatto. 

Per valutare la vulnerabilità alla siccità si ricorre a valutazioni di indici basati su serie 

temporali di dati climatici e di umidità del suolo. Tuttavia, tali serie sono raramente disponibili 

in Africa, dove invece esse potrebbero essere di grande beneficio per orientare le strategie in 

campo agricolo e mitigare gli impatti della siccità. Di conseguenza, l’obiettivo principale di 

questa ricerca è stato la valutazione delle performance di serie temporali di misure simulate 

dell’umidità del suolo, al fine di sviluppare un SMDI avente minime necessità in termini di dati 

di input. Lo studio è stato focalizzato sullo sviluppo di un approccio semplificato per elaborare 

un indice del deficit di umidità del suolo (SMDI) che integri gli scarsi dati climatici 

comunemente reperibili nei paesi in via di sviluppo con altri strumenti e informazioni di libero 

accesso, al fine di supportare le decisioni della gestione delle coltivazioni dipendenti dalle 

precipitazioni.  

Per questo scopo, lo studio è stato organizzato in quattro obiettivi consecutivi. In primo 

luogo, identificare e adattare un idoneo indicatore di siccità in relazione alla disponibilità di 

dati. In secondo luogo, verificare l’utilizzabilità di un modello calibrato agro-idrologico per 

produrre serie di lungo periodo delle dinamiche idriche del suolo e derivare un SMDI per 

monitorare le siccità agricole. Il terzo obiettivo è stato il miglioramento dello SMDI attraverso 

la modellistica di bilancio energetico, utilizzando un caso studio nel nord dell’Uganda. Infine, 

il quarto obiettivo è stato quello di formulare uno schema di supporto decisionale per la 

mitigazione delle siccità agricole in sistemi agricoli dipendenti dalle precipitazioni attraverso 

l’applicazione dello SMDI. 

Lo studio è basato su dati agro-idrologici raccolti nel 2015 in un’azienda zootecnica-

casearia di 10 ha nel nord dell’Uganda, ove è stata installata una stazione agro-meteorologica, 

corredata anche di sensori commerciali di costo ridotto per il monitoraggio del contenuto 

d’acqua nella zona radicale del suolo, per una coltivazione di mais durante due stagioni. 
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Innanzitutto si è proceduto ad un’analisi comparativa di tredici diversi modelli semplificati 

(basati su temperatura e/o radiazione solare) per la stima dell’evapotraspirazione di riferimento 

(ET0) con il modello standard FAO-56 Penman-Monteith, al fine di selezionare il miglior 

modello semplificato da applicare nell’area di studio con dataset limitati. La valutazione 

comparativa ha mostrato che il modello radiativo di Makkink è quello che più si avvicina al 

valore fornito dal FAO-56, con RMSE = 0.6 mmm, MAE = 0.4 mm, NSE = 0.8, d = 0.90 e 

r2=0.7. Tutti i modelli basati solo sulla temperatura sovrastimano ET0; in particolare il modello 

di Thornthwaite è risultato quello con le peggiori performance. 

Al fine di indirizzare il primo obiettivo, è stata operata una revisione della letteratura 

riguardante lo stato dell’arte circa lo sviluppo di indici di siccità basati dell’umidità del suolo, 

e le informazioni raccolte sono state usate per formulare un nuovo SMDI per applicazioni 

specifiche nel nord dell’Uganda. Il secondo obiettivo è stato indirizzato attraverso 

l’applicazione di un modello dinamico di bilancio idrologico del suolo unidimensionale 

(Hydrus 1D); l’applicazione è avvenuta prima in modalità inversa, al fine di derivare le 

proprietà idrauliche del suolo, e poi in modalità diretta, al fine di generare serie temporali di 

umidità del suolo, utilizzando il modello ET0 selezionato nello step precedente insieme a dati 

climatici di tipo “grid” combinati con osservazioni climatiche limitate. In fase di calibrazione, 

immagini del satellite Landsat 8 OLI sono state utilizzate per la stima di variabili di crescita 

delle coltivazioni, Nel secondo obiettivo riguardante la simulazione delle serie temporali, 

coefficienti agronomici rilevati in lettaratura sono stati usati per generare condizioni di 

contorno continue per simulazioni agro-idrologiche di 21 anni. I risultati della calibrazione 

hanno mostrato buona correlazione tra le simulazioni e le osservazioni di immagazzinamento 

idrico nella zona radicale, con un coefficiente di determinazione (r2 = 0.73) durante la 

calibrazione e (r2 = 0.70) durante la validazione. I risultati delle simulazioni di serie di lungo 

periodo sono state usate per derivare dei parametri soglia per la definizione dello SMDI, 

seguendo l’approccio statistico suggerito da Hunt et al. (2009). I valori dei parametri soglia, 

riferiti al contenuto idrico alla capacità di campo (θFC) ed al contenuto idrico al punto di 

appassimento (θWP), ottenuti attraverso le simulazioni del bilancio idrologico effettuate su un 

arco temporale di circa dieci anni, sono stati confrontati con i valori risultanti da analisi di 

laboratorio su campioni di suolo indisturbato, ottenendo un’elevata correlazione (r2=0.95). E’ 

stato osservato come la frequenza di occorrenza di valori negativi dell’indice SMDI e la 

corrispondente produzione di mais, rilevata per i raccolti tra il 2007 e il 2015, abbiano una 

significativa correlazione negativa di tipo lineare (r2=0.64). La precipitazione (P) e il deficit di 

precipitazione (D) sono stati adattati alle distribuzioni di probabilità teoriche al fine di calcolare 
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indici di siccità di riferimento, i.e. SPI e SPEI. Le distribuzioni adattate (una distribuzione 

gamma a 2 parametri per P e una distribuzione log-logistica a 3 parametri per D) hanno dato 

una risposta accettabile rispetto ai testi di Kolmogorov-Smirnov con adattamento al 95% di 

significatività i entrambi i casi. Tutti gli indici di riferimento (i.e. SPI, SPEI e AWD) hanno 

mostrato una correlazione positiva con lo SMDI dimostrando così la robustezza dello stesso 

per il monitoraggio della siccità agricola nell’area di studio. 

Il terzo obiettivo ha riguardato l’analisi di immagini nell’infrarosso termico rilevate dal 

satellite Landsat 8 per stimare la frazione evaporativa (Λ) attraverso un modello semplificato 

di bilancio energetico delle superfici coltivate. Partendo dalla definizione di una relazione di 

correlazione lineare fra SMDI e corrispondenti valori di Λ (r2 = 0.84), è stato possibile 

individuare una metodologia di spazializzazione dell’indice SMDI nell’intera zona agro-

ecologica dell’area di studio. Un controllo indipendente con set di immagini differente 

effettuato tra lo SMDI calcolato usando l’equazione di regressione SMDI-Λ e lo SMDI 

generato tramite le simulazioni agro-idrologiche ha confermato la buona rispondenza. 

L’ultimo obiettivo riguardava l’integrazione dei risultati ottenuti nei primi tre obiettivi per 

formulare uno schema di supporto decisionale. Lo SMDI è risultato utile a delineare le stagioni 

secca ed umida del nord dell’Uganda; esso ha mostrato che la stagione secca comincia tra il 25 

novembre e il 10 dicembre e quella umida comincia tra il 26 marzo e il 5 aprile di ogni anno. 

Uno schema di supporto decisionale basato sullo SMDI è stato proposto, sebbene esso 

necessiterebbe ulteriori ricerche per dimostrare la sua efficacia. In conclusione, gli approcci 

sviluppati per definire lo SMDI possono essere implementati facilmente in ogni paese in via di 

sviluppo soggetto a simili problemi in ambito di agricoltura dipendente dalle precipitazioni. 
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SYMBOLS 

Symbol Description  Unit 

d Index of Agreement  (-) 

Es Soil Evaporation (m) 

ETc Crop Evapotranspiration  (mm) 

ETo  Reference Evapotranspiration  (mm) 

FAWC Fraction of available water content  (-) 

Fr Fractional vegetative cover (-) 

Go Soil Heat Flux  (Wm-2) 

H Sensible Heat Flux  (Wm-2) 

hc  vegetation/crop canopy height (m) 

k1 the first calibration constant for estimation of land surface temperature (-) 

k2 the second calibration constant for estimation of land surface temperature (-) 

𝐾↓ down welling short wave solar radiant energy  (Wm-2) 

𝐾↑ upwelling long wave radiant energy (Wm-2) 

l tortuosity factor of the soil water retention curve  (Wm-2 sr-2) 

Ld Downwelling radiance (Wm-2 sr-2) 

LT Surface radiance  (Wm-2 sr-2) 

Lu Up welling radiance  (Wm-2 sr-2) 

L  Surface radiance for a given wave length   (Wm-2 sr-2) 

n a scale parameter of the soil water retention curve  (-) 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 Minimum value of the Normalized Difference Vegetation Index (-) 

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 Maximum value of the Normalized Difference Vegetation Index (-) 

𝑟2 correlation coefficient (-) 

𝑅𝑛 Net solar radiation  (Wm-2) 

𝑟𝑜 Surface reflectance  (-) 

𝑇𝐻 hot temperature from the temperature reflectance feature space (oc) 

𝑇𝑙𝑠𝑡 Land surface temperature as estimated from satellite thermal bands (oc) 

𝑇𝑜 Pixelwise land surface temperature (oc) 

𝑇𝑝 Transpiration  (mm) 

𝑇𝜆𝐸 Cold temperature from the temperature reflectance feature space (oc) 

𝛼 The shape parameter of the soil water retention curve (-) 
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β Extinction parameter for the estimation of the leaf area index (-) 

𝛿𝑠 Change in soil water storage  (m) 

𝛿𝑡  Change in time  (s) 

𝜀 Land surface emissivity (-) 

𝜆 wave length (unless otherwise defined) (µm) 

𝜆𝐸  Latent heat flux (Wm-2) 

𝜃 water content (m3/m3) 

𝜃𝐹𝐶  Soil Water content at field capacity (m3/m3) 

𝜃𝑊𝑃 Soil water content at wilting point  (m3/m3) 

𝜃𝑟 Residual water content (m3/m3) 

𝜃𝑠 Saturated water content (m3/m3) 

𝜗 The zenith angle  (oc) 

𝜌𝑛𝑖𝑟 Near infrared reflectance (-) 

𝜌𝑟 Reflectance in the red band (-) 

𝜌𝑖𝑠 Bare soil reflectance in the infrared band (-) 

𝜌𝑠𝑟 Bare soil reflectance at near infrared band (-) 

  Evaporative fraction  (-) 
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ACRONYMS  

AIC  Akaike's Information Criterion 

AWD  Atmospheric Water Deficit 

BIC  Bayesian Information Criterion 

BRDF   Bidirectional Reflectance Distribution Function  

CMI   Crop Moisture Deficit  

CRED   Centre Of Research for Epidemiology of Disaster  

ECMWF  European Centre for Medium-Range Weather Focus  

ETDI   Evapotranspiration Deficit Index 

EM-DAT  Emergency events Database  

ET   Evapotranspiration  

ETM+   Enhanced Thematic Mapper Plus  

FAO   Food and Agricultural Organization of The United Nations  

FAO-56 PM Reference Evapotranspiration as recommended in FAO drainage Paper 

No.56 

FAPAR Fraction of Absorbed Photosynthetically Active Radiation  

GDP   Gross Domestic Product 

GFDRR  Global Facility For Disastor Reduction And Recovery 

GWD  Gridded Weather Data 

GUCD  Gulu Uganda Country Dairy  

GUI   Graphical User interface  

GYGA  Global Yield Gap Atlas  

ITCZ   Intertropical convergent zone 

LAI  Leaf Area Index 

LRA  Lord’s Resistance Army 

MAE  Mean Absolute Error 

NARO  National Agricultural Research Organization 

NASA  National Aeronautics and Space Administration 

NDPI   The first National Development Plan  

NDPII  The second National Development Plan 

NDVI  Normalized Difference Vegetation Index 

NEMA  National Environment Management Authority  

NGO   Non-Governmental Organization   
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NOAA  Northern Oceanic and Atmospheric Administration  

NSE   Nash Sutcliffe Efficiency 

NWSC  National Water and Sewage Corporation  

OFDA  Office of Foreign U.S. Disaster Assistance  

OLI   Operational Land Imager 

OPM   office of the prime minister  

OWD  Observed Weather Data 

PDSI  palmer drought severity index 

PM  Penman Monteith model 

PAM  Plan for Modernization of Agriculture  

PWMs  Probability Weighted Moments 

PWD  Propagated Weather Data 

RMSE   Root Mean Square Error  

RZMS  Root Zone Moisture Stress  

SC-PDSI  Self-Calibrating Palmer Drought Severity Index  

SMAP   Soil Moisture Active Passive 

SMARTS Simple Model of the Atmospheric Radiative Transfer of Sunshine 

SMDI  Soil Moisture deficit index 

SMI  Soil Moisture Index 

SMOS  Soil Moisture and Ocean Salinity 

SPAC  Soil-Plant-Atmosphere Continuum 

SPEI  standardized precipitation evapotranspiration index 

SPI  standardized precipitation index 

SSA  Sub-Saharan Africa  

S-SEBI Simplified Surface Energy Balance Algorithm  

SVAT   Soil Vegetation Atmosphere Transfer model 

SWDI  Soil Water Deficit Index 

SWI  Soil Water Index  

SWRC  Soil Water Retention Curve 

SWAP  Soil Water Atmosphere Plant model 

TIRS   Thermal Infrared Sensor 

TM   Thematic Mapper  

VCI   Vegetation Condition Index 

VI  Vegetation Indices 



 

xiii 
 

WDVI   Weighted Vegetation Index 

WMO  World Meteorological Organization  

ZARDI  Zonal Agricultural and Development Institute  
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1 GENERAL INTRODUCTION 

1.1 Motivation of The Study: 

Rain-fed agriculture accounts for over 70% of the global crop production and is expected 

to rise as competing demands for global fresh water resources continue to increase (FAO, 2010; 

Nijbroek and Andelman, 2016; Biggs et al., 2008). It is estimated that the current food 

production will need to be increased by between 70% - 110% to feed the growing population 

projected to reach about 9 billion by 2050 (Nijbroek and Andelman, 2016). It is further 

projected that 80% of global food production will have to come from rain-fed farming system 

(Jägermeyr et al., 2016). This presents a critical set back in meeting global food needs as much 

of the areas under rain fed farming are concentrated in the poorer regions of the earth (Biggs et 

al., 2008). Besides, expansion of land area for food production is no longer sustainable as such, 

more food will have to be produced on less piece of land. This has been the basis for the 

agricultural intensification efforts by various development agencies emphasizing increasing 

food production per acre of land per unit of water (Godfray et al., 2010).  

Water scarcity is perceived to be prominently responsible for food insecurity in developing 

countries  especially in Sub-Saharan Africa (SSA), where agricultural productivity remains 

below the global average (Breman et al., 2003). Soil moisture deficit to crop moisture 

requirements is a common occurrence in rain-fed crop production systems. Its impact on crop 

yields varies depending on the phenological stage in which it sets in, during a growing season. 

Whenever rainfall varies abnormally such that the resulting soil moisture deficit leads to yield 

loss or complete crop failure the situation is termed Agricultural drought (Carolina, 2002; 

Stewart, 1988). A number of studies have shown that agricultural droughts have profound 

negative impacts on the livelihood of small holder farmers in SSA and that such negative 

impacts can be mitigated through proper understanding of soil water loss pathways which can 

in turn help to devise strategies to improve soil water retention (Makurira et al., 2011; Kongo 

and Jewitt, 2006; Ngigi et al., 2006; Rockström et al., 2004). However, water storage in the 

soil profile and its partitioning into the different paths it takes in the different flow regimes is 

the least understood aspect of hydrological cycle (Jewitt, 2006).  This is so because soil 

hydraulic parameters that control moisture dynamics in unsaturated zone vary widely across 

scales (Montzka et al., 2011; Jhorar et al., 2004). The most contemporary methods for their 

estimation are laboratory based which a number of studies have demonstrated as not 

representative of the actual flow conditions at the scale of application (Shin and Mohanty, 
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2013; Dobriyal et al., 2012; Settin et al., 2007; Dirmeyer and Zhao, 2005; Rajkai et al., 2004; 

Espino et al., 1996).  The laboratory method for the estimation of soil hydraulic properties 

relies on samples that are point based, as such their results are not easily transferable even 

across few meters at the field scale (Hopmans et al., 2002). The complexity in the variability 

of soil hydraulic parameters and the inability of the contemporary methods to provide estimates 

at the relevant scale of application is the main driver of research interests in soil hydrology and 

associated areas of study. 

Soil moisture plays a central role in controlling ecosystem dynamics and is one of the key 

variables that integrates land surface hydrology, since it acts as water storage in the 

hydrological cycle (Li and Islam, 1999). It plays a central role in water balance studies across 

scales in: meteorology, hydrology, ecology and agronomy (Chen, et al., 2014; Lü et al., 2011; 

Montzka et al., 2011). Soil moisture in the root zone particularly regulates land surface-

atmosphere interactions through modification of energy and moisture fluxes in the boundary 

layer (Ford, et al., 2014) and is also a very important variable in carbon cycle predictions 

(Friedlingstein et al., 2006).  Improving estimates of soil moisture in the root zone is very 

critical in drought predictions, hydrological modeling and weather forecasting (Dobriyal et al., 

2012; Dorigo et al., 2011; Dirmeyer and Zhao, 2005); which are important factors in 

agricultural water management. Acquisition of soil moisture data currently relies on three 

approaches, i.e.: in situ (generally point-scale) measurements, remote sensing observations and 

hydrological modeling (Romano, 2014). Continuous long-term ground-based measurements 

are greatly lacking, more so in developing countries. Remote sensing based acquisitions of soil 

moisture states are based on microwave sensors at about 25 km resolution and penetration 

depths of about 5cm that do not encompass the root zone (Fang and Lakshmi, 2014). Use of 

simulation models forced with climatic data when estimates of the soil hydraulic parameters 

can be obtained under certain assumptions presents a very viable option for soil moisture 

predictions especially in developing countries where networks of soil moisture measuring 

devices do not exist (Dorigo et al., 2011). The attractiveness of numerical modeling is that with 

the existing low cost soil sensors, soil hydraulic properties for a given support can be estimated 

through inverse simulations and sensitivity analysis as long as estimates of vegetation 

parameters can be obtained (Suhada et al., 2015). Current existence of free high resolution 

satellite images within the optical regions of electromagnetic spectrum (Ali et al., 2016; 

Vermote et al., 2016), such as Landsat and ASTER presents viable means of obtaining canopy 
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parameters for input into the simulation models which can be applied in almost any remote 

location.  

1.2 Drought Definition, Classification and Impacts on Livelihood   

1.2.1 Drought Definition and Classification 

There is no agreement on a single definition of drought among the scientific community 

(Mishra and Singh, 2010). However, the general consensus is that a drought phenomenon starts 

with an extended period of persistent precipitation deficit leading to the following situations: 

 seasonal alteration in soil water recharge leading to a reduction in soil water storage  

 a sustained deficit in soil moisture to plants 

 reduction in surface water supply and stream flows 

 the combined effects of soil moisture deficit, reduced surface water and stream flows 

causing imbalance in demand and supply of public goods that depend on water. 

Therefore, drought occurs whenever there is an abnormality in precipitation over an area 

characterized by an extended period of reduced precipitation amounts. The duration of the 

reduced precipitation over an area and the negative impacts it has on the normal functioning of 

the ecosystem form the basis for drought classification. According to Dai (2011) and Mishra 

and Singh (2010) drought is classified into four categories namely: meteorological drought, 

agricultural drought, hydrological drought and socio-economic drought.  

(i) Meteorological drought; is defined by deficiency in precipitation over a region in a 

defined time period. Meteorological drought triggers all the other drought 

categories with negative impacts on ecosystem services. 

(ii) Agricultural drought; defined as a situation of sustained and declining soil moisture 

deficit leading to yield loss or complete crop failure and reduced pasture for range 

animals. the decline in soil moisture is based on evapotranspiration by a combined 

action of plant water uptake and soil evaporation and soil water drainage below the 

root zone. These factors that drive agricultural drought are not directly linked to 

precipitation so that agricultural drought normally lags meteorological drought. 

Agricultural drought is more prevalent in rain-fed farming system since reduction 

in rootzone moisture can only be replenished by subsequent precipitation event 

whose variability depends on natural factors.  With observed changes in climate in 

most regions over the earth, agricultural drought has become more frequent over 



 

4 
 

the last two decades with devastating effects on livelihoods especially in developing 

countries.  

(iii) Hydrological drought; defined as a period of inadequate surface and subsurface 

water supply characterized by reduced stream flows, drop in lake water levels and 

reduction of water storage in aquifers. It is not quite straightforward to define the 

time period specifying the onset of hydrological drought because of the competing 

water supply needs such as irrigation, hydropower and municipal water needs. The 

onset of hydrological drought lags that of meteorological drought because a 

considerable amount of precipitation is required to restore stream flows, aquifer 

reservoirs and lake water levels.  

(iv) Socioeconomic drought; is defined by a relationship between the demand and 

supply of an economic good (e.g. water, livestock forage and hydropower) in 

connection with drought impacts. For this reason, socio-economic drought involves 

the combined impacts of meteorological, agricultural and hydrological droughts on 

the economy of an area in such a way as to result in the demand of an economic 

goods exceeding supply as a result of water supply shortage. 

1.2.2 Drought impacts on livelihood 

Droughts account for about 8% of the global natural disasters and recent estimates on 

drought impacts for the period 1900 –2013, puts the number of drought events at 642 globally 

(Shiferaw et al., 2014). The reported drought events  across the world resulted in deaths of 

about 12 million people and affecting over 2 billion causing an estimated economic loss of 

some USD135 billion (Masih et al., 2014). The vulnerability of a society to impacts of climatic 

variability such as drought depends on a number of factors such as: the level of technological 

development, the number of population, social behavior, land use pattern, the diversity of 

economic base, level of economic development and cultural practices (Naumann et al., 2014). 

Regions that are characterized by widespread poverty and whose economies depend on 

subsistence agriculture with little or no investments in irrigation infrastructure and where 

response to natural disasters are based on development aid are always the most affected. 

Drought impacts on the African continent have been significantly worse than in other 

regions (Gautam, 2006). For instance, it is estimated that droughts within the African continent 

accounted for 25% of the natural disasters that occurred in the period 1960 –  2005, of which, 

70% occurred in the eastern Africa (Gautam, 2006). Sub-Saharan Africa remains very 
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vulnerable to drought impacts because of its dependence on Agriculture which is very sensitive 

to climatic variability (Shiferaw et al., 2014). Subsistence farming on fragmented farmlands, 

predominantly rain-fed, put the population of the SSA in even greater risks due to the prevailing 

climatic variability which is projected to increase the number of natural disasters on the global 

scale.  

 

Figure 1.1 Number of droughts and people affected by country in Eastern African Countries: 1964 – 

2005. Source: EM – DAT: the OFDA/CRED Internal Disaster Database ww.em-dat.net – 

Universite Catholique de Louvain – Brussels – Belgium  

 

Droughts have had diverse impacts in SSA depending on the level of severity, spatial 

extent and duration. Some of these impacts include: crop failures, food shortages, famine, 

malnutrition, health issues, mass migration and loss of life (Naumann et al., 2014). Other 

drought impacts are associated with great damage to the environment, such as: land degradation 

posing many otherwise vegetated landscapes to the threat of aridity and desertification. These 

impacts have been observed at a range of geographical scales, affecting individual families and 

communities. In many instances the affected communities have lost their livelihoods and 

source of water, subjecting the entire population of a region to acute food shortages, nutrition 

related health issues with some countries’ economy being severely impacted.  

The Eastern African region in particular have had considerable drought impacts as 

depicted in Figure 1.1 for the period 1964 – 2005. Countries that experienced major drought 

impacts in order of being worst affected were: Ethiopia, Zimbabwe, Malawi and Kenya with 

droughts causing loss of human lives and livestock (Gautam, 2006). The least affected 

countries such as Uganda, Comoros and Burundi experienced a great deal of variability in crop 

yields within the same period. The major cause of these droughts in all cases are precipitation 

deficit causing meteorological drought with varying impacts (Nicholson, 2001). Drought 

impacts have been very severe on the eastern African countries because the economy of the 

region depends on precipitation (Ogallo, 1981). The mechanisms resulting into precipitation 
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and temperature variability that results in a number of climatic extreme events such as droughts 

and floods are still not well understood over the eastern Africa region. This is mainly because 

of large gaps in weather records (WMO, 2015). Many of the studies on the climatic factors 

controlling the extreme events over these regions are based on simulated regional data that 

provide lots of uncertainty when considering local impacts of the extreme events.   

Uganda unlike many of the east African countries rarely experience extreme drought 

events because it receives relatively reliable rainfall compared to the rest of her neighboring 

countries (GFDRR-OPM, 2012). The number of major droughts recorded between 1900 and 

2013, in EM-DAT website, (http://www.emdat.be/database) occurring in Uganda is 9, causing 

reported 194 deaths, affecting some 4,975,000 people and causing economic loss amounting to 

$1.8million. Thus, amounting to: 0.1%, of the total deaths, 76.8% of the total number of people 

affected and 2.3% of the total economic loss attributed to all the reported natural disasters 

during 1900 – 2013, (Masih et al., 2014). Therefore, by far extreme drought events are rare in 

Uganda but their impacts on the population are more widespread than any other natural 

disasters that are experienced (GFDRR-OPM, 2012). However, this in no way accounts for all 

the unreported deaths of both humans and livestock and the economic loss that actually 

occurred during the same period due to droughts. The complexity in understanding the onset 

of drought events, makes precious documentation of their impacts in a country such as Uganda 

not very possible given that reliable climatic data are very scanty (Nicholson, 2001). From time 

to time there are however newspaper reports on reduction of crop yields, famine and water for 

livestock that are attributed to droughts but such reports lack rigorous scientific scrutiny and 

cannot be relied on.  

Mitigation strategies to counter the impacts of droughts are grouped in to what are referred 

to as ex post and ex ante responses to drought impacts (Shiferaw et al., 2014). The ex post and 

ex ante responses are aimed at minimizing shocks after droughts have occurred and minimizing 

the risks a priori to drought occurrence, respectively (Owens et al., 2003). In Uganda, ex-post 

mitigation strategies, have relied on development aid and migration for the case of cattle 

keepers. Whereas the ex-ante mitigation strategies have included: intercropping, promotion of 

drought tolerant varieties, some limited supplemental irrigation in few cases and diversification 

of income through engagement in other farming practices such as fish farming. However, these 

mitigation strategies can best be enhanced through development of appropriate indicators to 

analyze the onset and termination of drought events. Such indicators must take into account all 

the relevant factors responsible for understanding common drought types that affect specific 

http://www.emdat.be/database
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areas. For the case of Uganda in general and northern Uganda in particular focus must 

concentrate on analysis of short term agricultural droughts that are very common. This is due  

to the fact that short term agricultural droughts can be mitigated against locally through proper 

understanding of water loss pathways (Makurira et al., 2011). 

 
 

 

  

 

 

 

 

 

 

 

  

  

 

 

 

  

 

  

 

 
Figure 1.2 Drought Onset, Classification and Impacts 

1.3 Soil and Water productivity in Uganda: current status and future perspective 

Agriculture remains the backbone of Uganda’s economy employing about 72 percent of 

the total formal and informal labour force. About 65% of Uganda’s land mass is considered 

Agricultural land, relatively fertile and receives sufficient rainfall for rain-fed farming. 

However, it is estimated that only 49.2% of the agricultural land is considered arable land 

(World stat, 2014). According to FAO (2005), arable land refers to land under: temporary 
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crops, temporary fallow (less than 5 years), meadow for mowing or pasture, market & kitchen 

garden and land under permanent crops. Agricultural practices in Uganda are nearly 100% rain-

fed, predominantly subsistence on highly fragmented lands. Arable land equipped for formal 

irrigation is estimated at 14,420 ha, accounting for only 0.1% of the total agricultural land, 

despite abundant fresh water resources (MW&E-Irrigation Master Plan, 2011).  

Soil productivity refers to the ability of a soil to support crop production through the 

possible combination of its entire physical, chemical and biological characteristics (Dobriyal 

et al., 2012). The important attributes that determine soil productivity have not been generally 

studied in Uganda in the recent past (Myhill & Allen, 2002). Available comprehensive nation-

wide soil surveys were done in the 1950s (Chenery, 1960). Most hydrological and crop 

modeling studies carried in Uganda have been based on approximate soil information estimates 

obtained from: consultation with soil scientists in the country, limited localized soil survey 

studies and from FAO database (Wart et al., 2013; Nyeko, 2010; Myhill and Allen, 2002). 

Water productivity is closely linked to soil productivity. Water productivity in its narrow sense, 

refers to the ratio of the net yield obtained from a given crop production system to the amount 

of water used to realize the yield (Makurira, 2010).  

Soil and water productivity in Uganda is very low, due to a number of factors such as: 

 Poverty and land fragmentation leading to over-exploitation of the land with inadequate 

soil and water conservation practices; 

 Increasing rural population densities with few non-farm income opportunities; 

 Low levels of commodity trade and the production of lower-value commodities, 

reducing incentives to invest in the soil; 

 Little farmer knowledge of improved agricultural technologies, insufficient agricultural 

research that takes into account the needs and resource constraints of farmers, and a 

lack of effective agricultural extension;  

 Inappropriate farming practices and systems including deforestation, bush burning and 

overgrazing (Olson, 1998; Zake et al., 1999; NEMA, 2001; Kazoora, 2002).  

These negative trends continue to expose much of agricultural land areas to soil erosion and 

eventual land degradation. For these and other reasons, crop yields in farmers’ fields in Uganda 

area estimated at 55% of the potential yields at research stations (Wart et al. 2013; Myhill & 

Allen, 2002). These factors, partly explain the reason Uganda is classified as the least 

developed country with an estimated per capita GDP of $572 as of 2013, (FAO, 2015). 

However, there is very high potential in rain-fed farming and agriculture is considered a key 
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determinant to alleviate the high poverty levels in the country if the Uganda’s soil and water 

productivity can be enhanced.   

Table 1.1 Major Drought on the African continent during the period of 1980 – 2010 

Region 1980 – 89  1990 – 99 2000 – 09 

East Africa The lowlands of Ethiopia and the main 

productive areas of Kenya were affected by 

the 1984 drought (Gomess & Petrassi, 

1994). In Ethiopia the 1984 drought caused 

the death of 1 million people and 1.5 heads 

of livestock. 8.7 million people were 

affected in total. In 1987 more than 5.6 

million people in Ethiopia, 1 million in 

Eritriea and 200,000 in Somalia were 

severely affected (Drought monitoring 

centre, 2000) 

 Rainfall records indicate that in some parts of the 

sub-region the drought in 2000 was worse than that 

experienced in 1984(drought monitoring centre, 

2002) 

 West Africa The Sahel was hit by a severe drought in 

the early to mid-1980s (Brooks, 2004). The 

worst drought in this period occurred 

during the year 1984 affecting most of the 

countries in the Sahel (Gomess & Petrassi, 

1994) 

  

North Africa  In Morocco, agricultural output 

recorded losses in 1992, 1995 

and 1997 due to drought. In 1997 

Algeria’s cereal production 

decreased sharply as a result of 

severe drought (UNEP, 2002) 

The most recent drought in Tunisia and Algeria 

(from 1999 – 2002) appears to be the worst since the 

mid mid-15th century, according to some 

researchers who analyzed tree-ring records from the 

region (http://environmental 

researchweb.org/cws.asticle/news/35673) 

South Africa In 1982/83 most parts of Southern Africa 

were severely affected (drought monitoring 

center, 2000) 

Most south African countries 

were severely affected 

1991/1992 drought. The 

1991/1992 was the most severe 

drought recorded causing 54% 

reduction in grains harvest, 

exposing more 17 million people 

to the risks of starvation 

(Galliham et al., 1994, UNEP, 

2002) 

 

Uganda has put in place various policies for enhancement of agricultural production. Some 

of which include:  



 

10 
 

 the first and second Uganda national development plans; (NDPI) and (NDPII) 

respectively whose vision is to transform Uganda’s economy to middle income by 2020 

 Plan for modernization of agriculture (PMA, that was enacted in 2010 and pledged to 

transform the subsistence agriculture to commercial farming by 2040 

 The irrigation master plan.  

These policies aim to transform the subsistence agriculture to a highly-commercialized profit 

making farming systems. Key constraints have been identified as lack of farm inputs, land 

fragmentation, high level of poverty in the country, soil degradation and climatic variability 

leading to frequent droughts (Kilimani et al., 2015). These research is meant to contribute 

towards achieving some of these goals by developing a method to support decision making at 

a farm level. Northern Uganda where the case study was conducted lags behind in all sectors 

of the economy in the country. This is due to the Lord Resistance Army (LRA) insurgency that 

grounded the region to a halt for 20 years. The 20-year insurgency, made collection of 

meteorological records impossible. Therefore, climate based studies to inform livelihood 

interventions in Northern region is almost nonexistent. The Acholi sub-region the worst 

affected by the LRA insurgency is endowed with large expanse of fertile agricultural land. 

However, crop production is still very limited compared to other parts of the country (Myhill 

and Allen, 2002). Tapping the agricultural potential of this region requires understanding the 

biophysical information in the region. These can be done through simulation models that once 

calibrated can be used to recreate past information that are missing and make predictions to 

enable planning to mitigate climate based risks such as droughts that are predicted to increase 

by 2050.  

1.4 Statement of the Problem, Study Objectives and Summary of The Thesis 

1.4.1 Problem Definition  

Droughts are experienced in all climatic conditions on earth and have become more 

frequent in recent times. However, the focus of developing drought mitigation strategies has 

concentrated more in semi-arid and arid areas largely leaving out areas that receive reliable 

rainfall on average. Moreover, it is only the extreme drought events with devastating large scale 

impacts that draw attentions for intervention in such areas endowed with ‘reliable rainfall’ 

(Table 1.1).  For this reason, it is recommended that drought should be studied within a regional 

context, because of their large scale characteristics (Mishra and Singh, 2010). However, this 

restriction limits the definition of droughts to refer only to large scale extreme events. This 
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perhaps explain the lack of agreement on a single definition of drought among the scientific 

community. It is however well known that agricultural drought characterized by a condition of 

declining moisture content in the soil has varying impacts from field scale to large areal extents. 

Agricultural drought at field scales would therefore require different mitigation measures from 

those having regional extents. Gaps still exists in addressing short term, field scale agricultural 

droughts that are more common in areas with predominantly rain fed farming systems. This is 

usually the situation in a country such as Uganda that receives on average ‘abundant rainfall’ 

but occasionally experiences crop failures due to pervasive weather variability. The problem 

in Uganda in general and Northern Uganda in particular are three-fold: Firstly, intra-seasonal 

agricultural droughts that occur randomly without known characteristics, secondly the inter-

seasonal droughts that occur in known dry periods with ‘little’ or no rains but whose onset and 

termination are not clearly defined given the nature of rainfall variability and thirdly the 

limitation of soil and climatic data to delineate these periods.  The problems are exacerbated 

by limited number of weather stations in operation in the region. The few available weather 

stations have data records with lots of gaps, in addition to the fact that the quality of the data 

collected in most cases are questionable. Consequently, rainfall variability analysis, soil, crop, 

vegetation and other biophysical information that can inform livelihood interventions are 

generally lacking. There are no reported field based water balance studies to inform farming 

practices. Earlier soil survey studies at scales of about 1:1,000,000 indicate that most of the 

areas especially in Northern Uganda have coarse textured soil which drains easily and as such 

the relatively high rainfall received does not ensure good yields. Crop failures related to 

moisture deficits in the soils are very common.   

This study is therefore an attempt to apply available tools to develop a soil moisture deficit 

indicator for field scale monitoring of agricultural droughts. It is hoped that the resulting index 

will guide various on-farm decisions to enhance crop productivity and alleviate poverty which 

is very widespread in the area.  

1.4.2 Study Objectives  

(i) Overall objective: 

The overall objective of this study was to develop a simplified approach to compute Soil 

Moisture Deficit Index (SMDI) for operational monitoring of the onset and termination of field 

scale agricultural droughts in areas with unreliable meteorological and soil moisture data 

records. The approach involved integration of limited climate and soil data in the study area 
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together with freely available tools such as gridded climatic data to fill gaps in observed 

weather records and satellite remote sensing images to derive crop growth variables for input 

in to a calibrated hydrological model to simulate soil moisture time series used for the 

computation of SMDI. The approach depends on application of low cost commercial soil 

sensors for the calibration of a 1-dimensional agro-hydrological model such as Hydrus 1D 

through numerical inversion for the subsequent direct simulation of long time soil moisture 

time series. The method was evaluated through a case study in Northern Uganda where 21-year 

soil moisture time series was generated through the calibrated model to define SMDI. This 

approach can be very useful for supporting soil moisture management decision in rain fed 

farming areas.  

(ii) Specific Objectives 

 to identify and adapt a suitable drought indicator in relation to the data availability;  

 to assess the feasibility of using a calibrated agro-hydrological model for producing 

long-term time series of soil water dynamics and derive SMDI for monitoring 

agricultural droughts; 

 to upscale the SMDI through energy balance modeling using a case study in 

Northern Uganda; 

 to formulate a soil water management decision support scheme for mitigation of 

agricultural droughts in rain fed farming systems through application of SMDI. 

1.4.3 Summary of the Thesis 

The aim of this research was to develop a soil moisture deficit (SMDI) index for 

operational monitoring of the onset and termination of field scale agricultural droughts. The 

methodology is developed with an application focus for rainfed dominated farming system 

especially in developing countries, where reliable historical records of climate, soil and other 

biophysical variables are seldom available. Key concepts applied in developing the index 

include: satellite remote sensing image analysis to extract biophysical variables. Agro-

hydrological simulations to generate soil moisture times series. derivation of reference indices 

through fitting key climatic variables such as precipitation on theoretical probability 

distributions, energy balance modeling to cross validate the index and gap filling climatic data 

through data propagation algorithms that utilizes regression analyses between observed 

climatic data and gridded weather data for gap filling and extending climatic records.    
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Chapter 1, which is the general introduction contains the background information, a brief 

summary of drought concepts, their characterization and impacts on livelihood. The Chapter 

concludes with problem definition leading to the objectives of the study and a summary of the 

thesis. Chapter 2 gives a general description of the study area and the data used in this study. 

It provides some details on climatic patterns over the entire Ugandan landmass, including 

factors that drive these climatic patterns. It also covers dominant soil characteristics and their 

relative productivity levels as reported by unpublished soil map that is under development by 

the National Agricultural Research Organization (NARO). It provides description of the main 

data sources applied in this research e.g. climatic data sources, satellite remote sensing images 

and yield data sources that were used to verify the new SMDI developed in this study.  

  Chapter 3 provides some reviews of the common drought indices used for monitoring 

agricultural drought. Key strengths and weaknesses of each of the common drought indices 

applied for agricultural drought monitoring are highlighted and their application gaps in 

especially developing countries identified. 

Chapter 4 gives details of the core focus of this thesis, it provides description of the 

concepts applied to develop a new approach for the definition of the SMDI specifically for 

application in developing countries that depend solely on rain-fed agriculture. It provides a 

schematization that integrates all the concepts applied to develop the new approach to define 

SMDI as implemented in this thesis. It also covers algorithms for the calculation of key 

reference drought indices i.e. SPI (Standardized Precipitation Index) and SPEI (Standardized 

Precipitation and Evapotranspiration Index) that were applied to verify SMDI in the study area 

Chapter 5 involved evaluation of the 12-common empirical reference evapotranspiration 

models in the study area. The 12-ET0 models were grouped in to three categories i.e. Mass 

Transfer (MT) Based models, Temperature (T) based models and the Radiation (R) based 

model. Results of the evaluation reported and best performing category stated as supported by 

various test statistics with between each ET0 model and FAO-56PM as reference. The overall 

performing ET0 model for the study area is identified. The chapter also covers algorithm for 

gap-filling climatic data using gridded weather data. Two sources of gridded weather data (i.e. 

ECMWF and NASA-P) were used in conjunction with a 4-year weather data collected from a 

digital weather station near the study site and main results of implementation of the algorithm 

presented. 
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Chapter 6 deals with the theoretical background that govern key concepts applied in 

calibration of water flow models as applied in agro-hydrological simulations. Different 

methods of soil hydraulic parameter estimation procedures are described and strengths and 

weaknesses highlighted. This chapter also deals with brief theoretical concepts that govern 

application of satellite remote sensing products for estimating crop growth variables such as, 

LAI and albedo. Detailed descriptions of the estimation procedures of each of these variables 

as applied in this study are provided. Chapter 7 deals with the case study of the calibration of 

Hydrus 1D in the study area. It covers the calibration steps and the presentation of key 

calibration and validation results obtained and their discussions.  

Chapter 8 covers a case study that was conducted in Northern Uganda to test the core 

concepts developed in this thesis. It integrates information covered in chapters 4, 5,6 and 7 to 

generate a 21-year soil moisture time series for the calculation of the threshold parameters that 

were used to define the SMDI. Key results of the comparison between the threshold parameters 

generated through agro-hydrological modeling and those determined from the laboratory 

presented. The chapter also covers the results of the fitting distributions of the variables used 

to implement the algorithms for the calculation of the reference indices i.e. SPI and SPEI. 

Correlation analyses between SMDI and each of the reference indices and the results of 

regression analysis between SMDI and yield data obtained from the study area are reported. 

Chapter 8 also covers application of the energy balance model S-SEBI for calculation of the 

evaporative fraction in the study area applied for upscaling the developed SMDI. It was 

postulated that a linear relationship exists between SMDI and satellite derived evaporative 

fraction (Λ). The existence of this linear relationship means that SMDI can be obtained from 

SMDI- Λ regression equation to upscale it for application over the entire region with similar 

agro-meteorological and soil characteristics. Key results of the SMDI- Λ regression analysis 

presented. Chapter 8 concludes by application of the SMDI to formulate a decision support 

scheme for soil moisture management under rainfed farming system. the scheme is applied to 

delineate the study site’s main growing season. Chapter 9 covers the general conclusion, future 

outlook and key innovative aspects of this research. 

1.4.4 Limitation of this study 

This study has been conducted mainly to address the problem associated with availability 

of climatic and soil data to formulate agricultural drought indicators in developing countries 

that solely depend on rainfall for crop growing. Therefore, the main limitation of this research 

was availability of reliable climatic and soil data. Soil map in the entire country is still being 
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developed, and it was not possible to get soil data that would cover a larger geographical area 

to help in verification of the SMDI that was developed using data only at one study site. 

Secondly most existing weather stations in the area have only precipitation and temperature 

data albeit with lots of gaps. There are only 3 operating weather stations in the study area 

covering the entire Northern region.  
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2 DESCRIPTION OF THE STUDY AREA AND DATA AVAILABILITY 

Summary  

This chapter presents a general description of the study area and data availability used in 

this research. It covers description of the climate of the study area and the major phenomena 

that drive them. The chapter also covers different data sets that were used for this study, which 

include soil and weather data sources, yield data and satellite remote sensing data that were 

used to estimate crop development parameters that facilitated the calibration of the agro-

hydrological model as elaborated in chapter 6, and 7.  

2.1 The Study Area  

The case study area for this research, was Northern part of Uganda. Calibration of agro-

hydrological model covered in chapter 8, was conducted in a small agricultural farm of 

approximately 10 acres about 7 km east of Gulu municipality in Gulu district. The farm was 

established in 2012 by a private individual in conjunction with some dairy farmers in the USA 

as a training farm for modern dairy production in Northern Uganda. It started with 20 dairy 

cows managed under zero grazing unit with Maize (Zea mays), Alfalfa (Medicago sativa) and 

Cowpea (Vigna unguiculata) being the main crops grown within the 10 hectares of land for 

cow feeds. Northern Uganda is believed to be unsuitable for Dairy industry because the region 

experiences relatively higher temperatures compared to most parts of the country and therefore 

considered unfavorable for dairy production.   The development of the SMDI covered in 

chapter 4, involved upscaling the usability of the SMDI through the application of the energy 

balance model using Landsat 8 TIRS satellite images covering parts of Lake Albert, Lake 

Kyoga and the lower Aswa river basins shown in Figure 2.3.  Figure 2.1 shows different 

farming practices in Uganda grouped into agro-ecological zones, the study area being indicated 

with the red rectangle.  

2.2 Climate 

Uganda lies in a relatively humid equatorial climate zone, but the differences in the 

topography, prevailing winds, water bodies and high mountains cause large variability in 

rainfall patterns across the country. Average annual rainfall ranges from 800 mm to 2500 mm 

falling into two seasons in the south and into one season in the North. Temperature varies with 

altitude and exhibit little change from season to season over many parts of the country, although 
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some areas such as the western, eastern, south-western parts of the country characterized by 

high elevations show  significant variations (Basalirwa, 1995). The climatic sub-regions, the 

spatial patterns of the natural resources and land use in Uganda are largely determined by 

rainfall, as is the case in many tropical areas. Uganda’s climate is generally more reliable for 

agricultural production when compared to the other East Africa regions (Griffiths, 1972). 

 

 

 

Figure 2.1 Agro-ecological zones in Uganda. The study area is shown. Source: Statistical Abstracts, 

MFP&ED, June 1997 

Rainfall in Uganda is largely controlled by a number of climate phenomena such as: the 

inter-tropical convergence zone (ITCZ), the subtropical anticyclones, monsoon winds, and the 

moist westerlies from the Democratic Republic of Congo (DRC), locally termed 'Congo air 

mass', among several other regional and local factors  (Basalirwa, 1995). The regional major 

features include the large water bodies and the complex topographic features. These features 

introduce significant modifications in the general wind- flow patterns over the region 

(Basalirwa, 1995). 

Rainfall controlled activities fall under four seasons in Uganda. The first season is 

generally dry covering the months of December, January, February and Parts of March. During 

these months, covering December of the previous year in to the first two to three months of the 

next year, the ITCZ is far to the south outside the East African region (Basalirwa, 1991). Any 

rains falling during this season are associated with regional features mentioned above. The 

second season forms the main rainy season throughout Uganda, referred to locally as the 'long 

rains' lasting from March through May. This season coincides with the presence in the region 

Study area 



 

18 
 

and the convergence into the ITCZ of the moist south-east monsoons from the Indian Ocean, 

controlled by the Mascarene anticyclone (Griffiths, 1972). The third season which is relatively 

dry except in parts of northern Uganda, lasts from June to the end of August. The rains in 

Northern Uganda during this season are associated with the influx of the moist westerly Congo 

air mass controlled by the St Helena heights centered off south-west Africa. Lastly, the fourth 

season is generally the second rainy season throughout the country and known locally as the 

'short rains', lasting from September to the end of November. The rains of this season are 

associated with the convergence into the ITCZ of the north-east monsoons controlled by the 

subtropical anticyclones over the Azores and the Arabian Peninsula. Details of the climate of 

Uganda can be obtained from Basalirwa (1991) and Griffiths (1972).  

Agricultural activities which are predominantly rainfall dependent as in many parts of East 

Africa fall under the two rainy seasons referred to as the ‘long rains’ and the ‘short rains’. 

Recent droughts reported in parts of Northern Kenya, South Sudan and the Sahel are largely 

attributed to the climate perturbations over the region. Although such climate based major 

disasters have had minor impacts in Northern Uganda, they are projected to be more frequent 

(Nicholson, 2014). The structured preparation to absorb such large-scale shocks require 

interventions by the government and development partners. However, the short-term weather 

variations whose impacts are more locally confined are least reported.  Such weather variability 

with local dimension triggers random field scale agricultural droughts in areas bordering the 

drought prune sub-regions such as Northern Uganda and they require insights into factors that 

drive them in order to devise appropriate strategies for their mitigation.  

2.3 Description and summary of the data used in this study  

Acquisition of metrological data in most developing countries is widely recognized as a 

major challenge (Wart et al., 2015; Nijbroek & Andelman, 2015; Nyeko, 2010). Considering 

this challenge, Northern Uganda is no exception, for instance within the annual cropping and 

cattle Northern system’s agro-ecological zone, there are currently only three weather stations 

in operation. Moreover, reliable records can only be said of rainfall and air-temperature, albeit 

with lots of gaps. For this reason, meteorological data were obtained from three sources, 

namely: weather data records from the existing weather stations and two additional stations 

that were installed within Gulu district, one at Gulu University installed under the millennium 

science project in 2012. The second one being the automatic weather station procured for this 

research installed at the Dairy farm about 4km from Gulu University weather station. The 
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second source of the weather data were data records from the three operating weather stations 

in Northern Uganda i.e. weather station at Gulu Municipal, that at Lira Municipal and the one 

at Kitgum Town. The third source of weather data was the gridded weather data from European 

Centre for Medium Range Weather Forecast (ECMWF) reanalysis obtained at a 13km 

resolution covering the period 1979 – 2016 and the NASA-Power agro-climatic datasets. The 

gridded reanalysis data were used in conjunction with the data from FAO-Nile data base and 

the observed datasets from the existing weather stations, to generate what is referred to as 

propagated weather data. 

 

Figure 2.2 Monthly average rainfall from ECMWF reanalysis data (1979 - 2016) for a grid pixel 

corresponding to a location of Gulu Municipal weather station 

2.3.1 Soils in Northern Uganda 

The soils in northern Uganda are dominated by the ferralitic soils (Acric Ferralsols, Petric 

Plitnthosols, and Eutric Regosols of low to moderate agricultural productivity and Vertisols of 

moderate to high agricultural productivity. The ferralitic soils are rich in low activity clays 

(mainly kaolinite), which gives them low (<16 meq 100g-1) cation exchange capacity and 

hence are very poor at retaining cation nutrients. This implies that leaching loss of applied 

nutrients in form of mineral fertilizers is likely to be high. The dominant land preparation 

routines involve burning of vegetation and crop residues prior to primary tillage operations. 

This deprives the soils of the important organic matter inputs required to improving the CEC 

of the soils.  

The ferralitic soils are also rich in sesquioxides, which increase the phosphorus fixation 

capacity, thus limiting availability of the nutrient for plant uptake. The Eutric Regosols on the 

other hand have high base saturation (and hence relatively more fertile than the ferralitic soils) 

but poor water retention capacity. Despite their relatively high agricultural productivity, the 

Veritisols are less used for arable farming due to their heavy texture, which presents major 
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challenges in the largely manual tillage operations characteristic of the farming systems in 

northern Uganda. 

 

(a) 

 
 

 

 

 

 

 

 

 

 

(b) 

Figure 2.3 Maps showing (a) classification of Ugandan soils, and (b) Soil productivity in Uganda. 

Unpublished maps under development by NARO 

2.3.2 Satellite Remote sensing data 

The remote sensing estimation of the crop canopy parameters and the energy balance 

modeling were based on Landsat images that cover three agro-ecological zones (Figure 2.1 & 

2.3), namely: (i) the annual cropping and cattle West Nile system, (ii) the banana Millet cotton 

system and (iii) the annual cropping and the northern cattle system. The Landsat 8 Operational 

Land Imager (OLI) and Thermal Infrared Sensors (TIRS) data are downloaded freely from 

United State Geological Survey website (https://earthexplorer.usgs.gov/). The images are 

identified by the paths of the imager and the rows of the images. For this study, image paths 

171, 172 and row 58 were used.  The Landsat 8 satellite carrying OLI and TIRS was launched 

in 2013 to extend the mission of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 5 Thematic Mapper (TM) satellites (Loveland and Irons, 2016). The description of 

https://earthexplorer.usgs.gov/
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Landsat 8 satellite, the OLI and TIR sensors  and how it is different with the other Landsat 

7ETM+ and Landsat 5TM sensors can be found in (USGS, 2016 and USGS, 2005).  

 

Figure 2.4   Map showing Landsat 8 images used in the analysis and the areal extent they cover 

Names of the focus districts for the case study are overlaid 

2.3.3 Yield Data 

Yield data are widely applied for validation of agricultural drought models, therefore yield 

data were obtained for the validation of the SMDI model developed and analyzed in this thesis. 

However, one of the limitation of this work was that it was not possible to obtain consistent 

yield records corresponding to the period propagated weather data were generated for the study 

area. For these reasons yield data were obtained from three sources: the first source was 

estimated from records of seasonal tonnage of silage made out of maize biomass for feeding 

dairy cows in the agricultural field in Northern Uganda used for the case study for the 2013 – 

2015 period. The second source was yield records of seasonal maize production obtained from 

the National Agricultural Research Organization (NARO) for the study area. NARO considers 
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each agro-ecological zone in Uganda to have uniform agro-meteorological characteristics as 

such yield data obtained in one particular area within a given agro-ecological zone is considered 

representative for the entire agro-ecological zone. Yield data for maize production was 

therefore obtained only for the annual cropping and cattle Northern system agro-ecological 

zone (Figure 2.1) for 2007 – 2010 and 2014 – 2015 periods. the third source of yield data was 

obtained from Global Yield Gap Atlas (GYGA). GYGA has simulated yield data for grain 

production in most regions of the earth, Figure 2.5. The yields data in GYGA are simulated 

using calibrated crop growth model WOFOST based on propagated weather data and gridded 

global soil data. The simulated yields obtained cover 15 years from 1998 to 2012, although the 

GYGA yield datasets are rather based on coarse resolution simulation datasets.  

 

Figure 2.6 Generation of GYGA from crop growth model. Source: (Van Ittersum et al., 2013) 



 

23 
 

3 REVIEW OF DROUGHT INDICES APPLIED IN AGRICULTURAL DROUGHT 

MONITORING 

Summary  

In this chapter, some of the most common drought indices applied for agricultural 

drought monitoring are reviewed. It has been observed through the extensive body of literatures 

on drought monitoring that most of the drought indices in one way or the other are applied in 

monitoring agricultural drought. In most cases, meteorological droughts are applied because 

they are based mainly on precipitation and temperature data that are available in most weather 

stations.  Because of this scenario, this chapter starts by reviewing meteorological drought 

indices and concludes with soil moisture based and remote sensing drought indices. Importance 

has not been placed on the order as they appear but emphasis is put on wide applicability of the 

drought indices. The soil moisture based indices that form the core of this research work are 

further elaborated in chapter 4. 

3.1 Introduction   

Drought indices are important metrics that are widely used for monitoring and assessment 

of drought characteristics. A drought index is a numerical indicator that is formulated by 

assimilating data from one or several variables such as precipitation, evapotranspiration, soil 

moisture etc. into a single numerical value (Zargar et al., 2011). Development of drought 

indices therefore depend strongly on the availability of suitable data (Niemeyer, 2008). 

Suitability of a given dataset for the development of a particular drought index is determined 

by some of the conditions that a good drought index must exhibit such as: statistical consistency 

across different spatial and temporal scales, comparability with other drought indices across 

different climatic regimes,  connectedness to relative risks or historic conditions being assessed 

and should finally not be subjective, (Vicente-Serrano et al., 2009; Narasimhan and Srinivasan, 

2005). There are over 150 documented drought indices that have been developed and more are 

being developed due in part to recent advancement in the satellite remote sensing technology 

(Zhang et al., 2017; Zargar et al., 2011; Niemeyer, 2008). A few of the drought indices in 

common use are listed in Table 2.1. Drought characteristics that are routinely monitored and 

assessed through application of drought indices are:  

 Duration: refers to the length of time period that a given drought event takes. These can 

be some few weeks, several months to even years. 
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 Severity: this mainly refers to the degree of precipitation deficit or the degree of the 

resultant drought impact.  

 Spatial extent:  refers to the geographical area affected by a given drought event. This 

can vary from field scales, watershed to regional scale or even transboundary extent. 

 Magnitude: refers to the accumulated water deficit which may be precipitation, soil 

moisture below some threshold during a drought period. 

 Frequency: refers to also as the return period, it is defined as the average number of 

times a particular drought event with a severity or magnitude equal or greater than a 

given threshold.  

The aim of this chapter is to review key drought indices that are used for monitoring agricultural 

drought.  

3.2. Meteorological Drought Indices  

Early development of drought indices depended on meteorological variables obtained from 

synoptic meteorological stations (Niemeyer, 2008). Essentially, these drought indices were 

classified as meteorological indices and are still currently referred to as such.  The following 

are the most widely used meteorological drought indices:  

3.2.1 Standardized Precipitation Index (SPI) 

Developed by McKee et al. (1993), the SPI has gained wide acceptance in the past decade. 

SPI is primarily a meteorological drought index based on average precipitation amount in a 1, 

3, 6, 9, 12, 24 or 48-monthly time step. In order to calculate SPI, the observed rainfall values 

for a given time step (usually in 1, 3, 6, 9, 12, 24 or 48-monthly period) are first fitted to a 

Gamma distribution. The Gamma distribution is then transformed to a Gaussian distribution 

(standard normal distribution with mean zero and variance of one), which gives the value of 

the SPI for the time step used. SPI is the recommended drought index by the world 

meteorological organization (WMO), for drought monitoring over diverse climatic conditions 

(Aghakouchak et al., 2015; WMO, 2009; Hayes et al., 1996) . More details on the computation 

of SPI are presented in chapter 4. The weakness of SPI has been attributed to two sources: i.e. 

the length of the precipitation records and the probability distribution on to which the 

precipitation is fitted for the calculation of SPI (Mishra and Singh, 2010).  Since many regions 

do not have long term reliable precipitation records, computation of SPI for such areas are 

affected by short lengths of precipitation records. Secondly usually the probability distribution 
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on to which a given precipitation can be fitted differs from place to place. Therefore, it 

recommended that the precipitation of a particular area should first be fitted to an appropriate 

theoretical probability distribution, and the goodness of fit tested before applying SPI.  

3.2.2 Standardized Precipitation Evapotranspiration Index (SPEI) 

The SPEI was developed by Vicente-Serrano et al. (2010) and it compares the atmospheric 

demand, represented by the reference evapotranspiration (ET0) with current water availability. 

The index has been applied in global drought studies (Spinoni et al., 2016; Vicente-Serrano et 

al., 2015; Beguería et al., 2014; Dai, 2011). SPEI has also been applied in diverse climatic 

regions for drought assessment such as in India: (Das et al., 2016); in China:  (Xinyu et al., 

2017; Yu et al., 2014 ), other regional applications were done in Europe: (Scaini et al., 2014; 

Törnros and Menzel, 2014; Vicente-Serrano et al., 2014) and in South Africa (Ujeneza and 

Abiodun, 2015).  

The steps for the computation of SPEI are similar to those of the SPI; however, the SPEI 

uses the climatic water balance calculated from a difference between precipitation and 

reference evapotranspiration as input rather than precipitation alone (Beguería et al., 2014; 

Vicente-Serrano et al., 2010). Implementation of the SPEI algorithm involves calculation of 

the climatic water balance at various time steps, and fitting the resulting values to an 

appropriate probability distribution; usually the log-logistic probability distribution. This is 

done in order to transform the original values to standardized units that are comparable in space 

and time at different time steps (Beguería et al., 2014; Vicente-Serrano et al., 2010). More 

details of the SPEI algorithm is presented in chapter 4.  

3.2.3 The Reconnaissance Drought Index (RDI)    

The Reconnaissance Drought Index (RDI) developed by Tsakiris and Vangelis (2005) for 

regional drought severity assessment in South-Eastern-Europe (Vangelis et al., 2011; Tsakiris 

et al., 2007) in recent years, its use spread in European and global drought studies (Spinoni, 

2016; Amin et al., 2015; Vicente-serrano et al., 2015; Shokoohi and Morovati, 2015). The 

index is calculated from precipitation (P) as a percentage of potential evapotranspiration (ET0): 

0ET

P
a          (3.1) 
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The reconnaissance drought index can be considered as an extension of SPI for more effective 

association with hydrological and agricultural drought (Niemeyer, 2008; Tsakiris and Vangelis, 

2005). The index can be normalized as RDIn , equation (3.2) 

 

1
k

k
n

a

a
RDI        (3.2) 

Where 
ka  is the value of the index for month k and 

ka  is the corresponding average value and 

the standardized value of the index can be written as:  

 
k

kk
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yy
kRDI

̂


        (3.3) 

Where 

 kk ay ln       (3.4) 

And yk is the arithmetic mean and ̂  is its standard deviation (Tsakiris et al., 2007; Tsakiris 

and Vangelis, 2005). The other commonly used meteorological drought indices include percent 

of normal and deciles.  

3.2.4 Palmer Drought Severity Index (PDSI) 

Palmer Drought Severity Index (PDSI) is one of the earliest and most widely used drought 

index (Alley, 1984; Palmer, 1965). It is formulated to evaluate prolonged periods of both 

abnormally wet and abnormally dry weather conditions. The index is based on a simple two-

layer lumped parameter water balance model and is considered the most widely used drought 

index (Alley, 1984). The data input to calculate it include: precipitation, temperature, and 

average available water content of the soil for the entire climatic zone, although PDSI is 

considered a meteorological drought. Applying these inputs into a two-layer simple lumped 

parameter water balance model, various water balance components are calculated. These 

components include: evapotranspiration, soil recharge, runoff, and moisture loss from the 

surface layer. Then a 30-year historical weather data and the current water balance components 

are used to establish coefficients through which, a Climatically Appropriate for Existing 

Conditions (CAFEC) precipitation is computed. The precipitation deficit is then computed as 

the difference between the actual precipitation and the CAFEC. The precipitation deficit is then 

used to calculate the PDSI based on empirical relations.  

The main criticism of the PDSI is that it is not comparable among diverse climatic regions 

(Wells et al., 2004; Alley, 1984). Another criticism of PDSI is that it is overly sensitive to 
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temperature changes (Feng et al., 2016). This is because ET0 input as used in PDSI is calculated 

using the empirical Thornthwaite method which uses only the temperature input to calculate 

ET0. More details on PDSI computations are presented in Palmer (1965), Alley (1984) and 

Akinremi and McGinn (1996). The limitation of PDSI led Wells et al. (2004) to develop a self-

calibrating PDSI (SC-PDSI) that automate the constants used in the calculation of its empirical 

constants thereby enhancing its comparability across different climatic regions (Wells et al., 

2004).  

3.3. Agriculture Drought Indices  

When soil moisture availability to plants drop to such a level as to disrupt the normal plant 

development and adversely affect crop yields, agricultural drought is considered to have set in. 

Generally, agricultural drought is defined through soil moisture deficit in relation to 

meteorological drought and its impact on agricultural production. Soil moisture times series 

provide the only realistic means of assessing agricultural drought (Mannocchi et al., 2004). 

However, availability of long term soil moisture time series is very limited in most regions 

especially in many developing countries where they are virtually non-existent. For this reason, 

some Agricultural drought indices were formulated on the basis of hydrological models 

(Narasimhan et al., 2005). The predictive values of such indices are therefore affected not only 

by the data accuracy and reliability but also by the assumptions embedded in the 

conceptualization of the hydrological model. In most cases, especially when applying 

distributed hydrological models, the limitations of the derived indices are linked to the soil 

water balance model formalization, its parameterization and its temporal and spatial resolution 

(Van Der Knijff et al., 2010). All drought indices including the meteorological, hydrological 

and remote sensing drought indices in one way or the other are used in agricultural drought 

monitoring. The following are the most widely used agricultural drought indices: 

3.3.1 Crop Moisture Index (CMI) 

Palmer (1968) developed CMI as an index for monitoring short term agricultural drought 

from the original procedure for calculating the PDSI. This was done to account for the time lag 

between the soil moisture available to plants and a precipitation events. This time lag has a 

buffering effect on the response of plants to precipitation deficit. The PDSI developed earlier 

by Palmer (1965) is useful mainly for monitoring long-term drought conditions as a result of 

precipitation deficit. However, agricultural crops are highly susceptible to short-term moisture 
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deficits during critical periods of crop growth stages. Whereas PDSI is calculated from 

precipitation deficits and is applied for monitoring long-term drought conditions, CMI is 

calculated from evapotranspiration deficits. CMI unlike PDSI is used for monitoring short-term  

agricultural drought conditions that are detrimental crop growth. More details on the use of the 

CMI algorithm are presented in Palmer (1968). 

3.3.2 Drought indices based on transpiration 

One of the truly agricultural drought index is the transpiration deficit (DT) index, 

developed by Marletto et al. (2005). The DT is calculated daily from a water balance model as 

the difference between the Potential and actual transpiration. Then the integrated transpiration 

deficit (DTx), cumulated over x days is calculated as: 

 



n

xn

emx TTDT       (3.5) 

Where n represent the current day on which the DTx is being calculated and x = 30, 60, …, 180 

days). The use of DTx was assessed in comparison with SPI in the Emilia Romagna region the 

index demonstrated “noticeable differences” with SPI (Marletto and Zinoni, 2004; Marletto et 

al., 2005).  The same authors stated that the difference resulted from the different procedures 

used to calculate each of the two indices. The DTx is based on the adaptation mechanism plants 

have when experiencing moisture stress. The plant’s water requirements depend on the 

prevailing atmospheric condition, the biological characterization of the plant species, its stage 

of development, the physical, chemical and biological properties of the soil and soil moisture 

content (Savva and Frenken, 2002; DeWitt, 1986).  Whenever plants experience water stress 

such that the energy required to extract the limited water from the soil by the roots become ever 

greater, plants have mechanisms through the closure of stomatal pores to limit water loss 

through transpiration. In such a condition the plant’s actual transpiration is less than potential, 

and this is the condition that the index captures (Marletto et al., 2005).  

3.3.3 Soil moisture based Agricultural drought indices  

Many other agricultural drought indices are based on Soil Water monitoring. These include 

the soil water index (SWI) and the soil moisture index (SMI) developed almost concurrently 

by Sridhar et al. (2008) and Hunt et al. (2009) and recently Soil water deficit index (SWDI) 

developed by Martínez-Fernández et al. (2015). These soil water based agricultural drought  
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Table 2.1 Current commonly used drought indices. Sources: Dai, (2011); WMO and global     

partnership (2016) 

Type Name of Index Calculation method Strengths Weaknesses References  

M
et

eo
ro

lo
g

ic
al

 D
ro

u
g

h
t 

 

Standardized 

Precipitation Index 

(SPI) 

Fitting a Long-term 

precipitation record into a 

normal distribution  

Can be computed for different 

time scales 

Symmetric for both dry and 
wet periods 

Related to probability 

Requires long term 

precipitation records 

No consideration of 
evapotranspiration 

Mckee et al., 1994 

Reconnaissance 

Drought Index (RDI) 

Fitting and transforming 

long term record into a 
normal distribution 

Consider both precipitation 

and evapotranspiration 
Can be computed for different 

times scales 

Comparable to FAO aridity 
index 

Requires long term 

meteorological data  
Sensitive to the method 

of calculating potential 

evapotranspiration  

Asadi Zarch et al., 

2015; Tsakiris and 
Vangelis, 2005; 

Tsakiris et al., 2006 

Beguería 

Standardized 

Precipitation 
Evapotranspiration 

Index (SPEI) 

Fitting and transforming a 

long- term deficit record 
into a normal distribution 

Calculating 

Considers both water supply 

(precipitation) and demand 
(potential evapotranspiration) 

Can be computed for different 

time scales Considers both 

water supply (precipitation) 

and demand (potential 

evapotranspiration) 
Can be computed for different 

time scales 

Requires long-term 

meteorological data 
Sensitive to the method 

to calculate potential 

evapotranspiration 

Seasonal Requires long-

term meteorological data 

Sensitive to the method 
to calculate potential 

evapotranspiration 

Seasonal 

Beguería et al., 

2014; Vicente- 
Serrano et al., 2010 

Alley, Beguería et 

al., 2014; Vicente- 

Serrano et al., 2010 

 

PDSI Calculating the departure 

of moisture balance from 

the normal condition  
Based on a 2-layer bucket-

water balance model 

Uses a total water balance 

methods   

Uses arbitrary rules for 

defining available water 

capacity in the soil 
 

 

A
g

ri
cu

lt
u

ra
l 

D
ro

u
g
h

t 

Soil Water Deficit 

Index (SWDI) 

Comparison between 

actual soil water content, 
WCFC and WCWP 

Can be determined by direct 

measuring or EO 
Implicitly accounts for 

precipitation and irrigation 

inputs 

Assumes that the lag 

between meteorological 
and agricultural drought 

represents the response 

time for impact 
occurrence 

Martínez-Fernández 

et al. 2015; 
Martínez-Fernández 

et al. 2016 

 

Integrated 

transpirative Deficit 

(TDx)  pF 

Cumulate difference 

between potential and 

actual transpiration 

Has been developed and 

tested in northern Italy 

Accounts for hydrological 

balance 

Accounts 

Sensitive to the 

assumptions of the 

hydrological model, its 

spatio-temporal 

resolution and its 
calibration 

Does not account for 

irrigation inputs 

Marletto & Zinoni 

2004; Marletto et al. 

2005 

 

pF anomalies Calculating the z-score of 
water potential derived 

from a hydrological model 

Linearly 

Accounts for fully 
hydrological balance 

Sensitive to the 
assumptions of the 

hydrological model, its 

spatio-temporal 
resolution and its 

calibration 
Does not account for 

irrigation inputs 

Laguardia & 
Niemeyer 2008; 

Sepulcre-Canto et 

al. 2012 
 

Vegetation Condition 

Index (VCI) 

Linearly scale of NDVI 

derived from remote 
sensing 

Identifies drought impact on 

vegetation 
Identifies 

Limited by cloudiness 

Short period of records 

Kogan 1995 

 

Standardized 

Vegetation Index 

(SVI) 

Combined 

z-score of VI derived from 

remote sensing 

Identifies drought impact on 

vegetation 

Limited by cloudiness 

Short period of records 

Peters et al. 2002; 

Horion et al. 2012 

C
o

m
b

in
ed

 

d
ro

u
g
h
t 

in
d

ex
 

Combined Drought 

Indicator 

Combination of indices 

(SPI, pF, fAPAR) 
Combination of indices 

(SPI, pF, fAPAR) 

Characterizes agricultural 

drought cause-effect 
relationship 

Good spatial coverage and 

high resolution 

May not represent 

conditions that may carry 
over from season to 

season (i.e. uses only a 

single SPI value) 
Hard to replicate outside 

Europe 

Sepulcre-Canto et 

al. 2012; Horion et 
al. 2012; de Jager & 

Vogt 2012 

indices were developed on the FAO-56 concept of available water for plant and are applied for 

rapid monitoring of agricultural drought. Since the soil moisture based drought indices form 
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the core of this work they are addressed in details in chapter 4, where the new approach to 

develop a SMDI is covered. The other soil moisture based indices are the soil moisture deficit 

index (SMDI) and the evapotranspiration deficit index (EDI) developed through a distributed 

hydrological simulation of long term soil moisture time series (Narasimhan and Srinivasan, 

2005) indices were developed on the FAO-56 concept of available water for plant and are 

applied for rapid monitoring of agricultural drought. Since the soil moisture based drought 

indices form the core of this work they are addressed in details in chapter 4, where the new 

approach to develop a SMDI is covered. The other soil moisture based indices are the soil 

moisture deficit index (SMDI) and the evapotranspiration deficit index (EDI) developed 

through a distributed hydrological simulation of long term soil moisture time series 

(Narasimhan and Srinivasan, 2005) 

3.4 Remote Sensing based Indices 

Regional drought monitoring through the commonly used drought indices such as the 

PDSI and SPI require adequate density of meteorological stations. Usually a drought index is 

calculated for each station over the entire region and use is made of statistical interpolation 

techniques to infer drought conditions over un sampled locations. The higher the density of the 

meteorological stations, the less the uncertainty associated with drought conditions over 

interpolated locations. Therefore, high uncertainty of the interpolated drought index values 

over un sampled location may result from climatic data obtained from a sparse network of 

meteorological stations. Moreover, commonly used spatial interpolation methods such as the 

deterministic model of inverse weighted distance and the stochastic model of ordinary kriging 

are affected by a number of factors. Because of these and other limitations of climatic data 

collected from synoptic meteorological stations, application of remote sensing for regional 

drought monitoring has been gaining more attention in recent times (Choi et al., 2013; Rhee et 

al., 2010). In areas with limited meteorological stations such as in developing countries, remote 

sensing may be the only reliable source of information for regional drought monitoring.  

Remote sensing application in drought monitoring is based on detection of the radiometric 

properties of the vegetation canopies. These vegetation properties are defined by what are 

commonly referred to as vegetation indices (VI). The most widely used vegetation index 

derived from the optical region of the electromagnetic spectrum is the normalized difference 

vegetation index (NDVI) (Choudhury, 1987). The NDVI is computed from remotely sensed 
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images in the near infrared (ρnir) and the red (ρr) spectral reflectance values as expressed in 

Equation (3.6):  

rrni

rnirNDVI







        (3.6) 

Time series of NDVI are often used for detecting anomalies in crop growth, which are supposed 

to be determined by the drought index.  

Another widely used vegetation index for drought monitoring is the vegetation condition index 

(VCI) developed by Kogan (1995a). The VCI is computed by scaling NDVI between 0 and 1 

for each location and VCI is calculated as: 

minmax

min

NDVINDVI

NDVINDVI
VCI




        (3.7) 

Kogan (1995b) similarly introduced the Temperature Condition Index (TCI). From the additive 

combination of the VCI and TCI, the Vegetation Health Index (VHI) was introduced. Currently 

many more vegetation indices exist. Their specific applications are limited by the image spatial 

resolution, usually the more commonly applied methods are those based on large pixel sizes 

and therefore appropriate for regional drought monitoring. 

3.5 Conclusion 

In this chapter, some of the drought indices used for agricultural drought monitoring were 

reviewed. The strengths and weaknesses of each of the indices highlighted as reported in the 

different literatures. From the reviewed literatures, some gaps in the current agricultural 

drought monitoring tools could be identified. One such a gap is that majority of the newly 

developed agricultural drought indices have not been tested in Sub-Saharan Africa. Especially 

the soil moisture based drought indices. One obvious reason for this could be the unavailability 

of soil moisture monitoring programs in Africa. Secondly, even the widely-used SPI has had 

very limited application in Africa especially in Uganda, one such a study was reported, 

moreover covering the entire east Africa (Ntale and Gan, 2003), thus focusing on large scale 

hydrological droughts with transboundary spatial extent.  

Drought monitoring studies that have been carried out in Africa were therefore concerned 

mainly with the identification of extreme events, such as the monitoring of the hydrological 

drought. Therefore, gaps still exist in the body of the extensive literatures available on drought 

indices in monitoring agricultural droughts at field scale in developing countries. Matters are 
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complicated by limited climatic records that are always the case in developing countries 

especially in Africa. For instance, it is recommended that for the calculation of SPI, the 

commonly applied meteorological drought, requires at least 30 years of data. This requirement 

is seldom met by climatic records in developing countries. These challenges call for 

development of new indices that would circumvent the need for long term climatic data and 

can be applied at the field scale. The method presented in this thesis as elaborated in the next 

chapter 4, solves this problem by application of gridded climatic data in combination with 

limited observed weather data through the data propagation algorithm to create a fairly long 

term climatic records that can be applied for the development of the index. Moreover, the 

application of simulation models solves the problem of unavailability of long term records of 

soil moisture time series required to develop soil moisture based indices.   
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4 DEVELOPING A NEW APPROACH FOR THE DEFINITION OF SOIL MOISTURE 

DEFICIT UNDER RAIN FED CROPS 

Summary   

In this chapter, the core concepts developed in this thesis are presented. The chapter 

covers reviews of the state of the art on soil moisture based drought indices and applies the 

information gathered from the reviewed literature to formulate a new soil moisture deficit index 

(SMDI). It also covers algorithms used to derive commonly used meteorological drought 

indices i.e. the standardized precipitation index (SPI) and the standardized precipitation and 

evapotranspiration index (SPEI). 

4.1 Introduction 

Drought incidences are becoming more frequent with the increased climatic variability 

(Xinyu et al., 2017; Yu et al., 2014; Wang, 2005). Current widely applied drought indices for 

the detection of the onset and termination of especially agricultural droughts were developed 

with the aim of large scale monitoring of extreme events that are mostly common in arid and 

semi-arid areas. As a result, such drought indices cannot essentially be applied for monitoring 

agricultural droughts at field scales. This difficulty, prompted the development of soil moisture 

based drought indices that are suitable for field scale agricultural droughts monitoring. 

However, the newly developed indices rely on long term records of measured soil moisture 

time series that are available only in developed countries.  Some of the indices apply distributed 

parameter hydrological models for generation of the long-term soil moisture time series (Yan 

et al., 2013; Narasimhan and Srinivasan, 2005). However, application of distributed parameter 

hydrological models requires reliable stream flow records and a host of other climatic, land 

use, topographic and soil parameters that are not available especially in developing countries 

at water shade scales (Zhang et al., 2016; Yadav et al., 2007). The aim of this chapter is to 

present the development of a new approach to define soil moisture deficit index (SMDI) for 

monitoring the onset and termination of agricultural droughts at field scales. The approach 

focuses on the application of freely available tools such as high resolution satellite images to 

estimate crop development parameters, freely available numerical codes such as Hydrus 1D, 

for simulation of moisture transport in to the unsaturated soil system within the root zone.  The 

new approach also relies on a method of gap filling climatic records through application of 

gridded weather data in conjunction with observed weather data and evaluation of appropriate 

reference evapotranspiration models for specific application areas presented in chapter 5. The 
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schematization illustrating all the concepts applied is shown in Figure 4.1 and explained in 

section 4.4. These tools are all applied to generate long term records of soil moisture time series 

for the generation of threshold parameters of the water retention curve applied for the definition 

of SMDI. The chapter concludes by elaborating on algorithms for calculation of reference 

indices; SPI and SPE for testing the reliability of the newly developed SMDI.  

4.2 Definition of The Soil Moisture Deficit Index from Soil Moisture Measurements  

Early application of soil moisture information for monitoring moisture deficits in 

agricultural soils was done by Baier (1969) using values of field capacity and wilting point as 

threshold parameters for defining moisture stress condition for plants. Baier (1969) 

demonstrated that ET become limiting below the midpoint between field capacity and wilting 

point, or at 50% of total available water and developed a soil-water–ET curve which 

demonstrated that no reduction in ET occurred until soil water fell below 50% of field capacity.  

Similar elaborations were done by Purcell et al. (2003), in which he developed an atmospheric 

water deficit (AWD) as the difference between the 7-day running sum of precipitation and the 

7-day running sum of evapotranspiration. Purcell et al. (2003) proposed to define the 

probability at which plants begin to experience moisture stress as 37% percent of the moisture 

level at field capacity. Similar approach was used by Sridhar et al. (2008) to develop a user-

friendly drought index called the Soil Moisture Index (SMI) to identify a quick onset of 

agricultural drought. They did this, by demonstrating that the observed dryness of a soil relative 

to the plant’s ability to extract water can be scaled over the range from field capacity to wilting 

point. Thus, defining SMI as a fraction of available water (FAW) content between field capacity 

and the wilting point. The original definition of the SMI is shown in equation (4.1), (Sridhar et 

al., 2008). A follow up work by Hunt et al. (2009) using similar concepts to define SMI are 

shown in equations (4.2) and (4.3). 

 
  













 5

5

WPFC

WPSMI



     (4.1) 

Where θFC is the soil moisture content at field capacity and θWP is the soil moisture content at 

wilting point yielding values of SMI from -5 to 0. 

AWFSMI 105       (4.2) 

SMI being scaled between -5 and +5 and FAW as given by equation (4.3); defined between the  

Water contents at field capacity and that at the wilting point.  



 

35 
 

WPFC

WP
AWF








        (4.3) 

Using the above concepts, Sridhar et al. (2008) used soil data measured by automatic soil 

moisture instruments over a period of eight years and modeled soil moisture using a simple 

hydrological model to monitor agricultural drought using values of  FC  and 
WP from 

literatures. Whereas Hunt et al. (2009), used the same soil moisture database but defined FC

and WP by ranking an eight year soil moisture data for the growing seasons and letting the 95th 

percentile to be FC and the 5th percentile to be 
WP and verified the obtained values with 

published values of 
FC and

WP  Their findings using soil data from four sites showed that the 

variation of SMI corresponded to rainfall variability in the two areas studied.  

Recently similar concepts were applied by Martínez-Fernández et al. (2015) using 

REMEDHUS soil moisture database in Spain. In their case, weighted average of soil moisture 

values for the three profiles measurements at 5cm, 25cm and 50cm in the root zone were used 

to define what they termed as the soil water deficit index (SWDI) for application as a suitable 

agricultural drought indicator, equation (4.4). The SWDI was scaled between -10 and 10, thus 

giving it Agricultural meaning. Use of these approaches that rely on soil moisture databases 

are however only possible where such soil moisture databases exist. However, most developing 

countries lack availability of robust soil moisture monitoring programs as such alternative 

techniques for estimating long term soil moisture must be developed for these methods to be 

applied. Alternatively, the threshold parameters for defining the availability of water for plant 

i.e. θFC and θWP, can be determined in the laboratory from undisturbed soil core samples using 

pressure plate apparatus. This is usually done by specifying θFC as being equivalent to moisture 

content at matric potential pressure of 300m and θWP corresponding to moisture content at the 

matric potential pressure of 1500m (Romano et al., 2011).  

10





WPFC

FCSWDI



      (4.4) 

However, laboratory determination of these threshold parameters for soil water retention do 

not provide proper representation of the actual field soil moisture conditions (Romano et al., 

2011). Another method of estimation of these threshold parameters is by use of Pedo-Transfer 

Functions (PTFs); (Wegehekel and Gerke, 2015; Botula et al., 2012; Minasny, 2009; Pidgeoni, 

1972). However, development of PTFs, rely on extensive databases of soil physical 
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characteristics that are unavailable in many developing countries. Most of the currently 

available PTFs, were developed based on temperate and Mediterranean soil databases that 

cannot be applied with confidence to other soil types such as the tropical soils (Botula et al., 

2012; Romano and Palladino, 2002; van den Berg et al., 1997) 

4.3 A New Approach to define The SMDI for Application in Developing Countries 

Recent development in instrumentations for measurement of soil moisture has allowed 

increased soil moisture databases worldwide (Engda and Kelleners, 2015).  Availability of low 

cost soil moisture monitoring sensors equipped with data loggers that allow remote 

transmission of soil moisture content in real time, freely available remote sensing soil moisture 

products such as the SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture 

Active and Passive); add to the growing soil moisture databases worldwide (Martínez-

Fernández et al., 2016; 2015; Wagner et al., 2011). Despite the availability of these methods 

and tools, soil moisture databases in majority of developing countries are still lacking, as such 

research efforts in agricultural water management have lagged behind in areas where they are 

much needed (Dobriyal et al., 2012). The need to increase food production on limited land 

areas with declining fresh water resources requires that the limited water and soil resources are 

managed sustainably. This requires methods to identify and quantify shocks so as to enable 

formulation of strategies for their mitigation ensuring improved land and water productivity.    

In this thesis, a new approach to define the soil Moisture deficit index (SMDI) is developed 

using soil moisture as a drought indicator. The new index is calculated using simulated root 

zone soil moisture time series from an agricultural field in Northern Uganda as presented in 

case studies of chapters 7 and 8 of this thesis. The index is verified using water deficit indicators 

such as AWD, SPEI and SPI (with monthly temporal resolution) as reference indices and yield 

data from the study area. The novelty in this approach is in the application of a physically based 

Agro-hydrological model for the simulation of the soil moisture content. Since such simulation 

models capture the actual physics of the moisture movement in the SPAC, it can be very useful 

in areas where reliable networks of soil moisture measuring instruments are lacking such as in 

developing countries. This method is very flexible and particularly applicable in areas with 

limited studies on impact of climatic variability on agricultural production. The steps involved 

rely on freely available tools such: high resolution satellite images to estimate crop/vegetation 

canopy parameters, freely available numerical codes for Agro-hydrological modeling, 

reanalysis data for filling gaps in weather data that are very common in developing countries, 
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testing of appropriate reference evapotranspiration models suitable for specific application 

areas and utilization of low cost commercial soil moisture sensors for calibration of Agro-

hydrological models, as illustrated in the schematization in Figure 4.1. 

4.4 Conceptual Frame Work Illustrating the New Approach to Define SMDI  

The conceptual diagram in Figure 4.1, illustrates the interactions between various concepts 

applied in the new approach presented in this chapter for the definition of the SMDI. The 

development of the new approach focuses on overcoming challenges in calculation of soil 

moisture based drought indices for application in developing countries, especially in the humid 

equatorial and tropical climates. In such climates, agricultural drought is thought to set in after 

the onset of a meteorological drought triggered by sustained precipitation deficits. As crops 

continue to extract soil moisture, water storage in the soil depletes since there is no precipitation 

to replenish the soil moisture loss. When this reaches a critical threshold, termed wilting point 

(θWP), the crops dry up. However, before crops reach this critical point, when soil moisture 

content falls below 75% of its value at field capacity (θFC), as has been assumed here (Equation 

4.5), crops begin to experience moisture deficit. When this condition persists, it is no longer 

possible to reverse the effects on crop yields especially if it occurs during tasseling for the case 

of Maize (Zea mays). This is the point that SMDI is developed to detect such that mitigation 

strategies can be planned. 

Therefore, the conceptual diagram illustrates the different concepts applied to address 

moisture movement through the soil-plant-atmosphere continuum (SPAC), for the purpose of 

developing the new approach to define SMDI. Accounting for moisture movement in the soil 

requires estimation of soil hydraulic characteristics which is achieved in this schematization 

through the inversion of a water flow model (Hydrus 1D). Whereas accounting for water 

movement in the plant requires estimation of the plant development characteristics, achieved 

here through application of satellite remote sensing. And lastly accounting for water movement 

into the atmosphere requires collection of reliable climatic data which is best achieved through 

the concept of data propagation, for a developing country such as Uganda. Definition of the 

boundary conditions for the water flow model requires specification of infiltration rates and 

evaporation fluxes between the soil-plant-atmosphere boundary. The infiltration rates can be 

specified through knowledge of daily precipitation totals, since simulation was carried out at 

daily time steps. The evaporation fluxes are accounted for in two ways: for the calibration of 

the water flow model, for a short time period, usually one or two seasons of weather records 
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can be obtained from digital weather station from which FAO-56 is applied to calculate 

evaporation fluxes. Once the model is calibrated, the long-term simulation requires a less data 

intensive ETo model in combination with published crop coefficient values for estimation of 

actual evaporation fluxes. Selection of the less data intensive ETo requires evaluation of the 

various evapotranspiration models in the study area. Since the evaluation requires sophisticated 

methods that involve equipment that are usually not available in developing countries, it is 

recommended here to apply the FAO-56 PM model for the assessment of the other ETo models. 

This is done in chapter 5, where 13 reference evapotranspiration models are evaluated using a 

4-year datasets obtained near the study site. Once the less data intensive reference model is 

selected, the evaporative fluxes can be calculated throughout the simulation period to generate 

long term records of soil moisture time series. The long-term soil moisture records are 

thereafter used to calculate θFC and θWP from which SMDI can be computed. Verification of 

SMDI is achieved through reference indices such as SPI and SPEI whose conceptual diagrams 

are separately shown in Figures 4.3 and 4.4 respectively. Further verification of SMDI is also 

achieved through application of AWD whose calculation is similar to that of SPEI variable D. 

Except that the calculation of D as applied in AWD is done according to Purcell et al. (2003) 

as the difference between the 7-day running sum of precipitation and the 7-day running sum of 

ET0. 

Therefore, the development of the new approach as presented in this chapter is based on 

the original definition of the SMI  and later elaboration by Martínez-Fernández et al. (2015). 

The difference from these approaches is in the way soil moisture is generated and in defining 

the threshold parameters (θFC and θWP) of the soil moisture retention curve. In the steps involved 

in this approach, there is an inherent assumption that continuous meteorological records for at 

least three years of especially rainfall, and air-temperature can be found in most weather 

stations in developing countries for which the approach is developed. If the other 

meteorological variables such as solar radiation, wind speed and relative humidity are available 

in a given weather station, they become added advantages. Secondly, it is assumed that the 

weather variability exhibited by meteorological data in a given location is the same everywhere 

in that Agro-ecological zone within which the weather station is located (Wart et al., 2013). 

The second assumption is particularly applicable for Northern Uganda districts, that are 

grouped in to one Agro-ecological zone. The steps involved are as follows: 
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Figure 4.1 Flow chart showing conceptualization of the new methodology for development of SMDI: OWD = 

Observed weather data, GWD = Gridded weather data, SET0
= Selected ET0 model. PM=FAO-56 

ET0 Model, ε=some value determined by RMSE, MAE, NSE, d or r2 
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 Long term simulation of the one-dimensional daily soil moisture times series at a 

representative location for a given Agro-ecological zone. 

 Statistical analysis of the simulated soil moisture times series  

 Definition of the threshold parameters from the model generated soil moisture times 

series 

 Computation of the daily SMDI using the method of Martínez-Fernández et al. (2015) 

 Aggregation of the SMDI over weekly or monthly time scales for agricultural drought 

monitoring  

 Computation of the other drought indicators such as a SPEI, AWD, CMI or monthly 

SPI to act as reference agricultural drought indicators  

 Comparison of the developed SMDI with the reference agricultural drought indicators 

The long-term simulation of the soil moisture times series can be done in a distributed way 

using a distributed parameter hydrological model (Narasimhan and Srinivasan, 2005). The 

difficulty with distributed parameter modeling in developing countries are however, the 

limitation of data for model calibration (Wi et al., 2015). In most cases, one basin outlet stream 

records exist for calibration of model parameters. Thus, whereas there are tools such as 

Geographical Information Systems (GIS) and Digital Elevation Models to aid spatial and 

topographical analysis, application of such models in developing countries are still wrought 

with lots of uncertainty (Andersen et al., 2001). Therefore, it is considered that application of 

distributed parameter models for generation of soil moisture time series for the definition of 

SMDI parameters would introduce serious errors when it is to be applied for operational 

drought monitoring at field scales. Such distributed parameter models can best be applied for 

the detection and analysis of extreme events that have basin and/or transboundary dimensions 

such as in monitoring hydrological drought. The steps in this new approach is therefore to use 

a one dimensional Agro-hydrological model such as Hydrus 1D for generation of soil moisture 

time series. It is much easier to generate data for the calibration of such a physically based 

model using the available tools, than when they are to be implemented in a distributed mode.  

Considering the steps above; once the model is calibrated for a given location, what 

remains is to generate input data for the long-term simulation of the soil moisture times series. 

since a model such as Hydrus 1D once calibrated requires definition of the initial and the 

boundary conditions, for simulation of the soil moisture times series. As long as the boundary 

condition is defined, the calibrated model can be used for a long-term generation of the state 

variable such as soil moisture and pressure heads.  The initial condition is defined by the initial 
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soil moisture or pressure heads within the soil profile during the start of the simulation which 

can easily be obtained by measuring the soil moisture content or the pressure heads at the 

beginning of the simulation using any of the low-cost soil moisture sensors. The boundary 

conditions have to be defined for the entire simulation periods. 

The challenge with the specification of the boundary conditions throughout the simulation 

period is in estimation of the soil evaporation and the transpiration, treated for this study in 

combination as Evapotranspiration (ET). For short term period, such as two seasons it can be 

possible to apply data from automatic weather stations which are nowadays commercially 

available at reasonable prices. The automatic weather station can therefore be installed in any 

location to generate meteorological data say for a year or two for the calculation of the ET 

using the FAO-56 PM model, recommended by the Food and Agricultural Organization of the 

United Nations as a sole method for calculation of reference ET over diverse climates. Since 

such a station can generate all the data required for input in to the FAO-56 PM model. 

 

 

Figure 4.2 A schematic diagram showing boundary conditions in one dimensional simulation of 

moisture movement in the soil system: P is precipitation, T is transpiration from plants, D 

is deep percolation below the root zone into the water table. Some other components such 

as surface runoff, and interception by vegetation are not indicated.  

However, for longer term simulation of soil moisture time series, some way of estimating 

the reference ET has to be devised other than the FAO-56 PM model, due to the limitation in 

the data records in developing countries. Usually the Hargreaves method has been proposed as 

an alternative for application over diverse climatic regions (Allen, 1998). However, the validity 

of using the Hargreaves (HG) method has to be assessed per specific application areas and if 
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possible other reference ET models with less data requirements just like the HG be tested for 

comparison. As a requirement for this approach, assessment of the reference ET models is done 

in chapter 5. 

Since the application focus of this method is in areas where rain-fed farming is 

predominant, equation (4.4) can be modified into equation (4.5). In this case; just as Baier 

(1969), suggested that plants begin to respond to moisture deficit in the soil when soil moisture 

content is depleted to 50% of its value at field capacity. Here it is taken that below 75% of the 

moisture content at field capacity, plants will begin to experience moisture stress. The factor 

of 4 is used in the SMDI for easy comparison with the other commonly used drought indices 

which use similar range of values for drought indices. 

4
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
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




WPFC

FCSMDI



     (4.5) 

4.5 Procedures for Deriving Reference Indices for Evaluation of the SMDI 

The SPI, developed by McKee et al. (1993) is a meteorological drought index 

recommended by the WMO for the assessment of meteorological droughts in any part of the 

globe because of its comparability over different regions and requiring only precipitation data 

for its calculation (WMO, 2009; Ntale and Gan, 2003). Therefore, SPI was chosen for the 

assessment of SMDI over Northern Uganda together with SPEI and AWD which are 

temperature based drought indices. SPEI was developed by Vicenete-Serano et al. (2010) and 

has been applied over diverse climatic regions. Atmospheric Water Deficit (AWD) was 

developed in the United states by Purcell et al. (2003). Its calculation is based on difference 

between the reference evapotranspiration and precipitation just like the SPEI. However, unlike 

the SPEI that transforms the evapotranspiration deficit in a normalized distribution basing on 

a log-logistic probability distribution, the AWD directly applies the evapotranspiration directly 

for drought assessment (Torres et al., 2013; Purcell et al., 2003). Therefore, it has simple steps 

to implement compared to SPEI and SPI that require fitting distributions.  

4.5.1 The SPI Algorithm  

Computing SPI involves fitting a gamma probability density function to a given monthly 

rainfall distribution. The gamma distribution function is given by its probability density 
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Where parameters α and β can be estimated by the maximum likelihood method 
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N is the number of the observation months. the cumulative probability can be given by  
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Letting Pt  , (4.10) becomes an incomplete gamma function  
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As the gamma function is undefined for 0P , the cumulative probability becomes  

     PGqqPH  1        (4.12) 

Where q is the probability of zero precipitation. 
n

m
q  (between the number of zeros in a 

precipitation time series m, and the sample size n) and G(P) is the cumulative probability 

distribution for gamma probability density function, calculated in equation (4.10). The 

cumulative probability H(P) can be transformed into the standard normal random variable with 

mean zero and Varian of one. This yields the monthly value of SPI viz:- 
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4.5.2 The SPEI Algorithm 

The SPEI calculation steps is based on the original SPI algorithm. Unlike the calculation 

of SPI that requires only precipitation values from given station(s), SPEI is calculated from the 
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difference between precipitation P and Potential evapotranspiration PET. This presents the 

water surplus or deficit (Dn) for the for the analyzed month. 

nnn PETPD         (4.14) 
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Figure 4.3 Flow chart providing the description of the SPI algorithm  
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The calculated Dn values are then aggregated over different time scales, following the same 

procedure as that of the SPI. Whereas for the SPI, the cumulated precipitation is fitted to a 

gamma distribution, in SPEI calculation steps the cumulated deficit is fitted on a 3-parameter 

log-logistic distribution function (Vicentet-Serano, et al., 2010):  Thus, Dk
n,m  in a given month 

n and year m depends on a given time scale t, (Vicente-Serano, 2010) 
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Then the cumulative deficit x is fitted to a 3-parameter log-logistic probability distribution as  
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The three parameters of the log-logistic probability distribution can be estimated following 

different procedures.  Vicente-Serano (2010), proposed the method of L-moments following 

Sing et al., (1993) 
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Where    is the gamma function of  , and 
sw is the probability weighted moments 

(PWMs)of order s, calculated as: 
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and 
N

i
Fi

35.0
 , is the frequency estimator calculated following Hosking (1990), i is the 

range of observations arranged in increasing order and N is the number of data points. The 3-

parameter log-logistic distribution was chosen as the fitting probability distribution unlike the 

2-parameter gamma distribution as applied in SPI because in a 2-parameter distribution the  
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Figure 4.4 Flow chart providing the description of the SPEI algorithm as implemented to evaluate SMDI 

calculated using the new approach described in this chapter. OWD = Observed weather data, 

PWD = Propagated weather data, GWD = Gridded weather data variable x has a lower 

boundary of 0 (0 < 𝑥 < ∞), whereas in a 3-parameter distribution x takes the values 

  x  thus allowing for negative values which are very common in D series 

(Vicente-Serano, 2010).  

Observed Daily Weather data (OWD) 
at existing meteorological station  

Calculating daily deficits  
D = P-ETo  

Cumulated deficits over n 
months 

Estimating the generalized log-

logistic distribution parameters 

Calculating f(D) for each month 

Distribution parameters 
for each month and over 

n months 

Calculate ETo using  
FAO-56 model  

Standardizing SPEI 

Distribution parameters 
for each month and over 

n months 

n=1,3,6,9,12,24 months 

Distribution parameters 
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 Apply method of Chapter 5,  
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 calculate ETo 
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4.6 Conclusion  

In this chapter, the development of a new approach for the definition of SMDI was 

presented. To achieve this task, earlier works that applied SMDI for agricultural drought 

monitoring were reviewed in section 4.2, (Equations 4.1 to 4.4). These approaches largely 

relied on availability of long term records of soil moisture time series that are mostly available 

in developed counties. The difference in the new approach from the earlier soil moisture based 

indices is in the way soil moisture is generated since the method is developed for application 

in developing countries. As explained in section 4.3, the approach relies on a 1-dimensional 

agro-hydrological model for the generation of soil moisture time series from which SMDI is 

defined. However, since the new approach focuses on developing countries, it has to overcome 

the challenge of unavailability of reliable weather and crop growth data for the calibration of 

agro-hydrological model. These are overcome by application of gridded weather data for gap 

filling climatic records which often times lack continuity in developing countries as presented 

in chapter 5. The problem of monitoring crop growth is overcome by application of freely 

available high resolution satellite remote sensing images to estimate crop development 

parameters such as albedo and LAI as presented in chapter 6. The chapter concludes by 

elaborating on the algorithms for the calculation of SPI (Equations 4.6 to 4.13 & Figure 4.3) 

and SPEI (Equations 4.14 to 4.20 & Figure 4.4) used as reference drought indices for testing 

the reliability of SMDI. The overall schematization of the new approach is illustrated in Figure 

4.1 and explained in section 4.4. The calculation of SMDI following the new approach is 

illustrated by Equation 4.5 which is based on the assumption that plants begin to experience 

moisture stress when soil moisture fall below 75% of its value at field capacity.  
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5 EVALUATING EMPIRICAL MODELS FOR ESTIMATING REFERENCE 

EVAPOTRANSPIRATION: A CASE OF NORTHERN UGANDA 

Summary  

The concept of reference evapotranspiration (ET0) is important in accounting for water 

movement in the SPAC since it relies only on the climatic data. However, calculation of ET0 

through the recommended FAO-56 PM model is not possible in most developing countries that 

lack consistent and reliable records of climatic variables such as solar radiation (Ra), 

Temperature (T), Relative Humidity (RH) and wind speed (U); which are its input 

requirements. This difficulty has prompted development of various less data intensive ET0 

models for application in areas that lack these climatic records. However, application of such 

ET0 models in areas for which they were not developed require testing for their validity and if 

possible their calibrations are always recommended. In this chapter, 13 reference ET0 models 

were evaluated using the FAO-56 PM model based on a 4-year weather data near a study site 

in Northern Uganda. The models are grouped into 3 categories: i.e. temperature based category 

(T), mass transfer(MT) based category and the radiation based category (R). Results of the 

evaluation showed that the R-based category performed best followed by the MT category and 

the T-based category consistently overestimated ET0. The best performing ET0 model was 

Makkink which is R-based with RMSE = 0.6mm, MAE = 0.4mm, NSE = 0.1, d = 0.9, and r2 = 

0.7 and the worst performing ET0 model is Thornthwaite which is T-based with RMSE = 

3.5mm, MAE = 3.2mm, NSE = -10.4, d = 0.3, and r2 = 0.2. 

Evaluation of two gridded climatic data sources (ECMWF and NASA-Power Agro-

climatic) were also conducted, using similar statistics as applied in ET0 evaluations. Results 

showed that NASA-Power Agro-climatic source gave better comparisons with observations for 

the Ra (RMSE = 45.6 Wm-2, MAE =40.3 Wm-2, NSE=-0.2, d = 0.7, & r2 =0.7); RH (RMSE 

=8.5%, MAE = 6.8%, NSE = 0.7, d = 0.9, & r2 = 0.7) and precipitation [P] (RMSE = 8 mm, 

MAE = 4.1mm, NSE = -0.9, d = 0.6, & r2 = 0.2). Whereas ECMWF gave better comparisons 

with observations for Tmin (RMSE =1.61oC, MAE =1.25 oC, NSE= 0.6, d = 0.67, & r2 = 0.35), 

Tmax (RMSE = 0.96 oC, MAE = 0.73 oC, NSE= 0.31, d = 0.86, & r2 = 0.67), and U (RMSE 

=0.52, MAE =0.42, NSE=-1.1, d = 0.67, & r2 = 0.2). Following the data propagation algorithm 

presented in this chapter Ra and RH obtained from NASA-Power can be applied without 

calibration whereas only the Tmax obtained from ECMWF can be applied without calibration.  
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5.1 Introduction  

Reference evapotranspiration is an important parameter in Agricultural water management 

and hydrological studies (Djaman et al., 2015). Accurate estimation of evapotranspiration is 

essential for understanding land-atmosphere interactions needed in applications such as 

hydrological modeling and in agricultural water management; for instance in improving water 

use efficiency in irrigated agriculture (Kwon & Choi, 2011). The FAO56-PM model has been 

recommended as the standard method for calculating reference evapotranspiration (ETo) over 

diverse climates because it is based on fundamental physical principles that guarantee its 

universal validity (Bautista et al., 2009). However, use of FAO56-PM model is limited by 

availability of; air temperature (T), relative humidity (RH), solar radiation and wind speed (U) 

data. This is because most weather stations especially in developing countries have incomplete 

records of these data and those that have them, are of questionable accuracy. For this reason, a 

number of empirical models for estimating reference evapotranspiration with limited data 

requirements have been developed over the years. These empirical models require calibration 

especially in areas with different weather patterns than those in which they were developed. 

Usually the calibration of such ETo models are done with flux tower, weighing lysimetric or 

class A Pan evaporation measuring instruments. However, these instruments are very 

expensive and based on sophisticated methods that are rarely applicable in developing 

countries. For that reason, in such circumstances, it is recommended that calibration of other 

ETo models in a given area can be achieved through application of FAO-56 model, if sufficient 

records of Solar radiation, wind speed, RH and air temperature can be found or estimated in an 

area.  

A number of studies have used FAO-56PM model to calibrate different empirical models 

for estimating reference evapotranspiration over diverse climatic regions: for instance; Berti et 

al.,  (2014) used FAO-56PM to calibrate the Hargreaves model in the Veneto region in North-

Eastern Italy, Lee (2010) used the FAO-56PM to recalibrate the Hargreaves equation for the 

Korean Peninsula, Tabari and Talaee (2011) used FAO-56PM to calibrate the Hargreaves and 

the Priestley-Taylor models in arid and cold climates of Iran, Sahoo et al. (2012) used FAO-

56PM model to evaluate the performance of 16 empirical models for estimation of reference 

evapotranspiration using both the continuous daily time series and average time series in a 

humid valley of cultivated range land in eastern Indian Himalayas, etc.  The objective of this 

chapter is to evaluate the performance of 13 reference evapotranspiration models in Northern 

Uganda based on existing meteorological data. The second objective is to assess the 
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applicability of gridded climatic data for gap filling climatic data records in the study area 

through a data propagation algorithm proposed by Wart et al., (2015). The two objectives are 

required in the proposed general procedure in chapter 3 for development of SMDI for 

agricultural drought monitoring in the study area.  

5.2 Study site and Methodology   

5.2.1 Study Area 

A general description of the study area is given in chapter 2, section 2.5, where brief details 

of Uganda’s climatic condition including factors that drive the weather variables at regional 

scale affecting the entire country are discussed. This section focuses on Northern Uganda where 

the case study was conducted. Average monthly variations of weather parameters are shown in 

Figure 5.2, based on the last four-year data obtained from an automatic weather station at Gulu 

University (GU) for the period: 2012 - 2016. The administrative boundaries of Northern 

Uganda have considerably changed. However, what is covered here and indicated on the map 

in Figure 5.1 is based on a 2006 district maps for Uganda. 

 

Figure 5.1 Map of Northern Uganda showing three of the operating meteorological stations. Two 

automatic stations one at Gulu University (GU) and another at Gulu Uganda Country Dairy 

(GUCD) being 2 km and 4 km respectively from the Gulu station are not shown on the map 
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Northern Uganda lies within the Aswa River basin and a detailed description of the study 

area is given by Nyeko (2010). The monthly average patterns for four of the main climatic 

variables of solar radiation, air temperature, relative humidity and wind speed are shown in 

Figure 5.2. There exists a number of meteorological stations that were established during the 

colonial era. However, majority of them are no longer operational except for those shown in 

Figure 5.1 and Table 5.1. The operations of these stations were interrupted by a number of 

insurgencies that took place in the area, including the 20-year insurgency of the Lord’s 

Resistance Army (LRA).  

Meteorological data were obtained from all the stations listed in Table 5.1 and data quality 

checks were performed to test for consistencies and assess the magnitude of gaps in each 

available data set.  Figure 5.2 is based on only four-year complete datasets collected from the 

automatic station at GU. therefore, it may not capture the actual variation of the monthly 

climatic conditions in Northern Uganda. It is however consistent with local experience of the 

long term climatic pattern of the region supported by descriptions of Basaliriwa (1995) and 

Ogalo (1985). 

Average monthly temperature varies from 22oC to 27oC, although temperatures as high as 

37oC are reported in Kitgum and Lira districts. Average monthly solar radiation varies between 

150 Wm-2 to 240 Wm-2 . Average monthly relative humidity varies between 30% and 80% with 

low relative humidity registered between January and May of each year. Average wind speed 

varies between 1 m/s and 2.5m/s, although wind speed data obtained from Global Yield Gap 

Atlas (GYGA) shows average wind speed of 2m/s (Wart et al., 2015). However, the figures 

from GYGA’s data are based on calibration of gridded climatic data from NASA-Power Agro-

Climatic. It was not possible to find any reports on calibration of gridded climatic data over 

Northern Uganda using observed climatic data.  

5.2.2 Reference Evapotranspiration and the concept of crop coefficient  

Reference evapotranspiration, ETo is defined as  a evapotranspiration from an extensive 

surface of green grass of uniform height (0.12m), with an albedo of 0.23 and a fixed canopy 

resistance of 70s/m, actively growing, shading the ground and not short of water (Allen et al. 

1998). As such reference evapotranspiration is a function of climatic variables only; such as 

the solar radiation (Rs), air temperature (T), relative humidity (RH) and wind speed (U). It is 

therefore independent of crop factors such as crop type, management practice, crop density, 

etc. and soil factors such as soil fertility, soil salinity and tillage type (Allen et al., 1998).   
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Whereas crop evapotranspiration ETc refers to evapotranspiration rate from a particular crop 

under standard conditions of no water stress, free from crop disease, no incidence of crop pests 

and growing under best possible soil fertility (Muniandy et al., 2016; Allen et al., 1998).  

 

 
Monthly average Solar radiation 

 
Monthly average air temperature 

 
Monthly average Relative Humidity 

 
Monthly average Wind Speed 

Figure 5.2 Monthly mean weather variation at the Gulu station for (2012-2016) data  

Crop evapotranspiration (ETc) is required in order to determine crop water requirements under 

standard conditions. ETc has to be adjusted accordingly for crops growing under nonstandard 

conditions. Determination of ETc is complicated and quite often, the required input parameters 

for their calculations through the recommended FAO-56, are seldom available. This difficulty 

has partly been solved by defining unique relationship between the ETo (which is based purely 

on climatic factors) and the ETc that requires consideration of all the other factors (i.e. crop 
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factors, soil factors, tillage practices and other management factors) in terms of crop 

coefficients (Kc). Crop coefficient is defined according to Allen et al., (1998); equation (5.1). 

o

c
c

ET

ET
K           (5.1) 

Table 5.1 Location coordinates and data availability for Northern Uganda stations used in this study 

Station's Location    weather variables     Status 

S/N 

Station's 

Name Lat(oN) Long(oE) Z(m) 
 

U T  Rad  RH P 
 

length  

1 Gulu  2.783 32.283 1100 
  

√ 
  

√ 
 

1995-2015 a* 

2 Ngetta 2.297 32.921 1080 
  

√ 
  

√ 
 

1995-2014 a* 

3 GUCD  2.805 32.285 1085 
 

√ √ √ √ √ 
 

2015(Apr-Oct) 

4 GU 2.784 32.283 1100 
 

√ √ √ √ √ 
 

2012-2016 

5 Kitgum 3.287 32.889 760     √     √   1995-2008 a** 

U=wind speed(m/s), T=air temperature (oC), Rad=Solar radiation (W/m2), P=Precipitation or rainfall (mm) 

[Status i.e. length of the data collection period: a* = minor inconsistencies detected with largest gaps less than six 

months; a**= very large gaps, more than six months, and major inconsistencies detected such as repeated entries 

for some years. 

Values of Kc has been published for various crops under various climatic conditions, soil 

types and crop management practices, (FAO, 1998). Crop coefficient has also been shown to 

be a function of crop development stages defined by parameters such as; the leaf area index 

(LAI), crop height (hc) and albedo (Allen et al., 1998).   These crop development stages can 

alternatively be obtained through application of remote sensing methods (D’Urso, 2001). 

Therefore, through the recommended FAO-56 method for calculating evapotranspiration, Kc 

can be defined according to D’Urso (2001), equation (5.2). 

  cac h  LAI,  r,  ;   URH,  ,T  ,KfK       (5.2) 

Where K  is the incoming short wave radiation (Wm-2), r(-) albedo, LAI being the leaf area 

index, hc  is crop/vegetation canopy height and T, RH and U as defined in section 5.2. Equations 

(5.1) and (5.2) can be used to estimate the actual crop evapotranspiration once the climatic 

parameters can be obtained. Many times, however, climatic parameters are not available 

especially in developing countries and even if available, they are incomplete and of 

questionable quality. In such circumstances, there are other ETo models that have been 

developed that do not necessarily require all the climatic variables. Once such ETo can be 

calibrated and verified for the specific application areas, they can be used in combination with 

equation (5.1) and the published values of Kc to estimate ETc for those areas.  
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5.2.3 Reference Evapotranspiration Models  

Development of simplified ETo models is driven in part by the difficulty in obtaining 

reliable weather variables for application of FAO-56 model. Secondly, the other accurate 

methods of calculating ET such as the weighing lysimetric methods, the Bowen ratio and other 

flux tower methods are often very sophisticated and expensive to implement. These and other 

factors have encouraged development of many empirical ETo models in application today. In 

this section, 13 of these simplified ETo models are evaluated using the recommended FAO-56 

Penman-Monteith combination model. The evaluated models are grouped into three categories: 

i.e.: The Mass Transfer based models, the Temperature based models and the Radiation based 

models.  

The Mass Transfer ETo models are based on Dalton’s gas law (Muniandy et al., 2016). The 

models under this group apply the aerodynamic concept of vapour movement from evaporating 

surfaces into the atmosphere. The mass transfer ETo models considered for evaluation include: 

Penman (1948), Dalton (1802) and Trabert (1896); (Tabari et al., 2013; Bormann, 2011). The 

equations describing each ETo model are shown in table 5.2. 

The Temperature based ETo models considered in the evaluation include: the Hargreaves 

(Hargreaves and Samani, 1985); the Thorn-Thwaite (Thornthwaite, 1948); Linacre (1977), 

Romenenko (1961) and Blaney Criddle (1962). The Temperatures based empirical ETo models 

employ easy approaches in general, requiring mainly:  daily mean and/or minimum and 

maximum air temperatures. Temperature based ETo models have been applied over diverse 

climatic conditions. The main reason for their wide-spread use is because air temperature 

records are available in most meteorological stations worldwide. Besides, air temperature 

measurements do not suffer from measurement inaccuracies such as the other meteorological 

parameters like wind speed, RH and solar radiation  (Lorite et al., 2006).  

The Radiation based models evaluated in this study include: Abtew (1996), Jensen Haise 

(1963), Makkink (1957), Priestley Taylor (1972), Romenenko (1961), Schendel (1967) and 

Turc (1962). The energy source that drives the evapotranspiration process is the solar energy 

from the sun. The net solar energy from the sun in combination with air temperature, wind 

speed control the evapotranspiration processes (Priestley Taylor, 1972). The relationships 

among these variables have been used to develop the radiation based ETo models. 
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Table 5.2, ETo model Equations and the definition of the variables used in each case 

 

No Author Model Parameters/variables 
1 Abtew 

(1996) 


sAbt R
ETo 53.0  

Rs: solar radiation (MJm−2 day−1);  : latent heat 

of evaporation (MJ/kg) 

2 Blaney 

Criddle 

(1962) 

 846.0  mean

BC

o TpET  
Tmean: mean temperature (◦C) and p: constant 

(0.274) 

3 Dalton 

(1802) 
   as

Dtn eeuETo  07223.03648.0  ea: actual vapor pressure (hPa); es: saturation vapor 

pressure (hPa); u: wind speed (m/s) 

4 FAO56-PM 

(1998)    

 2

2
PM

o
34.01

273

900
408.0

ET
u

eeu
T

GR asn












 

Rn: net radiation (MJ/m2); G: soil heat flux density 

(MJ/m2.day); T: mean temperature (◦C); u2: wind 

speed at 2 m height (m/s);   : psychrometric 

constant (kPa/◦C) : slope vapor pressure curve 

(kPa/◦C); ea: actual vapor pressure (kPa) and es: 

saturation vapor pressure (kPa) 

5 Hargreaves 

(1985)   5.0
6.170023.0 Dmeana

HG

o TTRET   
Ra: extraterrestrial radiation (MJ/m2.day); TD: 

maximum and minimum temperature 

difference(◦C) and Tmean: mean temperature (◦C) 

6 Jensen Haise 

(1963)  008.0025.0 







 mean

sJH

o T
R

ET


 
Tmean: mean temperature (◦C); Rs: solar radiation 

(MJ m−2 day−1); _: latent heat of evaporation 

(MJ/kg) 

7 Linacre 

(1977) 

 
 

mean

dmean
mean

L

o
T

TT
L

ZT

ET








80

15
100

0006.0700

 

Z: local altitude (m); L: local latitude (degrees) and 

Td: dew point temperature (◦C); Tmean: mean 

temperature (◦C) 

8 Makkink 

(1957) 12.061.0 














sMkk

o

R
ET  

Rs: solar radiation (MJ/m2);  : slope of vapor 

pressure curve (KPa ◦C-1);   : psychrometric 

constant (kPa ◦C-1),  : Latent heat of 

evaporation (MJ/kg) 

9 Priestley 

Taylor 

(1972) 

 

)( GRET n

PT

o 















  

 : slope of vapor pressure curve (kPa ◦C−1); Rn: 

net radiation (MJ/m2); G: soil heat flux density 

(MJ/m2 day),  : latent heat of evaporation 

(MJ/kg), α: constant (1.26) 

10 Penman 

(1948)  as

Pnm

o ee
u

ET 









100

98.0
135.0  

ea: actual vapor pressure (mmHg); es: saturation 

vapor pressure (mmHg); u: wind speed (miles/day) 

11 Romanenko 

(1961) 




























s

ameanRko

o
e

eT
ET 1

25
15.4

2

 

Tmean: mean temperature (◦C); ea: actual vapor 

pressure (hPa), es: saturation vapor pressure (hPa) 

12 Schendel 

(1967) 









RH

T
ET meanSch

o 16  

Tmean: mean temperature (◦C); RH: relative 

humidity (%) 

 Thornthwaite 

(1948) 

 

39275

12

1

106751077110179249239.0

514.1
5

: where, 
10

3012
16

IIIa

T
I

I

TdN
ET

i

i

a

meanmThw

o

mean

















































 

Tmean: mean monthly temperature (◦C) 

13 Trabert 

(1896) 
   as

Trbt

o eeuET  3075.0  
ea: actual vapor pressure (hPa); es: saturation vapor 

pressure (hPa); u: wind speed (m/s) 

14 Turc 

(1962)  50
15

13.0 









 s

mean

meanTur

o R
T

T
ET  

Tmean: mean temperature (◦C); Rs: solar radiation 

(Cal/m2 day); Rs: solar radiation (Cal/m2 day) 
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Table 5.3 ET0 Models and the required weather parameters for their input 

No Model Category Weather Data 

   R T U RH 

1 Abtew R √    

2 Blaney Criddle T  √ √ √ 

3 Dalton MT √ √   

4 FAO56-PM C √ √ √ √ 

5 Hargreaves  T  √   

6 Jensen Haise R √ √   

7 Linacre T √ √   

8 Makkink R √ √   

9 Prestley Taylor R √ √   

10 Penman MT  √  √ 

11 Romenenko T  √   

12 Schendel R  √  √ 

13 Trabert MT  √   

14 Turc R √ √  √ 

 (Note: MT=Mass transfer, R=radiation, T=temperature, C=combination) 

In general, Allen et al. (1998) recommended the Hargreaves model as an alternative for 

the FAO-56 since it requires only the  measured mean air temperature and the air temperature 

range and calculated extraterrestrial solar radiation (Hargreaves and Samani, 1985). However, 

according to Hargreaves and Samani (2003), the Hargreaves method is not recommended for 

daily calculation of reference evapotranspiration and furthermore, the method does not perform 

well over regions with extensive cloud cover. For such regions, they recommend local 

calibration of the Hargreaves formula.  The difficulty with local calibration is that it has to be 

applied more than once for similar regions that may even have slight difference in atmospheric 

conditions. And the calibration requires sophisticated methods such as the lysimetric 

measurements or at least availability of data for calculation of reference evapotranspiration by 

the FAO-56 method, each time the calibration is undertaken. However daily estimates of ETo 

is required for many hydrological and agricultural applications (Martí et al., 2015). This is the 

main reason why other empirical models with similar less data requirements are evaluated over 

Northern Uganda to verify their validity in that region. There is still no indication to date that 

evaluation of Empirical ETo models such as the widely-used Hargreaves method has been done 

over Northern Uganda.  

5.3 Evaluation Procedure of the Reference Evapotranspiration Models  

Various statistics for efficiency tests between simulation (Si) and Observations (Oi) were 

applied to assess the prediction accuracies of each of the 12 evapotranspiration models based 

on ETo values calculated by FAO-56. The test statistics used include the Coefficient of 
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determination (r2), the root mean square error (RMSE), the mean absolute error (MAE), the 

Nash-Sutcliffe Efficiency test and the index of agreement (d) test, equations (5.3) to (5.7). In 

each case a given simplified ETo model is taken as Si and the FOA-56 is taken as Oi.  the results 

of the statistical tests for each of the 12 evaluated models are given in the section 5.4. 

5.3.1 Coefficient of determination (r2) 

  

   

2

11

112



































n

i

i

n

i

i

n

ii

PPOO

PPOO

r    (5.3) 

With Oi being observations;  O is the average of the observations; Pi is the predicted values 

and P  being the average of the predicted values.  

5.3.2 Root Mean Squared Error (RMSE) 
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5.3.3 Mean Absolute Error (MAE) 
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5.3.4 The index of agreement (d) 
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5.3.5 The Nash-Sutcliffe Efficiency (NSE)  
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Values of r2 ranges from 0 to 1 with 0 indicating worst model prediction and 1 indicating the 

best model prediction. A RMSE value of 0 indicates, best model prediction and the higher the 

value the worse the prediction so is the case with MAE. The values of NSE ranges from 1.0 to 

-∞, with NSE=1.0, showing the best prediction and any value lower than 1.0 indicating the 

worst prediction. And lastly the values of d ranges from 0 to 1, with 0 indicating worst 

prediction and 1 indicating the best prediction (Krause et al., 2005). It was developed by Nash 

and Sutcliffe (1970). 
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5.4 Gap Filling Weather Station Data 

Application of the method to calculate the SMDI, presented in chapter 4 requires 

assessment of simplified empirical reference evapotranspiration models.  This is because the 

method is tailored to rain fed agricultural production areas in developing countries, where 

meteorological data have many gaps that require gap-filling. In many weather stations in 

developing countries, the first challenge is that not all the required climatic data are available 

for calculation of ETo using the recommended FAO-56.  For this challenge, it is recommended 

in the new methodology, to apply simplified models to estimate ETo.   However, in many 

instances the available climatic data that can facilitate application of simplified ETo models 

have quality problems such as inconsistencies and data gaps. Therefore, application of the 

simplified empirical models for the estimation ETo can still be hindered by such problems in 

in the climatic records.  Dealing with those problems in available climatic records are covered 

in this sub-section.  

5.4.1 Dealing with Gaps in Climatic Data in Developing Countries 

Working with weather data in developing countries has three major challenges: 

 Data quality  

 Gaps in the data record 

 Sparse network of operating weather stations 

Each of these challenges can be addressed through statistical methods. Data quality issues are 

addressed through consistency and homogeneity checks. This is done for example by 

application of double mass curves and other statistical methods. The problem of data gaps can 

be handled through a number of gap filling methods proposed in published literatures. Methods 

such as those proposed by Allen (1998) using data from neighboring stations can be applied 

for gap filling.  The problem of sparse network of weather stations can be addressed through 

interpolation algorithms such as; least squares weighted distance method or a geo-statistics 

method such as kriging. However, these methods are associated with lots of uncertainty in the 

generated climatic records at un-sampled locations. Major sources of such uncertainty arise 

from few number of weather stations used for interpolation and the underlying assumptions 

involved.  

The past three decades has seen a number of advancement in satellite remote sensing 

technology that has revolutionized the way observations of the earth environment is conducted. 

This revolution has enabled generation of a number of biophysical variables at a regional to 

global scales. There exist gridded meteorological variables such as the reanalysis datasets from 
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the European Center for Medium Range Weather Forecast (ECMWF) and the NASA Power 

Agro-climatic, that are freely available for most locations of the globe. These data sources can 

be calibrated through observations from local stations to produce longer term data for locations 

having limited data records. This is done through the concept of data propagation that was 

applied to generate meteorological data for global yield gap assessment (Wart et al., 2015). 

5.4.2 The Concept of Data Propagation  

Stochastic weather generators can be applied to generate long term climatic data at 

locations that do not have them. A stochastic weather generator can generate synthetic time 

series of daily weather data for as many years as specified for a location based on the statistical 

characteristics of observed historical records. Whereas, gridded weather data are generated 

from interpolation of meteorological observations over space using point based weather 

observations. They may also be generated by climate models to estimate daily or monthly 

weather data over each grid cell. These are the main methods for generating climatic data for 

climate based studies at remote locations where weather stations are either unavailable or 

nonfunctional.  

The needs for climatic data especially in locations that do not have weather stations is the 

main driver of research efforts to develop weather generators. And much progress has been 

made in developing new methodologies for weather data generators. Despite these efforts 

however, there are still considerable deviations of synthetic weather records from observations. 

While gridded weather records are hampered by insufficient records and poor density of 

weather stations that form the basis for their interpolations. These problems can partly be 

overcome by the concept of weather data propagation. Propagated weather data are generated 

by regression analysis between at least three years of observed weather records and either 

gridded weather data or synthetic weather data (Wart et al., 2015). The procedure proposed by 

Wart et al. (2015) and adopted for this study is illustrated in Figure 5.3. Evaluation of each of 

the variables against observations are based on efficiency statistics that are described in sub-

section 5.2.3. 

5.5 Results and Discussions of Evaluation of the 12 ETo Models 

The performance of each of the 12 ETo models was evaluated by comparing their predicted 

values versus the FAO-56 calculated values. For evaluation of complex models such as 

reference evapotranspiration, it is recommended that various statistics be applied rather than 

relying on application of only the r2 as has always been the case. For that reason, four statistics 
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were used for the comparison, i.e:  the Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Nash Sutcliffe Efficiency (NSE), Index of agreement (d) and the coefficient of 

determination (r2). Besides these test statistics, scatter plots were produced and lines of best 

fits added in each case together with the 1:1 lines to aid visual assessment of how best each 

ETo model compares with FAO-56 model. The presentation of results and discussions are done 

under each model category: namely: Mass transfer based category, the Temperature based 

Category and the Radiation based Category.  

5.5.1 The Mass Balance ETo models  

The mean monthly variation of ETo values calculated by ETo models falling under the 

mass transfer based category and that calculated by the FAO-56 reference model are shown in 

Figure 5.4.  A visual inspection of the mass transfer ETo model category i.e.: Dalton, Penman 

and Trabert, Figure 5.4(a), shows that Dalton is the closest to FAO-56 for the months of April 

to November and it is Farthest from FAO-56 for the months of January to March. Whereas 

Trabert and Penman’s monthly variation compared to FAO-56 are very similar except for the 

months of January to March when Penman is closer to FAO-56 than Trabert. On the other hand, 

Trabert Appears closer to FAO-56 than Penman between the months of October to December, 

although the difference is not as pronounced as for the months of January to March. The 

observed difference in the monthly trend of the Mass Transfer ETo models compared FAO-56 

model is due in part to the wind speed factor which is differently applied in each case, Table 

5.2. The marked seasonal variation in climatic pattern over Northern Uganda with the months 

of December to March being dry and windy and the Months of April to November being 

particularly wet and less windy seem to explain the difference in performance among the Mass 

Transfer models basing on the way wind speed is applied in each case.  

Comparisons of the mass transfer based models with FAO-56PM model basing on the test 

statistics, reveal that the Penman model performs best overall; Figure 5.5(a), in terms of RMSE, 

MAE and NSE, and Dalton perform worst in terms of RMSE. Whereas the performance of 

both Trabert and Dalton equal in all the other test statistics, both of them being better in their 

values of the coefficient of determination than Dalton, Table 5.4 (r2 = 0.8 for both Penman and 

Trabert and (r2 = 0.7 for Dalton). 

5.5.2 The Temperature based ETo Models 

The ETo models evaluated under the temperature based category include: the Hargreaves, 

Romenenko, Blaney Criddle and the Thornthwaite.  The visual inspection of the mean monthly 
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plots (Figure 5.4b) show that all the temperature based ETo models over estimate ETo as 

compared to FAO-56PM model, with Romenenko model providing worst over estimate 

between the months of January and April.  However, the Romenenko model performs better 

than the rest of the temperature best models between the months of April and December. 

Thornthwaite model performs worst overall, especially between the month of April to 

December being negatively correlated to FAO-56 values. Considering the test statistics in the 

temperature based category, Thornthwaite performs worst in all cases, Figure 5.5b. whereas 

Romenenko performs worst in terms of the RMSE and the MAE. Blaney Criddle performs best 

in terms of RSME and MAE followed closely by Hargreaves. With the respective values being 

RMSE = 1.8mm, MAE = 1.6mm for Blaney Criddle and RMSE = 2mm, MAE = 2mm for the 

Hargreaves model. Whereas Hargreaves performs best overall in this category in terms of the 

r2 value being 0.7.  considering the index of agreement d, Romenenko performs best followed 

closely by Hargreaves. Whereas considering the NSE, Thornthwaite performs worst followed 

by Blaney Criddle model. Whereas Romenenko performs best in terms of NSE, followed by 

Hargreaves.  Overall in the Temperature based category, Hargreaves appears to be the best 

compromise followed by Romenenko then Blaney Criddle and Thornthwaite is the worst 

performing.  

5.5.3 The Radiation Based ETo Models  

The ETo models evaluated under the radiation based category include: Makkink, Priestley 

Taylor, Abtew, Turc, Schendel, Jensen Haise and the Linacre. Considering Figure 5.4(c), visual 

inspection of the mean monthly plots, show that Jensen Haise and Schendel over estimate ETo 

compared to the rest of the models in the radiation based category. And Priestley Taylor model 

consistently under estimates ETo in this category. Visual inspection of the plots also shows that 

Makkink model provides the best prediction except for the months from January to March. 

Considering the values of the test statistics, Abtew, Makkink and Turc have similar 

performance with respect to RMSE and MAE in each case being less than 1mm, compared to 

the rest of the other models in this category Figure 5.5(c). These are followed by Jensen Haise 

which gives equal values of RMSE and MAE of 1.3mm in each case. The worst performing 

model in this category in terms of RMSE is Schendel with values of 3.5mm for RMSE and 2.9 

for MAE. This is followed by Linacre and Priestly Taylor with values of RMSE = 1.9mm, 

MAE = 1.8mm for Linacre and RMSE = 1.4mm, MAE = 1.2mm for Priestley Taylor.  In terms 

of d and r2, Makkink and Abtew performs best in terms of d (in both cases d = 0.9) and they 

both perform moderately well in terms of r2 (Makkink = 0.7, Abtew = 0.6). The best model in 
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terms of r2 in this category is Jensen Haise with r2  = 0.8. and the worse in terms of r2 in this 

category is Priestley Taylor with r2 = 0.4. 

 

 
Figure 5.3 Flow chart showing  the data propagation algorithm 
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Figure 5.4(a) Monthly ETo estimated by the different models for the period 2012-2016 

 

 

Figure 5.4(b) Monthly ETo estimated by the different models (shown on the graph) for the period 

2012-2016 

Overall, the best performing models in this Category are Makkink, Abtew and Turc in that 

order, considering a compromise among all the statistical test indicators. And the worst 

performing are; Schendel, Linacre and Priestley Taylor in that order considering a compromise 

among all the test indicators. Considering all the three model categories, radiation based models 

predicts ETo best in the study area, followed by Mass Transfer models and Temperature based 

models give the worst prediction after comparing all the performance of all the models in each 

category. 
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Figure 5.4(c) Monthly ETo estimated by the different models (shown on the graph) for the period 

2012-2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 (a) Comparison of the test statistics in the Mass Transfer based Category of ET0 models 

The Hargreaves model, the best performing in the temperature based category is known 

for poor performance in cloudy regions (Hargreaves and Samani, 1985) and it is recommended 

that Hargreaves be used for monthly estimate of ETo. This appears to be the case with all the 

Temperature based models because Northern Uganda is known for cloudy conditions for two 

third of the year, starting from the beginning of the rainy season in late March, and lasting up 

to early November. The scatter plots between each of the evaluated empirical model and FAO-

56 are shown in Figure 5.6 
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Figure 5.5 (b) Comparison of the test statistics in the Temperature based Category 

 

Figure 5.5 (c) Comparison of the test statistics in the Radiation based Category 

The box plots in Figure 5.7 provide the descrptive statistics of each of the 13 evaluated 

ETo models together with values calculated by the referecnce model, i.e. the FAO-56. Whereas 

Figure 5.8 provides the barchart plot of daily average values of all the 13 ETo models together 

with the FAO-56  model used to evaluate them. The red horizontal line drawn in Figure 4.8, 

gives the average daily value of ETo calculated by the FAO-56 model which is considered as 

standard. This plots confirm the radiation based models of Makkink, Abtew, Turc and the Mass 

transfer model Dalton as provinding th best prediction of the ETo when compared to FAO-56 

combination model. In Table 5.4, the summary of the test statistics for the different ETo models 

are presented.  
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5.6 Results and Discussion of the Weather Data Propagation in Northern Uganda  

Uganda does not have reliable climatic records, (as is always the case in many developing 

countries); more so in Northern Uganda where this study is conducted. Data collected from the 

three main stations shown in Figure 5.1 and whose details are provided in Table 5.1, were 

subjected to quality checks. The climatic data obtained from the three-traditional 

meteorological stations had records of daily precipitation, maximum and minimum air 

temperatures. All the other climatic parameters i.e. RH, solar radiation and wind speed were 

missing. However, there were two automatic stations that were installed in Gulu University 

and at a nearby Dairy farm, where soil moisture monitoring for this research were conducted. 

The details of the data length of these two stations are provided in Table 5.1. Following the 

procedure for assessing the reliability of local climatic data and applying the gridded data for 

updating them to cover longer period in a process termed; data propagation as indicated in 

Figure 5.3. Only data from Gulu University automatic meteorological station passed the test 

for being used for data propagation. The maximum temperature, minimum temperature and 

precipitation data at the two traditional stations in Gulu and Lira could also be used for 

calibration of Gridded climatic data because of their lengths; i.e. being 20 years. However, 

because they had a number of gaps, the process was applied mainly to fill those gaps since the 

two stations are located within the same agro-climatic zone as shown in Figure 2.3 (Chapter 

2). The climatic data of minimum temperature, maximum temperature at the Kitgum station 

did not pass the consistency test and was excluded for the purpose of this study. 

This section presents results of the data propagation procedure performed using the four-

year data from the automatic station at Gulu University and two sources of Gridded climatic 

data; i.e. the reanalysis data from European Centre for Medium Range Weather Forecast 

(ECMWF) and NASA-Power Agro-climatic. In both cases, the gridded climatic data are 

obtained by applying the two-stage procedure: i.e. the analysis data and then finally the 

reanalysis data. The analysis data are obtained from assimilation method in combination with 

forecasting models to generate a continuous gridded dataset at the resolution of 0.250. There 

after reanalysis data is obtained by resampling the gridded data at 0.1250 resolution. The data 

obtained from ECMWF reanalysis include solar radiation, air temperature, wind speed and 

rainfall for the period 1979 – 2015. While those obtained from NASA-POWER agro-climatic 

include solar radiation, maximum and minimum air temperatures, relative humidity and 

precipitation for the periods 1983-2015.  
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Figure 5.6 Scatter plots of the 13 different ETo models evaluated by comparing each with FAO-56 
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Figure 5.7 Box plots of the different reference evapotrasnpiration models for station A. In the x-axis, 

ET0 is calculated in mm in each case. Each of the different ET0 models is evaluated using 

the FA-O56PM combination model indicated as pm; mk = Makkink (radiation model), pt = 

Priestley Taylor (radiation model), hg = hargreaves (temperature model), pnm = Penman 

(mass transfer model), abt = Abtew (radiation model), rmk= Romenenko (temperature 

model), tur=Turc (radiation model), sch=Schendel (radiation model), bc = Banley Cridle        

(temperature model), dtn= Dalton (mass transfer model), trb = Trabert  (mass transfer 

model), jsn = Jensen Baise (radiation model) and lc = Linacre ( temperature model) 

 

Figure 5.8 Bar plot showing average values of ETo estimatimated by the different models as compared 

to FAO-56PM over the period (1998 – 2012). The red line indicates the average value 

calculated by the FAO-56 model 
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Table 5.4 Statistical test results between each of the empirical ETo model and FAO-56 

ETo MODEL RMSE MAE NSE d r2 a(Intercept) b(slope) 

Makkink 0.6 0.4 0.1 0.9 0.7 1.3 0.6 

Priestley Taylor 1.4 1.2 -7.5 0.4 0.4 1.2 0.3 

Hargreaves 2.0 2.0 -4.9 0.5 0.7 3.0 0.7 

Penman 1.2 1.0 0.4 0.8 0.7 -2.0 1.3 

Abtew 0.6 0.5 0.2 0.9 0.6 1.7 0.6 

Romenenko 3.4 2.5 -0.2 0.6 0.7 -3.5 2.6 

Turc 0.7 0.6 -0.1 0.8 0.7 2.0 0.6 

Schendel  3.5 2.9 -0.6 0.5 0.6 -1.7 2.3 

Blaney Cridle 1.8 1.6 -73.6 0.2 0.6 4.6 0.2 

Dalton 1.5 1.1 0.6 0.8 0.8 -3.3 2.0 

Trabert 1.3 1.1 0.6 0.8 0.8 -3.1 1.7 

Jensen Haise 1.3 1.3 -0.6 0.7 0.8 1.4 0.9 

Linacre 1.9 1.8 -7.6 0.5 0.7 3.4 0.5 

Thornthwaite 3.5 3.2 -10.4 0.3 0.2 9.4 -0.7 

*RMSE=Roor Means Squared Error, MAE=Mean Absolute Error, NSE=Nash Sutcliffe Efficiency, d=Index of 

agreement and r2 = coefficient of determination  

The test statistics used for testing the prediction accuracy of the gridded data sets from the 

two sources i.e. NASA-P and ECMWF are the same as those used for the evaluation of the 

reference evapotranspiration models. These are the RMSE, MAE, NSE, d and r2 with the slopes 

and intercepts of the regression line shown for each climatic variable. The prediction of the 

minimum and maximum temperatures in the study area is better achieved through the 

reanalysis data from ECMWF than using data from NASA-P, considering all the test statistics. 

Whereas solar radiation and rainfall in the study area are better predicted by the NASA-P data 

sets except for NSE for rain in which the value for ECMWF = 0.0937 and that of NASA-P = -

0.9, but overall, solar radiation and rainfall are better predicted by the NASA-P gridded climatic 

data in the study area considering all the test statistics except for NSE. Lastly, wind speed was 

better predicted by ECMWF considering RMSE, MAE, d and r2. The RH data was only 

obtained from the NASA-P and the prediction seems fair, considering the different values of 

the test statistics. Therefore, following the procedure for data propagation proposed by Wart et 

al. (2015), minimum and maximum temperature values for the study area can be obtained from 

ECMWF reanalysis data with r2 = 0.9, for maximum temperature and 0.7, for minimum 

temperature. Applying the procedure demonstrated in the flow chart; Figure 5.3, the values of 

the maximum and minimum temperatures can be directly used in simulation studies in the study 

area without calibration. Whereas solar radiation data for the study area needs to be obtained 

from the NASA-P agro-climatic data sets. While wind speed and rainfall data requires 
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calibration and readjustments using regression equations for the NASA-P agro-climatic and 

observed climatic data.  

Table 5.5 Test statistics for the data propagation comparing the observed meteorological variable to 

reanalysis data obtained from NASA-Power and ECMWF-gridded  datasets 
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Tmin 1.8 0.96 1.4 0.73 -0.4 0.31 0.6 0.67 0.2 0.35 0.4 0.3 11.5 13.13 

Tmax 2.2 1.61 1.8 1.25 0.6 0.6 0.9 0.86 0.6 0.67 0.6 0.6 13 12.58 

Slr 45.6 68.67 40.3 58.34 -0.2 -2.29 0.7 0.55 0.7 0.31 0.7 0.74 22.9 106.5 

U 1.4 0.52 1.1 0.42 -0.8 -1.1 0.5 0.67 0.2 0.27 0.2 0.83 1.1 0.27 

RH 8.5  6.8  0.7  0.9  0.7  0.7  15.9   

Rain 8 8.06 4.1 4.21 -0.9 0.0937 0.6 0.472 0.2 0.113 0.7 0.16 1.3 2.74 

 

Figure 5.9 Scatter plots of NASA-P data vs Observations, showing the 1:1 line (red-line) and the line 

of best fit (black line) 
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Figure 5.10 Scatter plots of the ECMWF reanalysis data vs observations showing the 1:1 (red line) line 

and the line of best fit (black line). 

 

Figure 5.11 Scatter plots of the observed rainfall vs reanalysis rainfall data from NASA-P and ECMWF. 

Showing 1:1 line (red) and the line of best fit (blue) 

5.7 Conclusion  

This chapter had two main objectives namely: to evaluate 12 reference evapotranspiration 

models in Northern Uganda using FAO-56 model and to apply data propagation algorithm for 

the  assessment and adjustment of gridded climatic data for gap filling observed climatic data 
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in Northern Uganda. The gridded climatic data were obtained from NASA-POWER agro-

climatic and ECMWF websites. Observed climatic data were collected from the study area for 

the periods between 1995 and 2016 from 5 meteorological stations. Three of the meteorological 

stations are the traditional weather stations in Northern Uganda and they contained only the 

daily rainfall and air temperature records between 1995 and 2015, albeit with large gaps.  

Climatic data obtained from the two automatic stations at Gulu University include continous 

data for four complete years i.e from 2012 – 2016, whereas the automatic meteorological 

station installed at the experimental site at the Dairy farm provided data records only for one 

year and 8 months  i.e. from April 2015 to October 2016.  Subjecting the records of temperature 

and rainfall data from the three traditional meteorological stations made all the data to be 

disqualified for this analysis. For that reason the climatic records used in this analysis are only 

those from the two automatic stations, especially  records from the Gulu University station that 

has been in existance since October 2012. The automatic weather instrument at the GU is a 

standard Campbell Scientific automatic weather station equiped with CR1000 measurement 

and control data logger and wind speed monitor sensor, relative humidity and temperature 

probes and a silicon pyranometer with fix daylight calibration for solar radiation meaurements. 

Whereas the automnatic station at the dairy farm is an integrated sensor suite system from 

DAVIS Inc. equiped with an infrared console that can receive data within a 300m radius.  

Evaluation of the 12 ETo models showed that the radiation based models had the best ETo 

predictions when compared to FAO-56 followed by the mass transfer based models and worst 

predictions were obtained from the temperature based models. Over all, Makkink, Abtew and 

Turc radiation models had the best predictions in that order when considering the four test 

statistics used. Whereas Dalton model in the mass transfer category had the best ETo 

prediction. Among the temperature based category Hargreaves had the best prediction overall 

followed by Blaney Criddle and Thornthwaite had the worst prediction. Generally, the 

temperature based models consistently overestimated the reference evapotranspiration in the 

study area. Whereas Priestley Taylor Model consistently underestimated the ETo among the 

radiation based category.  

The climatic data propagation algorithm proposed by Wart et al. (2015) was applied to 

assess the applicability of gridded climatic data in Northern Uganda. The assessment showed 

that the two data sources of NASA-P agro-climatic and ECMWF can be used concurrently in 

the study area. This is because application of regression analysis and test statistics showed that 
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Ra, RH and P are better predicted by NASA-P, whereas T and U are better predicted by the 

reanalysis data from ECMWF.  

The development of a new methodology to define the soil moisture deficit index (SMDI) 

for the study area, proposed in chapter 4, require evaluation of simplified reference 

evapotranspiration models in a given study area. It also requires assessment of gridded 

reanalysis climatic data for gap filling climatic records. This is because the proposed method 

is tailored for application under rain-fed conditions in developing countries which have scarce 

records of climatic data with poor quality data. The two objectives were achieved in this chapter 

through the evaluation of different ETo models in the study area and application of data 

propagation algorithm for gap filling climatic records in the study area.      
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6 CALIBRATION OF AGRO-HYDROLOGICAL MODEL FOR PREDICTION OF SOIL 

MOISTURE DYAMICS: THEORETICAL DEVELOPMENT 

Summary  

In this chapter, the main theoretical background governing water movement in the soil-

plant- atmosphere continuum (SPAC) is covered. Concepts that govern application of water 

flow models for agro-hydrological simulation are explored. In particular, use of the Richard’s 

equation (RE) for the prediction of water movement in the unsaturated soil system is elaborated 

including steps involved in the calibration of a 1-dimensional RE based model. Brief 

description of water flow model, Hydrus 1D is provided since it is the model that has been 

calibrated and applied in this study to generate long term soil moisture through agro-

hydrological simulation. Furthermore, usually application of RE based models for agro-

hydrological simulation requires for input crop growth parameters. In this research, remote 

sensing based methods have been applied to estimate crop development parameters. Therefore, 

this chapter concludes by covering some concepts governing application of satellite remote 

sensing to estimate crop growth parameters. 

6.1 Introduction  

It has long been recognized that monitoring agricultural drought is better done by soil 

moisture based drought indices (Padhee et al., 2014; Todisco et al., 2008; Mannocchi et al., 

2004; McKee and Doesken, 1995). Development of such indices has depended on soil moisture 

monitoring programs where networks of soil sensors are deployed to obtain long term records 

of soil moisture time series from which the indices are formulated (Martínez-Fernández et al., 

2015; Hao and Aghakouchak, 2014; Zargar et al., 2011). Alternatively, applications of water 

flow models that provide simplified description of water movement through the soil system 

without accounting for vegetation growth factors have been applied. This has been done 

especially in areas where extensive records of soil moisture time series are lacking. For 

instance, in the early development of PSDI and CMI, a simple two-layer lumped parameter 

model was applied to account for water storage in the upper and lower soil profiles (Ryu et al., 

2014; Alley, 1984; Palmer, 1968, 1965). However, operational monitoring of agricultural 

drought requires indices that are developed based on long term records of soil moisture time 

series (Narasimhan and Srinivasan, 2005). Application of water flow models can only be valid 

if such models provide explicit description of water movement through the Soil-Plant-
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Atmosphere Continuum (SPAC) in order to generate soil moisture times series through agro-

hydrological simulations. Therefore, application of water flow models for the formulation of 

soil moisture based drought indices would require knowledge of soil hydraulic characteristics 

and methods for estimating dynamic vegetation growth parameters.   

The first step in developing the new approach to formulate SMDI (introduced in chapter 

4) therefore involves calibration of a 1-dimensional water flow model for agro-hydrological 

simulations to create an extended record of soil moisture time series. This is done so as to fill 

the gap created by lack of long term soil monitoring programs that are common in majority of 

developing countries. Once such extended records of soil moisture is created, they can be 

applied to obtain θFC and θWP through a method developed by Sridhar et al. (2008) and Hunt et 

al. (2009) to calculate SMDI. However, calibration of a water flow model such as Hydrus 1D 

for agro-hydrological simulation as applied in this research also require a method for estimation 

of the crop development parameters. As mentioned in chapter 4, this is achieved through 

processing of satellite remote sensing images. The aim of this chapter is to develop theoretical 

backgrounds including elaboration of the concepts applied to calibrate Hydrus 1D for agro-

hydrological simulations in order to obtain the threshold parameters for the formulation of 

SMDI. The first objective deals with reviews of the concepts governing water movement in the 

SPAC, including description of the 1-dimensional water flow model Hydrus 1D. The second 

part deals with the reviews of the concepts and description of the methods applied in the 

estimation of crop development parameters through processing of satellite remote sensing 

images.  

6.2 Prediction of Moisture Dynamics Through Agro-Hydrological Simulation  

6.2.1 Water dynamics in the Soil Plant Atmosphere Continuum (SPAC)  

In a hydrological cycle, (Figure 6.1), part of the water that is taken up from the soil by 

plant roots, lost through transpiration into the atmosphere and returned again to soil through 

precipitation; goes through what is commonly known as; Soil–Plant–Atmosphere Continuum 

(SPAC). This aspect of the hydrological cycle which was first given detail treatment by Cowan 

(1965), emphasizes the connectedness of soil, plant and atmospheric water. Phenomena 

involving water movement within this continuum include root and whole-plant hydraulic 

conductance, xylem embolism and hydraulic lift by roots (Slayter, 1967). Although the 

intricacies in the detailed pathways are quite complex and encompass a number of disciplines, 

such as: atmospheric physics, soil physics, plant physiology, root and whole plant hydraulics 
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(Sperry and Love, 2015), etc., the general conceptualization can be simplified through 

application of water balance models that integrate soil moisture characteristics, root water 

uptake mechanisms, evaporation from the soil, transpiration and precipitation (Levis, 2010). 

Proper treatment of moisture movement in the SPAC helps us to understand factors that control 

plant adaptation to moisture stress when soil moisture becomes limiting in the root zone 

(Manoli et al. 2015). A number of models have been developed over the years for simulation 

of moisture dynamics in the SPAC. Many of which are based on the water balance others are 

based on partitioning of the energy balance model (Norman and Anderson, 2003). Water 

balance based models have been extensively applied because they are based on concepts that 

require simplified treatments. Whereas the energy balance models mainly deal with application 

of remote sensing based algorithms that require sophisticated equipment for their verifications 

(Hildebrandt et al., 2016; Ting et al., 2012; Jime et al., 2009). For this reason, water balance 

based models have been applied in this study, because of their simplified treatment of the water 

movement in the SPAC and possibility of simple equipment for their verification  (Brillante et 

al. 2014; Skaggs, 2008; Mhiza and Chibulu, 2007; Norman and Anderson, 2003; Li & Islam, 

1999).  

 

Figure 6.1, The hydrological cycle 

6.2.2 Water Balance modeling in the SPAC 

The water contained in the soil system is in a constant state of dynamism due to various 

forces acting on it. Over a given time, interval δt , the rate of change in soil water storage δs , 

is given by  

 δtq-TP - Eδs ps          (6.1)  

Where P, Es, Tp are: precipitation, soil evaporation, transpiration rates respectively and q is the 

water flux density through the soil defined as the rate of discharge per unit cross sectional area 
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perpendicular to the direction of flow (Kutilek and Nielsen, 1994). In the simplest form, the 

water balance model can be expressed as a bucket filling model (Figure 6.2). The bucket filling 

model has been widely used in many water balance studies, however its validity is being 

questioned due to its over simplification of some of the important terms of the water balance 

such as evapotranspiration (Romano et al., 2011).  

 

Figure 6.2 A schematic diagram for the bucket filing model 

Significant progress has been made in developing modeling techniques for monitoring 

moisture movement in the SPAC (Ojha et al., 2014; D’Urso, 2001). This has been possible 

through proper understanding of the physics that govern water dynamics in the SPAC over the 

years. Water movement in the SPAC is best described by the famous Richard’s Equation (RE), 

Equation (6.2); which was formulated through a combination of Darcy’s law and continuity 

equations (Hillel, 1998; Kutilek and Nielsen, 1994; Feddes, 1997; Richard, 1931).  Solution of 

RE is only possible through numerical methods as the soil hydraulic functions; i.e. K(h) and 

θ(h) that describe the input parameters are strongly non-linear (Romano et al., 2011).  
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Where;  θ(cm3/cm3) is the volumetric soil moisture content, t (days) is time, h (cm) the soil 

metric potential, z (cm) is vertical coordinate taken positive upwards, K(h) [cm/day] is 

hydraulic conductivity and S(h) [day-1] denotes water uptake by plant roots estimated according 

to Feddes and Raats (2004), equation (6.3) 

   
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T
hhS           (6.3) 

Where Tp  (cm/day) is potential transpiration, zr (cm) is rooting depth and α(h) [dimensionless] 

is a reduction factor as a function of h and accounts for water deficit and oxygen deficit 
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(Droogers, 2000). Most numerical codes developed for the solution of equation (6.2) use close 

form formulations for the description of soil retention and hydraulic conductivity 

characteristics. Equations (6.4) to (6.6) are based on van Genuchten-Mualem formulations 

(Van Genuchten,1980). Other formulations for characterizing soil moisture retention are shown 

in Table 6.1.  
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Where θsat is the saturated water content, Ksat is the saturated hydraulic conductivity, θres is the 

residual water content, 𝛼(cm-1), n (dimensionless), 𝜆(dimensionless) are the fitting parameters 

and m is defined as; nm 11 .  

 

Figure 6.3. Graphs showing root water uptake stress response functions α(h) as used by (a) Feddes et 

al. (1978) and (b) Van Genuchten (1987) 

A number of soil water retention models have been developed over the years (Ginn, 2007), 

a summary made by Too et al. (2014) are shown in Table 6.1. Soil Water Retention Models 

(SWRM) in common use are the Van Genuchten, Brooks-Corey and that due to Kosugi 

(Simunek et al., 2008; Chertkov, 2004; Kosugi, 1999). An evaluation of the soil water retention 
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models by Too et al. (2014), indicates that; Gardener and Biexponential models gave the best 

predictions using the statistical indicator of the RMSE, whereas the five parameter models 

performed best in prediction of the soil moisture retention. He further found that the Van 

Genuchten model performed best in the five-parameter category whereas the Kosugi model 

performed best in the four-parameter category. Unsaturated soil hydraulic conductivity has for 

the most part been estimated basing on the van Genuchten-Mualem formulation of equations 

(6.4 and 6.6). 

Table 6.1 Summary of Soil Water Retention Curve (SWRC) models developed over the years. Source: 

Too et  al., (2014) 

Reference SWRC Parameters 

Campbell (1974) 𝜃(ℎ) = 𝜃𝑠(𝛼ℎ)𝜆 𝛼, 𝜃𝑠, 𝜆 

Tani (1982); as quoted by 

Sillers et al., 2001 

𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠−𝜃𝑟)[1 + (𝛼ℎ)𝑒−𝛼ℎ] 𝛼, 𝜃𝑟 , 𝜃𝑠 

Exponential (Omuto, 2007) 𝜃(ℎ) = (𝜃𝑟 + 𝜃𝑠)𝑒𝛼ℎ 𝛼, 𝜃𝑟 , 𝜃𝑠 

Van Genuchten (1980) 
𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠−𝜃𝑟)[1 + (𝛼ℎ)𝑛]−(1−

1
𝑛

)
 

𝑛, 𝛼, 𝜃𝑟 , 𝜃𝑠 

Gardner (1958) 𝜃(ℎ) = 𝜃𝑟 + [𝜃𝑠 − 𝜃𝑟](𝛼ℎ)−𝜆 𝑛, 𝛼, 𝜃𝑟 , 𝜃𝑠 

Ruso (1988) 
𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠−𝜃𝑟)[(1 + 0.5𝛼ℎ)𝑒−0.5𝛼ℎ]

2
𝑛

+2
 

𝑛, 𝛼, 𝜃𝑟 , 𝜃𝑠 

Brooks-Corey (1964) 𝜃(ℎ) = 𝜃𝑟 + [𝜃𝑠 − 𝜃𝑟](𝛼ℎ)−𝜆 𝛼, 𝜃𝑟 , 𝜃𝑠, 𝜆 

Kosugi (1999) 
𝜃(ℎ) = 𝜃𝑟 +

1

2
(𝜃𝑠 − 𝜃𝑟)erfc [

ln (ℎ/ℎ𝑚)

𝜎√2
] 

 ℎ𝑚 , 𝜃𝑟 , 𝜃𝑠, 𝜎 

Fredlung-Xing (1994) 
𝜃(ℎ) = 𝜃𝑟 +

𝜃𝑠 − 𝜃𝑟

[𝑙𝑛{2.7183 + (𝛼ℎ)𝑛}]𝑚
 

𝑛, 𝑚, 𝛼, 𝜃𝑟 , 𝜃𝑠 

Biexponential (Omuto, 2009) 𝜃(ℎ) = 𝜃𝑟 + 𝜃𝑠1𝑒𝛼1ℎ + 𝜃𝑠2𝑒𝛼2ℎ 𝛼1, 𝛼2, 𝜃𝑟 , 𝜃𝑠1 , 𝜃𝑠2  

6.2.3 Estimation of Soil hydraulic parameters through direct methods 

As emphasized in the section 6.2.1, numerical solution of the RE requires explicit 

description of soil hydraulic functions, i.e. K(h) and θ(h). Different formulations of these 

functions for characterizing soil hydraulic parameters in the unsaturated zone have been 

advanced over the years (Table 6.2).  Various numerical codes have been developed for the 

solution of equation (6.2), many of which rely on the van Genuchten-Mualem formulation of 

the soil hydraulic characteristics requiring estimation of the six parameters; Viz: water content 

at saturation (θsat), the residual water content (θres), soil pore connectivity parameter (n), the 

shape parameter of the soil water retention curve (α), the tortuosity factor (λ) and the saturated 

hydraulic conductivity (Ks). Estimation of these parameters are possible through laboratory 
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experiments based on soil core samples though it has been shown that the soil core samples 

usually employed in the laboratory do not represent actual flow conditions at the scale of 

applications (Vereecken et al., 2014). Besides, the laboratory methods are time consuming and 

involve tedious processes possible only in advanced laboratories that are non-existent in 

developing countries.  As such research activities employing applications of advance modeling 

techniques based on RE for monitoring soil moisture movement in the SPAC are very rare in 

developing countries where their applications are much needed (Makurira, 2010). Because of 

these complexities, inverse modeling techniques have been developed for estimation of soil 

hydraulic characteristics. 

6.2.4 Estimation of soil hydraulic Parameters through Inverse Modeling  

A comprehensive review of the inverse methods for estimation of soil hydraulic 

characteristics have been given by Hopman et al. (2002). Generally, inverse modeling 

techniques involve numerical inversion of the RE. It combines forward RE based water flow 

models with appropriate parameter optimization techniques to find the best parameter sets that 

minimize a predefined objective function (Ritter et al., 2003).  This is achieved through 

measured values of state variables such as soil moisture content θ and matric potential h . The 

measured values of the state variables are obtained through transient evapotranspiration 

experiments in the laboratory or through infiltration experiments in the field (Suhada et al., 

2015; Minasny and Field, 2006). In each case, the hydraulic parameters are estimated through 

an inversion process using the measured values of the state variables. The inversion process is 

implemented either through a trial and error methodology, or through an automatic method by 

employing parameter optimization algorithms (Ritter et al., 2003). A number of parameter 

estimation algorithms have been developed. Most of the newly developed algorithms are based 

on global optimization techniques that are implemented by solving multiple objective 

functions. Whereas, the optimization techniques that are based on single objective functions 

are used when initial estimates of the parameters are provided and when the parameter 

boundaries are known.  

6.3 Description of the Unsaturated Porous Media Transport Model - Hydrus 1D  

A number of advanced process models based on numerical solution of the Richard’s 

equation have been developed and freely available in the scientific domain. Their strengths and 

limitations vary depending on the purpose for which they were developed. However, when 
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considering a one-dimensional moisture transport dynamics in the root zone, the performances 

of these models are largely similar since they are based on similar concepts. However, the main 

limitation of applying these RE based models in developing countries have been input 

requirements for the estimation of their parameters.  A comprehensive review of the 

development stages of the different generations of these hydrological models was given by 

Chen et al. (2014). In this study, Hydrus 1D was chosen because of its wide applications 

especially in  developing countries (Simunek et al., 2016). It is freely available and has features 

such as the graphical user interface (GUI) making it easy to apply, unlike many other similar 

freely available codes which are provided without the GUI. For instance Makurira (2011) 

applied Hydrus 2D (a commercial version) for spatiotemporal water  productivity analysis 

under rain fed conditions in Tanzania.   

Hydrus 1D is a software package for simulating water, heat and solute transport in one 

dimensional variably saturated porous media. Hydrus 1D numerically solves the RE for 

variably saturated water flow and the advection-dispersion type equations for heat and solute 

transport. The flow equation incorporates a sink term to account for the root water uptake by 

plants; equation (6.2). The detailed description of Hydrus 1D can be found in Šimůnek et al. 

(2009). Use of the model for simulation of the moisture dynamics in the unsaturated soil system 

requires specification of the upper and the lower conditions and availability of a method to 

characterize the soil hydraulic parameters. Evapotranspiration is computed by the Penman 

Monteith combination equation and there are options to apply the Hargreaves equation as well.  

6.3.1 Specification of The Initial and Boundary Conditions in Hydrus 1D 

Simulation of moisture movement in unsaturated soil system using Hydrus 1D model 

requires specification of the initial and the boundary conditions. Usually the initial conditions 

are the moisture content or the matric potential values within the flow domain at the start of the 

simulation process. This can be achieved through initial measurements of these state variables 

in the soil system before the start of the simulation process. Basically, the initial conditions are 

the values of  θ and h for all z at t < 0 where, z is the vertical 1-dimensional coordinates down 

ward within the soil system and, t < 0;  implies the time before the start of simulation, Kutilek 

and (Hillel, 1998; Nielsen, 1994).  The boundary conditions in Hydrus 1D have to be specified 

throughout the whole simulation process. One such boundary condition for the case of field 

experiments as applied in this study is the topographic surface. This is usually referred to as 

the upper boundary condition. In a natural Agricultural field condition, the upper boundary 
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condition is defined by a combined action of Evapotranspiration process, precipitation and 

surface run off. The evapotranspiration is a very complex process involving a number of 

weather and crop parameters. In this study, the Evapotranspiration calculation and precipitation 

measurements are handled in chapter 5, whereas the crop parameters are obtained through 

remote sensing applications and these are covered section 6.4 of this chapter. The other 

boundary condition can either be a finite or an infinite length of the 1-dimensional soil column. 

In a field condition one such finite length is the ground water table (h = 0). Many times, the 

water table is very deep such that its influence on the few centimeters of the soil column from 

the soil surface is negligible, in such conditions the column is considered to extend to an infinite 

length. In such a case, Hydrus 1D imposes free drainage as the lower boundary condition, 

where the rate of change of moisture flux into the soil is considered constant, i.e., dq/dt = 0. 

6.3.2 Preparation of soil and meteorological data for input into Hydrus 1D  

Soil water retention and hydraulic conductivity parameters have to be defined for input 

into Hydrus 1D. A number of close form equations are available for the definition of the water 

retention curve and the soil hydraulic functions that are used in Hydrus are those of the Van 

Genuchten-Mualem equation, the Brooks-Coreys and the Kasogi formulations Table 6.1. Soil 

water retention curve can be determined in the laboratory through tension experiments on 

undisturbed soil samples or through the application of pedotransfer functions on to the soil 

physical characteristics. Soil hydraulic characteristics for input into Hydrus 1d can also be 

estimated through the single objective parameter optimization module using the Levenberg-

Marquardt method, if feasible ranges within which the parameters lie can be estimated 

(Šimůnek et al., 2009). Details of the laboratory determination of the soil physical 

characteristics such as the soil textural properties are provided under case study in chapter 7. 

Analysis of the meteorological data is handled in the previous chapter 5.  

6.4 Use of Satellite Remote Sensing to Estimate Crop Development Parameters for 

Input into Agro-Hydrological Model  

Crop growth characteristics such as the leaf area index (LAI), albedo, here symbolized (r) 

and crop height (hc) are important parameters for simulation of water movement in the SPAC. 

These crop characteristics vary throughout the crop development stages and as such are critical 

input for the calculation of evapotranspiration, an important term of the water balance (D’Urso, 

2001). Although a model such as Hydrus 1D that has been implemented in this research has 

inbuilt modules for their estimation, actual monitoring of the canopy variables can greatly 
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improve the validity of the simulation results (Oguntunde & Van De Giesen, 2004). It is 

therefore paramount that there be a method for monitoring the crop development stages. In-situ 

methods for the determination of these variables have been developed (Wang and Trishchenko, 

2007; Weiss et al., 2004). However, the methods are usually time consuming and difficult for 

operational application over large agricultural fields (Jonckheere et al., 2004). Because of these 

difficulties, remote sensing methods offer attractive alternatives for monitoring of canopy 

characteristics, such as albedo, LAI and Fraction of Absorbed Photosynthetically active 

radiation (FAPAR), (Tao et al. 2016; Qu et al., 2015; Zheng and Moskal, 2009;  Weiss et al. 

1999; Walthall et al., 1985). 

6.4.1 Estimation of Surface Albedo 

Albedo is defined as the amount of radiant solar energy reflected by a given surface. It is 

a primary variable required for the estimation of energy exchanges between the earth surface 

and the atmosphere (Peng et al., 2015). It provides information on the radiation budget of the 

surface as such, it also provides information on the water balance. Instantaneous albedo is a 

dimensionless biophysical characteristic of the canopy. It is expressed as the ratio of the radiant 

energy scattered by a surface upward in all directions to that the surface receives from all 

directions integrated over the wave lengths of the solar spectrum (Weiss et al., 1999). 

Estimation of a bidirectional hemispherical reflectance (albedo) of a surface is not possible 

through a single bidirectional measurement in selected wavebands (He et al., 2012). As such 

its estimation requires observation of a surface over all directions and overall solar spectral 

bands (300 – 3000μm ). This requires combination of models for the definition of the 

bidirectional reflectance distribution function (BRDF) (Qi et al., 2000). Due to the number of 

parameters required to specify the BRDF, the inversion of the physical models with the current 

high resolution satellite sensors is still not possible. Simplified methods for the estimation of 

the canopy characteristics from satellite remote sensing images is made possible through 

introduction of some assumptions (D’Urso, 2001). In many applications, the canopy is assumed 

to behave as a Lambertian surface, meaning that the canopy reflectance is taken to be constant 

with the angle of observation (Qu et al., 2015). The surface albedo which is obtained from the 

solar spectral integration of hemispherical reflectance is expressed as: 
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Where K  is the reflected solar radiance (Wm-2sr-1), λ(µm) is the wave length, ϑ being the 

zenith angle and φ being the azimuthal angle. As demonstrated by Tasumi et al. (2008), the 

albedo calculation for specifically Landsat satellite images requires the following steps: 

 Calculation of at-satellite bidirectional reflectance from at-satellite radiance values 

assuming the absence of an atmosphere 

 Calculation of at-surface reflectance from at-satellite BD reflectance values (i.e., 

application of atmospheric correction). The calculated at-surface reflectance is not 

entirely, but is predominately, BD reflectance, since it is calculated using information 

measured by the satellite sensor, which is a “directional” sensor. Whereas, at-surface 

solar radiation is a mixture of beam (i.e., directional) and diffuse (i.e., hemispherical) 

components, where the directional component is predominant under clear sky 

conditions 

 Estimation of broadband surface albedo by integrating the at-surface band reflectance 

Smith et al. (2015) has shown that the importance of the errors associated by the 

Lambertian assumption when applied to Landsat sensors can be greatly reduced, if suitable 

restrictions are imposed on the range of incidence and reflectance angles. In this case, any 

dependence of K  on the view angles (ϑ and φ) can be neglected when estimating r from 

Landsat sensors.  

6.4.2 Estimation of surface albedo from Landsat 5TM and 7ETM+ 

The method for estimation of surface albedo from Landsat 5TM and Landsat 7ETM+, as 

elaborated by D’Urso (2001), is usually applied. Whereby the spectral integration is 

approximated in discrete form as expressed by the following relationship:  
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Where 𝐾↑(Wm-2) is the reflected spectral radiance and  𝐸𝜆
0(Wm-2) is the extraterrestrial solar 

radiation, 𝜆𝑖, 𝜗
0 and 𝑑0 are the wavelength, the solar zenith angle and sun-earth distance in 

astronomical units respectively. The 𝐾↑(Wm-2) and the 𝐸𝜆
0(Wm-2) are integrated values over 

the width of each spectral band 𝜆𝑖. When using Landsat 5 TM and Landsat 7 ETM+, the 

planetary albedo is calculated as: 

   wp          𝜆 = (𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 𝑓𝑜𝑟 𝑏𝑎𝑛𝑑𝑠: 1,2, … , 5,7)   (6.9) 

Where the weighting factors 𝑤𝜆 are given by: 
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6.4.3 Estimation of surface albedo from Landsat 8 OLI 

Operational algorithms  for the computation of Landsat 8 OLI broadband albedo has not 

yet been developed (Ke et al.,2016). Unlike its predecessors, Landsat TM and ETM+ sensors, 

the Landsat 8 OLI has two additional spectral bands; namely: the deep blue band (0.43 – 0.54

μm ) and a shortwave infrared band (1.36 – 1.39µm). The reflective bands of Landsat 8 OLI 

corresponding to the Landsat ETM+ bands have narrower wave band widths. This means that 

the algorithms that were developed for the calculation of the broadband albedo for the previous 

Landsat sensors (TM and ETM+) cannot be directly applied to the Landsat 8 OLI sensors. In 

this study the albedo calculation procedure developed by Tasumi et al. (2008) was applied as 

employed by Ke et al. (2016).  In this method, the surface broad band albedo is computed by 

integrating the at-surface reflectance over the shortwave spectrum are shown in Equation 

(6.11). 

Table 6.2 Spectral characteristics of Landsat 5 TM bands.  

 

 

 

 

 

 

 
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1

bb wrr         (6.11) 

Where  is the broadband albedo, 𝑟𝑏 surface reflectance for a given band b, and wb is the 

weighting coefficient for the individual solar radiation fraction within the spectral range for 

band b calculated according to Tasumi et al. (2008) 
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Landsat 5TM 
Band 

number 

Centre 

wavelength 
 μm

 

Band-width 0

E  

(Wm-2) 

w  

(-) 

TM-1 485 66 129.16 0.2212 

TM-2 560 82 149.98 0.2569 

TM-3 660 67 104.32 0.1787 

TM-4 830 128 134.02 0.2295 

TM-5 1650 217 47.59 0.0815 

TM-7 2215 252 18.78 0.0322 
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Where 𝑅𝑠𝜆 is at surface hemispherical solar radiation for wave length λ(µm), UPb and LOb are 

upper and lower wave length bounds respectively for a given Landsat 8 OLI band b. Table 6.4 

gives the weights for the corresponding bands for both Landsat 8 OLI and Landsat 7 ETM+ 

sensors calculated using SMART2 radiative transfer model. The weighting coefficients are 

calculated according to Tasumi et al. (2008) as applied by Ke et al. (2016) using the SMARTS 

radiatiative transfer model which is  freely available (Gueymard, 2006). Table 6.3 Spectral 

characteristics of Landsat 8 OLI and Landsat 7 ETM+. 

Table 6.3 Spectral characteristics of Landsat 8 OLI and Landsat 7 ETM+ 

 

 

 

 

 

 

 

Table 6.4 Weighting coefficients based on at surface solar radiation derived from SMARTS model (Ke 

et al. 2016) 

sensor Band Number Total 

 1 2 3 4 5 6 7  

Landsat 8 OLI 0.130 0.155 0.143 0.180 0.281 0.108 0.041 1 

Landsat 7 ETM+ 0.254 0.149 0.147 0.311 0.103 – 0.036 1 

6.4.4 Estimation of Leaf Area Index  

The LAI is a biophysical variable that is required for input into hydrological models, crop 

growth models and soil-vegetation-transfer (SVAT) models. This is because LAI affects the 

rate of photosynthesis and transpiration by plants (Ishihara and Hiura 2011). Leaf area index is 

defined as one half of the total leaf area per unit ground area (Xiaohua et al., 2013). There are 

a number of methods for the estimation of LAI that have been developed over the years (Su et 

al., 2015). These include the direct and the indirect methods. The direct method are usually 

destructive methods that require harvesting of the leaves and physically measuring leaf 

dimensions and computing the leaf areas. the direct method has the disadvantage of being 

destructive and time consuming. For this reason, a number of indirect methods have been 

Landsat 8 OLI  Landsat 7 ETM+ 
Band 

number 

Band Limits 
 μm

 
UPb - LOb  Band 

number 

Band Limits 
 μm

 
UPb - LOb 

1 0.43 – 0.45 0.300 – 0.450  1 0.45– 0.52 0.300 – 0.520 

2 0.45 – 0.51 0.450 – 0.520  2 0.52 – 0.60 0.520 – 0.615 

3 0.53 – 0.59 0.520 – 0.615  3 0.63 – 0.69 0.615 – 0.725 

4 0.64 – 0.67 0.615 – 0.760  4 0.77 – 0.90 0.725 – 1.225 

5 0.85 – 0.88 0.760 – 1.225  5 1.55 – 1.75 1.225 – 1.915 

6 1.57 – 1.65 1.225 – 1.880  6 10.40 – 12.50 Thermal 

7 2.11 – 2.29 1.880 – 4.000  7 2.09 – 2.35 1.915 – 4.000 
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developed. One of these method is the remote sensing method that include photogrammetry 

and satellite remote sensing. Vegetation indices are related to LAI as follows: 

  LAI

s eVIVIVIVI
'

        (6.13) 

Equation (6.13) describes the variation of absorption and reflection in a canopy partially 

covering the soil. The parameter VIs depends on the soil reflectance and corresponds to the 

value of the vegetation index for bare soil, while VI∞  corresponds to full cover. The parameter 

β is an extinction coefficient corresponding to the increase of VI for a unit increase of LAI. The 

simplified model CLAIR is based on the weighted difference vegetation index (WDVI) defined 

as follows:  

sr

siWDVI



         (6.14) 

 Where 𝜌𝑟  and 𝜌𝑖 indicates the reflectance of observed canopy in the red and infrared bands 

respectively, while 𝜌𝑠𝑖  and  𝜌𝑠𝑟  are the corresponding values for bare soil conditions. The 

LAI is related to WDVI of the observed surface through the expression: 











WDVI

WDVI
LAI 1ln

1
*

       (6.15) 

In the equation (6.15),  𝛼∗ is an extinction coefficient similar to  𝛽′ usually determined from 

the simultaneous measurements of LAI and WDVI; WDVI∞ is the asymptotic value of WDVI 

for LAI  

6.4.5 Estimation of Canopy Aerodynamic Property 

The aerodynamic properties of uniform vegetation canopies are strictly linked to crop 

height hc and the LAI. Estimation of canopy heights through remote sensing applications is 

associated with a number of difficulties. According to D’Urso (2001), a preliminary sensitivity 

analysis associated with changes in the evapotranspiration calculations resulting from minute 

changes in hc based on actual meteorological data of the study area be carried out. Such 

sensitivity analysis is important because it provides the precision required for the estimation of 

hc corresponding to a predefined model performance accuracy. Considering the limitation of 

estimation of hc, usually the mean crop height is associated with each land use class derived 

from the satellite data. This may provide satisfactory compromise in situations where the 

roughness length is of minor importance in the calculation of evapotranspiration (D’Urso, 

2001).   
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6.5 Conclusion  

In this chapter, theoretical background governing water movement in the SPAC was 

presented (Section 6.2, Equations 6.1 – 6.6). Brief descriptions of a 1-dimensional water flow 

model; i.e. Hydrus 1D, as applied for agro-hydrological simulations were provided (Section 

6.3). The descriptions covered: specification of the initial and boundary conditions and 

preparation of soil and meteorological data input for calibration of soil hydraulic parameters 

through model inversion. 

Calibration of Hydrus 1D also requires for input crop development parameters such as 

albedo and LAI. Therefore a brief theoretical background governing application of satellite 

remote sensing images for estimation of vegetation canopy variables was covered (Sub-section 

6.4). The approaches applied for the estimation of the canopy variables are described (Sub-

sections 6.4.1 – 6.4.4). Finally, the actual calculation steps for the estimation of each of the 

crop development parameters ; namely: Surface albedo (r) and LAI were presented.  

From the reviewed literatures, derivation of r from satellite remote sensing images require 

a multitude of functions to define the BRDF. The inversion of the BRDF from such large 

number of models are not currently possible with single angle viewing satellite sensors. As 

such simplification is introduced through the Lambertian assumption of the canopy surfaces. 

This allows r to be estimated from simplified algebraic equations by considering reflectance in 

each satellite band with the associated band weights. Equations (6.8 – 6.10) can be applied for 

Landsat 5TM and Landsat 7 ETM+ images. However, for the purpose of this study, Landsat 8 

OLI images were acquired, therefore, Equations (6.11 and 6.12 ) were applied for the actual 

calculation of r and derivation of band specific weights respectively. Calculation steps for 

estimation of LAI based on satellite remote sensing as implemented in this study are achieved 

through the model CLAIR: Equations (6.13) – (6.15). Finally, it was shown that currently, 

remote sensing based method for the estimation of crop heights (hc) in a developing country 

such as Uganda, cannot be practically implemented.   
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7   CASE STUDY FOR THE AGRO-HYDROLOGICAL MODEL CALIBRATION AT 

THE STUDY SITE IN NORTHERN UGANDA 

Summary  

Derivation of drought indices for agricultural drought monitoring are best achieved 

through long term records of measured soil moisture time series that can only be obtained 

through dedicated soil moisture monitoring programs. However, reliable soil moisture 

monitoring programs presently are lacking in most developing countries.  This challenge can 

be overcome through agro-hydrological simulation of soil moisture time series, taking into 

consideration the effects of crop growth on the simulation outputs. This chapter presents the 

methodology and the results of a case study conducted in a small agricultural farm of 10ha in 

Northern Uganda, to calibrate and validate an agro-hydrological model, Hydrus 1D.  The 

calibration was achieved through an inversion module in Hydrus 1D that utilizes Marquardt-

Levenberg parameter optimization algorithm. Sensitivity analyses of the van Genuchten 

parameters (vGPs) were first conducted to determine the set parameters that needed the most 

attention during calibration process. Crop growth parameters were estimated through analysis 

of Landsat 8 OLI images. Soil moisture and matric potential data for numerical inversion of 

agro-hydrological model were obtained through installation of soil sensors equipped with data 

loggers between February and March, 2015. However, only the soil moisture data were used, 

matric potential data were only applied to specify the initial condition at the start of the 

simulation. Meteorological data were obtained from an automatic weather station installed at 

the experimental site in early April 2015.  

The results of the sensitivity analyses showed that model outputs were most sensitive to α 

and n compared to the rest of the vGPs; with the model outputs being more sensitive to n by 

two orders of magnitude than to α. Calibration results showed good agreements between model 

predictions and observations, with coefficients of determination (r2 = 0.73) during calibration 

and (r2 = 0.70) during validation. A sensitivity analysis of model outputs to changes in LAI, 

showed that the model is more sensitive to LAI values at the start of the crop growth stages 

than at the peak and later growth stages. The satellite remote sensing estimated LAI values 

were more comparable to published values than albedo values that were rather very low. The 

calibrated soil hydraulic parameters were used for long term simulation of soil moisture time-

series for the development of SMDI as presented in chapter 8.  
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7.1 Introduction  

 Operational monitoring of short term agricultural droughts requires application of soil 

moisture based drought indices (Martinez-Fernandez et al., 2016; 2015). Accuracy of such 

drought indices depends on the availability of reliable records of measured soil moisture time 

series that can only be obtained through dedicated soil moisture monitoring programs.  

However, there exists very few deliberate programs for monitoring soil moisture variations 

presently (Dobriyal et al., 2012; Dorigo et al., 2011). As a result, most relevant information on 

agricultural droughts especially in developing countries are lacking. Moreover, the need to 

sustainably increase food production to feed the growing global population requires that more 

food be produced on limited agricultural land with diminishing fresh water resources (Nijbrock 

and Andelman, 2016; Godfray et al., 2010). Increased climatic variability and soil exhaustion 

compounds these challenges by putting constraints on attempts to increase agricultural 

productivity (Makurira 2010; Jewitt, 2006; Breman et al., 2003). There are therefore urgent 

needs more than ever before to devise coping strategies to multitudes of challenges facing the 

agricultural sector, especially in developing countries that rely solely on rain fed farming 

systems.  

Developing coping strategies to deal with agricultural droughts in areas with the least of 

information on soil and climatic variables such as in Uganda has been the main aim of this 

research. This chapters presents two objectives; namely: - description of the of methodologies 

that were applied in a case study in a small agricultural farm in Northern Uganda to calibrate 

an agro-hydrological simulation model Hydrus 1D. the second objective was to present the 

calibration and validation results obtained. Calibration of agro-hydrological model is important 

in areas such as Northern Uganda that lack reliable soil moisture information. Because such 

calibrated model can be applied with some of the now freely available tools to simulate soil 

moisture time series thereby replacing the need to expensive soil moisture monitoring programs 

that are not affordable in many of the developing countries.  

Calibration of Hydrus 1D was carried out in Northern Uganda, to enable the model to 

generate a long-term soil moisture series to develop SMDI. This was achieved through an 

inversion process that required: soil moisture data for at least two seasons to aid the inversion 

procedure, specification of the initial and the boundary conditions and derivation of crop 

development parameters such as LAI and albedo. The soil moisture data was obtained through 

installation of a frequency domain soil sensors equipped with data loggers for data 

transmission. The initial measurements of pressure heads provided the initial conditions. 
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Whereas a 4-year weather data collected within the vicinity of the study site provided weather 

variables for the calculation of ETo through the FAO56-PM model.  

7.2 Case study site, soil moisture content measurements and meteorological data 

collection 

This case study was conducted in a dairy farm of area: 10 ha, where maize, cowpea and 

alfalfa are grown under rain fed conditions for making silage for cow feeds. The soil water 

content was monitored with frequency domain reflectometry probes equipped with data loggers 

(ECH2O sensors and data loggers, EM-50, Decagon Devices Inc. PULLMAN) at four locations 

in the dairy farm fields. Soil sensor probes were installed at 20 cm, 40 cm and 60cm below the 

surface within the soil profile at each of the four locations. Figure 7.1 shows a topographic map 

of the 10ha land area in which the soil sensors were installed.  The installation of the soil 

sensors took place between February 12, 2015 and March 6, 2015. Monitoring of soil moisture 

content (at the three profile positions), soil moisture matric potential and soil temperature (at 

20cm and 60cm) was conducted between April 10, 2015 and May 23, 2016. However, only the 

soil moisture content measurements were used for model calibration, although monitoring of 

soil temperature and matric potential were concurrently done during the same period. 

Consistent Soil moisture content observations were downloaded from each of the data loggers 

for a period covering two growing seasons for Maize (Zea mays) crops (April 2, 2015 to 

November 22, 2015).   

The manufacturer of the Decagon soil sensors recommends site specific calibration to 

achieve the highest possible accuracy and especially if the required accuracy is less than 3% 

(Cobos and Chambers, 2005; Czarnomski et al., 2005; Starr and Paltneau, 2002).  In this 

experiment, calibration of the sensor probes was not possible and therefore not done. However, 

we assumed that the reported accuracy of 3% can be tolerated within the experimental 

limitations and for the purposes of this research. Meteorological data were obtained from an 

automatic weather station installed at dairy farm on 2nd April, 2015. The meteorological data 

consistency was cross checked using data from another automatic Meteorological station 4km 

from the dairy farm at Gulu University. This automatic station had been in operation since 

2012. The details of both stations are provided in chapter 5. The details of the climatic condition 

and soil type in the study area are provided in section 2.3 (chapter 2) and section 5.2 of chapter 

5.   
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7.3 Calibration of The Agro-Hydrological Model at The Study Site 

The one-dimensional water flow model described in equation (6.2) Chapter 6, according 

to Richard (1931) is solved numerically in Hydrus 1D by employing Gerlakin finite element 

method with an implicit scheme for time discretization (Šimůnek et al., 1998).  For the solution 

of Richard’s equation, the water retention θ(h) and the hydraulic conductivity K(h) functions, 

 

Figure 7.1 Topographic map of the study site showing positions of each of the four data loggers. Data 

logger EM50-01 malfunctioned, therefore soil sensor data from that location was not 

included for model calibration.  
 

 

Figure 7.2. Time series of Soil moisture measurements using theta probes at three locations in the dairy 

farm. Locations of each of the data loggers is shown in Figure 7.1. Daily rainfall totals during the 

soil moisture measurement period is plotted on the same graphs 
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must be defined. In Hydrus 1D; θ(h) and K(h) are defined by the Van Genuchten-Mualem 

models, Table 6.1 (chapter 6), and equations (6.4) to (6.6). A one-dimensional vertical domain 

of 80-cm length was defined. The length of the domain was so determined to cover the soil 

rooting depth. Equal element size of 0.8 cm throughout the domain depth comprising of 101 

nodes was specified. Three observation points corresponding to the three soil sensors were 

specified at 20cm, 40cm and 60cm within the soil profile. Because use was made of van 

Genuchten-Mualem model and soil properties being considered homogeneous, the hydraulic 

parameters were expressed with a parameter vector of six elements, i.e., 𝑝 =

(𝐾𝑠 , 𝜃𝑠 , 𝜃𝑟  , 𝛼, 𝑛, 𝜆)  from Equations: (6.4) and (6.5). The simulation runs in inverse mode 

covered a time period of 85 days beginning from April 15, 2015 running to July 1, 2015. 

Although actual trial simulation runs began much earlier on March 25, 2015, but those data 

points were not considered in the calibration results (Sub-Section 7.5.2). It is recommended 

that after a long dry period before rain, numerical simulation should start at least 30 days after 

installation of the soil sensors in to the soil profile (Seki et al., 2015). This serves to allow the 

sensors to equilibrate with the soil system, especially in this particular case where water from 

outside was used to facilitate digging of the hole for installing the sensors. The time variable t 

(T) was defined as t = 0 at mid-night of April 15, 2015. Soil moisture observations for the 85-

day for each data logger positions shown in Figure 7.1, were used as input data for the inversion 

process.  

7.3.1 The Initial and the Boundary Conditions  

Simulation of moisture movement into the unsaturated soil profile requires specification 

of the initial and the boundary conditions as briefly explained in chapter 6, section 6.3. 

According to Šimůnek et al. (2009), the initial conditions are described by the initial pressure 

heads at the start of the simulation period given by Equation 7.1.  

  )(, 0thtzh i        (7.1) 

Where hi (L) is the prescribed function of z and t0 is the time when simulation begins. One of 

the boundary conditions must be specified at the soil surface, z = L or at the bottom of the 

soil profile (z = 0) 
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    (7.2) 

Where h0(L) and q0(TL-1) are the prescribed values of the pressure heads and soil water flux at 

the boundary respectively. Equation (7.2) is what is referred to as the system independent 

boundary condition (Šimůnek et al., 2009). Whereas systems dependent boundary conditions 

can also be considered which involves the soil air interface exposed to the atmosphere. The 

potential fluid flux at this soil-atmosphere interface is controlled by both the external conditions 

such as evapotranspiration and infiltration through precipitation process  and the prevailing 

transient soil moisture condition  near the soil surface (Šimůnek et al., 2009). In such as 

circumstance the numerical solution is governed by the two conditions following Neuman et 

al. (1974) 

(b)     zat             
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  (a)  Lzat        E 

Lhhh
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





     (7.3) 

Where E is the maximum potential rate of infiltration or evaporation under the current 

atmospheric condition (LT-1), hA and hS are the maximum pressure head and minimum pressure 

head respectively at the soil surface allowed under the prevailing soil conditions (L). The 

system dependent boundary condition defined by Equation 7.3 is what was specified in this 

study. 

In this case study, dry planting of maize and alfalfa had been done between February 25, 

2015 and March 3, 2015. There were no rains for the previous two months and the soil was 

very dry as is always the case in the study area during this period. Therefore, digging the holes 

through the soil profile was facilitated by pouring water and allowing the water to drain through 

the hardened soil overnight, as this was a dry period. The last soil sensor was installed on March 

6, 2015 and datasets for the inversion was considered from April 15, 2015 in order to allow the 

effects of the water used to facilitate digging the hole to equilibrate. This is a period of more 

than one month and it is considered that after such a period the soil sensors were recording the 

actual moisture dynamics in the soil resulting from prevailing soil conditions. The first sign of 
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a rain shower was registered on April 2, 2015, the day the automatic weather station was 

installed. And intermittent precipitation continued up to the time simulations and collection of 

soil moisture data for the inversion started.  

The initial boundary conditions were specified by the pressure head readings on the start 

of the simulation period. The pressure heads sensors were installed only at two profile positions 

i.e. at 20 cm and at 60 cm below the soil surface. Therefore, the vertical distribution of the 

pressure head into the soil profile at the start of the simulation process was interpolated using 

the two recorded values of the pressure heads. The upper boundary condition for the entire 

calibration period was specified by values of precipitation registered during the simulation 

period and Evapotranspiration calculated through the Penman-Monteith module in Hydrus 1D. 

For the calculation of evapotranspiration; daily average values of solar radiation (Rs), wind 

speed (U), relative humidity (RH), minimum and maximum temperature records were prepared 

and added as meteorological data input into Hydrus 1D, covering the entire simulation period.  

Crop growth parameters such as the LAI, and albedo (r) were obtained through analysis of 

remote sensing images obtained during the simulation periods. Details of the procedures for 

the estimation of the LAI and r are covered in chapter 6, section 6.4. Crop heights (hc) were 

obtained by sampling maize crops in the entire field and computing the average height for each 

measurement day. This was done after every three weeks had elapsed, and the values were 

interpolated throughout the simulation process. Root development was not monitored, and root 

growth process was estimated from Hydrus root development module. This was done by 

specifying 50% of root growth in mid-season (Hoffman and van Genuchten,1983). The lower 

boundary condition was considered as free drainage since water table in the area is deeper than 

15m according to information obtained from a contractor who drilled a nearby well in 2012.  

7.3.2 Estimation of the Soil Hydraulic Parameters through Inverse Simulation  

According to Šimůnek et al. (1998), the objective function Φ to be minimized during the 

parameter estimation process may be defined as follows: 
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    (7.4) 

where the first term on the right-hand side represents deviations between measured and 

calculated space-time variables, such as pressure heads, water contents in the flow domain, or 
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actual/cumulative moisture fluxes versus time across a certain boundary for the case of the soil 

moisture inverse simulation. Various options for defining the first term of Equation (7.4) for 

the different equilibrium and nonequilibrium water flow and solute transport models are listed 

in (Šimůnek et al., 1998). In the first term of Equation (7.4), qm  is the number of different sets 

of measurements, jqn   is the number of measurements in a particular measurement set, 

 ij x,tq*
 represents specific measurements at time

it  for the thj  measurement set at location 

x(r,z) and qj(x,ti ,b) are the corresponding model predictions for the vector of optimized 

parameters  𝑝 = 𝑏(𝐾𝑠 , 𝜃𝑠 , 𝜃𝑟  , 𝛼, 𝑛, 𝜆)  and vj and wi,j are weights associated with a particular 

measurement set or points, respectively. The second term of Equation (7.4) represents 

differences between independently measured and predicted soil hydraulic properties (e.g., 

retention, θ(h) and/or hydraulic conductivity, K(θ ) or K(h) data), while the terms qm , jqn  , 

   bpp ijij ,*   , vj and ,  ijw  have similar meanings as for the first term but now for the soil 

hydraulic properties. The last term of (7.4) represents a penalty function for deviations between 

prior knowledge of the soil hydraulic parameters, bj
*, and their final estimates, bj, with nb being 

the number of parameters with prior knowledge and jv representing pre-assigned weights. 

Estimates, which make use of prior information (such as those used in the third term of 

Equation (7.4)) are known as Bayesian estimates. The weighting coefficients vj, which 

minimize differences in weighting between different data types because of different absolute 

values and numbers of data involved, are given by (Clausnitzer and Hopmans, 1995): 

2

1

jjn
vj


        (7.5) 

which causes the objective function to become the average weighted squared deviation 

normalized by the measurement variances σj
2. 

7.3.3 Marquardt-Levenberg Optimization Algorithm  

Minimization of the objective function Φ is accomplished by using the Levenberg-

Marquardt nonlinear minimization method (a weighted least-squares approach based on 

Marquardt's maximum neighborhood method) (Marquardt, 1963). This method combines the 

Newton and steepest descend methods, and generates confidence intervals for the optimized 

parameters. The method was found to be very effective and has become a standard in nonlinear 

least-squares fitting among soil scientists and hydrologists (Seki et al. 2015; Kool et al., 1985; 

van Genuchten, 1981).  



 

97 
 

7.3.4 Statistics of the Inverse Solution   

As part of the inverse solution, Hydrus 1D produces a correlation matrix, which specifies 

degree of correlation between the fitted coefficients. The correlation matrix quantifies changes 

in model predictions caused by small changes in the final estimate of a particular parameter, 

relative to similar changes as a result of changes in the other parameters. The correlation matrix 

reflects the nonorthogonality between two parameter values. A value of ±1 suggests a perfect 

linear correlation whereas 0 indicates no correlation at all. The correlation matrix may be used 

to select which parameters, if any, are best kept constant in the parameter estimation process 

because of high correlation. An important measure of the goodness of fit is through the 

coefficient of determination (r2) defined in equation (5.3). The r2 value is a measure of the 

relative magnitude of the total sum of squares associated with the fitted equation; a value of 1 

indicates a perfect correlation between the fitted and observed values. Whereas a value of 0 

shows no correlation between the fitted and observed values.  

Hydrus provides additional statistical information about the fitted parameters such as the 

mean, standard error, T-value, and the lower and upper confidence limits (given in output file 

FIT.OUT). The standard error, s(bj), is estimated from knowledge of the objective function, the 

number of observations, the number of unknown parameters to be fitted, and an inverse matrix 

(Daniel and Wood, 1971). The T-value is obtained from the mean and standard error using the 

equation (7.6). 

)(
 

j

j

bs

b
T         (7.6) 

The values for T and s(bj) provide absolute and relative measures of the deviations around 

the mean. Hydrus 1D also specifies the upper and lower bounds of the 95% confidence level 

around each fitted parameter bj. It is desirable that the real value of the target parameter always 

be located in a narrow interval around the estimated mean as obtained with the optimization 

program. Large confidence limits indicate that the results are not very sensitive to the value of 

a particular parameter. There are sometimes problems related to convergence and parameter 

uniqueness. In such circumstances, Šimůnek et al. (2009) recommends to routinely rerun the 

program with different initial parameter estimates to verify that the program indeed converges 

to the same global minimum in the objective function. This is especially important for field 

data sets, which often exhibit considerable scatter in the measurements, or may cover only a 

narrow range of soil water contents, pressure heads, and/or concentrations.   
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7.4 Derivation of the crop development parameters in the study area   

Agro-hydrological simulations require for input, the crop development parameters such as 

the leaf area index (LAI), albedo (r) and crop height (hc).  These crop parameters are required 

input to estimate the roughness length (rh) in the Penman Monteith equation, for the calculation 

of crop evapotranspiration ETc (Allen, 1998). There are methods for estimation of these 

parameters during the crop phenological development. However, many of the methods require 

sophisticated equipment and especially field based estimation of LAI rely on destructive 

methods that are best carried out in dedicated experimental plots. In this research, the PM based 

method of FAO-56 was applied as implemented in Hydrus 1D for the calibration of model 

parameters. This required estimation of: LAI, r and hc; during the inversion process in the first 

season from April 15th to July, 2nd, 2015. The crop development parameters were also applied 

in the direct mode implementation of Hydrus 1D simulation during the validation period from 

July 28th to October 10th, 2015. In this section description of the procedures applied to derive 

LAI and albedo from Landsat 8 OLI satellite images during the model calibration and 

validation between March and October 2015 at the study site are presented.  

7.4.1 Steps for The Derivation of Albedo and LAI from Landsat 8 OLI Images as 

Implemented in The Study Site  

The albedo (r) and the LAI for the study area were estimated based on the steps presented 

in chapter 7. It is usually recommended that cloud free images be processed for the derivation 

of the crop development parameters such as r and LAI  by applying appropriate atmospheric 

correction algorithms (Mattar et al., 2014) and (Tasumi et al.,2008). The advantages with 

Landsat 8 OLI, level 1 satellite products obtained from USGS archives 

(https://earthexplorer.usgs.gov), are already atmospherically and geometrically corrected, besides 

being radiometrically calibrated for direct application. The derivation of albedo at the study 

site involved the following steps: 

 Calculation of the reflectance (rb) for each band of the Landsat 8OLI satellite image 

based on scaling parameters provided for each band in the image metadata to convert 

the pixel digital numbers(DN) to actual surface reflectance  

 Computation of the weighting coefficients for each band according to equation (6.10), 

chapter 6.  For this study, the band specific weights provided in Table 6.3 computed by 

SMARTS2 radiative transfer model was used (Gueymard, 2006). 

 Calculation of the surface albedo by applying equation (6.9), chapter 6 

https://earthexplorer.usgs.gov/
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Whereas LAI is calculated by application of equations (6.13) to (6.15) according to the 

following steps: 

 Generation of the soil line graphs to derive the slope of the regression line between 
nirρ  

and 
rρ for application into equation (6.14). This is done by application of NDVI map 

generated by Equation (3.6), chapter 3. The regions within the image having values of 

NDVI > 0.2 were considered bare soil and DN values of these images for bands 4 and 

5 are corresponding to 
rρ and 

nirρ  reflectances, used to plot the soil line graphs 

 Application of Equation 6.15 to generate the WDVI maps.  

 Analysis of the frequency distribution values of the albedo and the WVDI maps to 

estimate the values of 𝛼∗ and 𝑊𝐷𝑉𝐼∞. According to these frequency distributions of 

the pixel values of albedo and WDVI for the cloud free images analyzed, the values 

were 𝛼∗ = 0.42   and 𝑊𝐷𝑉𝐼∞ = 0.45, so that the equation (6.15) becomes: 











45.0
1ln

42.0

1 WDVI
LAI     (7.7) 

Equation (7.7) was used to generate the LAI map for each analyzed Landsat 8 OLI image. The 

values of the crop heights hc were measured from the field as yet there are no operational 

methods based on satellite remote sensing for field based estimation of crop heights that can 

be implemented with confidence in a location such as the study area (D’Urso, 2001).  

7.4.2 Sensitivity of Agro-hydrological simulation outputs to crop development parameters  

Crops in the study area are grown during the rainy seasons beginning from end of March 

to end of October of each year. This is one of the cloudiest period in Northern Uganda, therefore 

only three relatively cloud free Landsat 8 OLI images that were acquired on March 6th, April 

23rd and June 10th, 2015 were used to estimate the r and LAI for the first season. Whereas 

images acquired on July 12th, August 13th, September 14th and September 30th were applied for 

r and LAI derivation in the second season. The second season images were rather cloudy, so 

that the values of the LAI estimated from them contained some uncertainties. Besides, there 

was no independent verification method for the values of r and LAI estimated. Because of these 

difficulties, sensitivity analysis was carried out specially to assess the model sensitivity to 

perturbations in LAI values. This was done by assessing the changes in Evapotranspiration 

calculated by Hydrus 1D caused by small changes in values of r and LAI. A sensitivity in some 

dependent variables  due to generic parameters   ...3,2,1iPi
can be estimated according to 

Mattar et al. (2014) 
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i

i

O

P




       (7.8) 

Where  indicates the model sensitivity and 
iP  indicates changes in model parameter such as 

LAI and finally,  ...3,2,1 iOi
indicates changes in model output such as evapotranspiration 

calculated by Hydrus 1D in our case. 

7.5 Results and discussions of the Calibration process undertaken in the case 

study 

In this sub-section, the results of all the procedures that were undertaken to facilitate 

calibration of Hydrus 1D are presented. The results presented here include: 

 results obtained from the satellite remote sensing based derivation of the crop 

development parameters such as the albedo (r) and LAI for the study area 

 results obtained from laboratory analyses of disturbed and undisturbed soil samples that 

were brought in Italy in February 2015 and done from the soil hydrological laboratory 

of the department of Agriculture University of Naples  

 results of the calibration process which include: preliminary sensitivity analyses of 

change in simulation outputs due to perturbations in each of the soil hydraulic 

parameters; range of values of the calibrated soil hydraulic parameters; comparison 

between simulated soil water storage and observations obtained from the data loggers 

during both the calibration and validation periods.  

7.5.1 Results and Discussions of The Remote Sensing Based Derivation of The Crop 

Development Parameters  

The results obtained from satellite remote sensing based derivation of crop development 

parameters include: Regression plots of the soil line for each image analyzed during the 

calibration and the validation periods between March and September of 2015. These plots are 

shown in Figure 7.2 for four of the images. The values of the Pearson’s correlation between 

the bare soil reflectance at near infra-red and the corresponding values for the red bands for 

each of the analyzed images are shown in Table 7.1. Tabular values of the descriptive statistics 

of crop development parameters extracted from the LAI and albedo (r) maps are shown in Table 

7.3 and 7.4.  

The LAI and the albedo maps from which the presented values are shown are instantaneous 

values for each satellite over pass time. These values are affected by a number of factors such 
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as horizontal visibility whose values were not obtained; they are also affected by the cloud 

covers. The values presented are obtained from a number of pixels covering the study site. The 

albedo values obtained are rather low compared to similar values reported for Maize and 

cowpea in a comparable agrometeorological condition in Ghana (Oguntunde and Giensen, 

2004), Table 7.3 and Figure 7.3. Whereas the LAI values are fairly comparable to those reported 

by the same Authors.  

 

Figure 7.3 The soil line plots for Landsat 8 OLI Images with indicated overpass dates  

Table 7.1 Correlation coefficients defining the soil lines 

Date Correlation coefficients 

6-Mar 0.99 

23-Apr 0.86 

10-Jun 0.93 

12-Jul 0.91 

13-Aug 0.92 

14-Sep 0.89 

30-Sep 0.97 
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Table 7.2 Summary of the Landsat Image acquisition for Northern Uganda used to estimate crop growth 

canopy variables for the Agro-hydrological calibration  

Image date (UTC) Sun Zenith Angle 

(degrees) 

Sun Azimuth 

(degrees) 

Mar 06,2015 8.06 30.60 106.36 

Apr 23,2015 8:06 27.38 80.85 

Jun 10, 2015 8:06 32.61 49.71 

Jul 12, 2015 8:06 33.23 52.62 

Aug 13, 2015 8:06 29.85 64.96 

Sep 14, 2015 8:06 25.50 87.96 

Sep 30, 2015 8:06 24.66 102.94 

 
 

Table 7.3 Mean of five r values, LAI and hc for maize and cowpea fields during two planting dates in 

Ghana 2002. (Oguntunde and Giensen, 2004) 

 

 

(a) Albedo plots 

 

(b) LAI Box plots 

Figure 7.4 Box plots of the derived albedo and LAI values from Landsat 8 satellite images during the 

following overpass dates: March 6, 2015; April 23, 2015, June 10, 2015, July 12, 2015 and 

August 13, 2015 
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Table 7.4 Descriptive statistics of the derived albedo values for the given Landsat 8 OLI overpass dates. 

Considering pixel values of the Albedo maps over the experimental field   

Dates 1stQ Min Median Mean 3rdQ Max 

18-Feb 0.0620 0.0940 0.1000 0.1013 0.1090 0.1460 

6-Mar 0.0660 0.1000 0.1060 0.1060 0.1138 0.1590 

23-Apr 0.0650 0.0760 0.0810 0.0820 0.0868 0.1140 

10-Jun 0.0680 0.0790 0.0840 0.0867 0.0920 0.1220 

12-Jul 0.0710 0.0820 0.0875 0.0899 0.0950 0.1440 

13-Aug 0.0640 0.0810 0.0960 0.0958 0.1070 0.1360 

14-Sep 0.0640 0.0730 0.0780 0.0814 0.0840 0.1400 

30-Sep 0.0750 0.0860 0.0900 0.0937 0.0970 0.1380 

Table 7.5 Descriptive statistics of the derived LAI values for the given Landsat 8 OLI overpass dates.  

Date Min. 1stQ Median Mean 3rdQ Max. 

6-Mar 0.19 0.23 0.30 0.37 0.49 0.91 

23-Apr 0.30 1.15 1.67 2.10 2.84 6.95 

10-Jun 0.44 1.71 2.21 2.24 2.88 5.30 

12-Jul 0.31 0.51 1.12 1.12 1.58 2.70 

13-Aug 0.27 0.65 1.07 1.19 1.66 2.68 

14-Sep 0.37 1.34 1.74 1.76 2.06 5.30 

30-Sep 0.25 1.01 1.43 1.33 1.68 2.15 

From the study site, maize emergence date was between 31st March, 2015 and 4th April 

2015. Maize in this particular dairy farm are planted with a row spacing of 0.91m and 0.2m 

between subsequent plants in a single row. Considering the emergence dates, the derived LAI 

values increased with crop growth as shown in Figure 7.3(b), between March 6th and July 12th 

2015 and between, July and September 2015 during the second growing season. A similar but 

a weaker increment can be noticed in the values of the albedo in Figure 7.3(a) and Table 7.4. 

Similar trends were reported by Oguntunde and Giensen (2004). The lower values of albedo 

obtained from the albedo map for February 18, 2015 are comparable to values reported for bare 

lands by (Beg et al., 2016). February is a dry period in Northern Uganda, and most areas are 

burnt leaving out exposed bare ground, hence the low albedo values. Although there were no 

independent measurements for albedo and LAI, the values obtained here are comparable to 

reported values in literatures in terms of the increasing trends with crop development.  

Because of the uncertainty in the obtained values of the LAI and r, LAI particularly, was 

subjected to uncertainty analysis. This was achieved by carrying out the sensitivity analysis of 

the changes in simulated evapotranspiration output due to small perturbations in LAI values. 

Of the crop development parameters usually monitored, LAI has the greatest impact in the 
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evapotranspiration process (Peng et al., 2015).  The crop albedo also depends on LAI, for this 

reason only the sensitivity of LAI was carried out for this study.  

 

Figure 7.5 Sensitivity of the ET simulation outputs due to a stepwise increase of LAI values by 0.1   

Figure 7.4, shows that the changes in values of LAI has the greatest impact at the beginning 

of plant development as at this stage Evapotranspiration is dominated by Soil evaporation. As 

the plant grows, the model become less sensitive to changes in the values of LAI. For instance, 

a 4% increment in LAI at the beginning of the crop development resulted in a 14% increase in 

the value of evapotranspiration simulated. Whereas a similar increase in the LAI value in mid-

season resulted in a 9.6% change in the value of evapotranspiration.  

 

(a) Plotted on the same axis 

 

(b) Plotted on different axes 

Figure 7.6 Sensitivity of the model simulation outputs due to a stepwise increase in the values of α and 

n by 2.5%. Preliminary simulation runs performed before the inversion showed that 

perturbations of the other soil hydraulic parameters (i.e. θr, θs, Ks, l) did not result in 

significant changes in simulation outputs as compared to α and n. Therefore, only the 

sensitivities of α and n were analyzed and plotted on the same graph as shown.  
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7.5.2 Results and Discussions of The Calibration and validation of Hydrus 1D at the study 

site 

The calibration and the validation accuracy of estimated parameters were assessed through 

visual inspection of the time series plots of soil moisture storage as compared to those for 

simulations  as shown in Figures 7.6 (a) for the calibration period and Figure 7.6(b) for the 

validation period. Another assessment procedure was through calculations of coefficients of 

determination (r2) between simulations and observations during both calibration and validation 

periods. Calibration and validation were restricted to the soil sensor installed in the maize 

fields. This was because of the difficulty encountered in monitoring crop development of 

cowpeas as they were harvested more frequently and the transition between the previous crop 

to the next was not clear cut unlike for maize crop.  

It can be observed that the calibrated parameters enabled reasonably fair modal prediction 

of the soil water storage as indicated by the r2 value of 0.73 during the calibration process 

within the limitations of the experimentation, Figure 7.7(a). Whereas the validation period 

resulted in the r2 value of 0.7 considering the soil water storage between the z = -15cm and z = 

-65cm, Figure 7.7(b). Soil data for the model inversion were obtained from April 15, 2015 to 

Jul 1, 2015. And Soil moisture observations applied for the model validation period were those 

obtained from July 28, 2015 to October 10, 2015.  

  
 

Figure 7.7 Calibration and Validation results showing evolution of Soil moisture storage between the 

depths of -15cm and -65cm using calibrated soil hydraulic parameters during (a) Calibration 

and (b) Validation. Figure shown is for a sensor that had been under Maize crop only for 

both periods.   
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Figure 7.8 Full profile scatter plots of Simulations versus observations during (a) Calibration Period 

and (b) validation periods showing respective r2 values and the regression equations   

Model calibration was achieved through the inbuilt inversion module within Hydrus 1D. 

In this inverse parameter estimation process, the Marquardt-Levenberg parameter optimization 

algorithm is applied. This is a single objective optimization algorithm that has the possibility 

of being trapped in local minima during the optimization process (Hopman et al., 2002).  

However, whenever the initial values of the parameter vectors can be estimated, a single 

objective parameter optimization can be implemented with satisfactory results (Chen et al., 

2012). Since crop development parameters were very critical factors for the inversion, only a 

short simulation period for both model calibration and validation were accessed during which 

period crop development could be accurately accounted for. Besides, only Maize was 

considered because of the purpose of the calibration being to generate the parameters for the 

derivation of SMDI. Since maize yields could be accessed for the validation of SMDI.  

The range of values of the calibrated parameters as shown in table 7.6. It is recommended 

that before the inversion process, a sensitivity of the model parameters to the simulation outputs 

be analyzed to “know” model parameters that need the most focus during the parameter 

estimation process. For this reason, sensitivity of each model parameter was analyzed at the 

beginning of the parameter estimation process. Results of the sensitivity analyses are shown in 

Figure 7.5 for α and n. Preliminary simulation runs had revealed that perturbations in the values 

of α and n have the greatest percentage change in model outputs compared to the other 
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parameter vectors. From the figure, it can be seen that the changes in the values of n are most 

sensitive to model output than the changes in the values of α. Therefore, during the calibration 

process, greater calibration efforts were directed to the values of n in each of the soil profile 

dephs.  

 

Figure 7.9 Laboratory determined water retention curve for different soil profile positions. Codes for 

the data loggers and steel samplers are shown including the profile depths corresponding 

to each steel sampler. Steel soil samples were used to collect undisturbed soil core samples 

Table 7.6 Calibrated parameter values for the different soil profiles and sensors  

EM50-002 θs θr α n Ks l 

20cm 0.045 0.31 0.004 1.1 12 0.4 
40cm 0.035 0.33 0.003 1.2 120 0.4 
60cm 0.054 0.34 0.02 1.12 15 0.4 
EM50-003       
20cm 0.0728 0.34 0.0064 1.125 3.8 0.5 
40cm 0.0282 0.3 0.015 1.091 15 0.5 

60cm 0.075 0.39 0.011 1.229 18.84 0.5 
EM50-004       
20cm 0.045 0.37 0.0132 1.055 151 0.4 
40cm 0.056 0.33 0.0002 1.2 112 0.4 
60cm 0.081 0.4 0.0004 1.35 15 0.4 
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7.6 Conclusion   

In this chapter, a report of the case study for the calibration of the agro-hydrological model, 

Hydrus 1D was presented. The calibration was conducted through the inbuilt inversion module 

in Hydrus 1D. Crop development parameters were estimated through analyses of cloud free 

satellite remote sensing images of Landsat 8 OLI bands.  Since there were no independent 

measurements for the verification of the estimated albedo and LAI values, a sensitvity analysis 

of particularly LAI was conducted before actual inversion process using Equation (7.8). 

Likewise, sensitivity analysis of each of the vanGenuchten parameters (vGp) was conducted 

before calibration to determine which model parameters needed the most attention during 

calibration based on the same Equation (7.8). Finally, after calibration process, the model 

simulation outputs were compared to observations through time series plots and calculation of 

coefficients of determination (r2) during both calibration and validation periods.  

Table 7.7 Laboratory determined Soil Textural characteristics and the van Genuchten hydraulic 

parameters predicted by the Rosetta PTF as initial estimates for the inversion process 

 

The results obtained show that the variation of both the albedo and LAI values esimated 

show similar variations during crop development when compared to publised values. However, 

the values of albedo estiamted were rather low compared to punlished values. Whereas the 

estimated values of LAI were more comparable to published values than the albedo estimates. 

The results of the senitivity analysis of LAI showed that LAI is more sensitve to the model 

output at the beginning of the growing season. The LAI sensitivities decrease during the crop 

development with the lowest sensitivities registered during the peak growing period. Whereas 
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of the six vG parameters, α and n were found to be more sensitive to the model output compared 

to the rest of the parameters and therefore more calibration efforts were directed on them. 

Between the more sensitive parameters (i.e. α and n), n was found to be more sensitive to model 

output by up to two orders of magnitude compared to α as shown in Figures 7.5(a) and (b).  

Comparions between simulations and observations based on calibrated parameters showed 

good agreement with the coefficient of determination (r2 = 0.73), during calibration and r2 = 

0.7, during validation.  The manufacturer of the soil sensors used to obtain soil water content 

data  applied in the inversion of Hydrus 1D, recommends calibration of the sensors to local soil 

conditions to ensure maximum accuracy of the soil water content measurements. Otherwise the 

expected accuracy of the sensors is at least 3% based on the factory calibration.  Due to 

technical difficulties it was not possible to calibrate the sensors for the study site, therefore, the 

results obtained are based on the factory allowed accuracy of at least 3%. For the purposes of 

this research and within the experimental limitations of this study, the factory calibration 

accurcy was considered acceptible. 
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8 AGRO-HYDROLOGICAL SIMULATION TO DERIVE THE SMDI FOR THE STUDY 

SITE AND ITS UPSCALING THROUGH ENERGY BALANCE MODELING 

Summary  

This chapter concludes the development of the SMDI as presented in this thesis by 

applying all the concepts developed in chapters 4, and 6 and the case study results of chapters 

5 and 7 to calculate threshold parameters for the definition of SMDI in Northern Uganda. This 

is achieved through applying all the results obtained to simulate a 21-year time series of soil 

moisture using the calibrated agro-hydrological model, Hydrus 1D. The simulated soil moisture 

time series were used to derive the SMDI for the study site. Reference indices i.e. SPI, SPEI 

and AWD were calculated using algorithms elaborated in chapter 4, for testing SMDI through 

correlation analyses. And finally, in order to apply the SMDI to the entire agro-hydrological 

zone, a regression equation was developed between SMDI and an evaporative fraction (Λ) 

derived from an energy balance model, S-SEBI. Results showed that the threshold parameters; 

i.e. water content at field capacity (θFC) and water retention at wilting point (θWP), derived from 

the agro-hydrological simulations compared well with the laboratory determined values, with 

the coefficient of determination (r2 = 0.95). Secondly, SMDI correlated negatively with the 

yield records at the study site with the coefficient of determination (r2 = 0.64).  

Precipitation (P) and Precipitation deficit (D = P-ETo) were fitted on a gamma and log-

logistic probability distributions, to calculate SPI and SPEI respectively, for the study site.  

Both theoretical distributions fitted the empirical distributions with acceptable Kolmogorov-

Smirnov goodness of fit test at 95% level of confidence. Positive correlation coefficients were 

obtained between each of the reference indices with SMDI, further demonstrating the 

robustness of the SMDI.  Lastly, the SMDI could be predicted with the evaporative fraction 

(Λ) obtained from the energy balance model, S-SEBI with the coefficient of determination (r2 

= 0.84), based on cloud free images.  A regression equation developed between SMDI and Λ 

was cross validated using different set of satellite images. The derived SMDI–Λ  regression 

equation predicted the SMDI obtained from agro-hydrological simulation with (r2 = 0.85) based 

on images obtained between January and March, 2014. Application of SMDI to delineate the 

study site into wet and dry seasons showed that dry season starts between November 25 to 

December 10 of each year and wet season starts between March 26 and April 5 of each year. 

The results of this chapter were used to formulate a soil water management decision support 

scheme that can be applied in the study area to mitigate the impacts of agricultural drought.  
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8.1 Introduction  

Most universally applied drought indices such as the SPI and   PDSI do not either entirely 

account for actual soil moisture and crop dynamics (Martínez-Fernández et al., 2015; 

Niemeyer, 2008), or apply an overly simplified representation of moisture movement in the 

SPAC (Wells, 2004; Alley, 1984) respectively. These factors motivated development of soil 

moisture based drought indices such as the Soil water index (SWI) by Hunt et al. (2009); the 

Soil Water Deficit Index (SWDI) by  Martínez-Fernández et al. (2015) and the Soil Moisture 

Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) by Narasimhan and 

Srinivasan (2005) for monitoring agricultural droughts. All these indices except those 

developed by Narasimhan and Srinivasan (2005) use actual measurements of soil moisture 

through comprehensive soil moisture monitoring programs such as REMEDHUS (Soil 

Moisture Measurements Stations Networks) in Spain, (Sánchez et al., 2012) and large soil 

moisture monitoring networks and databases in European countries and the USA. However, 

such approaches are not practical in developing countries where soil moisture monitoring 

networks are unavailable (Dobriyal et al., 2012). For this reason, an approach was presented in 

Chapter 4, to apply a one-dimensional Agro-hydrological model to generate soil moisture time 

series from which threshold parameters of the soil moisture retention curve i.e.; 𝜃𝐹𝐶   and 𝜃𝑊𝑃 

can be calculated. These parameters are then applied to define SMDI for operational monitoring 

of agricultural drought in developing countries that do not have soil moisture monitoring 

programs such as in Uganda.   

This case study was conducted in Northern Uganda, where many small, medium scale to 

large agricultural farms are being opened in large numbers. However, the farmers who rely 

entirely on rainfall for agricultural production, hardly have any access to climatic information 

because of scarcity of climatic data in Northern Uganda.  Relatively high rainfall received over 

Northern Uganda lasts only for about six months effectively between March and November 

(Nsubuga et al., 2014; Basaliriwa, 1995; 1991; Ogalo, 1981). Moreover, the rains exhibit high 

spatiotemporal variability and the abundant rainfall received during the wet season is easily 

lost during dry spells. The aim of this research (as has been elaborated throughout the previous 

chapters) is to transform the scanty climatic and soil information in Northern Uganda into a 

tool for operational monitoring of agricultural droughts.  Such a tool once availed to farmers 

would enable them plan ahead of time to counter frequent risks posed to rain fed farming by 

increasing unpredictability in weather patterns. It could further help in guiding farmers to plan 

best soil water management strategies based on information of common drought characteristics 
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that the developed index would provide that is currently lacking. Lastly the index can be used 

as a proxy for soil moisture status thereby guiding farmers on the best time for field operations 

such as first and second ploughing and on the best planting dates especially for maize (Zea 

mays) in the Northern Uganda.   

The aim of this chapter is to apply the methodologies discussed in chapter 4 in a case study 

conducted in Northern Uganda through implementation of five key objectives, namely:  

 To apply the calibrated soil hydraulic parameters obtained in chapter 7 together with 

the published crop coefficients in FAO-56 manual and the best performing evaluated 

reference ETo (ETo
Mkk) model in chapter 5 to simulate time series of soil moisture for; 

1995 – 2015, at the study site; 

 To use the simulated soil moisture time series to generate the threshold parameters of 

the soil water retention curve i.e. 𝜃𝐹𝐶  and 𝜃𝑊𝑃 for the computation of SMDI as 

elaborated in chapter 4, and to validate SMDI at the study site through a correlation 

analysis with the reference indices (i.e. SPI and SPEI) and yield data obtained from the 

study site.   

 To upscale the derived SMDI for application to the entire agro-ecological zone of the 

study site through development of a SMDI-Λ regression equation  

 To present the results obtained and their discussions. 

 To apply the results obtained to formulate a soil water management decision support 

scheme for mitigation of agricultural droughts in the study site 

8.2 Generation of Long Term Soil Moisture Time Series at the Study site 

The method presented in chapter 4 assumes that it is possible to calibrate a one dimensional 

agro-hydrological model in the area of application. The theoretical background for the 

calibration of such a model is covered in chapter 6. The methods applied for the calibration of 

Hydrus 1D and the results obtained are presented in chapter 7. This section is concerned with 

application of a calibrated model to generate long term soil moisture times series. 

8.2.1 Steps taken to generate long term records of soil moisture time series 

 the steps involved include: 

 Specification of the initial condition at the start of the simulation period  

 Specification of the boundary condition throughout the simulation period  
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 Setting up the agro-hydrological model for the long-term simulation of the soil moisture 

for the considered locality.  A period of 5 years’ simulation or longer is preferable based 

on available literatures on the subject.  

 Generation of the thresh hold parameters i.e. the θFC and θWP, following the statistical 

method proposed by Hunt et al. (2009). i.e. arranging the daily soil moisture time series 

in ascending order and calculating 5th and the 95th percentiles to represent water content 

at WP  and FC respectively  

 Assessment of the validity of the generated threshold parameters either through 

laboratory experiment or through the published values  

The uniqueness of this particular work is in the fact that it overcomes two kinds of 

challenges experienced in developing countries: i.e.  

 the inadequacy or complete lack of soil moisture monitoring networks  

 the insufficiency of the meteorological variables (both in terms of quantity and 

quality)  that are very critical in defining the initial and the boundary conditions 

(Wart et al., 2015).  

The first challenge is compounded by the second challenge. However, the approach developed 

here, overcomes both of the challenges through: 

 Utilization of low cost commercially available soil sensors to calibrate an agro-

hydrological model as presented in chapter 7. 

 application of data propagation methodologies discussed in chapter 5 for the generation 

of reference evapotranspiration models applied in combination with published crop 

coefficients for the specification of the boundary conditions for the long-term soil 

moisture simulation.   

 Evaluation of appropriate less data intensive ETo model for application specific areas 

as discussed in chapter 5 

8.2.2 Model set up: specification of the initial and the boundary conditions 

Hydrus 1D model was set in a direct simulation mode, and simulation started in January 

1, 1995 with initial conditions estimated at a pressure head of 10,000m. this is the critical 

pressure head provided for in Hydrus 1D. such a pressure head represents dry soil system as 

revealed by no rainfall recorded right from the beginning of December 1994 in Northern 

Uganda. Simulations were run for a period of 21 years i.e. from January 1, 1995 to December 

31, 2015. The calibrated soil hydraulic parameters were adjusted slightly whenever simulations 



 

114 
 

failed to run in each case. this step was repeated for all the four profile locations in Figure 7.1, 

chapter 7.   

The soil moisture values generated for the four locations were used to generate pairs of 

values of (θWP, θFC), following the procedures proposed by Hun et al. (2009). A regression 

analysis was thereafter performed by comparing these model generated values to those 

generated from the soil hydrological laboratory in the University of Naples Federico II, on 

undisturbed soil core samples that were brought to Italy for analysis. The laboratory 

determination of the threshold parameters was achieved for each undisturbed soil core samples 

using pressure plate apparatus. The pairs of values, i.e. (θWP, θFC) were determined 

corresponding to suction pressure at 10,000m and 300m for θWP and θFC ,  respectively. These 

suction pressures were selected for the threshold parameters based on soil survey report for the 

study area classifying the soils as mainly low activity Ferrallisols (Pidgeoni, 1972; Chenery, 

1960). These types of soils have suction pressure heads corresponding to field capacity of 

30kPa  and 10kPa corresponding to wilting point instead of the recommended pressure heads 

of 33kPa and 15kPa for these threshold water content values respectively (van den Berg et al., 

1997).  

For the long-term simulation of the soil moisture time series, the reference ETo model, 

Makkink, was used together with crop coefficient values for maize obtained from FAO-56 

manual (Allen, 1998). Makkink ETo model provided the best prediction of the ETo among the 

13 models evaluated in chapter 5. The Makkink ETo model requires solar radiation and mean 

air temperature values. Both of these climatic parameters can be obtained from the gridded 

climatic data through the data propagation algorithm described in chapter 5. Application of the 

data propagation methodology in chapter 5 showed that; both solar radiation and average 

temperatures can be derived from limited meteorological observations together with the 

gridded climatic data with acceptable level of confidence.  

The Kc values cover a wide range of agro-climatic regions and it is assumed here that 

maize crops are grown under best management practices such that the only limitation is rainfall 

during dry periods. This is because the agro-hydrological simulation for the generation of the 

threshold parameters as implemented in this research applies to rain fed cropping system. 

Therefore, the Kc values together with ETo calculations obtained through Makkink model in 

conjunction of gap-filled precipitation data obtained from the study site, provided the boundary 

conditions throughout the entire 21-year period, for the daily simulations. 
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8.3 Computation of Reference Drought Indices for Assessment Of SMDI 

The reference drought indices computed in these sections are the SPI, SPEI and the AWD. 

The algorithms for the SPI and the SPEI are presented in chapter 4. These reference indices 

especially the SPI are the standard meteorological indices applied usually to assess the 

performance of the newly developed indices (Xinyu et al., 2017; Yu et al., 2014; Torres et al., 

2013; WMO, 2009; Purcell et al., 2003). Meteorological drought is the primary trigger of all 

the other drought types. Therefore, a positive correlation between newly developed indices 

with the standard meteorological drought indices confirms the applicability of the developed 

indices (Martinez-Fernandez et al., 2015).  

8.3.1 Fitting the Empirical Probability Distributions on to Theoretical Distributions for The 

Study Area Data 

In order to compute SPI and SPEI for a given location, it is required that in both cases the 

empirical cumulative probability distributions of Precipitation P, (for the calculation of SPI) 

and the precipitation deficit D, (for the calculation of SPEI) are fitted on to the respective 

theoretical distributions (Makee et al., 1994; Vicente-Serrano et al., 2010). For the study area, 

cumulative frequency distributions of P and D were fitted on the 2-parameter gamma 

distribution and the 3-parameter log-logistics distribution respectively. In each case, the 

goodness of fit test was conducted based on the Kolmogorov-Smirnov goodness of test fit 

statistics. For computation of the empirical commutative probability distributions for 

generating SPI, a 32-year precipitation data was applied. Consistency checks and gap filling 

were done by applying the data propagation algorithm described in chapter 5 and the 21-year 

precipitation data was extended to 32-year for computation of SPI (1983 – 2015). Whereas the 

corresponding empirical distribution for D was calculated based on computation of ET0 using 

Makkink ETo model for the same period.  However, verification of SMDI was based on 21-

year portions of both SPI and SPEI, i.e. from 1995 to 2015 corresponding to the simulation 

periods. 

Mkk
ETPD 0         (8.1) 

Where D is the precipitation deficit for the calculation of SPEI, and P is precipitation and 

ET0
Mkk, is the reference evapotranspiration calculated using the Makkink ETo Model. Then the 

goodness of fit test for each case was conducted based on Equation (8.2). 

    xFxFD n
n

n  max        (8.2) 
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Where Fn(x) is the empirical cumulative distribution for the Precipitation P and precipitation 

deficit D. F(x) is the theoretical distribution function evaluated at x. Under a null hypothesis 

that Dn does not exceed a critical value at a given level of significance (for the data drawn from 

the theoretical distribution). According to Lloyd-Hughes and Saunders (2002), If Dn exceeds 

the critical value, the null hypothesis is rejected at the given level of significance. 

8.3.2 Correlation Analysis Between SMDI and The Reference Drought Indices  

Correlation analysis was carried out to evaluate the suitability of SMDI for operational 

drought monitoring in the study area. A positive correlation between SMDI with reference 

indices: i.e. SPI, SPEI and AWD would indicate that SMDI can be applied in the study area for 

agricultural drought monitoring. The reference indices chosen are widely used meteorological 

indices. Since a meteorological drought precedes agricultural drought, a good agricultural 

index would exhibit a positive correlation with a meteorological drought index. Pearson’s 

correlation coefficient is defined as the degree of linear association/relationship between two 

variables. It is a measure that determines the degree to which the moments of two variables are 

associated. The range of values for the correlation coefficient is -1.0 to +1.0. A correlation of 

-1.0 indicates a perfect negative association or negative relationship between the two variables. 

While a correlation of +1.0 indicates a perfect positive relationship. Calculation of a correlation 

coefficient between two variables x and y is given by:  
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Correlation coefficients were calculated between SMDI and the reference indices. In order to 

check the applicability of the reference indices to evaluate SMDI, correlation coefficients were 

also calculated to assess, how each reference index relates with the rest of each other.  

8.4 Upscaling the SMDI Through Cross Validation with An Energy Balance Model 

8.4.1 Energy Balance Modeling  

Recent developments in satellite remote sensing have made it possible to acquire crucial 

variables for characterizing land surface interactions (Loveland and Irons, 2016; Ke et al., 

2016; Jiménez-Muñoz et al., 2009; Tasumi et al., 2008; Moran et al., 1992). Over the last two 

decades, the requirement for quantifying ET at regional scale, together with the recent advances 
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in satellite remote sensing technology, has led to many studies on mapping large scale ET (Ali 

et al., 2016; Bhattarai et al., 2016; Kilic et al., 2016; Kosa, 2011; Waters et al., 2002; Roerink 

et al., 2000; Bastiaanssen et al., 1998). The surface energy balance algorithms based   on the 

energy balance equation is one of the most widely used approaches for obtaining large scale 

(regional) estimates of remotely sensed ET at multi temporal and spatial scales (Bala et al., 

2013;). Energy and mass are exchanged between the land and the atmosphere. When the heat 

fluxes that are transported by the horizontal advection and the photosynthetic vegetation are 

assumed negligible, the one-dimensional form of the energy balance equation on an 

instantaneous time scale can be expressed as  

EHGR on         (8.4)  

Where, Rn is net radiation, H is sensible heat flux, Go is soil heat flux and λE is latent heat flux; 

each of which having the unit of W/m2. Many of the SEB models rely on equation 8.4 to 

estimate large scale ET. There are four SEB models that are in common use namely: Surface 

Energy Balance for Land (SEBAL), ALEXI, Simplified Surface energy Index (S-SEBI) and 

Surface Energy Balance Systems (SEBS) (Liou and Kar, 2014; Bala et al., 2013). Among these 

commonly used SEB models, it is ALEXI that is based on two source ET calculation, i.e. ET 

is calculated separately as soil evaporation and transpiration from vegetation, then E and T are 

added after computation.  The rest combines calculation of soil evaporation and transpiration 

in combination as Evapotranspiration (ET). The rest of the mentioned SEB models require field 

measurements of parts of the variables for the estimation of the ET except S-SEBI. In 

application of the S-SEBI algorithm, only a satellite image is required as long as sufficient dry 

and wet condition can be identified in an image. For this reason, S-SEBI model was used in 

this research.  

8.4.2 The Simplified Energy Balance Index S-SEBI 

The simplified surface energy balance index (S-SEBI) was developed to solve the energy 

balance with remote sensing method on a pixel by pixel basis. S-SEBI requires scanned spectral 

radiances under cloud free conditions in the visible, near infrared and thermal infrared range to 

estimate its different parameters which are: the reflectance, surface temperature and the 

vegetation index. With these input the energy budget at the surface can be partitioned. First the 

net radiation is determined as the rest term of all the incoming and outgoing shortwave and 

long wave radiations, some of which can be detected directly by the remote sensing techniques. 

Secondly, the soil heat flux is derived from an empirical relationship of the surface and 
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vegetation characteristics. The sensible and the latent heat flux are not partitioned as separate 

parameters, but as the evaporative fraction ; equation (8.5). 

EH

oH

TT

TT




       (8.5) 

When the assumption of constant atmospheric condition over the image is fulfilled and 

sufficient dry and wet pixels can be identified throughout the reflectance spectrum within the 

image; TH and TλE can be determined from the image itself (Roerink et al., 2000).  

8.4.3 Deriving the Parameters for the Implementation of the S-SEBI Algorithm   

Calculation of the parameters of Equation (8.5) involves the following steps according to; 

(Roerink et al., 2000): 

 Identification of hot and cold pixels from each Landsat 8 TIR image, 

 Extraction of the reflectance and land surface temperatures from the different pixel 

sets of both cold and hot regions 

 Plotting the feature space on a graph similar to Figure 8.1, with values of the extracted 

reflectance on the x-axis and values of land surface temperature on the y-axis 

 Calculating the averages of the cold and hot pixel sets and plotting them on the same 

graph, in order to guide the delineation of the evaporation controlled and the radiation 

controlled regions within the feature space plot.  

 Determining the regression coefficients for the evaporation controlled and the 

radiation controlled lines on the plots 

 

Fig. 8.1 A scheme showing the relationship between surface reflectance and temperature as applied in 

S-SEBI algorithm; (Roerink et al. 2000). 
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oHHH baT       (8.6) 

oEEE baT        (8.7) 

Where; Ha , 
Hb  are the regression coefficients for the radiation controlled line and Ea , Eb

are the corresponding regression coefficients for the evaporation controlled line. 

Substituting equations (8.6) and (8.7) in to (8.5) gives: 

 oEEoHH

ooHH

baba

Tba





 


    (8.8) 

8.4.4 Estimation of the Land Surface Temperature from Satellite Data 

Land surface temperature is an important variable in land surface remote sensing (Yu et 

al., 2014). Its estimation requires calculation of several parameters and the steps involved are 

as follows: 

The spectral radiance
L ( Wm-2sr-2μm-1), given by: 

 

ALQMLL calλ         (8.9)  

Were ML and AL being the band specific multiplicative factor and additive rescaling factors 

respectively both of which can be obtained from Landsat metadata.  Qcal is the digital number 

(DN).
  

The spectral radiance L ; is applied in the radiative transfer model to estimate the surface 

emitting radiance LT through the inversion of the equation (8.10) 

  duT Lε1τLτεLL       (8.10) 

In Equation (8.10); τ (-) is the atmospheric transmission; ε (-) is the emissivity of the surface, 

specific to the target type; Lu (Wm-2sr-2μm-1) is the upwelling or the atmospheric path radiance; 

Ld (Wm-2sr-2μm-1) is the down-welling or the sky radiance. Estimation of the land surface 

temperature (LST) from Equation (8.11) helps accounts for the atmospheric correction if the 

following can be estimated i.e. the emissivity ε, the upwelling or the atmospheric path radiance 

Lu and the down welling or the sky radiance Ld, and the atmospheric transmission τ.   The land 

surface emissivity can be estimated from the NDVI (Momeni and Saradjian, 2007; Valor and 

Caselles, 1996; Van de Griend and Owe, 1993). Whereas, the three parameters Lu, Ld and τ are 

obtained from the web based calculator (Barsi et al., 2003). Radiance to temperature 

conversions can be achieved by the application of the plank equation or the Landsat specific 

estimate of the plank curve: Equation (8.11) 
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𝑇𝑙𝑠𝑡 =
𝑘2

𝑙𝑛(
𝑘1
𝐿𝑇

+1)
        (8.11) 

Where Tlst is the land surface temperature in Kelvin; LT (Wm-2sr-2μm-1) being, surface specific 

spectral radiance obtained by the inversion of Equation (8.10), k1 and k2 are calibration 

constants that can be obtained from the that Landsat8 TIR metadata. 
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1
      (8.12) 

8.4.5 Estimation of Surface Emissivity from Normalized Difference Vegetation Index 

The emissivity of a given a vegetated surface can be estimated from the normalized 

difference vegetation index (NDVI); the NDVI is obtained from the near infrared and the red 

bands of the Landsat 8 satellite as in Equation (3.6), in chapter 3. It is then used to calculate 

the surface cover factor Fr which is in turn used to calculate ɛ as shown in the Equations: (8.13) 

to (8.15). 
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  srvr FF   1        (8.15) 

Where Fr is the cover factor with values ranging from 0 to 1, 0 being the value for bare soil 

and 1 corresponding to full vegetation cover; NDVI0 is the NDVI value corresponding to bare 

soil and NDVImax is the NDVI value corresponding to the full vegetation cover (Jiménez-Muñoz 

et al., 2009); ɛ is the surface emissivity required for the calculation of the surface temperature, 

ɛv is the emissivity of full vegetation cover, ɛs is the emissivity of bare soil. Calculations for 

the purpose of this case study were based on values of ɛv = 0.99, and ɛs = 0.97, according to Yu 

et al. (2014) 

Table 8.1 Calibration parameters for the estimation of the surface radiances 

Sensor 
Band 

 1-1-2-

1

μmsrWm

k          
 K

k  2  

Landsat-8 10 774.89 1321.08 

Landsat-8 11 480.89 1201.14 

Landsat-7 ETM+ 6 666.09 1282.71 

Landsat-5 TM 6 607.76 1260.56 
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Table 8.2 Landsat bands information  

Sensor Wave length (μm)  Resolution (m) Band 

Landsat 5  10.4 – 12.50 120 6 

Landsat 7 10.40 – 12.50  60 6 

Landsat 8 10.60 – 11.19 100(30*) 10 

Landsat 8 11.50 – 12.51 100(30*) 11 

 

8.5 Presentation of the results of long-term agro-hydrological simulations and 

discussions 

In this study, a new methodology to define water deficits to agricultural crops grown under 

rain fed conditions was presented in chapter 4. The method relies on detailed calibration of a 

one dimensional agro-hydrological model in areas that do not have reliable information on crop 

development and weather parameters. A 1-dimensional agro-hydrological model, Hydrus 1D 

was calibrated in the study area (i.e. Northern Uganda) and the calibration and validation results 

presented in chapter 7 (section 7.4). In the new methodology, development of a soil moisture 

deficit index (SMDI) is achieved through long term simulation of soil moisture time series to 

generate threshold parameters that Agronomists use to characterize water availability to plants 

i.e: soil water retention between field capacity (θFC) and wilting points (θWP) (Martínez-

Fernández et al., 2015; Allen, 1998; Pidgeoni, 1972). Usually, these threshold parameters are 

determined in laboratory through pressure plate apparatuses. Sometimes the values are 

estimated through application of empirical relations between the threshold parameters and soil 

physical characteristics such as the bulk density, percent of sand, clay and silt using 

pedotransfer functions (Tomasella et al., 1988). However, these methods are not feasible in 

developing countries such as Uganda.  Therefore, Hydrus 1D was calibrated and validated in a 

small agricultural field in Northern Uganda to facilitate computation of these threshold 

parameters. The long-term simulation results to calculate these threshold parameters for the 

study site is presented and discussed in this sub-section.  

8.5.1 Results of the simulated threshold parameters  

The threshold parameters for the definition of SMDI were derived through the method 

developed by Hunt et al. (2009). Daily soil moisture time series for the four locations where 

disturbed and undisturbed soil samples were taken and analyzed were simulated for 21 years 

(1995 – 2015). The soil moisture time series were arranged in ascending order and the 5th and 

the 95th Percentiles were computed to represent θWP and θFC respectively for each location. 
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Because, the soil hydraulic parameters were not calibrated at location of the data logger EM50-

001, the values estimated by the Rosetta Pedotransfer functions were used for the long-term 

simulations for this location. The obtained values for the four data logger positions, Figure 7.1, 

were compared with the Laboratory estimated values by means of scatter plots and r2 between 

simulated and laboratory determined threshold parameters. The scatter plots between the 

simulated threshold parameters (i.e. θFC and θWP) and Laboratory determined values are shown 

in Figure 8.3. Coefficient of determination (r2 = 0.95) was obtained between the laboratory 

determined threshold parameters and those obtained through long term agro-hydrological 

simulations.  

 

Figure 8.3 Scatter plots between the Threshold parameters for the definition of SMDI. ThP = Threshold 

Parameters i.e. water content at wilting point (θWP) and that at field capacity (θFC), estimated 

from the long-term simulations vs those estimated from the laboratory 

 

Determination of the threshold parameters through the 5th percentile and the 95th percentile 

to represent  θFC and θWP respectively was reported by Martínez-Fernández et al. (2015). They 

obtained r2 value of 0.81 using separate scatter plots for θFC and θWP partly because they had 

more data points from the many stations from which soil moisture sensors were located. 

However, in their case they applied actual soil moisture observations for a period of 8 years, 

this could explain why the results presented here are better due to application of 21 years of 

soil moisture data to derive SMDI and combination of both the threshold parameters in the 

same plot. Although it seems more appropriate to plot these values on separate graphs as these 
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authors did which can be possible with many data points not possible in our study. This results 

further demonstrated a superior estimation of the threshold parameters compared to similar 

other reported results that have been reported (Hogg et al., 2013; Hunt et al, 2009; Lagergren 

and Lindroth, 2002). The result (i.e. r2 = 0.95) was nevertheless obtained without calibration 

of the soil sensors used, therefore the comparison is based on relative accuracy of 3% or more 

of the soil moisture sensors used for calibration of the agro-hydrological model as reported by 

the manufacturer of DECAGON soil sensors. If calibration of soil sensors were carried out for 

the study site perhaps high values of the coefficient of determination would have been obtained. 

Use of long term simulated soil moisture time series may also have contributed to the relatively 

high value of the coefficient of determination obtained in this study. Availability of long-term 

soil moisture time series captures all the possible values of the soil moisture content that can 

be obtained in different climatic periods. This is particularly the strength of applying the 

calibrated simulation model to obtain time series of soil moisture for any length of time 

depending on the length of the climatic parameters obtainable.   

8.5.2 Results and Discussions of the goodness of fit test for the fitting distributions applied 

for the implementation of the SPI and the SPEI algorithms in the study area.   

The algorithms to calculate two of the reference indices (i.e. SPI and SPEI) applied for the 

evaluation of the SMDI in the study area require fitting of their main variables onto the 

theoretical probability distributions that best describe these variables in the study site. The 

fitted variables are precipitation (P) applied in the algorithms for the calculation of SPI and 

precipitation deficit (D) applied for the calculation of the SPEI. Therefore a 32-year 

precipitation data were fitted on to a gamma probability distribution function using the method 

of maximum likelihood, implemented in R environment using fitdistrplus package (Delignette-

muller and Dutang, 2015). A similar procedure was repeated for fitting D on to a 3-parameter 

log-logistics distribution for the calculation of SPEI. In both cases, both P and D were fitted on 

to the theoretical distributions with acceptable Kolmogorov-Smirnov goodness of fit test 

statistic at 95% level of significance.    

8.5.3 Results and discussions of the correlation analyses between the SMDI with the 

reference indices: SPI, SPEI and AWD 

Suitability of the derived SMDI for operational drought monitoring was tested against 

known drought indices such as SPI (Mckee et al., 1993); SPEI (Vicente-Serano, 2010), and 

AWD (Purcell et al, 2003) through correlation analyses. The results of the correlation 
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coefficients between SMDI and the reference indices for both the growing and the dry seasons 

are presented in Table 8.3. The growing season in Northern Uganda starts from the beginning 

of April and lasts through October of each year. The dry season starts in December and last 

through March of the next year (Basaliriwa, 1995). There was positive correlation between 

SMDI with each of the reference indices as shown in Table 8.3. The growing season highest 

correlation coefficient was obtained between SMDI and SPI (r = 0.49), and the lowest 

correlation was obtained between SMDI and SPEI (r = 0.37). The range of correlation  

coefficients are comparable to the values reported by Martínez-Fernández et al. (2015) between 

SWDI and AWD. Higher correlation coefficients between SMDI with each of the reference 

indices were obtained during the dry period from December to March.  This demonstrates that 

SMDI is more sensitive to dry periods than AWD when compared with the SPI and SPEI which 

are widely used drought indices. 
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Kolmogorov-
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0.137038 
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1.475928 
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2868.532 

Figure 8.4 Cullen and Frey Graph, showing skewness-Kurtosis plot for selection of candidate theoretical 

probability distributions for observed average monthly precipitation (1995 – 2015), based 

on 1000 bootstrapped values. The right goodness of fit statistic for 2-parameter gamma 

distribution function is shown the right-hand side. Parameters estimated by maximum 

likelihood method. Graphs for D that were fitted on a 3-parameter log-logistic distribution 

function are not shown. Those of P are shown in Figure 8.4 using two candidate distribution 

functions. 
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(a) Gamma Distribution  

 

(b) Lognormal Distribution 

Figure 8.5 Distribution plots for fitting observed Precipitation on theoretical (a) gamma probability 

distribution and (b) Lognormal Probability distributions  

Monthly evolution of SMDI was plotted with AWD, as shown in Figure 8.6, and it can be 

seen that SMDI responds to dry period better than AWD. Whereas, AWD responds to wet 

period better than SMDI. Since the dry season in Northern Uganda under normal dry conditions 

register no precipitation, the only factor determining the values of AWD is evapotranspiration 

controlled by soil moisture. This explains the reason why SMDI responds to dry season better 

than AWD, since it is based on soil moisture. Testing newly developed agricultural drought 

indices using meteorological drought indices are a common practice, since meteorological 

drought indices are more comparable across space and time in almost all climatic regions 

(WMO, 2009). Time series plots both SPI and SPEI shown in Figures 8.7 (a) and (b) show 

similar response of the meteorological drought indices compared SMDI, i.e. that in both cases 

SMDI responds better to dry conditions. 

8.5.4 The correlation between SMDI with observed yield within the same agro-ecological 

zone 

Yield data for evaluation of SMDI was obtained from an agricultural research station 

approximately 75 km from the experimental site. The experimental site and the research station 

are considered to be in the same agro-ecological zone. Yield data for maize (Zea mays), was 

obtained for six years (2007 – 2010, 2014 and 2015), with yield data only for the first growing 

seasons for 2007 – 2010, 2015 and data for both seasons only in 2014.  A regression analysis 
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was done between the number of days for which SMDI < 0 during the growing season and the 

yield data. The result of this assessment showed a negative correlation between the number of 

days for which SMDI < 0 and yields, with the value of the coefficient of determination (r2 = 

0.64), as shown in Figure 8.8. Yield data obtained from the experimental site could not be used, 

as maize biomass is harvested instead of grains and it was not clear how the records available 

were estimated. Likewise, the simulated yield records obtained from GYGA database were also 

not used because they appeared to be overly generalized since they were simulated by 

WOFOST model whose calibrations were based on very coarse global scale parameterizations 

of soil hydraulic characteristics (Wart et al., 2013). 

Table 8.3 Growing season and dry Season Correlation Coefficients 

 

 

 
Figure 8.6 Time series plots of weekly SMDI and AWD from 2012 – 2015 showing seasonal 

variability.  

8.6 Results of the Energy Balance Modeling and Discussions  

The results for the implementation of the energy balance model S-SEBI in the study area 

are presented in this section. Relatively cloud free Landsat 8 TIRS images obtained between 
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SPI 0.49 1 0.79 0.96 

AWD 0.40 0.79 1 0.79 
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SPI 0.54 1 0.53 0.90 

AWD 0.46 0.53 1 0.48 

SPEI 0.56 0.90 0.48 1 
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April and October, 2015 were analyzed and parameters for the implementation of S-SEBI to 

derive Λ were extracted as elaborated in section 8.4. Table 8.4 shows the atmospheric 

correction parameters for thermal band 10 of Landsat 8 as calculated by the NASA web 

calculator. Whereas the scatter plot between the SMDI and Λ for two of the analyzed thermal 

images that had best triangular feature space plots are shown in Figure 8.9. Only two images 

obtained on April 23, 2015 and June 10, 2015 had reasonable values of r and Tlst as shown in 

Figure 8.10. By reasonable it means that the values of albedo (r) were close to published values 

for vegetated canopies that are normally common in study area during the growing seasons and 

the values of Land surface temperatures (Tlst) are not negative due to the fact that the study area 

is located at latitudes of between 1.5oN and 3.3oN, where the aerodynamic temperatures that 

are approximated by the land surface temperatures never reach negative values. Therefore, 

images that had more unreasonable values of r and Tlst determined according to these criteria 

were not used for this analysis.  

8.6.1 Results of the regression equation developed between SMDI and Λ  

The regression equation obtained from the scatter plots between SMDI and Λ shown in 

Figure 8.9(a) due to cloud free images having “reasonable” values of r and Tlst for the pixels 

corresponding to three sensor locations (i.e., EM50-002, 003 and 004, shown in Figure 7.1, 

chapter 7) showed good agreement with the coefficient of determination (r2 = 0.84) between 

SMDI and Λ. This is expected for cloud free images since Λ  is a proxy for soil moisture 

condition representing ratio of actual ET (ETa) to reference ET (ET0).  

8.6.2 Validation results of applying the SMDI-𝛬 regression equation to calculate SMDI 

In order to validate the developed regression equation between SMDI and Λ, SMDI was 

calculated through input of  Λ values estimated by the S-SEBI algorithm using different sets of 

cloud free images obtained in 2014 into the SMDI-Λ regression equation developed on the 

basis of images obtained in 2015. The scatter plots using three cloud free images between the 

SMDI obtained through the regression equation and SMDI derived through agro-hydrological 

simulations as shown in Figure 8.9(b) demonstrated good agreement with the coefficient of 

determination (r2 = 0.85). The good agreement through the high value of the coefficient of 

determination shows that SMDI can be calculated for the study area through the developed 

regression equation. This can be done by analysis of images from Landsat 8 thermal bands 

through application of S-SEBI algorithm to generate Λ, and applying the developed SMDI-Λ 
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regression equation to calculate the SMDI that can be used for drought monitoring in similar 

areas.  

 

 

 

Figure 8.7 Monthly Evolution of the SMDI with (a) SPI-1, (b) SPEI-1 and weekly evolution of SMDI 

with(c) AWD for the period1995 – 2015  

8.7 Applying SMDI for on farm decisions support  

Proper farm management involves a set of decisions that the farmer makes in order to 

achieve the desired productivity. The risks involved in the alternative sets of options that 

provide the basis for the decision depends on a number of factors used to guide the decision-

making process. Usually a farmer is faced with alternative course of actions that require timely 

decision making (Singh et al., 2008). Traditionally, tools such as multicriteria optimization 
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have been widely applied in decision support involving environmental, socio-economic and 

political constraints (Pettit and Puller, 2002). Their applicability in irrigation management and 

large scale management of water resources are more wide spread (Navarro-hellin et al., 2016). 

In a multi-criteria decision framework, a set of management options and associated constraints 

form input data in to an optimization algorithm (Larsson et al., 2014; Peng et al, 2011). In soil 

water management decision making process, applying a multi-criteria decision support system 

would require conceptual or physical simulation of different management options under 

various management constraints and considering their results based on social, political 

economic and environmental impacts. This makes the process tedious and computationally 

very demanding especially for small-scale farmers, thus rendering the decision process 

expensive in terms of time and resources (Kuarathna, 1992).  However, currently better 

understanding of the physical processes that drive water dynamics in the SPAC has enabled 

development of better tools that can facilitate formulation of simplified deterministic 

approaches for soil water management (Aguilera et al., 2016; D’Urso, 2001). 

 

Figure 8.8 Scatter Plots of Yield versus the number of days SMDI < 0 within a growing season.   

Table 8.4 Landsat 8TIRS Band 10 Atmospheric Correction parameters for indicated image dates  

Image date   (band average) Lu (effective band pass 

Upwelling radiance) 

 112 μmsrWm   

Ld(effective band pass 

downwelling radiance) 

 112 μmsrWm   

April 23,2015 0.71 2.05 3.37 

June 10, 2015 0.54 3.37 5.03 

July 12, 2015 0.61 3.03 4.64 

Aug 13, 2015 0.65 2.80 4.34 

Sep 14, 2015 0.57 3.32 5.02 

Sep 30, 2015 0.61 3.06 4.69 
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(a) 

 
(b) 

Figure 8.9 Scatter plot of SMDI vs Evaporative Fraction (Λ) derived through the energy balance 

model S-SEBI for (a) 2015 calibration Landsat 8 TIRS images and (b) 2014 validation 

Landsat TIRS images 

 

Figure 8.10 LST-Albedo feature plots for the derivation of Λ 

Through application of modeling tools, different sets of management options can be 

assessed a priori before committing huge amount of resources to “know” the best course of 

actions.  In agricultural water management, major constraints to decision making are 

availability of reliable climatic records that form the major input data in an optimization 

algorithm to generate different management scenarios based on alternative input data (Gadgil 

et al., 2002). Uncertainty on climatic information and soil factors account for major production 

risks in rain fed farming and therefore limit technology uptake among rural communities (Juma 



 

131 
 

et al., 2009). The methodology developed in this thesis partly solves the problem of uncertainty 

in climatic records in developing countries.  

 

Figure 8.11 SMDI decision support Framework 

Long term monitoring of soil moisture has traditionally been used to provide knowledge 

of the relationship between water use efficiency and crop yields (Qin and Oenema, 2013). 

Measured records of soil moisture in the root zone can be applied as indicators for adopting 

appropriate soil water management methods. Such records have been used to assess fire risks, 

wetland degradations and thereby help in planning environmental protection strategies 

(Aguilera et al., 2016). Since, soil moisture monitoring programs are lacking in most 

developing countries, application of simulation models offer attractive alternatives. Calibration 

of such models is possible nowadays in any remote location. Thus, enabling prediction of long 

term soil moisture times series with a great deal of flexibility. This progress has motivated and 

enabled development of SMDI as implemented and reported in this thesis. In this sub-section, 

a framework for utilizing the developed SMDI in decision support for soil water management 
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is proposed as shown in Figure 8.11.  The proposed framework however requires additional 

data from experimental trials involving different soil water methodologies to test its 

effectiveness.  

    

Figure 8.12 Conceptual Diagram for the application of SMDI in on farm decision making. Adopted 

with modifications from a decision support scheme for management of semi-arid wetland 

drying episodes using Soil Water Atmosphere  (SWAP) numerical model developed by 

Aguilera et al. (2016)   

It is hoped that application of SMDI in this framework will facilitate informed technological 

uptake/adoption of appropriate soil water management techniques rainfed farming system 

thereby ensuring soil and water productivity.  

 

 

Λ

S-SEBI 
Drought monitoring with 
continuous feed back 

Soil moisture  

Current 
SMDI 

Improved 

SMDI 

Improve soil 
water 

retention  

Manure 

application 

Supplemental 
Irrigation 

Alternative 
land use  

Mulching 

Hydrus 

1D 

Daily 

observations  

weather 

calibrated 
soil vG 

parameters 

Crop variables (LAI, r, hc) 

Satellite 

remote sensing  

SMDI  

SMDI values  

SMDI<0 

Yes 

No 



 

133 
 

8.7.1 Formulating a decision support framework based on SMDI for soil water management 

under rain fed farming system 

A decision support system refers to application of computerized tools (i.e. hardware and 

software) for monitoring a set of variables that determine the behavior of a complex system 

and for evaluating a system’s response due to changes in its variables (Singh et al 2008; D’Urso 

2001). In a soil water management framework, there are tools that are designed to monitor 

crops response to perturbations in climatic, soil factors and different farm management options. 

Such tools have been successfully applied in irrigation management, wetlands management 

and in land use planning (Aguilera et al., 2016; Navarro-Hellín et al., 2011; Pettit and Pullar, 

2002). Computer based simulation models can be used to recreate past information in areas 

with limited historical climatic and soil productivity indicators. Such indicators are valuable 

parameters that can inform timely on farm decision making. 

 

 

Figure 8.13 Delineation of the dry and raining season in Northern Uganda through application of 

SMDI 

 

Significance of drought indices in providing decision support on insurable risks especially 

in dry land farming is gaining popularity in recent times (Villarroya, 2016; Kost et al., 2013; 
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Burke et al., 2010). For instance, NDVI derived from MODIS satellite data values have recently 

been used to support formulation of insurance policy for livestock keepers in semi-arid Kenya 

(Klisch and Atzberger, 2016; Mude et al., 2009). Similar such other application was reported 

in Burkina Faso (Berg et al., 2009). In this thesis SMDI has been developed for monitoring 

agricultural drought under rain fed farming areas. The framework under which SMDI may be 

used in decision support for soil water management, is in operational monitoring of agricultural 

drought. Through the simplified approach developed in this research, different soil water 

management options can be implemented and values of SMDI calculated in each case. Then, 

through scenario analysis based on the values of SMDI in conjunction with an economic model, 

best soil water management option can be selected for specific locality based on expert 

information obtained through the framework. This would save time and cost in choosing 

appropriate soil water management methods whose performance would have been analyzed a 

head of time before actual implementation.  

8.7.2 Description of the conceptual decision scheme as applied to on farm decision support 

framework using SMDI  

The schematization in Figure 8.11, illustrates how SMDI can be applied to support an on-

farm management decision. This is done through operational drought monitoring using SMDI 

with continuous feedback. After a water flow model such as Hydrus 1D is calibrated and 

possible values of the soil hydraulic parameters are known, agro-hydrological simulations 

following the steps presented in section 8.2, can be carried out to update SMDI. Alternatively, 

an energy balance model can be used to derive the evaporative fraction Λ and apply the SMDI-

Λ regression equation developed to calculate values of SMDI for deciding possible the course 

of action. Throughout the drought monitoring, values of SMDI computed using either method 

can be used to check whether there is need to improve soil moisture retention through the 

available methods such as mulching, manure application or to even think of implementing 

supplemental irrigation. The last resort can be to change the land use altogether if the options 

provided are not possible to implement; either because of the costs involved or some other 

reason such that the values of SMDI remains below zero. In a nutshell, the conceptual diagram 

of Figure 8.10 provides a framework under which the schematization in Figure 8.11, may be 

implemented. 
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8.7.3 Applying SMDI for analysis of monthly drought scenarios 

Knowledge of monthly evolution of agricultural drought episodes can be obtained through 

soil moisture observations when networks of soil sensors for soil moisture monitoring exists. 

Alternatively values of soil moisture time series can continuously be obtained through agro-

hydrological simulations as presented early on in this chapter. However, applying soil moisture 

directly for monitoring agricultural drought is not very realistic. Therefore, soil moisture 

availability to plants is considered for the calculation of the SMDI. When soil moisture content 

falls below 75% of field capacity plants begin to experience moisture stress, this corresponds 

to the value of SMDI = 0. Therefore, the average monthly values of SMDI<0 can be calculated 

throughout the long-term simulation period. This is done by averaging the values of SMDI<0 

in each of the 12 months for the entire simulation period, and these monthly averages can be 

used to assess actual monthly drought episodes.  

8.7.4 Seasonal delineation through application of the SMDI in the Northern cattle and millet 

agro-ecological zone  

Northern Uganda has some very distinct dry periods always taken to start in December of 

the previous year extending to the end of March of the following year. This has been based on 

local experience and some reported studies that have been carried out in the region over the 

years (Nsubuga et al., 2014; Basaliriwa. 1990; Ogalo, 1981). However, these studies were 

conducted based on some general analysis of rainfall distribution in the area. Application of 

such results to distinctly delineate seasonal time boundaries for supporting farm planning 

decisions cannot be very reliable since it is known that meteorological droughts always 

precedes agricultural droughts. Such seasonal delineation requires knowledge of soil moisture 

over long periods of time to calculate some probabilities of expecting soil moisture of a certain 

threshold to be consistently exceeded either negatively or positively to decide the setting in of 

a new season (Torres et al., 2013). This can best be achieved through analyzing daily values of 

SMDI and computing the number of times it is below zero to decide the setting in for example 

of a dry season and vice versa for deciding the setting in of a wet season.  

8.7.5 Applying the SMDI-𝛬 regression equation to map out drought prune areas in Northern 

Uganda 

Northern Uganda is fairly homogenous in terms of agro-meteorological conditions. 

However, there are subtle variations that can best be decided by specialization of the drought 
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indices over the entire region to map out areas that are exposed to frequent droughts. This can 

be achieved through application of the SMDI- Λ regression equation developed in section 8.6. 

Routine availability of cloud free satellite remote sensing images in the dry seasons offer 

promising possibility to apply the energy balance model, S-SEBI to derive Λ from which SMDI 

can be computed through the regression modeling. Spatial variability in the values of SMDI 

can help in deciding drought prune areas, since areas that have received more rainfall during 

the rainy season should have more positive values of SMDI than those that have received less 

rainfall. As shown in Figures 8.14 – 8.17, drought prune areas can be marked out on each of 

the map layers. The different maps can then be overlaid on one another to identify persistent 

drought prune areas. 

  

Figure 8.14 SMDI map generated from SMDI-Λ regression Equation for August 13, 2015. Image 

(path =172, row = 58) 
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Figure 8.15 SMDI map generated from SMDI-Λ regression Equation for Jan 14, 2015. Image (path 

=172, row = 58) 

 

Figure 8.16 Pixel Histogram of SMDI values for January 14, 2014 Image showing values of SMDI 

concentrating between -2 and 1.5 thus, clearly showing the dry periods usually experienced 

in January. Image (path =172, row = 58) 
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Figure 8.17  SMDI map generated from SMDI-Λ regression Equation for May 18, 2015. Image (path 

=171, row = 58) 
 

8.8 Conclusion   

In this chapter SMDI development was achieved through a case study in Northern Uganda 

by carrying out a long-term agro-hydrological simulation for 21 years to generate soil moisture 

time series from which the threshold parameters for the calculation of SMDI are estimated. 

Results obtained demonstrated good agreement between the threshold parameters generated 

from the long-term simulations. Verification of SMDI through application of three reference 

indices showed positive linear relationship with SMDI in each case. Values of SMDI<0 

equivalent to drought periods correlated negatively with yield data obtained for seven seasons 

between 2007 and 2015 in the study area. This further illustrates the appropriateness of SMDI 
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for agricultural drought monitoring in the study area. Since a negative correlation is expected 

between values of a good drought indicator and yields.  

A regression equation was further established between SMDI and Λ  and later verified with 

a different set of images in the study area. this regression equation can be used to upscale SMDI 

to the entire agro-ecological zone. Finally, the SMDI was used to develop a soil water 

management decision support scheme that can be applied in the study area to select appropriate 

soil water conservation options in the study area based on values of SMDI generated 

continuously through application of the agro-hydrological model or through the energy balance 

model based on the established regression equation. 
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9. GENERAL CONCLUSIONS AND FUTURE OUTLOOK 

9.1 General Conclusions  

The primary goal of most soil water management programs in agricultural production 

systems is to provide mitigation measures against the impacts of agricultural droughts. 

Developing such measures to mitigate against drought impacts for developing countries where 

crop production is predominantly rainfed coupled with increasing climatic unpredictability is 

no easy task. As obstacles such as limited climatic data and lack of relevant information on soil 

characteristics have to be dealt with. However, currently, there are tools that can be harnessed 

to address these problems. Many of the tools were developed with these problems in focus and 

therefore are based on proper understanding of the physics that govern water movement in the 

SPAC. Freely available numerical codes for agro-hydrological simulations can be calibrated 

almost in any remote location to aid in generating soil moisture time series that are very critical 

in drought mitigation. Calibration of such numerical codes are very demanding especially if 

one hopes to apply distributed parameter models for simulating water dynamics in large spatial 

extents. However, for 1-dimensional agro-hydrological simulations the codes can be calibrated 

by applying other related tools that are either freely available or can be obtained at low costs.   

The approach in this thesis has been to integrate these tools with limited climatic and soil 

data at a study site in Northern Uganda to develop a SMDI (Soil Moisture Deficit Index) for 

monitoring agricultural drought under rain fed farming system. SMDI can be used to support 

Soil water management decisions in developing countries to decide among alternative soil 

water conservation options for specific application areas under rain fed farming system.     

The new approach for the definition of SMDI was developed in chapter 4. The approach 

takes into consideration the fact that merely availability of soil moisture time series is not 

enough to monitor agricultural drought. It requires explicit specification of soil water 

availability to plants through knowledge of the water retention threshold parameters such as 

water content at field capacity (θFC) and that at wilting point (θWP). SMDI as defined in this 

thesis is derived from these threshold parameters with the assumption that plants begin to 

experience water deficit when soil water content falls to 75% below its value at field capacity. 

Therefore, the tasks involved in this approach was to integrate all the available tools to generate 

these threshold parameters. It is widely recognized through the reviewed literatures that 

application of laboratory methods to generate these values are impractical for operational 
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application as the laboratory samples are always not representative of the actual field 

conditions. An alternative method through application of regression relations between these 

values and soil physical properties in what is termed pedotransfer functions (PTFs), cannot be 

applied in most developing countries. This is because most of the developed PTFs are based 

on soil physical characteristics in temperate and Mediterranean soils. Therefore, the approach 

developed in chapter 4 was to apply calibrated water flow model such as Hydrus 1D to generate 

long term soil moisture time series through which the threshold parameters can be calculated. 

In advanced countries where soil moisture monitoring networks exist, soil moisture 

observations can be directly applied. However, even in developed countries, the length of most 

soil moisture monitoring networks rarely exceeds 20 years, therefore the application of this 

method can still be appropriate for any location. Moreover, such soil moisture monitoring 

networks rarely exist in most developing countries, and this is the main driving motivation for 

application of the approach in this study.  

Different methods exist for the calculation of these threshold values from long term records 

of soil moisture time series. The method used in this thesis apply arrangement of long term soil 

moisture time series from smallest to greatest and taking the 95th percentile to represent θFC 

and the 5th percentile to represent θWP. Other method that have been used in the reviewed 

literatures are the long-term minimum value to represent θWP and the minimum of the growing 

season long term maximums to represent θFC considering seasonal values of the soil moisture 

time series. chapter 4 concluded by elaborating on algorithms to calculate reference indices i.e. 

SPI and SPEI for verification of SMDI in the study area. 

Generation of the long-term soil moisture time series require calibration of the agro-

hydrological models. This was achieved through chapters 5, 6 and 7. Chapter 5 covered 

evaluations of less data intensive evapotranspiration models in the study area since data for the 

recommended FAO-56PM model are always lacking in developing countries. Chapter 5 also 

covered application of the data propagation algorithms to fill gaps in climatic records and to 

extend the limited records to cover as long time period as far as the gridded reanalysis data 

availability permits. Two sources of the gridded reanalysis data were evaluated based on a 4-

year meteorological observations in the study area.  

Chapter 6 covered application of satellite remote sensing principles to estimate crop 

growth parameters that are always needed for input for detailed calibration of agro-

hydrological models. Chapter 7 covered presentation of calibration methodologies and results 
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using a case study in Northern Uganda. In the methodologies, soil hydraulic parameters were 

obtained through numerical inversion of the agro-hydrological model by application of low 

cost commercial soil sensors equipped with data loggers and an automatic weather station both 

of which were installed in the study site for two seasons to generate soil moisture data, matric 

potential data and meteorological data for input into the agro-hydrological model for the 

numerical inversion. The first season data were used for calibration and the second season data 

were used for validation.  

The actual implementation of the calibrated agro-hydrological model for long term 

simulation of soil moisture time series was done in chapter 8. Through the long-term 

simulations, values of θFC and θWP were generated to derive the SMDI. Thereafter reference 

indices were calculated to verify SMDI through correlation analysis between SMDI and each 

of the reference indices. Yield data obtained from the study site were also used to verify the 

applicability of SMDI. Application of the energy balance model S-SEBI was also covered in 

chapter 8 to upscale SMDI through a regression equation developed between SMDI and 

evaporative fraction (Λ) derived from the energy balance model.  

The main results of the study include calibration and validation results of the agro-

hydrological simulation model Hydrus 1D. Coefficient of determination was used to compare 

simulated soil water storage and observations in the root zone between z = -15cm and z = -65 

cm and. The results obtained are r2 = 0.73 for calibration and r2 = 0.70 for validation. Evaluation 

of the 12 reference evapotranspiration models in the study area showed that Makkink radiation 

model gave the best prediction of ET0 and Thornthwaite gave the worst ET0 prediction using 

FAO-56PM as a reference. The 13 ET0 models were grouped into three categories i.e. the mass 

transfer category (MT-based), the Temperature category (T-based) and the radiation category 

(R-based). Results showed that R-based gave the best prediction of ET0 overall followed by 

MT-based category and T-based category consistently overestimated ET0 in the study area. 

This finding is important because many times Hargreaves method which is in a T-based 

category has been applied in developing countries where reliable weather data that can be found 

are mainly the minimum, maximum temperatures and precipitation. And many times, the 

Hargreaves model are not evaluated to test its suitability for the calculation of ET0.  

Values of the crop growth parameters estimated were compared to published values and 

the results showed that the estimated albedo values were rather low compared to published 

values. This is because independent measurement of r and LAI was not possible at the study 
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site. Whereas the LAI values were comparable to published values. A sensitivity analysis of 

the model output to changes in the values of LAI was conducted since LAI is considered the 

most important crop growth parameter. Results of the sensitivity showed that the model output 

is more sensitive to the values of LAI at the beginning of the growing season than in mid-

season.  

Verification of the developed SMDI was done using reference indices such as SPI, SPEI 

and AWD. Algorithms to calculate SPI and SPEI in the study area as elaborated in chapter 4 

requires fitting the frequency distribution of precipitation (P) and precipitation deficit (D) on 

to a 2-parameter gamma probability distribution and a 3-parameter log-logistic probability 

distribution functions respectively. Applying Kolmogorov goodness of fit test statistic gave an 

acceptable goodness of fit at 95% level of significance in both cases.  Pearson’s correlation 

coefficients calculated between each of the reference indices and SMDI all showed positive 

linear relationship demonstrating the robustness of SMDI for agricultural drought monitoring 

in the study area.  

SMDI was also compared to yield data for maize obtained from a research station within 

the same agro-ecological zone as the study site through a regression analysis. The result showed 

negative relationship between the values of SMDI<0 (which defines periods of drought within 

each season) and SMDI with r2 = 0.64. a negative linear relationship is expected between the 

SMDI values that demonstrate occurrence of agricultural drought and yields. Thus, further 

demonstrating the appropriateness of SMDI for monitoring agricultural drought in the study 

area. Finally, a linear relationship was established between SMDI and Λ with r2 = 0.84. A 

regression equation developed between SMDI and Λ was used to calculate SMDI using values 

of Λ estimated through the S-SEBI algorithm using a different set of images and the calculated 

SMDI values were compared with those generated through the agro-hydrological simulations. 

The result of the comparison obtained was r2 = 0.85. This shows that energy balance can be 

used to spatialize SMDI in the study area. 

A decision support scheme developed to manage soil moisture in the study area showed 

SMDI is able to delineate between the wet season and the dry season in line with local 

experience in the study area. Further, there is need to carry out another study to demonstrate 

the effectiveness of the decision support scheme for the selection of appropriate soil water 

conservation options for the study area basing on cost implications.  
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9.2 Highlights of innovative aspect of the study   

The section highlights some of the innovative aspects of this research. In this study, a 

SMDI has been developed as a drought monitoring tool for supporting soil water management 

decisions under rain fed farming systems in developing countries. Some of the innovative 

aspects of these study are as follows: 

Application of the threshold parameters i.e.: soil water content at field capacity (θFC) and 

that at wilting (θWP) point to define SMDI for detection of agricultural droughts when the soil 

moisture content fall below 75% of its value at field capacity. Early indices developed used 

50% of θFC as the starting point below which crops begin to experience moisture stress, this 

value is considered rather low for soil types in Northern Uganda that is dominated by low 

activity Ferrallisols. Such soils drain so easily with the high equatorial climatic temperature 

experienced in Northern Uganda therefore a higher value of 75% of θFC was considered 

appropriate value at which plants would begin to experience moisture deficit. When soil 

moisture content reaches this point, for those considering implementing supplemental 

Irrigation, this would be the point to trigger irrigation application. This value of the soil 

moisture content corresponds to the value of SMDI = 0. Therefore, agricultural drought is 

considered to set in when the value of SMDI drops to below zero. Other studies have used the 

actual value of field capacity to be the value below which plants begin to experience moisture 

deficit. However, this is considered a more alarmist consideration since most 

equatorial/tropical crops varieties that are being developed through plant breeding programs 

have drought tolerant traits that would survive perfectly by the time soil moisture content drops 

to 75% of θFC. 

The second innovative aspect of this study is the application of low cost commercial soil 

sensors and digital meteorological stations to facilitate calibration of agro-hydrological 

simulation model through numerical inversion. This will make it possible to conduct such a 

study almost in any remote location of the globe since low costs commercial soil moisture 

sensors are becoming more available. Moreover, application of satellite remote sensing to 

estimate crop growth parameters enable detailed calibration of the agro-hydrological model 

that can be used to generate soil moisture time series with high level of reliability that can be 

comparable to existence of soil moisture monitoring networks with very high level of flexibility 

for agricultural soil water management especially in rain fed farming system. 



 

145 
 

Application of evaluation procedure to select appropriate less data intensive 

evapotranspiration models in specific application areas.  Many such studies for evaluation of 

less data intensive empirical ET0 models have been done but not directly linked to operational 

application especially for agricultural drought monitoring as has been applied in this study. 

Besides most of those studies have attempted to calibrate for instance Hargreaves models 

without exploring the possibilities of using the other models that could be more appropriate 

than Hargreaves model. 

Application of weather data propagation algorithms for gap filling limited climatic records 

with gridded climatic data that are becoming more available solves the ever-nagging problem 

of limited climatic data in developing countries. Moreover, no evaluation studies on the 

application of the gridded weather data have been done before in the study area as has been 

implemented in this study. 

Lastly, a soil moisture management decision support scheme as formulated in this study 

can aid selection of various soil water management options in the study area using application 

of SMDI in a feedback mechanism. This scheme can be very useful to decide whether to apply 

supplemental irrigation or choose the other less costly soil water enhancement techniques. Such 

alternatives can be simulated ahead of time through the developed decision support scheme in 

conjunction with some economic models for instance thus making farming in rain fed system 

more predictable. And this scheme can be taken up by insurance companies to advise farmers 

on the possible insurable risks through evaluation of different soil water management scenarios. 

9.3 Future Outlook  

A research of this nature has not been done before in the study area. This makes it a bit 

difficult to evaluate its exact importance. However, farming in Uganda is becoming more 

commercially oriented with many large farms being opened especially in Northern Uganda 

because of the vast expanse of fertile land, some of which have never been cultivated before. 

Some farmers have been coming to Gulu University to seek local climatic data to understand 

seasonal variations based on raw facts other than relying only on local experience. This study 

will become more relevant to such farmers that are engaging in commercial farming with profit 

making as the driving motive. They will therefore need application of the decision support 

scheme as formulated in this study to evaluate the different soil water management options 

ahead of time before actual implementation.  
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Additionally, the involvement of many professional farmers some of whom coming from 

overseas is creating more interest in involving scientific knowledge for realizing improved crop 

productivity unlike in the past when subsistence farmers depended more on local traditional 

knowledge. This study therefore remains very strategic for such farmers that would wish for 

instance to engage in all year-round farming in an area that has distinct dry and wet seasons to 

know the timing and when to apply supplemental irrigation through the tools developed in this 

study.  

The costs involved in the implementation of the tools developed in this study should 

therefore make it more attractive in the near future in the study area and similar other areas as 

more and more low cost commercial sensors become available and accessible since the world 

has become a global village. Through the use of internet connectivity, knowledge about low 

cost commercial soil sensors can be gained in any location and professional advice given in 

real time.  Moreover, development of remote sensing technology for earth observation is 

becoming more advanced with higher resolution satellite images in the optical region of the 

electromagnetic spectrum seem to being made more available in the near future. This will make 

application of this methodology more accurate for agricultural drought monitoring in the 

coming years.   
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ANNEXES 

Annex 1:Steps to estimate reference evapotranspiration with the PM method 

Annex 1:Steps to estimate reference evapotranspiration with the PM method 

The term evapotranspiration (ET) is commonly used to describe two processes of water 

loss from land surface to atmosphere, evaporation and transpiration. Evaporation is the process 

where liquid water is converted to water vapor (vaporization) and removed from sources such 

as the soil surface, wet vegetation, pavement, water bodies, etc. Transpiration consists of the 

vaporization of liquid water within a plant and subsequent loss of water as vapor through leaf 

stomata. Evaporation and transpiration occur simultaneously and both processes depend on 

solar radiation, air temperature, relative humidity (i.e., vapor pressure deficit) and wind speed. 

Transpiration rate is also influenced by crop characteristics, environmental aspects, and 

cultivation practices. Different kinds of plants may have different transpiration rates. Not only 

the type of crop, but also the crop development, environment, and management should be 

considered when assessing transpiration. For example, when the crop is small, water is 

predominately lost by soil evaporation because little of the soil surface is covered by the plant, 

but once the crop is well developed and completely covers the soil, transpiration becomes the 

main process (Allen et al. 2005). 

A large number of empirical methods have been developed over the last 50 years to 

estimate evapotranspiration from different climatic variables. Some of these derived from the 

now well-known Penman equation (Penman, 1948) to determine evaporation from open water, 

bare soil, and grass (now called evapotranspiration) based on a combination of an energy 

balance and an aerodynamic formula, given as:  

  
    

 






 an EGR

E        (A1-1) 

Where; λE= evaporative latent heat flux (MJ m-2 day-1), Δ= slope of the saturated vapor 

pressure curve, Rn = net radiation flux (MJ m-2 day-1), G = Soil heat flux (MJ m-2day-1),    = 

psychrometric constant (kPa °C-1), and Ea = vapor transport of flux (mm day-1). 

Various derivation of the Penman equation included a bulk surface resistance term (Monteith, 

1965), and the resulting equation is now called the Penman-Monteith equation, which may be 

expressed for daily values as: 
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Where ra is the aerodynamics resistance, zm is the height of wind speed measurement, d is the 

zero-plane displacement height, zh is the height of humidity measurement, zom is the roughness 

length governing momentum transfer, zoh is the roughness length governing transfer of heat 

and vapour, k is the von Karman’s constant =0.41 (-) and uz is the wind speed. 

active

c
LAI

r
r 1  where rc is the (bulk) surface resistance, r1  is the bulk stomatal resistance of a 

well illuminated leaf and LAIactive is effective fraction of the leaf area index actively taking part 

in the evapotranspiration process. 

An updated equation was recommended by FAO (Allen et al.1998) with the FAO–56         

Penman–Monteith equation, simplifying equation A1-2 by utilizing some assumed constant 

parameters for clipped grass reference crop. It was assumed that the definition for the reference 

crop was a hypothetical reference crop with crop height of 0.12m, a fixed surface resistance of 

70sm-1 and an albedo value (i.e., portion of light reflected by the leaf surface) of 0.23 (Smith 

et al., 1992). The new equation is  
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Where; ETo = reference evapotranspiration rate (mm day-1), T = mean air temperature (0C) 

and u2 = wind speed (ms-1) at 2m height above the ground. Equation 3 can be applied to an 

hourly data if the value “900” is divided by 24 for the hours in a day and the Rn and G terms 

are expressed as MJm-2h-1. 

Required parameters to calculate ETo 

Reference evapotranspiration estimation method is based on the climatic data, which can 

be obtained from local meteorological station. The equation uses standard climatological 

records of solar radiation (sunshine), air temperature, humidity and wind speed. To ensure the 

integrity of computations, the weather measurements should be made at 2m (or converted to 
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that height) above an extensive surface of green grass, shading the ground and not short of 

water. 

Required weather variables: 

Solar radiation (Rs); Wind speed (U2); Minimum and maximum air temperature (Tmax and 

Tmean); Max and minimum relative humidity (RHmax and RHmean); Dew point temperature 

(Tdew); Wet bulb temperature (TWB); Dry bulb temperature (TDB). 

Calculation steps 

Step 1: Mean daily temperature  

The average daily maximum and minimum air temperatures in degrees Celsius (°C) are 

required. Where only average daily temperatures are available, the calculations can still be 

executed but some underestimation of ETo will probably occur due to the non-linearity of the 

saturation vapor pressure - temperature relationship (Allen et al. 1998). Average temperature 

is calculated by: 

𝑇𝑚𝑒𝑎𝑛 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
        (A1-5) 

Where, Tmean = mean daily air temperature, °C; Tmax = maximum daily air temperature, °C; Tmin = 

minimum daily air temperature, °C 

Step 2: Mean daily solar radiation (Rs) 

The average daily net radiation expressed in megajoules per square meter per day (MJ m-2 

day-1) is required. A simple average of solar radiation values obtained from a weather station 

in the period of 24h (0:00:01 am to 11:59:59 pm) is required. The conversion of units may be 

required when solar radiation is expressed in watts per square meter per day (W m-2 day-1). 

Rs (MJ m-2 day-1) = Rs (W m-2 day-1) * 0.0864      (A1-6) 

Step 3: Wind speed (u2)  

The average daily wind speed in meters per second (m s-1) measured at 2 m above the ground 

level is required. It is important to verify the height at which wind speed is measured, as wind 

speeds measured at different heights above the soil surface differ. The wind speed measured at 

heights other than 2 m can be adjusted according to the follow equation: 

𝑢2 = 𝑢ℎ
4.87

ln (67.8ℎ−5.42)
         (A1-7) 

Where, u2 = wind speed 2 m above the ground surface, m s-1; uh = wind speed at the height h 

of measurement; h = height of the measurement above the ground surface, m. In case of wind 

speed is given in miles per hour (mi h-1) the conversion to m s-1 is required.  
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Step 4: Slope of saturation vapor pressure curve (Δ)  

For the calculation of evapotranspiration, the slope of the relationship between saturation vapor 

pressure and temperature, Δ, is required. 

∆=
4098[0.6108𝑒𝑥𝑝(

17.27∗𝑇𝑚𝑒𝑎𝑛
𝑇𝑚𝑒𝑎𝑛+273.3

)]

(𝑇𝑚𝑒𝑎𝑛+273.3)2
         (A1-8) 

Tmean = mean daily air temperature, ºC, [Eq. 5];  exp = 2.7183 (base of natural logarithm). 

Step 5: Atmospheric Pressure (P)  

The atmospheric pressure, P, is the pressure exerted by the weight of the earth’s atmosphere. 

Evaporation at high altitudes is promoted due to low atmospheric pressure. This effect is, 

however, small and in the calculation procedures, the average value for a location is sufficient. 

A simplification of the ideal gas law, assuming 20°C for a standard atmosphere, can be 

employed to calculate P in kPa at a particular elevation: 

𝑃 = 101.3 [
273−0.0065𝑧

293
]

5.26

        (A1-9) 

Where: z = elevation above sea level, m. 

Step 6: Psychrometric constant (γ) 

The psychrometric constant relates the partial pressure of water in air to the air temperature so 

that vapor pressure can be estimated using paired dry and wet thermometer bulb temperature 

readings. Another way to describe the psychrometric constant is the ratio of specific heat of 

moist air at constant pressure (Cp) to latent heat of vaporization. The specific heat at constant 

pressure is the amount of energy required to increase the temperature of a unit mass of air by 

one degree at constant pressure. Its value depends on the composition of the air, i.e., on its 

humidity. For average atmospheric conditions a Cp value of 1.013 10-3 MJ kg-1 °C-1 can be 

used. As an average atmospheric pressure is used for each location, the psychrometric constant 

is kept constant for each location depending of the altitude [Eq. 10]. 

𝛾 =
𝐶𝑝𝑃

𝜀𝜆
= 0.000665𝑃        (A1-10) 

γ = psychrometric constant, kPa °C-1; P = atmospheric pressure, kPa, [Eq. 10]; λ = latent heat 

of vaporization, 2.45, MJ kg-1;  cp = specific heat at constant pressure, 1.013 10-3, MJ kg-1 °C-1;  

μ = ratio molecular weight of water vapour/dry air = 0.622. 

Step 7: Delta Term (DT) (auxiliary calculation for Radiation Term)  

In order to simplify the ETo calculation, several terms are calculated separated. The delta term 

is used to calculate the Radiation Term of the overall ETo equation (Eq. 33) 
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𝐷𝑇 =
Δ

Δ+𝛾(1+0.34𝑢2)
          (A1-11) 

Where, Δ = slope of saturation vapor curve [Eq.9]; γ = psychrometric constant, kPa °C-1, 

[Eq.11]; u2 = wind speed 2 m above the ground surface, m s-1, [Eq.7].  

Step 8: Psi Term (PT) (auxiliary calculation for Wind Term)  

The psi term is used to calculate the Wind Term of the overall ETo equation [Eq. 32] 

𝑃𝑇 =
𝛾

Δ+𝛾(1+0.34𝑢2)
   (A1-12) 

Where,  

Δ = slope of saturation vapor curve [Eq. 9]; γ = psychrometric constant, kPa °C-1, [Eq. 11];  u2 

= wind speed 2 m above the ground surface, m s-1, [Eq. 9]. 

Step 9: Temperature Term (TT) (auxiliary calculation for Wind Term)  

The temperature term is used to calculate the Wind Term of the overall ETo equation (Eq. 

34) 

𝑇𝑇 = [
900

𝑇𝑚𝑒𝑎𝑛+273
] ∗ 𝑢2   (A1-13) 

Where, Tmean = mean daily air temperature, ºC, [Eq. 5].  

Step 10: Mean saturation vapor pressure derived from air temperature(es)  

As saturation vapor pressure is related to air temperature, it can be calculated from the air 

temperature. The relationship is expressed by: 

𝑒(𝑇) = 0.6108𝑒𝑥𝑝 [
17.27𝑇

𝑇+237.3
]  (A1-14) 

Where, e(T) = saturation vapor pressure at the air temperature T, kPa; T = air temperature, 

°C. 

Therefore, the mean saturation vapor pressure is calculated as the mean between the saturation 

vapor pressure at both the daily maximum and minimum air temperatures. 

𝑒(𝑇𝑚𝑎𝑥) = 0.6108𝑒𝑥𝑝 [
17.27𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥+273.3
]   (A1-15) 

𝑒(𝑇𝑚𝑖𝑛) = 0.6108𝑒𝑥𝑝 [
17.27𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛+273.3
]   (A1-16) 

Where, Tmax = maximum daily air temperature, °C; Tmin = minimum daily air temperature, °C.  

The mean saturation vapor pressure for a day, week, decade, or month should be computed as 

the mean between the saturation vapor pressure at the mean daily maximum and minimum air 

temperatures for that period: 

𝑒𝑠 =
𝑒(𝑇𝑚𝑎𝑥)+𝑒(𝑇𝑚𝑖𝑛)

2
   (A1-17) 
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Step 11: Actual vapor pressure (ea) derived from relative humidity  

The actual vapor pressure can also be calculated from the relative humidity. Depending on the 

availability of the humidity data, different equations should be used. 

𝑒𝑎 =
𝑒(𝑇𝑚𝑖𝑛)[

𝑅𝐻𝑚𝑎𝑥
100

]+𝑒(𝑇𝑚𝑎𝑥)[
𝑅𝐻𝑚𝑖𝑛

100
]

2
        (A1-18) 

Where, ea = actual vapour pressure, kPa; e(Tmin) = saturation vapour pressure at daily 

minimum temperature, kPa, [Eq. 17]; e(Tmax) = saturation vapour pressure at daily maximum 

temperature, kPa, [Eq. 16]; RHmax = maximum relative humidity, %; RHmin = minimum 

relative humidity, %. 

Note I: (a) When using equipment where errors in estimating RHmin can be large, or when RH 

data integrity are in doubt, use only RHmax: 

𝑒𝑎 = 𝑒(𝑇𝑚𝑖𝑛) [
𝑅𝐻𝑚𝑎𝑥

100
]         (A1-19) 

(b) In the absence of RHmax and RHmin 

𝑒𝑎 =
𝑅𝐻𝑚𝑒𝑎𝑛

100
[

𝑒(𝑇min )
+𝑒(𝑇𝑚𝑎𝑥)

2
]        (A1-20) 

Note II: For missing or questionable quality of humidity data, the ea can be obtained by 

assuming when the air temperature is close to Tmin, the air is nearly saturated with water vapor 

and the relative humidity is near 100%, in other words, dew point temperature (Tdew) is near 

the daily minimum temperature (Tmin). If Tmin is used to represent Tdew then: 

𝑒𝑎 = 𝑒(𝑇min )
= 0.6108𝑒𝑥𝑝 [

17.27𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛+273.3
]       (A1-21)

  

Step 12: The inverse relative distance Earth-Sun (dr) and solar declination (d)  

The inverse relative distance Earth-Sun, dr, and the solar declination, d, are given by: 

𝑑𝑟 = 1 + 0.033𝑐𝑜𝑠 [
2𝜋

365
𝐽]    (A1-22) 

𝛿 = 0.409𝑠𝑖𝑛 [
2𝜋

365
𝐽 − 1.39]    (A1-23) 

Where, J = number of the day in the year between 1 (1 January) and 365 or 366 (31 December).  

Note: to convert date (MM/DD/YYYY) to Julian in Microsoft Excel the following command 

can be used: = ((MM/DD/YYYY)-DATE (YEAR ((MM/DD/ YYYY)),1”,1”)+1)  

Step 13: Conversion of latitude (φ) in degrees to radians  

The latitude, φ, expressed in radians is positive for the northern hemisphere and negative for 

the southern hemisphere (see example below). The conversion from decimal degrees to radians 

is given by: 
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𝜑[𝑅𝑎𝑑𝑖𝑎𝑛𝑠] =
𝜋

10
𝜑[𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠]    (A1-24) 

Example 1: to convert 13º44N to decimal degrees = 13+44/60 = 13.73; Example 2: to convert 

22º54S to decimal degrees = (-22) + (- 54/60) = -22.90  

Step 14: Sunset hour angle (ωs)  

The sunset hour angle (…s) is given by: 

𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[−𝑡𝑎𝑛(𝜑)𝑡𝑎𝑛(𝛿)]   (A1-25) 

Where, φ = latitude expressed in radians, [Eq. 25]; d = solar declination, [Eq. 22];  

Step 15: Extraterrestrial radiation (Ra)  

The extraterrestrial radiation, Ra, for each day of the year and for different latitudes can be 

estimated from the solar constant, the solar declination and the time of the year by: Where,  

φ = latitude expressed in radians, [Eq. 25]; d = solar declination, [Eq. 24];  

𝑅𝑎 =
24(60)

𝜋
𝐺𝑠𝑐 𝑑𝑟[(𝜔𝑠𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝛿) + 𝑐𝑜𝜙𝑠𝑖𝑛(𝜔𝑠]      (A1-26) 

Where, Ra is the extraterrestrial solar radiation in MJm-2day-1; Gsc = the solar constant 0.0820 

MJm-2min-1; dr = the inverse relative distance Earth-Sun, ωs = the sunset hour angle in radians; 

φ = the latitude in radians; δ = the solar declination in radians. 

Step 16: Clear sky solar radiation (Rso)  

The calculation of the clear-sky radiation is given by: 

𝑅𝑠𝑜 = (0.75 + 2𝐸10 − 5𝑧)𝑅𝑎       (A1-27) 

Where, z = elevation above sea level, m; Ra = extraterrestrial radiation, MJ m-2 day-1, [Eq. 26]; 

Step 17: Net solar or net shortwave radiation (Rns)  

The net shortwave radiation resulting from the balance between incoming and reflected solar 

radiation is given by:  

 𝑅𝑛𝑠 = (1 − 𝛼)𝑅𝑠         (A1-28) 

Where, Rns = net solar or shortwave radiation, MJ m-2 day-1; α = albedo or canopy reflection 

coefficient, which is 0.23 for the hypothetical grass reference crop, dimensionless; Rs = the 

incoming solar radiation, MJ m-2 day-1, [Step 2, Eq. 5];  

Step 18: Net outgoing long wave solar radiation (Rnl)  

The rate of longwave energy emission is proportional to the absolute temperature of the surface 

raised to the fourth power. This relation is expressed quantitatively by the Stefan-Boltzmann 

law. The net energy flux leaving the earth’s surface is, however, less than that emitted and 

given by the Stefan-Boltzmann law due to the absorption and downward radiation from the 
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sky. Water vapor, clouds, carbon dioxide, and dust are absorbers and emitters of longwave 

radiation. It is thereby assumed that the concentrations of the other absorbers are constant: 

𝑅𝑛𝑙 = 𝜎 [
(𝑇𝑚𝑎𝑥+273.16)4+(𝑇𝑚𝑖𝑛+273.16)4

2
] (0.34 − 0.14√𝑒𝑎) (1.35

𝑅𝑠

𝑅𝑠𝑜
− 0.35)  (A1-29) 

Where, Rnl = net outgoing longwave radiation, MJ m-2 day-1; σ = Stefan-Boltzmann constant 

[4.903 10-9 MJ K-4 m-2 day-1]; Tmax = K maximum absolute temperature during the 24-hour period 

[K = °C + 273.16],;  Tmin = K minimum absolute temperature during the 24- hour period [K = 

°C + 273.16]; ea = actual vapor pressure, kPa; Rs = the incoming solar radiation, MJ m-2 day-

1, [Step 2, Eq.6]; Rso = clear sky solar radiation, MJ m-2 day-1, [Step 16, Eq. 27]. 

Step 19: Net radiation (Rn)  

The net radiation (Rn) is the difference between the incoming net shortwave radiation (Rns) 

and the outgoing net longwave radiation (Rnl):  

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙          (A1-30) 

Where, Rns = net incoming solar or shortwave radiation, MJ m-2 day-1, [Step 17, Eq. 28]; Rnl 

= net outgoing longwave radiation, MJ m-2 day-1,[Step 18, Eq. 29].  To express the net 

radiation (Rn) in equivalent of evaporation (mm) Rng:  

Rng = 0.408Rn,          (A1-31)  

Where, Rn = net radiation, MJ m-2 day-1, [Eq. 30]; 

FS1. Radiation term (ETrad)  

ETrad = DT* Rng          (A1-32)  

Where, ETrad = radiation term, mm d-1; DT = Delta term, [Step 7, Eq. 11]; Rng = net 

radiation, mm, [Eq. 31] 

FS2. Wind term (ETwind)  

ETwind = PT * TT (es - ea)         (A1-33)  

Where, ETwind = wind term, mm d-1; PT = Psi term, [Step 8, Eq. 12]; TT = Temperature term, 

[Step 9, Eq. 13]; ea = actual vapor pressure, kPa, [Step 11, Eq. 18]; es = mean saturation vapor 

pressure derived from air temperature, kPa, [Step 10, Eq. 14];  

Final Reference Evapotranspiration Value (ETo)  

 

ETo = ETwind + ETrad         (A1-34) 

Other notes  

What is measured at the meteorological station is the incoming shortwave solar radiation Rs, 

whereas what is needed for the calculation of the ET is net radiation Rn, given by [Eq. 30]. 
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Values of albedo (α) i.e. the fraction of the solar radiation reaching a surface that is reflected, 

which is dimensionless vary from as high as 0.95 for snow to as low as 0.05 for wet bare soil. 

The values for the green vegetation is between 0.20 – 0.25.  The green reference crop has a 

value of 0.23  

Applying the Hagreave’s method; 

𝑅𝑠 = 𝑘𝑅𝑠
(√𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)𝑅𝑎        (A1-35) 

Where Rs is the incoming short wave radiation, Ra is the extraterrestrial radiation. Sometimes 

the ground heat flux G is also required, in which case it can be calculated using Eq. 36 

𝐺 = 𝐶𝐺(−𝛽𝐿𝐴𝐼)𝑅𝑛          (A1-36) 

where the parameter CG values between 0.3 and 0.4 representing the ratio G/Rn and β is the 

extinction coefficient that can be taken to be 0.5 although its value varies with canopy variable 

and solar zenith angle.  
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Annex 2: Published values of crop coefficients and crop growth parameters  

 

 

A2.1 LAI for Irrigated and non-Irrigated crops  

Figure A2.1 Variation of crop coefficient with 

crop development 
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Annex 3: Time series plots of drought evolution in the study area based on the reference 

indices 

Figure A3-1. Time series of SPI for 1-, 2-, 3-, 6- and 12-monthly time scales 
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Figure A3-1. Time series of SPEI for 1-, 2-, 3-, 6- and 12-monthly time scales 
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Annex 4: Frequency distribution plots of the image pixel values applied to derive LST 

 
 

  

 

 

Figure A4-1. Pixel frequency distribution for LST 
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Annex 5: r-LST plots used to generate regression parameters to implement the S-SEBI 

algorithm  

 

 

January 14, 2014 

 

February 14, 2014 

 

March 19, 2014 

 

April 20, 2014 

Figure A5-1 r-LST plots for 2014 Images 
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Figure A5-2. r-LST feature plots for 2015 images (Image path 172, row = 58) 

 

Figure A5-3. r-LST feature plots for 2015 images, Date: May 18, 2015. (Image path 172, row 

= 58) 
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S-SEBI Equations  

 oo

oo T





42223542

3542
23Apr 




      (A6-1)  

 

 oo

oo T





005.05.162635

2635
10Jun 




     (A6-2)  

 

 oo

oo T





152035.35

35.35
12 Jul




      (A6-3)  

 

 oo

oo T





25.135.295.39

5.295.39
13 Aug




     (A6-4)  

 

 oo

oo T





5.7192036

2036
14 Sep




      (A6-5)  

  



 

188 
 

 

Annex 6: Atmospheric profiles generated through NASA web calculator  

 

  

  

Figure A6-1 Atmospheric profiles for the indicated over pass dates: 2015 images 
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Figure A6-2 Atmospheric profiles for the indicated overpass dates: 2014 Images 

  



 

190 
 

Table A6-1 summary of atmospheric correction parameters for 2015 analyzed images 

Input summary 

------------- 

Date (yyyy-mm-dd): 2015-04-23 

Lat/Long:    2.805/  32.350 

GMT Time:  8:06 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude summer standard atmosphere 

User input surface conditions 

Surface altitude (km):       1.08000 

Surface pressure (mb):      890 

Surface temperature (C):       18.6000 

Surface relative humidity (%):       95.5000 

 

Output summary 

-------------- 

Band average atmospheric transmission:  0.59 

Effective bandpass upwelling radiance:  3.10 W/m^2/sr/um 

Effective bandpass downwelling radiance:  4.75 W/m^2/sr/um 

 

 

Input summary 

-------------  

Date (yyyy-mm-dd): 2015-06-10 

Lat/Long:    2.805/  32.350 

GMT Time:  6:06 

L7 Spectral Response Curve from handbook 

Mid-latitude winter standard atmosphere 

User input surface conditions 

Surface altitude (km):       1.08000 

Surface pressure (mb):      890 

Surface temperature (C):       19.5600 

Surface relative humidity (%):       92.8000 

 

Output summary 

-------------- 

Band average atmospheric transmission:  0.54 

Effective bandpass upwelling radiance:  3.37 W/m^2/sr/um 

Effective bandpass downwelling radiance:  5.03 W/m^2/sr/um 

Input summary 

------------- 

Date (yyyy-mm-dd): 2015-08-13 

Lat/Long:    2.805/  32.350 

GMT Time:  8:06 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere 

User input surface conditions 

Surface altitude (km):       1.08000 

Surface pressure (mb):      891 

Surface temperature (C):       21.9800 

Surface relative humidity (%):       72.3700 

 

Output summary 

-------------- 

Band average atmospheric transmission:  0.65 

Effective bandpass upwelling radiance:  2.80 W/m^2/sr/um 

Effective bandpass downwelling radiance:  4.34 W/m^2/sr/um 

 

 

Input summary 

------------- 

Date (yyyy-mm-dd): 2015-09-30 

Lat/Long:    2.805/  32.350 

GMT Time:  8:06 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere 

User input surface conditions 

Surface altitude (km):       1.08000 

Surface pressure (mb):      888 

Surface temperature (C):       21.8000 

Surface relative humidity (%):       76.2800 

 

Output summary 

-------------- 

Band average atmospheric transmission:  0.61 

Effective bandpass upwelling radiance:  3.06 W/m^2/sr/um 

Effective bandpass downwelling radiance:  4.69 W/m^2/sr/um 

 

 

 

Table A6-2 Atmospheric correction parameters for 2014 analyzed images  

Date (yyyy-mm-dd):                       2014-01-14 

Input Lat/Long:                              2.805/  

32.350  

GMT Time:                                 8:07 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere  

User input surface conditions 

Surface altitude (km):            1.080 

Surface pressure (mb):          889.000 

Surface temperature (C):       19.350 

Surface relative humidity (%):       56.300 

 

Band average atmospheric transmission:    0.75 

Effective bandpass upwelling radiance:    1.90 

W/m^2/sr/um 

Effective bandpass downwelling radiance:  3.06 

W/m^2/sr/um  

 

Date (yyyy-mm-dd):                       2014-02-15 

Input Lat/Long:                              2.805/  

32.350  

GMT Time:                                 8:07 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere  

User input surface conditions 

Surface altitude (km):            1.080 

Surface pressure (mb):          888.000 

Surface temperature (C):       19.770 

Surface relative humidity (%):       24.100 

 

Band average atmospheric transmission:    0.89 

Effective bandpass upwelling radiance:    0.79 

W/m^2/sr/um 

Effective bandpass downwelling radiance:  1.34 

W/m^2/sr/um  

 

Date (yyyy-mm-dd):                       2014-03-19 

Input Lat/Long:                              2.805/  

32.350  

GMT Time:                                 8:07 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere  

User input surface conditions 

Surface altitude (km):            1.080 

Surface pressure (mb):          888.000 

Surface temperature (C):       23.700 

Surface relative humidity (%):       51.020 

 

Band average atmospheric transmission:    0.77 

Effective bandpass upwelling radiance:    1.83 

W/m^2/sr/um 

Effective bandpass downwelling radiance:  3.00 

W/m^2/sr/um  

 

Date (yyyy-mm-dd):                       2014-04-20 

Input Lat/Long:                              2.805/  

32.350  

GMT Time:                                 8:06 

L8 TIRS Band 10 Spectral Response Curve 

Mid-latitude winter standard atmosphere  

User input surface conditions 

Surface altitude (km):            1.080 

Surface pressure (mb):          889.000 

Surface temperature (C):       23.860 

Surface relative humidity (%):       75.710 

 

Band average atmospheric transmission:    0.51 

Effective bandpass upwelling radiance:    3.75 

W/m^2/sr/um 

Effective bandpass downwelling radiance:  5.66 

W/m^2/sr/um  
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Table A6-3 Atmospheric profile summaries for the indicated overpass dates 

2015-April-23 

Atmospheric Profile Summary 

--------------------------- 

User selected to use the profile generated by 

interpolating between the surrounding four 

profiles 

Profile used: 

         Altitude      Pressure      Temperature   Rel 

Humidity 
           (km)          (mb)            (C)           (%) 

          1.080        890.000         18.600         95.500 

          1.141        884.354         18.385         94.675 

          1.637        838.646         16.641         87.994 

          2.165        789.944         14.783         80.875 

          2.720        738.761         12.830         73.394 

          3.307        688.761          9.144         75.750 

          3.928        638.761          5.235         83.619 

          4.591        588.761          1.383         75.329 

          5.301        538.761         -2.995         76.144 

          6.067        488.761         -7.842         87.054 

          6.901        438.761        -12.296         92.688 
          7.819        388.761        -17.810         90.635 

          8.838        338.761        -24.906         84.720 

          9.983        288.761        -33.647         90.350 

         11.294        238.761        -44.315         91.548 

         12.836        188.761        -57.126         92.494 

         14.747        138.761        -70.759         88.168 

         17.034         93.257        -78.616         94.074 

         19.045         65.505        -75.373          1.000 

         21.262         45.505        -68.598          1.000 

         24.258         27.752        -54.443          1.000 

         27.379         17.752        -44.655          1.000 
         30.980         10.000        -43.004          1.000 

         35.000          6.520        -27.950          0.010 

         40.000          3.330        -15.650          0.006 

         45.000          1.760         -3.250          0.003 

         50.000          0.951          2.550          0.002 

         70.000          0.067        -55.050          0.001 

        100.000          0.000        -82.650          0.016 

 

Below follow the model profiles for the 

surrounding integer lat/longs 

and for the 2 surrounding times 

-------------------------------------------------------------
------------------- 

The following four profiles are for the integer 

lat/long corners 

on 2015-04-23 at GMT  6:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 
   1.115     891.1     21.75      91.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 
   1.523     850.0     19.35      72.0     -4.71    6.29 

   2.044     800.0     17.05      69.0     -3.07    3.83 

   2.592     750.0     13.55      72.0     -3.04    0.93 

   3.171     700.0     10.05      70.0     -5.93   -4.36 

   3.783     650.0      6.05      84.0     -7.60   -9.11 

   4.436     600.0      2.35      77.0    -11.23  -10.51 

   5.134     550.0     -2.25      85.0     -9.04   -8.45 

   5.885     500.0     -6.85      91.0     -4.07   -4.26 

   6.701     450.0    -11.45     100.0     -2.16    1.78 

   7.596     400.0    -16.35      97.0     -1.50    2.70 

   8.588     350.0    -23.15      92.0     -0.70    3.70 
   9.697     300.0    -31.65     100.0     -1.80    5.30 

  10.960     250.0    -41.75     100.0      0.60    4.70 

  12.430     200.0    -54.15     100.0      1.90    0.90 

  14.212     150.0    -67.55      84.0      1.77    1.46 

  16.578     100.0    -79.75      98.0     -7.56    2.66 

  18.608      70.0    -75.75    -999.0     -2.78   -0.76 

  20.565      50.0    -72.55    -999.0    -11.33   -0.62 

  23.657      30.0    -56.15    -999.0    -30.65    2.02 

  26.344      20.0    -45.95    -999.0     15.98   -3.00 

  30.981      10.0    -43.25    -999.0     17.36   -5.32 

Pressure Reduced to MSL (mb)   1014.7 

Pressure @tropopause (mb)        98.6 
Altitude @tropopause (km)        16.660 

Temperature @tropopause (deg C) -80.05 

Column Water (cm)                 3.82 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.059     896.9     22.75      79.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

2015-Jun-10 

Atmospheric Profile Summary 

--------------------------- 

User selected to use the profile generated by 

interpolating between the surrounding four profiles 

 

Profile used: 

         Altitude      Pressure      Temperature   Rel 

Humidity 

           (km)          (mb)            (C)           (%) 

          1.080        890.000         19.560         92.800 

          1.523        849.752         17.456         89.718 

          2.045        802.365         14.980         86.089 

          2.595        752.489         12.373         82.270 

          3.173        699.986          9.629         78.250 

          3.785        649.986          6.143         66.456 

          4.437        599.986          2.252         56.879 

          5.134        549.986         -2.450         78.324 

          5.885        499.986         -6.771         66.226 

          6.701        449.986        -10.984         32.265 

          7.598        399.986        -15.421         22.216 

          8.594        349.986        -21.710          9.403 

          9.709        299.986        -30.328         25.710 

         10.977        249.986        -41.142         54.737 

         12.451        199.986        -53.905         94.987 

         14.235        149.986        -67.991         99.399 

         16.606         99.991        -78.315         43.429 

         18.632         69.994        -77.634          1.000 

         20.615         49.994        -63.408          1.000 

         23.822         29.997        -56.822          1.000 

         26.477         19.997        -44.874          1.000 

         31.084         10.000        -44.276          1.000 

         50.000          0.683         -7.450          0.000 

         55.000          0.362        -12.550          0.000 

         60.000          0.188        -22.350          0.000 

         70.000          0.047        -42.450          0.000 

         80.000          0.010        -63.050          0.000 

        100.000          0.001        -54.550          0.000 

 

Below follow the model profiles for the surrounding 

integer lat/longs 

and for the 2 surrounding times 

---------------------------------------------------------------

----------------- 

The following four profiles are for the integer 

lat/long corners 

on 2015-06-10 at GMT  6:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.115     891.0     21.15      82.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.522     850.0     20.15      57.0      0.77    4.10 

   2.043     800.0     17.65      57.0     -1.09    7.75 

   2.592     750.0     13.95      72.0     -2.43   11.24 

   3.171     700.0      9.75      80.0     -3.41    5.61 

   3.783     650.0      6.25      61.0     -8.32   -2.33 

   4.435     600.0      2.95      25.0    -10.80   -6.14 

   5.134     550.0     -2.25      79.0     -6.73   -5.01 

   5.885     500.0     -6.65      63.0     -2.84   -2.43 

   6.701     450.0    -11.05      49.0     -3.33    1.05 

   7.598     400.0    -15.15      16.0     -5.70    2.70 

   8.595     350.0    -21.45      12.0     -6.90    1.80 

   9.711     300.0    -30.55      30.0     -7.20   -1.00 

  10.977     250.0    -41.25      58.0    -12.40   -2.70 

  12.449     200.0    -54.05      97.0    -16.90   -5.20 

  14.233     150.0    -67.95     100.0    -26.60   -5.20 

  16.604     100.0    -78.55      48.0    -11.32    4.28 

  18.629      70.0    -77.65    -999.0    -17.82    4.05 

  20.613      50.0    -62.95    -999.0    -25.16   -4.88 

  23.822      30.0    -57.05    -999.0     -5.20   -0.60 

  26.478      20.0    -45.15    -999.0     16.40    1.20 

  31.085      10.0    -44.75    -999.0      6.40   -0.70 

Pressure Reduced to MSL (mb)   1014.3 

Pressure @tropopause (mb)        95.1 

Altitude @tropopause (km)        16.890 

Temperature @tropopause (deg C) -79.55 

Column Water (cm)                 2.99 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.059     896.7     23.05      81.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

2014-January-14 

Atmospheric Profile Summary 

--------------------------- 

User selected to use the profile generated by 

interpolating between the surrounding four profiles 

 

Profile used: 

         Altitude      Pressure      Temperature   Rel 

Humidity 

           (km)          (mb)            (C)           (%) 

          1.080        889.000         19.350         56.300 

          1.123        885.039         19.178         56.414 

          1.628        838.504         17.163         57.752 

          2.158        789.744         15.051         59.154 

          2.714        738.548         12.833         60.627 

          3.298        688.548          7.770         74.314 

          3.916        638.548          2.790         78.695 

          4.572        588.548         -0.370         40.995 

          5.280        538.548         -2.347         10.337 

          6.047        488.548         -6.906          9.800 

          6.884        438.548        -10.857         12.236 

          7.807        388.548        -16.773         14.148 

          8.826        338.548        -25.130         15.584 

          9.968        288.548        -35.116         34.341 

         11.272        238.548        -44.866         61.747 

         12.814        188.548        -57.529         95.102 

         14.724        138.548        -71.620         98.912 

         17.005         93.129        -77.754         89.541 

         19.037         65.419        -71.016          1.000 

         21.283         45.419        -68.405          1.000 

         24.279         27.710        -62.680          1.000 

         27.247         17.710        -54.651          1.000 

         30.652         10.000        -53.318          1.000 

         50.000          0.683         -7.450          0.000 

         55.000          0.362        -12.550          0.000 

         60.000          0.188        -22.350          0.000 

         70.000          0.047        -42.450          0.000 

         80.000          0.010        -63.050          0.000 

        100.000          0.001        -54.550          0.000 

 

Below follow the model profiles for the surrounding 

integer lat/longs 

and for the 2 surrounding times 

-------------------------------------------------------------------

------------- 

The following four profiles are for the integer lat/long 

corners 

on 2014-01-14 at GMT  6:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.043     897.2     24.85      46.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.514     850.0     21.65      43.0     -3.59   -1.71 

   2.037     800.0     17.95      50.0     -5.64   -3.23 

   2.585     750.0     13.55      59.0     -7.10   -3.72 

   3.162     700.0      8.85      70.0     -5.28   -3.63 

   3.770     650.0      3.05      95.0     -3.88   -3.43 

   4.414     600.0      0.25      51.0     -3.43   -0.43 

   5.110     550.0     -2.05      24.0     -1.78    1.63 

   5.861     500.0     -5.95      11.0     -3.72    0.13 

   6.679     450.0     -9.95       9.0     -6.40   -1.30 

   7.579     400.0    -15.05      14.0     -6.60   -3.10 

   8.572     350.0    -23.05      15.0     -5.80   -4.30 

   9.678     300.0    -33.15      34.0     -6.10   -1.40 

  10.933     250.0    -42.35      67.0    -15.20   10.60 

  12.402     200.0    -54.25      90.0    -15.60   14.80 

  14.185     150.0    -68.35      97.0    -13.51    6.60 

  16.532     100.0    -79.95      86.0     -6.86   -2.90 

  18.581      70.0    -70.85    -999.0      4.61   -6.83 

  20.572      50.0    -69.65    -999.0     12.56   -0.76 

  23.716      30.0    -63.95    -999.0     19.20   -1.60 

  26.233      20.0    -57.05    -999.0      6.20    9.20 

  30.650      10.0    -53.35    -999.0    -14.90    6.40 

Pressure Reduced to MSL (mb)   1012.9 

Pressure @tropopause (mb)       103.4 

Altitude @tropopause (km)        16.344 

Temperature @tropopause (deg C) -79.45 

Column Water (cm)                 2.46 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.072     894.4     26.55      47.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.513     850.0     20.65      48.0     -5.34   -0.79 

   2.035     800.0     17.75      53.0     -8.13   -2.88 

   2.583     750.0     13.75      60.0     -7.45   -3.48 

2014-April-20 

 

Atmospheric Profile Summary 

 

--------------------------- 

User selected to use the profile generated by 

interpolating between the surrounding four 

profiles 
 

Profile used: 

         Altitude      Pressure      Temperature   Rel 

Humidity 

           (km)          (mb)            (C)           (%) 

          1.080        889.000         23.860         75.710 

          1.117        885.661         23.612         76.022 

          1.618        840.180         20.238         80.268 

          2.144        792.381         16.691         84.731 

          2.698        742.035         12.955         89.431 

          3.285        688.761          9.003         94.405 

          3.908        638.761          5.535         97.970 
          4.573        588.761          2.260         95.773 

          5.287        538.761         -1.913         92.726 

          6.056        488.761         -6.574         88.745 

          6.894        438.761        -

11.259         79.744 

          7.815        388.761        -

16.645         57.416 

          8.839        338.761        -

23.616         58.783 

          9.990        288.761        -

32.528         75.280 
         11.305        238.761        -

43.406         96.851 

         12.857        188.761        -

55.832         99.148 

         14.776        138.761        -

70.226         93.676 

         17.043         93.257        -

80.586         93.382 

         19.063         65.505        -71.724          1.000 

         21.303         45.505        -66.677          1.000 

         24.309         27.752        -58.021          1.000 

         27.341         17.752        -51.241          1.000 
         30.883         10.000        -42.522          1.000 

         50.000          0.683         -7.450          0.000 

         55.000          0.362        -12.550          0.000 

         60.000          0.188        -22.350          0.000 

         70.000          0.047        -42.450          0.000 

         80.000          0.010        -63.050          0.000 

        100.000          0.001        -54.550          0.000 

 

Below follow the model profiles for the 

surrounding integer lat/longs 

and for the 2 surrounding times 
------------------------------------------------------------

-------------------- 

The following four profiles are for the integer 

lat/long corners 

on 2014-04-20 at GMT  6:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 
   1.043     897.2     21.25      93.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

   1.509     850.0     18.45      82.0     -1.14    4.85 

   2.029     800.0     16.05      83.0     -2.13    4.55 

   2.575     750.0     12.55      93.0     -4.27    3.55 

   3.152     700.0      8.95      98.0     -7.16    3.27 

   3.764     650.0      5.65     100.0    -10.72    1.56 

   4.417     600.0      2.65     100.0    -10.37   -2.18 

   5.118     550.0     -1.35      95.0     -8.62   -6.87 

   5.871     500.0     -5.75      87.0     -9.60   -4.45 

   6.691     450.0     -9.85      64.0     -7.76    0.07 

   7.592     400.0    -14.95      72.0     -5.20    3.80 

   8.588     350.0    -21.75      74.0     -0.60    5.30 
   9.705     300.0    -30.25      72.0      3.90    4.30 

  10.972     250.0    -40.75      94.0      3.00    0.90 

  12.452     200.0    -52.55      96.0     10.73   -6.79 

  14.248     150.0    -67.25     100.0     13.25   -

7.01 

  16.586     100.0    -82.45      99.0      4.18    3.09 

  18.619      70.0    -72.35    -999.0     -0.29   -2.00 

  20.599      50.0    -69.05    -999.0     13.83   -2.34 

  23.728      30.0    -59.35    -999.0     10.24   -2.24 

  26.317      20.0    -52.95    -999.0    -16.32   -

2.53 
  30.878      10.0    -43.45    -999.0    -26.18    4.87 

Pressure Reduced to MSL (mb)   1013.3 

Pressure @tropopause (mb)       102.4 

Altitude @tropopause (km)        16.455 

Temperature @tropopause (deg C) -82.25 

Column Water (cm)                 4.40 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 



 

192 
 

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.523     850.0     19.35      67.0     -4.02    9.26 

   2.043     800.0     16.55      66.0     -3.11    4.74 
   2.590     750.0     13.55      68.0     -4.38   -1.14 

   3.169     700.0     10.35      61.0     -7.01   -6.58 

   3.782     650.0      6.45      68.0     -8.48   -9.90 

   4.435     600.0      2.75      65.0    -10.12  -10.40 

   5.134     550.0     -1.85      72.0     -8.35   -8.14 

   5.885     500.0     -6.95      89.0     -5.81   -4.33 

   6.701     450.0    -11.75      97.0     -2.86    0.57 

   7.595     400.0    -15.85      80.0     -2.10    2.90 

   8.588     350.0    -23.05      88.0     -1.20    3.20 

   9.698     300.0    -31.45      91.0     -1.30    5.00 

  10.960     250.0    -41.85     100.0      1.00    3.30 

  12.430     200.0    -54.35     100.0      2.60    0.20 
  14.214     150.0    -66.95      66.0      0.24    0.48 

  16.581     100.0    -80.05     100.0     -6.74    3.04 

  18.604      70.0    -75.65    -999.0     -2.91   -0.49 

  20.565      50.0    -72.45    -999.0    -11.02   -0.40 

  23.655      30.0    -56.25    -999.0    -30.94    2.12 

  26.343      20.0    -45.55    -999.0     16.73   -3.09 

  30.982      10.0    -43.15    -999.0     16.58   -4.12 

Pressure Reduced to MSL (mb)   1014.7 

Pressure @tropopause (mb)        96.1 

Altitude @tropopause (km)        16.804 

Temperature @tropopause (deg C) -81.05 
Column Water (cm)                 3.55 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.020     900.9     22.45      88.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.028     900.0     21.85      85.0     -0.90    2.16 

   1.523     850.0     20.25      70.0     -2.71    5.82 

   2.045     800.0     17.15      72.0     -3.48    3.48 

   2.593     750.0     13.55      71.0     -5.91   -0.13 

   3.172     700.0      9.65      81.0     -4.21   -4.37 
   3.784     650.0      5.95      90.0     -5.81   -7.31 

   4.436     600.0      2.15      80.0    -10.31   -8.73 

   5.134     550.0     -2.15      76.0    -11.00   -7.95 

   5.885     500.0     -6.95      85.0     -6.14   -5.64 

   6.701     450.0    -11.25      97.0     -1.87    1.02 

   7.597     400.0    -16.65      99.0     -0.80    2.30 

   8.587     350.0    -23.35      94.0      0.20    3.00 

   9.697     300.0    -31.55     100.0     -0.90    5.00 

  10.960     250.0    -41.65     100.0      0.40    5.10 

  12.430     200.0    -54.35     100.0      2.80    2.90 

  14.211     150.0    -67.75      89.0     -0.04    0.99 
  16.578     100.0    -79.15      91.0     -7.02    1.72 

  18.607      70.0    -76.35    -999.0     -2.96   -0.28 

  20.566      50.0    -72.15    -999.0    -10.97   -0.60 

  23.659      30.0    -56.25    -999.0    -29.79    2.29 

  26.342      20.0    -45.95    -999.0     12.63   -3.80 

  30.979      10.0    -42.95    -999.0     15.22   -3.78 

Pressure Reduced to MSL (mb)   1014.2 

Pressure @tropopause (mb)        97.7 

Altitude @tropopause (km)        16.711 

Temperature @tropopause (deg C) -79.55 

Column Water (cm)                 4.03 

Cloud Cover                       0.0% 
 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.027     900.2     22.95      80.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.029     900.0     22.15      77.0     -1.28    1.60 

   1.523     850.0     19.65      68.0     -3.04    4.98 

   2.044     800.0     16.85      70.0     -2.54    2.86 

   2.592     750.0     13.75      71.0     -5.77   -0.29 

   3.171     700.0      9.95      75.0     -5.91   -5.72 

   3.783     650.0      6.05      79.0     -8.02   -9.21 

   4.436     600.0      2.35      74.0    -11.87  -10.59 
   5.134     550.0     -1.75      70.0     -9.99   -8.31 

   5.886     500.0     -6.95      86.0     -5.19   -3.49 

   6.701     450.0    -11.55      97.0     -3.03    0.68 

   7.596     400.0    -16.45      97.0     -0.20    3.50 

   8.588     350.0    -22.95      78.0      1.10    2.10 

   9.699     300.0    -31.55     100.0      1.50    2.90 

  10.961     250.0    -41.75     100.0      2.20    2.90 

  12.432     200.0    -54.25     100.0      3.10    1.80 

  14.214     150.0    -67.45      81.0     -1.12   -0.14 

  16.582     100.0    -79.45      98.0     -6.48    3.02 

  18.605      70.0    -76.25    -999.0     -2.74   -0.63 
  20.566      50.0    -71.95    -999.0    -10.95   -0.35 

  23.660      30.0    -56.35    -999.0    -30.00    2.23 

  26.342      20.0    -45.55    -999.0     13.20   -3.60 

  30.981      10.0    -42.95    -999.0     14.37   -2.63 

Pressure Reduced to MSL (mb)   1014.4 

Pressure @tropopause (mb)        94.5 

Altitude @tropopause (km)        16.903 

Temperature @tropopause (deg C) -80.85 

Column Water (cm)                 3.82 

Cloud Cover                       0.0% 

-------------------------------------------------------------

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.520     850.0     20.65      58.0      1.36    0.61 

   2.043     800.0     18.05      59.0      1.79    2.83 

   2.592     750.0     13.75      72.0      1.37    2.81 

   3.170     700.0      9.45      77.0     -1.68    0.36 

   3.782     650.0      6.35      59.0     -7.64   -1.54 

   4.434     600.0      2.65      51.0    -10.49   -3.70 

   5.133     550.0     -2.05      61.0     -6.53   -4.81 

   5.884     500.0     -6.65      53.0     -2.71   -3.28 

   6.700     450.0    -10.75      37.0     -2.72    0.91 

   7.598     400.0    -14.85       9.0     -5.50    1.40 

   8.596     350.0    -21.25       9.0     -5.90    0.30 

   9.712     300.0    -30.25      28.0     -5.60   -0.50 

  10.979     250.0    -41.35      57.0    -13.20   -1.70 

  12.451     200.0    -53.95      95.0    -17.10   -4.30 

  14.236     150.0    -68.15     100.0    -27.20   -5.70 

  16.604     100.0    -78.55      47.0    -11.61    3.01 

  18.628      70.0    -77.95    -999.0    -17.46    4.19 

  20.608      50.0    -63.05    -999.0    -26.18   -4.11 

  23.823      30.0    -56.75    -999.0     -3.70   -0.60 

  26.478      20.0    -45.15    -999.0     15.80    1.50 

  31.083      10.0    -44.75    -999.0      6.30   -0.60 

Pressure Reduced to MSL (mb)   1014.5 

Pressure @tropopause (mb)        94.0 

Altitude @tropopause (km)        16.953 

Temperature @tropopause (deg C) -80.05 

Column Water (cm)                 3.14 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.020     900.7     24.65      75.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.027     900.0     22.85      74.0     -0.70    0.84 

   1.524     850.0     21.25      59.0      0.19    4.07 

   2.046     800.0     18.05      58.0     -0.91    5.74 

   2.596     750.0     13.75      71.0     -0.39    7.03 

   3.174     700.0      9.45      82.0     -2.63    3.98 

   3.786     650.0      5.95      72.0     -6.08   -1.22 

   4.437     600.0      2.05      64.0     -8.75   -3.06 

   5.134     550.0     -2.55      83.0     -7.00   -1.14 

   5.885     500.0     -6.75      62.0     -4.89   -1.35 

   6.701     450.0    -11.05      32.0     -2.90   -1.04 

   7.597     400.0    -15.55      28.0     -5.10    0.90 

   8.593     350.0    -21.85       8.0     -9.30    0.80 

   9.708     300.0    -30.35      24.0    -13.00   -0.50 

  10.976     250.0    -41.15      55.0    -17.00   -2.90 

  12.449     200.0    -53.95      97.0    -16.80   -7.00 

  14.233     150.0    -67.95      99.0    -24.50   -4.40 

  16.606     100.0    -78.15      40.0    -11.82    3.11 

  18.633      70.0    -77.55    -999.0    -18.20    4.32 

  20.616      50.0    -63.65    -999.0    -25.37   -6.09 

  23.820      30.0    -56.85    -999.0     -7.30    0.20 

  26.475      20.0    -44.75    -999.0     11.60    1.40 

  31.084      10.0    -44.15    -999.0      3.00   -0.40 

Pressure Reduced to MSL (mb)   1014.1 

Pressure @tropopause (mb)        93.6 

Altitude @tropopause (km)        16.983 

Temperature @tropopause (deg C) -79.55 

Column Water (cm)                 3.39 

Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.027     900.1     24.35      77.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.028     900.0     22.25      74.0     -0.54    0.44 

   1.523     850.0     20.45      65.0      0.07    1.55 

   2.045     800.0     17.15      75.0      0.07    2.03 

   2.593     750.0     13.55      78.0     -0.45    1.67 

   3.172     700.0     10.15      67.0     -2.83    0.48 

   3.785     650.0      6.55      57.0     -7.08   -1.72 

   4.437     600.0      2.25      58.0     -9.95   -2.82 

   5.134     550.0     -2.45      72.0     -8.91   -2.51 

   5.885     500.0     -6.95      86.0     -6.07   -2.66 

   6.701     450.0    -10.85      21.0     -3.20   -1.06 

   7.598     400.0    -15.45      15.0     -5.00    1.10 

   8.594     350.0    -21.65      12.0     -8.00   -0.30 

   9.710     300.0    -30.15      27.0    -12.10    0.20 

  10.978     250.0    -40.95      51.0    -16.60   -2.80 

  12.453     200.0    -53.65      88.0    -16.30   -4.80 

  14.238     150.0    -68.05     100.0    -24.40   -4.30 

  16.607     100.0    -78.55      49.0    -12.23    2.99 

  18.628      70.0    -77.75    -999.0    -18.66    4.33 

  20.613      50.0    -63.15    -999.0    -25.99   -5.43 

  23.824      30.0    -56.65    -999.0     -6.10    0.00 

  26.475      20.0    -44.95    -999.0     10.80    1.80 

  31.083      10.0    -44.15    -999.0      2.90   -0.30 

Pressure Reduced to MSL (mb)   1014.3 

   3.160     700.0      8.95      66.0     -4.68   -3.62 

   3.769     650.0      3.45      74.0     -2.35   -4.22 

   4.414     600.0      0.95      23.0     -4.40   -1.74 

   5.111     550.0     -1.25      10.0     -1.21    1.21 

   5.863     500.0     -5.85       6.0     -2.59   -0.38 

   6.680     450.0    -10.35      10.0     -6.90   -1.80 

   7.579     400.0    -15.05      11.0     -8.30   -3.70 

   8.573     350.0    -23.05      14.0     -6.30   -4.20 

   9.678     300.0    -33.45      35.0     -8.30    0.00 

  10.933     250.0    -42.15      58.0    -15.80   11.70 

  12.402     200.0    -54.05      91.0    -16.50   15.00 

  14.186     150.0    -68.55     100.0    -14.90    7.05 

  16.532     100.0    -79.95      88.0     -7.67   -1.84 

  18.583      70.0    -70.95    -999.0      5.54   -6.72 

  20.573      50.0    -69.45    -999.0     12.64   -0.20 

  23.715      30.0    -63.35    -999.0     20.00   -2.10 

  26.234      20.0    -57.45    -999.0      6.90   10.70 

  30.654      10.0    -52.35    -999.0    -14.90    6.60 

Pressure Reduced to MSL (mb)   1013.0 

Pressure @tropopause (mb)       103.7 

Altitude @tropopause (km)        16.326 

Temperature @tropopause (deg C) -79.45 

Column Water (cm)                 2.27 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   0.991     902.6     28.15      38.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.016     900.0     25.05      38.0     -1.08    0.20 

   1.515     850.0     21.85      40.0     -2.57   -0.57 

   2.037     800.0     18.15      48.0     -5.69   -2.11 

   2.586     750.0     13.55      58.0     -7.38   -2.27 

   3.162     700.0      8.65      70.0     -6.79   -1.40 

   3.771     650.0      3.45      84.0     -5.59    0.41 

   4.415     600.0     -0.45      58.0     -5.34    0.89 

   5.109     550.0     -1.55      10.0     -2.34    1.68 

   5.860     500.0     -6.35      10.0     -4.22    0.80 

   6.679     450.0     -9.45      13.0     -6.70   -2.50 

   7.580     400.0    -14.95      15.0     -6.10   -3.80 

   8.573     350.0    -22.75      12.0     -6.90   -1.40 

   9.681     300.0    -32.95      28.0     -3.10   -1.50 

  10.936     250.0    -42.35      59.0    -13.70   10.40 

  12.405     200.0    -54.35      97.0    -16.00   14.60 

  14.187     150.0    -68.75      99.0    -16.42    8.57 

  16.537     100.0    -80.35      90.0     -4.59   -2.92 

  18.580      70.0    -71.45    -999.0      5.87   -6.93 

  20.568      50.0    -69.25    -999.0     13.14   -0.62 

  23.709      30.0    -64.15    -999.0     19.90   -2.10 

  26.234      20.0    -56.55    -999.0      5.40    8.90 

  30.651      10.0    -53.55    -999.0    -15.10    4.40 

Pressure Reduced to MSL (mb)   1012.6 

Pressure @tropopause (mb)       100.0 

Altitude @tropopause (km)        16.539 

Temperature @tropopause (deg C) -80.35 

Column Water (cm)                 2.40 

Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.020     899.5     28.45      39.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.513     850.0     21.65      44.0     -8.16   -3.06 

   2.036     800.0     17.95      46.0    -12.64   -1.85 

   2.584     750.0     13.65      58.0    -10.28   -2.11 

   3.161     700.0      8.85      67.0     -5.71   -2.46 

   3.769     650.0      3.75      73.0     -2.56   -2.06 

   4.414     600.0      0.25      41.0     -4.35   -1.94 

   5.110     550.0     -1.15       7.0     -2.94    1.05 

   5.862     500.0     -5.95       7.0     -3.83    1.10 

   6.680     450.0     -9.75      12.0     -7.30   -1.70 

   7.581     400.0    -14.75      13.0     -7.50   -2.60 

   8.575     350.0    -22.95      16.0     -6.90   -0.50 

   9.681     300.0    -33.45      36.0     -4.90    1.00 

  10.937     250.0    -41.65      38.0    -14.00   11.90 

  12.407     200.0    -54.25      88.0    -17.40   14.20 

  14.190     150.0    -68.85     100.0    -15.10    8.49 

  16.535     100.0    -80.05      91.0     -6.30   -1.91 

  18.583      70.0    -71.65    -999.0      6.59   -6.64 

  20.570      50.0    -69.55    -999.0     13.60   -0.92 

  23.709      30.0    -63.85    -999.0     19.80   -1.90 

  26.236      20.0    -56.55    -999.0      7.80    9.20 

  30.654      10.0    -53.05    -999.0    -14.00    5.30 

Pressure Reduced to MSL (mb)   1012.7 

Pressure @tropopause (mb)       102.4 

Altitude @tropopause (km)        16.402 

Temperature @tropopause (deg C) -79.55 

Column Water (cm)                 2.28 

Cloud Cover                       0.0% 

-------------------------------------------------------------------

------------- 

The following four profiles are for the integer lat/long 

corners 

on 2014-01-14 at GMT 12:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.043     893.3     32.25      28.0   -999.00 -999.00 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.072     894.0     21.95      89.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.508     850.0     18.45      87.0     -0.23    3.06 

   2.027     800.0     15.75      89.0     -3.27    0.98 

   2.575     750.0     13.15      83.0     -7.17    1.43 

   3.153     700.0      9.85      88.0    -10.10    1.84 

   3.766     650.0      5.85     100.0    -12.59   -0.19 
   4.418     600.0      2.25     100.0    -10.64   -2.71 

   5.118     550.0     -1.25     100.0     -8.00   -6.10 

   5.873     500.0     -5.45      91.0     -7.96   -4.82 

   6.693     450.0    -10.25      73.0     -6.82   -0.99 

   7.592     400.0    -15.35      53.0     -4.70    3.30 

   8.588     350.0    -21.85      68.0     -1.90    6.00 

   9.704     300.0    -30.15      69.0      0.10    3.50 

  10.973     250.0    -40.55      99.0      2.50    0.40 

  12.454     200.0    -52.55     100.0      9.77   -6.30 

  14.249     150.0    -67.25     100.0     11.42   -

7.06 
  16.585     100.0    -82.55      96.0      6.03    3.32 

  18.618      70.0    -72.35    -999.0      0.50   -1.22 

  20.600      50.0    -69.25    -999.0     14.35   -1.73 

  23.729      30.0    -59.55    -999.0     10.40   -0.71 

  26.315      20.0    -53.05    -999.0    -16.70   -

2.54 

  30.877      10.0    -43.25    -999.0    -26.89    5.10 

Pressure Reduced to MSL (mb)   1013.1 

Pressure @tropopause (mb)       102.6 

Altitude @tropopause (km)        16.444 

Temperature @tropopause (deg C) -82.25 
Column Water (cm)                 4.35 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   0.991     902.2     20.35      98.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 
-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.012     900.0     20.05      96.0     -0.68    3.18 

   1.506     850.0     19.05      85.0     -4.65    6.46 

   2.026     800.0     15.85      90.0     -7.92    4.57 

   2.573     750.0     12.75      93.0     -9.34    3.99 

   3.151     700.0      9.25      99.0    -11.68    3.08 
   3.764     650.0      6.05     100.0    -13.03    1.11 

   4.418     600.0      3.05     100.0    -12.03   -1.66 

   5.120     550.0     -1.05     100.0     -8.85   -4.60 

   5.874     500.0     -5.85     100.0     -9.58   -5.76 

   6.694     450.0    -10.15      89.0     -6.69   -3.85 

   7.593     400.0    -15.35      53.0     -3.30    2.60 

   8.588     350.0    -22.05      60.0     -0.60    7.00 

   9.703     300.0    -30.55      77.0      0.30    6.50 

  10.969     250.0    -41.05     100.0      0.20    2.00 

  12.450     200.0    -52.45      99.0      8.48   -6.80 

  14.244     150.0    -67.35     100.0      8.88   -6.31 

  16.582     100.0    -81.95      93.0      4.53    4.35 
  18.619      70.0    -72.75    -999.0     -1.66   -2.76 

  20.600      50.0    -69.05    -999.0     12.79   -3.80 

  23.727      30.0    -59.25    -999.0      8.75   -2.45 

  26.317      20.0    -53.65    -999.0    -17.17   -

2.19 

  30.884      10.0    -42.35    -999.0    -26.62    4.58 

Pressure Reduced to MSL (mb)   1012.3 

Pressure @tropopause (mb)       103.6 

Altitude @tropopause (km)        16.386 

Temperature @tropopause (deg C) -81.75 

Column Water (cm)                 4.78 
Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.020     899.0     23.35      83.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.505     850.0     18.65      85.0     -5.17    2.65 

   2.025     800.0     15.95      83.0     -9.29    3.88 

   2.572     750.0     12.95      87.0    -11.36    4.22 

   3.150     700.0      9.75      97.0    -14.41    2.02 
   3.764     650.0      6.35     100.0    -13.85   -1.52 

   4.419     600.0      3.25      99.0     -9.46   -5.61 

   5.120     550.0     -1.05      97.0     -6.37   -6.38 

   5.875     500.0     -5.05      81.0     -6.66   -2.51 

   6.696     450.0    -10.15      70.0     -4.22    1.08 

   7.594     400.0    -15.45      45.0     -2.80    3.00 

   8.590     350.0    -21.65      29.0     -1.40    7.00 

   9.706     300.0    -30.25      53.0     -1.50    4.80 

  10.974     250.0    -40.85      85.0      1.70   -0.60 

  12.453     200.0    -52.55     100.0      6.73   -5.37 

  14.246     150.0    -67.45     100.0      9.22   -5.38 
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------------------- 

The following four profiles are for the integer 

lat/long corners 

on 2015-04-23 at GMT 12:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 
 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.115     888.2     27.65      62.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 
-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.503     850.0     24.05      56.0     -0.61    1.68 

   2.030     800.0     18.85      72.0     -1.50    1.84 

   2.580     750.0     13.55      93.0     -2.80    2.38 

   3.159     700.0     10.35      77.0     -6.80   -2.79 

   3.774     650.0      6.85      71.0     -8.94   -7.72 

   4.427     600.0      2.65      76.0     -9.77   -7.64 

   5.126     550.0     -1.65      72.0     -8.67   -5.71 
   5.879     500.0     -6.35      83.0     -6.17   -3.61 

   6.696     450.0    -10.95      93.0     -2.77   -0.12 

   7.594     400.0    -15.25      70.0     -1.40    2.30 

   8.588     350.0    -22.85      86.0     -1.00    2.70 

   9.700     300.0    -30.75      65.0     -2.00    2.50 

  10.968     250.0    -40.65      45.0     -0.80    2.10 

  12.445     200.0    -53.15      70.0     -0.30    2.40 

  14.236     150.0    -67.15      75.0     -1.81    1.15 

  16.591     100.0    -81.35     100.0     -5.49   -0.37 

  18.602      70.0    -76.35    -999.0     -1.78    1.14 

  20.559      50.0    -72.45    -999.0    -11.34   -0.77 
  23.663      30.0    -56.35    -999.0    -29.66    0.08 

  26.329      20.0    -48.15    -999.0     11.67   -2.81 

  30.958      10.0    -40.75    -999.0     13.91   -3.87 

Pressure Reduced to MSL (mb)   1010.0 

Pressure @tropopause (mb)        96.0 

Altitude @tropopause (km)        16.822 

Temperature @tropopause (deg C) -82.25 

Column Water (cm)                 3.87 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 
Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.059     893.9     30.55      44.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 
-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.503     850.0     23.85      54.0     -0.31    3.60 

   2.029     800.0     18.75      69.0     -1.07    3.25 

   2.579     750.0     13.45      89.0     -2.16    2.45 

   3.158     700.0      9.95      82.0     -6.63   -2.05 

   3.772     650.0      6.85      73.0     -9.23   -7.48 

   4.425     600.0      2.35      89.0     -8.29   -5.57 

   5.124     550.0     -1.25      68.0     -7.47   -3.61 

   5.878     500.0     -6.05      75.0     -5.58   -2.98 
   6.696     450.0    -10.85      88.0     -1.50   -0.77 

   7.593     400.0    -15.55      77.0     -1.30    1.00 

   8.588     350.0    -22.45      75.0      0.00    2.10 

   9.700     300.0    -30.75      71.0     -0.90    2.00 

  10.968     250.0    -40.65      37.0     -1.30    1.80 

  12.445     200.0    -53.45      47.0     -2.90    2.20 

  14.234     150.0    -67.15      68.0     -1.66    1.46 

  16.590     100.0    -81.25     100.0     -5.17    0.14 

  18.602      70.0    -75.95    -999.0     -2.12    0.74 

  20.558      50.0    -72.75    -999.0    -10.67   -0.74 

  23.659      30.0    -56.55    -999.0    -30.34    0.08 
  26.329      20.0    -47.65    -999.0     12.71   -3.00 

  30.957      10.0    -40.95    -999.0     13.49   -2.76 

Pressure Reduced to MSL (mb)   1009.9 

Pressure @tropopause (mb)        94.5 

Altitude @tropopause (km)        16.905 

Temperature @tropopause (deg C) -82.75 

Column Water (cm)                 3.89 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 
   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.020     897.8     29.55      52.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.503     850.0     23.55      60.0     -1.19    2.81 

   2.029     800.0     18.45      77.0     -1.97    2.56 

   2.579     750.0     13.45      95.0     -3.44    2.09 

   3.158     700.0     10.55      77.0     -5.83   -3.19 

   3.773     650.0      6.95      73.0     -7.25   -6.56 

   4.426     600.0      2.55      77.0     -8.15   -7.91 

   5.125     550.0     -1.85      70.0     -7.72   -7.35 

   5.878     500.0     -6.35      80.0     -5.20   -3.19 

Pressure @tropopause (mb)        92.3 

Altitude @tropopause (km)        17.062 

Temperature @tropopause (deg C) -80.45 

Column Water (cm)                 3.40 

Cloud Cover                       0.0% 

---------------------------------------------------------------

----------------- 

The following four profiles are for the integer 

lat/long corners 

on 2015-06-10 at GMT 12:00 

 

 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.115     888.3     26.75      74.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.503     850.0     22.65      67.0      1.29    3.73 

   2.027     800.0     17.55      82.0      0.90    4.16 

   2.576     750.0     13.15      91.0      0.80    5.17 

   3.155     700.0     10.35      67.0     -3.21    2.16 

   3.769     650.0      7.05      67.0     -8.58   -2.03 

   4.423     600.0      2.95      78.0     -7.61   -0.96 

   5.124     550.0     -0.55      53.0     -6.74   -2.08 

   5.879     500.0     -5.05      48.0     -2.35   -0.79 

   6.699     450.0    -10.45      62.0     -2.52    0.80 

   7.596     400.0    -15.85      43.0     -4.20    1.50 

   8.590     350.0    -22.05      31.0     -6.60    1.60 

   9.705     300.0    -30.45      41.0     -9.10    0.90 

  10.972     250.0    -41.05      79.0    -18.80   -1.40 

  12.447     200.0    -53.55     100.0    -21.10   -5.10 

  14.233     150.0    -68.15     100.0    -27.40   -4.00 

  16.606     100.0    -78.25      45.0    -10.95    0.69 

  18.626      70.0    -77.75    -999.0    -17.01    3.63 

  20.620      50.0    -63.25    -999.0    -25.37   -4.22 

  23.815      30.0    -57.05    -999.0     -3.36    1.50 

  26.461      20.0    -47.95    -999.0     18.90    0.90 

  31.045      10.0    -43.25    -999.0      4.60   -3.80 

Pressure Reduced to MSL (mb)   1010.1 

Pressure @tropopause (mb)        91.1 

Altitude @tropopause (km)        17.133 

Temperature @tropopause (deg C) -80.15 

Column Water (cm)                 3.68 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.059     893.9     29.45      51.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.502     850.0     22.75      61.0      0.46    4.65 

   2.026     800.0     17.75      76.0      0.13    4.63 

   2.575     750.0     13.25      84.0     -0.23    3.99 

   3.154     700.0     10.25      71.0     -1.92    0.12 

   3.768     650.0      6.75      74.0     -8.00   -2.28 

   4.422     600.0      3.05      76.0     -8.04   -3.07 

   5.122     550.0     -0.55      56.0     -6.50   -3.52 

   5.878     500.0     -4.85      40.0     -1.98   -2.37 

   6.698     450.0    -10.45      52.0     -1.30    0.10 

   7.596     400.0    -15.65      47.0     -4.00    1.50 

   8.590     350.0    -22.05      38.0     -6.40    1.10 

   9.705     300.0    -30.55      51.0     -9.50   -0.10 

  10.971     250.0    -41.15      88.0    -18.30   -2.80 

  12.447     200.0    -53.35     100.0    -21.20   -6.40 

  14.232     150.0    -68.65     100.0    -25.00   -4.30 

  16.605     100.0    -77.85      43.0    -10.98    0.24 

  18.627      70.0    -77.95    -999.0    -16.33    3.89 

  20.616      50.0    -63.45    -999.0    -25.84   -4.13 

  23.813      30.0    -56.95    -999.0     -2.89    1.52 

  26.460      20.0    -47.55    -999.0     19.40    1.20 

  31.044      10.0    -43.35    -999.0      4.40   -3.60 

Pressure Reduced to MSL (mb)   1010.2 

Pressure @tropopause (mb)        90.7 

Altitude @tropopause (km)        17.162 

Temperature @tropopause (deg C) -79.95 

Column Water (cm)                 3.62 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.020     897.7     29.15      55.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.483     850.0     26.05      33.0     -1.72   -3.08 

   2.012     800.0     20.85      42.0     -2.46   -3.07 

   2.565     750.0     15.55      54.0     -3.22   -3.03 

   3.145     700.0      9.85      73.0     -4.23   -3.08 

   3.756     650.0      4.15      96.0     -5.78   -3.46 

   4.404     600.0      1.45      29.0     -5.87   -1.09 

   5.101     550.0     -1.45      12.0     -3.95    1.20 

   5.854     500.0     -4.75       7.0     -5.23    0.98 

   6.676     450.0     -9.15      10.0     -6.70   -0.10 

   7.576     400.0    -15.05      12.0     -7.70   -2.10 

   8.570     350.0    -23.35      17.0     -7.60   -3.30 

   9.674     300.0    -32.95      32.0     -8.80    0.00 

  10.933     250.0    -41.75      58.0    -15.40   11.20 

  12.405     200.0    -53.65      72.0    -15.70   13.90 

  14.192     150.0    -68.25      97.0    -13.56    6.20 

  16.530     100.0    -81.55     100.0     -9.96   -2.85 

  18.585      70.0    -69.45    -999.0      6.65   -5.30 

  20.573      50.0    -69.85    -999.0     10.87    2.74 

  23.685      30.0    -65.85    -999.0     17.10    1.00 

  26.191      20.0    -58.25    -999.0      4.20    2.80 

  30.654      10.0    -48.75    -999.0    -23.20    8.50 

Pressure Reduced to MSL (mb)   1007.2 

Pressure @tropopause (mb)       103.6 

Altitude @tropopause (km)        16.334 

Temperature @tropopause (deg C) -80.85 

Column Water (cm)                 2.41 

Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.072     890.1     37.45      25.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.481     850.0     26.45      31.0     -2.94   -1.84 

   2.011     800.0     21.35      39.0     -3.44   -2.34 

   2.565     750.0     15.95      51.0     -3.90   -2.88 

   3.145     700.0     10.35      69.0     -4.43   -3.55 

   3.757     650.0      4.55      90.0     -5.12   -4.37 

   4.404     600.0      0.65      57.0     -5.73   -3.11 

   5.101     550.0     -1.15      10.0     -3.92    0.40 

   5.854     500.0     -5.45       9.0     -5.66    0.31 

   6.674     450.0     -9.35      12.0     -8.00   -0.50 

   7.575     400.0    -14.65      11.0     -8.00   -2.40 

   8.569     350.0    -23.15      15.0     -7.70   -3.40 

   9.675     300.0    -32.75      23.0    -10.00   -0.50 

  10.934     250.0    -41.55      44.0    -14.10   10.00 

  12.407     200.0    -53.75      85.0    -16.00   14.90 

  14.191     150.0    -68.45      99.0    -16.09    7.44 

  16.531     100.0    -80.75      94.0     -7.86   -3.38 

  18.583      70.0    -70.25    -999.0      5.17   -5.38 

  20.572      50.0    -70.05    -999.0     10.58    3.70 

  23.684      30.0    -65.95    -999.0     18.10    0.80 

  26.190      20.0    -57.65    -999.0      3.60    4.00 

  30.654      10.0    -48.35    -999.0    -24.40    8.80 

Pressure Reduced to MSL (mb)   1007.4 

Pressure @tropopause (mb)       103.5 

Altitude @tropopause (km)        16.336 

Temperature @tropopause (deg C) -80.05 

Column Water (cm)                 2.39 

Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   0.991     898.5     32.15      26.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.484     850.0     26.45      30.0     -2.70   -2.80 

   2.013     800.0     21.35      39.0     -3.31   -2.73 

   2.567     750.0     15.95      50.0     -3.89   -2.53 

   3.148     700.0     10.25      69.0     -4.58   -2.20 

   3.759     650.0      4.55      93.0     -5.55   -1.57 

   4.406     600.0      0.45      73.0     -7.02   -0.13 

   5.102     550.0     -1.35       8.0     -3.90    1.80 

   5.855     500.0     -5.15       7.0     -5.41    1.44 

   6.675     450.0     -9.35      12.0     -6.60   -1.10 

   7.575     400.0    -14.95      14.0     -7.00   -1.50 

   8.570     350.0    -22.85      14.0     -7.10   -0.60 

   9.677     300.0    -32.85      23.0     -9.50    1.90 

  10.935     250.0    -41.85      46.0    -14.30   10.70 

  12.406     200.0    -53.95      83.0    -15.10   14.50 

  14.189     150.0    -68.45     100.0    -18.41    9.34 

  16.532     100.0    -81.65     100.0     -7.85   -2.80 

  18.585      70.0    -69.25    -999.0      7.85   -5.45 

  20.570      50.0    -69.65    -999.0     12.56    2.38 

  23.685      30.0    -64.85    -999.0     18.60    2.70 

  26.194      20.0    -58.35    -999.0      3.90    3.20 

  30.659      10.0    -47.45    -999.0    -20.60    7.20 

Pressure Reduced to MSL (mb)   1007.1 

Pressure @tropopause (mb)       101.4 

Altitude @tropopause (km)        16.456 

Temperature @tropopause (deg C) -81.15 

Column Water (cm)                 2.49 

Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

  16.583     100.0    -81.95      90.0      4.74    5.33 

  18.619      70.0    -72.35    -999.0     -1.19   -2.10 

  20.601      50.0    -69.45    -999.0     14.30   -2.81 

  23.728      30.0    -59.85    -999.0      8.19    0.56 

  26.318      20.0    -53.85    -999.0    -17.14   -

2.71 

  30.885      10.0    -42.15    -999.0    -26.64    5.75 
Pressure Reduced to MSL (mb)   1012.3 

Pressure @tropopause (mb)       103.7 

Altitude @tropopause (km)        16.378 

Temperature @tropopause (deg C) -81.75 

Column Water (cm)                 4.39 

Cloud Cover                       0.0% 

------------------------------------------------------------

-------------------- 

The following four profiles are for the integer 

lat/long corners 

on 2014-04-20 at GMT 12:00 

 
 At  2 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.043     893.1     26.55      78.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.477     850.0     21.75      76.0      0.15    3.00 

   2.000     800.0     16.95      92.0     -0.97    3.33 

   2.549     750.0     13.55      91.0     -3.91    3.87 

   3.129     700.0     11.15      76.0    -10.91    2.32 
   3.746     650.0      7.85      79.0    -12.73    0.03 

   4.403     600.0      4.05      84.0     -9.89   -3.52 

   5.106     550.0     -0.15      85.0     -6.89   -4.93 

   5.863     500.0     -4.85      78.0     -7.31   -2.69 

   6.686     450.0     -9.35      71.0     -5.26    0.28 

   7.587     400.0    -14.85      85.0     -3.90    1.90 

   8.586     350.0    -21.05      73.0     -3.50    4.20 

   9.705     300.0    -29.45      56.0      1.20    1.50 

  10.978     250.0    -39.95      75.0      5.50   -2.10 

  12.462     200.0    -51.95     100.0      5.37   -6.53 

  14.259     150.0    -67.65     100.0      6.23   -4.55 

  16.602     100.0    -81.15      87.0      3.25    3.50 
  18.633      70.0    -74.25    -999.0      3.12   -4.26 

  20.596      50.0    -69.35    -999.0     13.02    0.91 

  23.728      30.0    -58.25    -999.0     10.47   -2.52 

  26.311      20.0    -52.95    -999.0    -15.67   -

3.22 

  30.873      10.0    -43.05    -999.0    -25.40    2.14 

Pressure Reduced to MSL (mb)   1008.2 

Pressure @tropopause (mb)       101.7 

Altitude @tropopause (km)        16.505 

Temperature @tropopause (deg C) -80.95 

Column Water (cm)                 4.44 
Cloud Cover                       0.0% 

 At  2 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.072     889.8     28.85      58.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.474     850.0     22.85      65.0     -1.77    1.78 

   1.999     800.0     18.05      80.0     -3.17    1.61 

   2.549     750.0     13.45      95.0     -6.39    1.17 

   3.129     700.0     11.25      75.0    -12.97    0.21 
   3.746     650.0      8.15      75.0    -11.75   -1.46 

   4.403     600.0      3.65      94.0     -7.66   -2.68 

   5.106     550.0     -0.45      88.0     -7.74   -4.96 

   5.862     500.0     -4.75      80.0     -7.56   -3.59 

   6.685     450.0     -8.85      51.0     -6.24    0.49 

   7.588     400.0    -14.15      53.0     -2.80    4.50 

   8.588     350.0    -21.05      62.0     -1.30    5.40 

   9.706     300.0    -30.05      75.0      1.90    3.60 

  10.976     250.0    -40.15      87.0      2.70    0.10 

  12.459     200.0    -52.15      93.0      7.33   -5.11 

  14.256     150.0    -67.45      99.0      7.92   -5.65 

  16.603     100.0    -81.65      90.0      2.45    3.14 
  18.633      70.0    -73.75    -999.0      5.23   -4.12 

  20.593      50.0    -69.35    -999.0     14.07    1.81 

  23.725      30.0    -58.65    -999.0     10.48   -2.40 

  26.312      20.0    -52.35    -999.0    -15.96   -

2.76 

  30.872      10.0    -42.85    -999.0    -24.90    1.95 

Pressure Reduced to MSL (mb)   1007.1 

Pressure @tropopause (mb)        99.6 

Altitude @tropopause (km)        16.628 

Temperature @tropopause (deg C) -81.65 

Column Water (cm)                 4.20 
Cloud Cover                       0.0% 

 At  3 North   32 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   0.991     899.0     27.05      79.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 
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   6.695     450.0    -11.05      93.0     -3.95    1.38 

   7.592     400.0    -15.35      77.0     -0.60    1.90 

   8.588     350.0    -22.25      68.0     -0.90    2.60 

   9.701     300.0    -30.75      69.0     -1.50    3.60 

  10.968     250.0    -40.95      69.0      0.00    3.00 

  12.443     200.0    -53.35      65.0     -1.20    2.50 

  14.236     150.0    -66.65      68.0     -1.70    1.41 
  16.591     100.0    -81.85     100.0     -3.94    1.40 

  18.600      70.0    -76.05    -999.0     -1.88    0.76 

  20.558      50.0    -72.45    -999.0    -11.07   -0.27 

  23.665      30.0    -56.15    -999.0    -29.02   -0.26 

  26.326      20.0    -48.35    -999.0      8.30   -2.55 

  30.953      10.0    -40.45    -999.0     12.40   -3.08 

Pressure Reduced to MSL (mb)   1009.3 

Pressure @tropopause (mb)        95.8 

Altitude @tropopause (km)        16.829 

Temperature @tropopause (deg C) -83.05 

Column Water (cm)                 4.09 

Cloud Cover                       0.0% 
 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 

(m/sec) 

   1.027     896.7     30.35      43.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.501     850.0     25.15      47.0     -1.86    1.87 

   2.029     800.0     19.95      61.0     -2.17    1.70 

   2.581     750.0     14.45      81.0     -2.49    1.52 

   3.160     700.0      9.25     100.0     -3.99   -0.57 
   3.772     650.0      6.35      72.0     -8.86   -8.05 

   4.425     600.0      2.35      80.0     -8.68   -7.85 

   5.124     550.0     -1.35      66.0     -7.88   -5.46 

   5.878     500.0     -5.95      72.0     -5.01   -2.80 

   6.696     450.0    -10.75      79.0     -2.96    0.18 

   7.593     400.0    -15.85      79.0     -0.20    1.60 

   8.588     350.0    -22.15      63.0     -0.10    1.40 

   9.702     300.0    -30.65      59.0     -1.10    2.00 

  10.969     250.0    -40.85      52.0     -0.40    0.90 

  12.445     200.0    -53.35      57.0     -2.30    0.80 

  14.235     150.0    -67.15      57.0     -3.09    1.42 

  16.591     100.0    -81.55     100.0     -3.57    1.40 
  18.603      70.0    -75.85    -999.0     -2.29    0.40 

  20.558      50.0    -72.75    -999.0    -10.34   -0.31 

  23.662      30.0    -56.25    -999.0    -29.71   -0.19 

  26.327      20.0    -47.95    -999.0      9.10   -2.69 

  30.954      10.0    -40.75    -999.0     11.86   -1.93 

Pressure Reduced to MSL (mb)   1009.4 

Pressure @tropopause (mb)        95.4 

Altitude @tropopause (km)        16.853 

Temperature @tropopause (deg C) -82.95 

Column Water (cm)                 3.83 

Cloud Cover                       0.0% 

Attachments area 

 

 

999.00 

   1.501     850.0     23.35      61.0      0.77    4.84 

   2.027     800.0     18.25      77.0      0.38    5.14 

   2.577     750.0     13.45      89.0     -0.44    4.57 

   3.156     700.0     10.55      66.0     -2.99   -0.89 

   3.770     650.0      6.95      64.0     -6.90   -3.07 

   4.424     600.0      2.95      75.0     -7.74   -2.35 

   5.124     550.0     -0.75      62.0     -8.13   -2.23 

   5.880     500.0     -5.05      44.0     -5.98   -1.87 

   6.700     450.0    -10.05      23.0     -3.95   -0.70 

   7.596     400.0    -16.25      23.0     -4.00    1.50 

   8.589     350.0    -22.45      24.0     -7.30    1.90 

   9.703     300.0    -30.45      44.0    -12.70    2.20 

  10.971     250.0    -40.65      75.0    -19.40   -1.60 

  12.447     200.0    -53.55     100.0    -18.90   -5.90 

  14.231     150.0    -68.35      99.0    -28.60   -4.00 

  16.608     100.0    -77.95      49.0    -11.01    0.17 

  18.627      70.0    -77.65    -999.0    -17.35    4.56 

  20.621      50.0    -63.65    -999.0    -26.24   -5.53 

  23.813      30.0    -56.85    -999.0     -5.28    1.75 

  26.458      20.0    -47.85    -999.0     14.50    1.30 

  31.047      10.0    -43.05    -999.0      1.70   -3.60 

Pressure Reduced to MSL (mb)   1009.6 

Pressure @tropopause (mb)        90.1 

Altitude @tropopause (km)        17.202 

Temperature @tropopause (deg C) -80.35 

Column Water (cm)                 3.62 

Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.027     897.2     29.05      62.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

   1.503     850.0     22.85      62.0      1.25    1.54 

   2.027     800.0     17.85      78.0      1.01    1.59 

   2.577     750.0     13.45      88.0      0.74    1.74 

   3.156     700.0     10.25      74.0     -1.72    0.45 

   3.769     650.0      6.65      74.0     -6.38   -1.83 

   4.423     600.0      2.85      82.0     -7.96   -2.37 

   5.123     550.0     -0.95      73.0     -7.85   -2.19 

   5.879     500.0     -4.95      52.0     -4.78   -2.30 

   6.700     450.0    -10.05      38.0     -2.81   -1.10 

   7.597     400.0    -16.05      49.0     -3.90    0.80 

   8.590     350.0    -22.15      51.0     -6.90    1.10 

   9.705     300.0    -30.35      56.0    -14.30    1.10 

  10.974     250.0    -40.75      76.0    -18.90   -2.20 

  12.450     200.0    -53.25     100.0    -18.90   -5.20 

  14.236     150.0    -68.55     100.0    -26.00   -2.80 

  16.607     100.0    -77.85      47.0    -12.15   -0.66 

  18.629      70.0    -77.65    -999.0    -16.71    5.02 

  20.618      50.0    -63.85    -999.0    -26.69   -5.40 

  23.813      30.0    -56.65    -999.0     -4.93    1.95 

  26.460      20.0    -47.45    -999.0     14.70    1.80 

  31.047      10.0    -43.25    -999.0      1.50   -3.40 

Pressure Reduced to MSL (mb)   1009.7 

Pressure @tropopause (mb)        90.5 

Altitude @tropopause (km)        17.172 

Temperature @tropopause (deg C) -79.95 

Column Water (cm)                 3.84 

Cloud Cover                       0.0% 

 

   (km)     (mb)     (deg C)     (%)     (m/sec) (m/sec) 

   1.020     895.3     35.35      23.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -999.00 

   1.482     850.0     26.95      28.0     -5.29   -2.60 

   2.012     800.0     21.75      36.0     -5.77   -2.58 

   2.566     750.0     16.35      47.0     -6.09   -2.44 

   3.148     700.0     10.65      64.0     -6.29   -2.21 

   3.759     650.0      4.55      88.0     -6.34   -1.89 

   4.406     600.0      0.15      76.0     -5.33   -0.71 

   5.102     550.0     -1.05       8.0     -4.42    1.95 

   5.855     500.0     -5.45      10.0     -5.80    1.46 

   6.675     450.0     -9.55      13.0     -7.90   -1.50 

   7.575     400.0    -14.85      11.0     -7.60   -2.20 

   8.569     350.0    -23.05      13.0     -7.70   -1.90 

   9.676     300.0    -32.55      18.0    -12.10   -1.10 

  10.934     250.0    -41.95      38.0    -13.40   10.10 

  12.405     200.0    -53.85      86.0    -16.60   15.20 

  14.189     150.0    -68.45     100.0    -19.17   10.09 

  16.533     100.0    -81.05      95.0     -7.44   -4.34 

  18.583      70.0    -69.95    -999.0      8.51   -6.58 

  20.570      50.0    -70.15    -999.0     12.18    2.92 

  23.684      30.0    -65.15    -999.0     19.10    3.10 

  26.193      20.0    -58.25    -999.0      4.20    3.80 

  30.651      10.0    -47.95    -999.0    -22.80    9.70 

Pressure Reduced to MSL (mb)   1007.3 

Pressure @tropopause (mb)       101.4 

Altitude @tropopause (km)        16.455 

Temperature @tropopause (deg C) -80.55 

Column Water (cm)                 2.39 

Cloud Cover                       0.0% 

 

 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

   1.480     850.0     20.35      85.0     -0.42    1.99 

   2.002     800.0     16.35      96.0     -2.01    2.85 

   2.550     750.0     13.65      88.0     -7.03    3.80 

   3.130     700.0     10.85      85.0    -12.69    2.60 

   3.747     650.0      7.55      88.0    -12.03    0.38 

   4.403     600.0      3.75      93.0     -8.67   -2.35 

   5.106     550.0     -0.15      81.0     -7.65   -4.73 

   5.864     500.0     -4.65      70.0     -7.17   -4.45 

   6.685     450.0    -10.05      78.0     -5.99    0.91 

   7.584     400.0    -15.45      89.0     -4.00    5.30 

   8.581     350.0    -21.25      77.0     -2.00    6.90 
   9.701     300.0    -29.35      70.0      1.80    4.00 

  10.974     250.0    -39.75      97.0      0.80    1.30 

  12.459     200.0    -51.85     100.0      2.45   -4.55 

  14.258     150.0    -67.35     100.0      2.36   -4.58 

  16.606     100.0    -79.75      67.0      2.95    1.37 

  18.631      70.0    -75.95    -999.0     -0.06   -4.74 

  20.595      50.0    -68.65    -999.0     12.08    0.36 

  23.726      30.0    -57.95    -999.0     10.63   -2.40 

  26.313      20.0    -53.55    -999.0    -15.85   -

1.93 

  30.872      10.0    -43.45    -999.0    -25.20    2.97 
Pressure Reduced to MSL (mb)   1008.2 

Pressure @tropopause (mb)       102.5 

Altitude @tropopause (km)        16.468 

Temperature @tropopause (deg C) -79.55 

Column Water (cm)                 4.63 

Cloud Cover                       0.0% 

 At  3 North   33 East 

                               Relative   Zonal Meridional 

 Altitude Pressure Temperature 

Humidity   Wind    Wind 

   (km)     (mb)     (deg C)     (%)     (m/sec) 
(m/sec) 

   1.020     895.2     29.25      59.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -

999.00 

-999.000    -999.0   -999.00    -999.0   -999.00 -
999.00 

   1.475     850.0     23.05      64.0     -5.18    1.37 

   2.001     800.0     17.95      81.0     -6.46    1.13 

   2.550     750.0     13.35      97.0     -8.78    0.69 

   3.130     700.0     10.85      84.0    -12.88   -0.03 

   3.746     650.0      8.05      78.0    -11.24   -1.20 

   4.403     600.0      3.75      88.0     -7.93   -2.59 

   5.106     550.0     -0.25      80.0     -7.11   -4.44 

   5.863     500.0     -4.75      70.0     -6.60   -4.14 

   6.685     450.0     -9.75      62.0     -6.14   -1.24 

   7.585     400.0    -15.05      46.0     -3.70    5.40 
   8.582     350.0    -21.25      53.0     -0.80    8.30 

   9.701     300.0    -29.65      67.0      0.00    4.70 

  10.974     250.0    -39.75      84.0      0.80   -0.70 

  12.458     200.0    -52.15     100.0      3.51   -3.67 

  14.255     150.0    -67.15     100.0      5.79   -5.39 

  16.606     100.0    -80.05      69.0      1.64    1.44 

  18.630      70.0    -75.65    -999.0      0.18   -3.45 

  20.591      50.0    -68.45    -999.0     13.05    1.66 

  23.726      30.0    -58.45    -999.0     10.23   -3.07 

  26.312      20.0    -52.85    -999.0    -16.43   -

2.09 

  30.873      10.0    -43.05    -999.0    -24.32    2.50 
Pressure Reduced to MSL (mb)   1007.2 

Pressure @tropopause (mb)        96.4 

Altitude @tropopause (km)        16.810 

Temperature @tropopause (deg C) -80.65 

Column Water (cm)                 4.28 

Cloud Cover                       0.0% 

Attachments area 

--------------------------- 
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