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Abstract

The aim of this thesis is to explore and investigate the emergent dynamics of
complex networks through a novel and insightful experimental setup realized as
a con�gurable network of chaotic Chua's circuits. In particular part of our work
has been devoted to the implementation and characterization of a "2.0 hardware
version" of it, where the interconnection network has improved greatly in its main
features. In this way the setup has been fully automatized in providing control
on network structure and coupling strength.

A large set of experiments has been carried out in networks with proportional
coupling and arbitrary topology, showing, emergent dynamics encompassing syn-
chronization, patterns and traveling waves, clusters formation. Also, the case of
dynamic coupling has been experimentally addressed. The experimental ob-
servations have been compared with theoretical results by carrying out a local
stability analysis of networks with static and dynamic links. Here we use the
Master Stability approach (MSF) and its extensions to the case where the links
are of dynamic nature (Proportional Derivative-MSF).

Last part of the work has been devoted to the experimental study of cluster
synchronization, stimulated by novel theoretical advances based on group theory
and network symmetries. A novel network structure referred as "Multiplexed
Network" has been experimentally examined, resulting in a great enhancement
in synchronization, for which no theoretical models are yet available.
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Introduction

Numerous systems are characterized as complex where they can be seen as a
collection of interacting individuals. An important property of such complex
systems is their behavior, which might di�er signi�cantly from those of each
individual subsystem due to the interaction e�ect [7, 33, 51]. Examples range
from natural to man-made systems comprising network of blood vessels, neural
networks, food web networks, protein networks, electrical power distribution sys-
tems, world wide web, social and economical networks, transportation systems
and many more [34].

In particular, for human being dealing with modern life style and a con-
stantly growing globalization, it is of great importance to learn about such an
intricate world of complex systems around him. Take for instance communica-
tion and transportation networks that are in constant expansion. Consequently,
it is necessary to answer crucial questions like: how systems behave when they
are communicating to each other through a network of interconnections? Which
components (or subsystems) play a key role in the collective behavior of the whole
complex system? How to monitor and control their behavior? and how to trou-
bleshoot and avoid failures whose cascading might cause huge defragmentation
of the whole complex systems?
Answering to these questions has stimulated di�erent disciplines based on a com-
mon and novel academic �eld called network science, where the complexity of
the systems is captured by a network of interacting units, which in a mathe-
matical notation is equivalent to graphs where subsystems (units) are assigned
to a set of nodes (N) and the interconnections among them are represented by
edges (L). Looking at complex systems from this perspective allows to ana-
lyze their emergent behavior, speci�cally as a function of the network structure
[5, 6, 24, 25, 41, 47, 53, 58, 60, 61]. In this regard complex networks and their
emergent behavior has been the main focus of many research works within the
literature in physics, engineering and biology. A particular emergent behavior
that has been widely studied is the case where the trajectories of each subsystem
asymptotically converge toward each other. This phenomena is called synchro-
nization and it has been widely studied since it has been observed in nature
when �re�ies synchronize their �ashes [51], in human coordination, and even in
electrical and mechanical systems like coupled metronomes and power grids



respectively.
In engineering, networks of chaotic oscillators have been considered as paradigm
for studying many complex nonlinear systems [13, 18, 32, 39, 40, 59], and most of
the research studies have have been theoretical and numerical, due to practical
di�culties with realizing networks with large number of nodes and arbitrarily
connections. Consequently, few experimental studies have been presented [10�
12, 14, 15, 23, 26, 36�38, 45, 55, 56]. , where either small size networks with 2 or
3 nodes are considered [10, 11, 45] or scalable networks like regular nearest neigh-
bor structure in the context of cellular neural networks [55]. Correspondingly,
majority of the studies have concentrated on detecting complete synchronization,
that is, the condition when all network's nodes converge asymptotically to the
same solution and most often the solution is identical to that of an individual
and isolated node. Therefore the pressing open problem is to study emergent
behaviors di�erent from the classical synchronization which have been scarcely
addressed in the literature.
Thereupon, the need of exploring di�erent dynamics emerging from complex net-
works with scalable number of nodes and arbitrary network architecture (topol-
ogy) has motivated the study presented here. The work has been carried on by
implementing a recon�gurable setup composed of Chua's circuits which is avail-
able in the circuits laboratory of University of Napoli Federico II. The setup has
been realized the �rst time in 2011 for the same purpose of network studies,
where several small size networks have been examined, although mainly focusing
on occurrence of complete synchronization .
The aim of this thesis is to expand the state of the art in complex networks
of dynamical systems, by providing novel and insightful experimental results on
networks of chaotic Chua's circuits. Contrary to previous works, we have focused
on more general emergent dynamics encompassing synchronization, patterns and
traveling waves. Particularly, we have experimentally studied cluster synchro-
nization, stimulated by novel theoretical advances based on group theory and
network symmetries. Also, the case where the coupling functions between the
nodes is dynamic has been addressed. Next, we present a list of the most relevant
contributions of the thesis.

(i) We have provided an accurate characterization and modeling of individual
Chua's circuits. This will allow to have a detailed description of its dynam-
ics and also it is necessary to obtain a better agreement with theoretical
analysis.

(ii) We have automatized some manual con�guration in the former setup. More-
over the physical resistors have been replaced by a set of digital poten-
tiometers which has transformed the setup to a compact and elegant form
in which the accuracy has been increased and the wiring volume has been
reduced. The present setup allows to study fully controllable complex net-
works with adjustable coupling links and types by which a wide rage of
dynamics emerging from such networks can be explored. A large set of
data produced by the setup can be monitored and analyzed online with
considerable less time consuming process respect to numerical simulation.



The new setup has been characterized completely and emerging of full
synchronization, further emergent dynamics like traveling waves and cluster
formation as well as role of non-adjacent links have been explored. The
experimental observations have been compared with theoretical results by
carrying out a local stability analysis of networks with static and dynamic
links. Here we use the Master Stability approach (MSF) and its extensions
to the case where the links are of dynamic nature (PD-MSF).

(iii) Unlike classical studies on synchronization, we have taken a step forward
studying other emergent dynamics, namely cluster synchronization. In par-
ticular we have observed and con�rmed that clusters are highly related with
symmetries on the network topology. Speci�cally, we have characterized
those clusters and also we have exploited symmetries for controlling the
patterns.

(iv) We have studied the in�uence on synchronization when considering di�erent
types of links in one network, i.e. coupling via resistors and/or capacitors.
We have observed that this multiplex links have a bene�cial e�ect since
synchronization can be enhanced when resistor con�guration is di�erent
from capacitor con�guration.

The rest of this work is organized as follows. In the �rst chapter the funda-
mentals of nonlinear dynamical systems and complex networks are reviewed. In
the second chapter the full description of the setup is given, where a modi�cation
of the Chua's circuit model has been proposed according to the experimental re-
alization of the setup. This modi�ed theoretical model for Chua's circuit is
necessary for revealing the patterns generated by the experimental setup after
loosing synchronization. In the third Chapter the experimental results obtained
by various network's coupling is presented and in the last chapter the studies on
cluster formation in the network have been reported.



Chapter. 1

Background: nonlinear dynamical systems, complex net-

works

Interaction among several dynamical systems in a complex way can give rise to
such behaviors which cannot be understood by considering only properties of
each individual subsystems. It is quite evident how the network architecture and
the way agents communicate to each other should play a key role. To better
understand the scenario underlying complex network we �rst review some fun-
damental concepts. First some important de�nitions and properties of nonlinear
dynamical systems are given to then the focus on network modeling.

1.1. Nonlinear dynamical systems

Modeling, analysis and control of dynamical systems, speci�cally nonlinear ones
are the core of di�erent engineering disciplines [29, 48]. In spite of the availability
of strong tools for analyzing dynamical linear systems, based on superposition
principle, linear systems are often unable to capture the dynamics of real sys-
tems. Sustained oscillations, amplitude dispersion of waves, natural hazards such
as earthquakes and cyclonic storms are all examples of nonlinearities. Nonlin-
ear systems have some particular phenomena that cannot be observed in linear
models [29]

(i) Finite escape time: tendency of nonlinear systems state to evolve to in�nity
even in �nite time,

(ii) Multiple isolated equilibria: in opposite to linear system which can have a
single isolated equilibrium point, nonlinear systems might have more than
one equilibrium point. Depending on initial conditions the solution might
converge to any of those multiple steady state operating points.

(iii) Limit cycle: nonlinear autonomous systems can oscillate with a �xed am-
plitude and frequency regardless of the initial conditions.

(iv) Subharmonic, harmonic or almost periodic oscillation: nonlinear systems
can oscillate with frequencies with one multiple or sub-multiple of forcing

14
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term, and also in non-periodic mode.

(v) Multiple asymptotic solution: The same nonlinear system might exhibit
di�erent solutions for t→∞.

(vi) chaos and unpredictable behavior in the presence of small variation of the
initial conditions.

A nonlinear system can be described by a set of ordinary di�erential equations
(ODE's) of the form [52]

dx1

dt
=f1(x1, x2, · · · , xn)

...
...

dxn
dt

=fn(x1, x2, · · · , xn)

(1.1)

where xi ∈ R is the ith state variable of the system and fi : R → R for
i = {1, · · · , n} is a scalar smooth function. Equation (1.1) can be rewritten
in compact for as

dx

dt
= F(x) (1.2)

where x = [x1, x2, · · · , xn]T ∈ Rn is the stack vector of the state variables and
F = [f1, f2, · · · , fn]T : Rn → Rn is the system's vector �eld. The system's �xed
point x∗, representing the equilibrium or steady solution, is the point in which
the system's states remain forever if the system starts at point. The equilibrium
point can be found by setting the left hand side of (1.2) to zero yielding

dx∗

dt
≡ 0 = F(x∗) (1.3)

Given a �xed point is natural to wonder if starting from an arbitrary initial
condition the system will converge to the equilibrium or not. To that aim we
next review the fundamental concept of stability in dynamical systems.

1.1.1 Stability of solutions and attractors

The rate of the error growth corresponding to dynamical system's solution when
one of the system's parameters, equilibrium points, initial conditions or system's
trajectory is perturbed is studied in the concept of stability. Roughly speaking
there are two main types of stability

(i) Structural Stability: Characterizing the qualitative behavior of a system re-
spect to varying its parameters. If the qualitative properties of a system like
number and stability of �xed points or periodic orbits remain unchanged
under small perturbation of the system's parameters the system is said to
be structurally stable [29, 52]. By loosing structural stability the system
undergoes bifurcation (for example period multiplications of the system'
dynamic, exceeding which, result in chaos). The parameters which cause
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such transition are called bifurcation parameter and the speci�c value of
bifurcation parameters at which the stability changes is called bifurcation
point.

(ii) Lyapunov Stability: Here we are interested is answering the question whether
the systems will or not converge to the equilibrium point (or periodic orbit)
when the initial conditions are perturbed. Particularly, we have two types
o Lyapunov stability, global and local [29]. While local stability guarantees
convergence for a set Ω ⊂ Rn, global stability ensures convergence for any
initial condition.

De�nition 1.1.1. An equilibrium point say x∗ of a dynamical system (1.2) is
Lyapunov stable if for any ε > 0 there exists δ > 0 such that ||x(0) − x∗|| < δ,
then ||x(t)− x∗|| < ε for all t ≥ 0. Otherwise, the equilibrium point is unstable

De�nition 1.1.2. An equilibrium is attracting if in addition there exist some
δ > 0 such that ||x(0)− x∗|| < δ implies that lim

t−→∞
x(t) = x∗.

The main and important di�erence of De�nition 1.1.1 and De�nition 1.1.2 is
that trajectories are allowed to drift away from an attracting equilibrium point
in some short time while in long term they have to converge to the equilibrium
point. However when an equilibrium is Lyapunov stable the nearby trajectories
are restricted to remain close for all the time (t).

De�nition 1.1.3. An attracting equilibrium which is Lyapunov stable is called
asymptotically stable

All the above de�nitions determine the local stability. By expanding the
condition from the close by trajectories to equilibrium point to all trajectories in
the phase plane i.e. if an equilibrium point attract all the trajectories in the phase
space and all the trajectories in the phase space remain close to equilibrium point
then the equilibrium point is globally attracting and globally Lyapunov stable
respectively. It is worth noting that in linear systems the local stability would
satisfy the global stability as well. Through this work we have studied the local
stability whose relative analysis tools will be reviewed brie�y. As long as the
perturbations are very small, the system can be approximated as a linear system
and local stability can be analyzed by linearization about the equilibrium point
as it is described in the following.

Consider system of equation 1.2, then applying small perturbations e about
the �xed point x∗ = [x∗1, x

∗
2, · · · , x∗n]T yields

e1 =x1 − x∗1
e2 =x2 − x∗2

...
...

en =xn − x∗n

(1.4)

The variational equation governing the rate of decay or growth of the perturba-
tion for the ith state is

dei
dt

=
dxi
dt

= fi(x1, x2, · · · , xn) (1.5)
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From the fact that fi(x∗i ) = 0, and using Taylor series expansion about �xed
points equation (1.5) can be rewritten as

fi(e1+x∗1, e2+x∗2, · · · , en+x∗n) = fi(x
∗
1, x
∗
2, · · · , x∗n)+

δfi
δx1

e1+
δfi
δx2

e2+· · ·+ δfi
δxn

en

For very small perturbations the quadratic terms can be ignored; therefore, we
can rewrite the error dynamics (1.5) as

de1
dt

de2
dt
...

den
dt


=



∂f1

∂x1

∂f1

∂xn
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂xn
· · · ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


︸ ︷︷ ︸

A



e1

e2
...

en

 (1.6)

where matrix A ∈ Rn×n is the Jacobian matrix whose eigen values determine the
stability of the �xed point. Stable equilibrium requires decay of all disturbances
which means the real part of all eigen values of the systems must be strictly
negative. Positive real part of minimum at least one eigen value destabilize the
equilibrium point. Consequently the �xed point to which all nearby solutions
converge is called sink and the one from which all the solutions repel is known as
source and if some solutions approach to the equilibrium point and some repel
from it then the equilibrium point is saddle.

On the other hand, if the solutions end up in a closed orbits centering the
equilibrium point then is termed as center [52]. An equilibrium point whose all
eigen values of its jacobian matrix have non-zero real part is called Hyperbolic.
The qualitative behavior of the solution near to degenerate �xed points which has
at least one eigen value with zero real part are highly vulnerable tof bifurcation
since such nodes changes their properties like stability or even existence by a small
perturbation. Stability of degenerate �xed points is determined by Lyapunov
function which is not the focus of this studies.

The study of stability can be also extended to a broader type of solutions,
namely orbit. Next we give some de�nitions for the stability of the orbit which
would be referred as orbital stability.

De�nition 1.1.4. [57] An orbit x(t) with initial condition x(0) = x0 is orbitally
stable if all orbits x̂(t) with nearby initial points x̂0 = x0 + ∆x0 remain close
to it forever. By de�nition x(t) is orbitally stable if for any ε > 0 there exist a
δ > 0 such that ‖x0(t)− x̂0(t)‖ < δ then ‖x(t)− x̂(t)‖ < ε for t ≥ 0 .

It is important to emphasize that, the exponential separation rate of two
initially close orbits can be quanti�ed by the so called Lyapunov exponent λ
which is de�ned for continuous systems as

λ = lim
t→∞

lim
∆x0→0

1

t
ln

∆x(x0, t)

∆x0
(1.7)
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while for discrete time system xn+1 = f(xn) the equation would be translated as

λ = lim
k→∞

1

k

k−1∑
i=0

ln |f ′(xi)| (1.8)

It is important to emphasize that for a linearized system about a equilibrium
point, the Lyapunov exponents coincide with the eigen values of its Jacobian
matrix.

Similarly to the linear case, stability of the orbits are classi�ed according to
the sign of the Lyapunov exponent. Speci�cally, if the Lyapunov exponent is
negative, that is, λ < 0 indicates the the orbit or equilibrium point is stable,
while λ = 0 indicates a conservative system without dissipation with the state of
Lyapunov stability. Finally, λ > 0 shows the unstability of the orbit.

To determine whether a system is chaotic, degree of divergence of its solution
in the presence of tiny error in initial condition can be measured using Lyapunov
Exponents. This identi�es the sensitive dependence of a system. Positive Lya-
punov Exponent veri�es the state of chaos in dynamical system ( i.e. diverging
to a completely di�erent solution even if two trajectories have started from very
close initial conditions) and a system with all negative Lyapunov exponent will
have either an attracting �xed point or a periodic cycle and will not behave
chaotically [2].

1.1.2 Bifurcations

As previously mentioned, bifurcation is the transition of the structure of the
system's dynamic when the system's parameter has been perturbed. In fact
changing bifurcation parameter changes the system property qualitatively such
as number of system's �xed points or their stability. Creation or destruction of
�xed point due to changing a system parameter is known as saddle node bifurca-
tion and when �xed points appear or disappear in a symmetrical pairs the term
changes to pitchfork bifurcation. Fixed points can remain while their stability
might changes which is called Hopf bifurcation where in the close vicinity of those
�xed points their stability is determined via eigen values of the Jacobian matrix
[52]. Hopf bifurcation will be recalled when Chua's characteristic is explained.In
general those bifurcations which occurs by changes in the stability of eqilibrium
points are classi�ed as local bifurcations in which the bifurcations mentioned
above are included.

1.2. Chua's circuit as a paradigm for chaos

Analysis and control of non-linear systems are more complicated than linear ones
and necessitate a deep understanding of their dynamics. Accordingly the need
to study and manipulate such systems has been a motivation for the invention of
autonomous Chua's circuit in 1983 as the �rst physical platform for reproducing
chaos and nonlinear dynamics. This chaotic circuit is the simplest electronic cir-
cuit which can be realized at low cost, producing rich dynamic from the periodic
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one by cascade of double period bifurcation and ending to chaos as the result of
varying its bifurcation parameters. Chua's circuit has been used for decades and
is still a unique tool for understanding and analyzing nonlinear dynamics and
chaos. The schematic of Chua's circuit is shown in �gure 1.1a. Chua's circuit is

L

iL

C2

Rc

C1

iRN

RN

(a)

vC1

i

Ga

Gb

Gc E1E2

(b)

Figure 1.1: (a) Schematic of Chua's circuit, (b) Chua's diode characteristic

described by a set of ordinary di�erential equations as

diL
dt

= − 1

L
vC2

dvC2

dt
=

G

C2
[vC1 − vC2] +

1

C2
iL

dvC1

dt
=

G

C1
[vC2 − vC1]− 1

C1
i(vC1)

(1.9)

where iL, vC1, vC2 are the state variables corresponding to the inductor's current
and voltages on the capacitors C1 and C2 respectively.G = 1/Rc. It's noteworthy
that since the �rst realization of Chua's circuit, several e�orts has been carried out
to generalize the circuit aiming to have the simplest synthesis which generates the
most complex dynamic. As a result among all Chua's circuit families a canonical
form of it is realized so far by adding a resistors in series with inductor and
is called Chua's oscillator to distinguish it from the original Chua's circuit [9].
Chua's oscillator is prototypical since it can reproduce any dynamics generated
by systems of continuous odd symmetric three regions piecewise linear vector
�eld.

1.2.1 Piecewise linear classical model

Birth of Chaos is the result of in�nitely continuous stretching and folding of dy-
namical system's trajectories. In particular, piecewise-linear circuits can generate
chaos they have at least two unstable equilibrium points to provide stretching
by one and folding trajectories by the other equilibrium point [19, 28]. Such
conditions are feasible for autonomous circuits if they satisfy three fundamental
properties listed below

(i) presence of at least one nonlinear element
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(ii) having a locally active asymptotically passive resistor

(iii) presence of at least three energy storage elements (third order system).

Presence of an ad hoc voltage-controlled nonlinear locally active resistor known
as Chua's diode as well as three storage elements facilitate Chua's circuit by this
properties and create the possibility of generating chaos steady state solution
by this circuit. Chua's diode driving point characteristic shown in �gure 1.1b is
characterized in such a way to exist at least two unstable equilibrium points to
satisfy the condition of generating chaos. Chua's diode characteristic is described
by the following equations:

i(vC1) =



GcvC1 + E1(Ga −Gb) + E2(Gb −Gc) E2 < vC1

GbvC1 + E1(Ga −Gb) E1 < vC1 ≤ E2

GavC1 |vC1| ≤ E1

GbvC1 + E1(Gb −Ga) −E2 ≤ vC1 < −E1

GcvC1 + E1(Gb −Ga) + E2(Gc −Gb) vC1 < −E2

(1.10)

where Ga , Gb < 0 and Gc > 0. The outer parts Gc would guarantee the even-
tually passivity of the element since for the large enough voltage across the real
resistor its absorbed power P = v ∗ i is positive and characteristic must locate
in the �rst and third quadrant of the v − i plane. However on the condition
that Chua's attractor is bounded in the active region those outer segments will
not in�uence on Chua's circuit dynamics. The normalized dimensionless form of
Chua's equations aiming to reduce the number of parameters and scaling them
to ease the numerical analysis the equations, can be obtained by rescaling the
state variables and de�ning new parameters as

x =
vC1

E1
y =

vC2

E1
z =

iL
E1G

τ =
tG

C2

α =
C2

C1
β =

C2

LG2
a =

Ga
G

b =
Gb
G

c =
Gc
G



dz

dτ
= −βy

dy

dτ
= x− y + z

dx

dτ
= α(y − x)− αi(x)

(1.11)

where
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i(x) =



cx+ a− b+
E2

E1
(b− c) E2

E1
< x

bx+ a− b 1 < x ≤ E2

E1

ax |x| ≤ 1

bx+ b− a −E2

E1
≤ x < −1

cx+ b− a+
E2

E1
(c− b) x < −E2

E1

(1.12)

Chua's circuit has three equilibrium points; x∗− and x∗+ on the outer negative
and positive regions respectively, and x∗0 in the origin, which are

x∗− =


G(Gb −Ga)
G+Gb

E1

0
Ga −Gb
G+Gb

E1

 x∗0 =

0
0
0

 x∗+ =


G(Ga −Gb)
G+Gb

E1

0
Gb −Ga
G+Gb

E1


All the eigenvalues of equilibrium points are shown in �gure 1.2 for Rchua ranged
from 1500Ω to 2000Ω where the arrows point toward the direction of increasing
Rc. By increasing Rc the stability of outer equilibrium points changes since the
sign of the real part of their complex eigenvalue become positive and unstable
and results in Hopf bifurcation.
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Figure 1.2: Eigen values of Chua's circuit's equilibrium points (D0 indicates the
eigenvalues belong to the equilibrium point in the origin and D2 corresponds to
the equilibrium points of the outer regions whose eigenvalues are the same.)
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1.2.2 Typical complex dynamics

To �nd Chua's circuit solution, piece-wise linear characteristic of Chua's circuit
allow us to analyze each region separately, then the overall solution can be found
by putting together all of them. The �rst step to study system's dynamic is
calculating the equilibrium points. Then in each region the system is linearized
about its equilibrium point where the stability of dynamics nearby the equilib-
rium point is determined by calculating the eigenvalues of the system Jacobian
matrix A. We wish to emphasize that A has one real eigenvalue λ associated
to the the eigenvector Er and a pair of complex conjugate σ ± jω spanning the
corresponding eigen-plane Ec. Therefore, the solution of the circuit can be ex-
pressed as the the sum of two solutions xr(t) belonging to Er and xc(t) to Ec

as
xr(t) = Cre

λtxλ (1.13)

xc(t) = 2Cce
σt[cos(ωt+ φ)xcr − sin(ωt+ φ)xci] (1.14)

Then if λ > 0,xr(t) grows exponentially other wise if λ < 0,xr(t) converge
asymptotically to zero both in direction of Er. For the complex conjugate pair
if σ > 0 and ω 6= 0,xc(t) spirals away from the corresponding equilibrium point
along the complex eigen-plane and in the opposite case i.e. σ < 0,xc(t) spi-
rals toward equilibrium point along the eigen-plane Ec. Table 1.1 shows Chua's
simulated circuit solutions when Rc decreases from 1970Ω to 1965Ω, 1945Ω and
1915Ω. Note that by decreasing Rc the Chua's circuit's dynamic undergoes struc-
tural changes ranging from limit cycles to chaotic double scroll due to the changes
of the stability of the equilibrium points.

Table 1.1: Simulated Chua's circuit dynamics for Rc = 1970Ω, 1965Ω, 1945Ω and
1915Ω
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For the sake of completeness we also calculate a bifurcation diagram and
Lyapunov exponent diagram of Chua's circuit when Rc is varied in a decreasingly
manner from 2000Ω to 1600Ω. The results are shown in �gure 1.3.
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Figure 1.3: Single Chua's circuit a)bifurcation diagram b)Lyapunov exponents
diagram

1.3. Complex networks

Real world systems are mainly characterized by being the integration of inter-
acting components whose collective behavior can signi�cantly di�er from their
individuals. Underlying those complex systems there is an intricate structure of
interconnections that a�ects its behavior. In �gure 1.4 some examples of complex
networks are shown. It is no a secret that complex systems have great bene�ts

(a) (b)

Figure 1.4: Examples of complex networks: (a) Pages on a web site and the
hyperlinks between them [35] (b) Florentine marriages network [3]

in many aspects such as spreading information in world wide web or �ow of en-
ergy in power distribution networks [4]. Nevertheless these systems are highly
vulnerable and delicate since a single interacting component can have impact in
all the network and failure in one part of the systems can be spread all over
the network through the inter-connectivity and cause to black out and signif-
icant defragmentation of the whole complex systems. Therefore it is of great
importance to inspect the structure and con�guration through which all the sub-
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systems interact as well as collective behavior and properties of the members
of the network. In this regard the connectivity of each complex system can be
described e�ciently by a complex network {N,L} where nodes (N) represent the
subsystems and connections are modeled by links (L).

Complex networks are strong representations of complex systems for the pur-
pose of inspecting the structure of interaction so that possibly approaching a de-
scription of collective behavior emerging from complex systems which has been a
scienti�c challenge for decades in network science and all the involved disciplines.
Complexity in complex Networks can be described from di�erent standpoints
ranging from the mode and number of inter-communications among subsystems
to their intricate character. Complex networks connectivity structure can be
complicated or change over the time where some links might appear, disappear
or their features might vary. Moreover system's components might interact dif-
ferently when the links which connect them are di�erent in features like weight
and direction. Additionally components can be nonlinear systems or diverse and
network might be composed by non-identical systems.

1.3.1 Modeling network structure and graph theory

Di�erent types of complex network (structured interactions) from economical to
biological and many more are being studied using graph theory by which any of
them can be modeled e�ectively by a graph as a mathematical description.
Graphs G = (V,L) are mathematical structures composed by two sets of ele-
ments; set of N vertices V = {n1, n2, nN} as individual units and set of k edges
L = {l1, l2, lk}, for 0 < k < N(N − 1)/2 representing the link among each pair
of nodes. lij is the link connecting a pair of adjacent nodes i and j. For exam-
ple a network of four interconnected computers is shown in �gure 1.5a, while in
�gure 1.5b it is shown the the graph representation G with four nodes and four
vertices.

(a) (b)

Figure 1.5: Examples of (a) a network of computers, and (b) its graph represen-
tation.

When a graph G is undirected the incident connection between each two nodes is
mutual and bidirectional (see �gure 1.4b), while in directed graphs two connected
nodes are sequentially ordered i.e. lij 6= lji (see �gure 1.4a). Connection from
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a node to itself (loop) and more that one link between two nodes are beyond
de�nition of graph and such structure is called multi-graph. Each node can be
characterized by its size which is the number of connected links to it.
Graphs can be classi�ed by di�erent criteria. One is the number of links in the
graph i.e. k. A graph is sparse if k � N and is dense if number of links is close to
the maximum number of links. A graph whose number of links k = N(N − 1)/2
i.e there is link between every pair of nodes, is called complete.
If for every pair of distinct nodes there exist a path linking all the nodes in the
network; then, then the graph is called connected ; otherwise, it is disconnected.
We can also associate to every every link in a graph a weight, in this case the
graph is called weighted graph.
The connectivity in an un-weighted graph is represented by the Adjacency matrix

AN×N whose elements aij = 1 if nodes i and j are connected; otherwise, aij = 0.
For undirected graphs matrix A is symmetrical, while it might be asymmetrical if
the graph is directed. Instead a weighted graph is represented by a connectivity
matrix W whose entries σij > 0 if nodes i and j are connected and σij = 0
otherwise.
Both connectivity and node's degree of a graph are captured by the Laplacian ma-

trix L ∈ RN×N whose o�-diagonal entries are given by Lij = −aijσij , for i 6=
j, while diagonal entries Lii =

∑N
j=1 aijσij . It is important to emphasize that

Laplacian matrix representing undirected graphs G are symmetric and posi-
tive semi-de�nite matrices whose eigenvalues can be sorted in ascending order
λ1 6 λ2 6 · · · 6 λN . Note that the sum of rows and columns of the Laplacian
matrix are always zero.

1.3.2 Emerging dynamics

As mentioned earlier interacting systems behave di�erently from their individ-
ual dynamics when they are isolated. As a matter of fact collective behavior is
not only a function of subsystem's dynamic but also of the structure of the net-
work through which they interact. Consider a network composed by N coupled
oscillators which can be described as

dxi
dt

= Fi(xi(t)) +
N∑
j=1

σijaijH(xi,xj) i ∈ {1, · · · , N} (1.15)

where xi = [x1, · · · , xn] and Fi(xi(t)) = [f1(xi(t)), · · · , fn(xi(t))] are the n-
dimensional state vector and vector �eld of the ith oscillator respectively. Vector
�eld Fi(xi(t)) describe the dynamic of the ith node. The coupling strength of
each link is denoted by σij which is associated to nodes i and j. The coupling ma-
trix A = [aij ] ∈ RN×N describes the connectivity between nodes where aij = 1
if nodes i and j are connected and aij = 0 otherwise. H(xi,xj) denotes the
coupling function between nodes i and j i.e the operator which connect each two
nodes.

Aiming to studying of collective behavior as a function of network parameters
like structure, coupling strength as well as node's dynamics, it is often consid-
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ered a simpli�ed model by assuming a homogeneous networks whose nodes are
nominally identical i.e. F1(x1(t)) = F2(x2(t)) = · · · = FN (xN (t)) = F(xi(t)).
We further assume the coupling between nodes to be bidirectional with identical
coupling strengths, that is σij = σ for all i, j ∈ {1, · · · , N}. In this case the
adjacency matrix A is symmetric whose entries are either zero or one and are
scaled by the coupling strength σ. The simpli�ed model of network (4.1) reads

dxi
dt

= F(xi(t)) + σ
N∑
j=1

aijH(xi,xj) i ∈ 1, · · · , N (1.16)

This model is used to described many coupled oscillators [33, 51]. Depending on
the network's features such as topology, coupling strength and dynamic of nodes,
the behavior of subsystems and their coherency respect to other members with
which they interact direct or indirect varies. Components can evolve equally and
synchronously as they pass through a transient time or keep di�erent types of
relativity such as phase locking in oscillators known as phase synchronization.
Contrarily systems can be connected in the network but evolve in a way if they
are not physically connected to any other node.

1.3.3 Synchronization

One important collective behavior which has been the focus of many network
studies is synchronization, which is widely seen in natural and arti�cial net-
works. Synchronization can be as an essential property for proper functioning
of many networks when coordination is required such as power distribution net-
works and neural network of the brain for information processing [51]. There
are several de�nitions for synchronization regarding to the types of coordination
among nodes and some of them are been reviewed here.
Two nodes i and j are considered to be completely synchronized if they converge
to the same solution as they evolve in time, i.e

lim
t→∞
||xi(t)− xj(t)|| = 0 (1.17)

Similarly the state of complete or asymptotic synchronization in a network hap-
pens if all nodes of a network converge to the same solution xs(t), i.e. x1(t) =
x2(t) = · · · = xN (t) = xs(t). This subspace is termed as synchronization mani-

fold S and is de�ned as

S := {x ∈ RN | ||xi(t)− xj(t)|| = 0 ∀i, j ∈ 1, · · · , N} (1.18)

where xi(t) belongs to this synchronous manifold if

lim
t→∞
||xi(t)− xs(t)|| = 0

Complete synchronization can be seen for networks with identical nodes otherwise
in the presence of any parameter mismatch nodes can tend to a very close vicinity
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of synchronization manifold but not to the exact manifold. This tendency is
termed as Bounded synchronization which can be de�ned as

lim
t→∞
||xi(t)− xj(t)|| ≤ ε for ε > 0, ∀i ∈ {1, · · · , N} (1.19)

In addition to complete and bounded synchronizations the members of a network
can reach to the same synchronization manifold by delay respect to one another,
the state known as lag synchronization i.e.

xi(t+ τ) = xj(t)

In the coupled oscillators synchronization might appear among only oscillators
phases where all remain identical or nearly identical in phase while they are
weakly or not correlated in the amplitude [7]. All discussed synchronous states
have been studied and observed in this experimental studies which will be re-
ported in the corresponding chapter.

1.3.4 Clustering and group theory

In spite of the complete synchronization importance, transition to its opposite
state is the introduction to intricate diversities. This transition mechanism in
the network is strongly in�uenced by di�erent network parameters. However the
phenomena is not completely understood yet. Recent studies have tried to shed
light on the network behavior beyond the complete synchronization [21, 42, 50].
It has been observed in many complex networks that by loosing complete syn-
chronization state, network nodes start diverging from the manifold of complete
synchronizations while partitioning into patterns of several so called clusters.
Those nodes belonging to the same clusters are synchronized while the ones from
di�erent clusters are loosely or not correlated. We denote the synchronous tra-
jectory of each cluster as xs′m(t). In particular, the synchronous manifold of the
mth cluster can be de�ned as

S ′m := {x ∈ RMk | ||xj(t)− xi(t)|| = 0 ∀ i, j ∈Mk} (1.20)

where
∑m

k=1Mk = N and m is the number of clusters and ith node belongs to
mth cluster if

lim
t→∞
||xi(t)− xs′m(t)|| = 0

It has been revealed such clustering is closely related to the structure of the
network in particular when the structure is symmetric [42]. Fortunately, with
the aid of tools such as group theory the network elements tendency to diverge
from the global synchronous manifold and partition in sub-synchronous manifold
has been partially inferred.

1.3.4.1 Group theory

In this section the introductory group theory is reviewed following by the concept
of symmetry.
A group < G, ∗ > is a non-empty set G with a binary operation (∗) which satis�es
the following axioms:
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(i) Closure; ∀x, y ∈ G⇒ x ∗ y ∈ G

(ii) Associativity; ∀x, y, z ∈ G⇒ x ∗ (y ∗ z) = (x ∗ y) ∗ z

(iii) Identity ∀x ∈ G ∃e ∈ G 3 x ∗ e = e ∗ x = x

(iv) Inverse ∀x ∈ G∃x−1 ∈ G 3 x ∗ x−1 = x−1 ∗ x = e

For a group (G, ∗) identity and inverse elements are unique.

De�nition 1.3.1. In addition Abelian group is a group which satis�es commu-
tativity i.e. ∀x, y ∈ G⇒ xy = yx.

De�nition 1.3.2. De�nition 2. For a group < G, ∗ >, Number of elements in
the group is called order of the group denoting by |G|.

De�nition 1.3.3. De�nition 3. For a group (G, ∗) if there exist a non-empty
subset H of G such that (H, ∗) is also a group then H is a subgroup of G . The
trivial subgroup of any group is formed by a set formed by identity element only.
Order of the subgroup is always is smaller or equal to its corresponding group
i.e. |H| < |G|

De�nition 1.3.4. De�nition 4. The order of an element g denoted by |g| in a
group G is the smallest positive integer k such that gk = e where e is the identity
element. If such k does not exist then the order of the element g is in�nite.

Generally groups are classi�ed into two groups of �nite and in�nite; A group G
is �nite if it contains �nite number of elements otherwise the group is In�nite .
Set of real numbers, rational numbers, integer numbers and complex numbers
each one under addition form a group denoted by < R,+ >, < Q,+ >, < Z,+ >
and < C,+ > respectively as examples of in�nite groups. < R+, . > represents
the in�nite group of positive real numbers under multiplication. The �nite cyclic
groups and symmetric groups are the well-known examples of �nite groups.
If A group < G, ∗ > with �nite number of elements where |G| = n contains
an element g with |g| = n where there is no k > 0 smaller such that gk = e.
Then the group is described as {e, g, g2, · · · , gn−1} where g is called a generator
of the group < G, ∗ > and is written as G =< g >. Such a group is called cyclic
group which is an abelian group and is generated by single element g. symmetric
groups: All permutations of a set <G> composed by n elements form a group
under composition which is called symmetric group denoted by Sn. The order
of Sn is n! where n is the number of elements in the group. |Sn| = n! group of
network symmetries. All those symmetry operations on the network of N nodes
which leaves the network structure and dynamical equations unchanged form a
group G under composition. Symmetry operations can be identity I; where just
leave the structure unchanged, mirror re�ection M, rotations of di�erent angles
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r, or combination of these operations Group representation: Representation of
a group is a set of invertible linear transformations of vector spaces which is a
tool to represent the group elements in terms of matrices consequently indicating
the group operations by matrix multiplications [22]. Group representation is
important since it facilitates the problems of group theory by linear algebra.
Irreducible representation. If representation of a group can not be reduced to a
subspace linear transformations then is called irreducible in the other words a
group representation that has no nontrivial invariant subspaces.
Each symmetry operation g of the network can be presented by a permutation
matrix Pg; an N dimensional binary matrix having an entry of pij = 1 in each row
where the exchange of nodes i and j does not vary the structure and 0 anywhere
else. By symmetry pij = pji = 1 which implies that this Pg is symmetric where
PP−1 = P2 = IN×N . The permutation matrices can be decomposed if there
exist a similar matrix M such that M−1PgM = P′g where P′g is the equivalent
representation of P which is decomposed to k matrices given by

P′g =


P1
g 0 · · · 0

0 P2
g · · · 1

...
...

. . .
...

0 0 · · · Pk
g

 (1.21)

dimension of Pg is the sum of dimensions of sub-matrices of P′g i.e. The orbit of
a node xi in the network topology is the set of all nodes in the network by which
ith node can be permuted leaving the topology unchanged. Consequently the
clusters in the network are identi�ed by �nding all the orbits in all representations
of symmetry groups of the network.

dim(Pg) =

k∑
l=1

dim(Pl
g)

Each cluster is characterized by its corresponding synchronous manifold S ′k (k =
1, · · · ,M where M is the number of clusters) to which all the nodes dynamics
belonging to that cluster converge. If N is considered as the number of nodes
M = N when there is not any pair of synchronized nodes. In this work di�erent
topology has been examined and the role of network symmetry has been explored
as well as changing parameters such as connectivity and coupling strength in the
transition from or toward global synchronization.

1.4. Metrics for detecting synchronization

Synchronization among corresponding state variables of each node can be quanti-
�ed by evaluating the correlation between them where depending on the network
properties, node's correlations can vary. In a network of oscillators complete
synchronization occurs when all network's components oscillate with identical
amplitude and phase. We consider network (1.16) and we assume that only there
is available a scalar measurement yi(t) = Γxi(t) for each node i ∈ {1, · · · , N},
where Γ is the output matrix.
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In this study two indexes have been used to compute the level of synchronization
termed as "cross correlation index (ICC)" and "synchronization index (IS)" which
are described below

(i) Cross correlation index (Icc) has been applied to quantify the degree of
synchronization particularly the correspondence among oscillator's phase.

Icc(yi, yj) =

Ns∑
k=1

[yi(k)− yi] [yj(k)− yj ]√
Ns∑
k=1

[yi(k)− yi]2 [yj(k)− yj ]2
(1.22)

where yi =
1

Ns

∑Ns
k=1 yi(k) i = 1, · · · , N is the mean value of the dynamic

of the ith node. If yi = yj which means yi, yj are synchronized then

Icc(yi, yj) =

Ns∑
k=1

[yi(k)− yi]2√
Ns∑
k=1

[yi(k)− yi]4
= 1 (1.23)

Similarly Icc = −1 when two signals are opposite and Icc = 0 shows no
correlation among two signals. The general form of Icc for N > 2 signals
is:

Icc =
1

N

N∑
i=1

Icc(xi, x) (1.24)

where y(k) =
1

N

N∑
i=1

(yi(k)− yi)

(ii) Synchronization index (Is) measures the rms distance of trajectories yi(t)
at ith node from the �average� trajectory 〈y(t)〉 expressed in percentage

Is = 100

√√√√(
1

NNs

N∑
i=1

Ns∑
k=1

(
|yki − 〈y(t)〉|
|ymax − ymin|

) (1.25)

where N is the number of nodes (Chua's circuits), NS the number of (mea-
sured) samples and ymax−ymin is a normalizing factor for each set of mea-
surements. Such percent distance index approaches zero when all traces
are fully synchronized, and 100% when they are completely uncorrelated,
and synchronization is completely lost in phase and amplitude.

1.5. Stability analysis of synchronous solutions

1.5.1 Master stability function approach (MSF)

It is of the great importance to characterize synchronous behavior of the network
and to know when and under what conditions respect to network parameters, net-
work is able to keep the coordination among its nodes. Answering to this question
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necessitate the stability analysis of the network. A well-known approach to carry
such analysis of linearly coupled networks is Master stability function (MSF) [41]
which is a tool for stability analysis of synchronization as a function of network
topology, coupling strength, coupling function and nodes dynamics knowing only
the individual dynamic of nodes and network coupling function. This approach is
based on measuring the evolution or exponential growth rate of an in�nitesimal
perturbation on the transverse subspace to synchronization manifold. The com-
mon criterion to obtain MSF is measuring the maximum Lyapunov exponent of
small �uttering of those solutions transverse to synchronization manifold. Master
stability function requires the following assumptions:

(i) the coupled nodes of the network are all identical.

(ii) all node's output are coupled with the others through the same function.

(iii) the manifold of synchronization is invariant; any node initiate evolving from
synchronous manifold will remain in the manifold for all time t.

(iv) the coupling between nodes is arbitrary and is approximately linear in the
vicinity of synchronous state.

Considering equation (1.16) for a network of identical nodes which are coupled
via equal coupling strength the adjacency matrix can be replaced by laplacian
matrix L = [lij ] ∈ RN×N as

dxi
dt

= F(xi) + σ
N∑
j=1

LijH(xj), i = {1, · · · , N} (1.26)

where L is symmetric and every row sum and column of Laplacian matrix is zero
i.e.

N∑
j=1

Lij = 0 which means
N∑

j=1,j 6=i
Lij = −Lii (1.27)

For the system described by equation (1.26), it is assumed that there exists
a synchronous solution xs(t) which is the same as nodes' individual solution
i.e xs(t) = x1(t) = x2(t) = ...xN (t) such that ẋs = F(xs). By applying an
in�nitesimal perturbation on synchronous manifold δxi = xi−xs and substituting
the equation 1.26, the variational equation of this time evolving perturbation
δẋi = ẋi − ẋs is

dδxi
dt

= F(xi(t)) + σ

N∑
j=1

Lij

(
H(xj)− F(xs)

)
i = {1, · · · , N} (1.28)

applying Taylor series expansion at xs yields

dδxi
dt

= DF(xs)(xi − xs) + σ
N∑
j=1

Lij (DH(xs) + DH(xs)(xj − xs)) (1.29)
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which results in,

dxi
dt

= DF(xs)δxi + σ
N∑
j=1

LijD(H(xs))δxj , i = {1, · · · , N} (1.30)

where DF(xs) and DH(xs) are the Jacobian matrices of the corresponding vector
�eld and coupling functions evaluated at xs. The general form of the equation
is:

dx

dt
= (IN×N ⊗DF(xs) + σL⊗H(xs))δx, (1.31)

where ⊗ is the Kronecker product. δx ∈ RnN dimensional vector of all the
perturbations of the network i.e. δx = (δx1, δx2, · · · , δxN ). L is the symmetric
Laplacian matrix whose eigenvector matrix is Q and satisfyies L = QΛQ−1

where Λ is diagonal matrix of its eigenvectors. It is straight-forward to write
QQT = QTQ = I since Q is orthogonal matrix. By projecting variations δx
into the eigen-space spanned by eigen vectors of coupling matrix L i.e. (QT ⊗
In×n)δx = δy, the block diagonalized form of the variational equation is

dy

dt
= (IN×N ⊗DF(xs) + σΛ⊗DH(xs)) δy (1.32)

The generic form of equation for each can be written as

dy

dt
= (DF(xs) + kDH(xs)) δy, (1.33)

for k = σλi for i = {1, . . . , N} where λi = {λ1, λ2, · · · , λN} are the eigenvalues
of Laplacian matrix. The 1st block in equation associates with λ1 = 0 which
denotes the motion parallel to synchronous manifold i.e. trajectory of an un-
coupled oscillator, whereas λi > λ2 corresponds to the perturbed motions on
the transverse synchronization manifold which are concerned for stability anal-
ysis. It is notable that the purpose of block-diagonalization is to isolate the
synchronous motion from the transverse ones in order to ease the manipulating
of those transverse manifolds and analyzing their stability. By evaluation max-
imum Lyapunov exponent

∧
i of equation 17 for i > 2 and for k in the interval

ka < k < kb the synchronous manifold would be stable if all those transverse
motions damped down i.e for all those the maximum Lyapunov exponent would
be negative

∧
i 6 0 otherwise if

∧
i > 0 the synchronization manifold is unstable.

1.5.2 Extended master stability function (EMSF)

The synchronization which is treated by Master Stability approach is base on the
assumption of network of identical nodes. However, in practice, due to noise and
slight parameter mismatches of the network's members, they tend close to the
synchronization manifold but not exactly lying in this manifold. Loss of asymp-
totic synchronization toward nearly synchronous state, respect to the scale of
parameter mismatch has been treated by Extended master stability function,



1.5. Stability analysis of synchronous solutions 33

an approach for studying synchronization in nodes with nearly identical parame-
ters. In this method a more general model of equation (1.45) has been considered
which as:

dxi
dt

= F(xi(t), µi) + σ

N∑
j=1

LijH(xj), i = {1, · · · , N} (1.34)

where µi is the parameter of ith node and in the case of asymptotic synchroniza-
tion is uniform i.e. µ1 = µ2 = · · · = µN . The parameter mismatch δµi can be

considered as µi− µ̄ where µ̄ =
1

N

∑N
i=1 µi. The the system is expected to stay in

a near synchronous state for some values of coupling σ and con�guration L where
limt→∞ ||xi − xj || ≤ ε for ε > 0. The near synchronous state x̄ is considered as

the average of all individual nodes's solutions i.e. x̄ =
1

N

∑N
i=1 xi. The small

variation of each node's dynamic from the state x̄ is de�ned as δxi = xi − x̄.
Consequently the variational equation will be governed by δẋi = ẋi − ˙̄x where
by substituting the corresponding equation for each term for the speci�c case of
Laplacian coupling the equation will be

dδxi
dt

= F(xi(t), µi)−
1

N

N∑
j=1

F(xi(t), µi)σ
N∑
j=1

LijH(xj) (1.35)

Using again Taylor expansion about the near synchronous state yields

dδxi
dt

= F(x, µ̄) +DFx̄(xi, µi)(xi − x̄) +DFµ̄(xi, µi)(µi − µ̄)

− 1

N

N∑
j=1

[F(x̄, µ̄) +DFx̄(xi, µi)(xi − x̄) +DFµ̄(xi, µi)(µi − µ̄)]

−σ
N∑
j=1

Lij(H(x̄) +DHx̄(xi)(xi − x̄)) (1.36)

where DFx̄ and DFµ̄ are the Jacobian matrices evaluated on the average tra-
jectory and average parameter respectively. Equation (1.36) can be rewritten
as

dδxi
dt

= DFx̄(x̄, µ̄)δxi +DFµ̄(x̄, µ̄)δµi − σ
N∑
j=1

LijDH(x̄)δxi (1.37)

From the fact that
∑N

i=1 δxi =
∑N

i=1 xi−N x̄ = 0,
∑N

i=1 δµi =
∑N

i=1 µi−Nµ̄ = 0,
and

∑N
i=1 lij = 0 we have that the vector form of the variational equation reads

δẋ = [IN×N ⊗DFx̄(x̄, µ̄)− σL⊗DH(x̄)]δx + IN×N ⊗DFµ̄(x̄, µ̄)δµ. (1.38)

If the system does not have parameter mismatch then the variational equation
is the same as the one of MSF (1.45). Next, by block-diagonalizing, yields

dδy

dt
= [IN×N ⊗DFx̄(x̄, µ̄)− σP⊗DH(x̄)]δy + QT ⊗DFµ̄(x̄, µ̄)δµ. (1.39)
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For each node we have that

dδyi
dt

= [DFx̄(x̄, µ̄)− σλkDH(x̄)]δyi +DFµ̄(x̄, µ̄)

N∑
j=1

Qijδµj . (1.40)

where QT = [Qij ] is the transverse of the eigenvector matrix and k ≥ 2.
The variational equation would be in the following form:

dδyi
dt

= [DFx̄(x̄, µ̄)− εDH(x̄)]δyi +DFµ̄(x̄, µ̄)Φ. (1.41)

The extended master stability function is then a function of, individual dynamic,
coupling function, structure of the network and parameter mismatch. The stabil-
ity of the system will be obtained by the sign of its maximum Lyapunov exponent
and then by substituting Φ =

∑N
j=1 qijδµj and ε = σλk the stability will be ob-

tained for a speci�c topology and parameter mismatch

1.5.3 Proportional derivative master stability function (PDMSF)

Stability analysis of network coupled by dynamic component such as capacitor
and inductor has been studied by PD master stability function. In this case we
consider the network (1.16) setting the coupling function H(xi) = Γxi, where
Γ ∈ RN×N is the inner coupling matrix representing interconnections between
the state variables of each node. Then the dynamics of the network with dynamic
links can be written as

dxi
dt

= F(xi(t)) + σ1

N∑
j=1

LijΓxj + σ2

N∑
j=1

LijΓxj , i ∈ {1, · · · , N} (1.42)

which can be written in compact form as

dx

dt
= IN×N ⊗ F(x)− σ1(L⊗ Γ)x− σ2

(
L⊗ Γ

(
dxj
dt

))
, (1.43)

similarly to master stability function the system would be linearized around the
synchronous state followed by a diagonalization which results in the following
variational equation

dδy

dt
= (IN×N − σ2Λ⊗ Γ)−1[IN×N + σ1Λ⊗ Γ]δy, (1.44)

where Λ is the matrix of eigenvalues of the Laplacian matrix L. Hence the states
equations are decoupled and the variational equation for state ith node reads

dδyi
dt

= (In×n − σ2λkΓ)−1[DF(xs) + σ1λkΓ]δy, k ∈ {2, · · · , N} (1.45)

Therefore, the maximum Lyapunov exponent of the variational equation (1.45)
determines the stability of the synchronous state. If it would be negative the
state is stable otherwise is unstable.
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1.5.4 Stability of clusters

Earlier the stability of complete synchronization using the MSF approach has
been introduced. Master stability diagram shows the transition and network
parameter's threshold by which complete synchronization remain stable for a
generic network network. Furthermore, it has been explained how by loosing
synchronization networks tend to form clusters where a single synchronous man-
ifold xs bifurcate to M synchronous manifold where 2 ≤ M ≤ N depends on
network parameters. N represents number of nodes and M = N is the extreme
condition where there are no synchronized nodes. Stability analysis of such states
can not be analyzed with MSF since the analysis in master stability function is
based on a single state synchronous manifold which is kept apart through diag-
onalization to manipulate those states transverse to it.

However by clusters there are multi-state manifolds of synchronization for
which there should be considered M variational equations and study all trans-
verse to each synchronous manifold as It is discussed in [42]. It has to be con-
sidered also that dimension of synchronous manifold in this case is more than
that of compete synchronization. The variational equations for the Laplacian
coupled oscillators described by equation (1.26) about the synchronous manifold
of clusters is de�ned as:

dδx

dt
=

[
M∑
m=1

Em ⊗DF(xsm(t)) + σL
M∑
m=1

(Em)⊗DH(xsm(t))

]
δx(t) (1.46)

where Em is an N dimensional matrix whose diagonal entries Emii = 1 if ith node
belongs to cluster mth otherwise Emii = 0.

∑M
m=1E(m) = IN . Using the advan-

tage of group theory the equation can be block diagonalized [42] corresponding to
the cluster structure using a matrix T. The resulted block diagonalized matrix
is

L′ = T−1LT =

[
Ltran 0

0 Lsyn

]
(1.47)

In this way the set of eigenvalues of L (0 = λ1 < λ2 < · · · < λN ) is divided
into two groups, each belonging to one diagonal block, Lsyn , with dimension
n2, representing the synchronous subspace and Ltran , with dimension n1, in-
dicating the subspace of transverse motions (with 0 eigenvalue belonging to
Lsyn), satisfying the sorting relations (0 = λ1syn < λ2syn < · · · < λn2syn),
(λ1tran < λ2tran < · · · < λn1tran) with N = n1 + n2 [21]. The matrix M of
eigenvectors of the permutation matrix can be used as the matrix T so that

M : M−1PgM = P̂ = diagonal

By projecting the state variables on space spanned by vectors of Pg (de�ned in
(1.21)) i.e. δy = (T⊗ In)δx, the variational equation is

dδy

dt
=

[
M∑
m=1

Jm ⊗DF(xsm(t)) + σL′Jm ⊗DH(xsm(t))

]
δy(t) (1.48)
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where Jm is the projection of Em. Therefore linearization about synchronized
cluster states {xs1(t),xs2(t), · · · ,xsm(t)} Therefore, cluster synchronization is
stable if

1. All maximum Lyapunov exponents corresponding to transverse mode would
be negative which means the stability of transverse modes.

2. The asymptotic synchronous pattern would exist in the steady state.



Chapter. 2

Description and characterization of the experimental

setup

Networks of chaotic oscillators and their complex dynamics have been widely
considered in the literature; in particular, networks with Chua's circuits as nodes
have been commonly used to study synchronization emerging in networks of dy-
namical systems. However, most of the available results are of theoretical and
numerical nature, whereas relatively few experimental studies have been pre-
sented. This is mainly due to di�culties in the realization and operation of
networks with a large number of nodes. Indeed, most of the available experi-
mental results have been obtained for networks of two or three nodes. A larger
scalable setup has been proposed to study higher dimensional networks with a
nearest neighbor structure in the context of Cellular Neural Networks (CNNs) but
few are available for networks with a general recon�gurable structure. Moreover,
most experiments have been dedicated to investigate the complete synchroniza-
tion phenomenon, where all states of the nodes synchronize asymptotically. Few
examples are available of experimental e�orts in the study of other interesting
phenomena such as phase synchronization, clustering formation, the emergence
of patterns and waves within the ensemble of oscillators. In order to overcome
such limitations, and test complex networks of chaotic oscillators having a high
number of nodes (up to 48) and having a general and recon�gurable structure,
an experimental test-bed has been realized in the Circuit Laboratory of the De-
partment of Electrical Engineering and Information Technology (DIETI) of the
University of Naples Federico II. The present chapter is dedicated to the com-
plete description and characterization of the setup. Its peculiarity, with respect
to other experimental arrangements, resides in: (i) the full and direct control of
the network structure, the link type and coupling strength; (ii) the possibility
of selecting each node main parameters; (iii) a modular high rate multichannel
acquisition section for the simultaneous analysis of the large number of variables
under observation. Figure 2.1 shows the schematic of the experimental setup
which is composed of three main modules:

(i) a set of N nodes, that are Chua's circuits, whose parameters can be set
individually;

37
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(ii) an interconnection module through which the nodes are coupled;

(iii) a data acquisition system which allows the continuous monitoring of the
variables of interest.

The �rst version of the test-bed dates back to the beginning of 2011 and in the
following will be addressed as NetV11 (�gure 2.2a). A newer version (NetV16)
has been completed in 2016 (�gure 2.2b). The main di�erence between these
two versions resides in the interconnection module: in version NetV11 the links
among the nodes were established manually by properly placing a set of jumpers;
in version NetV16 the connections are fully automated and controlled directly
via Personal Computer.

Controlled
Acquisition Board

NATIONAL
INSTRUMENTS

NI cDAQ-9178
+

NI 9215 modules

Z12 Z13

Z23

Z24
Z34

n

Z14

Z1n
Z2n Z3n Z4n

Chua #1

Chua #2

Chua #n

Controlled Link Network
Controlled
Chua’s set

Figure 2.1: schematic of experimental setup

Both setups are adapted for testing dynamically coupled networks as well where
coupling capacitors are paralled to coupling resistors. Figure 2.3 shows both
setups equipped by capacitive links where in both the capacitor values are ad-
justable manually through DIP switches. We have characterized a wide range
of capacitive links for the setup NetV16 which will be reported in the following
relative section.
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(a) (b)

Figure 2.2: experimental setups coupled by resistors (static coupling) a) NetV11-
partially automatized b) NetV11-Fully automatic

(a) (b)

Figure 2.3: experimental setups equipped by capacitive links a) NetV11 b)
NetV16

2.1. Description

2.1.1 Chua's circuits as network's nodes

For the sake of robustness and accuracy all Chua's circuits have been realized
following the implementation proposed in [27] which results in a robust and
economical assembling of Chua's circuits. Moreover the inductor is replaced by
the synthesis presented in [1] using inductance gyrator composed by 2 operational
ampli�ers, one capacitor and 4 resistors. This implementation provides a more
accurate systems for the practical purposes such as data measurement, tolerance
and parasitic parameters' control since the commercial capacitors are closer to
the ideal ones than those of inductors.
Figure 2.4 shows the schematic of the realized Chua's circuit, on which the values
of components are indicated for NetV11. Table 2.1 shows the elements' values of
Chua's circuits applied in the second version NetV16. The equivalent inductor
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Figure 2.4: schematic of experimentally implemented Chua's circuits

synthesized by gyrator can be computed as

Leq = R7R9R10C3/R8

Table 2.1: Elements' values of Chua's circuit installed in second version of setup

Element value
R1 219.79Ω

R2 219.83Ω

R3 2200Ω

R4 22kΩ

R5 22kΩ

R6 3296.25Ω

R7 1Ω

R8 1Ω

R9 329.75Ω

R10 54.60Ω

C1 10.05nF

C2 100.65nF

C3 1.03F
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2.1.2 Interconnection network

The coupling links are realized by resistors (static links) as well as capacitors or
parallel resistors and capacitors (dynamic links) with separately adjustable type
and strength. This module has been realized di�erently for the mentioned setup
versions which is described in the following.

1. The coupling resistive con�gurations for NetV11 are composed of set of
physical resistors adjustable through USB controllable digital switches DG412DJZ
and a matrix of manually controllable interconnections where two nodes can
be coupled though a coupling resistor by placing jumpers (JP ) as �gure 2.5a
shows. Each static coupling link consists of two digital switches DG412DJZ

(a) (b)

Figure 2.5: a) schematic of manual connection among two Chua's circuits using
jumpers (JP) b) schematic of USB controllable digital switches adjusting physical
coupling resistors

connecting to 8 resistors which can provide 8 bit of resolution. Therefore
each coupling link can vary among 28 = 256 di�erent scalable values. On a
single PCB, 8 coupling resistors are mounted along with their correspond-
ing switches. For each coupling resistor one shift register SN74HC595N is
mounted on the same PCB where two of shift registers are connected to a
decoder SN74HC138 for individual setting of each coupling though USB in-
terface UM245R. Figure 2.5b depicts an schematic of two coupling resistors
controlled by UM245R. Figures 2.6a and 2.6b show interconnection matrix
providing 16 connections and 8 coupling resistors on a single PCB, respec-
tively. 4 PCBs on each 8 static coupling links are mounted, are accessible
through one USB interface UM245R for the purpose of control.

2. In the second version NetV16, physical coupling resistors are replaced by
digital potentiometers AD5293 for each, with maximum nominal resistor
of 20 and 50 kΩ. End-to-end resistor tolerance error is < 1%. Figure 2.10a
shows the schematic of the potentiometer. The AD5293 shift register has
16 bits data-word consisting of two unused bits, which are set to 0, followed
by four control bits (to choose the function of the software command for
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(a) (b)

Figure 2.6: experimental setup a) interconnection matrix for 16 links b) 8 cou-
pling resistors mounted in a single PCB

(a) (b)

Figure 2.7: a) schematic of potentiometer AD5293 b) potentiometers applied in
the setup

example writing or reading) and 10 RDAC data bits. The RDAC register
shown in schematic controls directly the position of digital potentiometer
wiper (W). The 10-bit data in the RDAC latch is decoded to select one
of the 1024 possible settings available in potentiometer accessed by wiper
terminal. Digital programmed output resistance between the W terminal
and B terminal is obtained as,

RWB(D) =
D

1024
×RAB

where D is decimal equivalent of the binary code loaded in the 10-bit RDAC
register and RAB is the end-to-end resistance. Resistance of RWA is a
digitally controlled complementary like mechanical potentiometer which
can be calibrated to give a maximum of 1% absolute resistance error. RAB
is calculate as,

RWA(D) =
1024−D

1024
×RAB
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In the zero-scale condition, a �nite total wiper resistance of 120Ω is present.
In the current setup version NetV16, maximum number of coupling resistors
are 16 realized by 16 potentiometers, each group of 8 mounted on a single
PCB.

2.1.3 Data acquisition real time analysis and control

For simultaneous, multiple data acquisition and real time processing of large sets
of electrical measured data in complex network, currently 64 variables, National
Instrument compactDAQ series instruments, as well as the LabVIEW software
for implementing the real time data processing and system control have been
used. Moreover additional to labview the system is accessible through matlab as
well.
In labview program after sampling data whose rate is 60k samples in a second,
there are two possible modes; visual and scan. In visual mode data is monitored
and coupling resistors can be changed step by step by operator while in the
scan mode operator choose a range for coupling resistors and then within that
range automatically all the values are scanned and data is saved and monitored
simultaneously. a sample of front panel of visual mode of labview is shown in
�gure 2.8. As �gure shows through labview the phase diagram of any single chua

Figure 2.8: monitoring data in labview-front panel

as well as relative phase diagram among chua's state variables are monitored.
Frequency response, as a representation of dynamic structure is shown as well. all
the waveforms of Chua's circuits upto 32 can be shown individually or merged in
order to distinguish better the state of complete synchronization. The resolution
of observing waveforms can also be changed which is useful for observing clusters.

2.2. Characterization

2.2.1 Node's Parasitics and Tolerances

As the early step, for Chua's diode and the op-amp equivalent inductor, an ac-
curate experimental characterization has been carried out in order to assess that
the tolerances and parasitic elements were within the prescribed ranges. Chua's
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diode, implemented as in �gure 2.4 with nominal values as therein indicated,
should theoretically give a symmetrical piecewise linear characteristic as shown
already in �gure 1.1b, with the parameters reported in table 2.2.

Table 2.2: Experimental and theoretical parameters of Chua's characteristic

Description
Ga[S] Conductance −7.56.10−4 −6.89.10−4 −6.88.10−4

Gb[S] Conductance −4.09.10−4 −3.77.10−4 −3.76.10−4

Gc[S] Conductance 0.0046 0.0019 0.002

E1[V ] Break voltage ±0.97 −0.988 1.008

E2 [V] Break voltage ±6.79 −5.72 6.27

vsat [V] Saturation voltage ±7.47 −7.03 7.59

The nonlinear characteristic (v, i) of the Chua's diode has been experimen-
tally measured with a simple characterization scheme. In �gure 2.9, a comparison
between the theoretical expectation and measured samples is reported. The char-
acteristic is almost symmetric in the range [+5.7,+5.7]V (changes are lower than
2%), while sensible changes (of about 5%) can be found in the break voltage E2,
in the slope Gc and the saturation voltage Vsat. These values are also di�er-
ent from the theoretical nominal values that were previously calculated. The
di�erences can be ascribed to the adopted operational ampli�ers that do not
provide, in the needed tolerance range, a symmetric output and whose positive
and negative saturation voltages slightly di�er from one another. We remark that
such di�erences do not a�ect signi�cantly our experiments because the regime
|vd| ≥ 5V was never explored.
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Figure 2.9: Chua diode characteristic

2.2.2 Characterization of node's dynamics

Aiming to construct a physical implementation of a recon�gurable complex net-
work, to be used as prototypical model of di�erent real complex systems, a pre-
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liminary goal has been the evaluation of the realized system when compared
with simulations. A detailed characterization of the single node dynamics as
a function of the Chua's resistor Rc value has been carried out, following the
methodology suggested in [46] for an automated experimental campaign. Typi-
cal problems in bifurcation analysis as period evaluation, transition to chaos and
attractor discriminations have been faced in the automated evaluation of the ob-
served waveforms. A global assessment of the node's behavior has been pursued
by comparing the experimental bifurcation diagram with accurate PSpice sim-
ulations, taking into account real measured components values, parasitics and
the nonlinear element modeled by a piecewise linear resistor as described in the
previous section. The Chua resistor R is chosen as the bifurcation parameter
and the value of voltage vc1 (at crossing points vc2 = 0) as dependent variable.
Figure 2.10 shows the simulated (a) and experimental (b) bifurcation diagrams
obtained, respectively, in the case in which the voltage vC2 reaches zero with pos-
itive slope. The two maps compare satisfactorily, with major bifurcation points
in good agreement with respect to the bifurcation parameter Rc.
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Figure 2.10: poincarè map of Chua's circuit a) simulation result b) experimental
result

A coarse classi�cation of the observed experimental behavior of an isolated node
as a function of Rchua is given in Table 2.3 (starting from periodic behavior (limit
cycle), a transition is observed to a double scroll attractor followed by a single
scroll one, and �nally a transition back to periodic behavior).

The recorded, experimental and simulated dynamics can be observed in �gure
2.11 where some representative phase portraits are shown.
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Table 2.3: Observed dynamics of an isolated node

Asymptotic behavior Rchua range [Ω]

Limit cycle 1667 ≤ Rchua ≤ 1685

Limit cycle 1885 ≤ Rchua ≤ 1940

Double scroll 1690 ≤ Rchua ≤ 1814

Single scroll 1821 ≤ Rchua ≤ 1943

Single scroll 1846 ≤ Rchua ≤ 1854

Single scroll 1858 ≤ Rchua ≤ 1862

Period adding (T = 2) Rchua = 1866, 1872

Period adding (T = 3) Rchua = 1855, 1875

Period adding (T = 4) Rchua = 1845, 1867, 1868, 1873, 1876

Experiment Simulation
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Figure 2.11: experimental and simulated Chua's circuits' dynamics



2.2. Characterization 47

In this study, probing the collective dynamics of the networks for simplicity
all the Chua's circuits are set nominally identical with Rc = 1800Ω and 1796Ω
in NetV11 and NetV16 respectively where they generate chaotic double scroll
attractors. The tolerance among Chua's circuits elements is 1%. Circuit's are
coupled through the output extracted from their state variable vC1.

2.2.2.1 Modi�ed Chua's circuit model to reveal clusters

As it is mentioned the inductorless experimental setup has been realized by imple-
menting inductive gyrator composed of opamps. The output voltages of opamps
apply a constraint on VC2 which is not considered in the commonly used model
of Chua's circuit recalled in chapter 1. We have realized that, in the absence
of this constraint, the numerical results diverge after the network looses com-
plete synchronization. Consequently by increasing VC2, the voltage VC1 increase
over saturation voltage and therefore it saturates for all Chua's circuits. This
results in a signi�cant disagreement among experimental and simulation results
of emerged dynamic after the network looses complete synchronization. Even
considerable disagreement appears with predicted MSF threshold which agrees
with experiment. When Chua's circuit saturate the patterns generated by physi-
cal setup after loosing complete synchrony cannot be seen in the simulation. For
the agreement among experimental and simulation results it is necessary to con-
sider all the real conditions and constraints. For this purpose the Chua's model
is modi�ed taking in to account the gyrator restricted saturation voltage as the
following: 

dvC3

dt
= −G10

C3
vC2

dvC2

dt
=

G

C2
[vC1 − vC2] +

G7

C2
[vO2 − vC2]

dvC1

dt
=

G

C1
[vC2 − vC1]− 1

C1
i(VRN

)

(2.1)

vO2 =



vsat, : VO2 > vsat

VO2 , :| VO2 |< vsat

−vsat, : VO2 6 −vsat

vO1 =



vsat, : VO1 > vsat

VO1 , :| VO1 |< vsat

−vsat, : VO1 6 −vsat

Where VO2 = −R8

R9
vO1 + (1 +

R8

R9
)vC2 and VO1 = vC2 − vC3
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The corresponding iL = iR7 =
R8

R7R9
VC3 since the opamp is considered as ideal

one. Dimensionless equations can be obtained by changing the parameters as

before except z, β, g7 

dz

dτ
= −βy

dy

dτ
= g7vO2(y, z)− (1 + g7)y + x

dx

dτ
= α(y − x)− αI(x)

z =
vC3

E1
, β =

C2G10

C3G
, g7 =

G7

G

vO2(y, z) =



vsat
E1

, : VO2 >
vsat
E1

VO2 , :| VO2 |<
vsat
E1

−vsat
E1

, : VO2 6 −vsat
E1

vO1(y, z) =



vsat
E1

, : VO1 >
vsat
E1

VO1 , :| VO1 |<
vsat
E1

−vsat
E1

, : VO1 6 −vsat
E1

where VO2 = −R8

R9
vO1(y, z) + (1 +

R8

R9
)y and VO1 = y − z

The three equilibrium points of the circuit are as the following,

X∗− =


GR9(Gb −Ga)
R8G7(G+Gb)

E1

0
Ga −Gb
G+Gb

E1

 X∗0 =

0
0
0

 X∗+ =


GR9(Ga −Gb)
R8G7(G+Gb)

E1

0
Gb −Ga
G+Gb

E1


Table 1 shows the Characteristic of this model for a single Chua's circuit. Figure

2.12 shows all the eigen values of equilibrium points for Rchua varying from 1500Ω
to 2000Ω where the arrows are toward the direction of increasing Rchua. As it is
shown in the �gure by increasing Rchua the stability of equilibrium points changes
according to the change on the sign of real part of complex eigen values which
veri�es the hopf bifurcaion. The characteristic of this mode is similar to the one
has reported in chapter 1 as well as the experimental results. The results show
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that as long as we are seeking the behavior of a single Chua's circuit which is
uncoupled from any network or we are interested in the global synchronization
threshold, both models are applicable, however in order to simulate the network
of Chua's circuit beyond synchronization threshold and reveal the patterns of
cluster generated by the present experimental setup, the constraint on the applied
opamps of gyrator has to be considered for which in this work the modi�ed Chua's
circuit has been proposed. In this model the real applied capacitor in gyrator
has been directly modeled and then the equivalent current to the inductor has
been obtained in a relation with VC3. This is the current �owing on R7 since the
opamps are considered ideal. Later in chapter 4 the simulation results of emergent
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Figure 2.12: Real and complex eigen values of equilibrium points in D0 origin
and D1 outer region; direction of arrows are toward increasing Rchua

dynamics produced by both model when the network has lost synchronization
will be shown and compared.

2.2.3 Characterization of interconnection links

For the sake of accuracy all resistors (R1 − R16) realized by potentiometers for
both nominal resistors 20kΩ and 50kΩ have been characterized and the tolerance
has been calculated as:

%Error(k) =
max(Rav)−min(Rav) ∗ 100

Rav(k)

Rkave =
1

r

r∑
j=1

Rkmean(j)

Rk,rmean =
1

ns

ns∑
i=1

Rk,r(j)

ns = 1, · · · , 3 k = 1, · · · , 1024 r = 1, · · · , 16
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where ns = 3 is the number of measured samples for each of coupling resistors
(R1−R16), r is the number of available realized resistors by potentiometer whose
maximum is 16 currently and k is range of all resistor values generated by po-
tentiometer with maximum of 1024. Figure 2.13a shows the error measured for
all potentiometers with nominal resistor RAB = 20, 50kΩ. The measurement has
been accomplished in 2 di�erent ways for all; �rst the resistors are measured
when all are decoupled from multiplexers; through which they are coupled with
Chua's circuits, second the resistors are measured when they are all connected to
multiplexers. The result are shown in �gure 2.13a. Using these potentiometers
has brought the advantage of accuracy in terms of wiring where the networks'
nodes and their interconnection have become more compact. However compared
with the �rst setup version for which physical resistors are used the error is not
linear. The error is more that 3% for R < 1082Ω, between 3% and 1% for
1082Ω < R < 2639Ω and less than 1% for R > 2639Ω. We have chosen the
potentiometer of 50kΩ to explore the network dynamic according to better accu-
racy as �gure 2.13a shows and wider range it provides. To avoid destruction, the
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Figure 2.13: a) potentiometer characterization b) maximum current passing
through Rlink when the network is coupled through speci�c con�guraations

current �owing among terminal A and B, terminal W and A, and terminal W
and B has to be limited to the maximum continuous current of ±3 mA. In order
to ensure that the current passing through resistors in the coupling are within
the accepted range, the maximum current passing through when the network is
con�gured is measured for con�gurations all to all (all node are connected to each
other), star (all nodes connected to one common node and not any other), ring
and array among which all to all was expected to be the most crucial because of
stronger connection. Figure 2.13b shows the results where the red line is indicat-
ing the limit current passing through potentiometer and has to stay below 3mA.
For all con�gurations the minimum current passing though the coupling resistors
realized by potentiometer Rlink is zero when all nodes in any con�guration are
synchronized and most dramatic current passes though (where the jump hap-
pen in diagram) when they loos synchronization (synchronization is explained in
chapter 3).
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It is important to mention that the output resistor generated by each poten-
tiometer is not exactly equal to the one which is set as an input because of its
formula for decimal conversion. Each coupling resistor is physically connected
to multiplexer MPC508A whose pair of switches are connected at one side to
a coupling resistor and in the other side each one to a Chua's circuit output
(vC1). Through shift register 74HC595 the corresponding multiplexer and their
switches are selected to connect a pair of Chua's circuits. shift registers are
controlled by decoder and the whole interconnection module is addressed and
controlled though a micro-controller PIC18F4550 and USB interface by an ad
hoc Labview program as well as matlab.

Similar to the �rst version, we have realized dynamic links composed of capacitors
or capacitors and resistors where each coupling capacitor consists of 8 capacitors
parallel to each other through DIP switches and therefore providing 8 bit of res-
olution i.e 256 di�erent values ranging from 125pF to 34nF with the step of
125pF . Figure 2.14a depicts the schematic of coupling capacitors representing a
dynamic link which can be parallel to coupling resistors. The practical imple-
mentation of coupling capacitors are shown in �gure 2.14b which are maximum
8 currently. All the capacitors composers of each link have been selected in such

(a) (b)

Figure 2.14: coupling capacitors a) schematic b) practical implementation

a way to cover mentioned desired range. Figure 2.15 shows the characterization
result with the error has been computed as the following

Error =
max(Ci)−min(Ci)

max(Ci)
i = 1, · · · 8
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Figure 2.15: coupling capacitors characterization

As �gure shows the maximum error among all 8 coupling capacitors is 6.7%
in very low values and the rest remain below 4% which is acceptable for our
experiments. It is worth noting that when all the capacitors are disconnected
there is still a parasitic capacitor of DIP switches which is 2pF .
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Experiments on emergent dynamics: synchronization

and beyond

Synchronization is a process observed in a wide range of systems, from natural
ones such as �re �ies lightning, biological and neural networks to arti�cial ones
like power grids and etc. This behavior can play a key role in proper functioning
of many systems such as power grids or information processing in the brain. How-
ever, on contrary, it can be related to disorders such as mental diseases [51, 54].
For all these reasons, among all emergent and collective dynamics of a complex
network, several studies have been focused on synchronization of the network's
components [5, 6, 24, 25, 41, 47, 53, 58, 60, 61].
Besides, it should not be forgotten the big challenge when collective behavior in
the network di�ers signi�cantly from the individual behaviors of its components.
In this regard, studying synchronization of chaotic deterministic dynamical sys-
tems is of particular importance. Chaotic systems, when coupled in a network in
addition to exhibit synchronization, might evolve in various emergent dynamics
with di�erent structures and patterns.
This study aims to explore emergent dynamics of coupled Chua's circuits; syn-
chronization and beyond. Moreover, the robustness of synchronization as a func-
tion of coupling is studied. We have examined various network con�gurations for
the purpose of inspecting synchronization mechanism as a function of network
structure, node's number, coupling strength and parameter mismatch. Descrip-
tion of the work along with results can be found also in [31] . Studied networks
are composed of nominally identical Chua's circuits coupled through intercon-
nection layers classi�ed in 3 groups:

(i) Networks coupled by nominally identical undirected resistive links, termed
as di�usive static coupling with coupling function, that is network model
(1.26) with H(xi) = Γxj .

(ii) Networks coupled via nominally identical undirected links, composed of a
pair of parallel resistor and capacitor named as dynamic coupling whose
dynamics are described by (1.45).

(iii) Multiplex Networks, con�gured heterogeneously by static and dynamic

53
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links.

This chapter will summarize the experimental results obtained through all the 3
classes of couplings discussed above. The chapter is organized in 5 sections. In the
�rst section the behavior of an exemplary Chua's circuits in�uenced by coupling
in the network is described and the simulation results are shown. The second
section discusses the occurrence of complete synchronization in various exam-
ined networks of Chua's circuits. This section starts with describing the master
stability function applied to network of Chua's circuits with di�erent coupling
functions and the calculated synchronization thresholds are compared with the
experimental results followed by. In section 3, we have considered more complex
models of interaction by using dynamic coupling (group (ii)) where the results
of experiments are shown and compared with PDMSF approach. Section 4 ex-
plains the examined networks coupled by both static and dynamic links, named
as multiplex networks, along with the acquired results in which we have observed
signi�cant improvement of synchronization level. The �nal section widely demon-
strate the emerging dynamics and the mechanism that network goes through just
after loosing synchronization in both statically and dynamically coupled networks
where the results show a nontrivial patterns respect to con�guration and type of
coupling in the network.

3.1. Synchronization of prototypical chaotic systems

Consider 4 identical Chua's circuits each with its individual dynamic and gov-
erned by the following di�erential equation (1.9). Figure 3.1a shows the sim-
ulated phase diagram of each Chua's circuit. In the experiment the dynamic
structure of all nodes are the same and chaotic single scroll, although they start
from di�erent initial conditions. Figure 3.2a depicts their waveforms in time
domain 0 < t < 0.01. We are interested in observing the impact of coupling
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Figure 3.1: simulated phase diagram of 4 Chua's circuits a) decoupled b) coupled
through resistors

on dynamics of network's node and emergence of synchronization. For this rea-
son Chua's circuits are coupled in an array con�guration as shown in �gure 3.3
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at time t1 = 0.01s with a high coupling strength implemented by a resistor of
1kΩ. After a transient time all the Chua's circuits converge to the same solu-
tion as it is shown in the �gure 3.2a. By weakening the coupling strength at
t2 = 0.03s through a 3kΩ resistor, Chua's circuits start loosing their agreement
and �nally they reach di�erent solutions respect to each other. Figure 3.2b shows
the steady state dynamic of all discussed intervals from the top respectively.
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Figure 3.2: a)waveforms of 4 Chua's circuits in three di�erent conditions b)
corresponding steady state waveforms

1 2 3 4

Figure 3.3: array con�guration

The above example shows the impact of their interaction in the network with the
result that their corresponding emergent dynamics can evolve completely di�er-
ent from their stand-alone behavior or can converge to the same solution for all
the coupled systems. Network con�guration, node's number and links type and
strength are all network's parameters which strongly in�uence the collective or
emergent dynamics of the network.

3.2. Experiments on networks of Chua's circuits with static cou-
pling

The network discussed in the �rst section is coupled through un-directed, linear
and static couplings implemented by resistors. The equation of motion can be
written as

dx

dt
= F̃(x)− εL⊗ Γx (3.1)

where F̃(x) := [FT (x1), · · · ,FT (xN )]T , and x := [xT1 , · · · ,xTN ]T are the stack
vectors of the vector �elds and states of all Chua's circuits. L and Γ are the
laplacian matrix and the coupling function matrix, respectively. The coupling
strength is represented by ε which is uniform through all the network. As it
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is discussed in chapter 1, using master stability function (MSF) [41], synchro-
nization and its stability can be checked in such networks as a function of their
parameters through the variational equation

δẏi = [DF(xi)− ελiΓ]δyj i ≥ 2 (3.2)

Figure 3.4 shows the simulation results of master stability function for di�erent
coupling matrices Γ in the network of Chua's circuits where each individual
evolves identically in chaotic double scroll attractor. The simulation is carried on
using ode45 Matlab where the integration is run for long enough time considering
1

3
of time to as transient. Each sub-�gure shows the MSF characteristic as a
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Figure 3.4: MSF diagram for simulated coupled Chua's circuits with various
coupling functions and strengths

function of the coupling strength (σ = ελ). Regions with negative maximum
Lyapunov exponent verify the occurrence of the complete synchronization. MSF
characteristic can vary among all 3 types classi�ed as:

(i) Synchronization in the network occurs at σth and remain forever, e.g. the
case x→ x (�gure 3.4).

(ii) Synchronization is reached at σth1 and, by increasing the coupling strength,
it is lost again at σth2 and never is obtained again, e.g. the case z → x
(�gure 3.4).

(iii) Synchronization never occurs since the maximum Lyapunov exponent is
always positive, e.g. the case x→ z (�gure 3.4).
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σth = ελi is the threshold of synchronization. For coupled Chua's circuits the
normalized coupling strength is given by ε = (C2RC)/(C1Rlink). In what follows
we consider only the case where the Chua's circuits are coupled through their
�rst state variable vC1 which is equivalent to consider the coupling matrix as

Γ =

1 0 0
0 0 0
0 0 0


The �rst sub�gure in 3.4 shows the MSF characteristic of this case where λ2; the
second eigen value of laplacian matrix, corresponds to σth i.e the value of the
smallest coupling resistor Rlink by which synchronization is lost.
The potential of our setup has allowed to investigate a wide range of network
con�gurations with di�erent number of nodes �gure 3.5 and some of the notable
results are summarized in this section.

16 nodes ring 16 nodes array

16 nodes star

16 nodes 4x4 matrix

4 nodes all-to-all 4 nodes ring 4 nodes star

4 nodes array 4 nodes 
(generic)

4 nodes near all

8 nodes ring 8 nodes array 8 nodes star

8 nodes 
(generic)

8 nodes
bipartite

8 nodes 
second near

16 nodes double ring

16 nodes double array

Figure 3.5: Di�erent topologies implemented experimentally using the set up

As it is described in chapter 3, setup is available in two versions. As regards
as the �rst version, the results of networks with 8,16,24,32 coupled Chua's cir-
cuits have been reported, all in array and ring con�gurations; additionally, star
for networks of 8 and 16 Chua's circuits has been also con�gured. The second
version of setup, whose maximum number of nodes is currently 8, has been used
to examine networks of 4,5,6,7,8 Chua's circuits with various con�gurations ex-
ploring additionally the in�uence of non-local links (which connect non-adjacent
nodes) in synchronization threshold. For all of the cases, coupled Chua's circuits
are identical with chaotic double scroll as their individual dynamics; all couplings
are uniform and undirected.
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An experimental result in which the complete synchronization has formed is
shown in �gure 3.6a for the network of 8 Chua's circuits coupled in array struc-
ture with coupling resistor Rlink = 431Ω. The phase diagram of each node is
depicted in �gure 3.6b. Phase diagrams show all nodes are converging to chaotic
double scroll solution which is the solution of decoupled nodes as well. Figure
3.6c shows the relative phase diagram where vC1 of the �rst node is plotted ver-
sus vC1 of all nodes. Relative cross correlation computed among vC1 of each pair
of nodes i and j is shown in �gure 3.6d. Poincarè map of all nodes is shown in
�gure 3.6e where the plane vC2 = 0 is considered as the poincarè section; results
con�rm the chaotic structure of nodes' dynamic as well as their agreement.

For the array, ring and star con�gurations, networks of 8,16,24 and 32 nodes have
been scanned for coupling resistor Rlink ranged from 120Ω to 3kΩ. Figure 3.7
shows their synchronization and cross correlation index diagram in the case of
ring con�guration. Vertical lines indicate theoretical threshold obtained by MSF
(corresponding by color to each network) which highly agree with the experi-
mental results. As �gure shows, by increasing the number of Chua's circuits, the
network synchronization come to be more fragile and is lost in lower coupling re-
sistors. Similar scenario is happening for the array con�guration which is shown
in �gure 3.8. Comparing �gures 3.7 and 3.8 array con�guration is more delicate
and process of loosing synchronization is more abrupt.

The experimental results for the star con�guration are depicted in �gure 3.9
which is di�erent from the other two con�gurations since, by increasing number
of nodes, there is no shift in synchronization threshold and almost in all networks,
synchronization shows very similar characteristic. This behavior is con�rmed by
MSF since the second eigen value of laplacian matrix λ2 in star con�guration is
always 1 regardless of the number of nodes .

Table 3.1 shows the obtained synchronization threshold values both experimental
and theoretical for discussed con�gurations. N represents the number of nodes,
Rlinkth(MSF ) and Rlinkth(exp) denote the threshold calculated through MSF
and experiment respectively beyond which synchronization is lost. Considering
that the minimum coupling resistor in the setup is 120Ω, for some networks
(32-ring and array,16 and 24 both con�gured in array) which loose the synchro-
nization below this value, the experiment result is not available.

Moreover in these experimental studies the role of non-local links (the link which
connect two non-adjacent nodes) on synchronization level has been studied for
several networks. Figure 3.10a shows several con�gurations of networks with 6
Chua's circuits.
Figure 3.10b shows the cross correlation index of all con�gurations. With regard
to synchronization, the most robust is all to all con�guration and the most fragile
one is the array con�guration. Con�gurations b and c and g in �gure 3.10a show
the same synchronization characteristic and all loose synchronization for the same
value of the coupling strength. This results show the presence of nonlocal link
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Figure 3.6: 8 coupled Chua's circuits at Rlink = 431Ω reveal complete synchro-
nization a) waveforms b) phase diagram (vC1i vs. vC2i) c) relative phase diagram
(vC11 vs. vC1i) d)relative cross correlation index Icc(vC1i, vC1j) e)poincarè map

among nodes 2 and 5 in topology g has not improved the synchronization compare
to con�guration b in which no nonlocal links is implemented. However by adding
the second nonlocal link among nodes 3 and 6 in topology f and further among
nodes 1 and 4 in topology e, synchronization has kept improving each time.
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Figure 3.7: 8 Chua's circuits con�gured in a ring a) synchronization index (IS)
b) cross correlation index (ICC)
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Figure 3.8: array con�guration of 8 Chua's circuits a) synchronization index (IS)
b) cross correlation index (ICC)

3.3. Experiments on networks of Chua's circuits with dynamic
links

For the purpose of considering further complex model of interconnection, an
additional dynamic term has been considered in the coupling of Chua's circuits
by implementing coupling capacitors Clink parallel to coupling resistors Rlink.
The equation of motion for this network can be written as

dx

dt
= (InN×nN + ε2L⊗ Γ)−1(F̃(x)− ε1L⊗ Γx) (3.3)

where L and Γ are the laplacian and coupling function matrix respectively. ε1

and ε2 are the coupling strengths of the proportional (resistive) and derivative



3.3. Experiments on networks of Chua's circuits with dynamic links 61

1 2 3
Rlink(kΩ)

10-2

100

I
S

Synchronization Index VC1 (Star Configuration)

N=4
N=5
N=6
N=7
N=8

(a)

0 1 2 3 4
Rlink(kΩ)

0.2

0.4

0.6

0.8

1

I
S

Cross Correlation Index VC1 (Star Configuration)

N=4
N=5
N=6
N=7
N=8

(b)

Figure 3.9: 8 Chua's circuits coupled in star a) synchronization index (IS) b)
cross correlation index (ICC)

Table 3.1: Synchronization threshold (experiment vs. MSF)

Con�guration N λ2 Rlinkth(MSF ) Rlinkth(exp)

Ring

8 0.5858 1729Ω 1831Ω
16 0.1522 449Ω 431Ω
24 0.0681 201Ω 209Ω
32 0.0384 113Ω −

Array

8 0.1522 449Ω 431Ω
16 0.0384 113Ω −
24 0.0171 50Ω −
32 0.0096 28Ω −

Star

4 1 2949Ω 2930Ω
5 1 2949Ω 2979Ω
6 1 2949Ω 2979Ω
7 1 2949Ω 3027Ω
8 1 2949Ω 3027Ω

(capacitive) contributions. Synchronization stability problem for this network
can be solved by PDMSF approach [8] by �nding the maximum Lyapunov expo-
nent of the following variational equation

dδyi
dt

= (In×n + ε2λiΓ)−1(DF(x)− ε1λiΓ)δyi for i ≥ 2 (3.4)

where k1 = ε1λ and k2 = ε2λ. The simulation results of PDMSF analysis for
coupled Chua's circuits of this study is shown in �gure 3.11 The black line shows
the result when k2 = 0 i.e. the value of capacitor in the coupling link is zero.
The synchronization threshold is 6.1, which agrees with MSF result. The red line
shows the condition where couplings in the links are composed of only capacitors.
The threshold of gaining synchronization in the absence of Rlink is 0.3. This result
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Figure 3.10: 6 coupled Chua's circuits a) examined con�gurations b) correspond-
ing cross correlation indexes ICC for all shown con�gurations

shows the strong impact of Clink in improving synchronization in the networks.
The corresponding Rlink and Clink to k1 and k2 respectively for Chua's circuit is
calculated as

Rlink =
RcC2λ2

C1k1
Clink =

k2C1

λ2

For the purpose of inspecting the e�ect of di�erent con�gurations; coupled through
dynamic links, in improving synchronization level, the two topologies shown
in �gure 3.12 have been implemented and their emergent dynamics have been
explored. As �gure shows, both topologies are composed of 8 identical nodes
(Chua's circuits) and the coupling links are set to be uniform. Each link is real-
ized by a pair of parallel coupling resistor Rlink and capacitor Clink. The second
eigen value of laplacian matrix λ2 is 0.2509 for the �rst topology (a) and 0.2384
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for the second one. Capacitors for all the links vary from 2pF to 20nF with the
step of 500pF where for each capacitor coupling resistors are scanned from 120Ω
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Figure 3.12: topologies implemented to dynamically coupled Chua's circuits

Two dimensional PDMSF diagrams are shown for both topologies in �gure 3.13
where regions with positive maximum Lyapunov exponent show the ranges for
which synchronized solution is unstable and cannot occur, whereas regions identi-
�ed by negative maximum Lyapunov exponent are those with stable synchronous
solution. The two networks are examined by the experimental setup for the cou-
pling range mentioned above. Cross correlation and synchronization index of two
experimentally tested networks are evaluated and the results are compared with
the simulated ones as well as PDMSF diagram in �gure 3.13. Figure 3.14 shows
synchronization indexes for topology (a) obtained by simulation and experiment.
Similarly for topology (b) synchronization indexes are shown in �gure 3.15.
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(a) (b)

Figure 3.13: simulated PDMSF for a)topology a b)topology b

The simulation and experimental results show for both topologies that, when the
coupling capacitors are very small, the synchronization threshold highly agrees
with the threshold obtained by MSF approach in which the couplings are static
i.e there are no capacitors in the links. Experimental threshold of loosing syn-
chronization for both topologies (a) and (b) when Clink = 2pF (This amount is
the parasitic capacitor in the DIP switches which parallel the capacitors in each
link to the coupling resistors ) is 982Ω while the threshold obtained by MSF
for Clink = 0 are 740Ω for topology (a) and 703Ω for topology (b). By further
increasing the value of coupling capacitors the correlation level is improved ac-
cording to the appearance of blue regions in IS and ICC which shows increasing
of the synchronization level. Furthermore network topology (a) is showing better
result since the blue region in synchronization diagram is wider.
It is worth noting, as it is already mentioned in chapter 1, that cross correlation
index veri�es the phase synchronization and it does not guarantee the equality
of amplitudes, whereas synchronization index (IS) measures both phase and am-
plitude agreement and this is the reason why in experimental ICC diagram there
are more uniformly colored blue regions compared to IS .
Surprisingly, although the overall appearance of synchronization diagrams ob-
tained by experiment is similar to simulation results, plotting the individual
waveforms of chua's circuits reveals a poor agreement with theory and sim-
ulation. As an example, �gure 3.16 shows both simulated and experimental
waveforms of network topology (a) with Clink = 18.19nF and Rlink = 6841Ω,
located by pink arrow in both experimental IS and ICC diagrams of topology
(a). Recalling PDMSF diagram in �gure 3.14a the region with coupling capac-
itor Clink = 18.19nF is a totally stable region far beyond threshold of gaining
synchronization. According to theory in this region certainly, all chua's circuits'
solutions have to synchronize completely in a chaotic double scroll solution of an
individual node. However �gure 3.16a obtained by experiment shows only phase
correlated waveforms but not complete synchronization. For the same coupling,
�gure 3.16b obtained by simulation shows complete synchronization and chaotic
double scroll solution which agrees with theoretical results. Such disagreement is
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(a) (b)

(c) (d)

Figure 3.14: evaluated synchronization level for the topology shown in �gure
3.18a a) synchronization index (IS)-simulation results b) cross correlation in-
dex (ICC)-simulation results c)synchronization index (IS)-experimental results
d)cross correlation index (ICC)-experimental results

caused by super sensitivity of the system with respect to initial conditions: cur-
rently the initial condition of the state variables of the examined network cannot
be controlled physically. For proving the high in�uence of initial conditions on
network synchronization and solution structure we have examined the network
topology (a) coupled through Clink = 34nF (theoretically 100% stable synchro-
nized region) and Rlink being varied from 120Ω to 50kΩ in two conditions: in
the �rst test we have scanned all the resistors continuously whereas in the sec-
ond test, before varying the coupling resistor in each step, the coupling links are
isolated from the network automatically for 1 second (a time much bigger than
time constant). We have seen that in the �rst test in some speci�c threshold the
network looses synchronization and the dynamic immediately changes to periodic
with signi�cant partitioning: some nodes oscillate in positive region and some in
negative region, as shown in �gure 3.16a. In the second test, the network has
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(a) (b)

(c) (d)

Figure 3.15: synchronization level evaluated for the topology shown in �gure
3.18b a) synchronization index (IS)-simulation results b) cross correlation in-
dex (ICC)-simulation results c)synchronization index (IS)-experimental results
d)cross correlation index (ICC)-experimental results

become more robust in keeping synchronization: eventually looses the synchrony
and jumps to periodic solution but, immediately, recovers it. Figure 3.17 shows
the cross correlation acquired from both tests. This results shows the coexis-
tence of two solutions depending on initial conditions; such a result should be
studied deeply by analyzing the basin of attraction for such network. Therefore,
the presence of small parameter mismatches, parasitic terms and uncontrollable
initial condition, which are not considered in PDMSF approach has narrowed
experimental synchronization from complete to phase synchronization.

3.4. Experiments on networks with multiplex links

Networks in reality might be coupled through di�erent types of links, leading to
multiplex networks. In this study we refer to multiplex networks as those whose
couplings do not have the same types in all over the network, i.e. laplacian matrix
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Figure 3.16: waveforms of 8 coupled Chua's circuits with topology (a) coupled
by Clink = 18.19nF and Rlink = 6841Ω a) experiment b)simulation
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Figure 3.17: cross correlation index of topology a acquired under two text con-
ditions; �rst the coupling resistor is scanned continuously and the second test is
detaching all the coupling links for 1 second before each scan of coupling resistor

describing the resistive coupling (LRes) is di�erent from laplacian coupling matrix
representing capacitive(dynamic) coupling among nodes (LCap). Therefore the
equation of motion is governed by

dx

dt
= (InN×nN + ε2LCap ⊗ Γ)−1(F̃(x)− ε1LRes ⊗ Γx) (3.5)

The examined topologies are those shown in �gure 3.12; topologies a and b can
be combined in such a way that Chua's circuits are coupled by resistors through
topology a and by capacitors through topology b and vice-versa. Figures 3.19
and 3.20 show the synchronization and cross correlation indexes for both cases
obtained by experimental results. Figures show that the synchronization level
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Figure 3.18: topologies implemented to multiplex coupled Chua's circuits a,b)
8 Chua's circuits are con�gured by resistors through topology represented by
laplacian matrix LRes and at the same time coupled by capacitors through LCap

compared to dynamically coupled network topologies a and b, is improved and
multiplex topology a shows even a better results.

(a) (b)

Figure 3.19: multiplex network coupled via resistors and capacitors with topol-
ogy a (LRes) and b (LCap) respectively a) synchronization index IS b) cross
correlation index ICC



3.5. Further emergent dynamics: patterns and traveling waves 69

(a) (b)

Figure 3.20: multiplex network coupled via resistors and capacitors with topol-
ogy b (LRes) and a (LCap) respectively a) synchronization index IS b) cross
correlation index ICC

This types of networks can be studied in network control and robustness prob-
lems. However they have not considered theoretically yet.

3.5. Further emergent dynamics: patterns and traveling waves

Beyond complete synchronization, interestingly the experiments show a non-
trivial mechanism of synchronization loss which di�ers depending on the type
of con�gurations and coupling links. Through this transition a rich variety of
dynamical behaviors can be observed such as clustering and spatiotemporal pe-
riodic patterns and waves. Some of the results are reported and discussed in
[17, 31, 43, 44] as well. In this section the most notable dynamics in the network
with static couplings discussed in section 3.2 are presented.

The �rst reported case is nominally identical 24 chua's circuits con�gured in
array with uniform static links. It is observed that, by loosing synchronization,
nodes start partitioning into various clusters and converge to solutions di�erent
from complete synchronous solution. Figure 3.21 shows this network with two
di�erent coupling strength.

As �gure 3.21a depicts each 2 nodes are in one partition or cluster. Moving from
the center of network i.e. nodes 12 and 13, outwards, the amplitude of oscillation
has increased. By varying the coupling resistor to 334Ω (�gure 3.21b) number
of nodes in each cluster is doubled. poincarè diagrams in �gures 3.21 (c-d) show
this partitioning clearly. This mechanism has been repeated for networks with
array con�guration with di�erent numbers of nodes. In chapter 5 cluster syn-
chronization is discussed more extensively.
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Figure 3.21: 24 Chua's circuits coupled in a ring a) waveform at coupling resistor
Rlink = 245Ω b) Rlink = 334Ω c) poincarè diagram at Rlink = 225Ω d) Rlink =
334Ω

Mechanism of synchronization loss in ring of 24 Chua's circuits is shown in �g-
ure 3.22. In this case all nodes keep a close correlation after loosing complete
synchronization (�gure 3.22a) which is termed as lag synchronization since the
solution of all nodes will be the same after applying a suitable phase shift.

In �gures 3.22(b-e) the emergent of spatiotemporal periodicity is shown. Figures
3.22(b-c) show travelling waves rotating clockwise and couter-clockwise. By fur-
ther increasing the coupling resistance in �gure 3.22(d) waveforms can be viewed
as superposition of two waveforms of rotating clockwise and counter-clockwise
3.22(b-c). The similar patterns have formed by increasing the coupling resistance
to 431Ω with increasing the frequency of rotation. Figure 3.23 shows Poincarè
diagram, and relative cross correlation index for coupling resistors Rlink = 431Ω
where spatial periodicity is evidenced as well as node's clustering. Similar behav-
ior has been observed in network with di�erent number of nodes coupled in ring.
Figure 3.24 shows mechanism of period doubling for ring of 24 nodes coupled
with Rlink = 982Ω.

Distinctively in star con�guration by loosing complete synchronization the central
node's amplitude continues deteriorating as it is shown for star network of 8
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Figure 3.22: emergent dynamics of 24 coupled Chua's circuits in ring with Rlink
a) 234Ω b) 309Ω c) 334Ω d) 345Ω e) 431Ω

Chua's circuits in �gure 3.25 which is along with varying the solution structure
from chaotic to periodic.
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Figure 3.23: ring of 24 Chua's circuits con�gured with Rlink = 431Ω a)poincarè
diagram b)relative cross correlation index
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Figure 3.24: phase diagram of 24 Chua's circuits con�gured in ring with Rlink =
982Ω
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Figure 3.25: waveforms of 8 Chua's circuits coupled in star con�guration for
di�erent coupling resistors Rlink a) 3153Ω b) 3906Ω



Chapter. 4

Experiments on cluster synchronization

Recent studies show that structural symmetry (automorphism) strongly a�ects
the emergent dynamics of the network in the sense that structurally equivalent
nodes in the network can synchronize and form clusters while diverging from
other nodes belonging to di�erent clusters [42]. This behavior is known as clus-
ter synchronization.

Many of network structures are symmetric in which some speci�c nodes are topo-
logically equivalent i.e. they can be mapped to each other without changing the
network topology. The set of all structurally equivalent nodes of network's graph
form an orbit [30]. On the other hand permutation of network's nodes which
leaves the structure unchanged is called automorphism or symmetry. The set
of all network's automorphisms form a group G under composition of permuta-
tions. Each automorphism or symmetry can be represented by a permutation
matrix P, a symmetric matrix with all row-sums and column-sums equal to 1.
The entries of this matrix are 0 and 1 where pij = pji = 1 if nodes i and j can
be mapped to each other without changing the structure otherwise pij = 0. It is
straightforward to obtain PP−1 = P2 = I.

Using computational group theory all the automorphisms of a network can be
computed. An important property of an automorphism is preserving the adja-
cency matrix i.e. AP = PA. This implies that nodes with the same equation
of motion including the coupling term, if starting from a synchronized state, will
remain synchronized. In this regard knowing the automorphism of a network
graph can be helpful in predicting related patterns of clusters. However clusters
might be unstable so that cannot be observed, which has motivated recent stud-
ies addressing the stability analysis of clusters. [42, 49].

This Chapter presents the experiment and simulation results of exploring cluster
synchronization in various topologies based on the mentioned assumption that
cluster formation is closely related to the symmetric structure of the network
[20, 21, 42].
The examined networks are composed of nominally identical chaotic Chua's cir-

73



74 Chapter 4. Experiments on cluster synchronization

cuits coupled by resistors. Our aim is to investigate the emergence of clusters
and the conditions for their persistence in real experimental conditions where the
initial conditions of all nodes are random, without being controlled.
Such studies can be considered as further steps towards understanding the in�u-
ence of network structure on its emergent behavior, speci�cally synchronization
and failure mechanism in complex networks such as electrical power grids or neu-
ral networks in the brain and consequently network robustness.

For the sake of simplicity we have implemented a network composed of 5 nodes
as the main topology which has gone through 4 di�erent tests. In the �rst exper-
iment all the coupling strengths of the main network have been varied equally
and its dynamics has been monitored. In the second and third experiments, one
link is removed to observe the e�ect of varying structural symmetries on the
formation of clusters. Finally in the last experiment, one coupling strength has
been changed while the remaining couplings have been kept �xed.

In the following section we report the �rst three examined cases mentioned above
where we have investigated the in�uence of di�erent structural symmetries on
network dynamics. The second section will describe pattern control related to
the last experiment, where we aim to probe the in�uence of varying one coupling
link's strength on revealing all the possible patterns of clusters related to topo-
logical symmetry. In the last section we report the simulation results comparing
the original model of Chua's circuit and the modi�ed one as discussed in the
second chapter.

4.1. Cluster synchronization and network structural symmetry

The networks of interest are those discussed in chapter 3.1 which are composed
of nominally identical nodes evolving in double scroll chaotic regime when un-
coupled. The couplings are static and identical, implemented by resistors which
couple each pair of adjacent Chua's circuits through their vC1. For the sake of
simplicity the topology shown in �gure 4.1a has been examined. This network
has two orbits {1} and {2, 3, 4, 5} which means that nodes 2,3,4 and 5 can be
mapped to each other without changing the structure of the network and node 5
can be mapped to itself only. Consequently the axis shown by dashed red lines
in �gure 4.1b denotes two symmetry operations represented by permutation ma-
trices P1 permuting nodes 2 and 5 as well as 3 and 4 and P2 permuting nodes 2
and 3 to each other and nodes 4 and 5, written as:

P1 =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

 P2 =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


Discussed network has been examined in four di�erent ways: (i) varying all cou-
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pling resistors Rlink equally; (ii) and (iii) removing one link (�gure 4.6(a,b)) and
consequent change of the symmetries; (v) varying the coupling strength of only
one link Rlink(2−5) and leave the rest of couplings �x in 10kΩ (�gure 4.9). In the
�rst three cases network is unweighted (the coupling strength among nodes are
considered identical) and the last case is weighted network(with heterogeneous
coupling strength). Here we report the results of the �rst three tests. The un-
weighted networks' equation of motions is governed by equation (3.1)

Cluster formation of the network has been investigated by the resistors being
scanned from 120Ω the region of complete synchronization to 50kΩ where syn-
chronization is lost. The correlation among nodes are quanti�ed by the cross cor-
relation index (ICC) which is shown in �gure 4.1c. Synchronization is lost experi-
mentally at Rth(exp) = 9033Ω. The vertical red line shows the theoretical thresh-
old of synchronization calculated by MSF approach which is Rth(MSF ) = 8846Ω.
The cross correlation index shows sudden jump just after loosing synchronization
where its decrease shows the network transition towards the state of uncorrela-
tion among Chua's circuits. Figure 4.2 shows the network's dynamic when all
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Figure 4.1: a-b) network topology c) cross correlation index

nodes are synchronized. Just after the threshold of loosing synchronization nodes
2, 3, 4 and 5 remain correlated while dynamic of node 1 is sensibly di�erent (�gure
4.3a). By further increasing the coupling resistance other solutions, even with
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di�erent structure appear (Figure 4.3(b-d)). Although the network is structurally
symmetric but no proper cluster synchronization corresponding to the mentioned
symmetry axis appear. The proof can be seen through relative synchronization
index shown in �gure 4.4 among discussed expected clusters.
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Figure 4.2: waveforms vC1 of Chua's circuits of network topology of �gure 4.1
coupled by Rlink = 9033Ω
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Figure 4.3: waveforms of Chua's circuits's state variables vC1 for network topol-
ogy of �gure 4.1 coupled by Rlink a) 9082Ω b) 14.111kΩ c) 40.381kΩ d) 50kΩ

For theoretical investigation of synchronization mechanism (from stability to in-
stability ) additionally maximum Lyapunov exponent of all transverse modes
δyi (i ≥ 2) through MSF has been evaluated where the network is linearized
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Figure 4.4: relative cross correlation index among symmetric pairs of nodes in
topology of �gure 4.1

about the complete synchronous state which is assumed to be the solution of an
isolated node when is detached from the network i.e ẋS = ẋi = F(xi). Figure
4.5 depicts all maximum Lyapunov exponents corresponding to the transverse
modes of the network i.e. δyi (i ≥ 2) which are 4. The �rst mode represents
the synchronous manifold δy1 whose maximum Lyapunov exponent is always
positive due to the chaotic behavior of Chua's circuits. Black vertical dashed line
Rth corresponds to the threshold of synchronization below which all the trans-
verse modes damp due to negativity of their maximum Lyapunov exponents and
therefore synchronous state is stable. Beyond threshold as �gure shows third
transverse mode �rst followed by the second one loose their stability and by fur-
ther increasing Rlink transverse modes 4 and then 5 loose their stability as well
at 15kΩ due to positive value of their maximum Lyapunov exponent. This means
beyond Rth the dimension of the network solution increase since all nodes do not
converge to the same solution anymore as shown in �gure 4.3.

In the next experiment Rlink(1−3) has been disconnected as shown in �gure 4.6a:
Symmetry axis changes since now nodes 1-5 and 2-4 can be permuted without
changing the structure. By switching Rlink(1−3) to Rlink(1−4), topology shown in
�gure 4.6b has been examined whose symmetry enables permuting of nodes 1-2
and 3-5 while topology remain unchanged. Figure 4.7 shows the cross correla-
tion index of the two topologies where synchronization experimentally is lost at
Rlink = 6396Ω. Unlike cross correlation index of the topology shown in �gure
4.1a which decrease rapidly, the transition mechanism in both topologies in �gure
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4.6 is smoother. The red vertical line corresponds to the theoretical threshold
evaluated by MSF which is 5.896kΩ for both networks since their connectivity
matrix is similar i.e. their eigen values are the same. Relative cross correlation
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Figure 4.6: a) network topology a with link 1− 3 disconnected b) network topol-
ogy a with link 1− 4 disconnected

indexes of clusters corresponding to symmetries of topologies in �gure 4.6 are
shown in �gure 4.8.

Relative cross correlation index among pairs of (1-5) and (2-4) is shown in �gure
4.8a just after loss of global synchronization where both clusters have formed. By
increasing the value of coupling resistance, cluster synchronization among nodes
1 and 5 is weakened at 9.483kΩ without disturbing cluster of nodes 2 and 4.
Cluster 1 and 5 is lost also at 10.5kΩ. By further increasing of coupling resis-
tance cluster synchronization among nodes 2 and 4 is retained in a wide range
from 21.29kΩ to 36.13kΩ. Similarly in �gure 4.8b it is observed the formation of
symmetry related clusters where by increasing coupling resistor one cluster has
been lost while other cluster has remained synchronized.
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4.2. Cluster synchronization in weighted networks

As it was explained the expected clusters related to discussed symmetries in the
main topology under the �rst test did not appear. Here we present an experiment
through which by varying the strength of only one non-local link the network
dynamic is scanned and clusters related to symmetry come to exist and remain
stable in speci�c range of coupling. The network topology is shown in �gure 4.9
where is the same as the main topology with keeping all the coupling strength
�xed and identical at 10kΩ and vary link 2 − 5 i.e σ25 6= σij i, j 6= 2, 5. The
coupling resistor Rlink(2,5) has been varied from 120Ω to 50kΩ, the link is dashed
in �gure 4.9. The equation of motion of this weighted network is

dxi
dt

= F(xi(t)) +

N∑
j=1

σijaijLijH(xj) i ∈ {1, · · · , N} (4.1)

where σij and aij are the coupling strength and the adjacency indicator between
nodes i and j.
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Figure 4.9: network topology (d) all the couplings are set at 10kΩ except
Rlink(2−5) which is varying from 120Ω to 50kΩ

This network never reaches complete synchronization since in the case of equal
links the coupling strength is already beyond the complete synchronization thresh-
old. Cross correlation index shown in �gure 4.10a verify the absence of complete
synchronization however still keeping high average value of 0.8 in a wide range
(120Ω to 20kΩ).
Figure 4.10b shows the maximum Lyapunov exponents of all transverse modes
of this network. The �rst transverse mode is always unstable which veri�es that
global (complete) synchronization never occurs in this con�guration since for
having complete synchronization according to MSF approach all the transverse
modes have to be stable and negative. Therefore all the network nodes converge
not to a single manifold of synchronization but to several. Figure 4.11 shows
the dynamics of network nodes in Rlink = 98Ω where node number 1 evolve in a
solution di�erent from the other 4 which have remained correlated. By further
increasing the coupling resistance at 6530Ω indicated by L1 in �gure 4.10b the
third transverse mode loose stability and this condition will remain. The modes
4 and 5 have remained stable for all coupling resistors, however their maximum
Lyapunov exponent for high values of resistor tend to remain constant. To un-
derstand all the network behavior and solutions, network has to be linearized
about all those cluster synchronous manifold. Here we obtain information only
about the global synchronous manifold. It is worth noting that unlike the �rst
three experiment in this experiment network is unweighted. By varying the link
among nodes 2 and 5 the ordering of tranverse mani�ld obtained from block di-
agonalization of coupling matrix changes [62]. This is shown in �gure 4.10(c,d)
for both permutations P1 and P2.

Through �gure 4.12 the complete synchronization and the cluster synchronization
are compared. Cluster synchronization related to permutations P1 and P2 are
shown separately in �gure 4.13. Figure shows in the beginning, when the coupling
resistance is low, cluster pattern of 3-4 and 2-5 form, by further increasing this
cluster switch to other pattern 2-3 and 4-5 which can be seen in the zoomed
sub�gure. Increasing the resistance retain the �rst pattern of cluster i.e. 2-5 and
3-4. From 20 to 40 kΩ a sub cluster of the second pattern appear which are nodes
4-5 where 2 and 3 remain uncorrelated. Finally in very high resistance nodes 2
and 3 retain their synchronization stronger than 4 and 5 and so they keep the
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Figure 4.10: network topology (d) a) cross correlation index b)maximum Lya-
punov exponent of all transverse modes c) ordering eigen values of block diago-
nalized Laplacian coupling matrix related to permutation P1 d) ordering of eigen
values of block diagonalized Laplacian coupling matrix related to permutation
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4.3. Simulation results

Discussed networks have been simulated as well by adopting Chua's circuit model
�rstly introduced in chapter 1. The coupled di�erential equation of the network
has been solved using matlab ode45 solver. The simulation results in unsynchro-
nized region do not show any agreement with the experiment. Similarly ode15s,
ode23s and ode23tb have failed to reach an agreement to the experiment since
by loosing synchronization the amplitude of vc1 increase above saturation volt-
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age for all nodes and as a result what appears is saturated vC1 and the patterns
which appear in the experiment do not emerge. Figure 4.14 shows the waveforms
of the network topology (a) simulated by chua's model shown in chapter 1 for
Rlink = 8kΩ when the network is synchronized and Rlink = 12kΩ where the net-
work is supposed to loose synchronization according to the threshold is reported
in the previous section.
The network topology shown in �gure 4.1 has been simulated for the same values
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Figure 4.14: network topology (a) simulation results using the 1st model of
Chua's circuita) a) Rlink = 8kΩ b) Rlink = 12kΩ

by the modi�ed model of Chua's circuit which are shown in �gure 4.15. Figure
4.16 depicts individually all the state variables of the network at Rlink = 12kΩ.
Simulated cross correlation indexes for topology a in �gure 4.1, obtained by
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Figure 4.15: network topology (a) simulation results using the the modi�ed model
of Chua's circuita) a) Rlink = 8kΩ b) Rlink = 12kΩ

both classical and modi�ed model, are shown in �gure 4.17. According to cross
correlation indexes in �gure 4.17, clearly the classical model cannot reveal clus-
ters and indicate synchronization for all values. In this regard the experimental
setup has played an important role in showing the clusters and the necessity of
modi�cation in mathematical model of chua's circuit for revealing clusters.
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Conclusions, discussion and research prospect

Contributions and notable achievements

We have presented novel experimental results of emerging dynamics in a complex
network of interacting nonlinear oscillators, from a setup that has been recognized
as a not trivial in the landscape of current research [16]. Collecting such results
from a real physical implementation has been an important tool to demonstrate
the robustness of many theoretically predicted phenomena, and at the same time
a way to get them almost in real time, as compared to simulations. Moreover it
has been demonstrated the feasibility, with present day data acquisition technol-
ogy, to deal with the contemporaneous acquisition and control of relatively fast
varying signals (up to 64 up to now) in this context.
Main contribution of this PhD work have been:

(i) the accurate characterization of the setup, both in the chaotic nodes and
the interconnection network;

(ii) the contribution to the realization of updated version of the setup with new
structure, range and resolution for the interconnection network;

(iii) the realization of extended measurement campaigns on synchronization
thresholds for several topologies and both static and dynamic links;

(iv) the proposal and the e�ective use of the setup for new experimental studies
on clustering;

(v) the proposal and the e�ective use of the setup for new experimental studies
on PID and Multiplexed synchronization;

In particular, as consequence of the accurate characterization, in Chapter 2 some
corrections to the Chua's circuit model have been proposed, required for better
catching collective behaviors (beyond complete synchronization) in the network,
whereas the previous standard model caused signi�cant disagreement between
simulation and experiment.

In chapter 3 we showed the experimental results of complete synchronization
occurring in several topologies networks (statistically covering the range of pos-
sibilities) with homogeneous coupling, as a function of coupling strength and
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network topology. The results evidenced a high agreement with MSF theoretical
approach, validating the latter in a vast experimental range. Then such experi-
mental range has been extended to even more realistic networks, by considering
dynamic and complex links, with a more questionable agreement to theoretical
predictions, which leaves open space to new research. We have also experimen-
tally shown an improvement on synchronization level though using dynamic and
complex coupling. In the same chapter we experimentally show a wide range of
remarkable behaviors emerging in the network beyond complete synchronization.
In fact through the experimental setup we have not restricted synchronization to
the complete one and we have covered di�erent types as lag and phase synchro-
nization, as well as cluster formation in the network.

Finally, in chapter 4, we showed the physical implementation of symmetric net-
works where their symmetry cause partitioning networks' nodes correspondingly.
It is shown how symmetries can be at the origin of di�erent patterns, that (de-
pending on coupling) result stable, and consequently can be formed and experi-
mentally observed.

Open problems and future works

Apart from the above-described speci�c achievements, this study revealed the
high potential of the considered experimental setup, that can be used in a plenty
of exploratory multipurpose studies. Expandability of the setup as well as its
con�gurability, make it capable for testing larger complex networks, especially
in the area of clustering. Moreover, an expected new version based on FPGA
control section will largely extend the capability of studying distribute dynamical
control issues.

Some open problems are in the area of theoretical approach to examine the sta-
bility of networks with complex links, for which we get some experimental (and
numerical) results, but no theory is available to compare with.

Some future work, at the present in the form of a research proposal, is to study
nearly synchronous clusters caused by approximate symmetries in the network.
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