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Abstract

Complex phenomena such as stick-slip vibrations, chaos and self-organized dynamics are

frequently encountered in several mechanical systems with friction. Some applications in-

clude control of robot manipulators, distribution of earthquakes, suspension dynamics in

vehicles, among others. These systems are strongly nonlinear. Spring-mass oscillators with

friction have emerged as a simple jet effective model capturing the dynamics of much more

complex system. In this dissertation, we study stability and dynamics of single and cou-

pled mechanical oscillators with friction, mathematically described by differential equations

with discontinuous right-hand sides. One particular problem in discontinuous systems is

the computation of the basins of attraction of their stable equilibria or other attractors ;

for example, they provide important information about complex behavior caused by fric-

tion or damping, useful in the design of mechanical devices. To cope with this problem,

we implemented an algorithm for the computation of basins of attraction in discontinuous

systems based on the Simple Cell Mapping method, which has been evaluated via a set of

representative applications. In the second part of the thesis, a piecewise smooth analysis

of two coupled oscillators was carried out, finding out some conditions that guarantee the

stability of the sliding dynamics in the presence of one or more intersecting surfaces. Finally,

the dynamics of a network of N mechanical oscillators was studied from the point of view

of synchronization, where the goal was to steer the positions and velocities of each oscillator

in the network towards a common behavior. In particular, an extensive numerical analysis

for studying synchronization in chaotic friction oscillators was performed, characterizing the

influence of dynamic coupling and providing an estimation of the synchronization region in

terms of the coupling parameters. Initially, we considered the simple case of two coupled

oscillators, then we extended the analysis to the case of larger networks of coupled systems

with different network topologies. Moreover, preliminary analytical results of the conver-

gence on a network of N friction oscillators based on contraction analysis are investigated.

The results were also validated through a representative example.



CHAPTER 1

Introduction

Switching dynamics arise in wide-ranging applications, relays in electronic circuits [90], fric-

tion in mechanical systems [76], biochemical valves in biological systems [84]. Stick-slip

vibrations excited by friction are a common phenomenon underlying the behavior of several

mechanical systems, for example in drill-string systems [61, 73], electromechanical systems

[90], earthquake models [39, 40], and many more. These vibrations are typically harmful

and undesirable, especially in extreme cases when they can result in the destruction of the

vibrating object. In contrast, there are situations in which one wants high friction as in

clutches and brakes.

These classical examples have been studied within the theory of piecewise smooth systems

PWS, where the smooth evolutions are modeled by sets of differential equations while thresh-

olds and abrupt changes are modeled as discontinuity surfaces [24, 37]. The solutions of such

PWS systems are understood in the sense of Filippov [37], who suggested to replace the PWS

system with a suitable differential inclusion. The resulting method is known as Filippov con-

vexification.

The computation of the basins of attraction of Filippov systems is a very relevant problem in

applications; for example, it provides useful information about complex behavior caused by

friction impacts or damping, in the design of mechanical devices [71, 70, 100]. In the context

of control theory, the problem of computing basins of attraction (or regions of asymptotic

stability) in such systems is often addressed by Lyapunov methods, where regions of attrac-

tion are estimated as sublevel sets of a given Lyapunov function; see e.g. [23, 46]. However,

Lyapunov methods provide conservative results meaning that the computed region is smaller
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than the exact basin of attraction.

Cell mapping methods (CM) provide a computationally efficient way to analyze the long term

behavior of dynamical systems [47]. Their key characteristic is the approximation of the con-

tinuous state space via a discrete array of cells known as cell-state space. Then, a cell-to-cell

map is created by performing short-time integrations, from the center of each cell, to the

cell which contains the endpoint of the trajectory. The first cell mapping method presented

in the literature is the Simple Cell Mapping (SCM) [47], which has been the basis for many

cell mapping methods developed in the following years [95, 87]. Some modifications to cell

mapping methods allow the computation of basins in discontinuous systems. In [96] a numer-

ical study of an impact-friction oscillator is performed via interpolated cell mapping (ICM),

where an event divergent cell is included in order to detect the grazing boundary. Other cell

mapping techniques consider the switching surface, i.e. the manifold where the vector field

is not differentiable, as the Poincaré mapping surface for computing basins of periodic orbits

[94, 12, 42]. Basins of attractions of mechanical systems have also been computed via cell

mapping applications by using discrete maps instead of direct numerical integrations [71, 43].

Fewer results using cell mapping methods have been reported in discontinuous systems with

sliding solutions, mainly due to the fact that standard integration routines are inaccurate or

inefficient, or both, in the region where discontinuities in the derivatives occur. For example,

a possible source of numerical problems is the presence of small oscillations around the dis-

continuity boundary (numerical chattering) that may arise during sliding. A disadvantage

of existing algorithms based on cell-to-cell mapping is the fact that the region of interest is

pre-defined by the user which implies that extra computations are required if it is desired

to explore a different region of state space. Parallel processing capabilities of modern archi-

tectures have also been exploited, in the case of smooth and high order systems to consider

different cell dimensions and several refinement stages within cell mapping methods [59, 9].

However these techniques have not been extended, as far as we are aware, for discontinuous

systems.

Another interesting problem is to understand the dynamics of systems with multiple switches.

In the case of a single discontinuity manifold of co-dimension 1, Filippov methodology has

provided a widely accepted mathematical framework to understand the dynamics on the

discontinuity surface [24, 18]. However when, we consider high order discontinuity surfaces
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an ambiguity arises in the construction of the sliding vector field. This problem has been ex-

tensively studied see for example [50, 30, 28]. In the case of Filippov systems of co-dimension

2, there exist in the literature two systematic proposal to avoid the ambiguity in the Filip-

pov convex method, they are the bilinear combination [1] and a recent approach called the

moments method [29]. A nonlinear formulation to construct the sliding vector field called

the Hidden dynamics has been presented in [51]. This formulation has shown to be effective

in modeling real mechanical phenomena like stiction, not captured by applying Filippov’s

method [52, 53, 54]. In [75] the authors investigate how the regularization of the discontin-

uous systems can be extended to the nonlinear sliding vector fields, while in [54] and [53]

the authors perform an analysis of bifurcation of the hidden dynamics and also illustrate the

strange effects induced by the nonlinear dynamics.

Switching systems have also been studied from the point of view of synchronization, where the

goal is that all states of each agent in the network, converge towards each other. Examples of

networks of piecewise dynamical systems can be found in biochemical reactions [88], power

grids [32] and arrays of mechanical oscillators with friction [93]. It is therefore of great

importance to derive conditions to guarantee synchronization in networks of discontinuous

systems. Currently, most of the literature focuses on networks with switching topologies

[101, 80]. The problem of considering networks in which each agent is described by piecewise

system is challenging and some preliminary results have been proposed in the literature

[20, 82, 78, 64].

The aim of this thesis is to study the dynamics of systems with discontinuous vector fields,

taking as an example the case of coupled friction oscillators. Indeed, mechanical systems

with friction constitute an important example of discontinuous systems and therefore they

are used as key applications throughout this thesis. To deal with the problem of computing

basins of attraction we extend the cell mapping method for computing basins of attraction in

systems with sliding. Moreover, we exploit the hidden dynamics approach [51] for modeling

stiction friction in two coupled friction oscillators. Finally, the synchronization in networks

of mechanical oscillators with friction is analyzed via extensive numerical simulations.

1.0.1 Thesis outline

Chapter 2 introduces linear and nonlinear sliding Filippov solutions, together with the

method of regularization of PWS dynamical systems. We also explain the basic concepts

of contraction theory for smooth systems and a extension to the case of bimodal Filippov

systems. Finally, we provide a brief introduction of the synchronization problem in coupled
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networks with diffusive coupling.

Chapter 3 introduces a numerical tool for computing basins of attraction in Filippov systems.

An extension of the simple cell mapping algorithm for planar Filippov systems is presented,

detailing how the grid is selected and describing the numerical integration method used for

dealing with sliding motions. The effectiveness of the algorithm is shown by computing the

basins of attraction of a sliding control problem and a mechanical system with dry friction.

In Chapter 4, a piecewise smooth analysis of two coupled mechanical oscillators subjected

to dry friction is addressed. We make use of nonlinear sliding vector fields to model stic-

tion friction force in systems with two discontinuity surfaces. This analysis provide a full

characterization of the nonlinear siding dynamics of co-dimension 1 and higher order sliding

modes, and more importantly the ambiguity in selecting the nonlinear sliding vector field in

the co-dimension 2 surface is resolved by using the regularization approach.

In Chapter 5 we study the synchronization phenomena in networks of mechanical systems

with friction coupled dynamically through different topologies. The effect of regularization

in the synchronization of networks of friction oscillators is discussed. Preliminary results of

the convergence of a network of N friction oscillators along with an example validating the

obtained results are presented. The conclusions are drawn in Chapter 6.

The results of Chapter 3 were obtained in collaboration with Dr. Martin Homer (Department

of Engineering Mathematics,University of Bristol, Uk) and Dr. Petri Piiroinen (School of

Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway,

Ireland) and were partially presented in [15] and are extended in [34]. The results in Chap-

ters 4 have been developed together with Prof. Martin Homer and Emmanuel Lorenzano

(University of Bologona) and will be reported in [35] (in preparation).



CHAPTER 2

Preliminaries and Background

We provide some the definitions of important classes of dynamical systems that will be

analyzed in the thesis.

2.1 Piecewise systems

Following [24] p.73, we define a piecewise smooth dynamical system as follows.

Definition 2.1.1. A dynamical system ẋ = f(t, x), with f : [t0,+∞)×D 7→ Rn, is called a

piecewise smooth dynamical system (PWS) when it is defined by a set of ODEs

ẋ = fi(t, x), x ∈ Ri, i = 1, . . . , n. (2-1)

where ∪iRi = D ⊂ Rn and each Ri has non-empty interior. The intersection Σij = R̄i ∩ R̄j

is either an Rn−1-dimensional manifold included in the boundaries ∂Rj and ∂Ri, or is the

empty set. Each vector field fi is smooth in both the state x and the time t for any x ∈ Ri.

Furthermore, each fi(t, x) is continuously extended on the boundary ∂Ri.

Piecewise smooth dynamical systems can exhibit complex behaviors that do not appear in

smooth systems, [24, 55, 11, 91]. A notable example is that of sliding mode solutions in

which the evolution of the PWS dynamical system belongs to the zero-set of a scalar func-

tion h(x) : Rn 7→ R (the so-called Filippov systems, see e.g. [37, 90]).

Two approaches exist in literature for the description of the dynamics at the discontinuity

boundary. These are Utkin equivalent control method [90] and Filippov convex method

[37]. In this section, we provide a general definition of sliding dynamics for multimodal

systems (i.e. PWS systems with i = 1, . . . , r switching surfaces). The following definition is
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closely related to the equivalent control method [90]. Notice that continuously differentiable

dynamical systems are also piecewise smooth systems, however in this thesis we consider

discontinuous dynamical systems.

2.1.1 Bimodal piecewise smooth systems

A brief characterization of bimodal piecewise systems is given below. We assume that the

state space consists of two regions R1 ⊂ Rn and R2 ⊂ Rn separated by a discontinuity surface

Σ defined as a zero set of a smooth scalar function h(x) : Rn 7→ R. A bimodal piecewise

smooth system is then described as

ẋ = f(x, s1) =

{
f1(x)

f2(x)

for

for

x ∈ R1,

x ∈ R2,
(2-2)

where f1(x) : Rn 7→ Rn and f2(x) : Rn 7→ Rn are smooth vector fields. The regions R1, R2

and the switching manifold Σ are expressed by

R1 = {x ∈ Rn : h(x) > 0}, R2 = {x ∈ Rn : h(x) < 0}, (2-3)

Σ = {x ∈ Rn : h(x) = 0.} (2-4)

If the vector fields f1 and f2 both point towards the switching manifold Σ at any given point,

the dynamics are locally constrained to the surface h(x), and the motion on Σ is said to be

sliding. The open subset Σ̂ ⊂ Σ where the vector fields are both pointing towards Σ is often

referred to as the sliding surface, which is attractive if

Lf1−f2(h)(x) < 0, x ∈ Σ̂, (2-5)

and repelling if

Lf1−f2(h)(x) > 0, x ∈ Σ̂. (2-6)

Here, Lfh(x) := ∇h(x) · f(x) is the Lie derivative of h(x) with respect to the vector field

f . According to Definition 2.1.2, the dynamical system (2-2) can be extended to include the

vector field on the sliding surface such that

ẋ = fΣ(x), x ∈ Σ̂, (2-7)

where

fΣ(x) =
f1(x) + f2(x)

2
+
f1(x)− f2(x)

2
s1(x), (2-8)
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and −1 ≤ s1(x) ≤ 1. Since the motion is constrained to Σ̂, fΣ must be tangent to Σ̂, i.e.

LfΣ
(h)(x) = 0, which yields

s1(x) = −Lf1+f2(h)(x)

Lf1−f2(h)(x)
. (2-9)

We can now define the sliding surface as

Σ̂ = {x ∈ Σ : |s1(x)| < 1} , (2-10)

with boundaries

∂Σ+ = {x ∈ Σ : s1(x) = 1} , ∂Σ− = {x ∈ Σ : s1(x) = −1} . (2-11)

From the geometric point of view, the procedure of finding the sliding equations consist in

to direct the velocity vector in the system state space along the discontinuity surface or the

intersection of discontinuity surfaces in multimodal systems, as shown in Figure 2-1.

Locus of ( , )f x s

( , )f x s −

( , )f x s +

Σ

•x s

Figure 2-1: Sliding vector field, for a given a point x on the switching surface, with vector

fields f(x, s+), f(x, s−) pointing to that point.

2.1.2 Multimodal piecewise smooth systems

Definition 2.1.2. Consider the multimodal piecewise smooth dynamical system

ẋ = f(x, s(h)), si = sgn(hi(x)), (2-12)

for some i = 1, 2, . . . , r, where f is a vector field with smooth dependence on the variables

x = (x1, x2, . . . , xn), s = (s1, s2, . . . , sr) is a vector of switching parameters and h(x) =

(h1(x), h2(x), . . . , hr(x)) is a vector of the scalar functions. Then if there exist some s∗ ∈
[−1,+1] that solves {

~0n = Dh(x) · f(x, s∗)
~0r = h(x),

(2-13)
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with Dh(x) = ∂h
∂x

, then the system

ẋ = fΣ(x) = f(x, s∗), (2-14)

defines the sliding modes of (2-12). Moreover, if f(x, s) depends linearly on s, we call these

linear sliding modes, while if s is nonlinear, they are nonlinear sliding modes.

For later use, we adopt the notation f2 and f1 to simply denote the set of points for which

we have h(x) < 0 and h(x) > 0, respectively.

2.2 Hidden dynamics

The term hidden dynamics introduced in [51], refers to what happens on Σ, specifically to

behaviors governed by nonlinear set-valued terms (i.e. terms with a nonlinear dependence of

s) that disappear outside the switching manifold Σ hence they are hidden in (2-2). In partic-

ular, in [51] it was shown that the use of nonlinear set-valued dynamics on the discontinuity

surface h(x) = 0, introduces multiple sliding modes, extending the sliding surface over the

crossing regions. Considering the bimodal PWS systems (2-2), the sliding equations under

the hidden dynamics approach reads

ẋ = fnlΣ =
1

2
[1 + s1] f1(x) +

1

2
[1− s1] f2(x) +G(s1)γ(s1), for x ∈ Σ. (2-15)

where G(s1) is any nonlinear function in s1 and γ(s1) satisfies

γ(s1) ∈
{

0

[0, 1]

if

if

|s1| = 1

|s1| < 1
. (2-16)

Some examples of γ(s1) that satisfy (2-16) are (1− s1
2), sin(1− s1

2), or 1− s1
2l for any nat-

ural number l. Clearly, according to the Definition 2.1.2, equation (2-15) provides multiple

solutions for s∗1, and each one defines a different sliding mode on h(x) = 0. To determine if

such dynamics are attractive or repellent, we can check whether the trajectories outside of

h(x) converge toward the sliding surface or not. This can be evaluated through the following

relation

z(x, s1) :=
∂

∂s1

(f(x, s1) · ∇h(x)) < 0 (2-17)

where (2-15) is attracting if z(x, s) is negative, and repelling if z(x, s) is positive. Places

where there exists solutions to (2-13) define regions where the vector field f is tangent to Σ
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for one or more values of s∗1, allowing the flow slides along Σ, as shown in Figure 2-2. The

nonlinear sliding region is given by

Σ̂nl =
{
x ∈ Σ : f(x, s1) · ∇h(x) 6= ~0

}
. (2-18)

Places where (2-13) has no solutions define the nonlinear crossing regions,

Σnc =
{
x ∈ Σ : f(x, s1) · ∇h(x) = ~0

}
. (2-19)

such that, Σ = Σ̂nl ∪ Σnc.

Σ

•x

Locus of

1 1( , )f x s

2 1( , )f x s

1
+s

1
++s

1
+++s

1( , )f x s

(a)

Σ

•x

2 1( , )f x s

1
+s1

++s

1 1( , )f x s

(b)

Figure 2-2: Nonlinear sliding dynamics. Panel (a) illustrates multiple sliding modes

f(x, s+
1 ), f(x, s+

1 +) and f(x, s+
1 +), provided by a cubic polynomial function in

s1. ”Forced” sliding dynamics along a crossing region is shown in panel (b).

2.2.1 Regularization of PWS systems: slow-fast analysis

One way of studying the sliding dynamics equations is to model the discontinuity as the

limit of a boundary layer i.e. |h(x)| ≤ ε, with ε > 0 being a small parameter. In [85, 65]

it has been shown that the dynamics of (2-7) persist when the discontinuity is regularized

by a class of transition functions Φ : R 7→ R. Recently, in [75] regularization analysis was

extended to nonlinear sliding modes, specially the authors show that the regularization of

the nonlinear sliding dynamics (2-15) also exhibits slow invariant dynamics that recovers the

dynamics of the discontinuous system (2-8).

In this section, we introduce the regularization of PWS (2-2) via the slow-fast systems [60].

Let us consider the regularized version of (2-2),

ẋ = f(x, s(h(x)/ε)). (2-20)
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By setting z = h(x)/ε the system (2-20) becomes

ẋ = f(x, s(z))

εż = ∇h(x)T · f(x, s(z)),
(2-21)

where the variable z is called the fast variable while x is said to be the slow variable. System

(2-21) is called slow-system since it is expressed in terms of the derivative of slow times scale
.

() = d/dt. Now if we denote the derivative with respect to the fast time scale as ()′ = d/dτ

where τ = t/ε, we get the fast system

x′ = εf(x, s(z))

z′ = f(x, s(z)) · ∇h(x).
(2-22)

To determine the stability of system (2-21)-(2-22) we need to study the limiting dynamics

of the slow-fast system, in doing so, by setting ε = 0, the limiting dynamics are given by

ẋ = f(x, s(z))

0 = f(x, s(z)) · ∇h(x),
(2-23)

known as the reduced model while

x′ = 0

z′ = f(x, s(z)) · ∇h(x)
(2-24)

is known as the boundary layer model. The set C = {(x, z) : ∇h(x) · f(x, s(z)) = 0} is called

the critical manifold, and its elements are in one-to-one correspondence with the equilibrium

points of the boundary layer model (2-24). These equilibrium points are normally hyperbolic

if
d

ds
(∇h(x) · f(x, s)) 6= 0 (2-25)

Notice that, the boundary layer model coincides with the sliding dynamics (2-13) for r = 1.

We conclude this section with an example contrasting the linear and nonlinear sliding modes.

2.2.1.1 Example

Let us consider the second order system

ẋ1 = x2 − 1

ẋ2 = −s1 − 2πs1(1− s2
1)− x1 − 0.3(x2 − 1)

(2-26)

where s1 = sgn(x2). In terms of the quantities (2-16), we have G(s1) = 2πs1 and γ(s1) =

(1 − s2). In the linear sliding model, we ignore the term 1 − s2 and thus we consider

fΣ ∈ [−1,+1] on x2 = 0. By using the Definition (2-8), the linear sliding equations read

ẋ1 = −x1

ẋ2 = 0
(2-27)
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with the sliding region defined by −0.7 < x2 < 1.3. The time response and phase portrait

are shown in Figure 2-4 (a) and Figure 2-4 (c), respectively. By considering the nonlinear

sliding model (2-26), we have a larger sliding region defined by −2.7 < x2 < 3.3, as shown in

Figure 2-4 (b) and Figure 2-4 (d). Specifically, regarding the regularized system of (2-26)

with z = x2ε
−1 we have

ẋ1 = εz − 1

εż = −s1(z)− 2πs1(z)(1− s1(z)2)− x1 − 0.3(εz − 1)
(2-28)

where x1 and z are the slow and fast variables. The critical manifold C1 is obtained by

setting ε = 0 in this formulation,

C1 = {(x, y) ∈ R× R : −s1(z)− 2πs1(z)(1− s1(z)2)− x1 + 0.3 = 0} (2-29)

In Figure (2-3) we see that the critical manifold has an attractive branch for −2.7 < x2 <

3.3 (black curve) and thus once a trajectory solution reaches C1 it evolves there, until it

loses hyperbolicity near −2.7. The repelling branches correspond to −2.7 < x2 < −1 and

1 < x2 < 3.3.

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

x1: -2.7
x2: 0.647





2ε

1x

2x

1

Figure 2-3: Critical manifold C1 (blue curve) of system (2-28). The slow flow is indicated

by the black arrows on C1 while the arrows outside the critical manifold rep-

resent the fast dynamics. The boundary layer |x2| < ε is indicated by the

dash-line.
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Specifically, the sliding region follows from

d

ds1

[
3x1 − 5s1 + 10πs1(1− s2

1)
]
< 0 (2-30)

then,

s2
1 <

1 + 2π

6π
(2-31)

− 0.64 < s1 < 0.64. (2-32)

Now, by replacing the value of s1 in (2-29) we obtain an attracting invariant region between

−2.7 < x2 < 3.3. This is confirmed by numerical simulations shown in Figure 2-4.
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Figure 2-4: Numerical simulations of (2-26) regarding linear sliding modes. By setting

(1− s1)2 = 0: (a) time evolution and (c) phase portrait. Smoothed nonlinear

sliding model panels (b) and (d) corresponding to a boundary layer |x2| < 10−6

show the nonlinear sliding modes. In the panel (d) we zoom the boundary layer,

showing a trajectory evolving on the critical manifold. The trajectory solution

starts with initial condition (x1, x2) = (1, 2.4).
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2.3 Tools for studying convergence in discontinuous

systems

In this Section we introduce the basic results on contraction analysis for nonlinear systems

[66] and a extension of contraction analysis for switching systems [38].

Table 2-1: Standard Matrix measures

Vector Norm, | · | Induce Matrix Norm ‖ · ‖ Matrix Measure µ( · )

|x|1 =
∑n

i=1 |xi| ‖A‖i1 = max
j

∑n
i=1 |aij| µ1(A) = max

j

[
ajj +

∑
i=j |aij|

]
|x|2 =

(∑n
i=1 |xi|

2
)1/2

‖A‖i2 =
[
λmax(ATA)

]1/2
µ2(A) = λmax

AT +A
2

|x|∞ = max
1<i<n

|xi| ‖A‖i∞ = max
i

∑n
j=1 |aij| µ∞(A) = max

i

[
aii +

∑
j=i |aij|

]

2.3.1 Basic contraction analysis

Contraction analysis is a powerful and systematic tool for proving exponential convergence

in dynamical systems. The basic idea can be traced back at least to work of D.C. Lewis see

[63, 44]. In control theory, the work of Lohmiller and Slotine [66] has gain much attention,

and some developments to study observer problems, nonlinear regulation and synchroniza-

tion have been reported in the literature, [21, 67, 22].

We consider a generic n-dimensional deterministic dynamical systems of the form

ẋ = f(t, x), x(t0) = x0. (2-33)

where the vector field f : R+×Rn → Rn is assumed to be smooth. We denote φ(t− t0, t0, x0)

the value of the solution x. We say that a set C ⊂ R is a forward invariant set for the system

(2-33), if for every t ≥ 0, x(t0) = x0 ∈ C implies φ(t− t0, t0) ∈ C for all t ≥ t0.

The idea is to characterize within some metric the distance between any two arbitrary

solutions of the system. We refer to this property as incremental stability.

Definition 2.3.1. [57] A scalar continuous function α(r) defined for r ∈ [a, 0) is said to

belong to a class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞
if it is defined for all r ≥ 0 and

lim
r→∞

α(r) =∞
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Definition 2.3.2. [3] System (2-33) is said to be Incrementally Asymptotically Stable (δ

AS) in a forward invariant set C ⊂ Rn if there exist a class KL function βs such that for

any x0, y0 ∈ C and t0 ≥ 0 any two trajectories, x(t) and y(t) verify

|x(t)− y(t)| ≤ β (|x0 − y0| , t− t0) (2-34)

Moreover, if there exist real numbers c > 0; K ≥ 1 such that for all t ≥ 0

|x(t)− y(t)| ≤ K |x0 − y0| e−c(t−t0). (2-35)

We say the system (2-33) is Incrementally Exponentially Stable (δES).

Due to the function f(t, x) is continuously differentiable, from the differential analysis we

have the exact relation
˙δx =

∂f

∂x
(x)δx. (2-36)

where δx is an infinitesimal displacement between two trajectories. Formally, equation (2-

36) is known as the variational equation of the system (2-33).

Consider now two trajectories of (2-33) and the displacement δx between them. The distance

between these two trajectories can be characterized by any norm given in Table 2-1. In

particular, by choosing the Euclidean distance between these two trajectories i.e., δxT δx,

the rate of change of the squared norm derived from (2-36) is

d

dt
(δxT δx) = 2δxT ˙δx = 2δxT

∂f

∂x
(t, x)δx. (2-37)

Denoting λmax(t, x) the largest eigenvalue of the symmetric part of the Jacobian ∂f
∂x

(t, x) we

have:
d
dt

(δxT δx) = 2δxT ∂f
∂x
δx = 2δxT

(
∂f
∂x

T
+ ∂f

∂x

)
δx

≤ 2λmax(t, x)δxT δx
(2-38)

and hence,

δxT δx ≤ δx0
T δx0e

t∫
t0

λmax(t,x)dτ

. (2-39)

Now, if we assume that λmax is uniformly negative definite, i.e. ∃c > 0,∀x,∀t ≥ 0, λmax(t, x) <

−c , then from (2-39) any infinitesimal length converges exponentially to zero, at a rate c,

this in turn implies that any two trajectories of the system (2-33) converge to each other at

an exponential rate. Formally, according to the matrix measures given in Table 2-1 we have

the following definition [25].
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Definition 2.3.3. System (2-33) is said to be infinitesimally contracting on a set C ∈ Rn if

there exits a norm in C, with associated matrix measure µ(.), such that, for some constant

c > 0 (termed as contraction rate), it holds that:

µ

(
∂f

∂x
(t, x)

)
≤ −c ∀x ∈ C. (2-40)

2.3.2 Generalized contraction

The definition 2.3.3 provides a sufficient condition to show the contractivity of the system

(2-33). A more general result can be obtained by using a general definition of length, in

particular by expressing the vector δx in terms of the coordinate transformation

δz = Θ(t, x)δx (2-41)

with Θ(t, x) being a squared uniformly invertible matrix. Therefore, the variational equation

of the system (2-33) in terms of δz-coordinates becomes

δ̇z = F(t, x)δz (2-42)

where F is termed as generalized Jacobian and is given by

F =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1 (2-43)

Again, the distance between trajectories of the (2-48) and the generalized distance δz can

also be characterized in terms of the measure matrices. Here, we consider the generalization

of the squared length in terms of δz:

δzT δz = δxTM(t, x)δx (2-44)

where the matrix M(t, x) = ΘTΘ is continuously differentiable and formally defines a Rie-

mann space [68]. The rate of change of the squared length in terms of the new coordinates

can be written as

d

dt

(
δzT δz

)
= 2δzT δ̇z = 2δzT

(
Θ̇ + Θ

∂f

∂x

)
Θ−1δz (2-45)

or equivalently

d
dt

(
δxTMδx

)
= ˙δx

T
Mδx+ δxT (Ṁδx+M ˙δx)

= δxT ∂f
∂x

T
Mδx+ δxTṀδx+ δxTM ∂f

∂x
δx)

= δxT
(
∂f
∂x

T
M + Ṁ +M ∂f

∂x

)
δx

(2-46)
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Therefore, if F is uniformly negative definite, then δzT δz exponentially converges to zero,

implying in turn that δxT δx exponentially converges to zero. This motivates the following

definition.

Definition 2.3.4. The system ẋ = f(x, t), is infinitesimal contractive in a region C ∈ Rn,

if there exits a norm in C, with associated matrix measured µ(.), an invertible matrix Θ(t, x)

and strictly positive constant βM such that

µ

(
Θ̇Θ−1 + Θ

∂f

∂x
(x)Θ−1

)
≤ −βM , ∀x ∈ C. (2-47)

In general, the set-valued matrix Θ(t, x) depends on the system dynamics, and it is still an

open problem to find a general methodology to obtain it. A methodology for polynomial

nonlinear systems based on sum-of-squares optimization and euclidean metrics has been

proposed in [6]. In [83], the authors introduced a graphical method for checking or imposing

contraction using matrix norms. In this method a constant matrix Θ is constructed by

setting some conditions on the elements of the Jacobian matrix ∂f
∂x

that guarantees that the

given system is contracting.

2.3.3 Partial contraction

A powerful extension of contraction theory to study synchronization of a network of agents

is the concept of partial contraction firstly introduced in [97], further references can be found

[25, 56]. This is based on the use of some auxiliary system or virtual system whose particular

solutions are the solutions of each node in the network. Then if the virtual system is proved

to be contracting then all trajectories of the nodes in the network converge exponentially to

each other. The basic result of partial contraction can be state as follows (see [56] for the

relative proof).

Theorem 2.3.1. Consider a nonlinear system of the form

ẋ = f(x, x, t) (2-48)

and assume that the auxiliary system

ẏ = f(y, x, t) (2-49)

is contracting with respect to y. If a particular solution of the auxiliary system (2-49) is a

solution of (2-48), then all trajectories of the system (2-48) verify this property exponentially.

The original system is said to be partially contracting
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2.3.4 Contraction analysis for switching systems

There are a few results on the incremental stability of piecewise smooth systems; notably for

piecewise affine (PWA) systems and piecewise smooth continuous (PWSC) systems. In this

section, we introduce a contraction analysis of switched systems via regularization, originally

proposed in [38]. First of all, we introduce some technical results..

Theorem 2.3.2. [27] Let C be a forward invariant set. Consider a piecewise continuous

system such that it fulfills conditions for the existence and uniqueness of a Caratéodory

solution. If there exist a unique matrix measure such that for some positive constants ci

µ

(
∂fi
∂x

(x, t)

)
≤ −ci, (2-50)

for all x ∈ Ri, for all t ≥ t0 and for all i, then the system is incremental exponentially stable

in C with convergence rate min
i
ci.

Definition 2.3.5. The Φ-regularization of a bimodal piecewise smooth system (2-8) is the

one parameter family, of PWSC functions fε : U → Rn given, for ε > 0 by

fε(x) =
1

2

[
1 + Φ

(
H(x)

ε

)]
f1(x) +

1

2

[
1 + Φ

(
H(x)

ε

)]
f2(x). (2-51)

The key idea in [38] is to prove exponentially incremental stability of the regularized vec-

tor field (2-51), which in turn implies exponentially incrementally stability of the bimodal

piecewise system (2-8). The main result of the paper is state as follows.

Theorem 2.3.3. Let C be a forward invariant set. The piecewise bimodal system (2-8) is

incremental exponentially stable in C, with convergence rate c := min{c1, c2}, if there exist

some norm in C with associated matrix measure µ( · ), such that for some positive constants

c1 and c2

µ

(
∂f1

∂x
(x)

)
≤ −c1, ∀x ∈ R̄1 (2-52)

µ

(
∂f2

∂x
(x)

)
≤ −c2, ∀x ∈ R̄2 (2-53)

µ ([f1(x)− f2(x)] · ∇h(x)) = 0, ∀x ∈ Σ. (2-54)

Proof: The regularized vector field (2-51) can be written as

fε(x) = α(x)f1(x) + β(x)f2(x) (2-55)

with

α(x) :=
1

2

[
1 + Φ

(
h(x)

ε

)]
, β(x) :=

1

2

[
1− Φ

(
h(x)

ε

)]
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Now, taking the time derivative with respect to x, we obtain

∂fε
∂x

(x) = f1(x)
∂α

∂x
(x) + α(x)

∂f1

∂x
(x) + f2(x)

∂β

∂x
(x) + β(x)

∂f2

∂x
(x) (2-56)

where
∂α

∂x
(x) =

1

2ε
Φ′
(
h(x)

ε

)
∂

∂x

[
h(x)

ε

]
(2-57)

∂β

∂x
(x) = − 1

2ε
Φ′
(
h(x)

ε

)
∂

∂x

[
h(x)

ε

]
(2-58)

Now collecting all the terms into a unique expression and setting

γ(x) =
1

2ε
Φ′
(
h(x)

ε

)
, (2-59)

the Jacobian ∂fε
∂x

(x) is

∂fε
∂x

(x) = α(x)

(
∂f1

∂x
(x)

)
+ β(x)

(
∂f2

∂x
(x)

)
+ γ(x) [f1(x)− f2(x)]∇h(x) (2-60)

Now, regarding the resulting regularized vector field fε is continuous, Theorem 2.3.2 can

be applied directly. Therefore, we have that fε is contracting in C if there exist positive

constants c1, c2 and c3, such that,

µ

(
∂f1

∂x
(x)

)
≤ −c1 ∀x ∈ R1 (2-61)

µ

(
∂f2

∂x
(x

)
≤ −c2 ∀x ∈ R2 (2-62)

µ ([f1(x)− f2(x)] · ∇h(x)) = 0, ∀x ∈ Σ. (2-63)

2.3.4.1 Example

Consider the bimodal PWS system (2-2) with

f1(x) =

[
−14x1 + 2

−9x1 − 7x2 − x4
2 + 4

]
, f2(x) =

[
−14x1 + 2

−9x1 − 7x2 + x4
2 + 7

]
(2-64)

and h(x) = x2. For the first condition of the Theorem (2.3.3) we have

µ1

(
∂f1

∂x
(x)

)
= max

{
−5,−7− 4x3

2

}
= −5 (2-65)

because −7− 4x3
2 < −7, ∀x ∈ R1. Similarity for the second equation we have

µ1

(
∂f2

∂x
(x)

)
= max

{
−5,−7 + 4x3

2

}
= −5 (2-66)
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Finally for the last condition we have

µ1 ([f1 − f2] · ∇h(x)) = µ1

([
0 0

0 −2x4
2 − 3

])
max

{
0,−2x4

2 − 3
}

= 0 (2-67)

Therefore the considered PWS system is incrementally exponentially stable with rate con-

vergence c = 5. In Figure 2-5 is shown the analytical estimation of the convergence rate

against the numerical results.
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Figure 2-5: Norm of the error between two trajectories x(t) and y(t) in the Example

(2.3.4.1) with initial conditions x0 = [2 2] and y0 = [3 − 2]

2.4 Synchronization in complex networks

A complex network consists of a set of dynamical systems interconnected between each other

through a communication protocol. In graph theory, each dynamic system corresponds to a

node and the communication protocol consist of a set of links between the nodes following

some rule. A mathematical description of a complex network of N nodes under diffusive

protocol [22] is given by

ẋ(t) = f(xi)− σ
N∑
j=1

(xi(t)− xj(t)), ∀i ∈ [1, N ] (2-68)

where xi ∈ Rn represents the state of the i-th node with f(t, x) : Rn 7→ Rn modeling

the dynamics of each node in the network. The parameter σ is the coupling gain which

determines the strength of interaction between the nodes.
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Definition 2.4.1. Let S be the synchronization manifold

S :=
{
x ∈ RnN : ‖xj(t)− xi(t)‖ = 0, ∀i, j ∈ [1, N ]

}
then, network (2-68) is said to reach synchronization if, for any initial conditions xi(0) = xi0,

lim
t→∞

x(t) ∈ S, ∀t ≥ 0, i ∈ [1, N ]. (2-69)

2.4.1 Example

Chaos synchronization provides potential applications to communications and signal pro-

cessing [99, 36]. Here, we illustrate the synchronization of a network of five Chua’s circuits

coupled diffusively via numerical simulations. We consider the network (2-68), where the

nonlinear vector field modeling the dynamics of each node is described by

f(x) =

 −7
4
(x2 − q(x1))

x1 − x2 + x3

−18x1

 , q(x1) = (|x1 − 1| − |x1 + 1|) (2-70)

The system parameters were selected such that single system exhibits chaos as shown in

Figure 2-6.
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Figure 2-6: Numerical simulations of the single system (2-70) : (a) Chaotic attractor and

(b) Time response.

We assume that the network is full coupled, i.e. all the state components are connected

between each other. In this example we consider two network topologies, an all-to-all con-

figuration in which, each agent in the network is connected with all agents in the network
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and a path-graph topology. Figure 2-7 (b) shows the time evolution for each component of

the Chua’s oscillators xi1, xi2 and xi3. It is possible to observe that after a transient the

network synchronize to a particular solution of the single system.
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Figure 2-7: Numerical simulation of a network of five Chua’s circuits for a coupling pa-

rameter σ = 2, with random initial conditions. (a) all-to-all topology, (b) time

evolution of each component xi(t)

In Figure 2-8 (b) it is displayed the time evolution of all state components regarding a

path-graph topology. The simulations indicate that the network reaches synchronization

regardless of the network topology, however in the path graph network has a larger transient

than the all-to-all network.
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Figure 2-8: (a) Path-graph topology, (b) time evolution of each component xi(t)



CHAPTER 3

Computation of basins of attraction in

discontinuous switching systems

In this Chapter we present a numerical routine for computing basins of attraction (BA) in

bimodal Filippov systems. In particular we extend the Simple Cell Mapping (SCM) method

to cope with the presence of sliding solutions by exploiting an event-driven numerical integra-

tion routine specifically written for Filippov switched systems. Our algorithm encompasses

a dynamic construction of the cell-state-space so that, a lower number of integration steps

are required. Moreover, we incorporate an adaptive strategy of the simulation time to ren-

der more efficient the computation of basins of attraction of such systems. Throughout this

Chapter, the algorithm is illustrated via a set of representative examples including sliding

control systems and periodically forced Filippov systems.

The outline of this Chapter is as follows. In Section 3.2 we introduce the concept of the sim-

ple cell mapping method. In Section 3.3, an extension of the simple cell mapping algorithm

for planar Filippov systems is presented, detailing how the grid is selected and describing the

numerical integration method used for dealing with sliding motions. In Section 3.4, the effec-

tiveness of the algorithm is shown by computing the basins of attraction of a sliding control

problem and a mechanical system subject to friction. Finally, advantages and disadvantages

of the algorithm and possible future extensions for its improvement are discussed.

3.1 Problem formulation

As we pointed out in the last Chapter, the problem of computing basins of attractions

in switching systems is mostly addressed by Lyapunov methods in the context of control
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theory, where regions of attraction are estimated as sub-level sets of a given Lyapunov

function. However, this method provides conservative results meaning that the estimated

region is smaller than the exact basin of attraction. A methodology based on Lyapunov

methods [69], aimed at estimating regions of attraction in a class of nonlinear piecewise

smooth systems is briefly introduced in order to compare with the cell mapping method.

Definition 3.1.1. Let us consider a positive definite function v(x) : Rn → R for the system

ẋ = f(x) such that ∃γ > 0 : v̇(x) < 0 : 0 < ‖x‖ < γ and assume the origin is an equilibrium

point of interest. An estimation of the region of attraction of the origin of such system is

given by

P(γ) = {x ∈ Rn : v(x) < γ}. (3-1)

Theorem 3.1.1. Let v(x) : Rn → R be radially unbounded and positive definite function.

Let γ be a positive real number, and let i, 1 ≤ i ≤ n, be an integer. If i ≤ n − 1, suppose

that there exist polynomial functions qi, si : Rn → R such that

v̇i(x) + qi(x)(γ − v(x)) + si(x)hi(x) < 0

qi(x) > 0

si(x) ≥ 0

∀x ∈ Rn (3-2)

while if i = n, suppose that there exist functions qi, ti, . . . , tn−1 : Rn → R such that

v̇n(x) + qn(x)(γ − v(x))−
∑n−1

j=1 tj(x)hj(x) < 0

qi(x) > 0

tj(x) ≥ 0

 ∀j = 1, . . . , n− 1.

∀x ∈ Rn (3-3)

Then, v̇i(x) < 0 ∀x ∈ Pi(γ) where Pi(γ) = P(γ) ∩ Ri. Moreover if (3-2) and (3-3) holds,

then v(x) is a Lyapunov function for the origin.

Theorem 3.1.1 can be used for computing the largest level set of v(x) such that the nega-

tivity of its time-derivative with respect to each subsystem fi(x) is verified only when such

dynamics are active.

Note that v(x) = x2
1 + x2

2 is not a common Lyapunov function for both subsystems in (3-4),

but there exist some regions of the state space in which the negativity of the time derivative

of v is verified for each subsystem.

Example: Let us consider a switching system of the form (2-1) with the vector fields given

by

f1(x) =

(
−x1 + 2x3

1x2

−x2 − x1x
2
2

)
, f2(x) =

(
−x1 + x1x

2
2

−x2 + x1x2 + x3
1

)
(3-4)
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and with Σ1 = {x ∈ R2 : x1 = 0}. The state space is partitioned in two regions described by

R1 =
{
x ∈ R2 : x1 ≥ 0

}
R2 =

{
x ∈ R2 : x1 < 0

}
. (3-5)

Here, the goal is to estimate the basin of attraction of the origin by computing a level set of

a quadratic Lyapunov v(x) = x2
1 + x2

2.

The conditions of Theorem 3.1.1 can be easily checked by making use of the Matlab toolbox

SeDuMi [86]. We computed the level sets obtaining γ1 = 1.55 and γ2 = 2.64. In Figure 3-1

are shown the corresponding level sets.
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Figure 3-1: Estimation of largest level sets of v(x) = x2
1 +x2

2 for each subregion of the state

space. The blue arrows indicate the direction of vector field f1 in (a) and f2

in (b).

In Figure 3-1 (a) is shown how the level set P(γ∞) reaches the boundary of the basin of

attraction for x1 > 0 where the vector field f1 is active, the counterpart is shown in Figure

3-1 (b) for x1 < 0. Note that the minimum γi, i = 1, 2 that satisfies v̇i(x) < 0 ∀x ∈ Pi(γ)

is P(γ1), and therefore an estimation of the basin of attraction of the origin for the system

(3-4) is given by P(γ1) = {x ∈ R2 : x2
1 + x2

2 ≤ 1.55}.

The basin of attraction of the system (3-4) computed via the cell mapping method is shown

in Figure 3-2. We can observe that the estimation obtained by P(γ1) represents only a small

portion of the basin of attraction.
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Figure 3-2: Comparison of the numerical techniques used for computing basin of attrac-

tion of the system (3-4). The blue region corresponds basin of attraction of

the origin using cell mapping method while the region inside the black circle

corresponds the estimation provided by the Lyapunov method.

As we saw in the above example, the cell mapping method is an efficient technique for com-

puting basins of attraction in continuous systems. However, fewer results using cell mapping

methods have been reported in discontinuous systems with sliding solutions, mainly due to

the fact that standard integration routines are inaccurate or inefficient, or both, in the region

where discontinuities in the derivatives occur. For example, a possible source of numerical

problems is the presence of small oscillations around the discontinuity boundary (numerical

chattering behavior) that may arise during sliding mode. Another limitation of existing

algorithms based on cell-to-cell mapping is the fact that the region of interest is pre-defined

by the user which implies that extra computations are required if it is desired to explore a

different region of state space. In this case an adaptive extension of the state space will be

more suitable to reduce the computational cost due to the extra CM applications.

In order to overcome these difficulties, we introduce an algorithm based on the simple cell

mapping method which exploits the event-driven integration routine proposed in [79], that

can automatically cope with the presence of sliding solutions and correct for possible numer-

ical drifts, due to the high frequency switching nature of the discretization of these solutions.

Moreover, our algorithm encompasses a dynamic selection of the region to be investigated,
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such that a lower number of integration steps are needed in contrast to the case where the

region is fixed and preselected by the user. Specifically, after an initial application of SCM

in a relatively small number of cells around the equilibrium, or periodic solution of interest,

extra layers of cells are added and examined iteratively. The mapping information is stored

and used at each iteration, such that numerical integration is required starting just from the

extra set of cells that were added. At the end of the process a refinement stage is performed

over the basin boundary in order to better identify its limiting region and reduce the error

due to the discretization of the state space.

3.2 Simple Cell Mapping

In cell mapping methods the state space of a dynamical system is restricted to a bounded

region Ω ⊂ RN partitioned into regular cells, called cell state space. Specifically such space

is given by

Ω =
{
x ∈ RN : x

(l)
i ≤ xi ≤ x

(u)
i , i = 1, . . . , N

}
, (3-6)

where x
(l)
i and x

(u)
i indicate the lower and upper limit of each of the N state variables of

the system. The partition of Ω into rectangular cells is performed by dividing each interval

[x
(l)
i , x

(u)
i ] into Mi intervals of equal length δi, that is

δi =
x

(u)
i − x

(l)
i

Mi

, i = 1, . . . , N.

In this way, Ω is divided into M rectangular cells, with

M =
N∏
i=1

Mi.

Each cell is denoted by an index j ∈ 1, . . . ,M . We describe some properties and definitions

related to the Simple Cell Mapping which are used throughout the paper.

• Cell : An element of the cell state space represented by a center point and lengths along

each dimension.

• Cell index (index, for short): A unique identifier for each cell.

• Image: A mapping from one cell to another. The mapping is obtained by integrat-

ing the system using the center point of the given cell as initial condition, until the

trajectory enters into a new cell.
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• Periodic group (PG): A set of cells that have been already processed, denoted as n-P

group, where n ∈ Z+ indicates the period to which those set of cells belong. A cell

belonging to an n-P group is denoted as an n-P cell.

• Transient cell : A cell or a set of cells that after some mapping end up into an n-P cell.

• Adjoint cells : Cells that have at least one corner point in common.

• Group number : A unique identifier for each periodic group.

• Sink cell : A special cell indicating that the trajectory is being mapped outside of the

cell state space.

For a system described by a set of ordinary differential equations (ODEs), the mapping

procedure starts by integrating the system using the center point of a cell as the initial

condition, until the trajectory leaves the cell and enters in a new cell. If the cell in which

the trajectory ends has not already been processed, a new trajectory is initiated from the

center of the new cell. This sequence is repeated until a trajectory ends within a cell that

has already been processed, indicating that an n-P cell has been found which within SCM

implies the existence of a system solution. This process is carried out for each regular cell

belonging to the cell state space until all cells have been processed, see Figure 3-3 for a

graphical interpretation of the mapping process.

3.3 Enhanced SCM for Filippov systems

Due to the fact that existing cell mapping methods are not able to address the presence of

discontinuities in Filippov systems and particularly the occurrence of sliding mode solutions,

here we extend the simple cell mapping method by embedding the numerical routine to

integrate bimodal Filippov systems described in [79]. In addition, we consider the dynamic

evolution of the cell state space with a refinement stage over the basin boundary cells in

order to cover the basin of the region under investigation and to reduce the discretization

error. Two stop integration criteria are incorporated so that, during the first stage of the

algorithm, the integration is terminated as the trajectory leaves the initial cell, as shown

in Figure ?? (a). While in the refinement stage, the numerical integration carried out over

the cells lying on the boundary of the basins of attraction, is allowed until the trajectory

reaches some cell that is not part of the basin boundary cells as shown in Figure ?? (b). This

modification, along with the dynamic construction of the state space allow us to drastically
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Figure 3-3: Example illustrating the mapping process and some cell’s properties (cell:21,

cell:14) within SCM and ESCM. Two mapping processes are initialized in cells

labeled with indexes 1 and 5, in both methods. Some mapping steps indicate

the presence of a stable fixed point inside of the 2-P cell with index 15. Unlike

the SCM (a), an adaptive strategy for the simulation time is incorporated in

ESCM (b) making the integration time as lows as possible.
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reduce the computational cost. Next, we describe in greater detail each of the two proposed

innovations leading to an enhanced SCM for Filippov systems.

3.3.1 Integration method

Standard numerical methods for solving ODEs are based on truncation error schemes, how-

ever these methods may become inaccurate or inefficient when discontinuities occur [31].

For example, undesired behaviors such as small oscillations around Σ (numerical chattering

behavior) must be properly taken into account. One strategy to solve this problem is to use

event-detection routines, in which the discontinuity is considered as an event function such

that when a numerical solution reaches the discontinuity surface Σ, a new vector field (the

so-called sliding or Filippov vector field (2-7)) is constrained to evolve over Σ until certain

conditions are satisfied. This event-driven scheme was successfully implemented for simulat-

ing Filippov systems for a single discontinuity surface in [79], resulting in an automatic and

robust algorithm for studying a wide variety of problems, [31, 62, 13]. The event functions

considered in [79] are

e1(t, x) := h(x), e2(t, x) := Lf1h(x), e3(t, x) := Lf2h(x)

where e1(t, x) locates intersection points between the flow and the discontinuity boundary

Σ, checking the possible existence of sliding dynamics, while e2(t, x) and e3(t, x) allow to

keep track the sliding flow when it enters into R1 or R2, respectively. A description of the

tasks accomplished by the numerical routine is given below:

• Smooth vector fields outside of Σ, R1 orR2 are integrated in time by standard numerical

integration routines.

• Their intersection points with the discontinuity boundary are precisely located as tra-

jectories reach Σ.

• The vector field on Σ̂ is used to integrate sliding mode solutions (2-8) in time.

• Possible numerical drifts while evolving in Σ̂ are carefully avoided by monitoring

transversality conditions and by means of an appropriate numerical extension of the

Filippov vector field (see [79] for further details).

• While in Σ conditions are constantly monitored to decide whether to remain on the

switching boundary or to leave it.
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The numerical routine proposed in [79] is mostly used for Filippov systems with a single

discontinuity surface, limiting the computation of the basins of attraction for such kind of

systems. Nevertheless, it is straightforward to extend the integration routine for an arbitrary

number of discontinuity surfaces as discussed in [79]. For example, in the case of biological

and mechanical systems with two discontinuity surfaces where the sliding vector field at

the intersection between surfaces is well-defined, the equivalent control method [90] and the

analytical results of the entry and exit points of co-dimension 2 sliding vector fields reported

in [28] can be straightforwardly implemented for simulating accurately such systems. The

main disadvantage with this approach is that the number of surfaces and event locations grow

quickly with the number of discontinuity surfaces which naturally increases the simulation

time.

3.3.1.1 Integration stopping criterion

One limitation of the SCM is that the integration time is global, and selected arbitrarily

beforehand. This may introduces spurious mapping results when the integration time is rel-

atively short, since the trajectory may remain within the same cell from where the simulation

started instead of reaching the image cell, which under SCM will indicate erroneously the

presence of a new attractor. On the other hand, if the integration time is relatively large,

then the computational cost of the algorithm might become unnecessarily large.

Therefore, to avoid these limitations, we introduce two integration stop criteria to render

the selection of the simulation time adaptive. Before the refinement stage, the numerical

integration is terminated only once the trajectory reaches the image cell. In particular, we

introduce an extra event function in the numerical integration routine defined as

e4(t, x) = ‖x(tn)− x(t0)‖∞ −
δi
2

+ ε, (3-7)

where x(t0) and x(tn) denote the current initial point and the current end point of the tra-

jectory, respectively, ε is a small positive parameter which guarantees that the trajectory

has left the initial cell and ‖ · ‖∞ is the infinity vector norm. The extra event function allows

to keep track the flow so that integration continues until the trajectory reaches a thresh-

old determined by the predefined cell-width δi. Instead, during the refinement stage, the

integration continues until the flow reaches a cell that has been already tagged in earlier

iterations, provided that it is not part of the boundary cells, as shown in Figure 3-6 (b).

In the flow chart in Figure 3-4 we present an overview of the algorithm for simulating



� 32 3 Computation of basins of attraction in discontinuous switching systems

Filippov systems with one discontinuity surface. A description of the tasks accomplished by

the numerical integration routine is given below:

Algorithm 1 A description of the numbered boxes in the flow chart in Fig 1 is given here.

1: Initialize the program with the solver properties, vector fields, IC and provide an initial

simulation time Tspan.

2: Determine the initial state of the system, Σ, R1 or R2.

3: Solve the current ODE until an event ei occurs.

4: Check if time is equal to the final time.

5: Check region of the state space in which the system is, according to the event function

ei.

6: Set the corresponding vector field f1, f2 or fΣ and go to 4.

START 1. 2.

3.

S

STOP4.

5.

ie

S6.

Figure 3-4: A schematic flow chart of the algorithm for simulation of Filippov systems

with one discontinuity surface. A description of the numbered boxes is given

in Algorithm 1.

In principle, the integration time can be selected considerably big since once the trajectory

has reached some cell outside of the boundary region the integration is terminated.

3.3.2 Cell state space construction

When applying the SCM, the discretization of the state space introduces some errors due to

a possible inconsistency between the end point of a trajectory segment within a cell and the

start of the subsequent trajectory segment. Hsu [47] claims that this problem can be solved

by using a more refined grid, but this increases the computational cost of the algorithm.

To overcome this problem and render our method more efficient, we propose the use of a
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dynamically allocated cell grid, which starting from a small area contained in the basin of

attraction of the attractor of interest, is grown so as to map the entire basin of attraction

and isolate its boundaries.

Specifically, the algorithm constructs an initial cell state space with the information pro-

vided by the user (for example a point in the phase space). Then after a first application of

SCM, the algorithm automatically adds and examines layers of cells according to whether

or not the cells lie in the basin of attraction. The algorithm uses information about earlier

iterations such as group numbers and indexes to determine if the extra set of cells belongs

to the basin of attraction. For example, when a trajectory starting in the extra set of cells

enters into a cell that has been tagged as part of the basin of attraction, the extra cell is

also tagged with the same periodic group and therefore tagged as belonging to the basins of

attraction. A graphical representation of the stages of the algorithm is shown in Figure 3-5.

It is worth nothing that the construction of the cell state space is independent of the location

of the discontinuity surface. Therefore, there is no need for a special treatment of those cells

that cover the switching manifold.
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Figure 3-5: Illustration of initial steps of ESCM algorithm before the refinement stage, for

a fixed point x∗1. The boundary of the basin of attraction of x∗1 is represented

by the black dash line while arrows stand for trajectories mapping inside and

outside of the studied region Ω∗. An initial region covering the attractor is

examined by ESCM at the first step graph (a), subsequently in step 2 and 3

layers of cells are added and examined in (b) and (c).

Finally, a routine to isolate and to redefine the cells that lie on the boundary of the basin

of attraction is incorporated into the main program. Under the ESCM algorithm described
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previously, cells that are located on the boundary of two or more attractors satisfy two

properties. The first is that they have different group numbers, and the second is other

property is that they are adjoint, i.e., the distance between the center points of the cells is

equal to the cell size δi. Once the boundary cells have been found, they are subdivided and

investigated by applying again our enhanced SCM algorithm as shown in Figure. 3-6.
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Figure 3-6: Boundary refinement of the previous example. In this illustration, boundary

cells are subdivided into a 4×4 grid of cells and each of which is investigated by

the ESCM algorithm. Some mapping processes evidence the difference between

the stop-integration criterion used in the first applications of the algorithm (a)

and the one used in the refinement stage (b). In this example we assume equal

partitions of the state space, i.e. δ = δ1 = δ2.

3.4 Applications

Next, we present two representative examples, to illustrate the effectiveness of our proposed

algorithm. The two main stages of our algorithm, that is, the construction of the cell state

space and the cell size refinement are validated by computing the domains of attraction of a

sliding control problem and a dry friction oscillator. In all examples the ODE-solver ode45

(4th-order Runge Kutta) has been used with Matlab’s routines. The software used in these

examples can be downloaded from https://sites.google.com/site/dibernardogroup/download.

3.4.1 Sliding control system

Sliding mode control is a well known nonlinear control strategy which is used in a wide

range of technical domains, mainly due its simple implementation and remarkable robustness
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properties [91, 45]. Here, we consider a second order system with a linear sliding surface.

Choosing some representative parameter values, we select the closed loop system

ẋ =

(
−1 1

0 3

)
x+

(
0

1

)
u, (3-8)

where the discontinuous control is given by u = −10 sgn(x1 + x2). The control strategy is

designed to steer the system dynamics to the zero equilibrium point, which is lying on the

discontinuity manifold and can therefore be classified as a pseudo equilibrium according to

[24]. Now, by adopting the formalism of Filippov systems (see Sec. 5.2), the vector fields

corresponding to each partition of the state space can be written as

f1(x) =

(
−x1 + x2

3x2 − 10

)
, f2(x) =

(
−x1 + x2

3x2 + 10

)
, (3-9)

with the zero-level set Σ1 = {x ∈ R2 : x1 + x2 = 0} defined as the switching manifold.

Clearly, simple computations show that each of the vector fields f1 and f2 has an hyperbolic

equilibrium point. Nevertheless, the interaction between each other along Σ1 gives rise to

an invariant set limited by the stable manifolds of the saddle solutions, with the zero equi-

librium as a fixed point.
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Figure 3-7: Solutions of the sliding control system (3-8). In (a) is shown the time evolution

for a random initial condition while in (b) the phase portrait of two trajectories

initialized in different regions of the state space.

To analyze the basin of attraction of the control system, we apply the ESCM. Some of the

steps of the algorithm used to construct the BA of interest are shown in Figure 3-8, while

the final result is depicted in Figure 3-9.
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Figure 3-8: Sequence of the dynamic construction of the cell state space, by assuming

regular cells, i.e. δ = δ1 = δ2. The black lines are used to represent the

cell state space, so that each square represents a cell. The black dash-line

corresponds to Σ. The initial region (blue cells) used in the first iteration is

shown in (a). The 3nd, 4th, 5th and 6th iterations of the algorithm are shown

in (b)-(e), respectively. A first (coarse) approximation of the basins in the 7th

iteration is shown in (f).
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Cells colored in blue belong to the basin of attraction of the equilibrium x∗1 = (0, 0), while

initial conditions in the magenta cells are mapped outside the basin of attraction. The total

number of cells investigated by the ESCM at the end of the first stage is 361, as shown in

Figure 3-8 (f). Nevertheless, it is worth noting that, at each step of the algorithm just a

small group of regular cells is investigated, since starting from a small set of cells around the

origin, extra layers of cells are only added and examined iteratively. Once the entire basin

has been mapped a refinement stage is performed in order to get more accurate results, in

which the boundary the boundary cells are split, and the ESCM is applied again as described

above.
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Figure 3-9: Basins of attraction for the sliding control problem (3-8) using ESCM, for an

initial resolution of 19 × 19 grid of cells, initial cell size of δ∗ = 1 (initial

stages) and δ∗∗ = 0.083 for the refinement stage. Black curves stand for

trajectories inside of BA of x∗1, for initial conditions (x1, x2) = (8, 3.3) and

(x1, x2) = (−8,−3.3) while the dash-line indicates the switching manifold.

Another advantage of the refinement is that the initial cell dimensions can be relatively

large, so that a bigger region of state space can be explored with a relatively lower number

of iterations of the algorithm being required.
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To provide a validation of the ESCM performance, in terms of the number of investigated

cells and the total CPU time spent in the mapping process, the BA shown in Figure 3-9

was computed using the SCM and the ESCM with fixed integration time (ESCM-Ts). The

computation times and the number of investigated cells for the sliding control example (3-8)

are shown in Table 3-1. The results indicate a reduction of at least 50% of the computational

cost spent by the classical SCM applications, even using the ESCM with fixed integration-

time. These results suggest that the strategy of combining different cell sizes and adaptive

schemes of the integration times within cell mapping methods is effective not only for reduc-

ing the computational cost, but also for finding new invariant regions in Filippov systems.

It is worth nothing that, in all three cases, we set the algorithm parameters so as to obtain

Table 3-1: Total number of investigated cells within SCM, ESCM-Ts and ESCM. The CPU

time used in all three methods is reported below.

Method Integration time Number of cells CPU time

(s) δ∗ = 1 δ∗∗ = 0.083 Total (s)

SCM 4 0 51948 121104 1315

ESCM-Ts 4 361 13536 20713 409

ESCM adaptive 361 13536 20713 229

the same diagram shown in Figure 3-9. Thus, in the case of the SCM we set a grid with the

same dimension chosen in the final refinement stage of the ESCM. Thus, since we considered

a grid of cells of 19× 19 in the initial stage of the algorithm (Figure 3-8 (a)-(f)) and a grid

of cells of 12 × 12 in the refinement process 12 × 12, we set a 228 × 228 grid of cells in the

SCM application.

To further test the efficiency of the ECSM, we computed the same basin of attraction using

the ESCM with different fixed integration times. The CPU times for different integration

times are listed in Table 5-1, indicating that even with fixed integration time, the ESCM

is superior to the classical cell mapping methods. The lack of available numerical tools for

computing basins of attraction in piecewise smooth systems makes it difficult to perform a

comparison of our algorithm with respect to other strategies, however it is clear that, a better

approximation is achieved in terms of the proportion of the basins found, rather than those

achieved by means of other more conservative methods (e.g. Lyapunov based approaches).
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Table 3-2: Comparison of the CPU time for different values of the simulation time.

Integration time CPU time (s)

SCM ESCM-Ts ESCM

4 1315 409 229

8 2107 633 229

16 3739 1121 229

3.4.2 Dry friction oscillator

Dry friction is a very common phenomenon underlying many physical applications e.g. rigid

body impact, pneumatic actuators, brakes and gears, and is therefore extremely relevant in

different fields of engineering. Here we consider a single-degree-of-freedom nonsmooth oscil-

lator under external excitation which has been widely studied [24, 58, 51] since it exhibits

complex dynamics due to its discontinuous nature. The nonsmooth mechanical system of

interest is shown in Figure 3-10. It is composed by a block of mass m which is supported

by a belt moving with constant velocity v. The block is connected to a fixed support by a

linear elastic spring of stiffness k and is subject to an external harmonic force of magnitude

A and frequency ω.

cos( )A tω m

v

k

relv

( )relT v1x

Figure 3-10: The dry friction oscillator along with the adopted nonsmooth friction model,

vrel = x2 − v.

If the block is in the stick phase (i.e. the block is moving at the same speed as the belt),

the interaction between the spring force, applied harmonic force and friction force cause the

block to start slipping (i.e. the block is moving at a different speed relative to the belt) and

vice versa. The equations of motion can be expressed as

ẋ1 = x2

ẋ2 = − k
m
x1 + A

m
cos(ωt) + T (x2 − v),

(3-10)
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where x1 and x2 represent the position and the velocity of the block. The function T (x2−v)

describes the friction between the mass and the belt and is formulated as

T (x2 − v) =


−g
(

α
1−γ(x2−vdr)

+ β + η(x2 − v)2
)

if x2 > v,

g
(

α
1−γ(x2−vdr)

+ β + η(x2 − v)2
)

if x2 < v.
(3-11)

It is known that for specific values of the excitation frequency ω, two stable periodic orbits

and one saddle periodic orbit coexist. These periodic solutions correspond to a fixed points

of the stroboscopic Poincaré map associated to the system of interest. For a detailed analysis

of this system see [72, 41, 19]. By using the Filippov formalism (2-2), the dynamics in each

partition of the state space are modeled by the vector fields

f1(x) =

(
x2

−kx1+A cos(ωt)
m

− g
(

α
1+γ(x2−v)

+ β + η(x2 − v)2
) ) if x2 > v,

f2(x) =

(
x2

−kx1+A cos(ωt)
m

− g
(

α
1−γ(x2−v)

+ β + η(x2 − v)2
) ) if x2 < v,

(3-12)

with the zero-level set Σ2 = {x ∈ R2 : x2 − v = 0} defined as the switching manifold. In

this numerical study, we use the parameters v = 1, α = 0.3, γ = 1.42, β = 0.1, η = 0.01,

A = 3.6, K = 1, g = 10 and ω = 1.067. We are interested in computing the BA for the

stable periodic solutions x+
1 = (x1, x2) = (−0.685, 3.01) and x+

2 = (x1, x2) = (−0.295, 0.99)).

In order to use our numerical routine with periodically forced systems, it is necessary to set

the integration time equal to the forcing period of the system, that is T = 2π/ω where ω is

the excitation frequency. This effectively means that we are integrating the flow to obtain

the stroboscopic Poincaré map associated to the system of interest.
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Figure 3-11: Basin of attraction of the periodic solution x+
1 , for an initial resolution of

29 × 29 grid of cells corresponding to a cell size of δ∗∗∗ = 0.66. The cell

sizes of in the refinement stage is set δ∗∗∗∗ = 0.125. Numerical integrations

corresponding to 3 periods were performed. The numerical solution x+
1 is

shown in the right panel.

The domain of attraction diagrams of the stable periodic orbits corresponding to the fixed

points x+
1 , x+

2 and its numerical solutions are displayed in Figures 3-11 and 3-12. The

blue regions represent the set of initial conditions for which the flow converges towards the

periodic solutions x+
1 in Figure 3-11 and x+

2 in Figure 3-12, while initial conditions in the

magenta region map outside of the investigated periodic solution.
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Figure 3-12: Basin of attraction of the periodic solution x+
2 . The ESCM algorithm was

initialized selecting a small region 3×3 grid of cells with the equilibrium point

as center of the grid. Then 13 layer of cells were added and analyzed at each

iteration by ESCM algorithm. In the refinement stage, each cell belonging to

the boundary of the BA was divided into a 16× 16 grid of cells.

The computation of the BA reported in Figure 3-11 reveals that the invariant manifold that

separates the basins of attraction of x+
1 and x+

2 is continuous but not differentiable due to

the presence of sharp corners, a phenomenon reported in the literature on PWS systems, see

e.g. [7].

Note that Figs. 3-11 and 3-12 provide essentially the same information, nevertheless, the

ESCM-Ts algorithm was initialized in different regions of the state space in each case. It

is worth noting that information regarding the dynamic behavior of the friction oscillator

presented in this paper, is not novel; the reader is directed to [72, 41] for more complete

details. Rather, it is the manner in which it is computed that is new.

3.5 Discussion

In this Chapter, we have presented a numerical routine for computing basins of attraction in

bimodal Filippov systems based on simple cell mapping. We propose a new way to construct

the cell state space is proposed in order to reduce the computational cost associated to the

number of integrations performed by cell mapping methods. Another advantage is that
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accurate basin boundaries can be found due to subdivision of the boundary cells. The

ESCM algorithm was used for studying the BAs of a sliding control problem and a dry

friction oscillator showing the stages of proposed methodology. We have shown that the

computational effort of the ESCM is lower than the classic SCM with event-integration

routines even if the ESCM uses fix simulation times. The structure of the algorithm can be

easily implemented in a multi-core environment [8], so that not only one refinement stage

can performed but also different refinement levels at different processors at the same time

can be performed. In the case of high order systems the integration method used for the

ESCM combined with the multidimensional cell mapping method (MDCM) [33, 9] can be

addressed towards computing basins of attraction of high order Filippov systems. Next, we

will perform a piecewise smooth analysis of two coupled mechanical oscillators subjected to

friction. This model will be used to characterize the sliding motions along a co-dimension

2 switching surface given by the intersection of two switching surfaces of co-dimension 1.

Moreover, nonlinear sliding surfaces will be consider in order to model a stiction friction

model.



CHAPTER 4

Piecewise Smooth Analysis of Two

Heterogeneous Coupled Friction

Oscillators

In Chapter 3 we carried out a numerical study of the stability of Filippov systems with

a single switching manifold, through the computation of their basins of attraction. The

implementation of the numerical tool for the computing the BA in bimodal Filippov systems

was based on the full characterization of the entry and exit points of the sliding flows, existing

in the literature of PWS systems [30, 28]. Therefore, understanding the main features

underlying the behavior of switching is of great importance for developing tools that allow

investigating such class of systems. In this Chapter we investigate the stability of Filippov

systems with two switching manifolds, taking as an example two heterogeneous coupled

mechanical oscillators subject to friction. In particular, we start analyzing the two coupled

oscillators with classical Coulomb’s friction force, then we extend the piecewise smooth

analysis by making use of Hidden dynamics (Sec 2.2) approach in order to model friction

forces with the Stribeck effect.

4.1 Problem statement

Here, we consider multimodal piecewise smooth systems (Sec 2.1.2) with two switching

surfaces embedded in the switching terms s1 and s2, also known as Filippov systems of co-

dimension 2. The state space of the Filippov system of co-dimension 2 is divided into four

regions denoted by R1, R2, R3 and R4 as shown in Figure 4-1. According to the system

dynamics, the sliding dynamics may evolve either along a single switching surface Σ±1,2 or
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along the intersection of the two switching surfaces Σ = Σ1 ∩ Σ2. In the following, we will

refer the later one as sliding of co-dimension 2.

1

2

3

4

R

R

R

R

1
+Σ

1
−Σ

2
+Σ

2
−Σ

Σ

Figure 4-1: The discontinuity surfaces Σ1 and Σ2, their intersection Σ and the subsets Ri.

Formally, we define the discontinuity surfaces as

Σ1 = {x ∈ Rn : h1(x) = 0}, Σ2 = {x ∈ Rn : h2(x) = 0},

Σ =

{
x ∈ Rn : h(x) = 0, h(x) =

[
h1(x)

h2(x)

]}
.

(4-1)

Then, we have

R1 : f1 for h1 > 0 h2 > 0, R2 : f2 for h1 < 0, h2 > 0,

R3 : f3 for h1 < 0, h2 < 0, R4 : f4 for h1 > 0, h2 < 0,

where the fi, i = 1, . . . , 4 are smooth vector fields. For later use, we adopt the notation Σ±1,2

to denote the set of points x ∈ Σ1,2 for which have h1,2(x) > 0 or h1,2(x) < 0, as indicated

in Figure 4-1. We also denote the sliding vector fields of co-dimension 1 as fΣ±
1,2

according

to each switching sub-manifold Σ±1,2.

Now, assuming that we are following a trajectory on Σ, its the attractivity can be charac-

terized by the first and second order exit conditions, which make reference to the cases in

which the flow on Σ exits and remains either in one of the sub-sliding manifolds Σ±1,2 or in
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one of the subregions of the state space Ri. Then according to the Definition 2.1.2 the first

and second order exit conditions can be retrieve with the conditions listed in Table 4-3 and

Table 4-4, respectively.

Exit Conditions

From Σ to Σ±1 s2 = ±1

From Σ to Σ±2 s1 = ±1

Table 4-1: Utkin’s equivalent control method: first-order exit conditions from Σ.

Exit Conditions

From Σ to R1 s1 = s2 = 1

From Σ to R2 s1 = −s2 = −1

From Σ to R3 s1 = s2 = −1

From Σ to R4 s1 = −s2 = 1

Table 4-2: Utkin’s equivalent control method: second-order exit conditions from Σ.

The co-dimension 2 switching manifold Σ is defined as

Σ =

{
x ∈ Rn : h(x) = 0, h(x) =

[
h1(x)

h2(x)

]}
. (4-2)

For constructing the sliding vector field on Σ we can use the Filippov convex method or the

equivalent control as we remark in the Section 2.1.1. However, a lack of uniqueness arises in

the multimodal case by using the Filippov convex method. In particular, following Filippov’s

convex method [37], the dynamics along Σ are express as

FΣ(x) =
4∑
i=1

λi(x)fi(x), (4-3)

where

λi(x) ≥ 0 ∧
4∑
i=1

λi(x) = 1, (4-4)

under the constraint that FΣ(x) must be tangent to Σ, i.e.

LFΣ
hi(x) = 0, i = 1, 2. (4-5)

It is immediately clear from equation (4-3)-(4-5) that we cannot uniquely select the coeffi-

cients λi(x), since we have three equations in four unknowns.
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Filippov (1988) [37] and Utkin (1977) [90] acknowledged this issue and claimed that their

methods can be used just in some particular cases, for example in mechanical systems where

the physics of the problem itself assures a unique solution, regardless of the nominal co-

dimension of the sliding surface.

In [51, 50] was introduced a new way of constructing the dynamics on Σ (hidden dynamics)

which allows to model complex dry friction forces such as the Stiction friction force which

is not captured by the classical approaches.

Next, we investigate the dynamics of two coupled mechanical oscillators with dry friction.

We use the equivalent control method to model the friction dynamics due to there is no exits

ambiguity in selecting the sliding vector field regarding the physics of the system. Then,

we employ the hidden dynamics approach revised in Section 2.2 with the aim of modeling

a more complex static friction without needing to augment the Coulomb friction with a

velocity dependence.

4.2 The mechanical model

We consider a system made of two blocks of equal mass m (namely block 1 and block 2)

placed on a horizontal rough plane, as shown in Figure 4-2. Each block is linked by a spring

of equal stiffness k1 to a driving mechanism moving at constant velocity V in the horizontal

direction. The blocks are connected to each other by a spring of stiffness kp. The hypothesis

of blocks of equal mass and springs of equal stiffness is made for the sake of simplicity and

can be relaxed at the cost of introducing additional parameters in the model.

mm
pk

1k 1k

V

Figure 4-2: Sketch of the model.
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The horizontal plane exerts a dry friction force on each block, so that they stick to the surface

(sticking phase) until the elastic forces due to the springs exceed the maximum static friction

force. At this point the blocks start slipping. The system can be described by the following

equations of motion:
mŸ 1 + kp(Y1 − Y2) + k1Y1 = T1(vrel1)

mŸ 2 + kp(Y2 − Y1) + k1Y2 = βT2(vrel2)
(4-6)

where Y1 and Y2 denote the position coordinates of each block with respect to the velocity

driver V , T (vrel) stands for the dry friction, expressed as a function of the relative velocity

Ẏi of each block and the driver velocity V . According to each block, they are denoted by

vrel1 = V − Ẏ1 for the block 1 and vrel2 = V − Ẏ2 for the block 2. The parameter β is the

degree of symmetry between blocks in terms of the friction models.

Different models are proposed for the mathematical description of dry friction which mostly

differ in the way the stick phase is modeled. Here, we consider two different friction laws

displayed in Figure 4-3, the Coulomb’s friction force which is mathematical represented by

a set-valued function µF sgn(vrel), defined as

Tc(vrel) =


µF if vrel > 0

[−µF , µF ] if vrel = 0

−µF if vrel < 0

, (4-7)

where µF is the magnitude of the friction force. The other commonly used friction law is

the stiction friction, defined as

Ts(vrel) =


µd if vrel > 0

µs if vrel = 0

−µd if vrel < 0

(4-8)

where µs and µF represent the magnitudes of the static and dynamic forces, respectively,

with µs > µd. In this Chapter we use the hidden dynamics approach described in Section

2.2 to model the friction force (4-8) as a nonlinear set-valued function.
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Figure 4-3: Friction models in terms of the relative velocities of each block vreli : Coulomb

friction, Stiction friction model.

4.2.1 Dynamic modes

According to the motions of each block the dynamics of the model (4-6) can be expressed

in terms of four different modes, each one corresponding to a different ODE system. In

particular, we have: mode 11 when both blocks are moving simultaneously, mode 01 and

mode 10 when one of the blocks is stationary while the other is slipping and vice versa and

finally mode 00 when both blocks are stationary.

4.3 Dynamics of coupled oscillators with Coulomb’s

friction force

Throughout this section we will characterize the conditions for the onset of motion of the

two blocks regarding the Coulombs friction model. To begin with, let us rewrite the model

(4-6) into the state space form by setting x1 = Y1, x2 = Ẏ1, x3 = Y2 and x4 = Ẏ2, then we

have

ẋ = f(x) =


x2

µF s1 − kp(x1 − x3)− x1

x4

βµF s2 − kp(x3 − x1)− x3

 (4-9)

where, s1 and s2 switch between −1 and 1 as vrel1 = V − x2 and vrel2 = V − x4 change their

sign. Moreover, the switching surfaces are defined by

Σ1 =
{
x ∈ R4 : vrel1 = 0

}
, Σ2 =

{
x ∈ R4 : vrel2 = 0

}
. (4-10)
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We shall now characterize the attractivity of the co-dimension 1 and 2 switching surfaces,

focusing on the switching conditions from one mode to the others.

4.3.1 Slip-slip phase: mode 11

Regarding the direction of motion of each of the two blocks, the dynamics during the slip-slip

phase (mode 11) are expressed by ẋ = f(x) with

f1(x) =


x2

µF − kp(x1 − x3)− x1

x4

βµF − kp(x3 − x1)− x3

 , f3(x) =


x2

−µF − kp(x1 − x3)− x1

x4

−βµF − kp(x3 − x1)− x3

 (4-11)

where f1(x) ∈ R1 and f3(x) ∈ R3 correspond to the block moving in the same direction. In

particular, f1(x) describes the forward slipping phases of the two blocks (vrel1 > 0, vrel2 > 0),

while f3(x) describes the backward slipping phases (vrel1 < 0, vrel2 < 0). On the other hand,

when the two blocks are moving in opposite direction they are governed by

f2(x) =


x2

−µF − kp(x1 − x3)− x1

x4

βµF − kp(x3 − x1)− x3

 , f4(x) =


x2

µF − kp(x1 − x3)− x1

x4

−βµF − kp(x3 − x1)− x3

 . (4-12)

4.3.2 Slip-stick phase: mode 10

In this mode, the block 2 is stationary while the block 1 flips between left and right slip

without sticking. Thus, regarding the driver velocity V is equal to the relative velocity of

block 2, i.e. x2, the system dynamics evolve along the co-dimension 1 switching surface

Σ̂2 ⊂ Σ2. The dynamics on Σ̂ can be retrieve using the Definition 2-15. Thus, the sliding

vector field is described by

ẋ = fΣ+
2

=


x2

µF − kp(x1 − x3)− x1

x4

−kp(x3 − x1)− x3

+


0

0

0

µFβ

 s2, ∀x ∈ Σ̂2, (4-13)

where s2 is obtained by solving ∇h2(x) · fΣ+
2

(x) = 0, corresponding to

s2 =
kp(x3 − x1) + x3

βµF
(4-14)
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Replacing the ”correction term” (4-14) into (4-13), we obtain

ẋ = fΣ+
2

=


x2

µF − kp(x1 − x3)− x1

x4

0

 , ∀x ∈ Σ̂2, (4-15)

By definition, x4 = v during sliding on Σ2; therefore, we get the sliding vector field in mode

01 in compliance with the mechanical model (4-6):

fΣ+
2

=


x2

µF − kp(x1 − x3)− x1

V

0

 , ∀x ∈ Σ̂2. (4-16)

According to the exit conditions listed in Table 4-1, the sliding motion on Σ2 ceases when

|s2| = 1, i.e. either

kp(x3 − x1) + x3 = −βµF (4-17)

or

kp(x3 − x1) + x3 = βµF . (4-18)

In both cases, the system undergoes a switch in the dynamics from mode 10 to mode 11.

Note that conditions (4-24) and (4-25) are in compliance with the mechanical model, that

is, the force exerted by the springs must be bigger or equal than the friction exerted on the

block 2 in order to it start moving.

We conclude that the mode 10 corresponds to sliding on the subset

Σ̂ = {x ∈ R4 : −µFβ + kpx1 ≤ x3(1 + kp) ≤ βµF + kpx1, x4 = V } ⊂ Σ2 (4-19)

4.3.3 Stick-slip phase: mode 01

Now, we assume that the system lies in mode 01, which implies that the block 1 is in sticking

phase or sliding whereas the block 2 is slipping. Again, the system undergoes a sliding motion

of co-dimension 1, taking place on Σ̂1 ⊂ Σ. The sliding dynamics reads

ẋ = fΣ+
1


x2

−kp(x1 − x3)− x1

x4

µFβ − kp(x3 − x1)− x3

+


0

µF
0

0

 s1, ∀x ∈ Σ̂1 (4-20)
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where s1 can be seen as the force that places the dynamics (4-20) into the tangent plane Σ1.

Now, by solving ∇h1(x) · fΣ+
1

= 0 for s1, we obtain

s1 =
−kp(x1 − x3)− x1

µF
. (4-21)

Finally, by replacing s1 into (4-20), the sliding dynamics along Σ̂1 are expressed by

ẋ = fΣ+
1

=


x2

0

x4

βµF − kp(x3 − x1)− x3

 , ∀x ∈ Σ̂1. (4-22)

By definition, x2 = V during sliding on Σ1; therefore, we get the sliding vector field in mode

01 in compliance with the mechanical model (4-6):

ẋ = fΣ+
1

=


V

0

x4

βµF − kp(x3 − x1)− x3

 , ∀x ∈ Σ̂1. (4-23)

With the same reasoning as the previous section, sliding on Σ1 ceases as soon as |s1| = 1,

i.e. providing that the force exerted by the springs reach the maximum friction force

kp(x1 − x3) + x1 = µF (4-24)

or the minimum threshold

kp(x1 − x3) + x1 = −µF . (4-25)

In both cases, the system undergoes a switch in the dynamics from mode 01 to mode 11 and

the block 1 will eventually start to slip. Finally, we conclude that mode 01 corresponds to

sliding on the subset

Σ̂1 = {x ∈ R4 : −µF + x1(1 + kp) ≤ kpx3 ≤ µF + x1(1 + kp), x2 = V } (4-26)

4.3.4 Stick-stick phase: mode 00

When both blocks are stationary, the system dynamics take place on the co-dimension 2

sliding surface Σ = Σ1 ∩ Σ2. In particular, the dynamics evolve in a state space region

(x1, x3) delimited by the sticking conditions of both blocks (parallelogram), as we will see

shortly. Our great interest now resides in the corner of the parallelogram that is when both
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blocks start moving simultaneously, originating co-dimension 2 exit points. To retrieve the

sliding dynamics along Σ, let us rewrite the system (4-9) as

ẋ = Ax+ Bs12, (4-27)

where

A =


0 1 0 0

−1− kp 0 kp 0

0 0 0 1

kp 0 −1− kp 0

 , B =


0 0

µF 0

0 0

0 βµF

 (4-28)

and s12 = [s1 s2]T is a column vector composed by the switching parameters. In the multidi-

mensional case, when two or more switching manifolds interact between each other, condition

(2-13) becomes

s12 = −(GB)−1GAx =

(
1+kp
µF

0 − kp
µF

0

− kp
βµF

0 1+kp
βµF

0

)
x (4-29)

where the matrix G is composed by the normal vectors to each switching surface, h1(x) =

V − x2, h2(x) = V − x4, corresponding to

G =

(
0 −1 0 0

0 0 0 −1

)
. (4-30)

Now, by replacing (4-29) into (4-27), the sliding dynamics along Σ are giving by

ẋ = Ax+ Bs12 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

x, ∀x ∈ Σ = Σ1 ∩ Σ2. (4-31)

By definition, x2 = x4 = V during sliding on Σ; therefore, we get the sliding vector field in

mode 00 in compliance with the mechanical model (4-6):

ẋ = fΣ =


V

0

V

0

 , ∀x ∈ Σ = Σ1 ∩ Σ2. (4-32)

The system will evolve in mode 00 until the block 1 or block 2 or both start to slip, entering

mode 10/01 or mode 11, respectively.

An alternative way to retrieve the sliding vector field on Σ is considering the bilinear com-

bination method. The motion along the sliding surface is defined as

fΣ = (1− a)(1− b) f1 + b(1− a) f2 + a(1− b) f3 + ab f4, (4-33)
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where the coefficients of the combination are the solution of the system{
(1− a)(1− b)Lf1h1 + b(1− a)Lf2h1 + a(1− b)Lf3h1 + abLf4h1 = 0

(1− a)(1− b)Lf1h2 + b(1− a)Lf2h2 + a(1− b)Lf3h2 + abLf4h2 = 0
. (4-34)

We obtain

a =
βµF − x3(1 + kp) + kpx1

2βµF
, b =

x3(1 + kp + kpβ)− x1(kp + β + kpβ)

2[x3(1 + kp)− kpx1]
. (4-35)

Thus, replacing Eq. (4-35) in Eq. (4-33), we get

fΣ =


V

0

V

0

 , ∀x ∈ Σ = Σ1 ∩ Σ2. (4-36)

in agreement with the results provided by the equivalent control method (4-32). We now

wish to evaluate the first-order exit conditions

Lf
Σ+

1

h2 = 0, Lf
Σ−

1

h2 = 0, (4-37)

Lf
Σ+

2

h1 = 0, Lf
Σ−

2

h1 = 0, (4-38)

corresponding to trajectories leaving Σ and remaining on one of the four sub-sliding mani-

folds Σ+
1 , Σ−1 , Σ+

2 and Σ−2 , respectively. All cases are summarized in Table 4-3.

Exit conditions Switching dynamics

From Σ to Σ±1 kp(x3 − x1) + x3 = ±µFβ mode 00→ mode 01

From Σ to Σ±2 kp(x1 − x3) + x1 = ±µF mode 00→ mode 10

Table 4-3: First order exit conditions from sliding on Σ.

The exit conditions from Σ to Σ±2 and from Σ to Σ±1 define the onset of motion of block

1 and block 2 given in (4-24) - (4-18), respectively. We now turn to the second-order exit

conditions

Lf1h1 = Lf1h2 = 0, Lf2h1 = Lf2h2 = 0, (4-39)

Lf3h1 = Lf3h2 = 0, Lf4h1 = Lf4h2 = 0, (4-40)

corresponding to trajectories leaving Σ and entering one of the four regions R1, R2, R3 and

R4, respectively. All cases are summarized in Table 4-4 and coincide with switching from
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mode 00 to mode 11.

Exit Conditions Switching dynamics

From Σ to R1 (2kp + 1)(x1 − x3) = µF (1 + β) mode 00→ R1

From Σ to R2 (1− 2kp)(x1 − x3) = µF (1− β) mode 00→ R2

From Σ to R3 2kp(x1 − x3) + x1 − x3 = µF (1 + β) mode 00→ R3

From Σ to R4 −(2kp − 1)(x1 − x3) = −µF (1 + β) mode 00→ R4

Table 4-4: Second order exit conditions from Σ.

Finally, accordingly to the conditions listed in Tables 4-3 and 4-4, we conclude that the

region of phase space including the states in which both blocks are stationary (sticking

region) is a parallelogram in the (x1, x3) plane, enclosed between the lines

αx3 − x1(1 + kp) = ±µF , kpx1 − x3(1 + kp) = ±βµF (4-41)

The system passes from mode 00 to mode 11 when the orbit reaches one of the vertices

P1 =

(
µF (kpβ + kp + 1)

1 + 2kp
,
µF (kpβ + kp + β)

1 + 2kp

)
(4-42)

P2 =

(
µF (kpβ − kp − 1)

1 + 2kp
,
µF (kpβ − kp + β)

1 + 2kp

)
(4-43)

P3 =

(
−µF (kpβ + kp + 1)

1 + 2kp
,−µF (kpβ + kp + β)

1 + 2kp

)
(4-44)

P4 =

(
−µF (kpβ − kp − 1)

1 + 2kp
,−µF (kpβ − kp + β)

1 + 2kp

)
(4-45)

The sticking region is displayed in Figure 4-4. Finally, we note that each of the conditions

listed in Table 4-4 identify one of the vertices of the sticking region: specifically, the system

leaves Σ and enters the region Ri at the point Pi.

4.4 Dynamics of coupled oscillators with Stiction friction

force

We shall now address the analysis of the spring block system presented in the previous

Section regarding the stiction friction model (4-8). By doing so, we exploit the hidden

dynamics approach revised in Section 2.2 to mathematical describe such a friction law. The
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Figure 4-4: The sticking region of the system (kp = 1, β = 0.75, µF = 0.7).

state variables, the parameters and the tangential forces on the blocks are the same as

described earlier. Accordingly, the system (4-6) is written as

ẋ = f(x) =


x2

µd1s1 − µ1s1(1− s2
1)− kp(x1 − x3)− x1

x4

βµd2s2 − βµ2s2(1− s2
2)− kp(x3 − x1)− x3

 (4-46)

where, s1 and s2 switch between −1 and 1 as vrel1 = x2− V and vrel2 = x4− V change their

sign. Moreover, the switching surfaces are defined by

Σ1 =
{
x ∈ R4 : vrel1 = 0

}
, Σ2 =

{
x ∈ R4 : vrel2 = 0

}
. (4-47)

Similar as in the above analysis, the dynamics of the model are described by the four dynam-

ical modes, each one corresponding to a different ODE system. Due to the hidden approach

is consistent with the Filippov analysis outside of the switching manifold Σ, we exclude the

analysis of the mode 11, since is equal to performed analysis in the above section. In the

following we will characterize the attractivity of the co-dimension 1 and 2 switching surfaces

and their respective exit and entry points, focusing on the switching conditions from one

mode to the others.
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4.4.1 Slip-stick phase: mode 10

This mode occurs when the block 1 is slipping while the block 2 is stationary. Note that, in

this mode the system becomes 4-dimensional with a co-dimension 1 switching surface given

by Σ2 = {x ∈ R4 : vrel2 = 0}. We consider forward slipping motion, that is only when the

block 1 is moving in the positive direction, regarding vrel1 > 0, then we have

ẋ =


x2

µd1 − kp(x1 − x3)− x1

x4

βµd2s2 − βµ2s2(1− s2
2)− kp(x3 − x1)− x3

 , s2 ∈ [−1, 1]. (4-48)

The sliding dynamics of (4-48) can be derived by following the Definition 2.1.2. As a conse-

quence we have 3 solutions for s∗2, that solve

0 = −βµd2s2 − βµ2s2(1− s2
2)− kp(x3 − x1)− x3, (4-49)

each one, defining a sliding mode on Σ. The vector field underlying such a dynamics is then

given by

ẋ = fΣ+
2

=


x2

−µd1 − kp(x1 − x3)− x1

V

0

 . (4-50)

In order to determine whether the sliding modes are attracting or repelling, we will an-

alyze the critical manifold of the regularized version of (4-48). Thus, by introducing the

regularization parameter ε2 and setting z2 = vrel2/ε2 the system (4-48) becomes

ẋ1 = x2

ẋ2 = −µd1 − kp(x1 − x3)− x1

ẋ3 = ε2z2 − V
ε2ż2 = −βµd2z2 − βµ2z2(1− z2

2)− kp(x3 − x1)− x3

(4-51)

Now, by analyzing the limiting dynamics of the system (4-51), that is when ε2 = 0, we find

that the sliding dynamics on block 2 take place on the critical manifold defined by

C0 =
{

(x1, x2, x3, z2) ∈ R4 : −βµd2z2 − βµ2z2(1− z2
2)− α(x3 − x1)− x3 = 0

}
. (4-52)

An illustration of the blowing up process regarding the sliding dynamics evolving along C0

is displayed in Figure 4.4.1. Note that the attractive region is delimited by the black dotted

line which exactly corresponds to the point in which the critical manifold loses hyperbolicity.

Therefore, once the flow reaches C0, it evolves until the manifold loses its attractivity, which
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Figure 4-5: Sketch of a trajectory evolving along the critical manifold C0. Giving an initial

condition x+ outside of the switching layer (fast dynamics), the trajectory

reaches z+
2 (blue line) and then slides until the surface loses attractivity, that

is when z2 = z∗2

is verified through the following relation

∂

∂z2

(
−βµd2z2 − βµ2z2(1− z2

2)− kp(x3 − x1)− x3

)
= 0. (4-53)

This occurs at

z∗2 = ±
√
µd2 + µ2

3µ2

(4-54)

Now, replacing (4-54) into the critical manifold (4-52) we obtain the sliding region on Σ2

given by

Σ̂2 =

{
x ∈ R4 : −β

[
2µd2 + 2µ2

3

]√
µd2 + µ2

3µ2
≤ −kp(x3 − x1)− x3 ≤ β

[
2µd2 + 2µ2

3

]√
µd2 + µ2

3µ2

}
The above relation is also consistent with the fact that the block 2 has to reach the maximun

friction force µs2 for starting moving, when this happens, the system goes from mode 10 to

mode 11. Note that the sliding phase has a nonlinear growth, mainly induced by the selection

of the G(s) function.

A further characterization of the sliding phase can be achieved considering that, since the

dynamics must take place on the critical manifold (4-52), the derivative with respect to the

time
∂

∂t

(
−βµd2z2 − βµ2z2(1− z2

2)− kp(x3 − x1)− x3

)
(4-55)

must be equal to zero throughout sliding. Thus, we have

ż2 =
V − kpvrel1

−βµd2 − βµ2 + 3z2
2

(4-56)
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where we took into account the definition of vrel1 and also that ẋ3 = x4 = V during mode 10.

A peculiar feature stands out: the rate of change of z2 depends on the relative velocity vrel1

of block 1, reflecting the interaction of the blocks via the coupling spring. What is more, we

notice that the sign of ż2 is determined by the sign of vrel1: accordingly, the slow dynamics

on the critical manifold evolves towards the exit condition z2 = z∗2 or z2 = −z∗2 depending

on the direction of motion of block 1. This in turn determines the specific region of the state

space Ri in which the trajectory enters after leaving Σ2. The four possible cases are listed

in Table 4-5.

z2 = z∗2 z2 = −z∗2
vrel1 > 0 Σ2 → R1 Σ2 → R2

vrel1 < 0 Σ2 → R3 Σ2 → R4

Table 4-5: Switching conditions from mode 10 to mode 11 according to the nonlinear sliding

analysis.

4.4.2 Stick-slip phase: mode 01

This mode arises when the block 1 is stationary while the block 2 is slipping. Here we have

also a 4 - dimensional system with one switching manifold, but now with respect to the vrel1,

Σ1 =
{
x ∈ R4 : vrel1 = 0

}
.

We consider forward slipping for the second block (vrel2 > 0), so that the system (4-46)

becomes

ẋ =


x2

−µd1s1 − µ1s1(1− s2
1)− kp(x1 − x3)− x1

x4

−βµd2 − kp(x3 − x1)− x3

 , s1 ∈ [−1, 1], (4-57)

with s1 varying from −1 to 1 as the relative velocity vrel1 changes its sign. The sliding

dynamics along Σ1 regarding Definition 2.1.2 provides 3 solutions for s∗1 which satisfy

0 = −µd1s1 − µ1s1(1− s2
1)− kp(x1 − x3)− x1. (4-58)

By replacing the values of s∗1 into equation (4-57) we obtain the sliding vector field

ẋ = fΣ+
1

=


V

0

x4

−βµd2 − kp(x3 − x1)− x3

 . (4-59)
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Again, multiple sliding regimes arise on Σ1, to characterize them we will use the slow and

fast analysis. Thereby, we introduce a small parameter ε1 and then by setting z1 = vrel1/ε1

we get
ẋ1 = ε1z1 − V
ε1ż1 = −µd1z1 − µ1z1(1− z2

1)− kp(x1 − x3)− x1

ẋ3 = x4

ẋ4 = −βµd2 − kp(x3 − x1)− x3

(4-60)

By analyzing the regularized system (4-60) for ε1 = 0 we find that the sliding dynamics on

Σ1 take place on the critical manifold defined by

C1 =
{

(x1, z1, x3, x4) ∈ R4 : −µd1z1 − µ1z1(1− z2
1)− kp(x1 − x3)− x1 = 0

}
(4-61)

which has a geometric interpretation illustrated in Figure 4.4.2.
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1
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Figure 4-6: Sketch of a trajectory evolving along the critical manifold C1. Giving an initial

condition x∗ outside of the switching layer (fast dynamics), the trajectory

reaches C1 (blue line) and then slides until the surface loses attractivity, that

is when z1 = z∗1

Similarly, once the flow reaches the critical manifold C1, it remains there up to C1 loses

hyperbolicity, that is when

∂

∂z1

(
−µd1z1 − µ1z1(1− z2

1)− kp(x1 − x3)− x1

)
= 0 (4-62)

This occurs at

z∗1 = ±
√
µd1 − µ1

3µ1

(4-63)
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Now, by replacing (4-63) into the critical manifold (4-61) we obtain the sliding region on Σ1,
expressed by

Σ̂1 =

{
x ∈ R4 : −

[
2µd1 − 2µ1

3

]√
µd1 − µ1

3µ1
≤ −kp(x1 − x3)− x1 ≤

[
2µd1 − 2µ1

3

]√
µd1 − µ1

3µ1

}
The sliding region Σ̂1 express the fact that the block 1 has to reach the maximum friction

force µs1 for starting moving, when the system reach this threshold the transition from mode

01 to mode 11 occurs.

On the other hand, an extra characterization of the sliding phase can be achieved considering

that, since the dynamics must take place on the critical manifold (4-61), the derivative with

respect to the time

∂

∂t

(
−µd1z1 − µ1z1(1− z2

1)− kp(x1 − x3)− x1

)
(4-64)

must vanish throughout sliding, for the dynamics to evolve on the critical manifold (4-61).

Accordingly, we find

ż1 =
V − kpvrel2

−µd1 − µ1 + 3z2
1

(4-65)

where we took into account the definition of vrel2 and also that ẋ1 = x2 = V during mode

01. The interaction between the blocks emerges from the dependence of the rate ż1 on the

relative velocity vrel2 of block 2. Specifically, the sign of ż1 is determined by the sign of vrel2,

so that the slow dynamics on the critical manifold evolves towards the exit condition z1 = z∗1

or z1 = −z∗1 depending on the direction of motion of block 2. This in turn determines the

partition of the state space Ri in which the trajectory enters after leaving Σ1, as summarized

in Table 4-6.

z1 = z∗1 z1 = −z∗1
vrel2 > 0 Σ1 → R1 Σ1 → R4

vrel2 < 0 Σ1 → R2 Σ1 → R3

Table 4-6: Switching conditions from mode 01 to mode 11 according to the nonlinear sliding

analysis.

4.4.3 Stick-stick phase: mode 00

Now we focus on the 4-dimensional system with a co-dimension 2 switching surface Σ,

corresponding to stationary blocks. In this mode, the sliding dynamics take place on the

intersection of both surfaces, that is

Σ = Σ1 ∩ Σ2 =
{
x ∈ R4 : vrel1 = 0, vrel2 = 0

}
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The corresponding dynamics along the intersection are given by

ẋ = fΣ =


x2

−µd1s1 − µ1s1(1− s2
1)− kp(x1 − x3)− x1

x4

−βµd2s2 − βµ2s2(1− s2
2)− kp(x3 − x1)− x3

 , s1 ∈ [−1, 1] , s2 ∈ [−1, 1]

(4-66)

where s1 and s2 are the solutions of the equations{
0 = −µd1s1 − µ1s1(1− s2

1)− kp(x1 − x3)− x1

0 = −βµd2s2 − βµ2s2(1− s2
2)− kp(x3 − x1)− x3

(4-67)

Note that, in this case there exist 9 possible solutions for the pair (s1,s2), all of them yielding

to

ẋ = fΣ =


V

0

V

0

 (4-68)

The multiple solutions of (4-67) provide conditions linked with the exit conditions of Σ and

also with the sliding mode. These conditions will be more evident from the point of view of

slow and fast systems. Thereby, to blow up Σ, we introduce the small parameters ε1 and ε2

and then we set z1 = vrel1/ε1 and z2 = vrel2/ε2. The resulting dynamics are described by

the multiple time scale system

ẋ1 = ε1z1 − V
ε1ż1 = −µd1z1 − µ1z1(1− z2

1)− kp(x1 − x3)− x1

ẋ3 = ε2z2 − V
ε2ż2 = −βµd2z2 − βµ2z2(1− z2

2)− kp(x3 − x1)− x3

(4-69)

The limit dynamics of (4-69), for ε1 = 0 and ε2 = 0, provide a 4-dimensional critical manifold

CΣ, which can be rewrite in terms of the static friction over two block

CΣ =
{

(x1, z1, x3, z2) ∈ R4 : −F̂k1 + βF̂k2 − 2kp(x1 − x3)− x1 + x3 = 0
}

(4-70)

where

F̂k1 = −µd1z1 − µ1z1(1− z2
1), F̂k2 = µd2z2 − βµ2z2(1− z2

2)

Expression (4-70) reflects the fact that, during a global sticking phase, friction on each block

evolves in order to counteract the effect of both the external loading (x1, x3) and the force

exerted via the coupling spring.
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Now, in order to characterize the attractivity of the hyper-surface CΣ, we evaluate the

eigenvaues of Jacobian matrix J = ∂CΣ/∂z,

J =

(
−µd1 − µ1 + 3µ1z

2
1 0

0 −βµd2 − βµ2 + 3βµ2z
2
2

)
.

where the eigenvalues are given by the real numbers

λ1 = −µd1 − µ1 + 3µ1z
2
1 , λ2 = −βµd2 − βµ2 + 3βµ2z

2
2 , (4-71)

Therefore, the stability of CΣ is assured if both λ1 and λ2 are negative, which yields to

− z∗1 < z1 < z∗1 ∧ −z∗2 < z2 < z∗2 . (4-72)

Hence, sliding on the critical manifold (4-70) is attractive in the subset (4-72) and unstable

elsewhere. A detailed characterization of stability in the z1, z2 plane is outlined in Table 4-7.

z2 < −z∗2 −z∗2 < z2 < z∗2 z2 > −z∗2
z1 < −z∗1 Unstable Nodes Saddles Unstable nodes

−z∗1 < z1 < z∗1 Saddles Stable nodes Saddles

z1 > −z∗1 Unstable Nodes Saddles Unstable nodes

Table 4-7: Stability of sliding modes on the critical manifold corresponding to mode 00.

Accordingly, the critical manifold (4-70) can lose attractivity in two ways. First (unstable

nodes), as soon as one of the following four conditions is reached:

z1 = ±z∗1 ∨ z2 = ±z∗2 (4-73)

which are consistent with the co-dimension 2 exit conditions. Second (Saddles), when the

flow leaves Σ to enter in a co-dimension 1 surface. At this point, either block 1 or block 2 is

in the sticking phase (−z∗1,2 < z1,2 < z∗1,2), while the other is slipping (forward z1,2 > −z∗1,2 or

backward z1,2 < z∗1,2). The conditions on z1 and z2 with respect to the state space partition

and its corresponding vector field after switch from Σ are listed in Table 4-8.

z2 < −z∗2 −z∗2 < z2 < z∗2 z2 > −z∗2
z1 < −z∗1 R3 : f3 Σ−2 : fΣ−

2
R2 : f2

−z∗1 < z1 < z∗1 Σ−1 : fΣ−
1

Σ̂ : fΣ Σ+
1 : fΣ+

1

z1 > −z∗1 R4 : f4 Σ+
2 : fΣ+

2
R1 : f1

Table 4-8: Exit conditions from the co-dimension 2 surface Σ
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We can also characterize the switching from mode 00 to the others, as displayed in Table

4-9. The blank spaces represent the conditions for which the blocks experiment backward

slipping, which have not meaning from the physical point of view.

z2 < −z∗2 −z∗2 < z2 < z∗2 z2 > −z∗2
z1 < −z∗1 —– —– —–

−z∗1 < z1 < z∗1 —– mode 00 mode 01

z1 > −z∗1 —– mode 10 mode 11

Table 4-9: Switching conditions with respect to the dynamics modes.

Once again, we can gain an additional understanding of the characteristics of the sliding

phase by taking the time derivative of the critical manifold (4-70) and setting it equal to

zero. Subsequently, we can write the slow subsystem for z1 and z2 as(
ż1

ż2

)
= V

(
1

µd1+µ1−3µ1z2
1

1
β(µd2+µ2−3µ2z2

2)

)
(4-74)

integrated by the condition ẋ1 = ẋ3 = V when ε1 = 0 and ε2 = 0. From Eq. (4-74), we

notice that the rates ż1 and ż2 increase with V : in fact, the condition for the onset of motion

is reached faster if the velocity of the external loading is increased. What is more, a larger

β determines a smaller ż2 with respect to ż1, reflecting the greater resistance to motion of

friction on block 2 with respect to friction on block 1.

Finally, we noted that the effect of the external loading, forces the system to ignore some of

the exit conditions, see Table 4-9.

4.5 Summary

The analysis of the coupled mechanical oscillators shown that the ambiguity in selecting

the sliding vector field regarding the Filippov convex method or the equivalent control does

not appear. However the typical behavior such that stick-slip oscillations is not capture by

these approaches. Instead, by adjusting the nonlinear switching terms we can introduce a

difference between of the static and dynamic friction inducing the stick slip effect, without

needing to augment the Coulomb friction with a velocity dependence. Next Chapter we

further explore the effects of multiple switches from the point of view of synchronization. In

particular we will analyze the convergence of a network of N friction oscillators via Lyapunov

and contraction analysis.



CHAPTER 5

Synchronization in Networks of Dry

Friction Oscillators

In Chapter 4 we characterized the stick-slip dynamics of a Filippov system of co-dimension 2.

As an important application we considered two dynamically coupled mechanical oscillators

subject to dry friction. Now, we focus on the study of coupled friction oscillators from the

point of view of synchronization, where the key problem is to steer the collective dynamics

of a network of friction oscillators towards a common behavior.

In this chapter we present an extensive numerical analysis for studying synchronization in

chaotic friction oscillators, characterizing the influence of dynamic coupling and providing

an estimation of the synchronization region in terms of the coupling parameters. Initially,

we consider the simple case of two coupled oscillators, then we extend the analysis to the

case of larger networks of coupled systems with different network topologies. Moreover pre-

liminary analytical results of the convergence of a network of N friction oscillators based on

contraction analysis are presented. The obtained results are validated through a represen-

tative example.

5.1 Problem statement

Coupled mechanical oscillators exhibit different types of behavior: stick-slip motion, chaotic

regimes and fixed points, hence they have been used for comprehend many physical phe-

nomena, e.g. formation of traffic jams in a single-lane highway traffic [49], distribution
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of earthquakes [14], suspension dynamics in vehicles [4]. It is then important to under-

stand not only the single dynamics but also the collective behavior of two or more of these

systems. There exist an extensive literature in the field of friction and stick slip systems

[77, 5, 4, 92, 10], master-slave synchronization [74, 81, 93] however very few authors have

worked on synchronization of stick-slip motion by just interconnect the agents through a

communication protocol or coupling scheme [16, 17, 89, 78].

Here we consider a network of N identical friction oscillators governed by second order

dynamics of the form

ẋi(t) =

[
xi2(t)

−k1xi1(t) + T (v − xi2(t)) + F cos(ωt)

]
+ ui(t), ∀i ∈ [1, N ]. (5-1)

where xi1(t), xi2(t) ∈ R2 denote the position and velocity of the ith oscillator, respectively.

The function T (v − xi2) models the friction force and it is defined in terms of the relative

velocity vrel = v − xi2.

The systems are periodically excited by a force of amplitude F and frequency ω and ui(t) is

the input through which the state of the i-th agent is affected by that of its neighbors.

The aim is to study the emergence of synchronization by considering different coupling

dynamics. Different coupling schemes have been reported in the literature [2, 48], however

the most of them are not physically implementable. In what follows, we will explore the

effects of two possible coupling dynamics: static coupling which is mathematical described

by

ui(t) =

 0

kp
N∑
j=1

(xi1(t)− xj1(t))

 , (5-2)

with kp being a positive constant denoting the coupling gain. Physically this scheme repre-

sents that all oscillators are connected by springs of stiffness kp and therefore they adjust

their accelerations according to the position mismatches between their neighbors. The dy-

namic coupling incorporate to the network damping terms such that all oscillations adjust

their accelerations with respect to their velocities mismatches, then we have

ui(t) =

 0

kd
N∑
j=1

(xi2(t)− xj2(t))

 , (5-3)

where the parameter kd denotes the dynamic coupling strength. The problems addressed in

this Chapter are



5.2 Synchronization in two coupled chaotic friction oscillators � 67

(i) To study the effect of dynamic coupling in networks of chaotic friction oscillators.

(ii) To investigate how the topology of the network changes the parameter region where

synchronization can be attained.

(iii) To find sufficient conditions ensuring synchronization in networks of dry friction oscil-

lators.

To address these issues, we perform numerical integrations making use of the regularization

of PWS systems approach introduced in Section 2.2.1. Thus, by fixing an initial condition,

we integrate the system during a time interval [0 T ], known to have the transient solutions

settled. Next, we assess synchronization according to the error between trajectories of all

nodes e(t) = [e1(t) e2(t), . . . , eN(t)]T , defined more explicitly as

ei(t) = xi(t)−
1

N

N∑
j=1

xj(t). (5-4)

Hence, we say that the network (5-1) achieves complete synchronization if

lim
x→∞
‖e(t)‖2 = 0.

The estimation of the synchronization charts is obtained by performing numerical integra-

tions at each point of a selected region of the parameters kp and kd.

5.2 Synchronization in two coupled chaotic friction

oscillators

In this section, we consider the two coupled friction oscillators shown in Figure 5-1. The

system is composed by two blocks of equal mass m which are supported by a belt moving

with constant velocity v. The blocks are interconnected with each other by a dynamic and

static coupling functions (5-2)-(5-3), and both are subject to the same external harmonic

force of magnitude F and frequency ω.

The state space equations governing the dynamics of the two coupled oscillators can be

expressed in the form (5-1) as

ẋi(t) =

 xi2(t)

−xi1(t) + T (1− xi2(t)) + F cos(ωt)− kp
2∑
j=1

(xi1(t)− xj1(t))− kd
2∑
j=1

(xi2(t)− xj2(t))


(5-5)
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m

v

m
pk

dk

1k
1k

cos( )F tω cos( )F tω

Figure 5-1: The mechanical model under investigation, the origin of the coordinate x is

where the spring assumes its natural length.

where xi1(t), xi2(t) ∈ R2 denote the position and velocity of the ith block, for i = 1, 2,

respectively. Here, the function T (v − xi2) modeling the friction force, is chosen to be the

nonlinear function studied in [98], which is expressed as

T (v − xi2(t)) = α0sgn(v − xi2(t))− α1(v − xi2(t)) + α2(v − xi2(t))3. (5-6)

The dynamics of a single uncoupled friction oscillator have been extensively studied in the

literature, showing the existence of chaotic aperiodic stick-slip orbits for a parameters α0 =

1.5, α1 = 1.5, α2 = 0.45, F = 0.5, ω = 1.067, as also depicted in Figure 5-2, see for more

details e.g. [98, 26].
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Figure 5-2: Time evolution of the state variables of a single system (5-5), (a) position

xi1 (blue curve) and xi3 velocity (black curve). In (b) is shown an aperiodic

chaotic trajectory crossing several times the switching manifold Σ.
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5.2.1 Effect of dynamic coupling

A numerical investigation of the two blocks system interconnected with springs and/or

dampers is carried out in order to get information about the synchronous behavior. We follow

the methodology explained in Section 5.1. In doing so, we integrate numerically the system

equations (5-5) using a continuous approximation of the function (2/π)tan−1(ε(v − xi2))

(i = 1, 2). The initial conditions are selected so that the two blocks move in opposite di-

rection and also considering the fact that when the blocks are stationary their respective

velocities are equal to zero. The numerical solutions of the network regarding only the static

coupling, kp = 1 and kd = 0 is shown in Figure 5-3.
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Figure 5-3: Numerical solutions for the positions and velocities of the two blocks: (a) po-

sitions x11 (black curve), x21 (magenta curve) and velocities x12 (black curve),

x22 (cyan curve) (b). The evolution of the average synchronization error is

shown in (c).
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In Figure 5-3 it is observed the disagreement in the positions and the velocities of the two

blocks, making evident the effect of static coupling alone is not enough to guarantee that the

two blocks move with the same aperiodic stick-slip behavior. Despite the synchronization

error remains relatively small and bounded the network exhibits irregular and unpredictable

behavior.

Now, we perform the numerical analysis considering both dynamic and static coupling.

Figure 5-4 shows the time evolution of the system trajectories, by setting the coupling

parameters kp = 1 and kd = 0.5.
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Figure 5-4: Time evolution of the systems trajectories: (a) positions x11, x21 (magenta and

black curves) and (b) velocities x12, x22 (black and red curves, respectively)

In Figure 5-4 we can observe that after small transients, the network solutions converge

towards a synchronous solution, indicating that a weak damping allows that the two block
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enter into a coordinate motion.

The previous numerical analysis allows to guarantee the emergence of a synchronous behavior

for the chosen coupling parameters. Thus, in order to estimate the critical parameters kp

and kd for which the coupled oscillators achieves synchronization, we integrate numerically

the network (5-5) over a range of parameters kp, kd,∈ [0 ; 1] such that ‖e(t, x)‖ = 0. We

integrate the network during a time interval of [0 120] where the transients are known to

be settled. Moreover, we perform the analysis for two different initial conditions close to

each other in order to get local information about the stability of the synchronous network

solution in the presence of small perturbations. Then by evaluating the synchronization

error (5-4) across the selected grid for each initial condition, we obtain the estimate of the

stability charts shown in Figure 5-5.
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Figure 5-5: Synchronization diagram as a function of the coupling parameters kp and

kd for two different initial conditions (a) x∗ = [−0.7 0 0.7 0]T and (b)

x+ = [−0.63 0 0.63 0]T . The blue region represents the set of values of kp
and kd that guarantee synchronization. While yellow areas are regions of no

synchronization.

The estimation of the synchronization region in Figure 5-5 shows that for small values

of dynamic coupling kd the network achieves synchronization. Hence, accordingly to the

diagram in Figure 5-5 (a), if we choose the point kp = 0.2 and kd = 0.03 in the yellow

region, we thus have that the network does not synchronize. The time response of the

network is shown in Figure 5-6 (a). If instead we set kp = 0.7 and kd = 0.04 we have
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that the network achieves synchronization as expected Figure. 5-6 (b). The synchronization

charts do not show remarkable differences when we consider different initial conditions, which

suggests that for a small region close to the selected initial conditions, the estimations are

valid, as we saw earlier in Figure 5-6.
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Figure 5-6: Time response of a network of two chaotic friction oscillators. (a) kp =

0.2, kd = 0.03 and (b) kd = 0.04, kp = 0.7



5.2 Synchronization in two coupled chaotic friction oscillators � 73

5.2.2 Effect of regularization

In this subsection, we investigate numerically how the synchronization region changes at

varying the regularization parameter ε.
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Figure 5-7: Synchronization region at varying the regularization parameter, (a) ε = 10,

(b) ε = 100, (c) ε = 1000 and (d) ε = 10000

Note from Figure 5-7 that for values of ε > 104 the synchronization diagrams do not present

significant changes, suggesting that the values of ε which was selected for the simulations

gives accurate enough estimates of the true stability region.



� 74 5 Synchronization in Networks of Dry Friction Oscillators

5.3 Synchronization in networks of N dry friction oscillators

So far, we have investigated the synchronization of two coupled oscillators, providing some

guidelines to select the coupling strengths. In this section we investigate the influence of the

topology in a network of eight friction oscillators coupled dynamically.

5.3.1 Effect of the network topology

We consider a network of eight oscillators under two different architectures: a path graph

and an all-to-all graph, known to have opposite connectivity properties.

5.3.1.1 All-to-all network of mechanical oscillators

The network topology is depicted in Figure 5-8, where each oscillators is interconnected by

a spring of stiffness kp and a damper of strength kd. We start analyzing the system with

dynamic coupling, since as we show previously, in the absence of the damping term, the

network dynamics are unable to reach synchronization.

m

m

m m

m

m m

m

blocks

springs

dampers
+

Figure 5-8: Network of 8 mechanical oscillators subjected to dry friction, within a all-to-all

topology.
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Figure 5-9: Synchronization diagram as a function of the coupling parameters kp and kd.

The color blue indicates the parameter values that always imply synchroniza-

tion. The yellow corresponds to the values which lead to no synchronization.

First, we set the parameter kp = 0.5 and kd = 0.5 and compute numerically the system

response. The positions and velocities of all masses in the network are shown in Figure

5-10.
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Figure 5-10: Time evolution of the chaotic oscillators network. The black dash-dot line

represent the switching manifold.
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Figure 5-11: Evolution of the norm of the synchronization error

In Figure 5-9 it is possible to observe that lower dynamic coupling is required for the network

to synchronize as long as we increase the number of agents within the all-to-all topology.

5.3.1.2 Path-graph network of mechanical oscillators

We consider next a path graph network composed by 8 blocks connected by springs and

dampers, shown in Figure 5-12.
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Figure 5-12: Network of 8 periodically-forced dry friction oscillators

In Figure 5-14 we show that, when considering a path graph topology, the system takes more

time to reach synchronization. This is also reflected by the long transient of corresponding

error norm, in Figure 5-15.
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Figure 5-13: Synchronization diagram as a function of the coupling parameters kp and kd.

The color blue indicates the parameter values that always imply synchroniza-

tion. The yellow corresponds to the values which lead to no synchronization.
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Figure 5-14: Time responses: positions xi1 and velocities xi2 in a dynamically coupled

network of N = 8 mechanical oscillators.
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Figure 5-15: Synchronization error norm in a path-graph network of N = 8 mechanical

oscillators

Figure 5-13 shows that in the network of friction oscillators within the path-graph topology

as long as the stiffness of the springs is increased more damping is required for the network

to synchronize.

Table 5-1: Initial conditions

Chart IC Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

1 xi1 2 1 3.2 1.8 1.5 0.5 2.7 -3.4

xi2 0 0 0 0 0 0 0 0

2 xi1 2.5 1.5 2.2 0.6 0 1.4 1.7 -2.4

xi2 0 0 0 0 0 0 0 0

5.4 Some preliminary results on convergence analysis

In this section we apply contraction analysis of switched systems, revised in Chapter 2 to

the problem of synchronizing networks of friction oscillators. In particular, we derive a set

of conditions that need to be satisfied in order to guarantee synchronization.
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5.4.1 Convergence of an all-to-all network of mechanical oscillators

As discussed in Chapter 2, Section 2.3 the virtual system method can be used to study

synchronization via contraction. Following this methodology, the synchronization problem

is reduced to studying the convergence of a single system in the network which has an extra

term representing the interaction with the other agents in the network. In the case of net-

works of switching systems, the auxiliary system is piecewise-smooth and thus the analysis

requires proving convergence of a virtual switching system.

Here, we will use the approach based on contraction analysis via regularization presented

in [38], to prove that the virtual system associated to the network of switching systems is

contracting which in turns guarantee that the network achieves complete synchronization.

To illustrate the methodology, let us consider a network of N friction oscillators described

by the equations

ẋi(t) =

 xi2(t)− kp
N∑
j=1

(xi1(t)− xj1(t))

−k1xi1(t)− α0sgn(vrel) + F cos(ωt)− kd
N∑
j=1

(xi2(t)− xj2(t))

 (5-7)

where vrel = v − xi2(t).

Theorem 5.4.1. Consider the group of N homogeneous friction oscillators coupled dynam-

ically by springs of stiffness kp and damping strengths kd, described in equation (5-7). Let

us also assume that the network topology is a complete graph. Then if the coupling strengths

are selected so that

kp >
1

N
, kd >

1

N
. (5-8)

then, complete synchronization is achieved for the network.

Proof: An auxiliary system for the network model (5-7) can be chosen as

ẏ =

 y2 − kdNy2 + kd
N∑
j=1

xj2

−y1 − a0sgn(ṽrel) + F cos(ωt)− kpNy1 + kp
N∑
j=1

xj1

 , (5-9)

where ṽrel = v − y2. Let us rewrite the auxiliary system into the form (2-2) with

f1(y) =

 y2 − kdNy2 + kp
N∑
j=1

xj2

−y1 − a0 − kpNy1 + kp
N∑
j=1

xj1 + F cos(ωt)

 , (5-10)
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f2(y) =

 y2 − kpNy2 + kp
N∑
j=1

xj2

−y1 + a0 − kdNy1 + kd
N∑
j=1

xj1 + F cos(ωt)

 . (5-11)

and Σ = {x ∈ R2 : v − y2 = 0}. Then, the Jacobian of the virtual is given by

J1(y) = J2(y) =

[
−kpN 1

−1 −kdN

]
(5-12)

Then, from the Theorem 2.3.3 it follows that the trajectories of the nodes in the network

(5-7) exponentially converge towards each other if

µ1(J1) =

([
−kpN 1

−1 −kdN

])
≤ −c1, c1 > 0,

= max{−kdN + 1,−kpN + 1}.
(5-13)

the condition (2-54) reads

µ1 ([f1 − f2] · ∇h(x)) =

([
0

2a0

]
·
[

0 −1
])

= max{0,−2a0} (5-14)

Since max{0,−2a0} = 0, we can conclude that if the coupling strengths are chosen as

kp > 1/N, kd > 1/N , the network of friction oscillators (5-7) achieves complete synchroniza-

tion.

Note that different norms are appropriate to different problems, similar as different Lyapunov

functions have to be carefully chosen when analyzing a nonlinear system. For instance, if we

consider a different coupling in (5-7) e.g. kp = 0, the corresponding matrix measures µ1(),

µ2(), and µ∞() do not allow to verify that system is contracting. In this case, we need to

look for an invertible matrix Θ such that

µ

(
Θ
∂f

∂x
(x)Θ−1

)
< −ĉ, (5-15)

which is equivalent to the generalized contraction condition (2-47) with Θ(t, x) begin a con-

stant matrix.

A methodology to find the metric Θ is an open problem and just few approaches for specific

problems allow to find the metric Θ. In [83], the authors introduced a graphical method for

checking or imposing contraction using matrix norms. In this method the matrix Θ is con-

structed by setting some conditions on the elements of the Jacobian matrix that guarantee
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that the given system is contracting. Nevertheless, this approach does not apply when the

first element of Jacobian matrix is zero.

In the case of piecewise linear systems i.e. when ∂f
∂x

is constant, we can reformulate the

results presented in [38] as an LMI problem, so that we can use convex optimization tools

to search a candidate for the matrix Θ.

5.5 Summary

In this chapter, we have presented a preliminary study of synchronization in networks of

dynamically coupled friction oscillators. The results suggest that dynamic coupling on its

own can suffice to guarantee synchronization. Furthermore, synchronization diagrams under

different topologies indicate that as long as the connectivity of the network is lower, larger

dynamic coupling strength is required for the network achieve synchronization.



CHAPTER 6

Conclusions

In this thesis we discussed a set of relevant analysis and modeling problems for dynamical

systems with discontinuous right-hand side, taking coupled friction oscillators as a relevant

illustrative case of study. Specifically in Chapter 2 we introduced the linear and nonlinear

sliding solutions, together with the method of regularization of PWS dynamical systems.

The basic concepts of contraction theory were presented for smooth systems together with

an extension to the case of bimodal Filippov systems. A brief introduction of the synchro-

nization problem in coupled networks with diffusive coupling is also provided.

Chapter 3 introduced a numerical tool for computing basins of attraction in Filippov systems.

An extension of the simple cell mapping algorithm for planar Filippov systems is presented,

detailing how the grid is selected and describing the numerical integration method used for

dealing with sliding motions. The effectiveness of the algorithm is shown by computing the

basins of attraction of a sliding control problem and a mechanical system with dry friction.

In Chapter 4 is presented the dynamics of two coupled mechanical oscillators subject to dry

friction. Nonlinear sliding vector fields are used to model stiction friction force in systems

with two discontinuity surfaces. This analysis provides a full characterization of the nonlin-

ear siding dynamics of co-dimension 1 and higher order sliding modes, and more importantly

the ambiguity in selecting the nonlinear sliding vector field in the co-dimension 2 surface is

resolved by using the regularization approach.

In Chapter 5 the synchronization phenomena were studied numerically in networks of me-

chanical systems with friction coupled dynamically through different topologies. The effect of
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regularization in the synchronization of networks of friction oscillators is discussed. Prelimi-

nary results of the convergence of a network of N friction oscillators along with an example

validating the obtained results are presented.

Future work will need to address the cumbersome problem of studying convergence analyti-

cally in networks of coupled discontinuous systems. This is a challenging problem as coupling

discontinuous systems together gives rise to large extended piecewise smooth systems whose

dynamics is characterized by many intersecting switching manifolds in state space. Hence,

this problem is tightly linked with that of studying and classifying singularities in discontin-

uous systems of higher order.
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systemsÂ—parallel computing in nonlinear dynamics. Chaos, Solitons & Fractals,

7(10):1683–1691, 1996.

[60] Christian Kuehn. Multiple time scale dynamics, volume 191. Springer, 2015.

[61] RI Leine, DH Van Campen, and WJG Keultjes. Stick-slip whirl interaction in drill-

string dynamics. Journal of Vibration and Acoustics, 124(2):209–220, 2002.

[62] G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, E.P. Solovyeva, and A.M. Zaretskiy.

Hidden oscillations in mathematical model of drilling system actuated by induction

motor with a wound rotor. Nonlinear Dynamics, 77(1-2):277–288, 2014.

[63] DC Lewis. Metric properties of differential equations. American Journal of Mathe-

matics, 71(2):294–312, 1949.

[64] Xiaoyang Liu, Jinde Cao, and Wenwu Yu. Filippov systems and quasi-synchronization

control for switched networks. Chaos: An Interdisciplinary Journal of Nonlinear Sci-

ence, 22(3):033110, 2012.

[65] Jaume Llibre, Paulo R. da Silva, and Marco A. Teixeira. Regularization of discontinu-

ous vector fields on r3 via singular perturbation. Journal of Dynamics and Differential

Equations, 19(2):309–331, 2007.

[66] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-linear

systems. Automatica, 34(6):683–696, 1998.

[67] Winfried Lohmiller and Jean-Jacques E Slotine. Nonlinear process control using con-

traction theory. AIChE journal, 46(3):588–596, 2000.



� 90 Bibliography

[68] David Lovelock and Hanno Rund. Tensors, differential forms, and variational princi-

ples. Courier Corporation, 1989.

[69] Chuen Kit Luk, Graziano Chesi, and Dongkun Han. Guaranteed estimates of the

domain of attraction for a class of hybrid systems. In IEEE 52nd Annual Conference

on Decision and Control (CDC), 2013, pages 2024–2029. IEEE, 2013.

[70] Joanna F Mason and Petri T Piiroinen. Interactions between global and grazing

bifurcations in an impacting system. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 21(1):013113, 2011.

[71] Joanna F. Mason, Petri T. Piiroinen, R. Eddie Wilson, and Martin E. Homer. Basins

of attraction in nonsmooth models of gear rattle. International Journal of Bifurcation

and Chaos, 19(01):203–224, 2009.

[72] I. Merillas. Modeling and numerical study of nonsmooth dynamical systems. PhD

thesis, Dept. Matematica Aplicada IV, Universitat Politecnica de Catalunya, 2006.

[73] N Mihajlovic, N Van de Wouw, MPM Hendriks, and H Nijmeijer. Friction-induced

limit cycling in flexible rotor systems: An experimental drill-string set-up. Nonlinear

Dynamics, 46(3):273–291, 2006.

[74] Henk Nijmeijer and Alejandro Rodriguez-Angeles. Synchronization of mechanical sys-

tems, volume 46. World Scientific, 2003.

[75] Douglas D Novaes and Mike R Jeffrey. Regularization of hidden dynamics in piecewise

smooth flows. Journal of Differential Equations, 259(9):4615–4633, 2015.

[76] M Oestreich, N Hinrichs, and K Popp. Bifurcation and stability analysis for a non-

smooth friction oscillator. Archive of Applied Mechanics, 66(5):301–314, 1996.
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