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Introduction

The study of magnetization dynamics in ferromagnetic materials has been
of great interest in the information and communication technology (ICT)
area since the realization of the first computers. In fact, due to their atomic
structure, such materials exhibit, at room temperature and on micron scale,
uniformly magnetized regions called domains (see fig. 1). A preliminary
analysis on the magnetic behaviour of the domains reveals interesting prop-
erties. In the absence of any external excitation, one can observe that, in
general, there are certain magnetization orientations which are favored due
to the peculiar shape and crystalline structure of the material and remain
stable over long time. These orientations can be used to encode elementary
pieces of information (e.g. bits) without the need of energy supply in or-
der to store them, namely to realize bistable non volatile memories. The
typical writing mechanism of magnetic storage devices occurs by switch-
ing the domain magnetization from the initial orientation (say bit "0") to
the opposite one (bit "1") by means of an appropriate external excitation,
such as a magnetic field produced by suitable coils (e.g. hard drives) or a
spin-polarized electric current directly injected into the ferromagnet (e.g.
electrically controlled magnetic random access memories).

The general property of ferromagnetic materials lies on the fact that the
relationship between domain magnetization and external excitation exhibit
hysteresis. In other words, the final magnetization state of a ferromagnet
depends on the past history of the external excitation. For instance, one
can easily see from the typical M − H hysteresis cycle depicted in fig. 1
that, when no external field is applied, the ferromagnet shows a remanent
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ii INTRODUCTION

magnetization whose orientation may represent either bit "0" or "1". Such

M

H

a b c

Figure 1: Upper figures: granular structure of NdFeB (left), zoom of a
single grain pointing out the magnetization direction of two domains (right).
Bottom figures: magnetization of a multidomain sample. (a) no applied
field, (b) strong field, and (c) no field. At the same level on the right, a
sketch of typical hysteretic characteristic M − H for non-volatile memory
applications is reported.

hysteretic nature is the key ingredient that historically motivated their use in
storage devices. In fact, in 1952 the first magnetic core memory was realized
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for the IBM 405 Alphabetical Accounting Machine depicted in fig.2.

a b c

Figure 2: (a) Magnetic core plane of the IBM 405. (b) The first magnetic
core memory, from the IBM 405 Alphabetical Accounting Machine. The
photo shows the single drive lines through the cores in the long direction and
fifty turns in the short direction. The cores are 150 mm inside diameter, 240
mm outside, 45 mm high. This experimental system was tested successfully
in April 1952. (c) Sketch of the magnetic polarization of a single core
selected with the direction of the electric current flowing in the long and
short directions.

The working principle of that device is very simple. Each core can be
magnetized in two possible configurations (clockwise and counterclockwise)
corresponding to bits "0" and "1", respectively. The magnetization of a
selected core can be switched by addressing it with the horizontal and ver-
tical current lines which pass through the core. The field produced by a
single current line (either horizontal or vertical) is designed in a way that
is not strong enough to switch the core. Conversely, when the core is ad-
dressed by both horizontal and vertical current lines, the field is able to
switch magnetization.

Since that first realization of magnetic memory, a huge research effort
has been devoted for the improvement of its efficient implementation. On
one hand, the need for larger and larger memory capacity has pushed the
downsizing up to nanometer scale for a single stored magnetic bit. On the
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other hand, the performance levels in terms of reading and writing speed
arising from the exponential increase of consumer electronics market of the
last decades, have stimulated considerable research activity in the study of
magnetization dynamics in nanosystems.

The magnetic storage evolution starting from magnetic core memories
has produced smaller in size magnetic storage supports over time, such as
magnetic tapes, floppy disks and, finally, hard disk drives like those sitting
in desktop PCs or those used for massive information recording by cloud
storage providers.

In a modern hard disk, binary information sequences are physically
coded by changing the out-of-plane magnetization orientation along circular
tracks on a thin disk of ferromagnetic material. A single bit is constituted by
a uniformly magnetized region (nowadays bit track widths have dimensions
of tens of nm) allowing two possible orientations (up/down). The magnetic
state of a selected bit is written by applying an external magnetic field pro-
duced by a pole head (basically an electromagnet with coils traversed by
electric current). The positioning of the write head over the target magnetic
bit is realized by means of a sophisticated electromechanical system.

The reading mechanism relies on a magnetic sensor, called spin valve,
which exploits the giant magneto-resistive (GMR) effect. Basically, a spin
valve is constituted by a multi-layer magnetic system where two layers are
made of ferromagnetic material. The former is called free layer since mag-
netization change may occur. The other one, termed fixed layer, has mag-
netization artificially pinned to a given orientation. When suitable electric
current traverses the multi-layer, significant changes in the electrical resis-
tance of the device may occur depending on the mutual orientation of the
magnetization in the free and fixed layer. In particular, the lowest (high-
est) resistance corresponds to parallel (anti-parallel) orientations of free and
fixed layers. This behavior can be used to read magnetic bits on the record-
ing medium. Basically, the spin valve placed in the read head is brought
almost in contact with the recording medium. Then, when the head moves
over it, the free layer magnetization is affected by the magnetic field created
by magnetized bits. Thus, by observing the time-variation of the electri-
cal resistance of the GMR head, the bit sequence stored on the recording
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medium can be reconstructed.
The discovery of GMR effect allowed the rapid downscaling of hard disk

drives technology and has been recognized as the starting point for the era
of spintronics, where the close integration of magnetic and electronic devices
is expected to produce an effective alternative to semiconductor electronics.
The scientists Albert Fert and Peter Gruenberg who discovered this effect
have been awarded with the Nobel Prize for Physics in 2007.

Figure 3: State-of-the-art for hard disk drive products. Upper: ferromag-
netic disk layer with the read/write branch (left). Sketch of the constraints
in magnetic recording (right). Bottom: historical evolution of the informa-
tion density in the hard disk drives production over years.

As mentioned before, intensive research activity is devoted to increase
the information density and reduce the energetic cost of the writing and
reading process. The issues to deal with in order to reach the objective, can
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be summarized in the so-called magnetic recording trilemma, which can be
illustrated as follows. For a given device dimension, an increase of the infor-
mation density would require a reduction of the bit track width. However,
smaller track widths (magnetized bit volumes) are more sensitive to the
effect of thermal fluctuations which tend to destroy the spatial coherence
of ferromagnetic order and, consequently, to lower the signal to noise ratio
(SNR) of the information reading process. Thus, in order to guarantee a
sufficient durability of the stored information against thermal fluctuations
(e.g. at least in the order of years), an increase in the magnetic material
anisotropy which favors the stability of magnetized bit orientation would
be needed. This in turn would lead to an increase of the required writing
magnetic field and, consequently, of the Joule effect losses.

From the outlined framework, the design of a magnetic storage device
has always to cope with the above tree issues, represented by the vertices
of the triangle depicted in fig.4. This represents the current challenge for
data storage engineering.

Figure 4: New technologies in hard drive storaging.

Several solutions have been proposed to overcome the constraints emerg-
ing from the magnetic recording trilemma. In fig.4, the roadmap for hard
disk information density is reported for different proposed technologies.

Schematically speaking, recording schemes as heat-assisted and
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microwave-assisted magnetic recording (HAMR,MAMR) aim to reduce the
energy spent in the writing process, while nano-engineering of the recording
medium as bit-patterned-media (BPM) allow to reduce the dimensions of
single magnetized bits (magnetic islands). Furthermore, shingled magnetic
recording (SMR) allows to increase the SNR by means of processing the
signal coming from simultaneous reading of multiple adjacent tracks.

The hard disk drive is the most widespread magnetic storage device due
to its low cost per gigabyte compared to competing solutions. However,
especially in the last decade, electrically-controlled magnetic random access
memories (MRAMs) are rapidly emerging to become the leading magnetic
storage technology. In fact, non volatile MRAM designs are proving to
be fast, scalable, energy efficient, and robust to electromagnetic interfer-
ences. This kind of memory has the typical cell-array structure (see fig.5)
where each cell is a spin-valve-like structure called magnetic tunnel junction
(MTJ). The free layer has a perpendicular (out-of-plane) anisotropy and its
magnetic state encodes a single bit. The reading process occurs thanks to
the tunnel-magneto-resistance (TMR) effect, analogous to the GMR effect
described before, while the information can be written via switching of the
free layer magnetization by injecting an appropriate electric current through
the multi-layer. This is accomplished by the addressing current lines of the
cell-array which properly select the desired cell for reading or writing. In
this respect, this mechanism is similar to the original one used to write a
bit in the core memory (see fig.2), but here the magnetization is switched
directly by the electric current instead that by using the field produced by
the current. This feature is essential for the scalability of MRAMs and is
ascribed to the so-called spin-transfer-torque (STT) effect, which can be
thought as dual with respect to GMR/TMR-like effects.

The spin-transfer-torque (STT), discovered in 1996 by J.C. Slonczewski
and L. Berger independently, opened new possibility of realization of solid
state ferromagnet-based memory devices. In fact, magnetization dynamics
in this devices is excited directly by the electric current which acquires
a spin polarization passing through the ferromagnetic layer with a fixed
magnetization. Such a technology is really promising and pushes towards
the use of STT memory devices in any context which requires data storage,
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Perpendicular-MTJ

Free-Layer
Tunnel-Barrier
Pinned-Layer

a

c b

Figure 5: (a) Sketch of the cell-array structure of an MRAM device. (b)
Single bit-cell of an STT-MRAM. (c) Example of STT-MRAM device com-
mercialized

namely toward a universal memory device. At the present time, the STT-
MRAMs are already present on the market and considerable research is
being performed in order to optimize the performance of both materials
and reading/writing processes.

The STT effect indeed opened new perspectives for the realization of
spintronic devices integrable with CMOS electronics. Examples of such
devices are spin-torque nano-oscillators (STNOs), which implement tunable
microwave generators on nanoscale with output frequencies ranging from
several hundreds of MHz to several tens of GHz. The working principle
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relays on the fact that a dc electric current flowing through a magnetic
multi-layer structure is able to sustain a steady-state magnetization self-
oscillations regime.

The STNOs have great potential for advanced wireless applications due
to their current tunability and integrability with the semiconductor tech-
nology. However the microwave power emitted by a single STNO is quite
low (in the range of nW) and the oscillation linewidth is still poor compared
to common LC electronic oscillators. For these reasons, considerable efforts
are currently in progress in order to overcome these issues.

This is the motivation for the research activity that will be illustrated
in the following chapters.

In chapter 1, the fundamental of micromagnetics are presented. First, an
approach in terms of the free energy associated with the magnetic body will
be presented to derive the static equilibrium conditions for magnetization
vector field. Then, the dynamical effects due to the gyromagnetic precession
are introduced with a Lagrangian approach. Both Landau-Lifshitz (LL) and
Landau-Lifshitz-Gilbert (LLG) equation are presented. Then, the spin-
transfer-torque is introduced along with the LLG equation generalized with
the Slonczewski spin transfer torque term (LLGS equation). Finally, the
collective variables approach to magnetization dynamics is introduced.

In chapter 2, the study of uniformly magnetized nanoparticle of ellip-
soidal shape is presented. A preliminar discussion on the presence of the
uniform motion of the magnetization is followed by the study of the mag-
netization statics. First the solution of the Brown’s equations in case of
zero applied field and then the Stoner-Wohlfarth theory are presented. The
study of statics is followed by the introduction of the uniform magnetiza-
tion dynamics. In this last part of the chapter the analytical techniques to
study quantitatively and qualitatively the switching and the self-oscillation
dynamics are presented.

In chapter 3, the study of magnetization dynamics in uniformly magne-
tized MTJ devices with perpendicular anisotropy is addressed. This study
is instrumental to reduce the threshold currents which trigger magnetiza-
tion dynamics. In particular, we consider a device where the second order
anisotropy has measurable and determinant effects in both magnetization
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switching and self-oscillatory dynamics. This system is first analyzed in the
configuration where the polarizer is perpendicularly magnetized, and con-
ditions for switching dynamics are analytically determined by using appro-
priate perturbation techniques. Then, the configuration with an in-plane
polarizer is addressed in order to study the self-oscillations regime. The
theoretical predictions are validated by full micromagnetic simulations.

Finally, in chapter 4, the oscillations regimes of a point-contact device
with magnetic vortex configuration are studied. In particular, we first study
the self-oscillations of the magnetic vortex around the nano-contact excited
by dc spin-polarized current. To this end, a reduced order analytical model
is developed by using a collective variables description of the vortex dynam-
ics. Then, the synchronization of current-driven vortex oscillations with a
circularly polarized microwave field are considered. By using bifurcation
theory on the reduced order model, we are able to derive all the possi-
ble oscillation regimes as well as the transition mechanisms among them.
The theoretical results, confirmed by full micromagnetic simulations, show
a large hysteresis effect in synchronization which may be instrumental to
enhance the synchronization of multiple nano-oscillators.



Chapter 1

Fundamentals of
Micromagnetic dynamics in
nanosystems

Abstract

This chapter of the thesis is devoted to explain the fundamentals of the
micromagnetic theory. We start from the formulation of the magnetostatic
problem of a magnetized body. We show that the problem can be for-
mulated by following two approaches. The first and usual approach is to
complement the Maxwell magnetostatic equations with the constitutive re-
lation of the magnetic material. The second approach is to formulate the
problem as the minimization of an appropriately defined free energy func-
tional. When the constitutive relation is monotonic, the solution of the
magnetostatic problem is unique. In the energy formulation, the monotonic
constitutive equation corresponds to a convex free energy functional. The
approach based on energy can be easily generalized to the case when the
energy functional is not convex, which is the case of interest when hysteresis
phenomena are important. For this reason, this is the preferred approach.
By using the expression of the energy functional, the free energy density ap-

1
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propriate for ferromagnetic materials, we arrive to the micromagnetic free
energy functional. The minimization of this functional leads to the Brown’s
equations. Then, we focus our attention on the dynamical magnetization
processes responsible of the relaxation of the magnetization toward the mi-
cromagnetic equilibria. These processes are dissipative and are described by
the Landau-Lifshitz equation. Finally, we consider the generalization of the
Landau-Lifshitz equation which includes the spin-transfer-torque effects.

1.1 Magnetostatics of a magnetized body

Let us consider a ferromagnetic body occupying a region Ω and subject to a
constant applied field Ha. This field is produced by a given current density
distribution J0 distributed over the region Ω0. In these conditions, we want
to determine the distribution of the magnetization vector field M in the
ferromagnetic body. The total magnetostatic field, is given by

H = Ha +HM , (1.1)

where HM is the field produced by the the magnetized body. The applied
field Ha can be found by solving the following equations

∇×Ha = J0 ,

∇ ·Ha = 0 ,
(1.2)

which leads to the Biot-Savart formula:

Ha(rP ) =
µ0

4π

∫
Ω0

J(rQ)× rPQ
r3
PQ

dVQ , (1.3)

where rPQ = rP − rQ, and where rP and rQ are the position vectors of the
points P and Q, respectively.

The fieldHM is related to the magnetizationM by the following system
of equations:

∇×HM = 0 ,

∇ ·HM = −∇ ·M ,
(1.4)
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subjected to the appropriate interface conditions at the body surface.
In order to find a solution of eqs.(1.4), these equations have to be com-

plemented by a constitutive relation connecting the values of H and M .
In the case when we neglect hysteresis phenomena, and the constitutive
relation is memoryless (static), the constitutive relation is of the following
type

H = H(M) ,

where H(M) is a invertible vector function of M . The assumption of
absence of hysteresis phenomena requires that∮

H · dM =

∮
H(M) · dM = 0 , (1.5)

for any cyclic magnetization variation. This amounts to say that

H(M) =
1

µ0

∂ϕ

∂M
, (1.6)

where ϕ(M) has the physical dimension of an energy per unit volume.
By using eq.(1.1), we arrive to the following equation

Ha +HM = H(M) , (1.7)

which relates HM and M .
By solving the system of equations (1.4), we can express the field HM

is terms of M by the following integro-differential operator:

HM [M ] = −∇P
4π

[∫
Ω

∇Q ·M(Q)

rPQ
dVQ −

∫
∂Ω

M · nQ
rPQ

dSQ

]
. (1.8)

Then, by substituting eq.(1.8) in eq.(1.7), we arrive to the following equation
involving only the vector field M :

Ha +HM [M ] = H(M) . (1.9)

This problem has a unique solution when the constitutive relation is
monotonic. This means that the following condition is satisfied:

M2 6= M1 ⇒ (H(M2)−H(M1)) · (M2 −M1) > 0 , (1.10)
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Let us prove the above statement. We assume the existence of two distinct
solutions M1 and M2 of the problem (1.9): Ha + HM [M1] = H(M1),
Ha +HM [M2] = H(M2). By taking the difference of these two equation
we arrive to the equality:

∆HM = HM [∆M ] = H(M2)−H(M1) , (1.11)

where
∆M = M2 −M1 ,

∆HM = HM [M1]−HM [M2] .

We also define the field

∆B = µ0 (H(M2)−H(M1) + ∆M) = µ0 (∆HM + ∆M) ,

Then, we can write:∫
Ω∞

∆B

µ0
·∆HM dV =

∫
Ω

∆HM ·∆M dV +

∫
Ω∞

|∆HM |2 dV , (1.12)

where Ω∞ is the whole space. Since the vector field ∆B is solenoidal and
the vector field ∆HM is conservative then∫

Ω∞

∆B ·∆HM dV = 0 . (1.13)

In addition, from eq.(1.11) and the monotonicity of the function H(M) it
turns out that ∫

Ω
∆HM ·∆M dV > 0 .

From the above considerations we arrive to a contradiction as in eq.(1.12)
the sum two positive quantities would be equal to zero. Therefore the
uniqueness of the solution of the magnetostatic problem formulated as in
the eq.(1.9) is proved.
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Next we formulate the above problem as a minimization problem of an
appropriate functional. In order to do that, let us consider the following
functional:

G(M ,Ha) =

∫
Ω

(
ϕ(M)− µ0

2
HM ·M − µ0Ha ·M

)
dV , (1.14)

and its first variation with respect to an arbitrary variation of the magne-
tization distribution δM , keeping fixed the applied field distribution Ha:

δG(M ,Ha)|Ha =

∫
Ω

(
∂ϕ

∂M
− µ0(HM +Ha)

)
· δM dV . (1.15)

At this point, by imposing the condition

δG(M ,Ha)|Ha = 0 ⇒ 1

µ0

∂ϕ

∂M
= H(M) = Ha +HM [M ] , (1.16)

we obtain again the eq.(1.9) of the magnetostatic problem. The monotonic-
ity property expressed in the eq.(1.10) is a sufficient condition to prove that
the functional G is convex, namely

δ2G|Ha =

∫
Ω

(
δM · ∂

2ϕ

∂M2
· δM − µ0HM [δM ] · δM

)
dV > 0 , (1.17)

where δ2G is the second order variation of G. This means, that the mag-
netization field solution of the magnetostatic problem formulated as in the
eq.(1.9), is a minimum of G. In order to show that, let us consider the rela-
tion (1.9) when M1 = M and M2 = M + δM , where δM is an arbitrary
small magnetization field variation (|δM | � |M |). In this framework, the
equation (1.10) can be written as

δH(M) · δM ≈ δM · ∂
2ϕ

∂M2
· δM > 0 , (1.18)

where the right hand side of the equality is the first member in eq.(1.17).
At this point, the the last step to prove the convexity of G is to show the
following relation ∫

Ω
−µ0HM [δM ] · δM dV > 0 . (1.19)
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Since it holds the decomposition: δM = δB/µ0 −HM [δM ], we can write
the following equation:∫

Ω
−µ0HM [δM ]·δM dV = −

∫
Ω∞

HM [δM ]·δB dV +

∫
Ω∞

µ0|HM [δM ]|2 dV .

(1.20)
Since the vector field δB is solenoidal and the vector field δHM is conser-
vative then ∫

Ω∞

δB ·HM [δM ] dV = 0 . (1.21)

This means, that the relation (1.19) is proved. In fact, we can write:∫
Ω
−µ0HM [δM ] · δM dV =

∫
Ω∞

µ0|HM [δM ]|2 dV > 0 . (1.22)

So with the energy representation (functional formulation) we show that the
uniqueness of the solution to the magnetostatic problem corresponds to have
a convex energy functional G where the solution is the magnetization field
M which minimizes it. The convexity of G is ensured by giving a monotonic
constitutive relation which relates the total magnetostatic field H and the
magnetization field M . The direct consequence of the uniqueness is the
absence of hysteresis in the magnetization process. In fact, the uniqueness
property ensures a one-to-one correspondence between the applied field and
the magnetization field of the magnetic body. However, when the condition
(1.10) is not satisfied anymore, we have that the functional G shows several
minima and maxima. The set of minima represents the possible solutions of
the equation (1.9) . As a consequence of the multiplicity of minima we have
hysteresis in the magnetization process. To illustrate that, let us consider
the following one dimensional version of the problem (1.10):

∂ϕ

∂x
= ha + hM (x) . (1.23)

The role of the magnetization is taken by the one dimensional variable x
and the quantities ϕ(x) and hM (x) are so defined:

ϕ(x) =
c4

4
x4 +

c2

2
x2 ,

hM (x) = −cχx .
(1.24)
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Figure 1.1: Representation of the solutions (ha, x) of the equation (1.25).
Parameters value: c4 = 2 and cχ + c2 = −1.

where the variable ha is externally controlled. Then the solution of the
prolem (1.23), (1.24) can be addressed to the solution of the following poly-
nomial equation:

∂g

∂x
= c4x

3 + (c2 + cχ)x− ha = 0 , (1.25)

where the function g(x) = ϕ(x)− 1
2hM x−ha x play the role of G. In fig.1.1

is shown the graphical solution of the equation (1.25). It is possible to see
that when ha < h−a and ha > h+

a , there is one single solution. However,
when h−a < ha < h+

a , the equation (1.25) admits two solutions (minima
of g), represented in figure with black dots. If we imagine that x is the
outcome of an experiment, for value of ha in the interval h−a < ha < h+

a

which x value is observed depends on the hystory of ha. The possibility
to have different solutions x for the same value of ha leads to a dispersive
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relationship over the time between x and ha. This remarkable fact, is the
evidence of the hysteresis as a consequence of the multiplicity of possible
configurations.

1.2 Thermodynamics of a magnetized body

In this section we show that the variational principle expressed in the equa-
tion (1.16), in the framework of thermodynamics, corresponds to the mini-
mization of a properly defined Gibbs free energy.

The first step to do so is the calculation of the work necessary to mag-
netize the body under consideration. In order to magnetize the body, we
have to change the applied magnetic field and this is achieved by changing
the current distribution J0. In order to avoid dissipation of energy due
to radiation, we do this process quasi statically. The current is increased
by using appropriate electromotive fields Eg. It balances the electric field
induced by the change of the magnetic field which is given by

E = −∂tA ,

where A is the potential vector associated to the magnetic flux density and
where the Coulomb Gauge ∇ ·A = 0 is used. The work per unit of time
made by the electromotive force Eg = −E is then given by

dLtot
dt

=

∫
Ω∞

Eg · J0 dV =

∫
Ω∞

∂tA · ∇ ×H dV =

=

∫
Ω∞

[−∇ · (∂tA×H) +H · ∂tB] dV =

=

∫
Ω∞

H · ∂tB dV ,

(1.26)

which can be written as:

dLtot
dt

=
d

dt

(∫
Ω∞

1

2
µ0H

2 dV

)
+

∫
Ω
µ0H · ∂tM dV . (1.27)
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The last step made in the equation (1.26) can be justified by proving the
following relation: ∫

Ω∞

∇ · (∂tA×Ha) dV = 0 . (1.28)

To this purpose, let us consider a region of space ΩR of spherical shape with
radius R. When R→∞ the sphere cover the whole space, then ΩR → Ω∞.
The first integral in the equation (1.28) can be written as∫

Ω∞

∇ · (∂tA×Ha) dV = lim
R→+∞

∫
ΩR

∇ · (∂tA×Ha) dV =

= lim
R→+∞

∫
∂ΩR

∂tA×Ha · dSΩR
= 0 .

(1.29)

since for R→∞ |∂tA| → 0 as O(1/R) and |Ha| → 0 as O(1/R2).
The work per unit of time dLtot/dt is necessary to both increase the energy
of the field and to magnetize the material body. We postulate that the
energy stored in the field is given by the following formula:

WH =

∫
Ω∞

1

2
µ0H

2 dV . (1.30)

Accordingly, the second term at the righ hand side of equation (1.27) is
identified as the work per unit of time made to magnetize the magnetic
material and it is expressed by the following relation:

dL

dt
=

∫
Ω
µ0H · ∂tM dV . (1.31)

Notice that in the equation (1.31) H can be viewed as a generalized force
and M as a generalized displacement conjugated with that force. There-
fore, we can infer that the work done per unit volume is ∂tl = µ0H · ∂tM .
The second step of this treatment is to write the principles of the thermo-
dynamics for the magnetic body. Let’s assume the body in contact with
a thermal bath at fixed temperature T . The temperature distribution in-
side the body is considered uniform and equal to T . Moreover we assume
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that it is possible to divide the body in small volumes which are small from
macroscopic point of view but still large from molecular point of view. This
means that each small volume contains a large number of elementary par-
ticles (atoms or molecules) so we can define the thermodynamic properties.
Then we make the assumption of the local equilibrium: each of these ele-
mentary volumes is assumed to be in thermodynamic equilibrium so that
we can apply the laws of thermodynamics locally. This means that the
thermodynamic state of the generic elementary volume ∆V is characterized
by assigning the following thermodynamic properties:

∆U = u∆V ,

∆S = s∆V ,

∆µ = M ∆V .

(1.32)

where ∆U, ∆S, and ∆µ are the internal energy, the entropy and the mag-
netic dipole moment, and where u, s, and M , are the respective densi-
ties per unit volume (intensive thermodynamic properties). In an arbitrary
transformation, the internal energy and the entropy change according to the
first and the second principle of thermodynamics which can be expressed
by the following relations respectively:

d∆U

dt
=
d∆L

dt
+
d∆Q

dt
,

d∆S

dt
=

1

T

d∆Q

dt
+
d∆Si
dt

,

(1.33)

where ∆L is the work made on the elementary volume while ∆Q = q∆V
is the energy absorbed by the volume from the thermal bath in form of
heat and ∆Si = si ∆V is the entropy production. Notice that ∂tsi ≥ 0.
By substituting the equation (1.31) in the equations (1.33) and by writing
them in terms of the intensive thermodynamic properties (u, s), we obtain
the following set of equations:

∂tu = µ0H · ∂tM + ∂tq ,

∂ts =
1

T
∂tq + ∂tsi .

(1.34)



1.2. THERMODYNAMICS OF A MAGNETIZED BODY 11

Moreover, by substituting the second equation in the first one we obtain
the following equation:

∂tu = µ0H · ∂tM + T∂t(s− si) . (1.35)

At this point, since we assume valid for the small volume at the thermo-
dynamic equilibrium a relation like u = u(s,M), it is more convenient to
work with a thermodynamic potential where the independent variable is
the temperature and not the entropy. Let us introduce the Helmholtz free
energy density by the following Legendre transformation:

f = min
s

(u− Ts) = f(T,M) , (1.36)

from which follows the following differentiation relation:

∂tf = ∂tu− T∂ts− s ∂tT = ∂tu− T∂ts , (1.37)

where the last equality is a consequence of the fact that the temperature
of the thermal bath is constant. The equation (1.35) written in terms of f
becomes

∂tf = µ0H · ∂tM − T∂tsi , (1.38)
which for an arbitrary reversible transformation produces the following re-
lation:

H = Ha +HM =
1

µ0

∂f

∂M
. (1.39)

Once obtained the equations governing the time evolution of the density of
the thermodynamic properties, let us introduce the internal energy U , the
entropy S, the entropy production Si and the Helmholz free energy Fm for
the magnetic body:

U =

∫
Ω
u dV ,

S =

∫
Ω
s dV ,

Si =

∫
Ω
si dV ,

Fm(T,M(.)) =

∫
Ω
f(T,M(r)) dV .

(1.40)
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In this respect, the equation (1.38) for the integral quantities takes the
following form

dFm
dt

=

∫
Ω
µ0H · ∂tM dV − T dSi

dt
, (1.41)

which introducing the energy term:

F = Fm −
∫

Ω

µ0

2
HM ·M dV , (1.42)

and taking into account the following

d

dt

∫
Ω

µ0

2
HM ·M dV =

∫
Ω
µ0HM · ∂tM dV , (1.43)

is written as:
dF

dt
=

∫
Ω
µ0Ha · ∂tM dV − T dSi

dt
. (1.44)

At this point, introducing the Gibbs-Landau free energy so defined:

GL = F (T,M(.))−
∫

Ω
µ0Ha ·M dV = GL(T,Ha;M(.)) , (1.45)

we have
dGL
dt

= −
∫

Ω
µ0M · ∂tHa dV − T

dSi
dt

, (1.46)

which for transformations at stationary applied field ∂tHa = 0 becomes:

dGL
dt

= −T dSi
dt
≤ 0 . (1.47)

We obtain a minimization principle for the Gibbs-Landau potential. Indeed,
as stated in equation (1.47) in an arbitrary transformation at constant tem-
perature and stationary applied field can only decrease. In a transformation
where the magnetization field changes, the conditions for a stable equilib-
rium are therefore:

δGL|(Ha,T ) =

∫
Ω

(
∂f

∂M
− µ0Ha

)
· δM dV = 0 ,

δ2GL|(Ha,T ) > 0 ,

(1.48)
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namely the magnetization field of equilibrium is a minimum of GL respect
to any change of the magnetization distribution M(.) consistent with the
constraint of uniform and constant temperature T and stationary applied
field distributionHa(.). In other words, the convexity of the Gibbs-Landau
free energy guarantees the stability of the equilibrium magnetization state
for every magnetization perturbation occuring at constant applied field and
temperature value. In presence of multiplicity of local minima (multista-
bility), such a concept of stability no holds anymore. In fact for a suffi-
ciently large time scale, it is expected that the thermal fluctuations make
the system visit all the magnetization configurations satisfying the condi-
tions (1.48). This means that the stability has to be referred for a certain
time scale. For this reason one speaks about metastability of a magnetic
state. Interestingly the energetic formulation of the magnetostatic problem
expressed in the equations (1.14),(1.16) and (1.17) can be connected to the
thermodynamics of a magnetized body exposed in this section. In fact, once
is recognized the equality ϕ(M) = fm(T ;M), we obtain G = GL. This
connection add a new information about the potential ϕ(M) introduced
talking about the constitutive relation. In fact, it is the Helmholtz free-
energy of the magnetic body.
In the next section we characterize the two fundamental interactions origi-
nating the properties of ferromagnetic materials: exchange and anisotropy.
Their mathematical description is used to characterize the Helmholz free-
energy density f(M), so far not revealed. In this way, we constitute the
Gibbs-Landau free energy functional standing on the basis of the micro-
magnetic theory.

1.3 Exchange and Anysotropy

Two basic mechanisms are at the roots of the magnetic behaviour of ferro-
magnetic materials: exchange and anisotropy. Exchange derives from the
combination of the electrostatic coupling between electron orbitals and the
necessity to satisfy the Pauli exclusion principle. It results in spin-spin in-
teraction that favours long-range spin ordering over macroscopic distances.
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Anisotropy is instead mainly related to interactions of electron orbitals with
the potential created by the hosting lattice. As well as the lattice symmetry
is reflected in the symmetry of the potential, the spin orientation along cer-
tain symmetry axes of the hosting lattice becomes energetically favoured.
In the following we start considering first the exchange interaction and then
the anisotropy one. The study of the exchange interaction is splitted in two
parts. In the first one we use the Weiss molecular field description to argue
the spontaneous magnetization when the temperature is below the Curie
value of the ferromagnet. In the second instead, a nonuniform magnetiza-
tion distribution is considered and the associated free energy is derived. The
anisotropy interaction is treated with symmetry arguments without going
into the details of its physical origin.

Exchange

We start with a brief discussion of paramagnetism, which is the natural
basis for the description of the exchange interaction in the ferromagnetism.
Let us consider a paramagnet made by an assembly of identical noninter-
acting magnetic moments µi of strength µ, subject to the action of the
uniform external fieldHa. Each moment has a potential energy −µ0Ha ·µi
in the external field. Moreover, we consider the case where the moments
are quantum moments with spin 1/2. Only two states are then possible,
where the magnetic component along the field is either +µ or −µ. The
ensemble is in contact with a thermal bath with fixed temperature equal to
T . The probability for a given magnetic state {µ1,µ2, . . . ,µN} of the en-
semble obeys in the thermodynamic equilibrium condition to the following
Boltzmann statistics:

p(µ1,2,...,N ) =
1

Z
exp

(
−
∑N

i=1−µ0Ha · µi
kBT

)
=

1

Z
exp

(
µ0HaMµ ∆V

kBT

)
,

(1.49)
where Mµ is the magnetization of the ensemble along the field direction for
the magnetic state considered, ∆V the volume of the paramagnet and the
term Z is called partition function [2]. Since the sum of the probabilities of
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the all possible states is equal to 1, the partition function must be given by
the following equation:

Z =
∑
states

exp

(
−−µ0HaMµ ∆V

kBT

)
=

=
N∏
i=1

( ∑
states,µi

exp

(
−−µ0Ha · µi

kBT

))
= ZNµ ,

(1.50)

where Zµ single-moment partition function given by the following equation:

Zµ = exp

(
µ0Haµ

kBT

)
+ exp

(
−µ0Haµ

kBT

)
= 2 cosh a , (1.51)

and the quantity a is the argument of the exponential functions. Notice
that the inversion between the summation and product structure in equa-
tion (1.50) can be done due to the assumption of noninteracting magnetic
moments. From the expression of the partition function (see eq. (1.50)), we
can quickly calculate the average magnetizationM of the ensemble, namely:

M =
1

Z

∑
states

Mµ exp

(
−−µ0HaMµ ∆V

kBT

)
= −N kBT

µ0∆V
∂Ha logZµ , (1.52)

where substituting eq.(1.51) one obtains the following expression:

M =
N µ

∆V
tanh

(
µ0Haµ

kBT

)
= M0 tanh a . (1.53)

Fixed the temperature for small field values the magnetization depends lin-
early by the field while for Ha → ±∞ ⇒ M → ±M0 respectively. In
the case a � 1 we have M ≈ χHa, with χ(T ) = C

T . This last quantity
is the magnetic susceptibility and its temperature dependence is known as
the Curie law. In a ferromagnet, it is observed spontaneous magnetization
also in case Ha = 0. This means that the simple theory of paramagnetism
cannot take into account the ferromagnetism. However, since the sponta-
neous magnetization is the result of a strong interaction field which favors
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collective alignment of the moments along the magnetization direction, it
seems reasonable as a first approximation, to postulate for the interaction
field the following expression:

HW = NWM , (1.54)

where HW is named Weiss molecular field and the term NW measures the
strength of the interaction. Under the presence of HW each moment expe-
riences an effective field that is sum of the applied and the molecular field.
In this respect, eq.(1.53) becomes:

M = M0 tanh

[
µ0 µ

kBT
(Ha +NWM)

]
. (1.55)

Introducing the normalized magnetization x = M/M0, he normalized ex-
ternal field ha = Ha/(NWM0) the quantity TC = (µ0 µNWM0)/kB and the
normalized temperature T = T/TC , the equation (1.55) can be written as:

x = tanh

(
x+ ha
T

)
. (1.56)

In figure 1.2 is plotted the solution of this equation for different values of ha.
When Ha = 0 for T � TC we have M ≈M0 with T = 0→ M = M0. This
means that when the temperature is well below the value TC a spontaneous
magnetization occurs. When T ∼ TC instead, we have M � M0 and
for T = TC → M = 0. The temperature TC is a threshold value after
which the ferromagnet behaves like a paramagnet. For this reason, it is
a characteristic temperature of the ferromagnet considered, called Curie
temperature. Close to the Curie point, for T > TC with low value of
the external field ha � 1, equation (1.55) can be approximated by the
following expression: M = χ(T )Ha, where the temperature dependence of
magnetic susceptibility for a ferromagnet is expressed by the Curie-Weiss
law: χ(T ) = C

T−TC . In the following, fixed the temperature T , we shall refer
to the spontaneous magnetization with the symbol Ms = Ms(T ). Starting
from the equation (1.56), we can calculate the amount of exchange energy
when the magnetization is uniform and its strength is equal to Ms(T ). By
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Figure 1.2: Spontaneous magnetization in function of the temperature for
different values of the external field.

inverting the hyperbolic tangent in the equation (1.56), it can be written in
the form

ha =
T
2

log

(
1 + x

1− x

)
− x . (1.57)

According to the approach presented in the previous section, the above
equation can be regarded as result of the condition

∂gEX
∂x

= 0 , (1.58)

where
gex = FEX(x)− ha x , (1.59)

is a Gibbs-Landau free energy for the exchange interaction considered, with

FEX(x) =
T
2

[(1 + x) log(1 + x) + (1− x) log(1− x)]− x2

2
(1.60)
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the exchange free energy.
When in a magnetic body, the magnetization changes orientation from

point to pointM(r) = Ms(T )m(r), we have an extra exchange free energy
cost. It is nonuniformity energy that is usually meant when one speaks
of exchange energy. Therefore additional exchange contribution is present
when the gradients∇mx, ∇my, ∇mz of the unit magnetization vectorm(r)
are different from zero. We can make a Taylor expansion of the exchange
energy, as a function of the magnetization gradients. If the variation is not
too rapid, the lowest-order term in the energy density consistent with a
cubic symmetry lattice of the ferromagnetic medium is given by:

fEX(m(r)) = const.+A [(∇mx)2 + (∇my)
2 + (∇mz)

2] , (1.61)

where the constant term is the contribution due to the spontaneous mag-
netization, while the phenomenological constant A summarizes short-range
exchange interactions.

Anisotropy

We have seen that the exchange energy depends by the reciprocal align-
ment of magnetic spin moments but not by their orientations in the space.
This isotropic feature of the free energy is not conserved in presence of
anisotropy effect, which energetically favours certain directions. The char-
acter of the anisotropy is reflected in the mathematical symmetry expressed
by the anisotropy free energy density fAN . In this respect, it is considered
the development of fAN in even powers ofm, since it is experimentally ob-
served the invariance of fAN with respect to inversion of m. For example,
in case of uniaxial anisotropy, say êAN the anisotropy axis, we have the
following expression:

fAN (m) = K0 +K1[1− (m · êAN )2] +K2[1− (m · êAN )2]2 + . . . (1.62)

where (K0,K1,K2, . . . ,Ki−th, . . . ) are the anisotropy constants of the i-th
order, which have the dimensions of energy per unit of volume. In case
of cubic anysotropy instead, we have three privileged directions, which we



1.4. MICROMAGNETIC ENERGY AND BROWN’S EQUATIONS 19

take as (x, y, z) axes. The development of the anysotropy energy, consistent
with the invariance under m→ −m, takes the following form:

fAN (m) = K0 +K1(m2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2m

2
xm

2
ym

2
z + . . . (1.63)

where the terms (m4
x +m4

y +m4
z), (m6

x +m6
y +m6

z) and (m4
xm

2
y +m4

ym
2
z +

m4
zm

2
x) are not included since they are dependent by those ones written in

equation (1.63).
At this point we are ready to express the Gibbs-Landau free energy func-
tional showing for each contibution its dependence by the magnetization
field. This is the first step to formulate the micromagnetic theory as dis-
cussed in the next section.

1.4 Micromagnetic energy and Brown’s equations

Micromagnetic theory was developed as an effort to give a rigourous ba-
sis to ferromagnetic domains theory. The theory is applicable to a spatial
scale "small enough to reveal details of the transition regions between do-
mains, yet large enough to permit the use of continuous magnetization vec-
tor rather than of individual atomic spins". In micromagnetics, the state
of the ferromagnet is described by the vector field M(r; t), representing
the local magnetization at every point inside the ferromagnet. When the
temperature is well below the Curie temperature of the ferromagnet, the
magnetization field respects the following fundamental constraint:

|M(r)| = Ms(T ) , (1.64)

which means that the magnitude of the local magnetization vector at each
point inside the ferromagnet is equal to the spontaneous magnetization Ms

at the given temperature T . This constraint summarizes the effect of the
atomic-scale exchange interaction, qualitatively discussed in the previous
section with the Weiss molecular field model. The micromagnetic theory
is based on the fact that for a ferromagnetic body occupying the region Ω,
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with magnetizationM(r), is associated the following free energy functional:

GL(M ;Ha) = FEX + FAN + FM + Fa =

=

∫
Ω

[
A

M2
s

∑
i

(∇Mi)
2 + fAN (M)− µ0

2
HM [M ] ·M − µ0Ha ·M

]
dV .

(1.65)
The first term inside the integral represents the exchange energy. The con-
stant A is the so-called exchange stiffness constant; its value in ferromagnets
is usually of the order of 1011Jm−1. The second term fAN (M) describes
crystal anisotropy effects, while the two last terms represent magnetostatic
energy and energy of interaction with the external magnetic field. The mag-
netostatic contribution is governed by the field HM , expressed in equation
(1.8). The applied fieldHa is produced by external sources and, in general,
it is a given vector function of space and time. The micromagnetic free
energy may contain additional terms describing other energy contributions,
for example magnetoelastic effects. The magnetic body considered is as-
sumed to be rigid, therefore such terms are not involved in our discussion.
In the following, we omit the dependences on T , since the temperature will
always be assumed to be uniform in space and constant in time. As argued
in section 1.2, for a given applied field the micromagnetic equilibria can be
found solving the following variational problem:

δGL =

∫
Ω
−µ0 [HEX +HAN +HM +Ha] · δM dV

− µ0

∫
∂Ω
∂nM · δM dS = 0 ,

(1.66)

where HAN and HEX are the anisotropy field and the exchange field, re-
spectively given by:

HEX = l2EX∇2M , HAN = − 1

µ0
∂MfAN , (1.67)

where lEX =
√

2A
µ0M2

s
is the so-called exchange length. Due to the funda-

mental micromagnetic constraint (1.64), the magnetization variation has to
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have the following structure: δM = M × δθ, where δθ is an arbitrary small
but otherwise arbitrary space-dependent vector. In this respect, equation
(1.66) can be written as:

δGL =

∫
Ω
µ0M ×Heff · δθ dV

+

∫
∂Ω
µ0M × ∂nM · δθ dS = 0 .

(1.68)

where the vector:

Heff = − 1

µ0

δGL
δM

= HEX +HAN +HM +Ha , (1.69)

is called effective magnetic field because it resumes all the interactions we
included in the free energy functional. The notation δf(x)

δx indicates the
variational derivative. Due to the arbitrariness of the body shape and the
magnetization variation, we obtain the so called Brown’s equations [3], [4],
[5] [6]:

M ×Heff = 0 in Ω

∂nM = 0 on ∂Ω ,
(1.70)

which define a nonlinear integro-differential problem where the boundary
condition is given and not arbitrary.

1.5 Modelling of magnetization dynamics

WhenM(r; t) is not aligned withHeff (M×Heff 6= 0), the magnetization
dynamics takes place. The main is a precessional dynamics around Heff ,
described by the following equation:

Ṁ = −γM ×Heff , (1.71)

where γ here is the absolute value of the gyromagnetic ratio of the electron
spins. This equation proposed by Landau and Lifshitz in 1935 [7], describes
conservative motion. This can be seen by the following equation:

ĠL = −µ0

∫
Ω

[
Heff · Ṁ −M · Ḣa

]
dV , (1.72)
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expressing the power balance during the magnetization dynamics assuming
the boundary conditions (1.70). In case of motion described by the equation
(1.71), it can be written as follows:

ĠL = µ0

∫
Ω
M · Ḣa dV , (1.73)

where it is evident that Ḣa = 0⇒ ĠL = 0.

1.6 Dissipations: Landau-Lifshitz vs Gilbert

In order to take into account dissipative effects, additional terms are added
to LL equation. In this respect, the most used equation is the following [7]:

Ṁ = −γLM ×Heff −
γLα

Ms
M × (M ×Heff ) , (1.74)

where γL is a gyromagnetic-type constant which can be different from γ,
and the damping constant 0 < α � 1. The power balance in this case is
given by:

ĠL = −µ0γLα

Ms

∫
Ωm

|M ×Heff |2 dV + µ0

∫
Ω
M · Ḣa dV , (1.75)

which in case of time invariant applied field Ḣa = 0 becomes

ĠL = −µ0γLα

Ms

∫
Ωm

|M ×Heff |2 dV < 0 . (1.76)

This relation expresses the fact that GL decreases throughout the magneti-
zation dynamics and only the magnetization fields M(.) which minimize it
are possible equilibrium solutions, consistently to the thermostatic principle
viewed in section section 1.2.
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1.7 Gilbert theory of dissipations

The phenomenological introduction of the damping torque proposed by Lan-
dau and Lifshitz in their celebrated paper [7] is not the only way to do so.
T. L. Gilbert proposed a different dissipative term [8], derived by using
the Rayleigh dissipation function method [9], [10], [11]. Starting from a
Lagrangian formulation of the conservative LL equation, with Lagrangian
given by:

L(M ,Ṁ) =

∫
Ω
AM (M) · Ṁ dV −GL(M) , (1.77)

where the potential AM satisfies the following equation:

∂M ×AM (M) = M . (1.78)

From the Lagrangian expressed in equation (1.77), the conservative Landau-
Lifshitz equation (1.71) is obtained from the following Euler-Lagrange equa-
tion:

δL
δM

− d

dt

δL
δṀ

= 0 . (1.79)

At this point, the dissipation can be included by the following equation:

δL
δM

− d

dt

δL
δṀ

− δR
δṀ

= 0 , (1.80)

where R(Ṁ) is the Rayleigh’s dissipation functional, given by:

R(Ṁ) =
η

2

∫
Ω
|Ṁ |2 dV . (1.81)

where of η > 0. In this way the Landau Lifshitz equation with the addition
of the Gilbert damping term, also called LLG equation is written as:

Ṁ − α

Ms
M × Ṁ = −γGM ×Heff , (1.82)

where α = ηγGMs , and γG is the gyromagnetic constant for the Gilbert
formulation. The dissipative nature of the LLG can be proved as for the
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equation (1.74). In fact by using the equation (1.82), we have the following
power balance:

ĠL = − µ0α

MsγG

∫
Ω
|Ṁ |2 dV + µ0

∫
Ω
M · Ḣa dV , (1.83)

where it is evident that the micromagnetic energy rate is negative (ĠL < 0)
when Ḣa = 0.

The LLG equation can be putted in form of the equation (1.74). This
can be done by expressing in the equation (1.82) the damping torque in
function of the only magnetization and not of its time derivative. When we
do that, we obtain the following equation:

Ṁ = − γG
1 + α2

M ×Heff −
γG

1 + α2

α

Ms
M × (M ×Heff ) , (1.84)

which is equal to the non conservative Landau Lifshitz eq.(1.74) once are
satisfied the following relations:

γG = γL(1 + α2) , (1.85)

which is well approximated by an identity in case of α� 1. Typical values
of the damping are α ∼ 0.001 ÷ 0.1 for the most used magnetic materials
(CoFeB [12], [13], Py [14], Ni [15]).

1.8 Spin transfer torque effect

When an electric current flows across a ferromagnet, electrons exert a torque
of quantum-mechanical origin. This effect is called spin transfer torque
and is most often investigated in multi-layer structures (see fig.1.3). The
effect of spin transfer on magnetization dynamics can be studied (quite
independently of the details of the microscopic mechanism responsible for it)
by adding an appropriate spin-transfer torque term to the Landau-Lifshitz-
Gilbert (LLG) equation for the free-layer magnetization. The mathematical
form of this additional torque term in three-layer structures, consisting of
two ferromagnetic layers separated by a nonmagnetic spacer (see fig1.3),
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Figure 1.3: Trilayer structure. The reference layer has a fixed magnetization
orientation. The injection of spin polarized current creates an additional
torque (STT).

was derived by Slonczewski [16], [17], [18], [19]. This additional torque,
in a general form independent on the kind of multilayer structure can be
expressed by the following equation:

τST = ε
Je
Jp
M × (M ×mp) , (1.86)

where ε(η;M ·mp) is a function of the degree of spin polarization η and
the reciprocal orientation between the magnetizations in the free layer and
the reference layer (see fig.1.3). The term Je is the spin-polarized current
density, and Jp is a characteristic constant of the multilayer structure which
has the dimension of a superficial density of electric current. The LLG
equation (1.82) with the Slonczewski spin-transfer torque (LLGS) is given
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by

Ṁ = −γGM ×
(
Heff −

α

γGMs
Ṁ − ε βM ×mp

)
, (1.87)

where β = Je/Jp. For typical multilayer devices where the magnetization
dynamics is excited by spin-polarized current Jp ∼ 1010A/cm2, while Je ∼
107A/cm2. This means that the dimensionless spin-polarized-current is β ∼
α. It’s interesting to notice that the spin-transfer torque term depending on
the direction of mp and the sign of Je can act against the damping torque
term. This concept can be formally understood if we explicit the power
balance in the case Ḣa = 0 as in the previous sections:

ĠL = −µ0α

∫
Ω

[
|Ṁ |2

γGMs
− γG ε

β

α
(M ×Heff ) · (M ×mp)

]
dV , (1.88)

where it is possible that for some orientation of the polarizer, the magnetic
free energy can increase. This phenomenon is on the basis of current induced
dynamics such as switching and the self-oscillations regime.

1.9 Normalized magnetization dynamics

It is useful to rewrite the equations describing the magnetization dynamics
in normalized form, where magnetization and fields are measured in units
of Ms, while energies are measured in units of µ0M

2
s V , where V is the

volume of the ferromagnet. Then, the magnetization field is described by
the unit vector:

m(r; t) =
M(r; t)

Ms
, (1.89)

which lies on the unit sphere of the m−space: m2 = 1. The normalized
free energy gL associated with the vector field m is the sum of normalized



1.9. NORMALIZED MAGNETIZATION DYNAMICS 27

exchange, anisotropy, magnetostatic, and Zeeman energies, respectively:

gL(m;ha) =
GL(M ;Ha)

µ0M2
s V

=
1

V

∫
Ω

[
l2EX

2

∑
i

(∇mi)
2 + ϕAN (m)− hM

2
·m− ha ·m

]
dV .

(1.90)
where ϕAN = fAN

µ0M2
s
is the normalized anisotropy energy, hM = HM/Ms

and ha = Ha/Ms are the normalized magnetostatic and applied fields re-
spectively. At this point we can introduce the normalized effective field:

heff = −δgL
δm

=
Heff

Ms
= hEX + hAN + hM + ha , (1.91)

and the following normalized Brown’s equations:

m× heff = 0 in Ω,

∂nm = 0 on ∂Ω .
(1.92)

The dynamics of the magnetization vector field m(r; t) is governed by the
normalized version of the LL equation (1.74) or LLG equation (1.82). The
dimensionless equations are obtained after a proper renormalization of time.
It is convenient to choose the time unit in such a way that the coefficient in
front of the precessional term is reduced to unity. Thus, by measuring time
in units of (γLMs), from eq.(1.74) one obtains the normalized LL equation:

ṁ = −m× heff − αm× (m× heff ) , (1.93)

while, by measuring time in units of (γGMs), from eq.(1.82) one obtains the
normalized LLG equation:

ṁ− αm× ṁ = −m× heff . (1.94)

When we add the spin-transfer torque the equation (1.93) becomes:

ṁ = −m× heff − αm× (m× heff ) + ε βm× (m×mp) , (1.95)
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with the following power balance:

ġL = −α
∫

Ω

[
|m× heff |2 − ε

β

α
(m× heff ) · (m×mp)

]
dV . (1.96)

On the other hand, the equation (1.94) adding the same term, becomes:

ṁ− αm× ṁ = −m× heff + ε βm× (m×mp) , (1.97)

which admits the different and following power balance:

ġL = −α
∫

Ω

[
|ṁ|2 − ε

β

α
(m× heff ) · (m×mp)

]
dV . (1.98)

It can be noticed that when we transform the equation (1.95) in its Gilbert
form, we obtain an equation which is equal to the equation (1.97) except
for an additional field like torque. Such torque is due to the transforma-
tion of the spin-transfer-torque term and it is weighted by the coefficient
β α ∼ O(α2). For this reason, since α � 1 the magnetization dynamics
described by the two equations (1.95) and (1.97) are essentially equivalent.
In the following of this thesis, the magnetization dynamics will be studied
by using either the LL or the LLG form of the equations, as convenient. It
is worth recalling that these two equations have been obtained by introduc-
ing different normalizations for the time scale. Therefore, these different
normalizations will have to be taken into account whenever the equations
are transformed from one form to another one.

1.10 Collective variables description of magnetiza-
tion dynamics in nanostructure

Due to the nonlinear nature of the LLG equation (1.87), analytical solu-
tions can be derived in very few special cases [20], [21], [22]. In general, the
knowledge of the magnetization dynamics requires the integration of the
LLG equation, defined in the region Ω occupied by the magnetic body. For
this reason, different numerical schemes have been developed [23], [24], [25],
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to integrate the LLG equation for different geometries, materials and ex-
citation parameters. However, there exist several situations where, after a
transient dynamics, the magnetization pattern can be approximately char-
acterized by a finite set of coordinates. These coordinates play the role of
degree of freedom of the magnetization dynamics and are called collective
variables X(t) ≡ (X1, . . . , XN ). The study of the magnetization dynamics
with the collective variables approach, is therefore based on the following
ansatz:

m(r, t) = m(r,X(t)) , (1.99)

which implies the following law of variation:

δm =

N∑
j=1

∂Xjm δXj . (1.100)

Starting from these two equations, a dynamical model for the collective
variables can be derived. The first step to do so is to write the LLG equation
(1.97) in a variational form as in the following:∫

Ω

(
m× ṁ+

δgL
δm

+ αṁ+ β εm×mp

)
· δm dV = 0 , (1.101)

where in general δm(r; t) = m(r; t)× δθ(r; t), and the function δθ(r; t)is
arbitrary. When we assume a collective variables description, substituting
eq.(1.99) and the (1.100) in (1.101) we obtain:

N∑
k=1

[∫
Ω

(
m×

(
Ẋ · ∂Xm

)
+
δgL
δm

+ α Ẋ · ∂Xm+

+ β εm×mp · ∂Xk
m

)
dV

]
δXk = 0 ,

(1.102)

or in a more compact form:

N∑
k=1

[
N∑
h=1

GkhẊh + ∂Xk
W +

n∑
h=1

DkhẊh − Fst,k

]
δXk = 0 , (1.103)
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which are fulfilled for every variation δXk, k = 1 . . . n. this implies the
following dynamical model :

n∑
h=1

GkhẊh + ∂Xk
W +

n∑
h=1

DkhẊh − Fst,k = 0 , (1.104)

or in vectorial form

G · Ẋ + ∂XW +D · Ẋ − Fst = 0 . (1.105)

In the equation (1.104) the several coefficients of the collective variables are
related to the magnetization structure through the following expressions :

Gkh =

∫
Ω
m · ∂Xh

m× ∂Xk
m dV , (1.106)

∂Xk
W =

∫
Ω
∂Xk

gL dV , (1.107)

Dkh = α

∫
Ω
∂Xk

m · ∂Xh
m dV , (1.108)

Fst,k = β

∫
Ω
ε(m,mp)mp ·m× ∂Xk

m dV . (1.109)

As an example of that, let us consider the case where the magnetization can
be approximated to be in a uniform state. Then the natural choice for the
collective variables is Xk = mk. In this respect, the equations [1.106−1.109]
in a (x, y, z) cartesian frame, becomes the following relations:

G = |Ω|

 0 −mz my

mz 0 −mx

−my mx 0

 , (1.110)

∂XW = |Ω| ∂mgL = −|Ω|heff , (1.111)

D = |Ω|

1 0 0
0 1 0
0 0 1

 , (1.112)
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Fst = |Ω|β ε(m,mp)mp ×m . (1.113)

At this point, if we substitute them in the equation (1.105) we get the
following equation:

m× ṁ+ α ṁ− heff + β εm×mp = 0 , (1.114)

which is equivalent to the following:

ṁ− αm× ṁ+m× heff − β εm× (m×mp) = 0 . (1.115)

The so obtained equation is formally equivalent to the equation (1.97), but
the difference is in the effective field which is not an integro-differential
operator of the magnetization (see eq.(1.69)) anymore. In the next chapter
the magnetization dynamics in spatially uniform magnetized nanoparticles
is explored for several aspects in a more detailed way. Such analysis is
preparatory for the third chapter of this thesis. The main application of
collective variables will be presented in chapter 4. there we consider the
dynamics of magnetization where the magnetization pattern has the form
of a vortex in a point-contact device.





Chapter 2

Nonlinear magnetization
dynamics in spatially uniform
magnetized nanoparticles

Abstract

This chapter introduces the reader to the analysis of uniformly magnetized
ferromagnetic nanoparticles. We start with a brief discussion on the pres-
ence of uniform magnetic state in ellipsoidal shaped particles. Then, the
study of the magnetic equilibrium states when there are not external exci-
tations is investigated by means the Brown’s equations. The effect of the
magnetic field on the equilibria is shown for a spheroidal particle: the Stoner
and Wohlfarth model is presented. The analysis of the magnetic equilibria is
followed by the discussion on the dynamics. An overview on the structural
properties of the magnetization dynamics is made in the conservative case
and in the nonconservative case. For this last part, we start including first
the damping torque and then the spin transfer torque to the conservative
dynamical model. The introduction of the damping torque has two main ef-
fects in the dynamics. The first one considered is the Liapunov structure of
the LLG equation which means that there is an energy function decreasing

33
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along the trajectories. Such dissipative nature of the dynamics produces the
division of the magnetization state space in the basins of attraction of the
two stable magnetic equilibria. The second one instead, is the time scales
separation between the precessional dynamics and the relaxation dynamics.
This last effect justifies the use of a perturbative approach based on the
Melnikov function. Such analysis is extended when the magnetization dy-
namics is excited by spin-polarized current. In particular, we show that the
Melnikov function is a powerful tool to study the possible self-oscillation
regimes and the switching dynamics. The whole analysis is conducted in
the framework of the nonlinear dynamics theory for planar system. Several
bifurcation mechanisms are introduced and their occurrence and role in the
magnetization dynamics qualitatively discussed.

2.1 The uniformly magnetized nanoparticle

The uniformly magnetized nanoparticle represents the key model to un-
derstand the complex features of the nonlinear magnetization dynamics in
nanosystems. Despite the reduced number of degree of freedom respect to
the spatially distributed case, the uniform magnetization dynamics can ex-
hibit several dynamical regimes, such as hysteresis, self-oscillations, switch-
ing dynamics, chaos, nonlinear resonance and so on. The study of these
regimes is instrumental in the design of memory devices, magnetic nano-
oscillators, magnetic-logic circuit , etc. From a physical point of view, it is
expected to observe a uniform magnetization in small particle such that the
exchange interaction dominates over the magnetostatics, which favours the
formation of domains (poles avoidance principle). Such idea has found its
mathematical proof in ref. [26], [27]. In addiction, the uniformly magnetized
state is a rigorous solution of the LLG equation when the nanoparticle is
ellipsoidal shaped and the initial condition is a spatially uniform magne-
tization distribution. However, in general in that case the stability of the
magnetization is not guaranteed. It is expected that the spatially uniform
motion is stable against spatially non uniform perturbations for a sufficiently
small particle. In an experimental situation the shape of the ferromagnetic
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nanoparticles cannot be perfectly controlled due to the fabrication process.
For sufficiently small particles the nonuniformities are localized at the edge
of the sample and their effect on the uniform motion can be neglected. In
these cases, the uniform magnetization approximation is a powerful tool for
describing the main dynamical features of the magnetization process.

2.2 Energy and effective field

Let us consider an ellipsoidal ferromagnetic particle, assumed to be uni-
formly magnetized. The exchange field is zero, while the magnetostatic
field is given by the following relation [28]:

hM [m] = −N ·m , (2.1)

where N is the demagnetizing tensor. In a cartesian frame where the three
directions are along the principal axis of the ellipsoid, we have that N
is a diagonal matrix and that its trace is unitary: Nx + Ny + Nz = 1.
The cartesian axes are chose such that Nx ≤ Ny ≤ Nz. The quantities
(Nx,Ny,Nz) depend only on the ratio of the ellipsoid axes lengths and
not on the magnetic property of the medium. Analytical expressions of
(Nx,Ny,Nz) are given in reference [28]. Without the exchange contribution
and taking into account the equation (2.1), the free energy expressed in the
equation (1.90) becomes:

gL(m,ha) =
1

2
m ·N ·m+ k1(1− (m · eAN )2)− ha ·m . (2.2)

Introducing the diagonal tensorD = diag{Dx, Dy, Dz}, where the diagonal
elements are expressed by Dxi = Nxi − 2k1(eAN · exi), up to a constant the
free energy is given by

gL(m,ha) =
1

2
m ·D ·m− ha ·m . (2.3)

The coefficients (Dx, Dy, Dz) reveal the interplay between the magnetostatic
and the anisotropy interactions. In this respect, the magnetostatic effect is
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also referred as shape-anisotropy. From the equation (2.3) we obtain the
following expression for the effective field:

heff = −∂gL
∂m

= −D ·m+ ha , (2.4)

and therefore the Brown equation (1.92) is written as:

m× heff = m× (ha −D ·m) = 0 . (2.5)

and in the cartesian frame (x, y, z), it takes the following form:

(Dz −Dy)mzmy − (haymz − hazmy) = 0 ,

(Dz −Dx)mzmx − (hazmx− haxmz) = 0 ,

(Dy −Dx)mxmy − (haxmy − haymx) = 0 .

(2.6)

In case ha = 0, the solutions consistent with the fundamental constraint
m2 = 1 are expressed by the following equations:

mz = my = 0, mx = ±1 ,

mx = mz = 0, my = ±1 ,

my = mx = 0, mz = ±1 .

(2.7)

In fig.2.1 are represented the magnetic equilibria on the unit sphere in the
m-space expressed by the equations (2.7) and the curves corresponding
to a fixed value of gL in the range [Dx

2 ,
Dz
2 ] when ha = 0. According to

the order relation among the coefficients Dxi , these magnetic equilibria can
be classified in minima, saddles and maxima of the free energy gL. In
particular, if Dx ≤ Dy ≤ Dz holds again, we have that mx = ±1 are
minima, my = ±1 are saddles and mz = ±1 are maxima of gL. Therefore,
a stable equilibrium condition is reached when the magnetization is aligned
to the x axis. For this reason, x is called easy axis, while y and z are called
intermediate and hard axes respectively.

When the external field ha 6= 0 the magnetic equlibria change depend-
ing on the field strength and direction. In the next section we present an
example of that, which reveals the basics of the magnetic recording.
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x
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z
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b
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Figure 2.1: (a)Sketch of the ellipsoidal nanoparticle. Representation of
the magnetic equilibria on the unit sphere in the m-space (b) and in the
(φ = tg−1

(
my

mx

)
,mz) plane (c) in the case ha = 0. The dotted lines are

the contour curves of gL.



38 CHAPTER 2

2.3 Stoner and Wohlfarth model

Let us consider a spheroidal particle, where say z the direction of the ro-
tational symmetry axis such that Dx = Dy = D⊥. In this case, the free
energy assumes the following form:

gL(m,ha) =
D⊥
2

(m2
x +m2

y) +
Dz

2
m2
z − ha ·m

=
D⊥
2

+
(Dz −D⊥)

2
m2
z − ha ·m .

(2.8)

The relation between the effective field and gL becomes:

heff = −∂gL
∂m

= keffmz + ha , (2.9)

where the constant keff = Dz −D⊥. In the following, the constant keff is
assumed to be positive. This means that when ha = 0, z is the easy axis
where mz±1 are the stable equilibria, while the circumference m2

x+m2
y = 1

represents a set of unstable equilibria. This picture changes when a magnetic
field is applied in a certain direction. Let us indicate with θh the angle
between the applied field direction and the z axis. Moreover, let us consider
the case where the applied field has a component in the plane (x, y) aligned
to the x axis. When we apply the external field ha, m rotates away from
the easy axis, toward the field, by an angle θ depending of the relative
strength of the anisotropy and the field. In this way, the angle θ between
the magnetization direction and the easy axis (z) is the single degree of
freedom for the magnetization direction. In this framework the free energy
(2.8) is written as follows:

gL(θ;ha⊥, haz) = −
keff

2
cos2 θ − haz cos θ − ha⊥ sin θ , (2.10)

where haz = ha cos θh, ha⊥ = ha sin θh. In order to find the magnetic
equilibria, we have to solve the Brown equation m × heff = 0, which in
this case is written as:

∂θgL = keff sin θ cos θ + haz sin θ − ha⊥ cos θ = 0 . (2.11)
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When ha = 0, we find the equilibria defined before, namely sin θ = 0 cor-
responding to mz = ±1 and cos θ = 0 corresponding to the circumference
m2
x + m2

y = 1. Instead, when ha 6= 0, the position and the stability de-
pend on the direction and the strength of the applied field. According to
the idea exposed in the previous section where are stable (unstable) the
equilibria that minimize (maximize) the free energy, the critical condition
corresponding to the change of stability of an equilibrium state is given by:

∂2
θgL = keff (cos2 θ − sin2 θ) + haz cos θ + ha⊥ sin θ = 0 . (2.12)

Fixed θ and solving together the equations (2.11) and (2.12) in the variables
(ha⊥, haz), we find the following parametric representation:

ha⊥ = keff sin3 θ ,

haz = −keff cos3 θ ,
(2.13)

where θ represents the direction of the magnetic state of equilibrium which is
changing stability due to the external action of the applied field (ha⊥, haz).
The curve generated by equation (2.13) when θ varies in the interval (−π, π)
is the astroid shown in fig.2.2. By eliminating θ from equation (2.13) we
obtain the equation of the astroid in the control plane (ha⊥, haz), given by:

h
2/3
a⊥ + h2/3

az = k
2/3
eff . (2.14)

The astroid has different geometrical properties which reveal hysteresis
in the magnetization process. For a given θ, equation (3.3) defines a
straight line in the plane (ha⊥, haz) starting and tangent to the astroid point
(ha⊥(θ), haz(θ)) according to the equations (2.13). Any point (ha⊥, haz) on
such a line represents a field for which the specific θ is a stable equilibrium
state. Let us consider a point (ha⊥,0, haz,0) inside the region bounded by
the astroid curve. It is possible to show that there are four tangents to
the astroid to which the point belongs (see the green dot labeled ’A’ in
fig.2.2(a)). Moreover, by inspection, one can see that two of them refer to
stable magnetization orientations (∂2

θgL > 0), while the other two refer to
unstable magnetization orientations (∂2

θgL < 0). This means that for ap-
plied field values corresponding to a points inside the astroid in fig.2.2(a),
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Figure 2.2: (a,b)Stoner andWohlfarth astroid. (c) Hysteresis loops obtained
ramping the field forward and backward along the dotted line with slope
equal to tan θh in (b).

there are four equilibria: two of them are stable and the remaining two are
unstable. When the point (ha⊥,0, haz,0) belongs to the astroid curve (see the
yellow dot labeled ’B’ in fig.2.2(a)), the tangents that intersect each other
in it are three: one corresponding to a stable magnetization orientation, one
to an unstable one and the third one, which is neither stable nor unstable
(∂2
θgL = 0). Finally the last case, when the point (ha⊥,0, haz,0) is outside

the astroid curve (see the red dot labeled ’C’ in fig.2.2(a)). In this case
we have only two tangents, corresponding to a one stable and one unsta-
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ble magnetization directions. At this point, if we imagine to ramp up and
down the external field quasi-statically along the dotted lines in fig.2.2(b)
and plot the magnetization component along the field direction mh versus
the strength of the external field ha, we obtain the hysteretic curve repre-
sented in fig.2.2(c). The color of the hysteresis loop in (c) is connected to
the color of the dotted line in (b), which changes according to the orienta-
tion of the applied field, indicates with θh. The hysteretic transitions of mh

in function of ha are due to the presence of two stable magnetic states for
points (ha⊥, haz) inside the astroid. Which one of them is observed, cannot
be predicted from the magnetization statics but the equation of the uniform
magnetization dynamics has to be added.

2.4 Macrospin dynamics

The uniform magnetization dynamics is also referred coherent spins motion
or macrospin dynamics. In fact on ’micromagnetic’ spatial scale the mag-
netic moments move coherently, like a single (macroscopic) spin. The LLG
equation can be put in the following form:

ṁ = v(m, τ) , (2.15)

where the vector field:

v(m, τ) = −m× (heff + αm× heff − β εm× p) . (2.16)

The vector field v depends explicitly on the time whenever the applied field
ha or the spin polarized current β are time-dependent.

The fact that the magnetization dynamics preserves the magnitude of
m implies that the dynamical system (2.15) evolves on the surface of the
unit sphere |m|2 = 1, consistently to the fact that the vector field v(m; τ)
is tangential to this sphere at every point. Remarkably, a number of results
concerning the magnetization dynamics derive from the unit sphere topol-
ogy. We shall discuss the particular case when the dynamics is autonomous,
i.e., the vector field v does not explicitly depend on time (v = v(m)). Au-
tonomous dynamical systems on the unit sphere are characterized by the
following properties:
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• The number of equilibria is at least two and it is always even. This
conclusion is derived from Poincaré index theorem [30], [31], which
asserts that the number of nodes, foci and centers minus the number
of saddles of any autonomous dynamics on the sphere is equal to two.

• Chaos is precluded, because the phase space is two-dimensional.
This is the consequence of the generalized version of the Poincaré-
Bendixson theorem [31], [32], which states that on two-dimensional
manifolds the only possible steady states are either stationary states
associated with equilibria or self-oscillations associated with limit cy-
cles of the dynamics.

In order to go through the details of the magnetization dynamics, let us
consider the power balance for the uniformly magnetized nanomagnet, given
by the following equation:

ġL = −α|m× heff |2 + β ε (m×mp) · (m× heff ) . (2.17)

In case of zero spin polarized current and damping values (β = α = 0), the
free energy is conserved. In fact, from the balance above written, we have:

ġL = 0 ⇒ gL(τ) = g0 . (2.18)

This means that the magnetization dynamics occurs on the unit sphere
at constant free energy. In other words, gL(m) is an integral of motion
of the magnetization dynamics and therefore this kind of motion is called
conservative. For this reason, it follows that the dotted curves represented
in fig.2.1 are the magnetization trajectories when ha = 0. According to this
fact, the equilibria mz = ±1 and mx = ±1 are centers of the dynamical
system (2.15) and the curves connecting the saddle equilibrium states my =
±1 are called heteroclinic trajectories. Fixed the initial condition m(t0) =
m0 from the solution of the following equation:

ṁ = m×D ·m, , (2.19)

it is possible to obtain the time parametrization for the trajectories associ-
ated to the free energy value gL(m;ha = 0) = gL(m0) = 1

2 m0 ·D ·m0.
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In reference [20], [33] the authors solve eq.(2.19) in the general case when
ha 6= 0 and it is aligned to one of the principal axes of the ellipsoid. When
α 6= 0 the magnetization dynamics is no longer conservative. In fact, the
power balance is given by the following equation:

ġL = −α|m× heff |2 < 0 , (2.20)

which shows that the free energy is a decreasing function of time during
the magnetization dynamics. Let us continue to consider the case ha = 0.
In this scenario, the classification of the equilibria given in case of the con-
servative dynamics changes. In particular, the energy maxima mz = ±1
become unstable equilibrium states, while the energy minima mx = ±1
become stable equilibrium states. The saddle equilibria are unaffected by
perturbing the dynamics with the dissipations. This fact, is a general result
of nonlinear dynamical systems theory and has to do with the concept of
structural stability [30], [31]. A center equilibrium is not structurally stable
because even a small pertubation changes the qualitative behaviour of the
trajectories in the phase portrait around it. This description does not apply
to a saddle equilibrium and therefore it is structurally stable. In fig.2.3 it
is shown an example of damped magnetization dynamics. The relaxation
property of the free energy expressed in equation (2.20) is often referred to
Liapunov structure for the LLG equation. As a consequence of that, the
state space is naturally divided in 2 kind of regions: low energy and high
energy regions. The low energy regions are those ones bounded by the het-
eroclinic curves and containing the stable equilibria mx = ±1. The high
energy regions instead are those ones bounded by the heteroclinic curves
but containing the unstable equilibria mz = ±1. From eq.(2.20) emerges
that all the initial conditions in the low energy region containing mx = ±1
will relax to it respectively, while for an initial condition in the high en-
ergy region which one of the two stable equilibria is reached at the end of
the relaxation dynamics, is strongly affects by the initial condition itself.
In figure 2.4 we divide the state space in two regions. The black (white)
region is composed by all the initial conditions which for t → ∞ relax to
mx → +1(−1). For this property, it is called basin of attraction of the
equilibrium state mx = +1(−1). It appears also that in the high energy
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a

b

c

Figure 2.3: Representation of a non-conservative dynamics (α = 0.03) on
the unit sphere (a) and the in the plane (φ,mz) (b). The blue trajectory is
obtained integrating eq.(2.15) with β = 0, starting from the initial condition
m0 ≡ (0.1, 0, 0.95). (c) Relaxation dynamics of gL(m(t)). With the dotted
lines are pointed out the energy value of the unstable and stable equilibria
in black and the saddle equilibria in red.

regions the two attraction basins are finely interlaced. This effect is due to
the smallness of the damping and is relevant for relaxation dynamics when
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a b

Figure 2.4: Basins of attraction of the two stable equilibriamx = ±1 at zero
applied field represented on the unit sphere (a) and in the plane (φ,mz) (b).

the initial condition is in the high energy region and is affected by an uncer-
tainty due to its preparation which is reflected on its exact knowledge. This
problem has been investigated in the references [34], [35], [36]. Moreover,
it has been taken into account for designing novel precessional-switching
strategy based on pulse of magnetic field [37] or on pulse of spin-polarized
current [38]. An other consequence of the damping smallness is the time
scale separation between the precessional and the relaxation dynamics. Let
us indicate with T (g) the time period necessary for a complete precession
along the conservative trajectory corresponding to gL = g in the conser-
vative case. In a time interval ∆τ ∼ T (g), the magnetization dynamics is
approximated O(α) by the consevative one as sketched in fig.2.3(a,b) where
the blue line indicating the damped magnetization dynamics for a single
precession (single turn) is very close to a black-dotted line representing a
conservative trajectory.

Starting from this consideration, we can write the energy balance during
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the time-interval [0, T (g)] as follows:

∆gL = −α
∫
T (g)
|m× heff |2 dτ = −αM(g) +O(α2) . (2.21)

The quantity M(g) is called Melnikov function and is expressed by the
following equation:

M(g) =

∫
T (g)
|mc × heff (mc)|2 dτ , (2.22)

where mc(τ) = m(gL(τ) = g)is the conservative dynamics associated to
the free energy value gL = g. If we neglect O(α2) terms in eq.(2.21), the
condition ∆gL = 0 corresponds to a vanishing Melnikov fucntion: M(g) = 0.
For a pure relaxation dynamics (α 6= 0, β = 0) this condition cannot occur
since M(g) > 0 (see eq.(2.22)) . However in case of excitation by spin-
polarized current, since β ∼ α the time scale separation holds again and
therefore we have the following energy balance:

∆gL ≈ −αM(g) = −α
(
Mα −

β

α
Mβ

)
, (2.23)

where the two Melnikov functions Mα and Mβ are given by:

Mα =

∫
T (g)
|mc × heff,c|2 dτ ,

Mβ =

∫
T (g)

ε(mc,p)(m× p) · (mc × heff,c) dτ .
(2.24)

In this case, for Mβ 6= 0 fixed gL = g, there exists a spin-polarized current
value such that

∆gL(g) = 0 ⇒ β(g) = α
Mα(g)

Mβ(g)
. (2.25)

This means that there is a magnetization trajectory m(t) = mc(t; g) +
O(α) where the magnetization precession is continuously sustained due to
the spin-transfer-torque mechanism.
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Figure 2.5: (a) Spin-polarized current which vanishes the Melnikov func-
tion according to eq.(2.25). (b-f) Representation of the free energy varia-
tion due to a single precession on the conservative trajectory correspond-
ing to the free energy value gL (abscissa), for 5 current values β1→5. The
symbols in each figure indicate a free energy value where ∆gL = 0. The
black arrows show the energy dynamics for non stationary free energy val-
ues ∆gL 6= 0. According to this, the labelling ’s,d,u’ indicate a stable,
saddle and unstable stationary free energy value respectively. The verti-
cal red-dotted line corresponds to gL = Dy/2. Nanomagnet parameters:
Dx = −0.22, Dy = 0, Dz = 1
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For example, let’s consider the case where the polarizer is oriented along
the easy axis p = ex and that ε(mc) = 1. Varying gL in [Dx/2, Dy/2],
according to eq.(2.25), we obtain the fig.2.5(a). Let us imagine to increase
the current starting from β < β1:

• 0 ≤ β < β1: there is only a stationary stable free energy state gL(s) =
Dx/2 corresponding mx = ±1.

• β = β1: It appears a self-oscillations trajectory (limit cycle), corre-
sponding to the free energy value gL(d) < Dy/2. This regime is stable
(unstable) for perturbations δgL = gL − gL(d) > 0 (δgL < 0). The
mechanism of formation of a such dynamics corresponds to a saddle-
node bifurcation of limit cycles in them-space. In fact a further small
increasing of β splits it in two limit cycles: one stable and the other
one unstable. In the plane (gL,∆gL) a parallel 1-dimensional bifurca-
tion analysis can be done. In particular, the saddle node bifurcation
of limit cycle corresponds to a transcritical bifurcation [31].

• β = β2: there are two self-oscillations regimes, a stable one corre-
sponding to the free energy value gL = gL(s2) and an unstable one
corresponding to gL = gL(u) (see fig.2.6).

• β = β3: gL(s2) = Dy/2. The two saddle equilibria my = ±1 are
connected by a closed trajectory approximately O(α) described by
mc(τ ; gL(s2)) and therefore the self-oscillations cannot occur any-
more. This event attests the occurring of the so called heteroclinic-
connection bifurcation in the m-space [30], [31].

• β = β4: all the initial conditions with free energy value gL < gL(u)
relax to mx = 1, while all those with gL > gL(u) go to mx = −1 and
then switch stable magnetic equilibrium state (see fig.2.7).

• β = β5: the unstable limit cycle ’u’ contracts on the stable equilibrium
mx = 1 and disappears, making it unstable. This fact corresponds to
an Hopf-subcritical bifurcation in the m-space [30], [31] and in the
plane (gL,∆gL) to a transcritical bifurcation. Therefore, it follows
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that the current value β5 is the switching current for the initial con-
dition mx = 1 (see fig.2.8).

a b

Figure 2.6: (a) Energy dynamics when β = β2 starting from three different
initial conditions, represented with the colored legend. (b) Self-oscillation
dynamics of the magnetization (x-component), corresponding to the energy
dynamics pointed out by the yellow circle.

a b

Figure 2.7: (a) Energy dynamics when β = β4, starting from the two differ-
ent initial conditions represented in the colored legend. (b) Magnetization
dynamics (x-component), according to the energy color legend.
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a b

Figure 2.8: (a) Energy dynamics when β = β5, starting from mx = 1. (b)
Switching dynamics of the magnetization (x-component), corresponding to
the energy dynamics represented in (a).

Just for sake of completeness, we remark that changing the nanomagnet
parameters Dx, Dy and Dz, change also the order and the occurence of
certain bifurcation mechanisms respect to the scenario depicted in fig.2.5.

a b

Figure 2.9: Spin-polarized current value which vanishes the Melnikov func-
tion according to eq.(2.25) for the folling two set of parameters: (a)
Dx = −0.1, Dy = 0, Dz = 1; (b) Dx = 0, Dy = 0.3, Dz = 0.7.
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For example in the figure 2.9 are shown two different cases where the
saddle-node bifurcation of limit cycle does not occur. In fact, increasing
the current starting from a zero value, just two of them occur: Hopf and
heteroclinic-connection bifurcation. It is possible to show by using the same
energetic analysis used above that the occurrence order is opposite and
that there is not coexistence between a stable magnetic equilibria and a
stable self-oscillation regime. In conclusion, we want to stress that the
bifurcational analysis joint to the Melnikov theory are powerful tools to
reveal the main features of the nonlinear magnetization dynamics excited by
stationary spin-polarized current. In this part of the thesis the quantitative
aspects have left room for the qualitative discussion sustained by numerical
simulations. In the next chapter it is shown that a such approach allows a
quantitative description of the several dynamical regimes.





Chapter 3

Influence of Second Order
Anisotropy in STT-MTJ
Nanodevices

3.1 Introduction

The magnetic tunnel junctions from a technological point of view, char-
acterized by a large tunnel magnetoresistance (TMR), are very promising
devices to drive new routes for the design of spin-transfer-torque magnetic
random access memories (STT-MRAMs) [39], [40], [41], microwave oscilla-
tors [42], [43], and detectors [44], [45]. In particular, the discovery of the
interfacial perpendicular anisotropy (IPA) in Fe-rich CoFeB-MgO magnetic
tunnel junctions (MTJs) has been fundamental for the design of perpendic-
ular MTJs [46], [47], [48]. In details, by controlling the thicknesses of both
free and polarizer ferromagnets, the IPA can be engineered (i) to have an
out-of-plane easy axis in both ferromagnets, (ii) to reduce the out-of-plane
demagnetizing field while maintaining the orientation of both magnetiza-
tions in the plane, (iii) to have an in-plane the polarizer and a tilted or
out-of-plane free layer magnetization. For storage applications where both
ferromagnets are perpendicular, the IPA improved the dynamical propri-

53
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eties of STT-MRAMs in terms of reduction of the switching current den-
sity, energy dissipation and writing speed [47], [49]. At this stage of the
research, those devices seem that can be a valid alternative to the CMOS
technology for moving storage beyond the Moore’s law [50]. For microwave
emissions, superior performances, such as low critical current density be-
low than 106A/cm2 and large output power approaching µW have been
observed [51], [52], [53], [54], [55], [56]. Finally, detection sensitivities ex-
ceeding the one of Schottky diodes have also been observed [44], [45]. The
transition from out-of-plane to in-plane easy axis occurs at a critical value
of the thickness [46]. Most of the experimental and theoretical works have
studied the effect of the IPA far from that value. However, near the critical
thickness, the effective anisotropy field, including IPA and demagnetizing
field, tends to be zero and the effect of the second order uniaxial perpendic-
ular anisotropy becomes dominant, even though its anisotropy constant is
one order of magnitude lower (< 105J/m3). The aim of the present chapter
is to show, within a micromagnetic framework, the effect of the second or-
der anisotropy in the dynamical proprieties of STT-MRAMs and microwave
oscillators designed to have the free layer thickness near the critical size de-
fined above, characterized by reduced effective out-of-plane anisotropy . For
the STT-MRAM, the polarizer is considered out-of-plane, while for the mi-
crowave oscillators it is in-plane. Such a choice permits in fact to detect the
magnetization state and dynamics due to the TMR effect for the respective
cases of interest.

3.2 Device and modelling

The MTJ under investigation has a circular cross section with a diameter
D = 100nm. and a thickness of t = 1.4nm [47]. The physical parameters
are: Ms = 950 kA/m, exchange constant A = 20 pJ/m, α = 0.03 [55],
spin-torque efficiency η = 0.66 [57]. In the simulations, we considered
first order perpendicular anisotropy constant k1 ≥ 0.56MJ/m3. The value
k1 = 0.56MJ/m3 has been computed by means of static micromagnetic
simulations in order that at the thickness value considered the free layer
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easy axis starts to be out-of-plane. The micromagnetic computations [58]
are based on the numerical solution of the Landau-Lifshitz-Gilbert equation
with the spin transfer torque efficiency for MTJ device [18], [19]:

b(m ·mp) =
2η

1 + η2m ·mp
,

β =
g µB

eγ0M2
s L

JMTJ =
JMTJ

J0,MTJ
,

(3.1)

where the coefficient η indicates the spin polarization factor. In the following
we introduce a cylindrical coordinates system with the z-axis oriented along
the out-of-plane direction and the polar angle φ lying in the film-plane.
The analytical theory developed is based on the assumption of uniform
magnetization dynamics in the free layer of the MTJ device considered.

3.3 Analytical stability diagram

We start focusing our attention on the study of magnetization equilibria and
how the uniaxial second order anysotropy effect affects their directions and
stabilities when the system is not excited by external source. Therefore, the
free energy and the effective field are given by the following relations [6]:

gL(m) =
1

µ0M2
s

[
k1eff (1−m2

z) + k2(1−m2
z)

2
]
,

heff = −∂mzgL ez =
1

µ0M2
s

[
2k1effmz + 4k2mz(1−m2

z)
]
ez,

(3.2)

where gL(m) is the normalized magnetic energy with k1eff = k1 −
0.5µ0M

2
s (Dz − Dp) the effective first order anisotropy constant, with k1

the IPA first order anisotropy constant, (Dz − Dp) the difference between
the demagnetizing factors for the out of plane (z) and the in-plane (x, y)
directions respectively, and k2 is the second order anisotropy constant. First
of all, we evaluate the equilibrium points when no external excitation are
present. In that case the Brown equation (1.70) expressed in cylindrical
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coordinates reads as:
∂mzgL = 0 ,

mz = ±1 .
(3.3)

According to the thermostatic minimization principle (see the chapter 1),
the stability of the equilibrium state is guaranteed if it is a minimum of the
free energy. In this respect, for the equilibria defined by the first one of the
eq. (3.3), are stable if:

∂2
mz
gL ≥ 0 , (3.4)

while for those ones defined by the 2nd one, it requires the following condi-
tion:

mz = +1⇒ ∂mzgL ≥ 0 ,

mz = −1⇒ ∂mzgL ≤ 0 .
(3.5)

We notice that that, both the existence and the stability depend on the
mz coordinate of the magnetic state. From Eqs(3.3), we obtain the fig.3.1,
where the phase diagram of the magnetization equilibrium states as a func-
tion of the coefficients k1eff and k2 is displayed. Four stability regions are
observed: i) Easy Axis region (EA, red color); ii) Easy Cone region (EC,
green color); iii) Easy Plane region (EP, blue color); iv) Easy Axis-Plane
region (EAP, yellow color). Each region is separated by the other ones via
solid black lines where the couple (k1eff , k2) indicate the threshold values
for a change of number and type of equilibria (bifurcation lines). i) EA. It is
characterized by two equilibrium points for mz = ±1, which means two out-
of-plane equilibrium axes, and one circumference of unstable equilibrium
points for mz = 0, namely the in-plane state is not stable. This region is
obtained for of k1eff ≥ 0 and for values of k2 ≥ −k1eff/2. ii) EC. It includes

two circumferences of stable equilibrium points for mz = ±
√

1 +
k1eff
2k2

two
unstable equilibrium points for mz = ±1 and one circumference of unsta-
ble equilibrium points for mz = 0, which means that neither in-plane nor
out-of-plane states are stable. This region is achieved for k1eff ≤ 0 and for
values of k2 ≥ −k1eff/2.

iii) EP. Differently from EA, here the stable equilibrium points belong
to the circumference for mz = 0, whereas the points mz = ±1 are unsta-
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ble equilibria. This region is reached when k1eff ≤ 0 and for values of
k2 ≤ −k1eff/2.. iv) EAP. The stable equilibrium states include both the
out-of-plane mz = ±1 and the in-plane mz = 0 configuration, while the un-
stable equilibrium points are attained for mz = ±

√
1 +

k1eff
2k2

. This region
is obtained for positive values of k1eff and when k2 is lower than −k1eff/2.
In the rest of the paper, we study the EA region where k1eff and k2 have
both positive values .

EC

EP
EAP

EA
𝑘1𝑒𝑓𝑓

𝑘2

𝑘2 = −
𝑘1𝑒𝑓𝑓

2

Figure 3.1: Stability diagram of the magnetization states as a function of
k1eff and k2. Four regions can be identified: EA region (red color), EC
region (green color), (EP) region, blue color), and EA-plane region (EAP)
(yellow color). Black solid lines: bifurcation lines.
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3.4 Switching Dynamics

Calculation of switching current when k1eff , k2 have both positive values,
are crucial in the design of MTJ devices working as solid state magnetic
memory. Then in this context, we have to study how the second order
anysotropy effect influences the switching current. Let us consider the po-
larizer oriented along the symmetry axis of the particle, namely the z direc-
tion. In this framework, it is convenient to write the LLGS equation (1.115)
in cylindrical coordinates:

(1 + α2) ṁz = −α(1−m2
z)∂mzgL − β ε(mz)(1−m2

z) ,

(1 + α2)
√

1−m2
z φ̇ = −

√
1−m2

z ∂mzgL .
(3.6)

In absence of dissipation (α = 0) and external excitation (ha = 0, β = 0)
the magnetization equilibria are those ones descripted about the region EA
of the stability diagram in fig.3.1. We have to note that the introduction
of the current does not affect the equilibria mz = ±1, and that the polar-
izer direction does not affect the cylindrical symmetry of the system. The
current indeed changes the stability of the equilibria. At zero current the
stability region of the equilibrium mz = +1(−1) is given by the magnetic
states which have mz positive (negative). These two stability regions also
called basin of attraction of the two equilibria are separated by the circum-
ference m2

x + m2
y = 1, constituted by a set of unstable equilibria. When

a current is injected, this picture changes and in particular the basins of
attraction are separated by an unstable limit cycle [20], namely an unstable
self-oscillations trajectory, defined by the following equations:

ṁz = 0 , mz 6= ±1 ,

φ̇ = − 1

(1 + α2)
∂mzgL ,

(3.7)

where the last equality indicates the angular frequency of the magnetiza-
tion precessions. The dynamical systems (3.7) defining the self oscillation
trajectory of the magnetization dynamics is exactly the one in the conser-
vative case. For this reason the self-oscillation trajectory at a fixed mu

z is
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the conservative trajectory corresponding to gL = gL(mu
z ).

At this point, let us imagine the magnetic state to be in the equilibrium
mz = +1 and to increase the spin polarized current starting from the zero
value (β > 0). Two are the possibles scenarios for the switching dynamics.
The first one, where increasing the current the unstable limit cycle reaches
the equilibrium mz = +1. A so called Hopf bifurcation occurs and the limit
cycle disappears on the equilibrium changing its stability. At this point the
equilibrium mz = +1 is unstable and a small kick to the magnetization
causes the dynamics to occur and lead the magnetization to the only stable
state of equilibrium mz = −1. From this follows that the switching current
is the one at which this bifurcation mechanism occurs. In the second sce-
nario instead, increasing the current the unstable limit cycle moves toward
mz = +1 too, but for a certain current value an other Hopf bifurcation
occurs in the equilibrium state mz = +1, generating a stable limit cycle
before the unstable limit cycle reach the equilibrium itself. The appearance
of the stable limit cycle produces the change of stability of the equilibrium
mz = +1, which becomes unstable. In this respect, if the magnetization
is in mz = +1 and we kick it, the dynamics will lead the magnetization
to oscillate along the stable self-oscillation trajectory. Therefore the MTJ
device for such current value behaves like an oscillator. A further increment
of the current makes the two limit cycles meet and annihilate each other.
That process is the so called bifurcation mechanism saddle-node of limit
cycles. After that we have that mz = +1 is unstable and there are not
stable attractors like limit cycles between the two equilibria. Therefore the
switching dynamics can occur. Then, the threshold switching current in
this scenario is the value at which the saddle-node bifurcation of the limit
cycle occurs. Which one of the two scenario occurs, depends on k1eff and
k2. A general criteria to find the switching current in both cases can be
stated. In fact, the condition to be satisfied is:

ṁz > 0 , ∀ mz 6= ±1 ⇒ β ≥ max
mz

[
α∂mzgL
ε(mz)

]
, (3.8)

where the threshold switching current is obtained considering the equality
sign. Let us call m∗z the z-component of the magnetization which maximizes
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the right hand side of (3.8). Then, by substituting it in eq. (3.9), we obtain
the following expression for the switching current density:

JMTJ =
e γ0M

2
s L

g |µB|

[
αm∗z

[
k1eff + 2k2

(
1−m∗2z

)]
ε(m∗z)

]
, (3.9)

which is represented in comparison with micromagnetic simulations in fig.3.2
for several values of the second order anisotropy constant k2. The demag-
netizing factors that affect the value of k1eff are evaluated in the non-
ellipsoidal geometry hypothesis. In fact, once found m∗z for every value of
k2, an inaccurate estimate of the demagnetizing factors produces an offset in
the estimation of the switching current, that is exactly compensated if the
analytical expressions obtained in ref. [59] in the case of a thin circular disk.
In detail, we performed micromagnetic simulations of the switching current
density as a function of k2 in the range (0, 4.0×104J/m3) for three values of
k10.56MJ/m3, 0.58MJ/m3, and 0.60MJ/m3. In this way, a partial com-
pensation of the first order anisotropy field due to the demagnetizing field
is reached. The results are illustrated in fig.3.2, together with a comparison
with the analytical computations obtained by solving equation (3.9). The
switching current density is higher either when k2 is increased for a given
value of k1 or when k1 is increased while keeping k2 constant, because of
the out-of-plane easy axis of the magnetization. The analytical calculations
based on the macrospin theory shows quantitative agreement with the nu-
merical micromagnetic results. This confirms the foundation of our starting
hypothesis.

3.5 Self-Oscillation Dynamics

In this section, we study the possibility to maintain self-oscillations [60],
[61], [62], [63], [64], [65] of the magnetic state when a dc spin polarized
current is applied. Here the polarizer has an in-plane direction needed
to have a magnetoresistive signal from the magnetization precession. This
different polarizer direction breaks the cylindrical symmetry. The possibility
to obtain self-oscillations can be investigated by deriving the equation for the
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Figure 3.2: Switching current density as a function of the second-order per-
pendicular anisotropy constant k2 for three values of the first-order perpen-
dicular anisotropy constant k1. Solid lines: analytical results. Symbols: mi-
cromagnetic results. Symbol shape and colors are linked to the values of k1:
blue k1 = 0.56MJ/m3, green k1 = 0.58MJ/m3 and red k1 = 0.60MJ/m3.

time evolution of the free energy. From eqs.(1.88) considering the polarizer
aligned along the x-axis, we have :

(1 + α2)ġL =− α (∂mzgL)2 (1−m2
z

)
+

+ β ε(mz,mx) ∂mzgL

(
mz

√
1−m2

z cosφ
)
.

(3.10)

When a self-oscillation occurs, we have that the total energy lost along
the closed trajectory described by the magnetization precession (limit cycle
or self-oscillation trajectory) is zero. This condition can be expressed as in
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the following:

∆gL = gL(t0 + T )− gL(t0) =

∫ t0+T

t0

ġL dτ = 0 , (3.11)

where T is the time period for a complete and single magnetization preces-
sion. Substituting the (3.10) in the latter equation we obtain the energy
balance between the dissipated energy due to the damping effects and the
energy supplied by the external excitation, namely the spin transfer torque.
The current value that satisfies this energy balance corresponds to the criti-
cal current that stabilizes the self-oscillation dynamics. Since β ∼ α� 1 the
critical current producing self-oscillations of the magnetization can be esti-
mated with the perturbative technique discussed in the chapter 2, called the
Melnikov function theory. The Melnikov function can be calculated start-
ing from the equation (3.11), where the expression of ġL is given by the
equation (3.10) and the time dependence φ(τ),mz(τ) are taken according
to the unperturbed (conservative) dynamics (3.7), namely:

M(g) =

∫ 2π

0

[
∂mzgL

(
1−m2

z

)
− β

α
ε(mz,mx)mz

√
1−m2

z cosφ

]
dφ ,

(3.12)
where M(g) indicates the Melnikov function associated to the conservative
trajectory of constant free energy g = gL(mz). From the Melnikov function
theory, we obtain an approximation O(α2) of the energy losses along the
conservative trajectory, namely ∆gL = −αM(g)+O(α2). Therefore, at the
same approximation order, the condition (3.11) reduces to:

M(g) = M(mz) = 0 . (3.13)

The closed form expression for M(mz) is given by the following expression:

M(mz) = −2π∂mzgL
(
1−m2

z

)
+ β

4πmz

αη

[√
1− η4 (1−m2

z)− 1√
1− η4 (1−m2

z)

]
,

(3.14)
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which substituted into the equation (3.13) permits to obtain the expression
of the critical current density which sustains the self-oscillations, expressed
by the relation

JMTJ =
e γ0 L

g |µB|µ0

αη (1−m2
z

) (
k1eff + 2k2

(
1−m2

z

))√
1− η4 (1−m2

z)(
1−

√
1− η4 (1−m2

z)
)

 .
(3.15)

Since for the conservative dynamics it exists a one-to-one correspondence be-
tweenmz and the angular frequency of the magnetization precession ω(mz),
this relation can be read as JMTJ = JMTJ(ω(mz); k1eff , k2). The Melnikov
theory permits also to evaluate the stability of the self-oscillation regime
under a perturbation of the free energy. This can be done by looking at the
slope of the Melnikov function for the free energy value corresponding to the
self-oscillations [20], [30], [31]. Positive slope means stable self-oscillations
whereas negative slope indicates unstable self-oscillations. By applying this
technique to our case, we found that the magnetization self-oscillations are
always stable for each value of the current that produces them. In Fig.3.3,
the self-oscillations predicted by the Melnikov theory versus the micromag-
netic simulations are compared. The Melnikov theory reproduces quanti-
tatively the relation between current and frequency in the range of current
values in which the self-oscillation regimes are observed by the micromag-
netic simulations. Outside this range, the theoretical predictions are not
sustained by the numerical confirmation. This feature is due to the fact
that the Melnikov theory does not take into account the bifurcation mech-
anisms induced by the asymmetry of the system enhanced by spin transfer
torque interaction at larger currents.

The disappearance of stable magnetization self-oscillations can be ex-
plained by reconstructing the whole sequence of bifurcations occurring when
the current is increased. When a spin-polarized current with polarizer along
the x-axis is applied, the cylindrical symmetry of the system is broken. This
produces a saddle-node bifurcation which creates a saddle equilibrium in
mx = −1 , and an unstable equilibrium in mx = +1 . By increasing the
current, the saddle mx = −1 pass through an other saddle node bifurcation
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Figure 3.3: Self-oscillation frequency as a function of the current density,
for eight values of the second-order perpendicular anisotropy constant k2,
when k1 is fixed to 0.56MJ/m3. Solid lines: analytical results. Symbols:
micromagnetic results. Symbol shape and color are linked to the values
of k2, as indicated in the figure. In order to obtain a better fit of (3.15)
with micromagnetic simulations, we considered Ms = 950.3kA/m, namely,
a variation of 0.32%.

which changes its stability making it stable and creating other two saddle
equilibria. This argument can be easily proved by applying the perturbation
theory to eq.(1.87). In order to do that, first of all we write down the dy-
namical equations in cylindrical coordinates when the polarizer is oriented
along the x-axis :

(1 + α2) ṁz = −α(1−m2
z)∂mzgL − β ε(mz,x)mz

√
1−m2

z cosφ ,

(1 + α2)
√

1−m2
z φ̇ = −

√
1−m2

z ∂mzgL + β ε(mz,x)mz sinφ.
(3.16)
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Then we linearize the above system of equations around mz = −1:

(1 + α2) δṁz =

[
α (2k1eff + 4k2)− β 2η

1− η2

]
δmz ,

(1 + α2) δφ̇ = (2k1eff + 4k2) δmz + β
2η

1− η2
δφ ,

(3.17)

where we can directly find the two eigenvalues :

λmz = α (2k1eff + 4k2)− β 2η

1− η2
,

λφ = −β 2η

1− η2
.

(3.18)

For a very small positive current value, we have a saddle equilibrium point
inmx = −1 , and increasing it, λmz becomes zero (a saddle node bifurcation
occurs) when it reaches the value:

JMTJ =
e γ0 Lα

g |µB|µ0

1− η2

η
(k1eff + 2k2) . (3.19)

This value of current is smaller than the threshold of the self-oscillation
for the considered range of the second order anisotropy constant k2. By
increasing the current density, we have that the two saddles equilibria, move
from mx = −1. On the other hand, there is the change of stability of the
equilibria mz = ±1 and the respective appearance of a stable limit cycle
around them which corresponds to the so called Hopf bifurcation [30], [31].
Such bifurcation mechanism gives birth to the self-oscillation dynamics of
the magnetization. Therefore, we can estimate the critical current density
value at which the Hopf bifurcation occurs by simply making the following
limit:

JMTJ,Hopf = lim
mz→±1

JMTJ , (3.20)

where JMTJ is taken from the equation (3.15). In this way, we obtain the
following formula:

JMTJ,Hopf =
e γ0 L

g |µB|µ0

2αk1eff

η3
. (3.21)
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This approach is approximated because we do not take into account the
displacement of the equilibria that only for zero current are inmz = ±1 . We
have checked the validity of this assumption, verifying that the displacement
of the equilibria mz = ±1 is less than δmz < 0.1 in the whole range of
current values considered. We notice that JMTJ,Hopf is independent of the
second order anisotropy constant. This feature can be seen in Fig.3.3 where
all the curves start from the same current density value, namely JMTJ =
JMTJ,Hopf . As we said before for the current density values that sustain
self-oscillations, we have that the two saddle equilibria move from mx = −1
in the two hemisphere of the state space (unit sphere (mx,my,mz)-space).
This can be seen solving the equilibrium equations obtained by imposing the
condition φ̇ = ṁz = 0 in the equations (3.16). At the same time, the self-
oscillation orbit (limit cycle) is asymmetric with respect to rotations around
the z-axis. This is due to the angular dependence of the spin transfer torque
expression. As the current density increases, the limit cycle moves down and
enlarges, while the saddle equilibria moves toward the limit cycles in the
respective hemisphere of the unit sphere in them-space. Then, there will be
a current density value at which the saddle equilibria intersect the limit cycle
orbit, giving rise to a homoclinic-saddle-connection bifurcation [30], [31].
When this occurs, the limit cycle is broken, and no self-oscillations can be
observed anymore. Moreover for such a current value the magnetization
is switched to mx = −1. This bifurcation mechanism is responsible of
the maximum current value at which we can observe magnetization self-
oscillation dynamics fixed the constants k1eff and k2. We estimate this
critical current value by macrospin numerical simulations fixing the value
of k1 = 0.56MJ/m3, ranging k2 from 0.5 to 4.0 ·104 J/m3. As k2 increases,
the oscillations are excited for a larger range of current densities, because it
makes the out-of-plane magnetization more stable. The agreement between
analytical and numerical results improves as k2 is increased.
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Figure 3.4: Bifurcation lines in the plane (k2, JMTJ) with k1 = 0.56MJ/m3

and Ms = 950kA/m.

3.6 Phase Diagram of equilibria and self-oscillation
dynamics

The complete stability diagram showing the various bifurcation lines dis-
cussed in the previous paragraph is shown in fig.3.4 . We can distinguish
four different regions in which the dynamical behaviour of the magnetic
state is different, called A, B, C and D. The region A is characterized by
two stable equilibria close to the magnetic states mz = ±1, a saddle and
an unstable equilibrium point in mx = −1 and mx = +1 respectively. The
blue line that separates the A and B regions identifies the points (k2, JMTJ)
defined by eq.(3.19), where the saddle node bifurcation in mx = −1 oc-
curs. In the B region, the equilibrium point in mx = −1 is stable, but we
have other two saddle equilibria arising from the saddle node bifurcation.
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The green line separating the regions B and C is related to the Hopf bi-
furcation for the equilibria close to the magnetic states mz = ±1 which
become unstable with the presence of stable self-oscillation precession.The
current density values for the points of this bifurcation line do not depend
on k2. In the C region we have stable magnetization self-oscillations. The
red dotted line with squares separating the C and D regions represents the
homoclinic connection bifurcation line. The current range at which self-
oscillations exist for a fixed value of k2 can be measured as the range of
current density values between the red and the green line. Finally, in the D
region, we have a stable state in mx = −1, an unstable state in mx = +1,
and other 4 unstable states (two saddles and two nodes) that disappear
for higher current values with a saddle node mechanism. In conclusion, we
found that the second order uniaxial anisotropy plays a fundamental role
near the compensation point in perpendicular magnetized ferromagnet. We
have developed an analytical framework to predict both switching and self-
oscillation proprieties that has been benchmarked with full micromagnetic
simulations and a quantitative agreement is found.



Chapter 4

Synchronization of magnetic
vortex oscillations in a
pointcontact nanodevice by
microwave field

4.1 Introduction

Spin-transfer nano-oscillators (STNOs) based on nanocontact geometry are
future candidates to develop nanoscale devices in the area of information
and communication technologies. Their current-field frequency tunability,
narrow linewidth and stability at room temperature [66, 67] suggest their
potential use in the microwave technology for realizing generators, detec-
tors, modulators, etc. Furthermore, the micron size dimensions allow easy
integration with the semiconductor technology. The main issues that limit
their applicability are the low output power of the single device compared
with LC voltage controlled oscillators [68] (VCO). A potential solution to
this issue is the synchronization of an arbitrary number of non interact-
ing STNOs with a small amplitude external source, often referred to as
injection-locking [69]. The synchronization of magnetization oscillations

69
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in nanopillars of submicron dimensions with nearly-uniform magnetization
has been extensively studied in the last decade [69–75], showing that the
transitions among the possible regimes are governed by strongly nonlinear
effects [76–80]. In particular, the hysteretic behavior of the synchroniza-
tion mechanism, first predicted theoretically [81–83] and later on observed
experimentally [84, 85] , allowed a step forward towards understanding the
synchronization of STNOs by means of a ‘weak’ microwave source.

Here, we study the synchronization mechanism between the dc current-
induced vortex oscillations and a microwave external magnetic field in a
thin film point-contact STNO [86]. These oscillation regimes in micron-sized
thin-film STNO have been experimentally observed [87,88] and theoretically
studied mostly by means the rigid vortex theory [89]. The latter model de-
scribes a linear dependence of the vortex oscillation frequency on the current
as well as a current independent distance of the vortex core from the center
of the nanocontact. Neverthless, further experiments on vortex core polar-
ity switching [90, 91] and vortex oscillations driven by magnetic field and
spin polarized current [92] were not in agreement with the predictions from
the rigid vortex model. Indeed, numerical micromagnetic studies consistent
with experimental results confirmed the presence of a vortex characterized
by a deformed structure [93, 94]. This effect, which is more pronounced
close to the vortex core, has been also observed experimentally [95].

Here we present a theoretical approach capable of taking into account
the vortex structure deformation and apply the model to study the syn-
chronization of current-driven magnetic vortex oscillations with an external
microwave magnetic field for a disk-shaped point-contact STNO, as sketched
in fig.4.1.

The main result of the work is the analytical derivation of the phase
locking diagram (reported in fig.4.10(a,b)). This diagram describes all pos-
sible mechanisms of synchronization between vortex oscillations and exter-
nal microwave magnetic field. Several insights emerge from our study. First
of all, coexistence of synchronized and unsynchronized vortex oscillations
is predicted for appropriate choices of amplitude and frequency of the mi-
crowave field. As a consequence of that, we show that the synchronization
has a strong hysteretic nature. In addition, for microwave fields with mod-
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erately high amplitude (order of mT), the locking frequency bands exhibit
a pronounced asymmetry, which reveals complex nonlinear behaviour in the
synchronization regime. The theoretical predictions are in good agreement
with micromagnetic simulations of injection-locking experiments.

In the proposed theoretical model, vortex dynamics is modelled in terms
of the vortex core position using a combined analytical-numerical approach.
The analytical part consists of a collective variables description [96] of the
vortex core dynamics. The numerical one allows us to introduce an addi-
tional current dependence describing the vortex deformation that a current
independent ansatz [89, 97] cannot take into account.

4.2 Nonlinear vortex dynamics in pointcontact

Let us consider a point-contact device where the free layer is disk shaped
with radius R = 1µm and thickness L = 4nm. The magnetization field
of this layer is free to evolve and the dynamics can be excited applying a
magnetic field or making pass through it a spin polarized electric current
thanks to a circular nanocontact of radius Rpc = 50nm centered on the
disk layer. The current is assumed to pass vertically to the disk plane in a
confined region indicated in fig. by the red dotted lines. The magnetic state
of the magnetic disk is assumed to be in a vortex state. This fact can be
justified saying that increasing the size of the magnetic layer the vortex con-
figuration is preferred because it minimizes the total micromagnetic energy
sum of the exchange, the magnetostatic and the Zeeman energy. Further-
more when we excite the dynamics with an electric current passing through
the nanocontact, the strong contribution of the total micromagnetic energy
due to the Oersted-Ampere field generated by the electric current prefers
curling patterns of the magnetization field instead of the uniform one. In
case we choose as collective variables the in-plane coordinates of the vortex
core center namely X ≡ (Xc, Yc), then due to the circular symmetry of the
free layer eq.(1.105) can be written as:

G(X)ẑ × Ẋ + ∂XW (X) +D(X)Ẋ − Fst = 0 . (4.1)
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Figure 4.1: (a) Sketch of the point-contact STNO. (b) Sketch of the free
layer. The filled orange dot located in the disk center is the cross-section
of the nanocontact through which the electric current flows. The trajectory
of the vortex core (red dot) around the nanocontact is represented by the
yellow line. The dashed red lines represent the curling magnetization around
the vortex core.

where GXcYc = −GYcXc = G(X) and DXcYc = DYcXc = 0, DXcXc =
DYcYc = D(X), with X = |X|.

4.3 The Rigid Vortex Theory

When the external exctitations are turned off, the vortex core is centered
in the free layer (X = 0). When we excite the system instead, the vortex
start to move. Let us imagine that the excitation realized by spin polarized
current is such that the vortex motion occurs along a circular orbit of radius
equal to the distance X of the vortex core from the center. The rigid vortex
description of such a magnetization dynamics means that when the vortex
moves around the magnetization pattern is not affected by the motion,
which corresponds to the condition m(r,X(t)) = m(r − X(t)). In the
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following, as it is typical in point-contact geometry, we shall consider the
vortex dynamics occurring outside the nanocontact region which meansX >
Rpc. Taking the magnetization ansatz from the work of Usov and Peschany
[98], it is possible to obtain the following expressions:

G(X) = G =
2πMs L

γ
, (4.2)

D(X) = D =
2πMs L

γ
log

R

rc
, (4.3)

W (X) ≈ kOe IX , (4.4)

Fst = F z
st =

kst,z I

X
ẑ × X̂ . (4.5)

where the expression for G is derived from the conservation of the topologi-
cal charge, the term D is taken constant and calculated just considering the
out of vortex core magnetization pattern when the vortex is centered in the
device X = 0 with rc indicating the radius of the vortex core. The energy
of the vortex configurationW (X) is calculated taking only the Zeeman con-
tribution due to the Oersted field in the limit case R→ +∞, neglecting the
out of plane component of the magnetization in the region of the vortex core.
The force term due to the spin-transfer-torque interaction depends only by
the out of plane component of the polarizer because the magnetization field
under the nanocontact is in plane. If for the vortex core coordinates we
adopt the in-plane polar coordinates X ≡ (X,Φ) ⇒ Ẋ = (Ẋ,XΦ̇), the
eq.(4.1) can be written:

Ẋ =
G

G2 +D2
[F zst −DΩX] ,

Φ̇ =
G

G2 +D2

[
DF zst
GX

+GΩ

]
,

(4.6)

where
Ω(X) =

∂XW

GX
, (4.7)
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is the angular frequency of the vortex core oscillating at constant X. In
fact, considering the case of stationary oscillation Ẋ = 0, one has

Φ̇ = Ω(X) ,

Ω(X) = ω0 ,
(4.8)

where ω0 = F zst/(DX). In this description the term D does not depend on
the current, while both Ω and ω0 depend linearly on it. Consequently, the
stationary orbit radius X of the vortex core precession around the nanocon-
tact is current-independent. From micromagnetic simulation of vortex os-
cillation driven by spin polarized current shown in fig.4.8 we observe a total
disagreement with the rigid vortex theory predictions. In particular, in
both cases with out-of-plane (see fig. 4.8(a,b)) and almost in-plane (see
fig. 4.8(c,d)) polarizer, the dependence X(I) is not negligible and the os-
cillation frequency is not linear with respect to the current value. Giving
a look to the rigid vortex modelling those dependencies could be addicted
to the fact that the magnetostatic energy is neglected. In fact since the
magnetostatic energy is current independent, considering it we have that
the term Ω(X) is not linear with the current anymore and then the station-
ary vortex oscillation radius X is current dependent. However reasoning on
scaling argument we can prove that the X(I) dependence in fig.4.2 is not
a result of such an approximation. In order to show that, let us consider a
disk of radius R being in a magnetic vortex state, assumed to be rigid with
the vortex core center occupying a fixed position X. The magnetostatic
energy is expressed by the following equation:

FM = −µ0

∫
Ω
HM [M ] ·M dV =

µ0

2

∫
Ω∞

H2
M [M ] dV , (4.9)

where HM is the magnetostatic field expressed by the equation (1.8). It is
convenient to report the magnetostatic field expression here since it is the
core of the discussion. In this respect, we have

HM [M ] = −∇P
4π

[∫
Ωm

∇Q ·M(Q)

rPQ
dVQ −

∫
∂Ωm

M · nQ
rPQ

dSQ

]
, (4.10)



4.3. THE RIGID VORTEX THEORY 75

a b

c d

Figure 4.2: Oscillation frequency f = Ω/(2π) and stable orbit radius X as
function of the spin-polarized current obtained fro micromagnetic simula-
tions: (a) f(I), (b) X(I) for θp = 0 (out-of-plane polarizer); (c) f(I), (d)
X(I) for θp = 84◦ (in-plane polarizer).
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where the first integral in the right hand side is the contribution due to
the magnetic volume charges, while the second integral is the contribution
due to the surface charges. When R → ∞, fixed X we have M · nQ → 0
and therefore the surface integral tends to zero. Moreover, if we assume
a rigid vortex magnetization distribution we have that the volume charges
are concentrate only in the vortex core and the magnetostatic field energy
tends to be constant with respect to the position of the vortex core X. In
conclusion the current dependence of the orbit radius X(I) should tends
to zero when we increase the radius of the free layer and disappear in the
limit case R → ∞. In fig.4.17 is evident that this is not the case. In fact

Figure 4.3: Stationary oscillation orbit radius X as a function of the out
of plane θp = 0 spin polarized current I, obtained from micromagnetic
simulations.

increasing the size of the free layer the so plotted X(I) dependence is more
pronounced. Therefore, the anomalous current dependences showed up in
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fig.4.2 are not a result of the inaccurate estimation of the vortex state energy,
but rather of the fundamental hypothesis of rigid structure of the magnetic
vortex. In the following section we propose a different approach where the
magnetization distribution is not described by an ansatz anymore.

4.4 Free ansatz model identification

The aim of the previous section was to show the failure of the rigid vortex
description for studying the magnetization dynamics in the point-contact
device considered. The limitation of the rigid vortex theory to describe
the vortex dynamics in submicron-size disks have been already discussed in
reference [99]. However, to overcome such limitation the approach followed
was to adopt for the magnetization pattern the two vortices ansatz [97]
connected to the theory of the Beljavin-Poliakov soliton. In this section we
show that either this last description is not able to reproduce the dynamical
features of the vortex dynamics observed by means micromagnetic simula-
tions. The reason is the deformation of the vortex structure due to the Oer-
sted filed generated by the current flowing through the nanocontact. It is
clear that if the discrepancy depends on the current, a current-independent
ansatz cannot be the solution to our problem. In the following this argument
will be validated with a combined analytical-numerical approach, where the
numerical part of our study is developed in the environment MUMAX [24].

4.5 Conservative dynamics

The starting point of our analysis is the micromagnetic energy of the vortex
configuration. In fact the main features of the vortex dynamics, in particular
the deformation of the vortex structure and its impact on the dynamics can
be understood with a combined analysis of the energy and the magnetization
pattern. A numerical estimation of the several energetic contributions can
be done considering the conservative dynamics α = 0, β = 0. In that case
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eq.(4.6) becomes:

Ẋ = 0 ,

Φ̇ = Ω(X) =
∂XW

GX
,

(4.11)

which describes a precession of the vortex core on a circular orbit of radius
X at constant energyW (X). In principle the conservative dynamics can be
simulated setting the damping constant and the spin polarized current zero
in the simulation software. However while that is immediate for the spin
polarized current, the explicit structure of the solver used does not allow to
set damping zero without increasing considerably the simulation error. We
choose for these kind of simulations a damping constant α = 1.3×10−3. This
value is small enough to assume that for a sufficient long time the dynamics
occurs at constant energy. On the other end it is big enough to contain the
simulation error. Micromagnetic analysis shows that the rigid vortex theory
cannot be applied for a quantitative description of nanocontact STNOs. In
fig. 4.4, the behavior of the different energy terms as function of X and I
is reported. One can clearly see that the exchange and the magnetostatic
energy (fig.4.4(a,b)) which within the context of a rigid vortex model are
considered to be independent of the vortex core position and current, exhibit
monotonically increasing behavior as function of X, but also with respect
to I in a nonnegligible way. In addition, the Zeeman energy associated with
the Oersted field (fig.4.4(c)) shows a weak dependence on X compared to
what a rigid vortex description would predict (see yellow curve).

The strong dependence on the current can be also explained by looking
at the micromagnetically computed magnetization configuration, where a
strong deformation of the vortex magnetization pattern is clearly visible (see
fig.4.5(b)). The in-plane deformation is responsible for the weak dependence
on X of the Zeeman energy and for the dependencies on both X and I of the
exchange energy (see fig.4.4(a,c)). In fact, while for large enough distance
from the vortex core the magnetization aligns with the Oersted field, in a
small region around the line connecting the core center and the nanocontact
center (line A-A’ in fig. 4.5(a)) there is a sharp change of the magnetization
direction. This change of direction is associated with a consistent amount



4.5. CONSERVATIVE DYNAMICS 79

a

c

b

d

Figure 4.4: Energies as function of X and I computed from micromagnetic
simulations. (a) exchange energy; (b) magnetostatic energy; (c) Zeeman
energy; (d) total energy. Solid lines of different colors refer to different
values of I, dashed yellow line in (c) refers to the Zeeman energy predicted
by a rigid vortex description.
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Figure 4.5: (a) Exchange energy density of the vortex configuration for
I = 10mA and X = 800nm; (b) mz along the line A-A’ represented in (a)
for different current values I. Inset: magnified view.

of exchange energy stored along this branch structure, as in fig.4.5(a) where
the exchange energy density is represented.

We also observe that the deformation of the vortex structure affects not
only the in-plane magnetization components mx,my, but also mz. In fact,
one can see in fig.4.5-(b) that, as far as the current is increased, in the
region along the line A-A’ except the vortex core region, the out-of-plane
magnetizationmz exhibits a nonzero tilting downwards which increases with
X and I. This deformation of the vortex structure can explain the current
dependence of the magnetostatic energy reported in fig.4.4(b).

The gyrovector module is G ≈ 2πpµ0MsL/γ, where p is the vortex
core polarity, while the total energy is approximated with the following
fourth degree polynomial W (X, I) = W0 + c1X + c2X

2 + c4X
4, where the

coefficients are obtained with a least squares fitting to the results of full
micromagnetic simulations of the conservative dynamics. In fig.4.6(a), we
show that the reduced order model where the current dependence of the
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a b

Figure 4.6: Comparison between the vortex oscillation frequency estimated
with full micromagnetic simulations and evaluated with reduced order model
for different current values. (a)The red circles, blue squares and green
triangles are obtained from MUMAX [24] for I = 10mA, I = 5mA and
I = 2.5mA respectively. The continuous line of the same color is related to
the same current value but is obtained from eq. (4.11) using the polynomial
expression for W (X, I). (b)Different contributions to the total frequency f .
The blue curve represents the frequency estimated according to eq. (4.11)
under the assumption of rigid vortex profile for the magnetization distribu-
tion and considering only the Zeeman energy due to the Oersted field.

energy W (X, I) is identified from micromagnetic computation of the ener-
gies is in good agreement with the oscillation frequency resulting from full
micromagnetic simulations of conservative vortex gyration. Furthermore,
in fig.4.6(b) one can see that each contribution (exchange fex, Oersted fOe
and magnetostatic fm) is important for the correct estimation of the con-
servative gyration frequency. In addition, it is important to notice that the
rigid vortex theory is not able to reproduce the vortex dynamics in this case.
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In fact by looking at the blue line in fig.4.6(b) computed assuming a rigid
vortex state withW (X, I) ≈WOe(X, I)⇔ f(X, I) ≈ fOe(X, I) [87] , [89] ,it
is apparent that the frequency so predicted overestimates the frequency es-
timated by full micromagnetic simulations by a large amount. Notice that
the matching of the frequency values validates the approximated expression
for the gyrofactor which is rigorous only in case of rigid vortex. In the
following we add nonconservative effects to the vortex dynamics, such as
damping and spin-polarized-current.

4.6 Current driven dynamics

In order to reproduce the correct current dependence of the stationary orbit
radius and oscillation frequency, we found out that it is necessary to fit both
the energy W and the damping term coefficient D with micromagnetic
simulations. The identification procedure of D can be inferred from the
reduced order model described by eq.(4.1) in the absence of spin torque
force Fst = 0. In this framework, we end up with the following equation:

D2Ẋ +D∂XW +G2Ẋ = 0 , (4.12)

which is a second degree polynomial equation in D that can be solved once
Ẋ is known. This last term is obtained from a numerical experiment of
relaxation dynamics. In particular, we simulate the vortex core dynamics
starting from the initial condition where the vortex core is displaced from
the center and we compute its dynamics towards equilibrium (center of
the nanocontact) monitoring the energy W (t, I). From the knowledge of
W (X, I) , X(t) is extracted. Since D2/G2 � 1, we can approximately
estimate D ≈ G2|Ẋ|/(∂XW ). At this point, the knowledge of W (X, I) and
X(t) allows us to obtain D(X, I) from the solution of eq. (4.12). In this
way, we get two roots, but a simple comparison of their order of magnitude
with the one of the approximate value allows one to select the correct one.
We remark that the characterization of the damping term coefficient does
not involve the spin torque force term. In fig. 4.7, the numerical results for
D(X, I) obtained following the procedure described above, are reported.
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Figure 4.7: Damping D as a function of X for several values of the current
I.

We observe that, while for I = 0 mA D(X) is approximately constant, the
dependence on X becomes more important as the current increases.

For the spin torque force term, one can infer that, for an arbitrary ori-
entation of the polarizer, only the out-of-plane component F zst can compen-
sate the effect of damping. We adopt for this term the same expression as
that provided by the rigid vortex theory [89], namely F zst = kstI/X, where
kst = Msσ L cos θp. After the identification of W (X, I) and D(X, I), from
the resolution of eqs.(4.6), we get the blue curves in fig.4.8. As can be os-
erved, they are in very good agreement with full micromagnetic simulations
(red symbols).
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a b

c d

Figure 4.8: Oscillation frequency f and stable orbit radius X as function
of the spin-polarized current: (a) f(I), (b) X(I) for θp = 0 (out-of-plane
polarizer); (c) f(I), (d) X(I) for θp = 84◦ (in-plane polarizer). Solid lines
are obtained from eqs.4.8, whereas lines with symbols refer to the results of
full micromagnetic simulations.
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4.7 Theory of vortex oscillations synchronization
by microwave magnetic field

Up to this point, our model describes a scenario where the only external
source exciting the vortex dynamics is the dc spin polarized electric current
flowing through the nanocontact. In what follows, we generalize our model
in order to include the presence of a microwave magnetic field, instrumental
for the synchronization study. We model the interaction between the mi-
crowave field and the vortex magnetization state with an additional Zeeman
energy contribution. This energy term can be evaluated as:

Wrf = −µ0LπR
2MsHrf · <m > , (4.13)

where < · > means spatial average and

<m >= −Ckm(I) ez ×X , (4.14)

where C is the chirality of the vortex and the proportionality constant km
depends on the current I and is evaluated from numerical simulations. This
interaction appears in the model through its gradient with respect the vortex
core position vector X:

Frf = −∂XWrf = µ0krf ez ×Hrf . (4.15)

where krf = CMsLπR
2km.

Thus, the equations which describe the vortex motion become:

Ẋ =
G

G2 +D2

[
F zst + Frf,Φ −D

(
ΩX −

Frf,X
G

)]
,

Φ̇ =
G

G2 +D2

[
GΩ−

Frf,X
X

+
D (Frf,Φ + F zst)

GX

]
,

(4.16)

where

Frf,Φ = Frf · X̂ = µ0kWrf
Hrf cos(Φ− ωt) ,

Frf,X = Frf · êz × X̂ = µ0krfHrf sin(Φ− ωt) .
(4.17)
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Here, we use the approach proposed in refs. [76,81–83] where the dynamical
equations are rewritten in an appropriate rotating frame leading to an au-
tonomous (i.e. time-independent) two-dimensional dynamical system. As
a consequence of that, we can completely characterize the dynamical state
by means of bifurcation theory [30–32]. Let us consider a rotating reference
frame with angular frequency ω. In this frame, the angular polar coordinate
Φ = φ+ ω t and the rotating field components are given by:

Frf,X = µ0kWrf
Hrf sinφ = Frf sinφ ,

Frf,φ = µ0kWrf
Hrf cosφ = Frf cosφ ,

(4.18)

which, as mentioned before, are time-independent.

Then, if we introduce the normalized quantities d = D/G, x = X/R,
b = Frf/(GR), ω0 = F zst/(DX) and neglect the O(d2) terms , eqs. (4.16)
projected in the rotating frame take the following form :

ẋ = d x (ω0 − Ω) + b cosφ ,

φ̇ = Ω− ω − b

x
sinφ .

(4.19)

The latter equations reveal a simple, but neverthless rich mathematical
structure, as we will see in the following. In fact, from general arguments
of nonlinear dynamical system theory [30–32], it is possible to state that
the only steady-state solutions admitted by eqs.(4.19) are either stationary
points or limit cycles. As far as the synchronization with the rotating field is
concerned, we pay special attention to the equilibrium states. In fact, such
equilibria in the rotating reference frame represent synchronized motions
of the vortex with the rotating field (P -modes) if we interpret them in the
laboratory (non-rotating) reference frame. Conversely, limit cycles in the
rotating frame represent unsynchronized quasi-periodic vortex motions (Q-
modes) in the lab frame.
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Figure 4.9: Phase locking diagrams in the control plane (ω,Hrf ) as func-
tion of current: (a) I = 5mA; (b) I = 7.5mA; red lines refer to saddle-node
bifucations and blue lines refer to homoclinic bifurcations; (sn) qualita-
tive sketches for saddle-node bifurcations, the sequence a,b,c reproduces
the generic transition from region P/Q to region Q; (h) qualitative sketches
for homoclinic bifurcations, the sequence a,b,c reproduces the generic tran-
sition from region P/Q to region P .
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All the possible transitions between P↔Q modes are a consequence of a
bifurcation process [20, 30–32]. Among the possible bifurcations for a two-
dimensional dynamical system, for the amplitude of current (2.5mA ≤ I ≤
10mA) and microwave field (Hrf ≤ 1 mT) considered, we find out that,
for the dynamical system described by eqs. (4.19), just two of them occur
as function of the current: the saddle-node and the homoclinic bifurcation.
However this does not exclude the presence of other bifurcations that might
occur at higher microwave power.

A sketch of these two bifurcation mechanisms is reported in fig. 4.9(sn,h),
where generic transitions from region P/Q to regions Q and P are described.
In the former case, an unstable P -mode (saddle point, represented as a
striped dot in figure) annihilates with a stable synchronized state (filled dot)
leaving just a stable Q-mode (red closed curve) as admissible regime. In the
latter case, a stable unsynchronized state (Q-mode) disappears through a
saddle connection, leaving just a stable synchronized P -mode as admissible
regime. From the description of these bifurcation mechanisms, one can con-
clude that in the control plane the saddle node bifurcations are responsible
for the P→Q transitions, whereas homoclinic bifurcations are responsible
for the Q→P ones.

Now we address the quantitative determination of the bifurcation curves
from eqs.(4.19). The first step is to express the synchronization conditions:

ẋ = φ̇ = 0 ,

b =
d x

cosφ
(Ω− ω0) ,

ω = Ω− d tanφ (Ω− ω0) ,

(4.20)

where a correspondence between the synchronized states in the rotating
frame (x, φ) and the points of the control plane (ω,Hrf ) is established. The
saddle node bifurcation curve can be obtained by considering the linearized
form of eqs. (4.19) δẋ = J(x, φ) · δx , being δx = (δx, δφ), J(x, φ) the
Jacobian matrix of the right hand side of (4.19), evaluated in the equi-
librium point (x, φ). In particular, by solving eqs. (4.20) together with
det{J(x, φ)} = 0 , we obtain the red curves in fig.4.9(a,b). On the other
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hand, as far as the homoclinic bifurcation is concerned, there are no gen-
eral approaches since it is a global bifurcation process. Here we detect the
occurrence of such a bifurcation from the analysis of the phase portrait of
the dynamical system (4.19) in the plane (x1 = x cosφ, x2 = x sinφ). By
keeping ω fixed while changing b, we determine the critical value of this
parameter related with the onset of the homoclinic bifurcation, as sketched
in fig. 4.9(h-a,h-b,h-c), by following a bisection method. By repeating this
procedure, we obtain the blue curves enclosing the region P in the phase
locking diagram of fig.4.9(a)-(b). The structure of the phase locking di-
agram is preserved when the current value I changes, as shown in figure
4.9-(a,b). This confirms the general character of the overall picture of the
vortex dynamics outlined above in the considered current range. In figure
4.10(a,b), we report the comparison of reduced order model and full mi-
cromagnetic simulations results for the phase locking diagram between the
current induced vortex oscillations and the external microwave magnetic
field. The diagram represents all the possible stable oscillation regimes of
the magnetic vortex as function of the control variables (ω,Hrf ). This dia-
gram can be separated in three regions. Points in the region labelled with P
correspond to periodic motions, termed P -modes, and are associated with
vortex oscillations synchronized with the microwave magnetic field. On
the other hand, points in the region labelled with Q correspond to quasi-
periodic motions [100], termed Q-modes, associated with unsynchronized
vortex oscillations. In the region P/Q both synchronized (P -modes) and
unsynchronized (Q-modes) regimes can exist for the same pair of control
variables (ω,Hrf ). Which one of the two is reached in a particular situation
depends on the past history of the vortex dynamical regime. In this respect,
the coexistence of multiple stable oscillation regimes implies the occurrence
of hysteretic synchronization mechanisms. The critical lines separating the
different regions form two curved cones with a common vertex. The larger
one bounded by the red curves separates the region where stable P -modes
exist from the one where there are only unsynchronized Q-modes. The inner
one, instead bounded by the blue curves, encloses the region where the only
stable regimes are P -modes. The common vertex on the line Hrf = 0 mT
corresponds to the free-running frequency ω0 of the nanocontact oscillator,
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namely the frequency of oscillations in the absence of microwave field.

Figure 4.10:
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Figure 4.10: (a) phase locking diagram in the control plane (ω,Hrf ) for a
spin-polarized current I = 10mA with θp = 84◦. Regions P and Q repre-
sent synchronized and unsynchronized states, respectively, whereas region
P/Q indicates coexistence of both of them. Solid lines refer to reduced or-
der model predictions, symbols to micromagnetic simulations; (b) extended
view of the phase locking diagram for µ0Hrf < 0.1mT ; (c),(d) spectrograms
of the in-plane magnetization oscillation obtained from micromagnetic sim-
ulations of vortex dynamics at microwave field amplitude µ0Hrf = 0.1mT
and ramping the angular frequency ω up (c) and down (d); (e),(g) spectro-
grams obtained at ω/(2π) = 200MHz and ramping the field amplitude Hrf

up (e) and down (g). The color scale refers to the spectrum amplitude ex-
pressed in dB; (h) superposition of the phase locking diagrams for different
current values I = 5 mA (dotted lines) and I = 10 mA (solid lines).

To clarify the diagram, let us consider an experimental situation in which
a microwave field of a certain amplitude has, initially, a very large frequency.
According to the phase diagram in fig.4.10(a), the vortex oscillation regime
in this situation will be identified with a point in the right region Q and,
therefore, is unsynchronized. Then, let us suppose to slowly decrease the
frequency while keeping the field amplitude constant, which means moving
the point leftwards along an horizontal line. The system will stay in an
unsynchronized regime (Q-mode) until the blue curve separating regions
P/Q and P is crossed. At that point, the vortex oscillation will undergo
synchronization with the microwave field, since the point (ω,Hrf ) enters the
region P where the only stable regime is a P -mode. By further decreasing
the frequency, the vortex oscillations will stay synchronized until the the red
line separating the left Q and P/Q regions is crossed. When this occurs,
the magnetic vortex will lose the synchronization with the microwave field
and will move to a stable quasi-periodic motion. If the microwave field
frequency is increased back, we move towards the right in fig.4.10(a) and the
synchronization will be restored when the left blue line is crossed. By further
increasing the frequency, the loss of synchronization will happen when the
right red line is crossed. The hysteretic nature of the synchronization can
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be observed in the spectrograms presented in fig.4.10(c) and fig.4.10(d).
They have been obtained from micromagnetic simulations by increasing
(fig.4.10(c)) and decreasing (fig.4.10(d)) the frequency at constant rate of
100KHz/ns. The amplitude of the rf field is 0.1mT and the injected electric
current is 10mA. The red and white dashed lines indicate the P → Q and
the Q→ P transitions, respectively. It has been checked that smaller value
of the frequency change rate does not affect the results.

We observe that the phase locking band, namely the width of region P ,
increases as a function of Hrf (see figs. 4.10(a)-(b)). Moreover, for moder-
ately high microwave field amplitudes, the frequency bands associated with
coexistence of P/Q modes also increase and exhibit significant asymmetry,
which is the signature of complex nonlinear dynamics. This featue has been
already observed experimentally (for a wide range of frequencies) in point
contact devices where the magnetization is nearly uniform [84] . Remark-
ably, we point out that such frequency bands are quite large (several tens
of MHz for µ0Hrf ∼ 0.1mT, above 100 MHz for µ0Hrf > 0.5mT). Thus,
it is expected that the hysteretic synchronization might be clearly observ-
able even at room temperature, contrary to what happens for nanopillar
STNOs [77,84].

The hysteretic nature of the synchronization mechanism is also present
if the frequency is maintained constant but the amplitude of the rf field
is swept at a constant rate, which means moving vertically in the phase
diagram of fig.4.10(a). It is observed in fig.4.10(e,f) where we present spec-
tograms of the in-plane magnetization component obtained from micromag-
netic simulations at 200MHz sweeping the field up (e) and down (f) at a
rate of 1mT/ns in both cases. As in the previous case, it has been checked
that a smaller rate does not affect the results.

In general, for generic histories of the microwave excitation, represented
by closed curves in the control plane (ω,Hrf ) crossing the aforementioned
critical lines, there will be hysteresis in the synchronization process. As
outlined above, the different regions in the control plane (ω,Hrf ) are sepa-
rated by curves associated with specific transitions of the vortex oscillation
regimes. In particular, the blue curves describe transitions from Q → P
(unsynchronized to synchronized regimes), whereas the red curves describe



4.7. SYNCHRONIZATION BY MICROWAVE FIELD 93

transitions P → Q (synchronized to unsynchronized regimes).
These critical curves, which can be analytically derived from our model,

have been checked by means of full micromagnetic simulations. The results
are visible in fig.4.10(a,b), where blue circle (red cross) symbols indicate
the Q → P (P → Q) transitions observed in the simulations. The good
quantitative agreement demonstrates the predictive power of the proposed
theoretical model.

The wide range of frequencies around the free-running oscillation fre-
quency in which synchronization is realized is an important requirement for
the synchronization of multiple nanocontact vortex oscillators which, as it
was pointed out in the introduction, is the solution to increase the power
emitted by STNO devices. The study of synchronization of a family of
nanocontact vortex oscillators goes beyond the limits of this work, but it
is important here to carry out a general discussion about the simultaneous
synchronization of multiple oscillators. The main point we want to stress
is that, not only the region P , but also the region P/Q where synchronized
and unsynchronized regimes coexist, is part of the frequency range in which
simultaneous synchronization is possible.

In figure 4.10(h) we present the synchronization cones of two STNOs
which differ in the free-running frequency (f ′′0−f ′0 = 22.4 MHz) and we want
to study the frequency range in which simultaneous synchronization occurs.
The critical lines of the two STNOs have been computed considering the
same STNO subjected to two different injected DC currents (I = 5mA, I =
10mA). This is done in order to simulate the situation where point-contacts
are connected in parallel and there are differences in the contact resistances
due to fabrication tolerances. The intersection points between the horizontal
line corresponding to Hrf = 0.2 mT and the critical lines associated with
the two oscillators are denoted with prime and double prime frequencies.
Let us now consider again the experiment in which, starting from large
enough frequency, we decrease it, i.e. we move from the right to the left on
the horizontal line. The oscillator with the larger free-running frequency f ′′0
gets synchronized with the external field at the frequency f ′′P+, while the
other one gets synchronized at the lower frequency f ′P+. From frequencies
below f ′P+, the oscillators are simultaneously synchronized down to the
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frequency f ′′Q− since f ′′Q− > f ′Q−). In this situation, the simultaneous locking
frequency range is f ′P+ − f ′′Q− = 71.8 MHz, more than three times larger
than the difference of the free-running frequencies f ′′0 − f ′0. Remarkably, we
observe that, in the absence of hysteresis, the locking range would be simply
f ′P+−f ′′P− = 25.9MHz, which is less than half of that achievable taking into
account hysteresis.

Analogously, if we carry out the experiment by increasing the frequency
at given field, by using the same line of reasoning, we find that the frequency
range of simultaneous synchronization between the two STNOs goes from
f ′′P− to f ′′Q+ which, according to our computations, is equal to 92.1 MHz.
We notice that, in this case, the frequency f ′Q+ > f ′′Q+ and, thus, the second
one determines the upper bound.

In conclusion, the hysteretic synchronization, coupled with an appropri-
ate scheme of variation of the excitation conditions, may lead to consider-
ably large frequency ranges where simultaneous synchronization of nanocon-
tact STNOs is possible.



Conclusions

In this thesis two different spintronic devices of interest for technological
applications have been considered. Both devices are constituted by a mul-
tilayer structure of magnetic materials separated by a non magnetic spacer
which can be an insulator or a conductor. For the purpose of this thesis,
a three layers structure is considered. The central layer is a non-magnetic
one and it divides the two remaining magnetic layers. Only the magneti-
zation of one of the two magnetic layers is free to change under the action
of the external excitations. In the other magnetic layer, the magnetization
is fixed and it acts as a spin-polarizer for the electric current flowing per-
pendicular through the multilayer structure. The magnetization dynamics
in the free-layers have been investigated in the framework of micromag-
netics, where the external excitations consist in applied magnetic field and
spin-polarized-current included in the modelling with the Slonczewski spin-
transfer-torque (STT) mechanism.
The first device considered is a magnetic tunnel juction (MTJ), where the
free layer is a disk with circular cross section and a fixed thickness. The
dimensions of the free layer are such that the magnetization can be consid-
ered spatially uniform. Moreover, the chemical composition of the juction
free-layer/spacer produces an interfacial perpendicular anisotropy (IPA) ef-
fect. It is considered the case where the competition between magnetostatic
effect and IPA results in a perpendicular easy axis configuration but where
in the energetic expansion of the anysotropy interaction the second order
uniaxial perpendicular anisotropy coefficient k2 is of the same order of mag-
nitude of the effective coefficient of the first order anisotropy k1eff , namely:

95
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(k1eff ∼ k2 ∼ 104 ÷ 105 J/m3). For this device the several features cor-
responding to the magnetization statics and dynamics have been explored.
First, the magnetization states of equilibrium and their stability when the
anisotropy parameters (first and second order) are changed. It is shown
that for a given k2, by tuning k1eff several static configurations can be
obtained: easy axis (EA); easy plane (EP); easy cone (EC); and easy axis-
plane (EAP). Then, the study of the dynamical phenomena (switching and
self-oscillation dynamics) in the EA region is addressed. First, the role of
the coefficient k2 in the determination of the switching current when the
spin-polarizer is oriented along the easy axis (out of plane direction) has
been investigated. It has been shown that for each value k∗1eff there exists
a k∗2 value where for k2 ≤ k∗2 the switching current value is independent on
k2, while for k2 ≥ k∗2 it increases almost linearly with k2. From a technolog-
ical point of view, this fact is relevant to understand the limits of the tuning
of k1eff which allows a substantial reduction of the switching current value.
Then the study of the self-oscillations regimes when the spin-polarizer is
oriented in plane is considered. Fixed the value of k1eff and increasing
k2, the bandwidth, the ratio ∆ω/∆JMTJ and the interval of current val-
ues where the self-oscillations regime is observable considerably increase.
In summary, it is shown that the second order anisotropy effect has to be
taken into account in the design of STT-MTJ working as a memory or as a
nano-oscillator device, where the IPA-magnetostatic compensation effect is
important.
The second device considered is a point-contact geometry where the free
layer is a thin cylinder hight few nanometers and with a diameter of 2 mi-
cron. The spatially uniform magnetization is not the energetically preferred
state, in fact the ground state is a magnetic vortex, characterized by an in-
plane magnetization pattern curling around the vortex core wherein the
magnetization twists up to reach the out of plane direction in its center. By
injecting a proper spin-polarized electric current through the metallic nano-
contact on the top of the layer, it is possible to excite stable self-oscillations
of the vortex core around the nano-contact on a circular orbit of radius X
with a frequency value ω0. A reduced order model based on the collective
variables description have been developed, where the collective variables
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are the vortex core center coordinates. This model is able to capture the
main dynamical aspects of the self-oscillation regime such as the oscilla-
tion frequency ω0 and radius of the oscillations orbit X, corresponding to
the distance from the center of the nano-contact to the vortex core center.
The fully characterization of that model passes through the identification
of two functions, which are the vortex state energy and the damping term
of the vortex gyration. In particular, fixed the electric current value, it is
proposed an hybrid analytical-numerical procedure to recognize their func-
tional dependencies on X. The model so obtained allowed to overcome the
limits of the collective variable description based on the ansatz proposed in
literature. In fact, as a general fact such ansatzes, when the radius of the
free-layer gets progressively larger, provides a spin-polarized-current inde-
pendent gyration radius X and a linear dependence on the current of the
oscillation frequency ω0. Such description is not confirmed by the micro-
magnetic simulations which show a sensible nonlinear current dependence of
both terms X and ω0, which does not disappear when the radius of the free
layer gets bigger. At this point the study of the synchronization of the vor-
tex core oscillations with a microwave rotating magnetic field is addressed.
The microwave field is introduced in the model as a perturbation. Then,
writing the dynamical equation in a rotating frame synchronous with the
microwave field, the bifurcation theory has been possible to apply in order
to obtain the complete phase diagram of the possible dynamical regimes.
When the amplitude of the rotating magnetic field is ∼ 10−2mT , there ex-
ists a cone region (Arnold tongue) in the control plane frequency-amplitude
of the rotating field (ω,Hrf ) with vertex in the point (ω = ω0, Hrf = 0).
For points inside (outside) the cone, the vortex oscillations are synchro-
nized (unsinchronized) with the rotating field. Instead, when the amplitude
of the rotating magnetic field is ∼ 10−2 ÷ 10−1mT , a new region where
the coexistence of synchronized and unsynchronized oscillations appears.
The presence of this region predicts hysteresis in the synchronization pro-
cess which is confirmed by micromagnetic simulations. A further increment
of the rotating field amplitude ∼ 10−1 ÷ 1mT produces asymmetry of the
width of the coexistence regions which indicates asymmetry in the hysteresis
bands. This aspect has been confirmed by the micromagnetic simulations
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too. Moreover the amplitude of the hysteresis bands becomes in the order
of several hundreds of MHz which is the order of magnitude of the vortex
gyration frequency when Hrf = 0.

From a technological point of view, the synchronization of an arbitrary
number of independent oscillators driven by a microwave source, represents
one of the possible solutions to overcome the physical limit of low output
power of the single device. The presence of very large hysteresis bands
increases the possibility to achieve the synchronization for an ensemble of
devices where the fabrication tolerances produce a difference of parameters
among different devices. These differences are reflected in phase diagrams
in the control plane of the devices which do not overlap completely on the
control plane (ω,Hrf ) but only for a portion of them. For example, it is
considered the case of the study of the synchronization of the vortex oscil-
lations of two different devices. The tolerances defects produce a difference
in the electric resistances of the two devices and then in a difference of the
electric current values flowing through them. It is obtained that the large
hysteresis increases the synchronization band of the two oscillators of a fac-
tor which is ∼ 3÷4 respect the case of absence of hysteresis. In conclusion,
the design of a grid of vortex based point-contact nano-oscillators working
in a synchronized state with a microwave rotating magnetic field, cannot
be splitted from the study of the hysteretic effect of the synchronization
process because as shown, it plays a key role in the determination of the
achievable performances.
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