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Introduction

The flexible organization of activities is one of the most relevant issue
in the development of autonomous robotic systems that are capable to
naturally interact with the environment and the humans. The dominant
approach in this context relies on plan-based autonomous systems, where
planning and replanning processes are exploited to execute goal-oriented
tasks, while reacting to external changes or human interventions. Although
these frameworks can effectively handle many aspects of mixed-initiative
human-robot interaction, in real-world cooperative scenarios, where unpre-
dictable human behaviors or events are frequent, this paradigm can impair
the robot performance and reduce the quality of the interaction. Following
this perspective, the aim of this thesis is to develop an executive frame-
work supporting robot autonomy and human-robot cooperation, that also
enables flexible execution of structured and goal-oriented tasks. In con-
trast with the plan-based approach, in this work, we consider the cognitive
psychology perspective on the human capability of properly orchestrating
actions and tasks according to the executive context and the purpose [110].
In particular, we rely on the concept of cognitive control [26], which is the
human ability to flexible adapt the execution of the activities in order
to carry on multiple tasks simultaneously, switching from one to another,
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while reacting to external events, either disturbances or opportunities. In
this respect, attentional processes play a crucial role in action monitoring,
modulation, and coordination of cognitive and executive processes. One of
the most influential model of cognitive control is indeed the Supervisory
Attentional System (SAS) [110], where the cognitive control is obtained
as the interaction of two different mechanisms: contention scheduling and
supervisory attention. The first one manages routinized activities, while
the latter provides top-down attentional modulation in order to overcome
conflicts/impasses and smoothly drive goal-oriented behaviors [45].

The framework proposed in this thesis, inspired by the SAS model of
human cognitive control [45, 26, 46], proposes attentional regulation mech-
anisms for the orchestration of robotic sensorimotor processes. In this
setting, the task structure and the high-level processes (e.g. planning, rea-
soning or heuristics) can top-down affect the execution of low-level actions
or sensorimotor behaviors, providing goal-oriented drives. On the other
hand, low-level actions and monitoring processes can bottom-up influence
the systems behaviors according to the environmental and the executive
state. In the proposed framework, the attentional state of each robotic
process is represented by an emphasis value that regulates the competi-
tion to acquire shared resources. Following this approach, as long as the
robotic tasks are not interfering, they can take place in parallel, otherwise,
in case of conflicts or unexpected events, the attentional regulations per-
mit to rapidly switch from one task to another in order to overcome the
conflicting or novel situations.

We discuss the system at work in different robotic contexts. In a first
scenario the human-robot interaction capabilities of the proposed approach
are explored. We then tackle the problem of flexible and cooperative exe-
cution of structured tasks discussing multiple plan execution, human-robot
cooperation through attention manipulation [36, 42], and mechanisms for
plan execution, monitoring and repair [41].
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In this context, we discuss different case studies, inspired by the EU
FP7 SAPHARI project, where flexible, human-guided and plan-guided
task execution are considered. Furthermore, the proposed attentional sys-
tem can be also exploited for the design of attentive adaptive interfaces
[33]. We explore this approach in a human-multidrone interaction setting
inspired by the EU FP7 SHERPA project. In this context, the system is to
filter irrelevant informations, hence emphasizing the prominent ones with
respect to the executive and the human state. Notice that the SAPHARI
and the SHERPA domains provides two different HRI settings where at-
tentional supervision can be exploited: in the first case it enables flexible
and collaborative task execution; in the second case, it support human
situation awareness in a multirobot context.

Finally, we show how the proposed framework can integrate learning-
by-demonstration methods. We propose an application where attentional
guidance and interaction by cueing can be exploited to support task teach-
ing. The proposed framework integrates kinesthetic teaching and task-
based attentional guidance.

The rest of this thesis is organized as follows. In Chapter 1 an overview
of the related works is provided with a special focus on the cognitive
models and concepts which inspired the system design. In Chapter 2,
the cognitive control framework is introduced detailing its components.
In Chapter 3 the application of the proposed system in the context of
human-robot interaction is presented. Chapters 4 focuses on flexible plan
execution, while Chapter 5 discusses the execution of human-robot collabo-
rative plans. This solution has been proposed in the context of the EU FP7
project SAPHARI. Chapter 6 describes an adaptive attentional interface
that adopts the proposed attentional framework to filter the information
provided by a set of drones to a human operator. This solution is pro-
posed in the context of the EU FP7 project SHERPA. In Chapter 7, we
discuss adaptive methods proposing a learning-by-demonstration frame-

xiii



work that combines attentional supervision and kinesthetic teaching. The
final chapter summarizes the results and discusses possible lines of future
research.
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Chapter 1
Background and Related Works

In the context of human-robot interaction, a robotic system should be
capable of dynamically execute complex activities, react to human inter-
ventions or environmental changes and also continuously learn novel tasks.
These issues are particularly relevant in cognitive and social robotics,
where complex and structured activities should be flexibly executed by
robots in cooperation with interacting humans (e.g. interaction with a
robot-co-worker in a factory or health-care robotics operating in domestic
environments). Following this perspective, several frameworks has been
proposed in the robotic literature to conciliate some of these aspects with
a natural human-robot interaction. Some systems rely on deliberative ap-
proaches where planning and replanning processes manage the task execu-
tion and the adaptation to environmental changes or human actions, while
alternative works involve reactive or hybrid reactive/deliberative systems
to allow faster responses to external events. Other works directly exploit
cognitive modeling and cognitive architectures. In this case robotic actions
are selected by bio-inspired systems in order to improve the naturalness of
the human-robot interaction.

In the following sections we firstly introduce some widespread robotic
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2 Chapter 1. Background and Related Works

approaches regarding deliberative and reactive systems, discussing their
features and limitations, and providing some relevant examples and related
works (Section 1.1). In a second section we focus on cognitive systems, with
particular attention on the robotic applications in human-robot interaction
and cooperation (Section 1.2). Finally, some relevant concepts of cognitive
science which are related to the framework proposed in this thesis, are
introduced (Section 1.3).

1.1 Deliberative and Reactive Systems

The problem of flexible and interactive task execution in robotics has
been largely addressed by the artificial intelligence research. Relevant
works in this perspective rely on the three layer architectures [63] where
deliberative layer and control layer are interleaved by a middle layer that
manages plan execution and schedules the associated executive/monitoring
processes. Some plan-based systems emphasize the role of the deliberative
layer exploiting replanning and plan adjustment processes to overcome un-
expected events [62, 91, 56, 145, 69]. For instance in [62] the tasks to be
executed are represented in a queue, which maintains for each task a set
of alternative methods along with their contextual constraints (specifying
when methods are applicable). Therefore, in case of failures, the plan can
be adjusted deploying alternative methods. A more structured executive
framework is proposed in the CLARAty architecture [56, 107]. Here, the
executive functions are are managed through the TDL (Task Description
Language) system that decomposes planned task into “task trees” which
provide execution monitoring, synchronization and exception handling.

In the aforementioned frameworks external changes are mainly man-
aged at the deliberative layer or, otherwise, by proposing alternative meth-
ods that do not interfere with planned activities. However, deliberative
processes are often characterized by high variance performance, which may
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conflict with real-time robotic requirements [102, 57, 97].

Following the plan-based approach, in the context of human-robot in-
teraction and cooperation, flexible and interactive task execution is usu-
ally addressed by proposing integrated planning and execution frameworks,
where the human initiatives and interventions are managed through replan-
ning or plan repair mechanisms [23, 13, 148]. For instance, in human-aware
planning [87, 99] structured hierarchical plans are generated for both the
human and the robot involved in a cooperative activity and then gen-
erated again when the human behavior diverges form the expected one.
Analogously, continuous replanning methods have been proposed to ad-
dress mixed-initiative planning and execution in flexible temporal planning
framework [58, 44, 76]. These plan-based methods are effective in mixed-
initiative planning, on the other hand, the associated continuous planning
and replanning process usually impairs the naturalness and effectiveness
of the interaction with the humans and the environment.

In contrast with these approaches, reactive and behavior-based systems
[12] have been proposed to on-line adapt the task execution to the environ-
mental changes or unexpected events [11, 108, 129]. A relevant example is
proposed in [118] where the iB2C architecture integrates simple behaviors
in complex robotic tasks allowing behaviors interaction, coordination and
hierarchical abstraction. Another hierarchical behavior-based system has
been proposed in [108] where also deliberative processes are considered.
Differently, other works like [136] deploy behavior-based systems to learn
tasks and objects representation. Other bio-inspired approaches include
also simple attentional mechanisms for the dynamic control of behaviors
[129, 130, 135]. For instance, in [129], attentional mechanisms are men-
tioned as behavior orchestration mechanisms and deployed in a case study
to detect lack of progress towards the target. In contrast, in [130], attention
is mainly used to orient and focus the system perception. However, in the
latter frameworks, structured tasks execution and plan-based control are
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not considered. A hybrid architecture that integrates a planner is proposed
by [135], but the generated plan is exploited for behavior configuration
and monitoring, while the behaviors are mainly bottom-up influenced by
motivational drives. The framework proposed in [66] exploits a behavior
representation of actions for mobile robots. In this case parallel behaviors
are managed by arbiters [134] that fuse their output. These systems have
been largely applied in mobile robotics, but relevant applications in the
context of human-robot interaction are more rare; moreover, an effective
mechanism to orchestrate low-level behaviors and processes is still missing.
Alternative frameworks, instead, exploit human-robot interaction to learn
novel structured tasks and adapt/integrate pre-programmed actions and
behaviors to the executive context. In [109] explicit verbal communication
allows the robotic system to learn structured tasks starting from basic mo-
tion skills, while in [10, 52] the high-level task representations are learned
from the observation of the human activities. This approach is useful for
the human activity prediction and for intuitive robotic teaching, but the
learned task structure is often rigid and unable to be flexibly adapted to
the executive context.

1.2 Cognitive Systems

All the previous systems address specific aspects of the human-robot
cooperation. Other approaches, exploit cognitive architectures and sys-
tems for the development of flexible and human-friendly robotic frame-
works [53, 88, 47, 65, 124]. The cognitive architectures, in particular, are
computational models that integrate various concepts from cognitive psy-
chology and neuroscience, and they are able to emulate or interpret a large
number of human capabilities and behaviors. These architectures can be
exploited in a robotic setting in order to execute complex tasks. For ex-
ample, the SOAR cognitive architecture [84] is applied in different robotic
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contexts such as pick-and-place with robotic arm [86], mobile robot plan-
ning/execution [85] and navigation [83]. Moreover, cognitive architectures
can be deployed in social and cognitive robots increasing the naturalness
of the interaction and supporting the execution of human-like robotic be-
haviors. In this context a notable example is given by [143], where the
proposed framework exploits the ACT-R cognitive architecture [8] to learn
the hide-and-seek game starting from children demonstration. Further
applications of the above work include the spatial representation and rea-
soning of human-robot team [79], and the prediction of human actions in
human-robot cooperative patrolling [141].

Despite these robotic applications, the architectures presented above
are mostly focused on the validation of theories from psychology rather on
the development of effective robotic frameworks. In contrast with the clas-
sic cognitive systems, alternative architectures have been proposed to be
specific for robotic applications [5, 21, 78, 64, 150]. An interesting example
is the 4D/RCS architecture [4, 5, 6, 131]. The system provides a hierarchi-
cal representation of the tasks where the nodes of the hierarchy represent
both sensory and executive processes and allows planning/replanning cy-
cles at different level of abstraction [6]. This architecture has also been
applied in robotic-assisted constructions [94] in order to support human
teleoperation. Another similar robotic architecture is ADAPT [21, 20],
a SOAR-based framework endowed with a hierarchical representation of
tasks. These systems provides robotic applications, but the planning/re-
planning approach can be uneffective in dynamic and human dwelled en-
vironments. Indeed, relevant human-robot interactive scenarios are not
considered. Other applications of cognitive architecture in robotics are
proposed in [78, 131] but mainly related to object manipulation. Further
details about architectures and their applications can be found in [81].

The aim of this thesis is to propose an executive framework that fa-
cilitates human-robot cooperation in dynamic environments, supporting



6 Chapter 1. Background and Related Works

flexible task execution, scheduling, learning, and continuous monitoring of
humans and environment. To this end, in contrast with some of the men-
tioned systems, these issues are tackled from a different perspective exploit-
ing the concept of cognitive control [113, 110, 46, 26] introduced in cog-
nitive psychology and neuroscience. The cognitive control includes mech-
anisms and functions needed to support flexible and adaptive responses,
which underly the execution of complex goal-directed cognitive processes
and behaviors. Among the most influential models for cognitive control,
the one proposed by Norman and Shallice [110] assumes that two main
processes are involved in activity orchestration and execution: contention
scheduling and supervisory attentional system. Contention scheduling is a
low-level reactive process in charge of executing habitual and routinized
activities, hence avoiding conflicts with competing behaviors; on the other
hand, the supervisory attentional system is a higher-level mechanism that
coordinates and monitors the behavioral schemata in order to manage novel
and complex tasks. In this cognitive model, attentional regulations play a
central role in action selection. Indeed, each process is associated with an
activation value that can be regulated and biased by the supervisory atten-
tional system in order to facilitate the execution of desired behaviors and
inhibit the undesired ones. Computational accounts for this model can be
found in [45, 46]. On the other hand, in the robotics literature the deploy-
ment of these mechanisms is quite rare. In the human-robot interaction
literature, attentional mechanisms are usually related to visual perception
and considered as important means of implicit nonverbal communication
[30, 101] which are involved in joint attention [75, 27, 104], anticipatory
mechanisms [68], perspective taking [142, 29], etc.. In contrast, in this
thesis we are concerned with attentional executive frameworks, which are
pretty rare in the robotic literature [31, 60, 77] and usually not suitable for
the execution of complex structured tasks. For example, in [77] the authors
proposes the deployment of a cognitive control system for a humanoid in-
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volved in simple tasks. In this context, attention is mainly deployed to
assign priority values to multiple sensory channels and to orient the focus
of attention. In this case, executive attention and top-down attentional
regulations are not considered. Instead, executive attention is investigated
in [60] proposing an integrated neural architecture for a simulated au-
tonomous robot that supports developmental learning. Here, hierarchical
behaviors and top-down attentional modulations are considered, but only
simple tasks are treated. In contrast, the framework proposed in this thesis
allows the integration of planning mechanisms, hence complex structured
plans can be generated and flexibly orchestrated. This integration allows
us to scale the complexity of the robotic tasks and to tackle real-world
human-robot interaction scenarios.

1.3 Cognitive Control

In this section, we focus on the cognitive control notion discussing
related concepts and models.

Central Executive andWorking Memory The working memory (WM)
is a short-term repository that enables information storage and manipu-
lation to support reasoning, decision making, and goal-oriented behaviors
[16, 14]. In [16], Baddeley and Hitch introduce this notion as follows:

A brain system that provides temporary storage and manip-
ulation of the information necessary for such complex cogni-
tive tasks as language comprehension, learning, and reasoning.
[Baddeley and Hitch 1975]

The term working memory was firstly introduced by Miller, Galanter, and
Pribram [98] to identify the short-term repository of the temporary infor-
mation related to executing tasks and cognitive processes. The model of
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working memory was further refined by Baddeley and Hitch during their
study on the amnesia [17]. In this work they hypothesize the existence
of a temporary storage, different from the short-term memory, specific
for task-relevant information and able to support reasoning processes [16].
From the experimental evidences, Baddeley and Hitch formulate a model
of the working memory represented by a master-slave architecture where
a central executive (master) manage and integrates the information form
underlaying modules (slave), maintaining a shared representation which is
independent from the source (schemata [9]).

Figure 1.1. Evolution of the working memory model (Baddeley and Hitch
1975-2000).

The number and the functions of the slaves modules hypothesized by Bad-
deley and Hitch changed during years (see Figure 1.1) up to comprise
three buffers: the visuospatial sketchpad collects vision-based inputs, the
episodic buffer that contains episodes from the past which are recalled
from the long-term memory, and the phonological loop that allows humans
to rehearse task-specific informations [15]. The role of these buffers is to
store informations from/to outer systems (visive, linguistic, and long-term
memory) while the central executive exploits the attentional supervision
to emphasize informations and related tasks [14]. In this context cognitive
processes (such as reasoning or planning) exploit the shared representation
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provided by the working memory and influence the human behaviors, in
so enabling cognitive control.

Attention and Conflict In cognitive science, the humans ability to se-
lect and successfully monitor behaviors and processes is included under
the term of cognitive control [26] and involves a large number of cognitive
processes (executive functions [55, 51]) such as attentional control, working
memory, task switching, reasoning and planning. In a more general sense
the cognitive control can refer to processes that allow information process-
ing and behaviors to real-time adapt depending on the current goals and
the environmental state. Cognitive control can be characterized as the:

ability to configure itself for the performance of specific tasks
through appropriate adjustments in perceptual selection, re-
sponse biasing, and on-line maintenance of contextual infor-
mation. [Botvinick et al. 2001]

The aim of this thesis is to develop an architecture which allows cognitive
control of robotic processes during the execution of structured tasks. Stud-
ies of human action selection [110, 26] emphasize to the role of attention
in the cognitive control of actions during the execution of structured or
complex tasks. The studies of attention date back to the late nineteenth
century (James 1890 [73]):

Everyone knows what attention is. It is the taking possession
by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought.
Focalization, concentration, of consciousness are of its essence.
It implies withdrawal from some things in order to deal effec-
tively with others, and is a condition which has a real opposite
in the confused, dazed, scatterbrained state which in French is
called distraction, and Zerstreutheit in German. [James 1890]
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However, there is still an open debate about its main models, mechanisms,
and functions [114, 153]. Indeed, attention is a core element of many
relevant phenomenas of cognition, e.g. Stroop effect [137], ideational/con-
ceptual apraxia [48, 45], attention-deficit and hyperactivity disorder [18]
to mention only few examples. In the context of cognitive control, at-
tentional regulations effects task-relevant actions and processes allowing
goal-oriented behaviors.

Relevant studies about attention in human activities are about visual
attention [144, 115, 72]. Here attentional mechanisms such as selection, fo-
cusing and switch, drive the eyes orientation and the fixation of the salient
elements in the scene. Of particular interest in this context are the mech-
anisms for suppression/selection of visual stimuli [74, 100]. Indeed, the
presence of multiple attractors can interfere in the attentional allocation,
hence only relevant stimuli have to be selected, ignoring the distracting
ones. These conflicting situations, also known as crosstalk interference
[100], are managed by cognitive control exploiting attentional supervision
where high-level cognitive processes are so that high-level cognitive pro-
cesses can modulate and emphasize goal-oriented stimuli and behaviors
[49].

Attentional regulations and conflict management have also been stud-
ied specifically in the context of action selection. In the attention-to-action
model [110] (also known as Norman-Shallice model) two distinct atten-
tional process can be employed. The attentional process selection depends
on how the actions to execute are simple and familiar. On the one hand
the routinized actions, triggered in response to well-known environmental
stimuli, can be easily managed through automatic attentional processes
with low impact on the human cognitive load. On the other hand, novel
and unfamiliar actions, related to unique or unexpected situations, re-
quires more cognitive resources to be correctly scheduled and executed,
hence controlled attentional processes are employed. In the case of rou-
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tinized actions, a mechanism of contention scheduling (CS) [45] is involved
in the selection process. Here non-interfering actions, which do not re-
quire shared resources, can be directly executed, while conflicting actions
have to compete each other: only the most active actions are selected for
the execution. Conversely, when novel or unexpected events occur, con-
tention scheduling is not sufficient to overcome the new situation, hence
a more complex attentional mechanism is needed. In this case a supervi-
sory attentional system (SAS) [110] is employed to oversee the contention
scheduling and regulate the actions and processes activation according to
the executive context. Through this attentional regulation the SAS ex-
ploits deliberative processes to solve the impasses due to the novelty, and
provides a mechanism for the effective and goal-oriented action scheduling.
This mechanism is better detailed below.

Contention Scheduling and Supervisory Attention In the litera-
ture, one of the most relevant model for the action selection is the Inter-
active Activation Network (IAN) proposed by Cooper and Shallice [45].

Figure 1.2. Abstract representation of the Interactive Activation Network
(Cooper e Shallice 2000). The framework comprises a hierarchical schema
network, which integrates and monitors subsystems and effectors (also rep-
resented as a schema network) and is top-down regulated by the supervisory
attentional system.

In the IAN model a hierarchical representations of the actions is pro-
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posed: actions are associated with hierarchical schemata [9, 67] which are
decomposed in sub-schemata to decrease the level of abstraction. This
hierarchical decomposition stands until the concrete schemata (which gen-
erates the motions of the related actions) are reached. Following this ap-
proach, the schemata execution is regulated by the SAS which allocates
the attentional resources on task-specific elements of the hierarchy:

The scheduling is, therefore, quite simple and direct. No direct
attentional control of selection is required (or allowed). De-
liberate attention exerts itself indirectly through its effect on
activation values. [Norman and Shallice 1980]

The action schemata of the hierarchy are then allowed to acquire the
shared resources (actuators and objects) through the contention schedul-
ing. Specifically, each action is associated with an activation level which
is affected by the following influences:

• The self influence represents the contribution of the schema itself. In
case a schema is not selected by the attentional system it increases
its activations value in order to be selected in future.

• The lateral influence decreases the activation of a schema according
to the number and the activations of competitors.

• The internal influence given by the source of a schema (i.e. the upper
node in the hierarchy) that increases a sub-schema activation when
selected by the attentional system.

• The external influence regulates the the activation value with respect
to external features/stimuli.

Another relevant model of the human cognitive control and action selection
is the simple recurrent network (SRN) proposed by Botvinick and Plaut in
2004 [25]. In the SRN the role of the supervisory attentional system is still
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of crucial importance but, in soft contrast with the above IAN model, the
actions are represented by recursive networks instead of a static hierarchy
of schemata:

Although a given schema may be associated with multiple
higher-level schemata [...], there is typically no mechanism that
allows the details of the lower level schema to change depend-
ing on the higher-level schema that recruits it. [Botvinick and
Plaut 2004]

The presented cognitive control models have been proposed to capture
relevant features of the human cognition processes, therefore their appli-
cation and adaptation to the orchestration of complex robotic frameworks
is not direct. In this work, we aim at providing a cognitive control frame-
work suitable for robotic system which is inspired by these models and
mechanisms.
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Chapter 2
The Attentional System

Flexible plan execution is a crucial issue in cognitive robotics and
human-robot interaction. Indeed, a robotic system should be capable of
dynamically executing complex tasks, while reacting to human interven-
tions and environmental changes. These capabilities are particularly rele-
vant in service and social robotics, where the execution of structured and
well defined activities (e.g. human-robot interaction in a factory or in a
domestic environments) should preserve the naturalness and the flexibility
always needed when a human is involved.

As discussed in the previous chapter, in cognitive neuroscience these
capabilities are associated with the concept of cognitive control [26] which
comprises the executive mechanisms/functions needed to flexibly orches-
trate and switch between different cognitive and executive processes, while
keeping an overall coherent and finalized behavior. In this context, activity
control is usually believed to be hierarchically organized [89, 130] and sev-
eral models have been proposed to provide an account for action selection
and execution. As already explained, in the influential model of Norman
and Shallice [110, 46] action control is obtained as the interaction of two
main processes: contention scheduling and supervisory attentional system.

15
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The first one, is a low-level mechanism that reactively selects and regu-
lates concurrent sensorimotor processes representing habits and routinized
activities; the second one is a higher-level mechanism that coordinates and
monitors schemata in order to manage novel and complex tasks. In this
process, attentional regulations play a central role. Inspired by these cog-
nitive control models, we propose a framework that integrates planning,
executive, and interactive processes providing flexible mechanisms for hi-
erarchical task execution, regulation, and switching. While approaches
to dynamic control of hierarchical activities have been proposed in the
robotics literature [108, 129], the integration of plan execution and at-
tentional control appears as a less explored topic. In this chapter, we
present our approach and show how the proposed framework permits flex-
ible and interactive execution of multiple plans by exploiting top-down
(task-oriented) and bottom-up (stimuli-oriented) attentional regulations.
Specifically, attentional mechanisms are here deployed to smoothly regu-
late the activations of multiple hierarchical robotic behaviors by empha-
sizing the ones coherent with respect to the task and the environment.

2.1 Cognitive Control Cycle

In this section, we introduce our framework along with its main com-
ponents. The attentional executive system manages a cognitive control
cycle, which involves a set of attentional behaviors, a Working Memory
(WM) and a Long Term Memory (LTM). Following a central executive
perspective [16], the WM maintains and manages short-term data for on-
line processing and execution, supported by a LTM which provides a vast,
long-term storage of information [121]. Specifically, in our framework, the
attentional behaviors represent the sensorimotor processes that are cur-
rently involved in the execution of the robotic tasks. These are collected
in the WM, which maintains the executive state of the system, including
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Figure 2.1. System architecture. The cognitive control cycle (blue arrows
and ovals) is managed by the process alive that updates theWorking Memory
(WM) exploiting the behavior schemata stored in the Long Term Memory
(LTM).

all the allocated hierarchical tasks along with the associated behaviors.
Finally, the LTM is a long-term repository that collects the behavioral
repertoire available to the system, including the definitions of all the ab-
stract methods and the concrete actions the system can retrieve and in-
stantiate for task execution. In this context, the cognitive control cycle
is managed by a special process alive that periodically updates the WM
(blue arrows and ovals in Figure 2.1) by allocating and deallocating behav-
iors, exploiting the associated denotations in the LTM. This process will
be better explained below while describing the structure of the WM and
the associated attentional mechanisms.
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2.2 Working Memory

In line with a typical approach in AI and cognitive psychology [89,
122, 110, 46], we assume a hierarchical organization for tasks and activ-
ities. In our framework, this hierarchy is represented in the WM as tree
structure (see Figure 2.2) that collects the tasks allocated for the execu-
tion. Each node of this tree represents a system behavior. In particular,
we distinguish among concrete or abstract behaviors: a concrete behav-
ior represents an allocated sensorimotor process (e.g. reachColor(red) in
Figure 2.2), instead an abstract behavior identifies a complex activity that
needs to be hierarchically decomposed into different sub-activities in order
to be executed (e.g. take(objRed) in Figure 2.2).

2.2.1 Behavior Schemata

Both abstract and concrete behaviors are represented in the LTM as
behavior schemata. In particular, the LTM collects possible methods and
actions encoded by a set of predicates of the form schema(m, l, e), where
m is the name of the behavior, l is a list of sub-behaviors associated with
enabling conditions (releasers), i.e. l=〈(m1, r1), . . . , (mn, rn)〉, while e rep-
resents a post-condition used to check the accomplishment of the behavior.
For instance, the abstract behaviors take and goto are specified in the LTM
as follows:

schema(take(Obj),

〈(goto(Obj), true), (pickup(Obj), Obj.reached)〉,
Obj.taken),

schema(goto(Obj),

〈(explore(X,Y ), true), (followColor(Obj), true)〉,
Obj.reached).
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In the first schema, the behavior of taking an object take(Obj) is com-
posed of two sub-behaviors: reach the object (goto(Obj)) and pick it up
(pickup(Obj)). The sub-behavior goto(Obj) is directly enabled once allo-
cated, indeed its releaser is set to true; instead, pickup(Obj) is enabled
when the robot is close to the target object (its releaser is enabled when
Obj.reached is satisfied). After the successful execution of take(Obj), the
robot holds the object (Obj.taken is the post-condition). Similarly, the
behavior goto is composed of two sub-behaviors: the robot first explores
an area (explore) and then follows the color associated with the object
(followColor). Once allocated in the WM, these two behaviors are di-
rectly enabled (their releasers are both set to true). Finally, the goto
behavior is successfully executed once the robot reaches the object posi-
tion (Obj.reached is the post-condition). These definitions in the LTM are
retrieved and exploited by the process alive to allocate the behaviors in the
WM for their actual execution. For instance, in Figure 2.2, the abstract
behaviors take(objRed) and goto(objRed) are allocated in the WM and
expanded using the two schemata introduced above. In the following, we
better detail the WM structure and its dynamics.

2.2.2 Working Memory Structure

The WM is represented by an annotated tree, whose nodes represent
allocated processes/behaviors, while the edges represent parental relations
among sub-processes/sub-behaviors. Each node, either concrete or ab-
stract, represents an instance of a LTM behavior schema, hence it is as-
sociated with a name, a set of sub-behaviors, a post-condition, and a re-
leaser. Both the releaser and the post-condition are represented as boolean
expressions to be satisfied. For instance, in Figure 2.2, pickUp(objRed) is
enabled only if the releaser red.reached is satisfied, while its post-condition
is objRed.taken. If the releaser of an allocated node is satisfied, then all
the associated sub-behaviors can also be allocated in the WM. Conversely,
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if a behavior is accomplished or dismissed, it is removed from the WM
along with its hierarchical decomposition. Notice that in this framework,
an allocated concrete behavior is active when its releaser is enabled along
with the releasers of all its ancestors. In this perspective, we distinguish
between an internal and an external releaser: the first one represents the
task-independent enabling condition for a concrete behavior, while the sec-
ond one is the task-dependent enabling condition which is hierarchically
inherited through the WM. For instance, in Figure 2.2, red.reached is an
external releaser (task-based) for pickUp(objRed), because it holds in the
context of the task take(objRed), instead, the detection of a graspable ob-
ject is an internal releaser (stimuli-driven) for the pickUp behavior; pickUp
is activated when both these conditions are enabled.

2.2.3 Working Memory Update

As already mentioned above, the alive behavior is periodically acti-
vated to update the tree, in so regulating the overall cognitive control
cycle. This process is described in Algorithm 1. We assume that a set
of concrete behaviors are always allocated and active in WM in order to
manage the basic activities of the system (e.g. interaction, avoidance, plan-
ning, etc.). During the execution, each behavior is allowed to update the
WM by inserting new nodes, which are then hierarchically expanded and
instantiated by the alive behavior according to their specification in the
LTM (lines 4-11 in Algorithm 1). In this setting, the human requests are
managed by the interaction behavior that can suitably update the WM.
For instance, if the human asks for a red object, the interaction behavior
allocates a take(objRed) node, that will be expanded by the alive process
(see Figure 2.2) selecting the sub-behaviors involved in the hierarchy, as
specified in the take(Obj) schema presented above.
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Algorithm 1 The alive process continuously checks the WM by allocating
and deallocating nodes according to the definitions in the LTM.
1: procedure aliveCycle
2: while true do
3: check the WM
4: if there exists a node s to expand then
5: search for the associated schema in the LTM
6: if it exists then
7: add the sub-behaviors of s to the WM
8: else
9: remove s from WM

10: end if
11: end if
12: end while
13: end procedure

2.3 Behaviors and Attentional Regulations

Following a schema theory representation [9, 32], each concrete be-
havior is a sensorimotor process composed of a perceptual schema, which
elaborates behavior-specific stimuli, a motor schema, that produces an as-
sociated pattern of motor actions, a releasing mechanism, and an adaptive
clock which regulates the behavior activations (see Figure 2.3). The re-
leaser enables/disables the motor schema. As already stated above, it is
expressed as the conjunction of two boolean expressions to be satisfied:
the internal releaser and the external releaser. The clock is an adaptive
mechanism that regulates the sensors sampling rate and the behavior acti-
vations. The clock period pb is regulated by a behavior-specific monitoring
function f(σb, ε) according to the behavioral stimuli σb and the overall
executive state of the system ε representing the current state of the WM
(collecting the inner state of all the allocated behaviors along with their
hierarchical relations). This way, each behavior becomes active after the
latency period pb, when the next clock period p′b is adaptively redefined
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Figure 2.2. Hierarchical tasks in the WM: releasers, behaviors, and post-
conditions are, respectively, green, gray, and blue.

by the monitoring function. In our framework, this regulation represents a
simple attentional mechanism that tunes the temporal resolution at which
a behavior is monitored and controlled. For instance, given an obstacle
avoidance behavior avoid, the behavioral stimuli σavd is the distance of
the closer obstacle, the internal releaser triggers when σavd is less than a
specific distance, while, in the absence of other top-down influences, the
monitoring function regulates the clock frequency proportionally to the ob-
stacle distance (bottom-up regulation). This way, the closer the obstacle,
the higher is the frequency of the distance check, the more reactive is the
avoidance behavior. On the other hand, an object to be grasped cannot
be considered as an obstacle to be avoided, hence a top-down influence
is needed to relax or inhibit a concomitant avoidance behavior (top-down
regulation). The combined effect of top-down and bottom-up regulations
will be illustrated below. Additional details on bottom-up clock regulation
mechanisms can be found in [32, 31], while related methods for parameters
setting are discussed in [50].
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Figure 2.3. Tree structure and detail of a concrete behavior. The clock
period pb is top-down (µb) and bottom-up (λb) regulated, while the internal
and the external releasers depend on internal and external properties, re-
spectively. The external releaser for a concrete behavior is the conjunction
of the releasers of the nodes along the path to alive.

2.4 Top-down Regulations and Conflict Resolu-
tion

The control cycle presented in Algorithm 1 illustrates how the hier-
archical structure in the WM permits to recruit, allocate, activate, and
regulate multiple behaviors for task execution. In this setting, arbitration
mechanisms are needed to avoid conflicts or erratic activities (see Figure
2.4). Indeed, in the proposed system, multiple tasks can be executed at the
same time, several methods for the same tasks may compete in the WM,
and many behaviors can try to access and modify a single resource gen-
erating crosstalk interferences [100]. These conflicts and impasses can be
either prohibited by construction or solved by means of suitable evaluation
functions [26].

In our framework, we follow the latter, more flexible, approach exploit-
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ing attentional regulations. For this purpose, we introduce an additional
mechanism that combines bottom-up and top-down attentional regula-
tions.

2.4.1 Bottom-up Regulation

For each concrete behavior b, the bottom-up regulation is provided by
a monitoring function g(σb, εb) = λb that defines the behavioral clock pe-
riod λb in the absence of any top-down stimulation - hence only due to the
behavior specific stimuli σb and the inner state of that behavior εb (inter-
nal state variables of the perceptive and motor schemata, previous clock
regulation, internal releaser status, etc.). For instance, if we consider the
avoidance behavior introduced above, given the stimulus σavd representing
the minimal distance from an obstacle, we assume that the clock period
λavd, varies in the interval [λmin, λmax] and it is bottom-up regulated by
the following saturating (and increasing) linear function:

g(σavd, εavd) =


λmin if σavd ≤ rmin

λmax if σavd ≥ rmax

α · σavd + β otherwise,
(2.1)

characterized by two parameters rmin and rmax, while α and β are used
to describe the linear increase of g for σavd ∈ [rmin, rmax] as follows:

α =
λmax−λmin

rmax−rmin
(2.2a)

β = λmin−α · rmin (2.2b)

Notice that in this simple example σavd directly affects λavd, however, in
more complex settings this regulation can also depend on the behavior
internal state (e.g. the new clock regulation can depend on the previous
one, see [31]).
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2.4.2 Top-down Regulation

The top-down regulation is provided by a value µb, called magnitude,
that summarizes the overall top-down (and lateral) influence of the WM
status on the attentional state of a behavior. Thus, the attentional state
of each concrete behavior depends on the couple (λb, µb), while the overall
activation frequency of a specific behavior is defined by a value, called em-
phasis, that combines bottom-up and top-down influences as eb = µb/λb.
Here, the bottom-up frequency, influenced by the behavioral stimuli, is
directly modulated by the top-down magnitude that can enhance or re-
duce it. This way, the emphasis allows us to combine accessibility and
facilitation: bottom-up stimuli emphasize actions that are more accessi-
ble to the robot (e.g. object affordances), while top-down stimulations
exploit the task structures to facilitate the activations of task-related and
goal-oriented actions.

Algorithm 2 Each concrete behavior is endowed with a perceptual and a
motor schema, a releasing mechanism, and an adaptive clock that regulates
the activation frequencies. Here, relib and rel

e
b are the internal and external

releasers, µb is the top-down influence (magnitude), λb the bottom-up reg-
ulation of the period, while eb = µb/λb (emphasis) sets the clock frequency
integrating top-down and bottom-up influences.
1: procedure behaviorCycle(b)
2: while s is allocated in the WM do
3: activate the perceptual schema of b
4: if relib and rel

e
b are satisfied then

5: activate the motor schema of b
6: end if
7: update λb and µb
8: wait for 1/eb
9: end while

10: end b
11: end procedure
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The overall sensorimotor cycle of a generic concrete behavior is summa-
rized in Algorithm 2: once allocated in the WM, the behavioral perceptive
schema is enabled (line 2-3), while the motor schema is active only if its
releasers are satisfied (line 4-6); at the end of the cycle the new clock pe-
riod is defined (line 7-8). Notice that this clock period is the inverse of the
emphasis, hence the overall monitoring function f(σ, ε) introduced above
can be characterized as follows:

f(σb, ε) =
g(σb, εb)

µb
= pb (2.3)

In this setting, the absence of a top-down influence is represented by µb =

1, when the clock period is directly regulated by gb, hence it equals λb.
Otherwise, the value of µb depends on the overall state ε of the WM.
Indeed, whenever a magnitude change happens for a node in the WM, this
update is inherited by all its descendants, influencing the attentional state
of all the associated concrete behaviors. Moreover, in order to induce a
smooth drive towards task completion, we assume that when an activity is
accomplished, the magnitude of the parent node is increased by a constant
value kb which is then propagated towards its active successors. As a side
effect, this mechanism induces a lateral influence among the behaviors
involved in the same task.

2.4.3 Conflict Resolution

The combined effect of top-down and bottom-up regulations is then
used to select the active behaviors and combine their activations. Con-
tentions among alternative behaviors competing for mutually exclusive
state variables can be solved using the emphasis: following a winner-takes-
all approach, the most emphasized behavior is selected with the exclusive
access. On the other hand, when a set of concurrent behaviors affects non-
mutually exclusive variables, all of them are allowed to access and modify
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these variables, while the emphasis can be exploited to weight and combine
these multiple contributions. Specifically, we assume that the overall con-
tribution on a non-mutually exclusive variable is v = Σb(eb × vb)/Σb(eb),
where vb and eb are the values and the emphasis for each updating behav-
ior. Notice that the emphasis has two combined affects here: acceleration
of the clock and modulation of the combined outputs. This allows us
to merge the multiple contributions in a smooth way. Indeed, not only
the emphasized behaviors provide more frequent updates, but also their
contributions are amplified. Since the amplification is associated with a
drive towards the goal accomplishment, goal-oriented behaviors become
dominant, in so overcoming decisional impasses. In the following chapter,

Figure 2.4. Example of conflicting tasks: the two explore tasks are
in conflicts and associated with mutually exclusive (e.g. gotoxy(5, 5) vs
gotoxy(−7, 2)) and not mutually exclusive (e.g. avoid vs gotoxy(5, 5)) con-
crete behaviors.

we will discuss how this framework can be exploited in a human-robot
interaction setting.
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Chapter 3
Attentional Regulations in
Human-Robot Interaction

In this chapter we propose an extension of the framework that accounts
for the human interaction. A natural and effective interaction between hu-
mans and robots can be modeled as a multimodal dialogue flow, involving
speech, gaze orientation, gestures, while attentional mechanisms can be
used to orient and focus the robotic and the human perceptive and cogni-
tive processes during the interaction. Some authors addressed these issues
considering visual attention during human-robot conversation [101, 111]
detecting the human to interact with or the task to be executed. Other
authors mainly focused on joint attention and perspective taking methods
for HRI [128, 29]. Differently from these approaches, which are mainly
concerned with visual attention, in this thesis we focus on executive at-
tentional mechanisms regulating the human-robot dialogical interaction.
More specifically, we aim at defining a system that can manage and regu-
late the multimodal dialogue between the human and the robot by exploit-
ing top-down and bottom-up attentional regulations. In this chapter, we

29
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propose and discuss a multimodal real-time HRI system integrating a di-
alogue manager and a hybrid cognitive control architecture. The dialogue
between the human and the robot is modeled as a Partially Observable
Markov Decision Process (POMDP) [92] that can capture the inherent
ambiguity of the situated communication. The generated dialogue policy
provides an interaction multimodal template (involving not only speech,
but also gestures, gaze directions, etc.) which can be instantiated and
continuously adjusted with respect to the environmental and the operative
context by the attentional system. Following this approach, the cognitive
control cycle can modulate and polarize the robot execution by enhancing
the attentional processes which are aligned with the operative (top-down)
and environmental (bottom-up) state, while inhibiting the ones that are
not coherent. We illustrate the system at work in simple scenarios where
the human and the robot have to interact in order to accomplish a coop-
erative tasks.

Notice that an overview of the work reported in this chapter is pub-
lished in [39], while further details can be found in [40].

3.1 System Architecture

The HRI architecture proposed in this work is depicted in Figure 3.1.
In particular, the hierarchical representation of the executing tasks is main-
tained in WM while the human-robot dialogue and the multimodal inter-
action is managed by the HRI module.

3.1.1 Cognitive Control Cycle

Our cognitive cycle exploits the WM as follows. Initially, we assume a
set of behaviors allocated to manage the basic system activities (e.g. alive,
interaction, etc.). Each allocated behavior can affect the WM by inserting
new nodes. For example, if the interaction block allocates a take(objRed)
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Figure 3.1. The HRl architecture

as a consequence of a human request, then alive (which is periodically
activated to check for new nodes at each clock tic) will try to expand
take(objRed) (see Figure 2.2 in the previous chapter) allocating other
nodes as specified in the LTM. Moreover, in case of ambiguous commands
or misclassification, multiple concurrent behavior can be allocated in WM
in order to be flexibly executed by the system exploiting bottom-up and
top-down attentional regulations. In particular, human multimodal com-
mands or actions can drive the robot execution by top-down emphasizing
specific behaviors. These features will be better detailed in Section 3.2.

3.1.2 Dialogue Management and Multimodal Framework

The HRI module is appointed to recognize the multiple human com-
mands and actions, such as utterances, gaze directions, gestures or body
postures, and to provide an interpretation of user’s intentions according
to the dialogue context. It is integrated in the overall architecture as a
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special behavior (the interaction behavior in figure 3.1) and it is com-
posed of three layers: the lower layer contains the classifiers of the single
modalities; the middle layer, the fusion engine, performs a Support Vector
Machine (SVM)-based late fusion and provides a context-free integration
of the multiple inputs [123]; the upper layer, the dialogue manager [93],
performs the coordination of the dialogue and accomplishes the semantic
interpretation of the observations according to the context and the inner
knowledge. The main feature of such structure is that the results of each
layer are N-best lists of possible interpretations, which are fed to the next
layer to solve in cascade the ambiguities at the upper layers of the system.

The dialogue manager is the upper layer of the interaction block that
provides the interaction policy depending on the interaction model. The
dialogue models are provided as graph-based specifications (see Figure 3.2).
Multiple dialogue flows can be combined in order to build a dialogue model
in a modular and extensible manner [93]. The resulting dialogue model is
represented by a POMDP which can cast the inherent ambiguity due to
noise on the channels, misunderstanding of human actions or commands,
multiple interpretations of a particular observation or non-deterministic
effects of robot actions. The solution of the POMDP is a robust dialogue
strategy off-line generated for that interaction model. For additional de-
tails we refer the reader to [93, 123].

The dialogue policy generated as a solution of the POMDP provides a
machine action am for each belief state of the dialogue. This machine ac-
tion is then associated with a task to be allocated in WM whose execution
is modulated by top-down and bottom-up attentional mechanisms. This
way, the machine action in the dialogue policy can be instantiated with
contextual and task-related subtasks and arguments; moreover, its execu-
tion can be modulated by the associated top-down attentional regulation
mechanisms.
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Figure 3.2. Excerpt extracted from dialogue models: node 1 has the two
possible interpretations “Come Here” and “Close to Me”. In both these cases,
the robot action is to go close to the human from where, in the node 2, the
robot expects that the user asks to pick something.

3.2 Case Studies

We now discuss the system behavior considering simple case studies.

3.2.1 Mobile Robot Scenario

The robot shares the workspace with several users which can interact
with the system to achieve some tasks such as picking or placing objects
like bottles, or carrying paper sheets to other users. A representation of the
environment is illustrated in Figure 4.4 (down). The robotic platform set-
ting is the following: Pioneer 3 DX mobile robot provided with ultrasonic
sensors and a gripper; RGB-D camera for users and gesture recognition
and a High Definition camera for object detection; a microphone and a
speech synthesizer. The users can interact with the robot by speaking
or using gestures or body movements, while the robot has a list of user
dialogue models describing possible patterns of commands or movements.
Each gesture is linked to one or more meanings, so ambiguities are possi-
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ble. The meaning can be disambiguated according to the dialogue context.
On the other hand, some user’s acts are not explicit commands, therefore
the system should interpret the human intention supporting the human
activity with a proactive behavior. We assume that the robot can pick up
an object at a time, but it can carry a maximum of two objects.

EXECUTION TIME
Task Sequence Time (min) Task Sequence Time (min)

TakeRed - TakeGreen TakeRed - TakeGreen - TakeYellow
Red Green Give 4.5 Red Green Give Yellow Give 9.19

Green Give Red Give 7.11 Green Give Red Give Yellow Give 8.19
Green Give Red Give 8.04 Red Green Give Yellow Give 7.21
Green Give Red Give 7.14 Yellow Give Green Give Red Give 9.08

Red Green Give 3.53 Yellow Green Give Red Give 7.28
Green Red Give 3.50 Red Green Give Yellow Give 6.41
Red Green Give 4.19 Red Green Give Yellow Give 7.02

Green Give Red Give 6.04 Red Green Give Yellow Give 7.05
Red Green Give 4.48 Yellow Give Green Give Red Give 9.43
Green Red Give 6.26 Red Green Give Yellow Give 8.48

AVG STD AVG STD
5.48 1.64 7.93 1,07

Table 3.1. Execution time of a generic take in different contexts.

This scenario offers a wide variety of situations for testing the ability of
the proposed framework in managing multiple requests and in solving the
associated conflicts (pick different objects). Our aim is to assess the system
behavior when the residual ambiguity in the dialogue policy and the associ-
ated decision conflicts should be resolved by the top-down and bottom-up
attentional influences. For instance, if the human request is interpreted a
generic take (without an explicit reference to the object to be taken) and
a green and a red object are perceived by the robot during the navigation,
the system should decide which object to take. In this case, the perceived
affordances associated with the two detected objects can directly elicit two
instances of a take task to be allocated as schemata in the WM (e.g.,
take(objRed), take(objGreen)). These schemata are then decomposed in
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two subschemata (see Figure 2.4) representing the chunks associated with
the task: reach the object, pick it up, and give it to the human. This
way, these schemata/subschemata enter into the attentional focus of the
robot along with the perceived objects and can be suitably top-down and
bottom-up aroused. For instance, in Figure 3.3 (up) we can observe that,
once a first red object is perceived by the robot, the take(objRed) task
is bottom-up aroused by the activations of reachColor(red) (from 1 to
30) which is a concrete instance of routeto(objRed) in the WM. After 15

seconds the robot detects also a green object, therefore a decision conflict
arises. However, in this case the robot heads towards the red object as an
effect of the reachColor(objRed) dominant activations (bottom-up influ-
ence) with respect to reachColor(objGreen) since the red object is closer.
Once the red object has been reached, the subtask can be accomplished by
pickUp(red). At this point the frequency of take(objRed) is relaxed (peak
in the plot) because a new subtask give(objRed) is activated. This behav-
ior receives the emphasis (top-down influence) from the partial achivement
of the parent task take(objRed) that boosts give(objRed) towards the goal
accomplishment. This effect is shown in Figure 3.3 (up) where, from time
30 to 55 we can see the restriction of the period (frequency enhancement)
illustrating the modulation of the give(objRed) due to the bottom-up in-
fluence (dotted red line) and how it is reduced (frequency amplification)
taking into account also the effect of the top-down emphasis (solid red
line).

In Tab. 3.1, we illustrate 10 runs where the robot interprets and exe-
cutes an unreferenced take given the dialogue model and the belief state
(see [93]). These data have been collected in two simulated scenarios: in
the first one we have two objects to be taken (red and green in Table 3.1,
left); in the second one we have three objects (red, green, and yellow in
Tab. 3.1, right). For each scenario we report the executed sequence of
tasks and the time needed to accomplish the goal (minutes). The executed
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Figure 3.3. (up) Period modulation during a conflicting situation in a lab
scenario: take(objRed) is amplified, hence the frequency and the outputs
are enhanced driving the robot towards the red target; (down) lab scenario.

sequence illustrates the subtasks sequence chosen by system (here Red,
Green, etc. is an abbreviation for, respectively, reach and pick the object
red, reach and pick the object green etc., while Give represents the deliv-
ery action that ends the task). A maximum of 10 minutes was provided
for each run. To test the system in the ability of conflict resolution and
flexible execution of multiple tasks, we allowed the robot to collect two
items before the delivery. For instance, in the sequence “Red Green Give”
take(objRed) and take(ObjGreen) are interleaved, hence the robot first
picks the red object, then it picks the green one, and finally it delivers
the two objects to the human; in other cases, the task are sequentialized
(e.g., in “Red Give Green Give”). Notice that the parallel or sequential
execution of the task is left to the system decisions and depends on the at-
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tentional mechanisms and environmental context. The results in Tab. 3.1
show that the system is always able to accomplish the goal, and when there
is the opportunity it can interleave the execution of the tasks (6 times and
7 times in the first and the second scenario respectively), and, as expected,
when this happens the temporal performance is enhanced. To better as-
sess the temporal performance, in Tab. 3.2 we also report the average and
the std of the values collected after the execution of 10 take tasks where
the referenced object is provided (e.g., take(green)). By comparing the
average values at the end of Tab. 3.1 with the values in Tab. 3.2 we can
observe that the mean time needed to accomplish the ambiguous requests
is comparable with the mean time needed to achieve the tasks where the
reference is explicitly defined. This seems to suggest that the conflict res-
olution mechanism is effective in managing the impasses. Note that the
proposed attentional mechanisms are here mainly elicited by the detection
of gestures, speech, objects, colors however, additional, and more sophis-
ticated mechanism (e.g. gaze detection and joint attention) can be easily
incorporated in this framework.

EXECUTION TIME (min)
Take-Red Take-Green Take-Yellow
avg std avg std avg std
3.99 0.28 1.48 0.36 2.04 0.27

Table 3.2. Execution time of the specific take.

3.2.2 Coffee Scenario

To show the system at work in a more interactive setting we introduce
a second case study. We consider a coffee making scenario (inspired by
the one in [45]) where 4 objects are available on a table: a cup, coffee
carafe, a sugar bowl, and a spoon. The human is to prepare the coffee
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by collecting these objects in a suitable order: first the cup, then the
sugar and the carafe (any order is permitted), finally the spoon. This
task is represented as a suitable schema in the LTM which is activated
in the WM (see Figure 3.4) by alive once a suitable stimulus is detected
(e.g. human command mentioning the coffee). Here, the human can either

Figure 3.4. MakeCoffee task in the WM.

take an object or get it form the robot (see Figure 3.5). The actions of
the robot are simulated: these are only declared, but not implemented (we
only introduce a 10 sec sleep that simulates the action execution), while the
human actions and objects are monitored by a kinect-based visual system
that provides object recognition/tracking and hand tracking. Analogously
to the previous case study, the user can interact with the system using
gestures and speech. A human gesture can be either interpreted as a
command or as an object manipulation action depending on the target of
the human gesture and the proximity of objects. Therefore, the system can
either respond to a human request or take an initiative to help the human
in accomplishing the task. Also in this case, the dialogue policy provides
an abstract robot response to the human action (e.g. take something, ask
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for explanations, etc.) that should be completed and regulated by the
attentional system. For example, if the human command is a generic take
and all the objects are available on the table, the system has a decisional
problem (each object is associated with a take affordance) which can be
solved by a top-down attentional regulation: the cup is the first object
to be taken in the coffee task, therefore the robot action take(cup) is
emphasized and selected. Instead, if the human has already taken the cup,
then the system is to decide among the other 3 objects. In this case, the
top-down regulation emphasize both take(carafe) and take(sugar), while
the bottom-up regulation enhances the action associated with the closer
object. This decisional process is continuously influenced by the human
commands and actions. For instance, in Figure 3.5, left, while the robot
takes the cup, the human gets the coffee carafe. Once the cup is taken by
the robot, the top-down attentional influence emphasizes the take(sugar)
robot action (Figure 3.5, center) which is the only action enabled since
the take(carafe) was already executed by the human. Finally, the human
can conclude the task with the take(spoon) action (Figure 3.5, right).
Figure 3.6 illustrates the period modulation profile associated with this
successful sequence of robot (solid line) and human actions (dotted line).
Since the robot actions are only simulated and the objects are not actually
moved, the associated periods remain invariant. The green and red peaks
arise when the system realizes that a subgoal is already accomplished by
the human. Notice that, analogously the robot actions, also the human
actions are monitored by concrete attentional behaviors whose frequencies
are regulated by a function of the tracked features (e.g. in Figure 3.6
the dotted period profile is associated with the velocity of the tracked
hand). This simple domain shows how the proposed attentional framework
permits a flexible and an adaptive execution of interactive tasks.
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Figure 3.5. (left) the system selects the cup, then the user takes the carafe,
(center) the system selects the sugar (cup and carafe already taken), (right)
the system takes the sugar, then the user takes the spoon.

Figure 3.6. Period modulation profile in the coffee scenario. Both human
(dotted line period) and robot (solid line period) behaviors are tracked by
the attentional system.

3.2.3 Tea and Coffee

We extended the previous scenario introducing also a tea making task.
The associated schema is analogous to the coffee making one in Figure 3.4
with the tea used in the place of the coffee. This way, the robotic system is
to interpret the intention of the human (coffee or tea?) depending on the
human operations. A proactive interactive attitude of the robotic system
can easily yield to an interpretation error hence the human can interact to
correct; this allows us to test how the system can deal with this additional
ambiguity and misinterpretations. The scenario is depicted in Figure 3.7
where the following objects are disposed on the table: a cup, a spoon,
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sugar box, a tea box, and a coffee box.

Figure 3.7. (left) The human takes a cup (right) the system detects the
human taking the tea. In the second case, the task is disambiguated by the
first action of the human.

In this context, as preliminary test, we asked 10 subjects (grad. stu-
dents; 6 males, 4 females) to execute 3 times one of the two tasks (tea or
coffe) in cooperation with the system. For each execution we changed the
disposition of the objects. We assumed both the tasks (makeCoffee and
makeTea) already represented in the WM. The results illustrated in Tab.
3.3 show that, despite the inherent ambiguity of the domain, the task can
be accomplished in 83.3% of the cases, considering both directly successful
interactions (robot initiative correct w.r.t. the human intention) or interac-
tions where human explicit corrections are needed (correction). Moreover,
the robot initiative seems effective in reducing the human actions needed
to execute the task.

Success Correction Failure

avg: 56.6% 26.7% 16.7%
std: 0.67 0.42 0.52
Hum. Act. : 1.48 2.25 3.6

Table 3.3. Successful executions, corrections, failures and mean number of
human actions (out of the 4 actions needed to accomplish the task) in the
coffee/tea domain.
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Chapter 4
Flexible Plan Execution

In this chapter we propose an integrated framework that combines
hierarchical planning, flexible execution of multiple structured tasks, and
human-robot interaction in cooperative activities.

In the proposed framework, top-down (task-oriented) and bottom-up
(stimuli-driven) attentional processes are exploited to smoothly regulate
the activations of hierarchical robotic behaviors by enhancing the ones re-
lated to the task and coherent with the environmental state, while reduc-
ing the ones in conflict. In this context, hierarchical plans are not directly
executed, but used to influence the attentional system and facilitate the
execution of the associated behaviors. This smooth attentional guidance -
along with the associated conflict resolution mechanisms - enables flexible
execution of multiple concurrent tasks. Moreover, this setting is particu-
larly suited for human-robot cooperative tasks, indeed, the human involved
in the interaction can deploy attention manipulation [75] (e.g. gestures,
utterance, object manipulation, etc.) to indirectly bias the robot behavior
towards the execution of the required activities. Notice that attention-
based interaction is also very relevant for social communication [140], but
in this work we mainly focus on cooperative task accomplishment.

43
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We discuss the system at work in different simulated case studies intro-
duced to assess flexible and interactive execution of multiple parallel tasks.
The collected results show that the proposed cognitive control framework
can effectively and flexibly manage multiple plan execution. In addition, in
the case of cooperative activities, we show that attentional manipulation
enables the human to interact with the robot in a natural and effective
manner.

An early version of the work reported in this chapter was published in
[36], while the full version, enriched with further experiments and details,
can be found in [42].

4.1 System Overview

The framework proposed in this chapter integrates hierarchical plan-
ning, human-robot interaction and attentional execution. It modulates
both reactive and task-oriented processes in order to integrate human in-
terventions and plan execution. This is mainly achieved by deploying the
proposed attentional system to affects and orients sensory processing and
behaviors activations according to the human actions, the active tasks, and
the environmental stimuli. The overall human-robot architecture (see Fig-
ure 4.1) integrates the multimodal interaction module detailed in the pre-
vious chapter (HRI module), a hierarchical task planner (Planner), and the
executive system. The latter can be subdivided in two components: the At-
tentional Executive System, that manages behavior allocation and provides
top-down regulations, and an Attentional Behavior-based System, that col-
lects the allocated sensorimotor process, which are affected by bottom-up
influences. The HRI module allows a human to naturally interact with the
robot exploiting different modalities (e.g. speech, gestures, etc.). These
multiple input channels are to be interpreted and fused (Fusion Engine)
by the HRI module in order to recognize the human activities and inten-
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Figure 4.1. System architecture: the HRI module permits multimodal in-
teraction between the human and the robotic system; the Planner generates
plans - represented as hierarchical task networks (HTN) - to be executed
and monitored by the Attentional Executive System providing top-down and
bottom-up regulations. The executive control cycle (blue arrows and ovals)
is managed by the process alive that updates the Working Memory (WM)
exploiting the behavior schemata stored in the Long Term Memory (LTM).

tions. As a final stage of the multimodal interaction process, the Dialogue
Manager generates a behavior, that can be instantiated and continuously
adjusted by the attentional executive system with respect to the environ-
mental and the operative context (see Chapter 3 for details). On the other
hand, a task planner (Planner) can generate plans of actions, represented
as hierarchical task networks (HTN) [105], where both the human and the
robot may be involved. The integrated planning and execution system will
be better detailed in Section 4.3.
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4.2 Executive System and Planning

In our framework, we assume that the hierarchical tasks can be on-
line generated by a suitable planning process. In particular, we refer to
a SHOP-like [106] HTN (Hierarchical Task Network) framework. A HTN
planning problem is defined by a goal g, an initial state s, and a planning
domain D = (A,M) that collects a set of primitive operators A and a
set of methods M . Each method is represented by a triple (m, p, b) ∈ M ,
where m is the name of the method, p is a precondition that specifies
when the method is applicable, while b describes a sequence of operators
or methods. The primitive operators a ∈ A are denoted by a STRIPS-like
representation: each operator is characterized by a set of preconditions
and effects. The HTN planning process selects applicable methods from
M and applies them to abstract tasks in a depth-first manner until only
primitive tasks are left. For additional details we refer the reader to [106].

A generated HTN plan should be suitably executed in the WM by
instantiating and allocating behavior schemata. For this purpose, the
methods and the operators represented in the planning domain are to
be associated with abstract and concrete behavior schemata in the LTM
representing the corresponding executive processes. Specifically, primitive
operators a ∈ A can be associated to either a concrete or an abstract be-
havior schemata, while each method (m, p, b) ∈M is represented by an ab-
stract schema(m, l, e), with the same name m and a list of sub-behaviors
l = 〈(m1, q1), . . . , (mn, qn)〉 representing the sub-methods 〈m1, . . . ,mn〉 in
b. Here, the qi releasers in l extend the pi preconditions of the mi method-
s/operators with additional conditions to be satisfied during the execution,
while, the post-condition e permits to monitor whether a behavior has been
accomplished. Indeed, the behavior schemata in LTM enrich the descrip-
tion of the associated methods and operators in the planning domain pro-
viding additional information needed at the execution time (i.e. releasers
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and post-conditions). For example, the take(Obj) schema introduced
above, can be associated with a planning method (take(Obj), true, b), with
b=〈goto(Obj), pickup(Obj)〉 as sub-behaviors and true as a precondition.
This way, the hierarchical representation of tasks and actions is shared
by the executive system and the planning system, therefore, the executive
system can either directly apply task decomposition to update the WM,
as described in Chapter 2, or generate a hierarchical plan by invoking an
external planner with a goal. For instance, since a take(Obj) behavior
schema is also associated with a take(Obj) method for the HTN plan-
ner, this activity can be either on-line executed (Algorithm 1) or off-line
planned (HTN planning) and then executed.

The interaction between the planner and the WM is managed by a
concrete behavior, called planning (see Figure 4.1), that can activate plan-
ning/replanning processes providing the HTN planner with the initial state
(obtained from the variables in the WM) and the planning requests (goal-
s/tasks to be achieved). As a result of the planning activity, it receives
the generated plan and then allocates it in the WM in order to be suitably
expanded and executed by the cognitive control cycle.

4.3 Plan Execution and Attentional Regulation

In our framework, a generated plan is treated as an extension of the tree
in the WM and uniformly managed by the cognitive control cycle described
above. This way, its execution can be flexibly regulated by the top-down
and bottom-up attentional mechanisms influencing the execution of the
associated abstract/concrete behaviors. More specifically, the generated
plan is associated with a new node in the WM, this way the activities
mentioned in the plan can be expanded by the associated behaviors, as
specified by the schemata in the LTM (see Figure 4.2). Moreover, since
the system is endowed with contention scheduling mechanisms, multiple
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plans can be concurrently allocated and executed, while the actual exe-
cution of the associated concrete behaviors only depends on the releasing
mechanisms and the attentional regulations provided by the hierarchical
structure of the WM. In this setting, the cognitive control cycle is always
active and ready to react to external events, including human requests
and interventions. For instance, an interactive human can either directly
induce task allocation with an explicit command (e.g. take the red object)
managed by the interactive behavior, or implicitly influence plan execution
by modifying the robot attentional state. Hence, in the presence of several
objects, a human can point towards one of them in order to stimulate the
activations of the associated tasks already allocated in the WM.

Figure 4.2. A generated plan is allocated in the WM and the associated
abstract behaviors are hierarchically expanded by the cognitive control cycle.

4.4 Case Studies

In this section, we consider the system at work in a simulated sce-
nario where a mobile robot can execute pick-carry-and-place tasks in the
presence of multiple objects. We first test the system in the presence of
multiple parallel plans in order to assess the system performance in flex-
ible plan execution. Then, we consider two interactive scenarios where a
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Figure 4.3. Simulated environment: we have colored objects (small cubes),
obstacles (rectangles), the human position (large flat square), and the mobile
robot (purple).

human has to influence the execution of multiple tasks through attention
manipulation.

4.4.1 Simulated Environment

We assume a 15×15 m simulated environment that contains several col-
ored objects that can be taken and carried by a mobile robot (Figure 4.3).
As a robotic platform, we consider a simulated Pioneer 3 DX endowed with
ultrasonic sensors, a gripper, and a camera for object detection. The robot
can move with a maximum speed of 0, 4 m/s and can pick up an object
at a time, but it can hold several objects at the same time. This scenario
enables us to assess the system behavior in the presence of an interactive
human along with multiple structured tasks and the associated decisional
conflicts. For instance, in Figure 4.4 we can observe a competition of two



50 Chapter 4. Flexible Plan Execution

Figure 4.4. Conflicting tasks in the WM (top) and emphasis plots (be-
low) for the two conflicting behaviors reachColor and gotoxy associated with
the abstract behaviors takeObject(green) and takeObject(red) respectively.
After the conflict (dotted circle in the plot) the robot heads towards the
object green. For each behavior node, n, (m) represents the clock period
and the magnitude respectively. Green (red) solid (dotted) ellipsis are for,
respectively, active (inactive), concrete (abstract) behaviors.

tasks allocated in the WM as a consequence of an ambiguous human com-
mand (i.e. take an object). Indeed, two objects are perceived by the robot
(i.e. red and green), thus two instances of the takeObject subtask are al-
located and compete in the WM. In this case, the robot heads towards the
green object as an effect of the reachColor(green) dominant activations
(pb = 0.18). Notice that, once the object is reached, the next active sub-
task will be pickUp(objGreen), with a top-down influence (µb = 2) due to
the goToObject(objGreen) subgoal accomplishment.
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4.4.2 Behaviors Set-up

The overall system is driven by the selection, activation, and modu-
lation of concrete behaviors. In particular, we consider the following set:
wander, avoid, gotoxy, reachColor, place, pick, sonarStream, engineStream,
blobStream, pointTo. When no task is provided in the WM, we assume that
the robot behavior only depends on the wandering (wander) and obstacle
avoidance (avoid) processes which regulate the robot linear and angular
velocities (v, ω) interacting with the engineStream process. Here, avoid
receives the obstacle distance as an input signal σavd from sonarStream.
The gotoxy process drives the robot towards a final position (x, y) receiv-
ing the actual robot position provided by engineStream as the input σgt.
The pointTo behavior is implemented in a similar manner stimulating the
robot to move towards the pointed direction. On the other hand place
and pick are in charge of the robot manipulation receiving as input the
distance of the target place σtp and the target object σto respectively. We
assume here that object manipulation is reliable. The reachColor behavior
searches for an object of a specific color, once the color is detected, it moves
the robot in that direction. The associated input signal σrc is provided by
blobStream.

The executive system manages selection, allocation, and orchestration
of these concrete behaviors through the WM structure and the associated
top-down and bottom-up attentional regulations. For the sake of simplic-
ity we assume the following setting. The initial top-down influence is set to
µb = 1, the subtask magnitude increment is kb = 1, while λb ranges from
0.01 to 1 seconds and, excluding wander, for all the other behaviors it is
either increased or decreased proportionally to the input signal σb within
an associated range [rmin

b , rmax
b ]. On the other hand, we assume a linear

decrease of frequency, when the stimulus is stable or removed (habituation
and decay). More specifically, the period of wander is constant and set to 1

(i.e. maximum period and minimal influence); instead, for all the other be-



52 Chapter 4. Flexible Plan Execution

haviors, λb is regulated by g proportionally to σb (analogously to the avoid
behavior, as specified in (1)), with the exception of engineStream whose
period λ decreases with the robot linear velocity (similarly to (1), with
α < 1). As for the [rmin

b , rmax
b ] ranges, these are set (in meters) as follows:

[0.5, 1] for avoid, pickup, and place; [0, 3] for sonarStream, engineStream;
[0, 10] for the blobStream; [1, 10] for goto, pointo, and reachColor.

4.4.3 Case Study 1: Flexible Execution of Multiple Plans

We consider now a scenario where multiple plans should be concur-
rently and flexibly executed. The aim here is to assess how the proposed
framework is capable of flexibly interleaving the execution of multiple tasks
depending on the opportunities or the human requests.

Specifically, we assume that the two concurrent plans depicted in Figure
4.5 are already loaded in the WM and ready for the execution. Each plan
represents a sequence of four actions, but the execution order is not directly
enforced by the plan structure. Indeed, here the releasers are deliberately
enabled (i.e. set to true), in order to allow maximum flexibility in the
action execution, which only depends on the attentional modulations. In
this scenario, we aim at comparing the system performance with respect
to the best choices, i.e. the decisions that guides the robots along the
minimal total path. In this setting, path minimization can be achieved
if the actions in the two plans are suitably interleaved trading-off action
execution (bottom-up) and the drive towards task completion (top-down).

More specifically, during the tests we assess the executive system deci-
sions considering the following items:

• True-positives: competing active actions, executed by the system,
which respect the plan sequence and minimize the path cost (i.e.
best choice among the active actions).

• True-negatives: competing active actions, not executed by the sys-



4.4. Case Studies 53

tem, and not expected to be executed (i.e. actions correctly de-
feated).

• False-positives: executed actions, not expected to be executed (i.e.
suboptimal choices).

• False-negatives: competing best actions, which are not executed (i.e.
missed best actions).

Table 4.1. True/false positive/negative over 10 runs

TEST true-positives true-negatives false-positive false-negative
avg 7.5 2.6 0.5 0.1
std 0.8 1.7 0.8 0.3
min 6 0 0 0
max 8 6 2 1

TOTALS 75 26 5 1

We tested the system with 10 trials. Each test consists of a concurrent
execution of the two plans. At the beginning of each test the objects are
randomly positioned in the environment. Each test ends with the two
tasks accomplished. The collected results are reported in Table 4.1 and
Table 4.2.

Table 4.1 reports the system performance: the two concurrent plans
are executed with an effective selection of the correct actions (7.5 with
respect to 8 best actions) with few suboptimal choices (0.5) and rare missed
opportunities (0.1) despite the influence of distractive alternatives (2.6
true-negatives).

Table 4.2. Measures of performance

Performance Error
Accuracy Precision Recall Violation Worse
0.9439 0.9375 0.9868 0.8333 0.3333



54 Chapter 4. Flexible Plan Execution

Table 4.2 summarizes these results in terms of accuracy (true posi-
tive and negatives with respect to the possible selections), precision (true
positives with respect to the selected actions), and recall (true positives
with respect to the best selections). In the table we can observe that the
system makes over 94% of correct choices (accuracy) in conflicting situa-
tions, with an executed action (precision) which is usually the expected
one (93%). In this context, the few wrong choices are usually due to vio-
lations of the planned sequence (83.3%). This usually happens when the
magnitude provided by the sub-task achievement is not sufficient to con-
trast the bottom-up influence due to the proximity of an object associated
with a future action (anticipation and utilization errors [45]). On the other
hand, we can observe a high probability of making a good choice (expected
actions) with respect to the available best choices (recall over 98%).

Figure 4.5. Conflicting plans in the working memory. The planned activi-
ties are sequenced from left to right.



4.4. Case Studies 55

4.4.4 Case Study 2: Plan Execution and Human-Robot
Interaction

In a second case study, we consider the presence of a human that can
influence the execution of multiple tasks by manipulating the attentional
state of the robot. In this context, the working hypothesis is that atten-
tional manipulation can simplify human-robot interaction by reducing the
human interventions needed for multiple task accomplishment. In order to
assess this hypothesis, we designed a new scenario that extends the pre-
vious one enabling human interventions. In this case, a human can draw
the robot attention by pointing towards an area of the map. This pointing
is simulated by a mouse-click and associated with the concrete behavior
pointTo, which is allocated in the WM and then top-down/bottom-up stim-
ulated in order to drive the robot towards the target area. This behavior
is similar to a gotoxy provided with a top-down enhanced impulse that
represents the pointing intention of the human. This simple attentional
manipulation mechanism is assessed considering the following task: the
human is to drive the robot towards the execution of a desired pattern of
actions (e.g. take the green object, then take the red one, and return to
the base) with a minimal number of interventions. In this scenario, we
compare the following two execution modes:

• Reactive mode: no planned task is available in WM, instead a set
of subtasks are allocated to influence the robot to pick, carry, and
place any object in the scene.

• Mixed mode: multiple structured plans are also present in the WM
and compete in order to be executed.

We consider two experimental settings. In the first one, the task is
the following: collect two objects (green and red) and deliver them to the
human; pick other two objects (yellow and orange) and bring them to the
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human again. These two rounds of pick and deliver are represented by the
two plans depicted in Figure 4.5, which are allocated in the WM in the
mixed mode only. The second setting is similar to the previous one, but in
this case the robot is to collect and deliver three objects in two sequences:
first green, red, brown, then yellow, pink, and orange. Also in this case,
we assume that in the mixed mode the two plans are already available in
the WM, each representing one round of pick and delivery.

We involved 10 graduated students in these tests (7 males and 3 fe-
males, with age varying from 25 to 34) asking them to execute the task
with a minimum number of interventions in the two modes. No time limit
was provided for each test.

In Table 4.3, we illustrate the collected results considering the execution
time and the human interventions (mouse clicks) needed to accomplish
the task in the two modes. Failures are not reported because the task
was always successfully accomplished by all the testers. In these tests, the
advantage of the mixed mode clearly emerges from the relevant reduction of
human interventions, on the other hand, the execution time is comparable
in the two cases. These initial results seem to support the hypothesis that
the top-down attentional guidance can effectively drive the robot behavior,
while allowing sparse interventions of the human for corrections.

4.4.5 Case Study 3: Interaction with a Simulated Robot

We now try to assess the effectiveness of the system in a similar, but
more realistic human-robot interaction setting. For this purpose, we in-
troduce a set-up where a real human can interact with a simulated robot
exploiting gestures. The simulated scenario reproduces the abstract set-
ting of the previous test (see Figure 4.3) in a realistic 3D environment
provided by the robotic simulator v-rep (see Figure 4.6). In particular, the
simulated robot is a kuka omnirob, equipped with 4 mecanum wheels, a
kuka LBR 4+ manipulator, a baxter gripper, 2 laser scans (SICK S300),
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Table 4.3. Interventions and execution time (4 and 6 objects)

green-red-return-yellow-orange-return
Reactive Mode Mixed Mode

Commands Time Commands Time
avg std avg std avg std avg std
5.0 0.63 6’59” 0’12” 2.8 0.75 6’58” 0’38”

green-red-brown-return-yellow-pink-orange-return
Reactive Mode Mixed Mode

Commands Time Commands Time
avg std avg std avg std avg std
5.2 0.4 8’22” 0’15” 3.4 0.49 8’45” 0’31”

and a RGB-D camera mounted on the arm. The robot can move within
an environment of 15× 15 m with a maximum speed of 0, 4 m/s.

A RGB-D sensor and a high definition camera are deployed for human
monitoring and gesture recognition, this way a human operator can influ-
ence the behavior of a simulated robot by pointing towards some directions
in the 3D simulated environment. For instance, in Figure 4.6, the human
is indicating the yellow object in the simulated environment.

The adopted multimodal interaction framework is the one described in
[123, 93]. In this context, analogously to the previous case study, we can
consider again two competing plans of actions already in the WM, while
the human can exploit real gestures for attention manipulation. Indeed,
similarly to the previous case, the pointed direction is associated with a
behavior pointTo(x,y) used to move the system focus on the scene close
to the detected object, in so affecting the attentional regulations of the
associated behaviors.

In this setting, we want to assess again the human performance con-
sidering both quantitative and qualitative evaluations. The quantitative
evaluation allows us to compare the results obtained in the abstract setting
(see Figure 4.3) with respect to ones collected in a more realistic environ-
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Figure 4.6. Interaction with a simulated robot: the human - illustrated in
the small windows at the bottom-right - points towards the simulated yellow
objects influencing the attentional state and the behavior of the simulated
robot.

ment. The qualitative evaluation is used to assess the user perception of
the interaction and is based on a questionnaire provided to the testers at
the end of each test session (see Table 4.4).

Analogously to the previous case, we compared the performance of the
users in the reactive and mixed mode described above. In both cases, the
task to be accomplished was the longer one, i.e. first get the green, red,
and brown objects and place them at the base; then get the yellow, pink,
and orange objects and place them at the base.

In these tests, we involved another group of 10 graduated students
(6 males and 4 females, with ages varying from 23 to 35) asking them
to accomplish the tasks with a minimum number of interventions in the
two modes and no time limit for task accomplishment. The subjects were
not specifically informed about the robot behavior. They were only told
that the robot was equipped with certain skills/behaviors such as moving
towards a position, picking or placing an object, and that their pointing
gestures could influence the robot behavior by drawing its attention in that
direction.
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In Table 4.5, we can observe the mean and standard deviation of the
collected results in the two modalities. These results are aligned with the
ones presented above, indeed also in this case the time performance is
similar in the reactive and mixed case, on the other hand, the advantage
in terms of command minimization seems confirmed in this more realistic
environment (p < 0.003, two-tailed t-test comparing the samples collected
in the reactive and the mixed mode). Moreover, the number of commands
needed to accomplish the task in the realistic and abstract setting is com-
parable, despite the more complex interaction mode. Finally, a more ac-
curate simulation of the robot operations justifies the longer durations of
the tests in these experiments.

As for the qualitative assessment, at the end of each test we asked
the participants to fill the questionnaire illustrated in Table 4.4, which is
structured as follows:

• a personal information section for the personal data and the techno-
logical competences of the participants. Here, we categorize subjects
by their demographic attributes (age, sex), and their experience with
robotics;

• an interaction assessment section with questions used to rate the user
experience on a 5-point scale. Namely, the participants are asked to
evaluate: ease of robot controllability, the docility of the interaction,
the effort needed for the supervision, the system ability to interpret
the human intentions, and the human ability to understand the robot
behavior.

The proposed questionnaire is inspired by others introduced to assess
presence/teleoperation [151] and human experience in human-robot inter-
action [31, 54, 133], selecting and adapting the entries with respect to the
specificities of our interaction scenario.



60 Chapter 4. Flexible Plan Execution

Table 4.4. HRI questionnaire

Section Question
Personal Age?
Information Gender?

How familiarized are you with robotic
applications?

Experience
Assess-
ment

Controllability: Please rate how
easily could you control the robot be-
havior
[1 (very hardly) to 5 (very easily)]
Interpretation: Please rate the
robot capability of interpreting your
commands and intentions
[1 (very low) to 5 (very high)]
Legibility: Please rate how easily
could you understand the robot be-
havior
[1 (very hardly) to 5 (very easily)]
Docility: Please rate how easily
could you change/influence the robot
behavior
[1 (very hardly) to 5 (very easily)]
Supervision: Please rate how much
attention was needed in order to ac-
complish the task
[1 (very low) to 5 (very high)]

The collected results are illustrated in Table 4.6. The improved per-
formance of the mixed mode are confirmed by the user evaluations, indeed
the testers could always perceive a more natural and readable behavior of
the robot in this setting. This is particularly evident in the evaluation of
the attentional effort needed to accomplish the task (supervision), which
is significantly lower in the mixed case (see t-test two-tailed p values in
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Table 4.5. Measures of performance in the Reactive and Mixed Mode

green-red-brown-return-yellow-pink-orange-return
Reactive Mode Mixed Mode

Commands Time Commands Time
avg std avg std avg std avg std
5.6 1.174 9’00” 0’34” 3.222 1.787 8’40” 0’12”

Table 4.6. Measures of performance

Reactive Mode
Controllability Interpretation Legibility Docility Supervision
avg std avg std avg std avg std avg std
3.55 1.01 3.67 0.5 3.78 1.09 4.22 0.67 4.0 1.32

Mixed Mode
Controllability Interpretation Legibility Docility Supervision
avg std avg std avg std avg std avg std
4.44 0.73 4.56 0.73 4.78 0.44 4.67 0.5 1.55 0.53

Table 4.7. Significance and Correlations

Mixed vs Reactive: two tailed t-test P values
Controllability Interpretation Legibility Docility Supervision

p < 0.05 p = 0.005 p = 0.015 p = 0.107 p < 10−4

Quantitative vs Qualitative Correlation: Reactive
Controllability Interpretation Legibility Docility Supervision
r p r p r p r p r p

-0.18 0.65 -0.47 0.19 -0.17 0.65 -0.17 0.67 0.38 0.31
Quantitative vs Qualitative Correlation: Mixed

Controllability Interpretation Legibility Docility Supervision
r p r p r p r p r p

-0.70 0.03 -0.33 0.27 -0.66 0.05 -0.28 0.46 0.66 0.05

the first rows of Table 4.7), and the capability of controlling (controllabil-
ity) the robot that is assessed as quite lower in the reactive case. On the
other hand, the capability of influencing the robot behavior (docility) seems
comparable, with a slightly better rate for the mixed case, but not that
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significant. Moreover, in the mixed mode, the testers appreciated a more
comprehensible robot behavior (legibility) associated with a significant im-
provement of the robot capability of understanding the human intention
(interpretation). In Table 4.7, we can observe how these qualitative assess-
ments are correlated with the number of commands needed to accomplish
the task. As expected, both in the reactive and mixed mode supervision is
positively correlated with the number of commands (less commands asso-
ciated with lower attention needed to accomplish the task), while all the
other entries are negatively correlated (less commands corresponding to
higher rates). However, the significance of these correlations improves in
the mixed mode, in particular, the improved performance of the partici-
pants is usually associated with a perception of an improved interaction in
terms of supervision, controllability, and legibility.



Chapter 5
Attentional Supervision of
Collaborative Plans

In this chapter, we extend the proposed framework exploiting atten-
tional supervision and contention scheduling to combine human-aware plan-
ning, plan execution, and natural human-robot interaction. Specifically,
in the proposed approach, hierarchical cooperative plans are exploited as
top-down attentional guidance for the robotic executive system, which can
flexibly orchestrate the task activities while reacting to environmental stim-
uli and human behaviors. We describe the overall framework discussing
some case studies in human-robot collaborative scenarios.

A preliminary version of the work reported in this chapter is published
in [35] while the extended version can be found in [41]. This work is farmed
in the context of the EU Fp7 SAPHARI Project.

63
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5.1 Integrated System Architecture

In this section, we illustrate the overall architecture (see Figure 5.1)
describing its main components along with their interactions. The multi-

Figure 5.1. The overall human-robot interaction architecture.

modal HRI framework is appointed to recognize the multiple human com-
mands and actions, such as utterances, gaze directions, gestures or body
postures, and to provide an interpretation of user intentions according to
the dialogue context [123]. The system is endowed with a Human-Aware
Task Planner (HATP) [87] which is based on a Hierarchical Task Networks
(HTN) and a SHOP-like [105] refinement process. HATP is able to produce
hierarchical plans for multi-agent systems (including humans), generating
different sequences for each agent. The executive process is managed by
two subsystems: the supervision system and the the attentional system.
The first one is to interact with the task planner, monitor the plan execu-
tion and formulate replanning requests. The second one exploits bottom-
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up (stimuli-oriented) and top-down (task-oriented) influences to regulate
the plan execution and the dialogue policy.

5.2 Human Aware Task Planning

The Human-Aware Task Planner (HATP) [87] is based on a Hierar-
chical Task Networks (HTN) and is able to produce hierarchical plans for
multi-agent systems, including humans. Analogously to SHOP [105], the
HTN planning problem is defined as a 3-tuple 〈g, s0, D〉, which are respec-
tively, the goal, the initial state, and the planning domain. The latter is
defined by the pair (A,M), where A is a finite set of operators and M is a
finite set of methods. A method inM is a 4-tuple (m, t, p, b) wherem is the
name of the method, t is the task/goal, p is a precondition specifying when
the method is applicable, and b describes a sequence of operators or meth-
ods. The set of operators A is denoted by a STRIPS-like representation. In
HATP, each operator Aa

k for an agent a can be associated with a duration
Da

k and a cost function Cctxt
k . Moreover, HATP permits to define specific

social rules along with a cost for their violation 〈Sk, P ctxt
k 〉. This way, a

plan P is associated with a cost: Cost(P ) = Σai∈PC
ctxt
ai + Σsk∈PP

ctxt
sk

,
where ai is an action of the plan P , sk is a social rule. By setting a
different range of parameters the plans can be tuned to adapt the robot
behavior to the desired level of cooperation. Moreover, HATP is able to
produce a different stream of actions for each agents, where each stream is
a sequential list of actions. Each action has a finite number of precondition
links to other actions, which can be part of any stream.

5.3 Cognitive Control and Attention

The attentional system receives the generated plan from the supervi-
sion system and selects/regulates the robot activities exploiting bottom-up
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(stimuli-oriented) and top-down (task-oriented) influences [36]. This pro-
cess is managed by the cognitive control cycle that continuously updates
the internal hierarchical structure (WM), and the set of behaviors rep-
resenting the overall processes involved in the execution (see Figure 5.2)
exploiting schemata specifications (LTM). The LTM collects the declar-
ative representations of all the possible behaviors and tasks available to
the robot, including the executive schemata associated with the methods
M and the operators A defined in the HATP domain (see Section 4.2 for
further details about the integration of SHOP-like methods/operators).

In the following, we introduce a more formal description of the WM
data structure. The WM represents the executive state of the system as an
annotated tree structure, whose nodes s ∈ S represent processes/behav-
iors, while the edges represent parental relations among sub-processes/sub-
behaviors. Indeed, the nodes S ∈ Sc ∪ Sa are partitioned in concrete and
abstract, where the concrete nodes in Sc represent real sensorimotor pro-
cesses, while the abstract ones in Sa represent complex behaviors to be
hierarchically decomposed. Each node s ∈ S is denoted by a 6-tuple
(s, t, x, q, v, e), where s is the name of a behavior, t is the task, x repre-
sents the set of the associated sub-behaviors of s, q represents a releaser,
v is a set of state variables representing the executive state of s, while e
is a post-condition used to check the success of s. In this context, when
allocated for the execution, methods m ∈M are represented by associated
abstract nodes/behaviors sm ∈ Sa in WM, with x list of sub-behaviors as-
sociated to b and the releaser q used to monitor the precondition p during
the execution. Analogously, each op ∈ A can be associated with a concrete
or abstract nodes, depending on the executive schema represented in the
LTM. If the releaser q of an allocated node is satisfied, all its sub-nodes x
can be also allocated in the WM; conversely, if a behavior is accomplished
or dismissed, this is removed from the WM along with its hierarchical de-
composition. In this framework, an allocated behavior is active when its
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releaser is enabled along with the releasers of all its ancestors. The WM
update process is managed by the process alive ∈ Sc which is also the root
of the WM tree. For instance, in Figure 5.3, we have a representation of
the WM once the task giveTo (abstract behavior) is expanded into give
and place (concrete behaviors), which can be directly executed. Here,
giveTo is an abstract node that represents the execution of a method,
give and place are concrete nodes representing running operators, while
other nodes represent running/suspended low-level processes which are not
represented in the planning domain. It is worth noticing that, not only
multiple tasks can be allocated in the WM, but also multiple methods for
the same tasks may compete for the actual execution. The orchestration
of multiple tasks/activities, possibly in conflicts, is obtained by exploiting
attentional processes.

Figure 5.2. The executive system integrates a supervision system and an
attentional system. The latter permits a flexible execution of cooperative
plans.
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Figure 5.3. Tasks in the working memory: dotted and solid ovals are for
abstract and concrete behaviors; green and red ovals represent active and
not active processes; n and (m) are for, respectively, the clock frequency
(inverse of the emphasis) and the associated magnitude.

5.4 Plan Execution and Attentional Regulation

The plan-execution cycle is managed by the interaction of the super-
vision and the attentional system. Given a task t to be executed, the
supervision system invokes HATP to generate a multi-agent plan. This is
represented by a set of sequences of actions π = (s1, .., sn), one for each
agent involved in the interaction. In this context, we assume π = (sR, sH),
where sR is for the robotic activities and sH is for the interactive human.
Once generated, the plan π, together with the associated task t, is received
by the attentional system, through the planListener behavior (see Figure
5.2) which then allocates in the WM the enabled behaviors for t and π.
Here, the task t is hierarchically expanded by the alive process into a hier-
archy of behaviors, from abstract to concrete, while the plan π is exploited
as a guidance for action selection and execution exploiting attentional reg-
ulations. At the executive level, primitive human actions are implemented
by human monitoring behaviors suitably specified in the LTM.

The plan listening cycle is described by Algorithm 3 and works as fol-
lows. Once a new HATP plan π is generated, the behaviors associated
with the task t are allocated in the WM, then a monitoring cycle starts
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and remains active as far as the plan is available and a replanning activity
is not invoked. Within this cycle, the next plan action is selected according
to the plan sequence; this action is then associated with a corresponding
concrete behavior pa which is top-down enhanced by a suitable constant
factor k used to facilitate its execution. Once pa is allocated in theWM , if
pa is accomplished (i.e. its post condition is satisfied) the next plan action
is selected for the execution. Otherwise, if the action α selected by the
attentional system is different from the planned one, a plan adjustment
procedure is started. When this adjustment is not possible, replan is set
to true and a replanning step is then invoked. The plan adjustment strat-
egy checks whether there exists a common ancestor in the WM tree for the
selected α and the planned pa in order to find an alternative decomposition
and then modify the plan π accordingly. Notice that that several refine-
ment strategies are also possible in this framework. For instance, following
a conservative approach, plan adjustment may be limited to primitive ac-
tions only. External plan repair methods, similar to [13, 148], may also
be deployed. Otherwise, following a different approach, since the gener-
ated plan is here used as a top-down guidance, plan adjustments may be
postponed: the executive system may also keep active an inconsistent plan
until its attentional disturbance reaches a suitable threshold.

In the proposed plan execution approach, both the generated plan π

and the hierarchical decomposition of task t are used for the execution.
The actions in π are used to stimulated the attentional system towards
the execution of the associated concrete behaviors, which are allocated,
activated, and regulated during the expansion of t. This way, not only the
execution of different non-conflicting behaviors/tasks may be interleaved
with the planned activities, but also alternative expansions of t can be
exploited for on-line plan repair actions. Indeed, the task tree allocated
in the WM can maintain alternative methods and action primitives in
competition/conflicts (e.g. take and receive are two alternative ways to
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get an object) in order to permit flexible adaptation of the task depending
on the current executive and attentional state (e.g. choosing take instead
of receive if an object is close).

Algorithm 3 Plan listening cycle
1: procedure planListener(plan π,task t)
2: add task t to the WM
3: select next action pa from the plan π
4: set Replan to false
5: while (¬empty π and ¬Replan) do
6: if (pa is allocated in the WM) then
7: if (pa is accomplished) then
8: remove pa from WM and from π
9: select next plan action pa from π

10: else
11: get most active α action in WM for t
12: if (α exists and α 6= pa) then
13: set π to adjust(pa, α, π, t)
14: end if
15: if (α does not exist or π is not valid) then
16: set Replan to true
17: end if
18: end if
19: else
20: add pa to the WM
21: emphasize pa by a constant factor k
22: end if
23: end while
24: end procedure

A simple example of the integrated effect of plan-based, task-based, and
environmental influences is provided in Figure 5.4. In this case, the task is
to get an object (getObj(bracket1)) and the generated plan states that the
robot should first reach the table and then take it (HAPT plan in Figure
5.4). However, the task getObj is associated with two methods: the robot
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Figure 5.4. Regulations in WM. Green and light blue solids are, respec-
tively, preconditions and goals of tasks/schemata. Top-down regulations are
provided by the actions of the HATP plan (blue arrows), while bottom-up
regulations are influenced by environmental stimuli (red arrows).

should go towards the table (go(table)) and, either take it (take(bracket1)),
as planned, or search for it (search(bracket1)), e.g. if the object is not
present or object detection fails. At the plan start, the go(table) behavior
is allocated in the WM, enabled, and aroused both by the plan (top-down
regulation) and by a the table distance (bottom-up regulation). Then,
once the table is reached, the action plan is removed and the behavior is
disabled, while take(bracket1) becomes active and can be enhanced by the
current planned action and the proximity of the bracket. The emphasis
combines these effects and provides an action selection criterion. However,
when the bracket is not present the bottom-up stimuli does not support
the planned action take and alternative enabled behaviors may become
dominant, in this case search(bracket1). This alternative execution is
then followed by a plan adjustment. This way, in contrast with rigid and
sequential activity dispatching, in case of opportunities and unexpected
events, the attentional system may retrieve alternative methods from the
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task definition avoiding a continuous replanning process.

5.5 Case Studies

The integrated system has been tested in a case study inspired by a
human-robot co-working scenario where a collaborative robot should assist
a human operator during a bracket assembling process [3]. The overall test-
bed is inspired by the one proposed in the EU FP7 SAPHARI Project. In
this context, we discuss and analyze the system behavior presenting both
simulated experiments and a real-world robotic demonstrator.

5.5.1 Simulated Tests

In this section, we illustrate experimental results collected in a simu-
lated scenario. Our aim is to show how the proposed framework permits
flexible plan execution when the human behavior diverges from the ex-
pected one.

Figure 5.5. Simulated scenario for human-robot cooperation.

Experimental set-up The overall environment is simulated in v-rep in-
terfaced via ROS to our planning and execution framework. We assume
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a simulated human and simulated robot (kuka omnirob, kuka LBR 4+
manipulator endowed with a baxter gripper, laser scan, and RGB-D cam-
era) that moves within an environment of 15 × 15 m with a maximum
speed of 0.4 m/s. As a computational platform we used a laptop i5 4

core, 4 gb ram. In the simulated environment, we have 3 bracket, posi-
tioned in 3 locations, to be installed in 3 panels (see Figure 5.5). Both
the robot and the human can go towards the predefined locations, or take,
place, give, receive objects, while only the human can install the brack-
ets into the panels. In this context, the task is a sequence of 3 subtasks
install(bracket1), install(bracket2), install(bracket3). For each test, we
consider an already generated HATP plan where each subtask is to be
executed as follows: the robot takes bracketi from an expected location,
navigates towards the human, gives bracketi to the human, which then
installs it in sloti. In order to test on-line flexible adaptation of plan exe-
cution, we introduce random changes during plan execution. In particular,
since the human behavior is simulated, we can move the operator in and
out of the working space to disturb the execution of the cooperative plan.
Indeed, if the human moves away before receiving an object, the hand-
over task cannot be executed, hence plan refinement or replanning steps
are needed. Additionally, the bracket positions can randomly change in
3 possible locations. Random changes are introduced at the start of each
bracket installation subtasks with uniform distributions on the human (in-
/out) and the bracket positions respectively. In these tests, we assume
that all the manipulation actions are reliable (take, place, give, receive),
hence the only sources of uncertainty are restricted to the human behavior
and the object positions. As for the attentional regulations, the bottom-up
frequency associated with the concrete behavior b depends on the distance
dist(targetb) ∈ [minb,maxb] of the associated target (e.g. distance of
bracket to activate take). Here we assume a very simple setting: within
a suitable interval [minb,maxb] the frequency is increased/decreased pro-
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portionally to the reduction/increment of the distance, otherwise, we have
a linear decrease of frequency when the stimulus is stable or removed (see
[31] for examples of more complex regulations in similar settings). As
for top-down influence, the initial value of magnitude for each behavior is
µb = 1, while for the plan guidance k, we considered two possible setting
kh = 4 and kl = 0.2, where the first is considered high and the second low
with respect to the default magnitude.

Experimental Results In this setting, the aim is to test the plan ex-
ecution performance considering successes or failures, time to accomplish
the task, repair and replanning episodes during the execution. In order
to assess the system performance, we tested 30 times the simulated plan
execution in different conditions. First of all, we considered a nominal
situation (baseline) where the human behaves as expected and the objects
are not moved during the execution; in this case no replanning and no
repair is needed. In a second experiment, we introduced a randomized
situation, where the human moves in and out of the working space, while
the objects (brackets) can change their position (high plan guidance with
kh). Finally, we repeated the experiments in the randomized setting the
top-down plan guidance set to a low value (low plan guidance with kl), in
this case the executive system is mainly affected by the task structure in
the WM, with a minimal plan influence. The collected results are summa-
rized in Table 5.1 and Table 5.2; we never obtained task failures, therefore
these data are not explicitly reported in the tables. In the case of high
plan guidance (hpg), we can observe that the time to accomplish the task
is comparable with respect to the one of the baseline test (bsl), where ev-
erything works as expected in the plan, indeed the replanning episodes are
pretty rare, while the system can on-the-fly find alternative executions and
plan adjustments. These plan repairs are usually due to the absence of the
human during a planned handover or the absence of an expected object in
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a planned location. In Table 5.2, in order to show the impact of replanning
on the overall performance, we consider the results of the high plan guid-
ance (hpg) tests distinguishing between cases with or without replanning
episodes. In correspondence to replanning episodes the time performance
is significantly worst (p < .0001 with a two-tailed t-test). In the last row
of Table 5.1, we consider the case of a reduced top-down plan guidance
(lpg) and compare the performance with respect to the hpg tests. Here, as
expected, we observe a significant increase of the replanning (p < .0001)
and plan adjustment episodes (p value < .04) that also affects the task
execution time (p < .0001). On the other hand, even though the overall
performance is reduced, the robotic system is able to accomplish the task
despite a randomized situation and a weakened plan guidance. This seems
to suggest that plan guidance may also be relaxed and modulated when
necessary (e.g. more reactive interaction) as a leashing mechanism that
affects the overall plan-oriented behavior.

Table 5.1. Experimental results collected in the three settings.

Tests time replan refine
avg std avg std avg std

hpg 3’53” 0’47” 0.3 0.46 1.25 0.69
lpg 4’23” 0’20” 1.6 0.49 1.8 0.98
bsl 3’49” 0’40” - - - -

Table 5.2. Experimental results collected with high plan guidance.

Replan No-Replan
time refine time refine

avg std avg std avg std avg std
4’3” 0’52” 1.33 0.75 3’48” 0’46” 1.21 0.67
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5.5.2 Robotic Demonstration

We now describe the system at work in a real-world robotic scenario
that implements and extends the simulated setting discussed above. The

Figure 5.6. Experimental scenario: the robot switches from handover to
place. A demonstration is available at the following link: http://wpage.
unina.it/riccardo.caccavale/media/roman2016.mp4

real set-up extends the simulated one as follows (see Figure 5.6). There
are three work locations, each containing a slot and a table that supports
a set of objects including a glue bottle and some brackets. The user and
the robot must cooperatively install the brackets in the slots, differently
from the simulated experiment, in order to install the bracket, the human
should first clean the slot, then applying the glue in the slot. In this sce-
nario, a PR2 robot can help the human bringing the appropriate objects.
The overall scene is monitored by an OptiTrack motion capture system
that provides the positions of the human and the objects, the PR2 is pro-
vided with rgdb camera and a laser scan. At the start, the supervision
system invokes the HAPT planner in order to obtain a suitable collabo-
rative plan. In this scenario we consider a plan where the ROBOT first
brings the GLUE_BOTTLE and the BRACKET_1 to the HUMAN

http://wpage.unina.it/riccardo.caccavale/media/roman2016.mp4
http://wpage.unina.it/riccardo.caccavale/media/roman2016.mp4
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agent, who is to glue the SLOT_1 position and install the bracket on it.
In the following, we describe and discuss some typical situations where the
attentional system refines the plan during the execution.

Handover to Take In the planned sequence the human should bring
the object to the robot, however, in this case the human remains idle and
does not interact as expected. According to the plan, the robot should
keep waiting for the human, however, the attentional regulation mecha-
nisms comes here into play to solve the impasse. Indeed, since the target
stimulus (human distance) does not change, the bottom-up activations
of the receive behavior, decrease with time. Therefore, if an alternative
method (take(bracket)) is enabled by the proximity of a bracket, after
some seconds of waiting the associated activations become dominant (the
lower 1/e is selected) and can be selected as a plan adjustment. In Figure
5.7 (up), we illustrate an excerpt of the WM after the task switch due to
the emphasis value and the associated adjusted plan (down).

Figure 5.7. Handover to take: (up) if the human does not behave as
expected, the take behavior becomes dominant, hence it is selected by the
attentional system; (down) the associated plan is modified accordingly
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Take to Search In a second scenario, the robot should get the bracket
and give it to the operator to finalize the installation. In this case, as
suggested by the plan, the robot goes towards a target table to take the
bracket, however, once arrived the bracket cannot be found. Therefore,
the take action cannot be executed, while an alternative method search

is enabled and becomes dominant. The attentional system can then select
the search behavior (the activations are illustrated in Figure 5.8, up) and
the plan can then suitably modified. The robot can then inspect other
locations looking for the bracket.

Figure 5.8. Take to Search: (up) the take behavior is not enabled because
the target object is not available, however, the alternative method is available
in the WM hence it is selected by the attentional system; (down) the search
action is then introduced in the plan.

Handover to Place In this scenario, the human is to obtain the glue
bottle (GLUE_BOTTLE) in order to glue the slot (SLOT_1). Following
the HATP plan, the robot tries to perform a handover, but the human
moves away from the working space during the interaction. Also in this
case, the attentional system can solve the impasse without waiting for the
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human initiative. Indeed, the bottom-up stimulation of the give decreases
as the robot-human distance increases, while the alternative method place
is enabled with the associated bottom-up stimuli activated by the table
distance. When place wins the contention, (see activations in Figure 5.9),
the robot can start placing the object on the work location allowing for
plan continuation. In this case, plan refinement is also associated with a
substitution of a monitored human action from receive to take.

Figure 5.9. Handover to Place: (up) when place wins the competition
(emphasis 0.53 < 1) with give it is selected and (down) the plan is refined.

5.6 Conclusions

We proposed an integrated system for human-robot cooperation where
top-down and bottom-up attentional modulations are used to flexibly ex-
ecute human aware plans. The framework is to adapt plan execution with
respect to the human behavior and the environmental changes reducing re-
planning activities while enabling a natural and smooth interaction. In this
context, the overall execution is managed by an attentional system while
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a generated cooperative plan is used as a top-down attentional guidance
that stimulates the system towards task accomplishment. This approach
allows us to combine accessibility (bottom-up influence on enable activi-
ties) and facilitation (top-down task/plan based regulations); these mech-
anisms are here deployed to support flexible activity execution, reactive
robotic interventions, and natural human-robot interaction. We described
and discussed the proposed system in a human-robot co-working scenario
considering both simulated and real-world experiments. In these contexts,
we illustrated how plan guidance and attentional regulation allow us to
solve decisional impasses and reduce replanning episodes while driving the
system towards task and plan accomplishment.



Chapter 6
Attentional Filtering and Adaptive
Interfaces

In the previous chapters we have shown the proposed cognitive control
framework in different robotic applications including human-robot interac-
tion and flexible plan/task execution. In this chapter we propose a different
human-robot interaction setting where the system is employed to regulate
the communication between the user and a team of robots. In particular,
our aim here is to exploit the attentional regulations to filter the infor-
mations provided by the multiple platforms and increase the naturalness
and the easiness of the interaction. Specifically, we present a multimodal
attentional interface suitable for a human operator that monitors and con-
trols the activities of a team of drones during search and rescue missions.
We consider a scenario where the operator is a component of the rescue
team, hence not fully dedicated to the robots, but only able to interact
with them with sparse and incomplete commands. In this context, an
adaptive interface is needed to support the user situation awareness and
to enable an effective interaction with the drones. In this work, we pro-
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pose a multimodal attention-based interface designed for this domain. This
framework is to filter the information flow towards the operator selecting
and adapting the communication mode according to the context and the
human state. We illustrate the features of the adaptive system along with
an initial assessment in a simulated scenario.

The work reported in this chapter is exploited in the context of the EU
Fp7 SHERPA project [1] and published in [33]. A short version can also
be found in [34].

6.1 SHERPA Domain

We consider search and rescue mission scenario where a team of res-
cuers is supported by a team of aerial robotic platforms. In this context,
a special rescuer, involved in the search mission, is endowed with wear-
able devices to interact with the robots and to monitor their behaviors.
Specifically, the human is equipped with a tablet, a headset to vocally
communicate with the robots, a Thalmic Myo Armband (8 Steel EMG and
9 DOF IMU) for gesture-based interaction, and a band used to monitor
his/her status (galvanic skin response, heart rate monitor, skin tempera-
ture, GPS, 3-axis accelerometer). This way, the user can interact with the
robot through fast and natural multimodal commands involving gesture,
voice, touch-based commands, while receiving audio, video, and vibro-
tactile feedbacks. In particular, the tablet provides a graphical interface
that allows the user to monitor the robots status, tasks, paths, and video
streams of the associated on-board cameras. In this context, an adaptive
user interface should select the information to be provided to the human
attention and the communication channel (audio, video, tactile), depend-
ing on the saliency of the event along with the human and mission state
(see Figure 6.1). Concerning the robotic platforms, we assume quadrotors
with standard specification (flight time 25 min., max. airspeed 15 m/s,
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max. climb rate 8 m/s, etc.) equipped with standard sensors including
an on-board camera used by the operator to remotely inspect the environ-
ment, and an avalanche transceiver (ARVA) used to detect missing persons
under an avalanche.

Figure 6.1. Attentional Filtering: the operator is equipped with wearable
devices enabling multimodal communication with the drones. The informa-
tion provided by the robot is filtered by the attentional system that selects
relevant data/events defining the associated timing and presentation mode.

6.2 Attentional Filtering

Depending on the current task, the environmental context, and the
human emotional/cognitive state, the robotic system should provide the
operator with suitable information along with a cognitively adequate in-
terface adapting the associated human-robot interaction schema. For in-
stance, in the crucial phases of the mission, the operator should be pro-
vided with focused information and a task-specific interface that minimizes
his/her cognitive load, while the SHERPA robots should avoid disturbing
interactions by enhancing their proactive and autonomous behavior. The
responder is assumed to be in a specific mission context that requires a
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particular type of information in its interface and an associated interaction
mode with the robotic system. The information provided on the interface
should assist the responder during the task. The interaction can be explicit
or implicit. In the first case, the operator can directly query the interface
to get additional details about the mission state. In the second case, the
context and the state of the operator directly preshapes the information
presented on the interface.

6.2.1 System Design

In order to design the adaptive human-robot interface and the informa-
tion filtering system, we adopted an attentive paradigm [70, 146] tailored
for the peculiarities of our domain. Indeed, in our case the human can
be deeply involved in the rescue scenario and can communicate with the
drones in a multimodal manner through wearable devices, while his/her
level of attention, physical and cognitive stress, can affect the interaction
mode. Hence, the system should support the user by selecting salient
and task-relevant data, deciding when and how to present the information
to the user (timing, frequency, channel, modality), taking into account
the human state, the operational context, and the effort of divided at-
tention and attention/task shifting. In order to address all these issues,
we propose an approach where the interface is regulated by cognitive con-
trol mechanisms supporting the human cognitive and executive processes
during the operations. In the context of an adaptive interface, the interac-
tion between top-down (task-oriented) and bottom-up (stimuli-oriented)
attentional processes permits to emphasize mission relevant information
according to the human and the environmental state, while contention
scheduling is to manage conflicts [26] due to limited resources constraints
(i.e. working memory, cognitive load, multiple activities, etc.). This frame-
work allows us to uniformly manage divided attention, attentional switch,
and multichannel distribution of the information.
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Figure 6.2. System Architecture: the supervisory attentional system man-
ages the adaptive interface providing filtered and task-related data, while
reacting to the human commands and status.

6.2.2 System Architecture

The overall system architecture is depicted in Figure 6.2. The inter-
action between the human and the robots is mediated by a supervisory
attentional system that monitors the robot and the human states along
with the generated environmental data. The human can communicate with
the system in a multimodal manner, deploying gestures, voice, and tablet-
based interaction; these multimodal inputs are first fused [123] and then
interpreted according to the dialogue context [93]. On the other hand, the
supervisory attentional system [36] selects the relevant data and the pre-
sentation mode exploiting different channels (audio, video, vibro-tactile).
In order to track the mission state, the system WM maintains a hierarchi-
cal representation of the active tasks of the agents (robots and humans)
involved in the scene (see Figure 6.6). This structure is continuously up-
dated by the cognitive control cycle exploiting behavioral schemata specifi-
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cations collected in the LTM. The abstract behaviors represent hierarchical
activities to be further decomposed (search(Areax)), while concrete be-
haviors are for real sensorimotor processes (navigate(wayPointy)). These
are denoted by a perceptual schema, a motor schema, a releasing mecha-
nisms, and associated with an activation level represented by an adaptive
clock. While the releasing mechanism enables/disables the behavior, the
clock regulates the behavior arousal and the frequency of its activations
[32]. This frequency is affected by bottom-up and top-down influences.
We recall that this frequency is affected by an emphasis value that com-
bine bottom-up and top-down influences (see Sections 2.3 and 2.4). The
emphasis value is used to solve contentions among multiple behaviors, in-
deed, following a winner-take-all approach, the access to mutually exclu-
sive resources is prioritized according to the emphasis value. Notice that,
this frequency-based regulation provides us with mechanisms for process
selection (attentional filtering), multiple task monitoring (attention allo-
cation and divided attention), task-switching (executive attention). For
additional details about this framework we refer the reader to [36, 42].

6.2.3 Adaptive Interface

The supervisory attentional system described so far should track the
mission state, monitor the actors’ status (robots and humans), and pro-
vide the human operator with focused information suitably distributed on
the audio (headset), vibro-tactile (armband), and video (tablet interface)
channels. The status of the human and the drones are continuously moni-
tored by concrete behaviors in the WM, whose activation level (emphasis)
is regulated by the active hierarchical tasks and the salient events/stimuli.
For each drone, we consider standardized exploration missions composed
of the following subtasks: takeoff, navigate, explore, inspect, return, land.
These activities are represented in the WM and further decomposed into
lower level processes including the associated monitoring and communica-
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tion behaviors (see Figure 6.5). In particular, for each drone, we introduce
drone monitoring behaviors to manage the presentation of the following
data: pose, altitude, speed, battery level, intensity of the ARVA signal,
current task, video stream of the on-board camera. As for the opera-
tor, a human monitor behavior inspects the operator activities along with
his/her physical and cognitive stress. In particular, GPS and wearable
sensors (armband) are used to estimate the human activity (idle, walking,
jogging, running, ascending, descending), while, depending on these ac-
tivities, adaptive thresholds have been defined to detect anomalies and to
infer the level of physical/cognitive stress [132]. Since in this work we are
interested in presenting and assessing a rich multimodal interaction during
the execution/monitoring of multiple tasks, we directly assume that the
human has low physical stress (not moving or walking slowly) and high
cognitive load (see the next section). The estimated human activity can
be directly used to set constraints and preferences on the communication
channels. Indeed, if the human is moving fast or under physical stress, we
assume that the tablet cannot be directly inspected, hence only vocal or
vibration signals can be employed. On the other hand, if the human is
idling, the tablet-based interaction becomes an available channel that can
be exploited depending on the type and saliency of the information. In the
setting considered in this work, we assume that vibration is mainly used to
alert the user about important events that can be further detailed either
vocally or in the tablet interface. Analogously, the vocal communication
is mainly used to gather the user attention on relevant context-switching
situations like: change of tasks, victim detection, low-battery, lost con-
nections, malfunctioning, proactive help requests from the drones. Notice
that the usage of this channel should be minimized in order to allow the
operator to communicate with the other SHERPA actors including the
other rescuers involved in the mission.
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Contention mechanism In order to regulate the interaction with the
user, we define a contention mechanism where the drones compete to ac-
quire communication slots for each channel. In the vocal and vibration
channels, we assume only one slot available at each time, while for the
tablet we introduce the possibility of parallel communication in m com-
munication slots s1, s2, ..., sm (see Figure 6.5), with m depending on the
estimated user cognitive load and physical stress: low stress is associated
with a maximum number of available slots, high stress with a minimal
one. Since more then one drone can try to acquire a single communication
slot, the competition is regulated using the emphasis mechanism described
above: the active processes with the higher emphasis acquire the lock of
the slots following a N-winner-take-all approach. Notice that the emphasis
defines also the frequency of the update, therefore information with high
priority is also directly associated with more frequent updates.

Tablet interface The tablet interface is depicted in Figure 6.3. It is
structured in two layers: background and foreground. The background dis-
plays the map of the search area (a digital elevation map with semantical
annotations) and general information about the mission: robot positions,
the planned and executed path for each robot, and salient information
generated by the drones (e.g. intensity of the ARVA signal). In the fore-
ground, each active robot can provide a status info-boxes where the user
can inspect data about the drones. Notice that, while the tablet back-
ground can be associated with a multiple target monitoring task [7], each
info-box in foreground requires the exclusive access to specific locations,
with an additional effort needed to shift attention and elaborate the data
[116].

Moreover, the info-box can be displayed in different modes (see Figure
6.4), each associated with a different representation of the status. This
representation depends on the relevance of the drone activity. We consider



6.2. Attentional Filtering 89

Figure 6.3. Tablet interface. The background illustrates the map of the
area with positions, trajectories, and data generated by the robots. Each
robot is associated with a color and an info-box in foreground that provides
information about the robots status and video streams.

the following three modes:

• Not relevant: The info-box is set at the minimum dimension. In
this case only the task name, the task progress, and the battery
level are displayed. This representation is associated with routinized
activities that can be monitored with minimal effort, e.g. when the
drone is autonomously navigating towards a search area or during
the execution of a predefined search pattern.

• Weakly relevant: The info-box is set to a medium dimension and the
altitude value is also displayed. This representation is related with
not nominal situations, where a human intervention/teleoperation
may be needed, e.g. during critical navigation episodes, low battery,
malfunctioning, etc..

• Relevant: The info-box is set at the maximum dimension (to gather
the attention of the user) displaying the complete status. This mode
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Figure 6.4. Status info-box representation. We consider three different pre-
sentation mode associated with not relevant, weakly relevant, and relevant
information.

is provided when a careful inspection of the user is needed, e.g. when
the ARVA sensor detects the presence of a human.

Events Management We introduce additional cueing mechanisms to
draw the attention of the user upon a specific drone or a specific element
of a drone info-box. Indeed, when a relevant event occurs during the
execution of a task (subtask accomplishment, low-battery, lost connection,
navigation problem, malfunctioning, victim detection alert), the related
drone can inform the user exploiting either the visual channel, by flashing
his status info-box, or by sending signals on the audio and vibro channels.

In the setting considered in this work, we introduce the following simple
cueing mechanism. Whenever a drone acquires a slot to communicate new
information, both vibro and audio signals are sent to the user to gather
his/her attention, while the related info-box starts flashing to allow the
attentional shift towards the related info-box. This flashing depends on
the frequency of the associated process and continues until the emphasis is
higher than a fixed threshold or others drones, with more relevant/urgent
data, get the control of the available slots (see the Algorithm 4). In order to
facilitate this process and improve the rate of relevant information provided
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Figure 6.5. Competition among different processes to present the informa-
tion. Contentions are solved with a N-winner-take-all approach that allows
the access to the most emphasized behaviors.

to the user, we introduce additional time constraints for the exclusive lock
of the slot and the associated flashing:

• Reaction time: The flashing period must persist for a suitable interval
treact that allows the user to reorient the attention, perceive and
elaborate the information [116, 117]. If other n info-boxes are already
flashing when the new one occurs, the new flashing period should be
suitably enlarged; here, we assume treact = θreact + δreact × n.

• Attentional blink: When the information changes on the same info-
box, we introduce a no-flashing period tblink in order to signal the new
info enabling context switch and elaboration. Empirical evidences on
rapid serial visual presentation indicate a temporal suppression on
visual processing during a specific interval [120].

These temporal constraints are enforced through frequency modula-
tions, indeed, whenever a new process acquires a slot, it receives an ad-



92 Chapter 6. Attentional Filtering and Adaptive Interfaces

Figure 6.6. Activities of the red drone represented in the WM. Green, red,
dotted, and solid ovals are for active, disabled, abstract, and concrete be-
haviors respectively. The red drone is here inspecting during an exploration
subtask, hence its monitoring behavior is emphasized.

ditional emphasis value that prevents task switching during the latency
treact (see Figure 6.7). A pseudocode of the overall monitoring cycle as-
sociated with a generic drone is provided in Algorithm 4, where emphasis
regulation, contentions, cueing mechanisms, and temporal constraints are
illustrated. Specifically, when a monitor acquires a new slot, flashing starts
after tblink sustained by an enhanced emphasis during treact and reinforced
by multimodal cueing signals; when a slot is released, flashing ends.
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Figure 6.7. Temporal constraints for task switching. The overall latency
represents the minimal time to react.

6.3 Case Study

In this section, we present a case study used to assess the adaptive
interface described so far. In particular, we consider a dual-task scenario
[149] where the operator has to monitor a group of drones involved in a
search and rescue mission, while performing a secondary distracting task.
This task has been introduced to simulate the operator involvement in the
search activities, as envisioned in the SHERPA domain. The two tasks
are set as follows. In the primary interface-monitoring task (IM) the user
has to monitor 8 drones during their search activities, attending to salient
events (navigation problems, possible missing detection, low battery alerts,
etc.) and looking for victims by inspecting the video stream provided by
the on-board cameras of the drones. In a secondary task, the user should
perform a word-counting (WC) activity, i.e. the user should count the
letters contained in each word of a list; this operation is executed on a
different computer. Moreover, as a situation awareness test, whenever
an event is signaled, the tester is to check the interface and declare the
reason of the signal (e.g. low battery, task switch, etc.). In order to assess
the effectiveness of the adaptive interface, we set up two instances of the
system. In the first one (adaptive), we deploy the adaptive version of
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Figure 6.8. In the dual-task scenario the user have to switch between WC
and IM tasks trying to maximize the number of words correctly counted and
the number of victims/salient events detected.

the interface where the number of communication slots is reduced to one
(maximum cognitive load), therefore only one drone is able to signal an
event per latency. In a second instance (non-adaptive), we define a statical
interface where the size of all the info-boxes are fixed to the maximum
one and multiple parallel communications are allowed. For the tests, we
involved a group of 16 participants (10 males), all undergraduate students
of an engineering school in our university. In this setting, each tester is to
perform two sessions of the dual-task test using both the adaptive and the
non-adaptive interface. In order to decouple the experimental results from
the users practice, we defined three search and rescue mission scenarios:
one for fast training, and the other two for testing the adaptive and the non
adaptive case. In addition, these two tests have been alternated to prevent
a learning effect. In these two testing scenarios, we assume the tasks of the
drones already loaded in the WM along with the associate subtasks, pre-
planned search paths, defined positions of victims, and simulated logs of
salient events. Testers are endowed with the tablet, headset, armbands and
are asked to find a maximum number of victims while executing the WC
secondary task. Testers are not aware that we have 5 missing people for
each scenario and are not instructed about priorities between the two tasks.
During the test, for each audio/vibro alert received, the user is instructed
to verbally classify the type of event (task change, battery, obstacles, etc.).
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Each test session lasts about 7 minutes.

Table 6.1. Measures of performance.

Events Occurred Events Missed Victim Missed
avg std avg std avg std

no-Adapt 19.22 1.69 3.67 3 0.33 0.25
Adapt 11.44 2.28 1.22 0.69 0.11 0.11
p-value < 0.0001 0.0034 0.0031

Table 6.1 provides a summary of the results collected with the two
tested modalities. The first entry presents the salient events (average and
standard deviation) actually communicated by the interface to the user
via visual/audio signals, while the other entries represent, in order, events
and victims available on the interface, but missed by the users. These
results show that, despite the average number of communicated events
decrease by 40.6% in the adaptive mode, the average number of missed
victims and events decrease, suggesting that the adaptive interface, not
only does not affect victim/events detection, but also slightly improves
it with a significant reduction of the information flow. In Table 6.2 we

Table 6.2. Rate of missing events.

no-Adaptive Adaptive Improvement
avg std avg std avg std

19.4% 1% 10.6% 0.4% 8.9% 0.4%

present the average and the standard deviation of missing events per trial
(missing events over total events) expressed in percentage. Here, we can
observe that, in our tests, the proposed adaptive interface decreases the
probability of missing a single event by 8.9%.
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Algorithm 4 Drone monitoring cycle
1: procedure droneMonitor(d)
2: while drone is active do
3: update interface
4: try to get a slot
5: if slot acquired then
6: if just acquired then
7: enhance the emphasis
8: if update after flashing info-box then
9: set tblink

10: not flashing
11: end if
12: set treact
13: if slot audio/video acquired then
14: send audio/vibro signal
15: end if
16: end if
17: if time tblink elapsed then
18: start flashing
19: end if
20: if time treact elapsed then
21: reduce the emphasis
22: end if
23: else
24: not flashing
25: end if
26: set next period p
27: wait(p)
28: end while
29: end procedure



Chapter 7
Learning Tasks from
Demonstrations

In this chapter, we present a framework that allows a robot manip-
ulator to learn structured tasks from human demonstrations and to exe-
cute them in cooperation with a human co-worker. The proposed system
combines physical human-robot interaction with attentional supervision in
order to support kinesthetic teaching, incremental learning, and coopera-
tive execution of hierarchically structured tasks. We describe the overall
system architecture and detail how cooperative tasks are learned and exe-
cuted. The proposed approach is evaluated in a human-robot co-working
scenario, showing that the robot is effectively able to rapidly learn and
flexibly execute structured tasks.

The work reported in this chapter is developed in cooperation with
the TUM university of Munich (Germany). A preliminary version of this
work is published in [43, 38], while the extended version is currently under
review.
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7.1 Motivation and Background

The integration of robotic devices in human populated environments
requires the ability of the robot to continuously learn novel tasks and to
adapt their execution to the human intentions and behaviors. In a human-
dwelled environment, indeed, the robot will be asked to execute incremen-
tally complex activities both autonomously or in cooperation with human
co-workers. In this scenario, the interaction with the human should be
natural and fluent during both task execution and task learning. In this
work, we propose a framework which allows natural human-robot inter-
action along with incremental teaching and autonomous or cooperative
execution of structured tasks.

A structured task, like preparing a certain recipe, can be hierarchically
decomposed in different subtasks involving multiple primitive actions and
manipulated objects. Actions have to be performed in a coherent manner,
meaning that the actions have to be executed on certain objects with a
particular order. For example, to pour water in a cup, the robot has to
take the bottle, reach the cup, and then pour the liquid. In order to make
a robot able to learn and execute structured tasks, our approach integrates
multimodal interaction [123], attentional supervision [110, 46, 36, 42], and
kinesthetic teaching [90, 125]. In our framework, the human operator
can naturally interact with the robot using gestures, voice, and physical
guidance, while a supervisory attentional system [110, 46] continuously
monitors and tracks the human-robot interactive activities during both
training and execution sessions.

Attentional mechanisms that are suitable for human-robot task teach-
ing have been explored in the robotic literature, mainly in the context
of visual attention [103, 28, 24]; in contrast, in this work we focus on
attentional supervision and physical interaction. Namely, in course of a
kinesthetic teaching session, the human can physically interact with the
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robot to demonstrate the execution of the actions, while the supervisory
system is exploited to interpret the human guidance in the context of a
structured task. In this setting, the supervisory attentional system sup-
ports implicit non-verbal communication and permits to track the human
demonstration at different levels of abstraction (tasks, sub-tasks, actions
and motions primitives).

More specifically, human demonstrations are automatically segmented
into basic movements, or motion primitives, exploiting contextual informa-
tion (e.g. the relative distance between the robot, the objects to manipu-
late, explicit human commands, etc.). The generated primitives are simul-
taneously monitored by the attentional system, which relates them to the
associated task structure exploiting top-down (task-based) and bottom-up
(stimuli-driven) attentional mechanisms. These mechanisms enable also a
natural interaction of the robot with the teacher, which can exploit at-
tention manipulation (object and verbal cueing, pointing gestures, etc.)
to facilitate the learning process [109]. Notice also that in the proposed
framework, action segmentation, annotation, and (task-based) contextual
interpretation are one-shot and automatic, hence they do not require any
manual post-processing of the collected data.

The rest of the chapter is organized as follows. Section 7.2 presents
and discusses related work. The proposed architecture for multimodal
teaching/execution is detailed in Section 7.3. Section 7.4 describes how
structured tasks are learned and executed using the proposed architecture.
Experiments in a real word scenario are presented in Section 7.5. Finally,
Section 7.5.2 states the conclusions and proposes further extensions.

7.2 Related Works

Kinesthetic teaching is a natural and intuitive way to teach elementary
robotic motions [90, 125]. The goal of kinesthetic teaching is to physically
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guide the robot to show the desired behavior. In this setting, collected
demonstrations are used to learn and reproduce the elementary motions.
On the other hand, structured robotic tasks consist of several elementary
motions, which have to be sequenced and executed in a coherent manner.
The work in [82, 138] focus on segmenting demonstrated movements in
order to create a dictionary of basic motions, which can then be combined
in more complex behaviors. In [82], the authors propose motion graphs to
combine the learned primitives, but object manipulation and goal-oriented
activities are not considered.

The problem of deciding the next motion to execute can be considered
as a classification problem. The approach in [112] uses nearest neighbor
classification to determine the motion to execute. In [96], a graph is used
to represent transitions between elementary motions. A classifier associ-
ated with each node in the graph determines when a transition occurs, i.e.,
when a motion is finished and the robot can execute the next one. These
approaches permit to learn and reproduce complex robotic tasks from hu-
man demonstrations, but they do not consider the possibility of executing
learned tasks in cooperation with the human.

Alternative works have focused on the problem of learning high-level
task representations from human observations [10]. In [139, 154], sequen-
tial constraints (like reaching an object and then grasping it) are used to
determine a set of semantic rules that elementary motions (or symbols)
have to satisfy; these rules determine the sequence of actions to perform.
Semantic rules are also used by [119] to learn, recognize and reproduce hu-
man activities from video sequences. These recognized activities are then
matched with a set of pre-programmed motion primitives and executed by
the robot. The problem of task learning from human activity observations
is also faced by [52]. Here, the human demonstration is used to generate
a robot-independent task structure associated with robot-specific primi-
tives. Also in this case, learning is performed at the task level, while robot
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primitives are predefined. A similar approach is proposed by [109], where
the task structure is generated from a set of available robotic primitives
(skills). In this case, during the user demonstration, the robotic system
monitors the skills activations and extracts the graph of the executed ac-
tions. In other works [95, 80], probabilistic task representations are learned
from human observations and then used to recognize the current activity
and infer future human actions. In these settings, human activity anticipa-
tion can be used by the robot to generate the right response to the human
behavior [80].

Aforementioned approaches mainly focus on task learning from a set of
pre-programmed motion primitives, in contrast we are interested in learn-
ing both primitives and the associated task structure. Indeed, we propose
a framework that enables incremental task teaching and cooperative task
execution at different levels of abstraction. Moreover, we are interested
in natural and smooth human-robot interaction that supports cooperative
task execution and incremental adaptation.

In this respect, related to our work, in [2] the users demonstration is
exploited to build a semantic representation of the task. The framework
integrates visual perception learning and imitation learning to learn the
sequence of actions and the primitive skills. This work is mainly focused
on sequential tasks. Alternatively, in [109] the teacher can use simple
verbal cues to facilitate the learning process. In particular, the authors
propose explicit verbal instructions to bias the learner attention to rele-
vant aspects of the demonstration, but an attentional framework is not de-
ployed. Differently from this approach, we propose to deploy a supervisory
attentional system that enables more complex attention-base interaction
(verbal, non-verbal, explicit, implicit, etc.) during both the teaching and
the execution phase. Social attentional mechanisms for non-verbal task
teaching are proposed and investigated by [28]. In this case, the authors
mainly focus on visual attention and gaze direction. In particular, they
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show the effectiveness of spatial scaffolding cues during interactive task
demonstration. Visual attention mechanisms for robot learning are also
proposed by [103, 24, 19]. In contrast with these works, we focus on ex-
ecutive attention and cognitive control mechanisms supporting kinesthetic
task teaching. Cognitive control frameworks for robotic system have been
proposed [77, 42], but not in a learning-by-demonstration context.

7.3 Robotic Arm Interface

The overall system architecture is depicted in Figure 7.1. The human
can interact with the robot in a multimodal manner with gestures, speech,
and physical guidance during both task execution and kinesthetic teach-
ing sessions. The attentional system supervises both the human and the
robot activities (Attentional Behavior-based System) and manages high-
level tasks monitoring and execution (Attentional Executive System). On
the other hand, the Robot Manager is responsible for low-level tasks super-
vision, execution and learning. These components will be better detailed
below.

7.3.1 Robot Manager

The Robot Manager (RM) handles low-level aspects of the human-
robot interaction and it is responsible for a correct task execution. In par-
ticular, RM is responsible for: i) smooth transition between teaching and
execution modes; ii) demonstrated task segmentation into basic motion
primitives [71]; iii) scene monitoring (objects classification and tracking);
and iv) robot state monitoring (robot-objects distance, motion primitives
learned or executed). Task teaching is performed by means of kinesthetic
teaching [90]. In this work, we use the gravity compensation control to
make the robot ideally massless, guaranteeing an easy and safe physical
guidance. High level tasks are represented as a set of point-to-point mo-
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Figure 7.1. The overall architecture for teaching and execution. The at-
tentional system supervises task execution and learning, while the Robot
Manager enables activity segmentation, kinesthetic teaching, primitive ac-
tion learning and execution. The attentional system manages the execution
of high-level tasks (Attentional Executive System) and low-level sensorimotor
processes (Attentional Behavior-based System).

tion primitives (reaching and manipulating objects), learned from human
demonstrations. RM adopts stable dynamical systems (DS) to compactly
represent motion primitives and to generate motor commands in the execu-
tion phase. DS are well-suited for point-to-point motion generation since
they are guaranteed to converge towards a given target, and they can
rapidly adapt to external perturbations, like changes in the initial/target
location and unforeseen obstacles [126, 127].

7.3.2 Attentional System Deployment

The attentional system proposed in this thesis provides the cognitive
control mechanisms needed to flexibly orchestrate the execution of complex
tasks and to monitor the human activities. In this case, the attentional
framework is exploited to support both task execution and teaching. In
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our human-robot interaction setting, the attentional system exploits hier-
archical task representations to supervise and regulate the robot actions,
while interacting with the human.

More Specifically, we deploy the attentional regulation to select, among
the multiple conflicting structured tasks allocated in WM, the activities
that are involved in the learning-by-demonstration session. In this case
(analogously to previous chapters) we exploit top-down and bottom-up
regulations to selects the behaviors according to the environment and the
task structure. The selection mechanism along with the teaching and ex-
ecution processes will be better explained in the following sections.

7.4 Kinesthetic Teaching of Structured Tasks

The framework proposed in this chapter supports human-robot inter-
action during both task demonstration and task execution. In order to
enable natural interaction and incremental task learning, the system can
anytime switch between teaching and execution. The teaching phase can
start from the human or the robot initiative. In the first case, the hu-
man can explicitly switch to a demonstration session through a command
(either vocal and/or gestural) and directly show the execution of a task.
Otherwise, in the second case, the robot can wait for the human assistance
when not able to execute an activity. This happens when a task under
execution is not linked to concrete sensorimotor behaviors. In this case,
the system waits for the user guidance in order to learn how to perform
the missing subtasks.

During the teaching phase, the human can physically guide the robot
in order to demonstrate the correct execution of the task. This kines-
thetic teaching session is supervised by the attentional system, which has
to connect the segmented training motions to the related tasks and sub-
tasks. The attentional system tracks and monitors both the human and
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Figure 7.2. Action segmentation and hierarchical task decomposition dur-
ing kinesthetic teaching of a pouring task. The robot has to pick-up the bot-
tle (pick(water)), reach the glass, pour the water (pour(water)) and place the
bottle (place(water)). The Robot Manager (down) performs action segmen-
tation (S1, S2, . . . , S5) and learns the associated motion primitives, while
the attentional system (up) connects the generated segments and primitives
to the task structure (s1(water), s2(water), and gripper(close) connected to
pick(water); s3(glass) and s4(glass) connected to pour(water), etc.). The
green and blue labels represent, respectively, releasers and post-conditions.

the robot task execution. This way, the low-level robotic actions taught
by the user through kinesthetic teaching are labeled by the higher level
tasks/sub-tasks managed by the attentional system. For instance, Figure
7.2 illustrates the action segmentation of a water-pouring task along with
the associated hierarchical task decomposition. During the teaching mode,
the RM provides action segmentation and motion primitive learning, while
the attentional system monitors the subtasks to be fulfilled (pick(water),
pour(water) and place(water)). When a new segment is recognized by the
system (S1, S2, . . . , S5), a new node in the tree is generated (S1(water),
S2(water), . . . , S5(word), gripper(open)) and linked to the most empha-
sized subtask.
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During the demonstration, the human can also facilitate the learning
process by providing additional verbal and non-verbal cues to the robot
(such as object handling, pointing, vocal commands, etc.). These cues can
affect the attentional state of the robot, hence they can influence task/-
subtask contentions and segments associations. Moreover, the human can
always inspect the result of a training session by invoking the repetition
of learned tasks and subtasks. Indeed, if the learned activities are not sat-
isfactory, task demonstrations can be repeated. In the rest of the section
we detail the overall learning process.

7.4.1 Action Segmentation

The demonstrated task has to be segmented into elementary actions,
or motion primitives, that the robot executes. An effective segmentation
strategy has to be fast enough to work in real-time, consistent across differ-
ent demonstrations of the same task, and complete, meaning that the gen-
erated segments represent the entire task. In [82, 138] effective strategies
are proposed for human motion segmentation into atomic motion units.
The data stream is split into smaller units of fixed length [138] or using
a moving window of fixed size [82]. Hidden Markov models are used to
recognize and reproduce the motion units. A popular approach [59, 119]
suggests to segment an action stream looking at the zeros in the joint ve-
locities. Velocities smaller than a given threshold value are considered as
zero. These approaches are effective in segmenting free human motions,
but they do not provide a matching between action segments and objects
in the scene. The relation between objects in the scene and actions to per-
form is considered in [147], where object distances are exploited to split
the demonstrated task into action segments. The approach can effectively
generate basic actions with associated objects, but it requires a library of
predefined object-action complexes [152] to reproduce the segmented task
with a real robot.
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In this work, we propose a simple and effective action segmentation
mechanism, which is based on object proximity and explicit human com-
mands. Following the approach by [147], each object in the environment
is associated with a proximity area, i.e., a sphere of radius r around each
object (we set r = 120mm). When the end-effector of the robot enters
or leaves the proximity area of an object, a new segment is generated.
Analogously, when a human command (e.g. open/close gripper) is exe-
cuted a new low-level action is created. The attentional system can then
automatically connect the generated action segments to the task structure
(see Figure 7.2,), while the Robot Manager uses the robot’s trajectories to
learn a motion primitive for each action segment. Human commands are
also included in the task structure, in order to control the gripper when
the robot executes the task. We distinguish between two classes of actions:

• Near-Object-Action (NOA): the action is segmented inside the prox-
imity area of an object. In this case, we exploit Dynamic Movement
Primitives (DMP) [71] to compute a robust approximation of the
observed trajectory in order to accurately reproduce the motion.

• Far-Object-Action (FOA): the action is segmented out of the prox-
imity area of any object. In this case, only the end-point of the
observed trajectory is considered. The action is then reproduced
with a point-to-point motion, generated with a linear dynamical sys-
tem. This way, the robot reaches the proximity area always with the
same pose, and executes NOA actions starting from a state which is
consistent with the demonstration.

The proposed segmentation mechanism allows the system to reproduce
complex actions involving two or more objects. For example, the pouring
action (NOA) illustrated in Figure 7.3 has been trained with high accu-
racy and associated with the pour(water) primitive behavior within the
abstract task of pouring.
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Figure 7.3. Teaching and execution of the pouring action (NOA). In the
teaching phase (left) the user drives the robot near the cup and pour water,
while in the execution phase (right) the robot reproduces the movement.

7.4.2 Task Learning

In this section, we illustrate how the generated segments and motion
primitives are connected to high-level task structures. This process is man-
aged by the attentional system while monitoring the human demonstration.
When a teaching phase starts, we assume that the task to be learned is
already hierarchically decomposed and allocated in the WM. Notice that
multiple tasks and subtasks can be allocated in the WM, hence the system
has to manage conflicting interpretations of the learning task. During the
teaching process, the attentional system has to connect the concrete nodes
in the WM to the segments and motion primitives generated by the RM.
In order to describe this process, we consider the demonstration of a water-
pouring task (see Figure 7.4). This task is hierarchically decomposed in
the take-water and pour-water subtasks (frame t1), which are denoted in
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Figure 7.4. Representation of the WM update during the pouring task.
The system starts from a simple structure for the add(water) task (t1).
During the user demonstration new segments are added to the take-water
subtask (t2) along with their releaser (labels on the arrows). When the
new pour-water subtask is selected (t3) a new FOA is linked with a true
releaser. Here, green and red ovals represent enabled and disabled behaviors
(satisfied and unsatisfied releasers), blue ovals are for accomplished behaviors
(satisfied postconditions), dotted ovals are for abstract behaviors. For each
behavioral node, the values n (m) represent the inverse of emphasis 1/eb (i.e.
the activation period) and magnitude µb (top-down influence) respectively.

the attentional system LTM by the following schemata:

schema(add(Obj),

〈(subtask(take,Obj), hand.free),

(subtask(pour,Obj), Obj.taken)〉,
Obj.used)

schema(subtask(take,Obj), 〈 〉, Obj.taken)

schema(subtask(pour,Obj), 〈 〉, Obj.used)

(7.1)

Here, the pick-and-pour task can be instantiated with different objects
(Obj). The subtask take is enabled when the hand is free (releaser hand.free)
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and associated with the Obj.taken post-condition, while the pour subtask
is enabled when the object is taken (releaser Obj.taken) and related to the
Obj.used post-condition.

In order to be executed, this task has to be allocated in the WM. How-
ever, the two subtasks (pour and take) are not linked to concrete sensori-
motor processes, which are provided by the motion primitives segmented
and learned through the kinesthetic teaching process. Since each subtask
is a concrete WM node, it is associated with an activation level, which
is (bottom-up) affected by the proximity of the objects in the scene (see
equation (2.1)) and (top-down) modulated by the overall tasks allocated
and enabled in the WM. Therefore, during the human demonstration, the
attentional system enhances the activations of the subtasks which are ac-
cessible (i.e. closer to the associated target objects) and task relevant (i.e.
top-down stimulated through the task structure). These activation values
are then used to link the concrete subtasks to the generated segments and
motion primitives, as described in Algorithm 5.

Algorithm 5 Allocation of a new segment in the task hierarchy.
1: while true do
2: if exists a new segment s then
3: get the most emphasized subtask sub from WM
4: add segment s to subtask sub in WM
5: add segment s to subtask sub in LTM
6: if sub is a new and s is FOA then
7: set releaser of s as true
8: else
9: get post-condition p of the previous segment

10: set releaser of s to p
11: end if
12: end if
13: end while

In particular, when a new segment is created by the Robot Manager
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(line 2), all the enabled subtasks of the WM compete to add the segment
as a new child node (line 3). In our framework, this competition is man-
aged by a winner-takes-all approach where the most emphasized subtask
acquires the new segment and the WM is updated accordingly (lines 4,5)
(see also Figure 7.4, frame t2, where the linked segments are indicated by
the dotted line). When a new segment is linked, we have to define its
releaser and post-condition (lines 6-12). The releaser is always enabled
(true) if a FOA segment is added to a subtask with no other child nodes
(lines 6,7). Otherwise, in the case of NOA segments, the execution of the
motion primitives has to be chained, hence the post-conditions of the pre-
vious segment is exploited as the releaser of the current one (lines 9,10).
Notice that the chaining constraint is introduced for segments belonging to
the same subtask and only for the motion primitives annotated by NOA
segments, which require the fixed starting point provided by the previ-
ous segment. On the other hand, if the new subtask starts with a FOA
segment, we can keep it decoupled from the previous subtask, enabling
reusability and flexible execution of the associated subtask. Indeed, at the
execution time, all the enabled segments of the WM compete to acquire
the control of the robotic platform. Hence, multiple independent tasks and
subtasks can be executed in a flexible manner, diverging from the sequence
shown during the demonstration.

The overall method is exemplified in Figure 7.4. Once the user drives
the robot to the bottle and grasp it, the system generates 3 new segments:
foa8(water) when the robot enters the objects area, noa9(water) and
gripper(close) when the bottle is reached and grasped. These segments
are attached to the take-water subtask, which is the only one available
in this context, while the associated enabling conditions are needed to
ensure the sequence of the segments (i.e. noa9 executed after foa8, and
gripper(close) after noa9). Afterwards, when the robot is driven towards
the cup, the novel segment foa10(world) is generated and linked to the
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pour-water subtask which becomes active after the bottle grasping. In
this case, the motion between the bottle and the cup represents a FOA
and the new generated segment is associated with a true releaser (i.e.
always enabled).

7.5 Experiments and Discussions

In this section, we propose some experiments to show that the pro-
posed approach can be effectively applied for i) incremental learning and
execution of structured tasks, ii) execution of learned tasks in cooperation
with the human, and iii) reuse of acquired knowledge in different contexts.
To this end, we consider two typical tasks of a kitchen scenario; namely
prepare coffee and prepare tea. The robot is a KUKA LWR IV+ [22],
equipped with a WSG50 2-fingers gripper. As illustrated in Figure 7.5,
objects are recognized and tracked using markers and a RGB-D camera
(following the approach by [61]). The marker close to the robot base is
used to compute the coordinate transformation between the camera frame
and the robot base. Due to possible marker occlusions during the teaching,
we estimate the robot-camera transformation and the pose of the cup at
the beginning of each experiment and keep them constant during the ex-
ecution. All the other objects, instead, are continuously tracked at 30Hz.
The user initiates a kinesthetic teaching session via the speech command
teach. The teaching session is terminated by the speech command done.
The user can interrupt/restart the execution of a learned task using the
speech commands stop/repeat.

7.5.1 Experiments

Pouring a drink In the first experiment we teach the robot how to pour
water in a cup. The pouring task consists of two subtasks: take-water and
pour-water (see Figure 7.4, t1). The teaching process is simple and intu-
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Figure 7.5. Experimental setup.

itive even for an untrained and inexpert user. The teacher has to simply
guide the robot towards the task execution, providing sparse speech com-
mands (open/close) to control the gripper. In Figure 7.6, we illustrate the
WM state after a one-shot teaching session. At the end of the demonstra-
tion, we can find nine generated primitive actions, which are linked to the
associated subtasks. These new elements are also associated with precon-
ditions, effects, and activation values. As detailed in Algorithm 5, these
generated elements are also stored in the system LTM to be re-used at exe-
cution time. Once learned, the task can be executed. In this situation, the
attentional system first selects the subtask take-water, which is enabled
when the robot has no object in its gripper (hand.free). The segments
linked to the same subtask are executed in the order shown during the
demonstration. For example, in order to perform the take-water subtask,
the robot executes foa1(water), noa2(water) and then gripper(close).

In order to quantitatively evaluate the effectiveness of the proposed
approach, we measured teaching and execution times over ten repetitions
of the task. Moreover, in order to show the robustness of our approach
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Figure 7.6. The WM state after the pouring task demonstration. Nine
generated segments are linked to the associated subtasks.

with respect to the initial conditions, we performed ten repetitions of the
task with the bottle placed at random positions, measuring the success
rate as the number of correct executions over the total executions number.
A trial is considered successful if the robot grasps the bottle and pours
the water within the cup. In this case we obtained a 90% of success rate,
hence one execution failed, with an average teaching time always less then
1 minute.

Coffee Preparation This experiment shows how a complex, structured
task is learned and executed using the proposed framework. We consider
the task of preparing a coffee, in which the robot has to: i) pour the water
in the cup, ii) add the coffee powder, and iii) mix water and coffee powder
with a spoon. Before learning, the WM only contains the three behaviors
add(water), add(coffee) and use(spoon) without any link to motion primi-
tives.The action primitives and segments are automatically added during
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Figure 7.7. The WM before learning how to prepare a coffee. The task
preparecoffee has three child nodes, namely add(water), add(coffee) and
use(spoon). add(water) and add(coffee) can be executed in any order (true
releaser), while use(spoon) requires that both the water and the coffee pow-
der are added. Initially, both subtask(take,water) and subtask(take,coffee)
are enabled, hence they compete for the initial segments.

the kinesthetic teaching and then used to reproduce the task. Note that
the order of execution of add(water) and add(coffee) is not relevant for
task learning and execution, indeed, they are both enabled when the task
starts. In this case, task selection only depends on the attentional regula-
tions. Here, the user can directly teach the overall prepare coffee task and
then execute it, otherwise the task can be step by step demonstrated and
executed (see the prepare tea task in Paragraph 7.5.1). Also in this case we
perform ten repetition of the teaching and execution process. Analogously
to the previous section the success rate is 90%, while the overall teaching
time increase linearly to the complexity of the task and is always less then
3 minutes.

Cooperative Coffee Preparation The proposed framework permits
a cooperative execution of the learned tasks. As a proof of concepts, we
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consider the coffee task described in the previous experiment and two coop-
erative scenarios. In the first case, the human helps the robot to fulfill the
task by adding the water himself. To show the on-line capabilities of the
attentional system, the user intentionally takes the bottle, while the robot
is approaching it, (i.e., while it is executing the foa8(water) action in Fig-
ure 7.8) and pours the water. In this situation, the system has to rapidly
adapt task execution with respect to the human behavior. Since the water
is not anymore available in the scene, the add(water) behavior becomes
less attractive for the robot that starts to execute the add(coffee) (which
is available and enabled in the WM). At the same time, the system can
monitor the human behavior and assign the add(water) execution to the
human. In this setting, for the sake of simplicity, the above assignment is
explicitly communicated by the human through a vocal utterance. Notice,
however, that more complex activity recognition methods can be deployed
for the same purpose [40]. We executed this cooperative task ten times,
obtaining an average execution time lower than 3 minutes. Furthermore,
cooperative executions are faster then non-cooperative by 20 seconds in
average, this emphasize the beneficial of cooperation in term of execution
times with a negligible time needed for the adjustment.

Tea Preparation and Task Reuse In the last experiment, we show
that the acquired knowledge can be re-used to speed-up the acquisition
of novel tasks. We consider the task of preparing a tea, where the robot
has to pour the water in the cup and add a tea bag. The add(water)
behavior is the same behavior used to prepare the coffee and can be re-
used in this novel scenario. In other words, the already learned behavior
can be loaded from the long term memory and instantiated in the working
memory, while the user has only to teach how to add the tea bag. Once
allocated in the WM, all the enabled and linked subtasks (e.g. add(water))
can be executed until the unlinked one (add(tea)) is selected. In this case
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Figure 7.8. Cooperative execution of the prepare coffee task. The user
takes the bottle and pours the water while the robot is approaching the bot-
tle. Indeed, before the human intervention the most emphasized action seg-
ment is foa8(water). When the human performs the action, the robotic task
execution is on-line adapted: the most emphasized action segment becomes
foa1(coffee) and the robot takes the coffee jar. A demonstration is avail-
able at the following link: http://wpage.unina.it/riccardo.caccavale/
media/kin2016.mp4

the robot needs the human demonstration to learn how to complete the
overall task. In order to assess the effectiveness of task re-usage, we run
ten teaching sessions: in five runs the teacher has to demonstrate the
entire task, while in the remaining five runs the operator only teaches the
missing add(tea) behavior. In this scenario, task re-usage is effective and
can reduce the teaching time of about 53%.

7.5.2 Discussions

We presented an approach to structured tasks learning that combines
kinesthetic teaching and attentional supervision. In the proposed frame-
work, a supervisory attentional system continuously monitors the human
and the robot activities during both task execution and task learning. Dur-
ing kinesthetic teaching, the human demonstration is automatically seg-

http://wpage.unina.it/riccardo.caccavale/media/kin2016.mp4
http://wpage.unina.it/riccardo.caccavale/media/kin2016.mp4
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mented into motion primitives, while the attentional system relates them
to the associated task structure exploiting top-down and bottom-up regu-
lations. Specifically, contextual information is used to segment the human
demonstration; each generated segment is associated with a stable dynam-
ical system, which is then linked to a suitable node of an active task. This
approach allows the system to learn how to executed structured task, from
an intuitive, one-shot, user demonstration. In addition, the learned tasks
can be stored in task a repository (the system long term memory) and
then reused in different contexts. Indeed, the attentional system can flexi-
ble orchestrate the execution of the available tasks and subtasks, managing
unexpected user interventions and environmental changes.

The proposed approach has been evaluated considering a robotic ma-
nipulator operating in a kitchen scenario. The experiments suggest that
the proposed framework allows the robot to quickly learn and robustly
execute typical structured activities that combine pick, place, and object
manipulation actions. Moreover, we illustrated how learned tasks/subtasks
can be reused in the context of novel task, in so enabling the acquisition
of incrementally complex capabilities. Once learned, the tasks can be
executed both autonomously or in cooperation with the human. We dis-
cussed the system at work during cooperative task execution showing that
the human can effectively support the robot activity reducing the overall
task execution time.



Chapter 8
Conclusions and Future Works

In this thesis we proposed a novel robotic cognitive control frame-
work that facilitates human-robot cooperation in dynamic environments
supporting flexible task execution, multimodal interaction, learning, and
continuous regulation of sensorimotor processes. The proposed system ex-
ploits cognitive control and executive attention to conciliate the execution
of structured complex tasks with natural and flexible human-robot inter-
action. In this context, the overall execution is managed by top-down and
bottom-up attentional mechanisms, while high level processes like plans,
high-level commands, dialogue policy, etc. are used as a top-down atten-
tional guidance that stimulates the system towards task accomplishment.
This way, multiple hierarchical tasks can be flexibly orchestrated combin-
ing goal-oriented, reactive, and interactive behaviors.

8.1 Summary of Results

We proposed a robotic cognitive control framework for the execution of
structured complex tasks with natural and flexible human-robot interac-
tion [36, 42]. In this context, the overall execution is managed by top-down
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and bottom-up attentional mechanisms, while a hierarchical plan is used
as a top-down attentional guidance that stimulates the system towards
task accomplishment. This way, multiple hierarchical tasks can be flexi-
bly orchestrated combining goal-oriented, reactive, and interactive behav-
iors. As far as the interaction with the human is concerned, the proposed
attention-based control provides several interesting features: attentional
human monitoring; flexible and interactive execution of complex plans;
attentional manipulation (a human can influence the robotic behavior by
orienting its attentional state).

We discussed the proposed approach in a simulated robotic scenario
considering different case studies. We first illustrated that the system can
effectively orchestrate multiple tasks in a flexible manner, then we tested
the efficacy of an attentional manipulation guidance during the execution
of multiple structured tasks. In this context, we assessed both the users’
performance and their experience through questionnaires. The collected
results suggest that the proposed system not only permits flexible and in-
teractive execution of multiple tasks, but also enhances the naturalness of
the user interaction. This assessment encourages us to test the system in
real environments considering more complex cooperative tasks and long
term interactions with real robots. In particular, we would like to inves-
tigate the effectiveness of the proposed interaction framework considering
multimodal interaction scenarios, where utterance, gaze direction, physical
interaction, body postures are involved. In this setting, more sophisticated
attentional regulation mechanisms (see e.g. [31]) can be introduced and
assessed considering also visual attention, joint attention, and human in-
tention recognition.

Following this perspective, we introduced a further scenario [35, 41]
where multiple plans are to be adapted with respect to the human behavior
and the environmental changes. We described and discussed the proposed
system in a human-robot co-working scenario considering both simulated
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and real-world experiments. In these contexts, we illustrated how plan
guidance and attentional regulation allow us to solve decisional impasses
and reduce replanning episodes while driving the system towards task and
plan accomplishment.

Moreover, we proposed an approach where a dialogue manager is also
involved [39, 40]. In this context, the human-robot dialogue policy can
be interpreted as a cognitive process that affects the overall attentional
system. We assessed the system performance considering both task and
communication ambiguities. The empirical results show that this inte-
grated system is effective and can be exploited to further support the
human-robot cooperation during the execution of shared structured plans.

We also deployed the proposed framework to design an attentive user
interface suitable for monitoring the activities of multiple drones involved
in search and rescue missions in the Alps [33]. The interface has been
designed for an operator, involved in the rescue mission, that can interact
with the drones exploiting different modalities. The attentive interface is
managed by a supervisory attentional system that regulates contentions
among multiple bottom-up stimuli depending on the active tasks and the
human constraints. We described the overall system architecture along
with the associated adaptive mechanisms. The interface has been assessed
in a simulated case study by comparing user performance gathered with
or without the adaptive interface. The collected results show that despite
a significant reduction of the information provided to the user, the overall
performance is not degraded, but slightly improved; this supports the hy-
pothesis that the proposed framework is effective in filtering and selecting
information relevant to the user.

Finally we reported on preliminary works exploiting the proposed sys-
tem, along with its attentional regulations, in the context of task learning
and refinement starting from human demonstrations. In this context we
integrated kinesthetic teaching [43] with the attentional mechanisms. This
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framework continuously monitors the human and the robot activities dur-
ing both task execution and task learning. During kinesthetic teaching, the
human demonstration is automatically segmented into motion primitives,
while the attentional system relates them to the associated task structure
exploiting top-down and bottom-up regulations. Specifically, contextual
information is used to segment the human demonstration; each generated
segment is associated with a stable dynamical system, which is then linked
to a suitable node of an active task. This approach allows the system to
learn how to executed structured task, from an intuitive, one-shot, user
demonstration. In addition, the learned tasks can be stored in a reposi-
tory (the system long term memory) and then reused in different contexts.
Indeed, the attentional system can flexibly orchestrate the execution of the
available tasks and subtasks, managing unexpected user interventions and
environmental changes.

8.2 Future Works

Different lines of future work can be defined. First of all, the frame-
work can be applied to more complex real robotic scenarios, involving
complex actuators and perceptual systems. In this case the perception of
the human environment can be directly integrated in the control of the
robot allowing more flexible and reactive motions, complex task execution
and natural human-robot interaction. In particular, it is interesting to
integrate additional vision, auditory and haptic attentional mechanisms.
Indeed, joint-attention, object-based attention, visio-haptic attention are
very relevant in human-robot interaction. For instance, joint attention
and visio-haptic attention are involved during object manipulation and
handover, while selective auditory attention is relevant during multimodal
interaction. Moreover, more focused user studies in the context of human-
robot interaction can be proposed, along with additional tests in realistic
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cooperative scenarios considering long-term autonomy settings. Another
possible field of future research is the integration of the attentional regula-
tions in problem solving and planning processes. The aim in this context
is to adapt the reasoning process to the environmental changes, while the
bottom-up and top-down stimulations can affect and drive the planning
process in order to generate context related plans or to repair a misaligned
plan. We started to address these topics in [41], but additional mechanisms
should be considered and investigated.

Further works can be carried out in the context of task learning and
adaptation. In this thesis, we started to investigate these issues in a
learning-by-demonstration framework. The collected results encourage us
to explore more complex attentional mechanisms supporting the learning
process. In this regard, additional users studies can be proposed to asses
the naturalness and the easiness of the teaching. Furthermore, other prob-
lems can be addressed. For instance, if we consider the force feedback
provided by the human during kinesthetic teaching, we may explore how
capabilities like drilling, pushing, cutting, can be demonstrated and trans-
ferred to the robotic system. Another interesting direction of research is
the deployment of kinesthetic teaching for dual-arm manipulation. Ad-
ditional challenging issues arise in this case, like arms synchronization,
divided attention and the execution of more complex task structures.

We are also interested in on-line learning attentional regulation strate-
gies from the human demonstration. In this perspective, a preliminary
work has been presented in [37] where the regulations are refined following
a neural-network approach based on error back-propagation. Our initial re-
sults suggest that this approach enables an effective interactive refinement
of emphasis regulations for task monitoring and execution, but further ex-
periments should be carried on considering several conflicting tasks to be
learned and executed.
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