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ABSTRACT 

This PhD project has focused the attention on the mechanical characterization of 

cancer cells and their surroundings. It is well known that the mechanical properties 

of cells and extracellular matrix (ECM), especially stiffness, play an important role in 

many biological processes such as cell growth, migration, division and differentiation. 

The pathological state of a cell implicates the alteration of the cytoskeletal structure 

and, consequently, of its functions, determining a variation of cell and ECM 

mechanical properties. In particular, the aim of this work is to investigate how cancer 

progression changes cell and ECM mechanical properties in vitro and ex vivo 

conditions. In the first experimental studies, particle tracking microrheology and 

Atomic Force Microscopy (AFM) techniques were performed to compare the 

mechanical properties of murine normal and virus-transformed cell lines cultured on 

glass. The first goal of the work was the identification of several biophysical 

parameters to discriminate between tumour and healthy cells. They have been useful 

to understand how virus transformation influence cell physiological processes and 

mechanical properties and, as a consequence, to identify the existence of a 

relationship between biological functions and cell mechanics. We observed that the 

effects of virus induced-transformation are the intensification of cell proliferation, the 

enhanced capability of transformed cells to migrate, the reduced adhesion capability, 

the reduction of cell cytoskeletal organization and the increased cell deformability. 

Successively, taking into account the results collected on the single murine cells, we 

moved to the characterization of human lung cells with different metastatic potential. 

Also in this case, combining the analyses of phenotypic characteristics and the 

biophysical properties of the cells, in particular elasticity, we were able to 

discriminate benign from cancer cells and, among them, to distinguish the grade of 

aggressiveness. Thus, we achieved the first milestone of this work with the definition 

of a new and accurate biomarker of cell metastatic potential.  

The second goal of the work concerned the investigation of the crosstalk between 

cancer cells and the surrounding ECM, through the study of ex vivo human biopsy 

tissues, removed from patients affected by lung adenocarcinoma. To this aim a new 
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technique, based on multiple particle tracking (MPT) has been developed. To 

perform, at the same time, the mechanical classification of cells and ECM of each 

sample and a comparison with the healthy equivalent for the entire pool of patients, 

the ECM structure and morphology of cancer and healthy tissues were investigated 

and compared. Moreover, results and mechanical phenotypes were correlated to the 

stage and the grade of cancer, previously classified by the classic immunodiagnostic 

method. The cancerous transformation of tissues had a remarkable effect on the 

dynamics of the tracer beads and contributes a sort of symmetric modification of the 

mechanical properties of the cells and ECM. Indeed, compared to the healthy tissues, 

particles introduced into the cells of adenocarcinoma tissues increase their motion. 

Otherwise, unlike healthy tissues, the reduced motion of the beads probing the 

surrounding ECM suggests that cell in tumour tissues reside in a stiffer matrix. These 

increased mechanical properties of ECM are associated to an enhancement of 

collagen cross-linking, also confirmed through the structural and morphological 

analyses of tissue biopsies. The obtained mechanical properties of cells and their 

surrounding ECM from MPT represents a reliable indicator of the malignant 

transformation process and we believe that it can be used in combination with the 

classical immunohistochemistry-based diagnostic tools to obtain a more effective and 

precise diagnosis of the cancer. 
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1.1 Cell Biology: the role of cytoskeleton 

Cells, often called the building blocks of life, are the basic structural, functional and 

biological unit of all known living organisms. Cells are the smallest unit of life, not 

visible to naked eyes; in fact, most of the biological cells are 1-100 m in size. The cell 

comprises many constituents: it consists of cytoplasm enclosed within a phospholipid 

bilayer membrane, cell membrane, and a nucleus, that is the control centre of the cell. 

The cell membrane separates the material outside the cell, the extracellular matrix 

(ECM), from the material inside the cell. It maintains the integrity of a cell and 

controls the passage of materials into and out of the cell. Cells are highly dynamic 

systems that continuously change their chemical and physical characteristics. Many 

aspects of cellular physiology rely on the ability to control mechanical stimuli across 

the cell: i) cells subjected to external stress must be able to maintain their shape; ii) 

during cell migration and division, forces generated within cell are required to drive 

morphogenic changes with extremely high spatial and temporal precision; iii) 

adherent cells also generate force on their surrounding environment; cellular force 

generation is required in remodelling of ECM and tissue morphogenesis. This varied 

mechanical behaviour of cells is determined, to a large degree, by a complex 

machinery formed by a network of filamentous proteins, called the cytoskeleton (CSK) 

(1). The cytoskeleton spans the cytoplasm and interconnects the cell nucleus with the 

ECM, thereby forming a structural bridge between gene expression and molecules 

involved in cell communication and adhesion on a subcellular scale. Despite the 

connotations of the word “skeleton”, the cytoskeleton is not a fixed structure, but it is 

a dynamic and adaptive structure, composed of three main types of polymer: actin 

filaments, microtubules and intermediate filaments. All three are organized into 

networks that resist deformation but can reorganize in response to externally applied 

forces, and they have important roles in arranging and maintaining the integrity of 

intracellular compartments. The cytoskeleton carries out three broad functions: i) it 

spatially organizes the content of the cell; ii) it connects the cell physically and 

biochemically to the external environment and iii) generates coordinated forces that 

enable the cell to move and change shape. Thus, the correct functioning of cellular 

processes depends on the maintenance of the CSK structure. As a consequence, 
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changes in such a crucial cellular structure lead to pathological condition and many 

diseases have now been associated with abnormalities in cytoskeleton, including 

cancer (2–4).  

1.2 Hallmarks of cancer cells 

Cancer is a disease characterized by an altered behaviour of normal cells, due to 

genetic defects. Nowadays, cancer is one of the leading causes of death worldwide. 

The study of this disease is really complex because of the existence of hundreds 

distinct types of cancer, and subtypes of tumours can be found within specific organs. 

Despite this complexity, Hanahan and Weinberg (5) suggested that the vast catalogue 

of cancer cell genotypes is a manifestation of six essential alterations in cell 

physiology (Fig.1) that collectively dictate malignant growth: 

 Self-sufficiency in growth signals: normal cells require mitogenic growth signals 

(GS) before they can move from a quiescent state into an active proliferative state. 

These signals are transmitted into the cell by transmembrane receptors that bind 

distinctive classes or signalling molecules. In the absence of these signals, the cell is 

not able to proliferate. However, tumour cells lack of this exogenous growth signalling 

dependence and acquire GS independently, disrupting the normal homeostasis 

mechanism. 

 Insensitivity to antigrowth signals: within normal tissues, multiple 

antiproliferative signals operate to maintain cellular quiescence and tissue 

homeostasis. Indeed, in the case of cancer, cells result insensitivity to these 

antigrowth signals. 

 Evading apoptosis: apoptotic program is present in latent form in all cell types. 

Cancer cells acquire also resistance to apoptosis, that is a form of programmed cell 

death, initiated when a cell is damaged or infected. 

 Limitless in replicative potential: independently of the cell-cell signalling 

pathways, cells carry an intrinsic program that limits their multiplication. Once cells 

have progressed through a certain number of doublings, they stop growing through a 

process known as senescence. Cancer cells escape this limit and are apparently 

capable of indefinite growth and division. 
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 Sustained angiogenesis: cells should be close to the blood vessels to get the oxygen 

and nutrients necessary for cell function and survival. Angiogenesis is the process of 

growth of new blood vessels, that is transitory and carefully regulated once a tissue is 

formed. However, during tumour progression, an “angiogenic switch” is almost always 

activated and remains on, causing normal quiescent vasculature to continually sprout 

out new vessels that help sustain expanding neoplastic growths. 

 Tissue invasion and metastasis: the most well-known property of cancer cells is 

their ability to invade surrounding tissues and travel to distant sites (metastasis). 

Successful invasion and metastasis depend upon all of other five acquired hallmark 

capabilities. The multistep process of invasion and metastasis begins with local 

invasion, then intravasation by cancer cells into nearby blood and lymphatic vessels, 

transit of cancer cells through the lymphatic and haematogenous systems, followed by 

escape of cancer cells from the lumina of such vessels into the parenchyma of distant 

tissues (extravasation), the formation of small nodules of cancer cells (micro-

metastases), and finally the growth of micro-metastatic lesions into macroscopic 

tumours, this last step being termed colonization. 

The hallmarks of cancer, described above, are acquired functional capabilities that 

allow cancer cells to survive, proliferate and disseminate. These functions are 

acquired in different tumour types via distinct mechanism and at various times during 

the course of multistep tumorigenesis. Their acquisition is made possible by the 

development of genomic instability in cancer cells, which generates random 

mutations, and the inflammatory state of premalignant and frankly malignant lesions 

that is driven by cells of the immune system, some of which serve to promote tumour 

progression through various means. 
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Figure 1 Acquired capabilities of cancer cells.  

Yet other distinct attributes of cancer cells have been proposed to be functionally 

important for the development of cancer and might therefore be added to the list of 

core hallmarks (6): 

 Reprogramming of cellular energy metabolism: cancer cells have to change their 

energy metabolism to sustain continuous cell growth and proliferation. Under aerobic 

conditions, normal cells process glucose, first to pyruvate via glycolysis in the cytosol 

and thereafter to carbon dioxide in the mitochondria; under anaerobic conditions, 

glycolysis is favoured and relatively little pyruvate is dispatched to the oxygen-

consuming mitochondria. Cancer cells, even in the presence of oxygen, can reprogram 

their glucose metabolism and thus their energy production, by limiting their energy 

metabolism largely to glycolysis, leading to a state that has been termed “anaerobic 

glycolysis”. 

 Evading the immune system: cells and tissues are constantly monitored by an 

ever-alert immune system. The complex crosstalk between immunity and cancer cells 

occurs through events that usually eventually climax either in successful tumour 

eradication or immune evasion by the tumour (7).  
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In order to define the malignant transformation of neoplasms and finally reveal the 

functional pathway that enables cancer cells to promote cancer progression, the eight 

classical hallmarks of cancer, described above, require the inclusion of specific 

mechanical properties of cancer cells and their microenvironment, such as the ECM 

and embedded cells (8,9). Physical measurements can improve classical approaches 

that investigate cancer and inflammatory disease and, thus, physical insights can be 

integrated into classical biological approaches. This ninth hallmark of cancer 

considers that the primary tumour and the tumour microenvironment alter the 

survival conditions and cellular properties of a certain set of cancer cells, which 

subsequently favours the selection of an aggressive (highly invasive) subtype of 

cancer cells. Cancer progression is characterized by nine hallmarks, that can be 

organized in three groups: neoplasm formation, transformation of cancer cells into 

aggressive and invasive cells and tumour growth (Fig.2). 

 

Figure 2 Schematic representation of the eight hallmarks of cancer, defined by Hanahan and Weinberg, including 
the mechanical properties of cells and their microenvironment as a new possible hallmark of cancer. 

1.3 The role of cell mechanics in cancer disease 

The classical tumour biology research, using biochemical or molecular genetic 

methods, has proposed eight hallmarks of cancer, such as sustaining proliferative 

signalling, evading growth suppressors, avoiding immune destruction, activating 

invasion and metastasis, enabling replicative immortality, inducing angiogenesis, 
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resisting cell death and deregulating cellular energetics. As classical biological and 

biochemical approaches have not captured the full complexity of the cancer disease, 

physical-based cancer research has gained knowledge about the malignant 

progression of cancer. A ninth hallmark, which combines the aspect of physics into 

classical cancer research, has added to the classical hallmarks of cancer. It is 

represented by the biomechanical properties of cancer cells and their 

microenvironment.  

In the last decade, the interest on the correlation between biomechanical and 

biophysical properties of cells and subcellular structures and the onset and 

progression of human diseases, in particularly cancer, has significantly increased 

(10). Disease not only causes biological and functional alterations but also results in 

abnormalities in the physical and structural characteristics of cells. It is now well 

accepted that mechanical properties of cancer cells and their microenvironment have 

a fundamental role to define the malignant transformation of neoplasms and finally 

reveal the functional pathways which enable cancer cells to promote cancer 

progression (6). To facilitate tumour progression and finally to metastasize in target 

organs, cancer cells are able to remodel and adapt their microenvironment, including 

its mechanical properties. The tumour microenvironment is, hence, an active 

compartment, which has a key role to provide adjuvant conditions for malignant 

cancer progression (11,12).  

The mechanical properties of cells are largely determined by the cytoskeleton, an 

internal polymer network, which determines the cell’s mechanical strength and 

morphology (13). Cell cytoskeleton plays an important role in several cellular 

structural and functional roles, such as cell morphology, signalling, intracellular 

transport, migration, adhesion and proliferation. As a consequence, any changes to 

normal cellular function are mirrored in the cytoskeleton. During the cell’s 

progression from a fully mature, post mitotic state to a replicating, motile, and 

immortal cancerous cell, the cytoskeleton devolves from a rather ordered and rigid 

structure to a more irregular and compliant state. These changes in cytoskeletal 

content and structure should be reflected in the overall mechanical properties of the 

cell (14). Thus, the measure of the cell’s rigidity should provide information about its 

biological state and may be considered as a new biological marker for cellular 
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phenotypic events, associated with alterations in cytostructure and adhesion during 

malignant transformation. Previous studies on the mechanical properties of cells, 

measured by using different characterization techniques (shown below), have 

demonstrated that, independently of the cancer type (bladder, melanoma, prostate, 

breast, colon), the cancer cells are more compliant than their healthy counterparts 

(14–17). Furthermore, the decrease in cell stiffness seems to be greater in cells with 

higher malignancy and metastatic potential (18,19) The determination of cell 

stiffness enables an effective detection and identification of cancerous cells and the 

difference in cell deformability can be exploited to discriminate between cancer and 

healthy cells and also to distinguish cancer cells with different aggressiveness.  

To fully understand the mechanobiology of a tumour, it is necessary to study the 

individual specialized cell types within the tumour microenvironment. Cells indeed 

can communicate with the surrounding environment, which is formed by other cells 

and the ECM, through cell adhesion proteins that act as a receptor and tie matrix 

through the cytoskeleton (20). A normal cell not only applies the forces but also 

responds to them, through cytoskeleton organization and other cellular processes, 

regardless of whether they derive from normal tissue matrix, synthetic substrate, or 

even an adjacent cell. Furthermore, physical properties of tissues can change in 

disease and cellular responsiveness to matrix solidity can likewise change (21). 

Tumour microenvironment seems to be highly critical for all steps of the cancer 

metastatic process. The physical interaction between a cancer cell and the ECM has a 

key role in allowing cancer cells to migrate from a tumour to nearby tissues. The most 

abundant fibrous protein within ECM is collagen, that plays structural roles and 

contributes to mechanical properties, molecular architecture, and shape of tissues. 

The changes in cellular mechanical properties are accompanied by some very specific 

variations in the mechanical properties of ECM. Tumours with high invasive potential 

have a stiff extracellular environment (22,23). In fact, during malignant 

transformation, an increase in the crosslinking of the collagen fibres has been 

observed. In a growing tumour, the fibres in the ECM undergo extensive remodelling 

in terms of degradation, re-polymerization and alignment, due to cell metastasis and 

invasion of the extracellular environment (24–26). The realignment of ECM fibres and 

strain-induced stretching can alter the ECM mechanical properties (27). In order to 
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understand how single cells sense mechanical signals of the surrounding 

environment, early studies have been performed on synthetic gels, including 

polyacrylamide, that mimic the physiological stiffness of healthy and pathologic 

tissues (28–31). However, the relevance of single cell measurements has been 

questioned given the lack of a proper three-dimensional tissue environment (32). 

Recently, to understand how the malignancy alters the mechanical properties of cells 

within the tumour microenvironment, ex vivo studies on human biopsies have also 

been performed (33). 

Besides cell-ECM interaction, also cell-cell adhesion has to be considered in 

determining tissue architecture. The most important proteins that ensure tight 

adhesion junction between neighbouring cells are the cadherins. During tumour 

progression, in the case of epithelial cells, the cell-cell junctions are down-regulate, 

cell morphology changes and cellular motility enhances. During this process, known 

as epithelial to mesenchymal transition (EMT), cell-cell contacts are inhibited, 

because of the switching of the expression from E-cadherin to N-cadherin and active 

signals, that support tumour cell migration, invasion, and metastatic dissemination, 

are produced (34).  

To summarize, in the past recent years it was established that the mechanical 

properties of cells and surrounding environment have a key role in cancer 

progression. They regulate the transformation of cancer cells into aggressive 

subtypes of cancer cells, they have the capability to down-regulate cell-cell adhesions, 

alter cell-matrix adhesions, in order to facilitate the transmigration of cancer cells 

through the basement membrane and their migration into neighbouring tissues. 

1.4 Tools to study cell mechanics  

A variety of methods has been developed to study the mechanics of cell cytoskeleton. 

The experimental approaches to cell mechanics can be divided in two broad classes: 

active and passive techniques. The first engages the application of a stress (or strain) 

to measure the corresponding strain (or stress). The second analyses the thermal 

fluctuations of particles injected directly into the cytoplasm or detects the forces that 

cells exert on flexible substrates. In particular, the dominant techniques belonging to 
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the first class are micropipette aspiration, optical tweezers, magnetic tweezers and 

atomic force microscopy (AFM). On the other side, passive techniques include, among 

others, particle tracking microrheology (PTM), microfabricated posts and traction 

force microscopy (TFM). In this section, the working principles of the principle 

techniques, in view of their application to cell mechanics, are illustrated.  

1.4.1 Micropipette aspiration 

Micropipette aspiration applies an hydrostatic suction pressure to cell surface via 

micropipette (Fig. 3) and measures the mechanical properties of single cells by the 

observation of cell deformation upon pressure suction. Cells are aspired into a 

micropipette and examining the resulting cell deformation, elastic and viscoelastic 

properties of cells are extrapolated (35). Micropipette aspiration is one of the most 

widely used techniques for probing suspended cells. 

 

Figure 3 Schematic representation of the working principle of micropipette aspiration to measure cell 
deformability.  

The study of suspended cells is important in the diagnosis of cancer, because a 

canonical feature of many cancer cells is the loss of anchorage dependence, thus these 

cells grow in suspension (36). This technique can be used on isolated cells, both in 

suspension and substrate-attached, but it only tests the extracellular surface and 

probes the mechanical properties of sub-membrane cytoskeleton (37).  

1.4.2 Optical and magnetic tweezers 

Optical tweezers use a highly focused laser beam to trap and manipulate microscopic, 

neutral objects such as small dielectric spherical particles. The beam is typically 

focused sending it through the interior of a microscope, filling the back aperture of a 

microscope object. Typically, the system is implemented using a high numerical 
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aperture (NA) objective to ensure true three dimensional trapping. Dielectric particles 

experience two kinds of forces: the scattering force, due to light scattering, that is 

proportional to light intensity and acts in the direction of propagation of light and the 

gradient force, produced by a gradient of field light intensity. Scattering and gradient 

forces exerted on the particles depend on the wavelength of the laser beam and on the 

particle size (38). Optical tweezers technique has been extensively used for the study 

of biological systems (39), and later to investigate the mechanical properties of the 

cell cytoskeleton (40–43). A spherical bead is used as a probe to study the mechanical 

response of living cells and generate a small or moderate stress to the cell in the 

approximate range 1-100 pN/m2. Optical tweezer appears a valuable tool for high 

precision measurements of small forces. Nevertheless, the amount of force that can be 

applied using this method is inherently limited. In particular, in order to enhance 

optical forces, an increase in the laser power is required, with the risk of inducing 

local heating of the cell that might damage cell structure and alter its mechanical 

properties. To increase the amount of optical forces, leaving minimal photo-damage, 

another type of optical manipulation technique can be performed. It involves coupling 

a laser light to another optical fibre that enables trapping and stretching of the whole 

cell (44) By combining this optical stretcher technique with a microfluidic platform, 

high throughput mechanical characterization of diseased and healthy cells in 

suspension has been reported (14). 

Magnetic tweezers are similar in concept to optical tweezers. Optical and magnetic 

tweezers have notably succeeded in combining great flexibility in terms of molecular 

manipulation with high spatial and temporal resolution. In particular, magnetic 

tweezers can apply both stretching forces and torques to biological samples tethered 

between a surface and beads.  

The apparatus of magnetic tweezers consists of magnetic micro-particles, which can 

be manipulated with the help of an external magnetic field. Magnetic particle in an 

external magnetic field experiences a force proportional to the gradient of the square 

of the magnetic field. A microscopic objective with a camera allows to determine the 

position of magnetic particles. High forces can be achieved with relatively small 

magnetic field strengths provided a very steep field gradient. Recent advances in 
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techniques which combine magnetic tweezers with microfluidic systems and 

fluorescence microscopy, opened new possibilities of experimental design. These 

advances also helped to solve one of the original weaknesses of the method, its 

difficulties in generating strong magnetic fields. The use of micro-manufactured 

magnetic poles allows a significant reduction in the separation between the bead and 

the pole, which helps produce stronger field gradients and stiffer magnetic traps. 

Thanks to such developments, sub-nanometer resolution has become possible. The 

method has few limitations. One of them includes difficulties in working with particles 

that are susceptible to magnetic fields. Among biomolecules, however, the list of such 

molecules is rather short and consists mostly of proteins associated with metal 

clusters. Perhaps the biggest limitation is the rather bulky geometry of the magnetic 

poles, which must be positioned close to the sample. Likewise, carrying beads around 

using magnetic tweezers remains a challenge and requires a specialized instrument. 

These limitations, however, are not especially restrictive and only underscore how 

versatile and powerful the technique truly is. Magnetic tweezers permit measurement 

of force and displacement generated by single molecules ranging from cells to protein. 

In particular, for the first time, magnetic tweezers were used to measure mechanical 

properties of cytoskeleton by Wang, by attaching a specific bead to the cytoskeleton 

via transmembrane receptors (45).  

The irreducible differences between optical and magnetic tweezers concern the type 

of effort applied to the bead and the number of implicated beads. Magnetic twisting 

offers the ability to apply much larger force (up to 500 pN) and thus, to probe deeply 

into the cell, even after focal adhesion have formed. In the magnetic twisting 

technique, a torque is applied to each bead resulting in a mean bead deviation 

measured over a large number of beads, bound to a significant cell population. Thus, 

magnetic tweezers require that tens of thousands of cells be measured simultaneously 

in order to sense the average bead rotation in response to the application of a 

magnetic torque. Magnetic twisting technique measures a population average, so it 

may therefore obscure important behaviours of individual cells. The basic device was 

modified to measure mechanical properties of individual living cells (46). On the other 

side, in the optical tweezers technique, a unidirectional force is applied to a unique 
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attached bead and results in bead translation or rather in a combination of rotation 

and translation.  

1.4.3 Atomic Force Microscopy 

The AFM technique is based on detection of forces acting between a sharp probe, 

known as AFM tip, and the sample surface. The tip is attached to the end of a flexible 

cantilever. The tip is brought to contact or near-contact with the surface of interest. 

Forces between the tip and the sample surface cause the cantilever to bend. The 

deflection of the cantilever is detected optically, while the sample is scanned under 

the tip. AFM system records the deflection of the cantilever, due to very small forces 

between the atoms of the probe and the surface, with sub-nanometer precision. To 

detect the position of the cantilever, most AFM set up uses a laser beam which 

bounces off the back of the cantilever and onto a Quadrant Photo Detector (QPD). As 

the cantilever bends, the position of the laser beam on the detector changes (Fig.4). 

The ratio of the path length between the cantilever and the detector to the length of 

the cantilever itself produces amplification. As a result, the system can detect sub-

Ångstrom vertical movement at the free end of the cantilever, where the tip is located. 

A map of the substrate surface topography is generated by monitoring these 

cantilever deflections and visualized on a computer in real-time.  

 

 

Figure 4 Schematic representation of the detection path of the laser. 

AFM is a method widely applied to characterize the micro-scale stiffness for a variety 

of materials. Over the past few years, AFM has been used to measure the mechanical 
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properties of soft biological tissues and cells. Nanomechanical analysis of cells is 

becoming increasingly important in cancer research. Cancer progression has 

accompanied by alterations in mechanical properties of cells. The technique has 

revealed differences in stiffness of normal and cancerous cells and can also 

differentiate cancerous cell from non-malignant and less-differentiated cancer cells 

(15,47–49). In order to test soft biological samples, like cells, the choice of the 

indenter shape is crucial and it is recommended to use spherical probes. In this way, a 

lower pressure is applied to cells and a general impression of such inhomogeneous 

sample can be achieved. 

1.4.4 Particle Tracking Microrheology 

Particle tracking microrheology allows to monitor the local viscoelastic properties 

of living cells with high spatio-temporal resolution. It consists in the injection of 

microscopic fluorescent beads directly in the cytoplasm of living cells. These beads 

rapidly disperse through the cytoplasm, undergo to Brownian motions and are 

subsequently tracked by fluorescent microscopy. Thus, this technique does not 

apply any external forces, but rather monitors the thermal fluctuations of 

microscopic probes embedded in the cytoplasm. Videos of beads embedded into 

the cells are acquired to track their displacements and to describe their 

trajectories. Once the nanoparticle trajectory has been obtained, to gather 

information about intracellular structure and mechanics (50), the mean squared 

displacements (MSDs) are calculated. However, in active systems such as living 

cells, the MSD of particle motion cannot be directly correlated with rheological 

parameters, such as creep compliance and dynamic moduli (50). Deduction of 

rheological parameters from the MSD requires the generalized Stokes-Einstein 

relation, developed under the assumption of exclusively thermal driving forces; in 

fact, the generalization also requires the material to be a (hydrodynamic) 

continuum, homogeneous, isotropic, and incompressible. Driving forces in cells 

are, however, a combination of thermal fluctuations and active contributions from 

motor transport and cytoskeleton remodelling, leading to system far from 

equilibrium. Although the MSD is not enough to fully characterize the complex 

intracellular microenvironment, it is a good estimator of the mechanics of the 
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environment investigated by particles: MSDs are higher if probes explored a more 

deformable regions. Comparison between MSDs of particles introduced in healthy 

and diseased cells could suggest the difference of deformability of the cytoplasmic 

environment. 

1.5 The PhD Project 

The role of the mechanical properties of cells and surrounding ECM is crucial in many 

biological processes, such as cell growth, migration, division and differentiation. 

Indeed, the maintenance of the cell mechanical architecture, depending mainly on the 

cytoskeleton, is fundamental to guarantee the correct functioning of several cellular 

functions. The malignant transformation induces the alteration of the cytoskeletal 

structure and determines a variation of cell and ECM mechanical properties. This 

implicates the modification of their crosstalk and of the biological functions. The 

strong correlation existing between cell stiffness and cell malignancy allows to use cell 

mechanical properties as a new powerful biomarker, not only to distinguish malignant 

from benign cells, but also to discriminate between cancer cells with different 

aggressive potential. Nevertheless, it is necessary to consider that cells are not 

isolated systems, but they continuously interact with their surrounding environment. 

Indeed, cells rearrange their cytoskeleton in response to the biophysical properties of 

surrounding ECM. These structural modifications induce alterations in the 

cytoskeletal-generated forces that, in turn, are able to remodel the ECM. The disease 

advancement causes the loss of this mechanical interplay between cells and 

extracellular environment. Thus, it is essential to consider in which way the changes 

of biophysical cues and, in particular, of the mechanical properties of matrix could 

influence cancer development from genesis to invasion. 

In this review chapter an overview of the current knowledge about genetic and 

mechanical changes of cells and their surroundings due to the malignant 

transformation is presented. Moreover, the most common tools used to test cell 

mechanical properties are introduced. In chapter 2, the materials employed and the 

procedures followed in the experiments are described in detail. The thesis, then, is 

organized in three more chapters written in form of research articles.  
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In chapter 3, several parameters, able to characterize the biophysical state of cells, 

have been considered and compared to discriminate between tumour and healthy 

cells. The comparison of murine normal and virus-transformed cell lines was 

developed. In particular, the analysis of these parameters has been useful to 

understand how virus transformation influences cell physiological processes and cell 

mechanical properties and, finally, to identify the existent relationship between 

biological functions and cell mechanics.  

In chapter 4, we adopt the tumorous biophysical characterization, developed on single 

cells in the previous chapter, to human lung cells with different metastatic potential. 

The distinction of cancer and benign cells and the discrimination of cancer cells with 

different aggressiveness have been reached combining the analyses of phenotypic 

characteristics and the characterization of the cell biophysical properties. In 

particular, the cell elasticity has been identified as a new accurate biomarker of 

metastatic potential.  

Finally, chapter 5 focuses the attention on the crosstalk between cells and their 

surrounding ECM. Human biopsy tissues, removed from patients affected by lung 

adenocarcinoma, were analysed. A new technique is presented for the mechanical 

characterization of cells embedded in 3D matrices. This technique gave us the 

possibility to perform a mechanical classification of cells and ECM of each sample and 

a comparison with the healthy equivalent for the entire pool of patients and, thus, to 

investigate the influence of ECM biophysical properties on cell tumour modifications 

and evolutions. 

In summary, in this study, we have investigated the mechanics of tumour starting 

from single cell mechanical characterization to the biophysical interplay between cells 

and their surroundings. Single cell mechanical properties result to be a new label free 

marker of cancer progression. In fact, we observed that, during malignant 

transformation, cytoskeleton devolves from a rather ordered and rigid structure to a 

more irregular and compliant state. These changes in cytoskeletal content and 

structure reflect in the overall mechanical properties of the cells, that increase their 

deformability, but also determine enhanced proliferative and migratory capacity and 

reduced adhesiveness to the substrate. These aspects are considered hallmarks of 



Introduction 
 

 

17 
 

cancer and, thus, the study of the single cell mechanical properties should provide 

information about its biological state.  

Nevertheless, the investigation of single cell mechanical properties neglects the 

ancillary role of the tumour microenvironment in tumorigenesis and cancer 

progression. In order to study the complex interplay cell-ECM, we analysed ex vivo 

biopsy tissues, with the aim of mechanically phenotyping the tissues at cellular and 

ECM levels. This double-check mechanical characterization offers new diagnostic 

markers of the biophysical properties of the cells and ECM and gives new 

interpretative analytical points relating to the cancer mechanobiology. 
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2.1 Polyacrilamide substrate preparation 

Polyacrylamide (PAAm) substrates were prepared by mixing acrylamide, 

methylene-bis-acrylamide, 1/100 total volume of 10% ammonium persulfate and 

1/1000 total volume N,N,N’,N’-tetramethylethylenediamide (TEMED). Different 

combinations of acrylamide and bis-acrylamide were used to obtain 0.3 kPa (3 

wt/vol% acrylamide and 0.04 wt/vol% bis-acrylamide), 4 kPa (6 wt/vol% 

acrylamide and 0.06 wt/vol% bis-acrylamide), 13 kPa (10 wt/vol% acrylamide 

and 0.06 wt/vol% bis-acrylamide), 30 kPa (10 wt/vol% acrylamide and 0.3 

wt/vol% bis-acrylamide) hydrogels. To allow for cell adhesion, substrates were 

functionalized with collagen, by using a bifunctional photolinker, N-

sulphosuccinimidyl-6-(4’-azido-2’-nitrophenylamino) hexanoate (sulpho-SANPAH) 

as a cross-linking agent to immobilize collagen. The freshly prepared sulpho-

SANPAH solution at a concentration of 0.2 mg/ml was placed onto PAAm 

substrates and exposed to UV light for 10 min. After washing with Phosphate 

Buffer Saline (PBS, Microtech), the hydrogels were coated with 50 µg/ml of bovine 

type I collagen overnight at room temperature (RT).  

The local elasticity of PAAm gels was probed with a commercial AFM (JPK 

Instruments, Germany) mounted on an epifluorescence microscope (Olympus 

IX70). Gel stiffness was quantified by indenting each sample at sixty distinct 

points; the substrate stiffness was defined as the average of six measurements. We 

used glass sphere cantilevers with a force constant of 0.05 N/m (Novascan, USA). 

Cantilevers were calibrated by measuring the free fluctuations when unloaded (see 

2.3.2.1). To quantify the stiffness, the Hertz model gave the following relation 

between the indentation δ and the loading force F in the case of an infinitely hard 

sphere of radius R (AFM tip) touching a soft planar surface: 

𝐹𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
 

𝐸

(1 − 𝜈)
 √𝑅 𝛿

3
2 

where E is Young’s modulus and ν is the Poisson ratio (νPA = 0.457 (1) ) of the soft 

material. 
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2.2 Biological parameters 

2.2.1 Proliferation 

Two proliferation assays were selected to evaluate cell viability and growth. Cells 

were cultured at a starting concentration and then collected at different time 

intervals. Cell proliferation was measured by counting cells in Neubauer 

hemocytometer. We used Gompertz model (2) to fit experimental data and derive 

for the two cell populations the growth rate parameter c: 

𝑁𝑐𝑒𝑙𝑙(𝑡) = 𝑁0𝑒
𝑏(1−𝑒−𝑐𝑡) 

Cell proliferation was also evaluated using CellTiter 96® AQueous One Solution 

Cell Proliferation Assay (Promega), according to the manufacturer’s protocol. 24h 

after seeding, cells were incubated with Cell Titer 96® One Reagent for 90min, 

absorbance was then read at 490 nm using a plate reading spectrophotometer. 

Average absorbance from six replicates for each time and treatment was calculated 

and expressed as fold change of control at 24 h. 

2.2.2 Adhesion 

To study the cell adhesion to polystyrene, cells were plated on Petri dishes at a 

starting concentration. After 4 h incubation at 37°C, nonadherent cells were gently 

washed with phosphate-buffered saline (PBS, EuroClone) and adherent cells were 

fixed in 4% paraformaldehyde (Sigma-Aldrich) for 20 min and nuclei were 

counterstained with Hoechst 33342 (Life Technologies). The adherent cells were 

determined by counting the stained nuclei in a representative unit area (3.6×105 

mm2). 

2.2.3 Immunofluorescence Labelling 

Cells were plated at a starting density on glass dishes (Fluorodish, World Precision 

Instrument) or PAAm substrates. Cells were fixed and immunostained at 24h from 

seeding to quantify the focal adhesions (FAs) area and the organization of the actin 

cytoskeleton and in particular of bundles of actin microfilaments (stress filaments). 

After washing two times with PBS, cells were fixed in 4% paraformaldehyde (Sigma-
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Aldrich) in PBS for 20 min, rinsed twice with PBS and permeabilized in 0.1% Triton X 

100 (Sigma-Aldrich) in PBS for 10 min. Cells were washed three times in PBS and 

blocked for 15 min in 5% bovine serum albumin (BSA, Sigma-Aldrich) in PBS to 

prevent unspecific binding. Cell were washed two times and then were incubated for 

1 h with primary anti-paxillin antibody (Abcam) at 1:300 dilution in PBS-BSA. Then, 

cells were washed for three more times with PBS and incubated for 1h with 

secondary antibody, Alexa 488 anti-rabbit (Invitrogen), at 1:500 dilution and Alexa 

568 phalloidin (Invitrogen) at 1:200 dilution in PBS-BSA. Finally, cells have been 

washed three times with PBS-BSA and incubated with DNA-specific fluorescent 

Hoechts 33342 (Life Technologies) diluted in PBS at 1:10000 for 5 min. Specimens 

were imaged using an Olympus IX81 inverted microscope and a 10× objective to 

quantify cell spreading area and cell spindle factor, while a 100× objective to quantify 

FA area. Fluorescent images were imported into ImageJ software (NIH, Bethesda, MD, 

USA) for post-processing analysis and quantification of the cell spreading area, cell 

spindle factor and FA area. To evaluate cell area, images of all single cells were 

thresholded manually on the basis of the actin stain and then the area of the 

thresholded cell body was calculated (Fig.1). 

 

Figure 1 Image of single cell is thresholded manually on the basis of actin stain.  

Changes in cell shape were quantified by a spindle factor, defined as 

4(area)/(perimeter)2, approaching 1 for a rounding and 0 for an elongated cell. 
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To quantify the focal adhesion average area, the paxillin images were assembled 

into a stack. First the stack was Gaussian-filtered using a radius of 30 pixels. This 

stack was then subtracted from the original stack to reduce diffuse background 

signal. Adhesions were measured by thresholding the stacks and using an ellipse-

fitting function in ImageJ. Objects with area ≤0.1 μm2 were discarded, in order to 

avoid possible errors due to background noise. Areas of individual focal adhesions 

were determined for both cell lines. 

2.2.4 Migration 

Cells were cultured at a starting concentration, then incubated at 37°C and 5% CO2 

for 24h. After incubation, single cell migration experiments were recorded using 

Olympus IX81 inverted microscope with 10× magnification, equipped with a digital 

camera (Hamamatsu, ORCA-Flash2.8). Phase contrast images were collected at 5 min 

intervals for 12 h, to allow the tracking of an average number between 100 and 200 

cells. Manual cell tracking was carried out using ImageJ (Fig.2) and the Manual 

Tracking plugin (http://rsweb.nih.gov/ij/). Speed was calculated by analysing the 

acquired data with Chemotaxis and Migration Tool plugin 

(http://www.ibidi.de/applications/ap_chemo.html). To study collective cell 

migration on glass dishes, the cell wound closure assay was used. Cells were seeded 

in 35 mm Petri dishes and incubated until confluence. Then, a scratch was made 

across the monolayer and the wound closure was recorded for 12h, using the 

equipment previously described. The migration efficiency, expressed in term of 

percentage of wound closure, was calculated by measuring 3 randomly chosen 

distances across the wound at 4 different time intervals (0, 4, 8 and 12 h). 

http://rsweb.nih.gov/ij/
http://www.ibidi.de/applications/ap_chemo.html
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Figure 2 Manual cell tracking carried out using Image J. 

2.2.5 Tissue Morphology 

A Confocal Leica TCS SP5 II combined with a multi-photon laser source was used to 

investigate tissue morphology. To prepare the tissues for observation under 

microscope they have been sliced. Because of the softness of the tissues, they had to 

be embedded in Optimal Cutting Temperature (OCT, Killik, Bio-Optica). The tissues 

have been fixed in 4% paraformaldehyde (Sigma-Aldrich) in PBS for 20 min, then 

rinsed twice with PBS and incubated overnight in 2M sucrose (Sigma-Aldrich) in 

distilled water. Afterwards the samples have been embedded in OCT, snap frozen in 

liquid nitrogen, and stored at -80 °C. Next, the samples have been sectioned at a 

thickness of 10 µm using a Cryostat (Leica CM 1850 UV), then mounted on coverslips 

and stored in the fridge (-20 °C) until staining. For actin microfilaments and nucleus 

detections, the samples have been stained with Alexa 568-phalloidin (Life 

Technologies) and SYTOX Green (Life Technologies), respectively. The samples were 

permeabilized in 0.3% Triton X 100 (Sigma-Aldrich) in PBS for 5 min and then 

blocked in 10% BSA for 30 min to block unspecific binding. After blocking, samples 

have been incubated for 1 h with phalloidin at a 1:200 dilution in PBS-BSA and, 

finally, with SYTOX Green diluted in PBS at 1:50000 for 10 min. Two-photon excited 

fluorescence were used to induce second harmonic generation (SHG) and obtain high-

resolution images of the unstained collagen structures. Appropriate fluorescence 

filters were used: 504 nm excitation/523 emission for SYTOX Green, 578/600 for 

phalloidin. All the samples were imaged by two-photon excited fluorescence at ex = 
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840 nm to induce SHG of unstained collagen structures by collecting the emission 

wavelength in the range em = 420 ± 5 nm. 

2.2.6 Tissue immunohistochemical analysis 

Basal membrane material was highlighted by immunohistochemical detection of 

laminin (Novocastra; clone 4C7, diluted 1:50). A standard automated (Dako 

Autostainer, Glostrup, Denmark) immunoperoxidase procedure was employed, and 

immunoreactions were shown by a biotin-free dextran-chain detection system 

(Envision, Dako), and developed using diaminobenzidine as the chromogen. 

2.3 Mechanical parameters 

2.3.1 Particle tracking microrheology 

Particle tracking microrheology, introduced by Tseng et al. (3), allows to monitor 

the local viscoelastic properties of living cells or extracellular microenvironment 

with high spatio-temporal resolution, collecting and analysing the Brownian 

motions of particles embedded in the cytoplasm of cells or ECM, respectively. 

Measurements are typically conducted using carboxylated polystyrene beads or 

polyethylene glycol (PEG)-coated beads because they do not interact with 

subcellular structures. Videos of beads have been acquired to track their 

displacements. To generate the point tracking trajectories, an ad hoc Matlab 

(Matlab 7) code performed two distinct steps: first, it detected the beads in each 

frame and, then, it linked the points into trajectories. Each position has been 

determined by intensity measurements through its centroid, and it has been 

compared frame by frame to identify the trajectory for each particle, based on the 

principle that the closest positions in successive frames belonged to the same 

particle (proximity principle). Once the nanoparticle trajectory was obtained, two 

parameters could be calculated to gather information about intracellular structure 

and mechanics (4): MSDs and the radius of gyration (Rg). MSDs were calculated as: 

< ∆𝑟2(𝜏) >=< [𝑥(𝑡 − 𝜏) − 𝑥(𝑡)]2 + [𝑦(𝑡 − 𝜏) − 𝑦(𝑡)]2 > 
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where angular brackets mean time average, τ is the time scale and t the elapsed 

time. The Rg was calculated as the average of the distances between all measured 

positions in a trajectory : 

𝑅𝑔
2 =

1

2𝑁2
 ∑∑(𝑅𝑖

⃗⃗  ⃗ − 𝑅𝑗
⃗⃗  ⃗)

2
𝑁

𝑗=1

𝑁

𝑖=1

 

The particles embedded in regions with a thickness similar to or smaller than the 

particle diameter were excluded from the analysis (cell lamellar regions). In 

general, local viscoelastic properties of explored regions were extrapolated from 

MSDs by using the generalized Stokes–Einstein equation where angular brackets 

meant time average, τ was the time scale and t the elapsed time: 

𝐺∗(𝜔) =
𝑘𝐵𝑇

𝜋𝑖𝜔ℑ𝑢{< ∆𝑟2(𝜏) >}
 

Being G*(ω) the complex shear modulus, kB the Boltzmann constant, ω the 

frequency and ℑ u the unilateral Fourier transform of MSDs (5,6). However, in 

active systems such as living cells, the MSD of particle motion cannot be directly 

correlated with rheological parameters, such as creep compliance and dynamic 

moduli (4). Deduction of rheological parameters from the MSD requires the 

generalized Stokes-Einstein relation, developed under the assumption of 

exclusively thermal driving forces; in fact, the generalization also requires the 

material to be a (hydrodynamic) continuum, homogeneous, isotropic, and 

incompressible. Driving forces in cells are, however, a combination of thermal 

fluctuations and active contributions from motor transport and cytoskeleton 

remodelling, leading to system far from equilibrium. Although the MSD is not 

enough to fully characterize the complex intracellular and extracellular 

microenvironment, it is a good estimator of the mechanics of the environment 

investigated by particles: MSDs are higher if probes explored a more deformable 

regions. Comparison between MSDs of particles introduced in healthy and 

diseased cells or tissues could suggest the difference of deformability of the 

cytoplasmic environment. 
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2.3.2 Atomic force microscopy 

Atomic force microscopy is a relatively novel technique arising out of and a form of 

Scanning Probe Microscopy (SPM), invented in 1986 (7). This method has been 

widely applied to investigate morphology or characterize the micro-scale stiffness 

of a variety of materials ranging from metal surfaces to soft biological tissues and 

cells. The system is based on detection of forces acting between a sharp probe, 

known as AFM tip, and the sample’s surface. The tip is attached to a very flexible 

cantilever. The local attractive and repulsive forces between the tip and the sample 

are converted into a bending, or deflection, of the cantilever. The instrument 

measures the deflection of the cantilever as it scans. Any motion of the cantilever is 

detected and converted into an electrical signal, proportional to the cantilever 

deflection. The detection system uses a laser beam that is reflected from the back 

of the cantilever onto a detector. A small change in the bending angle of the 

cantilever is converted to a measurably large deflection in the position of the 

reflected spot. The position of the laser spot is measured by comparing the signals 

from different sections of the detector. Most AFMs use a photodiode that is made of 

four quadrants, so that the laser spot position can be calculated in two directions, 

by comparing the signals. The vertical deflection (measuring the interaction force) 

can be calculated by comparing the amount of signals from the “top” and “bottom” 

halves of the detector. The lateral twisting of the cantilever can also be calculated 

by comparing the “left” and “right” halves of the detector. The deflection signal is 

recorded digitally and is visualized on computer in real-time (Fig. 3a). The AFM is 

best known for its high-resolution imaging capabilities, but it is also a powerful 

tool for sensitive force measurements. When used in imaging mode, the AFM 

cantilever is scanned laterally over the surface of the specimen and the force is 

held constant. In force spectroscopy measurements, the lateral position is set at a 

fixed point, and the z position of the cantilever is scanned. The force spectroscopy 

curves plot the cantilever deflection versus the piezoelectric position on the z axis 

(Fig. 3b). After calibrating the cantilever, the corresponding force can be calculated 

multiplying the cantilever deflection by the spring constant. AFM is particularly 

suited for biological applications, because the samples can be analysed in 
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physiological conditions. High resolution imaging and force spectroscopy 

measurements are possible in physiological buffer or medium, and over a range of 

temperatures. Differently from particle tracking microrheology technique, AFM 

typically probes the cellular surface and not intracellular environment. It is also 

possible to infer bulk properties with large indentations depth, but interpretation 

is more difficult. An important advantage is that AFM measurements can be made 

in liquid and actually in-situ during an experiment. 

 

Figure 3 Working principles of AFM. (a) A laser beam was reflected from the back of the cantilever onto a 
detector. The cantilever deflection, caused by the attractive and repulsive force between the tip and the 
sample, was detected: the angle of the reflected laser beam changed, and the spot fell on a different part of the 
photodetector.(b) Working in force spectroscopy the result was the so-called force-distance-curve. Each scan 
produced two curves: trace and retrace curve. Trace curve: the cantilever was moved down without touching 
the sample. (1) Very close to the surface the cantilever can be suddenly attracted by the sample due to 
adhesion forces (e.g. electrostatic interaction), (2). When the cantilever is moved further down, the cantilever 
is bent upwards in direct proportion to the z-piezo height (3). This characteristic linear slope can be used for 
calibration of the cantilever. Retrace: As soon as a defined setpoint of deflection is reached (4), the cantilever is 
withdrawn. The cantilever gets more and more unbent, while moving upwards again (5). Then, the tip usually 
keeps attracted to the surface by adhesion, which causes the cantilever to bend in the opposite direction, until 
it suddenly loses contact and flicks up into its initial position (6). Further retraction results no longer in a 
vertical deflection (7). 

 

2.3.2.1 Calibration of the cantilever deflection 

To convert the photodetector signal into a quantitative value of force, the 

calibration of cantilever deflection is required. The first stage is to calibrate the 

distance that the cantilever actually deflects for a certain measured change in 

photodetector voltage. This value depends on the type of cantilever, but also on the 

optical path of the AFM detection laser, and could be slightly different each time 
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the cantilever is mounted in the instrument. For this purpose, the sensitivity of the 

experimental setup was determined first. This is a measurement of the deflection 

of the tip in nanometres for a given moment of the deflection laser on the 

photodetector, obtained using a force curve between a plain cantilever tip and a 

bare hard substrate. The repulsive contact region, where the deflection rises 

steeply upwards, is linear for a hard surface and tip. Therefore the software could 

easily determine the factor for converting Volts into nanometres. Once the 

deflection of cantilever is known as a distance, the spring constant is needed to 

convert this value into a force, using the Hooke’s law. Thanks to the calibration of 

the spring constant, the vertical deflection signal from the detector could be 

converted from Volts into Newtons. The approach used to calibrate the spring 

constant of the AFM cantilever is the thermal noise analysis. This method is based 

on measuring the thermal fluctuations of the cantilever, and using the 

equipartition theorem to relate this to the spring constant. Essentially, the thermal 

energy calculated from the absolute temperature should be equal to the energy 

measured from the oscillation of the cantilever spring.  

2.3.2.2 Determining the elastic modulus of biological samples 

AFM is a useful tool to determine the elastic properties of biological samples, like 

cells. To calculate the parameters of interest various models can be used to fit the 

force-indentation curve. In the case of spherical indenter the Hertz model is 

adopted. The Hertz model makes several assumptions to calculate the Young’s 

modulus (E): the sample is approximated as an isotropic and linear elastic solid 

occupying an infinitely extending half space. Furthermore it is assumed that the 

indenter is not deformable and that there are no additional interactions between 

indenter and sample. But most biological materials are neither homogeneous nor 

absolutely elastic. The energy delivered by the indenter is not completely given 

back by a cell (as it would be done by an absolute elastic material) but dissipated 

owing to plastic behaviour that also appeared as hysteresis between the extend 

and the retract part of the force curve. One time scale describing this behaviour is 

the viscous relaxation time, which brought variations in force indentation 

measurements if different indentation velocities are tested (8,9). An appropriate 
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speed should be applied to reduce the influence of this time-dependent behaviour 

and to prevent a too high viscous response or reorganization of the cell, 

respectively caused by too high or too low indentation velocities. Moreover, the 

Hertz model is valid only for small indentations (up to 5-10% of the height of the 

cell) where the substrate does not influence the calculations, so the indentation 

depth has to be optimized. Thus, in spite of some limitation of Hertz model, 

keeping in mind and considering all these issues is possible to obtain reasonable 

and reproducible results.  

2.3.2.3 AFM setup and experimental approach 

Analyses were performed on Nano Wizard AFM system, combined with an optical 

inverted microscope (Zeiss) that allows the precise lateral positioning of the AFM 

tip over cells. The choice of the appropriate cantilever depended on the stiffness of 

the sample. For cells, that are soft and delicate materials, the use of soft cantilever 

is recommended. Another point to consider is the choice of the indenter shape. For 

soft biological samples, the use of spherical probes is preferred to sharp pyramidal 

or conical tip. In fact, using spherical probes the force is applied to a wider sample 

area than the case if a pyramidal or conic tip was used, which results in a lower 

pressure. Moreover, spherical probes yielded a general impression for 

inhomogeneous materials, such as cells or tissues. For these reasons, in the 

experiments a silicon nitride cantilever, V-shaped, 170 m long, with a nominal 

spring constant of 0.07 N/m from BRUKER (MLCT-O10), modified gluing a 

spherical polystyrene bead of 6 m diameter, has been used. Bead size was 

selected to offer a general idea of the inhomogeneous tested area, but at the same 

time to allow high resolution, to test single cells. The polystyrene bead (Sigma-

Aldrich) was glued onto the front of the tipless cantilever using an optical adhesive 

(NOA63, Norland). This could be easily done by preparing a microscope slide 

where spheres where deposited on one part and optical adhesive on an adjacent 

part. Beads were suspended in water, so a drop was put on the slide and dried. The 

cantilever was first dipped into the glue. To remove excess glue, one or more 

additional approaches to the surface were performed on a clean glass area. Finally, 

to attach a sphere, another approach was run with the tip positioned over a sphere 
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bead. Once the bead was attached, the spherical probe was ready to test cell 

mechanical properties. To quantify mechanical (Young’s modulus) parameters, at 

least 10 square arrays of 8×8 indentations, covering (1×1) μm2 areas of cells were 

performed. Measurements were conducted in cell culture medium supplemented 

with 12.5 mM Hepes buffer (EuroClone) at 37°C. Cells were indented 

approximately on cytoplasmic region. The indentation depth was chosen to be 50 

nm. The force indentation curves were analysed using Hertz model to obtain the 

local Young’s moduli of each cell. In fact, the Hertz model gives the following 

relation between the indentation δ and the loading force F in the case of an 

infinitely hard sphere of radius R (AFM tip) touching a soft planar surface: 

𝐹𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
 

𝐸

(1 − 𝜈)
 √𝑅 𝛿

3
2 

where the Poisson ratio, ν, is generally set to 0.5 for biological material 

(incompressible materials like rubber). 

2.4 Statistical Analysis 

Data are reported as mean ± standard error (SE), unless otherwise indicated. 

Statistical comparisons were performed with a Student’s unpaired test. P values < 

0.05 denote statistical significance. 
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3.1 Introduction  

Cancer has long been one of the leading causes of death worldwide and is 

presently responsible for about 25% of all deaths. Oncogenic transformation is 

driven by both intrinsic genomic changes in the constituent tumour cells and the 

integrated response of the tissue or organ to extrinsic cues, such as growth factors, 

cytokines, and chemotactic stimuli. Cancer transformation leads to a distinct 

phenotype of cancerous cells in several aspects, such as variations in cellular 

growth, differentiation and interactions with neighbouring cells and/or the ECM 

(1,2). In cell monolayer culture, transformed cells do not exhibit the contact 

inhibition that normally arrests the proliferation of healthy cells when they come 

in contact. Transformed cells are not anchorage-dependent, while normal cells 

require attachment to a solid substrate. Unlike normal cells, cancer cells lose the 

ability to “self-destruct”, a process known as apoptosis, a form of programmed cell 

death. Genetic transformation caused also aberrant migration of cancer cells and 

over the past few years, dysregulated cell motility has been recognized as a key 

step in tumour invasion and metastasis (3,4). During these cell functions the 

cytoskeletal network is dynamically remodelled and the maintenance of the 

cytoskeletal architecture is essential for the correct functioning of cellular 

processes. Therefore, alterations to the cell functions, due to biochemical 

processes, are connected to the variation in the cytoskeleton dynamics, that 

significantly alter the mechanical properties of cancer cells (5). For this reason, 

biomechanics of cancer cells, in particular cell stiffness, has been identified as an 

important factor relating to cancer cell function, adherence, motility, 

transformation and invasion. During cancer progression, the cytoskeleton devolves 

from a rather ordered and rigid structure to a more irregular and compliant state. 

These changes are commonly related to either a partial loss of actin filaments (3) 

or disorganization of microtubules (6) being in fact the consequence of lower 

density of the cellular scaffold. 

Part of this chapter is included in the paper “X-rays effects on cytoskeleton mechanics of healthy and tumor cells.”, Panzetta V., De 
Menna M., Musella I., Pugliese M., Quarto M., Netti P. A., & Fusco S., published on Cytoskeleton (2016); and in “Effects of High 
Energy X-rays on Cell Morphology and Functions”, Panzetta V, Musella I., Pugliese M., Piccolo C, Pasqua G., Netti P.A. and. Fusco S., 
published on Bioengineering (ENBENG)(2017). 
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The reduced cytoskeletal strength and decreased organization allow cancer cells to 

infiltrate and invade tissues, and migrate to distant sites. Malignant cells, in fact, 

are marked by replication and motility, both of which are inconsistent with a rigid 

cytoskeleton. Alterations in cytoskeletal content and structure are reflected in the 

overall mechanical properties of the cell. Consequently, measurements of 

cytoskeleton rigidity provide information about cell state and composition and 

may be viewed as a new biomarker of cancer progression (5,7,8) Since the 

malignant transformation determines an altered behaviour of cancer cells, several 

cell biophysical parameters can be identified to discriminate between healthy and 

tumour cells. Among these, the cellular mechanical properties has been studied for 

a long time using various techniques, such as micropipette aspiration, microfluidic 

systems, optical tweezers, atomic force microscopy, in order to discriminate 

healthy from cancer cells (9–12). In vitro studies, performed by using different 

techniques, showed the larger deformability of tumour cells for various cancers, 

such as bladder, prostate, thyroid and ovarian ones (10,13–19).  

This work has focused the attention on the biophysical characterization of Simian 

virus 40 transformed BALB/c 3T3 (SVT2) cells and their normal counterpart 

BALB/c 3T3 fibroblasts. The aim of this study was to identify several cell 

biophysical parameters to discriminate between tumour and healthy behaviour. 

These parameters help to understand how virus transformation could influence 

cell physiological processes and cell mechanical properties and, finally, to identify 

the existence of a relationship between biological functions and cell mechanics. 

Thus, first, we investigated the influence of virus transformation on peculiar cell 

functions, then its effect on cell mechanics. We identified some biophysical 

parameters, such as cell proliferation, adhesion at cell and focal adhesion level, cell 

migration, and we used them to predict cell malignancy and distinguish normal 

from transformed cells. PTM and AFM techniques were used to compare the 

mechanical properties of murine normal and virus-transformed cell lines cultured 

on glass. Results show that the consequences of Sv40 induced-transformation are 

the intensification of cell proliferation, the enhanced capability of transformed 

cells to migrate, the reduced adhesion capability, the reduction of cell cytoskeletal 
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organization and the increased cell deformability. Finally, considering the key role 

of extracellular matrix in cancer, we investigated in which way normal and 

transformed fibroblasts modulate their biophysical properties and in particular 

their cytoskeletal organization in response to substrate rigidity, by using PAAm 

gels of various stiffness.  

3.2 Materials and Methods 

3.2.1 Polyacrylamide substrate preparation and mechanical 

characterization 

PAAm substrates were prepared by mixing different combination of acrylamide and 

methylene-bis-acrylamide, as described in Section 2.1, to obtain 0.3 kPa, 4 kPa, 30 

kPa hydrogels. To allow for cell adhesion, substrates were functionalized with 

collagen, by using a bifunctional photolinker, sulpho-SANPAH. 

3.2.2 Cell culture 

Experiments were performed on murine fibroblast BALB/c 3T3 and SVT2 cells, as 

a model of normal and tumour cell lines, respectively. Cell lines were cultured at 

37°C in 5% CO2 in Dulbecco’s modified Eagle’s medium (Euroclone Ltd., UK) 

supplemented with 10% fetal bovine serum (FBS, BioWhatter, MD), 2 mM L-

glutamine (Sigma, St. Louis, MO), 1000 U/L penicillin (Sigma, St. Louis, MO), and 

100 mg/L streptomycin (Sigma, St. Louis, MO). 

3.2.3 Cell proliferation and adhesion 

To evaluate cell viability and growth, BALB/c 3T3 and SVT2 were cultured at a 

starting concentration of 200 cells/cm2 and then collected at different time 

intervals (0, 1, 3, 6 days). Fibroblast cell proliferation was evaluated using two 

assays, described in detail in Section 2.2.1.  

To study the cell adhesion to polystyrene, 2×104 cells were washed, trypsinised 

and plated on 35-mm Petri dishes. The adherent cells were determined following 

the procedure in 2.2.2. 
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3.2.4 Immunofluorescence labelling 

Cells were fixed and immunostained at 24h from seeding to quantify the FAs area 

and the organization of the actin cytoskeleton and in particular of bundles of actin 

microfilaments (stress filaments). To quantify changes in cell shape, we calculated 

the spindle factor, previously defined in 2.2.3.  

3.2.5 Cell migration 

BALB/c 3T3 and SVT2 were respectively cultured at a concentration of 1000 

cells/cm2 and 2000 cells/cm2, then incubated at 37°C and 5% CO2 for 24h. After 

incubation, cell migration experiments were recorded using the equipment 

described in Section 2.2.4. Cells were manually tracked using Image J. 

3.2.6 Particle tracking microrheology  

BALB/c3T3 and SVT2 cells were cultured in 35 mm dishes (Corning Incorporated) 

until confluence. Carboxyl-modified fluorescent polystyrene particles (0.500 μm 

diameter, Invitrogen, Molecular Probes) were introduced into the cytoplasm of cells 

through ballistic injection. Once bombarded, cells were washed extensively in order 

to prevent the nanoparticles that do not penetrate the cytoplasm from entering the 

cells via endocytosis. The cells were allowed to recover for 24 h, before re-plating. 

After incubation, videos of beads embedded into the cells were recorded for a total 

of 5 sec at 100 fps to track their displacements. Once the nanoparticle trajectory was 

obtained, the MSDs and the Rg were calculated to gather information about 

intracellular structure and mechanics (see Section 2.3.1). 

3.2.7 Atomic force microscopy  

To quantify mechanical (Young’s modulus) parameters, cells (2000/cm2) were 

cultured on 23 mm Fluorodish (WPI), incubated at 37°C and tested 24h after 

seeding. For each cell line, we selected 20 cells and (1×1) μm2 area of each cell was 

indented. At least 10 square arrays of 8×8 indentations were performed. 

Measurements were conducted in cell culture medium supplemented with 12.5 mM 

Hepes buffer (EuroClone) at 37°C. Cells were indented approximately on 
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cytoplasmic region. The indentation depth was chosen to be 50 nm. The force 

indentation curves were analysed using Hertz model to obtain the local Young’s 

moduli of each cell (see Section 2.3.2). 

3.2.8 Statistical Analysis 

Data are reported as mean ± standard error (SE), unless otherwise indicated. 

Statistical comparisons were performed with a Student’s unpaired test. P values < 

0.05 denote statistical significance. 

3.3 Results 

3.3.1 Cell proliferation and adhesion 

Proliferation of BALB/c 3T3 and SVT2 was determined by directly counting cells 

at 1, 3 and 6 days from seeding and by using CellTiter 96® AQueous One Solution. 

Both testes indicated that the proliferative capacity of transformed cells was 

significantly higher than those of BALB/c 3T3 (Fig.1), as already observed (20). By 

fitting experimental data with Gompertz model, previously described in the 

Materials and Methods section, we found that the growth rate value for SVT2 cells 

was about 50% higher than those of BALB/c 3T3 (Table 1). 

Adhesion experiments were performed to evaluate the adhesive capacity of 

normal and transformed cells. Adhesiveness of SVT2 cells was significantly lower 

than BALB/c 3T3 (Fig.2), as has already been observed for many malignant cells 

both in tissues (21) and on tissue culture substrates (22,23). 
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Figure 1(a) Growth curve of BALB c/3T3 (blue) and SVT2 (red) cell lines, derived by fitting experimental data 
(dot points at three different investigated times) with Gompertz model; (b)Proliferation curves obtained by 
CellTiter 96® AQueous One Solution assay. Values represent the mean of six replicates ±SD.  

 

 Growth Rate 
[Ncellh-1] 

BALB/c 3T3 4.9 

SVT2 7.2 

 

Figure 2 BALB/c 3T3 and SVT2 cell adhesion to polystryrene dishes. Bars represent the mean of number of 

adhering cells per unit area ± SEM and the number of cells analysed is indicated in the bars. Data presented are 

pooled means of, at least, 46 images. ***P < 0.001 as compared with normal cells. 

 

Table 1 Values of growth rate [Ncellh-1] derived by fitting experimental data with Gompertz model for both cell 

lines in all investigated conditions. 
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3.3.2 Cell morphological changes and FA size 

Using fluorescent microscopy, we examined the morphology and cytoskeletal 

organization of cells. In particular, we analysed cell spreading as the initial kinetic 

process that follows adhesion events once the cell touches the substrate. It 

represents a good prototype of simplifying the cell-substrate interactions. Starting 

from cell spreading area, we evaluated the spindle-shape factor, a parameter 

which gives indirect information about the typical organization of the CSK of 

fibroblasts into elongated filament bundles (stress fibres) parallel to the 

polarization direction. Figure 3 shows morphology and cytoskeleton of BALB/c 

3T3 and SVT2 cells. BALB/c 3T3 cells exhibits elongated cell bodies, high 

spreading and well organized actin cytoskeleton compared to SVT2 cells, which 

presents a round morphology, low spreading areas and less structured 

cytoskeleton. In terms of spindle factor, from the normal to the transformed cells, 

a significant increase of the spindle-factor (p<0.001) was observed (Fig.3c), due to 

the enhanced spreading area.  

 

Figure 3(a)Representative image of cell morphology. (b) Schematic representation of the morphological 
descriptor, spindle shape factor, which was used in this study. (c) The spindle factor data were presented as mean 
± SEM and the number of cells analysed is indicated in the bars. P < 0.001 as compared with normal cells. (d-e)The 
morphology and cytoskeleton in BALB/c 3T3 and SVT2 cells were compared. Scale bar, 50 m.  

We also examined the area of single FA, that typically increases in the direction of 

their associated stress fibres through a process driven by actomyosin-mediated 
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tension. SVT2 cells showed significantly smaller focal adhesion areas compared to 

BALB/c 3T3 (Fig.4). 

 

Figure 4 BALB/c 3T3 and SVT2 cells were fixed and stained with phalloidin (red, actin) and immunostained to 
detect paxillin (green, FAs). Representative images of the organization of actin filaments (a) and FAs (b) of BALB/c 
3T3 cell, binary image of FAs obtained by thresholding methods (c), best-fit ellipses of FAs (d). Representative 
images of actin filaments and FAs (e-f). Data related to FA areas are presented as mean ± SEM and the number of 
FAs analysed is indicated in the bars. P<0.001 as compared with normal cells. Scale bar, 10 m.  

To investigate the influence of substrate stiffness on cell behaviours, we chose artificial 

substrates of polyacrylamide functionalized at the surface with collagen I (see Section 

2.1). In Figure 5, the dependence of cell spreading on substrate stiffness is presented. 

Both normal and transformed cells exhibit a significant increase in cell spreading on 30 

kPa gels, compared to 0.3 kPa gels. Independently from gel stiffness, BALB/c 3T3 

continues to present wider area than SVT2 cells (Fig 5a). 
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Figure 5 The dependence of spreading of BALB c/3T3 and SVT2 cells on substrates stiffness.(a) SVT2 cells 
show wider spreading, independently from gel stiffness. (b)The spreading data on glass and polyacrylamide 
substrates were presented as mean ±S.E.M. Statistical difference are shown as ***P<0.001 by Student’s t test, 
as compared to 0.3 kPa. 

 

3.3.3 Cell migration 

Cell migration could be considered a fundamental parameter to describe the 

pathological condition of cells. Aberrant regulation of cell migration drives 

progression of cancer, invasion and metastasis (4,24). As expected, quantitative 

time-lapse videomicroscopy analysis revealed random motility speeds of 

transformed cells were significantly increased (0.76±0.41 m/min), compared to 

speeds of BALB/c 3T3 (0.35±0.18 m/min). The migration rate of single cells is 

shown in Fig.6. 



Biophysical characterization of healthy and tumour fibroblast 

 

 

46 
 

 

Figure 6 BALB c/3T3 and SVT2 cell migration. Sv40 transformation induced a significantly (***P<0.001 by 
Student’s t test )increase in migration rate. Results were presented as mean ±S.E.M and the number of cells 
analysed was indicated in the bars. 

3.3.4 Cell mechanics 

Particle tracking microrheology and atomic force microscopy were performed to 

probe the mechanical properties of individual living cells.  

With PTM we calculated the MSD of nanoprobes embedded in cell. They provides 

information about the motion of particles in cytoplasm and, indirectly, about the 

mechanics of the cell microenvironment. Then, we compared the MSDs of normal 

and tumour fibroblasts. Figure 7 shows the cumulative distribution functions in 

the two cell lines, for two different parameters: we measured the Rg (Fig. 7a), that 

is an averaged measure of the particle trajectory size and the distance travelled by 

the MSD at τ = 1 s (Fig. 7b). The two analyses showed similar results: a lognormal 

distribution of particle displacements in both cells, with higher values in 

transformed cells. In particular, the radii of gyration in transformed SVT2 cells 

were significantly higher than in BALB/c 3T3, indicating that the particles move 

further, according with the higher MSD amplitude.  
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Figure 7 Cumulative distribution functions of BALB/c3T3 (blue curve) and SVT2 (red curve) cells by 
calculation of the radius of gyration (a) and MSD (=1 s) (b). 

The reduced stiffness of the transformed cell line was also confirmed by AFM. 

Cells (2000/cm2) were cultured on 23 mm Fluorodish (WPI), incubated at 37°C 

and tested 24h after seeding. For each cell line, we selected 20 cells and (1×1) μm2 

area of each cell was indented. Figure 8 shows the average values of the Young’s 

modulus of normal BALB/c 3T3 and transformed cells, obtained using Hertz’s 

contact model. The average stiffness (mean±s.d.) of normal cell was found to be 

2.3±3.2 kPa, significantly higher than transformed cells (1.1±1.1 kPa). Thus, SVT2 

exhibited a Young’s modulus approximatively 0.5 times lower than normal 

BALB/c 3T3.  

 

Figure 8 Apparent Young’s modulus for BALB c/3T3 (E=2.3±0.084 kPa) and SVT2 (E=1.1±0.029 kPa) cells. 
Results were presented as mean ±S.E.M. Student’s t test  was applied to measure statistical differences. ***P<0.001 
as compared to normal cells. 
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3.4 Discussion and conclusions 

A large number of pathologies are associated to cytoskeletal and nucleoskeletal 

proteins alterations: cancer (25,26), cardiovascular disease syndromes (27,28), 

neurodegenerative diseases (29), lung injury (30) and others. In particular, cancer 

metastasis is a process connected to the capability of malignant cells to change 

their shape and increase their deformability, to lose their interaction with other 

cells and ECM and thus, to enhance their ability to move and invade adjacent 

tissues and migrate towards distant sites. Indeed during this process, changes in 

cytoskeletal networks and cell–cell/cell-ECM interactions have a key role and the 

mechanical properties and deformability of cancer cells are of paramount 

importance (25). Several works demonstrated that the aggressive phenotype of 

cancer cells is correlated with alterations of adhesion receptors and CSK 

architecture, deregulation of CSK dynamics mediators and changes in migratory 

properties (31,32). All these alterations result in variations of cell mechanical 

characteristics: as cancer cells become more aggressive and invasive, they present 

decreased cell stiffness. In this context, stiffness is not only a predictor of invasive 

potential, but it can be used also as a gauge of effectiveness of anti-cancer 

treatments. 

For these reasons, we have characterized some of the peculiar cell functions (i.e., 

proliferation, adhesion, migration) in terms of cytoskeleton organization of highly 

aggressive murine tumour cells (SVT2) and their normal counterpart (BALB/c 

3T3). We studied the direct effects of Sv40-induced transformation on the 

cytoskeleton structure of BALB/c 3T3 cells, by evaluating CSK mechanics and its 

direct crosstalk with adhesion substrate via FAs. We showed that the malignancy 

of transformed cell line, SVT2, was associated with significantly increase of 

proliferative capacity, profound reduction in cell-substrate adhesions and with 

impaired organization of the actin bundles, high motility and reduced cell 

mechanical properties. It is, nevertheless, that the reduced adhesiveness of tumour 

cells activates metastatic process, by allowing the malignant cells to detach for the 

primary tumour, and to reach distal tissues via the lymphatics and bloodstream 

(33). 
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As already stated, the malignant phenotype of SVT2 cells was associated with weak 

and altered expression of FA proteins. Some studies provided evidence that a 

reduction in cytoskeletal proteins such as actin, tropomyosin and vinculin, was 

often a key feature of cell transformation(34). The smaller size of FAs we observed 

in transformed cells was probably responsible for the modest adhesiveness to the 

culture dish (Fig.2), but also for the SVT2 abilities to grow in suspension in a 

semisolid medium (35) and the loss of adhesion-dependent growth control (36). 

Indeed, the decrease in paxillin level stimulated the disassembly of stable FAs, as 

demonstrated by the reduced dimensions of FAs in SVT2 cells, shifting the dynamic 

equilibrium between soluble and assembled FA proteins.  

The reduction of FAs size in transformed cells was strictly correlated to the cell 

morphological variations: it was demonstrated that in fibroblasts FAs grown in the 

direction of major cell-axis, were co-aligned with stress fibres and governed cell 

polarization, giving the cell its typical elongated shape (37). The reduction of FA 

dimensions in SVT2 cells was associated with an alteration of the CSK protein 

expression and organization (38). The direct consequence of this dysregulation 

was a profound reduction in cell-substrate adhesion and a round cellular 

morphology (39). BALB/c 3T3 were characterized by high spreading, elongated 

cell bodies with extended processes which gave cells the spindle-like shape, well 

organized cell cytoskeleton that were completely lost due to Sv40-induced 

transformation (Fig.3). As previously reported, we found a strong correlation 

between cell adhesion, FAs assembly, actin-CSK architecture and cell mechanical 

properties (38).  

We used PTM to evaluate the intracellular mechanics of BALB/c3T3 and SVT2 

cells, measuring MSDs and radii of gyration of tracked beads. The presence of CSK 

non-thermal driving forces did not allow us to derive viscoelastic moduli, 

nevertheless MSD amplitude was shown to be inversely related to intracellular 

stiffness (40). Working on that principle, we performed PTM experiments, that 

revealed changes in the internal mechanism and activity of transformed cells. Our 

results show how MSDs and radii of gyration in SVT2 cells were sensitively higher 

than in BALB/c 3T3 cells, due to a less dense and more active cytoskeletal network. 

These results suggested that the tumorigenicity of cells was probably correlated 
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with a decrease in stiffness and structural density and an increase in intracellular 

activity.  

The architectural changes concerning transformed cells were confirmed by AFM. 

Using AFM, we measured the local stiffness of BALB/c 3T3 and SVT2 cells and we 

found that mechanical properties of transformed cells were decreased of 100%, 

compared with normal cells. These results suggest that when adhesion and CSK 

structure are compromised (decreased cell spreading area, reduced actin 

polymerization and focal adhesions), SVT2 cells result softer and more able to 

deform, increase motility and invade other tissues (41). Thus, the primary 

consequence of Sv40-induced transformation was the increase of aggressiveness 

of normal cells. 

PTM and AFM explored two regions of the same system. Particle tracking localized 

mechanical measurements inside the cytoplasm of living cells. Tracer particles 

embedded in cells were subjected to the combined action of thermal fluctuations 

and active contributions from cytoskeleton remodelling and myosin-actin 

generated forces. AFM examined the combined local elastic response due to cell 

membrane and subcortical actin network. Combining AFM with fluorescent 

microscopy, the regional cell mechanics can be correlate with underlying 

cytoskeletal components (42–44). 

Results from PTM and AFM could not be compared, because they tested different 

regions of cells. Nevertheless, both techniques came to the conclusion that, in case 

of malignancy, cell mechanical properties were drastically reduced.  

Finally, we considered that biological properties of tumour cells including growth, 

morphology and migratory properties can be modulated by the rigidity of ECM. 

Previously studies (45) concluded that cancer cells can be classified in two 

categories: “rigidity independent” lines, whose behaviour does not change across a 

tested spectrum of matrix stiffness and “rigidity dependent” lines, which exhibit 

increasing cell growth as extracellular rigidity increased. We investigated the 

ability of transformed and normal cells to spread on gel substrates of different 

stiffness. Our results show that SVT2 cells appear “rigidity dependent”, because 
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they exhibited significant increases in cell spreading and substrate adhesiveness 

on stiffer gels.  

To conclude, we presented a single-cell biophysical characterization to 

discriminate benign from malignant cells. To this aim, we have identified several 

cell biophysical parameters for the screening of cancer. We found that the main 

features of malignant phenotype are increased cell proliferation, reduced cell 

adhesion to substrate, altered cellular morphology, enhanced migration capacity 

and lower cell mechanical properties. In particular, we found that single cell 

mechanics characterization is a quick and efficient marker of cell malignancy and 

may become a powerful support for cancer diagnosis.  
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4.1 Introduction 

Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that 

develops in the pleura, a thin layer of the tissue surrounding the lungs. Asbestos 

exposure is considered the major cause and the long interval between exposure and 

the development of disease is the reason for the relatively late discovery of this 

correlation (1). Malignant mesothelioma, indeed, results from the neoplastic 

transformation of mesothelial cells and is associated with phenotypic modifications 

and genetic changes that alter cell-cell and cell-matrix interactions and regulation of 

cell proliferation and cell death (2–4). Common symptoms presented in patients are 

the diminished breath sound and chest movement on the affected side of the chest, 

the decreased vocal resonance and additionally pleural effusion, which can be used 

for diagnostic purposes. When the first symptoms appear, an imaging test, usually a 

simple chest X-ray, can determine whether pleural effusion is present. The fluid will 

show up on the X-ray once the accumulation has reached about 300 mL. Prior to that, 

it may be difficult to spot the fluid on a chest image. Currently, the initial step in the 

diagnostic work-up of patients with suspected malignant pleural effusions concerns 

the cytological analysis of pleural fluid. In order to improve the diagnostic yield of 

such examination, repeated pleural fluid cytological specimens are analysed, thus 

effusion cytology may take weeks or months to establish the diagnosis. Furthermore, 

standard pleural fluid cytology has limited sensitivity (30-60%) for diagnosis MPM 

(5). For patients with inconclusive results following cytological analysis of the pleural 

fluid, the next step is a thoracoscopic pleural biopsy, which is an invasive procedure 

that requires a skilled operator. For these reasons, alternative methods of 

investigation are necessary to support the diagnosis of pleural effusion. Mechanical 

phenotyping of individual cells appears a great opportunity having the potential to 

aid in diagnosis and, thus, to influence the clinical decision-making. In fact, it has been 

observed that the maintenance of the cell mechanical architecture, depending mainly 

on the cytoskeleton, is fundamental to guarantee the correct functioning of several 

cellular functions.  

The cytoskeleton of living cells is a highly dynamic structure, constantly remodelled, 

for its key role in many cellular functions as cell adhesion, proliferation, migration, 



AFM Investigation of mesothelial cells mechanics and their mechanosensing of ECM 

 

 

57 
 

differentiation. As consequence, abnormalities of the cytoskeleton led to a variety of 

disease, such as cardiovascular disease (6), neurodegenerative disease (7), cancer 

(8,9). In particular, in the case of cancer, alterations in cell cytoskeleton affect cell 

proliferation, adhesion, ability to remodel the surrounding matrix and migration 

(10,11). Changes in the cytoskeletal structure are also connected to changes in cell 

stiffness that entailed a softening of tumour cells in comparison with healthy ones 

(12–14). The strong correlation existing between cell stiffness and cell malignancy 

allowed to use cell mechanical properties as a new powerful biomarker, not only to 

distinguish malignant from benign cells, but also to discriminate between cancer cells 

with different aggressive potential (15–17). Many techniques of noticeable capability 

are developing to probe cellular properties at single cell level directly on living cells 

(18–21). Among these, AFM enables to quantify the elastic modulus (Young’s 

modulus) of single cells in condition close to the natural environment. AFM has 

rapidly become a valuable tool also to discriminate cancer cell with different 

metastatic potential (22,23). Nevertheless, deeply understand the malignant 

transformation process from a mechanical point of view, is necessary to consider that 

cells are not isolated systems, but they continuously interact with their surrounding 

environment. Indeed, cells rearrange their cytoskeleton in function of the biophysical 

properties of surrounding ECM. These structural modifications induce alterations in 

the cytoskeletal-generated forces that, in turn, are able to remodel the ECM. When 

such mechanical interplay between cells and extracellular environment is loss, the 

disease advances. Thus, it is essential to consider in which way the changes of 

biophysical signalling and, in particular, of the mechanical properties of matrix could 

influence cancer development from genesis to invasion. 

In this study we report the mechanical phenotyping of human MPM cells. The interest 

in this relatively rare but devastating tumour arises from the fact that its incidence is 

increasing worldwide. MPM remains a challenge for pathologist and clinicians to treat 

because of difficulties in early diagnosis and resistance to conventional therapies. We 

examined a normal mesothelial cell line (MeT-5A) and two epithelioid MPM cell lines 

(REN and MPP-89). Here, we investigated how the malignant transformation 

influences cell normal functions, such as cell proliferation, migration and spreading 
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area. In particular, migration assays revealed that different types of cancer cell 

migration exists, due to the loss of cell-cell adhesions that induces alterations in the 

peculiar collective moving of epithelial cells, in favour of a solitary migration. These 

changes are correlated to enhanced aggressiveness of cancer cells and promote their 

metastatic dissemination in the body and the formation of metastasis. The phenotypic 

alterations in cell behaviour, due to the malignant transformation, were associated to 

the reorganization of the cell cytoskeleton. Cytoskeleton remodelling caused also 

variations in cell mechanical properties, probed by AFM. This technique has 

previously been demonstrated to be a new and fast support in the pathologist 

diagnosis of pleural effusions (16). In particular, we verified a reduction in cancer cell 

stiffness compared to healthy cells. Combining the analyses of cellular phenotypical 

events to physical properties, in particular cell stiffness, we could discriminate cancer 

from benign cells and distinguish cancer cells with different aggressiveness. Finally, 

we studied the influence of substrate stiffness on cell mechanics. To this aim, 

mechanical properties of cells were examined on PAAm gels of different stiffness.  

4.2 Materials and Methods 

4.2.1 Polyacrylamide substrata preparation and mechanical 

characterization  

Different combination of acrylamide and methylene-bis-acrylamide were mixed to 

obtain 0.3 kPa, 4 kPa, 13 kPa, 30 kPa hydrogels, as described in Section 2.1. To allow 

for cell adhesion, substrates were functionalized with collagen, by using a 

bifunctional photolinker, sulpho-SANPAH. 

4.2.2 Cell culture 

Experiments were performed on benign human mesothelial cells (MeT-5A) and two 

malignant human mesothelioma cells (REN, MPP-89), with different metastatic 

potential. Cell lines were cultured in RPMI 1640 (Microtech) supplemented with 

10% fetal bovine serum (FBS, BioWhatter, MD), 2 mM L-glutamine (Sigma, St. Louis, 

MO), 1000 U/L penicillin (Sigma, St. Louis, MO), and 100 mg/L streptomycin (Sigma, 

St. Louis, MO). 
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4.2.3 Cell proliferation and migration 

In proliferation experiments, cells (5x104/well) were seeded in 6-well plates. Cell 

aliquots were collected and counted after 24 h and 48 h from seeding in Neubauer 

hemocytometer. 

Single cell and collective migration were investigated to study cell migratory 

behaviour both on glass dishes and PAAm substrates. To examine single cell 

migration, cells (2000/cm2) were seeded and incubated at 37°C and 5% CO2 for 24h 

in order to allow cell adhesion. To study collective cell migration on glass dishes, the 

cell wound closure assay was used. Cells were seeded in 35 mm Petri dishes and 

incubated until confluence. The procedure and the equipment are described in 2.2.4. 

4.2.4 Cell spreading area 

Cells were plated at a density of 2000/cm2 on 23 mm glass dishes (Fluorodish, World 

Precision Instrument) and PAAm substrates. Cells were fixed and immunostained to 

evaluate the spreading area at 24h from seeding (see Section 2.2.3). 

4.2.5 Atomic force microscopy to study cell mechanics 

The mechanical properties of mesothelial cells cultured on glass and PAAm substrates 

were studied using AFM (see Section 2.3.2). To investigate the dependence of cell 

Young’s modulus on cellular density, experiments were performed on both single 

cells and cell monolayer cultured on 23 mm glass (Fluorodish, World Precision 

Instrument). Cells were plated at a density of 2000/ cm2  and until confluence to test, 

respectively, single cell and cell monolayer mechanical properties. Measurements 

were conducted in cell culture medium supplemented with 12.5 mM Hepes buffer 

(EuroClone) at 37°C.  

4.2.6 Statistical Analysis 

Data are reported as mean ± standard error (SE), unless otherwise indicated. 

Statistical comparisons were performed with a Student’s unpaired test. P values < 

0.05 denote statistical significance. 
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4.3 Results  

4.3.1 Cell proliferation and migration 

Cell proliferation and migration are considered two fundamental parameters to 

describe the aggressiveness of tumour cells. We found that the rate of proliferation of 

malignant cell lines was higher than benign one. Moreover, among malignant cell 

lines, MPP-89 and REN exhibited higher proliferation rate after 48h compared to 

MeT-5A, while there is not great difference between MPM cell lines (Fig.1).  

 

Figure 1 Cell proliferation was monitored for 48 h. Proliferative capacity of malignant cell lines was significantly 
higher than benign MeT-5A. 

Single cell migration was initially examined on glass petri dish. Quantitative time-

lapse microscopy revealed that, respect to healthy cells, the malignant cells moved 

quickly. Among them, MPP-89 cells migrated faster (Fig 2). To analyse the influence 

of substrate stiffness on single cell migration, we examined also cell migration on 

PAAm gels. Results showed that, independently from substrate stiffness, tumour cells 

displayed an increased motility compared to the healthy cell line, except for the case 

of 0.3 kPa, where REN migration was approximatively the same of the healthy 

counterpart. MPP-89 was still faster than REN cells on all PAAm substrates. 

Moreover, our results showed that malignant cell lines had a biphasic migration-

velocity dependence on substrate stiffness, reaching the maximum velocity on 4 kPa 
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hydrogels (Fig.3). Differently from malignant cells, MeT-5A cell velocity seemed to 

increase monotonically as a function of gel stiffness (Fig.3). We wondered if a 

maximum in cell velocity exists also in the case of MeT-5A and, examining also cell 

migration on 13 kPa, we discovered that, on this substrate stiffness, MeT-5A reached 

a maximum in velocity (Fig.4).  

 

Figure 2 Single cell migration rate on glass dish. MPM cells exhibited significantly (***P<0.001 by Student’s t test) 
higher migration rate compared to benign cells. Moreover, MPP-89 resulted significantly (***P<0.001 by Student’s 
t test) faster than REN cells. Results were presented as mean ±S.E.M and the number of cells analysed was 
indicated in the bars 
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Figure 3 Single cell migration rate on PAAm. MPM cells exhibited increasing motility compared to the healthy cell 
line, except for the case of 0.3 kPa, where REN migration was approximatively the same of the healthy counterpart. 
Results were presented as mean ±S.E.M and the number of cells analysed was indicated in the bars. Statistical 
comparisons were performed with a Student’s unpaired test. ***/°°°P<0.001, compared to 0.3 kPa/4kPa; NS 
P>0.05. 

 

 

Figure 4 MeT-5A single cell migration rate on PAAm. MeT-5A cells reached a maximum in velocity on 13 kPa. 
Results were presented as mean ±S.E.M and the number of cells analysed was indicated in the bars. Statistical 
comparisons were performed with a Student’s unpaired test. ***/°°°/### P<0.001 compared to 0.3 kPa, 4 kPa and 
13 kPa, respectively. 
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Collective migration on glass was analysed through the wound healing assay, as 

previously described. While the benign control was not able to close the wound in 12 

h, REN cells closed the wound approximately after 12 h. Similarly to the control cells, 

MPP-89 cells were not able to close the wound in 12h, due to their lack of ability to 

migrate in a directional way. Instead, they preferentially proliferated and migrated in 

lateral direction rather than in the direction of wound closure (Fig.5). Moreover, we 

examined migration velocity of cells at the far ends of the wound. Cells seeded in 

confluent conditions showed a decreased velocity in comparison to single cells. Also 

in confluent conditions, malignant cell lines continued to show higher velocity than 

healthy one, even if, as already said, REN cells preserved a directional migratory 

ability differently from MPP-89 cells (Fig. 6). 

 

Figure 5 Confluent cell monolayers were wounded with pipette tip. REN cells closed the wound approximately 
after 12 h, while MPP-89 were not able to close the wound in the investigated interval of time. Collective migration 
velocity was expressed in terms of wound closure velocity.  
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Figure 6 Migration velocity of cells at the far ends of the wound. Also in confluent conditions, malignant cell lines 
continued to show significantly (***P<0.001, by Student’s t test)higher velocity than healthy one. MPP-89 cells 
migrated faster than REN cells (**P<0.05, by Student’s t test). Results were presented as mean ±S.E.M and the 
number of cells analysed was indicated in the bars. 

 

4.3.2 Cell morphological changes 

We monitored how cell spreading area changed with substrate stiffness. Images were 

taken 24h after seeding, to allow cell spreading completely. Furthermore, we 

analysed cells that spread without contact with adjacent cells, to avoid any 

interference in cell spreading by the cell-cell contact. Unexpectedly, REN cells seeded 

on glass showed a wide spreading area, higher than MeT-5A, while MPP-89 exhibited 

the smallest spreading area (Fig. 7,8). On PAAm gels, cell area grew with increasing of 

substrate stiffness for all cell lines, except for REN cell lines, whose area did not 

exhibit variation up to 0.3 kPa (Fig. 9,10). These results showed the preserved ability 

of both normal and malignant cells to sense matrix stiffness in terms of adhesion 

properties to matrix. 
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Figure 7 Cell spreading area on glass. REN cells seeded on glass showed a significantly wider spreading area 
compared to MeT-5A (***P<0.001) and MPP-89(***P<0.001). MPP-89 exhibited the smallest spreading area, 
significantly (***P<0.001) tiny compared to MEeT-5A. 

 

Figure 8 Cells were fixed and stained with phalloidin(red, actin) and HOECHST (blue, nuclei). Representative 
images of cell nuclei and actin filaments of mesothelial and MPM cells on glass . Scale bar 100 m. 
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Figure 9 Cell spreading area on PAAm. Spreading area grew with increasing of substrate stiffness for all cell lines, 
except for REN cell lines, whose area did not exhibit variation up to 0.3 kPa Results were presented as mean 
±S.E.M and the number of cells analysed was indicated in the bars. Statistical comparisons were performed with a 
Student’s unpaired test. ***/°°°P<0.001, **P<0.05 NS P>0.05. 
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Figure 10 Cells were fixed and stained with phalloidin(red, actin) and HOECHST (blue, nuclei). Representative 
images of cell nuclei and actin filaments of mesothelial and MPM cells on PAAm . Scale bar 100 m. 

 

4.3.3 Cell mechanics 

Cell mechanical properties were studied thanks to AFM. As a first step, we tested both 

single cells and cell monolayer on glass to analyse the influence of cell density on 

mechanical properties. In both culture conditions, benign cells exhibited higher 

Young’s moduli than malignant ones (Fig. 11a). In particular, the average stiffness 

(mean±s.d.) of single tumour cells were found to be 0.29±0.16 kPa (MPP-89) and 

0.53±0.23 kPa (REN). Thus, cancer cells showed reduction in stiffness with increasing 

metastatic potential. Otherwise, benign mesothelial cells expressed a significantly 

increased average cellular elasticity, with a value of 1.46±1.1 kPa. Results of 

experiments performed on cell monolayer presented the same trend of single cells 

(Fig. 11b), but higher elastic moduli were measured. The average stiffness of tumour 

cell in confluent condition increased to 0.58±0.29 kPa, for MPP-89 and 1.48±1.1 kPa, 

for REN cell line. For benign cells, the average stiffness grew to a value of 2.16±1.0 
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kPa. The enhanced cell stiffness, in the case of cell monolayer, was probably due to 

cell-cell contacts that strengthen cell cytoskeleton structure (Fig. 11b). Cell 

mechanical properties were also evaluated on PAAm substrates with different 

stiffness. Our results showed that MeT-5A sensed variations in substrate stiffness 

changing (Fig. 12). We measured an average stiffness of 0.36±0.1 kPa and 1.4±0.5 kPa 

on soft substrates (0.3 kPa and 4 kPa, respectively), that increased to 2.7±1.4 kPa on 

the stiffer substrate (30 kPa). Contrary to benign cells, MPP-89 and REN cell lines did 

not feel difference in substrate stiffness up to 0.3 kPa (Fig. 12). In fact, tumour cell 

elasticity measured on 0.3 kPa were 0.27±0.06 kPa (MPP-89) and 0.75±0.2 (REN) 

kPa, while the average stiffness estimated on 4 and 30 kPa were 0.45±0.1 kPa and 

1.4±0.5, for MPP-89 and REN cells, respectively. 

 

Figure 11 Apparent Young’s modulus for benign MeT-5A and malignant REN and MPP-89, on glass, in two culture 
conditions: (a) single cells and (b) cell monolayer. In both cases, cancer cells showed reduction in stiffness with 
increasing metastatic potential Results were presented as mean ±S.E.M. Student’s t test  was applied to measure 
statistical differences. ***/***P<0.001 as compared to normal cells or MPP-89, respectively. 
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Figure 12 Apparent Young’s modulus for benign MeT-5A and malignant REN and MPP-89 on PAAm. MeT-5A 
sensed variations in substrate stiffness changing, while MPP-89 and REN cell lines did not feel difference in 
substrate stiffness up to 0.3 kPa Results were presented as mean ±S.E.M and the number of cells analysed was 
indicated in the bars. Statistical comparisons were performed with a Student’s unpaired test. ***/°°°P<0.001, NS 
P>0.05. 

4.4 Discussion  

MPM is a lethal cancer with increasing worldwide incidence. Unfortunately, MPM has 

a long latency period and then it is diagnosed in a late stage, when its resistance to 

conventional chemo- and radio-therapy is very strong. For these reasons, the 

identification of new and specific biomarkers is of relevant importance to guarantee 

an early diagnosis of MPM, but also to define more efficient treatments. To this 

purpose, a very promising contribute could come from the study of cell mechanical 

properties that can be considered as a label free marker of cancer progression (24–

26). In fact, during cancer progression, cell undergoes from a fully mature, post 

mitotic state to a proliferating motile cancerous state, that involves a dramatic 

reorganization of the actin cytoskeleton and, consequently, a deviation from their 

mechanical properties (27–29). 
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In this work, we studied the mechanical properties (Young’s modulus) of human lung 

mesothelial cells, by using AFM. Biophysical characterization supports the analysis of 

biological behaviour of cells, not only to discriminate malignant cells from benign 

ones, but also to identify the aggressiveness of tumour cells. In fact, it is well known 

that cancer cells are softer than their normal counterpart (30,31), but studying the 

correlation between cell mechanical properties and metastatic potential is an opening 

question. At this aim, in this study, we proposed the physiological behaviour and the 

mechanical characterization of a mesothelial cell line (MeT-5A) and two MPM cell 

lines (REN and MPP-89) of different aggressiveness, to better understand the 

consequence of malignant transformation.  

Tumorigenesis is accompanied by alterations in cell cytoskeletal structure that plays 

a critical role in cellular processes, including cell proliferation and migration 

activities, and influences cell shape, adhesiveness and, consequently, mechanical 

properties (10,32). In vitro experiments on glass substrates revealed enhanced 

proliferative and migratory capacity of MPM cells (see Section 4.3.1). The increase in 

cell proliferative and migratory abilities is considered an hallmark of tumour 

transformation. The invasiveness of MPM cells was also investigated using wound 

healing scratch assay. During wound repair, we observed healthy cells moving 

together in sheet-like structures, maintaining cell-cell adhesions, due to the presence 

of cell-cell junctions. This collective migration was also a quick of REN cells. Unlike 

MeT-5A, REN cells had so high migration rate to be able to close the wound in the 

time of observation. Otherwise, MPP-89 showed an individual cell migration, because 

the function of cadherin, a cell-cell junction protein, was suppressed and cells moved 

as single cells. This feature suggested that a dedifferentiation of MPP-89 cells was 

proceeding. The distinct modes of cancer cell migration accorded to aggressiveness 

and differentiation state of cancer cells (33).  

We analysed morphological and mechanical features of the proposed cell lines and we 

discovered that the morphology alone is not sufficient to discriminate malignant from 

benign cell. Previous experiments performed on cells from the pleural effusion 

samples, demonstrated that no correlation exists between ex vivo cultured cell 

morphology and expected measured stiffness. This lack of correlation suggest that it 
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is unlikely that ex vivo cultured morphological differences influence measured 

elasticity (16). We found that REN cells appeared morphologically similar to their 

heathy counterpart and they exhibited a great spreading area, about twice than that 

of MeT-5A cells. Nevertheless REN cells were more spread compared to MeT-5A, they 

appeared highly motile and able to repopulate the scratched area within 12 hours. 

Similarly to MeT-5A, REN cells migrated in the direction of wound closure, but, unlike 

healthy cells, they were able to close the wound in the time of observation. 

Furthermore, their mechanical properties resulted to be lower than those of healthy 

mesothelial cells, explaining their increased motility. The enhanced migration 

activities, the significantly reduction of cell mechanical properties confirmed the 

malignant behaviour of this cancer cell line. Moreover, the combination of biological 

and mechanical parameters could help to judge the aggressiveness of MPM. In fact, 

we noted that MPP-89 cells presented a very small spreading area, the ability to 

migrate rapidly and lower values of Young’s modulus, compared to REN cells. The 

most important difference between REN and MPP-89 cells was in the way they closed 

scratched area in wound assay. As already said, REN cells preserved their ability to 

heal wounds, while wound healing process resulted to be seriously affected in the 

case of MPP-89 cells. In fact, MPP-89 cells lost their epithelial organization and gained 

the ability to detach from epithelial cell clusters in order to move as single cells in a 

mesenchymal fashion. All these features, recapitulated in Tab.1, underlined the 

differences between healthy and cancer cells and let us conclude that MPP-89 have a 

more aggressive potential than REN cells.  

Plastic and glass cell culture systems lack the properties required to mimic in vivo 

environments. Consequently, in vitro cultured cells generally have an altered 

behaviour in terms of growth rate, morphology and intracellular metabolic activities. 

In this context, it is of paramount importance to design biomaterials with micro-

structural and mechanical properties able to organize cells and support a more in vivo 

like behaviour and cellular phenotype. In particular, it has been widely demonstrated 

that the stiffness of extracellular environment has a large impact, similar to chemical 

stimuli, on the regulation of cell behaviours, in particular cell survival, proliferation, 

differentiation and migration (34). For example, changes in stiffness of glioma cells 
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due to the rigidity of the substrate (35,36) and the mechanical properties of cancer 

cells plated on soft collagen matrices have been reported (37). The importance to 

study the role of ECM mechanics is due to the changes of ECM composition and 

architecture in cancer. In fact, disease states are often accompanied by a local 

increase in ECM rigidity (38,39) due to local accumulation of a dense, crosslinked 

collagen matrix favouring detection of the tumour by physical palpation (40,41). 

Cells, that normally resides in soft environment, manifest enhanced proliferation and 

migration, a loss of cell polarity, when cultured on stiffer matrices (42). These aspects 

can be considered hallmarks of cancer cells, accompanying the transition from a 

relatively quiescent to a malignant phenotype, driven by local ECM remodelling and 

stiffening.  

For these reasons, we also investigated how cellular functions and characteristics, 

such as cell migration, cell spreading area and mechanics were influenced by changes 

in substrate stiffness. To reproduce the environment that could better mimic the in 

vivo ECM, we had to consider that, in the body, tissues stiffness is not static, but 

changes during physiological processes and in pathological responses like 

tumorigenesis. In particular, the elastic modulus of a normal human lung has been 

measured at 0.44-7.5 kPa and this inhomogeneity depends in part on the region 

measured (alveolar wall or. airway wall or. airway epithelium, for example) (43). 

However, in case of lung cancer, the elastic modulus grows above 15 kPa (44). The 

increase in the stiffness of the ECM may lead to phenotypic cellular changes such as 

increased proliferation and migration (45,46). The stiffness interval we investigated 

in this study encompassed lung physiological range in healthy and disease conditions. 

Previous studies agreed that healthy cells have the ability, known as mechano-sensing, 

to detect and respond to the mechanical stiffness of the extracellular environment 

(34,47–51). Cancer cells do not show a clear behaviour. In vitro experiments on 

substrates of different stiffness demonstrated that only certain cancer cell lines 

exhibited a dependence on matrix rigidity for growth rate, spreading and migration 

(52). In particular, rigidity-dependent cancer cells grew better on stiff/rigid matrices 

and their lower growth rates, when plated on soft matrices, were caused at least in 

part by a selective alteration in cell cycle progression and by the induction of 
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apoptosis. On rigid substrates, cell lines which demonstrated rigidity-dependent 

growth also spread extensively, formed prominent stress fibres, mature focal 

adhesions and migrated rapidly, while they appeared rounded and failed to 

productively migrate on less rigid gels (45,52). The regulation of growth in response 

to rigidity was controlled by FAK, ERK, and the small GTPase Rho expression (42), or 

by an increase in cyclin D levels downstream of Rac activation (53). Rho GTPases and 

their downstream targets, which are critical mediators of cell spreading, migration, 

and contractility (54) may act as mechanosensory machinery that respond to the 

rigidity of the microenvironment. 

In the present study, we found that matrix stiffness altered cytoskeletal structure and 

mechanical properties of normal and MPM cells. The less structured cytoskeleton, the 

decreased migration rate and the reduced Young’s modulus on soft substrates was 

recently demonstrated for different lung cancer cell lines (55). Indeed, our results 

support these findings and bring more knowledge on the effects of substrate stiffness 

on lung cancer cells. Both normal mesothelial and MPM cells reacted to substrate 

stiffening by increasing spreading area and mechanical properties and by showing 

biphasic migration-velocity dependence on substrate stiffness, with a peak value 

reached on 13 kPa substrates in the case of normal cells and on 4 kPa substrates in 

the case of MPM cells. Importantly, on the softest substrate, cancer cells show a 

significantly reduction of migration rate, spreading area and Young’s moduli, until 

reaching values similar to normal cells. Recent works study how the normal stroma 

exerts tumour-suppressive signals to control tissue homeostasis (56,57). It is 

demonstrated how the soft normal ECM can triggers the downregulation of cancer 

cells proliferation (56). Thus, our findings were oriented towards this new 

mechanism of ECM-mediated control of cancer cells behaviour. 

 Cell Proliferation 

(Fold Increase) 

Single-cell 

Migration 

Wound Closure 

Velocity 

Cell Spreading 

Area 

Single-Cell Mechanical 

Properties 

 % µm/min µm/min µm2 kPa 

MeT-5A 3 0.28±0.15 0.23±0.1 1528±679 1.46±1.1 

MPP-89 4.4 0.5±0.26 0.14±0.05 688±270 0.29±0.16 

REN 4 0.42±0.32 0.52±0.16 2422±761 0.53±0.23 

Table 1 Results of phenotypical and mechanical characterization of mesothelial and MPM cells. Data were 
presented as mean ± SEM. Statistical difference was shown as: Mean ±SEM P<0.05, Mean ±SEM P<0.01, Mean 
±SEM P<0.001 as compared to healthy cells. 
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4.5 Conclusions  

In this work, we investigated the mechanical properties of MPM cells and their 

normal counterpart, using AFM. The AFM measurements helped to understand the 

correlation between cell structure, mechanics and functioning. The mechanical 

properties of MPM cells resulted to be lower than those of healthy mesothelial cells. 

The decrease of Young’s moduli, due to malignancy, was consistent with 

morphological changes and cytoskeleton rearrangement observed by fluorescent 

microscopy. Our results showed that the malignant transformation altered 

cytoskeletal structure and, consequently, changed cellular functions, such as cell 

proliferation, migration and adhesion. Furthermore, cell mechanical properties were 

correlated to tumour cells aggressiveness. We noticed that cell stiffness declined with 

increase of the level of cancer transformation that could give benefits for tumour 

invasion. Moreover, we have taken a first step in characterizing the response of MPM 

cell lines to changes in the rigidity of surrounding microenvironment. We observed 

that both healthy and tumour cells reacted to substrate stiffening by increasing 

spreading area, cell migration and mechanical properties. Thus, extracellular 

environment has a large impact on the regulation of cell functions, in particular cell 

survival, proliferation and migration. In particular, ECM stiffness had a key role in the 

control and in the downregulation of cancer cell behaviour. In conclusion, our 

findings showed that cell mechanical properties could be considered a valid label free 

marker for cancer progression and the biophysical characterization of MPM cells may 

result an efficient support to the diagnosis of pleural effusions. 
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5.1 Introduction  

The study of biomechanics and biophysics of cancer cells underline the role of the 

components of the cellular CSK in influencing some key functions such as cell 

mechanics, migration, differentiation, and neoplastic transformations (1–3). In fact 

modifications to the CSK induced by external stimuli, such as chemical, topographic 

and mechanical gradients embedded in the ECM, act in concert with the tumorigenic 

molecular signalling to affect malignant transformations (4–6). 

In comparison with healthy cells, biomechanical investigations reported some 

common features of many types of tumour cell lines, such as a less structured CSK (7–

9) with lower cell mechanical (10,11) and cytoadhesive (8,12,13) properties. All 

factors which, from a biophysical point of view, augment the metastatic potential of 

the cancer cells (7,8,10,13,14). The classical in vitro investigations focuses on the 

mechanical state of the cell and neglects the ancillary role of the tumour 

microenvironment in tumorigenesis and cancer progression. Indeed, the cancerous 

ECM foster some of the inherent malignant properties of transformed cells, and thus 

facilitated neoplastic progression, due to its ability to act as a storage compartment 

for growth-regulatory and antiapoptotic molecules, as well as a mechanical platform 

for cell attachment and movement (4,15,16). Going beyond the idea that 

tumorigenesis is mainly cell-autonomous process, in which progressive genetic 

derangement renders cells independent of the external context, following studies 

investigate how the transformation from health to malignancy alters the mechanical 

properties of cells within the tumour microenvironment (17).  

Biophysical techniques reveal that cancer cells are more compliant than their healthy 

equivalents. This increase in cell deformability is accompanied by alterations in 

cytoarchitecture, associated with malignant transformation (18). Otherwise, the 

tissues affected by malignant tumours generally appear stiffer than healthy ones 

(19,20). 

 

Part of this chapter is included in the paper “Mechanical Phenotyping of Cells and Extracellular Matrix as Grade and Stage Markers 

of Lung Tumor Tissues” , V. Panzetta, I. Musella; I. Rapa, M. Volante, P. A Netti, S. Fusco, submitted on Acta Biomaterialia (2017). 
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Therefore, for a very detailed mechanical phenotyping of tumours, it is necessary to 

consider the cross-talk between cells and their surrounding ECM. Indeed, a complex 

loop of interactions exists between cells and ECM: i) cells may modify the 

environment chemically by metalloproteinase secretion (21,22), or mechanically and 

topographically by generation and transmission of forces (23,24); ii) the ECM adapts 

and, thanks to its mechanical and topographic features, is able to induce structural 

modifications in the CSK and to trigger different cell functions and behaviours. To 

investigate the mechanical phenotyping of cells and tissues, have been used many 

techniques, like rheology or tissue elastography, suffering from poor spatial 

resolution and low force sensitivity. For this reason, it is supposed that the different 

mechanical characteristics of cancer cells could arise either from an imprecise 

mimicking of their in vitro micro-environment, or from an insufficient resolution of 

the mechanical characterization at a sub-cellular and sub-matricial level when tested 

in vivo or ex vivo.  

In this work, human surgical tissue samples, removed from 10 patients affected by 

lung adenocarcinoma, were analysed using the multiple particles tracking (MPT) 

technique with the aim of mechanically phenotyping the tissues at cellular and ECM 

levels. A mechanical classification of the cells and the ECM of each sample was 

performed and compared with their healthy equivalents for all patients. Results and 

mechanical phenotypes were correlated to the stage and the grade of the tumour, 

previously assessed as part of the routine diagnostic procedure. In conclusion, we 

investigated and compared the ECM structure and morphology of both the tumour 

and the healthy tissues. This double-check mechanical characterization of ex-vivo 

biopsy tissues offers new diagnostic markers of the biophysical properties of the cells 

and the ECM (resolved at different spatial resolutions) and also gives new 

interpretative analytical points relating to cancer mechanobiology. 
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5.2 Materials and Methods 

5.2.1 Samples  

All experiments were performed in accordance with guidelines and regulations 

approved by the Research Ethics Committees of University of Naples and Turin. 

Experiments were performed on bioptic tissues from 10 patients with 

adenocarcinoma of the lung. One millimetre-thick tumour tissue fragments 

(approximately 1 cm2) were isolated from fresh surgical specimens by means of a 

sterile scalpel. Corresponding healthy tissue samples were collected from lung 

parenchyma at least 3 cm away from the tumour nodule. After retrieval, tissue 

fragments were immediately prepared for cryopreservation as follows: samples were 

washed three times in a PBS buffer and transferred in 1.8 ml cryovials containing 1.5 

ml of cryopreservation solution (RPMI 1640 medium supplemented with 10% fetal 

bovine serum and 10% DMSO). The cryovials were maintained at -20°C for 1h and 

then stored at -80°C. Tissues viability after cryopreservation was evaluated both with 

a Trypan blue assay and comparing the results of particle tracking experiments 

performed on a cryopreserved and 4% paraformaldehyde-fixed tissues. 

Tissues were rapidly thawed in a 37°C water bath and maintained in complete 

medium during particle tracking experiments.  

5.2.2 Cell culture 

To study the effects of substrate stiffness on cell morphology and cytoskeletal 

structure, we used H522, an human lung cancer cell line. Cells were cultured at 37°C 

in 5% CO2 in RPMI 1640 medium (GIBCO) supplemented with 10% Fetal Bovine 

Serum (FBS, GIBCO), 2mM L-glutamine (GIBCO), 5000 U/L penicillin (GIBCO), and 

5000 g/L streptomycin (GIBCO). Cells were plated at a concentration of 2000 

cells/cm2 on polyacrylamide gels of different stiffness. 

5.2.3 Polyacrylamide substrata preparation and mechanical 

characterization 

PAAm substrates were prepared by mixing acrylamide, methylene-bis-acrylamide to 

obtain from 0.3 kPa to 30 kPa hydrogels. The mechanical properties of PAAm 
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substrates were evaluated using a commercial AFM. The detailed preparation, 

functionalization and mechanical characterization of polyacrylamide substrates are 

described in Section 2.1.  

5.2.4 Immunofluorescence labelling 

Cells were plated at a density of 2000/cm2 on 23 mm glass dishes (Fluorodish, World 

Precision Instrument). To evaluate the spreading area at 24h and 48h from seeding, 

cells were fixed and immunostained, as described in section 2.2.3. 

5.2.5 Cell spreading area 

Specimens were imaged using a Olympus IX81 inverted microscope and a 10× 

objective to quantify cell spreading. Fluorescent images were imported into ImageJ 

software (NIH, Bethesda, MD, USA) for postprocessing, analysis and quantification of 

the ventral cell area (cellular footprint). Individual cells were outlined and their areas 

were determined. More than 300 cells were analyzed for each substrate stiffness and 

for both time. 

5.2.6 Ballistic injection and particle tracking intracellular and 

extracellular mechanics 

Carboxyl-modified fluorescent polystyrene particles (0.50 µm diameter, Polyscience, 

Inc.) were introduced into the bioptic tissues using a ballistic gun (Bio-Rad, Hercules, 

CA). Helium gas at 2000 psi was used to force a macro-carrier disk coated with 

particles to crash into a stopping screen. The force of collision was transferred to the 

particles, causing their dissociation from the macro-carrier and the bombardment of 

tissues. Once bombarded, tissues were washed extensively with PBS and stained with 

vital DNA-specific dye, Hoechst 33342 (Life Technologies), at a 1:1000 dilution. Cell 

nuclei were stained in order to discriminate between cells and ECM during optical 

microscopy analyses. After incubation, tissues were washed with PBS and the motion 

of intra-cellular and extra-cellular fluorescent beads was recorded for a total of 5 s at 

100 fps, as described in Section 2.3.1. The total number of analysed particles was at 

least 200 from more than 20 cells and regions for each sample.  
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PTM (see 2.3.1) allows the monitoring of local viscoelastic properties of living cells 

and the extra-cellular micro-environment with a high spatio-temporal resolution, 

collecting and analysing the Brownian motions of particles embedded in cytoplasm 

and ECM, respectively. The particle displacements were tracked from the very 

beginning of the videos taken of beads embedded into the cells and ECM. To generate 

the point tracking trajectories, an ad hoc Matlab (Matlab 7) code firstly detected the 

beads in each frame, and then it linked the points into trajectories. Each position was 

determined by intensity measurements through its centroid, and it was compared 

frame by frame to identify the trajectory for each particle, based on the principle that 

the closest positions in successive frames belong to the same particle (proximity 

principle). Once the nanoparticle trajectories had been obtained, MSDs were 

calculated (see 2.3.1). The particles embedded in regions with a thickness similar to 

or smaller than the particle diameter were excluded from the analysis (cell lamellar 

regions).  

5.2.7 Tissue morphology 

To prepare tissues for observation under microscope, they were embedded in OCT 

and then sliced (see 2.2.5). A Confocal Leica TCS SP5 II combined with a multi-photon 

laser source was used to investigate tissue morphology. The sectioned samples were 

stained for actin microfilaments and nucleus detections (see 2.2.5).  

5.2.8 Immunohistochemical analysis 

Basal membrane material was highlighted by immunohistochemical detection of 

laminin (Novocastra; clone 4C7, diluted 1:50). A standard automated (Dako 

Autostainer, Glostrup, Denmark) immunoperoxidase procedure was employed, and 

immunoreactions were shown by a biotin-free dextran-chain detection system 

(Envision, Dako), and developed using diaminobenzidine as the chromogen. 

5.2.9 Statistical Analysis 

Data are reported as mean ± standard error (SE), unless otherwise indicated. 

Statistical comparisons were performed with a Student’s unpaired test. P values < 

0.05 denote statistical significance.  
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5.3 Results  

5.3.1 Tissue viability assay 

Before performing particle tracking analyses of ex vivo lung tissues, a Trypan Blue 

assay was used in order to evaluate the viability of tissues after cryopreservation. The 

tissue samples were rapidly thawed in a 37°C water bath, maintained in complete 

medium and stained with Trypan Blue. The results (not shown) suggest that post-

thaw tissue viability was maintained when cryopreserved by using DMSO. We also 

compared MSDs of cryopreserved and 4% paraformaldehyde-fixed tissues. MSDs of 

fixed tissues were close to the noise floor and appeared to flatten out, as consequence 

of cell death. On the contrary, MSDs of cryopreserved tissues indicated a sub-diffusive 

behaviour, which originated from actin network confinement and cytoskeletal 

hindrance (Fig.1). 

 

Figure 1 Ensemble-averaged MSDs of 500 nm fluorescent particles in cryopreserved and 4% paraformaldehyde-
fixed tissues (both in cells and ECM). MSDs of fixed tissues were close to the noise floor and appeared to flatten 
out, as consequence of cell death. On the contrary, MSDs of cryopreserved tissues indicated a sub-diffusive 
behaviour, which originated from actin network confinement and cytoskeletal hindrance. 

 

5.3.2 Particle tracking microrheology 

Particle tracking microrheology allowed to analyse ex vivo lung tissues, distinguishing 

between cells and ECM contributions. Polystyrene beads (500 nm) were introduced 

through ballistic injection into the biopsy tissues. The spontaneous motion of the 
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probing beads across cell cytoskeleton and ECM structures was tracked to calculate 

the MSD. The amplitude and the slope of MSDs can be correlate to the mechanical 

properties of the intracellular and extracellular microenvironment. Tissue were 

stained with a fluorescent dye to label nuclei and thus, to distinguish cells from their 

surrounding ECM. In this way, we could compare the MSDs of particles exploring the 

cytoplasm and the ECM of healthy and tumour tissues. Fig. 2 shows that particles 

introduced in cells of adenocarcinoma tissues exhibited greater MSDs at all explored 

lag times as compared to cells of normal tissues. 

 

Figure 2 Ensemble-averaged MSDs of 500 nm fluorescent particles in cells of healthy (blue line) and 
adenocarcinoma (red line) tissues. ***, p<0.001; n>700 for all studied cases. 

 

On the other side, particle tracking analyses revealed also that MSDs in tumour ECM 

are smaller in comparison to healthy tissues at all time lags (Fig.3). 
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Figure 3 Ensemble-averaged MSDs of 500 nm fluorescent particles in ECM of healthy (blue line) and 
adenocarcinoma (red line) tissues. ***, p<0.001; n>700 for all studied cases. 

 

We selected the averaged measured MSD at =1s (Fig.4). We observed that, from 

healthy to tumour tissues, MSDs amplitude of the probes embedded in the cells 

increased significantly of 2.5 times, while MSDs of ECM decreased of the same value 

(Fig. 4 a, b).  

 

Figure 4 The average measured MSD at 1 s turned out to be 2.5 times higher in tumour cells than in healthy ones 
(a), indicating a cell softening during cancerous transformation. Contrarily, the decrease of MSD in tumour ECM 
indicated a matrix stiffening that promotes in several ways tumour progression.  
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These results highlighted that, in tumour tissues, cells resulted more compliant 

although they were located in a stiffer matrix. This aspect could be the consequence 

of a damaged mechanosensing due to pathological state. In order to investigate more 

thoroughly this aspect we cultured H522 cells from lung adenocarcinoma on 

polyacrylamide substrates which had different stiffness (see Fig.5). The polymeric 

substrates were fabricated mimicking an ECM stiffening from 4 to 30 kPa and 

evaluating the cell spreading area at 24 and 48 h. Cell spreading, in fact, represents a 

very good indicator of the mechanosensing process of cells (25). As shown in Fig.5, 

H522 cells presented a different morphology on the substrates, with a higher 

spreading area on the stiffer substrate (30 kPa). H522 sense the stiffness of the 

polyacrylamide substrates which increases the cell area and reorganizes their 

cytoskeleton when moving from 4 to 30 kPa. Nevertheless, from previous works it 

has been shown that the ability of mechanosensing may be different depending on the 

tumour cell line (26) and all the experimental evidence came from in vitro 

characterizations. During in vitro experiments we were able to recreate some 

physiological conditions, but it is impossible to control and replicate them all. As 

shown, in the comparison between the mechanical behaviour of cells in biopsy tissue 

and 2D culture, tumour cells could display different behaviours and characteristics, 

depending on the nature of the surrounding environment. 

5.3.3 Dependence of Nanomechanical Properties on Tumour 

Grade and Stage 

The analysed samples were classified according to the grade and the stage (Table 1), 

as they were defined by the most recent classification of lung tumours (27). Through 

particle tracking experiments, we also searched for a correlation between the 

nanomechanical properties of bioptic tissues and their grade and stage. 

Unfortunately, samples of grade 1 were missing in the sample patients (10) we 

investigated, but, as shown in Fig. 6a, we found a clear correlation between MSDs of 

cells and tumour grade. MSDs and cell deformability increase in a significant way 

when tumour grade passes from 2 to 3, resulting about 2 and 5 times higher than 

normal tissues in the case of grade 2 and 3, respectively. 
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Figure 5 Analysis of H522 cells on polyacrylamide gels. Phalloidin staining of cells plated on substrates of 

different stiffness: 4 kPa (a), 30 kPa (b). Scale bars are 100 m.  

 

Conversely, Fig. 6b reports that the ECM stiffening process -we registered the passage 

from a normal to a tumour tissue- is not directly dependent on the tumour grade. In 

Fig. 7 is shown that the ensemble averaged MSDs of probes in cells of grade 3 samples 

resulted higher than those of particles in cells of grade 2 tissues and, consequently, 

healthy tissues. On the other hand, Fig. 8 shows that, MSDs of nanoparticles in ECM of 

adenocarcinoma tissues did not change with tumour grade and they resulted lower 

than MSDs of probes in ECM of normal tissues, for all time lag. Such findings are in 

agreement with tumour grading assessed by conventional morphological procedure 

for lung tumour (Fig. 6c-f). In fact, it is based on how much tumour cells differ 

morphologically and grow faster than normal cells and not on ECM structural changes 

during tumour progression.  
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 Sample  Grade Stage Diameter 

(cm) 

pT pN pL 

 1  2 1 2 pT1a pN0 pL0 

 2  2 1 2.6 pT2b pN0 pL0 

 3  2 1 2.7 pT1b pN0 pL0 

 4  2 1 2.8 pT1b pN0 pL0 

 5  2 1 3.2 pT2a pN0 pL1 

 6  2 3 2.5 pT1b pN2 pL0 

 7  2 3 2 pT1b pN2 pL0 

 8  3 1 3.2 pT2a pN0 pL0 

 9  3 3 2.8 pT1b pN2 pL0 

 10  3 3 2.5 pT1b pN2 pL0 

Table 1 Parameters of classification of analyzed adenocarcinoma samples: grade, stage, size, pathological 
assessment of the primary tumor (pT), pathological assessment of the regional lymph nodes (pN), visceral pleural 
invasion (pL). 

 

Notwithstanding the grade, the stage of the tumour resulted correlated strictly with 

the mechanical properties of both cells and ECM. In this case, it is very important for 

the classification also the tumour architecture, which is defined by evaluating the 

presence of sheets or solid nests with incorporating fibrotic tissue. In particular, 

MSDs of NPs in cells significantly increased when the tumour advances from stage 1 

to 3 (Fig. 6g). Inversely, MSDs decreased sensitively in ECM from normal tissue to 

cancer at stage 1 and 3 (Fig. 6h). As in the case of the grade, the sample population 

lacked stage 2. By comparing the MSDs of tumour tissues at stage 1 and 3 we found an 

increase of 2.3- and 3.5-fold times for tumour cells compared to their healthy 

counterparts and a decrease of 2- and 4-fold times for ECM. In Fig. 9-10, we report the 

averaged MSDs of particles, respectively, in cells and ECM and we noticed a 

decreasing in cell mechanical properties and an increasing in ECM mechanics, with 

tumour stage growing. 
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Figure 6 (a, b) MSDs of nanoparticles (NPs) inside the cells correlated directly with tumour grade, increasing 2- 
and 5-fold for tumour grade 2 and 3, respectively (a). Contrarily, it seems that there is not a strict correlation 
between cancer grade (2 and 3) and matrix stiffening (b). (c-f) Adenocarcinoma tumours were stained with 
hematoxylin and eosin (H&E) (top) and laminin (bottom). Original magnification, 200× for all images. (g, h)Both 
MSDs of NPs inside the cells and in the ECM correlated directly with the tumour stage. 
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Figure 7 Ensemble-averaged MSDs of 500 nm fluorescent particles in cells of healthy (blue line) and 
adenocarcinoma grade 2 (red line) and grade 3 (green line) tissues. **, p<0.01, ***, p<0.001; n between 200 and 
600 for all studied cases.  

 

Figure 8 Ensemble-averaged MSDs of 500 nm fluorescent particles in ECM of healthy (blue line) and 
adenocarcinoma grade 2 (red line) and grade 3 (green line) tissues. **, p<0.01, ***, p<0.001; n between 200 and 
600 for all studied cases. 
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Figure 9 Ensemble-averaged MSDs of 500 nm fluorescent particles in cells of healthy (blue line) and 

adenocarcinoma stage 1 (red line) and stage 3 (green line) tissues. **, p<0.01, ***, p<0.001; n between 200 and 

700 for all studied cases.  

 

 

Figure 10 Ensemble-averaged MSDs of 500 nm fluorescent particles in ECM of healthy (blue line) and 
adenocarcinoma stage 1 (red line) and stage 3 (green line) tissues. **, p<0.01, ***, p<0.001; n between 200 and 
700 for all studied cases. 
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5.3.4 Tissue morphology 

By combining confocal fluorescence and second harmonic generation (SHG), we 

investigated the spatial distribution of cells and collagen in normal and tumour 

samples (Fig.11). The structural changes in tumour ECM architecture, which occur 

with transformation from healthy tissues to adenocarcinomas are clear. In normal 

lung tissues collagen fibres were curly, isotropically and uniformly distributed (Fig. 

11b). In tumour tissues the bundles were thicker, linearized and presented a higher 

density, as the SHG reconstruction has higher average intensity (Fig. 11f). Moreover, 

cells were different in number and organization. Tumour slices presented a higher 

amount of cells which clumped in reservoirs between the collagen bundles.  

 

Figure 11 (a-h) Phalloidin staining of actin (magenta, a-e), collagen by second harmonic generation (SHG-white, 
b-f) and Hoechst staining of nuclei (green, c-g) of healthy (top) and tumor (bottom) lung biopsies. Scale bar, 50 
μm. 

5.4 Discussion and conclusions 

Particle tracking microrheology was performed to correlate the nanomechanical 

properties of ex vivo lung tissue to its pathophysiological state. Biopsy tissues were 

stored cryopreserved (see 5.2.1 ), so the viability of sample was tested before particle 

tracking analyses. Fluorescent particles (500 nm) were introduced through a ballistic 

bombardment into the samples and tracked to obtain their motion across cell 

cytoskeleton and ECM structures. Tissue samples were stained with a fluorescent dye 

to label nuclei. In this way, we could distinguish cells from their surrounding ECM and 
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calculate the MSD of probes exploring both intra-cellular and extra-cellular 

environment. In this analysis, healthy/tumour cells and stromal cells were not 

distinguished basing on their morphological characteristics and specific functions. In 

fact, the purpose of this work was to evaluate the mechanical properties of the intra-

cellular micro-environment by considering the collaborative and synergetic 

interactions between tumour and stromal cells in the emergence of the hallmarks of 

the cancer. As has already been demonstrated (28), the amplitude and the slope of 

MSD is inversely related to the mechanical properties of the environment probed by 

particles. Thus, we compared the MSDs of particles introduced in cytoplasm and in 

ECM of healthy and tumour lung removed from each patient. MPT analyses showed 

that the cancerous transformation of tissues had a remarkable effect on the dynamics 

of the tracer beads in tumour cells and their associated ECM. This evidence, obtained 

from averaging all the ex vivo samples investigated with no distinction between grade 

and stage of tumour, was in line with well-established results in vitro and with more 

recent ex vivo comparisons (17,29). The observed increased motion of particles in 

cells of adenocarcinoma tissue (Fig. 2) could be associated to a less structured 

cytoskeleton and then to an increase in the compliance or deformability of cells, as 

already observed in 2D (10,11) and 3D (30) in vitro systems. In fact, it was 

demonstrated that cell softening is strictly correlated with cancerous transformation, 

characterized by resistance to anoikis, cell anchorage-independent growth, capability 

to migrate and invade distant tissues (31). Furthermore, the onset of cancer is also 

characterized by a change in the mechanical properties of the extracellular-

microenvironment, which becomes stiffer within malignant tissues. Indeed, MPT 

analyses revealed that MSDs in tumour ECM are smaller in comparison to normal 

tissue at all time lags (Fig. 3). During the last years there has been a gradual 

accumulation of evidence suggesting that a stiffening of the ECM promotes cancer 

progression and cell transformation from normal to malignant to metastatic 

(24,32,33). In particular, the enhancement of collagen cross-linking and consequently 

the ECM stiffness, results in increased integrin activity and focal adhesion signalling 

that promote tumour proliferation, survival and invasiveness (24).The alteration of 

integrin adhesions in malignancy are associated to the miR-18a circuit that is 

activated by tensile forces generated by stiffened ECM (34). In fact, increased EMC 
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stiffness influences miR-18a expression, leading to PI3K-dependent malignant 

progression (34). The increase of the mean square displacement when nanobeads 

were embedded in the cells and the decrease in the ECM (Fig. 4) suggest a sort of 

symmetric modification of the mechanical properties of the cells and the extra-

cellular matrix caused by the onset of a tumour. Most unexpectedly, it was noted that 

cells in tumour tissues resulted as being more compliant although residing in a stiffer 

matrix. This suggests that damaged/compromised mechanosensing machinery may 

be present in cancer cells. This situation was accurately investigated culturing H522 

cells from lung adenocarcinoma on polyacrylamide substrates of different stiffness 

(form 4 to 30 kPa) to mime an ECM stiffening. We evaluated the cell spreading area at 

24 and 48h because this parameter represents a very good indicator of the 

mechanosensing process of cells (25). Our results show that H522 could sense the 

difference of substrate stiffness and exhibited a different morphology on them(Fig.5). 

Previously works demonstrated that the ability of mechanosensing may be different 

depending on the tumour cell line (26) and all the experimental evidence came from 

in vitro characterizations. During in vitro experiments was impossible to control and 

replicate all physiological conditions. Thus, not necessarily cells in adenocarcinoma 

biopsy tissues lost their mechanosensing capability, but surely, as shown, in the 

comparison between the mechanical behaviour of cells in biopsy tissue and 2D 

culture, tumour cells could display different behaviours and characteristics, 

depending on the nature of the surrounding environment. 

Different ECM organizations in tumour biopsies are also revealed in the actin, nuclei 

and collagen stained sections (Fig. 11). The structural changes in tumour ECM 

architecture, which occur with transformation from healthy tissues to 

adenocarcinomas are clear. We observed curly, isotropically and uniformly 

distributed collagen fibres in normal lung tissues (Fig. 11b) while in tumour tissues 

the bundles were thicker, linearized and presented a higher density, as the SHG 

reconstruction has higher average intensity (Fig. 11f). Such linear collagen bundles 

were the fibrous substrate on which cells could migrate at high velocity and with high 

persistence (35). Moreover, cells were different in number and organization. Tumour 

slices presented a higher amount of cells which clumped in reservoirs between the 
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collagen bundles. This was indicative of a different production and remodelling of 

ECM from normal and tumour cells and, consequently, as already confirmed from 

MPT analysis, different mechanical properties. 

We also investigated the existence of a correlation between the nanomechanical 

properties of biopsy tissues and their grade and stage as they were defined by the 

most recent classification of lung tumours (27). The sample population lacked the 

grade 1, but we found a clear correlation between MSDs of cells and tumour grade 

anyway. In particular, MSDs and cell deformability increase in a significant way when 

tumour grade passes from 2 to 3, resulting about 2 and 5 times higher than normal 

tissues in the case of grade 2 and 3, respectively (Fig. 6a). This observation supports 

the idea that cells undergo a trans-differentiation process during tumour progression 

(36). Conversely, Fig. 6b reports that the ECM stiffening process -we registered the 

passage from a normal to a tumour tissue- is not directly dependent on the tumour 

grade. Such findings are in agreement with tumour grading assessed by conventional 

morphological procedure for lung tumour (Fig. 6c-f). In fact, it is based on how much 

tumour cells differ morphologically and grow faster than normal cells and not on ECM 

structural changes during tumour progression. In particular, the most important 

factor in grading analysis of lung adenocarcinoma is the degree of cytologic atypia, 

defined by nuclear pleomorphism and presence of distinct nucleoli. Fig. 6 shows 

representative H&E stained-sections of tumour of grade 2 and grade 3. In the case of 

grade 2 (Fig. 6c), tumour shows a solid and glandular growth and cells with 

moderately pleomorphic nuclei and greater nucleus/cytoplasm ratio. The grade 3 

tumour presented almost entirely solid nests or cords of cells with very poorly 

pleomorphic nuclei and a variable quantity of cytoplasm. In addition, in the case of 

the grade 3 tumour, it is possible to observe a more abundant deposition of laminin 

around the tumour cell nests, confirming the observation of more bountiful ECM 

components that contribute to increase ECM stiffness. 

Notwithstanding the grade, the stage of the tumour resulted correlated strictly with 

the mechanical properties of both cells and ECM. In this case, it is very important for 

the classification also the tumour architecture, which is defined by evaluating the 

presence of sheets or solid nests with incorporating fibrotic tissue. In particular, 
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MSDs of NPs in cells significantly increased when the tumour advances from stage 1 

to 3 (Fig. 6g). Inversely, MSDs decreased sensitively in ECM from normal tissue to 

cancer at stage 1 and 3 (Fig. 6h). As in the case of the grade, the sample population 

lacked stage 2. A linear progression of the softening process occurring during the 

trans-differentiation pathway of the tumour was observed by analysing the 

mechanical properties of the cells. In fact, by comparing the MSDs of tumour tissues 

at stage 1 and 3 we found an increase of 2.3- and 3.5-fold times for tumour cells 

compared to their healthy counterparts and a decrease of 2- and 4-fold times for ECM. 

As reported in the Table. 1, at stage 1 tumour cells were not found in regional lymph 

nodes in any of the tissues (tumours were classified as N0), while in tumours at stage 

3, N was assigned a value of 2, indicating that the tumour had spread to regional 

lymph nodes. Lymph node invasion may mean that the cancer is growing fast and 

represents one of the first steps in the pathogenesis of metastasis, increasing the 

probability of developing a secondary tumour (37,38). A recent study demonstrated 

that cancer cells which metastasized to the lymph nodes up-regulate most important 

ECM proteins, in particular collagen I fibres, forming a “freeway” for metastasis (39). 

In particular, in the case of lung cancer, it was observed that an altered ECM cross-

linking is found within lung cancer: high laminin-5 expression and Lysyl oxidase-

mediated collagen cross-linking correlated with lung cancer invasiveness (40). This 

result is consistent with our findings that tumour stage and cancer stiffening are 

closely associated. 

  



Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumour tissues 

 

 

99 
 

5.5 References of Chapter 5 

1.  Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010 Jan 
28;463(7280):485–92.  

2.  Connelly JT, Gautrot JE, Trappmann B, Tan DW-M, Donati G, Huck WTS, et al. Actin and 
serum response factor transduce physical cues from the microenvironment to regulate 
epidermal stem cell fate decisions. Nat Cell Biol. 2010 Jul;12(7):711–8.  

3.  Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and 
invasion. Biochim Biophys Acta BBA - Mol Cell Res. 2007 May;1773(5):642–52.  

4.  Comoglio, P. M.; Trusolino, L. Cancer:the matrix is now in control.pdf. Nature medicine; 
2005.  

5.  Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis 
Rev. 2009 Jun;28(1–2):15–33.  

6.  Pathak A, Kumar S. Biophysical regulation of tumor cell invasion: moving beyond matrix 
stiffness. Integr Biol. 2011;3(4):267.  

7.  Lin Z, Han Y, Wu B, Fang W. Altered cytoskeletal structures in transformed cells exhibiting 
obviously metastatic capabilities. Cell Res. 1990 Dec;1(2):141–51.  

8.  Raz A, Geiger B. Altered organization of cell-substrate contacts and membrane-associated 
cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res. 
1982 Dec;42(12):5183–90.  

9.  Panzetta V, De Menna M, Bucci D, Giovannini V, Pugliese M, Quarto M, et al. X-RAY 
IRRADIATION AFFECTS MORPHOLOGY, PROLIFERATION AND MIGRATION RATE OF 
HEALTHY AND CANCER CELLS. J Mech Med Biol. 2015 Apr;15(2):1540022.  

10.  Cross SE, Jin Y-S, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer 
patients. Nat Nanotechnol. 2007 Dec;2(12):780–3.  

11.  Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ. Elasticity of normal and 
cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J. 1999 
May 25;28(4):312–6.  

12.  Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in 
cancer. Nat Rev Cancer. 2004 Feb;4(2):118–32.  

13.  Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, et al. Expression of E-
cadherin cell adhesion molecules in human breast cancer tissues and its relationship to 
metastasis. Cancer Res. 1993 Apr 1;53(7):1696–701.  

14.  Volk T, Geiger B, Raz A. Motility and adhesive properties of high- and low-metastatic 
murine neoplastic cells. Cancer Res. 1984 Feb;44(2):811–24.  

15.  Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer 
progression. J Cell Biol. 2012 Feb 20;196(4):395–406.  

16.  Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001 Oct;1(1):46–54.  



Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumour tissues 

 

 

100 
 

17.  Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, et al. 
The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012 Oct 21;7(11):757–
65.  

18.  Suresh S. Biomechanics and biophysics of cancer cells☆. Acta Mater. 2007 
Jul;55(12):3989–4014.  

19.  Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat 
Rev Cancer. 2009 Feb;9(2):108–22.  

20.  Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor 
MR elastography for breast tumour detection. Phys Med Biol. 2000 Jun;45(6):1649–64.  

21.  Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer 
progression. Nat Rev Cancer. 2002 Mar;2(3):161–74.  

22.  Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer 
Metastasis Rev. 2006 Mar;25(1):9–34.  

23.  Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal 
extracellular matrix in cancer. Trends Biotechnol. 2015 Apr;33(4):230–6.  

24.  Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix Crosslinking Forces 
Tumor Progression by Enhancing Integrin Signaling. Cell. 2009 Nov;139(5):891–906.  

25.  Guarnieri D, Muscetti O, Falanga A, Fusco S, Belli V, Perillo E, et al. Surface decoration 
with gH625-membranotropic peptides as a method to escape the endo-lysosomal 
compartment and reduce nanoparticle toxicity. Nanotechnology. 2015 Oct 
16;26(41):415101.  

26.  Li J, Wu Y, Schimmel N, Al-Ameen MA, Ghosh G. Breast cancer cells mechanosensing in 
engineered matrices: Correlation with aggressive phenotype. J Mech Behav Biomed Mater. 
2016 Aug;61:208–20.  

27.  Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to The 2015 
World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and 
Heart. J Thorac Oncol. 2015 Sep;10(9):1240–2.  

28.  Hoffman BD, Massiera G, Van Citters KM, Crocker JC. The consensus mechanics of 
cultured mammalian cells. Proc Natl Acad Sci. 2006 Jul 5;103(27):10259–64.  

29.  Tian M, Li Y, Liu W, Jin L, Jiang X, Wang X, et al. The nanomechanical signature of liver 
cancer tissues and its molecular origin. Nanoscale. 2015;7(30):12998–3010.  

30.  Baker EL, Lu J, Yu D, Bonnecaze RT, Zaman MH. Cancer Cell Stiffness: Integrated Roles of 
Three-Dimensional Matrix Stiffness and Transforming Potential. Biophys J. 2010 
Oct;99(7):2048–57.  

31.  Liotta LA, Kohn E. Anoikis: Cancer and the homeless cell. Nature. 2004 Aug 
26;430(7003):973–4.  

32.  Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional 
homeostasis and the malignant phenotype. Cancer Cell. 2005 Sep;8(3):241–54.  



Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumour tissues 

 

 

101 
 

33.  Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen 
density promotes mammary tumor initiation and progression. BMC Med [Internet]. 2008 
Dec [cited 2017 Jan 18];6(1). Available from: 
http://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-6-11 

34.  Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN, Acerbi I, et al. Tissue mechanics 
modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat 
Med. 2014 Mar 16;20(4):360–7.  

35.  Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 
2003 Dec;3(12):921–30.  

36.  Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 
2002 Jun;2(6):442–54.  

37.  Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human 
disease. Nature. 2005 Dec 15;438(7070):946–53.  

38.  Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006 
Nov;127(4):679–95.  

39.  Rizwan A, Bulte C, Kalaichelvan A, Cheng M, Krishnamachary B, Bhujwalla ZM, et al. 
Metastatic breast cancer cells in lymph nodes increase nodal collagen density. Sci Rep. 
2015 May 7;5:10002.  

40.  Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-
microenvironment in lung cancer-metastasis and its relationship to potential therapeutic 
targets. Cancer Treat Rev. 2014 May;40(4):558–66.  

 

 
 



6 

CONCLUSIONS 
 

  



Conclusions 

 

 

103 
 

6.1 Conclusions 

Tumour tissues exhibit specific biological and biophysical characteristics that 

distinguish them from healthy tissues. The features accompanying tumour 

progression have been grouped in nine hallmarks of cancer (see 1.2) and they take 

into account both changes in cells and ECM properties, variations in cell-cell 

adhesions and in cell-ECM interactions. Among these hallmarks, the mechanical 

properties of cells and their surrounding ECM have a fundamental role to define the 

malignant transformation. Cancer cells show an altered behaviour compared to 

normal cells, due to genetic defects and functional capabilities that allow them to 

survive, proliferate and disseminate towards distant tissues. Biological and functional 

alterations are combined with abnormalities in the physical and structural 

characteristics of the cells. The studies of the biomechanical properties of tumour 

cells show that, for most of the cancer types, the cancer cells are more compliant than 

their healthy counterparts (1–4). Furthermore, cell stiffness decreases with 

increasing cancer invasiveness and metastatic potential (5,6). A key role, during 

tumour progression, is attributed to the tumour microenvironment, which greatly 

contributes to the response of tumour cells. Research findings show that tumours 

display unique mechanical properties: they are stiffer than normal tissues (7,8). The 

clear difference existing between normal and tumour tissue mechanics has been 

employed to cancer detection. In fact, oncologists often diagnose cancer based on a 

change of tissue stiffness sensed by palpation. Nevertheless, this difference can be 

exploit also in cancer treatment. The mechanical microenvironment may cause 

malignant transformation, possibly through activation of oncogenic pathways and 

inhibition of tumour suppressor genes. In addition, the mechanical 

microenvironment may promote tumour progression by influencing cellular 

processes, enhancing cell survival through autophagy, but also by affecting sensitivity 

of tumour cells to therapeutics. Furthermore, multiple intracellular signalling 

pathways results to be sensitive to the mechanical properties of the 

microenvironment. Among these processes, the epithelial to mesenchymal transition 

(EMT) is recently proposed as an indicator of cancer progression and metastasis.  
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In the first part of this study, we have analysed murine fibroblast cells to identify 

several biophysical parameters for the screening of the cancer. We have performed 

the research examining, in parallel, the alterations, caused by cell virus 

transformation, of normal cell functions and cell mechanical properties . We have 

found that cellular structure, functions and mechanics are strictly correlated. In 

particular, we have found that the malignant phenotype was marked by an increased 

proliferation, reduced adhesion to substrate, altered cellular morphology, enhanced 

migration capacity and lower cell mechanical properties. All the altered cellular 

activities and functions seem to be directly dependent on the changes which occur at 

level of cytoskeleton architecture. Considering these experimental observations, we 

have concluded that the evaluation of cytoskeleton mechanical properties could be a 

useful diagnostic indicator of cell malignant transformation. In the second part of our 

project, we have tried to take advantage of the key biophysical parameters, 

previously identified, to support the hard diagnosis of malignant human pleural 

effusions. We have examined human lung cells, discriminated healthy from cancer 

cells and distinguished cancer cells with different aggressiveness. In fact, we have 

found that cell mechanical properties were correlated to tumour cell aggressiveness: 

the reduction of cell stiffness, with the level of cancer transformation, seems to 

promote tumour invasion. Nevertheless, the investigation of the mechanical 

phenotyping of tumours cannot be limited to the mechanical state of the cell. Cells are 

not isolated system, but a complex loop of interactions exists between cells and their 

surroundings. Preliminary experiments using hydrogels of different stiffness for cell 

culture have demonstrated that the stiffness of the substrate has a large impact on 

cellular functions. Thus, in order to reach a more profound understanding of the role 

of extracellular mechanics in tumour progression, we have characterized the 

mechanics of ex vivo human biopsy tissues. For the first time, we have used the 

particle tracking microrheology to study the mechanics of ex vivo human biopsy 

tissues. This technique offers the opportunity to probe the sample in 3D, and, thus, to 

examine how malignant transformation influences the mechanical properties of cells 

within the tumour microenvironment. The application of the microrheology 

technique allowed the simultaneous characterization of the mechanics of cells and 

extracellular environment. We have observed that the malignant transformation 
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causes a reduction in cell mechanical properties, as already observed in vitro 

conditions, combined to a stiffening of their surroundings. What is more important 

and interesting, particle tracking results permitted to establish a correlation between 

the nanomechanical properties of biopsy tissues and the grade and stage of lung 

tumours. Our results underscore the importance of the mechanical properties of ECM 

in tumour progression. It is important to underline that by using the particle tracking 

technique we cannot derive quantitative indications of biopsies stiffness, but a 

comparison between the mechanical properties of healthy and tumour tissues can be 

performed. The simultaneous mechanical phenotyping of cells and ECM appear an 

efficient additional support in the diagnosis of cancer, even if the technique requires 

the surgical intervention, because it cannot be applied in vivo. However, this 

technique appears highly advantageous to a deeper understanding of cancer 

mechanobiology and in the definition of new therapeutic tools for lung cancer. 

6.2 Future perspectives 

Understanding the changes associated with the ECM surrounding cells would be 

critical in the cancer treatment. In fact, according to the results achieved in the latter 

part of PhD, we have hypothesized that by orchestrating, reengineering or 

normalizing the microenvironment from a mechanical point of view it could be 

possible to reverse typical EMT process of cancer cells and turn the 

microenvironment from a tumour supportive to a non-supportive one. In order to 

determine how changes in matrix rigidity influence cell properties, we have 

performed preliminary in vitro experiments to find out if tumour cells behaviour 

respond to dynamic changes in substrate stiffness, on which they are seeded. In 

particular, gelatine substrates, whose elasticity is comparable to that of cancer lung 

tissue, are used for cell culture. A specific enzyme (collagenase) is used to, partially 

and in a controlled way, degrade the substrate, decreasing its mechanical properties 

in order to obtain gelatine substrates with an elasticity comparable to that of healthy 

lung tissue. Several of the biophysical parameters selected in the first part of this 

work, such as cell migration and cell spreading, can be measured before and after 

enzyme treatment to verify if normal cell behaviour can be restored by softening the 
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microenvironment. Moreover, E-cadherin and N-cadherin are used as epithelial and 

mesenchymal markers, respectively, to test the reversion of the EMT process. In 

theory, the restoring up-regulation of E-cadherin and down-regulation of N-cadherin 

into invasive epithelial cell lines, would abrogate their invasive potential. If these 

results will be confirmed, a list of therapeutic agents could be tested to verify their 

ability to reengineering the cancer microenvironment to a state of normalcy. The 

study of the mechanics of cell and extracellular environment could provide 

information about the state of tissue and, thus, support the diagnosis of tumour. 

Moreover, tissues mechanical properties could also be involved in cancer treatment. 

In particular, the ECM can be considered a powerful target to normalize the 

aggressive and invasive behaviour of cancer cells.  
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