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1.1 Baby leaf 

At present there is an important culinary trend for the consume of salads consisting 

of baby leaf vegetables. In fact there is a high profit for the growers, because baby leaf 

need a shorter cultivation period, and there is also an increasing demand among 

consumers in higher nutritional baby leaf product (Kim et al., 2016; Neocleous et al., 

2013; Manzocco et al., 2011). Consumers also require a fresh-cut product with a good 

color, brightness, and a long shelf-life (Martinez-Sanchez et al., 2012). Quality of the 

product is highlight by: its resistance to oxidation processes after cutting; the absence of 

soil or other solid material, residues of pesticides; nitrate content within the limits of 

tolerance; limited microbial load; high dry-matter content; long shelf life (Alvino and 

Barbieri, 2016). Baby leaf vegetables are young edible plants with a few true leaves. 

The floating system is considered ideal for growing small-sized vegetables (Neocleous 

et al., 2013). The maturity of the plants is defined by their height, which, at harvest 

depending on the species and the customer demands. At harvest, growers apply a cut 

that excludes most of the petiole and includes the major part of lamina. The most 

popular leafy vegetables are lettuce, spinach, chicory, rocket and Swiss chard (Fallovo 

et al., 2009¸ Martinez-Sanchez et al., 2012), and other species that are of lesser 

importance, but which are often used in order to vary the appearance and taste, 

especially in mixtures (e.g., watercress, dandelion, mizuna, purslane, tatsoi, mustard, 

Russian kale, pacchoi, etc.) (Alvino e Barbieri, 2016). Nitrate content of baby leaves 

can be far from the maximum level established by European legislation, and could 

reflect the influence of microclimatic conditions, cultural practices and water uptake 

(Neocleous et al., 2013). Similar to mature leaves, baby leaf provides several dietary 

minerals, bioactive compounds such as vitamin C, E and carotenoids (Kim et al., 2016; 

Neocleous et al., 2013). Samuoliene et al. (2013) reported for β-carotene and total 

phenolic contents, in baby leaf lettuces, values comparable or lower than mature lettuce. 

Santos et al. (2014) and Neocleous et al. (2014), reported for baby leaf lettuce an K, Mg 

and Fe content similar or lower than values of mature lettuce reported by USDA (2015).  

In the case of spinach, Pandjaitan et al. (2005) found that the intermediate maturity 

leaves have a higher content of bioactive compounds, while Zhao et al. (2007) showed 

that mature leaves exhibited a higher antioxidant content when compared with baby-

leaves.  
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Twelve days is the limit of marketability for green baby cultivars, examined by 

Fadda et al. (2015), because at this time correspond a general decrease of phenolic 

concentration. As mature leaves, quality of baby leaf depend on cultivars, pre-harvest 

and post-harvest factors. For example, Fadda et al. (2015) showed as red baby leaf 

lettuce cultivars have a higher storability and nutritional quality than green cultivars. In 

particular, the antioxidant activity was 11-fold higher in red than in green baby leaf 

lettuce, due to high concentration of flavonoid glycosides (quercetin, luteolin and 

cyanidin conjugates). The authors identify some baby leaf cultivars as the most 

appropriate as read-to eat food thanks to their genotype traits, such as a resistant cell 

membrane limiting ion leakage, low respiration rate and a reduced ammonium 

accumulation, that depend on the nitrogen uptake and utilization of each cultivar, 

namely all factors that show a good visual appearance during storage. Besides, the 

authors show as the wastes of some baby leaf cultivars (at 20 days of storage) have a 

high phenolic content, that could be used as a source of natural additives for plants, also 

reducing the environmental impact. This conclusion are in common with the results of 

Martinez-Sanchez et al. (2012). Also fresh-cut carrots, examined by Alarcón-Flores et 

al. (2014), have the highest content of total phytochemicals after the expiration date, 

probably due to the stress conditions during cold storage.  

 

1.2 Genotype 

Overtime consumer interest in the quality and safety of food, particularly of 

vegetables, is steadily increasing, so the research is aimed to meet this demand. Many 

pre- and post-harvest factors (as agricultural practices, processing, and storage 

conditions, irrigation and soil composition, temperature, light intensity) influence the 

quality and shelf life of vegetables, but their role depends on specific cultivar 

characteristics (Selma et al., 2012; Mai et al., 2013; Baslam et al., 2013; Perez-Lopez et 

al., 2015). In the scientific literature, the effects of genetic factors are well documented 

for several crops. Kim et al. (2016), highlights as lettuce exists as many different types 

and cultivars, and these differences are reflected on different health-beneficial bioactive 

compounds content. Phenols are important for nutrient uptake, protein synthesis, 

enzyme activity, photosynthesis, structural components, and allelopathy. But more 

interest has been addressed to phenolic compounds for their role in determining food 
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quality, in fact they have been associated with color, sensory qualities and nutritional 

properties of foods. Di-caffeoyltartaric acid; chlorogenic acid; chicoric acid, are the 

main compounds phenolics found in green lettuces (Nicolle et al., 2004). Lorach et al. 

(2008) show among three green varieties of lettuce (Iceberg, Romaine and continental) 

significant differences on total phenolic content and antioxidant activities. Similar 

differences were also detected between eight lettuce varieties analyzed by Nicolle et al. 

(2004). Liu et al. (2007) assess and compare phenolic compounds and antioxidant 

capacity of 25 cultivars of lettuce and they show that cultivar may alter the phenols and 

antioxidant activities. Phenolic content varied greatly among five lettuce examined by 

Bunning et al., (2010), so they conclude that quantification of phenolic content in 

lettuce can be used to identify specific cultivars that exhibit superior attributes and may 

improve market competitiveness of various types and particular cultivars of lettuce. 

Bystrická et al. (2015), found significant differences in the content of total polyphenols 

and in the value of antioxidant activity among four spinach cultivars analysed by them.  

Nitrate is more important for plant growth, and plant yield is closely related to the N 

supply, compared to other nutrients limiting growth (Pinto et al., 2014; Hernandez et al., 

2016). Nitrate accumulation can occur in leaf crops such as lettuce and spinach and it 

can be harmful to human health. In fact its reaction products and metabolites (e.g., 

NO2
−, NO and nitrosamines) having adverse effect on human health. Significant 

genotypic variations in nitrate accumulation by lettuce, independently if it was grown in 

soil or solution culture, was demonstrated from Burns et al.(2011, 2012) and from 

Lopez et al. (2014). 

Umar and Iqbar, (2007), indicate that different locations of nitrate reductase activity, 

differences in photosynthetic capacity, or differences in capacity to translocate the 

nitrate from roots to leaves, are some genetic factors that can influence nitrate 

accumulation in plants and they highlight as numerous genes are involved in nitrate 

accumulation, such as genes encoding nitrate reductase, glutamine synthetase, and 

ferredoxin-dependent glutamate synthase and genes encoding nitrate transporters. 

As indicated by Santamaria, (2006), NO3
- varies belong different families of 

vegetables but nitrate content can vary also within species, cultivars and even genotypes 

with different ploidy, and it  also differs in the various parts of a plant. 

Correira et al. (2010), report nitrate content of 34 different vegetables, and they 

found for different varieties of spinach a minimum of nitrate of 797 mg/kg fresh weight 

and a maximum of 1427 mg/kg fresh weight. Chung et al. (2005), report nitrate content 
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in ten cultivars of spinach and lettuce grown in greenhouse conditions, and they were 

able to demonstrate that a large and significant genotypical variations in the nitrate 

content. This variation could be attributed to the different optimum nitrogen level 

required by cultivars and to differences in their photosynthetic capacity. Differences of 

shelf life, structure and quality was also demonstrated in different genotypes of basil 

(Bekhradi et al., 2015). 

 

1.3 Soilless systems 

Soilless cultivation systems for horticultural crops represents a recent innovation to 

traditional agriculture because it permits a higher water-use efficiency, an aspect 

particularly important where water is becoming an economically scarce resource 

(Gottardi et al., 2012). Soilless cultivation provides plant grow in absence of soil and a 

supply of water and minerals by nutrient solution. Soilless cultivation systems can be 

divided depending on support to the plants, in systems with liquid medium, as the case 

of hydroponic system, or systems with the solid medium. The substrate, organic or 

inorganic, alone or in a mixture, has different functions, such as to support the plant and 

provide air, water and nutrients to the roots; it must not contain pathogens; and should 

not be phytotoxic. Pratically, characteristics of the substrates must correlate with water 

and fertilizer supply, climate conditions, and plant needs (Gruda, 2009). Substrates used 

in hydroponics are rockwool, peat, perlite, pumice, coconut fibre, etc. The substrate 

material can be selected according to the species to be cultivated, cultivation phase 

(germination, rooting of cuttings, plant production, plant breeding) and the system of 

cultivation. A good culture medium is characterized by a good water retention capacity, 

ensure sufficient aeration to the roots. (Di Lorenzo et al., 2013). 

The main objective of soilless culture is to provide optimal conditions that improve 

the growth and quality of plants reducing problems that normally are related soil 

cultivation, such as salinization caused by the excessive input of fertilisers and lack of 

rainfall. With soilless culture is possible to reduce pollution caused by pesticides, and 

fertilisers. There is a better control of plant growth due to the absence of the different 

limitations of the soil, such as reactions chemicals, nutrients availability, density and 

structure of the soil, water retention, and presence of pathogens. (Di Lorenzo et al., 

2013). 
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An important characteristic of nutrient solution in the soilless system is the nutrients 

ionic concentration, that is usually much greater than that of the circulating solution of 

the soil (Gottardi et al., 2012). This is is attributed to the fact that the solutions of the 

soil are buffered by reactions of ion exchange, absorption-deabsorption, and 

precipitation, as well as by the cycle of nutrients and mineralization of organic matter. 

This buffering capacity is absent in systems of soilless culture, so it needs to use high 

concentrations of nutrients. Higher nutrient concentrations ensures a good nutrient 

reserve to the plants and less energy to actively remove nutrients from the environment. 

Another characteristic of nutrient solutions in the soilless systems are their easy 

preparation because they require four to five salts to satisfy the need the macroelements 

(Di Lorenzo et al., 2013).  

In Italy, the first studies on soilless cultivation were started in the 1960s and 1970s, 

and in 1990 only 40-50 ha the surface area were dedicate to soilless cultivation, to reach 

400 ha ten years later (Di Lorenzo et al., 2013). In Italy today, soilless cultivation is 

dedicate in particular to ornamental crops and cut flowers, to whom normally it is 

necessary to operate in difficult pedoclimatic conditions or in the presence of species 

that are difficult to cultivate, or during the multiplication and reproduction phase (Di 

Lorenzo et al., 2013).  

Among different soilless culture systems, the floating growing system is a system 

that consists of trays floating on a water bed or hydroponic nutrient solution (Nicola et 

al., 2005). The floating system is an important soilless system used for leafy vegetable 

production that permits the precise management of the salt concentration in the nutrient 

solution and represent an effective system to improve quality aspects of products. For 

example, increasing salinity in the nutrient solution decreased the plant growth 

parameters (leaf dry biomass and number) but increased the antioxidant activity, total 

polyphenol, chlorogenic acid, cynarin and luteolin levels of leaves of artichoke and 

cultivated cardoon grown in a floating system (Colla et al., 2013). An increasing interest 

in the floating raft system is due to the advantage of cultivation of leafy vegetables for 

salads with very short cycles. In fact, it permits higher sanitary quality than 

conventional soil-based culture, and usually reduces nutrients and water use. It is the 

easiest and cheapest system among hydroponic methods to produce baby leaf vegetables 

because of it requires low installation and manpower costs, weeds are avoided and 

harvesting is straightforward. In addition, plants are grown at high densities and the 
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resulting products are almost clean and practically ready to be packed (Rodriguez-

Hidalgo et al., 2010). 

Fertilizer concentration and water supply for horticultural crops in a soilless system 

also depend on the environmental conditions, such as different temperatures and solar 

radiation conditions. Yield and quality of leafy lettuce grown in a floating system were 

significantly affected by the growing season (Fallovo et al., 2009).  

When the quality of products grown in soilless cultivation is compared to that of soil 

culture, it possible to have contradictory results. However it is not a general phenomena 

that soilless culture result in high-quality products. In fact, Gruda (2009) reports as 

tomato fruits of soil culture have a better size, dry matter, fiber, carotenoids content and 

acidity, than those cultivated in soilless system. Furthermore, Rouphael et al. (2004) 

show that no differences were observed in dry matter or total protein content, while 

carbohydrate concentration (glucose, fructose, sucrose, and starch) was higher in 

soilless cultivation zucchini (Cucurbitapepo L.) cv. ‘Afrodite’ with respect to soil 

culture. 

 

1.4 Nutrient solution management 

Several properties of the nutrient solution can effectively modify products quality, 

for instance, electrical conductivity (EC) or nutrient concentration, chemical forms of 

the elements, nutrient management, temperature of the nutrient solution, as well as 

nutrient solution pH (Gruda, 2009). Generally, high levels of nutrients induces osmotic 

stress, ion toxicity and nutrient imbalance, and low levels generally lead to nutrient 

deficiencies. Increasing the fertilizer concentration in the nutrient solution increase plant 

growth parameters, but the quality of products can be reduced (Fallovo et al., 2009). 

The primary irrigation water used to prepare nutrient solutions frequently contains high 

concentrations of salt ions such as Na and Cl (Neocleous et al., 2013). Water 

availability and its salt concentration affect the synthesis and/or accumulation of health 

promoting compounds. De Pascale et al. (2001) found significant increases in fruit 

quality parameters and lycopene content when tomatoes were irrigated with moderately 

saline solutions, in terms of NaCl or nutrients. Sato et al. (2006) also found an increase 

not only in sugar content, but also in the organic matter and some amino acids of tomato 

fruits, due to a NaCl application in the nutrient solution. Proietti et al. (2008) found that 
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fruit quality of mini-watermelon plants was affected by drought with an increase in K, 

Mg, and spermine concentration. Changes of flavonols can occur due to the activities of 

the enzymes involved in the biosynthesis of phenolic compounds, such as L-

phenilalanine ammonia-lyase which is more active under higher water stress (Tovar et 

al., 2002). Water stress is known to increase glucosinolate content in watercress (Ciska 

et al., 2000). EC regulation of nutrient solution can also enhance health promoting 

substances like vitamin C, lycopene, ß-carotene, phenols, carotenoids, and antioxidative 

capacity, in cucumber (Trajkova et al., 2006) and watermelon (Colla et al., 2006 b). 

Rouphael et al. (2006) reported that increasing salinity from 2.0 to 4.1 dS m-1 improved 

fruit quality of zucchini squash with regard to a higher content of dry matter, reduced 

sugars, starch, total carbohydrates, and vitamin C. 

Long-term irrigation with relatively low salt concentration can increase phenolic and 

carotenoid content in green romaine lettuce (Kim et al., 2008),while salinity decreased 

nitrate content in green romaine lettuce (Scuderi et al., 2009). Salinity was able to 

reduce K, while it was able to enhance Zn and Cu in green and red baby lettuce grown 

in floating systems. Salinity was even able to decrease Ca in green lettuce and to 

increase Fe, Mn and B in red lettuce. (Neocleous et al., 2013). Neocleous et al. (2014) 

reported that the reduced yield of green and red leaf baby lettuce, grown under saline 

water, could be at least partly compensated by the improved anthocyanin content and 

coloration in the red cultivar and enhanced freshness in green lettuce. 

With soilless cultivation it is possible to enhance the secondary metabolites in plants 

with a good management of the nutrient solution. For example, lettuce and spinach have 

more iron in their leaves if near harvest the concentration of this nutrient is increased. 

Furthermore, leaves of endive and celery had lower nitrate accumulation when water 

was replaced the nutrient solution a few days before harvesting (Alvino and Barbieri, 

2016). It was demonstrated that the use of silicon (Si) in the nutrient solution can 

improve productivity and quality of baby leaf vegetable corn salad (Valerianella locusta 

(L.). The ability of Si is to reduce the root assimilation of nitrate from the outer 

medium, changing the root activity of nitrate and Fe uptake, and adjusting gene 

expression levels of the proteins involved in this phenomenon. Furthermore, Si 

improves the shelf life of these edible tissues because reduce the chlorophyll 

degradation, thus delaying leaf senescence (Gottardi et al., 2012).  

Vegetable quality can be improved also changing macro-cations composition. For 

example, a high content of K in the nutrient solution increases fruit dry matter, total 
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soluble solids content and lycopene of tomatoes grown in soilless culture, and a high 

content of Mg in the solution improved the total antioxidant activity of tomatoes cv. 

‘Lunarossa’ (Fanasca et al. 2006 a, b). Increasing the Fe concentration in the nutrient 

solution 6 hours before harvest enhanced foliar Fe content in lettuce from 0.8 to 3.0 mg 

per 100 g of fresh weight without phytotoxicity symptoms (Inoue et al., 2000). 

Nitrogen (N) fertilisation promotes plant growth and increases both crop production 

and quality, but excessive and/or inappropriate N use induces accumulation of derived 

compounds, like nitrates and oxalates, in the edible products which may be harmful to 

humans, and causes environmental pollution and economic losses (Santamaria, 2006; 

Chen et al., 2004; Stagnari et al., 2007, Citak and Sahriye, 2010). The maintenance of 

nitrate concentrations within the foliage at levels below EU maxima is an indicator of 

the nutritional quality of leaf vegetables (Konstantopoulou et al. 2010). There are many 

nitrate-accumulating vegetables, in particular those belonging to the families of 

Brassicaceae (rocket, radish, musterd), Chenopodiaceae (beetroot, swiss chard, 

spinach), Amarantaceae, Asteraceae (lettuce) and Apiaceae (celery, parsely) 

(Santamaria 2006).   

Management of nutrient solution in soilless systems can regulate nitrate 

concentration in the products. For example, nitrate concentration was reduced in leaves 

of lamb’s lettuce replacing the nutrient solution with water three days before harvesting 

(Gonnella et al., 2004). Furthermore, the addition of K decreased nitrate concentrations 

in cabbage by 26% compared to the control treatment in hydroponic systems. In 

contrast, the addition of K increased nitrate concentrations by 8.2% in spinach (Gao et 

al. 1989). Moreover, the modification of nitrate:ammonium ratio can modulate the 

relative uptake of anions and cations, changing primary and secondary metabolism, and 

consequently influencing the vegetable quality (Sonneveld, 2002). 

 

1.5 Environmental factors 

Nutritional quality of vegetables is also influenced by environmental factors in 

particular light and air temperature (Rouphael et al., 2012). A reduction in the light level 

was associated with reduced nitrate reductase activity and increased nitrate 

accumulation in lettuce and spinach (Rouphael et al., 2012). Furthermore, in spinach, 

low levels of light radiation determine the accumulation of nitrate in the leaves and an 
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increase in the content of oxalic acid (antinutritional factor that limits the bioavailability 

of Ca in the human body) and a decrease in vitamin C, reducing the nutritional quality 

of the product. Also high temperature can enhance accumulation of nitrate in lettuce 

(Alvino and Barbieri, 2016). Spinach plants grown at a photon flux density of 200 μmol 

m-2 s-1 exhibited higher amount of oxalate as well as more nitrates and less ascorbate in 

comparison with plants grown at 800 μmol m-2 s-1(Proietti et al., 2004).  

Nitrate concentration in the leaves of Asian Brassica species increases when grown 

under low daily photosynthetically active radiation (Fallovo et al., 2009). The ratio 

between red and far-red wavelengths, increase the content of nitrates and antioxidants in 

rocket leaves, and blue light can enhance antioxidant compounds in lettuce (Alvino and 

Barbieri, 2016).  

In greenhouse environment it is possible to control microclimatic parameters (light, 

temperature, humidity, and CO2) but the reduction of light intensity, due to the covering 

material, can enhance concentration of nitrate in leaves of vegetables, as lettuce 

reducing the nutritional quality.  

The reduction of UVB radiation (280–320 nm) in glasshouses has a negative effects 

on the biosynthesis of polyphenols and flavonoids. In fact, tomatoes field-grown in 

Spain and South Africa contain four- to five-fold more flavonolsthat those in the United 

Kingdom, where glasshouses are used for plant cultivation (Stewart et al., 2000).  

Climatic factors such as temperature, light radiation, stimulate secondary 

metabolism and the biosynthesis of biologically active substances. For example, total 

phenolic content, plant secondary metabolites with health effect, have higher value in 

lamb’s lettuce, mizuna, red chard, and red lettuce when plants were harvested at high 

light intensity (Alvino and Barbieri, 2016). Low light conditions, determine a reduction 

of sugars content in fruits melon (Pardossi et al., 2000) in tomatoes as well as in 

strawberries (Caruso et al., 2004). 

Tomato, lettuce, sweet pepper and strawberry produce less ascorbic acid at low light 

intensity (Lee et al., 2000). The color of vegetables is a direct signal of nutritional 

compounds and it depends on light intensity (Schreiner et al., 2002). Non optimal 

temperatures can also reduce product quality of vegetable crops. For example, tomato 

cultivated in cold greenhouses will result in less juicy and aromatic fruit, with low 

acidity content, and thinner skin with lower quality (Proietti et al., 2004). 

Temperature seems have a principal role in the biosynthesis of lycopene and 

carotenoids in tomatoes, in particular temperatures between 18 and 26°C, and 
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temperature lower 10°C could inhibit lycopene production (Rouphael et al., 2012). 

However, low temperatures have an important role determining quality of products. For 

example, bitter fruits in cucumber (Cucumissativus L.) plants enhance when grown at 

low temperatures (Kano et al., 2003), tomatoes harvested in cool seasons have higher 

carbohydrate content than in warm season (Islam et al. 2001), leaves of Brassica 

oleracea present higher concentration of total glucosinolates at 12°C than at 22°C 

(Charron and Sams, 2004). 

Excessive temperatures are more susceptible to physiological disorders. For 

example, high temperature determine damage to cellular membranes, proteins, and 

nucleic acids. Temperature has also an effect on the nitrate content of vegetables. 

Higher temperatures result in higher nitrate contents in lettuce and radish, because high 

temperature reduce shoot nitrate reductase activity leading to nitrate accumulation. 

(Rouphael et al., 2012). 

 

1.6 Aim and outline of the research 

Lettuce (Lactuca sativa L.) and Spiny chicory (Cichorium spinosum L.) were 

selected as experimental crops. This choice was based on horticultural argument. 

Lettuce is widely distributed under greenhouse conditions in the Mediterranean region, 

especially in Italy. In the last decade lettuce in particular baby lettuce has gained 

popularity in Southern Italy and occupied the first place in the protected cultivation. To 

our knowledge, no research has been reported on how pre harvest factors such as the 

genetic materials, nutrient solution management and the number of cuts could affect 

growth and nutritional quality of leafy vegetables. 

In Chapter 2, crop performance under an increasing level of NaCl in terms of 

growth, physiological responses and bioactive compounds is presented. In Chapter 3, 

we reported the effect of different salinity sources, genotypes and cut number on growth 

and quality of baby lettuce. Moreover the aim of Chapter four was to comparably 

evaluate the effects of four sodium and chloride salts (Na2SO4, NaCl, KCl or CaCl2) on 

growth, mineral composition and metabolic profiling of C. spinosum grown in a closed 

soilless cultivation system. The four salts were tested at two different iso-osmotic 

concentration levels, in order to assess the ionic effects of the four salinity sources on 
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the metabolome. In the general conclusions chapter an attempt is made to provide an 

overall picture of the current research. 
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2.1 INTRODUCTION 

In recent years high interest has been giving to the consumption of fruits and 

vegetables due to their significant role as promoter of human health. In fact, several 

scientific studies demonstred that a vegetable consumption can reduce some human 

diseases, such as specific forms of cancer and cardiovascular disorders (Rouphael et al., 

2017a). The beneficial properties of vegetables could be associated to the important 

presence of macronutrients, micronutrients and bioactive compounds (Kim et al., 2016). 

Italy, with its 15,000 ha of cultivation and about 140 Kt of leafy vegetables production, 

is the European leader in this sector (Colonna et al., 2016). Among leafy vegetables, the 

production and consumption of lettuce is highly significant. The healthy properties of 

lettuce are related to the content of minerals, antioxidant compounds such as vitamin C 

and polyphenols, and to the low content of dietary fats (Llorach et al., 2008; Kim et al., 

2016). Lettuce is consumed as fresh-cut or as so-called baby leaf vegetables (Alvino 

and Barbieri, 2016). Lettuce baby leaf is gaining popularity among growers thanks to 

the short cycle of cultivation, high percentage of usable product, little or no oxidation 

due to small stem diameter and because the product does not require many steps of 

processing but the entire leaf is harvested.  

It is well established that pre-harvest factors can significantly influence the quality 

of leafy vegetables. The floating system can provide an alternative cultivation 

techniques to traditional soil cultivation for leafy vegetable production that permits the 

precise management of the salt concentration in the nutrient solution and represents an 

effective system to improve quality aspects for salads with very short cycles 

(Borgognone et al., 2013). Increasing salinity in the nutrient solution generally 

decreases the plant growth parameters (leaf dry biomass and number) but increase the 

quality in terms of antioxidant activity or concentration of bioactive molecules 

(Rouphael et al., 2006; Colla et al., 2013; Fanasca et al., 2006a,b; Manzocco et al., 

2011; Chisari et al., 2010; Fallovo et al., 2009). In fact, increasing salinity in the 

nutrient solution generates in plants an oxidative stress and the formation of reactive 

oxygen species (ROS) that are responsible for damage to membrane structure, 

photosynthetic pigments, proteins, nucleic acids and lipids. ROS also stimulate the 

synthesis of antioxidant compounds such as phenylpropanoid derivatives (Borgognone 

et al., 2013).  
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The quality of vegetables depend on specific cultivar characteristics. In literature, 

the effects of genetic factors are well documented for several crops (Selma et al., 2012; 

Mai et al., 2013; Baslam et al., 2013; Perez-Lopez et al., 2015). Kim et al. (2016), 

highlight that lettuce exists as many different types and cultivars, and these differences 

are reflected based the on different health-beneficial bioactive compounds. 

Oour hypothesis was that applying moderate salinity stress in the nutrient solutions can 

modulate target compounds such as phytochemicals and antioxidants. Therefore, the 

aim of this study was to evaluate the responses of two baby leaves lettuce cultivars 

(“Red and Green salad bowl”), grown in a floating system, to four salinity levels of 

NaCl (1, 10, 20 e 30 mM) on biomass production, mineral composition, phenolic 

composition and bioactive compounds. 

 

2.2 MATERIALS AND METHODS 

2.2.1. Plant material, growing conditions and experimental design 

The experiment was carried out in a cold greenhouse located at the experimental 

station ‘Torre Lama’ of the University of Naples Federico II, South Italy (Bellizzi (SA) 

40°37′00″N 14°57′00″E). Light was provided only by natural solar radiation. Seeds of 

lettuce (Lactuca sativa L. var. acephala cvs. ‘Green Salad Bowl’ and ‘Red Salad Bowl’ 

SAIS seed company, Cesena, Italy) were sown on 22 March 2015 in a floating raft 

growing system, with a planting density of 1025 plants /m2. The system consisted of 

polystyrene plug trays floating in wood tanks with a constant volume (150 L) of 

stagnant nutrient solution, which was continuously aerated with an air compressor in 

order to maintain the oxygen content above 6 mg L−1.   

The treatments were arranged in a randomized complete block design with three 

replicates. A factorial combination of four nutrient solutions (non-salt control and three 

saline solutions with 10, 20 e 30 mM of NaCl) and two cultivars (Green or Red Salad 

Bowl) were compared. The composition of the basic nutrient solution was 12.0 mM 

NO3
-N, 1.0 mM NH4

+N, 1.75 mM S, 1.5 mM P, 5.0 mM K, 4.0 mM Ca, 1.5 mM Mg, 

1.0 mM Na, 1.0 mM Cl, 20 µM Fe, 9 µM Mn, 0.3 µM Cu, 1.6 µM Zn, 20 µM B, e 0.3 

µM Mo, with an electrical conductivity (EC) of 1.9 dS m−1. The three saline solutions 

had the same basic composition plus an additional of 10 mM NaCl, 20 mM NaCl and 30 
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mM NaCl, with an EC of 2.8, 4.0 e 5.1 dS m-1, respectively. The pH of the nutrient 

solution in all treatments was 6.0 ± 0.2.  

 

2.2.2 Collection of samples and analysis 

Plants of both cultivars were harvested at the same physiological stage and leaf 

tissues were dried in a forced air oven at 80 °C for 72 h for dry biomass determination 

and for mineral analysis. At harvest, 30 fresh plants were collected for further analysis, 

and leaf area was measured using an imaging analysis system (Delta-T Devices Ltd., 

Cambridge, UK). 

Mineral content analysis: The dried leaf tissues were ground in a Wiley mill to pass 

through a 20-mesh screen, then 0.5 g samples were analyzed for the following nutrients: 

N, P, K, Ca, Na, Cl and nitrate. Total nitrogen was determined by the Kjeldahl method 

(Bremner et al. 1965), after mineralization with H2SO4. Phosphorus, NO3, K, Ca, Mg, 

Na and Cl concentrations were obtained by ion chromatography (ICP 3000 Dionex, 

Thermo Fisher Scientific Inc., MA USA). 

Gas exchanges: Photosynthesis (Pn), stomata resistance (rs) and transpiration (E) 

measurements were performed in a sunny day on 18 fully expanded leaves per treatment 

using a portable system IRGA (infra red gas analyzer, LCA4, ADC Bioscientific Ltd, 

Hoddesdon, UK). It reveals the Photosynthesis (Pn in µmol CO2 m-2 s-1), stomata 

resistance (rs in m2 s1 mol-1) and transpiration (E, mol H2O m-2 s-1) by measuring the 

CO2 removed from leaves and H2O released. Water use efficiency (WUE) was 

calculated as Pn/E ratio 

SPAD index and color parameters: A chlorophyll meter SPAD-502 (Konica-

Minolta corporation, Ltd., Osaka, Japan) was used for greenness readings (i.e. light 

transmittance) from the fully expanded leaves. The leaf color was measured as reflected 

in the CIELAB (L* a* b*) color space using a Minolta CR-300 Chroma Meter (Minolta 

Camera Co. Ltd, Osaka, Japan). The observations were made on twenty randomly 

selected leaves per plot. The measuring aperture diameter was 8 mm, and the instrument 

was calibrated with Minolta standard white reflector plate, before sampling baby leaves. 

L∗ (lightness ranging from 0 = black to 100 = white), a∗ (ranging from green [-] to red 

[+]), b∗ (ranging from blue [-] to yellow [+]) were read and transformed to those of the 
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L, a, b color space (Fallovo, et al., 2009). Chroma, C* represents color saturation and 

was calculated using the following formula (a2 + b2)1/2. 

Determination of antioxidant activity: freeze-dried leaves (0.2 g) was used to 

determine hydrophilic (HAA) and  lipophilic (LAA) antioxidant activity, with the  N,N-

dimethyl-p-phenylenediamine (DMPD) method (Fogliano et al. 1999) and the 2,2′-

azinobis 3-ethylbenzothiazoline-6-sulfonic acid ABTS method (Pellegrini et al. 1999), 

respectively. In the first assay hydrophilic antioxidant molecules are extracted in 

distilled water, and they transfer a hydrogen atom to the coloured radical cation 

(DMPD.+). In this way the solution change color proportionaly to the quantity of 

antioxidant compounds.  

In the second assay, methanol is used to extract lipofilic molecules that reduce 

ABTS radical cataion proportionaly to their concentration. After a time point is 

measured the absorbance of solutions by UV–Vis spectrophotometry at 505 and 734 

nm, respectively. HAA and LAA were expressed as mmol ascorbic acid (AA) and as 

mmol of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) per 100 g of 

dry weight, respectively (Fogliano et al., 1999). 

Determination of ascorbic acid: The total ascorbic acid was detected according 

with protocol of Kampfenkel et al. (1995). The total ascorbic acid reduces Fe3+ to Fe2+. 

Fe2+ forms a complex with 2,2-dipyridyl, and the absorbance of the solution was 

measured at 525 nm. Data were expressed as mg ascorbic acid on 100 g fresh weight. 

Determination of phenols acid and total phenols: One gram of materials was 

extracted by 30 mL of methanol/water (70:30, v/v) and sonicated at room temperature 

for 30 min. The extraction procedure was repeated twice for each sample. The mixtures 

were centrifuged at 14.800g, filtered through a Whatman filter paper, and then used for 

LC-MS/MS analysis using a method previously described by Ferracane et al. (2010). 

Chromatographic separation was performed using an HPLC apparatus equipped with 

two micro-pumps series 200 (Norwalk, CT, USA), a UV−Vis series 200 (PerkinElmer) 

detector set at 280 nm, and a Prodigy ODS3 100 Å column (250 mm × 4.6 mm, particle 

size = 5 μm) (Phenomenex, Torrance, CA USA). The eluents were (A) water containing 

0.2% formic acid and (B) acetonitrile/methanol (60:40, v/v). The gradient program was 

as follows: 20−30% B (6 min), 30−40% B (10 min), 40−50% B (8 min), 50−90% B (8 

min), 90−90% B (3 min), and 90−20% B (3 min) at a constant flow of 0.8 mL/min. The 

LC flow was split, and 0.2 mL/min was sent to the mass spectrometer. The injection 

volume was 20 μL. Two injections were performed for each sample. MS and MS/MS 
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analyses of extracts were performed on an API 3000 triple-quadrupole mass 

spectrometer (Applied Biosystems, Canada) equipped with a TurboIonSpray source 

working in the negative ion mode. Six phenolic acids Caffeoyltartaric acid, chlorogenic 

acid, caffeoylmalic acid, cichoric acid, caffeoyltartaric acid, isochlorogenic acid and 

total phenols content were identified with LC-MS/MS.  

 

2.2.3 Statistical analysis 

All data were subjected to analysis of variance (ANOVA) using the SPSS software 

package (SPSS 10 for Windows, 2001). Duncan’s multiple range test was performed for 

mean comparisons on each of the significant (p < 0.05) variables measured. 
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2.3 RESULTS 

2.3.1 Growth parameters 

Leaf area, fresh and dry biomass were significantly influenced by salinity (S) and 

cultivar (C), with no significant S ×C interaction (Table 2.1). All measured parameters 

showed higher values in green respect to the red cultivar. In particular, an increase in 

leaf area, fresh and dry yield by 11%, 14% and 33% respectively was recorded in green 

cultivar. 

The effect of different saline concentrations was also evident in the present study. In 

fact, increasing the saline concentration from 1 to 30 mM NaCl induced a reduction of 

all measured parameters respect to the control treatment. In particular, leaf area and 

fresh biomass decreased meanly by 14.7% when the salinity increase from 1 to 30mM 

of NaCl, while dry biomass decreased by 11.0 % in the same conditions. No significant 

difference in dry biomass was observed between no-salinized and 10 and 20 mM NaCl 

treatments (Table 2.1). 
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Table 2.1 Effects of salinity and cultivar on leaf area, fresh and dry biomass of baby lettuce plants grown in a floating raft culture. 

Salinity 
(mM NaCl) 

Cultivar 
 

Leaf 
Area 
(cm2 

plant-1) 

Fresh 
Biomass 
(kg m-2) 

Dry 
Biomass 
(g m-2) 

     
1  Red 90.0 5.6 220.4 

Green 
 

99.8 6.4 294.2 

       mean 94.9 a 6.0 a 257.1 a 

10  Red 85.9 5.4 217.3 
Green 99.0 6.0 267.5 

        mean 92.5 a 5.7 ab 242.4 ab 

20  Red 83.2 5.3 211.0 
Green 93.6 5.9 258.3 

      mean 88.4 ab 5.6 ab 234.6 ab 

30  Red 78.1 4.9 209.1 
Green 83.9 5.4 248.1 

        mean 80.9 b 5.1 b 228.9 b 

Significance      
Salinity (S)  * * * 
Cultivar (C)  * ** *** 
S × C  NS NS NS 

 
Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 

NS, *, **, *** =non significant or significant at P  0.05, 0.01 e 0.001, respectively 
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2.3.2 Mineral composition 

The results reported in Table 2.2 showed that the mineral composition was strongly 

influenced by salinity and cultivar. Respect to the green cultivar, red salad bowl showed 

a significant higher accumulation of N. The content of P was reduced by salinity in both 

cultivars. Red cultivar showed significant higher content of K by 45 % respect to green 

cultivar. Ca concentration was significantly reduced by salinity (Table 2.2). 

No significant differences were observed for Mg content between the two cultivars. 

Mg decrease when salinity concentration increase from 1 to 30 mM NaCl, with lower 

values observed with 30 mM NaCl (Table 2.2). 

Green salad bowl accumulatd more Na in leaf tissue respect to the red cultivar. 

Increasing the NaCl concentration in the nutrient solution increased linearly the 

accumulation of both toxic ions Na and Cl (Table 2.2). 
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Table 2.2 Effects of salinity and cultivar on leaf mineral composition of baby lettuce plants grown in a floating raft culture. 

Salinity (mM 

NaCl) 

Cultivar Mineral Composition (g kg-1 dry weght) 

N                      P K                  Ca Mg                  Na Cl 

1 Red 42.6 15.9 62.7 6.0 2.6 2.8 14.6 

 Green 40.1 16.4 43.1 9.3 3.3 4.2 9.6 

 mean 41.3 16.1 a 52.9 7.6 a 2.9 a 3.5 c 12.1 d 

10 Red 42.1 15.5 56.1 5.3 2.4 7.1 26.4 

 Green 41.7 15.0 41.5 7.3 2.6 9.6 21.0 

 mean 41.8 15.3 ab 48.8 6.3 ab 2.5 ab 8.4 b 23.7 c 

20 Red 43.9 14.1 53.0 5.0 2.3 10.6 31.5 

 Green 39.7 14.8 32.6 4.6 1.7 10.4 25.1 

 mean 41.9 14.5 bc 42.8 4.8 bc 2.0 bc 10.6 b 28.3 b 

30 Red 42.8 14.1 52.8 4.7 2.1 15.7 35.4 

 Green 41.9 13.2 30.8 4.3 1.5 13.0 29.1 

 mean 42.4 13.6 c 41.8 4.5 c 1.8 c 14.3 a 32.2 a 

Significance          

Salinity (S)  NS *** NS ** ** *** ***  

Cultivar (C)  * NS *** * NS NS ***  

S × C  NS NS NS * NS NS NS  

Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 
NS, *, **, ***= No significative or significative at P < 0.05, 0.01 e 0.001, respectively. 
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2.3.3 Leaf gas exchange 

Table 2.3 represent the effects of cultivar and salinity on net photosynthesis, 

stomata resistance, transpiration and intrinsic water use efficiency (WUE). The effects 

of salinity and cultivar on net photosynthesis and stomata resistance and transpiration 

were highly significant on almost all physiological parameters (Table 2.3).  

Green cultivar exhibited higher value of photosynthesis, stomata resistance, 

transpiration and intrinsic water use efficiency (WUE) respect to red cultivar.  

Increasing salinity in the nutrient solution from 1 to 30 mM NaCl decreased the net 

photosynthesis by 10.1%, 20.0% and 37.1% in 10, 20 and 30 mM treatments, 

resepcetively (Table 2.3). Moreover, stomatal resistance increased significantly by 

increasing salinity concentration in the nutrient solution, with the highest values 

recorded under severe salt stress conditions (i.e. 30 mM NaCl). Similarly, transpiration 

rate was significantly affected by both treatments cultivars and salinity, with the lowest 

values observed under 30 mM NaCl. Finally, the WUE was significantly higher in green 

compared to the red cultivar, whereas no significant effect was observed with increasing 

NaCl concentration in the nutrient solution (Table 2.3). 
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Table 2.3 Effects of salinity and cultivar on net photosynthesis (Pn), stomata resistance (rs), transpiration rate (E) and water use efficiency 
(WUE) of baby lettuce grown in a floating raft culture. 

Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 
NS, *, **, ***= No significative or significative at P < 0.05, 0.01 e 0.001, respectively. 

Salinity 

(mM-NaCl) 

Cultivar Pn 

(µmol CO2 m
-2 s-1) 

rs 

(m2 s1 mol-1) 

E 

(mol H2O m-2 s-1) 

WUE 

(µmol CO2 mol H2O) 

1 Red 5.96 3.50 5.40 1.10 

 Green 9.31 3.53 6.49 1.43 

 mean 7.63 a 3.51 b 5.94 a 1.27 

10 Red 5.78 3.99 5.21 1.11 

 Green 8.11 4.16 6.00 1.35 

 mean 6.94 a 4.07 b 5.60 ab 1.23 

20 Red 4.95 4.83 4.91 1.01 

 Green 6.50 5.86 5.80 1.12 

 mean 5.72 b 5.34 a 5.35 ab 1.06 

30 Red 4.47 5.35 4.51 0.99 

 Green 5.12 7.13 5.34 0.96 

 mean 4.79 b 6.24 a 4.92 b 0.97 

Significance      

Salinity 

(S) 

 * *** ** NS 

Cultivar 

(C) 

 *** *** *** * 

S × C  NS ** NS NS 
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2.3.4 SPAD index and leaf color parameters 

Hunter color parameters (L*. a*. b*), Chroma and SPAD index were only affected 

by cultivar, with no effect of NaCl concentration in the nutrient solution and the 

interaction between the two factors (Table 2.4). When averaged over salinity 

concentration in the nutrient solution the SPAD index was higher in red salad bowl 

compared to the green salad bowl. Similarly to the SPAD index, the lightness (L*) 

yellowness (b*) as well as chroma were higher in the green pigmented cultivar, whereas 

an opposite trend was observed for the redness parameter (a*) with the highest values 

observed in the red pigmented cultivar (Table 2.4). 
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Table 2.4 Effects of salinity and cultivar on SPAD Index and color parameters of baby lettuce grown in a floating raft culture. 

Salinity  

(mM NaCl) 

Cultivar SPAD Index     L*       a*             b*   Chroma 

1 Red 21.29 50.09 -6.04 23.24 24.02 

 Green 17.58 53.73 -7.25 26.16 27.15 

 mean 19.44 51.92 -6.64 24.70 25.59 

10 Red 20.67 48.01 -6.70 22.86 23.83 

 Green 17.32 54.87 -7.60 27.53 28.56 

 mean 19.00 51.44 -7.15 25.20 26.20 

20 Red 19.75 48.93 -6.02 23.06 23.84 

 Green 16.73 53.59 -7.49 27.66 28.66 

 mean 18.24 51.26 -6.75 25.36 26.25 

30 Red 19.43 50.43 -6.12 21.67 22.52 

 Green 15.97 55.14 -7.30 26.58 27.58 

 mean 17.70 52.79 -6.71 24.13 25.05 

Significance       

Salinity (S)  NS NS NS NS NS 

Cultivar (C)  ** *** ** *** *** 

S × C  NS NS NS NS NS 

Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 
NS, **. *** No significative or significative at P < 0.01 and 0.001, respectively. 
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2.3.5 Nutritional and qualitative parameters 

Green lettuce cultivar exhibited a significant higher dry matter percentage than red 

lettuce cultivar (Table 2.5). Increasing the NaCl concentration in the nutrient solution 

from 1 to 30 mM increased linearly the dry matter percentage with the highest value 

recorded with 30 mM NaCl, with an increased of 6.6% respect to the control treatment 

(Table 2.5).  

Lypophilic antioxidant activity was significantly affected by cultivar. In particular it 

was observed an increase of 56.6 % in red salad bowl compared to green cultivar. 

Furthermore, total ascorbic acid content was significantly affected by both factors 

salinity and cultivar. Red salad bowl showed a higher content of total ascorbic acid 

compared to green pigmented cultivar (Table 2.5). Increasing salinity in the nutrient 

solution from 1 to 30 mM NaCl enhanced the biosynthesis and accumulation of total 

ascorbic acid content with the highest value recorded in 20 mM NaCl treatment. Finally, 

nitrate content decreases when salinity concentration increase from 1 to 30 mM NaCl, 

but the differences were not significant (Table 2.5).  
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Table 2.5 Effects of salinity and cultivar on dry matter content (DM, %), lipophilic (LAA, mmol Trolox 100 g-1 d.m.) and hydrophilic 
(HAA, mmol ascorbic acid 100 g-1 d.m.) antioxidant activity, total ascorbic acid content (AA, mg 100-1 g fw) and nitrate (mg kg-1 fw) of 
baby lettuce grown in a floating raft culture. 

Salinity  

(mM NaCl) 

Cultivar DMC 

 

LAA 

 

HAA 

 

AA 

 

Nitrate 

 

1 Red 3.9 7.83 1.57 19.10 1719.5 

 Green 4.6 5.00 1.54 18.77 1893.3 

 mean 4.2 b 6.41 1.55 18.56 b 1806.3 

10 Red 4.1 7.62 1.51 25.91 1648.6 

 Green 4.4 6.11 1.54 19.79 1817.9 

 mean 4.2 b 6.87 1.52 22.81 ab 1733.2 

20 Red 4.0 7.35 1.66 43.18 1615.1 

 Green 4.3 6.16 1.59 24.31 1749.0 

 mean 4.2 b 6.76 1.62 33.75 a 1682.1 

30 Red 4.3 8.11 1.67 31.56 1564.5 

 Green 4.6 5.59 1.56 19.36 1655.9 

 mean 4.4 a 6.85 1.62 25.47 ab 1610.2 

Significance       

Salinity (S)  * NS NS * NS 

Cultivar (C)  *** ** NS * NS  

S × C  NS NS NS NS NS  

Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 
NS, *, **, ***= No significative or significative at P < 0.05, 0.01 and 0.001, respectively. 
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2.3.6 Phenol acids and total phenols 

HPLC analysis revealed six phenolic acids: Caffeoyltartaric acid, 5-O-

caffeoylquinic acid (chlorogenic acid), caffeoylmalic acid, di-O-caffeoyltartaric acid 

(cichoric acid), meso-di-O-caffeoyltartaric acid, 3,5-di-O-caffeoylquinic Acid 

(isochlorogenic acid). Among others, the chlorogenic acid was the dominant phenolic 

acid present in all treatments. Others phenolic acids were found in the following 

descending order:  cichoric acid > isochlorogenic acid > caffeoylmalic acid > meso-di-

O-caffeoyltartaric acid > caffeoyltartaric acid (Table 2.6). 

Green cultivar has higher values of caffeoyltartaric acid, whereas red salad bowl 

showed an increase of 123% for chlorogenic acid, 24% for caffeoylmalic acid and 47% 

for total phenols (Table 2.6). Interestingly, chlorogenic acid, caffeoylmalic acid, 

cichoric acid, meso-di-O-caffeoyltartaric acid and isochlorogenic acid as well as total 

phenolic contents were significantly higher in 20 mM NaCl saline treatment compared 

to the non-salinized and the other saline treatements (Table 2.6). 
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Table 2.6 Effects of salinity and cultivar on phenol acids and total phenols of baby lettuce grown in a floating raft culture. 

 
Means within each column and main effect followed by different letters are significantly different (p ⩽ 0.05) according to Duncan’s multiple-range test. 
NS, **, *** =non significant or significant at P  0.01 and 0.001, respectively 

Salinity (mM 

NaCl) 

Cultivar CTA 

(mg 100 g-1 

dm) 

5-CQA 

(mg 100 g-1 

dm) 

CMA 

(mg 100 g-1 

dm) 

DCTA 

(mg 100 g-1 

dm) 

m-DCTA 

(mg 100 g-1 

dm) 

3.5-DCTA 

(mg 100 g-1 

dm) 

Total phenols 

(mg 100 g-1 

dm) 

1 Red 27.0 1094.3 85.0 561.0 53.3 126.6 1947.6 

 Green 31.3 489.7 68.7 569.3 52.6 117.3 1327.6 

 mean 29.2 a 792.0ab 76.8ab 565.1ab 53.1 a 122.1b 1637.1ab 

10 Red 17.0 875.0 69.3 460.7 37.0 109.6 1569.3 

 Green 27.3 481.0 62.0 519.0 41.1 127.0 1257.6 

 mean 22.1 b 678.1bc 65.7bc 489.8 b 39.1 b 118.3b 1413.5 b 

20 Red 24.7 1059.3 88.3 636.6 46.6 164.1 2020.0 

 Green 31.0 664.6 80.0 639.0 47.6 133.0 1595.3 

 mean 27.8 a 862.0 a 84.1 a 637.8 a 47.2 a 148.6a 1807.6 a 

30 Red 20.0 859.7 79.3 446.0 37.3 100.3 1543.1 

 Green 19.3 265.1 46.3 337.1 24.6 83.0 776.3 

 mean 19.6 a 562.3 c 62.8 c 391.5 c 31.0 c 91.6 c 1159.2 c 

Significance         

Salinity (S)  ** *** ** *** *** ** *** 

Cultivar (C)  ** *** *** NS NS NS *** 

S × C  NS NS NS NS NS NS NS 
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CTA: Caffeoyltartaric acid; 5-CQA: 5-O-caffeoylquinic acid (chlorogenic acid); CMA: caffeoylmalic acid  DCTA: di-O-caffeoyltartaric acid (cichoric acid) ; m-
DCTA: meso-di-O-caffeoyltartaric acid 3.5-DCQA: 3.5-di-O-caffeoylquinic Acid (isochlorogenic acid). 
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2.4 DISCUSSION 

It is well established that excess of sodium chloride (NaCl) in soil and water could 

create stress at plant level leading to a gradual reduction in plant growth and 

consequently crop productivity (Parihar et al., 2015). In the first phase an osmotic or 

water-deficit effect appeared leading to a significant decrease in water uptake. During 

this phase neither Na nor Cl inhibits growth because these are excluded from phloem 

and when they arrived in the xylem, meristematic cells can accumulate the toxic 

elements in their vacuoles. If salt continues to enter, the plant cells lose the ability to 

compartmentalize salts in the vacuole. Salts wil go to cytoplasm and inhibit enzyme 

activity and they can invade the cell walls and dehydrate the cell. This will lead to toxic 

effect, also called the salt-specific or ion-excess effect of salinity (Parihar et al., 2015).  

In our study we have analyzed the response of two baby leaf lettuce cultivars red 

and green grown in a floating raft system under four increasing NaCl concentrations (1, 

10, 20, 30 mM) in the nutrient solution by examining morphological, physiological and 

qualitative traits. Increasing the salt concentration from 1 to 30 mM NaCl was 

accompanied with a reduction of morphological traits such as leaf area, dry and fresh 

biomass in both cultivars respect to the control treatment. Interestingly, the significant 

reduction in yield and biomass was only observed under severe stress conditions, 

whereas no reduction was recorded at 10 or 20 mM NaCl. In both cultivars, increasing 

salt concentration, were accompained with a significant increase of toxic elements Na 

and Cl as well as significant reduction of macronutrients such as P, Ca and Mg. The 

reduction of growth in response to excessive salts could be attributed to the competition 

of Na and/or Cl with macronutrients that are essential to plants, such as phosphorus, 

potassium, nitrogen, magnesium and calcium. It is well established that high 

concentrations of Na reduce the K and Ca uptake, decrease photosynthesis, by reducing 

stomatal conductance. Instead, high Cl concentrations reduce photosynthesis rate 

through chlorophyll degradation. Many authors reported that salt stress decrease growth 

by reducing net photosynthetic rate, stomatal conductance, performance of PS II, 

electron transport rates and assimilation rate of CO2 (Parihar et al., 2015). A reduced 

CO2 assimilation rate leads to a decrease of the Rubisco large and small subunits, OEE 

proteins (components of oxygen evolving), carbonic anhydrase, and Rubisco activase 

and an enhanced degradation of Rubisco subunits. Sodium and chloride can reduce 

growth and photosynthesis in additive way and with different mechanisms in several 
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genotypes (Parihar et al., 2015). Our results are in line with those conducted on baby 

leaf lettuce by several authors such as Kim et al. (2008), Scuderi et al. (2011) and 

Neocleous et al. (2014).  

Concerning the effect of genotypes, significant differences were observed between 

the green and red cultivars. For instance, the green cultivar was characterized by a high 

biomass production and Ca content, whereas the red cultivar was characterized by a 

higher nutritional profile (i.e. N and K). Perez-Lopez et al. (2015) also observed 

differences in the mineral profile among different lettuce cultivars. Furthermore, in our 

experiment, green cultivar had higher value of photosynthesis, stomatal resistance, 

transpiration and intrinsic water use efficiency (WUE) compared to red cultivar. As 

showed by Colla et al. (2006a, b, c) and Rouphael et al. (2012), higher concentration of 

NaCl in nutrient solution causes a decrease of the water potential and reduce the water 

flux in aerial part by increasing dry matter content in leaves.  

All color parameters (L*, a*, b*), Chroma and SPAD index were only affected by 

cultivar. As we reported earlier, red cultivar had higher values of SPAD index and a* 

color parameter while green cultivar has higher values of L* and b* color parameter and 

Chroma values. 

Concerning the undesirable components such as nitrates, irrespective of NaCl 

concentrations in the nutrient solution the average nitrate concentrations of red and 

green lettuce were 1719.5 and 1893.3 mg Kg-1 fw, resepectively. The nitrate content 

found in the current study were below the maximum limit imposed by the European 

Community for lettuce (Commission Regulation No 1258/2011). As indicated by 

Neocleous et al. (2014), nitrate content in baby leaves was not affected by salinity in 

either the green or the red lettuce grown under 5, 10 or 20 mM NaCl.  

Phenols are important for nutrient uptake, protein synthesis, enzyme activity, 

photosynthesis, structural components, and allelopathy. But more interestingly, phenolic 

compounds have a crucial role in determining food quality; in fact they have been 

associated with color, sensory qualities and nutritional properties of foods. According to 

Bunning et al. (2010), the quantification of phenolic content in lettuce can be used to 

identify specific cultivars that exhibit superior attributes and may improve market 

competitiveness of various types and particular cultivars of lettuce. 

In the current study, increasing salinity enhanced the total ascorbic acid content with 

the highest values recorded in both 20 and 30 mM NaCl. The effect of genetic material 

was also very pronounced with the red cultivar exhibiting highest bioactive compounds 
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compared to the green pigmented cultivar. In fact, the accumulation of the antioxidant 

activity, total ascorbic acid, phenolic acids and total phenols was much more higher in 

red compared to green cultivar. Serafini et al. (2002), showed an increase of the plasma 

total radical-trapping antioxidant potential (TRAP), that coincided with an increase of 

vitamin C, and plasma circulating phenols (caffeic acid, p-coumaric acid and quercetin), 

after ingestion of 250 g of fresh lettuce.  

In line with our findings, Chisari et al. (2010), reported that the main polyphenol 

compounds found in baby lettuce were O-caffeoyltartaric acid, 5-O-caffeoylquinic acid 

(chlorogenic acid), 3,5-di-O-caffeoylquinic acid (isochlorogenic acid) and 

dicaffeoyltartaric acid (chicoric acid). Furthermore, it has been also demonstrated that 

increasing levels of salinity up to 4.8 dS m-1 was accompanied with a reduction of 

phenolics degradation, preserving then the antioxidant capacity of the product. In our 

work salinity affect significantly acids phenolic content. Caffeoyltartaric acid, 

chlorogenic acid, caffeoylmalic acid, cichoric acid, meso-di-O-caffeoyltartaric acid, 

isochlorogenic acid and total phenols contents were significantly higher in 20 mM NaCl 

saline treatment respect to the control and to the others salinity levels. Red salad bowl 

showed an increase of 123 % for chlorogenic acid, of  24% for caffeoylmalic acid and 

of 47 % for phenols total. It is well known, that phenol acids content are secondary 

metabolites with beneficial health effects, which can be influenced by genetic, climatic 

and cultural factors (Rouphael et al. 2012a). The increase in phenolic acids and total 

phenols recorded in the current experiment could be expected since polyphenols are 

known to play an important role in the neutralization of free radicals or in the 

decomposition of peroxides. The biosynthesis of these antioxidant molecules (i.e. 

phenolic compounds) has been described as actively involved in plants’ response to 

various stressors, including salt toxicity (Perihar et al., 2015, Mahmoudi et al., 2012,  

Chisari et al., 2010, Kim et al., 2008).  

 

2.5 CONCLUSIONS 

Yield and quality of baby leaf lettuce grown in floating system was influenced by 

cultivar and salinity concentration in nutrient solution. In particular the green salad bowl 

exhibited higher marketable fresh and dry biomass production, leaf area, Ca and 

caffeoyltartaric acid content compared to the red pigmented cultivar. On the other, the 
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red pigmented cultivar was characterized by high nutritional factor such as antioxidant 

activity, vitamin C, minerals and phenolic acids. Our results also demonstrated that the 

manipulation of target compounds such as phytochemicals and antioxidants in baby 

lettuce by management of the nutrient solution is possible using floating system as a 

tool. Adding 20 mM NaCl to the nutrient solution improve vegetable quality of both 

lettuce cultivars without any significant reduction in fresh marketable yield. 
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3.1 INTRODUCTION 

Lettuce is a popular consumed vegetable that includes 16 species in Europe, 51 in 

Asia, 43 in Africa and 12 in America (mostly North American subcontinent) (Lebeda et 

al., 2004). In 2013, 3 million tons of lettuce were produced in the EU, mostly in 

Mediterranean countries (Spain, Italy and France in this order) (Hernandez et al., 2016; 

FAOSTAT, 2014). There are six main types: crisphead lettuce, butterhead lettuce, 

romaine or cos lettuce, leaf or cutting lettuce, stem or stalk lettuce and Latin lettuce 

(Kim et al., 2016). More interest in lettuce production is due to the significant 

consumption as fresh-cut or minimally processed product or as so-called baby leaf 

vegetables (Alvino and Barbieri, 2016). In this form lettuce is appreciated by both 

growers and consumers due to the short cycle of cultivation, higher percentage of usable 

product, little or no oxidation due to smaller stem diameter and because the product do 

not require many steps of processing but the entire leaf is harvested. Baby leaf lettuces 

contain phytochemicals that protect human health (Kim et al., 2016). Phytochemicals 

could be phenolic compounds with a simple structure as phenolic acids, or a complex 

structure as phenylpropanoids or more polymerized compounds such as flavonoids 

(Santos et al., 2014). Phenolic compounds are important for nutrient uptake, protein 

synthesis, enzyme activity, photosynthesis, and as structural components. But more 

interest has been addressed to phenolic compounds for their role in determining food 

quality; in fact they have been associated with color, sensory qualities and nutritional 

properties of foods. They determine food organoleptic properties (flavor, astringency, 

and hardness). Moreover, they play a central role as antioxidants through hydrogen 

atom donation, electron donation and singlet oxygen quenching (Llorach et al., 2008; 

Baslam et al., 2011). Many factors influence phenolic content of a plant such as species, 

cultivar, water availability, maturity, environmental conditions (Santos et al., 2014). 

Soilless systems are considered an effective tool to improve vegetables quality in 

particular baby leaf vegetables because they permit to control plant nutrition and to 

avoid soil contamination (Selma et al., 2012). Among these the floating system is a an 

important soilless system used for leafy vegetable production that permits the precise 

management of the salt concentration in the nutrient solution and represents an effective 

system to improve quality attributes. Rouphael et al. (2006) showed that increasing 

salinity of nutrient solution from 2.0 to 4.1 dS m-1, improves dry matter and total 
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carbohydrates content of zucchini squash. Similarly, Colla et al. (2013) demonstrated 

that increasing salinity in the nutrient solution decreases plant growth parameters (leaf 

dry biomass and number) but on the other hand increases antioxidant activity, total 

polyphenol, chlorogenic acid, cynarin and luteolin levels of leaves of artichoke and 

cultivated cardoon. Fanasca et al. (2006 a,b), observed that changing macrocation 

composition in the nutrient solution it was possible to increase fruit dry matter, total 

soluble solids content, lycopene content as well as antioxidant activity of tomato fruit.  

Our hypothesis is that the application of saline or nutrient stress in the nutrient 

solution triggers defense mechanisms that contribute to the formation of secondary 

metabolites that improve the nutritional content of the plants. All these bioactive 

compounds are not only thought to contribute to the mechanisms of plants defense 

against biotical and abiotical stresses but they are also important to human health, 

recommended to reduce risk of oxidative stress-related diseases, giving an extra value to 

basic nutritional properties of vegetables (Rouphael et al., 2012a ; Kim et al., 2016). 

Many studies have shown the increase of carotenoids, phenols, ascorbic acid, amino 

acids, glycine betaines, and sugars in vegetables and baby lettuces in response to salt 

stress induced by NaCl (Manzocco et al., 2011; Mahmoudi et al., 2012;  Borgognone et 

al., 2013; Neocleous et al., 2014), whereas information is lacking concerning the 

influence of other salt types on yield and quality of an important leafy vegetables such 

as baby lettuce.  

In addition to nutrient solution management, another cultural practices that may 

affect the quality of leafy vegetables is the number of cuts, especially that baby lettuce 

is cut several times (2 or 3) during the growing cycle leading to physiological changes 

that affect the plant and obviously the product obtained. 

The aim of this study is to evaluate the effect of three chloride salts (NaCl, KCl and 

CaCl2) and cut number (first and second) on biomass production, mineral composition 

and bioactive compounds of two baby lettuce cultivars (red and rreen) grown in a 

floating system. The three different chloride salts were tested at equimolar 

concentrations in order to evaluate the ionic effects of the three salinity sources on 

productivity and leaf quality of baby lettuces. 
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3.2 MATERIALS AND METHODS 

3.2.1 Plant materials, treatments and growth conditions 

The experiment was carried out in a unheated greenhouse located at the 

experimental station ‘Torre Lama’ of the University of Naples Federico II, South Italy 

(Bellizzi, SA) 40°37′00″N 14°57′00″E). Inside the greenhouse light was provided only 

by natural solar radiation.Seeds of lettuce (Lactuca sativa L. var. acephala cvs. ‘Green 

Salad Bowl’ and ‘Red Salad Bowl’) were sown on May in a floating raft growing 

system. The system consisted of polystyrene plug trays floating in wood tanks with a 

constant volume (150 L) of stagnant nutrient solution, which was continuously aerated 

with an air compressor in order to maintain the oxygen content above 6 mg L−1. The 

planting density was 1149 plants m−2,as used commercially for similar leafy vegetables 

in floating systems.  

The experiment was designed as a factorial combination of four nutrient solutions 

(non-salt control and three saline solutions with NaCl, KCl or CaCl2), two cultivars 

(Green or Red), and cut numbers (first or second). The treatments were arranged in a 

randomized complete block design with three replications. Each experimental unit 

consisted of a 1 m2 (1149 plants) container filled with 150 L of aerated nutrient 

solution.  

 

3.2.2 Nutrient solution management and salt treatments 

The composition of the basic nutrient solution was: 13.0 mM NO3-N, 1.0 mM NH4-

N, 1.75 mM S, 1.5 mM P, 5.0 mM K, 4.5 mM Ca, 2 mM Mg, 1.0 mM Na, 1.0 mM Cl, 

20 µM Fe, 9 µM Mn, 0.3 µM Cu, 1.6 µM Zn, 20 µM B, e 0.3 µM Mo, with an electrical 

conductivity (EC) of 2.0 dS m-1. The three saline nutrient solutions had the same control 

nutrient composition plus an additional 20 mmol L −1 NaCl or KCl or 13.3 mmol L −1 

CaCl2. The nutrient solutions were completely renewed weekly and prepared using 

deionised water. 
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3.2.3 Recording, sampling and analysis 

Plant growth measurements: Baby lettuce were harvested when the control 

treatment reached the commercial stage (5-6 leaves; 10-12 cm in height), 25 and 29 

days after sowing for green and red lettuce, for the first cut. The second harvest 

occurred 43 and 45 DAS, for the green and red cultivar, respectively. At each harvest 

time, thirty plants per plot were separated into shoots and roots to determine marketable 

fresh yield. The marketable yield was expressed at fresh basis in g m-2. Leaf tissues 

were dried in a forced-air oven at 80 °C for 72 h for biomass determination. Leaf area 

(LA) was measured on 30 plants per treatment using an electronic area meter (Delta-T 

Devices Ltd., Cambridge, UK). 

Mineral analysis: The dried leaf tissues were ground separately in a Wiley mill to 

pass through a 20 mesh screen, then 0.5 g of the dried plant tissues were analyzed for 

the following macro and micronutrients: N, P, K, Ca, Mg, and also for Na and Cl. 

Nitrogen concentration in the plant tissues was determined after mineralization with 

sulfuric acid by “Kjeldahl method” (Bremner, 1965). To briefly describe the method, 1 

g of the dried samples was digested with sulfuric acid (H2SO4, 96%, Carlo Erba 

Reagents, Cornaredo, Milan, Italy) in the presence of potassium sulfate (K2SO4) and a 

low concentration of copper (Cu) catalyst, and nitrogen was liberated and retained as 

ammonium sulfate (NH4)2SO4. The digestion occurred at 420 °C for about 45 min. 

Potassium sulfate was used to elevate the boiling point of H2SO4 and to increase the 

oxidizing power of the digestion mixture. Ammonia was released from the acid digest 

by the addition of sodium hydroxide (NaOH). The ammonia was distilled, collected in a 

boric acid (H3BO3), 4% solution, and titrated with standardized sulfuric acid. The 

amount of sulfuric acid used is proportional to the amount of nitrogen originally present 

in the sample.  

Phosphorus, K, Ca, Mg, Na and Cl were extracted from 250 mg samples with 

deionized water at 80 ºC in a shaking water bath for 10 min (ShakeTemp SW22, Julabo, 

Seelbach, Germany). The resulting solution was filtered, diluted, and analysed by ion 

chromatography (ICS-3000, Dionex, Sunnyvale, CA, USA). A conductivity detector 

with IonPac CG12A guard column and IonPac CS12A analytical column were used for 

the analysis of K, Ca, Mg and Na whereas for nitrate, P and Cl an IonPac AG11-HC 

guard column and IonPac AS11-HC analytical column were used (Dionex Corporation).  
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Leaf anatomical analysis: Nine representative fully expanded leaf samples per each 

combination of treatments were analyzed for anatomy. Samples were put for a week in a 

fixative solution of 5 ml formaldehyde 40%, 5ml glacial acetic acid and 90ml ethyl 

alcohol 50% in water (FAA). Then, lower epidermis was peeled off to analyse stomata 

features through transmitted light microscopy (Olympus BX60, Germany). Digital 

images were captured by digital camera (Olympus, Camedia C4040) and subjected to 

digital image analysis by software AnalySIS 12.0 (Olympus) to analyze stomata 

frequency (n/mm2) and guard cells size. 

SPAD index and color measurements: The leaf colour was analyzed in the 

CIELAB (L∗a∗b∗) colour space using a Minolta CR-300 Chroma Meter (Minolta 

Camera Co. Ltd, Osaka, Japan) immediately after harvest. The measuring aperture 

diameter was 8 mm, and the instrument was calibrated with Minolta standard white 

plate before sampling baby leaves. Whole leaf samples were placed on a white 

background and single readings were taken with the hand-held unit on the upper surface 

of each leaf midway between the apical and basal ends. L* (lightness ranging from 0 = 

black to 100 = white), a∗ (ranging from green [−60] to red [+60]), b∗ (ranging from blue 

[−60] to yellow [+60]) readings were transformed to those of the L, a, b colour space 

(Fallovo et al., 2009). 

SPAD index was measured at the mid point of twenty fully expanded leaves per plot 

using a chlorophyll meter (SPAD-502, Konica Minolta Sensing, Japan). Measurements 

were made at a central point on the leaflet between the midrib and the leaf margin. The 

meter was shielded from direct sunlight by the operator during each measurement. 

Fifteen leaves were measured randomly per plot and averaged to a single SPAD value 

for each treatment. 

Leaf dry matter, soluble solids content and juice pH:The leaf dry matter (DM) was 

determined following official method 934.01 of the Association of Official Analytical 

Chemists (AOAC, 2005). Briefly, triplicates of leafy vegetable samples were oven dried 

at 95 °C until reaching a constant weight, transferred to a desiccator, and allowed to 

cool at room temperature. The total soluble solids (or the TSS) value in fresh leaves 

samples was determined using a digital refractometer (Atago N1, Japan) (Matsumoto et 

al., 1983), whereas, juice pH was determined using a pH Meter (HI-9023; Hanna 

Instruments, Padova). 

Analysis of hydrophilic and lipophylic antioxidant activities: In order to assess 

comprehensively the antioxidant activity of baby lettuce, samples underwent two 
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different extraction procedures and two different methods of analysis were subsequently 

performed. The hydrophilic fraction (HAA) from freeze-dried leaves (0.2 g) was 

extracted with distilled water and its antioxidant activity was measured with the N,N-

dimethyl-p-phenylenediamine (DMPD) method (Fogliano et al., 1999). The principle of 

the assay is that in the presence of a suitable oxidant solution DMPD can form a stable 

and colored radical cation (DMPD.+). Antioxidant compounds (AO) which are able to 

transfer a hydrogen atom to DMPD.+ quench the color and produce a decoloration of the 

solution proportional to their amount, hence a linear inhibition of color formation can be 

observed in the presence of antioxidant compounds extracted from vegetable samples. 

The lipophilic fraction (LAA) was also extracted from freeze-dried leaves (0.2 g) with 

methanol and antioxidant activity of this extract was measured with the 2,2ʹ-azinobis 3-

ethylbenzothiazoline-6-sulfonic acid ABTS method (Pellegrini, 1999). The principle of 

the assay is that the inhibitory response of the radical cation is proportional to the 

antioxidant concentration and the reaction is complete at the time point selected of 2.5 

min. The HAA and LAA were determined by UV–Vis spectrophotometry. The 

absorbance of the solutions was measured at 505 and 734 nm, respectively. HAA and 

LAA were expressed as mmol ascorbic acid (AA) and as mmol of Trolox (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid) per 100 g of fresh weight, respectively 

(Fogliano et al., 1999). 

Analysis of total ascorbic acid: The total ascorbic acid defined as ascorbic acid 

(ASA) and dehydroascorbate (DHA) acid was assessed by spectrophotometric detection 

on fresh plant tissues. The assay is based on the reduction of Fe3+ to Fe2+ by ASA and 

the spectrophotometric detection of Fe2+ complexes with 2,2-dipyridyl (Kampfenkel et 

al., 1995). DHA is reduced to ASA by pre-incubation of the sample with dithiothreitol 

(DTT). The absorbance of the solution was measured at 525 nm, and data were 

expressed as mg ascorbic acid on 100 g fresh weight. 

Determination of phenols acids and total phenols: One gram of dry materials was 

extracted by 30 mL of methanol/water (70:30, v/v) and sonicated at room temperature 

for 30 min. The extraction procedure was repeated twice for each sample. The mixtures 

were centrifuged at 14,800g, filtered through a Whatman filter paper, and then used for 

LC-MS/MS analysis using a method previously described by Ferracane et al. (2010). 

Chromatographic separation was performed using an HPLC apparatus equipped with 

two micro-pumps series 200 (Norwalk, CT, USA), a UV−Vis series 200 (PerkinElmer) 

detector set at 280 nm, and a Prodigy ODS3 100 Å column (250 mm × 4.6 mm, particle 
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size = 5 μm) (Phenomenex, Torrance, CA USA). The eluents were (A) water containing 

0.2% formic acid and (B) acetonitrile/methanol (60:40, v/v). The gradient program was 

as follows: 20−30% B (6 min), 30−40% B (10 min), 40−50% B (8 min), 50−90% B (8 

min), 90−90% B (3 min), and 90−20% B (3 min) at a constant flow of 0.8 mL/min. The 

LC flow was split, and 0.2 mL/min was sent to the mass spectrometer. The injection 

volume was 20 μL. Two injections were performed for each sample. MS and MS/MS 

analyses of extracts were performed on an API 3000 triple-quadrupole mass 

spectrometer (Applied Biosystems, Canada) equipped with a TurboIonSpray source 

working in the negative ion mode. Six phenolic acids Caffeoyltartaric acid, chlorogenic 

acid, caffeoylmalic acid, cichoric acid, caffeoyltartaric acid, isochlorogenic acid and 

total phenols content were identified with LC-MS/MS.  

3.2.4 Statistical analysis 

All data were subjected to analysis of variance (ANOVA) using the SPSS software 

package (SPSS 10 for Windows, 2001). Duncan’s multiple range test was performed for 

mean comparisons on each of the significant (p < 0.05) variables measured. 
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3.3 RESULTS 

3.3.1 Growth parameters and marketable yield 

Cultivar, salinity source and cut had a significant effect on leaf area, fresh and dry 

biomass measurements (Fig. 3.1 A, B, C). Green cultivar showed higher leaf area, fresh 

and dry biomass values (by 8%, 16% and 21%) than red cultivar. When averaged over 

treatments the leaf area decreased by 15%, 19% and 9% in NaCl, KCl and CaCl2 

treatments compared to the control, with no significant differences between the control 

and the CaCl2 treatments (Fig. 3.1 A). Fresh (Fig. 3.1 B) and dry biomass (Fig. 3.1 C) 

decreased in the same magnitude. Finally, all parameters were significantly higher in 

second cut (Fig. 3.1 A, B, C). 
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Figure 3.1. Effects of cultivar, salinity source and cut number on (A) leaf area (cm2 plant-1), (B) 

marketable yield (kg m-2 fw) and (C) dry biomass (g m-2 fw) of baby lettuce plants grown in a floating raft 

culture. Values are mean of three replicates. Different letters indicate significant differences according to 

Duncan’s test (p ⩽0.05). 
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3.3.2 Mineral composition 

The leaf mineral composition of baby lettuce was significantly affected by cultivar, 

salinity, cut and their interactions as reported in Table 3.1. The Ca and Mg content 

recorded in green cultivar were significantly higher by 35% and, 23% respectively in 

comparison to the red cultivar. There was a significant interaction CV × CUT for K 

content.  

The monovalent and bivalent cations were negatively affected by NaCl and KCl 

treatments, whereas an opposite trend was observed for CaCl2, where K and Mg content 

were similar to those recorded in non-salt control treatment. When averaged over 

salinity sources and cultivars the second cut enhances P, Ca, and Mg concentrations 

compared to those recorded in the first cut (Table 3.1).  

 

Table 3.1 Effects of cultivar, salinity source, and cutnumber on leaf mineral composition (g kg-

1 dw) of baby lettuce plants grown in a floating raft culture.  

 Mineral composition (g kg-1 dw) 
       N         P        K       Ca      Mg       Na       Cl 

Cultivar (CV)        
Green Salad Bowl 44.9 3.1 50.5 7.3 a2 2.1 a 5.6 a 23.4 
Red Salad Bowl 43.9 3.0 51.1 5.4 b 1.7 b 4.5 b 25.3 

        
Salinity (S)        

Control 44.3 3.3 48.7 b 6.2 b 2.2 a 2.0 b 11.5 c 
NaCl 45.0 3.0 40.1 c 4.6 c 1.7 b 14.6 a 27.2 b 
KCl 44.4 3.2 68.0 a 3.9 c 1.5 b 1.7 b 33.5 a 
CaCl2 43.8 2.8 46.3 b 10.8 a 2.1 a 2.0 b 25.3 b 

        
Cut (CUT)        

CUT 1 46.0 a 2.8 b 48.9 b 4.9 b 1.5 b 1.5 b 15.3 b 
CUT 2 42.8 b 3.3 a 52.7 a 7.9 a 2.2 a 2.2 a 33.4a 

        
Significancea        

CV NS NS NS *** *** * NS 
S NS NS *** *** *** *** *** 
CUT *** *** NS *** *** * *** 
CV × S NS NS NS NS NS NS NS 
CV × CUT NS NS * NS NS NS NS 
S × CUT NS NS ** * * * *** 
CV × S × CUT NS NS NS NS NS NS ** 

Different letters within each column indicate significant differences according to Duncan’s multiple-range 

test (p ⩽0.05). a Significance: *P 0.05; **P0.01; *** P0.001; NS, not significant. 
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3.3.3 Sodium and chloride content 
 

A significant interaction S × CUT for Na and Cl contents in leaves has been 

recorded in the current experiment. NaCl treatment increased the accumulation of Na 

content in leaves in comparison to the control and the other two chloride salt treatments 

in both first and second cut, with the highest value recorded during the second cut (Fig. 

3.2 A).   

KCl treatment increased the accumulation of Cl content in leaves respect to control 

and the others two saline treatments in the first cut. In the second cut the accumulation 

of Cl was much more pronounced with the higher values recorded in both NaCl and 

KCl in comparison to control and CaCl2 treatments (Fig. 3.2 B). 
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Figure 3.2. Effects of salinity source and cut number on Na (g kg-1 dw) (A) and Cl (g kg-1 dw) (B) 

contents in leaves of baby lettuce plants. Values are mean of three replicates. Different letters indicate 

significant differences according to Duncan’s test (p ⩽ 0.05). 
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3.3.4 Leaf anatomy 

Table 3.2 reported the effects of salinity source and cultivars on stomata frequency 

and guard cells size. Green cultivar showed higher values of stomata frequency (+14%) 

while red cultivar exhibited higher values of guard cells width.  

NaCl, CaCl2, KCl saline treatment, respect to the control treatment, caused an 

increase of stomata per unit area by 6%, 7%, 2% respectively, and a significant 

reduction of guard cells length by 2%, 5%, 3%.  

 

Table 3.2 – Effects of cultivar, salinity source, on stomata frequency, length and width of guard 
cells in leaves of baby lettuce plants grow in a floating raft culture. 

 Stomata frequency 
(n/mm²) 

Length  
of guard cells  

(ϻm) 

Width  
of guard cells 

  (ϻm) 

Cultivar (CV)    
Green Salad Bowl 90.57 a2 32.44 9.81 b 
Red Salad Bowl 68.70 b 32.35 10.40 a 

    
Salinity (S)    

Control 73.11 b 33.23 a 10.02 
NaCl 83.56 ab  32.55 ab 9.96 
KCl 74.99 ab 32.37 b 10.00 
CaCl2 84.53 a 31.43 c 10.42 

    
Significancea    

CV *** NS *** 
S * *** NS 
CV × S  
 

** *** *** 

Different letters within each column indicate significant differences according to Duncan’s multiple-range 

test (p ⩽ 0.05). 
a Significance: *P< 0.05; **P<0.01; *** P<0.001; NS, not significant.  
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3.3.5  SPAD index and color parameters 

SPAD index and Hunter color parameters (L*, a*, b*) were significantly influenced 

by cultivar (C). The red pigmented cultivar exhibited a higher SPAD index (9%) and 

redness-a* (-3,6) compared to the green pigmented cultivar (-7,8). Moreover, L* e b* 

parameters were significantly higher by 22% and 49% respectively in green compared 

to the red cultivar. 

SPAD index and a* and b* parameters were significantly affected by the cut 

number. In the first cut we observed a higher SPAD index and b* color parameter by 

6% and of 9% respectively, compared to the second cut. (Table 3.3). Finally, in the 

current study no significant effects among the four salinity treatments were observed for 

the leaf colorimetry parameters. 

 

Table 3.3 Effects of cultivar, salinity source, and cut  on Soil Plant Analysis Development 
(SPAD) index and Hunter color parameters L∗ (brightness), a∗ (+a∗ = red; −a∗ = green) and 

b∗ (+b∗ = yellow; −b = blue) in leaves of baby lettuce plants grown in a floating raft system. 

 SPAD L* a* b* 

Cultivar (CV)     
Green Salad Bowl 18. b2 50.2 a -7.8 b 24.5 a 
Red Salad Bowl 20.2 a 41.2 b  -3.6 a 16.4 b 

     
Salinity (S)     

Control 20.2 45.4 -5.1 20.5 
NaCl 19.5 46.7 -6.3 21.6 
KCl 19.0 45.7 -5.4 19.6 
CaCl2 19.1 45.1 -5.9 20.5 

     
Cut      

CUT 1 20.0 a 45.9 -6.1 b 21.4 a 
CUT 2 18.8 b 45.6 -5.2 a 19.5 b 

     
Significancea     

CV ** *** *** *** 
S NS NS NS NS 
CUT * NS * ** 
CV × S NS * NS NS 
CV × CUT * NS NS NS 
S × CUT NS NS NS NS 
CV × S × CUT NS NS NS NS 

Different letters within each column indicate significant differences according to Duncan’s multiple-range 

test (p ⩽ 0.05). 
a Significance: *P< 0.05; **P<0.01; *** P<0.001; NS, not significant. 
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3.3.6 Leaf dry matter, total soluble solids, juice pH and EC 

Statistical analysis showed a significant increment (+7%) of dry matter content in 

‘Green salad bowl’ respect to the ‘Red salad bowl’, whereas no significant effects 

between the two cultivars were observed for the total soluble solids (TSS) content, juice 

pH and electrical conductivity (EC) (Table 3.4).  

Adding NaCl, KCl and CaCl2 to the basic nutrient solution improved the TSS 

contents by 16%, 16% and 9% respectively, compared to the control treatment.  

In the second cut the dry matter content, TSS and juice EC were significantly higher 

by 18%, 31% and 13% respectively, compared to the first cut (Table 3.4). 

 

Table 3.4 Effects of cultivar, salinity source, and cut  on dry matter content, total soluble solids 
(TSS), juice EC and juice pH in leaves of baby lettuce plants grown in a floating raft 
culture. 

 DM 
(%) 

TSS 
(ºBrix) 

EC 
(dS m-1) 

pH 

Cultivar (CV)     
Green Salad Bowl 5.1 a2 4.7 4.8 6.0 
Red Salad Bowl 4.8 b 4.8 4.7 6.0 

     
Salinity (S)     

Control 4.9 4.3 b 4.2 b 5.9 b 
NaCl 4.9 5.0 a 4.9 ab 6.0 a 
KCl 4.8 5.0 a 4.9 ab 6.0 a 
CaCl2 5.0 4.7 ab 5.1 a 5.9 b 

     
Cut (CUT)     

CUT 1 4.5 b 4.1 b 4.5 b 6.0 
CUT 2 5.3 a 5.4 a 5.1 a 6.0 

     
Significativitya     

CV * NS NS NS 
S NS * * *** 
CUT *** *** * NS 
CV × S NS NS NS NS 
CV × CUT NS NS NS NS 
S × CUT NS NS NS NS 
CV × S × CUT NS NS NS NS 

Different letters within each column indicate significant differences according to Duncan’s multiple-range 

test (p ⩽ 0.05). 
a Significance: *P< 0.05; **P≤0.01; *** P<0.001; NS, not significant. 
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3.3.7 Nitrate content 

No significant differences in the nitrate content were recorded between the two 

cultivars. The three chloride salts decreased the nitrate content, particularly CaCl2 

treatment showed the lowest content of nitrate in leaves. Finally, the second cut 

determined an effective reduction of nitrate content respect to the first cut (Fig. 3.3). 
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Figure 3.3 Effects of cultivar, salinity source and cut on nitrate (mg kg-1 fw) content in leaves of baby 
lettuce plants. Values are mean of three replicates. Different letters indicate significant differences 

according to Duncan’s test (p ⩽ 0.05). 
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Concerning the cut × salinity source interaction, we clearly observed that in the first 

cut the nitrate content was reduced in both KCl and CaCl2 treatments, whereas in the 

second cut the nitrate content was reduced in all saline treatments in comparison to the 

control with the lowest values recorded in the nutrient solution containing CaCl2 (Fig. 

3.4).   
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Figure 3.4 Effects of salinity source and cut interaction on nitrate (mg kg-1 fw) content in leaves of baby 
lettuce plants. Values are mean of three replicates. Different letters indicate significant differences 

according to Duncan’s test (p ⩽ 0.05). 

 

3.3.8 Lipophilic and hydrophilic antioxidant activity 

Red cultivar exhibited the higher lipophilic antioxidant activity (+15%, Fig. 3.5 A) 

than green cultivar; whereas the green cultivar had higher hydrophilic antioxidant 

activity than red cultivar (+16%, Fig. 3.5 B). LAA enhances in all saline treatments 

respect to control with the highest values observed in the first cut. HAA had higher 

values in the control than saline treatments and was higher in the second than in the first 

cut.  
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Figure 3.5 Effects of cultivar, salinity source and cut on Lipophilic (LAA) (A) and Hydrophilic (HAA) 
(B) antioxidant activities in leaves of baby lettuce plants. Values are mean of three replicates. Different 

letters indicate significant differences according to Duncan’s test (p ⩽ 0.05). 

 

3.3.9 Total ascorbic acid 

Red salad bowl cultivar showed a higher ascorbic acid content respect to the green 

cultivar; addiction of CaCl2 to the nutrient solution determined a significant increase of 

ascorbic acid content in lettuce leaves (Fig. 3.6). 
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Figure 3.6 Effects of cultivar, salinity source and cut on ascorbic acid content (mg 100 g-1 fw) in leaves 
of baby lettuce plants grown in a floating raft culture. Values are mean of three replicates. Different 

letters indicate significant differences according to Duncan’s test (p ⩽ 0.05). 

 

KCl and CaCl2 treatments enhanced ascorbic acid content in the first cut. In the 

second cut ascorbic acid content was reduced in NaCl and KCl treatments and with the 

highest values recorded in CaCl2 treatment (Fig. 3.7).  
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Figure 3.7 Effects of salinity source and cut interaction on total ascorbic acid (mg 100 g-1 fw) content in 
leaves of baby lettuce plants grow in a floating raft culture. Values are mean of three replicates. Different 

letters indicate significant differences according to Duncan’s test (p ⩽ 0.05). 
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3.3.10 Phenolic acids profile 

Analysis of phenolic acids demosntrated that red cultivar had higher values of 5-O-

caffeoylquinic acid (chlorogenic acid) (5CQA); 3,5-di-O-caffeoylquinic acid 

(isochlorogenic acid) (3,5 DCQA); Caffeoyltartaric acid (CTA); di-O-caffeoyltartaric 

acid (cichoric acid) (DCTA); meso-di-O-caffeoyltartaric acid (mDCTA), than green 

cultivar (Fig. 3.8 A,B,C,D,E).  

Saline treatment significantly influenced the content of the five phenolic acids. For 

instance, the highest content has been recorded in CaCl2 saline treatment, whereas the 

lowest values were recorded in KCl saline treatment. Second cut affected positively all 

phenolic acids examined.  
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Figure 3.8 Effects of cultivar, salinity source and cut on 5CQA (mg 100g-1 dw) (A), 3,5 DCQA (mg 

100g-1 dw) (B), CTA (mg 100g-1 dw) (C), DCTA (mg 100g-1 dw) (D) and  mDCTA (mg 100g-1 dw) (E) 
content in leaves of baby lettuce plants grown in a floating raft culture. Values are mean of three 

replicates. Different letters indicate significant differences according to Duncan’s test (p ⩽ 0.05). 
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3.3.11 Total phenols 

Red cultivar showed a higher content of total phenols in comparison to the green 

cultivar (Fig. 3.9). CaCl2 treatment significantly increases total phenols respect to the 

control and to the others two saline treatments. Finally, the second cut enhanced the 

total phenols content in baby lettuce. 
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Figure 3.9 Effects of cultivar, salinity and cut on total phenols content (mg 100g-1 dw) in leaves of baby 
lettuce plants grown in afloating raft culture. Values are mean of three replicates. Different letters indicate 

significant differences according to Duncan’s test (p ⩽ 0.05). 
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3.4 DISCUSSION 

Salinity can mainly affect plants with an osmotic or water-deficit effect that reduces 

the water potential of the nutrient solution and the water transition in plants. Then, if 

salts enter the plant these will cause an ion imbalance and toxicity known as ionic 

effect. The initial symptom of salinity is a growth reduction of plant but the persistence 

of salt stress can lead to reduced productivity and to death of plants (Parihar et al., 

2015). At physiological level salinity generates reactive oxygen species (ROS), 

including superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (HO•), 

and singlet oxygen (1O2) in plant that may damage macromolecules such as DNA, 

proteins, and membrane lipids. Plant defense is the removal of ROS or the production of 

various secondary metabolites, such as hydrophilic phenolics, lipophilic α-tocopherols 

and carotenoids, and water-soluble ascorbate and glutathione (Mahmoudi et al., 2012).  

In our study, a reduction in leaf area has been found in response to the salts 

application and a reduction in marketable yield and total dry biomass has been found in 

response to the NaCl and KCl applications. This is probably related to a reduction of K, 

Ca and Mg up take and to the accumulation of Na and Cl content in leaf tissue in the 

presence of NaCl and KCl. The highest Ca content in CaCl2 treatment seems to have 

contrasted the deleterious effect of Na and Cl. Furthermore, in the present research the 

green cultivar that has higher Ca content is the one that exhibited the highest values of 

leaf area, yield and total dry biomass. The highest marketable yield and dry biomass 

that we observed earlier in the second cut compared to the first cut could be associated 

to the better nutritional status even if Na and Cl concentrations were higher, but could 

not be considered critical since no visual symptoms of damage were observed. 

It is well-established that crop growth and yield are negatively affected by salinity 

(Colla et al., 2010). Also Dashti et al. (2009) found a low growth rate and a reduced 

absorption of Ca in Sorghum bicolor (L.) treated with NaCl and KCl, and Cramer et al. 

(1991) recorded a less Ca absorption in leaves of Hordeum vulgare by KCl and NaCl 

salinity. Our experiment demonstrated that salinity by NaCl reduce concentration of K 

in leaf, probably due to an intracellular competition with Na (Cerda et al, 1995; Parida 

and Das 2005), affecting consequently the K/Na ratio (Colla et al, 2012). In our 

experiment KCl saline treatment increased the K concentration, respect to the no-

salinized treatment, and was responsible for an excessive accumulation of Cl-, which led 

probably to a lower growth rate and photosynthetic activity. The competition between 
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different ions cause a nutritional deficit which led to a less growth rate (Grattan and 

Grieve, 1999). Ca is essential for the plants because it is involved in the stabilization of 

cell membranes and in the formation of ion channels across membrane. It is involved in 

stomata opening and closing mechanism and it plays a key role as secondary messenger 

in many physiological and cellular processes (Nedjimi and Daoud, 2009). According to 

Zhao et al. (2005), an increased flow of Ca ions into the cell seems can induce the 

production of secondary metabolites in the plant. In contrast with NaCl and KCl, saline 

treatment CaCl2 led to a higher yield and total biomass. Another study confirmed the 

increment of plant growth in Cassia angustifolia Vahl. adding CaCl2 to the nutrient 

solution (Arshi et al., 2006). In recent years, several studies are focusing on searching 

species that can develop tolerance mechanisms or adaptation to abiotic stress, taking 

care that plants belonging to the same genus and species may develop different 

tolerance mechanisms (Barbieri et al., 2012). This supports the result of our experiment, 

because in saline treatments, in particular in CaCl2, a higher stomata density per unit 

area and a smaller cell guard length were found. A smaller stomata is a sign of 

adaptation to the new conditions of cultivation, since stomata of small size are 

characterized by an high speed of opening and closing as a result of changes in turgidity 

of the guard cells (Drake et al, 2003). The speed of closing of stomata in stress 

condition is an important adaptive mechanism which allow a better gas exchange 

control and water use optimization. Many other mechanisms were described that 

increase salinity tolerance, as maintenance of integrity and function of cell membranes 

(Mancuso and Rinaldelli, 1996), resulting in better compartmentalization of potentially 

phytotoxic ions (Na, Cl) in vacuoles and selective absorption of ions. Furthermore, 

usually salt stress leads to an increase in the root / shoot ratio which should allow to the 

plant to have a relatively more developed root system in order to increase the absorption 

of water and nutrients (Colla et al, 2012). 

Concerning the effect of cultivar, the green pigmented genotype exhibited the higher 

leaf area, yield and dry biomass production. This could be attributed to a better 

nutritional status of baby lettuce in particular Ca and Mg. Our results were in line with 

those observed by Neocleous et al. (2014). 

Several previous studies showed that under mild to severe salt stress conditions plants 

accumulate high quantity of antioxidant since they play an important role of defense and 

tolerance against salt stress (Borgognone et al, 2013) and may contribute to ROS 

detoxification in plants exposed to salinity (Pardo, 2010). 
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In the current experiment, the saline treatments positively affected nutritional and 

qualitative parameters in both cultivars, in particular soluble solids, antioxidant activity 

and vitamin C. Kim et al. (2007) showed that antioxidant activity in lettuce can be 

related to the phenols content. The highest nutritional quality, in particular vitamin C 

content (Fig 3.6), phenolic acids content (Fig. 3.8 A-E), known to possess a wide range 

of therapeutic uses (Subhasree et al., 2009), have been recorded in ‘Red Salad Bowl’ 

treated with CaCl2 during the second harvest (Fig 3.8). Also Neocleous et al. (2014), 

reported a higher content of phenols in red pigmented cultivar. Finally, the nitrate 

content was significantly reduced with the three chloride salts in comparison to the 

control with the lowest values recorded in the CaCl2 treatment, probably to the 

antagonism effect between nitrate and chloride. Nitrate accumulation in leafy vegetables 

is of high interest to governments and regulators owing to the possible implications for 

health and to check that controls on the content are effective. Nitrate itself is relatively 

non-toxic but its metabolites may produce a number of health effects. Until recently the 

nitrate was perceived as a purely harmful dietary component which causes infantile 

methaemoglobinaemia, carcinogenesis and possibly even teratogenesis (Addiscott and  

Benjamin, 2004; Santamaria, et al, 2006). European maximum limit of nitrate 

concentration in lettuce of 3000-5000 mg kg-1 FW. In our experiment, according with 

results of Hu and Schmidhalter (2005), all treatments did not exceed this limit. In 

particular, in NaCl, KCl and CaCl2 treatments the nitrate contents were 1978, 1975, 

1593 mg kg-1 FW, respectively and lower than the non-salinized treatment (2210 mg kg-

1 FW). Moreover, from cut1 to cut2, a decrease in nitrate concentration was observed. 

This could be linked mainly to environmental factors. These include the increasing in 

light intensity that certainly played an important role in reducing the nitrate content by 

promoting the activity of nitrate reductase during May compared to April. 

The concentration of phenolic acids vary as a function of many factors such as 

genotype, cultural practices, environment and biotic/abiotic stresses. This was the case 

in the current experiment since the phenolic acids and total phenols were higher in the 

red cultivar. This may be because red color (red pigmentation) of lettuce is primarily 

due to anthocyanins, a subgroup of phenolic compounds. The highest phenolic acids 

concentration was observed mainly with CaCl2 and with NaCl treatment for target 

phenolic acids. Finally, in terms of cuts, the phenolic acids increased from cut 1 to cut 

2. These responses are linked to the considerable stress due to cuts. 
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3.5 CONCLUSIONS 

To summarize, our results confirmed that foating raft culture are a promising tool to 

obtain valuable baby lettuce production as well as improving quality aspects of leaf 

through proper management of salts in the nutrient solution. Green salad bowl cultivar 

exhibited higher yield, whereas the red salad bowl cultivar which was characterized by 

high content in AA, Vitamin C and phenolic acids. Our findings also demonstrated that 

green salad bowl exhibited higher yield, whereas the red pigmented lettuce was 

characterized by high content in AA, Vitamin C and phenolic acids. Finally, the second 

cut influenced positively the mineral composition and nutritional quality in both green 

and red pigment cultivars. 
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CHAPTER 4 

 

 

Salinity source alters mineral composition and 

metabolism of Cichorium spinosum 



82 
 

 

4.1 INTRODUCTION  

Saline soils represent 20% of the earth’s irrigated arable land (FAO, 2015). In saline 

soils, osmotic stress and/or ion toxicities caused mainly by excessive Na+ and Cl-

concentrations in the root environment are the major factors limiting crop productivity 

(Colla et al., 2010). High salinity, frequently caused by excess of sodium chloride 

(NaCl) can induce several morphological, physiological and metabolic changes leading 

to stunted growth (Rouphael et al., 2016a). Particularly, in vegetable crops, excessive 

concentration of NaCl causes chlorophyll and carotenoid degradation (Colla et al., 

2013a), limitation of photosynthetic capacity (Rouphael et al., 2017) as well as 

restriction of macro- and micronutrient uptake and translocation (Grattan and Grieve, 

1999), leading to significant yield and quality loses (Munns, 2005). 

The decline of productivity has been always associated to osmotic (i.e., water deficit 

stress) or ion-specific (i.e., Na+ and Cl-) effects (Tester and Davenport, 2003). However, 

the water deficit and ion excess effects cannot be fully discriminated. Salt stress will 

always cause an osmotic effect, and its magnitude (i.e. intensity) will always be directly 

proportional to salt concentrations (Colla et al., 2013b). Therefore, the application of 

iso-osmotic salt solutions obtained by using different salinity sources could be a 

meaningful approach to discriminate the effects of specific ion toxicities under salt 

stress conditions (Navarro et al., 2003; Pagter et al., 2009). Most studies dealing with 

salt tolerance of vegetables have been carried out considering NaCl as the predominant 

salt (Colla et al., 2012, 2013b). Limited number of studies were conducted with the aim 

to assess the effect of other types of salinity (Na2SO4, KCl or CaCl2) on plant growth, 

nutritional status and metabolic profiling; even though Na2SO4 and CaCl2 are present at 

higher concentrations than sodium chloride in soils, groundwater and surface water in 

many areas worldwide (Banuelos et al., 1993; Marschner, 2012).  

Most of the cultivated vegetables are salt sensitive, growing poorly in salinized soils 

(Colla et al., 2010). Therefore, an efficient strategy to assure productivity of vegetables 

under salinity conditions would be the selection of salt-tolerant genotypes and/or 

landraces (Rouphael et al., 2012a). In a Mediterranean environment, spiny chicory 

(Cichorium spinosum L.; Asteraceae family), also known in Greek language as 

stamnagathi, provides a niche product combining unique taste and fortified 

phytonutrient content, i.e. vitamins C and K1, lutein, β-carotene, tocopherols, phenolic 
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acids, fatty acids, minerals and glutathione (Zeghichi et al., 2003; Klados and 

Tzortzakis, 2014; Petropoulos et al., 2016). Stamnagathi is a native plant of the 

Mediterranean area, which abounds in the coastal areas of Greek islands (Crete) as well 

as in Cyprus, Italy (Sicily), Malta and Spain (Brieudes et al., 2016). The fact that 

stamnagathi usually grows in coastal areas characterized by sea water intrusion, 

indicates a potential tolerance to salt stress (Petropoulos et al., 2017). Despite the 

increasing economic importance of stamnagathi as a newly introduced vegetable crop, 

which is fostered by the increasing demand from consumers, information on its 

responses to salinity is largely fragmented. High salinity reduces significantly the fresh 

yield and protein content of stamnagathi, but increases total phenols, bitterness, 

antioxidant activity and mineral composition (Klados and Tzortzakis, 2014;Petropoulos 

et al., 2016). However, these studies have been conducted by exposing the plants to 

nutrient solutions containing NaCl, whereas nothing is known about the effect of other 

types of salinity (Na2SO4, KCl, CaCl2) on stamnagathi. In addition, the previous studies 

on stamnagathi have focused on target compounds (i.e. phenols, proteins, sugars, 

ascorbic acid, tocopherols), with limited information on the full set of metabolites 

recorded under salt stress conditions. In this regard, metabolomics provides a powerful 

tool for investigating and quantifying the full suite of small molecules or metabolites of 

a given biological system (Aliferis et al., 2014; Farag, 2014; Aliferis et al., 2015; Lucini 

et al., 2016; Rouphael et al., 2016b). The monitoring of the complete set of metabolites 

under salt stress conditions could improve our understanding to the specific 

physiological mechanisms underlying plant growth suppression imposed by salinity 

(Lucini et al., 2015; Tian et al., 2016). Moreover, global profiling of crop metabolome 

could also contribute to the identification of genetic manipulations necessary to enhance 

the nutraceutical value of crops (Rouphael et al., 2016a; Tian et al., 2016). 

Taking this background into consideration, the aim of the current study was to 

comparably evaluate the effects of four sodium and chloride salts (Na2SO4, NaCl, KCl 

or CaCl2) on growth, mineral composition and metabolism of C. spinosum grown in a 

closed soilless cultivation system. The four salts were tested at two different iso-osmotic 

concentration levels, to assess the ionic effects of the four salinity sources on plant 

metabolism. 
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4.2 MATERIALS AND METHODS 

4.2.1 Plant material, growth conditions and treatments 

The experiment was conducted in autumn 2015 in a glasshouse at the Agricultural 

University of Athens (Ν 37°59΄10΄΄, Ε 23°42΄29΄΄, altitude 24 m). Seeds of stamnagathi 

(Cichorium spinosum L.) originating from reproduction of seeds collected from wild 

plants growing at a mountainous location in Crete, were sown in seed trays containing 

peat on 2 September 2015. On 28 October 2015, seedlings at the stage of three true 

leaves were transferred into 36 closed-loop hydroponic circuits (experimental plots). 

Each circuit comprised one individual supply tank, a pump, irrigation pipes and one 

channel, 3.0 m in length, 0.025 m in width, and 0.03 m in height, which accommodated 

32 plants. The plant density was 9.2 plants m-2. C. spinosum plants were grown under 

natural light conditions. Inside the glasshouse, the daily air temperature was always 

maintained below 25ºC while the night temperature was always higher than 12ºC.  

The C. spinosum plants were supplied with nutrient solution which was constantly 

recirculating at a flow rate of 0.6 m3 h-1. The composition of the basic nutrient solution 

(NS) used to replenish nutrients and water absorbed by plants (replenishment NS) was 

as follows: 15.2 mM NO3
-, 1.2 mM H2PO4

-
, 2.9 mM SO4

2-, 8.0 mM K+, 5.2 mM Ca2+, 

1.5 mM Mg2+, 0.9 mM NH4
+, 15.0 μM Fe, 8.0 µM Mn, 6.0 µM Zn, 0.7 μM Cu, 30.0 

μM B and 0.5 μM Mo. The electrical conductivity (EC) and the pH of the replenishment 

NS were 2.5 dS m-1 and 5.6, respectively. The total volume of recirculating NS in each 

experimental unit amounted to 0.8 L per plant, i.e. 26 L totally. In each unit, the 

replenishment NS was automatically supplied from an individual tank using a floater to 

maintain a constant NS level in the supply tank. The NS consumed by the plants was 

recorded daily and replaced by refilling the replenishment tank. The pH in the 

recirculating NS was adjusted once per day to 5.6 by adding nitric acid (1 N) or 

potassium hydroxide (1 N) to the supply tank. All channels were covered with black-

white polyethylene sheets to avoid water evaporation. Furthermore, no drainage water 

was discharged and losses due to technical failures were negligible.  

The experiment treatments consisted of nine NS, particularly a basic NS used as 

control, and eight saline NSs with two different levels of total molar concentrations, 

obtained by adding to the replenishment NS different amounts of NaCl, KCl, Na2SO4 or 

CaCl2. Two addition dosages were applied for each salt resulting in a “low salinity” and 

a “high salinity” level. At each salinity level, the salt concentrations in the four different 

NSs were isosmotic, i.e. properly selected to achieve the same osmotic potential (Table 
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4.1). The levels of the osmotic potential (Ψs) at 20 oC (-0.286 and -0.480 MPa in the 

low- and high-salinity level, respectively) were calculated using the Van’t Hoff’s 

equation (Abebe et al., 2003): 

 

where, C is the concentration (mol L-1) of each solute including nutrients and salts used 

to induce salinity i is the number of ions per molecule of solute, R the perfect gas 

constant (0.00831 L MPa mol−1 K−1), and T the temperature (°K). Treatments were 

commenced two weeks after transplanting. All experimental units were arranged in a 

randomized complete block design with three replicates per treatment. Each 

experimental unit accommodated 15 plants. 

 

Table 4.1.Addition of different salts (mmol L-1) to a basic nutrient solution aiming at establishing eight 
salinity treatments differing in the osmotic potential level (-0.286 and -0.480 MPa at 20 oC, referred to as 
low and high salinity level) and the salinity source: 1: Control (standard nutrient solution); 2: low NaCl-
salinity; 3: high NaCl-salinity; 4: low KCl-salinity; 5: high KCl-salinity, 6: low CaCl2-salinity; 7: high 
CaCl2-salinity; 8: low Na2SO4-salinity; 9: high Na2SO4-salinity. 
 

Treatments NaCl  KCl  CaCl2 Na2SO4 Total 

ionic 

conc.  

ECdS/m 

1 0 0 0 0 0 2.10 

2 40 0 0 0 80 6.45 

3 80 0 0 0 160 10.27 

4 0 40 0 0 80 6.45 

5 0 80 0 0 160 10.27 

6 0 0 26.7 0 80 7.44 

7 0 0 53.3 0 160 12.17 

8 0 0 0 26.7 80 7.44 

9 0 0 0 53.3 160 12.17 
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4.2.2 Biomass determination and growth analysis 

Ten plants were sampled to estimate the fresh and dry weight of the plants at the 

beginning of the experiment. At the end of the experiment (56 days after transplanting) 

plants were separated into leaves and roots. Both plant tissues were dried at 80 ºC for 72 

h until they reached a constant weight and weighed again to determine the 

corresponding dry biomasses. The root-to-shoot ratio and the dry matter percentage 

were also calculated. 

The relative growth rate (RGR) expressed as g g-1 day-1 was calculated using the 

equation reported by De Groot et al. (2001): 

RGR = (lnW2 - lnW1)/(t2 - t1) 

where W1 and W2 are the fresh masses (g) of the above-ground plant part (shoot) at 

times t1 and t2 (days), corresponding to the beginning and to the end of the experiment, 

respectively. 

 

4.2.3 Mineral analysis 

The dried tissue samples were powdered using a blade mill, and passed through a 

40-mesh sieve. Sub-samples of all dried plant tissue samples were used for chemical 

analysis to determine the following elements: N, P, K, Ca, Mg, S, Na, and Cl 

concentrations. Total nitrogen was determined following the Dumas combustion 

technique using a C/N analyzer (Elementar, Hanau, Germany). Phosphorus, K, Ca, Mg, 

and Na were determined by dry ashing at 550 oC for 5 h, dissolving ash in 1 N HCl. The 

concentrations of K, Ca, and Mg in aqueous tissue extracts were measured using an 

atomic absorption spectrophotometer (Perkin Elmer 1100A, Waltham, MA, USA). P 

was measured photometrically as phosphomolybdate blue complex at 880 nm using a 

96-position microplate spectrophotometer (Anthos Zenyth 200; Biochrom, USA). The 

Na concentrations in aqueous extracts were determined by flame photometry using a 

Sherwood Model 420 (Sherwood Scientific, Cambridge, UK). The S concentration was 

extracted from 250 mg samples with deionized water at 80 ºC in a shaking water bath 

for 10 min (ShakeTemp SW22, Julabo, Seelbach, Germany). The resulting solution was 

filtered, diluted, and analyzed by ion chromatography (ICS-3000, Dionex, Sunnyvale, 

CA, USA). A conductivity detector with IonPac AG11-HC guard column and IonPac 

AS11-HC analytical column (Dionex Corporation) was used for the analysis of S. The 

determination of Cl in the plant-tissue extracts and nutrient solutions was performed by 

titration with AgNO3 in the presence of K2CrO4 (Eaton et al., 1995). 
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4.2.4 Leaf 1H NMR metabolomics in Cichorium spinosum 

4.2.4.1 Sampling and metabolite extraction 

At the end of the experiment, the top five fully expanded leaves of three different 

plants of each experimental unit were collected in falcon tubes (50 mL, Sigma-Aldrich) 

and immediately frozen in liquid nitrogen for metabolism quenching. Samples were 

stored at −80°C until further processing.Leaves were pulverized to a fine powder in a 

mortar using a pestle inliquid nitrogen. The pulverized tissues wereplaced in falcon 

tubes (50 mL) and immediately immersed in liquid nitrogen. Sample extraction and 

processing for1H NMR metabolomicswas performed as previously described (Aliferis et 

al., 2015). Briefly, the pulverized leaf tissues (100 ± 2 mg) were transferred into 

Eppendorf tubes (2 mL, Sigma-Aldrich) and for the water removal, theywerelyophilized 

for 24 h. The extraction of polar compounds was performed by adding to the dried 

extracts 1 mL deuterium oxide (D2O)containing 0.05% trimethylsilyl-2,2,3,3-d4-

propionic acid sodium salt (TSP) (Sigma-Aldrich Chemie GmbH, Munich, Germany) 

intoEppendorf tubes (2 mL). Initially, extracts were sonicated for 25 min and then they 

were kept under continuous agitation (150 rpm) for 1 h at 24°C. For the removal of 

debris, samples were centrifuged (12,000 × g) for 1 h at 4°Cand the supernatants were 

subjected to a second centrifugation (12,000 × g) for 30 minat 4°C. Supernatants were 

then collected and kept in Eppendorf tubes at −80°C until the acquisition of 1H NMR 

spectra. 

 

4.2.4.2 1H NMR analyses 

Extracts were placed in NMR tubes (5 mm Thin Wall Precision NMR Sample Tubes 

8" L, Wilmad, Vineland, NJ, USA) for the recording of 1H NMR spectra. 1H NMR 

spectra were recorded using a Bruker Avance spectrometer at 500 MHz equipped with a 

5 mm inverse detection probe. A total of 128 transients of 64 K data points were 

acquired per sample (90o pulse angle, 2 s acquisition time and 2 s recycle delay) with 

presaturation of H2O during the recycle delay.  

 

4.2.4.3 Data pre-processing and biomarker discovery 

The pre-processing and deconvolution of the obtained spectra, multivariate analyses 

and biomarker discoverywere performed as previously described (Aliferis et al., 2015) 

with minor modifications. Initially, spectra were Fourier transformed, their phase and 
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baseline were automatically corrected, and offsets of chemical shifts were corrected 

based on the signal of TSP at 0.00 ppm using the software Spectrus (ACD Labs, 

Toronto, Canada). Metabolite identification was based on chemical shifts, coupling 

constants (J) and comparisons to 1H NMR spectra of analytical standards in D2O. 

The spectral region between 0.70 and 8.80 ppm was integrated after the removal of 

regions such as, the one that corresponds to the water signal (4.70-4.90 ppm), using the 

“intelligent bucketing” option of the software. The obtained matrix was subjected to 

multivariate data analyses for the discovery of trends and biomarkers using the software 

SIMCA-P 13.0 (Umetrics, MKS Instruments Inc,USA) based on orthogonal projections 

to latent structures-discriminate analysis(OPLS-DA) (Aliferis et al., 2015). Data were 

pareto-scaled (1/HSD) and cross validation was performed based on the default 

software settings and the corresponding values of the explained variation (R2X and R2Y) 

and predictive ability, Q(cum)
2. The discovery of biomarkers of salinity was based on 

scaled OPLS regression coefficients (Efron and Gong, 1983).  

In addition to OPLS-DA for the visualization of the fluctuations in the plant’s 

metabolome in response to the various treatments, a cluster heat map in combination 

with two-dimensional (2D) hierarchical cluster analysis (HCA) was constructed using 

the software Matlab R2016a (MathWorks, Natick, MA, USA). HCA was performed 

applying the Ward’s linkage method. 

 

4.2.5 Statistical analysis 

Analysis of variance (one way-ANOVA) of the experimental data (plant biomass 

and mineral composition) was performedusing the software package Statistica for 

Windows 9.0 (Tulsa, OK, USA). To separate treatment means within each measured 

parameter, the Duncan’s Multiple Range Test was performed at P≤0.05 

 

4.3 RESULTS   

4.3.1 Biomass production and partitioning 

The shoot and root biomass, leaf dry matter content, relative growth rate (RGR) and 

root-to-shoot (R/S) ratio were affected by salinity but the effects were depending on 

both the level and the source of salinity (Fig. 4.1). The leaf fresh biomass decreased 

with low CaCl2- and Na2SO4-salinity, while low NaCl- and KCl-salinity at isosmotic 

concentrations had no effect on this growth parameter. At high salinity, all salts were 

detrimental to the production of fresh plant biomass without any significant differences 
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due to the source of salinity. The salinity-induced reductions in fresh shoot biomass 

resulted from commensurate reductions in the rates of fresh biomass accumulation, as 

indicated by the estimated RGRs.  

In contrast to the fresh shoot biomass, the dry shoot biomass was not impaired by 

the low-salinity treatments, regardless of the salt species, while at high salinity only 

CaCl2 was detrimental to the accumulation of dry shoot biomass in comparison with the 

control (Fig. 4.1). Nevertheless, the highest performance it terms of dry biomass 

accumulation was observed in the low KCl-salinity treatment; the dry shoot biomass in 

the latter was significantly higher not only than that measured in the high CaCl2-salinity 

treatment but also in comparison with those recorded at high NaCl-, high KCl-, and low 

CaCl2-salinity. The much smaller impairment of the dry shoot biomass by the tested salt 

treatments than that imposed to the fresh shoot biomass was due to a significant 

increase of the dry matter content by salinity, which tended to be stronger with 

increasing salinity level.  

With respect to the root growth, the low NaCl-salinity increased the root dry 

biomass production in comparison with the non-salinized NS and the CaCl2-salinity, 

regardless of the CaCl2-salinity level (Fig. 4.1). The root to shoot ratio in terms of dry 

biomass was increased by both levels of NaCl-salinity, while the other three salinity 

sources increased this ratio only at the highest level. 



90 
 

0

2

4

6

0.0

0.1

0.2

0.3

0.4

0

2

4

6

8

10

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.00

0.04

0.08

0.12

0.16

0.0

0.1

0.2

0.3

0.4

0.5

 
Figure 4.1. Leaf fresh weight (FW), leaf and root dry weight (DW), relative growth rate (RGR) of the 

fresh shoot, leaf dry matter content (DMC), and root to shoot (R/S) ratio (DW basis) in Cichorium 

spinosum plants grown in recirculating nutrient solution, as influenced by eight  salinity treatments 

differing in the osmotic potential level (-0.286 and -0.480 MPa at 20 oC, referred to as low and high 

salinity level, respectively) and the salinity source: 1: Control (standard nutrient solution); 2: low NaCl-

salinity; 3: high NaCl-salinity; 4: low KCl-salinity; 5: high KCl-salinity, 6: low CaCl2-salinity; 7: high 

CaCl2-salinity; 8: low Na2SO4-salinity; 9: high Na2SO4-salinity. Vertical bars indicate ± standard errors 

of means of four measurements. Similar letters indicate non-significant differences at P ≤ 0.05 
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4.3.2 Mineral composition and partitioning 

 

The leaf K concentration was reduced by the high NaCl-salinity and by both levels 

of the Na2SO4-salinity, while it was not affected by the CaCl2 salinity and increased by 

the KCl-salinity (Fig. 4.2). A similar effect was observed also in the roots with the 

exception that the root K was restricted also by low NaCl-salinity.  

The leaf Ca concentration was reduced only by low Na2SO4-salinity, while it was 

enhanced by CaCl2-salinity to levels related to the external CaCl2 concentration (Fig. 

4.2). In the roots, the Ca concentration was not reduced by any salinity treatment while 

it increased significantly only by high CaCl2-salinity.  

Both NaCl- and KCl-salinity reduced moderately the leaf Mg concentration to levels 

not influenced by their external concentration, while the Na2SO4 concentration imposed 

a much stronger suppression of the leaf Mg concentration (Fig. 4.2). The CaCl2-salinity 

had no impact on the leaf Mg concentration. In contrast to the leaf Mg concentration, 

the root Mg concentration was not significantly influenced by any salinity treatment, 

regardless of salt species and concentration level.  

Both the leaf and root Na concentrations were increased when Na salts were used to 

impose salinity, to levels related to the external Na concentration (Fig. 4.2). 

The total-N concentration was slightly reduced by KCl- and CaCl2-salinity at both 

concentration levels both in leaves and roots, while it was not influenced by Na2SO4-

salinity (Fig. 4.3). The NaCl-salinity reduced the total-N concentration at both 

concentration levels in the roots but only at the high level in the leaves.  

The leaf P concentration tended to increase by the low-salinity treatments regardless 

of the salt species, while at the high-salinity level, it was enhanced only KCl- and 

Na2SO4-salinity (Fig. 4.3). The root P concentration was also enhanced by salinity but 

the differences between the control and the Na2SO4-salinity were insignificant. 

The leaf sulphur concentration was reduced by KCl and CaCl2-salinity but only at 

the high concentration level, while it was not influenced by NaCl-salinity and was 

raised by Na2SO4 salinity (Fig. 4.3). In the roots, the S concentration was reduced only 

by the high KCl-salinity treatment.   

The concentration of Cl was raised by salinity imposed by chloride salts (NaCl, 

CaCl2 and KCl) in both leaves and roots, to levels related to the Cl concentration in the 

root zone, while it was not influenced by Na2SO4-salinity (Fig. 4.3).  
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Figure 4.2.Concentrations of Ca, Mg, K and Na in the leaves (left) and roots (right) of Cichorium 

spinosum plants grown in recirculating nutrient solution, as influenced by eight  salinity treatments 

differing in the osmotic potential level (-0.286 and -0.480 MPa at 20 oC, referred to as low and high 

salinity level, respectively) and the salinity source: 1: Control (standard nutrient solution); 2: low NaCl-

salinity; 3: high NaCl-salinity; 4: low KCl-salinity; 5: high KCl-salinity, 6: low CaCl2-salinity; 7: high 

CaCl2-salinity; 8: low Na2SO4-salinity; 9: high Na2SO4-salinity. Vertical bars indicate ± standard errors of 

means of four measurements. Similar letters indicate non-significant differences at P ≤ 0.05. 
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Figure 4.3.Concentrations of Total-N, P, S and Cl in the leaves (left) and roots (right) of Cichorium 

spinosum plants grown in recirculating nutrient solution, as influenced by eight  salinity treatments 

differing in the osmotic potential level (-0.286 and -0.480 MPa at 20 oC, referred to as low and high 

salinity level) and the salinity source: 1: Control (standard nutrient solution); 2: low NaCl-salinity; 3: high 

NaCl-salinity; 4: low KCl-salinity; 5: high KCl-salinity, 6: low CaCl2-salinity; 7: high CaCl2-salinity; 8: 

low Na2SO4-salinity; 9: high Na2SO4-salinity. Vertical bars indicate ± standard errors of means of four 

measurements. Similar letters indicate non-significant differences at P ≤ 0.05. 
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4.3.3 Effect of salinity on leaf metabolism of Cichorium spinosum 

4.3.3.1 Overview of the 1H NMR metabolomics analyses 
1H NMR metabolomics revealed the reproducibility and robustness of the applied 

experimental and bioanalytical protocols, as it is confirmed by the quality of the 

obtained spectra (Supplementary Fig. 4.1), the tight grouping between replications of 

the various treatments in the OPLS-DA score plots and the absence of outliers (Fig. 

4.4), and the tight clustering performing HCA (Fig. 4.5). The distances between the 

various points in the OPLS-DA score plots and the cluster distances performing HCA 

are proportional to the differences between the recorded metabolic profiles of the plants. 

Additionally, both the level and the sources salinity had a major impact on the observed 

discriminations as it is indicated by the tight grouping that was achieved performing 

OPLS-DA and setting either to define classes (Supplementary Fig. 4.2 and 4.3).  

Analyses were performed on the obtained NMR matrix following pre-processing of 

the data, which is composed of 254 buckets of 0.02 ppm width and contains information 

on the identified metabolites. In total 37 metabolites were identified and annotations of 

representative identified metabolites are displayed in Fig. 4.6 and 4.7 and in the 

Supplementary Fig. 4.1. 
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Supplementary Figure 4.1s. Representative 1H NMR spectra of Cichorium spinosum (Stamnagathi) leaves after exposure or not to 
salinity stress. Annotations for selected identified metabolites are displayed. 
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Supplementary Figure 4.2s. Orthogonal partial least squares-discriminant analysis (OPLS-DA) PC1/PC2 score plot of 1H NMR profiles of 
stamnagathi plants. Grouping was based on the level of stress. The ellipse represents the Hotelling T2 with 95% confidence interval. 
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Supplementary Figure 4.3s. Orthogonal partial least squares-discriminant analysis (OPLS-DA) PC1/PC2 score plot of 1H NMR profiles of 
stamnagathi plants. Grouping was based on treatment irrespective of the level of stress. The ellipse represents the Hotelling T2 with 95% 
confidence interval. 
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Figure 4.4. Orthogonal partial least squares-discriminant analysis (OPLS-DA) PC1/PC2 score plot of 1H NMR profiles of non-salinized (control) 
and exposed to low and high levels of salinity stress Cichorium spinosum (stamnagathi) plants (A), non-salinized (control) and exposed to high 
levels of salinity stress plants (B), and non-salinized (control) and exposed to low levels of salinity stress plants (C). The ellipse represents the 
Hotelling T2 with 95% confidence interval. 
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Figure 4.5. Cluster heat maps of the recorded 1H NMR profiles of non-salinized and exposed to low and high levels of salinity stress Cichorium spinosum 
(stamnagathi) plants (A) and selected region of the heat map with metabolite annotations (B). Two-dimensional (2D) hierarchical cluster analysis (HCA) 
was performed applying the linkage method of Ward. Rows represent metabolites or metabolic features and columns represent the various treatments 
being performed. Each cell is colorized based on the relative concentration of the corresponding metabolite in the sample using a color-scale ranging from 
-3 (light green) indicating low values to 3 (light red) indicating high values. 
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Figure 4.6. Orthogonal partial least squares (OPLS) coefficient plots for the 1H NMR metabolic profiles of Cichorium spinosum (stamnagathi) leaves 
performing pairwise comparisons between control plants and low level-stressed plants treated with the various stressors. Annotations for selected metabolites 
are being displayed. Influential metabolites for the observed discriminations between the metabolomes of control and salinity-stressed plants are displayed 
with Jack-knifed confidence intervals (P<0.05). Negative values of CoeffCS denote metabolites with higher concentration in stressed plants whereas positive 
values those with higher concentration in controls. Horizontal lines denote the level of CoeffCS for substantial differences (CoeffCS<-1 and CoeffCS>1). 
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Figure 4.7. Orthogonal partial least squares (OPLS) coefficient plots for the 1H NMR metabolic profiles of Cichorium spinosum (stamnagathi) leaves 
performing pairwise comparisons between control plants and high level-stressed plants treated with the various stressors. Annotations for selected 
metabolites are being displayed. Influential metabolites for the observed discriminations between the metabolomes of control and salinity-stressed plants are 
displayed with Jack-knifed confidence intervals (P<0.05). Negative values of CoeffCS denote metabolites with higher concentration in stressed plants 
whereas positive values those with higher concentration in controls. Horizontal lines denote the level of CoeffCS for substantial differences (CoeffCS<-1 and 
CoeffCS>1). 
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4.3.3.2 Effect of different salinity sources and levels on leaf metabolism  

Both low and high levels of salinity stress caused distinct changes in the plant 

metabolism (Fig. 4.4 and 4.5). These observations agree with the results concerning the 

effect of salinity stress on plant biomass production and mineral composition and 

partitioning shown in Fig. 4.1, 4.2 and 4.3, confirming the intimate link of plant growth 

and mineral composition with plant metabolism. 

Although distinct from the non-salinized control, salinity stress caused by CaCl2 and 

Na2SO4, resulted in minor changes in plant’s metabolic profiles, as indicated by the 

proximity between their corresponding groups (Fig. 4.4A and 4.5). On the other hand, 

exposure of plants to low and high levels of KCl- and NaCl-salinity resulted in 

substantial metabolic changes as indicated by the large distances between their 

corresponding groups (Fig. 4.4A and 4.5). At the high salinity level, the effect of KCl 

on plant metabolism follows a similar pattern to that of NaCl, with CaCl2 and Na2SO4 

forming two clearly distinct groups (Fig. 4.4B). This grouping is altered when plants 

were exposed to low salinity stress, with NaCl forming a distinct group (Fig. 4.4C). 

The fluctuations in the levels of the recorded metabolites or metabolic features that 

are responsible for the observed grouping and clustering of treatments, and were used 

for the dissection of the salinity effect on plant metabolism, are displayed in the cluster 

heat map of Fig. 4.5 and the coefficient plots in Fig. 4.6 and 4.7.  

In the cluster heat maps, clustering patterns within the data are observed, which can 

be used for the interpretation of the obtained phenotypes based on the metabolic 

changes (Fig. 4.5). It is evident that the various treatments cause distinct changes in the 

recorded metabolite profiles, and patterns can be discovered. For example, in Fig. 4.5B, 

it is evident that the relative concentrations of various carbohydrates [e.g., fructose, 

glucose (α andβ)], including sugar alcohols [e.g., myo-inositol] were higher in non-

salinized plants than in plants subjected to the low level of salinity stress.  

The results shown in the heat maps are confirmed by results of multivariate analyses 

in the coefficient plots (Fig. 4.6 and 4.7). In these plots, the fluctuations of metabolites 

are displayed for the pairwise comparisons between control plants and plants subjected 

to various salinity stresses. Among the identified metabolites, γ-aminobutyric acid 

(GABA), glutamate, pyroglutamate, L-proline, and sucrose were discovered as major 

biomarkers of the plant response to salinity stress (Fig. 4.6 and 4.7). Interestingly, the 

GABA levels were raised by all salinity sources, at both salinity levels, with the 

exception of CaCl2-salinity, which reduced its levels. On the other hand, the leaves of 
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salt-stressed C. spinosum plants contained substantially less glutamine, asparagine, 

fumarate, fructose, and glucose (α andβ). Additionally, the levels of the amino acids L-

leucine, L-isoleucine, and L-valine were lower in all salt-stressed plans but not in the 

plants exposed to CaCl2-salinity, which exhibited higher levels. Trehalose did not play a 

key-role in plant responses to salinity stress. Finally, based on the recorded metabolite 

profiles, aromatic compounds had a minor leverage on the observed discriminations, 

which implies that they do not play a key role in the responses of C. spinosum to 

salinity stress. 
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4.4 DISCUSSION  

Stamnagathi (C. spinosum) proved to be a highly tolerant plant species to salinity 

stress, given that at external salt concentrations as high as 53.6 mmol L-1 CaCl2 or 

Na2SO4, and 80 mmol L-1 NaCl or KCl, the shoot fresh and dry weights were reduced 

by maximum 25% and 20%, respectively. Additionally, at 40 mmol L-1 NaCl or KCl 

neither the fresh nor the dry shoot biomasses were impaired by salinity. These findings 

corroborate a previous report pointing to a high salt tolerance of stamnagathi when 

exposed to NaCl salinity (Klados and Tzortzakis, 2014). Our results showed that 

stamnagathi is tolerant not only to NaCl but also to other sources of salinity, although 

the tolerance to salts comprising only monovalent ions tends to be higher, particularly at 

lower salinity levels. The higher tolerance of stamnagathi to monovalent salt ions at low 

but not at high salinity, as indicated by the biomass data, is in agreement with the 

substantial metabolic changes observed at low compared to high levels of KCl- and 

NaCl-salinity, as indicated by the large distances between their corresponding groups. A 

higher susceptibility of cultivated vegetables to moderate salinity caused by salts 

containing divalent ions has been also reported by Sonneveld (1988). Nevertheless, at 

the high salinity level, all sources of salinity reduced similarly the fresh and dry biomass 

of the shoot, with the exception of CaCl2 which reduced the dry biomass more markedly 

than the other three salinity sources.  

Combined consideration of the plant biomass data indicates that the osmotic 

potential level is the dominant factor for the impact of salinity on stamnagathi, but the 

salinity source may also play a role, especially at lower salinity levels. Nevertheless, the 

dominating impact of the external osmotic potential level on the effects of salinity does 

not indicate that under saline conditions stamnagathi suffers merely from osmotic stress. 

Indeed, the plants in all treatments had a normal appearance without any wilting 

symptoms, which pointed to full osmotic adaptation. It is well-known that, under 

salinity conditions, the plants with a certain tolerance to salinity can decrease the leaf 

water potential by synthesizing compatible solutes in the cytosol and 

compartmentalizing the excess salts to the vacuoles to avoid cell dehydration (Shabala, 

2013; Bassil and Blumwald, 2014). Thus, the plants can maintain a sufficiently high 

water potential gradient between cells and the external solution, despite the salinity-

induced decrease in the external water potential (Greenway and Munns, 1983; Mansour 

and Ali, 2017). In agreement with this consideration, the shoot concentrations of K+, 
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Ca2+, Na+, SO4
2- and Cl- increased appreciably in the corresponding salinity treatments 

in comparison with the control when the concentrations of these ions in the external 

medium were high. This finding indicates that stamnagathidoes not rely on ion 

exclusion to combat salinity. As stated by Munns and Gilliham (2015), the vast majority 

of plants with a moderate to high level of salt tolerance are salt includers characterized 

by efficient salt compartmentalization into the cells.  

Since stamnagathi did not seem to suffer from lack of osmotic adaptation, while the 

external osmotic potential but not the salinity source proved to be the dominating factor 

for the observed salinity effects, it is plausible to suggest that the cost of osmotic 

adaptation was the causal factor for the observed decreases in dry biomass at high 

salinity. Indeed, the increased accumulation of compatible solutes in the cytosol has an 

energy-cost for synthesis of such compounds, for maintenance of the synthesizing 

machinery, and for its operation, as has been shown by several investigators (Parida and 

Das, 2005; Munns and Gilliham, 2015). Thus, the availability of metabolites for leaf 

area expansion is being decreased resulting in a gradual restriction of the whole-plant 

photosynthetic capacity in comparison with non-salinized plants, despite the 

maintenance of normal net assimilation rates per leaf area unit (Chaves et al., 2009).     

Compatible solutes in plants exposed to salinity or drought stress not only contribute 

to osmotic adjustment in the cytoplasm but also improve the tolerance to osmotic stress 

by stabilizing membrane lipids, proteins and other cellular structures (Munns and 

Tester, 2008; Slama et al., 2015). Compatible solutes used as osmoprotectants include 

mainly amino acids and their derivatives such as proline and glycinebetaine (Chen et al., 

2007; Mansour and Ali, 2017), carbohydrates such as sucrose (Juan et al., 2005) and 

mannitol (Khalid and Cai, 2011; Slama et al., 2015), and organic acids such as citrate, 

formate, lactate, acetate, succinate, and oxalate (Liu and Shi, 2010; Wang et al., 2011). 

The analysis of the metabolite profiles of stamnagathi under salinity stress imposed by 

various salts indicates that the metabolites γ-aminobutyric acid (GABA), glutamate, 

pyroglutamate, L-proline, and sucrose are key components of the osmoprotection 

mechanisms in this plant species. The CaCl2 salinity seems to be an exception with 

respect to GABA, and this may be associated with its lower tolerance to high salinity in 

comparison with the other three salinity sources in terms of dry biomass production. 

The increased levels of the amino acids L-leucine, L-isoleucine, and L-valine in the 

CaCl2-treated plants in comparison with the controls was presumably associated with 

impairments in their metabolism and not with an adaptation aiming at increased salt 
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tolerance. This result demonstrates that calcium accelerates the conversion of soluble 

proteins to amino acids and the conversion of glutamic acid to GABA or other amino 

acids (Gao et al., 2011). 

In contrast to the levels of glutamate and proline, those of glutamine and asparagine 

were reduced by salinity regardless of the salt source, indicating that these amino acids 

do not function as osmoprotectants in stamnagathi. Furthermore, the reduced levels of 

fumarate and the lack of any impact of salinity on the levels of organic acids indicates 

that osmotic adjustment in response to salinity is not based on enhanced biosynthesis of 

organic acids in stamnagathi. According to Sanchez et al. (2007), the reduced content of 

organic acids under salt stress may be due to increased contribution of inorganic cations 

to ionic balance in the vacuoles.  

In agreement with the results of the present study, Wu et al., (2013) found that the 

relative concentration of sucrose was enhanced in roots of barley, while those of 

fructose-6-P, glucose-6-P and 3-PGA decreased. The most important compatible solutes 

in barley were proline, sugars (sucrose, raffinose and trehalose), mannitol and inositol in 

roots, and raffinose, proline and some amino acids in leaves. The reduced levels of 

glucose and fructose in salt-stressed stamnagathi plants may be associated with the 

increased sucrose level, since these two hexoses are components of the latter. Thus, 

salinity may stimulate the utilization of glucose and fructose for sucrose biosynthesis 

aiming at osmotic adaptation in the cytoplasm, thereby lowering the levels of these two 

reducing sugars in the leaves. In a study of Fernandes et al. (2004), the sucrose content 

was almost three times higher in plants treated with 150 mM NaCl, while the glucose 

content decreased with salt stress, and the fructose content did not change significantly. 

These results indicate that the role of sucrose, glucose, and fructose to osmotic 

adaptation under salt stress conditions may exhibit some peculiarities in different plant 

species, although the increased sucrose levels seem to be a common response (Sanchez 

et al., 2007). 

In plants, GABA metabolism has different functions including osmotic and pH 

regulation (Kinnersley and Turano, 2000), nitrogen metabolism (Barbosa et al., 2010), 

and salt stress tolerance (Renault et al., 2010; Akçay et al., 2012). According to Xiang 

et al. (2015), exogenous GABA accelerated the ROS metabolism in chloroplasts, 

promoted the recycling of AsA-GSH and maintained the permeability of cell 

membranes thereby improving the defense efficiency of melon chloroplasts against 

salinity-alkalinity stress. Xiang et al. (2016) found that exogenous GABA alleviated 
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stress-related damage on the acceptor side of PSII in muskmelon seedlings exposed to 

salinity-alkalinity stress. Moreover, exogenous GABA supply altered the gene 

expression in roots under NaCl stress and the activation of multiple mechanisms 

involved in ROS production, regulation of protein degradation, hormone biosynthesis 

and PA metabolism (Shi et al., 2010). 

Reduced translocation of K+, Ca2+ and/or Mg2+ to leaves under salt stress conditions 

has been also reported as one of the causal factors of salinity-induced growth restriction 

(Yao et al., 2010; Shoresh et al., 2011; Wang et al., 2013). In the present study, 

significant reductions in leaf K+ concentrations were recorded only in plants exposed to 

high NaCl-salinity, and to Na2SO4-salinity at both salinity levels. However, the fresh 

and dry biomass in plants subjected to these salt treatments were not significantly lower 

than in those exposed to isosmotic levels of KCl- and CaCl2-salinity. Similarly, the leaf 

Ca2+ and Mg2+ levels were reduced only by Na2SO4-salinity but this salt did not result in 

a stronger reduction of shoot biomass than the other three salts. These results indicate 

that the adverse effects of salinity on stamnagathi were not due to antagonistic 

impairment of nutrient cation uptake.  

The decreased leaf K+ concentrations in plants exposed to NaCl- and Na2SO4
-

salinity, but not in those exposed to CaCl2- and KCl-salinity is associated with partial 

substitution of Na+ for K+, a response observed in tolerant plant species to salinity, such 

as sugar beet (Lessani and Marschner, 1978; Marschner, 2012). The reduction of the 

leaf Ca2+ and Mg2+ concentrations by Na2SO4-salinity but not by the other three salts 

tested in this study suggests that their uptake is affected not only by Na+ but also by an 

interaction of Na+ with the accompanying anion. According to Pagter et al. (2009), 

reduced tissue concentrations of Ca2+ and Mg2+ in plants exposed to Na-salinity may be 

due either to interference with their uptake by Na+, or due to reduction of their activity 

in the external solution caused by changes in ionic strength, ion-pair formation and 

precipitation. However, the effects of Na+ on Ca2+ and Mg2+ uptake may be offset when 

the accompanying cation is Cl-, as indicated by previous studies which showed that high 

external Cl- concentrations improve Ca2+ uptake (Nukaya et al., 1991; Voogt and 

Sonneveld, 2004). In agreement with the results of the present study, Reich et al., 

(2017) found a stronger decrease of Ca2+ and Mg2+ levels in Brassica rapa plants 

exposed to Na2SO4 salinity than in those exposed to NaCl-salinity.  

The increased P concentration in the leaves and roots of stamnagathi exposed to 

salinity agrees with a report of Gunes et al. (2007). On the other hand, Reich et al. 
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(2017) found decreased phosphorus concentrations in salt-stressed Brassica rapa plants 

exposed to NaCl-, KCl-, Na2SO4, and K2SO4-salinity. Phosphorus is involved in energy 

transfer in plant metabolism (Marschner, 2012) and this contrast in the response of plant 

P to salinity between C. spinosum and B. rapa may point to deployment of different salt 

tolerance mechanisms by these two species. Further studies are needed to elucidate 

these mechanisms and the involvement of P in salt tolerance. The slight decreases of 

shoot total-N in some salinity treatments does not seem to correlate with the salinity-

induced biomass reduction. Thus, it can be concluded that the growth reduction 

imposed by salinity was not a result of shortages in N and P uptake. Finally, the growth 

restriction imposed by salinity to stamnagathi does not seem to be related with specific 

Na+ or Cl- toxicity. Indeed, the restrictions in dry biomass accumulation were not 

associated with the presence of one of these ions to the salt used to impose salinity. 

 

4.5 CONCLUSIONS 

This study was commissioned to investigate whether salt effects on the salinity-

tolerant C. spinosum are predominantly imposed by the level of the external osmotic 

potential or by specific toxicities of salt ions. To monitor fluctuations in plant 

metabolism caused by different salinity levels and sources, 1H NMR metabolomics was 

applied which was successful in monitoring the undergoing metabolic changes. The 

obtained results indicate that the osmotic potential level is the dominant factor for the 

impact of salinity on C. spinosum, but the salinity source may also play a role. Although 

differences in dry biomass accumulation due to the salt species were observed only 

between CaCl2 and the other three salinity sources at the highest salinity level, the 

recorded metabolic profiles following salt stress exhibited distinct differences 

depending on both the level and source of salinity. Glutamate, pyroglutamate, L-proline, 

γ-aminobutyric acid (GABA), and sucrose were signatory metabolites enhanced by 

salinity stress in C. spinosum, which implies that they may be involved in intracellular 

osmoprotection mechanisms. Reductions in fresh and/or dry plant biomass did not seem 

to be related to salt-induced changes in tissue mineral levels. 



110 
 

REFERENCES 

Abebe, T., Guenzi, A.C., Martin, B., Cushman, J.C. (2003). Tolerance of mannitol-

accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131, 1748-

1755. 

Akçay, N., Bor, M., Karabudak, T., Özdemir, F., Türkan, I. (2012). Contribution of 

Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris 

CMSII mutant and wild type plants. J. Plant Physiol. 169, 452-458. 

Aliferis, K.A., Chamoun, R., Jabaji, S. (2015). Metabolic responses of willow (Salix 

purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H 

NMR spectroscopy metabolite profiling. Front. Plant Sci. 6, 344. 

Aliferis, K.A., Faubert, D., Jabaji, S. (2014). A metabolic profiling strategy for the 

dissection of plant defense against fungal pathogens. PLoS ONE 9(11): e111930. 

Banuelos, G.S., Mead, R., Hoffman, G.J. (1993). Accumulation of selenium in wild 

mustard irrigated with agricultural effluent. Agric. Ecosyst. Environ. 43, 119-126. 

Barbosa, J.M., Singh, N.K., Cherry, J.H., Locy, R.D. (2010). Nitrate uptake and 

utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana 

seedlings. Plant Physiol. Biochem. 48, 443-450. 

Bassil, E., Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: 

NHX-type cation/H+ transporters. Current Opin. Plant Biol. 22, 1-6. 

Bireudes, V., Angelis, A., Vougogiannopoulou, K., Pratsinis, H., Kletas, D., Mitakou, 

S., Halabalaki, M., Skaltsounis, L.A. (2016). Phytochemical analysis and antioxidant 

potential of the phytonutrient-rich decoction of Cichorium spinosum and C. intybus. 

Planta Med. 82, 1070-1078. 

Chaves, M.M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt 

stress: Regulation mechanisms from whole plant to cell. Ann Bot. 103, 551-560. 

Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P., Shabala, S. (2007). 

Compatible solute accumulation and stress-mitigating effects in barley genotypes 

contrasting in their salt tolerance. J. Exp. Bot. 58, 4245-4255. 

Colla, G., Rouphael, Y., Cardarelli, M., Svecova, E., Rea, E., Lucini, L., 2013a. Effects 

of saline stress on mineral composition, phenolic acids and flavonoids in leaves of 

artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 93, 

1119-1127. 



111 
 

Colla, G., Rouphael, Y., Jawad, R., Kumar, P., Rea, E., Cardarelli, M. (2013b). The 

effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. 

Hort. 164, 380-391. 

Colla, G., Rouphael, Y., Leonardi, C., Bie, Z. (2010). Role of grafting in vegetable 

crops grown under saline conditions. Sci. Hort. 127, 147-155. 

Colla, G., Rouphael, Y., Rea, E., Cardarelli, M. (2012). Grafting cucumber plants 

enhance tolerance to sodium chloride and sulfate salinization. Sci. Hort. 135, 177-

185. 

Efron, B., Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-

validation. The American Statistician 37, 36-48. 

FAO, 2015. The State of Food and Agriculture. http://www.fao.org/3/a-i4040e.pdf. 

Farag, M.A. (2014). Comparative mass spectrometry & nuclear magnetic resonance 

metabolomic approaches for nutraceuticals quality control analysis: a brief review. 

Recent Pat. Biotechnol. 8, 17-24. 

Fernandes, F., Arrabaça, M., Carvalho, L. (2004). Sucrose metabolism in Lupinus 

albus L. under salt stress. Biol. Plantar. 48, 317-319. 

Gao, H., Jia, Y., Guo, S., Lv, G., Wang, T., Juan, L. (2011). Exogenous calcium affects 

nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances 

short-term hypoxia tolerance, J. Plant Physiol. 168, 1217-1225. 

Grattan, S. R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural 

crops. Sci. Hort. 78, 127-157. 

Greenway, H., Munns, R. (1983). Interactions between growth, uptake of Cl- and Na+, 

and water relations of plants in saline environments. 2. Highly vacuolated cells. 

Plant, Cell Environ. 6, 575-589. 

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N. (2007). Salicylic 

acid induced changes on some physiological parameters symptomatic for oxidative 

stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant 

Physiol. 164, 728-736. 

Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M. (2005). Evaluation of some nutritional 

and biochemical indicators in selecting salt-tolerant tomato cultivars. Environ. Exp. 

Bot. 54, 193-201. 

Khalid, K.A., Cai, W. (2011). The effects of mannitol and salinity stresses on growth 

and biochemical accumulations in lemon balm, Acta Ecol. Sinica 31, 112-120. 



112 
 

Kinnersley, A.M., Turano, F.J. (2000). Gamma aminobutyric acid (GABA) and plant 

responses to stress. Crit. Rev. Plant Sci. 19, 479-509. 

Klados, E., Tzortzakis, N. (2014). Effects of substrate and salinity in hydroponically 

grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 14, 211-222. 

Lessani, H., Marschner, H. (1978). Relation between salt tolerance and long distance 

transport of sodium and chloride in various crop species. Aust. J. Plant Physiol. 5, 

27-37. 

Liu, J., Shi, D.C. (2010). Photosynthesis, chlorophyll fluorescence, inorganic ion and 

organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed 

stress. Photosynthetica 48, 127-134. 

Lucini, L., Borgognone, D., Rouphael, Y., Cardarelli, M., Bernardi, J., Colla, G. 

(2016). Mild potassium chloride stress alters the mineral composition, hormone 

network, and phenolic profile in artichoke leaves. Frontiers Plant Sci. 7, 948. 

Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., Colla, G. (2015). 

The effect of a plant-derived protein hydrolysate on metabolic profiling and crop 

performance of lettuce grown under saline conditions. Sci. Hort. 182, 124-133. 

Mansour, M.M.F., Ali, E.F. (2017). Glycinebetaine in saline conditions: an assessment 

of the current state of knowledge. Acta Physiol. Plant. 39, 56. 

Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants. Academic 

Press, Elsevier pp. 651. 

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167, 

645-663. 

Munns, R., Gilliham, M. (2015). Salinity tolerance of crops – what is the cost? New 

Phytol. 208, 668-673. 

Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 

59, 651-681.  

Navarro, J.M., Garrido, C., Martinez, V., Carvajal, M. (2003). Water relations and 

xylem transport of nutrients in pepper plants grown under two different salts stress 

regimes. Plant Growth Regul. 41, 237-245. 

Nukaya, A., Voogt, W., Sonneveld, C. (1991). Effects of NO3, SO4 and Cl ratios on 

tomato grown in recirculating system. Acta Hort. 294, 297–304. 

Pagter, M., Bragato, C., MAlagoli, M., Brix, H. (2009). Osmotic and ionic effects of 

NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Bot. 90, 43-51. 



113 
 

Parida, K.A., Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. 

Ecotoxic. Environ. Safety 60, 324-349. 

Petropoulos, S.A., Fernandes, A., Ntatsi, G., Levizou, E., Barros, L., Ferreira, I.C.F.R. 

(2016). Nutritional profile and chemical composition of Cichorium spinosum 

ecotypes. LWT-Food Sci. Technol. 73, 95-101. 

Petropoulos, S.A., Levizou, E., Ntatsi, G., Fernandes, A., Petrotos, K., Akoumianakis, 

K., Barros, L., Ferreira, I.C.F.R. (2017). Salinity effect on nutritional value, 

chemical composition and bioactive compounds of Cichorium spinosum L. Food 

Chem. 214, 129-136. 

Reich, M., Aghajanzadeh, T., Helm, J. Parmar, S., Hawkesford, M.J., De Kok, L.J. 

(2017). Chloride and sulfate salinity differently affect biomass, mineral nutrient 

composition and expression of sulfate transport and assimilation genes in Brassica 

rapa. Plant Soil 411, 319-332. 

Renault, H., Roussel, V., El Amrani, A., Arzel, M., Renault, D., Bouchereau, A., 

Deleu, C. (2010). The Arabidopsis pop2-1 mutant reveals the involvement of GABA 

transaminase in salt stress tolerance. BMC Plant Biol. 10, 20.  

Rouphael, Y., Bernardi, J., Cardarelli, M., Bernardo, L., Kane, D., Colla, G., Lucini, L. 

(2016b). Phenolic compounds and sesquiterpene lactones profile in leaves of 

nineteen artichoke cultivars. J. Agric. Food Chem. 64, 8540-8548. 

Rouphael Y., Cardarelli, M., Bassal, A., Leonardi, C., Giuffrida, F., Colla, G. (2012a.) 

Vegetable quality as affected by genetic, agronomic and environmental factors. J. 

Food Agric. Environ. 10, 680-688. 

Rouphael, Y., Colla, G., Bernardo, L., Kane, D., Trevisan, M., Lucini, L. (2016a). Zinc 

excess triggered polyamines accumulation in lettuce root metabolome, as compared 

to osmotic stress under high salinity. Frontiers Plant Sci. 7, 842.  

Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., De Pascale, S. (2017). 

Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas 

exchange and leaf anatomy of zucchini squash grown under saline conditions. J. 

Appl. Phycol. 29, 459-470. 

Sanchez, D.H., Siahpoosh, M.R., Roessner, U., Udvardi, M., Kopka, J. (2007). Plant 

metabolomics reveals conserved and divergent metabolic responses to salinity. 

Physiol. Plant. 132, 209-219. 

Shabala, S. (2013). Learning from halophytes: physiological basis and strategies to 

improve abiotic stress tolerance in crops. Ann. Bot. 112, 1209-1221. 



114 
 

Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F., 

Zhang, S.G. (2010). Effects of exogenous GABA on gene expression of Caragana 

intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene 

production. Plant Cell Environ. 33, 149-162. 

Shoresh, M., Spivak, M., Bernstein, N. (2011). Involvement of calcium-mediated 

effects on ROS metabolism in the regulation of growth improvement under salinity. 

Free Radical Biol. Medicine 51, 1221-1234. 

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., Savoure, A. (2015). Diversity, 

distribution and roles of osmoprotective compounds accumulated in halophytes 

under abiotic stress. Ann. Bot. 115, 433-447. 

Sonneveld, C. (1988). The salt tolerance of greenhouse crops. Neth. J. Agric. Sci. 36, 

63–73. 

Tester, N., Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. 

Ann. Bot. 91, 1–25. 

Tian, H., Lam, S.M., Shui, G. (2016). Metabolomics, a powerful tool for agricultural 

research. Intern. J. Molec. Sci. 17, 1871. 

Voogt, W., Sonneveld, C. (2004). Interactions between nitrate (NO3) and chloride (Cl) 

in nutrient solutions for substrate grown tomato. Acta Hort. 644, 359–368. 

Wang, X., Geng, S., Ri, Y.-J., Cao, D., Liu, J., Shi, D., Yang, C. (2011). Physiological 

responses and adaptive strategies of tomato plants to salt and alkali stresses. Sci. 

Hort. 130, 248-255. 

Wang, M., Zheng, Q., Shen Q., Guo, S. (2013). The critical role of potassium in plant 

stress response. Intern. J. Mol. Sci., 14, 7370-7390. 

Wu, D., Cai, S., Chen, M., Ye, L., Chen, Z., Zhang, H., Dai, F., Wu, F., Zhang, G. 

(2013). Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS 

ONE 8(1): e55431.  

Xiang, L.X., Hu, L.P., Hu, X.H., Pan, X.B., Ren, W.Q. (2015). Response of reactive 

oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress 

regulated by exogenousγ-aminobutyric acid. Chin. J. Appl. Ecol., 26, 3746–3752. 

Xiang, L., Hu, L., Xu, W., Zhen, A., Zhang, L., Hu, X. (2016). Exogenous γ-

aminobutyric acid improves the structure and function of photosystem ii in 

muskmelon seedlings exposed to salinity-alkalinity stress. PLOS ONE 11(10), 

e0164847. doi:10.1371/journal.pone.0164847 



115 
 

Yao, L., Wu, Z., Zheng, Y., Kaleem, I., Li, C. (2010). Growth promotion and protection 

against salt stress by Pseudomonas putida Rs-198 on cotton, Europ. J. Soil Biol. 46, 

49-54. 

Zeghichi, S., Kallithraka, S., Simopoulos, A.P. (2003). Nutritional composition of 

Molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). World Rev. 

Nutr. Dietetics 91, 1-21. 

 



116 
 

 

 

 

CHAPTER 5 

 

 

General conclusions 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



117 
 

 
The configuration of the two leafy vegetables: lettuce (Lactuca sativa L.) and spiny 

chicory (Cichorium spinosum L.) was analyzed in a multi-factorial approach accounting 

for the effects of cultivars, salinity sources and number of cut. Soilless culture in 

particular floating raft culture appears to be a promising tool to obtain valuable baby 

lettuce and spiny chicory production as well as improving quality aspects of leaf 

through proper management of salts in the nutrient solution.  

Under increasing level of NaCl in the nutrient solution the yield and growth of baby 

lettuce decreased with more detrimental effects on the green variety. However, the 

overall quality of baby lettuce increased at 20 mM NaCl whereas a significant decrease 

of the nutritional value was recorded at 30 mM NaCl. The CaCl2 treatment adopted in 

the second experiment was able to increase the nutraceutical properties of baby lettuce 

in particular the mineral and phenolic profile along with the anitoxidant capacity 

without a significant decrease crop productivity. The second cut inccured a significant 

increase in total phenols, vitamin C and anitoxidant activities. 

The results of the third experiment indicate that the osmotic potential level is the 

dominant factor for the impact of salinity on C. spinosum, but the salinity source may 

also play a role. Although differences in dry biomass accumulation due to the salt 

species were observed only between CaCl2 and the other three salinity sources at the 

highest salinity level, the recorded metabolic profiles following salt stress exhibited 

distinct differences depending on both the level and source of salinity. Glutamate, 

pyroglutamate, L-proline, γ-aminobutyric acid (GABA), and sucrose were signatory 

metabolites enhanced by salinity stress in C. spinosum, which implies that they may be 

involved in intracellular osmoprotection mechanisms.  

For a pratical point of view, the results obtained in the present PhD thesis can help 

the growers in the crop management of these potential leafy vegetables; they can help 

the consumer in the knowledge of the overall quality of leafy vegetables under 

differeent preharvest factors; and they are a good basement for other  researches. This 

can be helpful to understand some unknown mechanisms that lead to the biosynthesis of 

phytochemical compounds in these two target leafy vegetables. 
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