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Chapter 1
Introduction

1.1 Context

Computer networks are nowadays at the basis of most critical infrastruc-

tures, and of many services we access in our daily activities - be they busi-

ness, consumer, social or private. Software Defined Networking (SDN)

has emerged in the very last few years - from the initial work done at Uni-

versity of California at Berkeley and Stanford University in 2008 - as a

paradigm capable of providing new ways to design, build and operate net-

works. This is due to the key concept underlying it, namely the separation

of the network control logic (the so-called control plane) from the under-

lying equipment (such as routers and switches) that forward and transport

the traffic (the data plane) [1].

Thanks to the clear separation of the two abstraction levels - the logic

level, corresponding to the control plane, and the physical one, i.e. the

data plane - SDN is claimed, and by many experts strongly believed, to be

about to introduce a big revolution in computer networking [2]. Along with

Network Function Virtualization (NFV), SDN is expected to have a positive

1
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impact on network management costs [3]. Indeed, the logical level may

host the network control logic in a programmable and highly flexible way:

advanced network services become software defined, supporting much easier

enforcement of networking policies, security mechanisms, reconfigurability

and evolution than in current computer networks.

The SDN flexibility is due to the separation of concerns between net-

work configuration and policies definition and lower-level equipments for

traffic switching and routing, a direct consequence of the separation of ab-

straction layers. The many advantages promised by SDN in engineering and

managing computer networks and in operating their services are very attrac-

tive for network operators and Internet Services Providers (ISP). Network

operation and management are challenging, and providers face big issues

in configuring large networks, enforcing desired policies, and evolving to

new technologies - all in a very dynamic environment [4]. This is easily

comprehensible thinking, for instance, at the huge difficulties that major

technological changes encounter to be applied in large networks. The tran-

sition from the Internet network protocols IPV4 to IPV6 is just an example:

started about a decade ago, it is probably still far to be completed. And

it has to be considered that protocols, which are at the heart of computer

networks, are basic blocks from the point of view of the highly demanding

modern and future fixed and mobile applications and services.

According to Allied Market Research, the SDN market is expected to

reach $132 billion by 2022 [5]. Players in this market include telecommu-

nication operators, ISPs, cloud and data center providers, and equipment

manufacturers. Beside the decoupling of service, software and hardware
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technology innovations in networking, there is probably a fundamental rea-

son for such big expectation raised in the networking industry. The history

of major advances in computer science and engineering is a history of raising

the level of abstraction. This is true for instance for programming languages,

for operating systems and middleware technologies, for software design (up

to modern model-driven techniques) [6]. Abstraction and separation of con-

cerns are fundamental engineering principles, which in the case of SDN may

well support its wide spread.

The logical entity hosting software-defined core network services in the

control plane (e.g. routing, authentication, discovery) is typically known in

the literature as SDN controller (or simply controller). Very recently, the

concept of controller has evolved to that of network operating system

(NOS), an operating system - which can possibly run on commodity hard-

ware - specifically providing an execution environment for network manage-

ment applications, through programmable network functions. In the logical

SDN architecture, the controller is below the application layer1, and atop the

data plane, that it controls enacting the policies and the services required

by applications. The separation of the planes is realized by means of well-

defined application programming interfaces (API) between them. Relevant

examples of SDN controllers are NOX [7], Beacon [8], OpenDaylight [9] and

ONOS R© [10], while probably the most widely known API is OpenFlow [11].

1The applications atop the control plane are actually management programs accessing
the controller programming interface to request network services or to enforce policies.
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1.2 Motivations and contributions

Today’s networks will need to adopt a new approach to support the pre-

dicted growth in scale, diversity and complexity of use cases [12]. With new

services and applications emerging continuously, devices will be connected

much more often, and consequently, a distinct competitive market advan-

tage could be created by those network operators capable of implementing

new services rapidly.

In order to meet evolving market demands, and increase the flexibility

and agility of networks promoting innovative solutions for future network

services, telco companies look with interest at migrating towards the emerg-

ing Telco Cloud (TC) paradigm [13] [12] [14], becoming so-called Telco

Cloud Service Providers (TCSPs). Telco Cloud is meant to provide a

dedicated cloud computing solution for a network operator, to shift net-

work functions away from dedicated legacy hardware platforms into virtu-

alized software components deployable on general-purpose hardware. This

logically allocates cloud and networking capabilities into a multi-service

programmable fabric built to precisely meet each of the different service

requirements, changing network conditions, unpredictable traffic patterns,

continuous streams of apps and services and short innovation cycles.

This ability to focus on what is needed is achieved through the com-

bined use of Software Defined Networking (SDN) [1], Network Func-

tion Virtualization (NFV), and cloud technologies [15], [16] in telco cloud

infrastructures.

While the softwarization and cloudification of the network provides un-

paralleled level of automation and flexibility, and a drastic reduction of the
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network operating margins, it also presents significant challenges, mainly

due to the variety of knobs (e.g., SDN-, cloud-, and software- related pa-

rameters) to properly fine tune in [16] order to obtain specific levels of

service.

In the SDN world, performance it is not only related to the behaviour of

the data plane. As the separation of control plane and data plane makes the

latter significantly more agile, it lays off all the complex processing work-

load to the control plane. This is further exacerbated in distributed network

controller (e.g., ODL [9], and ONOS [10]), where the control plane is addi-

tionally loaded with the state synchronization overhead. Misconfiguration

of the control plane can negatively impact the overall network performance,

cause customer insatisfaction and, in more extreme cases, network unavail-

ability. Understanding the performance of the SDN control plane in a telco

cloud and the factors that influence it is fundamental for planning, sizing

and tuning SDN deployments.

Furthermore, the introduction of SDNs technologies has raised advanced

challenges in achieving failure resilience, meant as the persistence of ser-

vice delivery that can justifiably be trusted, when facing changes [17], and

fault tolerance, meant as the ability to avoid service failures in the pres-

ence of faults [18] (these definitions will be used hereafter to refer to the

resilience and fault-tolerance of SDN technologies). The decoupling of the

control plane from the data plane leads the dependency of the overall net-

work resilience on the fault-tolerance in the data plane, as in the traditional

networks, but also on the capability of the (logically) centralized control
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functions to be resilient to faults. Moreover, the SDNs are by nature suit-

able to be implemented as distributed system, introducing further threats

to the network resilience, such as inconsistent global network state shared

between the SDN controllers, as well as a network partitioning. In addi-

tion, compared to the legacy network appliances, which rely on dedicated

high-performance hardware, the adoption of technologies for virtualizing

network services, introduces performance and reliability concerns, e.g., high

overhead/latency and failures, due to new failure scenarios which periodi-

cally occur in data center [19] [20].

Consequently, as the controllers technology develops and progressively

becomes mature for the market, the need to engineer and to assess the

compliance of SDN solutions with non functional requirements – such as

scalability, high availability, fault tolerance and high resilience – becomes

more compelling. In such a context, the traditional software testing

techniques appear insufficient to evaluate the resilience and avail-

ability of a distributed SDN ecosystems. Indeed, although these tech-

niques are useful to validate specific system behaviours (e.g. the functional

testing), full operational testing may be possible only in production, due

to the impossibility to reproduce the entire ecosystem in a testing environ-

ment. Ultimately, even if a system can be reproduced in a test context, it

is impractical, or even impossible, to fully reproduce all aspects and failure

modes that can characterize complex distributed systems during produc-

tion hours [21]. On the other hand, a widely recognized effective way to

assess fault-tolerance mechanisms as well as to quantify system availability

and/or reliability is failure injection. Failure injection allows to assess fault
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tolerance mechanisms by reproducing multiple failure scenarios, such as a

latent communication, service failure, or hardware transient faults. Fur-

thermore, if applied in a controlled environment while the system is in

production, the failure injection can lead to discover problems in a timely

manner, without affecting the customers, and providing helpful insights to

build better detection, and mitigation mechanisms to recover the system

when real issues arise.

Therefore, along with the “softwarization” of network services, it is an

important goal in the engineering of such services, e.g. SDNs and NFVs,

to be able to test and assess the proper functioning not only in emulated

conditions before release and deployment, but also in-production [22],

when the system is under real operating conditions.

The goal of this thesis is to devise an approach to evaluate not only the

performance, but also the effectiveness of the failure detection, and miti-

gation mechanisms provided by SDN controllers, as well as the capability

of the SDNs to ultimately satisfy non functional requirements, especially

resiliency, availability, and reliability. The approach consists of exploiting

benchmarking techniques, such as the failure injection, to get continuously

feedback on the performance as well as capabilities of the SDN services to

survive failures, which is of paramount importance to improve the effective-

ness of the system internal mechanisms in reacting to anomalous situations

potentially occurring in operation, while its services are regularly updated

or improved.

To the best of our knowledge, there is no available approach or tool

that can be used to provide automation in the analysis of the SDN control
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plane. The literature on SDN performance and resilience assessment is still

at the beginning. The thesis aims to contribute to the advancement

in testing and evaluation of SDNs, trying to go beyond what can be

achieved by means of “traditional” software analysis and testing techniques.

Within this vision, this dissertation first presents SCP-CLUB (SDN

Control Plane CLoUd-based Benchmarking), a benchmarking frame-

work designed to automate the characterization of SDN control plane perfor-

mance, resilience and fault tolerance in telco cloud deployments. The idea

is to provide the same level of automation available in deploying NFV func-

tion, for the testing of different configuration, using idle cycles of the telco

cloud infrastructure. Then, the dissertation proposes an extension of the

framework with mechanisms to evaluate the runtime behaviour of a Telco

Cloud SDN under (possibly unforeseen) failure conditions, by exploiting the

software failure injection.

Differently from software fault injection [23] - a nowadays consolidated

form of testing - failure injection focuses on deliberately introducing failures

in the components of the system under assessment, or in their execution en-

vironment, under real or emulated load conditions, to evaluate the ability of

the system internal mechanisms to react to anomalous situations potentially

occurring in operation.

Overall, the framework provides an approach to implement an auto-

mated methodology for characterizing the performance and resilience of

the SDNs, and consists of a configurable software infrastructure. The dis-

tributed infrastructure encompasses - as main components - a set of man-

agement tools, a workload generator, a failure injector, and data collectors.
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The experimental evaluation of the proposed framework is based on the

open source distributed network operating system, ONOS R© [10] [24], which

is the very heart of the testbed. The ONOS R© initiative is supported by sev-

eral major industrial partners, including AT&T, Cisco, Ericsson, Google,

Huawei, NOKIA.

In summary the main contribution of this thesis are:

• An automated and configurable distributed infrastructure (named SCP-

CLUB framework) for deploying and testing SDN controllers under

various configurations. The infrastructure encompasses tools to sup-

port the management of the experiments, the load generation, failure

injection and data collection tasks;

• An injection methodology, conceived for both development and in-

production stage assessment. The methodology envisages the steps of

(i) definition of the workload (according to the Intent Based Network-

ing model [25]) to emulate actual operating conditions of a controller;

(ii) workload generation and actual injection of failures, selected from

the failure model, in the emulated load conditions; (iii) data collection

and assessment analysis. Clearly, workload emulation (definition and

generation) is not necessary for in-production tests, yet it is impor-

tant at the current state of the practice given the limited availability

of SDN on-field deployments;

• The experimental evaluation, on a distributed testbed based on ONOS R©

over Nokia AirFrame telco cloud technologies.
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1.3 Thesis organization

The dissertation is organized as follows.

Chapter 2 introduces the main concepts of Software-Defined Network-

ing, expected to become the paradigm underlying the next generation of

computer networks. It then presents a discussion on the current state of

art, and the identified open challenge, namely the resilience assessment of

SDN controllers.

Chapter 3 surveys the literature on SDN architectures and platforms,

and in particular on their resilience mechanisms, and on failure injection

testing techniques and tools for the assessment of software intensive systems.

It then discusses the opportunities envisaged in the proposed application of

failure injection methods to the problem of assessing the resilience of SDN

controllers.

Chapter 4 presents the SCP-CLUB (SDN Control Plane CLoUd-based

Benchmarking), a cloud-based benchmarking framework designed for per-

formance analysis of a telco cloud-based SDN control plane. SCP-CLUB

provides the automated tools to deploy and test SDN infrastructures, al-

lowing telco operator to perform the assessment of SDNs in controlled as

well as in-production environments. The Chapter describes the implemen-

tation of the proposed framework based on the ONOS R© distributed SDN

controller. The results of extensive experiments in an industrial telco cloud

infrastructure are presented, showing the effectiveness of SCP-CLUB in au-

tomating performance evaluation campaigns.

Chapter 5 presents the vision of continuous and in-production testing,

and describes the improvements made to the SCP-CLUB framework for the
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resilience assessment of SDNs. The central idea is the use of failure injec-

tion to assess the failure detection and mitigation mechanisms of SDN con-

trollers. The failure injection methodology and the support infrastructure

are presented along with the underlying failure model, listing the variety

of injectable failure types at system, network and service level. Then, the

chapter presents the ONOS-based implementation of the proposed failure

injection framework, and discusses the experiments by injecting failures into

ONOS R©.

Chapter 6 summarizes the problem addressed in this thesis and its

main contributions.
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The only joy in the world is to begin.

Cesare Pavese

Chapter 2
Software-Defined Networks

The Chapter introduces the concept of software-defined networking and its logic
architecture. It then presents the major dependability requirements for SDNs, pre-
ceded by a short introduction of the basic concepts of dependability. Finally, the
open challenges in SDN dependability - and in particular, SDN resilience - are
identified, which drive the work of this dissertation.

2.1 Abstracting the Network: SDN

2.1.1 Key Concepts

Software Defined Networking (SDN) is an emerging paradigm to design,

build and operate networks. It originated from work started at University of

California at Berkeley and Stanford University in 2008, and it has increas-

ingly gained momentum from both the research and industrial viewpoints

in the computer networking sector.

The driving motivation was the need for a major shift in networking

technologies in order to support much easier configuration, management,

13
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operation, reconfiguration and evolution than in current computer net-

works. Indeed, network operation and management are challenging tasks,

and telecommunication operators and Internet and cloud service providers

face big issues in configuring large networks, enforcing desired policies, and

evolving to new technologies [4]. Computer networks are nowadays at the

basis of most critical infrastructures, and of the many services we access in

our daily activities - be they business, consumer, social or private. Large

network’s configuration and management is very difficult because enforcing

high-level policies requires specifying them in terms of low-level commands

of many proprietary, vertically integrated devices of different vendors [4].

These difficulties hamper the development and rapid provisioning of new

advanced protocols and services to the highly demanding modern and fu-

ture fixed and mobile applications. This motivation led to the definition of

a new paradigm, envisaging a layered network architecture.

The key concept (Figure 2.1) is the separation of the network control

logic from the network equipments that forward and transport the traffic [1].

Traditional networks are hardware-centric, and most network equipments

(e.g., routers and switches) are closed, in the sense they incorporate both

the control and data parts (Figure 2.1a), and have their own vendor-specific

interfaces. Replacing or simply updating protocols and services is very

complex because all equipments have to be replaced/updated [26]. In SDN
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Figure 2.1: Separation of data and control in SDNs.
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(Figure 2.1b), network devices are simply packet forwarding devices residing

in the so-called data plane, while the “brain” (the programmable control

logic) resides in the control plane, distinct and above the data plane;

network equipments are programmed via the control layer.

2.1.2 SDN Architecture

As shown in Fig. 2.2, the separation of the layers is realized by means of

open application programming interfaces (API), called Northbound In-

terface (NBI, towards applications) and Southbound Interface (SBI,

between the control and data planes). This concept allows co-existence of

the new paradigm with the traditional one; indeed, several current com-

mercial network equipments are hybrid, supporting both the new SBI and

traditional protocols. This should ease the transition to SDN architectures.

The logical entity hosting software defined core network services in the

control plane (e.g. routing, authentication, discovery) is known as SDN

controller (or simply controller). It is responsible for enacting the policies

and the services required by applications, by issuing commands are receiving

events and status information from devices in the data plane (referred to as

SDN-enabled switches) through the SBI.

Much effort in the scientific and technological SDN literature has been

put on the Southbound Interface. The main southbound API is OpenFlow
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Figure 2.2: SDN architecture and interfaces.

[11], standardized by the Open Networking Foundation [27] (see Section

2.1.3), and supported by many leading network equipment vendors (such as

IBM, NetGear, NEC, HP).

Less emphasis has been put so far on the northbound interface and

protocols. The NBI is responsible to provide means to specify and request

network policies and services in an abstract way, independent from way they

are actuated by the controller. A promising proposal for the northbound

interface is the Intent-Based Networking (IBN) model [28] [25], adopted

in the ONOS project; it is described in Subsection 2.1.4.



Chapter 2. Software-Defined Networks 18

2.1.3 Standards and technologies

From a technological and industrial viewpoint, several initiatives have started

in the recent years to foster SDN development. A major initiative is the

Open Networking Foundation (ONF), a non-profit organization launched

in 2011 by Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and

Yahoo!. ONF currently counts tens of partner companies and it has as mis-

sion the “promotion and adoption of Software-Defined Networking through

open standards development” [27]. Another relevant non-profit initiative is

the Open Networking Lab (ON.Lab), established by service providers,

network operators and network equipment vendors with the main goal of

building open SDN tools and platforms. ONF and the ON.Lab announced

in late 2016 they will join in 2017 under the ONF name to accelerate the

adoption of SDN.

The first ONF achievement is the OpenFlow
TM

Standard, enabling

remote programming of the forwarding plane [29]. OpenFlow provides the

interface between the control and data planes, enabling a seamless com-

munication between components in the two levels. OpenFlow was initially

proposed for technology and application experimentation in a campus net-

work [11]. It then gained momentum, up to be defined as an ONF standard

for the southbound interface between the control and the data plane.
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The ONOS project has been established to develop an open SDN-

based vision of the next generation networks, to go beyond current networks,

which are “closed, proprietary, complex, operationally expensive, inflexible”

[30]. The explicit goal is “to produce the Open Source Network Operating

System that will enable service providers to build real Software Defined

Networks” [30]. This goal is pursued by a community of partners including

many of the major industrial players in the field, be they network operators,

Internet service providers, cloud and data center providers, and vendors,

including AT&T, Cisco, Ericsson, Google, Huawei, NOKIA, NEC, NTT

Communications, Samsung, Verizon.

The project has promoted the development of ONOS
TM

(Open Net-

work Operating System), claimed to be the first open source SDN net-

work operating system. ONOS is not the first open source SDN controller,

yet it is the first targeting scalability, high availability and high performance.

It has been conceived to overcome the limitations of previous controllers

such as NOX [7] and Beacon [8], which were closely tied to the OpenFlow

API and provided applications with direct access to OpenFlow messages -

in this sense, they did not provide the proper level of SDN abstraction to

applications, hence the need for a real SDN network operating system1.

1Note that the term network operating system (NOS) some decades ago referred to
operating systems with networking features (such as the one by Novell); this obsolete
usage has been changed in [7] “to denote systems that provide an execution environment
for programmatic control of the network”. This is what is currently still meant with the
term in the context of SDN, which is probably why nowadays the terms SDN controller
and network operating system are often used interchangeably.
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2.1.4 Intent-Based Networking

In the ONOS view, the Intent-Based Networking model plays an important

role in specifying the network needs through a policy-management service

[24]. The idea of IBN is that applications should send requests or policies

to the control plane in the form of intents, specified in terms of what and

not in terms of actions to be taken in controlling the network, i.e. of how

they should be actuated (the slogan is: “tell me what you need not how to

do it!”). A simple example of an intent is the request to establish a point-

to-point interconnection between two nodes, complemented by performance

or service requirements, such as minimum bandwidth and duration.

An intent can be regarded as an object containing a request to the

network operating system to alter the network behavior. It may consist of:

• Network Resources, the parts of the network affected by the intent;

• Constraints, such as bandwidth, optical frequency and link type re-

quested;

• Criteria, describing the slice of traffic affected by the intent;

• Instructions, i.e. actions to apply to the slice of traffic of interest.

The IBN model abstracts the specification of the needs of workloads

consuming network services (the “what”), from the way the network in-

frastructure satisfy those needs (the “how”). This is meant to be achieved
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through a policy-management service at the northbound interface of the

SDN controller; the latter is in charge of translating the network policies

into corresponding control actions, e.g. flow rules installation.

The intents specify at a logical level the actions requested, then the

SDN is in charge of satisfying them by directly interacting with the physical

devices. By doing so, the IBN framework abstracts the network complexity

allowing network operators and applications to describe policies rather than

low level instructions for the devices.

2.2 SDN Dependability

2.2.1 Basic Dependability Concepts

Dependability of a system or a service is a concept encompassing several

quality attributes (Fig. 2.3), namely availability, reliability, safety, confi-

dentiality, integrity and maintainability, with confidentiality, integrity, and

availability being part of the composite attribute security [18].

. Fault prevention means to prevent the occurrence or
introduction of faults.

. Fault tolerancemeans to avoid service failures in the
presence of faults.

. Fault removal means to reduce the number and
severity of faults.

. Fault forecasting means to estimate the present
number, the future incidence, and the likely con-
sequences of faults.

Fault prevention and fault tolerance aim to provide the
ability to deliver a service that can be trusted, while fault
removal and fault forecasting aim to reach confidence in
that ability by justifying that the functional and the
dependability and security specifications are adequate and
that the system is likely to meet them.

2.5 Summary: The Dependability and Security Tree

The schema of the complete taxonomy of dependable and
secure computing asoutlined in this section is shown inFig. 2.

3 THE THREATS TO DEPENDABILITY AND SECURITY

3.1 System Life Cycle: Phases and Environments
In this section, we present the taxonomy of threats that may
affect a system during its entire life. The life cycle of a
system consists of two phases: development and use.

The development phase includes all activities from
presentation of the user’s initial concept to the decision that
the system has passed all acceptance tests and is ready to
deliver service in its user’s environment. During the
development phase, the system interacts with the develop-
ment environment and development faultsmay be introduced
into the system by the environment. The development
environment of a system consists of the following elements:

1. the physical world with its natural phenomena,
2. human developers, some possibly lacking competence

or having malicious objectives,
3. development tools: software and hardware used by the

developers to assist them in the development
process,

4. production and test facilities.

The use phase of a system’s life begins when the system
is accepted for use and starts the delivery of its services to
the users. Use consists of alternating periods of correct
service delivery (to be called service delivery), service
outage, and service shutdown. A service outage is caused by
a service failure. It is the period when incorrect service
(including no service at all) is delivered at the service
interface. A service shutdown is an intentional halt of
service by an authorized entity. Maintenance actions may
take place during all three periods of the use phase.

During the use phase, the system interacts with its use
environment and may be adversely affected by faults
originating in it. The use environment consists of the
following elements:

1. the physical world with its natural phenomena;
2. administrators (including maintainers): entities (hu-

mans or other systems) that have the authority to
manage, modify, repair and use the system; some
authorized humans may lack competence or have
malicious objectives;

3. users: entities (humans or other systems) that receive
service from the system at their use interfaces;

4. providers: entities (humans or other systems) that
deliver services to the system at its use interfaces;

5. the infrastructure: entities that provide specialized
services to the system, such as information sources
(e.g., time, GPS, etc.), communication links, power
sources, cooling airflow, etc.

6. intruders: malicious entities (humans and other
systems) that attempt to exceed any authority they
might have and alter service or halt it, alter the
system’s functionality or performance, or to access
confidential information. Examples include hackers,
vandals, corrupt insiders, agents of hostile govern-
ments or organizations, and malicious software.

As used here, the term maintenance, following common
usage, includes not only repairs, but also all modifications
of the system that take place during the use phase of system
life. Therefore, maintenance is a development process, and
the preceding discussion of development applies to main-
tenance as well. The various forms of maintenance are
summarized in Fig. 3.

It is noteworthy that repair and fault tolerance are
related concepts; the distinction between fault tolerance and
maintenance in this paper is that maintenance involves the
participation of an external agent, e.g., a repairman, test
equipment, remote reloading of software. Furthermore,
repair is part of fault removal (during the use phase), and
fault forecasting usually considers repair situations. In fact,
repair can be seen as a fault tolerance activity within a
larger system that includes the system being repaired and
the people and other systems that perform such repairs.
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Fig. 1. Dependability and security attributes.

Fig. 2. The dependability and security tree.

Figure 2.3: Dependability attributes (Avizienis et al., 2004).
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Reliability expresses the continuity of correct service. It is the proba-

bility that the system functions properly in the time interval (0, t):

R(t) = P (!failure in (0, t)). (2.1)

Typically, reliability is evaluated through widely spread metrics such as

Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF)

and Mean Time To Repair (MTTR).

Availability expresses the readiness for correct service. It is the prob-

ability that the system functions properly at time t:

A(t) = P (!failure at t)) (2.2)

and it is often expressed as uptime divided by total time (uptime plus down-

time); often, it is computed as the ratio:

A =
MTTF

MTTF +MTTR
=

1

1 + MTTR
MTTF

(2.3)

which shows that for improving availability, it is important to reduce the

ratio between MTTR and MTTF, by increasing the mean time to failure

and/or by reducing the mean time to repair.

Safety is the absence of catastrophic consequences for the users and

the environment. Confidentiality is an information security property; it

is the property of a system to be able of not making available or disclosing

or making understandable (protected) information to unauthorized indi-

viduals, entities or processes. Integrity is the property representing the
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absence of improper alterations, may they concern - for instance - system,

messages or data. Maintainability is the ability of a system to undergo

modifications and repairs.

In this dissertation, we do not deal with safety, confidentiality, integrity

and maintainability, and in the next Section we will focus on the dependabil-

ity requirements placed on software-defined networks concerning availability,

reliability and scalability.

2.2.2 SDN Dependability Requirements

In a software-defined network, although logically centralized, the controller

is a physically distributed entity. This is because dependability require-

ments - mainly on scalability, availability and reliability - demand for its

engineering in a distributed architecture. If, as claimed, SDN is going to

become the technology of future networks, it has to fully address these

requirements. Telecommunication operators, for instance, are unlikely to

adopt SDN to replace existing carrier-grade networks unless SDN is proved

to be able to provide at least the same quality-of-service, while providing

greater flexibility and ease of management [16].

Scalability is not strictly a dependability attribute in the current clas-

sification, yet it is a major concern for SDNs. While certainly it is a fun-

damental design consideration for SDN controllers, this concern is often
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overlooked. It is a common belief that - differently from current networks,

where devices are often realized with specialized application-specific inte-

grated circuits (ASICs) - a logically centralized but physically distributed

software defined controller may not scale as the network grows. However,

this appears to be a wrong belief. As argued by Yeganeh et al [31], “there is

no inherent bottleneck to SDN scalability”. The issues of scalability in SDN

are similar as in any distributed system, and scalability is not inherently

harder to achieve than in traditional networks. That is, if a distributed

SDN is required to provide a unified network-wide view, solutions need to

incorporate distributed consistency protocols. If there exist limits for dis-

tributed systems, they are probably those stated in the famous Brewer’s

Conjecture [32], claiming that it may not be always possible to achieve

strong consistency, high availability and partition tolerance all together.

As for availability, the requirements on SDN are very stringent; these

are not different from those of current networks. If SDN have to be used

for basic yet critical services such as telephony, they are required to pro-

vide an end-to-end availability of five “nines” (i.e., 99,999%)2 as in today

carrier-grade networks [33]. In current networks, this is achieved at the

cost of manual configuration and long deployment times [16]. The flexibil-

ity of SDN is very appealing from the point of view of telecommunication

2A five “nines” availability amounts to about five minutes of downtime per year.
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networks operators, but they are not going to sacrifice availability for main-

tainability. Achieving such high levels of availability when the network is

software defined may be hard and it requires careful design and accurate

implementation, but it is possible. However, recent work by Akella and Kr-

ishnamurthy [34] has shown that availability issues for SDNs systems are

more deeply rooted than those stemming from their complexity (see also

Sections 2.4 and 3.1.2.2).

Fault-tolerance is (along with fault prevention, removal and forecast-

ing) a means to increase the dependability of a system. It is clearly of

paramount importance for SDN, since in the event of a controller failure

the whole network can be compromised, because all applications and ser-

vices depend on it. All SDN controllers are engineered with mechanisms to

tolerate such events, and clearly fault-tolerance is one of the major tech-

niques used to ensure a high level of resilience. This dissertation proposes

failure injection as a testing technique to intentionally introduce failures,

representative of failure events which can actually occur at various levels

in SDN networks, so as to evaluate the controller’s fault-tolerance mecha-

nisms, and more in general to assess the extent to which a controller is able

to provide the desired level of resilience.
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2.3 SDN Resilience

The concept of resilience (or resiliency) has multiple definitions, as it has

developed in different disciplines, including physics, psychology, ecology, en-

gineering. Very likely, the term originally referred to a property of a physical

material or of an entity, but the concept is now applied also to networked

systems or organizations. Despite the different definitions, quoting from [35]

there are “three elements present across most of them: the ability to change

when a force is enacted, [to] perform adequately or minimally while the

force is in effect, [to] return to a predefined expected normal state whenever

the forces relents or is rendered ineffective”.

In engineering, the term somehow intuitively conveys the notion of the

ability to survive to unintentional or malicious threats (failures, attacks,

etc.) and to resume normal operating conditions; we can say that the re-

silience of a system is often thought as its ability to provide and maintain

an acceptable level of performance or service in presence of failures. It is

worth to explicitly point out that resilience is a macroscopic-scale property

of a system, i.e., a property of the system as a whole [35].

According to [36], computer network resilience is the ability to provide

and maintain an acceptable level of service in the face of faults and chal-

lenges to normal operation. In [37] network resilience is defined as the ability

of a network to defend against and maintain an acceptable level of service in
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the presence of challenges, such as malicious attacks, software and hardware

faults, human mistakes (e.g., software and hardware misconfigurations), and

large-scale natural disasters threatening its normal operation.

In [38] the resilience of systems has been evaluated by means of a time-

dependent indicator, known as figure-of-merit F (•), which is a quantifiable

indicator of the performance of the system. As depicted in Figure 2.4, the

state of a system is characterized by a value of F (•), directly affected by

the two events (the disruptive event and the corresponding recovery action).

Multiple indicators can be defined to provide a measurement of resilience,

concerning reliability, network connectivity paths, flows, etc.

In Figure 2.4, the system is initially “functional” at time t0, and this

state remains constant until the occurrence of a disruptive event at time

te, bringing the value of the delivery function of the system from its initial

value F (t0), to the lower value F (td). Thus, the system is assumed to

function in a degraded mode from te to td, when it reaches the point where
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Figure 2.4: System behavior in the occurrence of a disruptive event.
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the functionality is considered to be entirely lost. The system remains in

such state until a recovery/repair action is initiated at time tr when the

system regains functionality, although in a degraded mode. As a result of

the resilience action, the system is considered recovered and fully-functional

at time tf , with delivery function value F (tf ). However, the final state,

reached by the system after the recovery action, does not necessarily have to

coincide with the original state of the system, i.e., the figure-of-merit F (tf )

can be equal, grather, or smaller than F (t0). Finally, the value of resilience

corresponding to a specific figure-of-merit function can be computed as:

Λ(t) = F (t)− F (td)F (t0)− F (td) (2.4)

where 0 ≤ Λ(t) ≥ 1 for t ∈ (tr, tf ) assuming that the recovery action

succeeds in restoring the functionality.

In recent years, the concept of resilience has been broadened to incor-

porate a notion of dependability also with respect to changes; indeed, it is

increasingly conceived as the capability of a system to remain dependable in

the present of changes. This probably comes from the work by Laprie [39],

who pointed out the need to address the growth of complexity of today

so pervasive computing systems, a need deriving from changes which can

be functional, environmental and technological. Laprie introduced scalable

resilience as a concept of “survivability in direct support of the emerging

pervasiveness of computing systems” [39].
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For the purpose of this thesis, the following definition - essentially pro-

vided in [40] - will be used: Network resilience is the ability to provide

and maintain an acceptable level of service in the face of failures.

Nowadays, resilience is a major requirement and design objective for

computer networks. This is due to the fact that computer networks are

at the basis of most critical infrastructures, subject to both unintentional

faults/failures and to malicious (cyber-)attacks.

2.4 Open Challenges

Notwithstanding the large literature on SDNs, there are several still open

problems related to the fulfillment of dependability and resilience require-

ments by SDNs. One of the reasons for this is that - quoting from [40] -

“there is almost no practical way to experiment with new protocols in suf-

ficiently realistic settings (e.g. at the scale carrying real traffic) to gain the

confidence needed for their widespread deployment”.

Availability may pose more threats to SDNs than those posed to

generic distributed systems. Akella and Krishnamurthy [34] have shown

that availability issues for SDNs systems are more deeply rooted than those

stemming from the complex and critical inter-dependencies among the var-

ious network and distributed systems protocols they use. The authors pro-

vide a case for this, which is worth presenting here.
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Let us consider the network in Fig. 2.5 (reproduced from [34]), where

C1 to C5 are controller replicas in a distributed control plane, and S1 to

S9 are switches in the data plane. Let us also point out that distributed

controllers incorporate consensus protocols such as Paxos [41] to ensure they

have a consistent view of network topology and data plane state even in the

presence of failures or disconnections. When the links between S4 and S6

and S4 and S8 fail, a network partition occurs. In this case, switches in the

data plane partition on the right cannot be updated since they can contact

only a minority group (C4 and C5) of the replicated controllers. If the path

between S6 and S8 managed by the control plane prior to the partitioning is

not wholly contained in the right partition, S6 and S8 cannot communicate

even if there is a path between them not affected by the failure. Such critical

situations undermine high availability. Clearly, legacy network protocols

do not suffer from this issue: when partitions happen, routers re-converge

to new intra-partition routes. Quoting the authors, the case they provide

shows that “current SDN designs fail to provide important fault-tolerance

properties, which renders SDNs less available than traditional networks in

some situations”. While there exist solutions to the problem described (e.g.

using partitioned consensus), they may address it only partially; specifically,

there may be consistency pitfalls in case of concurrent events. The authors

themselves proposed a solution - although they did not prove it - based on
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However, the availability issues in SDNs are more deep
rooted than that and arise even in the presence of ideal con-
trol channels that don’t impose any dependencies.

Consider the network depicted in Figure 1. When the
S4 � S6 and S4 � S8 links fail and the network is parti-
tioned, the data plane for the partition on the right cannot be
updated since the switches there can contact only a minority
group of a replicated control plane (i.e., C4 and C5). Cru-
cially, S6 and S8 cannot communicate with each other if the
previously configured path between them is not wholly con-
tained in the new partition. In §3, we argue that simple fixes
to this only address part of the availability issue.

Crucially, legacy distributed protocols such as OSPF do
not suffer from this issue: when partitions happen, OSPF
routers re-converge to new intra-partition routes. In other
words, current SDN designs fail to provide important fault-
tolerance properties, which renders SDNs less available than
traditional networks in some situations!

3. DESIGN
In this section, we outline the design of a fault-tolerant

SDN fabric that can provide a high degree of availability in
the presence of various kinds of network failures. Our de-
sign presents a rethinking of the SDN architecture, from the
control channel up to the control plane, to address dependen-
cies and avoid pitfalls intrinsic to SDNs today. We present
the design as a series of refinements starting from a base-
line design, with each refinement addressing some aspect of
availability or controller consistency.

3.1 Baseline Design
We start with a baseline design that guarantees consis-

tency of controller state and allows for switches/controllers
to communicate reliably but does not necessarily provide
high availability. It incorporates two sets of mechanisms.

Reliable Flooding: To completely free the control channel
from all dependencies, we advocate a control channel based
on reliable flooding. Such a control channel can be estab-
lished without depending on routing or transport protocols.

Replicated Controllers: Controllers are made robust to fail-
ures using state machine replication and reliable flooding.
In particular, controllers use a consensus protocol such as
Paxos [14] to obtain consensus from a quorum (typically a
simple majority of controllers) before responding to changes
in topology and system configuration. For example, when-
ever there is a topology change (e.g., a link down or a link
recovery event), the controllers come to a consensus that the
corresponding event will be the next event that will be han-
dled by the controllers and communicate to the switches the
new set of forwarding rules based on the updated topology.
All communications between controllers in order to reach
consensus and communications from controllers to switches
are handled using reliable flooding.

This baseline design is robust to controller failures (as
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S5
C1

C2

C3
C4 C5

S6 S7

S8 S9

Figure 1: Impact of network partitions.

long as a majority are alive) and can also reliably handle
communications between controllers and switches even if
the point-to-point forwarding rules are stale with respect to
the current topology.
Pitfalls: While the baseline design provides resilience to-
wards certain types of failures (e.g., the network is operable
even if some of the controllers fail or if there is a failure in
some of the paths between controllers and switches), it is
not robust to failures that partition the controller set. Con-
sider for example the network depicted in Figure 1. If the
S4 � S6 and S4 � S8 links fail, then the network is par-
titioned. In this case, the routing and network policies for
the partition on the right cannot be updated. This is partic-
ularly debilitating if the existing routes connecting pairs of
switches in the right hand side partition are not fully con-
tained inside the partition. For example, if the route from
S6 to S8 is S6 ! S4 ! S8 when the network becomes
partitioned, then the route cannot be updated to the working
path S6 ! S7 ! S9 ! S8 since the switches S6 and
S8 can contact only two of the five controllers (i.e., C4 and
C5) and would therefore not be able to put together a ma-
jority quorum to process the topology update. Even if the
switches are configured to use fast-failover in the form of a
pre-configured backup path, connectivity between S6 to S8
is not guaranteed as the backup path might also not be fully
contained inside the partition.

Thus, the baseline design ensures consistent handling of
dynamic changes to network topology, but it does not pro-
vide high availability in the case of network partitions. In
retrospect, it is apparent that the baseline design inherits
the strengths and weaknesses associated with reliable dis-
tributed services; this is just a direct consequence of software
defined networking and its separation of the control plane
into a logically centralized controller service. The ability
to perform network management operations is contingent on
the controller service being able to assemble quorums to pro-
cess network events. The availability limits associated with
distributed services (e.g., the CAP theorem [3]) can be over-
come only with some form of support from the underlying
network, which is the focus of the remainder of this section.

3.2 Partitioned Consensus
A simple modification to the above design is to allow for

3

Figure 2.5: A case for availability threat in SDN (Akella, 2014).

a combination of the Chandy-Lamport snapshot algorithm [42], of reliable

flooding and of whole quorum consensus. However such mechanisms are

expensive, and while they appear to be sufficient, it is not clear if they are

all necessary.

Sharma et al. focus on fault tolerance and failure recover in Open-

Flow for deployment it in carrier-grade networks [40], as means to improve

SDN resiliency. Carrier-grade networks pose a strict requirement that the

network should recover from a failure within a 50 ms interval. They show

that OpenFlow may not be able to satisfy this requirement, and they pro-

pose a recovery action in the switches without involving the controller. As

for reliability, they briefly discuss as future work some possible approaches.

Di Martino et al. [16] present the resiliency challenges for future

carrier-grade networks based on SDN. They build on an analysis of outages

of current carrier-grade networks to identify three main factors impacting

the effectiveness of their failover mechanisms, namely: untested operational
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context, multiple failures during the failover window, and human/procedural

errors. Based on this, the implications drawn include:

• The need for new resiliency techniques and for new in-production ap-

proaches to testing (the authors mention those used in the Chaos

Monkey approach by Netflix [22] [43]). This is because SDNs are ex-

pected to reduce the service deployment time down to the order of

seconds; this in turn may imply reduced testing and assessment.

• The need for new failover mechanisms. This is because many mech-

anisms are programmed in today’s network devices, while in SDNs

failover will demand for interaction between various layers and among

different domains.

• Service business models driven by Service Level Agreements (SLA)

will require richer resiliency specifications and validation. This is be-

cause SDN will allow high flexibility, service provisioning will be more

dynamic (for instance, due to migration for resources’ optimization),

and service level will need to be validated dynamically.

Jain et al. [21] present B4, a practical example of a large scale imple-

mentation of an SDN-based WAN connecting the Google c©’s data centers

around the globe. The authors provide implementation details about one of

the first and largest SDN deployments, which has shown to be efficient in
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meeting both performance, and reliability requirements. However, despite

the outstanding performance, B4 experienced an outage due to a human

error. Indeed, during a planned maintenance activity two physical switches

were configure with the same ID causing substantial link-flap errors, i.e.

their network interfaces continuously went up and down, and more proto-

col processing activities to discover the network topology. This has lead to

subsequent failures of the Google’s public network, affecting the network

connectivity of their customers.

Unpredictable events underlines that, as long as a system has been shown

to be robust as a result of testing activities, nevertheless it can fail in a pro-

duction environment, where operating conditions change and evolve over

time. Moreover, traditional software-testing tools are inadequate to

verify the resilience of such complex distributed systems against all potential

failure scenarios that can span across the whole system stack.

In summary, new approaches are needed for the automated verifi-

cation of SDN resilience while exercised by real workload conditions,

namely in production. Innovative approaches would allow to discover fail-

ure points otherwise difficult to detect by means merely of software testing,

helping to design better detection techniques, and building the right miti-

gation means to recover the system when real issues arise.
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Chapter 3
Related work

This Chapter surveys the literature on performance and resilience of software de-
fined networks and on software fault injection (SFI). First, it analyzes existing work
on the design of mechanisms for SDN controllers dependability, and on metrics and
techniques for the evaluation of their performance, reliability, fault tolerance an re-
silience. It then introduces SFI, the technique proposed in this thesis for resilience
assessment of SDN. Rather than providing a Systematic Literature Review, the goal
is: i) to investigate the state of research on performance evaluation of SDNs as well
as techniques to ensure controllers’ resilience; ii) to provide a short background on
SFI and on its application to dependability assessment.

3.1 SDN Performance and Resilience

3.1.1 Sources

Despite the fact that Software-Defined Networking is still a relatively young

field, the literature is rather large. This is due to the great appeal it has

encountered in both the academic and industrial sectors.

From a scientific viewpoint, at its beginning the SDN literature spread

35
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in publication venues traditional of the computer network and software de-

pendability fields, such as the IEEE/IFIP Conference on Dependable Sys-

tems and Networks (DSN), the IEEE Symposium on Software Reliability

Engineering (ISSRE), and all major journals and conferences on computer

networks, and on systems/software dependability. Currently, specific con-

ferences, conference series and journal special issues on SDN are really pro-

liferating. The main ones include:

• The ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN); the series started in 2012 in Helsinki (FN);

• The IEEE Conference on Network Softwarization (NetSoft), whose
first edition was held in London (UK) in April 2015;

• The IEEE Conference on Network Function Virtualization and Soft-
ware Defined Networking (NFV-SDN) (from 2015, and in 2017 the
SDN-NFV Track in SAC Symposium at the IEEE International Con-
ference on Communication (ICC 2017);

• The Research Track of the Open Networking Summit (ONS, since
2014 in conjunction with USENIX, the Advanced Computing Systems
Association);

• The IEEE/IFIP Network Operations and Management Symposium
(NOMS);

• The First International Workshop on Software Defined Networks and
Network Function Virtualization (SDN-NFV), in conjunction with
The Fourth International Conference on Software Defined Systems
(SDS-2017);

• The European Workshop on Software Defined Networking (EWSDN),
whose first edition was held in Darmstadt (D) in April 2012;

• The Special Issue on “Software Defined Networking”, September 2015,
and the upcoming Special issue on “SDN and NFV based 5G Hetero-
geneous Networks” of IET Networks;
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• The Special Issue on “Future network: software-defined networking”
of Frontiers of Information Technology & Electronic Engineering, July
2016;

• The Special Issue on “Management of Softwarized Networks”, Septem-
ber 2016, and the (upcoming) Special Issue on “Advances in Manage-
ment of Softwarized Networks” of IEEE Transactions on Network and
Service Management (TNSM);

• The Special Issue on “Software-Defined Networking and Network Func-
tions Virtualization for flexible network management” of the Interna-
tional Journal on Network Management (IJNM), November 2016;

• The Special Issue on “Management of SDN/NFV-based Systems” of
the International Journal on Network Management (IJNM).

• The (upcoming) Special Section on “Network Virtualization, Network
Softwarization, and Fusion Platform of Computing and Networking”
of IEICE Transactions on Communications (IEICE TC);

The existing literature on the evaluation of performance, reliability and

fault tolerance of SDN controllers has been searched in the above sources in

the networking and dependability research fields, and more in general in all

major scientific computer science and engineering databases, including IEE-

Explore, ACM Digital Library, Scopus, ISI Web of Science, Google Scholar.

It is described in the following subsection.

3.1.2 Related Work

Despite the bulk of work in the scientific literature, the research on SDN

performance and dependability can be considered still at the beginning.
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Clearly, the decoupling of control plane from the network devices and the im-

plementation of controllers as distributed systems inevitably make software-

defined networks inherit the weaknesses associated with reliable distributed

systems [34]. As recently stated in [16], “the specific benefits and risks that

SDN may bring to the resilience of carrier-grade networks remain largely

unexplored”, and according to [44] “the dependability of SDN itself is still

an open issue”. The related work can be broadly categorized in SDN

benchmarking (i.e., the evaluation of performance and scalability of SDN

platforms), and SDN dependability (i.e., the mechanisms to ensure desired

dependability features by proper design choices).

3.1.2.1 SDN Benchmarking

SDN performance benchmarking is addressed in several studies [45]

[46] [47] [48].

Cbench [45] is a benchmarking tool of this type based on simulating a

configurable number of OpenFlow switches; it used in [46] to compute vari-

ous controller performance metrics (response time, throughput, latency) of

four controllers (NOX, NOX-MT, Beacon, and Maestro) based on Open-

Flow, probably the most widely known southbound API [11].
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Jarschel et al. [47] proposed a flexible OpenFlow controller benchmark-

ing tool (OFCBench) to overcome various limitation of Cbench and previ-

ous tool (single threading, use of one controller connection for all emulated

switches). They also proposed an analytic (queueing) model for predicting

the performance of an OpenFlow architecture, in terms of packet sojourn

time and probability of lost packets [49].

Cbench is also used by Zhao et al. [48], who presented an evaluation

of five open-source controllers. However, it considers mainly centralized

controllers; distributed controllers, which are gaining momentum also for

addressing scalability, have more complex performance problems, ranging

from the placement of the replicas to their synchronization.

Prior to [48], Tootoonchian et al. [46] presented a study of four publicly-

available OpenFlow controllers, based on their Cbench tool [45]. This tool

measures the number of flow setups per second that a controller can handle,

and it supports two modes of operation: latency and throughput mode. A

further experience including the evaluation of performance in a wide-area

SDN is described in [21].

A crucial performance aspect for SDNs is latency. As pointed out

in [50], critical SDN mechanisms such as fast failover and traffic engineering

demand for the ability to program the data plane state at fine time-scales. In

their study, He et al. state that “timeliness is determined by: (1) the speed of
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control programs, (2) the latency to/from the logically central controller, and

(3) the responsiveness of network switches in interacting with the controller

[50]. While the first two factors are already being overcome by advances in

distributed controllers, the authors’ measurements show that the third one

may be critical even with most modern switches. The inbound and outbound

latencies (those concerning events generated by switches and those in the

execution of rules provided by the controller, respectively) are high and

variable. The study thus highlights the need for “careful design of future

switch silicon and software in order to fully utilize the power of SDN ”.

Scalability metrics for the the SDN control plane are proposed in [51]

and [52]. The first metric specific for SDNs appears to be the one by Hu et

al. [51], who propose to compute scalability when the network scale varies

from N2 to N1 as:

Scalability Ψ(N1, N2) =
φ(N2)T (N2)

C(N2)

φ(N1)T (N1)
C(N1)

, (3.1)

where φ(N) is the throughput of the control plane in processing network

requests, T (N) is the average response time per request, and C(N) is the

cost to deploy the control plane. The authors evaluate the metric with

reference to three SDN control plane architectures – centralized, distributed

and hierarchical - by building performance models for the response time,

based on which they evaluate the scalability of the three structures.

While the previous metric considers throughput, average response time
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and cost, the metric proposed in [52] does not consider the deployment cost,

and assumes that the average flow processing time has to remain the same

when scaling. The metric they propose is:

Scalability f(W,O) =
W

O
, (3.2)

where W and O are the workload and overhead, respectively; the former

is the number of flows entering the data plane, the latter is the number of

messages processed by the controller(s).

3.1.2.2 SDN Resilience and Dependability

Several research groups have coped with the problem of defining proper

mechanisms to ensure resilience and dependability for SDN controllers.

Heller et al. [53] have formulated the Controller Placement Problem,

the one of deciding - given a network topology - how many controllers need to

be used and where to place them to satisfy performance and fault tolerance

requirements. They are concerned specifically with wide-area networks and

with the minimization of propagation delays. Their study shows that the

answers to the two questions depend on the topology and on the metric

(a tradeoff has to be found between optimizing for worst-case or average-

case latency), that for most topologies adding controllers provides almost

proportional delays’ reduction, but surprisingly, in medium-size networks
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one controller location can be sufficient to meet current typical real-time

requirements. Clearly, one is not enough for fault tolerance.

SDN fault tolerance is addressed by Fonseca et al. [54], who propose

a primary-backup mechanism to provide resilience against several types of

failures in a centralized OpenFlow-based controlled network. In primary-

backup replication [55], one or more secondary (backup) replica servers are

kept consistent with the state of the primary server, and as the primary

server enters in a failure state, one (warm) backup replica is chosen to replace

the primary server. Hence, this approach is well suited where there is a

centralized control concentrating in one point of the network the information

that need to be replicated. The approach has been implemented in the NOX

controller, and has been shown to work in several failure scenarios, namely

abrupt abort of the controller, failure of a management application (client

running atop the controller), Distributed Denial-of-Service (DDoS) attack.

The authors conclude that the OpenFlow protocol proved to be appropriate

to support ease implementation of primary-backup replication.

Ross et al. [56] build on the previous work by Heller et al. formulating

the Fault Tolerant Controller Placement Problem, as the problem of

deciding how many controllers are needed, where they have to be deployed,

and what network devices are under control of each of them, in order to



Chapter 3. Related work 43

achieve at least five nines reliability at the southbound interface (the typi-

cal reliability level required by carrier-grade networks). They also propose

a heuristic to compute placements with such reliability level. Again, the

answers depend on the topology (rather than on the network size). How-

ever, it is possible to achieve fault tolerance in SDN by careful selection of

the placement of controllers.

SDN availability design issues are addressed by Akella and Krishna-

murthy [34]. They show that there may be situations where link failures

can compromise the proper functioning of portions of a SDN. This is due to

the fact that controller internal modules - specifically, distributed consensus

protocols, mechanisms for switch-controller or controller-controller commu-

nication, and transport protocols for reliable message exchange - can have

cyclical dependencies. This means that link failures can cause transient dis-

connections between switches and controllers or controller instances, which

in turn undermine high availability. What appears to be particularly critical

in SDN is the lack of robustness to failures which partition the topology of

controllers. In fact, it has to be noted that - since in SDN the control has

been taken out of switches and logically centralized in the control plane - it

may happen for two switches to be unable to communicate even if a physical

path between them does exist. The authors argue that current SDNs may

be unable to offer high availability, and they should be re-architected by
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including advanced mechanisms from the distributed systems theory, such

as reliable flooding and global snapshots.

3.2 Fault Injection Testing

Fault injection [57] is the technique of introducing faults in a system to as-

sess its behavior and to measure the effectiveness of fault tolerance or other

resilience mechanisms. Although much more recent than hardware fault in-

jection, Software Fault Injection (SFI) is today widely used too [23]. SFI

developed as it became clear that software faults were becoming a major

cause of systems’ failures. It proved to be effective for fault-tolerance and

reliability assessment for several classes of systems, such as distributed sys-

tems, operating systems, Data Base Management Systems, and it is nowa-

days recommended by several standards in critical systems domains [23].

SFI consists of applying small changes in a target program code, in a

way similar to mutation testing (a well-known software testing technique),

with the goal of assessing the system behavior in the presence of (injected)

faults, which clearly have to be representative of potentially real faults - or,

specifically, of residual faults, those which escape testing and debugging be-

fore software product release and may be activated in execution on-field [58].

In a SFI experiment, a fault is injected in the program, which is executed

under a workload, in turn representative of real operating conditions.
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Fault injection has been proposed by Cotroneo et al. [59] for dependabil-

ity evaluation and benchmarking of Network Function Virtualization Infras-

tructures (NFVIs). NFV is a field closely related yet different from SDN.

SDN and NFV share the goal of fostering innovation in networking by means

of a shift to software-based platforms, that it to network programmability.

NFV refers to the virtualization of specific in-network functions (e.g., fire-

walls and VPN gateways) in order to reduce the dependency on underlying

hardware; this eases resource management, provides faster service enable-

ment and lowers OPEX (Operating Expenditures) and CAPEX (Capital

Expenditures). NFV solutions can operate in SDNs. While SDN is more

concerned with control plane programmability, NFV mainly focuses on data

plane programmability. As for SDNs, NFV inherits performance and reli-

ability requirements from telecommunication systems. In their paper, the

authors define some key performance indicators for Virtualized Network

Functions (VNF), namely latency, throughput and experimental availabil-

ity, and propose fault injection for evaluation and benchmarking of VNFs.

Differently from the fault injection approach pursued in [59] for NFV,

we propose the use of failure injection for the assessment of the resilience

mechanisms SDN distributed controllers. The aim it to devise a methodol-

ogy suited for in-production assessment. In-production testing is gaining
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importance in all those dynamic contexts where traditional software testing

techniques in fabric (i.e. before deployment) are not deemed to be suited

anymore: one famous such case is represented by Netflix [22]. In the frame-

work of this dissertation, it means injecting failures at system, network or

service level during executions under a workload (which is not emulated but

real, in case of in-production testing), failures which have to be representa-

tive of events typically occurring in normal operation. The proposed failure

injection methodology is described in the next Chapter.

3.3 Failure Injection Testing: the Netflix approach

In defining a methodology to assess the resilience and the failover mecha-

nisms of SDN platforms we take inspiration from the failure injection ap-

proach proposed by Netflix R©. It is a multinational company providing

streaming and on demanded multimedia services to a wide range of users

around the world. In doing so, they engineered a very complex ecosys-

tem according to a “micro-services” architecture pattern, i.e. with multiple

small and independent services working together to fulfill a specific goal.

This leads to a dynamic operational context, where services are updated

or added at runtime without ever interrupting the system, making it im-

practical, or even impossible, to perform testing activities aimed to assess

possible system’s deficiencies and identify potential failure modes.
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Consequently, a methodology has been proposed to find possible weak-

nesses in a production system by observing its behaviour under the de-

liberate injection of failures. The execution of failure injection experiments

within a live production environment has three main advantages:

• It allows a better assessment of the system by verifying its correct

behaviour in realistic production deployment and load conditions;

• It helps making the the system immune to possible failures;

• It helps preventing outages that can affect system availability.

The methodology falls under the umbrella of the broader concept of

“Chaos Engineering” [22], [60], which is defined as the “discipline of experi-

menting on a distributed system in order to build confidence in the system’s

capability to withstand faulty conditions in production”. Specifically, this

discipline provides few practical principles meant to facilitate the testing

activities to uncover system weaknesses, namely:

• Definition of what is a normal system’s behaviour, i.e. the system

“steady state”, considering some measurable output of the system;

• Build a control system and an experimental one, with the latter used

for the failure injection experiment;

• Introduce disruptions on the experimental system to simulate real-

world events, such as server crashes, network failures etc.;
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• Compare the steady states of the experimental and control systems

to find possible deviations from the normal behaviour and build con-

fidence on system resilience.

Along with these chaos principles, Netflix proposes a Failure Injection

Testing (FIT) platform to automate [61] [62] the injection and monitoring of

arbitrary failures scenarios into specific targeted services or system subset,

aiming to support the implementation of systems that are resilient to failure.

Though inspired by the Netflix’s approach, the failure injection assess-

ment methodology proposed in this dissertation differs in several aspects:

(i) It targets distributed SDN platform to perform a resilience assess-

ment under failure scenarios, aiming to verify if such systems provide

suitable failover mechanisms;

(ii) The framework reproduces failure scenarios which are representative

for SDN ecosystems, e.g. faulty communications between SDN con-

trollers, or a faulty controller’s service;

(iii) It is meant to perform both offline, and in-production assessment,

since the SDN technologies are still in very early stages to be deployed

in a real production environment;

(iv) It provides measurements which give valuable insights into the perfor-

mance and resilience of the SDNs.
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Chapter 4
SDN Control Plane
CLoUd-based Benchmarking

This chapter presents SCP-CLUB, a benchmarking framework for performance
analysis of a telco cloud-based SDN control plane. First, an overview of the generic
framework and its tool suite is given. Then, a detailed description is provided of the
design and implementation of an ONOS-based instance of the framework. After-
words, an experimental campaign is presented, showing the effectiveness of the pro-
posed framework in automating very long sessions of experiments for benchmarking
a telco cloud SDN. The last section presents and discusses the experimental results.

4.1 Introduction

Telco Cloud is an emerging paradigm in the engineering of telecommunica-

tion infrastructures and services, which promises to make their management

much more agile [12] [15]. Telecommunication (telco) operators are expected

not only to be more and more software driven - with the adoption of soft-

warization technologies, such as SDN and NFV, in replacing the dedicated

telco hardware boxes - but also to increasingly adopt a cloud computing ap-

proach to automate the management of their infrastructures and services.

49
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The combined use of these softwarization technologies [1] [63], cloud

and virtualization technologies has the potential to support in meeting the

requirements of future networks in terms of elasticity, scalability, and re-

siliency to mutable network conditions, unpredictable traffic patterns, and

continuous streams of services. However, it is still not clear for telco op-

erators how these technologies can be best leveraged to meet such highly

demanding requirements with carrier-grade service-level guarantees [16].

In a virtualized and cloud-based operational context for SDNs, there

are several software layers and thousands of different setups, configurations,

and parameters to be properly fine tune in order to obtain specific levels

of service. For instance, Telco Cloud Orchestrators (such as XAAS, EC2

and VCLOUD) need automated tools and procedures to decide when to

scale up or down the resources running the telco-cloud control (e.g., virtual

machines and SDN controller instances). The ability of automating the

performance analysis of these emerging technologies, combined to the cloud-

based infrastructures is fundamental in the telco cloud scenario. No proper

techniques and tools are available so far to address this task.

This chapter presents SCP-CLUB, an automated benchmarking frame-

work for performance analysis of a telco cloud-based SDN control plane.

SCP-CLUB provides the following features:

• a configurable load generator for SDNs benchmarking;
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• cloud automation and orchestration tools to enable parallel bench-

marking experiments for computing relevant performance assessment

metrics using idle cycles of a telco cloud.

The load generator is based on the Intent-Based Networking (IBN)

approach (see §2.1.4). Cloud automation supports performance evaluators

in the many tasks of orchestrating and running benchmarking experiments

and collecting data at various software levels for the analysis, with the ulti-

mate aim of extracting actionable intelligence that can be used to manage

(e.g., scale up or down) the cloud resources running the control network.

4.2 State-of-the-art Progress

As we have seen in Section 3.1.2.1, several authors have dealt with the

problem of benchmarking SDN controllers. However, the literature focuses

essentially on measuring the intrinsic performance of single controller in-

stances with faked interactions with switches, or the performance at the

southbound interface.

Probably the most widely used tool is Cbench [45], and the most com-

prehensive evaluation of the major open-source SDN controllers is carried

out by Zhao et al. [48]. Their focus is on benchmarking one controller

managing a variable number of switches. They consider Cbench suited to

provide accurate results, in that it fakes switches just as “kind of traffic



Chapter 4. SDN Control Plane CLoUd-based Benchmarking 52

generators able to send packet in messages as fast as possible”. Moreover,

measurements are taken sending traffic through the local loopback interface,

to eliminate also the link bottleneck.

Rather than focusing on the performance of single instances of con-

trollers without significant requests from applications and with faked inter-

actions with switches, SCP-CLUB takes a different perspective. It considers

really distributed controllers in a cloud-based and virtualized deployment;

by generating and submitting synthetic yet realistic work loads in terms of

intents to be actually processed, it allows to investigate the performance of

the control plane related to the whole workflow of installing and translating

application requests, up to sending commands with flow rules to the data

plane and checking their successful processing by the controlled switches.

To this aim, both intent installation and withdraw requests are generated

and submitted to the control plane at the northbound interface. SCP-CLUB

allows also to evaluate the impact on performance of the main configuration

parameters, so as to derive hints for their proper configurations.

SCP-CLUB has some similarities with the approach used in the Per-

formance and Scale-out Test Plan [64] designed to characterize ONOS la-

tencies, throughput and capacities (again with Cbench): both use a load

generator producing self-adjusting intent install and withdraw requests, and

both make measurements as the number of controllers instances in a cluster
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scales up. There are however substantial differences.

First, the ONOS performance test plan and results described in [64] are

based on “a set of Null Device Providers at the adapter level to interact

with the ONOS core. The Null Providers act as device, link, host producers

as well as a sink of flow rules”. Using such dummy stubs, the ONOS per-

formance figures typically reported in the literature intentionally disregard

Openflow adapters and interactions with real or emulated switches. From

the point of view of telco operators, this means that such figures can not

be trusted to assess the suitability of a controller for use in a carrier-grade

SDN. Moreover, the ONOS performance metrics available in the literature

are made generating a load to the highest rate ONOS can sustain with

synchronous requests. SCP-CLUB is designed to assess actual controller

performance with concrete intent requests, complete processing of requests

by the controller (intent compilation, installation and removal), and real

or emulated topologies considering failures in the data plane (which indeed

occur in reality). Finally, SCP-CLUB is based on cloud and virtualiza-

tion technologies, and it is designed to analyze performance figures such as

throughput and latency in real industrial SDN cloud testing datacenters.

The next section introduces the generic SCP-CLUB framework, while

Section 4.4 presents an implementation based on the ONOS open source

SDN controller [10]. Section 4.5 shows the results of experiments with a
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Figure 4.1: The SCP-CLUB framework.

proof-of-concept telco cloud testing datacenter, built to analyze the perfor-

mance in actual carrier-grade settings. The effectiveness of SCP-CLUB is

shown by analyzing the performance of ONOS under a variety of param-

eters, including: work load, virtual machine size, ONOS cluster size, and

number of controlled network devices.

4.3 The SCP-CLUB framework

4.3.1 Overview

The SCP-CLUB framework is presented in Figure 4.1. It includes five

software tools running on different hosting machines. These automated
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tools cooperate to configure and deploy a distributed SDN infrastructure in

a cloud-based environment, as well as to perform benchmarking experiments

for performance evaluation of the SDNs.

For each experiment, an Experiment Manager (grey box) loads an

experiment profile, installs and configures all entities in the telco cloud SDN-

based infrastructure (controller instances, monitoring and data collection

services, topology), then it instructs the Load Generator (yellow box) to

stimulate with a workload the System under test (SUT), namely the cluster

of controller instances. The load consists of requests from an application at

the northbound interface. The Topology Manager (pink box) configures

the topology of the data plane. Run-time data are gathered concerning sev-

eral entities of various layers (workload, cloud resources, virtual machines,

controllers, network topology): this is the task of the Data Collector .

Data are collected through a data bus consisting of links logically sepa-

rated from both those used to communicate among controllers and between

controllers and switches.

An SCP-CLUB campaign consists of running a set of experiments, each

stimulating the control plane of the SUT under various operating condi-

tions. The Campaign Manager (left box in Figure 4.1) orchestrates a

session of multiple experiments. A subsequent data analysis allows to assess

performance metrics (e.g., throughput and latency), as well as to extract
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actionable intelligence for fine-tuning the many configuration parameters of

cloud resources running the control network.

Figure 4.1 shows the workflow of a typical SCP-CLUB session to accom-

plish an experimental campaign. At startup, 1 the user provides a speci-

fication of the experiments to the Campaign Manager. Then, 2 the Cam-

paign Manager builds the infrastructure for each experimental campaign by

selecting the hardware resources, configuring and deploying the VMs. Once

the infrastructure is deployed, the Experiment Manager 3 loads an ex-

periment profile (built from the user specifications), installs and configures

all entities in the telco cloud SDN-based infrastructure, and orchestrates

each experiment of the campaign. It also 4 instructs the Load Generator

to stimulate with a workload the System Under Test (SUT), namely the

cluster of controller instances. Finally, 5 the Data Collector stores experi-

ment log data, raw results and basic metrics in a repository, for subsequent

higher-level metrics computation and visualization.

4.3.2 Tool Suite

The automation of the tasks of a campaign of benchmarking experiments is

provided by the following SCP-CLUB tools:

• The Campaign Manager (CM);
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• The Experiment Manager (EM);

• The Load Generator (LG);

• The Topology Manager (TM);

• The Data Collector (DC).

The CM manages a campaign based on a user-specified description of

the experiments, which is interpreted by the Campaign Compiler (CC). Be-

fore each experiment, the CM automatically selects and prepares virtual

machines (VMs) from a set of templates, prepares storage area, and selects

the hardware from a pool of available cloud resources. Figure 4.2 shows an

example of the user-provided specification: it defines experiment parame-

ters, such as number and duration of runs, number of controllers, workload,

type of topology.

The EM receives an experiment profile from the CM, and automatically

installs and configures all entities in the cloud SDN infrastructure (controller

instances, monitoring and data collection services, topology).

The LG emulates the arrival of requests at the northbound interface of

the SDN controllers in the SUT. It is decoupled from the SUT, avoiding any

dependencies from the several implementations of the northbound interfaces

proposed by the today’s SDN controllers (e.g., ONOS R© and ODL R©).
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…

Figure 4.2: Sample SCP-CLUB experiments specification.

The load consists of a set of policy-based management requests, the so-

called intents [28], which are request objects carrying the requirements of

an application demand to the SDN [25]. The LG feeds the SUT with a

mix of intent executions and withdraw. The controller(s) translate intents

through a compilation process into instructions specifying how the network

devices in the data plane have to be programmed. The LG can be configured

to stimulate the SUT with various workload types. It also computes some

basic performance measurements, such as the throughput to measure the

number of “Intents operations per unit time” (IPS) and the latency with

which such operations are accomplished.

The TM sets up the topology of the data plane in an experiment; it can

be either real or emulated.
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Finally, the DC gathers experiment data from a number of sources, in-

cluding VMs and controllers logs, workload metrics, resource usage metrics

(e.g., CPU, memory).

4.4 ONOS-based SCP-CLUB

4.4.1 The Open Network Operating System

This section describes the implementation of the SCP-CLUB framework

centered around ONOS R© [10], the popular open source SDN controller de-

veloped in Java by the Open Networking Lab [27] and hosted by the Linux

Foundation. ONOS has been chosen for this study as it is designed targeting

service providers’ network requirements of scalability, high availability, and

policy-driven network programmability. It is built atop Apache Karaf [65],

a Java R© OSGi
TM

(Open Service Gateway Initiative) container providing

a modular run-time environment.

The control plane is deployed on a cluster of servers, running the same

ONOS software. As depicted in Figure 4.3, ONOS provides a three-tiered

architecture consisting of three main “subsystems”, namely the core and

the northbound and southbound protocols. The various instances make up

the ONOS distributed core, providing applications with a centralized logical

view of the network. The distributed core design choice is meant to support

scalability (instances can be added incrementally and dynamically, that is
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Figure 4.3: ONOS distributed architecture.

without interruptions), as well as availability by enabling rapid failover in

case of failure of an ONOS server, through proper recovery protocols.

The presence of cooperating instances is transparent to applications

atop, as well as to switches in the data plane. Every device has one mas-

ter and may have multiple backup instances. ONOS includes a distributed

leader election algorithm to assign a single master to each device. Ap-

plications program the network at a high level of abstraction through the

northbound interface, submitting their intents [10] in the form of policy

statements or connectivity requests, such as: i) Set up a connection be-

tween host A and host B ; ii) Do not allow communication between host A

and host B. At the southbound interface, ONOS supports several commu-

nication protocols, to allow the interaction with different types of physical

network devices and to support legacy equipments.
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ONOS adopts two type of consistency models to guarantee the data

replication consistency between the replicas, namely:

1. Eventual Consistency: This model is used to achieve high avail-

ability. It provides a weak consistency guarantee, in the sense that

data updates made by a controller are “eventually” stored by all the

controllers [66]. This implies that for some time the nodes can be

in an inconsistent state, but then they converge towards a common

state. To support this model, ONOS incorporates an “anti-entropy”

protocol, which relies on a simple gossiping algorithm [67]. According

to this, each controller randomly chooses (every 5 s) another controller

to exchange information about any updates of shared data. By doing

so, the nodes make sure they gather a fresh copy of the data.

2. Strong Consistency: This model ensures high consistency, at the

expenses of availability (CAP theorem [68]). Updates are written to

all nodes, and reads are guaranteed to return the most recent value re-

gardless of the updating node. This way, controllers are guaranteed to

be always in a consistent state, as it is not allowed to read data before

they are updated on all nodes. ONOS offers this consistency model by

means of Atomix/Copycat [69], a fault-tolerant state machine repli-

cation framework built on the Raft consensus algorithm [70] [71].

ONOS uses the strong and eventual consistency models to implement
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two of the main distributed datastore, namely the mastership store to keep

track of the switch-master node relationship, and the network topology store

to keep track of the network topology (e.g., switches, links and hosts), re-

spectively. Clearly, state consistency affects the overall ONOS performance.

4.4.2 ONOS-based SCP-CLUB Architecture

Figure 4.4 shows the logical architecture of the ONOS-based SCP-CLUB

system. Multiple controllers can be installed and configured to manage the

switches in the data plane. Each ONOS instance runs on its own clus-

ter node, in an Apache Karaf container atop the Ubuntu operating system

within a virtual machine. VMs use the vmware R© technology; they are in-

stalled by CM on the bare metal (i.e., with no operating system on the

node). On each cluster node, two data collection daemons monitor and

records the events local to the ONOS instance and to the entire VM.

Separate cluster nodes host the Experiment Manager, the Load Gen-

erator, the Topology Manager and the Data Collector. The TM uses

Mininet for emulated topologies [72]. For real topologies, it uses the centec

networks [73] technology. The DC is implemented by a Monitoring Server

in a VM running on a server. It uses the InfluxDB (by InfluxData [74]) and

Grafana (by Grafana Labs [75]) open source platforms for monitored data

storage and visualization, respectively.
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Figure 4.4: Architecture of the ONOS-based SCP-CLUB framework.

4.4.3 Campaign Manager

The Campaign Manager (CM), is in charge of creating and configuring

the SDN infrastructure (see Figure 4.4). It is a Python-based tool capable

of interacting with a VMware-based virtualization platform. It uses the

VMware vSphere and ESXi API [76] to actually configure and deploy the

VMs to host each component of the SCP-CLUB framework.

We designed the CM to be as much extensible as possible, supporting

different virtualization technologies (e.g.,KVM and Xen), requiring the user

to only provide an implementation of the interaction of the CM with such

virtualization platform.
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The CM allows users to provide their own experimental campaign speci-

fication file. Figure 4.2 shows an example of the user-provided specification:

it is a YAML file enclosing both deployment and workload specifications,

which are also used to provide the Experiment Manager with the experi-

ments profile file.

The deployment specifications are defined by means of bash snippets

(the “cell” parameter in Figure 4.2) including information related to the

VMs to deploy, such as vm size, vm type, instances, and servers. vm size

and vm type specify the size (i.e., small, medium, large, or extra large) and

type (e.g., SUT VMs, EM, LG, etc.) of the SCP-CLUB VM, respectively,

while instances defines the number of VMs to deploy for each type, and

servers includes user preferences concerning the blade servers for the VMs.

According to the deployment specifications, the CM first identifies the

blade servers to deploy the VMs. The servers are selected either according

to the available resources, or as specified by the user. In the later case,

if no resources are available on the chosen servers, the CM automatically

selects from the pool the servers having enough resources to accommodate

the VMs. Then it creates the VMs from a predefined template deploying

them on the selected servers. Finally it configures the network interfaces

(e.g., assign static IP addresses) of each VM and checks whether they are

able to interact with each other.
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4.4.4 Experiment Manager

The Experiment Manager (EM) is a lightweight Java-based – and Spring

Boot 1.4 R© [77] – application aiming to control the experimental campaign.

The parameters for each experiment of the campaign are defined by the

experiments profile file, which is provided by the CM, and constructed ac-

cording to the user specifications.

To actually perform each experiment of the campaign, the EM follows

a three-phases procedure, namely:

i start-up phase: the EM deploys the SDN controller instances, and

waits until the cluster is correctly formed by continuously checking

the status of each instance. Then, the EM starts the DC server tool,

and configures the LG with a predefined load profile. Once the tools

activation is terminated, the EM interacts with the TM to configure

the data-plane topology (e.g., starting the emulated topology with

Mininet). Finally, the EM checks that the controller instances cor-

rectly discovered the data-plane topology and forces the balancing of

the mastership of the devices between the deployed controllers. By

doing so, it makes sure that each instance is defined as master of at

least one device, and as backup controller for other devices. If any of

the described operations fails, the EM clean-up the SDN infrastruc-

ture and repeats (for a predefined number of times) the start-up phase
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Algorithm 1 start-up phase

Input: ExperimentProfile ep, LoadProfile ld,
TimesToRetry N

Output: PhaseStatus ps
1: retry = N
2: ds = ep.DeploymentSpecification
3: ps.isComplated = false
4: repeat
5: isSDNs = deploySdnControllers(ds.controllers)
6: if isSDNs then
7: isLoader = deployLoader(ds.loader, ld)
8: isCollector = deployCollector(ds.collector)
9: if (isLoader and isCollector) then

10: startDataPlane(ep.dataPlaneInfo)
11: if each SDN controller detects the Data Plane then
12: {balance the mastership of the devices between the SDN con-

trollers}
13: balanceDevicesMastership(ep)
14: ps.isComplated = true
15: break
16: end if
17: end if
18: end if
19: retry.decrement(1)
20: until (not ps.isComplated and retry > 0 )
21: if retry == 0 then
22: print "Experiment with ID ep.experimentID failed!"

23: end if

from the beginning. The steps to start-up the SDN infrastructure for

the experimental evaluation are summarized in Algorithm 1;

ii experimental phase: the EM starts the DC daemons (host and

controller daemons) on the controller instances, and commands the

LG to actually start the load; then, if specified in the experiment

profile file, it waits for the experiment duration, otherwise it waits for
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Algorithm 2 experimental phase

Input: DeploymentSpecification ds, ExperimentProfile ep
1: vms = getSdnControllers(ds)
2: for all vm in virtualMachines do
3: activateCollectorDaemnos(vm)
4: end for
5: startLoadGeneration(ds.loader)
6: if ep.hasExperimentDuration then
7: sleep ep.ExperimentDuration
8: else
9: waitLoaderTermination()

10: end if
11: storeCollectedData()

the LG to stop. Finally the EM instructs the DC to permanently

store the collected data for subsequent offline analysis. These steps

are summarized in Algorithm 2.

iii clean-up phase: every experiment is followed by a system clean-up

phase, accomplishes by the EM by reverting the VMs with a clear

snapshot. A further clean-up option, which is supported by the EM,

is to stop all the tools and clean up the VMs (e.g, uninstalling the

SDN controller source code, removing the syslog, etc.). The steps of

the clean-up phase are summarized in Algorithm 3.
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Algorithm 3 clean-up phase

Input: DeploymentSpecification ds, RestoreOption ro
1: virtualMachines = getDeployedVMs(ds)
2: for all vm in virtualMachines do
3: if ro.isSnapshotToRestore then
4: pm = getPhysicalHost(vm.id)
5: restoreSnapshot(pm, vm.id, vm.snapshotID)
6: else
7: cleanUp(ds, vm.type)
8: end if
9: end for

4.4.5 Topology Manager

The Topology Manager (TM) consists of a set of Python and bash scripts

aiming to set up the data plane topology, either emulated or real. It in-

corporates the Mininet tool [72] to reproduce different types of data-plane,

varying the shape (e.g., linear, full meshed, etc.) and the size (i.e., number

of switches) of the topology. By interacting with the standard management

API (such as the OpenFlow Switch Management API ) typically exposed

by OpenFlow switches, the TM is also capable of interacting with specific

types of physical devices, such as the Centec switches, configuring them to

operate with the ONOS controllers, thus forming a real data plane topology.

4.4.6 Workload Generator

We designed the Workload Generator (LG) as an extensible Java-based –

and Spring Boot 1.4 – application, aiming to reproduce realistic workload
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conditions for the SUT. As anticipated earlier in this chapter, the LG emu-

lates policy-based application requests, namely intents specifying high-level

requirements which have to be satisfied by the controller by programming

network devices, after a compilation step.

The Intent is the main concept beyond the Intent-Based Network-

ing [25] (IBN) model, where an application can simply specify its own

network requirements without worrying about the underlying network de-

tails (§2.1.4). According to the IBN model, the application specifies what it

requires in terms of action to be taken in controlling the network, ignoring

how such needs are actually implemented by the SDNs. Hence, the IBN

framework underlying the SDNs abstracts the network complexity allowing

network operators and applications to describe global network policy rather

than low level instructions for the devices.

More in detail, an Intent is an immutable request model carrying the re-

quirements of an application’s demand to the SDN platform, which involve

the modification of the network’s behavior. As mentioned in §2.1.4, Intents

are portrayed at lower level as network resources, constraints, criteria and

instructions for specifying the network policies. To enforce such policies,

there is a need to configure the physical network infrastructure, and the

appliances. To this end, once received, the Intents requests are translated
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through the intent compilation process into corresponding device instruc-

tions specifying how the network must be programmed at low level. A

point-to-point interconnection request with default network constrains, e.g.

minimum network bandwidth, is an example of Intent request handled by

the SDNs which require the creation of a connectivity between endpoints.

Such a request, is converted, i.e. compiled, by the SDNs into a set of flow

rules to install on the corresponding network devices.

In summary, an Intent is submitted, then - providing the request is

feasible, i.e. it can be satisfied - it is compiled, installed and executed.

Network problems, such as loss of throughput or connectivity, may impact

a compiled intent, in which case the controller tries to recompile it looking

for an alternate approach to satisfy it. Intents may also be withdrawn

intentionally by the applications requesting them.

The LG is capable of emulate two type of intent requests:

• Install intents, carrying requests to set up new connections; these

are further categorized into:

– Host-to-host intents, requesting a bidirectional connection be-

tween two hosts in the data-plane. They are compiled into two

paths, one per direction;

– Host-to-multihosts intents, for bidirectional connections between

a source host and multiple destination hosts. They are compiled
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into path pairs.

• Withdraw intents, carrying request to cancel a connection previ-

ously successfully installed and set up.

Initially, the LG interacts with one of the available ONOS instances to

discover the network topology. Each request is created by randomly select-

ing two edge switches (i.e., switches having at least one host connected);

for each of them, the LG randomly selects a host connected (or multiple

hosts for a point-to-multipoint intent). Although it is legitimate for an in-

tent to involve hosts connected to the same switch, the LG creates requests

involving only hosts connected to different switches, to actually trigger the

creation of a network path.

The requests are submitted in batch units. A batch can carry both install

and withdraw intents. The LG allows requests to be submitted to a target

ONOS instance in synchronous or asynchronous mode; in the latter case, a

callback task is provided to process the reply, thus increasing the throughput

of the LG. The LG manages a pool of TCP connections for each controller

instance, and reuses them to send its requests, hence reducing the overhead.

The LG incorporates a load balancing algorithm to identify the target

ONOS instance for an intent. Specifically, it uses a Weighted Round Robin

policy, with each server weighted according to its response time. This way,

the longer the response time, the lower the weight an instance is assigned.
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Then, the policy randomly picks a server according to the weights. An alter-

native simple Round Robin policy is also provided for further experiments.

For each generated request, the LG reports the corresponding perfor-

mance measurements, i.e., processing throughput and latency. In computing

such measurements, an intent request is considered timed out, i.e., failed, if

no response is received after 10 seconds.

The LG provides three operational modes:

1. Impulse Response mode. The LG submits a set of Smax subse-

quent impulses of requests. Each impulse consists of two batches of

Rx install, and withdraw requests, respectively. The LG first submits

the batch of install requests, waiting until the process terminate. The

waiting cycle ends when: IntentThroughput+ IntentFailureRate =

Rx, with IntentThroughput being the rate of requests correctly han-

dled by ONOS, and IntentFailureRate the rate of the failed requests.

Then, the LG submits the batch of withdraw requests and, as for the

install batch, waits the withdrawal phase terminates. Finally, it pauses

for a time interval T before starting a new impulse of requests.

2. Steady-State Response mode. The LG constantly generates and

submits a batch of Rx requests per unit time. Each batch contains

both type of requests, i.e., intent install and withdraw requests. Re-

gardless of the type of submitted requests, the LG ensures that only
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Rx requests will be submitted per unit time. It uses a token bucket

mechanism to control the load, generating new requests only if the

token is non-empty. It is worth noting that by intentionally adopt-

ing high request rates we can assess if the system is able to tolerate

unpredictable legitimate (e.g. flash crowd), or malicious (e.g. DDoS

attack) high level Intent traffic without a significant performance loss.

3. Probabilistic Mode. The LG submits intent installation and with-

draw requests following a specific probability distributions, i.e., an

approximation to a Poisson Markov process with exponentially dis-

tributed inter-arrival times. This is achieved by discretizing the time

domain as successive intervals of length dt and, in each time interval,

performing an independent Bernoulli trial with a success probability

of p = r ∗ δt (a coin flip with probability p), where r is the event rate

(requests/sec). In other words, it submits an intent install and with-

draw requests according to an Install Request Rate, and Withdraw

Request Rate, respectively. The time between two consecutive sub-

missions of install or withdraw requests is given by the Install Update

Time, and Withdraw Update Time, respectively.

The operational mode to adopt for experiments and the corresponding

parameters are defined in the load profile file provided by the EM. In any
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operational mode, the LG can be configured to emulate network traffic

between two hosts of an intent, be they actual hosts in a real topology, or

emulated with Mininet. To this aim, it exploits the iperf3 [78] tool.

It has to be pointed out that the experiments described in this disserta-

tion have been conducted exclusively with the LG configured in steady-state

working mode, leaving the other options for future in-depth analysis.

4.4.6.1 Data Collector

The Data Collector (DC) allows on-line analysis of the SUT by continuously

collecting data from all the target nodes. These measurements allow the user

to conduct in-depth analysis of the system behaviour, helping in identifying

the route causes of possible performance degradation. A detailed description

for each collected metric is reported in Table 4.1. In achieving his goal, the

DC relies on two monitoring tools (see Figure 4.4):

(i) Host Daemon – It is lightweight Java-based application running on

the hosting machine. It collects finer-grained measurements at both

(i) system-level, to check the overall status of the VMs hosting the con-

troller instances, and at (ii) process-level, to identify possible bottle-

neck that can cause performance degradation of the SDN controllers.

Examples of measurements collected by the Host Daemon are CPU,

memory, disk and network utilization.
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(ii) Controller Daemon – Designed as a controller-side application, this

agent periodically intercepts the events occurring at both instance-

level, i.e. in the local ONOS instance, and cluster-level, i.e. across

all the controller instances. Examples of intercepted events are data

plane, IBN, and cluster communication events. The classes of events

intercepted by the Controller Agent are listed in Table 4.1. This

agent collects also some basic statistics about the ports of the physical

network devices, such as the total packets (bytes) received and sent,

the number of transmitted and received packets drops.

The data collected by the two daemons are periodically sent to the Mon-

itoring Server, a lightweight Java-based application running on a separate

VM, to be (permanently) stored for both on-line and off-line analysis.

Table 4.1: System and process metrics, and controller -related events col-
lected during an experimental campaign.

Metric Name Description
Additional Information
Supplied

System
Metrics

CPU Usage
System-wide actively used
CPU as a percentage of
total available.

Additional finer-grained
metrics: user, system, idle,
nice, iowait etc.

Virtual
Memory Usage

System-wide actively used
memory as a percentage of
total available.

Additional finer-grained
metrics, expressed in bytes:
total, used, free, active,
inactive, cache etc.

Swap Memory
Usage

System swap memory usage
as percentage of total
available.

Additional finer-grained
metrics, expressed in bytes:
total, used, free, swap in, swap
out.

Disk Statistics
System-wide disk I/O usage
statistics.

The collected metrics include:
number of read/write, the
number of bytes read/write,
the disk read/write/busy time.

Continued on next page
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Table 4.1 – Continued from previous page

Metric Name Description
Additional Information
Supplied

Network
Statistics

System-wide network I/O
statistics.

The collected metrics include:
bytes/packets received/sent,
total number of error/drop of
incoming/outgoing packets.

Process
Metrics

CPU Usage
Process-wide actively used
CPU as a percentage of
total available.

Heap Memory
Usage

Process-wide actively used
heap memory as a
percentage of total
available.

The actual and max number of
used bytes are also reported.

Non-Heap
Memory Usage

Process-wide actively used
non-heap memory (e.g.
stack memory) as a
percentage of total
available.

The actual and max number of
used bytes are also reported.

Pending
Finalizations

Number of object waiting to
be finalized, i.e. definitively
deallocated from the
memory.

This metrics, along with the
heap and non-heap memory
metrics, is useful to identify
possible memory leaks the
process may suffer.

Thread Count
Number of currently active
threads started by the
process.

Controller
Metrics

Cluster Event
Rate at which the SDN
cluster related events occur.

Raised when a controller
instance joins/leaves the
cluster, or when the instance
becomes operative/inoperative.

Cluster Com-
munication
Events

Rate at which the
communications occur
within the cluster.

Raised when a controller
sends/receives a message from
one or more nodes of the
cluster.

Network
Devices Events

Rate at which the network
devices related events occur.

Raised when a physical device
joins/leaves the data plane, or
when a status update of an
existing device is detected, e.g.
physical ports changes.

Network Links
Events

Rate at which the network
links related events occur.

Raised when a physical
network link is
discovered/removed or when a
link status updated is detected.

Network Hosts
Events

Rate at which the network
hosts related events occur.

Raised when an end-station
joins/leaves the data plane, or
when a status or physical
location update of an existing
end-station is detected.

Network
Topology
Events

Rate at which the network
topology related events
occur.

Raised when the graph view of
the network topology changes,
e.g. when a new disjoint
shortest path is created or
updated.

IBN Events
Rate at which the Intent
related events occur.

Raised when an Intenta request
is processed by the
Intent-based networking
framework. These events are
related to the IBN compilation
process, thus example of events
are: Intent installed,
withdrawn, failed etc.

Continued on next page
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Table 4.1 – Continued from previous page

Metric Name Description
Additional Information
Supplied

Flow Rule
Events

Rate at which the flow rule
related events occur.

Raised when the forwarding
tables of an OpenFlow device is
updated, e.g. when a flow-rule
is added, updated or removed.

Leadership
Events

Rate at which the leadership
related events occur.

Raised when a leadership
election for a specific eventa is
started, or when an event’s
leader has changed.

Mastership
Events

Rate at which the
mastership related events
occur.

Raised when the mastership
(backupb), i.e. the SDN
controller instance that act as a
master, of a physical network
device changes.

Distributed
Consistent
Events

Rate at which the
distributed consistent
related events, i.e., events
that require strong
consistency guarantee,
occur within the cluster.

Raised when an operation
needs to be processes with
strong consistency guarantee,
e.g., network topology events,
device events etc.

Control Plane
Statistics

Per-device counter statistics
of transmitted/received
OpenFlow messages.

The collected statistics are
related to six types of control
messages: PacketIn,
PacketOut, FlowMod,
FlowRemoved, StatsRequest,
StatsReplyc.

a Examples of events that raise a leadership election are the mastership of a physical device and the
management of Intent requests.
b In a cluster of N controllers, an OpenFlow physical device is mastered by a single controller while the
remaining N-1 controllers act as failover.
c PacketIn: sent from the devices to the controller; PacketOut: injected from the controller into the
devices; FlowMod: to modify the state of the switch; FlowRemoved: sent to communicate to the
controller when a flow entry in a flow table is removed; StatsRequest: used by the controller to request
information about individual flows; StatsReply: used by the devices to respond to StatsRequest packets.

4.4.7 Workflow of an intent

It is useful to look at the processing of an intent by ONOS, to understand

how SCP-CLUB differs from the reviewed ONOS benchmarking [45] [46]

[49] [48] and testing [64] approaches.

Figure 4.5 shows the ONOS internal steps to elaborate an intent install

request. Each request arriving at the northbound interface of an ONOS

instance (step 1) is served by the Intent Service. The instance adds it to
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Figure 4.5: The ONOS internal workflow for an intent.

the distributed in-memory storage (step 2). The latter in turn notifies the

cluster replicas (step 3) with the new event, triggering the assignment of

the request to a cluster instance.

The requests are accumulated in a single batch (with a default max size

of 1,000 requests) to reduce the processing overhead. A batch is processed

either when it reaches its maximum size, or after a specified timeout (the

default is 50 ms). Each intent is compiled by the Intent Compiler : this looks

for the available network paths (steps 4, 5, and 6) and resources (steps 7

and 8) to generate the set of flow rules for the switches.

The Intent Manager interacts with the Flow Rule Service to install the

flow rules. This service splits the rules in subsets for each specific device.
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The rules are stored (step 10) into the distributed in-memory Flow Rule

Store, and all cluster replicas are notified (step 11). Since the network de-

vices can only be programmed by their master controller, each ONOS node

is responsible to only install the subsets of rules related to the controlled

devices. For instance, if the main batch contains flow rules for switches

d1 and d2, it is split in two units - b1 and b2. Assuming d1 and d2 are

mastered by controller C1 and C2, respectively, the flow rules in b1 are

installed by C1, while those in b2 are sent to the master of d2, i.e., C2.

The flow rules are actually installed in the devices (step 12) by means

of a corresponding southbound provider implementing the device commu-

nication protocol (e.g., OpenFlow). Once the devices have been correctly

programmed (step 13), the Flow Rule Manager updates the distributed

store (step 14), which in turn notifies the cluster nodes (step 15) with the

new flow rules related events. Then, the Intent Manager is notified (step

16) and it updates the store with the new intent related events (step 17),

triggering the notification of the cluster nodes (step 18). Furthermore, the

events related to an intent request (e.g., intent installed, withdrawn) can

also be intercepted by the northbound application (step 19) by means of a

corresponding intent event Listener.

The processing of a withdraw request differs from the above only for

the steps concerning the resource reservation. Indeed, the withdrawal of an
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intent requires to return to the pool the network resources allocated to it.

ONOS adopts an eventual consistency [66] algorithm among the dis-

tributed nodes for intents and flow rules related events. The information

are first stored locally, and then eventually propagated within the clus-

ter. Consistency mechanisms clearly influence performance when scaling

out controllers; moreover, inconsistencies between the control and the data

planes may cause failures in the actual installation of intents [79].

To analyze the actual performance of an SDN deployment in a telco

cloud, the ONOS-based SCP-CLUB framework has been designed with sev-

eral essential differences with respect to the way ONOS performance tests

are typically conducted:

• Most controllers performance tests use the so called “Null Providers”

[64] or faked devices [48], i.e. services that fake the data plane (devices,

hosts, links, topology). This way, the control-data plane communica-

tion is totally avoided (steps 13 and 15, including the communication

via the southbound interface), and the flow rules are saved locally to

the Null Provider. As pointed out in [49], the controller processing

time varies with the sojourn time: SCP-CLUB computes performance

metrics considering all steps shown in Figure 4.5 (indeed the dotted

red lines in Figure 4.5 represent the steps skipped by most of ONOS

performance tests);
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• When compiling a host-to-host intent, the ONOS Intent Manager

identifies a bidirectional shortest path connecting the hosts. Then,

the path is compiled in sets of flow rules to be installed on devices in

the path. In the ONOS performance tests in [64], intents are compiled

in a single flow rule to be installed on one device, regardless of the

type and size of the network topology. Consequently, steps 4, 5 and 6

are bypassed. The SCP-CLUB Load Generator produces realistic re-

quests for real or emulated topologies, which traverse the whole intent

workflow within controllers, hence the performance metrics computed

take into account the actual processing of intents;

• When installing an intent involving devices managed by different ONOS

instances, the instance responsible of the intent needs to communicate

with the others to confirm the termination of the intent installation

process. Again, the metrics computed by SCP-CLUB take into ac-

count all steps in the processing of intents, thus including the man-

agement of intent and flow rules stores, and the coordination among

controller instances.

4.4.8 Capacity Measurement

The definition of a capacity for an SDN controller, such as ONOS, may

vary according to the performed functionality, and the type of workload
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(e.g., intent or flow rule installation). This experimental analysis is meant

to identify the capacity of the ONOS IBN framework under different work-

ing conditions (e.g., workload, deploy and data-plane size), and verify its

capability in satisfying the Telco Service Level Agreements (SLA). The SLA

imposes stricter constraints to the SDNs, asking for low latency operations

(e.g. recovering from a failure within a 50 ms interval), while keeping a high

processing throughput.

Consequently, the most important metrics considered in this study are

the service throughput and latency, which are computed as follows:

• IBN Service Throughput (IST). The throughput is the rate at

which requests are successfully processed by the ONOS cluster, e.g.,

number of intent installed and/or withdrawn per unit time. It repre-

sents the maximum workload at which the controller(s) can provide

the desired stable service. The service throughput of each experiment

is given by:

IST =
Intentreq
tresLI − t

req
FI

[requests/s], (4.1)

where tresLI and treqFI refer to the time of the last Intent response and of

the first Intent request, respectively, and Intentreq is the number of

requests correctly processed by the system.

• IBN Service Latency (ISL). The latency is the time required by the

ONOS controllers to process an intent request, which can be measured
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as follows:

ISL = tresIntent − treqIntent, (4.2)

where treqIntent is the time at which the intent request enters a con-

troller instance, and tresIntent the time at which the request is success-

fully completed (e.g. the intent is compiled, and the network devices

are programmed), or an error is raised, due to timeout expiration or

controller failures.

More in detail, the tresIntent provides information about the IBN pro-

cessing overhead. Let C and S be the number of deployed controller

instances and data-plane switches, respectively, and m be the con-

troller which is the master of an Intent request (i.e., the controller

that received the request). If C = 1, or the request is compiled into

flow rules for the only switches managed by m, then the processing

overhead is composed by:

tresoverhead = tmoverhead = tcontroller + tswitch + tlink, (4.3)

where tcontroller, and tswitch are the processing delays in controller and

switch, respectively, and tlink is the transmission delay on the link (i.e.,

the TCP connections) between the controller and the switches. Fur-

ther overhead is added when the flow rules refer to switches managed

by several controller instances. Indeed, in such a case an intra-cluster
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collaboration is required to actually process the intent request. Then,

the above eq. (4.3) becomes:

tresoverhead = tmoverhead

+
∑

i∈Cm⊂C
i 6=m

∑
j∈Si⊂S

(
ticontroller + tj,iswitch + ti,mlink + ti,jlink

)
(4.4)

where:

Cm = subset of the controllers involved by m in the request
processing

Si = subset of switches managed by the i-th controller (i ∈ Cm)
where installing a subset of flow rules

tmoverhead = the processing delay due to the only controller m
ticontroller = the processing delay due to i-th controller

tj,iswitch = the processing delay due to j-th switch (j ∈ Sj), managed
by the i-th controller

ti,mlink = the transmission delay on the link connecting the i-th
controller with the controller m

ti,jlink = the transmission delay on the link connecting the i-th
controller with the managed j-th switch.

Figure 4.6 displays a simplified architecture of the SDN ecosystem.

The request arriving at the NB interface are first processed by the

ONOS core to be compiled in corresponding flow rules, then the latter

are programmed in the switches by means of the SB interface. In

addition, the OpenFlow switches has a two-layer design, with a user

space daemon interacting with the controllers, and a kernel module to

actually set the rules in the flow tables.

Each of these steps introduces additional latency, which is further
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Figure 4.6: The ONOS service performance measurements.

increased when multiple controller are involved in processing the re-

quests. In addition, the dominant latency factor may differ according

to the specific working scenario. For example, tlink is the dominant

factor in a WAN deployment, while it is kept tiny in a data center

scenario, where tswitch is the main factor. In the proposed test envi-

ronment, the latency measurements only accounts for controllers and

switches aspects, while the influence of the connection is negligible.
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The above equations 4.3 and 4.6, can thus be simplified to:

tresoverhead = tmoverhead = tcontroller + tswitch (4.5)

and to:

tresoverhead = tmoverhead

+
∑

i∈Cm⊂C
i 6=m

∑
j∈Si⊂S

(
ticontroller + tj,iswitch

)
(4.6)

These metrics are the primary indicators of the system’s overall heath,

allowing to identify if the system is “working properly”. Indeed, under

normal working condition, i.e. without any disruptive condition affecting

the system, the indicators will variate within a standard range of values.

Viceversa, abrupt and unexpected changes of these indicators will be rep-

resentative of degraded performance conditions which can be related to a

variety of problems, such as resource depletion, bottlenecks, and failures.

4.5 Benchmarking a telco cloud SDN

4.5.1 Experimental Campaign

In order to analyze the capacity of a SDN deployment in a telco cloud

infrastructure, we run experiments by varying the following parameters:

• vertical scale (VSCALE): the resources - namely, CPUs and mem-

ory - allocated to each controller instance (scaling up/down);
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Table 4.2: Levels of the DOE factors. The LOAD factor ranges between
1,000 and 5,000 requests/s with increments of 1,000 requests/s.

Levels

VSCALE SMALL MEDIUM LARGE XLARGE
HSCALE 1 3 5 7

LOAD 1,000 req/s [MIN] 5,000 req/s [MAX]

F
a
c
to

rs

TSIZE SMALL LARGE

• horizontal scale (HSCALE): the number of SDN controllers (scal-

ing in/out);

• load level (LLEVEL): the number of requests arriving at the north-

bound interfaces;

• topology type (TSIZE): the size of the data-plane network topology

- namely, the number of devices, links and hosts.

In the following the terminology of the Design of Experiments (DOE)

method [80] will be used. According to the DOE terminology, the VSCALE,

HSCALE, LLEVEL and TSIZE parameters are referred to as factors, while

the values each factor can take are called levels. Table 4.2 shows the levels

of each factor. The levels have been used to configure the CM and the EM,

in the ONOS-based implementation of the SCP-CLUB framework described

in Subsection 4.4.



Chapter 4. SDN Control Plane CLoUd-based Benchmarking 88

4.5.2 Telco Cloud Experimental Setup

An experimental telco cloud infrastructure has been set up at Nokia Bell

Labs (Figure 4.7). It encompasses three racks, each equipped with 20 blade

servers, connected to two high-speed subnetworks: i) the management sub-

network, used exclusively to configure and control the blade servers, and ii)

the data network, interconnecting the servers. Each server is connected to

two 1/10GbE Ethernet Nokia Management switches, for the interconnec-

tions within a rack, and to two QSFP 10/40GbE Nokia Ethernet switches,

for data exchanges within the rack. Communication across racks is ensured

by means of two additional QSFP 10/40GbE Nokia Ethernet switches.

Table 4.3 lists the configuration of the testbed machines. The D51BP-

1U blade servers are used as compute nodes while the D51BP-2U servers

are used as storage nodes. The server virtualization is provided by means

of VMware ESXi [81] (ESXi v 6.5), a bare-metal hypervisor, while VMware

Vsphere is used to automate the management of virtualized resources.

The deploy consists of ONOS version 1.10 instances installed on Ubuntu

16.04. The SCP-CLUB CM has been instructed to scale the ONOS con-

trollers up (VSCALE) by varying the flavour of the VMs from small to

medium, large and extra-large, and out (HSCALE) by varying the number

of instances from to 3, 5 and 7. To avoid resource overcommitment, the

CM has been configured to distribute the VMs on different blade servers.
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Figure 4.7: The Nokia AirFrame testbed, running the SCP-CLUB tools and
the ONOS cluster.

The EM is instructed to vary both the load level (LLEVEL), and size

(TSIZE) of the data-plane network for performing various experiments in a

campaign. Specifically, the LG is configured to vary the request rate from

1,000 up to 7,000 requests/s with increments of 1,000 requests/s. The TM

is set to emulate two type of linear data-plane topology: i) a small topology,

consisting of 10 switch connected linearly, and 10 hosts (5 hosts connected

to the end nodes); ii) a large topology, consisting of 30 switches and 10

hosts. Mininet 2.2 has been adopted to emulate each type of OpenFlow-

based network.
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Table 4.3: Telco cloud blade servers and VMs configuration.

Type CPU Cores RAM Network

D51BP-1U
2x Intel Xeon E5-2680 v3

24
(48 logical)

256GB
1 Intel I350 2x1GbE

D51BP-2U 516GB
1 Intel X540 2xSFP+ 10GbE

P
h
y
si

ca
l

M
a
ch

in
e
s

1 Dedicated 1GbE Management

ONOS.small 2x vCPU 2 2 GB

3x 10Gb vNIC
ONOS.medium 4x vCPU 4 4 GB

ONOS.large 8x vCPU 8 8 GB

ONOS.xlarge 8x vCPU 8 16 GB

Experiment Manager 2x vCPU 2 2 GB

2x 10Gb vNIC
Load Generator 8x vCPU 8 64 GB

Topology Manager 8x vCPU 8 8 GB

V
ir

tu
a
l

M
a
ch

in
e
s

Monitoring Server 2x vCPU 2 4 GB

Besides the experiments with the emulated topology, several tests have

been conducted with a real topology consisting of 16x V350 Centec [82]

silicon SDN/Openflow switches. The switches are connected linearly, with

a total of 35 real hosts wired to 7 switches (5 hosts per switch).

As described in §4.4.4, an experiment encompasses of three main steps,

i.e., the i) startu-up, the ii) experimental, and iii) cleanup phases. The ex-

perimental phase lasts 300 seconds and each experiment is repeated 10 times

to average the results. For each run a trial phase is performed submitting

a total of 2000 requests to warm-up the system and reach a steady state.

During the trail phase, no performance measurements have been taken.
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Table 4.4: Operating system and ONOS parameters configuration.

Parameter Value Additional information

rmem max 16777216
Sets the TCP read and write
buffer size (16MB) for a
10Gb connections.

wmem max 16777216

tcp rmem 4096 87380 16777216

tcp wmem 4096 16384 16777216

net.core.somaxconn 4096 Sets the size of the socket
connection listening queue
and the incoming packet
queue for upper-layer (e.g
Java) processing.

netdev max backlog 16384

tcp max syn backlog 8192

tcp syncookies 1

ip local port range 1024 65535 Sets the number of usable
ports and allow reuse of
sockets in TIME WAIT state.

tcp tw recycle 1

O
p

e
ra

ti
n

g
S

y
st

e
m

nofileSoftLimit 1050000 Sets the number of open file
descriptors before a soft/hard
error is issued.

nofileHardLimit 1050000

acceptors # vmCPU Sets the Jetty’s acceptora

threads, the min and max
threads of the thread pool,
and the maximum number of
requests to queue before
blocking the acceptors.

minThreads 10

maxThreads 400

maxQueuedRequests 6000

JVM Heap vmRAM Sets the JVM’s initial and
maximum memory sizes with
the total VM’s RAM, and
the Garbage Collection
algorithm.

JVM GC ConcurrentMarkSweep

O
N

O
S

skipReleaseResources True

Sets skipReleaseResourcesOn-
Withdrawal to skip the release
of the resources assigned to an
Intent when it is withdrawn.

The OS parameters have been applied to both LG and ONOS VMs, with the network port
configurations that have only been applied to LG VM.
a The Jetty’s acceptor threads are meant to accept new connections from the client (the LG).

4.5.3 System Configuration

In order to avoid any pitfalls due to an incorrect system configuration (e.g., a

small port rage limiting the outgoing connections), the LG and the ONOS
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VMs have been configured for high load performance testing. Table 4.4

reports the values used to tune both the Operating System (OS), and the

ONOS environment parameters.

Several parameters have been set at OS level. For example, the ports

range, the TCP window and queue size of the TCP/IP layer, and the Linux

file descriptor limit have been increased to support high connection rates.

Furthermore, at ONOS level, the number of threads (e.g., max and min num-

ber of threads) used by the Karaf’s built-in web server (i.e., the Jetty web

server) has been tuned to achieve better performance. Finally, the ONOS

JVM is configured to use the maximum available memory (i.e., VM’s mem-

ory), and the “skipReleaseResourcesOnWithdrawal” property of the ONOS’s

Intent Manager is set to reduce the overhead due to the release of network

resources on intent withdrawal.

4.6 Results

4.6.1 Experiments with Emulated Data Plane

Figure 4.8 shows the throughput over the 5 minutes of duration of exper-

iments with a constant workload of 2,000 intents per second (install/with-

draw), for various sizes of the VM, and using from 1 (Fig. 4.8a) to 7

controllers (Fig. 4.8d). Each plot is the average throughput over 10 runs;

the total 2,240 experiments lasted about 6 days, including the start-up and
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clean-up phases. It can be observed that:

• The system sustains the exact input load (i.e., Throughput ≈ Input

Request Rate) only with the LARGE and EXTRALARGE values for

the VSCALE factor, independently of the number of controllers;

• For SMALL and MEDIUM deployments, the throughput with one

controllers is well below the load rate of 2,000 requests/s, and for the

SMALL adding more controllers is insufficient to keep the input pace;

• With 3 controllers and MEDIUM VSCALE factor the load is sustained

only for about 100s, then the throughput drops down.

• Increasing the HSCALE factor may slightly reduce the overall per-

formance, even with the LARGE and EXTRALARGE deployments.

This is due to the overhead of the East-West communication, which

increases as the number of controllers.

These results suggest that scaling up the VMs vertically seems to be

an affordable possible strategy to sustain a constant workload as “high” as

2,000 intents per second.

Table 4.5 shows the maximum IBN System Capacity (ISC) of ONOS

when the rate η =
IST

IRR
is grater than a specified threshold, e.g., 0.8 or 0.9,

which represents the maximum . The IST is the successful Intent request

rate, and IRR is the rate at which the intent requests are submitted to the
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Figure 4.8: Service throughput time series per VM flavour (VSCALE) and
deploy size (HSCALE) with a load of 2,000 requests/s.

ONOS cluster, namely, the LOAD factor. The rate η shows how closely the

IST follows the IRR specified in our tests, giving an overview of what is the

maximum offered workload at which ONOS can provide the desirable stable

service. In other words, when the IRR exceeds the system capacity, a certain

percentage, say 20 or 10% (0.8 and 0.9 thresholds, respectively), of the intent

requests will fail. In such a case, η will be well below the specified threshold
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Table 4.5: ONOS Intent Based Networking System Capacity (ISC) using
different scaling methods.

Resources ISC max ISC max
ONOS Deploy Size

vCPU RAM for η ≥ 0, 8 for η ≥ 0, 9

ONOS–1–Medium 4 4 1,000 1,000

ONOS–1–Large 8 8 3,000 3,000

ONOS–1–Extra 8 16 3,000 3,000

ONOS–3–Medium 12 12 2,000 1,000

ONOS–3–Large 24 24 3,000 3,000

ONOS–3–Extra 24 48 3,000 2,000

ONOS–5–Small 10 10 1,000 1,000

ONOS–5–Medium 20 20 2,000 2,000

ONOS–5–Large 40 40 4,000 4,000

ONOS–5–Extra 40 80 5,000 4,000

ONOS–7–Small 14 14 1,000 1,000

ONOS–7–Medium 28 28 2,000 2,000

ONOS–7–Large 56 56 5,000 3,000

ONOS–7–Extra 56 112 5,000 4,000

suggesting that the system is no longer capable to satisfy the required level

of service, e.g., 80% or 90% of the IIR. Hence, the more the η is close to 1

the better the performance.

As for evaluating the scaling ability, Figures 4.9 and 4.12 show the re-

sults with emulated topologies with number of switches of 10 (small) and

30 (large), respectively. The graphics plot the throughput (thousands of

requests per second) exhibited when soliciting the system with a load from

1,000 to 7,000 requests/s, using an odd number of controllers varying from

1 to 7. The curves represent the average over 10 runs of each experiment.

As for scaling up, a single ONOS instance is used and its size is increased

from SMALL to EXTRALARGE.



Chapter 4. SDN Control Plane CLoUd-based Benchmarking 96

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
Input Request Rate [Kreq/s]

T
h

ro
u

g
h

p
u

t 
[K

re
q

/s
]

VSCALE
ExtraLarge

Large

Medium

Small

(a) 1 ONOS controller

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
Input Request Rate [Kreq/s]

T
h

ro
u

g
h

p
u

t 
[K

re
q

/s
]

VSCALE
ExtraLarge

Large

Medium

Small

(b) 3 ONOS controller

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
Input Request Rate [Kreq/s]

T
h

ro
u

g
h

p
u

t 
[K

re
q

/s
]

VSCALE
ExtraLarge

Large

Medium

Small

(c) 5 ONOS controllers

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
Input Request Rate [Kreq/s]

T
h

ro
u

g
h

p
u

t 
[K

re
q

/s
]

VSCALE
ExtraLarge

Large

Medium

Small

(d) 7 ONOS controllers

Figure 4.9: Service throughput while scaling (up/out) ONOS with a small
data plane topology (TSIZE = 10 switches).

Figure 4.9a shows the throughput changes as the input rate increases. It

can be noticed that for the same deployment size, IST changes significantly

when the IRR exceeds the system capacity point of IST = 0.9, which means

that ONOS can no longer guarantee its stable service beyond that point.
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For instance, the performance drops significantly in the case of LARGE and

EXTRALARGE deployments when the input request rate exceeds 3,000 re-

quests/s. It also shows that scaling ONOS up by doubling the resources

(CPU and Memory) almost doubles the doubles the system capacity. For

instance, when ONOS scales from SMALL to MEDIUM, the system ca-

pacity increases from 500 requests/s to 1,500 requests/s, and scaling from

MEDIUM to LARGE bring the system capacity to 3,000 requests/s.

Similar observations also apply for most of the cases with multiple ONOS

instances. The 3 controllers deployment seems the only one exhibiting a

different behaviour. Indeed, scaling out from 1 to 3 controller instances

does not improve the performance of ONOS, even for the LARGE and

EXTRALARGE deployments. This was caused by the fact that sometimes

the ONOS controllers lost the connectivity with the data plane devices,

leading the system to an inconsistent state where the instances kept trying

to backup the OpenFlow devices, i.e., restoring the connectivity and flow

rules, causing the depletion of the system resources [83] [84].

From all results in Figure 4.9 we can observe that:

• The highest input rate of 7,000 requests/s is never sustained;

• For SMALL and MEDIUM VM sizes the input load is not sustained,

and scaling out does not necessarily improve the throughput.
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• With the LARGE and EXTRALARGE VM sizes the load is sustained

up to 3,000 intents/s with one controller;

• The input rate of 5,000 requests/s is sustained only with the EX-

TRALARGE size, and this demands for at least 5 controllers;

• With the LARGE and EXTRALARGE VM size, scaling out ONOS

does not always pay; indeed, scaling out further to 7 controllers does

not improve the performance if compared the 5 controllers deploy-

ment;

Figure 4.10 shows the average service latency, that is the time required

by the ONOS cluster to process an intent request. It can be noticed that

the ISL increases approximately linearly with the input request rate and the

number of controllers, then it stabilizes when the IIR exceeds the maximum

system capacity. For example, Figure 4.10a shows that for both LARGE

and EXTRALARGE deployments the latency increases from 90ms up to

300ms when load level increases from 1,000 req/s up to 3,000 req/s. With

the request rates that exceed the system capacity (see Table 4.5), i.e., from

4,000 up to 7,000 req/s, the latency is relatively stable at 400ms.

The latency rises from 0,48ms with the LARGE and EXTRALARGE de-

ployments and low request rates, up to 1,000ms with SMALL and MEDIUM

deployments. Figure 4.11 shows the tail latencies obtained submitting a
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Figure 4.10: Service latency while scaling (up/out) ONOS with a small data
plane topology (TSIZE = 10 switches).

request rate of 3,000 requests/s. They exhibit roughly similar character-

istics until the 99th percentile for both SMALL and MEDIUM in a single

controller scenario, and for LARGE and EXTRALARGE deployments, in-

dependently from the deploy size.

These results suggest that scaling out the ONOS instances does not in-

crease the system capacity mainly due to the data synchronisation among

the controllers required to maintain a consistent, and always updated, view
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Figure 4.11: Tail service latency while scaling (up/out) ONOS with a small
data plane topology (TSIZE = 10 switches) and 3,000 req/s.

of the network. Hence, This suggest the need to dynamically establish the

scale out point, i.e. to find the tradeoff between the benefit of using more

controllers and the cost of the ONOS eventual consistency mechanism - even

for the highest VM flavours at input rates higher than 3,000 requests/s.
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The experimental results in Figure 4.12 show a dramatic loss of perfor-

mance when the size of the emulated topology is increased to 30 switches

(compared to 10 switches of Figure 4.9). In this case, scaling out the SDN

adding more controller instances does not provide the expected benefits.

This implies that the maintenance of a large number of connections is

expensive. Indeed, during this set of experiments the controller instances

have experienced a high memory utilization which caused the stuck of some

of the instances, implying that ONOS is not capable to handle a large

number of overloaded connections.

Again, the main cause of the performance degradation was related to the

overhead of both the East-West, and control-data plane communications.

This highlighting the need to adopt more efficient mechanisms, such as the

hierarchical SDNs, to improve scalability and increase service flexibility of

the nowadays SDNs technology.

4.6.2 Experiments with Real Data Plane

A further set of experiments has been conducted with a real topology con-

sisting of 16x V350 Centec Openflow switches connected linearly. The num-

ber of ONOS controllers varies from 1, to 3, 5 and 7 instances (HSCALE),

while the ONOS VMs is the large flavour (V SCALE = Large).
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Figure 4.12: Service throughput while scaling (up/out) ONOS with a large
data plane topology (TSIZE = 30 switches).
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The first set of tests, conducted with a moderate load of 2,000 request-

s/s, showed poor performance in terms of successful Intent operations per

unit time, especially when increasing the number of controllers. Hence, to

better investigate the possible causes of the performance degradation, we

drastically reduced the load, by varying the request rate with a granularity

of 200 requests/sec starting from 100 up to 1,400 requests/s.

On the one hand, Figure 4.13 shows that the performance is relatively

stable up to 400 requests/s regardless the number of controllers. When the

load reaches 600 requests/s, a performance degradation appears on all tested

deployment, and adding more controllers entails a further performance loss.

Figure 4.14, on the other hand, shows that the average time to process
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Figure 4.13: Service throughput while scaling out ONOS with a real data
plane topology.
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Figure 4.14: Service latency while scaling out ONOS with a real data plane
topology.

an intent request is almost doubled when switching from 200 requests/s to

400 requests/s, requiring the system more than a 1,000ms to process each

request. However, the cause of these poor performance results is to be found

elsewhere, namely in the Centec switches.

We observed that the higher the load, the more the flow rule operations

were discarded by the Centec switches due to a hardware limitation of the

latter. More in details, the driver queue (a.k.a. ring buffer) of the Ethernet

interface (used for management) in the Centec switch was filled out by the

high volume of OpenFlow rules submitted by the ONOS instances, resulting

in a high throughput degradation. Thus, adding more controllers caused the

queue to be filled up faster.

These results point out that the Centec switches perform better under

the management of a single controller instance, sustaining up to 400 flow
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rule installation per second. At the same time, it has been observed how the

OpenFlow SDN switch still needs to be improved in terms of management

and programmability, in order to meet the strict performance requirements

of the future carrier grade networks (e.g., 50ms constraint in restoring a

network path).

4.7 Summary

This Chapter has presented SCP-CLUB, a framework for performance as-

sessment of SDN deployments on a telco cloud infrastructure. It features

several tools to automate the deployment of controllers and to orchestrate

a campaign of experiments under various operating conditions (number of

controller instances, VM size, workload, topology). The user defines the ex-

perimental campaign by providing a textual specification with the desired

values for configuration parameters. This allows to analyze the telco cloud

SDN setup capacity and/or to extract actionable intelligence that can be

used to fine-tune or to dynamically adapt (e.g., scale up or down) the cloud

resources running the control network.

A campaign of experiments, designed with the DOE methodology, with

the ONOS-based implementation of SCP- CLUB has been performed with

a setup in a real telco datacenter. The campaign was meant to analyze the

performance (and in particular, scalability) under various configurations in
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terms of requests rate, VM flavour, and number of ONOS instances.

The results show that: i) load levels as high as 3,000 intents per sec-

ond and higher are sustained only using large VM flavours, regardless of

the number of controller instances; ii) as the load increases up to 5,000

requests/s, scaling out controllers horizontally (i.e., deploying multiple con-

trollers) provides benefits only for the highest VM flavours; with small-

and medium-sized VMs, the performance may worsen at high loads with

multiple controllers; iii) input rates higher than 5,000 requests/s are not

sustained; iv) when managing a relatively high number of switches (even in

experiments with emulated topologies), the control plane exhibit a dramatic

loss of performance; v) with real topologies, the data plane suffers from se-

rious scalability problems. These are examples of the indications which can

be drawn running experiments with SCP-CLUB to find the desired tradeoff

between scaling up and/or out distributed SDN deployments.

Finally, we explicitly point out that all performance figures appear orders

of magnitude lower than the those reported in often-cited studies like [11]

and [85], which show that controllers can be optimized to handle tens of

thousands flow events per second. This is however not surprising, as these

are typically measured just as flow initiation events at the southbound in-

terface of a single (possibly multithreaded) controller. Essentially, they

measure the maximum flow setup rate that a controller can maintain, while



Chapter 4. SDN Control Plane CLoUd-based Benchmarking 107

SCP-CLUB was motivated by the need to assess actual SDN performance

under synthetic yet realistic loads, demanding for full intent processing in

a really distributed SDN controller deployment on a telco cloud.
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No amount of experiments can prove
that I am right; a single experiment
can prove me wrong.

Albert Einstein

Chapter 5
SDN Resilience Assessment:
a Failure Injection Tool Suite

The Chapter describes the failure injection methodology and a framework for con-
tinuous assessment of the reliability and resilience of SDN technologies. To this
aim, the already presented SCP-CLUB framework is extended with a configurable
and distributed software infrastructure for failure injection. The Chapter then de-
scribes the steps of the methodology, which encompasses the definition of a workload
to bring the SDN platform under assessment in a state where to inject failures ac-
cording to the failure model; the workload is based on the Intent-Based Networking
model. A failure model is presented, describing the variety of injectable failure types
at system, network and controller level. Then the Chapter describes the logical ar-
chitecture and components of the distributed software, along with its implementa-
tion details. Finally, the Chapter terminates with the experimental campaign, and
results, aimed to evaluate the resiliency of the Open Network Operating System
(ONOS).

5.1 Assessment Methodology

5.1.1 Overview

The knowledge on how failures may affect software systems is of paramount

importance to improve their resilience and reliability. With the complex-

ity of modern distributed systems, the design of effective detection and

109
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mitigation mechanisms can no longer rely exclusively on software testing

techniques in controlled environments. Indeed, it is impractical to fully re-

produce a complex operational context. In SDNs, for instance, it has been

shown that a faulty SDN application can compromise or crash the whole

SDN network [86]: while SDN controllers software is likely to stabilize, even

the application plane may be a vehicle for dependability threats. Therefore,

in the engineering of software network services, it is a key goal to be able

to test the proper functioning not only in controlled environments, but also

in-production, under real operating conditions.

Figure 5.1 depicts a high-level view of the approach, where failure injec-

tion is exploited to continuously assess the reliability and resilience of the

network services against a wide range of failure scenarios. This will provide

continuous feedback on the capabilities of the softwarized network services

to survive failures, which is of fundamental importance for improving the

system internal mechanisms to react to anomalous situations potentially oc-

curring in operation, while its services are regularly updated or improved.

To this end, failures are injected in different layers of the telco cloud infras-

tructure (Figure 5.1), namely: (i) at data-plane level, to emulate faulty

network appliances, e.g. by injecting Bit Error Rate (BER) or packet la-

tency and corruption at switchs’ port level; (ii) at infrastructure level,

to emulate faulty physical nodes or virtualized hosts; and (iii) at control
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Figure 5.1: In-production continuous testing in Telco Cloud.

plane level, to emulate faulty network controllers.

With this approach in mind, the chapter’s aim is pursued through the

use of software failure injection to deliberately introduce failures in the com-

ponents of the system under assessment, or in their execution environment,

under real or emulated load scenarios, to evaluate the system behaviour

under (possibly unforeseen) disruptive conditions. Specifically, it focuses

on the resilience of the control plane layer, and proposes a methodology

and a tool suite to validate the reliability and resilience of distributed SDN

platforms.

5.1.2 Failure Injection Methodology

The proposed methodology aims to assess the effectiveness of the failure

detection and mitigation mechanisms provided by the SDN technology by
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reproducing representative failure scenarios 1. To this end, the SCP-CLUB

infrastructure presented in §4.1 has been improved with a failure injection

tool suite to deliberately inject failures in the SDN ecosystem limiting in-

trusiveness, as much as possible.

According to the proposed methodology, the system is exercised with

a workload and a faultload. The workload reflects a load profile that a

distributed SDN system will face in production environment; the faultload

consists of a set of failure, i.e., system or network misbehaving, which are

injected in the system. By executing the system with the workload and

subjecting it to the faultload, we aim inducing errors and failures into the

SDN ecosystem.

The steps of the methodology are outlined in Figure 5.2. The execution

of the experiments is automated and supervised by the Experiment Man-

ager program, or EM (see §4.4.4), while the System Under Test (SUT) is

the target SDN infrastructure, i.e., the set of the SDN controller instances

distributed across several machines. The EM specifies the experimental

parameters, sets the SUT, i.e., deploy, starts/stops all the SDN controller

instances and the framework’s components, and restore the machines to

ensure the same initial conditions for each experiment.

1It is worth mentioning that, although the failure model described in the next sections
is meant to target specifically the control plane ecosystem, some of the proposed failure
modes may overlap with those required to emulate faulty condition at infrastructure level
(see Figure 5.1), e.g. a controller crash may correspond with the crash of the virtual
machine hosting such controller.
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Figure 5.2: Steps of a failure injection experiment.

More in details, the execution of the failure injection experiments en-

compasses a number of tasks (Fig. 5.2). After the definition of the failure

model and the workload parameters (step 1 in Fig. 5.2), the experiment is

set up, configuring and deploying the SDN infrastructure under evaluation,

along with the data monitors (step 2). Then the workload is generated

(step 3), so as to stimulate the SDN to bring it in a state where to in-

ject a failure selected from the failure model. During execution, a failure

is injected (step 4), while the system is monitored and data are collected

(step 5). After execution, the testbed is cleaned up by restoring the original

status of the machines running the SDN controllers, and restoring the con-

troller instances, before starting the next experiment (step 6). This process
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is repeated for each execution of a failure injection experiment, and several

failures are injected at each experiment of the campaign (while keeping the

same workload and collecting the same performance measurements).

It is worth emphasizing that although the analysis reported in this dis-

sertation have been conducted in a controlled test environment, the proposal

has been conceived as a framework (methodology and injection infrastruc-

ture) to assess the resilience of the SDNs in production. Indeed, the com-

plexity of the environments where SDNs operate can lead to situations that

are difficult or even impossible to replicate with the traditional software

testing approaches [21].

The support infrastructure has been designed to be easily deployed into

the target SDN ecosystem, so as to support the injections of failures even

in a production environment, with the aim of continuous testing.

The execution of failure injection experiments is supported by the in-

frastructures described in the next sections.

5.1.3 Failure Model

Software-Defined Networks are typically engineered as distributed systems

given the drawbacks of centralized solutions in terms of scalability, perfor-

mance, and fault tolerance. This is true also for the newest SDN implemen-

tations, such as ONOS R© (Open Network Operating System) and ODL R©
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(OpenDaylight). For such a reason, failures have been chosen among those

belonging to the most common failure classes observed in distributed sys-

tems [21] [87] [88] [89]. These failures are injected by merely using API calls

in a non-intrusive fashion.

Table 5.1 lists the failure2 classes considered in the proposed assessment

methodology. Each class is intended to mimic different types of failure

scenarios at different levels of the software stack. According to the level to

which they apply, failures are classified in three main categories:

• Infrastructure Failures Model. These failures are further cate-

chorized into:

– System Failures. The computational power and reliability of

hardware equipments, adopted for both dedicated and COTS

(Commercial Off-The-Shelf) server, has increased dramatically

in the past several decades. Despite these increases, failure still

occur in complex and high powerful infrastructures; the adoption

of virtualization technologies and cloud computing solutions has

introduced further challenges in terms of security and reliability.

Therefore, the failure model encompasses failures affecting the

2It has to be noted that some of the failures in the proposed model - e.g. memory
corruption and saturation - should actually be considered errors. However for the sake
of simplicity, all the injected failure and error classes have been considered as part of the
failure model presented here.
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computational resources as well as I/O operations (e.g., physi-

cal/virtual CPU, memory and disk) of a target node. The goals

is to evaluate the resilience of the SDNs to nodes crashes and

resources depletion affecting the machines hosting the controller

instances. The failure types envisaged in this respect are system

hang, starvation, outage and shutdown (at single CPU level), as

well as disk and memory saturation.

Furthermore, a single controller instance might suffer from in-

creased CPU utilization, for instance due to other compute-intensive

jobs running on the same target machine. The corresponding fail-

ure types to mimic such a scenario are CPU or I/O burn. This

class of failures are emulated by starting additional jobs that de-

liberately consume CPU cycles and allocate memory areas aiming

to cause resource exhaustion, i.e., CPU and memory “hogs”.

– Network Failures. Network problems, such as link failures

or latent communication, are among the ones that have always

been faced by distributed applications [87] [90] [91]. The most

common consequence of these kind of failures is the partitioning

of the network that split a system in multiple disjoint, discon-

nected partitions. As a result, even if a system is designed to be

partition-tolerant, there are no guarantee that the modern SDN
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distributed systems are able to cope with partitioned, unreliable

networks [88]. To reproduce such network failures, message cor-

ruption or loss, partial or total network partitions as well as the

permanent unavailability are introduced into the network inter-

faces. In addition, even latent communications and bandwidth

limitation are emulated.

• SDN Controller Failures Model : This class of failures aims of

mimicking the malfunctioning that may occur in the interaction be-

tween the SDN controller services, or malfunctioning of the controller

itself. API calls may also be used to emulate a faulty controller in-

stance by shut it down or to mimic an anomalous service behaviour

by forcing the termination of specified system process. The corre-

sponding failure types are emulated by process kill, and controller or

dependency shutdown. Furthermore, a memory corruption failure is

also provided to corrupt the state of the controller, mimicking a hard-

ware fault, or a programming error affecting the controller’s memory.

It has to be pointed out that future SDN controllers are likely to be

engineered to be deployable also in virtualized platforms, or in container

technologies. This means that system failures should in principle to be

injectable also at the virtual machine (VM) or container level. However,

as this is true for any software system deployed in VM or containers (for
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Table 5.1: Failure model.

Failure class Failure type Description

System Hang Stuck the system on an infinite loop without releasing
the resources. The system’s network interfaces are still
responding.

System Starvation Cause the starvation of all the available system re-
sources. The system first slow down, then crashes.

System Outage Cause a fatal error from which the system cannot
safely recover (e.g. kernel panic).

CPU Shutdown Restrict the number of available CPUs.
Disk Saturation Cause the saturation of the disk, mimicking disk full

errors.
Memory Saturation Cause the saturation of the memory, mimicking mem-

ory full errors.
Burn CPU Spawn CPU-bound processes, mimicking a faulty

CPU and/or noisy process.

System
Failures

Burn I/O Spawn I/O-bound processes, mimicking a faulty disk
and/or noisy process.

Black-hole Abruptly drop the network communications towards
a specific address or a subset of addresses.

Packet Reject Abruptly drop the inbound and/or outbound packets
sent to specified address and/or port.

Packet Drop Quietly drop the inbound and/or outbound packets
sent to specified address and/or port.

Packet Latency Induce artificial delays for packets sent to specified
address and/or port.

Packet Loss Induce artificial losses for the packets sent to specified
address and/or port.

Packet Re-order Induce a mis-ordering of certain packets sent to spec-
ified addresses and/or port.

Packet Duplication Induce duplication of certain packets sent to specified
addresses and/or port.

Packet Corruption Induce a random noise by introducing an error in a
random position of certain packets sent to specified
addresses and/or port.

Network
Failures

Throttling Induce a bandwidth limitation to the outgoing net-
work traffic with specified addresses and/or port.

Kill Process Quietly terminate the controller process (SIGTERM
signal), mimicking a faulty service.

Process Corruption Randomly corrupt the state of the SDN controller pro-
cess, mimicking a service misbehaviour.

Controller Shut-
down

Quietly stop of the SDN controller process .

Controller Restart Gracefully restart the SDN controller.

SDN
Controller
Failures

Dependency Shut-
down

Quietly stop one or more dependencies, i.e., modules
of the SDN controller.
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instance, fault injection has been proposed for virtualized network func-

tions [92]), this dissertation intentionally did not include in the proposed

failure model failures at the Hypervisor, host or container level, limiting it

to failures whose injection allows to test controllers wherever they are in

execution.

Each failure in the model is triggered according to a specified injection

time, that is the exact time when the failure must be injected. In addition,

in order to allow the user to design more complex failure-injection scenarios,

the failure can be set in three different ways, namely:

(i) transient : the failures are injected only once and removed after a

specified amount of time in order to emulate temporary failure;

(ii) intermittent : the failures are periodically injected and left in the

system for a specified amount of time to emulate temporary, but re-

current failure conditions;

(iii) permanent : the failures are injected and never removed from the

system to emulate persistent failure conditions.

5.1.4 Measurements

To evaluate the performance of an SDN platforms under faulty scenarios,

and their capability in detecting and mitigating such disruptive conditions,
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two set of metrics have been identified, namely:

• Service-level Measures. These are high-level performance mea-

surements representative of the quality of the service provided by the

system, which are primary indicators of the system’s health. They

encompasses the i) IBN Service throughput and ii) latency de-

scribed in §4.4.8.

• System-level Resilience Measures. The goal of a system’s re-

silience mechanisms is to reduce, as much as possible, the disruptions

to business operations. The ultimate goal is to avoid any possible

downtime. Unfortunately, the provided resilience mechanisms may fail

in accomplishing their purpose, proving to be inefficient under certain

faulty conditions. Therefore, these set of measurements cope with the

characterization of the SDNs in terms of their ability to detect and

correctly handle unforeseen faulty conditions. They encompasses the

following metrics:

– Failure Detection Coverage and Latency . The Failure De-

tection Coverage (FDC) is defined as the percentage of failure

injection tests in witch the SDN infrastructure raises a notifica-

tion about the faulty condition, either on a single node, or on all

the failure-free nodes belonging to the cluster. It is computed as
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follows:

FDC =
#Fdetected

#Fundetected + #Fdetected
(5.1)

where #Fdetected and #Fundetected are the number of tests in

which the injected failure is detected and reported by the SDN

cluster, and the number of tests in which the injected failures is

not detected but causes performance degradation, respectively.

The Failure Detection Latency (FDL) is computed as follows:

FDL = tedetection − teinjection e ∈ E (5.2)

where teinjection refers to the time the failure is actually injected on

the target controller, and tedetection refers to the time at which an

anomaly is raised by the SDN cluster. In computing this metric

we only consider the subset e of all the performed experiments E

in which the failures have been correctly detected and reported

by the SDN infrastructure.

– Failure Recovery Coverage and Latency . The Failure Re-

covery Coverage (FRC) is defined as the percentage of failure

injection tests in witch the SDNs initiated and successfully com-

pleted a recovery process. It is computed as follows:

FRC =
#Fdetected

#Frecovered
(5.3)
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where #Fdetected and #Frecovered are the number of tests in which

the injected failure is detected, and the number of tests in which a

corresponding recovery action is successfully completed, respec-

tively. For example, upon the crash of a controller instance,

the recovery action is considered successful if the remaining con-

trollers correctly redistribute the management of the switches

controlled by the failed instance, keeping a consistent view of the

data plane network, and without losing performance.

The Failure Recovery Latency (FRL) is given by:

FRL = terecovery − tedetection where e ∈ E (5.4)

which is the time between the detection of the failure, i.e., tedetection,

and the termination of the recovery procedure, i.e., terecovery. It is

computes exclusively for those experiments in which a recovery

action has been taken by the failure-free SDN nodes.

It should be noted that only the Service-level Measures have been used

for the experimental evaluation described in the next sections; the System-

level Resilience Measures are defined in this dissertation, but they will be

used for future works.
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5.2 Failure Injection Framework

This section introduces the failure injection tool suite designed to comple-

ment the proposed assessment methodology, by supporting the execution of

failure injection experiments. The tool extends the SCP-CLUB architecture

obsessed in the previous chapter with the Failure Injector (FI), which is a

ready-to-use component which can be integrated seamlessly into the target

system. Figure 5.3 shows how the FI components are integrated with the

existing components of the SCP-CLUB framework, and the SUT.

The FI is based on the failure model described in §5.1.3. It supports and

simplifies the simulation of several failure scenarios, such as misbehaving or

crash of one or more SDN controllers. Using those scenarios, a network

provider could pick the proper template failure scenario to run against

their SDN ecosystem. The model’s failures are synthetically introduced

into SDN’s components, allowing them to experience a series of failures that

simulate real-world failures. In addition, since error conditions and corner

cases occur in a production environment, even if they are not observed

during testing activities, the proposed FI is conceived to also inject failures

into running SDNs, as a mechanism to best mimic real-world dependability

challenges.

Figure 5.4 depicts the high-level overview of the FI architecture. It is

a distributed application which adopts a Publish/Subscribe communication
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Figure 5.3: Architecture of the SDN failure injection framework.

model (or pub/sub, for short) and consists of two main components:

• Failure Injector Actuator. This program resides on the Target

Node, that is the machine running the target SDN controller instance,

and actually performs the failure injection;

• Failure Injector Manager. This user space program resides on a

separate machine, the FI Manager node, and remotely coordinate the

injection on all the target nodes.
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Figure 5.4: The Failure Injector architecture.

The FI architecture has been designed with the goal of simplifying and

speeding up the extension of the failure scenarios, while the provided user-

friendly API makes the proposed tool suite easy-to-use and accessible.

The next sub-sections describe in detail the implementation of the out-

lined failure injector’s components.

5.2.1 Failure Injector Implementation

We have designed a Java-based – Spring Boot R© 1.4 – implementation of the

FI framework extending the ONOS-based SCP-CLUB implementation pro-

posed in §4.4. Figure 5.5 depicts its implementation design, where the two

main components, namely the FI Manager and the FI Actuators, are de-

ployed on different hosting machines, and communicate through the Apache

ActiveMQ
TM

[93] (ActiveMQ 5.14 ) message broker, a Java implementation
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of the Publish-Subscriber design patter. The broker resides on the the same

machine hosting the FI Manager, and provides a reliable topic-based mes-

saging infrastructure that the FI components can use without being coupled

to each other. According to such pattern, the FI components act as senders

(publishers), and/or receivers (subscribers). The former publish messages

(i.e., events) on specific topics, without knowing the subscribers, i.e., with-

out specifying the receivers. Similarly, subscribers receive only messages for

the topics to which they subscribe, without knowing the sender.

The Pub/Sub pattern has been chosen as it provides the following key

advantages, compared to the traditional client-server communication mech-

anisms:

• loose coupling : publishers and subscribers can work independently,

i.e., each one can continue to operate normally regardless to the other;

• scalability : by decoupling publishers and subscribers, the pattern sup-

ports greater systems scalability as well as a more dynamic network

topology.

For the sake of clarity, Figure 5.5 shows a single instance of the FI Ac-

tuator, deployed on the target node hosting the ONOS controller. However,

according to the size of the ONOS deploy, that is the number of ONOS in-

stances, several FI Actuators may exist to be able to perform the injection

on several target nodes.
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Failure Injector Manager

The FI Manager runs as a system service on the Manager Node. With

respect to the adopted Pub-Sub messaging model, the manager acts as: (i) a

publisher, while sending failure injection requests to the actuator(s) as well

as (ii) a durable subscriber, while receiving the actuator(s) response. Here

a failure injection request refers to a message containing all the parameters

the FI-Actuator requires to actually apply the injection.

The FI Manager is quite simple in its infrastructure (see Figure 5.5). It

provides an end-user API that adheres to the principles of REpresentational

State Transfer (REST) paradigm, or RESTful web services, simplifying

the parametrization of the failure injection experiments. Each experiment

is converted in a corresponding failure scenario. To this aim the Failure

Injection Service interacts with the Failure Model Service to retrieve the

“failureload” scenario(s), i.e., the Java Bean object which specifies what

failure to inject, when and where. The latter is then translated in a message

and sent to the corresponding actuators through the JMS Service.

As can be seen in Figure 5.4 and 5.5, the FI Manager incorporates the

Experiment Manager (§4.4.4) of the SCP-CLUB framework to automate

the failure injection experiments . To this end, it extends the user-provided

specification (§4.3.2) with further parameters to support the failure injec-

tion. Figure 5.6 shows an example of such specification file. In addition
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experiments:
-
id:	CPUBURN_1
runs:	5
cell:	”five_controller_cell"
duration:	5
networkTopologyInfo:	
…
failure:
hosts:
- "X.Y.Z.1"
- "X.Y.Z.2"
what:	burnCpu
when:	now
where:	compute
mode:	transient
injectionSpanTime:	10
tasks:	10

experiments:
-
id:	NET_LATENCY_1
runs:	5
cell:	”three_controller_cell"
duration:	5
networkTopologyInfo:	
…
failure:
hosts:
- "X.Y.Z.1"
- "X.Y.Z.2"
what:	networkLatency
when:	now
where:	compute
mode:	permanent
destinationIps:
- "X.Y.Z.3

Figure 5.6: A user-provided specification for failure injection experiments.

to the data plane and workload parameters already described in §4.3.2, the

specification file defines the target nodes of the failure injection experiment,

namely the FI Actuators that must inject the failure (e.g., the node with IP

address X.Y.Z.1 and X.Y.Z.2 ). It also specifies the type of failure to inject

on such nodes, e.g. a “burnCpu”, namely a System Failure; and the failure

injection mode, i.e., a transient failure with an injection time span of 10s.

The user can specify a set of failure injection experiments to be performed

sequentially, hence making the EM a very powerful tool to speed up the

experimental analysis.
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Failure Injector Actuator

The FI-Actuator component is in charge of actually perform the failure

injection. It is a lightweight program running as a system service daemon on

a target node and, as the FI-Manager, acts as both subscriber and publisher

in receiving and sending failure injection request and response, respectively.

The Injection Agent Service (see Figure 5.5) is the main service of the

actuator. It coordinates the communication with the message broker and

triggers the FI-Worker to perform the injection task. According to the

injection type and the timing parameters provided along with the injection

request, the Agent Service spawns one or more FI-Workers - in the form of

Java threads - which can run once, to emulate transient and permanent

failures, or periodically to emulate intermittent failures.

Furthermore, according to the failure scenario to assess, failures must

be injected in a specific component, e.g. in the SDN controller or in the

Operating System (OS). To this end, the FI-Workers use two interfaces (see

Figure 5.4), acting as abstraction layers to make the injector cross-platform

compatible, namely:

i) SDN Abstraction Layer. This layer provides a common and re-

stricted set of APIs to simulate internal failures of the SDN controller’s

services or the controller itself. To this end, the FI Actuator provides

an implementation of the Java Management Extensions (JMX), which
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is the technology supporting the monitoring and the management of

Java application. Through this service, the FI-Workers can intercept

and terminate specific ONOS services as well as the ONOS instance

itself, by directly interacting with the corresponding JMX server ex-

posed by the Apache Karaf Container [94].

ii) Host Abstraction Layer. This layer offers the abstractions required

to enable the injection of failure at OS level. To this end, the FI

Actuator provides the Host Injection Service which runs lightweight

bash scripts, C programs, or kernel modules, according to the type of

failure to inject. The Host Injection Service works with several Unix-

like operating systems, and it can be simply extended to work with

other OSs and to accommodate further failure modes.

5.2.2 Failure Implementation

This section provides a description of the failure models introduced in Sec-

tion 5.1.3 supported by the proposed Failure Injection tools. More in detail,

it discusses the scenario reproduced by the occurrence of each supported

failure type, and how this is realized by the FI.

As shown in Figure 5.7, failures classes are intended to target different

components of a target node. The System failures are injected to emulate

failures related to the computational resources of the machine hosting an
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Figure 5.7: Localization of failure injections.

ONOS instance, while the Network failures are meant to specifically emulate

failures concerning network communications and interfaces. In addition,

failures are injected at Service level, i.e. at application container or process

level, to emulate a faulty controller instance.

We emphasize the fact that each of these failures can be injected, at the

same time, into a specific target node or a subset of nodes. Additionally, as

already pointed out in this dissertation, these failure models are intended to

assess: (i) the resilience and performance of the target SDN platform; and

(ii) if proper failover mechanisms, i.e. fallback logics or degraded operation

modes, are provided under faulty conditions.
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System Failures

This class of failures reproduces scenarios mimicking resource saturation

or crashes of the machines hosting the SDN controller instances. It encom-

passes several modes such as, system hang, starvation, outage and shutdown

(at single CPU level), as well as disk and memory saturation.

The hang of the hosting machine is emulated by installing a kernel

module in the OS which performs uninterruptible computation, i.e. it takes

control of all the available computational resources without ever releasing

them. By doing so, the controller process, as well as other system processes,

is no longer able to acquire any CPU cycle to perform its operations.

The system outage may lead to the stop of the machine hosting the

ONOS instance. It is implemented as a kernel module which performs in-

consistent operations leading to the so called “kernel panic” error.

The system starvation is a further type of failure which can cause the

crash of the hosting machine. It depletes the system resources: if injected

and left in the system for enough time, or injected in a permanent manner,

it slows down or crashes the system due to resource starvation. This failure

scenarios is reproduced by starting a user-space process which continuously

replicates itself, exhausting all the system resources.

The memory and disk saturation failures are implemented as high

priority user-space process which allocate as much memory, or disk, space
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as possible, without ever freeing the acquired resources. These classes of

failure are meant to assess how the lack of memory, or disk, space, can

affect the availability of a controller instance, and if such a condition can

lead to an “inconsistent” state of the control plane.

In order to evaluate the resilience of the SDN platform against faulty

CPUs or maintenance activities, the Injector also allows the shutdown of

the CPUs. It changes the target CPU state by turning it off. In doing so,

the Injector exploits the CPU hot-plugging [95] feature supported by the

Linux, which is the ability to turn a CPU core on and off dynamically. The

Injector changes the state of a CPU by modifying the value in /sys/de-

vices/system/cpu/cpuX/online (where X is the target CPU to turn on or

off), which in turn invokes the corresponding kernel function that updates

the CPU state.

Finally, a single target controller instance might suffer from increased

CPU utilization, for instance due to resource overcommitment problems in

a virtualization environment, or to other compute-intensive jobs running on

the same target machine. The corresponding failure types to mimic such

a scenario are CPU and I/O burns. They are emulated by spawning

high-priority user-space processes which compute CPU, or I/O, intensive

activities causing the performance degradation of other system processes.



Chapter 5. SDN Resilience Assessment: a Failure Injection Tool Suite 135

Network Failures

In complex distributed environments, such as those of SDNs, network prob-

lems can occur at any layers of the infrastructure. For instance, network

failures can be due to to physical faults of network devices, or to bad network

configurations or to wrong design. This turns out to produce “inconsisten-

cies” among the layers of the SDN stack, e.g., the view of the logical network

is misaligned with the physical network, or to compromise the control-to-

data plane communication, resulting in a “brainless” network. Therefore,

the failures belonging to this class aim to mimic network-related problems

typically addressed by distributed systems, such as a corrupted messages,

or a latent connection which can lead to split brain problems.

In order to reproduce these failure scenarios, the Injector leverages the

Linux Traffic Control tool, or tc, which is a powerful tool for network traffic

shaping, scheduling, classification and prioritization. It is part of the Linux

framework for controlling and monitoring various aspects of networking,

such as routing, bridging and firewalling. As shown in Figure 5.8, tc is the

last component of the Linux networking environment that packets has to

pass through before leaving a specific output interface. The tc tool is build

atop qdisc (for queue discipline), which is basically a scheduler for the pack-

ets passing through a network interface. The simplest implementation of a

qdisc is first in first out (FIFO), however several schedulers are provided.
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Figure 5.8: The Linux Traffic Control tool.

The Injector leverages the built-in Token Bucket Filter [96] (TBF ) queue

discipline to slow down, i.e. throttle, the outgoing network traffic flowing

from a target controller replica to one or more replicas, aiming to emulate

failures due to network congestion problems. Vice versa, it uses the Network

Emulation [97] (NetEm) utility, in order to emulate failures scenarios due

to packets latency, loss, corruption and so on. By mans of this kernel com-

ponent, the Injector defines specific queue disciplines to fails or corrupt

the requests between two or more controllers, as well as to inject latency

or to induce miss-ordering into such requests.

To mimic failures due to “firewalling” or faulty network interfaces, the

Injector adds specific filtering rules into Netfliter [98], the Linux kernel’s

framework for packet filtering and manipulation. Such rules are intended

to filter the incoming and/or outgoing packets directed to specified IP ad-

dresses and/or ports, and discard them, with a drop or reject action.

Finally, the black-hole failure injection is performed by leveraging the

ip [99] Linux utility to add entries into the TCP/IP routing table of the
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Linux kernel (aka “Forwarding Information Base”) aiming to mimic a pos-

sible split brain problem, by dropping all the network packets designated

to a specified IP address and/or ports.

SDN Controller Failures

As discussed in §4.4, the ONOS controller - similarly to other SDN con-

trollers (e.g., ODL) - is engineered as set of software modules, or bundles,

interacting with each other to provide several type of services at different

levels of the software stack, as specified by the OSGi framework. It is built

atop the Apache Karaf feature service, an OSGi container which simplifies

the management of the OSGi ONOS services.

In such a complex ecosystem, failures can occur, leading to impairment

of the interaction between the ONOS services, or worse, to the unavailability

of the ONOS instance itself. Thus, this class of failures aims of reproducing

scenarios affecting the ONOS services, as well as scenarios that emulate a

faulty controller instance.

The injector uses Java Management Extensions [94] (JMX ) features

provided by the Karaf container to emulate problems affecting the ONOS

services. Indeed, as specified in §5.2.1, the Injector provides an implemen-

tation of a JMX Client to interact with the corresponding server exposed by
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Karaf and dynamically manage the Karaf’s resources at runtime. Specifi-

cally, the Apache Karaf features provide a set of Managed Beans (MBeans),

i.e., an enhanced Java bean representing a manageable resource, which are

accessible through the MBean Server. Then, the Injector uses the JMX

Connector to connect to MBean server and to manage the registered re-

sources, such as the installed OSGi services, or the Karaf instance itself.

Figure 5.9 depicts the procedure adopted by the Injector to stop the

ONOS controller, or one or more of its modules. The steps are the following:

1. The Injector, acting as JMX Client, issues a Java Remote Method

Invocation (RMI) to the Karaf RMI Registry to obtain the stub for

the JMX Connector Server3;

2. The client uses the stub to connect to the Karaf MBean Server and

interacts with the MBeans;

3. The client leverages the services of the Karaf’s MBean to inject a ser-

vice failure, e.g. by shutting down, restarting the ONOS instance

or its services, or the Karaf container itself. According to the provided

injection parameters, the Injector calls the appropriate methods ex-

posed by the Karaf’s MBbean to actually inject the failure.

The kill of the ONOS instance is performed by sending to its process the

3The stub is a local Java class implementing the remote interface of the JMX
Connector.



Chapter 5. SDN Resilience Assessment: a Failure Injection Tool Suite 139

Apache	Karaf
(Application	Container)

ONOS
Controller Instance

ONOS
ServiceONOS

ServiceONOS
Service

Karaf Mbean
Server

Karaf MBeans

JMX Connector

Karaf RMI
Registry

JMX 
Connector 

Stub

FI-Manager

JMX Client

JMX 
Connector 

Stub

2

1

3

Figure 5.9: Example of JMX-based procedure to inject a service failure.

SIGKILL signal. Unlike the clean stop of the instance, the SIGKILL signal

is not captured by the process and stop it immediately, thus not allowing

the ONOS instance to cleanly close the socket connections.

The Failure Injector framework provides a further injection to corrupt

the state of an ONOS instance. To this end, the Injector corrupts partially,

or totally, the Java heap or stack space of the controller process memory. In

the first case, the corruption affects the controller’s runtime environment,

while in the second case it affects the execution environment of the controller

threads. Moreover, both conditions can lead to corruption, or worse, to Java

Virtual Machine (JVM) crash.

Therefore, the corrupt failure injection is meant to observe how an in-

stance with a corrupted runtime environment can affect the data integrity
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of the overall SDN platform, and if the failure-free instances are able to deal

with a misbehaving instance. Indeed, even if the instance lies in a corrupted

state, for a short amount of time it is still able to interact with its peers

and the data plane.

In order to perform a memory corruption, the Injector runs a user-space

process which observes and controls the ONOS process, by using of the

Linux Process Trace system call, or ptrace [100,101,102]. ptrace provides a

mechanism to examine and change the core image and registers of a mon-

itored process, and is used primarily to implement breakpoint debugging

and system call tracing. By means of ptrace the Injector, i.e., the “tracer”,

first attaches to the ONOS process, i.e., the “tracee”, then it identifies and

accesses the memory locations of such process and corrupts the content of

the heap, or stack, memory.

5.3 Experimental Evaluation

High availability and reliability are key goals for SDN technologies, that need

to meet the six-nines reliability requirements of the carrier-grade networks

before being widely adopted in today’s network. Therefore, this experimen-

tal campaign aimed to verify how the SDN technologies, such as the ONOS

platform, perform under disruptive conditions affecting the control plane.

Specifically, the goal was to (a) characterize the resiliency and reliability of
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the ONOS platform by reproducing faulty scenarios, and (b) investigate the

effectiveness of the detection and mitigation mechanisms of ONOS.

5.3.1 Experimental Campaign

To show the application of the proposed methodology an experimental cam-

paign has been conducting running ONOS (§4.4.1) as SUT. The latter has

been deployed in a subset of the the proof-of-concept telco cloud infrastruc-

ture described in §4.5.2.

The experimental testbed consists of: (i) 3x 2-Socket server equipped

with 2 Intel R© Xeon R© E5-2680 v3 12-core 2.5GHz CPU, 256 GB of DDR4

hosting both the VMs running the SCP-CLUB components as well as the

ONOS instances; (ii) a blade server having the same hardware configuration

of the previous hosts mounting a shared iSCSI storage of 14x 6TB 7.2k

3.5” SAS disk, and hosting the SCP-CLUB data collector machine; (iii) a

1/10Gb Nokia Ethernet management switch interconnecting all the servers.

The VMware ESXi hypervisor have been used for the virtualization layer.

In order to test how ONOS perform under faulty conditions, two main

high-availability set-up have been considered, namely: a set-up with i) 3,

and ii) 5 ONOS controllers belonging to the same cluster and deployed

across the servers. Each VM run ONOS 1.10 on Ubuntu 16.04.2 LTS, and

was equipped with 8 vCPU and 8GB of RAM (i.e., a large VM), while JVM
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running the ONOS software was configured to exploit the maximum avail-

able RAM. Mininet 2.2 has been adopted to emulate the data plane network,

consisting in a linear topology, that is a topology of 10 switches connected

linearly, and 5 hosts attached to the edge switches. The management of

the emulated switches has been distributed between the ONOS instances,

so that a East-West communication is triggered whenever a network paths

is to be established.

The ONOS cluster is exercised with a workload encompassing Intent

installation and withdrawing requests (i.e., host-to-host intents), which are

balanced across the controller instances. Specifically, the Load Generator

(§4.4.6) of the SCP-CLUB framework has been configured in steady-state

working mode to produce 1,000, and 3,000 requests/s.

Regardless of the number of controllers, the failures are injected in a

single controller to make the results more comparable. As discussed in

§5.1.3, failures are emulated at both infrastructure, i.e., system and network

level, and SDN controller level. Transient failures are injected after 90s from

the end of the warmup phase and, if possible (e.g., system hang cannot be

removed once injected), removed after 60s.

Table 5.2 summarizes the values selected for the controllable parameters

of the FI, which are common to all the experimental settings proposed in

this campaign. Each experiment lasts for 300s, and it is repeated for a total
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Table 5.2: Experimental parameters adopted for failure injections.

Failure type Configurable Parame-
ters

Values

System Hang n/a n/a
System Starvation n/a n/a
System Outage n/a n/a
CPU Shutdown CPUs to shutdown 6
Disk Saturation n/a n/a
Memory Saturation n/a n/a
Burn CPU CPU-bound tasks 100 tasks

System
Failures

Burn I/O I/O-bound tasks 100 tasks
Black-hole Subnet to black hole. control-plane subnet
Packet Reject Reject mode outgoing packets
Packet Drop Drop mode outgoing packets
Packet Latency Latency 200ms
Packet Loss Loss percentage 10%
Packet Reordera Ordered percentage 30%

Latency 200ms
Packet Duplication Duplication percentage 10%
Packet Corruption Corruption percentage 10%

Network
Failures

Throttling Bandwidth limitation 1 Mbit
Kill Process Process Name or PID Controller’s PID
Process Corruption Process Name or PID Controller’s PID
Controller Stop n/a n/a
Controller Restart n/a n/a

SDN
Controller
Failures

Dependency Stop Dependency Name ONOS core
a In order to emulate packets out of order, a percentage of packets are sent in order in a unit
time, i.e. to without applying any latency to them, while the remaining packets are sent with a
delay.

of 10 runs.

In performing this experimental campaign, the Experiment Manager fol-

lows the three-phases procedure described in §4.4.4. For reach experiment

of the campaign, the VMs hosting the controller instances are first deployed

on the blade servers, then the startup phase is activated to actually form
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the ONOS cluster and start the emulated topology. Then, the experimen-

tal phase is executed, and the load generator starts by first activating a

warmup phase to warmup the controller’s JVM. The warmup is not ac-

counted in the final results, and the evaluation metrics are computed from

the injection time up to the end of the experiment. Finally, the experiment

ends with the cleanup phase by reverting the VMs with a clear snapshot.

5.4 Results

In order to identify if the any of the failure injection test has actually affected

the overall system performance, we first computed the throughput (IST)

and latency (ISL) of the IBN framework of ONOS (see §4.4.8) in failure-

free conditions, namely without injecting any failures. Such metrics are

then compared with the measurements collected during the failure injection

experiments to quantify the possible impact of performance loss of ONOS.

The failure-free performance metrics have been computed as the aver-

age over 10 runs. Table 5.3 and Table 5.4 show the throughput and latency

results of the failure-free tests for both deploy size, i.e., 3 and 5 controllers

scenarios, and for a load level of 1,000 and 3,000 requests/s.

Henceforth, the terms “target replica” and “target controller” are used
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interchangeably to refer to the replica of the ONOS cluster in which the

specific failure has been injected.

5.4.1 SDN Service-level Results

5.4.2 System Failures

This section shows the performance results obtained by injecting system fail-

ure (§5.1.3) on a single instance of the ONOS deploy. Figure 5.10, 5.12, 5.11

and 5.13 show, respectively, the throughput, the 50th and 95th percentile

latency of the ONOS IBN framework, for deploys with 3 and 5 controller

instances, computed for failure injection experiments with a load levels of

1,000 and 3,000 requests/s.

Both types of experiments show that most of the emulated failures im-

pact the overall system performance. The performance degradation seems

to be more evident as the load increases, e.g, from 1,000 to 3,000 requests/s.

Figure 5.10 shows that the system hang, starvation and outage, as well

as memory and disk saturation failures impact more on the 3 controllers

Table 5.3: Failure free Intent requests’ Throughput for 3 and 5 controller
scenario under 1,000, and 3,000 Load Levels.

Throughput [req/s]
LoadLevel 1000

Throughput [req/s]
LoadLevel 3000

3 Controller 997.52 2978.32

5 Controller 997.39 2987.68
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Table 5.4: Failure free Intent requests’ Latency for 3 and 5 controller sce-
nario under 1,000, and 3,000 Load Levels.

Latency [ms]
LoadLevel 1000

Latency [ms]
LoadLevel 3000

50th %ile 90th %ile 50th %ile 90th %ile

3 Controller 46 84 128 1007

5 Controller 45 81 89 173

scenario, causing a throughput loss between 30% and 60% compared to

the failure-free scenario. A similar observation applies to most of the failure

injection experiments reported in this chapter. This highlights the criticality

of a deploy consisting of 3 controllers, where a single instance affected by

failures can lead to the unavailability of the whole ONOS cluster.

As can be seen in Figure 5.10 and Figure 5.12, the system hang, starva-

tion and outage failures impact severely on the ONOS performance. System

outage cause the crash of the target instance, while the system hang and

starvation failures drastically reduce its responsiveness. The crash of the

target replica is promptly detected by the other replicas. However, as can

be seen in Figure 5.10, with a load as high as 1,000 request/s, the ONOS

cluster seems unable to properly recover from the injected outage failure.

This behaviour is explained by the fact that the ONOS replicas not affected

by the failure were still considering the target instance as master for specific

devices. Therefore, each flow rule operation sent to the target replica failed

without triggering any mitigation mechanisms, e.g., a the election of a new
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master for the devices previously managed by the target instance; that lead

to a high unavailability and performance loss. Similar observations also

apply for system hang and starvation failure.

As can be seen in Figure 5.10 and Figure 5.12, memory and disk satura-

tion failures shows different effects between the two deployment scenarios,

and they both indirectly affect the consistency of the data shared between

the replicas. Indeed, ONOS maintains in memory the information related

to the network state according to an eventually consistent approach, while

the other pieces of information, namely the intents and system configura-

tions, are stored in a persistent manner (on the disc). In particular, ONOS

relies on the the Raft [71] consensus algorithm implemented by the adopted

Copycat [69] framework for consistency and data replication. To accomplish

this, each server in the cluster maintains a separate copy of the system state

machine along with a log of all operations that have been performed on that

state machine and their results. Logs are durably stored on disk and are

used to restore the state of a machine in the event of a failure. Hence, the

disk saturation failure lead the target controller to be no longer able to up-

date its local state machine, hence affecting the consistency of the subset of

data managed by the target replica. Therefore, the throughput degradation

was mainly caused by the fact that the target replica was accepting intent

requests without being able neither to process them locally, nor to share
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Figure 5.10: Service throughput with system failures injection; 3 and 5
controllers; workload 1,000 requests/s.
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Figure 5.11: Service latency with system failures injection; 3 and 5 con-
trollers; workload 1,000 requests/s.
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them with the other replicas.

The memory saturation failure has caused a higher performance degra-

dation than the disk saturation one, for both deployment scenarios, as well

as, for both tested load levels. A closer look to the system log files, has

shown that after the injection of memory saturation failures, all the ONOS

replicas were experiencing unstable connections towards the the data plane

devices, causing then the disconnection of hosts. This turns out to the

failure of the intent compilation, since no valid path can be found anymore.

Other typea of injected failures, such as CPU and I/O burn, and CPU

shutdown, show no direct impact on the performance for both deployments

with 3 and 5 controllers, and a load of 1,000 requests/s (see Figure 5.10).

A different story is dictated by Figure 5.12 and Figure 5.13, showing that

most of the injected failures negatively impact both latency and throughput

performance of both types of deploy, when a load of 3,000 requests/s is

submitted to the system. Figure 5.12a and Figure 5.13a show that CPU

and I/O burn failures drastically affect the performance and latency of the 3

controllers deployment. Both failures show similar effects to those obsoverd

by injecting fill memory failures. The I/O burn failure has slightly affected

also the deploy consisting of 5 controllers. Indeed, the injection of such

failure delays disk operations, causing the processing of intent requests to

slow down.



Chapter 5. SDN Resilience Assessment: a Failure Injection Tool Suite 151

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Sys
te

m
 H

an
g

Sys
te

m
 S

ta
rv

at
io

n

Sys
te

m
 O

uta
ge

Cpu S
hutd

own

Disk
 S

at
ura

tio
n

Mem
ory

 S
at

ura
tio

n

Burn
 C

PU

Burn
 I/O

Th
ro

ug
hp

ut
 [r

eq
/s

]

IBN Throughput [req/s] IBN Throughput Failure Free [req/s]

(a) 3 ONOS controllers

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Sys
te

m
 H

an
g

Sys
te

m
 S

ta
rv

at
io

n

Sys
te

m
 O

uta
ge

Cpu S
hutd

own

Disk
 S

at
ura

tio
n

Mem
ory

 S
at

ura
tio

n

Burn
 C

PU

Burn
 I/O

Th
ro

ug
hp

ut
 [r

eq
/s

]

IBN Throughput [req/s] IBN Throughput Failure Free [req/s]

(b) 5 ONOS controllers

Figure 5.12: Service throughput with system failures injection; 3 and 5
controllers; workload 3,000 requests/s.
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Figure 5.13: Service latency with system failures injection; 3 and 5 con-
trollers; workload 3,000 requests/s.
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The CPU shutdown failure appear to be the only one not affecting the

performance at all. This can be explained by the fact that the operations

performed by the ONOS process are mostly I/O bound, requiring continuous

access to memory and disk while gather and update the data related to the

system state machine, as well as to the data plane status.

In this set of experiments, it has been observed that no mechanisms are

provided by ONOS to detect and mitigate possible resource depletion due to

other user – and/or kernel – level tasks running on the same machine host-

ing the ONOS process. Indeed, most of the experiments involving failures

mimicking resource saturation or corruption lead to an inconsistent state of

the control plane. Although in such a state the target ONOS instance is still

able to interact with its peers participating in the management of the clus-

ter events, under these faulty conditions it is not able to accomplish most

of its tasks (e.g. interacting with a managed switch, or satisfy an intent

request). Consequently, the target instance continually triggers abnormal

events (e.g., timeout exceptions in the cluster communication), as it is slow

yet not believed crashed, forcing the other replicas to reply to such issues,

taking away useful resources to process the incoming request load.
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5.4.3 Network Failures

Figure 5.14, 5.16, 5.15 and 5.17 show, respectively, the throughput, the 50th

and 95th percentile latency of the ONOS IBN framework, for deploys with 3

and 5 controller instances, computed during experiments with the injection

of network failures and load levels of 1,000 and 3,000 requests/s.

The results show that network failures impact very differently in the two

deploy scenarios. Figure 5.14a and Figure 5.15a shows again the vulnera-

bility of a deploy consisting of 3 ONOS instances, even under a load as high

as 1,000 requests/s.

Both Figure 5.14 and Figure 5.16 show that the ONOS cluster tolerates

most of the injected network failures. Indeed, packet latency, loss, reorder,

duplication and corruption do not impact on the overall performance of

both deployment scenarios, since most of these failures are detected and

mitigated by the TCP protocol stack (e.g., packet corruption and reorder-

ing failures) and the heartbeats mechanism adopted by the ONOS Copycat

framework (e.g. latency failure). The throtthling, unavailability, balck-hole,

packet reject and drop network failures caused a non-negligible amount of

performance loss, for both throughput and latency. With a load as high as

1,000 requests/s, the 5 controllers deploy (see Figure 5.14b and Figure 5.15b)

seems to be more resilient to these type of network failures than the case

with 3 controllers (see Figure 5.14a and Figure 5.17). Similar observations
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Figure 5.14: Service throughput with network failures injection; 3 and 5
controllers; workload 1,000 requests/s.
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Figure 5.15: Service latency with network failures injection; 3 and 5 con-
trollers; workload 1,000 requests/s.
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do not apply to the scenario with a higher request rate, i.e., with 3,000

requests/s. Indeed, as can be seen in Figure 5.16 and Figure 5.16b, both

deploys show significant loss of performance, both in terms of throughput

and latency.

Figure 5.18 shows an example of the system throughput when a packet

reject failure is injected in the target ONOS instance. As can be noticed,

after the injection time (left line of the red area in 5.18) the throughput

drastically drops towards zero for the 3 controllers scenario, while undergo-

ing a significant reduction for the scenario with 5 controllers. In the latter

case the system shows to be unable to quickly mitigate such failure, taking

long time to recover, even after the failure is removed (right line of the red

area in 5.18).

Analyzing system’s log, it has been observed that all the network failures

affecting the system performance have led to three major faulty situations:

1. The ONOS instances which keep loosing the connectivity with the

data plane due to the injection of network failures, try repeatedly,

but unsuccessfully, to re-establish the interaction with the data plane,

consuming system resources to a remarkable extent;

2. When an ONOS instance is not promptly responsive due to network

failures, the other replicas initiate a mastership election for the data
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Figure 5.16: Service throughput with network failures injection; 3 and 5
controllers; workload 3,000 requests/s.
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Figure 5.17: Service latency with network failures injection; 3 and 5 con-
trollers; workload 3,000 requests/s.



Chapter 5. SDN Resilience Assessment: a Failure Injection Tool Suite 160

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300

Time [s]

Th
ro

ug
hp

ut
 [r

eq
/s

]

(a) 3 ONOS controllers

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300

Time [s]

Th
ro

ug
hp

ut
 [r

eq
/s

]

(b) 5 ONOS controllers

Figure 5.18: Performance degradation due to network packet reject injec-
tion; 3 and 5 controllers; workload 3,000 requests/s.

plane devices, and for the new assignee of the intents previously man-

aged by the apparently faulty instance. However, they experience

issues in reprogramming the device mastership, which in turn triggers

further leadership election sessions. This is due to the fact that the

ONOS instance is still considered as master by its switches, as it is

slow yet not believed crashed. This is especially the case for packet

drop, reject, and throttling failures, which lead the cluster in a state

in which the controller-device mastership status returns inconsistent

results across all instances;

3. As a consequence of the point 2, the ONOS replicas keep recompiling

and re-executing the failed intents. However, it has been observed

that the recompilation or the re-execution process often fail, causing

an excessive resource consumption: this is possibly due to the fact
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that ONOS keeps allocation new threads for the compilation and in-

stallation of the intents.

5.4.4 SDN Controller Failures

This section describes the performance results obtained by emulating fail-

ures directly affecting the ONOS instance, such as process and dependency

failures. Figure 5.19 and Figure 5.21 show that the controller stop, restart,

and dependency shutdown failures, as well as the kill of the Java process of

the target instance, cause a non negligible performance loss, both in terms

of throughput and latency. All these failures lead to the abnormal termi-

nation of a target instance, triggering the internal failover mechanism. In

particular, the other ONOS instances started a leader election session to

elect a new master for all the devices managed by the target instance. This

means that for a brief period (seconds) the cluster will be unavailable.

Although the failover seems to work properly in detecting and miti-

gating the injected failure for the scenario with a low request rate (e.g.,

1,000 requests/s), in which it only causes a small degradation of the system

throughput, it is not the case of the scenario with a high request rate (e.g.,

3,000 requests/s). Indeed, Figure 5.21 and Figure 5.22 show that the system

suffers a high performance degradation, in terms of throughput and latency.

This behaviour was due to the service managing the flow rule operations,
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Figure 5.19: Throughput with controller failure injection; 3 and 5 con-
trollers; workload 1,000 requests/s.
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Figure 5.20: Service latency with controller failures injection; 3 and 5 con-
trollers; workload 1,000 requests/s.
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which repeatedly experienced failure while trying to re-program the data

plane devices to restore the intents previously installed by the target node.

Furthermore, the kill process failure show that sometimes the provided

failover mechanisms prove to be inefficient in mitigating the termination

of a single replica. Indeed, such failure has introduced a faulty situation,

already observed with the injection of other types of failures, in which the

ONOS instances keep loosing the connection with the data plane devices,

thus causing the connected hosts to be removed from the network view.

This in turn causes the failure of most of the submitted intents, since it is

no longer possible to identify a valid path to create a connection.
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Figure 5.21: Throughput with controller failure injection; 3 and 5 con-
trollers; workload 3,000 requests/s.
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Figure 5.22: Service latency with controller failures injection; 3 and 5 con-
trollers; workload 3,000 requests/s.



That’s all folks.

Popular TV cartoons closing

Chapter 6
Conclusions

We summarize the research problem addressed and the main contributions provided
by this dissertation.

In the era of the highly and always connected information society, Softw-

are-Defined Networking is a very hot research area, and SDN are foreseen to

have a huge potential market in the forthcoming years. Among the several

open issues, this dissertation has identified two still open research problems:

i) assessment of SDN performance and ii) in production assessment of SDN

failure resilience, with reference to real industrial telco cloud data centers.

Their relevance is due to the fact that network operating systems (SDN

controllers) are very complex distributed systems - subject to performance

and dependability requirements as severe as those of current carrier-grade

networks - for which current experimental evaluations cannot be trusted

by telco operators, and traditional software testing techniques appear in-

sufficient for dependability assessment, given the difficulty to reproduce the

167
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many potential failures which can actually occur in operation and may affect

at all levels their many software components.

The thesis has contributed to these research issues with a twofold pro-

posal. The presented SCP-CLUB framework automates experimental cam-

paigns for SDN performance evaluation in real telco cloud data centers.

As for the assessment of SDN failure resilience, the proposal extends SCP-

CLUB with the use of software failure injection. A methodology has been

devised for in-fabric test, as well as for in-production assessment, with the

aim of continuous testing. The methodology in complemented by an in-

frastructure specifically designed to be integrated with limited intrusiveness

into distributed SDN controllers, in order to support the execution of failure-

injection experiments.

The resilience assessment methodology and the infrastructure are con-

ceived to be usable in a controlled test environment, as well as in a normal

operational environment for future SDN platforms (including virtualized

and container-based SDN controllers). For in-fabric test, a workload con-

sisting of intents may be generated and then submitted to the platform.

Failures are injected during the execution, which is monitored so as to gather

data of interest for analysis. Failures belong to a failure model representa-

tive of typical classes of events occurring in operation at network, system

and service level. For in-production assessment, failures are injected when
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the controller under assessment is subject to normal operating conditions

(under the real load). A set of metrics to evaluate controllers’ resilience to

failures have been proposed, too.

The proposed SCP-CLUB framework and the failure injection infras-

tructure have been implemented and experimented with reference to the

open-source ONOS
TM

network operating system. The workload is auto-

matically generated based on the Intent-Based Networking (IBN) model.

The implementation is based on the Linux, Java, Apache ActiveMQ and

Apache Karaf technologies.

The experimental evaluation has shown that the framework can be ef-

fectively applied to assess the performance of SDN deployments in telco

clouds, and the controllers’ resilience mechanisms (for failure detection and

mitigation), as well as to quantify system availability and reliability. The

experiments have been performed at the prestigious Murray Hill NOKIA

Bell Labs in New Providence, New Jersey, USA, in the framework of a

continuous and in-production testing strategy for the future generation of

network solutions.
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