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Preface 

 

Within agricultural soil, non-living components and living organisms such as bacteria, fungi, 

protozoa, invertebrate animals and plant roots interact with each other contributing to the maintenance 

and productivity of agro-ecosystems. However, long-term use of intensive agricultural practices 

including monoculture, intensive tillage, intensive use of chemical fertilizers and application of 

agrochemicals negatively affect dynamics and functionality of agro-ecosystem, resulting in the “soil 

sickness” phenomenon. It represents a serious problem to the farmers because it causes a poor seed 

emergence, seedling mortality, stunted growth, reduction of yield and susceptibility to disease. Over 

the last 50 years, the researchers have largely studied soil sickness but the main cause has not yet 

been identified. However, several hypotheses have been proposed to explain it, including: i) soil 

nutrient depletion or imbalance; ii) build-up of soilborne pathogen and parasite populations coupled 

with a shift in soil microbial community composition and iii) release of phytotoxic and autotoxic 

compounds during decomposition of crop residues and plant litter. It was previously suggested that 

all proposed hypotheses have a common origin, i.e. the alteration of organic matter cycle caused by 

the intensive agricultural practices. 

Starting from this consideration, the main objective of this thesis was to evaluate the impact that 

different organic management strategies (i.e., different organic amendment types and application 

frequencies) on the recovery of soil affected by soil sickness. In detail, the work is composed of five 

chapters. In “Chapter 1”, an updated picture of the current knowledge on soil sickness, including a 

comparison between agroecosystems and natural plant ecosystems is provided. In “Chapter 2”, an 

explorative study was conducted in order to understand the diffusion and the main factors involved 

in the soil sickness of intensive baby-leaf cultivation. Subsequently, a soil affected by soil sickness 

was conditioned with ordinary soil management (i.e. use of mineral fertilizers and fumigation) and 

different organic amendment treatments (i.e. different organic amendments and application 

frequency) in order to compare the effects on crop yield, quality and health, as well as on soil fertility 

and soil microbial communities at the end of the first (Chapter 3) and second (Chapter 4) experimenta l 

year. Finally, in “Chapter 5”, soil conditioning for two years with ordinary and organic managements 

was carried out in order to evaluate the effects of these different treatments on disease suppression of 

soilborne phytopathogenic fungi and viruses. 
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Abstract 

Soil sickness (SS) is the rise of negative conditions for plant vegetative and reproductive 

performances induced into the soil by the plant itself. In natural ecosystems, plant ecologists refer to 

SS as negative plant-soil feedback (NPSF). Scope of this review is to provide an updated picture of 

the current SS understanding by an explicit comparison between agro-ecosystems and natural plant 

communities. By an extensive analysis of literature, we found that SS is pervasive in agro-ecosystems, 

occurring in 111 cultivated plants belonging to 41 taxonomic families. Concerning NPSF in natural 

plant communities, we found evidence of this phenomenon for a total of 411 vascular plants 

belonging to 72 plant families. NPSF occur in most of the terrestrial ecosystems, including tropical 

and temperate forests, coastal sand dunes, old fields and grassland, deserts, as well as heathland and 

tundra. Three main hypotheses have been proposed to explain SS: i. soil nutrient depletion or 

imbalance; ii. build-up of soilborne pathogen and parasite populations, coupled with a shift in soil 

microbial community composition; iii. release of phytotoxic and autotoxic compounds during 

decomposition of crop residues. Evidences from both agro-ecosystems and natural plant communit ies 

undoubtedly ruled-out the nutrient deficiency as a primary causal factor. Moreover, the massive use 

of mineral fertilizers, especially under intensive cultivation systems, appears an incorrect strategy that 

only exacerbates the decline of soil quality by inducing acidification and salinization. Soilborne 

pathogens are often isolated from symptomatic plants and many autotoxic compounds have been 

identified and quantified from sick soil. However, both the pathogenic and autotoxicity hypotheses 

are still unable to fully explain the species-specificity, as well as the long durability of SS observed 

in field conditions. The recent discovery that extracellular DNA (exDNA) has self-inhibitory effects, 

support the autotoxicity hypothesis, nevertheless this is a totally new topic, and more solid and 

systematic field investigations are needed. A better understanding of the causes of SS is a necessary 

step to develop eco-friendly solutions to overcome this problem. 

 

Keywords: Autotoxicity, Extracellular DNA, Plant residues phytotoxicity, Soil quality, Soilborne 

pathogens. 
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1. Introduction  

Soil quality is one of the central factors that control yield and crop health in an agro-ecosystem 

(Larkin 2015). Soil quality is defined as the disposition of the soil to function within ecosystem 

boundaries to sustain biological productivity, maintain environmental quality, and promote plant and 

animal health (Doran and Parkin, 1994). Agricultural practices like crop rotations, application of 

mineral fertilizers and organic amendment, tillage regime and the use of agrochemicals largely affect 

soil quality (Bastida et al., 2008; Parr et al., 1992; Wang et al., 2014). Indeed, soil quality derives 

from the interaction among physical, chemical and microbiological factors that, in turn, control water 

retention capacity, soil structure and stability of aggregates, organic matter dynamics, nutrient 

mineralization and suppression of soilborne pathogens (Abiven et al., 2009; Janvier et al., 2007). 

In the last decades, the spread of intensive agriculture caused a significant decrease in the primary 

productivity worldwide, and this has been linked to soil deterioration (Bennett et al., 2012). Soil 

erosion, salinity, sodicity (Naidu et al., 1995), soil compaction (Drewry et al., 2008; Kukal et al., 

2008), pollution by heavy metals and xenobiotics (Shen et al., 2005), decrease of soil organic carbon 

(Johnston, 1986), and the loss of beneficial microbiomes (Ibekwe et al., 2001), are all factors that 

reduce soil quality. In this broad context, a special case of soil quality decline is soil sickness. 

Soil sickness (SS) is defined as the rise of negative conditions for plant vegetative and 

reproductive performances induced into the soil by the plant itself (Bennett et al., 2012; Huang et al., 

2013; Mazzoleni et al., 2007). This phenomenon is known in agronomy as “soil fatigue” (Schreiner 

and Sullivan, 1908), or “replant disease problem” (Mai and Abawi, 1978). SS has been demonstrated 

to be strongly species-specific, i.e. mainly affecting individuals of the same species. In particular, 

sensitivity to SS decline with the increase of the phylogenetic distance among species (Zucconi 2003). 

Moreover, in the last three decades, researchers recognized the importance of SS in shaping the 

structure of natural plant communities and for the maintenance of their species diversity (Van der 

Putten et al., 2013). Plant ecologists refer to SS as Negative Plant-Soil Feedback (NPSF), stressing 

the mutual, although negative interactions between plant and soil. In ecology, NPSF is often referred 

as ‘Soil Carry-over Effects’ (Bartelt-Ryser et al., 2005), ‘Legacy Effects’, or ‘Historica l 

Contingencies’ (Kardol et al., 2007). However, despite the decadal research efforts addressed to SS 

and NPSF topics, the underlying causative mechanisms are still poorly understood, yet highly 

debated.  

The general scope of this review is to provide an updated picture of the current SS understanding. 

After an historical overview, a comprehensive analysis that includes studies on SS and NPSF has 

been discussed, thus providing a complete description of the mechanisms behind this complex 
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phenomenon. Moreover, an explicit comparison between agro-ecosystems and natural plant 

communities has been likewise included in order to promote new approaches to the understanding of 

this phenomenon. The review specifically aims to: 

i. Assess the occurrence of SS and NPSF in agro-ecosystem and natural plant communities; 

ii. Explore the underlying causative mechanisms, by comparing the main hypotheses proposed 

to explain this phenomenon; 

iii. Describe the methodological approaches, highlighting their strength and weakness. 

 

2. Historical overview 

During the Holocene, the human beings changed their lifestyle, switching from nomadic (i.e. 

moving from one place to another in response to variations in the season and climate) to sedentary 

(i.e. living for a prolonged period in the same place) (Gupta, 2004). Thus, animal hunting and natural 

fruit gathering were replaced by sedentary agriculture, with a consequent impact on the interact ions 

between plant and soil. 

The first evidence of soil sickness dates back to the time of ancient Greeks and Romans. In his 

botanical works, Theophrastus (ca. 371 - 287 BC) reported that chickpea (Cicer arietinum) doesn't 

reinvigorate the soil in which dwells but “exhaust” it (Rice, 1984). In the Roman Empire, Columella 

(4 – 70 AD) in his epic poem De Rerum Rusticarum, pointed out that the practice of planting a single 

crop year after year on the same land, such as barley, leads to SS. To overcome this problem, he 

suggested the use of manure or other organic materials as soil amendment, or the practice of crop 

rotation and fallow instead of monoculture. In the same period, Pliny the Elder (23-79 AD) wrote in 

his encyclopedic work “Natural History” that the plants grown near and below the shade of black 

walnut (Juglans nigra) are damaged by its own residues. To explain this phenomenon, later known 

as allelopathy, he hypothesized that plant roots or leaf litter could release phytotoxic substances in 

the surrounding environment which affect the growth of other plants (Rice, 1984). 

In the following centuries agronomists, horticulturists and foresters investigated the phenomenon 

of SS, but only in the 20th century a significant increase of scientific knowledge was achieved thanks 

to the development of new analytical techniques and scientific instruments. Pioneering works in the 

early 1900s reported evidences that phytotoxic compounds are involved in SS (Benedict, 1941; 

Proebsting and Gilmore, 1941; Russell and Petherbridge, 1912; Schreiner and Shorey, 1909). The 

attention on phytotoxic compounds derived from root exudates, decaying plant debris and sick soil 

reached the peak in the 1960s and 1970s (Börner, 1960; Collina and Zucconi, 1967; Patrick, 1971). 
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The role of phytotoxic compounds in SS was recently challenged by the discovery that extracellular 

DNA had species-specific inhibitory effect on plants (Mazzoleni et al., 2015a).  

In the 1960s, several studies demonstrated that soil sterilization reduces or avoid the rise of SS, 

suggesting that detrimental microbes are involved (Hoestra, 1968; Savory, 1966). Since that time, a 

large number of soilborne pathogens and plant parasitic nematodes have been isolated from soils or 

diseased plant roots. Patrick and co-workers (1963) firstly proposed the hypothesis that phytotoxic 

compounds, either released by roots during exudation or during decomposing of plant residues, 

indirectly promote the activity of soilborne pathogens by weakening the plant and, consequently, 

reducing its resistance. 

Plant ecologists, in contrast, did not recognise the importance of SS in shaping natural ecosystem 

until the 1990s. SS probably was unnoticed because in natural ecosystems plants live in mixed 

communities, with monospecific stand occurring only under specific ecological conditions 

(Mazzoleni et al., 2007). Because the impact of SS on conspecifics is the reduction of individua l’s 

vigour and dominance in favour of other species, in mixed communities it is difficult to observe and 

isolate SS effects. This can be detected only in long-term field studies that monitor population 

dynamics at an individual scale. In this regard, Watt (1947) for the first time described species 

alternation in time and space in heathland dominated by the shrub Calluna vulgaris. Here, this species 

was unable to regenerate over the same physical place, driving to a sort of a natural rotation with 

other species. Few years later, in USA and Australia it was noticed that after clear-cutting several tree 

species, including Sequoia sempervirens (Florence, 1965), Eucalyptus pilularis (Florence and 

Crocker, 1962), and Grevillea robusta (Webb et al., 1967), were unable to regenerate in stand 

previously occupied by conspecifics. The authors proposed that regeneration failure was caused by 

the accumulation of unidentified, autotoxic factors (Webb et al., 1967). However, these scattered 

observations were considered by ecologists as a “noise” and the SS process was ignored as important 

in ecological frameworks. In the 1990s, thanks to some key studies, SS gained consideration to fully 

understand natural plant communities. Van der Putten et al. (1993) demonstrated that soilborne 

pathogens and plant-parasitic nematodes are responsible for the successional replacement of Marram 

grass (Ammophila arenaria) in sand dune communities. Bever (1994) reported that herbaceous 

species from old-field suffer when cultivated in soil previously used by conspecific, and coined the 

term “negative plant-soil feedback” (NPSF). Later, the same author proposed a conceptual framework 

where NPSF process was mechanistically linked to species coexistence, successional dynamics and 

the maintenance of plant diversity (Bever et al., 1997). Since then, the research interest on NPSF rose 

exponentially driving to a burst of publications on this topic (Fig. 1). 
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3. Occurrence of soil sickness and negative plant-soil feedback 

SS is pervasive in agro-ecosystems, and Table 1 provides an updated list of cultivated plants 

susceptible to SS. We found scientific evidence for the occurrences of SS in 111 species, belonging 

to 41 taxonomic families. In addition, SS has been observed by farmers in many other cultiva ted 

plants, but these data are mostly unpublished. SS is a severe problem for field crop cultivations, in 

horticulture and floriculture as well as for orchard trees (Table 1). In fact, it is very difficult to find 

any herbaceous plantations or orchards that do not experience the consequences of SS when cultiva ted 

in monoculture and monosuccession. As Table 1 highlights, major crops and trees are affected by SS 

including wheat, corn, rice, sugarcane, alfalfa, soybean, grape, and, among trees, peach, apple, olive, 

citrus, tea and coffee. The length of plant life cycle correlates with the susceptibility to SS, with short-

living plants (annuals) being the most sensitive, followed by perennial forb, tree, vine, shrub and 

perennial grass (Fig.  2b). Interestingly, in 21.6% of the cases, SS was found for plants belonging to 

the Poaceae and Fabaceae families (Fig.  2a). Members of the Fabaceae are especially sensitive to 

SS, with many species severely affected (e.g. alfalfa, cicer, clover, soybean, bean, etc.; Table 1). SS 

has been also reported for other plant families, including Apiaceae, Asteraceae, Brassicaceae, 

Cucurbitaceae, Liliaceae, Rosaceae and Solanaceae (Table 1). Another evidence that SS is a global 

phenomenon is that its cases have been observed and described for agro-ecosystems in various 

regions of the world, characterized by different climatic conditions and soil types (Fig.  2c). Examples 

of less common, yet recurring, SS cases in tropical and sub-tropical environments include Coffea 

arabica, Musa sp., Oryza sativa and Saccharum officinarum (Table 1). 

Concerning NPSF in natural plant communities, from an extensive review of the literature we 

found evidence of this phenomenon for a total of 411 vascular plants belonging to 72 plant families 

(Annex table 1; Fig.  3a). NPSF has been reported in most of the terrestrial ecosystems, includ ing 

tropical and temperate forests (Bennett et al., 2017; Mangan et al., 2010), coastal sand dunes (Oremus 

and Otten, 1981), old fields and grassland (Bezemer et al., 2006; Olff et al., 2000), deserts (Rutten et 

al., 2016), salt marshes (Castellanos et al., 1994), as well as heathland and tundra (Bonanomi et al. 

2005a). In our data set, NPSF occurrences were higher in temperate grassland followed by temperate 

forest, arid ecosystems and tropical forest (Fig.  3c). Few cases have been reported from wetlands and 

shrubland (Fig.  3c). These data, however, are partially influenced by the American and North 

European works, as they carried out most of the studies reported so far. Moreover, grasslands has 

been often selected as model system because plants are small, short-lived and easy to manipula te 

compared to shrubland and forest ecosystems. Therefore, the lower occurrence of NPSF studies in 
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ecosystems such as the Mediterranean shrublands or the boreal forest, does not necessarily indicate 

that these ecosystems are less subjected to the NPSF. 

NPSF affects plants of different life forms including annual (Kardol et al., 2007), perennial herbs 

and sedge (Jordan et al., 2008), shrubs (Sigüenza et al., 2006), and trees (Reinhart et al., 2005). 

However, annual plants occur more frequently than shrubs and trees, with some cases reported for 

vine and sedge (Fig.  3b; Annex table 1). This observation is consistent with the meta-analysis by 

Kulmatiski et al. (2008), reporting that annual and biennial plants experience more intense NPSF than 

perennials, and particularly woody species. The higher susceptibility of annual species toward 

negative feedback can be explained with the absence of storage organs (e.g. rhizomes, tubers, bulbs, 

twigs), which make these plants less capable of facing environmental stresses (Pastor and Durkee 

Walker, 2006). By the taxonomic point of view, Poaceae, Asteraceae and Fabaceae are the families 

with the highest number of reported cases of NPSF (Annex table 1). In natural ecosystems, nitrogen-

fixing Fabaceae are a key step in successions where they play an important role in the accumulat ion 

of nitrogen stocks into the soil (Bellingham et al., 2001; Walker et al., 2003). However, these species 

-after a peak of dominance that lasts few years- rapidly disappear (Chapin et al., 1994; Stinca et al., 

2015). This can be explained by NPSF that exacerbates the competitive interaction with later 

successional species. For example, Teste et al. (2017) reported that nitrogen-fixing species from 

Mediterranean shrublands of Southwest Australia suffer a stronger negative feedback compared to 

other woody species in the same environment. The high susceptibility of Fabaceae to NPSF is 

consistent with evidences from agro-ecosystems, where plants belonging to this family suffer intense 

and long-lasting SS (Table 1).  

In agro-ecosystems, where plants are cultivated in even-aged and pure monoculture stands, SS is 

easily detected as poor seed emergence or poorly developed patches (Fig.  4a). For perennial plants 

and orchard trees, a common but generic symptom of SS is the stunted growth and reduction of yield. 

In natural ecosystems, instead, plants generally grow in mixed communit ies and, therefore, the impact 

of NPSF depends on the growth form. For instance, a number of empirical and modelling studies 

demonstrated that the acquisition of different propagation modes provide a way to escape NPSF that 

develops in the “home” soil (Bever, 1994). Thus, different spatial patterns emerge from the interact ion 

between NPSF and growth forms with different life spans, as it occurs for annual herbs and trees 

(Vincenot et al., 2017). For trees and shrubs NPSF is spatially localized under their canopy, and so 

these plants escape the detrimental effects of “home soil” via seed dispersal (Packer and Clay, 2000). 

In other words, plants with a single rooting point, exhibit a distance-dependent inhibition, a sort of 

seedling repellence from their mother plant (Fig.  4b). Seedling establishment is reduced or even 
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completely absent under the canopy of the mother plant due to NPSF despite the high abundance of 

seeds, thus producing the so-called Janzen-Connell recruitment distribution (Fig.  4b; Janzen, 1970). 

This distribution has been described for shrubs (Bonanomi et al., 2008; Lambers and Clark, 2003) 

and, most commonly, for trees in both temperate and tropical forests (Augspurger, 1984; Mangan et 

al., 2010; Packer and Clay, 2000). At a community scale, the Janzen-Connell recruitment distribution 

drives to the alternation in time and space of tree species in forest ecosystems (Fox, 1977; Whittaker 

and Levin, 1977), thus contributing to the maintenance of species diversity (Mangan et al., 2010).  

Perennial herbaceous plants capable of clonal propagation, can actively move away from the 

hostile “home soil” by selective proliferation of new ramets in suitable soil patches (Blundell and 

Peart, 2004; Olff et al., 2000). This type of clonal spreading is characterized by wave-like patterns, 

and by the production of regularly shaped rings. In a recent review, Bonanomi et al. (2014) reported 

that herbs, shrubs and trees capable of clonal propagation, during their ontogenetic cycles, produce 

clones with a “ring” shape that progressively degenerate in the older inner area, thus producing a 

“dieback” central zone (Fig.  4c). This vegetation pattern has been also called fairy rings, rings, hollow 

crowns, central dieback, and monk’s tonsure-like gaps (Adachi et al., 1996; Lewis et al., 2001; Watt, 

1947). Interestingly, in many cases the inner area is colonized by multiple species, different from the 

dominant plant that generated the ring, thus resulting in an increased local biodiversity (Castellanos 

et al., 1994; Bonanomi et al. 2005b). Finally, short-lived plants (i.e. annual and biennial) can avoid 

the “home soil” by random searching for NPSF free sites through seed dispersal. In this regard, some 

studies reported that in natural grasslands short-lived plants show a rapid and continuous turnover at 

small spatial scales that, at the same time, results in a stable plant assemblage at community scale 

(Vincenot et al., 2017). In other words, plants of different species alternatively occupy soil patches in 

time and space, resulting in a rapid rotation of species. This spatial-temporal pattern has been called 

“Carousel model” (Maarel and Sykes, 1993) because plants continuously move in time and space, 

changing their spatial position into the grassland. In this contest, a parallelism between natural 

ecosystems and agro-ecosystems can be highlighted: in the first, plants move away from sick “home 

soil” through seed dispersal, or clonal propagation resulting in a self-emerging species alternation or 

rotation. In agro-ecosystems, instead, farmers overcome SS through the ancient, yet very effective, 

agronomic practice of crop rotation. 

 

4. Mechanisms behind soil sickness and negative plant-soil feedback 

Soil sickness is a complex, multi- factorial phenomenon influenced by plant species, crop rotation 

and soil management practices. In addition, environmental factors such as climate and soil type may 
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increase the complexity of the phenomenon (Venugopalan and Pundarikakshudu, 1999). In order to 

explain the mechanisms causing SS and NPSF, three main hypotheses have been proposed:  

4.1.  soil nutrient depletion or imbalance (Howeler, 1991; Xiang et al., 2009);  

4.2.  build-up of soilborne pathogen and parasite populations (Manici et al., 2013; Packer and 

Clay, 2000), coupled with a shift in soil microbial community composition (Kardol et al., 

2007; Klironomos, 2002); 

4.3. release of phytotoxic and autotoxic compounds during decomposition of crop residues (Singh 

et al., 1999; van de Voorde et al., 2012), or plant litter (Mazzoleni et al., 2015a). 

 

4.1. Soil nutrient depletion or imbalance 

The first hypothesis proposed to explain SS and the consequent decline of crop production, 

suggests that depletion or immobilization of soil nutrients cause deficiency in plants (Börner, 1960; 

Ehrenfeld et al., 2005). This hypothesis invokes the depletion of below-ground nutrients in the soil 

previously occupied by conspecifics. The majority of evidences from agro-ecosystem and natural 

plant communities does not support the nutrient depletion hypothesis. 

 At the beginning of the 1900s, pioneering studies compared ashes and nutrient content from 

different plants (reviewed by Börner, 1960). Nevertheless, differences in mineral composition 

resulted unrelated to SS and unable to explain the species-specificity of the phenomenon. A number 

of subsequent agronomical studies evaluated the capability of nutrient fertilization to overcome SS, 

but most of the experiments demonstrated that mineral fertilizers did not restore the normal growth 

in sick soils (reviewed by Zucconi, 2003). For example, in their study about the effects of cucumber 

monocropping on soil quality and plant growth performance, Zhou and Wu (2015) found that the 

content of macronutrients, such as nitrogen, phosphorus and potassium, in the soil increases with the 

number of cropping cycles. However, SS increased over time in monocropping, and the effects were 

particularly dramatic after five production cycles. 

Further evidences against the nutrient depletion hypothesis came from soilless cultivat ion 

experiments. Many experiments conducted in hydroponic systems, where the level of nutrients was 

continuously adjusted and balanced in function of the vegetative stage of the crop, showed that the 

reduction of plant performance observed with the “old” solutions cannot be related to a deficiency of 

any nutrients. In these cases, researchers ascribed SS to toxic substances released by the root system 

(Asaduzzaman and Asao, 2012; Asao et al., 2007; Yu et al., 1993), the spread of pathogenic microbes 

(Vallance et al., 2009), and to the interaction between toxic substances and harmful microorganis ms 

(Ye et al., 2004; Zhang, 1993). 
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Another set of data against the nutrient depletion hypothesis come from the observation that 

legumes, nitrogen-fixing species, develop severe NPSF (Tables 1 and Annex table 1; Figs 2 and 3). 

This is quite unexpected, considering that such type of plants enriches the soil with nitrogen and 

phosphorus. For instance, seedlings of Medicago marina, a plant that colonizes sandy shore in the 

Mediterranean basin, suffer a strong self-repulsion from mother plants (Bonanomi et al., 2008). 

Greenhouse experiments with M. marina showed that seedlings are strongly inhibited in the “home” 

soil collected under the crown of the mother plant, in comparison to seedlings grown in the same type 

of soil not affected by conspecific, and taken from the adjacent sandy beach deprived of nutrients. 

Surprisingly, the seedlings were stunted in “home” soil despite having 5 and 6 times the amount of 

nitrogen and phosphorus and a lower salinity compared with the surrounding sandy soil (Bonanomi 

et al., 2008). Similar findings were reported by Jennings and Nelson (2002) for the congeneric 

Medicago sativa in agricultural fields. More recently, Stinca et al. (2015) reported that the legume 

shrub Genista aetnensis that colonize the bare lava flow of the Vesuvius Grand Cone ameliorates soil 

characteristics. In detail, G. aetnensis in a relatively short time span (i.e. ~ 40 years) is able to build -

up an island of fertility under its canopy by accumulating stock of organic carbon, nitrogen, 

phosphorus, potassium, calcium, and magnesium and by improving the hydrological properties of the 

soil. On the other hand, G. aetnensis seedlings were absent in the field under the canopy of 

conspecifics, and greenhouse bioassays showed that seedlings growth was inhibited in “home” soil 

compared to the barren, nutrient deprived substrate collected far from the canopy of conspecifics. 

Noteworthy, coexisting phylogenetically-unrelated plants thrive in the soil enriched with nutrients by 

G. aetnensis (Stinca et al., 2015). Similar self-inhibitory effects have been demonstrated for other 

nitrogen-fixing species including Alnus sinuata during colonization of glacier moraine in Alaska 

(Chapin et al., 1994), Acacia papyrocarpa in the Australian desert (Facelli and Brock, 2000), and for 

the nitrogen-fixing tree Hippophae rhamnoides in sandy shores of North Europe (Oremus and Otten, 

1981). All these cases show the formation of “islands of fertility” with inhibitory effects on 

conspecific younger individuals. 

A further evidence against the nutrient depletion hypothesis came from clonal perennial plants 

forming “ring” (Fig.  4c). For this type of plants, several studies reported a higher nutrient 

concentration in the inner “dieback” area compared with the soil outside the ring (Adachi et al., 1996; 

Castellanos et al., 1994; Incerti et al., 2013; Lewis et al., 2001; Otfinowski, 2008; Ravi et al., 2008; 

Wikberg et al., 2002). In an early study, Curtis and Cottam (1950) found that the prairie sunflower 

Helianthus rigidus in the field is able to form clones with central “dieback”. In a subsequent 

experiment, the same authors reported that the growth of H. rigidus is not improved after the 
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application of mineral fertilizer in the inner area. Similarly, Lanta et al. (2008) observed that the soil 

in the dieback area of the sedge Eriophorum angustifolium, showed a significantly higher nutrient 

content compared to the external soil, and the same pattern has been reported for the perennial grasses 

Brachypodium rupestre (Bonanomi and Allegrezza, 2004), and Bromus inermis (Otfinowski el al., 

2016). Moreover, some studies reported an increased water holding capacity in the “dieback” zone 

of the clones, a result associated with the higher soil organic matter (Lanta et al., 2004; Pemadasa, 

1981; Pignatti, 1997). These results indicate that self-inhibition paradoxically occur in “home” soil 

where a higher soil quality is usually recorded. 

In conclusion, evidence from both agricultural and natural ecosystems indicate that the nutrient 

depletion hypothesis cannot be a satisfactory explanation for the development of SS and NPSF. 

However, the phenomenon of soil nutrient depletion does exist and has been frequently observed in 

poor and undeveloped countries where the use of fertilizers, both organic and synthetic, often 

represents a limit due to their poor availability or high cost. For example, in a study on yield decline 

in banana (Musa sp.), Bekunda (1999) shows that the intensification of intercropping practice, the 

removal of crop residues and the poor application of fertilizers have led to a loss of soil fertility and, 

consequently, to a reduction in banana production. Similar results were reported for the cultivat ion 

of cassava (Manihot esculenta) by Howeler (1991). In this case, the continuous cultivation under low 

input of fertilizers has determined a soil nutrient depletion, especially in potassium, with negative 

effects on crop production. 

 

4.2. Soilborne pathogens and microbial shift 

Soil microorganisms are key components of natural and agricultural ecosystems, given their 

contribution to chemical and biological processes including break-down of organic matter, carbon 

and nitrogen cycles, stabilization of soil aggregates, nutrient acquisition, and degradation of 

environmental pollutants (Bever, 1994; Bronick and Lal, 2005; Ehrenfeld et al., 2005; Kardol et al., 

2006; Reinhart and Callaway, 2006). The composition and abundance of soil microbes are controlled 

by soil properties (e.g., temperature, moisture, aeration, pH), but also by higher plants through 

rhizodeposition (Paterson et al., 2007), and accumulation of leaf and root debris (Wardle et al., 2004; 

Zak et al., 2003). In this way, plants promote the development of beneficial microbes such as nitrogen 

fixing bacteria and mycorrhizal fungi (Artursson et al., 2006; Hayat et al., 2010), but may also favour 

the spread of soilborne pathogens, plant parasitic nematodes and deleterious rhizobacteria (Bennett 

et al., 2012; Huang et al., 2013; Shipton, 1977). 

http://www.springerlink.com/index/qmw452667224v887.pdf
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The hypothesis that SS is due to the accumulation of pathogens in the soil was proposed after the 

observation that soil sterilization restores crop productivity in soils subjected to monoculture (Savory, 

1966). For example, Hoestra (1965) reported that the poor growth of young cherry trees (Prunus 

avium) planted on soil previously occupied by the same species (“home” soil), was associated with a 

strong infestation by the endoparasitic nematode Pratylenchus penetrans, and by the soilborne fungus 

Thielaviopsis basicola. When the soil was fumigated, instead, an improved growth was observed 

supporting the hypothesis that harmful microorganisms are the main cause of the replanting problem. 

Since then, the efficacy of soil sterilization in restoring sick soil has been proved in several agro-

ecosystems (Table 1). Pankhurst et al. (2005) suggest that the poor growth and yield decline of 

sugarcane (Saccharum spp.) grown in continuous monoculture is due to the presence of deleterious 

soil organisms. In particular, they reported that both soil fumigation and the application of fungic ide 

combined with nematicide increased the growth and yield of sugarcane in comparison with the 

untreated soil. Concerning orchards, replant disease of apple has been reported in all major apple 

growing regions and extensively studied (Mazzola and Manici, 2012). Mazzola (1998) assessed the 

relative role of different soil microbial groups in the development of apple replant disease by the 

application of selective pesticides. The results demonstrate that the application of fungicides was as 

effective as soil pasteurization in improving the growth of plants, whereas the application of antibiot ic 

and nematicide did not improve plant performances. Cylindrocarpon destructans, Pythium spp., 

Phytophthora cactorum, and Rhizoctonia solani were repeatedly isolated from symptomatic plants in 

field conditions, confirming the key role of fungi and oomycetes in apple replant disease. However, 

the relative occurrence of Pythium and R. solani isolates within the root rot microbial complex largely 

varied from site to site. In Italy, Manici et al. (2003) confirmed that apple replant problem is 

associated with a complex pathogenic microbiota that includes R. solani, P. intermedium, 

Cylindrocarpon spp. and Fusarium solani. Several pathogens were involved also in the black root rot 

of strawberry, where R. solani, C. destructans, F. oxysporum, and F. solani play the major role 

(Manici et al., 2005; Neri et al., 1998). In natural ecosystems, Packer and Clay (2000) provide clear 

evidence of NPSF driving to the Janzen-Connell recruitment pattern for black cherry (Prunus 

serotina) in temperate forest of USA. In detail, the authors observed extensive seedling failure under 

conspecific adults, by identifying Pythium sp. as the primary causal agent. It is notable, from the 

aforementioned studies, that most of the pathogens associated with SS as well as NPSF are 

polyphagous fungi and oomycetes. The evidence that soilborne pathogens are consistently isolated 

from symptomatic plants supports the pathogenic hypothesis, but the polyphagous nature of these 

pathogens does not fit the paradigm because SS is highly species-specific. In fact, SS has been 
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associated with species-specific pathogens only in very few cases (Table 1). An exception is the 

asparagus (Asparagus officinalis) replant early decline caused by F. oxysporum f. sp. asparagi (Blok 

and Bollen, 1996). 

Although extensive research on soilborne pathogens and parasites has been carried out in 

agricultural systems, similar studies in natural eco-systems are relatively rare. On the other hand, the 

studies about NPSF in natural plant communities are numerous (Fig.  1; Annex table 1), but most of 

these used a multi-spet, “black-box” approach (Bever, 1994; Kardol et al., 2007; Klironomos, 2002). 

In the first step, defined as the conditioning phase, soil is cultivated with selected plant species for 

which the feedback mechanism is investigated. During this phase, plant interacts with biotic and 

abiotic soil components by altering them. In the second step, the effects of the conditioning phase are 

assessed by comparing the growth of a new plant in self-cultivated or “home” soil, and non-self-

cultivated soil also indicated as “away” soil. If the plant grows more in the self than in the other 

cultivated soils, the feedback is considered positive, otherwise is negative. A large and still growing 

body of data demonstrates that the negative feedback is more common than the positive one (Annex 

table 1; Kulmatiski et al., 2008). Moreover, several studies found significant changes in microbiota 

composition using culture-based as well as culture-independent methods (Van Der Heijden et al. , 

2008; Bever et al., 2013). In some experiments, NPSF was transferred from different soils by using 

small aliquots of “sick” soil as a microbial inoculum (Kardol et al., 2007). Many researchers 

interpreted the observed NPSF as a result of some, often undescribed, microbial shift that occurs 

during the conditional phase of the experiment. In accordance with this, we pointed out that in 

literature the microbial shift was find as the main putative cause of NPSF in 65.8% of the studies 

(Annex table 1; Fig.  4). However, for a better understanding of the role of soil biota in NPSF, the 

evaluation of composition and changes in the entire microbial community is a necessary step. Recent 

studies have demonstrated that the net effect of plant-soil feedback is the balance between beneficia l 

and detrimental microbes. Bennett et al. (2017), using 55 populations of North American trees 

reported that soil collected beneath conspecifics, showed NPSF for most of the studied species. Most 

notably, the type of mycorrhizal association with plant species explained a large fraction of the 

variation in NPSF, with arbuscular mycorrhizal trees suffering a more intense NPSF than 

ectomycorrhizal ones. The authors suggested that ectomycorrhizal trees may protect plant roots from 

soilborne pathogens that accumulate under conspecifics. Similar findings were reported by Teste et 

al. (2017) from hyper-diverse Australian shrublands. In this work NPSF has been considered as the 

result of an imbalance of soil microbiota, with plants harboring ectomycorrhizal fungi that are more 

protected from detrimental microbes compared to plants that establish the symbiosis with arbuscular 
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mycorrhizal fungi. It is interesting to note that many cultivated plants, which suffer strong SS, are 

associated with arbuscular mycorrhizal fungi.  

 The hypothesis that SS is associated to soilborne pathogens presents some strengths and 

several weaknesses. The effectiveness of soil sterilization to overcome SS is often interpreted as a 

clear-cut proof that harmful microorganisms are the main driving factors of SS. However, an 

improved plant growth in sterilized compared to non-sterilized soils can be related also to other side 

effects of this treatment. Soil sterilization alters biotic and abiotic soil properties, providing a nutrient 

flush resulting from a rapid mineralization of the dead microbes (Troelstra et al., 2001). In addition, 

organic phytotoxic compounds may be subjected to thermal degradation. Therefore, the greatest 

availability of nutrients or the degradation of toxic compounds induced by soil sterilization may 

accidentally reduce the negative effects and promote positive vegetative responses in plants driving 

to ambiguous interpretation of the results (Troelstra et al., 2001). On the other hand, the frequent 

isolation of pathogenic oomycetes, fungi and parasitic nematodes from symptomatic plants strongly 

supports the pathogenic hypothesis. However, the observation that most of the isolated microbes are 

polyphagous is not coherent with the species-specificity of SS.  

In the last few years, the assumption that sick soil is associated to one or few specific microbes 

progressively evolved towards a more complex idea that involves an unbalance in the microbiota that 

generates inhospitable soil conditions. Recent studies based on high-throughput sequencing of 

bacterial and eukaryotic rRNA gene markers revealed that soil is inhabited by thousands of different 

species that form complex food-web (Mendes et al., 2013; Bonanomi et al., 2016). The extensive 

application of new analytical tools will be very useful to establish if a sick soil is related to an overall 

shift in soil microbiota structure, rather than to changes in single or few microbial species.  

 

4.3. Phytotoxicity and autotoxicity 

The idea that harmful chemical compounds, either released through root exudation or by 

decaying of plant debris, are involved in SS dates back at the beginning of the 1900s (Russell and 

Petherbridge, 1912; Schreiner and Shorey, 1909). Only few studies, however, clearly demonstrated 

that plants exudate trough the roots chemical compounds that specifically harm conspecifics (Perry 

et al., 2005; Webb et al., 1967). The authors explain this event as a density-dependent regulation of 

population to avoid overcrowding and reduce intraspecific competition. The idea that SS could be 

caused by actively released toxins has been heavily criticized because such compounds are rapidly 

degraded by the soil microbes into non-toxic molecules, thus having a limited impact in field 

conditions (Fitter, 2003; Harper, 1977).  
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On the other hand, many studies reported that plant residues, either leaf or root debris, can have 

an inhibitory effect on plant growth (Table 1; Fig.  5). In controlled conditions, soil amendment with 

crop residues derived from conspecific impaired root and shoot growth of peach (Collina and 

Zucconi, 1967; Proebsting and Gilmore, 1941; Tagliavini and Marangoni, 1992), apple (Borner, 

1959), olive (Endeshaw et al., 2015), tea, coffee (Putnam, 1994), alfalfa (Miller 1996), and many 

herbaceous plant species (review by Patrick, 1971; Putnam, 1994; Table 1). Data from natural 

ecosystems further demonstrated that leaf litter can have a detrimental impact on plant growth. Three 

recent studies, based on 21 (Lopez-Iglesias et al., 2014), 64 (Bonanomi et al., 2011c) and 65 (Meiners, 

2014) different plant residues, demonstrated that litter inhibitory effects are common, but may largely 

vary in relation to the composition of plant residues, which in turn depends on plant biochemica l 

activity and on litter decomposition stage. Bonanomi et al. (2006) reported that phytotoxicity of leaf 

and root debris depends on plant functional type with the following rank: annuals >> perennials ≥ 

woody. Noteworthy, undecomposed leaves of nitrogen-fixing species were invariably the most toxic 

plant tissue. 

Microbial decomposition plays a key role in affecting phytotoxicity of plant debris. A better 

understanding of this process is crucial to appreciate the real role of crop residues and plant litter on 

SS and NPSF. During decomposition, the abundance and activity of nitrogen and phytotoxic 

compounds continuously change over time, because of sorption and polymerization on soil organic 

matter and clay minerals, as well as the chemical transformation driven by soil microbes (Blum et al., 

1999). Considering these processes, two mutually non-exclusive hypotheses have been proposed to 

explain the inhibitory effect of plant debris on root growth: nitrogen (N) immobilization by microbia l 

competition (Hodge 2004), and phytotoxicity by labile, low molecular weight organic compounds 

(Rice, 1984). According to the first hypothesis, in presence of decaying plant residues with a high 

C/N ratio, saprophytic microbes would compete with plants for N, causing a temporary 

immobilization of this nutrient (Hodge et al., 2000; Fig.  5). The second hypothesis sustains a direct 

negative effect on root growth exerted by a wide array of inhibitory compounds, early released by 

decomposing litter, including short-chain organic acids (Armstrong and Armstrong, 2001; Huang et 

al., 2010), tannins (Mizutani et al., 1979) and phenols (Chen et al., 2005; Chon et al., 2002). Examples 

of toxic compounds involved in SS and isolated from soil and plant debris include phlorizin for apple 

(Borner, 1959), amygdalin for peach (Patrick and Koch, 1958), medicarpin for alfalfa (Miller, 1996), 

caffeine for coffee (Chou and Waller, 1980), and coumaric, syringic and vanillic acids for rice (Chou 

and Lin, 1976). In this context, microbial decomposition is of utmost importance because it affects 

the impact of plant residues on plant growth, by modulating the relative abundance and activity of 
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phytotoxic compounds. Studies that specifically investigate the role of microbial decomposition 

reported a rapid degradation of most allelochemicals into non-toxic molecules in the early phases of 

this process (An et al., 2001; Bonanomi et al., 2011c). These studies demonstrated the occurrence of 

a temporal phytotoxic ‘window’ during decomposition of crop residues, which ranged from 5 to 30 

days. In all cases, however, phytotoxicity dropped in time and, after 60-90 days of decomposition, 

“aged” organic matter showed neutral or even stimulatory effects on root proliferation. 

All the aforementioned data, related to natural as well as to agro-ecosystems, demonstrated that 

root growth inhibition by undecomposed plant residues is a general phenomenon not restricted to few 

“allelopathic” plants. However, it is also well-established that phytotoxicity of plant debris is a 

transient phenomenon that usually lasts from few days to some weeks. Thus, some researchers raised 

serious concerns about the possible role of plant residue phytotoxicity on SS and NPSF (Fitter, 2003; 

Van Der Putten, 1997). Two main criticisms were addressed: i. toxins from plant debris are rapidly 

degraded by soil microbial activity, being ineffective after a few weeks, while SS in the field can last 

for months or even years; ii. many, if not all, of the organic compounds extracted from sick soil and 

plant residues (e.g. Huang et al., 2013; Rice, 1984; Singh et al., 1999; Chen et al. 2015), showed a 

general phytotoxicity, which is in contrast with the species-specificity of SS. For example, Armstrong 

and Armstrong (2001) associated Phragmites australis “die-back” to the accumulation in the 

sediment of propionic, butyric and caproic acids and sulphides produced during anaerobic 

decomposition of root and rhizomes. However, these low-weight carboxylic acids showed phytotoxic 

effects on a wide range of higher plants (Himanen et al., 2012). Singh et al. (1999) reported 76 cases 

of plant autotoxicity caused by their own residues or root exudates. In Table 1 we find out up to 60.2% 

of the experimental studies reporting soil sickness in agro-ecosystems ascribed to autotoxic ity. 

However, as observed also by Singh et al. (1999), autotoxicity was demonstrated exclusively using 

conspecific as test plants, while other phylogenetically unrelated species were not considered. This is 

a common bias in the current literature that leaves serious doubts about the real species-specificity of 

plant residues autotoxicity. 

It appears clear that most of the low molecular weight phytotoxic compounds can hardly explain 

SS and NPSF because of their short persistence into the soil and lack of species-specific effects. A 

recent finding, reporting the species-specific inhibitory effects of extracellular DNA (exDNA) 

(Mazzoleni et al., 2015a), may reconcile the toxicity hypothesis with the occurrence of SS. Mazzoleni 

et al. (2015a,b) reported that fragmented extracellular self-DNA (i.e. DNA originating from 

conspecifics) produces species-specific inhibitory effects on several wild plants. First, the analysis of 

plant debris showed a significant accumulation of exDNA during the decomposition process, 
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although in fragmented forms. Thereafter, in vitro experiments demonstrated that the inhibitory effect 

of self-DNA was highly species-specific. Noteworthy, the authors found that only highly fragmented 

self-DNA was effective (i.e. fragment size range between 50 and 2000 bp). In addition, the application 

of activated carbon, known to selectively adsorb allelopathic organic compounds, was not able to 

remove autotoxicity, neither to restore plant growth. Conversely, heterologous exDNA from 

phylogenetically unrelated plant species had no inhibitory effects. This is consistent with a previous 

work (Paungfoo-Lonhienne et al., 2010), where heterologous DNA was taken-up by root and used as 

a source of phosphorus. Moreover, the strong persistence of exDNA in the environment (Levy-Booth 

et al., 2007) is in agreement with the persistence of SS observed in both natural vegetation and agro-

ecosystems. Finally, since exDNA is destroyed during soil sterilization by autoclaving or gamma 

irradiation, the well-known effectiveness of this treatment to overcome SS cannot be used to 

discriminate between exDNA toxicity and the pathogenic hypotheses. Thus far, the authors concluded 

that self- exDNA is a good putative candidate to explain SS and NPSF (Mazzoleni et al., 2015a). The 

hypothesis that exDNA can be involved in SS is intriguing, but further works are needed to validate 

this idea. In detail, quantitative data are required about the accumulation of self- exDNA in field 

conditions, as well specific experiments to confirm the inhibitory effect of purified conspecific DNA 

on seed germination and root growth of cultivated plants (Barbero et al., 2016). 

Besides the underlying causal mechanisms, the autotoxicity hypothesis poses an evolutionary 

paradox: why a plant species should harm its own off-springs? Some authors suggested that 

autotoxicity acts as a density-dependent regulation mechanism to avoid population overcrowding 

(McNaughton, 1968; Perry et al., 2005; Singh et al., 1999). Our idea, instead, is that all living 

organisms, such as bacteria, fungi, algae and animals, produce by their metabolic pathways different 

catabolites (by-products and wastes). Why higher plants should be an exception? Interestingly, 

catabolic wastes that are toxic for the producing species may be at the same time a resource for other 

species. In this regard, it is notable that floating plant (e.g. Eichhornia crassipes, Lemna spp., Pistia 

spp.), mangrove forests (Avicennia spp., Nypa fruticans Wurmb., Rhizophora spp.), seagrass 

(Posidonia spp., Thalassia spp., Zostera spp.), seaweed and kelp forests (Fucus spp., Laminaria spp., 

Macrocystis pyrifera), as well as sessile animals (e.g. mussel, barnacle, polychaete and porifera) that 

live in aquatic environments, do not suffer autotoxicity at all because their wastes are continuous ly 

removed by flushing water (Bonanomi et al., 2010). In fact, stable and self-perpetuating monospecific 

stand in nature occurs only in aquatic environment where the plant mineral nutrition is almost 

completely decoupled from decaying of conspecific debris, thus nullifying their autotoxic impact. In 

contrast, in terrestrial ecosystems, autotoxicity accumulates in the close proximity of the producing 
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individual, resulting in a patchy, localized negative feedback neighborhood. Finally, we believe that 

SS results from the unavoidable constraint of localized waste accumulation combined with the sessile 

nature of terrestrial plants. 

 

4.4. Synergic interaction between pathogens and toxins 

SS is a complex, multifaceted phenomenon determined by an overall deterioration of soil quality. 

Unfortunately, most of available studies focused on a single causal factor to explain SS, with plant 

pathologists addressing the role of soilborne pathogens and parasitic nematodes, organic chemists 

searching for toxic molecules, and agronomists looking for depletion and imbalance of nutritiona l 

factors (Table 1). Only few researchers explored the possibility that multiple stress factors, both biotic 

and abiotic, may contribute to the development of SS.  

More than 50 years ago, Patrick and co-workers (1963) proposed that toxic compounds, either 

released by roots during exudation or during decomposition of plant residues, promote the activity of 

soilborne pathogens by weakening the plant, thus reducing their fitness and resistance to pathogens. 

Since then, several studies confirmed the Patrick’s hypothesis (Table 2). Xia et al. (2015) found that 

regeneration failure of Chinese fir (Cunninghamia lanceolata) in monospecific forest plantations was 

due to the strong concentration of cyclic dipeptides produced and released by the plant itself. These 

compounds not only were autotoxic for seedling roots, but also altered the microbial community 

composition, favouring the build-up of soilborne pathogens. A study carried out in hydroponic 

conditions, reported that the cinnamic acid contained in the root exudates of cucumber (Cucumis 

sativus) predisposed the roots to infection by the pathogen Fusarium oxysporum f. sp. cucumerinum 

through a direct biochemical and physiological effect (Ye et al., 2004). Studying the Asparagus 

officinalis replant disease problem, Hartung and Stephens (1983) reported that soil amendment with 

dried crown and root tissues promoted seedling attack by F. oxysporum f. sp. asparagi and F. 

moniliforme. Similarly, Bonanomi et al. (2007) found that tomato (Solanum lycopersicon) wilt ing 

caused by F. oxysporum f. sp. lycopersici increased when the soil was amended with tomato leaves 

that, in vitro, showed an autotoxic effect. Few years later, these finding were extended to polyphagous 

soilborne pathogens. Specifically, Bonanomi et al. (2011a) reported that alfalfa (Medicago sativa) 

seedling damping-off caused by Pythium ultimum and Rhizoctonia solani dramatically increased 

when soil was amended with alfalfa residues, an organic material having a strong autotoxic effect. 

The authors suggest that P. ultimum and R. solani, having the ability to growth saprophytically on 

crop residues, increased their potential inoculum, and this impacted the disease incidence and 

severity. Benizri et al. (2005) studied the bacterial community structure in both healthy and sick soils 
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aiming to understand the role of microbes and toxins in the peach replant disease. The authors 

observed a higher abundance of Bacillus strains in sick rather than in healthy soil, whereas an opposite 

trend was found for Pseudomonas strains. In addition, more than 60% of the strains isolated from the 

sick soil were able to produce cyanides as secondary metabolite. These results suggested that peach 

replant disease can be caused directly by the presence of pathogenic microorganisms, and indirect ly 

by the release of toxic compounds during the decomposition of peach root residues (Benizri et al., 

2005; Yang et al., 2012). 

Recently, Mazzoleni et al. (2015a) hypothesized that weakening of plants as a result of exposure 

to extracellular self-DNA with autotoxic effects, could increase its susceptibility to subsequent 

pathogen attack. However, the role of self-DNA in affecting plant-pathogen interactions is far to be 

fully understood, also in the light of the findings of Wen et al. (2009). Using the Pisum sativum-

Nectria haematococca pathosystem, these authors demonstrated that exDNA is a component of root 

cap slime and is necessary for the protection of root tip from pathogen attack. The selective 

elimination of exDNA from the rhizosphere by the application of DNase I, resulted in the loss of root 

tip resistance, driving to fungal infection. These apparently contradictory findings underline the 

importance of further studies to clarify the role of exDNA on plant-pathogen interactions. 

Finally, it should be pointed out that none of the studies listed in Table 2 demonstrated an 

effective reduced plant resistance after the application of purified chemical compounds or plant 

residues with autotoxic effect. Future studies based on physiological, proteomic and transcriptomics 

approaches are needed to test this hypothesis. 

 

5. Overcoming soil sickness and negative plant-soil feedback 

Farmers face SS since the time of ancient Greek and Roman Empire, being so forced to develop 

agronomic practices to overcome this problem. On the other hand, terrestrial plants that live in natural 

ecosystems evolved under the selective pressure of NPSF, driving single individuals to move in time 

and space to avoid their own “home” soil. The comparison between management strategies aimed at 

overcoming SS in agro-ecosystems and plant behavior to avoid NPSF in natural plant communit ies 

provide interesting parallelisms (Table 3). 

 

5.1. Crop rotation 

Crop rotation is probably the most ancient agronomic method to overcome SS, being already 

cited by Columella (4 – 70 AD) more than 2,000 years ago. Crop rotation alleviates SS as it decreases 

the pathogen inoculum, and it reduces the effect of autotoxic compounds in the soil (Curl, 1963; 
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Huang et al., 2013; Zucconi, 2003). These effects are achieved by mixing the residues of different 

crops that succeed in time. Plant debris of some Brassica species are also highly effective in 

controlling some soilborne pathogens and parasitic nematodes thanks to their high content in 

glucosinolates (Lawrence and Matthiessen, 2004; Lazzeri et al., 2004). Rotation between cereal crops, 

such as wheat and maize, with nitrogen-fixing legumes (e.g. clover, alfalfa, soybean, etc.) is probably 

one of the most common practices worldwide to alleviate SS. Alternation of grasses and nitrogen-

fixing legumes in natural grassland has been also reported (Turkington et al., 1977). Although the 

effectiveness of this rotation is commonly linked to an increased content of nitrogen in the soil, 

changes in soil microbiota and the alleviation of autotoxicity could be important as well. 

In natural plant communities, alternation of species in space and time is the most common 

strategy to escape NPSF (Table 3). In fact, alternation of different species has been observed in forest 

(Fox, 1977), shrubland (Watt 1947) and grassland (Maarel and Sykes, 1993). In general, plants move 

away from sick, “home soil” previously occupied by conspecific by mean of seed dispersal or clonal 

propagation. The resulting spatial and temporal patterns depend on the growth form, resulting in the 

Janzen-Connell distribution for trees and shrubs, “ring” and “wave” growth in perennial clonal plants, 

and a rapid turnover in annual species (Vincenot et al., 2017). In all cases, however, the plant 

community behaves in response to NPSF producing a sort of natural, self-emerging alternation or 

rotation of different species in time and space. We are still far from a comprehensive understand ing 

of dynamics and mechanisms behind natural alternations, but a better comprehension of these 

processes would be invaluable for modern and sustainable agriculture. 

 

5.2. Polyculture and organic amendment 

Polyculture, the contemporaneous cultivation of different plant species in the same field, is the 

most effective system to avoid SS. In fact, polyculture does not allow the development of SS because 

this require a certain time of monoculture to build-up in soil. Polyculture substantially mimics a 

natural ecosystem where different plant species coexist in mixed communities. Theoretical as well 

empirical studies demonstrated that polyculture reduces the incidence of diseases and pests by means 

of “herd” protection (Matson et al., 1997; Wills et al., 1997; Boudreau, 2013). In this model, 

heterospecific crowding protects different species because each individual is hidden by the 

surrounding vegetation, resulting in fewer host-pathogen compatible interactions. Polyculture can 

avoid the build-up of SS also trough a “dilution effect” of autotoxic compounds. In monospecific 

stand, single species plant debris accumulate punctually, and autotoxicity progressively increases. 

Conversely, in a multiple species stand different plant residues are mixed, resulting in the dilution of 
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autotoxic compounds. Thus, despite some unavoidable effects at the individual level, there is a 

positive outcome at the community level. Interestingly, under these assumptions, competitive effects 

occur on a short-term scale, but positive reciprocal species interactions emerge only if all species 

suffer from negative feedback (Bonanomi et al., 2005c). The role of mixing plant debris has been 

extensively studied in relation to decaying rate and nutrient dynamics (review in Gartner and Cardon, 

2004; Hättenschwiler et al., 2005), while no data are available about its feedback effect on plant 

growth. 

Unfortunately, polyculture cannot be applied in most of intensive agricultural systems because 

of their complex management and the large amount of manpower required. A practical method to 

alleviate SS is the application of exogenous organic amendments. By this technique, a certain amount 

of organic matter is applied to soil to improve physical, chemical and biological properties (Bulluck 

et al., 2002; Diacono and Montemurro, 2010; Reeves, 1997; Stark et al., 2007). Organic amendment 

operates by “diluting” the autotoxic effect of crop residues that are mixed with organic matter of 

different nature. However, the effectiveness of organic amendment to overcome SS depends on the 

amount of organic carbon applied and on the chemical quality of the amendment itself (Zucconi, 

2003).  

 

5.3. Replacing sick soil 

Removal of sick soil and its replacement with “fresh” one is a simple and effective method to 

overcome SS (Zucconi, 2003). For obvious economic reasons this method cannot be applied in field 

conditions, being limited to some cultivations in nurseries and in public as well private gardens. 

Interestingly, the replacement of sick soil has been observed under specific ecological condition in 

natural ecosystems. Studying sand dune communities in North Europe, Van der Putten et al. (1993) 

reported that the accumulation of soilborne pathogens and plant-parasitic nematodes are responsible 

for NPSF in Marram grass. However, detrimental soil conditions to this plant do not develop until 

sand accretion from the near seashore occurs. In fact, every year the shoot of this plant is buried by 

20-100 cm of sand blow material. Marram grass is adapted to burial, a stress that will kill most of 

other plants, thanks to creeping rhizomes. Moreover, the rhizome benefits of the “fresh” sand, free 

from any pathogen, thus remaining vigorous. A similar behaviour has been described for several 

grasses that live in sandy deserts (Danin et al., 2012).  

 Soil accretion commonly occurs during flooding along river banks. Bonanomi et al. (2014), 

studying the perennial sedge Scirpus holoshoenus that live in Italian river banks, found that this plant 

generates two types of tussocks according to different environmental conditions: i. loose tussocks 
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with low tiller density and central “dieback”; ii. compact tussocks with high tiller density and concave 

surface, without central “dieback”. After extensive plant excavation and analysis of rhizome 

architecture, the authors showed that in the first case plants form “rings” because the rhizomes grow 

radially and did not resprout in the inner, “dieback” area of the clone. Such rhizome architecture was 

found only in not inundated grasslands. In the case of compact and concave tussocks, the rhizome is 

able to grow vertically, following substrate accretion that occurred during previous flooding events. 

Orthotropic rhizome grown following tussock burial demonstrates that the new accreted soil, free 

from pathogens and toxins, is suitable for root development, differently from the soil present in the 

inner area of the clone. 

 

5.4. Removal of soil toxins 

Selective removal of phytotoxic compounds has been proposed as another strategy to alleviate 

SS and NPSF. In this regard, activated carbon (AC) has been used because of its strong capacity to 

adsorb organic chemicals, including pollutants and allelopathic compounds (Downie et al., 2009; 

Hille and den Ouden, 2005). AC sorption capability has been exploited in soilless system as well as 

in field conditions. For example, application of AC to circulating solution in hydroponic systems 

increases the productivity in tomato, and in asparagus of 15–30% (Asao et al., 2003; Yu et al., 1993; 

Yu and Matsui, 1994). Noteworthy, nutrient solutions collected after one cultivation cycle, resulted 

toxic for the seedling of conspecific plants, but no toxic effect was observed when the solution was 

treated with AC. Similar findings were reported for several cucurbit crops in soilless systems (Yu, 

2001). The use of AC in sick soil was less effective, with a significant alleviation of the replant 

problem in Asparagus (Motoki et al., 2006), but having negligible effects on other species (Petermann 

et al., 2008). The complex interaction between toxins, native organic matter, soil microbiota and AC 

may explain the variable results achieved in field conditions compared to soilless systems. In natural 

soils, biochar can accumulate as a result of natural or anthropogenic burning of vegetation (DeLuca 

et al., 2006; Glaser and Birk, 2012). Burning of crop residues or natural vegetation produces highly 

heterogeneous materials, ranging from little affected plant tissues, to a variety of charred substrates, 

up to mineral ash (González-Pérez et al., 2004). The amount and chemical properties of burnt organic 

residues depends on both the biochemical composition of the plant tissues (Knicker, 2007), and the 

fire intensity that is controlled by pre-fire biomass moisture, fuel spatial arrangement and local 

microclimatic conditions (Certini, 2005). For instance, in the Amazonian basin pre-Columbian 

populations developed the so-called “terra preta” or “dark earth” by repeating cycles of fire and 

cultivation, i.e. the slash-and-char cultivation system (Glaser and Birk, 2012). The described “terra 
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preta” contains very large amounts of biochar, reaching also 10-40% of the whole soil (Kammann et 

al., 2016). The accumulation of biochar and other pyrogenic organic materials transformed a poorly 

nutritious and highly weathered acidic soil into a fertile one, capable of sustaining mono-cropping of 

maize and other crops for centuries (Kammann et al., 2016).  

 Soil flooding has been applied by farmers to overcome SS in Japan and China. Periodical soil 

flooding, for several weeks or some months can potentially leachate water soluble autotoxic 

substances and control some soilborne pathogens (Newhall, 1955; Nie et al., 2009). For instance, rice 

(Oryza sativa) was subjected to a more intense yield decline in monoculture under aerobic cultivat ion, 

compared to flooded conditions (Nie et al., 2007; Peng et al., 2006). Moreover, periodical flooding 

of aerobic rice cultivation alleviated the symptoms of SS (Nie et al., 2009). Flooding has been proved 

to be effective against SS in field conditions also for sugarcane (Chou, 1995), but no studies 

investigated the real movement, and the eventual leaching, of the putative autotoxic compounds in 

the field. The effectiveness of flooding in overcoming, or in alleviating SS, is consistent with the lack 

of NPSF in plants that live in aquatic ecosystems (Bonanomi et al., 2010). As already stated, stable 

and self-perpetuating monospecific stand in nature can be observed only in aquatic environments, 

with examples that include floating (e.g. Eichhornia crassipes, Lemna spp., Pistia spp.), as well 

herbaceous perennial (Phragmites autsralis, Posidonia spp.) and woody (Avicennia spp., Rhizophora 

spp.) plants rooted in the sediments. In aquatic ecosystems, plants do not suffer autotoxicity and, 

therefore, NPSF because their wastes (i.e. leaf and root residues) are continuously removed by 

flushing water. Moreover, in such aquatic ecosystems, plant mineral nutrition is almost completely 

decoupled from decaying of conspecific debris because roots absorb nutrients from the water, thus 

the potential autotoxic impact of organic residues are nullified. Noteworthy, periodical “die-back” 

due to litter autotoxicity has been observed also in aquatic systems, but only after reductions of water 

regimes that, presumably, do not allow an efficient removal of decaying debris and their autotoxic 

by-products. Examples include the “die-back” of Phragmites autsralis (Armstrong and Armstrong, 

2001; Van Der Putten, 1997), Typha latifolia (McNaughton, 1968), as well as several seagrasses and 

seaweed (e.g. Borum et al., 2005; Frederiksen et al., 2007). In other words, we speculate that human-

managed monocultures can only be sustained in the long-term by decoupling the resource 

acquirement from autotoxic plant debris. This can be achieved by either removal of crop residues 

(e.g. by using burning, selective removal, etc.), or mixing the residues through crop rotation or 

consociation, or leaching autotoxic factors trough flooding or biochar sequestration. 
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6. Conclusions and future perspectives 

Soil sickness affects most of the major field crops, ornamental and horticultural species, as well 

as orchards. Intensive cultivations systems, based on monoculture, undeniably lead to the 

development of detrimental soil conditions that limit the cultivation of the same crop. There is an 

urgent need to find sustainable strategies to avoid or at the least alleviate SS, also considering the 

progressive ban of fumigants, that actually are the most effective method to temporary overcome the 

problem, and allow the cultivations. In this regard, a better understanding of the causes of SS is a 

necessary step to develop eco-friendly solutions. Evidence from both agro-ecosystems and natural 

plant communities undoubtedly ruled-out the nutrient deficiency as a primary causal factor of SS. 

The massive use of mineral fertilizers, especially in intensive cultivation systems, appears an incorrect 

strategy because it does not aim to solve the cause of SS, but it actually exacerbates the decline in 

soil quality often by inducing acidification and salinization (Bonanomi et al., 2011b; Ju et al., 2007).  

Soilborne pathogens have been often isolated from symptomatic plants and many autotoxic 

compounds have been identified and quantified from sick soil. However, both the pathogenic and 

autotoxicity hypotheses are still unable to fully explain the species-specificity, and the long durability 

of soil sickness in field conditions. In other words, the relative role of detrimental microbial consortia, 

and autotoxic factors in SS is far to be completely understood. Determining which microbes 

determine the observed plant decline require testing Koch’s postulates, which are based on the 

selective exclusion of all possible microbes one by one and adding them back again one by one. The 

enormous diversity of soil microbiota makes this approach practically infeasible, especially if all 

possible interactions are considered. Innovative approaches are required to circumvent this 

methodological limitation. Recently, Van der Putten (2017) described soil microbiome as an orchestra 

where different microbial groups contribute to the whole symphony. Then, which microbial group 

creates the dissonance in sick soil? Studies from natural ecosystems suggest that an unbalance 

between mycorrhizal fungi and soilborne pathogens is a pivotal factor. More holistic approaches, for 

instance based on metagenomics, would be very useful in agro-ecosystems where the reductionis t 

approach does not seem to give clear cut answers. The recent discovery that exDNA has self-

inhibitory effects renewed the interest on the autotoxicity hypothesis, nevertheless this is a totally 

new topic, and more solid and systematic field investigations are needed.  
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Figures and tables 

Fig. 1. Number of papers published in the last 117 years on soil sickness in agro-ecosystems, and 

negative plant-soil feedback in natural plant communities (data from Scopus accessed on March, 

2017).  
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Fig. 2. Relative occurrence of soil sickness cases (complete list reported in table 1) for plant families 

(a), life forms (b) and climate zones (c). 
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Fig. 3. Relative occurrence of negative plant-soil feedback cases (complete list reported in Annex 

table 1) for plant families (a), life forms (b), and climate zones (c). 
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Fig. 4. Examples of soil sickness in agro-ecosystems and plant soil feedback in natural ecosystems. 

(A) Fourth range lettuce cultivation showing extensive damping-off symptoms; (B) Seedling failure 

under conspecific tree resulting in the Janzen-Connell recruitment distribution in natural forest; (C) 

Examples of spot and “ring” formed by perennial grasses capable of clonal propagation (pictures 

taken by Giuliano Bonanomi). 
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Fig. 5. Schematic representation of autotoxicity effects associated with the decomposition of crop 

residues, including nutrient immobilization due to microbial competition, release of low-molecular 

weight phytotoxic compounds and extracellular DNA from conspecific plants tissues. 
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Table 1. List of experimental studies reporting soil sickness in agro-ecosystems. Taxonomic family, life form and life cycle, experimental conditions 

and the putative mechanism/s causing soil sickness as proposed by the authors are reported. Studies are ordered alphabetically by plant name.  
 

N° Species  Family Life form Life cycle Ecosystem Experimental condition Putative mechanisms References  

1 Agrostemma 

githago 

Caryophyllaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

2 Ammi majus Apiaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

3 Angelica sinensis Apiaceae  Forb Perennial Temperate Field – Pot Autotoxicity and 

soilborne pathogens 

Zhang et al., 2015 

     Temperate Growth chamber – In vitro 

and pot 

Autotoxicity  Zhang et al., 2010a 

4 Antirrhinum majus Plantaginaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

5 Apium graveolens Apiaceae  Forb Perennial Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

6 Aquilegia flabellata Ranunculaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

7 Arachis hypogaea Fabaceae Forb Annual Temperate Growth chamber – In vitro Autotoxicity Huang et al., 2013 

     Temperate Growth chamber – Pot Microbial shift and 

soilborne pathogens 

Li et al., 2014a 

     Temperate   Autotoxicity and 

soilborne pathogens 

Li et al., 2010a 

8 Asparagus 

officinalis 

Asparagaceae Forb Perennial Temperate Growth chamber – In vitro 

/ Greenhouse – Pot 

Autotoxicity Miller et al., 1991 

     Subtropical Field – Plot Soilborne pathogens Nigh, 1990 

     Temperate Growth chamber – In vitro 

/ Greenhouse – Pot 

Autotoxicity and 

soilborne pathogens 

Hartung and Stephens, 

1983 

9 Avena sativa Poaceae Grass Annual Temperate Growth chamber – Pot Autotoxicity Nielsen et al., 1960 

https://en.wikipedia.org/wiki/Caryophyllaceae
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10 Beta vulgaris Chenopodiaceae  Forb Biennial  Temperate Field – Pot Soilborne pathogens 

and nematodes 

Crump and Kerry, 1987 

11 Brassica campestris  Brassicaceae Forb Biennial  Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

12 Brassica napus  Brassicaceae Forb Annual Temperate Greenhouse – Pot / Field – 

Plot 

Microbial shift and 

soilborne pathogens 

Hilton et al., 2013 

13 Brassica oleracea Brassicaceae Forb Biennial Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

14 Brassica rapa Brassicaceae Forb Biennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

15 Calendula 

officinalis 

Asteraceae  Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

16 Callistephus 

chinensis 

Asteraceae  Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

17 Camellia sinensis Theaceae Shrub Perennial Tropical Growth chamber – In vitro Autotoxicity Owuor, 2016 

18 Capsicum annuum Solanaceae  Forb Perennial  Temperate Greenhouse – Plot Soilborne pathogens Martínez et al., 2011 

19 Carthamus 

tinctorius 

Asteraceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

20 Carum copticum  Apiaceae  Forb Annual Subtropical Growth chamber – In vitro Autotoxicity Chaturvedi and Muralia, 

1975  

21 Celosia argentea Amaranthaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

22 Chrysanthemum 

coronarium 

Asteraceae Forb Annual  Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

23 Chrysanthemum 

morifolium 

Asteraceae Forb Annual  Temperate  Autotoxicity Zhou et al., 2009 

24 Cicer arietinum  Fabaceae Forb Annual   Not reported Rice, 1984 

25 Citrullus lanatus Cucurbitaceae Annual 

vine 

Annual Temperate Growth chamber – In vitro 

/ Greenhouse – Hydroponic 

Autotoxicity Hao et al., 2007 

     Temperate Growth chamber – In vitro 

and pot 

Autotoxicity Yu et al., 2000 

https://en.wikipedia.org/wiki/Amaranthaceae
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26 Citrus aurantium Rutaceae Tree Perennial Subtropical Growth chamber – In vitro 

/ Greenhouse – Pot 

Autotoxicity and 

soilborne pathogens 

Hassan et al., 1989 

27 Citrus jambhiri Rutaceae Tree Perennial Subtropical Greenhouse – Hydroponic Autotoxicity Burger and Small, 1983 

28 Coffea arabica  Rubiaceae Shrub Perennial Tropical Growth chamber – In vitro Autotoxicity Waller et al., 1990 

      Tropical  Nematodes Serracin et al., 1999 

29 Colocasia esculenta Araceae Forb Perennial Temperate Greenhouse – Hydroponic Autotoxicity Asao et al., 2003  

30 Coriandrum 

sativum 

Apiaceae  Forb Annual Subtropical Growth chamber – In vitro Autotoxicity Chaturvedi and Muralia, 

1975  

31 Crocus sativus Iridaceae Forb Perennial Temperate Field – Plot Not reported Gresta et al., 2016 

32 Cucumis melo Cucurbitaceae Annual 

vine 

Annual Temperate Growth chamber – In vitro 

and pot 

Autotoxicity Yu et al., 2000 

     Temperate Growth chamber – In vitro 

and pot / Field – Plot 

Autotoxicity and 

soilborne pathogens 

Yang et al., 2014 

33 Cucumis sativus 

 

Cucurbitaceae Annual 

vine 

Annual Temperate Greenhouse – Hydroponic Autotoxicity Yu and Matsui, 1994 

     Temperate Greenhouse – Pot Soilborne pathogens Zhou and Wu, 2012 

     Temperate Greenhouse – Hydroponic Autotoxicity and 

soilborne pathogens 

Ye et al., 2004 

     Temperate Greenhouse – Pot Microbial shift Zhou et al., 2014  

34 Cuminum cyminum Apiaceae  Forb Annual Subtropical Growth chamber – In vitro Autotoxicity Chaturvedi and Muralia, 

1975 

35 Daucus carota Apiaceae  Forb Biennial Subtropical Growth chamber – In vitro Autotoxicity Chaturvedi and Muralia, 

1975 

36 Delphinium ajacis Ranunculaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

37 Dianthus 

caryophyllus 

Caryophyllaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

https://www.bing.com/images/search?q=Cuminum+cyminum&stid=44f24aa7-21f5-ecc1-6099-30aa9f619f0e&qpvt=Cuminum+cyminum&qpvt=Cuminum+cyminum&qpvt=Cuminum+cyminum&FORM=IGRE
https://en.wikipedia.org/wiki/Caryophyllaceae
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38 Eustoma 

grandiflorum 

Gentianaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

39 Ficus carica Moraceae Tree Perennial  Temperate Greenhouse – Pot Soilborne pathogens Hosomi and Uchiyama, 

1998 

40 Foeniculum vulgare Apiaceae  Forb Annual Subtropical Growth chamber – In vitro Autotoxicity Chaturvedi and Muralia, 

1975 

41 Fragaria x 

ananassa  

Rosaceae Forb Perennial Temperate Greenhouse – Hydroponic Autotoxicity Asaduzzaman et al., 2012  

42 Glycine max Fabaceae Forb Annual Temperate  Autotoxicity Han et al., 2002 

      Temperate Field – Plot Microbial shift Li et al., 2010b 

43 Godetia amoena Onagraceae Forb Annual  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

44 Gomphrena globosa Amaranthaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

45 Gossypium spp.  Malvaceae Shrub Perennial Temperate  Autotoxicity Jiang et al., 2013 

      Temperate Growth chamber – In vitro 

/ Greenhouse – Pot 

Microbial shift and 

soilborne pathogens 

Li et al., 2015 

46 Gypsophila elegans Caryophyllaceae Forb Annual Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

47 Helianthus annuus Asteraceae Forb Annual Subtropical Greenhouse – Pot Autotoxicity Wilson and Rice, 1968 

48 Hordeum vulgare Poaceae Grass Annual Subtropical Growth chamber – In vitro Autotoxicity Ben-Hammouda et al., 

2002 

     Temperate Greenhouse – Pot Microbial shift Alström, 1992 

      Temperate Field – Plot Soilborne pathogens Delogu et al., 2003 

49 Humulus lupulus Cannabaceaae Perennial 

vine 

Perennial Temperate Greenhouse – Pot Autotoxicity Zhang et al., 2011 

50 Ipomea batatas Convolvulaceae Perennial 

vine 

Perennial Tropical Field – Plot Nematodes Hartemink et al., 2000 

https://en.wikipedia.org/wiki/Onagraceae
https://en.wikipedia.org/wiki/Amaranthaceae
https://en.wikipedia.org/wiki/Caryophyllaceae
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51 Juglans nigra Juglandaceae Tree Perennial    Soilborne pathogens Grente, 1963 

52 Lactuca sativa Asteraceae  Forb Annual  Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

53 Lathyrus odoratus Fabaceae Annual 

vine 

Annual  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

54 Lilium davidii Liliaceae Forb Perennial  Temperate Growth chamber – In vitro Autotoxicity Wu et al., 2015 

55 Lilium x elegans Liliaceae Forb Perennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

56 Lilium x formolongi Liliaceae Forb Perennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

57 Limonium sinuatum Plumbaginaceae Forb Perennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

58 Linum 

usitatissimum  

Linaceae Forb Annual    Autotoxicity Börner, 1960 

59 Lolium rigidum  Poaceae Grass Annual Temperate Growth chamber – In vitro 

/ Greenhouse – Pot 

Autotoxicity Canals et al., 2005 

60 Malus domestica Rosaceae Tree Perennial Subtropical Field – Plot Microbial shift Rumberger et al., 2007 

     Temperate Greenhouse – Pot Soilborne pathogens 

and nematodes 

Utkhede et al., 1992 

     Subtropical Field – Plot Soilborne pathogens Mazzola, 1998 

61 Malus spp.  Rosaceae Tree Perennial   Autotoxicity Börner, 1959 in Singh et 

al., 1999 

62 Manihot esculenta Euphorbiaceae Forb Perennial Subtropical Field – Plot Nutrient imbalance or 

depletion 

Howeler and Cadavid, 

1990 

63 Matthiola incana Brassicaceae Forb Annual  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

64 Medicago sativa Fabaceae Forb Perennial Temperate Growth chamber – In vitro Autotoxicity Chon et al., 2002 

     Temperate Growth chamber – In vitro Autotoxicity and 

soilborne pathogens 

Bonanomi et al., 2011 

https://en.wikipedia.org/wiki/Plumbaginaceae
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65 Musa sp. Musaceae Forb Perennial  Tropical Field – Plot Nutrient imbalance or 

depletion 

Bekunda, 1999 

66 Narcissus tazetta Amaryllidaceae Forb Perennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

67 Nicotiana tabacum Solanaceae Forb Annual Subtropical Growth chamber – In vitro Autotoxicity Ren et al., 2015 

68 Ocimum basilicum Lamiaceae Forb Annual Temperate Greenhouse – Plot Not reported Minuto et al., 2002 

69 Olea europaea Oleaceae Tree Perennial Temperate Greenhouse – Pot Autotoxicity Endeshaw et al., 2015 

70 Oryza sativa  Poaceae Grass Annual Subtropical Field – Plot Nutrient imbalance or 

depletion 

Olk et al., 2009 

     Subtropical Growth chamber – In vitro 

/ Field – Plot 

Autotoxicity Chou and Lin, 1976 

     Subtropical Greenhouse – Pot Nematodes and 

nutrient imbalance or 

depletion 

Kreye et al., 2009 

     Subtropical Greenhouse – Pot Nutrient imbalance or 

depletion 

Nie et al., 2009 

71 Panax notoginseng Araliaceae Forb Perennial Subtropical Growth chamber – In vitro 

/ Greenhouse – Hydroponic 

Autotoxicity Yang et al., 2015 

72 Panax 

quinquefolium 

Araliaceae Forb Perennial Temperate Growth chamber – In vitro Autotoxicity He et al., 2009 

73 Papaver rhoeas Papaveraceae Forb Annual  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

74 Parthenium 

argentatum  

Asteraceae Shrub Perennial Subtropical Greenhouse – Pot Autotoxicity Bonner and Galston, 

1944 

75 Petroselinum 

crispum 

Apiaceae  Forb Biennial Temperate Growth chamber – In vitro Autotoxicity Asao et al., 2004 

76 Phaseolus vulgaris Fabaceae Forb Annual Temperate Growth chamber – In vitro 

/ Greenhouse – Hydroponic 

Autotoxicity Asaduzzaman and Asao, 

2012 

77 Phleum pratense Poaceae Grass Perennial Temperate Growth chamber – Pot Autotoxicity Nielsen et al., 1960 

https://en.wikipedia.org/wiki/Amaryllidaceae
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78 Physalis alkekengi Solanaceae  Forb Perennial  Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

79 Piper nigrum Piperaceae Perennial 

vine 

Perennial  Subtropical Greenhouse – Pot Microbial shift Xiong et al., 2015 

80 Pisum sativum Fabaceae Annual 

vine 

Annual Temperate Growth chamber – In vitro 

/ Greenhouse – Hydroponic 

Autotoxicity Asaduzzaman and Asao, 

2012 

      Temperate Greenhouse – Pot Soilborne pathogens Bodker and Leroul, 1993 

      Temperate Field – Plot Microbial shift Nayyar et al., 2009 

81 Platycodon 

grandiflorum 

Campanulaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

82 Pogostemon cablin Lamiaceae Forb Annual Subtropical Greenhouse – Hydroponic / 

Field – Pot 

Autotoxicity Xu et al., 2015 

83 Prunus avium Rosaceae Tree Perennial Temperate Greenhouse – Pot Soilborne pathogens Hoestra, 1965 

84 Prunus dulcis Rosaceae Tree Perennial Subtropical Greenhouse – Pot Soilborne pathogens Fatemi, 1980 

85 Prunus persica Rosaceae Tree Perennial Temperate Greenhouse – Pot Autotoxicity Tagliavini and 

Marangoni, 1992  

     Subtropical Greenhouse – Pot Soilborne pathogens Yang et al., 2012 

     Temperate Growth chamber – Pot Microbial shift Benizri et al., 2005 

86 Prunus serotina Rosaceae Tree Perennial Temperate Field – Pot Soilborne pathogens Reinhart et al., 2005 

87 Pseudostellaria 

heterophylla 

Caryophyllaceae  Forb Perennial Subtropical Field – Plot Microbial shift Wu et al., 2016 

88 Rehmannia 

glutinosa 

Orobanchaceae Forb Perennial Temperate Growth chamber – In vitro Soilborne pathogens Bu et al., 2014 

      Temperate Growth chamber – In vitro Autotoxicity Li et al., 2012 

89 Rudbeckia hirta Asteraceae Forb Biennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

90 Saccharum 

officinarum 

Poaceae Grass Perennial Tropical Greenhouse – Pot / Field – 

Plot 

Soilborne pathogens 

and nematodes 

Pankhurst et al., 2005 

file:///C:/wiki/Campanulaceae


 

 

 

~ 53 ~ 

 Chapter 1 

91 Saccharum spp. Poaceae Grass Perennial Subtropical Greenhouse – Pot Autotoxicity Viator et al., 2006 

92 Salvia miltiorrhiza Lamiaceae Shrub Perennial Subtropical Field – Plot Microbial shift Tang et al., 2015 

93 Scutellaria 

baicalensis 

Lamiaceae Forb Perennial  Temperate Growth chamber – In vitro 

and pot 

Autotoxicity and 

soilborne pathogens 

Zhang et al., 2010b 

94 Setaria italica Poaceae Grass Annual   Autotoxicity Lee et al., 1967 in Singh 

et al., 1999 

95 Solanum 

lycopersicum 

Solanaceae Forb Annual Temperate Greenhouse – Plot Microbial shift Li et al., 2014b 

      Temperate Growth chamber – In vitro 

and hydroponic 

Autotoxicity Yu and Matsui, 1993 

     Temperate Growth chamber – In vitro 

/ Greenhouse – Pot 

Autotoxicity and 

soilborne pathogens 

Bonanomi et al., 2007 

96 Solanum melongena Solanaceae Forb Annual Temperate Growth chamber – In vitro Autotoxicity Wang and Wang, 2005 

97 Solanum tuberosum Solanaceae Forb Perennial Temperate Field – Plot Microbial shift Larkin and Honeycutt, 

2006 

98 Sorghum bicolor Poaceae Grass Annual   Not reported Rice, 1984 

99 Trifolium 

alexandrinum 

Fabaceae Forb Annual  Temperate Field – Pot Nutrient imbalance or 

depletion 

Katznelson, 1972 

100 Trifolium pratense Fabaceae Forb Perennial  Temperate Growth chamber – In vitro 

and pot 

Autotoxicity Chang et al., 1969 

101 Trifolium 

resupinatum 

Fabaceae Forb Annual  Temperate Field – Pot Nutrient imbalance or 

depletion 

Katznelson, 1972 

102 Triteleia laxa Asparagaceae Forb Perennial Temperate Greenhouse – Hydroponic 

and pot 

Autotoxicity Asao et al., 2007 

103 Triticum aestivum Poaceae Grass Annual Temperate Growth chamber – In vitro Autotoxicity Wu et al., 2007 

104 Vanilla planifolia Orchidaceae  Perennial 

vine 

Perennial  Subtropical Greenhouse – Pot Microbial shift and 

soilborne pathogens 

Xiong et al., 2014 

105 Vicia faba Fabaceae Forb Annual Temperate Growth chamber – In vitro 

/ Greenhouse – Hydroponic 

Autotoxicity Asaduzzaman and Asao, 

2012  
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106 Vigna radiata Fabaceae Annual 

vine 

Annual   Autotoxicity Tang and Zhang 1986 in 

Singh et al., 1999 

107 Vigna unguiculata Fabaceae Forb Annual Temperate Growth chamber – In vitro Autotoxicity Huang et al., 2010  

108 Vitis riparia Vitaceae Perennial 

vine 

Perennial   Autotoxicity Brinker and Creasy 1988 

in Singh et al., 1999 

109 Vitis rupestris Vitaceae Perennial 

vine 

Perennial   Autotoxicity Brinker and Creasy 1988 

in Singh et al., 1999 

110 Vitis vinifera Vitaceae Perennial 

vine 

Perennial Temperate Greenhouse – Pot Soilborne pathogens 

and nematodes 

Westphal et al., 2002 

111 Zea mays Poaceae Grass Annual Temperate Growth chamber – In vitro Autotoxicity Martin et al., 1990 

     Temperate Field – Plot Nutrient imbalance or 

depletion 

Gentry et al., 2013 

     Temperate Field – Plot Soilborne pathogens Summer et al., 1990 
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Table 2. List of experimental studies reporting a promotion of soilborne pathogens activity by 

autotoxic factors released by roots during exudation, or during decomposing of plant residues. 

Species Autotoxic compounds Microorganisms References 

Angelica sinensis Root exudates Microbial shift Zhang et al., 2015 

Arachis hypogaea P-hydroxybenzoic acid, 

vanillic acid and coumalic 

acid 

Fusarium solani Li et al., 2010a 

Asparagus 

officinalis 

Root and rhizome tissues  Fusarium oxysporum f. sp. 

asparagi and Fusarium 

moniliforme 

Hartung and 

Stephens, 1983 

Citrus aurantium Root residues Phytophthora citrophthora, 

Pythium aphanidermatum and 

Fusarium solani 

Hassan et al., 1989 

Cucumis melo Gallic acid, phthalic acid, 

syringic acid, salicylic acid, 

ferulic acid, benzoic acid 

and cinnamic acid 

Fusarium oxysporum f. sp. 

melonis 

Yang et al., 2014 

Cucumis sativus Cinnamic acid Fusarium oxysporum f. sp. 

cucumerinum 

Ye et al., 2004 

Medicago sativa Leaves residues Pythium ultimum and 

Rhizoctonia solani 

Bonanomi et al., 2011 

Pseudostellaria 

heterophylla 

Root exudates Talaromyces helicus, 

Kosakonia sacchari 

Wu et al., 2016 

Scutellaria 

baicalensis 

flavone baicalin (7-

glucuronic acid, 5, 6-

dihydroxy-flavone 

Pythium ultimum and 

Rhizoctonia solani 

Zhang et al., 2010b 

Solanum 

lycopersicum 

Leaves and roots residues  Fusarium oxysporum f.sp. 

lycopersici 

Bonanomi et al., 2007 
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Table 3. Comparison between management strategies aimed at overcoming soil sickness in 

agro-ecosystems, and plant behavior evolved in natural ecosystems to avoid NPSF. 

 

Agro-ecosystem Natural ecosystem 

Crop rotation (Gresta et al., 2016; Huang 

et al., 2013) 

- Alternation of trees species in temperate (Fox 1977;  

Whittaker and Levin, 1977) and tropical forests 

(Augspurger, 1984; Mangan et al., 2010) 

- Cyclic succession in heathland and shrubland (Watt 1947, 

Bonanomi et al., 2005a) 

- “Carousel” dynamics in grassland dominated by short-

lived plants (Maarel and Sykes, 1993; Vincenot et al., 2017) 

Polyculture (Matson et al., 1997) and soil 

amendment with organic amendment  

(Bulluck et al., 2002; Stark et al., 2007) 

- Litter “mixing” effect and “herd” immunity hypothesis 

(Hättenschwiler et al., 2005; Wills et al. 1997) 

Replacing sick soil (Zucconi, 2003) - Soil accretion in sand dune (Van der Putten et al., 1993) 

and river banks (Bonanomi et al., 2014) 

Use of activated carbon in field conditions 

and in soilless systems (Elmer and 

Pignatello, 2011; Yu et al., 1993) 

- “Terra preta” soil rich of charred organic materials in 

semi-natural ecosystems (DeLuca et al., 2006; Glaser and 

Birk, 2012; Kammann et al., 2016) 

Soil flooding (Newhall, 1955; Nie et al., 

2009) 

- Lack of NPSF in aquatic environments (Bonanomi et al., 

2011) 
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Annex table 1. List of experimental studies reporting negative plant-soil feedback (NPSF) in natural ecosystems. Taxonomic family, life form and 

life cycle, experimental conditions and the putative mechanism/s causing soil sickness as proposed by the authors are reported. Studies are ordered 

alphabetically by plant name 

N° Species Family Life form Life cycle Ecosystem Putative mechanisms References 

1 Abies balsamea Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

2 Acacia koa Fabaceae Tree/Shrub Perennial Grassland Microbial shift Klironomos 2002 

3 Acacia nilotica Fabaceae Tree/Shrub Perennial Semiarid/arid Microbial shift Rutten et al., 2016 

4 Acanthus mollis Acanthaceae Forb Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

5 Acer negundo Aceraceae Tree/Shrub Perennial Temperate forest Microbial shift Reinhart and Callaway 2004 

6 Acer platanoides Aceraceae Tree/Shrub Perennial Temperate forest Microbial shift Reinhart et al., 2005 

7 Acer rubrum Aceraceae Tree/Shrub Perennial Temperate forest Microbial shift 
Nijjer et al., 2007, McCarthyNeumann 

and Kobe 2010a, Bennett et al., 2017 

8 Acer saccharinum Aceraceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

9 Acer saccharum Aceraceae Tree/Shrub Perennial Temperate forest Microbial shift 
McCarthy Neumann and Kobe 2010a, 

Kotanen 2007, Bennett et al., 2017 

10 
Achillea 

millefolium 
Asteraceae Forb Perennial Grassland Microbial shift 

Schittko et al., 2016, Maron et al., 

2016, Klironomos 2002, Cortois et al., 

2016, Bezemer et al., 2006a, Anacker 

et al., 2014 

11 Acomastylis rossii Rosaceae Forb Perennial Grassland Microbial shift Suding et al., 2004 

12 Acroptilon repens Asteraceae Forb Perennial Grassland Autotoxicity Morris et al., 2006 

13 
Aegilops 

triuncialis 
Poaceae Grass Annual Grassland Microbial shift Batten et al., 2008 

14 
Agalinis 

gattingeri 
Orobanchaceae Forb Annual Grassland Microbial shift Klironomos 2002 

15 
Ageratina 

adenophora 
Asteraceae Forb Perennial Grassland Microbial shift Niu et al., 2007 

https://en.wikipedia.org/wiki/Fabaceae
https://en.wikipedia.org/wiki/Fabaceae
https://it.wikipedia.org/wiki/Acanthaceae
https://it.wikipedia.org/wiki/Aceraceae
https://it.wikipedia.org/wiki/Aceraceae
https://it.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Orobanchaceae
https://en.wikipedia.org/wiki/Asteraceae
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16 
Agropyron 

cristatum 
Poaceae Grass Perennial Grassland Microbial shift Jordan et al., 2008 

17 Agropyron repens Poaceae Grass Perennial Semiarid/arid Autotoxicity Bokhari 1978 

18 
Agrostis 

capillaris 
Poaceae Grass Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Nutrient imbalance 

or depletion 

Zhang et al., 2016, Wubs and Bezemer 

2016, Jing et al., 2015, De Deyn et al., 

2004, Bezemer et al., 2006a, Bezemer 

et al., 2006b 

19 Agrostis gigantea Poaceae Grass Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

20 Agrostis scabra Poaceae Grass Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

21 Agrostis tenuis Poaceae Grass Perennial Wetlands Autotoxicity 
Wedin and Tilman 1993, Tilman and 

Wedin 1991 

22 Aletris farinosa Nartheciaceae Forb Perennial Grassland Microbial shift Bennett et al., 2017 

23 Alnus incana Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Chapin et al., 1994 

24 Alnus sinuata Betulaceae Tree/Shrub Perennial Boreal forest Not reported Kardol et al., 2007 

25 
Alopecurus 

geniculatus 
Poaceae Grass Perennial Grassland Microbial shift Bradow and Connick 1988 

26 
Amaranthus 

palmeri 
Amaranthaceae Forb Annual Semiarid/arid Autotoxicity Anaya and Amo 1978 

27 
Ambrosia 

cumanensis 
Asteraceae Forb Annual Grassland Autotoxicity Lou et al., 2014 

28 Ambrosia trifida Asteraceae Forb Annual Grassland Microbial shift Friedman et al., 1982 

29 Ammi majus Apiaceae Forb Biennial 
Tropical/subtropical 

forest 
Autotoxicity  

30 
Ammophila 

arenaria 
Poaceae Grass Perennial Wetlands Soilborne pathogen 

Van der Putten et al., 1993, Troelstra et 

al., 2001, Knevel et al., 2004, 

Klironomos 2002, Beckstead and 

Parker 2003 

31 
Ammophila 

breviligulata 
Poaceae Grass Perennial Wetlands Not reported Danin 1997 

32 
Ampelodesmos 

mauritanicus 
Poaceae Grass Perennial Grassland Autotoxicity Mazzoleni et al., 2015 

https://it.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Nartheciaceae
https://en.wikipedia.org/wiki/Betulaceae
https://en.wikipedia.org/wiki/Betulaceae
https://en.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Amaranthaceae
https://en.wikipedia.org/wiki/Apiaceae
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33 
Anacardium 

excelsum 
Anacardiaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Not reported Kiers et al., 2000 

34 
Anastatica 

hierochuntica 
Brassicaceae Forb Annual Grassland Autotoxicity Hegazy et al., 1990 

35 
Andropogon 

gerardii 
Poaceae Grass Perennial Grassland Microbial shift 

Holah and Alexander 1999, Gustafson 

and Casper 2004, Fitzsimons and 

Miller 2010, Casper et al., 2008, 

Casper and Castelli 2007, Bauer et al., 

2015 

36 
Antennaria 

microphylla 
Asteraceae Forb Perennial Grassland Microbial shift Maron et al., 2016 

37 
Anthericum 

ramosum 
Asparagaceae Forb Perennial Grassland Microbial shift Hemrová et al., 2016 

38 
Anthoxanthum 

odoratum 
Poaceae Grass Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Nutrient imbalance 

or depletion 

Zhang et al., 2016, Newman and 

Rovira 1975, Jing et al., 2015, 

Hendriks et al., 2013, Heinze et al., 

2016, De Deyn et al., 2004, Cortois et 

al., 2016, Bezemer et al., 2006a, Bever 

1994, Bergmann et al., 2016 

39 
Apeiba 

membranacea 
Asteraceae Forb Perennial 

Tropical/subtropical 

forest 
Microbial shift McCarthy-Neumann and Kobe 2010b 

40 Apera spica-venti Poaceae Grass Annual Grassland Microbial shift Kardol et al., 2007 

41 
Apocynum 

cannabinum 
Apocynaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

42 
Arabidopsis 

thaliana 
Brassicaceae Forb Annual Grassland Microbial shift/Autotoxicity 

Bukowski and Petermann 2014, 

Mazzoleni et al., 2015 

43 Arabis holboellii Brassicaceae Forb Perennial Grassland Microbial shift Maron et al., 2016 

44 
Araucaria 

cunninghamii 
Araucariaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Autotoxicity Bevege 1968 

45 
Arctium 

tomentosum 
Brassicaceae Forb Annual Grassland Soilborne pathogen Petermann et al., 2008 

46 
Ardisia 

quinquegona 
Primulaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

47 
Aristida 

meridionalis 
Poaceae Grass Perennial Semiarid/arid Microbial shift Van der Putten et al., 2007 

https://it.wikipedia.org/wiki/Anacardiaceae
https://it.wikipedia.org/wiki/Brassicaceae
https://en.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Asparagaceae
https://en.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Apocynaceae
https://en.wikipedia.org/wiki/Brassicaceae
https://en.wikipedia.org/wiki/Brassicaceae
https://it.wikipedia.org/wiki/Araucariaceae
https://en.wikipedia.org/wiki/Primulaceae


 

 

~ 60 ~ 

 

 Chapter 1 

48 Arnica montana Asteraceae Forb Perennial Grassland Microbial shift Jing et al., 2015 

49 
Arrhenatherum 

elatius 
Poaceae Grass Annual Grassland 

Microbial shift/Soilborne 

pathogen 

Zhang et al., 2016, Petermann et al., 

2008, Heinze et al., 2016 

50 Artemisia biennis Asteraceae Forb Biennial Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

51 
Artemisia 

californica 
Asteraceae Forb Biennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 

Yelenik and Levine 2011, Valliere and 

Allen 2016, Sigüenza et al., 2006 

52 
Artemisia 

campestris 
Asteraceae Forb Biennial Grassland 

Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

53 
Artemisia 

capillaris 
Asteraceae Forb Biennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 
Jiang et al., 2010 

54 Artemisia frigida Asteraceae Forb Biennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 
Jiang et al., 2010 

55 
Artemisia 

lavandulifolia 
Asteraceae Forb Biennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 
Jiang et al., 2010 

56 
Asarum 

canadense 
Aristolochiaceae Forb Perennial Temperate forest Not reported Smith and Reynolds 2015 

57 Asclepias syriaca Asclepiadaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

58 
Asclepias 

tuberosa 
Asclepiadaceae Forb Perennial Grassland Microbial shift Fitzsimons and Miller 2010 

59 
Asparagus 

officinalis 
Asparagaceae Forb Perennial Grassland Microbial shift/Autotoxicity Young 1984, Klironomos 2002 

60 
Aster novae-

angliae 
Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

61 Aster simplex Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

62 Aster vimineus Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

63 Avena barbata Poaceae Grass Annual Grassland Microbial shift Yelenik and Levine 2011 

64 Avena fatua Poaceae Grass Annual Grassland 
Microbial shift/nutrient 

imbalance or depletion 
Larios and Suding 2015 

65 Bellis perennis Asteraceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

66 
Berberis 

thunbergii 
Berberidaceae Tree/Shrub Perennial Temperate forest Microbial shift Elgersma et al., 2012 

https://it.wikipedia.org/wiki/Graminaceae
https://en.wikipedia.org/wiki/Aristolochiaceae
https://en.wikipedia.org/wiki/Asclepiadaceae
https://en.wikipedia.org/wiki/Asclepiadaceae
https://en.wikipedia.org/wiki/Berberidaceae
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67 Berteroa incana Brassicaceae Forb Annual Grassland Soilborne pathogen Petermann et al., 2008 

68 
Betula 

alleghaniensis 
Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

69 Betula lenta Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

70 Betula papyrifera Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

71 
Boswellia 

neglecta 
Burseraceae Tree/Shrub Perennial Semiarid/arid Microbial shift Rutten et al., 2016 

72 
Bothriochloa 

ischaemum 
Poaceae Grass Perennial Grassland Not reported Kulmatiski et al., 2016 

73 
Bothriochloa 

saccharoides 
Poaceae Grass Perennial Grassland Not reported Kulmatiski et al., 2016 

74 
Bouteloua 

curtipendula 
Poaceae Grass Perennial Grassland Not reported Kulmatiski et al., 2016 

75 
Bouteloua 

eriopoda 
Poaceae Grass Perennial Semiarid/arid Microbial shift Chung and Rudgers 2016 

76 
Bouteloua 

gracilis 
Poaceae Grass Perennial Semiarid/arid Microbial shift Chung and Rudgers 2016 

77 
Brachypodium 

pinnatum 
Poaceae Grass Perennial Grassland Microbial shift Hemrová et al., 2016 

78 
Brachypodium 

rupestre 
Poaceae Grass Perennial Grassland Not reported Bonanomi and Allegrezza 2004 

79 Briza media Poaceae Grass Perennial Grassland Microbial shift 
Jing et al., 2015, Bezemer et al., 2006a, 

Bergmann et al., 2016 

80 
Bromus 

catharticus 
Poaceae Grass Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

81 Bromus erectus Poaceae Grass Perennial Grassland 
Microbial shift/ Nutrient 

imbalance or depletion 

Hemrová et al., 2016, Ehlers and 

Thompson 2004, Cortois et al., 2016, 

Bezemer et al., 2006a, Bezemer et al., 

2006b 

82 
Bromus 

hordeaceus 
Poaceae Grass Perennial Grassland Microbial shift Cortois et al., 2016 

83 Bromus inermis Poaceae Grass Perennial Grassland 
Microbial shift/ Nutrient 

imbalance or depletion 

Klironomos 2002, Jordan et al., 2008, 

Anacker et al., 2014, Agrawal et al., 

2005 

https://it.wikipedia.org/wiki/Burseraceae
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84 Bromus kalmii Poaceae Grass Perennial Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

85 
Bromus 

pubescens 
Poaceae Grass Perennial Temperate forest Not reported Smith and Reynolds 2015 

86 Bromus sterilis Poaceae Grass Perennial Grassland Soilborne pathogen Petermann et al., 2008 

87 Calluna vulgaris Ericaceae Tree/Shrub Perennial Grassland Autotoxicity Bonanomi et al., 2005a 

88 
Campanula 

patula 
Campanulaceae Forb Biennial Grassland Microbial shift Cortois et al., 2016 

89 
Campanula 

rapunculoides 
Campanulaceae Forb Biennial Grassland 

Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

90 
Campanula 

rotundifolia 
Campanulaceae Forb Biennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 

Jing et al., 2015, De Deyn et al., 2004, 

Agrawal et al., 2005 

91 Canarium album Burseraceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

92 
Capsella bursa-

pastoris 
Brassicaceae Forb Perennial Grassland Microbial shift 

Schittko et al., 2016, Kardol et al., 

2007, Jing et al., 2015 

93 
Cardamine 

pensylvanica 
Brassicaceae Forb Biennial Grassland Autotoxicity Molofsky et al., 2000 

94 
Cardamine 

pratensis 
Brassicaceae Forb Biennial Grassland Microbial shift Cortois et al., 2016 

95 Carduus nutans Asteraceae Forb Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

96 Carex arenaria Cyperaceae Sedge Perennial Wetlands 
Microbial shift/Soilborne 

pathogen 

Van der Putten et al., 1993, Troelstra et 

al., 2001, Olff et al., 2000 

97 Carex aurea Cyperaceae Sedge Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

98 Carex flava Cyperaceae Sedge Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

99 Carex garberi Cyperaceae Sedge Perennial Grassland Microbial shift Klironomos 2002 

100 Carex granularis Cyperaceae Sedge Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

101 Carex striata Cyperaceae Sedge Perennial Wetlands Autotoxicity Koppel and Crain 2006 

102 
Carpinus 

caroliniana 
Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Keymer and Lankau 2016 

103 Carum carvi Cyperaceae Sedge Perennial Grassland Microbial shift Cortois et al., 2016 

https://it.wikipedia.org/wiki/Campanulaceae
https://it.wikipedia.org/wiki/Campanulaceae
https://it.wikipedia.org/wiki/Campanulaceae
https://it.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Cyperaceae
https://en.wikipedia.org/wiki/Cyperaceae
https://en.wikipedia.org/wiki/Cyperaceae
https://en.wikipedia.org/wiki/Cyperaceae
https://en.wikipedia.org/wiki/Cyperaceae
https://en.wikipedia.org/wiki/Cyperaceae
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104 
Carya 

cordiformis 
Juglandaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

105 Carya glabra Juglandaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

106 Carya ovata Juglandaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

107 Carya tomentosa Juglandaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

108 Castanopsis fabri Fagaceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

109 Castanopsis fissa Fagaceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

110 Cenchrus biflorus Poaceae Grass Annual Semiarid/arid Microbial shift Van der Putten et al., 2007 

111 Cenchrus spinifex Poaceae Grass Annual Semiarid/arid Microbial shift Chiuffo et al., 2015 

112 Centaurea jacea Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Nutrient imbalance 

or depletion 

Petermann et al., 2008, Klironomos 

2002, Jing et al., 2015, Frouz et al., 

2016, De Deyn et al., 2004, Cortois et 

al., 2016, Bergmann et al., 2016, 

Anacker et al., 2014 

113 
Centaurea 

maculosa 
Asteraceae Forb Perennial Grassland Microbial shift/Autotoxicity 

Meiman et al., 2006, Perry et al., 2005, 

Callaway et al., 2004 

114 
Centaurea 

solstitialis 
Asteraceae Forb Perennial Grassland Microbial shift King 2015, Chiuffo et al., 2015 

115 Centaurea stoebe Asteraceae Forb Perennial Grassland Microbial shift Maron et al., 2014 

116 
Cerastium 

arvense 
Caryophyllaceae Forb Perennial Grassland 

Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

117 
Cerastium 

fontanum 
Caryophyllaceae Forb Perennial Grassland 

Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

118 
Cerastium 

vulgatum 
Caryophyllaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

119 
Chamaecrista 

fasciculata 
Fabaceae Forb Annual Grassland Microbial shift Holah and Alexander 1999 

120 
Chenopodium 

album 
Chenopodiaceae Forb Biennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

121 
Chenopodium 

ambrosioides 
Chenopodiaceae Forb Biennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

https://en.wikipedia.org/wiki/Juglandaceae
https://en.wikipedia.org/wiki/Juglandaceae
https://en.wikipedia.org/wiki/Juglandaceae
https://en.wikipedia.org/wiki/Juglandaceae
https://en.wikipedia.org/wiki/Fagaceae
https://en.wikipedia.org/wiki/Fagaceae
https://en.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Poaceae
https://it.wikipedia.org/wiki/Caryophyllaceae
https://en.wikipedia.org/wiki/Fabaceae
https://it.wikipedia.org/wiki/Chenopodiaceae
https://it.wikipedia.org/wiki/Chenopodiaceae
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122 
Chromolaena 

odorata 
Asteraceae Forb Perennial Grassland Microbial shift Te Beest et al., 2009 

123 
Chrysanthemum 

leucanthemum 
Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

124 
Cichorium 

intybus 
Asteraceae Forb Perennial Grassland Microbial shift 

Schittko et al., 2016, Klironomos 2002, 

Anacker et al., 2014 

125 
Cinnamomum 

verum 
Lauracee Tree/Shrub Perennial 

Tropical/subtropical 

forest 

Nutrient imbalance or 

depletion 
Kueffer et al., 2009 

126 Cirsium arvense Asteraceae Forb Perennial Grassland Microbial shift 
Rice 1984, Klironomos 2002, Anacker 

et al., 2014 

127 
Cirsium 

oleraceum 
Asteraceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

128 Cirsium palustre Asteraceae Forb Perennial Wetlands Autotoxicity Ballegaard and Warncke 1985 

129 Cirsium vulgare Asteraceae Forb Perennial Grassland 

Microbial shift/ 

Autotoxicity/ Nutrient 

imbalance or depletion 

Klironomos 2002, De Jong and 

Klinkhamer 1985, Anacker et al., 2014 

130 
Colubrina 

spinosa 
Solanaceae Forb Annual 

Tropical/subtropical 

forest 
Microbial shift McCarthy-Neumann and Kobe 2010b 

131 Combretum molle Combretaceae Tree/Shrub Perennial Semiarid/arid Microbial shift Rutten et al., 2016 

132 
Conoclinium 

coelestinum 
Asteraceae Forb Perennial Temperate forest Not reported Smith and Reynolds 2015 

133 
Convolvulus 

arvensis 
Convolvulaceae Forb Annual Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

134 
Conyza 

bonariensis 
Asteraceae Forb Annual Grassland Microbial shift Kardol et al., 2007, Chiuffo et al., 2015 

135 
Cornus 

controversa 
Cornaceae Tree/Shrub Perennial Temperate forest Microbial shift Bayandala et al., 2016 

136 Cornus florida Cornaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

137 Coronilla varia Fabaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

138 Crepis biennis Asteraceae Forb Biennial Grassland Microbial shift 
Zuppinger-Dingley et al., 2016, Cortois 

et al., 2016 

139 Crepis capillaris Asteraceae Forb Annual Grassland Microbial shift Jing et al., 2015 

https://en.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Asteraceae
https://en.wikipedia.org/wiki/Combretaceae
https://it.wikipedia.org/wiki/Convolvulaceae
https://it.wikipedia.org/wiki/Asteraceae


 

 

~ 65 ~ 

 

 Chapter 1 

140 
Cryptocarya 

concinna 
Lauracee Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

141 
Cunninghamia 

lanceolata 
Cupressaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Autotoxicity 

Zhang 1993, Xia et al., 2016, Chen et 

al., 2005 

142 
Cupressus 

sempervirens 
Cupressaceae Tree/Shrub Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

143 
Cynosurus 

cristatus 
Poaceae Grass Perennial Grassland Autotoxicity Newman and Rovira 1975, Bever 1994 

144 
Dactylis 

glomerata 
Poaceae Grass Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Autotoxicity/Nutri

ent imbalance or depletion 

Petermann et al., 2008, Klironomos 

2002, Grant and Sallans 1964, Cortois 

et al., 2016, Bergmann et al., 2016, 

Anacker et al., 2014 

145 
Danthonia 

spicata 
Poaceae Grass Perennial Grassland Microbial shift Bever 1994 

146 
Danthonia 

unispicata 
Poaceae Grass Perennial Grassland Microbial shift Maron et al., 2016 

147 Daucus carota Apiaceae Forb Biennial Grassland Microbial shift 

Klironomos 2002, Frouz et al., 2016, 

Cortois et al., 2016, Bergmann et al., 

2016, Anacker et al., 2014 

148 Daucus pusillus Apiaceae Forb Biennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

149 
Deschampsia 

caespitosa 
Poaceae Grass Perennial Grassland Microbial shift Suding et al., 2004 

150 
Deschampsia 

flexuosa 
Poaceae Grass Perennial Grassland Soilborne pathogen Zhang et al., 2016 

151 
Digitaria 

sanguinalis 
Poaceae Grass Annual Grassland Autotoxicity Parenti and Rice 1969 

152 
Dipteryx 

panamensis 
Fabaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Not reported Kiers et al., 2000 

153 Dittrichia viscosa Asteraceae Tree/Shrub Perennial Grassland 
Nutrient imbalance or 

depletion 
Bonanomi and Mazzoleni 2005 

154 
Echinacea 

purpurea 
Asteraceae Forb Perennial Grassland Not reported Kulmatiski et al., 2016 

155 
Echinochloa crus-

galli 
Poaceae Grass Annual Grassland 

Microbial shift/Soilborne 

pathogen 
Petermann et al., 2008, Jing et al., 2015 

156 Echium vulgare Boraginaceae Forb Biennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 
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157 
Elaeagnus 

umbellata 
Elaeagnaceae Tree/Shrub Perennial Shrubland Microbial shift Shannon et al., 2014 

158 Elymus athercus Poaceae Grass Perennial Wetlands Soilborne pathogen Van der Putten et al., 1993 

159 
Elymus 

canadensis 
Poaceae Grass Perennial Grassland Soilborne pathogen Bauer et al., 2015 

160 Elymus elymoides Poaceae Grass Perennial Grassland Microbial shift Perkins and Nowak 2012 

161 Elymus hystrix Poaceae Grass Perennial Temperate forest Not reported Smith and Reynolds 2015 

162 Elymus repens Poaceae Grass Perennial Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

163 
Elymus 

trachycaulus 
Poaceae Grass Perennial Grassland 

Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

164 
Engelhardtia 

fenzelii 
Juglandaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

165 
Eragrostis 

lehmanniana 
Poaceae Grass Perennial Semiarid/arid Microbial shift Van der Putten et al., 2007 

166 
Erigeron 

canadensis 
Asteraceae Forb Annual Grassland Not reported Keever 1950 

167 
Erigeron 

philadelphicus 
Asteraceae Forb Annual Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

168 
Erigeron 

strigosus 
Asteraceae Forb Annual Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

169 
Eriogonum 

arborescens 
Polygonaceae Tree/Shrub Perennial Grassland Microbial shift 

Yelenik and Levine 2011, Xia et al., 

2016 

170 
Erodium 

macrophyllum 
Geraniaceae Forb Annual Grassland Microbial shift Gillespie and Allen 2006 

171 
Eucalyptus 

globulus 
Myrtaceae Tree/Shrub Perennial Semiarid/arid Autotoxicity Moral and Cates 1971 

172 
Eucalyptus 

pilularis 
Myrtaceae Tree/Shrub Perennial Semiarid/arid Not reported Florence and Crocker 1962 

173 
Euonymus 

fortunei 
Celastraceae Tree/Shrub Perennial Temperate forest Not reported Smith and Reynolds 2015 

174 
Eupatorium 

fortunei 
Asteraceae Forb Perennial Grassland Microbial shift Niu et al., 2007 

175 Euphorbia esula Euphorbiaceae Forb Perennial Grassland Microbial shift Maron et al., 2014, Jordan et al., 2008 

https://en.wikipedia.org/wiki/Elaeagnaceae
https://en.wikipedia.org/wiki/Juglandaceae
https://en.wikipedia.org/wiki/Celastraceae
https://en.wikipedia.org/wiki/Euphorbiaceae
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176 Fagus grandifolia Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

177 Fagus sylvatica Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Wurst et al., 2015 

178 Festuca drymeia Poaceae Grass Perennial Grassland Autotoxicity Mazzoleni et al., 2015 

179 Festuca filiformis Poaceae Grass Perennial Grassland Microbial shift Jing et al., 2015 

180 
Festuca 

idahoensis 
Poaceae Grass Perennial Grassland Microbial shift Maron et al., 2016 

181 Festuca ovina Poaceae Grass Perennial Grassland Microbial shift 
De Deyn et al., 2004, Bezemer et al., 

2006a 

182 Festuca pratensis Poaceae Grass Perennial Grassland Microbial shift 
Zuppinger-Dingley et al., 2016, Cortois 

et al., 2016 

183 Festuca rubra Poaceae Grass Perennial Grassland 

Microbial shift/Soilborne 

Pathogen/Nutrient imbalance 

or depletion 

Wubs and Bezemer 2016, Petermann et 

al., 2008, Olff et al., 2000, Hendriks et 

al., 2013, Frouz et al., 2016, De Deyn 

et al., 2004, Cortois et al., 2016 

184 
Fragaria 

virginiana 
Rosaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

185 
Fraxinus 

americana 
Oleaceae Tree/Shrub Perennial Temperate forest Microbial shift 

McCarthy-Neumann and Kobe 2010a, 

Bennett et al., 2017 

186 
Gaillardia 

megapotamica 
Asteraceae Forb Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

187 Galium mollugo Rubiaceae Forb Perennial Grassland 
Microbial shift/Soilborne 

pathogen 

Zuppinger-Dingley et al., 2016, 

Petermann et al., 2008, Klironomos 

2002, Cortois et al., 2016, Anacker et 

al., 2014 

188 Galium palustre Rubiaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

189 Gentiana alba Gentianaceae Forb Perennial Grassland Microbial shift Klironomos 2002 

190 
Geranium 

pratense 
Geraniaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

191 Geum aleppicum Rosaceae Forb Perennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 

Klironomos 2002, Anacker et al., 2014, 

Agrawal et al., 2005 

192 Geum canadense Rosaceae Forb Perennial Grassland Microbial shift Fitzpatrick et al., 2016 

https://it.wikipedia.org/wiki/Rubiaceae
https://it.wikipedia.org/wiki/Rubiaceae
https://en.wikipedia.org/wiki/Gentianaceae
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193 Geum triflorum Rosaceae Forb Perennial Grassland Microbial shift Maron et al., 2016 

194 Geum urbanum Rosaceae Forb Perennial Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

195 Grevillea robusta Proteaceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Autotoxicity Webb et al., 1967 

196 Hedeoma hispida Lamiaceae Forb Perennial Grassland Microbial shift Fitzpatrick et al., 2016 

197 Hedera helix Araliaceae Vine Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

198 
Helianthus 

annuus 
Asteraceae Forb Annual Grassland Microbial shift/Autotoxicity Rice 1984, Lou et al., 2014 

199 
Helianthus 

occidentalis 
Asteraceae Forb Perennial Grassland Autotoxicity Curtis and Cottam 1950 

200 
Helianthus 

rigidus 
Asteraceae Forb Perennial Grassland Autotoxicity Curtis and Cottam 1950 

201 
Heracleum 

mantegazzianum 
Apiaceae Forb Annual Grassland Microbial shift Van Grunsven et al., 2007 

202 
Heracleum 

sphondylium 
Apiaceae Forb Perennial Grassland Microbial shift Van Grunsven et al., 2007 

203 
Hieracium 

auranticum 
Apiaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

204 
Hieracium 

pilosella 
Apiaceae Forb Perennial Grassland Microbial shift 

Lamoureaux et al. 2003, Klironomos 

2002, Anacker et al., 2014 

205 
Hieracium 

pratense 
Apiaceae Forb Perennial Grassland Microbial shift Klironomos 2002 

206 Hilaria jamesii Poaceae Grass Perennial Grassland Microbial shift Belnap et al., 2005 

207 
Hippophaë 

rhamnoides 
Elaeagnaceae Tree/Shrub Perennial Semiarid/arid Soilborne pathogen Oremus and Otten 1983 

208 
Hirschfeldia 

incana 
Brassicaceae Forb Annual Semiarid/arid Microbial shift Chiuffo et al., 2015 

209 Holcus lanatus Poaceae Grass Perennial Grassland 
Microbial shift/Soilborne 

pathogen/Autotoxicity 

Zhang et al., 2016, Petermann et al., 

2008, Newman and Rovira 1975, Jing 

et al., 2015, Heinze et al., 2016, Cortois 

et al., 2016, Bonanomi and Mazzoleni 

2005, Bergmann et al., 2016 

210 Holcus mollis Poaceae Grass Perennial Grassland Microbial shift Jing et al., 2015 

https://it.wikipedia.org/wiki/Elaeagnaceae
https://en.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Poaceae


 

 

~ 69 ~ 

 

 Chapter 1 

211 
Hordeum 

murinum 
Poaceae Grass Perennial Grassland Soilborne pathogen Petermann et al., 2008 

212 
Hordeum 

stenostachys 
Poaceae Grass Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

213 
Hypericum 

perforatum 
Clusiaceae Forb Perennial Grassland Microbial shift 

Maron et al., 2014, Klironomos 2002, 

Jing et al., 2015, Anacker et al., 2014 

214 
Hypochaeris 

radicata 
Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Autotoxicity/Nutri

ent imbalance or depletion 

Zhang et al., 2016, Wubs and Bezemer 

2016, Newman and Rovira 1975, Jing 

et al., 2015, Chiuffo et al., 2015, 

Bezemer et al., 2006a, Bever 1994 

215 Inula salicina Asteraceae Forb Perennial Grassland Microbial shift Hemrová et al., 2016 

216 Iriartea deltoidea Arecaceae Forb Annual 
Tropical/subtropical 

forest 
Microbial shift McCarthy-Neumann and Kobe 2010b 

217 Jacobaea vulgaris Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Nutrient imbalance 

or depletion 

Zhang et al., 2016, Wubs and Bezemer 

2016, Kos et al., 2015b, Kos et al., 

2015a 

218 Juncus dudlei Juncaceae Sedge Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

219 Juncus effusus Juncaceae Sedge Perennial Wetlands Autotoxicity Ervin and Wetzel 2000 

220 
Juniperus 

virginiana 
Cupressaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

221 
Kalanchoe 

daigremontiana 
Crassulaceae Forb Perennial 

Tropical/subtropical 

forest 
Autotoxicity Groner 1974 

222 Knautia arvensis Dipsacaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

223 Kochia scoparia Amaranthaceae Forb Annual Semiarid/arid Not reported Rice 1984, Lodhi 1979b 

224 
Koeleria 

macrantha 
Poaceae Grass Perennial Grassland Microbial shift Maron et al., 2016 

225 Krigia dandelion Asteraceae Forb Annual Grassland Microbial shift Bever 1994 

226 
Kummerovia 

stipulacea 
Fabaceae Forb Annual Grassland 

Microbial shift/Soilborne 

pathogen 
Van der Putten et al., 2001 

227 Lantana camara Verbenaceae Forb Annual Grassland Autotoxicity Arora et al. 1993 

228 Larix lacricina Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

https://en.wikipedia.org/wiki/Poaceae
https://en.wikipedia.org/wiki/Poaceae
https://it.wikipedia.org/wiki/Clusiaceae
https://en.wikipedia.org/wiki/Arecaceae
https://it.wikipedia.org/wiki/Crassulaceae
https://en.wikipedia.org/wiki/Amaranthaceae
https://it.wikipedia.org/wiki/Verbenaceae
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229 
Lasthenia 

californica 
Asteraceae Forb Annual Grassland 

Nutrient imbalance or 

depletion 
Petermann et al., 2008 

230 
Lathyrus 

pratensis 
Fabaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

231 
Leontodon 

autumnalis 
Asteraceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

232 
Leontodon 

hispidus 
Asteraceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

233 
Lepidium 

bonariense 
Brassicaceae Forb Annual Semiarid/arid Microbial shift Chiuffo et al., 2015 

234 
Lepidium 

campestre 
Brassicaceae Forb Annual Grassland 

Soilborne pathogen/Nutrient 

imbalance or depletion 

Petermann et al., 2008, Agrawal et al., 

2005 

235 
Lepidium 

densiflorum 
Brassicaceae Forb Annual Grassland 

Microbial shift/Nutrient 

imbalance or depletion 

Fitzpatrick et al., 2016, Agrawal et al., 

2005 

236 Lepidium sativum Brassicaceae Forb Annual Wetlands Autotoxicity Mazzoleni et al., 2015 

237 
Lespedeza 

cuneata 
Fabaceae Forb Perennial Grassland Microbial shift Crawford and Knight 2016 

238 
Leucanthemum 

vulgare 
Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen/Nutrient imbalance 

or depletion 

Zhang et al., 2016, Petermann et al., 

2008, Maron et al., 2014, Jing et al., 

2015, Hendriks et al., 2013, Cortois et 

al., 2016, Bergmann et al., 2016 

239 Leymus chinensis Poaceae Grass Perennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 
Jiang et al., 2010 

240 Liatris spicata Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002 

241 Licania platypus Chrysobalanaceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Not reported Kiers et al., 2000 

242 Ligustrum sinense Oleaceae Tree/Shrub Perennial Temperate forest Not reported Kuebbing et al., 2015 

243 
Ligustrum 

vulgare 
Oleaceae Tree/Shrub Perennial Shrubland Microbial shift Shannon et al., 2014 

244 Linaria vulgaris Scrophulariaceae Forb Perennial Grassland Microbial shift 
Maron et al., 2014, Klironomos 2002, 

Anacker et al., 2014 

245 Lindera benzoin Lauracee Tree/Shrub Perennial Temperate forest Not reported Smith and Reynolds 2015 

246 
Liriodendron 

tulipifera 
Magnoliaceae Tree/Shrub Perennial Temperate forest Microbial shift   

Nagendra and Peterson 2016, Bennett 

et al., 2017 

https://it.wikipedia.org/wiki/Scrophulariaceae
https://it.wikipedia.org/wiki/Magnoliaceae
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247 Litsea elongata Lauracee Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

248 
Lolium 

multiflorum 
Poaceae Grass Perennial Grassland Microbial shift García-Parisi and Omacini 2017 

249 Lolium perenne Poaceae Grass Perennial Grassland 
Microbial shift/Soilborne 

pathogen/Autotoxicity 

Zhang et al., 2016, Niu et al., 2007, 

Newman and Rovira 1975, Klironomos 

2002, Jing et al., 2015, De Deyn et al., 

2004 

250 Lolium rigidum Poaceae Grass Perennial Grassland Autotoxicity Canals et al., 2005 

251 Lonicera maackii Caprifoliaceae Tree/Shrub Perennial Shrubland Microbial shift 
Shannon et al., 2014, Kuebbing et al., 

2015 

252 
Lotus 

corniculatus 
Fabaceae Forb Perennial Grassland 

Microbial shift/Autotoxicity/ 

Nutrient imbalance or 

depletion 

Wubs and Bezemer 2016, Grant and 

Sallans 1964, Frouz et al., 2016, 

Cortois et al., 2016 

253 Luchea seemannii Fabaceae Forb Perennial 
Tropical/subtropical 

forest 
Not reported Kiers et al., 2000 

254 Lupinus sericeus Fabaceae Forb Perennial Grassland Microbial shift Maron et al., 2016 

255 
Medicago 

lupulina 
Fabaceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen 

Petermann et al., 2008, Klironomos 

2002, Cortois et al., 2016, Anacker et 

al., 2014 

256 Medicago marina Fabaceae Forb Perennial Grassland Autotoxicity Bonanomi et al., 2007 

257 Medicago sativa Fabaceae Forb Perennial Grassland Microbial shift/Autotoxicity 
Niu et al., 2007, Miller 1996, 

Mazzoleni et al., 2015 

258 Medicago varia Fabaceae Forb Perennial Grassland Microbial shift 
Schittko et al., 2016, Cortois et al., 

2016 

259 
Megathyrsus 

maximus 
Poaceae Grass Perennial Grassland Microbial shift Te Beest et al., 2009 

260 Melilotus albus Fabaceae Forb Perennial Grassland 
Microbial shift/Soilborne 

pathogen 

Schittko and Wurst 2014, Petermann et 

al., 2008 

261 Milicia regia Moraceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Hood et al., 2004 

262 Nardus stricta Poaceae Grass Perennial Grassland Microbial shift Jing et al., 2015 

263 
Nassella 

leucotricha 
Poaceae Grass Perennial Grassland Not reported Kulmatiski et al., 2016 

https://en.wikipedia.org/wiki/Caprifoliaceae
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264 Nyssa sylvatica Cornaceae Tree/Shrub Perennial Temperate forest Not reported Nagendra and Peterson 2016 

265 
Ochroma 

pyramidale 
Bombacaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Not reported Kiers et al., 2000 

266 
Oenothera 

biennis 
Onagraceae Forb Annual Grassland Microbial shift 

Fitzpatrick et al., 2016, Anacker et al., 

2014 

267 
Oenothera 

perennis 
Onagraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

268 
Oenothera 

speciosa 
Onagraceae Forb Perennial Grassland Not reported Kulmatiski et al., 2016 

269 
Onobrychis 

vincifolia 
Fabaceae Forb Perennial Grassland Microbial shift 

Zuppinger-Dingley et al., 2016, Cortois 

et al., 2016 

270 
Ormosia 

glaberrima 
Fabaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

271 Ostrya virginiana Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

272 
Oxydendrum 

arboreum 
Ericaceae Tree/Shrub Perennial Temperate forest Not reported Nagendra and Peterson 2016 

273 Ozoroa insignis Anacardaceae Tree/Shrub Perennial Semiarid/arid Microbial shift Rutten et al., 2016 

274 
Panicum 

capillare 
Poaceae Grass Annual Grassland Soilborne pathogen Petermann et al., 2008 

275 
Panicum 

coloratum 
Poaceae Grass Annual Grassland Not reported Kulmatiski et al., 2016 

276 
Panicum 

lanuginosum 
Poaceae Grass Annual Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

277 
Panicum 

sphaerocarpum 
Poaceae Grass Annual Grassland Microbial shift Bever 1994 

278 
Panicum 

urvilleanum 
Poaceae Grass Annual Semiarid/arid Not reported Danin 1997 

279 
Panicum 

virgatum 
Poaceae Grass Annual Grassland Soilborne pathogen Bauer et al., 2015 

280 
Parthenium 

hysterophorus 
Asteraceae Forb Perennial Grassland Autotoxicity Picman and Picman 1984 

281 
Parthenium 

integrifolium 
Asteraceae Forb Perennial Grassland Soilborne pathogen Bauer et al., 2015 

282 Pastinaca sativa Apiaceae Forb Biennial Grassland Microbial shift Cortois et al., 2016 

https://en.wikipedia.org/wiki/Cornaceae
https://it.wikipedia.org/wiki/Bombacaceae
https://it.wikipedia.org/wiki/Onagraceae
https://it.wikipedia.org/wiki/Onagraceae
https://it.wikipedia.org/wiki/Onagraceae
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283 
Pennisetum 

centrasiaticum 
Poaceae Grass Perennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 
Jiang et al., 2010 

284 
Pentaclethra 

macroloba 
Fabaceae Tree/Shrub Perennial 

Tropical/subtropical 

forest 
Microbial shift McCarthy-Neumann and Kobe 2010b 

285 
Petrorhagia 

velutina 
Caryophyllaceae Forb Perennial Grassland Not reported Mazzoleni et al., 2007 

286 Phleum pratense Poaceae Grass Perennial Grassland Microbial shift/Autotoxicity 

Klironomos 2002, Fitzpatrick et al., 

2016, Cortois et al., 2016, Anacker et 

al., 2014 

287 
Phragmites 

australis 
Poaceae Grass Perennial Wetlands Autotoxicity 

Gopal and Goel 1993, Armstrong and 

Armstrong 2001 

288 
Phytolacca 

americana 
Phytolaccaceae Forb Biennial Temperate forest Autotoxicity Edwards and Fletcher 1988 

289 Picea abies Pinaceae Tree/Shrub Perennial Boreal forest Autotoxicity Pellissier and Souto 1999 

290 Picea glauca Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

291 Picea mariana Pinaceae Tree/Shrub Perennial Boreal forest Microbial shift/Autotoxicity 
Mallik and Newton 1988, Bennett et 

al., 2017 

292 Picea rubens Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

293 Picea sitchensis Pinaceae Tree/Shrub Perennial Boreal forest Not reported Chapin et al., 1994 

294 Pimpinella major Apiaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

295 Pinus contorta Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Gundale et al., 2014 

296 Pinus halepensis Pinaceae Tree/Shrub Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

297 Pinus monticola Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

298 Pinus radiata Pinaceae Tree/Shrub Perennial Semiarid/arid Not reported Rice 1984, Chu-Chou 1978 

299 Pinus resinosa Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

300 Pinus strobus Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift 
Nagendra and Peterson 2016, Bennett 

et al., 2017 

301 Pinus taeda Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Nijjer et al., 2007, Bennett et al., 2017 
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302 Pinus virginiana Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

303 Plantago erecta Plantaginaceae Forb Perennial Grassland 
Nutrient imbalance or 

depletion 
Batten et al., 2008 

304 
Plantago 

lanceolata 
Plantaginaceae Forb Perennial Grassland 

Microbial shift/Soilborne 

Pathogen/Autotoxicity/Nutri

ent imbalance or depletion 

Zuppinger-Dingley et al., 2016, Zhang 

et al., 2016, Stanescu and Maherali 

2016, Petermann et al., 2008, Newman 

and Rovira 1975, Klironomos 2002, 

Hendriks et al., 2013, Frouz et al., 

2016, De Deyn et al., 2004, Cortois et 

al., 2016, Bezemer et al., 2006a, 

Bergmann et al., 2016, Anacker et al., 

2014 

305 Plantago major Plantaginaceae Forb Perennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 

Bergmann et al., 2016, Agrawal et al., 

2005 

306 Plantago media Plantaginaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

307 Plantago rugelii Plantaginaceae Forb Perennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 

Fitzpatrick et al., 2016, Agrawal et al., 

2005 

308 
Platanus 

occidentalis 
Pinaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

309 Poa annua Poaceae Grass Annual Grassland Microbial shift 

Van Grunsven et al., 2007, Kardol et 

al., 2007, Jing et al., 2015, Frouz et al., 

2016 

310 Poa compressa Poaceae Grass Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

311 Poa pratensis Poaceae Grass Perennial Grassland Microbial shift 

Zuppinger-Dingley et al., 2016, 

Klironomos 2002, Cortois et al., 2016, 

Anacker et al., 2014 

312 Poa secunda Poaceae Grass Perennial Grassland Microbial shift Maron et al., 2016 

313 Poa trivialis Poaceae Grass Perennial Grassland Microbial shift 
De Deyn et al., 2004, Cortois et al., 

2016 

314 
Polygala 

incarnata 
Polygalaceae Forb Perennial Grassland Microbial shift Klironomos 2002 

315 
Populus 

grandidentata 
Betulaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 
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316 
Populus 

trihocarpa 
Salicaceae Tree/Shrub Perennial Temperate forest Microbial shift Reinhart et al., 2005 

317 
Potamogeton 

pectinatus 
Potamogetonaceae Forb Perennial Grassland 

Nutrient imbalance or 

depletion 
Bodelier et al., 2006 

318 Potentilla arguta Rosaceae Forb Perennial Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

319 Potentilla recta Rosaceae Forb Perennial Grassland 
Microbial shift/Nutrient 

imbalance or depletion 

Maron et al., 2014, Klironomos 2002, 

Anacker et al., 2014, Agrawal et al., 

2005 

320 
Prestoea 

decurrens 
Ranunculaceae Forb Annual 

Tropical/subtropical 

forest 
Microbial shift McCarthy-Neumann and Kobe 2010b 

321 Prosopis juliflora Fabaceae Tree/Shrub Perennial Semiarid/arid Autotoxicity Warrag 1995 

322 Prunella vulgaris Lamiaceae Forb Perennial Grassland Microbial shift 

Zuppinger-Dingley et al., 2016, 

Klironomos 2002, De Deyn et al., 

2004, Cortois et al., 2016, Bezemer et 

al., 2006a, Anacker et al., 2014 

323 Prunus grayana Rosaceae Tree/Shrub Perennial Temperate forest Microbial shift Bayandala et al., 2016 

324 
Prunus 

pensylvanica 
Rosaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

325 Prunus serotina Rosaceae Tree/Shrub Perennial Temperate forest 
Microbial shift/Soilborne 

pathogen 

Reinhart et al., 2003, Packer and Clay 

2000 

326 
Pseudoroegneria 

spicata 
Poaceae Grass Perennial Grassland Microbial shift Maron et al., 2016 

327 
Pseudotsuga 

menziesii 
Pinaceae Tree/Shrub Perennial Temperate forest Soilborne pathogen Jenny et al. 1997 

328 
Pulicaria 

dysenterica 
Asteraceae Forb Perennial Grassland Not reported Bonanomi and Mazzoleni 2005 

329 Quercus alba Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift 
Nagendra and Peterson 2016, Bennett 

et al., 2017 

330 
Quercus 

ellipsoidalis 
Fagaceae Tree/Shrub Perennial Temperate forest 

Nutrient imbalance or 

depletion 
Dickie et al., 2007 

331 Quercus falcata Fagaceae Tree/Shrub Perennial Semiarid/arid Not reported Harborne 1972 

332 Quercus ilex Fagaceae Tree/Shrub Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

https://it.wikipedia.org/wiki/Potamogetonaceae
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333 
Quercus 

macrocarpa 
Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

334 Quercus nigra Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Nijjer et al., 2007 

335 Quercus palustris Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

336 Quercus petraea Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Wurst et al., 2015 

337 
Quercus 

pubescens 
Fagaceae Tree/Shrub Perennial Temperate forest Autotoxicity Mazzoleni et al., 2015 

338 Quercus rubra Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift McCarthy-Neumann and Kobe 2010a 

339 Quercus velutina Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

340 Ranunculus acris Ranunculaceae Forb Perennial Grassland Microbial shift 
Klironomos 2002, Cortois et al., 2016, 

Anacker et al., 2014 

341 
Ratibida 

columnifera 
Asteraceae Forb Perennial Grassland Not reported Kulmatiski et al., 2016 

342 Ratibida pinnata Asteraceae Forb Perennial Grassland 
Microbial shift/Soilborne 

pathogen 

Fitzsimons and Miller 2010, Bauer et 

al., 2015 

343 
Robinia 

pseudoacacia 
Fagaceae Tree/Shrub Perennial Temperate forest Microbial shift/Autotoxicity 

Bennett et al., 2017, Mazzoleni et al., 

2015 

344 Rorippa austriaca Brassicaceae Forb Annual Grassland Microbial shift Dostálek et al., 2016. 

345 Rudbeckia hirta Asteraceae Forb Annual Grassland 
Microbial shift/Soilborne 

pathogen 

Fitzsimons and Miller 2010, Bauer et 

al., 2015 

346 
Rudbeckia 

serotina 
Asteraceae Forb Biennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

347 Rumex acetosa Polygonaceae Forb Perennial Grassland Microbial shift/Autotoxicity 
Newman and Rovira 1975, Jing et al., 

2015, Cortois et al., 2016 

348 Rumex acetosella Polygonaceae Forb Perennial Grassland Soilborne pathogen Zhang et al., 2016 

349 Rumex crispus Polygonaceae Forb Perennial Grassland Microbial shift 
Fitzpatrick et al., 2016, Chiuffo et al., 

2015, Burns et al., 2017 

350 
Rumex 

obtusifolius 
Polygonaceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen 

Zhang et al., 2016, Jing et al., 2015, De 

Deyn et al., 2004, 

351 Salsola kali Chenopodiaceae Tree/Shrub Annual Semiarid/arid Microbial shift Lodhi 1979a, Chiuffo et al., 2015 

352 Salvia azurea Lamiaceae Forb Perennial Grassland Not reported Kulmatiski et al., 2016 

https://it.wikipedia.org/wiki/Caryophyllaceae
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353 
Sanguisorba 

minor 
Rosaceae Forb Perennial Grassland Microbial shift Bezemer et al., 2006a 

354 
Sanguisorba 

officinalis 
Rosaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

355 Sapium sebiferum Euphorbiaceae Tree/Shrub Perennial Grassland Microbial shift Nijjer et al., 2007 

356 Satureja vulgaris Lamiaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

357 Schima superba Theaceae Tree/Shrub Perennial 
Tropical/subtropical 

forest 
Soilborne pathogen Liang et al., 2016 

358 
Schizachyrium 

scoparium 
Poaceae Grass Perennial Wetlands Microbial shift/Autotoxicity 

Wedin and Tilman 1993, Tilman and 

Wedin 1991, Kulmatiski et al., 2016, 

Gustafson and Casper 2004, Casper et 

al., 2008, Casper and Castelli 2007 

359 
Scirpus 

holoschoenus 
Cyperaceae Sedge Perennial Grassland Not reported Bonanomi et al., 2005b 

360 Senecio jacobaea Asteraceae Forb Perennial Grassland Microbial shift 
Bezemer et al., 2006a, Bezemer et al., 

2006b 

361 
Sequoia 

sempervirens 
Cupressaceae Tree/Shrub Perennial Temperate forest Microbial shift Florence 1965 

362 Silene antirrhina Caryophyllaceae Forb Annual Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

363 Silene cucubalus Caryophyllaceae Forb Annual Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

364 Silene vulgaris Caryophyllaceae Forb Annual Grassland 
Nutrient imbalance or 

depletion 
Agrawal et al., 2005 

365 
Sisymbrium 

loeselii 
Brassicaceae Forb Annual Grassland Not reported Schittko et al., 2016 

366 
Solanum 

carolinense 
Solanaceae Forb Annual Grassland Autotoxicity Solomon 1983 

367 
Solidago 

canadensis 
Asteraceae Forb Perennial Grassland 

Microbial shift/Nutrient 

imbalance or depletion 

Schittko and Wurst 2014, Schittko et 

al., 2016, Sanderson et al., 2015, 

Pendergast et al., 2013, Klironomos 

2002, Anacker et al., 2014 

368 
Solidago 

graminifolia 
Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002 

369 
Solidago 

nemoralis 
Asteraceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

https://en.wikipedia.org/wiki/Euphorbiaceae
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370 Solidago rugosa Asteraceae Forb Perennial Grassland Microbial shift 
Pendergast et al., 2013, Klironomos 

2002, Anacker et al., 2014 

371 
Sorghastrum 

nutans 
Poaceae Grass Perennial Grassland Microbial shift/Autotoxicity 

Kulmatiski et al., 2016, Fitzsimons and 

Miller 2010, Castelli and Casper 2003, 

Casper et al., 2008, Casper and Castelli 

2007, Gustafson and Casper 2004 

372 
Sorghum 

halepense 
Poaceae Grass Perennial Grassland Autotoxicity Abdul-Wahab and Rice 1967 

373 Sporobolus asper Poaceae Grass Perennial Grassland Not reported Kulmatiski et al., 2016 

374 
Sporobolus 

heterolepis 
Poaceae Grass Perennial Grassland 

Microbial shift/Soilborne 

pathogen 
Casper et al., 2008, Bauer et al., 2015 

375 
Sporobolus 

neglectus 
Poaceae Grass Perennial Grassland Microbial shift Fitzpatrick et al., 2016 

376 
Sporobolus 

pyramidalis 
Poaceae Grass Perennial Semiarid/arid Not reported Rice 1984 

377 Stellaria media Caryophyllaceae Forb Biennial Grassland Microbial shift De Deyn et al., 2004 

378 Stipa krylovii Poaceae Grass Perennial Grassland 
Nutrient imbalance or 

depletion 
Jiang et al., 2010 

379 Stipa pulchra Poaceae Grass Perennial Grassland 
Microbial shift/nutrient 

imbalance or depletion 
Larios and Suding 2015 

380 
Stipagrostis 

spoparia 
Poaceae Grass Perennial Semiarid/arid Not reported Danin 1997 

381 Succisa pratensis Dipsacaceae Forb Perennial Grassland Microbial shift De Deyn et al., 2004 

382 
Swallenia 

alexandrae 
Poaceae Grass Perennial Semiarid/arid Not reported Danin 1997 

383 
Symphyotrichum 

novae-angliae 
Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen 

Pendergast et al., 2013, Bauer et al., 

2015 

384 
Symphyotrichum 

pilosum 
Asteraceae Forb Perennial Grassland Microbial shift Pendergast et al., 2013 

385 
Taeniatherum 

caput-medusae 
Poaceae Grass Annual Grassland Microbial shift Blank and Sforza 2007 

386 
Tanacetum 

vulgare 
Asteraceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen 

Schittko et al., 2016, Petermann et al., 

2008, Schittko and Wurst 2014 

https://it.wikipedia.org/wiki/Dipsacaceae
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387 
Taraxacum 

officinale 
Asteraceae Forb Perennial Grassland 

Microbial shift/Autotoxicity/ 

Nutrient imbalance or 

depletion 

Klironomos 2002, Cortois et al., 2016, 

Chiuffo et al., 2015, Bergmann et al., 

2016, Anacker et al., 2014 

388 
Thelesperma 

megapotamicum 
Asteraceae Forb Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

389 Thymus capitatus Lamiaceae Tree/Shrub Perennial Grassland Autotoxicity Vokou and Margaris 1986 

390 Tilia americana Polygonaceae Tree/Shrub Perennial Temperate forest Microbial shift Bennett et al., 2017 

391 
Tragopogon 

dubius 
Asteraceae Forb Perennial Grassland Microbial shift 

Van Grunsven et al., 2007, Chiuffo et 

al., 2015 

392 
Tragopogon 

dubius 
Asteraceae Forb Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

393 
Tragopogon 

pratensis 
Asteraceae Forb Perennial Grassland Microbial shift 

Van Grunsven et al., 2007, Klironomos 

2002, Cortois et al., 2016, Anacker et 

al., 2014 

394 
Trifolium 

campestre 
Fabaceae Forb Perennial Grassland 

Microbial shift/Soilborne 

pathogen 

Petermann et al., 2008, Cortois et al., 

2016 

395 Trifolium dubium Fabaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

396 
Trifolium 

hybridum 
Fabaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

397 
Trifolium 

incarnatum 
Fabaceae Forb Perennial Grassland Soilborne pathogen Petermann et al., 2008 

398 
Trifolium 

pratense 
Fabaceae Forb Perennial Grassland 

Microbial shift/Soilborne 

Pathogen/Nutrient imbalance 

or depletion 

Wubs and Bezemer 2016, Wagg et al., 

2015, Petermann et al., 2008, 

Klironomos 2002, Fitzpatrick et al., 

2016, Cortois et al., 2016, Bartlet-

Ryser et al. 2005, Anacker et al., 2014 

399 Trifolium repens Fabaceae Forb Perennial Grassland 
Microbial shift/Soilborne 

pathogen/Autotoxicity 

Zuppinger-Dingley et al., 2016, 

Schittko et al., 2016, Petermann et al., 

2008, Newman and Rovira 1975, 

García-Parisi and Omacini 2017, 

Cortois et al., 2016 

400 
Trisetum 

flavescens 
Poaceae Grass Annual Grassland Microbial shift Cortois et al., 2016 

401 Tsuga canadensis Pinaceae Tree/Shrub Perennial Boreal forest Microbial shift Kotanen 2007, Bennett et al., 2017 

https://it.wikipedia.org/wiki/Pinaceae
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402 
Tsuga 

mertensiana 
Pinaceae Tree/Shrub Perennial Boreal forest 

Soilborne pathogen/Nutrient 

imbalance or depletion 
Matson and Boone 1984 

403 Typha latifolia Typhaceae Forb Perennial Wetlands Microbial shift/Autotoxicity McNaughton 1968, Grace 1983 

404 
Verbesina 

encelioides 
Asteraceae Forb Perennial Semiarid/arid Microbial shift Chiuffo et al., 2015 

405 
Veronica 

chamaedrys 
Scrophulariaceae Forb Perennial Grassland Microbial shift Cortois et al., 2016 

406 
Veronica 

officinalis 
Scrophulariaceae Forb Perennial Grassland Microbial shift Klironomos 2002, Anacker et al., 2014 

407 
Viburnum 

dentatum 
Adoxaceae Tree/Shrub Perennial Temperate forest Microbial shift Elgersma et al., 2012 

408 Vicia cracca Fabaceae Forb Annual Grassland 
Microbial shift/Soilborne 

pathogen 

Petermann et al., 2008, Klironomos 

2002, Cortois et al., 2016, Anacker et 

al., 2014 

409 Vicia villosa Fabaceae Forb Annual Grassland Soilborne pathogen Petermann et al., 2008 

410 
Vincetoxicum 

rossicum 
Apocynaceae Vine Perennial Grassland 

Nutrient imbalance or 

depletion 
Sanderson et al., 2015 

411 Viola arvensis Violaceae Forb Annual Grassland Microbial shift Kardol et al., 2007 

412 Virola koschnyi Myristicaceae Tree/Shrub Perennial Temperate forest Microbial shift McCarthy-Neumann and Kobe 2010b 

413 Vulpia ciliata Poaceae Grass Annual Grassland 
Microbial shift/Soilborne 

pathogen 
Van der Putten et al., 2001 

414 Wollemia nobilis Araucariaceae Tree/Shrub Perennial Temperate forest Microbial shift Rigg et al., 2016 

415 Zizania palustris Poaceae Grass Annual Wetlands 
Nutrient imbalance or 

depletion 
Walker et al., 2006 

https://it.wikipedia.org/wiki/Pinaceae
https://it.wikipedia.org/wiki/Scrophulariaceae
https://it.wikipedia.org/wiki/Scrophulariaceae
https://it.wikipedia.org/wiki/Araucariaceae
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 Chapter 2 

Abstract 

Soil sickness is defined as a condition in which the constant use of non-sustainab le 

agricultural practices such as monoculture, intensive tillage, constant application of chemica l 

fertilizers and agrochemicals, cause a deterioration of soil physical, chemical and biologica l 

properties. As a consequence, negative effects on plant development and crop yields are 

observed. In the Piana del Sele, an agricultural area of Southern Italy with about 5,000 ha 

cultivated under greenhouses, the intensive cultivation system of baby leaf in the long period 

has led to an increase in soil sickness problems. In the present study, an explorative experiment 

was conducted to evaluate the spread of soil sickness in baby leaf monoculture, and to detect 

the main factors (e.g., nutritional, parasitic, toxic) involved in the reduction of crop yield. For 

this purpose, soil samples of twelve farms were subjected to different treatments, in order to 

selectively remove one or more of the proposed factors involved in soil sickness, and the 

efficacy on seed germination and growth of lettuce was evaluated. Compared with the untreated 

soil, autoclave-sterilized soil showed the highest percentage of seed germination, whereas the 

addition of mineral nutrients and soil sterilization with fumigants efficaciously promoted plant 

growth. The efficacy of soil treatments in improving plant growth in most of the sampled farms 

indicated that soil sickness of baby leaf is a common issue in the Piana del Sele. However, 

considering the heterogeneous responses among the applied treatments, further studies are 

required to elucidate the mechanisms and the role of biotic and abiotic factors involved in soil 

sickness.                        
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 Chapter 2 

1. Introduction 

Soil sickness is a complex and multi- factorial phenomenon that appears when plants of 

the same species or its relatives are cultivated repeatedly on the same field, year after year i.e., 

monoculture (Zucconi, 2003). Consequently, negative interactions are established between 

plant and soil, leading to a reduction in both crop yield and quality, and a general decline of 

soil quality (Huang et al., 2013). The negative effects of soil sickness has been attributed to 

various abiotic and biotic factors, including  soil nutrient depletion or imbalance (Bekunda, 

1999; Howeler and Cadavid, 1990), build-up of soilborne pathogens and pests (Hartemink et 

al., 2000; Pankhurst et al., 2005), shifting in soil microbial community composition (Li et al., 

2014; Nayyar et al., 2009), presence of autotoxic compounds (Asao et al., 2004; Singh et al., 

1999), and accumulation of extracellular self-DNA (Mazzoleni et al., 2015). 

The phenomenon of soil sickness was already known at the time of the ancient Greeks and 

Romans, but its spread was recorded in the second half of the 20th century as a result of the 

progress of intensive agriculture. This cultivation system is geared towards maximization of 

crop yields per unit of agricultural land area through the use of high-yielding crop varieties, 

repeated tillage, consecutive growth cycles and marked application of chemical fertilizers and 

agrochemicals (Zeng et al., 2008). In contrast, some traditional agricultural practices have been 

abandoned, including fallow, long-term crop rotation and application of organic amendments. 

Consequently, an increase in soil sickness was observed due to the deterioration of soil 

physical, chemical and biological properties (Huang et al., 2013; Wang et al., 2014; Zhou and 

Wu, 2015). 

Problems of soil sickness are reported for several plant species cultivated both in open 

field and under protected environment, like greenhouse or plastic tunnel (Martínez et al., 2011; 

Minuto et al., 2002; Tagliavini and Marangoni, 1992). Cultivation under plastic tunnel 

gradually increased in the last decades and currently about 200,000 ha of the agricultura l 

surface in the Mediterranean basin are covered using this system (Scarascia-Mugnozza et al., 

2012). The main advantage is due to the improvement of microclimatic conditions that in turn 

allows a reduction of plant growth time and an increase of crop yield. However, this type of 

cultivation strongly affects soil quality by impacting on water, carbon and nutrient cycles. The 

permanent soil cover and the consequent request of localized irrigation to support crop water 

demand increases soil salinity, while the widespread use of synthetic mineral fertilizers can 

induce soil acidification (Ju et al., 2007). Moreover, the systematic elimination of crop 

residues, the frequent soil tillage and the optimal conditions of temperature and water content 
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can lead to a reduction of soil organic carbon content through mineralization process, with 

negative effects on soil physical-chemical quality and microbial community (Bonanomi et al., 

2011). Also, the constant application of fumigants and other agrochemicals used to control 

plant pathogens, nematodes, pests and weeds, has a negative impact on soil quality and crop 

health because these compounds affect the composition of soil microbial community and the 

development of pesticide resistances (Tilman et al., 2002). Generally, the favorable conditions 

available under protected environment can produce a response in soil sickness greater than in 

the open field (Kulmatiski et al., 2008). 

In the Piana del Sele, an agricultural area located in the Salerno province (Campania , 

Italy), more than 4,500 ha are covered with plastic tunnel, 3,000 of which are used for the 

cultivation of “baby leaf” (Fig. 1a-d). Economic market trends and the requirement of 

specialized machinery for crop production and harvesting have driven the farmers towards the 

cultivation of one or few vegetable species, mainly rocket (Eruca sativa) and lettuce (Lactuca 

sativa). The adoption of monoculture or short rotation, the high number of productive cycles 

per year and the frequent soil tillage led to excessive soil exploitation with consequent negative 

effects on the crops. Despite the application of mineral fertilizer to support plant nutrition and 

the use of fumigants and others agrochemicals to control plant diseases, an increase in soil 

sickness problems, like failure of seed germination, death of seedlings, stunted growth and 

yield reduction, were observed in the last years (Fig. 1e-f). 

The present paper describes an explorative study concerning the soil sickness in baby leaf 

cultivation. For this purpose, soils from twelve farms located in the Piana del Sele were subject 

to different treatments in order to selectively remove one or more of the proposed mechanisms 

involved in soil sickness (i.e., nutritional, parasitic and toxic), and the efficacy of different soil 

treatments was evaluated on germination and growth of lettuce. The objectives of this study 

were: i) to evaluate the spread of soil sickness phenomenon in baby leaf monoculture; and ii) 

to detect the main factors involved in the reduction of crop yield.  

 

2. Material and methods 

2.1. Study area and soil collection 

To evaluate the spread of soil sickness problem in baby leaf cultivation, twelve farms were 

selected in the Piana del Sele, a fertile alluvial plain located in Salerno province (Southern 

Italy). The study site has a Mediterranean climate, with hot and relatively dry summer (average 

temperature of 25.5°C in August) and mild and rainy winter (average temperature of 9.0°C in 
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January). Typically, rainfall reaches nearly 1,100 mm of rain every year, with a mean 

precipitation ranging from 105 mm in winter months to 25 mm in summer months. 

The selected farms are specialized in the cultivation of baby leaf, mainly rocket and 

lettuce, that has been carried out under plastic tunnels for ~10 years. The protection structures 

are characterized by low-technology and unheated polyethylene-covered (height ~4 m). All 

farms adopted an intensive cultivation system based on repeated cultivation cycles (~5-6 cycles 

per year), frequent soil tillage, use of mineral fertilizers by fertigation system and soil 

disinfestation treatments.  

In spring 2014, about 50 kg of soil for each farm were collected from the first 20 cm layer 

after removal of surface plant residues. The soil samples were packed in polyethylene bags, 

transferred at the greenhouse of the Department of Agricultural Science, Portici (40°48'46"N - 

14°20'38"E), air dried at room temperature and sieved through a 2mm metal sieve. 

 

2.2. Soil treatments 

To investigate the mechanisms involved in soil sickness (i.e., nutritional, parasitic and 

toxic), the collected soils were subjected to six different treatments plus the untreated soil (US) 

as the control. Specifically, mineral fertilizer (MF), activated carbon (AC), autoclave 

sterilization (AS) and soil fumigation (SF) treatments were performed individually or in 

combination in order to exclude one or more of the proposed mechanisms (Table 1). 

MF treatment was performed to exclude nutrient deficiency by adding Agromaster 

Balanced (15-7-15+2MgO+39SO3) at a rate of 2 g/Kg soil, prior to sowing. Powder of AC, a 

form of processed carbon with a highly porous structure and high absorption capacity, was 

applied at 3% (w/w) to absorb putative organic toxic compounds present in the soil. To 

selectively remove pathogens and other deleterious microorganisms, physical and chemica l 

soil sterilization treatment was performed by exposing the soils at high temperature (i.e., AS) 

or fumigant action (i.e., SF), respectively. For AS treatment, autoclavable bags were filled with 

moist soil from each farm and treated at 120 °C for 1 h to guarantee a complete steriliza t io n 

until the centre of the bags. For SF treatment, soils were transferred into plastic bags, mixed 

with Basamid (200 mg/L soil), moistened to activate the chemical and incubated at room 

temperature for 2 weeks. At the end, the bags were opened and the soil was aired for 3 weeks 

to ensure a complete release of the chemical, then cress germination test was performed to 

verify the absence of phytotoxicity. 

 



 

 

~ 95 ~ 

 Chapter 2 

2.3. Pot experiment 

Pot experiment was carried out to compare the seedling emergence and the shoot biomass 

of lettuce on soil of the twelve farms selected for the six soil treatments plus the untreated soil 

as the control. Sterilized round pots (diameter 14 cm, height 12 cm) were filled with 300 g of 

treated soil, then ten seeds of lettuce (Lactuca sativa L.) were sown in each pot, covered with 

a thin layer (~3 mm) of soil and watered to 80% of field capacity. The pots were placed in 

greenhouse equipped with automatic control of temperature (22 ± 4°C day and 16 ± 4°C night) 

and arranged in a completely randomized factorial design. A total of 420 pots were used with 

soils from the twelve sampled farms (hereafter named from Farm 1 to Farm 12), seven soil 

treatments and five replicates. During the experiment, pots were watered every 2-3 days to 

maintain soil moisture content between 60% and 80% of field capacity. 

 

2.4. Evaluation of results and statistical analysis 

Ten days after sowing, seeds germination was recorded by counting the number of 

seedlings emerged in each pot, then the number of plants was monitored once a week. At the 

end of the experiment, i.e. after 40 days of growth, plants of each pot were cut at the soil 

surface, and fresh shoot biomass was measured. For statistical analysis of the results, data were 

transformed to satisfy the assumptions of normality and homogeneity of variance, and 

submitted to analysis with the software STATISTICA 7. Data pertaining soil from the different 

farms were either analysed within each individual farm and after pooling data all the 12 farms . 

The effect of soil treatments on seedling emergence and shoot biomass were subjected to one-

way ANOVA followed by Duncan’s test (p=0.05).  

 

3. Results 

3.1. Seed germination  

Seed germination was significantly affected by soil treatments, with the highest 

germination rate (~90%) observed for AS treatment (Fig. 2a). The other treatments showed a 

percentage of germination lower than US, with very low emergency for SF+AC+MF (Fig. 2a). 

In detail, when the results were analysed individually for each soil sample, AS treatment 

exhibited a significant improvement of seed germination in the soil from four farms, compared 

with the respective US (Fig. 3). The other treatments showed better germination rates than US 

only in the case of the soil of Farm 2, whereas no significant improvement or a lower seed 

germination was observed in the other cases (Fig. 3). As regards the mortality from germina tion 
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until the end of the experiment, no variation in the number of alive plants was observed (data 

not shown).  

 

3.2. Plant growth 

Differently from seeds germination, plants biomass exhibited a better response when soils 

were subject to different treatments. On average, MF and SF showed a significant increase in 

shoot biomass when compared with the US treatment, with mean fresh weight of 15.40 g/pot 

for MF and 13.22 g/pot for SF (Fig. 2b). When the responses of treatments in each farm were 

analysed individually, MF and SF showed a significant improvement of plant biomass in seven 

out of twelve soils, as compared with the respective US (Fig. 4). SF+AC and AS significantly 

increased the productivity in the soil of five and two farms, respectively, whereas the remaining 

(i.e., AC and SF+AC+MF) treatments exhibited a significant positive effect only in one case 

(Fig. 4). 

 

4. Discussion  

Soil sickness is a very complex phenomenon in which several factors, including nutrient 

imbalance or depletion, presence of autotoxic compounds, build-up of soilborne pathogens and 

deleterious microorganisms, can negatively affect germination, growth and crop productivity. 

In this study, soils of twelve farms in which baby leaf was consecutively cultivated for many 

years, underwent different treatments in order to disentangle the role of the different putative 

mechanisms involved in soil sickness (Table 1). 

Generally, seed germination is influenced by environmental conditions and soil properties 

like temperature, water content, salinity, nitrate and ammonium concentration, presence of 

toxic compounds (allelopathic) and microbial community composition (Bewley and Black, 

1994). An adequate level of nitrate dissolved in the soil can stimulate seed germination (Dyer, 

1995), while the presence of allelopathic compounds, released directly by the plants through 

root exudates or by microorganisms during decomposition of organic material, may have an 

inhibitory effect depending on type and concentration of toxic compounds (Asao et al., 2004; 

He et al., 2009; Singh et al., 1999). In a study to evaluate the autotoxicity of tomato cultiva ted 

in hydroponic system, Yu et al. (1993) found that the culture solution collected at the end of 

the cultivation cycle strongly reduce the percentage of tomato seed germination. On the 

contrary, no inhibitory effect was observed in culture solution treated with activated carbon. 

Their results suggest both the presence of phytotoxic compounds released by root exudates and 
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the efficacy of activated carbon in the absorption of these compounds. In our study, both the 

application of mineral fertilizer (MF) and activated carbon (AC) showed a low efficacy in 

improving seed germination with respect to the control (US). On the contrary, a significant 

increase in the percentage of seed germination was found when soil had previously been 

sterilized in autoclave (AS). This result could suggest that microbial component is the principa l 

responsible for the reduction of seed germination. However, chemical sterilization treatment, 

e.g. SF, as well as the combination with other treatments such as SF+AC and SF+AC+MF 

shown, on average, a lower germination percentage than US. Several authors reported that, 

when compared to soil fumigants, treatment with steam sterilization differently affects some 

biotic and abiotic soil properties like pH, concentration of ammonium and nitrate, availability 

of manganese, microbial community structure, enzymatic activities and, finally, the toxicity of 

some organic compounds (Chen et al., 1991; Tanaka et al., 2003; Yamamoto et al., 2008). 

Therefore, the highest seed germination found when the soil was disinfected with AS can be 

due to changes of both biotic and abiotic soil properties. 

Unlike seed germination, the shoot biomass showed a positive response in MF and SF 

treated soils. Generally, MF and SF showed a significant increase in shoot biomass of 94% and 

67%, respectively, when compared with control soil (US). On the contrary, no significant 

difference was observed for the remain other treatments. Mineral nutrition is essential for plant 

survival and growth because the adsorbed ions become part of many biochemical processes, 

including photosynthesis, enzymatic activity, cell functions, etc. (Engels et al., 2011). The 

deficiency in one or more minerals produces symptoms like chlorosis, necrosis, discolorat ion, 

and negatively affects plant growth and reproductivity (Marschner, 2012). In agroecosystem, 

evidence of soil sickness caused by nutrient depletion are scarce and refer to agronomic 

condition with very low input of organic or synthetic fertilizer (Bekunda, 1999; Howeler and 

Cadavid, 1990). In other cases, deficiency in plant nutrition can be due to an immobiliza t ion 

of nutrients in the soil. For instance, in continuous wetland rice cultivation, the anaerobic 

conditions lead to a slow degradation of the straw rice constituent, especially lignin, resulting 

in the formation of lignin-derived phenols compounds that accumulate in the soil and 

chemically immobilize N into stable compounds. As a result, the nitrogen supplied is locked 

in forms not available for plants, with a consequent reduction in the efficiency of nitrogen 

fertilizers (Olk et al., 2009). In our study, no deficiency symptoms on leaf lettuce was noted. 

Nevertheless, for the soil of seven farms, a significant increase in plant biomass was observed 
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with MF treatment compared to US, suggesting that soil sickness in monoculture of baby leaf 

can be partially associated to a non-optimal level of soil mineral nutrients.  

An increase in plant biomass was also observed when the soils were sterilized, i.e, SF > 

SF+AC > AS > SF+AC+MF. As previously reported, soil disinfection affects both chemica l 

and biological soil properties. Tanaka et al (2003) found an increase in the ammonium and 

organic nitrogen levels after the soil disinfection (both with steam sterilization and fumigation), 

probably due to the decomposition of microbial debris by surviving microbes. Disinfec t ion 

treatments significantly affected also the presence of soil fungi. As a result, plants grew better 

in disinfected than untreated soil (Tanaka et al., 2003). Several authors found that, in 

monoculture system, the increase of soilborne pathogens or shifting in microbial community 

composition are the main cause of soil sickness (Li et al., 2015; Xiong et al., 2015; Yang et al., 

2012; Zhou et al., 2014). In intensive agriculture, alteration of soil biota is due to several 

agricultural practices, including monoculture, low input of organic material, heavy application 

of chemical fertilizers and agrochemicals (Bonanomi et al., 2016; Sugiyama et al., 2010). In 

particular, the presence of the same plant species causes a reduction of microbial biodivers ity 

on one hand, and an increase in specific pathogens on the other, with negative effects on some 

soil processes like humification, natural soil suppressiveness and degradation of toxic 

compounds (Zucconi, 2003). 

In monoculture or short rotation, the growth of plants can be inhibited by the presence of 

toxic compounds released by plants or microorganisms into the environment (John et al., 2010; 

Singh et al., 1999). Asao et al. (2004) found that vanillic acid present in root exudates of lettuce 

have a phytotoxic effect on this plant, resulting in a reduction of the biomass of ~39% as 

compared with control. In our study, AC treatment was performed to assess if toxic mechanism 

was responsible for soil sickness in baby leaf cultivation. However, compared with US, a 

statistically significant increase in plant biomass was observed only for the soil of one farm, 

suggesting that autotoxicity was not the main mechanism involved in soil sickness of baby leaf 

cultivation.  

 

5. Conclusions 

Soil sickness is complex phenomenon in which a multitude of factors are involved, and 

the inconsistency of its expression cause difficult identification of the underlying causes. Here, 

an explorative study about soil sickness of baby leaf cultivation was conducted to evaluate the 

spread of this problem in a cultivated area of Southern Italy, and to identify the main factors 
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involved. Our results revealed that soil sickness of baby leaf is common in the Piana del Sele 

for most of sampled farms. Soil treatments significantly improved seed germination and/or 

plant growth. However, a heterogeneous response was observed among the applied treatments. 

Generally, AS treatment was the most effective in improving seed germination rate, whereas 

MF and SF treatments positively affected plant growth. These results indicate that there are not 

clear main factors involved in soil sickness. However, the positive effects of soil steriliza t ion 

indicate that soil biota could have a direct effect on plant, or indirect by affecting some soil 

properties. Further studies are required to elucidate the mechanisms and the role of several 

biotic and abiotic factors involved in soil sickness. 
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Figures and tables 

Fig. 1. Overview of the study area and production system including: a) location of the study 

area in Southern Italy; b) top view of the Piana del Sele and distribution (yellow symbols) of 

the selected farms; c) plastic tunnels used for vegetables cultivation; d) detail of baby leaf 

cultivation under plastic tunnel; e-f) symptom of soil sickness in baby leaf lettuce and rocket.    
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Fig. 2. Pooled results of different soil treatments. (a) Percentage of germination ten days after 

sowing. (b) Shoot biomass after 40 days of growth.  
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Fig. 3. Effect of soil treatments on seed germination of lettuce sown in soil from twelve 

different farms. Mean values and significant differences are reported in the table below.  
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Fig. 4. Effect of soil treatments on shoot biomass of lettuce growth in soil from twelve different 

farms. Mean values and significant differences are reported in the table below.  
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Table 1. Summary of 7 soil treatments and the related mechanisms. 

 

Code Treatment Related mechanism 

US Untreated  

MF Mineral fertilizer Nutritional  

AC Activated carbon Toxic 

AS Autoclave sterilization Parasitic 

SF Soil fumigation Parasitic  

SF+AC Soil fumigation + Activated carbon Parasitic + toxic 

SF+AC+MF Soil fumigation + Activated carbon + 

Mineral fertilizer 

Parasitic + toxic + nutritional 
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• A 1-years mesocosm experiment compared organic amendment and synthetic fertilize rs  

• Crop yield, soil fertility and microbiome was analysed  

• Synthetic fertilizers had a higher crop production, but negatively affected soil fertility 

• 454 pyrosequencing revealed difference between synthetic fertilizers and organic 

amendments  

• Organic amendments increase microbiome diversity and improved their functionality  
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Abstract 

Vegetable cultivation under plastic tunnels provides high-quality crop yields but 

negatively affects soil fertility, especially when conventional agricultural system (e.g., use of 

synthetic mineral fertilizer and agrochemicals) is adopted. In this regard, the use of organic 

amendments has been proposed as a reliable and effective approach for soil fertility recovery. 

The aim of this study was to assess the effects of different organic amendments and application 

frequencies on crop yield, soil fertility and soil microbial communities. A 1-year long 

mesocosm experiment was performed by conditioning a soil with different organic amendment 

types and frequency of application, compared with the ordinary soil management based on 

mineral fertilizers and fumigation. Soil fertility was assessed by determining physical and 

chemical soil parameters, whereas microbial community functioning and structure were 

assessed by high-throughput sequencing of bacterial and eukaryotic rRNA gene markers and 

BIOLOG EcoPlates™. Compared to the organic amendment, the use of synthetic fertilizer had 

a higher crop production but negatively affected pH, soil organic carbon content and soil 

aggregation. Diversity and richness of bacteria and eukaryotic were lower in the synthetic than 

in the organic amendments. The addition of organic amendments promoted the growth of 

Acidobacteria and Gemmatimonadetes bacteria. On the contrary, members of Actinobacter ia 

and Proteobacteria were more abundant in the soil treated with synthetic fertilizer. This study 

increases our current knowledge on the effect of the synthetic and organic amendment 

applications on crop yield, soil fertility and soil microbial community functionality. 

 

Key Words: Organic carbon, disease suppression, microbial functional diversity, high-

troughput pyrosequencing, soil “sickness”.  
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1. Introduction 

The use of organic amendments such as animal and green manure (Himmelstein et al., 

2014; Tejada et al., 2009), organic wastes (Croteau and Zibilske, 1998; Torres et al., 2015), 

composts (Bastida et al., 2015; Noble and Coventry, 2005), and biochar (Jones et al., 2012; 

Lehmann et al., 2011), has been proposed as a reliable and effective approach for soil fertility 

recovery (Diacono and Montemurro, 2010; Haynes and Naidu, 1998). Different mechanisms 

have been proposed to explain the positive effects of organic amendments on soil fertility and 

health, including increase of microbial activity (Melero et al., 2006), enhanced soil structure 

(Bronick and Lal, 2005), release of mineral nutrients during organic matter decomposition 

(Berry et al., 2002), and induction of disease suppression towards soilborne pathogens (Bulluck 

et al., 2002). Unfortunately, the use of organic amendments has also significant drawback 

effects that limit their applicability in agro-ecosystems. For instance, the suppressive capability 

of organic amendments is often inconsistent and many studies report an increase of disease 

incidence after organic matter application (reviewed in Bonanomi et al., 2007). To elimina te 

these inconsistencies and successfully apply organic amendments it is necessary to understand 

the factors that affect the impact of different organic amendments types on soil microbiome 

and, then, on soil functioning. 

A large variety of organic matter types including crop residues, composts, peats, organic 

wastes from agro-industries, and biochar are widely used as soil amendments. Most of the 

published studies assessed the immediate biological and agronomic effects of organic 

amendments by adding them only once at the start of the experiment (e.g. Bastida et al., 2008; 

Ferreras et al., 2006), or by repeating the treatment usually once a year in long-term field trials 

(Diacono and Montemurro, 2010; García-Gil et al., 2000; Marschner et al., 2003; Ros et al., 

2006; Steiner et al., 2007). This experimental approach mirrors the ordinary agricultura l 

practices where organic amendments are usually added to soil once or twice a year. In agro-

ecosystems, however, organic carbon inputs including rhizodeposition and crop residues 

follow complex dynamics in relation to soil management, which varies with crop successions, 

type and frequency of organic amendment application. In this regard, only few studies 

addressed the link between frequency of soil amendments and soil functioning. The effect of 

organic C application frequency has been studied in relation to soil basal respiration (Nett et 

al., 2012), enzymatic activities (Stark et al., 2008), soil fungistasis (Bonanomi et al., 2016b), 

and nitrogen (N) mineralization (Duong et al., 2009; Mallory and Griffin, 2007). Previous 

studies demonstrated that soils subjected to repeated organic amendment applications, 
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compared with single applications, have a higher and more active microbial biomass (Kandeler 

et al., 1999) and enhanced enzymatic activities (Dick et al., 1988). These considerations about 

basic soil processes and history of organic inputs suggest that conditioning soil with repeated 

organic matter inputs can positively affect soil fertility and health by stimulating the activity 

of the resident microbial community. However, most of these studies were based on short-term, 

laboratory incubation experiments that used model organic compounds as C sources (e.g. 

glucose, glycine etc). As a consequence, it is still difficult to translate the available knowledge 

about the effect of repeated C applications into effective practical applications in real 

agricultural systems. 

Cultivation under plastic tunnels is a growing agricultural sector with about 2 million ha 

in the world and more than 190,000 ha in the Mediterranean Basin (Scarascia-Mugnozza et al., 

2012). This cultivation system provides several advantages due to the improvement of 

microclimatic conditions, relatively low investment costs and, thanks to high-quality crop 

yields, elevate net income for farmers (Belasco et al., 2013). However, this type of cultiva t ion 

negatively affects soil properties because it drastically modifies water, carbon, and nutrient 

cycles. The almost complete rainfall restriction and the consequent requirement of localized 

irrigation to support crop water demand increases soil salinity, while the widespread use of 

synthetic mineral fertilizers induces soil acidification (Ju et al., 2007). Also the use of 

fumigants has a negative effect on soil fertility and crop health, affecting the soil microbia l 

composition and the development of pesticide resistances (Tilman et al., 2002). In addition, the 

systematic elimination of crop residues to limit plant diseases, the optimal temperature and 

water content that promote mineralization of organic matter induce a reduction of soil organic 

carbon content, with a negative feedback on soil microbial communities. A crucial step for a 

sustainable management of soil fertility is to identify organic amendments with such a 

chemistry that effectively improves soil microbial activity, enhance soil fertility and provide 

mineral nutrients by mineralization (Bonanomi et al., 2014). 

In this work, we experimentally explored the possibility of an effective enhancement of 

soil fertility and crop yield by using organic substrates including biochar, animal manure and 

crop residues applied with different frequencies. For this purpose, a 1-year long mesocosm 

experiment was performed by conditioning a soil with 11 treatments of organic amendments 

differing for the types and frequency of application. In detail, we hypothesized that frequent 

addition of organic amendments, thanks to the continuous supply of easily decomposable organic 

compounds, enhance microbial activity and diversity and promote soil fertility and plant productivity.  
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The impact of different soil managements, including ordinary farming approaches based on 

mineral fertilizers and soil fumigation, was assessed on crop yield of rocket (Eruca sativa), soil 

chemistry, and microbial community functioning and structure by high-throughput sequencing 

of bacterial and eukaryotic rRNA gene markers and BIOLOG EcoPlates™. The main 

objectives of our study were to assess:  

(i) the impact of organic amendment types and frequency on crop productivity and soil 

chemistry;  

(ii) the differences in microbiota composition between soil managed with ordinary 

farming practices and soil treated with different organic amendments;  

(iii) the relationships between microbiota composition, soil properties and crop yield. 

 

2. Material and methods 

2.1. Organic amendments and soil collection 

Four types of organic substrates were selected, having different C/N ratios and N content 

(values are average ± standard deviations) as follows: i) alfalfa straw (Medicago sativa) (N 

content = 3.93 ± 2.16%; C/N ratio = 11.43 ± 2.98); ii) glucose (N content = 0.00; C/N ratio = 

∞); iii) compost manure (N content = 3.13 ± 0.64%; C/N ratio = 13.09 ± 1.16); iv) wood biochar 

(N content = 0.51 ± 0.11%; C/N ratio = 149.61 ± 7.26). Alfalfa straw was sampled from 

agricultural fields, air dried for 20 days until reaching constant weight, finely powdered using 

a ball mill and stored afterwards at room temperature. Compost manure was obtained by mixing 

cattle faeces and straw in forced-aeration pile. At the end of the process, compost manure was 

collected from cattle farm, air dried at room temperature until a constant weight was reached, 

finely powdered and then stored at room temperature. Soil was collected from a farm located 

in a productive area of about 5,000 ha cultivated under greenhouses located in the Salerno area 

(Southern Italy; 40°33'13''N, 14°57'22''E). Low-technology, unheated polyethylene-covered 

greenhouses (height ~4 m) are the main crop protection structures used in this area. The study 

site had a Mediterranean climate with a mean annual temperature of 15.9°C and mean monthly 

temperatures ranging from 23.6°C in August to 9.0°C in January. The climate has a mean 

annual rainfall of 988 mm with a relatively dry summer (84 mm). The farm adopted an 

intensive farming system for ~10 years based on cultivation under the plastic tunnel, intens ive 

tillage with an average of 6 plowing treatments every year including rototilling, spading and 

harrowing (Bonanomi et al., 2011). In spring 2013 about 1,000 kg of soil were collected from 

the first 20 cm layer. The soil had a silt loam texture (22.1% clay, 56.6% silt, 21.3% sand), 
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with a pH of 7.74 and an electrical conductivity (EC) of 0.32 dS m-1; it contained 15.4 g kg-1 

of organic carbon and 1.6 g kg-1 of total N, with a C/N ratio of 9.6 (for the other soil properties 

see Supplemental Table S1).  

 

2.2. Mesocosm experiment 

The experiment compared the ordinary cultivation method, based on mineral fertilize rs 

and fumigation with Metham-Na, with the use of different organic amendment types and 

frequency of application. Organic amendments were combined considering the complementary 

properties of the organic substrate: e.g. glucose provides short term labile C for microbes, 

Medicago sativa hay and compost manure have more recalcitrant C and are source of organic 

N, and biochar provides a safe site for microbial development and promotes soil physical 

properties. In detail, the experiment had a total randomized design, including 11 soil treatments 

(thereafter indicated as ST) with 3 replications each for a total of 33 experimental units (Table 

1, Fig. S1). The 11 STs were so composed: ST 1 - untreated soil (control); ST 2 – soil treated 

with synthetic fertilizers; ST 3 - soil fumigated by Metham-Na and treated with synthet ic 

fertilizers; ST 4 – soil with a high rate, single application of compost manure at the start of the 

experiment; ST 5 - soil with a high rate, single application of compost manure plus wood 

biochar at the start of the experiment; ST 6 – soil with a high rate, single application of glucose 

and alfalfa straw at the start of the experiment; ST 7 - soil with a high rate, single application 

of glucose and alfalfa straw plus wood biochar at the start the experiment; ST 8 - soil with low 

application rates of compost manure added weekly during crop growth; ST 9 - soil with low 

application rates of compost manure added weekly during crop growth plus wood biochar at 

the start of the experiment; ST 10 - soil with low application rates of glucose and alfalfa straw 

added weekly during the whole experiment; ST 11 - soil with low application rates of glucose 

and alfalfa straw added weekly during the whole experiment plus wood biochar at the start of 

incubation (Table 1). Biochar (size <1 cm) was incorporated into the soil once at the start of 

the experiment at the dose of 30 t ha-1. For single applications, powdered organic materia ls 

were incorporated into the soil at the doses of 15 t ha-1 for compost manure, 13 t ha-1 for alfalfa, 

7 t ha-1 for glucose. Unlike single dose, weekly applications were performed by shedding liquid 

extract of organic amendments on the soil surface. Considering the high crop density (i.e., 600 

mg/m2 of seeds), a different application method was used to avoid staining of the leaves with 

organic amendments. Liquid extract was prepared by mixing organic material and water using 

a 1:2 ratio, vigorously shaking it for 5 hours and filtering the mixture. Then, liquid extract was 
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distributed on soil surface, below crop canopy. The amount of organic material used for weekly 

applications corresponded to 0.43 t ha-1 for compost manure, 0.37 t ha-1 for alfalfa, 0.2 t ha-1 

for glucose. 

The collected soil was sieved in the laboratory (mesh size <2 mm) and mesocosms 

consisting in 32 L plastic tray were filled with 35 kg of soil and brought to 85% of water field 

capacity. Thereafter, the mesocosms were incubated in a greenhouse equipped with automatic 

control of temperature. The temperature was kept at 24 ± 4°C day and 18 ± 4°C night in spring 

and summer and 18 ± 4°C day and 12 ± 4°C in fall and winter. During the experiment, every 

three days the mesocosms were irrigated to 85% of field capacity by a sprinkler irriga t ion 

system. The experiment lasted for 360 days. 

 

2.3. Crop cultivation and yield 

Six consecutive cycles of rocket (Eruca sativa) cultivation were made during the 

mesocosm experiment. This method mirrors the ordinary cultivation method used by farmers 

in Southern Italy. Briefly, rocket was sown by hand spreading 600 mg m-2 of seeds and covered 

with a thin layer (~3 mm) of soil. The length of the cycles ranged from about ~35 to ~50 days 

in summer and winter, respectively. Crop yields were recorded at the end of each cycle 

quantifying the amount of commercial production by cutting the plant at ground level in all 

mesocosms. The material was air-dried in a dehydrator until reaching a constant weight that 

was thereafter recorded. 

 

2.4. Soil properties 

At the end of the experiment, i.e. after 360 days of cultivation, soil samples were collected 

from each mesocosm and transferred to the laboratory. Soil chemical properties were 

determined by standard methods  (Sparks, 1996) on soil air dried at +25 °C until constant 

weight was reached and sieved through 2 mm mesh. Electrical conductivity (EC) and pH were 

measured in 1: 5 and 1: 2.5 soil: water suspensions, respectively. Organic C content was 

assayed by chromic acid titration method (Walkley and Black, 1934); ammonium (N-NH4
+) 

and nitrate (N-NO3
-) contents were assayed by using ion-selective electrodes specific for 

ammonium and nitrate. 

Water stability of soil aggregates (WSA) was assessed according to the method of Kemper 

and Rosenau (1986). Twenty grams of air dried soil were sieved through 4.75 mm mesh and 

put in the highest of a sequence of three sieves of 1.00, 0.50, and 0.25 mm mesh size. The soil 
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was pre-soaked in distilled water for 30 min, then the nest of sieves and its contents were 

oscillated vertically in water 20 times using a 4 cm amplitude at the rate of one oscillation per 

sec. After wet-sieving, the resistant soil materials on each sieve, including unstable aggregates 

(< 0.25 mm), were recovered, dried in the oven at 50 ◦C for 48 h and weighed. Aggregates 

stability were expressed as a mean-weight-diameter (MWD) value which is the sum of the mass 

fraction of soil remaining on each sieve after sieving, multiplied by the mean diameter of the 

adjacent meshes (Spaccini et al., 2004).  

 

2.5. Soil microbiological analyses 

Microbiological analysis were carried within three days of sampling on fresh soils stored 

at +4 °C. The composition and diversity of soil microbial community was analyzed by high-

throughput sequencing, whereas the functionality of the soil microbial community was 

evaluated by BIOLOG EcoPlates™. 

Since one of the objectives of this study was to evaluate the differences in microbio ta 

composition between soil managed with ordinary farming practices and soil treated with 

different organic amendments, DNA was extracted in triplicate for each soil treatment, but the 

successive amplification was done by pooling the DNA of the three replicas. Total DNA 

extraction from soil samples (0.25 g) was carried out by using the PowerSoil DNA Isolation 

kit (Mo Bio Laboratories Inc., Carlsbad, CA). The bacterial and eukaryotic diversity were 

studied through pyrosequencing of the V1-V3 regions of the 16S rRNA gene (about 520 bp) 

and a portion of the 18S rRNA gene (about 436 bp), respectively, by using primers and PCR 

conditions previously reported (Bonanomi et al., 2016a; Ercolini et al., 2012). PCR products 

were purified with the Agencourt AMPure kit (Beckman Coulter, Milan, IT) and quantified 

using a Plate Reader AF2200 (Eppendorf, Milan, IT). Equimolar pools were obtained prior to 

further processing and pyrosequenced on a GS Junior platform (454 Life Sciences, Roche 

Diagnostics, IT), according to the manufacturer’s instructions.  

Community- level physiological profile (CLPP) of microbial populations was performed 

by the BIOLOG EcoPlates™ (BLG) method based on carbon substrate utilization. BLG 

consists of 96 wells containing 31 different carbon sources and a blank in triplicate. When the 

carbon source is utilized, the tetrazolium violet dye is reduced by developing a purple colour. 

The assay was performed as previously described by Bartelt-Ryser et al. (2005). Briefly, 1 g 

of sieved soil (mesh 2 mm) was shaken for 30 min in 10 ml of distilled water and then allowed 

to settle for 10 min. Then, 120 μl of the supernatant were diluted 100-fold in distilled water, 
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mixed, and finally used to inoculate the wells of the BIOLOG EcoPlates™. The plates were 

incubated at room temperature, and oxidation of carbon sources was measured with a 

spectrophotometer (Thermomax microtitre plate reader, Molecular Devices, Wokingham, UK) 

at 590 nm, after 24, 48, 72 and 96 h of incubation. Average well colour development (AWCD) 

was calculated as the sum of wells with activity per plate, divided by the 31 carbon sources. 

 

2.6. Bioinformatics data analysis 

Raw reads were filtered and analysed by using the QIIME 1.9.0 software (Caporaso et al., 

2010). Reads shorter than 300 bp, with more than 1 primer mismatch and with average quality 

score lower than 25 were discarded. Operational taxonomic units (OTUs) were picked through 

a de novo approach and uclust method and taxonomic assignment were obtained by using the 

RDP classifier and the Greengenes (McDonald et al., 2012) or the Silva SSU/LSU rRNA gene 

database release 119 (Quast et al., 2013), for bacteria and eukarya, respectively. Chloroplast 

and Streptophyta contamination, as well as singletons, were removed and the relative 

abundance of other taxa was recalculated. In order to avoid biases due to the different 

sequencing depth, OTU tables were rarefied to the lowest number of sequences per sample 

(3,048 and 3,696 for bacteria and eukarya, respectively). Alpha-diversity analysis (observed 

OTU richness, Chao1 and Shannon indices) was carried out in QIIME on rarefied OTU tables. 

Rarefied OTU tables were imported in R environment for statistical analyses and plotting 

(http://www.r-project.org). Finally, PCA plot of soil samples was performed at the genus level 

for bacteria and eukarya by using XLSTAT software. 

 

2.7. Statistical analysis 

One-way ANOVA was used to analyse the effect of ST on crop yield and soil chemica l 

and microbiological parameters. The relationship between relative changes in crop yield, soil 

properties and microbial community composition, including richness and diversity, was 

obtained for all the measured parameters. In detail, Pearson correlation coefficients were 

calculated and significance was evaluated at p <0.05 and <0.01. All statistical analyses were 

performed by STATISTICA 7 software. 

PCA box-plot of soil samples was performed at the genus level for bacteria and eukarya 

by using STATISTICA 7 software. Hierarchical clustering of the samples was carried out by 

using average-linkage clustering based on the Pearson’s correlation coefficient of the microbia l 

or eukarya community abundance. 

http://www.r-project.org/
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The 16S and 18S rRNA gene sequences are available at the Sequence Read Archive (SRA) 

of the National Center for Biotechnology Information (NCBI), under accession number 

SRP092020. 

 

3. Results 

3.1. Crop yield  

Crop yield (dry weight) was significantly affected by the soil treatments (ST) (Fig. 1). 

Compared with the ST 1, corresponding to untreated soil, the application of mineral fertilize rs 

(ST 2) had the higher yield, especially when the soil was previously fumigated by Metham-Na 

(ST 3). Differently, with the application of organic material a large variability of yield was 

observed, in relation to the amendment type and application frequency. In particular, a high 

yield was observed when alfalfa and glucose were combined and applied in a single dose, 

independently of the presence of biochar. For the remaining STs, small differences were 

observed in crop yield as compared to ST 1 (Fig. 1). 

 

3.2. Soil fertility 

Soil chemical parameters as well as soil aggregation were affected by STs (Table 2). Soil 

nitrate (N-NO3
-) concentration at the end of the experiment (i.e. after 360 days) was very high 

in ST 2 and ST 3 compared with the other STs (Table 2). Soil ammonium (N-NH4
+) 

concentration and soil salinity (EC) showed a similar trend, with higher values for ST 2 and 

ST 3, with respect to the other treatments. On the contrary, pH was lowered to a level acid (pH 

= 5.38) and extremely acid (pH = 4.39) for ST 3 and ST 2 treatments, respectively, whereas a 

neutral pH was observed for the remaining STs (Table 2). The use of synthetic fertilizers (ST 

2 and ST 3) led to a significant reduction of the organic carbon content compared with other 

STs. Organic amendment applications increased soil organic carbon content, especially when 

it was added as a single dose and in combination with biochar (Table 2). Finally, a higher 

stability of soil aggregates was observed for the treatments in which alfalfa and glucose were 

used as soil amendment (Table 2). In these cases, after wet-sieving more than 20% of macro-

aggregates with diameter > 1.00 mm were stable in water, whereas the content of unstable 

aggregates (diameter < 0.25 mm) was less than 11% (Fig. 2). 

 

https://www.ncbi.nlm.nih.gov/Traces/sra_sub/?acc=SRP092020&focus=SRP092020&from=list&action=show:STUDY
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3.3. Microbiome diversity, structure, and functionality 

CLPP analysis carried out at the end of the experiment showed significant differences 

between organic and synthetic fertilizer treatments (Table 2). The highest AWCD value after 

96 h of incubation was recorded for ST 11, and the lowest for treatments based on synthet ic 

fertilizers (ST 2 and ST 3), with intermediate values for the untreated control (ST 1) and the 

other STs (Table 2). Data from BIOLOG EcoPlates™ for specific carbon source utiliza t ion 

pattern showed that the substrate classes of carbohydrates, amino acids, phosphate carbon and 

carboxylic acids were rapidly utilized by STs based on organic amendments (from ST 4 to ST 

11) (Fig. S2). Noteworthy, amine compounds were rapidly degraded only in the ST 11 (Fig. 

S2). 

Pyrosequencing of 16S and 18S rRNA genes were used to describe the functional diversity 

and underlying phylogenetic changes in response to different STs. The average number of 

sequences/sample obtained after the quality filtering was 5,148 and 5,072 with an average read 

length of 530 bp and 452 bp for bacteria and eukarya, respectively. Different soil treatments 

significantly affected diversity and richness metrics based on observed OTUs, Shannon and 

Chao1 indices (Fig. 3). Compared with application of organic amendments (ST 4 to ST 8), 

synthetic fertilizers (ST 2 and ST 3) reduced the number of observed OTUs. In addition, ST 2 

and ST 3 had the lowest bacteria and eukarya richness, as shown by the Chao1 index (Fig. 3). 

Among the treatments based on organic amendment applications, the highest value of bacterial 

richness was observed in the soils that received biochar, but the opposite result was found for 

the eukaryotic community (Fig. 3). Finally, bacteria diversity was higher for the application of 

organic amendments than with the use of synthetic fertilizers, whereas a variable response 

depending on soil treatment was observed for eukaryotic diversity (Fig. 3).  

Considering the bacterial composition at a phylum level, a total of 30 phyla were found in 

all the samples. Firmicutes (22.4%), Proteobacteria (20.8%), Acidobacteria (15.6%), 

Bacteroidetes (10.5%), Actinobacteria (9.4%), Gemmatimonadetes (7.2%) and Chloroflexi 

(4.1%) were the dominant phyla. However, the relative abundance varied considerably across 

treatments (Fig. 4a). Firmicutes prevailed when alfalfa and glucose were applied once at the 

beginning of the experiment (ST 6 and ST 7). Untreated soil (ST 1) had the lowest abundance 

of Proteobacteria, while Acidobacteria abundance was particularly high. On the contrary, 

lowest level of Acidobacteria was observed for the other STs, especially when the soil was 

previously fumigated (ST 3) (abundance < 1%). Similarly, the fumigation treatment strongly 

reduced the abundance of Chloroflexi and Gemmatimonadetes, whereas the highest values 
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were observed for ST 11 and ST 5, respectively. Finally, the highest abundance of 

Actinobacteria and Bacteroidetes communities was observed for ST 2 and ST 3 (Fig. 4a).  

Considering the eukarya composition at class level, Nucletmycea was the dominant group 

of microorganisms across all the samples (Fig. 4b). Amoeboid organisms were most abundant 

in soil amended with organic matter. In particular, Schizoplasmodiida class was the most 

abundant in the soil amended with compost manure (ST 4 > ST 8 > ST 5 > ST 9), while 

Gracilipodida prevailed when alfalfa and glucose were applied in fractional doses (Fig. 4b). 

Soil fumigation (ST 3) promoted the growth of Acanthocystidae and of members of the SAR 

super-group, such as Alveolata and Rhizaria, compared to the other STs (Fig. 4b). A very low 

value in classified fungi at the genus level was observed for ST 3, while Rhizopus was the most 

abundant fungal genus with all the other treatments (Fig. S3). PCA based on bacteria and 

eukarya community composition at genus level clearly separated the samples according to 

different STs (Fig. S4). In particular, the analysis clustered the treatments into three groups 

including soil with application of synthetic fertilizers (ST 2 and ST 3), soil with single 

application of alfalfa (ST 6 and ST 7), and the remaining treatments (Fig. S4). 

Hierarchical clustering of the bacteria and eukarya profiles for different treatments are 

reported in (Fig. S5 and Fig. S6). Bacterial profiles at family level clustered the treatments in 

two groups. The first cluster includes the treatments that showed a greater yield, i.e. the soils 

that had received alfalfa as a single dose (ST 6 and ST 7) and synthetic fertilizers (ST 2 and ST 

3). The second cluster included the remaining STs grouped for type of amendment and 

frequency of application (Fig. S5). On the contrary, hierarchical clustering of the eukarya 

community at genus level showed a clear separation of the soils amended with compost manure 

(ST 4, ST 5, ST 8 and ST 9) from all the others (Fig. S6). 

 

3.4. Linking crop yield, soil chemical quality and microbiota composition 

EC, N-NH4
+ and N-NO3

- content were positively related to crop yield (Table 3). On the 

contrary, crop yield showed a significant negative correlation with pH and Biolog AWCD 

(Table 3). Soil properties such as EC and N-NO3
- were positively related between them and 

negatively correlated with pH, organic carbon and AWCD. Finally, soil aggregation was 

positively affected by organic carbon and microbial activity (Table 3). 

Crop yield positively related with Bacteroidetes and Firmicutes phylum, whereas strong 

negative correlation was found with Acidobacteria, Chloroflexi and Gemmatimonadetes, as 

well as with bacteria richness and diversity (i.e., Chao1 and Shannon index) (Table 4). Among 
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fungal community, positive correlation was found between crop yield and members of 

Clavicipitaceae, Cunninghamellaceae, Spizellomycetaceae and Trichocomaceae, but no 

significant correlation was found with fungal richness and diversity (Table S2). Concerning 

soil quality, Actinobacteria and several fungi members, including Clavicipitaceae, 

Cunninghamellaceae, Tremellaceae and Trichocomaceae showed a significant positive 

correlation with EC, N-NH4
+ and N-NO3

-, and negative correlation with pH and AWCD (Table 

4 and Table S2). On the contrary, Acidobacteria negatively related with EC and N-NO3
- (Table 

4). Soil aggregation (MWD) showed significant positive correlation (p = 0.05) only with some 

fungi members, like Stachybotrys, Piptocephalidaceae and Thamnidiaceae (Table S2). Finally, 

significant correlation between soil properties and microbial richness and diversity was found 

only for bacterial communities (Table 4). In detail, Chao1 and Shannon index negative ly 

related with EC, N-NH4
+ and N-NO3

-, and positively with AWCD (Table 4).  

 

4. Discussion 

The use of organic amendments has been proposed as an alternative to synthetic fertilize rs 

for the improvement of soil fertility and quality and, consequently, the crop yield (Bonilla et 

al., 2012; Melero et al., 2006; Stockdale et al., 2002). In our study, the effects of different 

organic amendments, in terms of amendment types and frequency of application, on soil 

chemistry, microbial community composition and crop productivity were evaluated in 

comparison to those of synthetic fertilizers. At the end of a 1 year-long experiment, we found 

crop yields higher in soils added with synthetic fertilizers than in those treated with organic 

matter. Several studies reported that during the transitioning from conventional to organic 

agriculture, the crop yield is low in the first years and gradually increases over time (e.g. 

Bulluck et al., 2002; Martini et al., 2004). Berry et al., (2002) suggested that the addition of 

organic amendments such as cover crops, compost and animal manure slowly releases availab le 

mineral nitrogen with consequent N short-term limitations for the plants. In a long- term 

experiment to evaluate the effects of different soil managements on crop yield and soil 

microbial properties, Ros et al. (2006) have found that, compared to the application of minera l 

N fertilizers, the addition of composts alone resulted in a lower yield of maize, whereas a higher 

productivity was observed when composts plus mineral N fertilizers were applied. These 

results suggest that the addition of N readily available can help to overcome the N deficiency, 

especially during the period of high N demand by crops (Seufert et al., 2012). In our study, the 
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different N contents in soil treated with synthetic fertilizer and organic amendments can 

differently support the plant growth. 

To understand the effects of heavy mineral fertilizer applications in soil, Ju et al. (2007) 

found that soil pH decreased exponentially with NO3
- concentrations. Similarly, our results 

show a strong negative correlation between pH and soil NO3
- concentration. The lower pH 

value found in the treatments that have received synthetic fertilizers is probably due to 

acidification processes deriving from the nitrification of N fertilizers (Hedley and Bolan, 2003). 

In the long term, the enhanced soil EC combined with the pH lowering may adversely affect 

the yield and quality of the crops. Moreover, excessive soil nitrate content can accumulate in 

plant tissues, especially leaf of vegetables, representing a hazard to the health of consumers 

(Santamaria et al., 1998). An increase in soil nitrogen concentration can also lead to a 

salinization effect, being the NO3
- content significantly correlated with total soil salinity (Liang 

et al., 1997) and, consequently, have a negative influence on crop yield. In accordance with 

Xue et al. (1994), a significant correlation was found between NO3
- concentration and soil EC. 

Considering soil pH, sub-optimal levels affect the nutrient solubility in soil water and therefore 

the magnitude of nutrients available to plants (Marschner, 1995). The content in soil organic 

matter influences the soil structure, since it is positively related with size and amount of water 

stable aggregates (Bronick and Lal, 2005). In agreement with Ferreras et al. (2006), in our 

study the addition of organic amendments and the resulting increase in soil organic matter 

largely explain the significant correlation found between soil organic carbon and soil 

aggregation. The higher organic matter content recorded in soils amended with single 

applications of powdered material as compared to repeated liquid applications could be 

partially related to these different forms of application.   

The application of organic amendments is known to have positive effects on the soil 

microbial community structure, functioning and, therefore, crop yield (Bulluck et al., 2002; 

Haynes and Naidu, 1998; Melero et al., 2006). Marschner et al. (2003) have found that the 

repeated use of organic amendments, such as manure and sewage sludge, increased the 

microbial biomass and changed the microbial community structure compared to the minera l 

treatments. However, this difference was not observed when straw was added to the soil, 

suggesting that the quality of the amendment is responsible for different results. Soil 

microorganisms are involved in several processes, such as the transformation of soil organic 

matter, nutrient cycling, improvement in soil physical condition and fungistasis (Bronick and 

Lal, 2005; Diacono and Montemurro, 2010; Haynes and Naidu, 1998). In the report of Nielsen 
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and Winding (2002), increased microbial biomass and activity are regarded as indicators of 

improved soil health and, consequently, agricultural sustainability and crop yields. In our study, 

the characterization of microbial community through Biolog EcoPlates showed a higher 

degradation capability of several organic compound classes when soil was amended with 

organic matter compared to the use of synthetic fertilizers. In addition, the significant 

correlation found between the AWCD value and soil organic carbon explains the importance 

of organic matter for the microbial activity. Despite these results, we found that crop yield in 

soil amended with organic materials was lower than in soil treated with mineral fertilizers. The 

highest AWCD value of the organic STs can be related to the increase in number and size of 

soil microorganisms (Bronwyn et al., 1997), whereas the lowest crop yield is probably due to 

N limitation (Berry et al., 2002) as result of the transition from synthetic to organic amendments 

(Bulluck et al., 2002; Martini et al., 2004). 

Biolog EcoPlate represents a simple and rapid method to discriminate differently treated 

soils (Garland and Mills, 1991), but it doesn’t give any information about the diversity and 

richness of microbial species. Here, we found strong positive correlations between AWCD with 

Chao1 and Shannon indices, suggesting a positive link between functional and taxonomic 

microbial diversity. To investigate the effect that ordinary farming system (i.e., use of minera l 

fertilizers and soil fumigation) and different organic amendment strategies (i.e. amendment 

type and frequency of application) have on the composition of soil microbiota, we used a high-

throughput sequencing approach. Although this analysis was conducted without true replicas, 

the results of PCA clearly separate the soil treated with organic amendments from those with 

synthetic fertilizers, indicating the presence of similarity within each group on one hand, and 

the difference between the two groups on the other hand. Several studies reported that land use,  

management type, plant species and soil properties such as pH, soil type, soil texture and 

nitrogen availability can affect microbial community structures. However, most of these studies 

focused their attention on the changes of bacterial communities (Chaudhry et al., 2012; Fierer 

et al., 2012; Li et al., 2012; Ma et al., 2016; Pershina et al., 2015; Ramirez et al., 2012), while 

only a few authors investigate the eukaryotes (Bonanomi et al., 2016a; Hartmann et al., 2015). 

Our results clarify that the use of organic amendments and synthetic fertilizers greatly affects 

both the bacterial and eukaryotic communities in terms of number of species and richness. In 

fact, the application of organic amendments increased the observed number of OTU and 

richness of microorganisms, compared to the soil subjected to applications of synthet ic 

fertilizers, as reported by several authors (Chaudhry et al., 2012; Hartmann et al., 2015; Li et 
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al., 2012). These results can be related to the higher availability of organic C, in terms of global 

amount as well of chemical diversity, in treatments subject to periodic amendments.  In 

addition, the use of biochar enhances the bacterial abundance and richness, as reported by 

Lehmann et al. (2011). These authors suggest that the surface and porosity of biochar provide 

a favourable microhabitat where bacteria may adhere and, consequently, be better protected 

against leaching, dissecation, grazers and competitors.  

In our study, Firmicutes and Proteobacteria were the dominant bacterial phyla in all the 

treatments. The highest abundance of Firmicutes was observed in the treatments with the single 

application of alfalfa and glucose. These bacteria prosper in soil with high carbon availability 

(Pershina et al., 2015) and can degrade various complex organic materials (Hartmann et al., 

2015). Some members of Proteobacteria, such as Betaproteobacteria, are considered 

copiotrophic, i.e. organisms with fast growing that prosper in nutrient-rich environments. High 

N inputs under intensive cultivation systems seems responsible for the shifting in microbia l 

composition, showing an increase in copiotrophic and a decrease in oligotrophic 

microorganisms, i.e. slow growing organisms that can live in an environment with very low 

levels of nutrients (Ma et al., 2016; Ramirez et al., 2012). Actinobacteria are also considered 

copiothropic microorganisms (Ramirez et al., 2012), and they were found more abundantly in 

conventional soils compared to those of organic farming (Bonanomi et al., 2016b; Li et al., 

2012), probably due to their ability to degrade agrochemicals used in conventional farming (De 

Schrijver and De Mot, 1999). In our study, both Proteobacteria that Actinobacteria were more 

abundant in the treatments with synthetic fertilizer applications, but not when the soil had been 

previously fumigated.  

Gemmatimonadetes and Acidobacteria showed a highest abundance in the treatments with 

the application of organic materials, in accordance to Chaudhry et al. (2012) and Ramirez et 

al. (2012). Some members of Gemmatimonadetes partially affect soil fertility being involved 

in the cycle of essential micro- or macro-nutrients (Chaudhry et al. 2012). Acidobacteria are 

generally considered oligotrophs and usually they flourish in natural ecosystems respect to 

cropland (Pershina et al., 2015), thanks to their ability to degrade recalcitrant organic 

compounds (Fierer et al., 2012). Compared to the other treatments, a very low abundance of 

Acidobacteria was observed in fumigated soil. This result can be explained by the agrochemica l 

suppressive effects on the microbial populations, and the slow growth of the Acidobacteria. In 

contrast with Acidobacteria, Bacteroidetes abundance was very high in fumigated soils 

compared to the other treatments. Since Bacteroidetes are known for their ability to rapidly 

https://en.wikipedia.org/wiki/Nutrients
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exploit bioavailable organic matter (Acosta-Martínez et al., 2008), their greater abundance is 

probably due to the high presence of organic compounds originating from microorganisms  

killed by the soil fumigation. 

Among eukarya, amoeba and fungi belonging to the Nucletmycea clade (Brown et al., 

2009) are the dominant microorganisms across all treatments, whereas the abundance of 

Amoebozoa members and SAR super-group largely varied with the treatments. Amoeba are 

single-celled organisms that live in several environments and are considered as bioindicato rs 

in terrestrial environments (Foissner, 1999). Their abundance is significantly reduced in the 

conventional respect to organic farming soils (Foissner, 1999). Bonkowski and Brandt  (2002) 

have found that members of Amoebozoa, such as Acanthamoeba, affect the composition and 

function of rhizosphere microorganisms. In particular, their results showed that amoebae 

selectively stimulate certain bacterial strains capable of promoting plant growth through the 

release of hormonal substances such as indolyl-3-acetic acid. In accordance to Hartmann et al. 

(2015), the use of organic amendments also increases the number of species and richness of 

fungi communities. However, a different response was observed depending on the type of 

organic material applied. Bonanomi et al. (2016a) have also reported that eukarya composition 

in soil was significantly affected by organic farming compared to conventional cultivat ion. 

They suggest that eukarya play a key role in plant growth and decomposition processes of 

organic materials. 

 

5. Conclusions 

The present study revealed that, compared with the use of synthetic fertilizers, application of 

organic materials improves soil physical and chemical properties, as well as microbia l 

community composition, diversity and functionality. However, the effects largely depend on 

the type and application frequency of organic amendments. The treatment that provides organic 

N and labile C (i.e., alfalfa plus glucose) promotes soil fertility and sustains plant growth, and 

therefore can be considered as a suitable alternative to the use of synthetic fertilizers. We 

acknowledge the limitations of this study that was carried out by using only one soil type, one 

target species, and a limited sample size for microbiological analysis. Then, further studies are 

needed to confirm and extend the trends reported in this experiment. Moreover, the limited 

knowledge of the mechanisms behind the interactions among different organic materia ls 

indicates the urgent need for further studies on this issue to identify and develop organic 
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amendment combinations and timing of application that maximize plant productivity in 

different agricultural systems. 
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Figures and tables 

Fig. 1. Cumulated crop biomass of 6 cropping cycle expressed as g of dry mass per m-2 year-1. Data 

refer to mean of three replicates ± standard deviation. Application frequency is indicated with (S) and 

(F) for single and frequent rate, respectively. Different letters indicate statistically significant 

differences between different treatments (Duncan’s test at p < 0.05). 
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Fig. 2. Percent distribution of water-stable aggregates of different size (mm) in relation to soil 

treatments. Application frequency is indicated with (S) and (F) for single and frequent rate, 

respectively. 
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Fig. 3. Histograms showing A) number of observed OTUs, B) Chao1 richness and C) Shannon 

diversity index based on bacteria (left side) and eukarya (right side) communities. Applicat ion 

frequency is indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 4.  Bacterial (a) and eukaryotic (b) composition of the soil samples analysed in this study. 

Application frequency is indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. S1. Pictures of the experiment system: (a) organic materials used as amendments; (b1) addition 

of the organic materials, and (b2) the soil after mixing with the organic amendment; (b3) germination 

and (b4) pre-harvesting phases of the rocket (Eruca sativa) cultivation; (c) panoramic of the 

mesocosms with the irrigation system. 
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Fig. S2. AWCD recorded for the six main chemical groups in different soil treatments. Absorbance 

readings at 590 nm after 96 hours of incubation. Application frequency is indicated with (S) and (F) 

for single and frequent rate, respectively. 
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Fig. S3. Fungi composition at genus level in soils derived from different treatments. Only funga l 

genera present with abundance higher than 0.3% in at least one sample are shown. Low abundance 

genera are summed up as “Other Fungi”. Application frequency is indicated with (S) and (F) for 

single and frequent rate, respectively. 
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Fig. S4. Principal Component Analysis (PCA) based on the bacterial (a) and eukaryotic (b) 

community composition at genus level. Application frequency is indicated with (S) and (F) for single 

and frequent rate, respectively. 
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Fig. S5. Hierarchical average-linkage clustering of the samples based on the Pearson’s correlation 

coefficient of the abundance of bacterial genera showing an abundance of at least 0.1%. The color 

scale represents the scaled abundance of each variable, denoted as Z-score, with red indicating high 

abundance and blue indicating low abundance. Application frequency is indicated with (S) and (F) 

for single and frequent rate, respectively. 
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Fig. S6. Hierarchical average-linkage clustering of the samples based on the Pearson’s correlation 

coefficient of the abundance of eukarya genera. The color scale represents the scaled abundance of 

each variable, denoted as Z-score, with red indicating high abundance and blue indicating low 

abundance. Application frequency is indicated with (S) and (F) for single and frequent rate, 

respectively. 
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Table 1 

Summary of 11 soil treatments with details about application frequencies of organic matter (t ha-1) 

and mineral nutrients (kg ha-1). 

Code Treatment Organic matter  

(t ha-1 year -1) 

Mineral fertilizer  

(kg ha-1 year -1) 

Application frequency  

(n° year -1) 

ST 1 Untreated    

ST 2 Mineral  Ammonium sulphate (100) 

Calcium nitrate (40) 

Urea (40) 

Weekly applications (35) ‡ 

ST 3 Fumigated + Mineral  Ammonium sulphate (100) 

Calcium nitrate (40) 

Urea (40) 

Weekly applications (35) ‡ 

ST 4 Manure (S) Compost manure (15)   Single application (1) § 

ST 5 Manure + Char (S) Compost manure (15) 

Wood biochar (30) † 

 Single application (1) § 

ST 6 Alfalfa (S) Alfalfa straw (13) 

Glucose (7) 

 Single application (1) § 

ST 7 Alfalfa + Char (S) Alfalfa straw (13) 

Glucose (7) 

Wood biochar (30) † 

 Single application (1) § 

ST 8 Manure (F) Compost manure (15)   Weekly applications (35) ‡ 

ST 9 Manure + Char (F) Compost manure (15) 

Wood biochar (30) † 

 Weekly applications (35) ‡ 

ST 10 Alfalfa (F) Alfalfa straw (13) 

Glucose (7) 

 Weekly applications (35) ‡ 

ST 11 Alfalfa + Char (F) Alfalfa straw (13) 

Glucose (7) 

Wood biochar (30) † 

 Weekly applications (35) ‡ 

† Wood biochar was applied at the start of incubation period 
‡ Weekly applications of organic materials were added as a liquid extract  
§ Single application of organic material was incorporated into the soil as powdered material 

(S) Single, high dose application. (F) Frequent, low dose applications 
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Table 2  

Physical, chemical and microbiological parameters under different soil treatments.  

 Untreated 

 

(ST 1) 

Mineral 

 

(ST 2) 

Fumigated 

+ Mineral 

(ST 3) 

Manure 

(S) 

(ST 4) 

Manure + 

Char (S) 

(ST 5) 

Alfalfa (S) 

 

(ST 6) 

Alfalfa + 

Char (S) 

(ST 7) 

Manure 

(F) 

(ST 8) 

Manure + 

Char (F) 

(ST 9) 

Alfalfa (F) 

 

(ST 10) 

Alfalfa + 

Char (F) 

(ST 11) 

Physical & Chemical            

pH 
7.26 ± 

0.1 a 

4.39 ± 

0.11 d 

5.38 ± 

0.05 c 

7.01 ± 

0.11 b 

7.02 ± 

0.12 b 

7.08 ± 

0.1 ab 

7.02 ± 

0.08 b 

7.2 ± 

0.05 a 

7.25 ± 

0.1 a 

7.16 ± 

0.06 ab 

7.17 ± 

0.1 ab 

EC (µS cm-1) 286 ± 

20 f 

2560 ± 

60 a 

1990 ± 

70 b 

329 ± 

10 def 

376 ±  

5 cd 

402 ±  

8 c 

363 ±  

9 cde 

318 ± 

12 ef 

293 ± 

14 f 

374 ± 

11 cd 

418 ± 

10 c 

N-NO3
- (mg l-1) 

6.81 ± 

0.76 b 

350.67 

± 33.01 

a 

352.0 ± 

6.0 a 

10.61 ± 

1.36 b 

5.65 ± 

4.46 b 

6.23 ± 

2.5 b 

7.36 ± 

3.97 b 

8.54 ± 

6.31 b 

7.12 ± 

2.84 b 

5.23 ± 

1.75 b 

15.73 ± 

3.97 b 

N-NH4
+ (mg l-1) 

0.13 ± 

0.08c  

26.47 ± 

13.7 a 

18.43 ± 

2.62 b 

0.05 ± 

0.02 c 

0.04 ± 

0.05 c 

0.12 ± 

0.04 c 

0.22 ± 

0.1 c 

0.06 ± 

0.05 c 

0.04 ± 

0.01 c 

0.03 ± 

0.02 c 

0.22 ± 

0.04 c 

Organic carbon (g kg-1) 
14.9 ± 

0.1 g 

14.45 ± 

0.05 g 

14.35 ± 

0.05 g 

26.43 ± 

0.25 a 

25.67 ± 

0.45 a 

23.5 ± 

0.2 b 

21.53 ± 

1.2 c 

17.03 ± 

0.15 ef 

16.87 ± 

0.15 f 

17.7 ± 

0.1 e 

18.67 ± 

0.65 d 

Soil aggregation (MWD) 
0.58 ± 

0.04 ef 

0.66 ± 

0.02 d 

0.59 ± 

0.04 ef 

0.64 ± 

0.04 de 

0.68 ± 

0.05 d 

0.96 ± 

0.03 a 

0.81 ± 

0.05 bc 

0.59 ± 

0.03 ef 

0.55 ± 

0.02 f 

0.77 ± 

0.03 c 

0.85 ± 

0.04 b 

            

Microbiological             

Biolog EcoPlatesTM (AWCD) 
0.88 ± 

0.1 bc 

0.27 ± 

0.09 d 

0.43 ± 

0.16 d 

0.73 ± 

0.12 c 

1.01 ± 

0.09 b 

0.97 ± 

0.11 b 

1.01 ± 

0.08 b 

1.05 ± 

0.18 ab 

0.86 ± 

0.12 bc 

0.86 ± 

0.06 bc 

1.24 ± 

0.09 a 

Means of three replicates ± standard deviations. Different letter within each row indicate significant differences (Duncan test, p < 0.05). 

(S) Single, high dose application. (F) Frequent, low dose applications. 
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Table 3  

Cross correlation matrix between crop yield, soil properties and microbiological parameters 

 

Crop 

yield 

pH EC N-NO3
- N-NH4

+ Organic 

carbon 

Soil 

aggregation 

(MWD) 

pH -0.78**       

EC 0.79** -0.99**      

N-NO3
- 0.81** -0.96** 0.98**     

N-NH4
+ 0.69** -0.93** 0.93** 0.89**    

Organic carbon -0.22 0.44* -0.51** -0.53** -0.49**   

Soil aggregation 

(MWD) 
0.10 0.20 -0.20 -0.27 -0.21 0.42*  

Biolog EcoPlatesTM 

(AWCD) 
-0.66** 0.84** -0.82** -0.82** -0.79** 0.39* 0.41* 

Values are Pearson coefficients. Significant differences at the 0.05 (*) and 0.01 (**) are reported. 
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Table 4 

Pearson’s correlations between bacterial OTUs collapsed at phylum level, Chao1 and Shannon 

indices with soil properties and crop yield. 
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Crop yield -0.88** 0.57 0.74** -0.80** 0.63* -0.71* 0.46  -0.67* -0.94** 

pH 0.58 -0.85** -0.33 0.39 -0.12 0.55 -0.60  0.68* 0.79** 

EC -0.61* 0.82** 0.39 -0.39 0.12 -0.57 0.58  -0.68* -0.82** 

Organic carbon 0.23 -0.43 -0.21 0.11 -0.13 0.46 -0.07  0.59 0.59 

N-NO3
- -0.64* 0.73* 0.51 -0.44 0.15 -0.58 0.52  -0.72* -0.87** 

N-NH4
+ -0.58 0.82** 0.36 -0.37 0.10 -0.56 0.57  -0.67* -0.80** 

Soil aggregation 

(MWD) 
-0.37 0.00 0.05 -0.04 0.53 -0.23 0.19 

 
0.22 0.10 

Biolog EcoPlatesTM 

(AWCD) 
0.40 -0.77** -0.28 0.39 -0.05 0.38 -0.35 

 
0.79** 0.79** 

Values are Pearson coefficients. Significant differences at the 0.05 (*) and 0.01 (**) are reported. 
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Table S1 

Chemical and physical properties of soil used in this study 

Parameters    Value 

pH    7.74 

EC dS m-1 0.32 

Total CaCO3 g Kg-1 7.16 

Organic carbon g Kg-1 15.4 

Organic matter g Kg-1 26.5 

Total N g Kg-1 1.60 

C/N   9.60 

Available phosphorus (P2O5) mg Kg-1 239 

Cation exchange capacity  meq 100 g-1 36.3 

Exchangeable potassium  meq 100 g-1 1.81 

Exchangeable magnesium  meq 100 g-1 6.55 

Exchangeable calcium  meq 100 g-1 27.03 

Exchangeable sodium  meq 100 g-1 0.94 
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Table S2 

Pearson’s correlations between fungal OTUs collapsed at genus level, Chao1 and Shannon indices with soil properties and crop yield. Only fungi with 

significant correlation values (p ≤ 0.05) are reported. 
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h

a
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S
h

a
n

n
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Crop yield -0.18 -0.13 0.78** 0.84** 0.59 -0.02 0.45 0.24 0.67* 0.40 0.45 0.70*  0.34 0.02 

pH 0.11 0.23 -0.70* -0.89** -0.93** 0.24 -0.82** 0.13 -0.47 0.12 -0.82** -0.80**  0.02 0.10 

EC -0.14 -0.27 0.76** 0.93** 0.91** -0.22 0.78** -0.13 0.54 -0.14 0.78** 0.78**  -0.03 -0.04 

Organic carbon 0.60* 0.76** -0.48 -0.51 -0.36 -0.18 -0.28 -0.09 -0.38 0.27 -0.28 -0.48  -0.05 0.06 

N-NO3
- -0.15 -0.33 0.85** 0.98** 0.84** -0.27 0.67* -0.15 0.67* -0.15 0.67* 0.71*  -0.03 -0.04 

N-NH4
+ -0.15 -0.29 0.73* 0.92** 0.92** -0.24 0.80** -0.14 0.51 -0.15 0.80** 0.79**  -0.01 -0.06 

Soil aggregation 

(MWD) 
-0.05 0.38 -0.30 -0.29 -0.12 0.66* -0.10 0.66* -0.26 0.67* -0.10 0.07 

 
0.26 0.32 

Biolog EcoPlatesTM 

(AWCD) 
0.19 0.46 -0.68* -0.83** -0.76** 0.19 -0.68* 0.15 -0.48 0.20 -0.68* -0.74** 

 
0.04 0.34 

Values are Pearson coefficients. Significant differences at the 0.05 (*) and 0.01 (**) are reported. 
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Abstract 

Long-term adoption of conventional agricultural system negatively affects soil fertility 

and can compromise the quality and quantity of crop production. To avoid these problems, 

application of organic materials has been proposed as a valid and effective strategy. In the 

present study, long-term effects of 11 soil treatments on crop yield and quality, as well as on 

soil fertility were evaluated. Soil treatments included: two conventional managements, eight 

organic treatments based on different amendment type and application frequency, and one 

untreated soil as control. Crop quality was assessed by measuring the NO3
- leaves content, 

whereas soil chemical and microbiological (i.e., total microbial activity and microbia l 

community functioning) properties were evaluated to understand the effects on soil fertility. 

Finally, changes in soil bacterial microbiota was characterized by high-throughput sequencing 

of bacterial rRNA gene markers. In the long-term, application of organic amendment 

significantly improves crop yield, especially when alfalfa and glucose were applied as single 

dose. On the contrary, NO3
- leaves content was low for manure application, independently by 

the frequency, and for repeated application of alfalfa and glucose. Application of synthet ic 

fertilizer negatively affects soil chemical properties and reduce soil microbial activity and 

functionality, as well as richness and diversity of bacterial community. Compared to organic 

amendment, application of synthetic fertilizer strongly reduced the abundance of 

Acidobacteria, Chloroflexi and Nitrospirae, whereas the presence of Bacteroidetes and 

Proteobacteria was promoted. Finally, seedling establishment and plant survival was found to 

be higher with application of organic amendments than synthetic fertilizers. This study suggest 

that long-term application of organic material can effectively improve soil fertility and support 

plant growth. 

 

Key Words: Organic amendment, Crop quality, Soil microbiota, Plant survival, Soil sickness.                
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1. Introduction 

Intensive agriculture is a cultivation system characterized by high levels of input and 

output per unit of agricultural land area. Mechanization of agricultural practices, use of high 

yielding variety crops, applications of chemical fertilizers and agrochemicals allow to increase 

the crop yield with consequent economic benefit for the farmers (Tilman 2002). Intensive 

agriculture is adopted for the cultivation of a wide range of agricultural species both in open 

field and in protected environment conditions, like greenhouse and plastic tunnel. In particular 

vegetable cultivation under protected environment is a growing agricultural sector (Scarascia-

Mugnozza et al. 2012), since the presence of favourable climatic conditions allow a rapid plant 

growth and the possibility of cultivation during the whole year (Martínez-Blanco et al. 2011). 

However, the adoption of intensive agriculture systems for a long period leads to a 

deterioration of physical, chemical and biological quality of soil (Bonanomi et al. 2011; 

Maksimovic and Ilin 2012; Zhou and Wu 2015), which in turn negatively affects crop yield 

and quality (Steiner et al. 2007; Zoran et al. 2014). In fact, the adoption of monoculture or 

short-rotation, intensive use of synthetic fertilizers and agrochemicals, continuous soil tillage 

and removal of crop residues as well as the complete rainfall restriction under covered 

condition are often related with the occurrence of soil sickness problems (Bennett et al. 2012), 

including deterioration of soil physical and chemical quality (Ju et al. 2007; Marschner et al. 

2003), reduction of microbial biomass and activity (Mäder et al. 2002; O’donnell et al. 2001) 

and loss of natural soil suppression (Li et al. 2015). Moreover, the presence of high nitrate 

(NO3
-) soil content due to the excessive use of fertilizers leads to the accumulation of this 

compound in the leaves of vegetables like rocket, lettuce and spinach and, consequently, 

represents a hazard to the health of consumers (Fontes et al. 1997).  

A possible solution for these problems is the application of organic amendment (Stockdale 

et al. 2002). Many studies reported the beneficial effects that organic amendments like 

compost, green and animal manure, organic wastes and biochar have on soil properties, 

including the improvement of soil aggregation and available water holding capacity (Bronick 

and Lal 2005), increase in soil organic matter (Li et al. 2012), enhancement of microbia l 

activity and biomass (Ros et al. 2006), and plant protection from soilborne pathogens due to 

soil suppressivness (Bonilla et al. 2012). In addition, the adoption of organic materials to 

support plant growth has been considered as a valid alternative to the use of synthetic fertilize rs 

by many authors (Blaise 2006; Bulluck et al. 2002; Goldstein et al. 2004; Melero et al. 2006). 

However, the beneficial effects derived by the use of organic amendments largely depend on 
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the quality and quantity of organic material, as well as by the application frequency (Bonanomi 

et al. 2016b; Liu et al. 2009; Sun et al. 2014). Most of the researches focussed their attention 

on the impact that single annual applications of organic material have on crop productivity 

and/or soil properties (review in Diacono and Montemurro 2010). On the contrary, the few 

available studies concerning frequent applications considered the effects on soil processes and 

biological functions including carbon (C) and nitrogen (N) mineralization (Duong et al. 2009; 

Mallory and Griffin 2007), soil basal respiration (Nett et al. 2012), enzymatic activities (Stark 

et al. 2008), soil fungistasis (Bonanomi et al. 2016b) and microbial biomass (Fließbach et al. 

2007). Therefore, no study addressed the impact that organic amendment type and application 

frequency have on crop yield, soil fertility and soil microbial community. 

Within agroecosystem, soil microorganisms, mainly bacteria and fungi, are fundamenta l 

to maintain a good level of soil fertility since they are responsible for a multitude of biologica l 

functions (Mendes et al. 2013). In addition, some microorganisms like mycorrhizal fungi, 

nitrogen-fixing bacteria, plant growth-promoting rhizobacteria, Pseudomonas fluorescens and 

Trichoderma spp. play a fundamental role in supporting plant growth and protection toward 

soilborne pathogens (Bonilla et al. 2012). Therefore, the knowledge of the composition and 

diversity of soil microbiota represents an important aspect in order to understand the positive 

and negative effects that different agricultural managements (e.g., conventional and organic) 

have on the agroecosystem. In this regard, new molecular approaches based on DNA 

sequencing-by-synthesis was developed in the last decade. This method known as “high-

throughput sequencing” has been largely used to assesses the composition and diversity of soil 

microbial community in soils subjected to conventional or organic agricultural systems 

(Bonanomi et al. 2016a; Chaudhry et al. 2012; Sugiyama et al. 2010). 

In our study, a 2-year long mesocosm experiment was performed by conditioning a soil 

with 11 treatments, including conventional (i.e., use of synthetic fertilizers and fumigants) and 

organic (i.e., use of different organic amendments type and application frequency) management 

approaches. So, the effects on crop yield, quality (i.e., nitrate leaf content) and health of rocket 

(Eruca sativa), as well as on soil chemical properties and microbial community were evaluated.  

 

2. Material and methods 

2.1. Soil collection, organic material and mesocosm experiment 

A second experimental year was performed using the same mesocosms (i.e., soil 

treatments) and the same experimental conditions reported in Chapter 3. Briefly, soil from a 
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farm located in the Piana del Sele, a fertile alluvial plain situated in Salerno (Southern Italy, 

40°33'13''N, 14°57'22''E) was collected in spring 2013. Soil had a silt loam texture with 22.1% 

clay, 56.6% silt, 21.3% sand, pH 7.74, electrical conductivity (EC) 0.32 dS m-1, organic C 15.4 

g kg-1, total N 1.6 g kg-1, C/N ratio 9.6, total CaCO3 7.16 g kg-1, available P (P2O5) 239 mg     

kg-1, cation exchange capacity (CEC) 36.3 meq 100 g-1, exchangeable K+ 1.81 meq 100 g-1, 

exchangeable Mg2+ 6.55 meq 100 g-1, exchangeable Ca2+ 27.03 meq 100 g-1, exchangeable Na+ 

0.94 meq 100 g-1 (see Chapter 3).  

The farm adopted an intensive farming system by ~10 years, characterized by the 

monoculture of rocket (Eruca sativa) under plastic tunnel (height ~4 m), intensive tillage, 

application of mineral fertilizers and soil disinfestation with Metham-Na fumigant. To compare 

the effect of mineral fertilizers plus soil fumigant with the use of different organic amendment 

types and application frequencies on crop yield and quality, as well as the impact on chemica l 

and biological quality of soil in the short and long term, a mesocom experiment was performed.  

Four types of organic amendment with different properties were used, including: 

i. alfalfa straw (Medicago sativa) (N content = 3.93 ± 2.16%; C/N ratio = 11.43 ± 2.98) 

as source of organic N and recalcitrant C, at rate of 13 t ha-1 year-1; 

ii. glucose (N content = 0.00; C/N ratio = ∞) as source of short term labile C for microbes, 

at rate of 7 t ha-1 year-1; 

iii. compost manure (N content = 3.13 ± 0.64%; C/N ratio = 13.09 ± 1.16) as source of 

organic N and recalcitrant C, at rate of 15 t ha-1 year-1; 

iv. wood biochar (N content = 0.51 ± 0.11%; C/N ratio = 149.61 ± 7.26) a stable carbon 

material to improve soil physical properties, at rate of 30 t ha-1 once at the start of the 

experiment.  

Considering the properties of different organic materials, 11 soil treatments were 

performed as follows: ST 1 - untreated soil (control); ST 2 – soil treated with synthet ic 

fertilizers; ST 3 - soil fumigated by Metham-Na and treated with synthetic fertilizers; ST 4 – 

soil with a high rate, single application of compost manure at the start of the experiment; ST 5 

- soil with a high rate, single application of compost manure plus wood biochar at the start of 

the experiment; ST 6 – soil with a high rate, single application of glucose and alfalfa straw at 

the start of the experiment; ST 7 - soil with a high rate, single application of glucose and alfalfa 

straw plus wood biochar at the start the experiment; ST 8 - soil with low application rates of 

compost manure added weekly during crop growth; ST 9 - soil with low application rates of 

compost manure added weekly during crop growth plus wood biochar at the start of the 
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experiment; ST 10 - soil with low application rates of glucose and alfalfa straw added weekly 

during the whole experiment; ST 11 - soil with low application rates of glucose and alfalfa 

straw added weekly during the whole experiment plus wood biochar at the start of the 

experiment (see Chapter 3 for details). Single application consisted in the incorporation into 

the soil of powdered organic material once a year, whereas, to avoid soiling the plants with 

powder of organic material, frequent application was performed by spreading organic liquid 

extracts (1:2 w/v) on soil surface once a week.  

Mesocosms, consisting in 32 L plastic tray filled with 35 kg of soil, were set up in 

greenhouse equipped with automatic control of temperature. The temperature was kept at 24 ± 

4°C day and 18 ± 4°C night in spring and summer and 18 ± 4°C day and 12 ± 4°C in fall and 

winter. 

 

2.2. Crop cultivation and yield 

Four consecutive cycles of rocket (Eruca sativa) cultivation were performed during the 

second year of mesocosm experiment by mimicking the ordinary cultivation method used by 

farmers in Southern Italy. Briefly, 600 mg m-2 of rocket seeds were sown by hand spreading 

and covered with a thin layer (~3 mm) of soil. Mesocosms were irrigated every 3 days using a 

sprinkler irrigation system in order to maintain a soil moisture content between 65% and 85% 

of field capacity. The length of the cycle was approximately of 35 days in summer and 50 days 

in winter. At the end of each cycle, the plants were cut at ground level, air-dried in a dehydrator 

until constant weight was reached, then the aboveground biomass of each mesocosm was 

recorded. After the quantification, dried material was packed in separate bags and stored to 

assay the nitrate content in the leaves. 

 

2.3. Seedling establishment and plant survival 

During the two experimental years no agrochemicals (i.e., herbicides, fungicides and 

insecticides) were applied, except for ST 3 where soil fumigation was performed with Metham-

Na prior to each cultivation cycle. Therefore, the composition and diversity of soil bacterial 

communities as well as the changes in soil chemical and biological properties resulting by the 

adoption of different soil treatments can affect seed germination and plant health. In this regard, 

seedlings establishment and plants survival were monitored during the fourth cycle of second 

experimental year. In detail, five plastic collars (Ø 6 cm; h 1.5 cm) were placed on soil surface  
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and 10 seeds were sown in each of them, for a total of 50 seeds for mesocosm. Then, the number 

of live plants was recorded weekly until the end of the cycle (50 days). 

 

2.4. Nitrate content of leaves 

Determination of nitrate (NO3
-) content in rocket leaves was performed in order to assess 

the impact of the soil treatments on crop quality by using the method describe by Cataldi et al. 

(2003). Briefly, dried plant material was finely pulverized, suspended in Milli-Q water (5:1 

w/v) and incubated for 10 minutes at 80° C in a thermostatic bath (ShakeTemp SW22, Julabo, 

Seelbach, Germany). Subsequently, the samples were centrifuged at 6000 rpm for 10 minutes 

and filtered with a 0.20 µm filter syringe to separate solid material from aqueous extract. NO3
- 

content of aqueous extract was determined using a Dionex ICS-3000 system (Sunnyvale, CA, 

USA) equipped with suppressed conductivity detection. Anions were separated via an IonPac 

AS11-HC ion-exchange column (250 x 4 mm) with a potassium hydroxide gradient eluent 

(flow rate 1.5 ml/min). 

 

2.5. Soil chemical properties 

Soil chemical properties were assessed at the end of the experiment (i.e. after 360 days of 

cultivation) by the “Laboratory of physical and chemical soil analysis” of University of Naples 

“Federico II” (Department of Agricultural Sciences, Portici). Briefly, soil pH, electrica l 

conductivity (EC), organic matter (OM) and organic carbon (OC) content, total nitrogen (total 

N), total and active carbonates (limestone), cation exchange capacity (CEC), availab le 

phosphate (P2O5) and exchangeable bases (Ca2+, Mg2+, K+, Na+) were estimated by the standard 

methods of Sparks (1996). Nitrate (N-NO3
-) and ammonium (N-NH4

+) concentrations were 

assayed with Hach-Lange DR 3900 spectrophotometer equipped with standard vial test: LCK 

340 (5-35 mg l-1 N-NO3
-) and LCK 303 (2-47 mg l-1 N-NH4

+). 

 

2.6. Soil microbiological analyses 

To study the effect of soil treatments on soil biological properties, three types of 

approaches were used. Total microbial activity was measured using fluorescein diacetate 

(FDA) analysis. This method is based on the hydrolysis of fluorescein diacetate (3' 6' -diacetyl-

fluorescein) by soil enzymes like esterases, proteases and lipases, and the consequent 

quantification of the released fluorescein by spectrophotometer measure (490 nm) (Schnürer 

and Rosswall 1982). 
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The functionality of the soil microbial community, also defined as “community- leve l 

physiological profile” (CLPP), was assessed using BIOLOG EcoPlates™ (BLG) method. BLG 

consists in a plate with 96 wells containing 3 sets of 31 different carbon sources plus 1 blank 

(water) as control, and tetrazolium violet as redox dye. When the carbon source is utilized, the 

tetrazolium violet is reduced by developing a purple colour. The assay was performed as 

previously described by Bartelt-Ryser et al. (2005). Briefly, 1 g of sieved soil (mesh 2 mm) 

was shaken for 30 min in 10 ml of distilled water and allowed to settle for 10 min. Then, 120 

μl of the supernatant were diluted 100-fold in a distilled water, mixed, and finally used to 

inoculate the wells of the BIOLOG EcoPlates™. The plates were incubated at room 

temperature, and oxidation of carbon sources was measured with a spectrophotometer 

(Thermomax microtitre plate reader, Molecular Devices, Wokingham, UK) at 590 nm, after 

24, 48, 72 and 96 h of incubation. Average well colour development (AWCD) was calculated 

as the sum of wells with activity per plate, divided by the 31 carbon sources.  

Finally, composition and diversity of soil bacterial communities was analysed by Illumina 

high-throughput sequencing. PowerSoil DNA Isolation kit (Mo Bio Laboratories Inc., 

Carlsbad, CA) was used to isolate the DNA from 250 mg of soil samples in according to the 

recommendations of the manufacturer. The V1-V3 regions of the 16S rRNA gene (about 520 

bp) was amplified by using primers and PCR conditions reported by Ercolini et al. (2012). 

Library multiplexing, pooling and sequencing were carried out following the Illumina 16S 

Metagenomic Sequencing Library Preparation protocol, on a MiSeq platform and using the 

MiSeq Reagent kit v2, leading to 2x250bp, paired-end reads. 

 

2.7. Bioinformatics and statistical data analysis  

Demultiplexed, forward and reverse reads were joined by using FLASH Magoč and 

Salzberg 2011. Joined reads were quality trimmed (Phred score < 20) and short reads (< 250 

bp) were discarded by using Prinseq Schmieder and Edwards 2011. High quality reads were 

then imported in QIIME (Caporaso et al. 2010). Operational taxonomic units (OTUs) were 

picked through de novo approach and uclust method and taxonomic assignment was obtained 

by using the RDP classifier and the Greengenes database, following a pipeline previous ly 

reported De Filippis et al. (2014). In order to avoid biases due to the different sequencing depth, 

OTU tables were rarefied to the lowest number of sequences per sample. Weighted and 

unweighted Unifrac distance matrices and alpha-diversity indices (observed OUT richness, 

Chao index and Shannon index) were computed by QIIME on rarefied OTU tables. PICRUSt 
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(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, 

http://picrust.github.io/picrust) was used to predict the functional profiles of the samples, as 

recently reported by De Filippis et al. (2015). Principal Component Analysis (PCA) was carried 

out on the log transformed abundance table by using dudi.pca function in made4 package. 

Statistical analyses and plotting were carried out in R environment (https://www.r-project.o rg). 

One-way ANOVA was used to analyse the effect of STs on crop yield and quality, soil 

chemical and soil microbiological parameters. The relationships between relative changes in 

crop yield and quality, soil properties including BLG and FDA, and soil microbia l community 

composition were obtained by using Pearson correlation coefficients. Significance levels were 

calculated at p <0.05 and <0.01. Two-way ANOVA was used to evaluate the difference in crop 

production between the first and second experimental year. Statistical analyses were performed 

by STATISTICA software.  

 

3. Results 

3.1. Crop yield 

At the end of second experimental year, a different response in crop yield (dry weight) 

was observed between soils with organic amendments and mineral fertilizers (Fig. 1) The 

highest yields were observed when alfalfa and glucose were combined and applied in a single 

dose once a year, independently of the presence of biochar (ST 6 and ST 7) (Fig. 1). The other 

treatments with organic amendments showed a production comparable with untreated soil (ST 

1), as well as with the use of mineral fertilizer (ST 2). Finally, very low crop yield was recorded 

with soil fumigation (Metham-Na) and applications of mineral fertilizer (ST 3) (Fig. 1). 

Comparing the crop yield at the end of the first and second experimental year (Fig. 2), we 

found that ST and experimental year significantly affected crop yield (p < 0.01). An increase 

in crop production was observed for several STs with organic amendments (ST 11 > ST 6 > 

ST 7 > ST 5), although only ST 11 showed a significative difference (p < 0.05) between the 

years. Interesting, instead, is the significant reduction (p < 0.01) of crop yield of 66.5 % for ST 

2 and 77.0 % for ST 3 between the first and second experimental year (Fig. 2). 

 

3.2. Seedling establishment and plant survival 

To compare the effects of different soil treatments on seedling establishment and plant 

survival, five plastic collars were placed on soil surface and 10 seeds were sown in each of 

them. Then, the number of live plants inside the collars were monitored weekly (Fig. 3). After 

http://picrust.github.io/picrust
https://www.r-project.org/
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7 days from sowing, soil treated with organic amendments showed higher number of plants (an 

average of 73% of established seedlings) than untreated soil (63.3% of established seedlings), 

except than ST 8, in which a value of 48% of live plants was recorded. In contrast, very low 

percentage of seedlings was observed for ST 3 (20%) and ST 2 (10%) after 7 days from sowing 

(Fig. 3). After two weeks from sowing, ST 5, ST 8 and ST 11 showed a slight decrease in the 

percentage of live plants, whereas for the remain STs an increase of this parameter was 

observed, with the greatest percentage of live plants detected for ST 6 (79.3%). Subsequently, 

all STs showed a more or less marked reduction in the percentage of live plants over time. 

Finally, at the end of the cultivation cycle (i.e., after 50 days) a percentage of live plants greater 

than 50% was detected with the follows rank ST 6 > ST 1 > ST 9 > ST 7 > ST 11. STs based 

on the use of synthetic fertilizers showed a final percentage of live plants of 20.7 % for ST 3 

and 12 % for ST 2. The remaining STs showed, at the end of the cycle, a percentage of live 

plants ranging between 30% and 45% (Fig. 3). 

 

3.3. Nitrate content of leaves 

Crop quality was evaluated by measuring the content of nitrate (NO3
-) in leaves after the 

harvest. The use of synthetic fertilizers (i.e., ST 2 and ST 3) as well as the addition of alfalfa 

straw and glucose as single dose (i.e., ST 6 and ST 7) showed higher accumulation of NO 3
- in 

leaves than other treatments, with value ranging from 58 g kg-1 of dry matter for ST 7 to 70 g 

kg-1 of dry matter for ST 6, and intermediate values for ST 2 and ST 3 (Fig. 4). On the contrary, 

STs with low weekly doses of organic amendments applicated in soil containing biochar (i.e., 

ST 9 and ST 11) resulted in very low content of NO3
- in leaves (< 10 g kg-1 of dry matter), with 

value comparable to untreated soil (ST 1) (Fig. 4). The remaining organic STs showed an 

intermediate content of NO3
-, with value of ~30 g kg-1 of dry matter for ST 4, ST 5 and ST 10, 

and slightly lower (23 g kg-1 of dry matter) for ST 8 (Fig. 4). 

 

3.4. Soil chemical properties 

At the end of the second experimental year, soil chemical parameters resulted strongly 

affected by STs (Table 1). Compared with untreated soil (ST 1), where an alkaline pH (8.43) 

was recorded, the addition of organic material showed a lower pH with values including in sub-

alkaline (ST 6 < ST 7 < ST 4) and alkaline (ST 5 < ST 11 < ST 10 < ST 8 < ST 9) range. On 

the contrary, the use of synthetic fertilizers strongly reduced pH at value of 6.5 (sub-acidic) for 

SH 3 and pH=5.21 (acidic) for ST 2. EC dramatically increased with the use of synthet ic 
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fertilizers (ST 2 and ST 3), whereas lower values was recorded in soil treated with organic 

amendments (ST 4 to ST 11) and untreated (ST 1) (Table 1). OM as well as OC contents were 

higher for the soils with single application of organic amendments (ST 4 to ST 7) than with the 

use of synthetic fertilizers (ST 2 and ST 3), and intermediate for the treatments with frequent 

application of organic amendments (SH 8 to SH 11). Total N was higher for the soils 

amendment with single application of organic materials than others STs, whereas C/N ratio 

decrease according to the following order: application/s of manure > application/s of alfalfa > 

applications of mineral fertilizers (Table 1). Soil fumigation combined with applications of 

synthetic fertilizers (ST 3) strongly increase the level of N-NH4
+, whereas very high content of 

N-NO3
- was recorded with the use of synthetic fertilizers (ST 2 and ST 3) and application of 

alfalfa as single dose (ST 6 and ST 7). Compared with the use of organic amendments (ST 4 to 

ST 11), the application of synthetic fertilizers (ST 2 and ST 3) showed a lower value in K+, 

Ca2+, total limestone content and CEC, whereas high value was observed for Mg2+ and Na+ 

content. Finally, P2O5 was higher for the soil treated with single application of organic 

materials (ST 4 to ST 7) and application of synthetic fertilizers (ST 2) than others STs (Table 

1).  

 

3.5. Soil microbiological analyses 

Compared with untreated soil (ST 1), the application of organic amendments increased 

both the level of total microbial activity (FDA) that the functionality of soil microbia l 

community (AWCD) (Table 1). On the contrary the lowest levels of microbial activity were 

observed for the soil with the addition of synthetic fertilizers (ST 2 and ST 3) (Table 1). In 

particular, after 96 h of incubation, ST 2 showed a lowest value of specific carbon source 

utilization for all substrate classes that are included in BIOLOG plate (i.e., amine, amino acids, 

carbohydrates, carboxylic acids, complex carbon source and phosphate carbon) (Fig. 5).  

Composition and diversity of soil bacterial communities analysed by Illumina high-

throughput sequencing revealed significant changes in response to different STs (Fig. 6). In 

particular, STs with use of synthetic fertilizers (ST 2 and ST 3) showed lower diversity and 

richness of bacterial community than in soil amended with organic materials, especially when 

the soil was previously fumigated (ST 3). Among the soil treated with organic materials, high 

bacterial richness and diversity were observed with the application of alfalfa at single dose (ST 

6) (Fig. 6). 
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Considering bacterial composition at phylum level (Fig. 7), application of synthet ic 

fertilizers (ST 2 and ST 3) reduced the abundance of Nitrospirae, Chloroflexi and especially 

Acidobacteria, compared with others STs. On the contrary, Bacteroidetes and Proteobacteria 

abundance was highest for ST 3 and ST 2, respectively. Finally, very high abundance in 

Cyanobacteria was observed for untreated soil (ST 1) and for soils with frequent application of 

manure (ST 8 and ST 9) (Fig. 7). 

Principal component analyses (PCA) based on bacterial composition at phylum level 

clearly separated the STs with the use of synthetic fertilizers (ST 2 and ST 3) from the others 

(Fig. 8). Among the organic treatments, soils with application of alfalfa at single dose (ST 6 

and ST 7) were separated from the other treatments (Fig. 8). 

 

3.6. Linking crop yield and quality, soil chemical properties and microbiota composition 

Correlation analisys between crop yield and quality, soil chemical properties and 

microbiota composition produced 190 Pearson correlation coefficients (Table 2). Crop yield 

was positively related with organic C soil content, total N, total limestone, CEC, K+ and total 

microbial activity (FDA), whereas significant negative correlation was found with Na+ soil 

content. Nitrate in leaves was positively related with EC, total N and soil nitrate content (N-

NO3
-), and negatively with pH and C/N ratio (Table 2). Among soil properties, pH and EC 

were negatively related between them, and opposite Pearson values were observed with C/N 

ratio, N-NO3
- and CEC. Soil organic C content was positively related with total N, but no 

correlation was found with nitrate and ammonium. In contrast, N-NO3
- showed strong negative 

correlation with C/N ratio (Table 2). Finally, considering microbiological properties, both total 

microbial activity (FDA) that functionality of microbial community (AWCD) showed 

significant positive correlation with pH and negative with EC. In addition, FDA also positive ly 

related with organic C, C/N ratio and some soil mineral nutrients (Table 2). 

Pearson correlation values between metagenomic results, crop yield and soil properties 

are reported in Table 3. The results shown that crop yield positively related with Chlamyd iae, 

Firmicutes, Nitrospirae and microbial diversity (i.e., Shannon index). Acidobacteria, 

Armatimonadetes, Chloroflexi, Cyanobacteria and Nitrospirae were negatively related with 

nitrate leaves content, EC, total N, N-NO3
- and N-NH4

+ and positively with pH, C/N and CEC 

(Table 3). On the contrary, an opposite correlation pattern was observed for Bacteroidetes and 

Proteobacteria. Finally, microbial richness and diversity showed significant positive 
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correlation with pH, CEC, Ca2+ and FDA, and negative correlation with EC, N-NH4
+ and Mg2+ 

(Table 3). 

 

4. Discussion 

At the end of the second experimental year the yield, quality and health of crop, as well as 

soil chemical properties and soil microbial community were significantly affected by different 

STs. Organic matter, by interacting with both biotic and abiotic soil components, play a 

fundamental role for the conservation and restoration of soil fertility (Diacono and Montemurro 

2010). Several authors compared the effects of synthetic fertilizers and organic amendments 

on soil properties and crop production (Bonanomi et al. 2011; Goldstein et al. 2004; Mäder et 

al. 2002; Melero et al. 2006). Although the effects largely depend by the type of organic 

amendment, plant species, agricultural practices and environmental conditions, including soil 

type and growing conditions (i.e., open field or greenhouse) (Ahmad et al. 2016; Shi et al. 

2009; Steiner et al. 2007), the application of organic amendment is necessary to integrate the 

quantity of organic C removed by crop production and maintain a good level of soil fertility 

(Diacono and Montemurro 2010).  

In agreement with several authors, the absence of organic matter input into soil and the 

exclusive use of synthetic fertilizers to support plant growth negatively affects soil organic C 

(Ge et al. 2011; Li et al. 2012; Marschner et al. 2003; Ros et al. 2006). In our study, the higher 

organic C content in soil treated with organic amendments could be attributed to the direct 

effect of organic material application, while the difference in soil organic C between single and 

repeated applications are probably due to the different application forms, i.e., powdered organic 

material for single application compared to liquid extract for weekly application. The intens ive 

use of synthetic fertilizers for a long period, especially under protection condition is often 

associated to soil acidification (Barak et al. 1997; Shi et al. 2009). In our study, soil pH was 

acid and sub-acid for mineral treatments (ST 2 and ST 3) and sub-alkaline for both untreated 

(ST 1) and organic treatments (from ST 4 to ST 11). Decrease in soil pH may be due to several 

soil processes including nutrient leaching, oxidation of iron and manganese and nitrifica t ion 

process  (Bolan and Hedley 2003). Ju et al. (2007) reported that excessive application of N 

mineral fertilizers strongly decreases soil pH as a consequence of intensive nitrifica t ion 

process. We found that total N in soil amended with single application of organic materials was 

as high as in soil with synthetic fertilizer. In agreement with Ros et al. (2006), this difference 

could be associated to a direct effect of organic N derived from organic materials. On the 
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contrary, nitrate soil content (N-NO3
-) was extremely high for mineral treatments (ST 2 and ST 

3) and for single application of alfalfa and glucose (ST 6 and ST 7). In other word, the direct  

application of N fertilizers and the easy decomposition of alfalfa may be responsible of the 

observed results (Bonanomi et al. 2013). In addition, soil fumigation strongly increases 

ammonium soil content (N-NH4
+), probably due to at the marked decrease in the number of 

nitrifying bacteria (Tanaka et al. 2003), as confirmed by the negative correlation between N-

NH4
+ and Nitrospirae abundance. Finally, CEC and levels of mineral nutrients like P2O5, K+ 

and Ca2+ are usually higher in organic than in mineral treatments, in according to several 

authors (Ge et al. 2011; Liu et al. 2007). 

While the benefits derived by the use of organic amendments on soil physical, chemica l 

and biological properties are well documented, the role of organic materials as alternative to 

synthetic fertilizers to support plant growth is still in debate, as reported by the conflictua l 

results of some studies (Bulluck et al. 2002; Hewlett and Melchett 2008; Järvan and Edesi 

2009; Melero et al. 2006). In a recent study, Seufert et al. (2012) used a meta-analys is 

approachs to examine the yield performance of organic and conventional agricultural systems. 

Their results showed that crop yields in organic systems were generally lower than in 

conventional ones, with percentage of reduction ranging from 5% to 34% depending on the 

plant species, agricultural management practices and site characteristics. However, the 

adoption of organic agricultural practices can reduce the environmental impact compared to 

conventional system by reducing input-energy levels, gas emission and pollution (Hewlett and 

Melchett 2008; Mäder et al. 2002). In our study we found that, compared with results of the 

first experimental year, crop yield during the second year strongly decrease for mineral (ST 2) 

and fumigated + mineral (ST 3) soil treatments. On the contrary, organic treatments showed an 

increase of crop biomass according to the amendment types and application frequency, with 

the highest crop yield observed when alfalfa and glucose were applied at single dose (ST 6 and 

ST 7) once a year. During the transition from conventional to organic systems a gradual 

improvement of soil fertility can be observed over the years, therefore a long time is required 

to increase crop production in newly converted organic systems (Seufert et al. 2012). This 

could explain the opposite crop yields, among the organic and mineral treatments, observed 

during the two experimental years. More specifically, crop biomass reduction in soil treated 

with synthetic fertilizers (ST 2 and ST 3) can be ascribed to a limited plant growth, and a 

reduction in seedling establishment and plant survival.  
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The use of different soil fertilization strategies can affect not only soil properties and crop 

yield, but also food nutritional quality including content of minerals, vitamins, antioxidants and 

phenols (Wang et al. 2008; Warman and Havard 1997; Worthington 2001). For leafy 

vegetables such as lettuce, rocket, chicory and spinach, an important parameter to evaluate food 

quality and security is the nitrate (NO3
-) leaves content (Fontes et al. 1997). Among leafy 

vegetables, rocket is considered as an hyper-accumulator of nitrates, and its content widely 

with soil nitrate content, growth system, season and environmental conditions (Ferrante et al. 

2003). Guadagnin et al. (2005) reported that NO3
- content in rocket produced by the organic 

system was lower than in conventional system. We found contradictory results, since NO3
- 

leaves content largely varied according to the amendment types and application frequency. In 

fact, N-NO3
- content in soil amended with alfalfa and glucose at single dose where as high as 

the application of synthetic fertilizers. In the presence of biochar a slight but no significant 

reduction in NO3
- content was observed, while an increase in soil C/N ratio could be a valid 

strategy to reduce the excessive NO3
- absorption. 

Application of organic matter is also essential to support soil microbial community that, 

in turn, is involved in several soil processes like organic matter decomposition, nutrient 

cycling, soil aggregation, plant growth and suppression of soilborne pathogens (Bonanomi et 

al. 2016b; Bonilla et al. 2012; Bronick and Lal 2005). Generally, enzymatic activity as well as 

microbial functional diversity was found to be higher in soil with organic than conventiona l 

management (Fließbach et al. 2007; Ge et al. 2011; Mäder et al. 2002). In agreement with these 

findings, we observed that increase of soil EC and reduction of soil pH, organic C and C/N 

ratio recorded in soil treated with synthetic fertilizers (ST 2 and ST 3) negatively affect total 

microbial activity (FDA) and community- level physiological profile (AWCD). In the last 

decade, high-throughput DNA sequencing was used to explore in more detail the impact of 

application of organic amendment and synthetic fertilizer on soil microbiota (Bonanomi et al. 

2016a; Chaudhry et al. 2012). Lauber et al. (2009) reported that richness and diversity of soil 

bacteria community were strongly related with soil pH. In agreement with their results, we 

observed that the low pH value in soil with mineral treatment had negative impact on bacterial 

richness and diversity. On the contrary, addition of organic amendments, by providing food 

source for microbial populations, increase their abundance and diversity (Bonanomi et al. 

2016a; Chaudhry et al. 2012; Sugiyama et al. 2010), but with different response depending 

byboth on the amendment type and on application frequency. Acidobacteria, Bacteroidetes and 

Proteobacteria were the most abundant phyla that strongly changed depending on the soil 
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treatment. Acidobacteria are considered oligotrophic, i.e., organisms that are able to use 

recalcitrant pool of C and can live in environments with very low level of nutrients (Fierer et 

al. 2007). In agreement with some studies (Bonanomi et al. 2016a; Hartmann et al. 2015), 

Acidobacteria abundance increased in soil amended with organic material due to their 

capability to metabolize recalcitrant organic substrates (Fierer et al. 2007). In other words, the 

use of synthetic fertilizers, by increasing N-NO3
- and N-NH4

+ soil contents, was found to 

negatively affect Acidobacteria (Fierer et al. 2012). However, in contrast with results of Lauber 

et al. (2009), a positive correlation between Acidobacteria abundance and soil pH was detected. 

Some members of Acidobacteria phylum may also have beneficial effect on plant growth and 

health, since their presence in rhizosphere of healthy plants has been reported to be higher than 

in the one of diseased plants (Yin et al. 2013). This evidence can partially explain the difference 

rate of plant survival between organic and synthetic soil treatments. On the contrary, the highest 

abundance of Proteobacteria and Bacteroidetes was found in mineral and fumigated + minera l 

soil treatments, respectively. Bacteroidetes and many members of Proteobacteria are 

considered copiotrophic, i.e., microorganisms that rapid flourish in environments rich of 

nutrients (Fierer et al. 2007). Among Proteobacteria, Li et al. (2012) found that classes of 

Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were more abundant in 

organic than conventional farming system, whereas the opposite pattern was observed for 

Deltaproteobacteria. Contrarily to these authors, we found that Gammaproteobacteria and 

Deltaproteobacteria were the most and least abundant, respectively, in the treatments with 

synthetic fertilizers (ST 2 and ST 3), whereas the other Proteobacteria classes showed variable 

response. Betaproteobacteria and Gammaproteobacteria include microorganisms associated 

with disease suppression, like members of Pseudomonadaceae, Burkholderiaceae and 

Xanthomonadales families (Bonilla et al. 2012). However, as reported by Mendes et al. (2011), 

the phenomenon of soil suppressiveness cannot be ascribed to the exclusive presence of a single 

bacterial taxon or group, but is most likely governed by the presence of microbial consortia. 

 

5. Conclusions 

After two experimental years, crop yield, quality and health, as well as soil chemica l 

properties and bacterial community were strongly affected by different soil treatments. The use 

of synthetic fertilizers, by negatively affecting soil properties, resulted in the reduction of plant 

survival and consequently decrease of crop yield. On the other hand, organic treatments showed 

variable response in according to amendment types and application frequencies. Among these, 

https://it.wikipedia.org/w/index.php?title=Pseudomonadaceae&action=edit&redlink=1
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satisfactory results in terms of crop production and soil fertility were observed for the single 

application of the mixture alfalfa and glucose, independently of the presence of biochar. 

Therefore, our study indicates that application of organic materials could be used in intens ive 

agricultural systems in order to reduce the negative effects derived by the application of 

synthetic fertilizers and soil fumigants in the long-terms. However further studies are necessary 

to clarify the efficacy of soil organic amendments as alternative or supplement at synthet ic 

fertilizers to support plant growth. In other words, studies that consider different soil types, 

target species and combination of organic amendment types and application frequencies are 

needed. 
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Figures and tables 

Fig. 1. Cumulated crop biomass of 4 cropping cycle expressed as g of dry mass per m-2 year-1. Data 

refer to mean of three replicates ± standard deviation. Application frequency is indicated with (S) and 

(F) for single and frequent rate, respectively. Different letters indicate statistically significant 

differences between the treatments (Duncan’s test at p < 0.05). 
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Fig. 2. Variation of cumulated crop biomass (g of dry mass per m-2 year-1) between first and second 

year of soil conditioning. Note: the same number of cycles performed during the same months are 

considered. Asterisks indicate significant statistic differences within each soil treatments by Tukey 

test (p<0.05). Application frequency is indicated with (S) and (F) for single and frequent rate, 

respectively. 
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Fig. 3. Percentage of live plants recorded in different treatments during the fourth cultivation cycle. 

Data refer to mean percentage of all the potentially live plants (i.e. 50 plants). Application frequency 

is indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 4. Nitrate content (g kg-1 dry matter) in leaves of rocket grown in mesocosms with different soil 

treatments. Data refer to mean of four crop cycles ± standard deviation. Different letters indicate 

statistically significant differences between the treatments (Duncan’s test at p < 0.05). Applicat ion 

frequency is indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 5. AWCD recorded for the six main chemical groups in different soil treatments. Absorbance 

readings at 590 nm after 96 hours of incubation. Application frequency is indicated with (S) and (F) 

for single and frequent rate, respectively. 
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Fig. 6. Box plots showing number of observed OTUs, Chao1 and Shannon diversity indices of 

bacterial communities in different soil treatments. Boxes represent the interquartile range (IQR) 

between the first and third quartiles, and the line inside represents the median (2nd quartile). Whiskers 

denote the lowest and the highest values within 1.5 IQR from the first and third quartiles, respectively . 

Application frequency is indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 7. Bacterial composition (phylum level) of the soil subject to different treatments. The average 

value of three replicates for each soil treatment is reported. Application frequency is indicated with 

(S) and (F) for single and frequent rate, respectively. 
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Fig. 8. Principal Component Analysis (PCA) based on the bacterial community composition at genus 

level. Application frequency is indicated with (S) and (F) for single and frequent rate, respectively. 
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Table 1: Chemical and microbiological parameters under different soil history 
 

Untreated 

 

(SH 1) 

Mineral 

 

(SH 2) 

Fumigated 

+ Mineral 

(SH 3) 

Manure 

(S) 

(SH 4) 

Manure + 

Char (S) 

(SH 5) 

Alfalfa 

(S) 

(SH 6) 

Alfalfa + 

Char (S) 

(SH 7) 

Manure 

(F) 

(SH 8) 

Manure + 

Char (F) 

(SH 9) 

Alfalfa 

(F) 

(SH 10) 

Alfalfa + 

Char (F) 

(SH 11) 

Chemical parameters             

pH 8.43 b 5.21 j 6.50 i 8.06 f 8.18 e 7.91 h 8.01 g 8.38 c 8.47 a 8.28 d 8.19 e 

EC (μS cm-1) 282.50 i 3705.00 a 3545.00 b 481.50 f 429.00 g 762.00 c 655.00 d 387.00 h 293.00 i 523.00 e 515.50 ef 

Organic C (g kg-1) 14.90 g 14.45 g 14.35 g 26.45 a 25.65 b 23.50 c 21.60 d 17.05 f 17.01 f 17.70 f 18.65 e 

Organic matter (g kg-1) 25.69 h 24.91 h 24.74 h 45.60 a 44.22 b 40.51 c 37.24 d 29.39 fg 29.08 g 30.51 f 32.15 e 

Total N (g kg-1) 1.53 e 2.05 c 1.99 c 2.44 b 2.43 b 2.74 a 2.55 b 1.60 e 1.80 d 2.02 c 1.97 c 

C/N ratio 9.78 b 7.07 d 7.27 d 10.87 a 10.58 a 8.60 c 8.48 c 10.66 a 9.68 b 8.79 c 9.51 b 

N-NO3
- (mg l-1) 4.63 c 134.75 ab 122.00 ab 16.75 c 9.87 c 145.75 a 113.75 b 6.56 c 8.51 c 16.95 c 8.87 c 

N-NH4
+ (mg l-1) 0.12 d 5.73 b 50.40 a 0.42 d 0.39 d 1.20 c 0.82 cd 0.14 d 0.14 d 0.69 cd 0.57 cd 

Total limestone (g kg-1) 8.27 b 2.30 e 1.41 f 9.24 a 7.20 c 8.34 b 7.50 bc 6.94 c 7.24 c 5.47 d 7.23 c 

Active limestone (g kg-1) 24.85 e 22.65 f 25.30 e 22.40 f 27.35 d 30.05 b 25.20 e 27.70 d 28.70 c 32.45 a 29.60 b 

CEC (meq 100g-1) 35.60 d 29.35 f 28.70 g 37.00 b 37.65 a 37.20 b 36.55 c 34.95 e 36.56 c 37.25 ab 35.35 de 

P2O5 (mg kg-1) 198.00 i 281.00 c 186.00 j 303.00 a 286.50 b 274.50 d 268.50 e 229.50 f 217.00 g 211.50 h 209.00 h 

K+ (meq 100g-1) 1.85 i 2.02 h 1.90 i 2.63 f 3.03 e 4.68 a 4.48 b 2.46 g 2.52 g 3.83 c 3.44 d 

Mg2+ (meq 100g-1) 7.48 bc 8.82 a 8.85 a 6.91 c 8.47 ab 6.76 c 6.94 c 7.45 bc 6.75 c 6.42 c 6.88 c 

Ca2+ (meq 100g-1) 24.69 abc 16.83 d 16.25 d 25.77 a 24.58 abc 24.25 bc 23.79 c 23.34 c 25.27 ab 25.52 ab 23.60 c 

Na+ (meq 100g-1) 1.59 b 1.69 a 1.71 a 1.70 a 1.57 b 1.52 c 1.34 e 1.71 a 1.38 e 1.49 c 1.43 d 

Microbiological 

parameters 

           

FDA (abs 490nm) 0.91 d 0.35 e 0.27 e 1.45 ab 1.57 a 1.54 a 1.21 c 1.40 abc 1.24 bc 1.46 ab 1.21 c 

Biolog EcoPlatesTM  

(AWCD) 

0.71 e 0.21 g 0.52 f 0.73 e 0.90 d 0.81 de 1.28 b 1.36 b 1.56 a 0.79 e 1.01 c 

Means of three replicates ± standard deviations. Different letter within each row indicate significant differences (Duncan test, p < 0.05) 
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Table 2: Cross correlation matrix between crop yield, soil properties and microbiological parameters 
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Nitrate leaves  0.18 
                  

pH  0.45 -0.67* 
                 

EC  -0.54  0.66* -0.96** 
                

O rganic C   0.67*  0.09  0.39 -0.49 
               

O rganic matter   0.67*  0.10  0.39 -0.48  1.00** 
              

Total N   0.71*  0.62* -0.07 -0.01  0.78**  0.78** 
             

C/N ratio  0.17 -0.70*  0.78** -0.82**  0.52  0.52 -0.11 
            

N-NO 3
- 
  0.19  0.94** -0.70*  0.68* -0.09 -0.09  0.51 -0.82** 

           

N-NH4
+
 -0.50  0.46 -0.52  0.72* -0.40 -0.39 -0.08 -0.57  0.44 

          

Total limestone  0.66* -0.48  0.82** -0.91**  0.64*  0.64*  0.22  0.78** -0.48 -0.74** 
         

Active limestone  0.23 -0.25  0.51 -0.44  0.01  0.01 -0.02  0.10 -0.24 -0.21  0.16 
        

CEC  0.68* -0.45  0.87** -0.94**  0.67*  0.67*  0.30  0.71* -0.52 -0.74**  0.89**  0.46 
       

P2O 5   0.46  0.39 -0.16 -0.04  0.75**  0.75**  0.73*  0.18  0.25 -0.42  0.31 -0.38  0.26 
      

K
+
  0.88**  0.28  0.36 -0.41  0.54  0.54  0.70* -0.02  0.25 -0.38  0.41  0.54  0.59  0.30 

     

Mg
2+

  -0.59  0.39 -0.73*  0.76** -0.30 -0.29 -0.12 -0.39  0.34  0.59 -0.70* -0.54 -0.75**  0.05 -0.61* 
    

Ca
2+

   0.56 -0.60  0.91** -0.97**  0.56  0.56  0.12  0.77** -0.64* -0.75**  0.91**  0.42  0.97**  0.15  0.45 -0.80** 
   

Na
+
  -0.64*  0.24 -0.47  0.49 -0.13 -0.13 -0.20  0.00  0.08  0.40 -0.37 -0.50 -0.53  0.12 -0.64*  0.61* -0.48 

  

FDA  0.63* -0.36  0.81** -0.88**  0.73*  0.73*  0.34  0.74** -0.48 -0.70*  0.82**  0.52  0.95**  0.34  0.61* -0.69*  0.90** -0.37 
 

Biolog 
EcoPlates

TM
 

 0.41 -0.49  0.73* -0.69*  0.16  0.16 -0.13  0.53 -0.44 -0.39  0.53  0.41  0.58 -0.15  0.30 -0.56  0.59 -0.59 0.57 

Values are Pearson coefficients. Significant differences at the 0.05 (*) and 0.01 (**) are reported.  (S) Single, high dose application. (F) Frequent, low dose applications 
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Table 3: Pearson’s correlations between bacterial OTUs collapsed at phylum level, Chao1 and Shannon indices with crop yield and soil properties. 
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Crop yield 
0.23 0.13 -0.16 -0.38 0.74** -0.42 0.15 -0.33 0.61* 0.46 0.73* 0.45 -0.10 0.39 0.33 0.64* 

Nitrate leaves 
-0.73* -0.01 -0.81** 0.70* 0.49 0.54 -0.67* -0.69* 0.53 0.00 -0.18 0.35 0.66* -0.32 -0.49 -0.42 

pH 
0.81** -0.11 0.67* -0.77** 0.08 -0.52 0.56 0.46 -0.08 0.18 0.65* -0.03 -0.77** 0.60* 0.64* 0.75** 

EC  
-0.86** -0.04 -0.67* 0.89** -0.19 0.72* -0.61* -0.42 0.03 -0.33 -0.77** -0.08 0.69* -0.53 -0.70* -0.86** 

O rganic C  
0.38 0.37 -0.15 -0.33 0.68* -0.32 0.14 -0.35 0.21 0.36 0.76** 0.87** 0.01 0.21 0.18 0.67* 

Total N  
-0.22 0.33 -0.66* 0.14 0.85** 0.02 -0.15 -0.78** 0.53 0.20 0.45 0.79** 0.45 0.09 -0.03 0.34 

C/N ratio 
0.93** 0.08 0.71* -0.76** -0.03 -0.58 0.43 0.55 -0.31 0.34 0.65* 0.27 -0.67* 0.25 0.36 0.63* 

N-NO 3
- 
 

-0.78** -0.12 -0.81** 0.70* 0.44 0.52 -0.66* -0.63* 0.62* 0.02 -0.24 0.18 0.59 -0.31 -0.49 -0.49 

N-NH4
+
 

-0.66* -0.35 -0.50 0.90** -0.34 0.99** -0.55 -0.23 -0.09 -0.52 -0.69* -0.14 0.25 -0.14 -0.67* -0.80** 

Total limestone 
0.86** 0.01 0.48 -0.80** 0.38 -0.71* 0.43 0.28 0.11 0.55 0.88** 0.36 -0.63* 0.42 0.50 0.80** 

Active limestone 
0.06 -0.17 0.33 -0.28 0.22 -0.23 0.56 0.04 -0.03 -0.49 0.09 -0.44 -0.17 0.62* 0.72* 0.47 

CEC 
0.74** 0.22 0.44 -0.83** 0.46 -0.72* 0.55 0.16 0.14 0.36 0.86** 0.29 -0.46 0.47 0.76** 0.96** 

P2O 5  
0.10 0.55 -0.35 -0.16 0.67* -0.33 -0.20 -0.42 0.37 0.58 0.57 0.87** 0.39 -0.34 -0.09 0.35 

K
+
 

-0.03 0.09 -0.20 -0.21 0.74** -0.30 0.30 -0.50 0.46 0.05 0.49 0.24 0.13 0.55 0.46 0.60 

Mg
2+

  
-0.52 0.18 -0.42 0.63* -0.34 0.58 -0.62* -0.09 -0.05 -0.11 -0.60 0.09 0.39 -0.66* -0.65* -0.69* 

Ca
2+

  
0.84** 0.14 0.57 -0.88** 0.31 -0.74** 0.61* 0.30 0.00 0.35 0.82** 0.18 -0.56 0.48 0.76** 0.92** 

Na
+
  -0.09 -0.22 0.00 0.42 -0.25 0.40 -0.43 0.14 -0.39 -0.08 -0.33 0.15 0.13 -0.46 -0.53 -0.54 

FDA 
0.68* 0.16 0.45 -0.75** 0.51 -0.67* 0.52 0.12 0.07 0.25 0.82** 0.32 -0.38 0.47 0.68* 0.91** 

Biolog 
EcoPlates

TM
 

0.54 -0.07 0.53 -0.60* 0.00 -0.40 0.23 0.46 0.19 0.26 0.51 -0.17 -0.63* 0.32 0.30 0.45 

Values are Pearson coefficients. Significant differences at the 0.05 (*) and 0.01 (**) are reported. (S) Single, high dose application. (F) Frequent, low dose applications 
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Abstract 

Applications of soil fumigants and fungicides are widely used in order to control soilborne 

pathogens. However, long-term application of agrochemicals negatively affects agroecosystem 

functions, including natural soil disease suppression. To avoid this problem, application of organic 

amendment is considered a valid strategy. In the present work, long-term effects of organic and 

conventional managements on soil suppressiveness were compared. In detail, disease suppression in 

four pathosystems (i.e., Rhizoctonia solani – tomato, Sclerotinia sclerotiorum – lettuce, Fusarium 

oxysporum f. sp. raphani – lettuce and Tomato spotted wilt virus – tomato) was evaluated in soil 

conditioned for two years with organic and conventional management. Then, the link between disease 

incidence with soil properties and microbiota was explored. Our results showed that soil amended 

with organic materials more effectively suppressed S. sclerotiorum, F. oxysporum f. sp. raphani and 

the infection of TSWV than soil treated with synthetic fertilizers. On the contrary, the incidence of 

R. solani infection was lower in soil treated with synthetic fertilizers than in soil amended with 

organic materials. Among soil properties, several parameters like pH, EC, C/N, N forms (i.e., N-NO3
- 

and N-NH4
+), FDA and Biolog were differently related with disease incidence depending on the 

pathosystem. Considering soil microbiota, bacterial richness and diversity, as well as the presence of 

some genera like Acidobacteria, Chloracidobacteria, Solibacteres Anaerolineae, Nitrospira and 

Deltaproteobacteria were negatively related with disease incidence in F. oxysporum f. sp. raphani – 

lettuce and TWSV – tomato pathosystems, whereas damping off caused by R. solalni were negative ly 

affected by the presence of Sphingobacteria and Gammaproteobacteria. Long-term application of 

organic amendments can effectively improve soil suppressiveness and reduce disease incidence 

against root and foliar plant pathogens, although the effects varied depending on the pathosystem. 

 

Key Words: Organic amendment; Disease suppression; Rhizoctonia solani; Sclerotinia 

sclerotiorum; Fusarium oxysporum f. sp. raphani; Tomato spotted wilt virus.                              
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1. Introduction 

Within agro-ecosystems, soilborne plant pathogens represent a serious problem to farmers since 

in the presence of optimal growth conditions they can rapidly spread and compromise the quality and 

quantity of crop production (Abawi and Widmer 2000). To control soilborne disease, soil fumigants 

and fungicides have been widely used over the years. However, the long-term use of agrochemica ls 

and other conventional agricultural practices such as monoculture, short rotation and application of 

synthetic fertilizers, negatively affected agro-ecosystem functions (Giller et al. 1996).  At a local scale 

the extensive use of fungicides reduce soil microbial abundance and diversity (Dungan et al. 2003), 

and lead to a loss of natural soil suppression (Li et al. 2015), while globally has led to an increase in 

the number of plant diseases (Fisher et al. 2012), pathogen resistances (Tilman et al. 2002) and 

environmental pollution (López et al. 2012). To limit the negative effects on the environment, the use 

of some fumigants, like methyl bromide, has been banned from Europe and other areas of the world, 

whereas a strong restriction was adopted for many other agrochemicals (Martin 2003). Therefore, to 

sustain plants health and reduce environmental pollution, ecofriendly management of soilborne 

pathogens should be adopted.  

In organic agricultural systems, several eco-compatible practices are used including crop 

rotation, soil solarization, biofumigation, application of natural compounds, biocontrol agents and 

organic amendments (George 2013). Among these, the use of organic amendment (e.g.,  compost, 

green manure and animal manure) has been studied for its capability to improve soil fertility (Bulluck 

et al. 2002), and to control soilborne pathogens (Garbeva et al. 2011). In fact, many studies reported 

that applications of organic amendment,  have positive effects on soil fungistasis and consequently 

on crop health (Janvier et al. 2007), by increasing enzymatic activities, microbial biomass, function, 

diversity (Hartmann et al. 2015; Hiddink et al. 2005) and the abundance of beneficial microorganisms 

(Bonanomi et al. 2016). The main mechanisms involved in the suppression of soilborne pathogens 

include the competition for nutrients and niches (Lockwood 1990), antibiosis and hyperparasit ism 

(Bonilla et al. 2012). In addition, beneficial microbes can induce systemic resistance in the host plant 

and reduce the development of airborne disease by interacting with the plant root system (Choudhary 

et al. 2007). Several studies evaluated the relationship between soil management and the reduction of 

airborne diseases caused by fungi and bacteria (Tamm et al. 2010; Vallad et al. 2003; Zhang et al. 

1996), but no studies addressed the effects on phytopathogenic viruses.  

The application of organic materials, however, not always leads to positive effects. Contrasting 

results are often reported on the application of organic amendment and the induction of soil 

soppressiveness (as reviewed in Bonanomi et al. 2007). In a study to evaluate the suppressiveness of 
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a wide range of composts on different pathosystems, Termorshuizen et al. (2006) found a significant 

disease suppression in 54% of the cases and a disease enhancement in 3%. Mazzola et al. (2001) 

found that application of Brassica napus seed meals suppressed apple root infection by Rhizoctonia 

spp. and Pratylenchus penetrans but, in contrast, increased the incidence of Pythium spp.. These 

results suggest that the variability of soil suppressiveness depends on many factors including the 

considered pathosystem, the organic amendment, soil properties and the environmental conditions. 

Most of the previous studies tried to link soil suppressiveness with quality and quantity of organic 

amendment (Bonanomi et al. 2010; Boulter et al. 2002; Pankhurst et al. 2005) and/or with soil 

physical, chemical and microbiological parameters (Liu et al. 2007; Tamm et al. 2010; van Bruggen 

et al. 2015), but few informations are available about the role that the whole soil microbiota have in 

disease suppression. In our previous study (Chapter 4), the long-term effects of conventional (i.e., 

soil fumigation and application of synthetic fertilizers) and organic (i.e., different organic amendment 

types and application frequency) management on soil properties and microbial community 

composition were evaluated. We found that, compared with conventional system, application of 

organic amendment significantly improves soil chemical and biological properties, as well as 

microbial abundance and diversity. However, the effects largely varied according to amendment type 

and application frequency. Here, we used the previous conditioned soil to investigate the effect of 

different soil treatments on the induction of soil suppressiveness. Our main objectives were:  

i) to test the suppressive capability of 11 soil treatments on four pathosystems includ ing 

three soilborne pathogens (i.e., Rhizoctonia solani – tomato, Sclerotinia sclerotiorum – 

lettuce, Fusarium oxysporum f. sp. raphani – lettuce) and one virus (i.e., Tomato spotted 

wilt virus – tomato).   

ii) to link changes in soil properties and microbial community composition of different 

treatments with possible suppressivveness. 

 

2. Material and methods 

2.1. Soil samples 

Soil used in this experiment it had been previously conditioned for two years with conventiona l 

(i.e., soil fumigation and application of synthetic fertilizers) and organic (i.e., different organic 

amendment type and application frequency) management. Briefly, soil from a farm subjected to 

intensive cultivation system (i.e., monoculture practice, intensive tillage, application of minera l 
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fertilizers and soil fumigations with Metham-Na) under plastic tunnel was conditioned with organic 

and conventional treatments in order to evaluate the effect on crop yield and soil fertility (Chapter 3 

and Chapter 4). In detail, a total of 11 soil treatments (STs) were performed as follows: ST 1 - 

untreated soil (control); ST 2 – soil treated with synthetic fertilizers; ST 3 - soil fumigated by Metham-

Na and treated with synthetic fertilizers; ST 4 – soil with a high rate, single application of compost 

manure at the start of the experiment; ST 5 - soil with a high rate, single application of compost 

manure plus wood biochar at the start of the experiment; ST 6 – soil with a high rate, single application 

of glucose and alfalfa straw at the start of the experiment; ST 7 - soil with a high rate, single 

application of glucose and alfalfa straw plus wood biochar at the start the experiment; ST 8 - soil with 

low application rates of compost manure added weekly during crop growth; ST 9 - soil with low 

application rates of compost manure added weekly during crop growth plus wood biochar at the start 

of the experiment; ST 10 - soil with low application rates of glucose and alfalfa straw added weekly 

during the whole experiment; ST 11 - soil with low application rates of glucose and alfalfa straw 

added weekly during the whole experiment plus wood biochar at the start of the experiment (for 

details see Chapter 3). Organic materials have been chosen considering their different quality and 

properties. In detail: glucose (N content = 0.00; C/N ratio = ∞) provides a short term labile C for 

microbes; alfalfa straw (Medicago sativa) (N content = 3.93 ± 2.16%; C/N ratio = 11.43 ± 2.98) and 

compost manure (N content = 3.13 ± 0.64%; C/N ratio = 13.09 ± 1.16) a source of organic N and 

recalcitrant C; wood biochar (N content = 0.51 ± 0.11%; C/N ratio = 149.61 ± 7.26) provides a safe 

site for microbial development and promotes soil physical properties (for details about doses and 

application methods see Chapter 3). Mesocosms (i.e., 32 L plastic tray filled with 35 kg of soil) were 

set up in triplicate for each STs and placed in greenhouse equipped with automatic control of 

temperature (24 ± 4°C day and 18 ± 4°C night in spring and summer and 18 ± 4°C day and 12 ± 4°C 

in fall and winter). During the experiment rocket (Eruca sativa) was sown ten times and differences 

in total crop yield, soil properties and microbial community composition among STs were evaluated 

at the end of the first (Chapter 3) and second (Chapter 4) experimental year.  

At the end of the second experimental year, soil of the three replicas was mixed, air-dried at 

room temperature and used in plant-pathogen bioassays in order to evaluate the soil suppressiveness 

of the different STs. 
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2.2. Soil chemical and microbiological properties 

At the end of the second experimental year, soil chemical and microbiological analysis, includ ing 

total microbial activity, soil microbiome functionality and bacteria community composition were 

conducted for all STs (see Chapter 4). 

Briefly, soil properties including pH, electrical conductivity (EC), organic carbon (OC) content, 

total nitrogen (total N), total and active carbonates (limestone), cation exchange capacity (CEC), 

available phosphate (P2O5) and exchangeable bases (Ca2+, Mg2+, K+, Na+) were evaluated according 

to standard methods reported by Sparks (1996). Nitrate (N-NO3
-) and ammonium (N-NH4

+) soil 

concentrations were assayed with Hach-Lange DR 3900 spectrophotometer equipped with standard 

vial test: LCK 340 (5-35 mg l-1 N-NO3
-) and LCK 303 (2-47 mg l-1 N-NH4

+) (see Chapter 4).  

Total microbial activity was measured using fluorescein diacetate (FDA) analysis according to 

method of Schnürer and Rosswall (1982). The functionality of the soil microbial community, also 

defined as “community- level physiological profile” (CLPP), was assessed using BIOLOG 

EcoPlates™ (BLG) method, as described by Bartelt-Ryser et al. (2005). Finally, composition and 

diversity of soil bacterial communities was analysed by Illumina high-throughput sequencing (for 

details see Chapter 4). 

Data of chemical and microbiological analysis of soil obtained at the end of the second 

experimental year (see results of Chapter 4) were used to explore the effect that STs, had on possible 

soil suppressiveness by affecting soil chemical and microbiological properties. 

 

2.3. Plant bioassay with soilborne pathogens 

Suppressiveness of organic and conventional soil treatments were determined in three 

pathosystems with soilborne fungal pathogens including: R. solani – tomato, S. sclerotiorum – lettuce 

and F. oxysporum f. sp. raphani – lettuce. Seeds of tomato (cv. Roma) and baby leaf lettuce (cv. 

Chiara) were purchased from the local market. All bioassay experiments were conducted in 

greenhouse equipped with automatic control of temperature (22 ± 4°C day and 16 ± 4°C night) and 

arranged in a completely randomized factorial design. 

Inoculum of R. solani was produced on a barley medium. Briefly, 150 g of dried barley seeds 

were placed in 0.5 L flasks, containing potato dextrose broth solution (1/10), autoclaved and, finally, 

inoculated with plug collected from a colony of R. solani grown in a Petri dish. Flasks were incubated 

for three weeks at 21 °C. At the end, infected seeds were air-dried for one week in sterile conditions 

and finely grounded. Sterilized pots (16 cm diameter and 20 cm height) were filled with 800 g of air-

dried soil of each STs, inoculated with 0.5 % (dry weight) of infected seeds, watered to 80% of field 
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capacity and incubated in greenhouse. In the control, the same procedure was followed by using non-

inoculated barley seeds. Three days after incubation, 15 tomato seeds were sown in each pot. During 

the experiment, pots were watered every 2-3 days to maintain soil moisture content between 60% and 

80% of field capacity. The experimental setup included a total of 11 STs, 2 soil conditions (i.e., soil 

inoculated with R. solani or not) and 8 replicates, for a total of 176 pots. To evaluate soil 

suppressiveness, the number of healthy plants was monitored weekly until the end of the experiment, 

i.e., 28 days after sowing. Data recorded at the end were used to calculate damping off index (DOI) 

as follows:  

DOI = (HPNI – HPI) / (HPNI) * 100 

Where HPNI are the healthy plants in pots without inoculum and HPI are the healthy plants in pots 

with inoculum.  

Inoculum of S. sclerotiorum was produced in the same way as described for R. solani (see above). 

Three days after incubation, 20 lettuce seeds were sown in each pot. During the experiment, pots were 

watered every 2-3 days to maintain soil moisture content between 60% and 80% of field capacity. 

The experimental setup included a total of 11 STs, 2 soil conditions (i.e., soil inoculated with S. 

sclerotiorum or not) and 8 replicates, for a total of 176 pots. To evaluate soil suppressiveness, the 

number of healthy plants was monitored weekly until the end of the experiment, i.e., 42 days after 

sowing, and damping off index (DOI) was calculated on the last date. 

Inoculum of F. oxysporum f. sp. raphani was produced on potato dextrose agar (PDA) medium. 

Briefly, Petri dishes containing PDA were inoculated with F. oxysporum f. sp. raphani. After two 

weeks, 10 mL of sterile distilled water were added to the Petri dishes and conidia were withdrawn by 

scraping the culture surface. The spore suspensions were filtered, centrifuged, washed twice with 

sterile distilled water and adjusted to a concentration of 105 conidia mL-1 with a hemocytometer. 

Roots of pre-germinated lettuce seedling were dipped in the conidia suspension and 20 plants were 

transplanted in each pot (16 cm diameter and 20 cm height) filled with wet soil from different STs. 

During the experiment, pots were watered every 2-3 days to maintain soil moisture content between 

60% and 80% of field capacity. The experimental setup included a total of 11 STs and 8 replicates, 

for a total of 88 pots. To evaluate soil suppressiveness, the number of healthy plants was monitored 

weekly for 21 days.  

 

2.4. Plant bioassay with phytopathogenic virus 

To evaluate the role that different STs have in the possible induction of plant resistance against 

airborne pathogens, the TSWV – tomato pathosystem was considered. Bioassay was conducted in a 
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thermo-conditioned (20–24°C) greenhouse. Sterilized pots (16 cm diameter and 20 cm height) were 

filled with 800 g of air-dried soil of each STs and watered to 80% of field capacity. One tomato 

seedling was transplanted in each pot and allow to interact with the soil microbiota for ten days. 

Subsequently, tomato plants were inoculated with TSWV according to the protocol of Dijkstra and 

de Jager (2012). Briefly, leaves (1 g) of Nicotiana glutinosa infected by TSWV were ground in 10 

ml of potassium phosphate buffer (10mM), pH (7-7.2) using a pestle and mortar. Tomato plants were 

dusted with abrasive carborundum (Fisher Scientific) and cotton swabs dipped in the inoculum were 

rubbed on cotyledons and early leaves of plants. After inoculation, the plants were sprayed with tap 

water to remove carborundum from the leaf surface. In the control, the same procedure was performed 

by using only phosphate buffer as inoculum. During the experiment, pots were watered every 2-3 

days to maintain soil moisture content between 60% and 80% of field capacity. The experimenta l 

setup included a total of 11 STs, 18 replicates for TSWV and 6 replicates for control, resulting in a 

total of 264 pots. 

Infection symptoms like stunted growth, chlorotic and necrotic rings on leaves, purple veins on 

the undersides of leaves and plant mortality were recorded periodically after virus inoculat ion. 

Finally, three weeks after inoculation, tomato plants were assayed by enzyme-linked immunosorbent 

assay (ELISA) (Clark and Adams 1977), irrespective of the presence of symptoms. ELISA was 

carried out by grounding tissues in phosphate buffered saline with Tween 20 (1/10 w/v) and the 

extracts were tested using a commercial ELISA kit against TSWV (Loewe-Phytodiagnost ica 

Biochemical, Germany). Percentages of infection of inoculated plants were calculated considering 

the detection of TSWV by ELISA.  

 

2.5. Data analysis 

For statistical analysis of the results, data were transformed to satisfy the assumptions of 

normality and homogeneity of variance, and submitted to analysis of variance (ANOVA) with the 

software STATISTICA 7. In detail, one-way ANOVA was applied to DOI data to evaluate the 

significance (p<0.05) of different STs on plant protection in presence of soilborne pathogens. Pearson 

correlation was calculated to assess the link between soil suppressiveness (i.e., DOI for R. solani – 

tomato and S. sclerotiorum – lettuce; dead plants for F. oxysporum f. sp. raphani – lettuce; infected 

plants and dead plants for TSWV – tomato) and soil chemical and microbiological properties, 

including total microbial activity, microbial functionality and bacterial community composition. 

Significance levels were calculated at p<0.05 and p<0.01.  
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3. Results  

3.1. Suppression of disease caused by soilborne pathogens 

In all three pathosystems with soilborne pathogens (i.e., R. solani – tomato, S. sclerotiorum – 

lettuce, F. oxysporum f. sp. raphani – lettuce), STs differently affected soil suppressiveness.  

In R. solani – tomato pathosystem, DOI index was calculated 28 days after sowing (Fig. 1). 

Although most STs did not show significant differences, damping off was lower for minera l 

treatments (ST 2 and ST 3), with a trend to increase with the application of organic materials. Among 

these last, the lowest DOI was observed for soil treated with single application of alfalfa and glucose 

(ST 6), whereas the highest value was recorded for ST 9 (i.e., soil with biochar and frequent 

application of manure) (Fig. 1).  

In S. sclerotiorum – lettuce pathosystem, the DOI index was calculated 42 days after sowing 

(Fig. 2). In this case, damping off with organic amendment was generally lower than with synthet ic 

fertilizer. In detail, alfalfa at single dose, with and without presence of biochar (ST 6 and ST 7), 

showed the lowest DOI value. On the contrary, the highest damping off was recorded for untreated 

(ST 1) and fumigated + mineral (ST 3) treatments (Fig. 2). 

In the F. oxysporum f. sp. raphani – lettuce pathosystem, the percentage of dead plants was 

recorded 7, 14 and 21 days after transplanting (Fig. 3). In this case, soil treated with synthet ic 

fertilizers (ST 2 and ST 3) negatively affected plant survival, displaying a percentage of dead plant 

greater than 35 and 40% for ST 3 and ST 2, respectively, after 21 days of transplanting (Fig. 3). On 

the contrary, application of organic materials showed a very low percentage of mortality (Fig. 3). 

 

3.2. Suppression of a plant virus 

To assess whether different soil treatments could have an effect on plant protection against plant 

virus, the TSWV – tomato pathosystem was studied. Generally, stunted growth and purple veins on 

the undersides of leaves were the most common symptoms for all STs, whereas chlorotic and necrotic 

rings on leaves were less abundant, especially in soil amended with manure (i.e., ST 4 and ST 8) (data 

not shown). Three weeks after inoculation, the presence of infection in live plants was confirmed by 

ELISA test. Plants that had died before ELISA test were considered infected. The percentage of 

infection were high (> 80%) for plants grown in soils treated with synthetic fertilizers (Fig. 4). On 

the contrary, plants grown on organic soil (i.e., from ST 4 to ST 11) showed a percentage of infect ion 

ranging from 5 to 40% of the inoculated plants, depending on amendment type and application 

frequency. Interesting, more than 60% of infected plants in mineral soil treatments (ST 2 and ST 3) 
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were dead, while for soil amended with organic materials only a low level of mortality was recorded 

for ST 6, ST 7 and ST 8 (Fig. 4). 

 

3.3. Linking soil chemical properties with disease suppressiveness 

In R. solani – lettuce pathosystem, damping off (DOI) showed significant positive correlation 

with soil pH, C/N ratio, CEC and Ca2+ content, whereas negative correlation was found with EC, N-

NO3
- and Mg2+. Positive correlation was also observed with microbial functionality (AWCD) (Table 

1). On the contrary, plant mortality in F. oxysporum f. sp. raphani – lettuce and percentage of infected 

plants in TSWV – tomato pathosystems were positively related with EC, N-NO3
-, N-NO3

- and Mg2+, 

and negatively related with pH, C/N ratio, CEC, Ca2+ and microbiological parameters (i.e., FDA and 

AWCD) (Table 1). Finally, in S. sclerotiorum – lettuce pathosystem, only significant negative 

correlations between DOI and some soil chemical parameters including organic C, total N, P2O5 and 

K+ content were found (Table 1). 

 

3.4. Linking soil microbiota with disease suppressiveness 

Pearson correlations between soil bacteria and infection bioassays were reported in Table 2. 

Richness and diversity index of soil bacteria were positively related with R. solani DOI and negative ly 

with both plant mortality in F. oxysporum f. sp. raphani – lettuce and plant infection in TSWV – 

tomato pathosystems. 

Considering the correlation with the 20 most abundant bacterial taxa, data analysis showed 

contrasting results when Pearson values of R. solani – tomato pathosystem on the hand, and F. 

oxysporum f. sp. raphani – lettuce and TSWV – tomato pathosystems on the other hand are compared 

(Table 2). In detail, we found that R. solani DOI was positively related with several bacterial taxa, 

including members of Acidobacteria, Chloracidobacteria, Solibacteres, Oscillatoriophycideae and 

Deltaproteobacteria. On the contrary, significant negative correlations were found with members of 

Sphingobacteria and Gammaproteobacteria. Opposite correlations were observed in F. oxysporum f. 

sp. raphani – lettuce pathosystem. In addition, plant mortality was also positively affected by 

Flavobacteria and negatively by Nitrospira members. Unlike the previous ones, no significant 

correlation was found between S. sclerotiorum DOI and bacterial taxa (Table 2). 

Finally, we found that mortality in tomato plants infected by TSWV was significantly affected 

by the abundance of Sphingobacteria and Gammaproteobacteria, and negatively by the presence of 

Acidobacteria and Chloracidobacteria members (Table 2). 
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4. Discussion 

Application of organic amendment is considered as a fundamental practice to sustain soil health 

and fertility, because of its capability to improve physical, chemical and biological properties of soil 

(Diacono and Montemurro 2010), including soil disease suppressiveness (Bonilla et al. 2012). In the 

present study, soil conditioned for two years with conventional (i.e., use of synthetic fertilizers and 

fumigant) and organic (i.e., use of different organic amendment types and application frequencies) 

treatments was used to evaluate the effects of different treatments in the induction of soil 

suppressiveness. In detail, the suppression effects on four pathosystems including three soilborne 

pathogens (i.e., R. solani – tomato, S. sclerotiorum – lettuce and F. oxysporum f. sp. raphani – lettuce) 

and one virus (i.e., TSWV – tomato) were evaluated. With exception for R. solani, the incidence of 

fungal plant diseases in soil with organic amendments was lower than in conventional treatments. 

Interestingly, we observed for the first time that long-term use of organic amendments also reduced 

the incidence of TSWV infection, as well as the mortality of infected plants. However, among organic 

treatments, the effects largely varied depending on the amendment type and application frequency.  

In the last decades, the use of organic amendment as a strategy to increase soil suppressiveness 

has been extensively studied, although contrasting results have often been reported (Mazzola et al. 

2001; Scheuerell et al. 2005; Termorshuizen et al. 2006; Tilston et al. 2002). Some authors reported 

that suppression efficacy of organic amendments depends on several factors, such as plant 

pathosystem (Osunlaja 1990), type and quality of organic material (Bonanomi et al. 2013; Pankhurst 

et al. 2005), and application rate (Boulter et al. 2002). Bonanomi et al. (2017) reported that, compared 

to non-amended soil, frequent applications of fast decomposing organic material increase soil 

fungistasis by stimulating the activity of microbial community and, consequently, reduce plant 

disease. In according with them, we found that application of alfalfa and glucose (i.e., material rich 

in labile C and organic N) was generally more effective in reducing plant disease than the use of 

compost manure (i.e, material rich in recalcitrant C compounds). However, we observed contrasting 

results about dose and application frequency since soil suppressiveness were higher with high single 

dose of organic amendment than with frequent applications at low dose. 

Compared with use of synthetic fertilizers, long-term applications of organic amendments 

profoundly affected soil physical, chemical and biological properties (see Chapter 4), as confirmed 

by several studies (Bulluck et al. 2002; Marschner et al. 2003; Melero et al. 2006). On the basis of 

these results, many authors have tried to relate the changes of both abiotic and biotic factors of soil 

subjected to organic and conventional management with differences in disease suppressiveness (Liu 

et al. 2007; Tamm et al. 2010; van Bruggen et al. 2015). Considering chemical properties, some 
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parameters like soil pH, organic C and N content have been related to disease suppression, although 

contrasting results are often reported with dfferent pathosystems. For example, Chet and Baker (1980) 

found that disease incidence of R. solani in sugar beet, alfalfa and radish crop was strongly reduced 

at pH below 6.5, whereas increase in plant disease was observed at pH 8.1. Hoper et al. (1995), 

instead, reported a positive correlation between soil suppressiveness of Fusarium wilt of flax (F. 

oxysporum) and soil pH, whereas negative correlation was found with organic C content. On the 

contrary, Pankhurst et al. (2002) found that high level of organic C and total N positively affected the 

suppression of Gaeumannomyces graminis var. tritici and R. solani, while Oyarzun et al. (1998) 

observed a negative correlation between total N content of soil and its suppressiveness of Fusarium 

solani f.sp. pisi on pea. Finally, some authors reported the absence of correlations between soil abiotic 

parameters and pathogens suppression (see review in Janvier et al. 2007). In our study, we found that 

correlations between soil properties and disease incidence significantly varied depending on the 

pathogen. In fact, we found that increase in soil pH was positively related with plant mortality caused 

by R. solani and negatively with F. oxysporum f. sp. raphani and TSWV, whereas no correlation was 

observed with S. sclerotiorum. Total N and organic C contents were negatively related only with plant 

mortality in S. sclerotiorum – lettuce pathosystem. On the contrary, the forms of N (i.e., N-NO3
- and 

N-NH4
+) showed significant positive correlations with F. oxysporum f. sp. raphani and TSWV, and 

negative correlation with R. solani. These results suggest that there is no a universal link between soil 

chemical properties and soil suppressiveness since different responses can be observed in different 

pathosystems. 

Unlike the soil chemical properties, soil biological parameters like microbial activity and 

function as well as biomass, diversity and structure of microbial communities, have been reported to 

be more robust predictors of disease suppressiveness (Bonanomi et al. 2010; Tamm et al. 2010). 

Several members of soil bacterial community, like Pseudomonas fluorescens, Bacillus subtilis, 

Serratia plymuthica, Strepmomyces spp. and Lysobacter spp., have been found to suppress soilborne 

pathogens through the adoption of different strategies, including production of antibiotic compounds, 

parasitism and competition for nutrients and niches (Bonilla et al. 2012; Janvier et al. 2007; 

Lockwood 1990). For example, Mazzola and Gu (2002) found that antagonistic Pseudomonas strains, 

effectively suppressed Rhizoctonia root rot in apple tree by producing antibiotic compounds, whereas 

beneficial strains of Lysobacter spp. and Streptomyces spp. were found to suppress R. solani on sugar 

beet, S. scabies on radish and Verticillium longisporum on oilseed rape (Postma et al. 2008). In our 

experiment, we found a negative correlation between disease incidence in R. solani – tomato 

pathosystem with abundance of Sphingobacteria and Gammaproteobacteria as reported by Mendes 
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et al. (2011), whereas plants mortality in F. oxysporum f. sp. raphani – lettuce was negatively affected 

by several bacterial groups, including members of Acidobacteria, Chloracidobacteria, Solibacteres, 

Anaerolineae, Nitrospira and Deltaproteobacteria. In other words, the significant correlations that we 

observed between disease incidence with diversity and richness of soil bacterial community indicate 

that complexity of the whole microbiota, rather than the exclusive presence or absence of specific 

taxa, is crucial to soil suppressiveness (Mendes et al. 2011). In this regard, it has been demonstrated 

that the simultaneous presence of a mixture of soil bacterial isolates (i.e., Brevundimonas sp., 

Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) strongly inhibited the growth of two plant-

pathogenic fungi (i.e, R. solani and Fusarium culmorum) through the production of broad-spectrum 

antibiotics, while a limited effect was observed when the bacteria were tested individually (De Boer 

et al. 2007; Garbeva and de Boer 2009). 

Finally, some soil microorganisms can indirectly protect the plant against both root and foliar 

pathogens by inducing a systemic resistance (Choudhary et al. 2007). Bacteria like Pseudomonas 

fluorescens, Serratia marcescens, and Bacillus pumilus have been found to induce resistance against 

Ralstonia solanacearum (Jetiyanon and Kloepper 2002), Phytophthora infestans (Yan et al. 2002), 

Fusarium oxysporum f. sp. radicis-lycopersici (Benhamou et al. 1998) and cucumber mosaic 

cucumovirus (Raupach 1996). In a recent study, Tamm et al. (2010) evaluated the impact that soil 

management and fertilization strategies had on the suppressiveness of soil against soilborne and 

airborne pathogens. Their results showed that application of organic amendments, by improving soil 

microbial biomass, had positive effects on suppressiveness against both soilborne and airborne 

pathogens (Tamm et al. 2010). In our study, the higher richness and diversity of bacteria observed in 

soil treated with organic amendments than with synthetic fertilizers, negatively affected the incidence 

of infection in TSWV – tomato pathosystem. Interestingly, plant mortality in plant infected by virus 

was negatively related with the presence of some bacterial taxa (i.e., members of Acidobacteria, 

Chloroflexi, Nitrospirae and Deltaproteobacteria) particularly abundant in soil amended with organic 

materials. In other words, long-term application of organic amendments could promote the presence 

of soil bacteria involved in the induction of systemic resistance in plants. These results suggest that 

use of organic amendments could represent a promising strategy for controlling plant viruses. 

However, more detailed studies are needed to evaluate the robustness of our findings. 

 

5. Conclusion  

Within agro-ecosystem, soil health represents an important aspect for crop production and 

agricultural sustainability. In this regard, application of organic amendment is considered an effective 
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practice to improve soil properties and natural soil suppressiveness. In our study, long- term 

application of organic amendments, especially fast decomposing materials, reduced the disease 

incidence in three pathosystems, including two soilborne pathogens (Sclerotinia sclerotiorum and 

Fusarium oxysporum f. sp. raphani) and one virus (TSWV), whereas a greater incidence was 

observed in soil treated with ordinary management.  In detail, some soil chemical and biologica l 

properties, as well as richness and diversity of soil microbiota were significantly related with disease 

suppression. However, the higher suppression of R. solani in soil treated with ordinary management 

than with application of organic materials, suggest that a variable response can be observed in 

different pathosystems. Therefore, further research including a broad range of organic materials and 

pathosystems is needed in order to generalize the effects that organic amendments have on plant 

protection. 
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Figures and tables 

Fig. 1. R. solani – tomato damping off index (DOI) in different soil treatments calculated 28 days 

after sowing. Values are the means of eight replicas. Different letters indicate statistically significant 

differences between the treatments (Duncan’s test at p < 0.05). Application frequency is indicated 

with (S) and (F) for single and frequent rate, respectively. 
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Fig. 2. S. sclerotiorum – lettuce damping off index (DOI) in different soil treatments calculated 42 

days after sowing. Values are the means of eight replicates. Different letters indicate statistica lly 

significant differences between the treatments (Duncan’s test at p < 0.05). Application frequency is 

indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 3. Percentage of dead plants 7, 14 and 21 days after transplanting in F. oxysporum f. sp. raphani 

– lettuce pathosystem. Data refer to mean ± standard deviation (N = 8). Application frequency is 

indicated with (S) and (F) for single and frequent rate, respectively. 
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Fig. 4. Percentage of healthy and infected plants in TSWV – tomato pathosystem. Values are means 

of 18 replicas. Application frequency is indicated with (S) and (F) for single and frequent rate, 

respectively. 
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Table 1. Pearson correlations coefficients for chemical and microbiological parameters with damping 

off index (DOI) for R. solani – tomato and S. sclerotiorum – lettuce, percentage of mortality for F. 

oxysporum f. sp. raphani – lettuce, infected plants and percentage of mortality for TSWV – tomato.  
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Chemical parameters       

pH 0.80 ** -0.15 -0.97** -0.83** -0.95** 

EC (μS cm-1) -0.78** 0.29 0.98** 0.85** 0.99** 

Organic C (g kg-1) 0.10 -0.65* -0.47 -0.52 -0.52 

Total N (g kg-1) -0.33 -0.72* -0.05 -0.20 -0.06 

C/N ratio 0.63* -0.12 -0.73* -0.64* -0.81** 

N-NO3
- (mg l-1) -0.81** -0.32 0.62* 0.41 0.68* 

N-NH4
+ (mg l-1) -0.51 0.47 0.66* 0.59 0.74** 

Total limestone (g kg-1) 0.57 -0.41 -0.87** -0.73* -0.91** 

Active limestone (g kg-1) 0.44 -0.15 -0.53 -0.62* -0.47 

CEC (meq 100g-1) 0.70* -0.49 -0.93** -0.84** -0.96** 

P2O5 (mg kg-1) -0.27 -0.72* 0.02 -0.12 -0.07 

K+ (meq 100g-1) 0.06 -0.73* -0.52 -0.63* -0.44 

Mg2+ (meq 100g-1) -0.68* 0.40 0.80** 0.76** 0.77** 

Ca2+ (meq 100g-1) 0.80** -0.36 -0.95** -0.81** -0.98** 

Na+ (meq 100g-1) -0.50 0.24 0.57 0.49 0.48 

Microbiological parameters      

FDA (abs 490nm) 0.58 -0.60 -0.87** -0.91** -0.90** 

Biolog EcoPlatesTM  

(AWCD) 
0.66* -0.28 -0.72* -0.80** -0.64* 

Significant differences at the 0.05 (*) and 0.01 (**) are reported. 
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Table 2: Pearson correlations coefficients for bacteria richness, diversity and relative abundance at 

genus level with damping off index (DOI) for R. solani – tomato and S. sclerotiorum – lettuce, dead 

plants for F. oxysporum f. sp. raphani – lettuce, infected plants and dead plants for TSWV – tomato. 

Only correlation with most abundant bacterial taxa are reported 
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Synthetic parameters      

Chao1 0.69* -0.19 -0.71* -0.58 -0.74** 

Shannon 0.66* -0.49 -0.84** -0.75** -0.89** 

Bacterial taxa 
     

Acidobacteria; Acidobacteria 0.68* -0.16 -0.66* -0.52 -0.76** 

Acidobacteria; Chloracidobacteria 0.66* 0.08 -0.68* -0.38 -0.75** 

Acidobacteria; Solibacteres  0.67* -0.22 -0.81** -0.66* -0.88** 

Actinobacteria; Actinobacteria 0.16 -0.24 -0.02 -0.18 -0.01 

Bacteroidetes; Flavobacteria -0.58 0.48 0.75** 0.67* 0.81** 

Bacteroidetes; Sphingobacteria -0.77** -0.14 0.64* 0.44 0.64* 

Chloroflexi; Anaerolineae 0.71* -0.12 -0.87** -0.63* -0.92** 

Chloroflexi; Chloroflexi 0.09 -0.03 -0.37 -0.25 -0.27 

Cyanobacteria; Chloroplast -0.50 -0.13 0.44 0.22 0.38 

Cyanobacteria; Nostocophycideae 0.40 0.23 -0.34 -0.10 -0.40 

Cyanobacteria; Oscillatoriophycideae 0.64* 0.34 -0.29 -0.08 -0.34 

Firmicutes; Bacilli 0.09 -0.35 0.02 -0.18 0.00 

Gemmatimonadetes; Gemmatimonadetes  0.44 -0.18 -0.24 -0.19 -0.39 

Nitrospirae; Nitrospira 0.59 -0.60 -0.72* -0.76** -0.79** 

Planctomycetes; Planctomycea -0.12 -0.38 0.09 -0.17 0.03 

Proteobacteria; Alphaproteobacteria -0.41 -0.48 0.19 0.03 0.27 

Proteobacteria; Betaproteobacteria 0.15 -0.07 -0.21 -0.35 -0.12 

Proteobacteria; Deltaproteobacteria 0.68* -0.35 -0.82** -0.77** -0.87** 

Proteobacteria; Gammaproteobacteria -0.72* 0.15 0.93** 0.73* 0.93** 

Verrucomicrobia; Verrucomicrobiae 0.09 -0.03 -0.50 -0.35 -0.44 

Significant differences at the 0.05 (*) and 0.01 (**) are reported. 
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General conclusion 

Soil sickness represents a condition in which the long-term use of non-sustainable agricultura l 

practices causes changes in the physical, chemical and biological properties of soils that, in turn, 

negatively affects plant vegetative and reproductive performances. By an extensive analysis of 

literature, we found that soil sickness is pervasive in agro-ecosystems, occurring in 111 cultiva ted 

plants belonging to 41 taxonomic families. To explain the phenomenon of soil sickness, three main 

hypotheses have been proposed, including soil nutrient depletion or imbalance, build-up of soilborne 

pathogens coupled with shift in the composition of soil microbial community composition, and 

presence of phytotoxic and autotoxic compounds. Starting from a detailed analysis of mechanisms it 

was previously suggested that all proposed hypotheses have as common origin, i.e. the alteration of 

organic matter cycle caused by intensive agricultural practices. 

Based on this consideration, in the present thesis different organic management strategies, in 

terms of organic matter type and application frequency, were used in order to recover a soil affected 

by soil sickness. Soil was subjected for two years to 11 different treatments including two ordinary 

soil managements, eight organic amendment treatments and one untreated soil as the control. At the 

end of each year, cumulated crop production of Eruca sativa, soil properties and soil microbiota were 

evaluated. Compared to the use of ordinary managements, the beneficial effects on soil properties 

and microbial community derived by the use of organic amendments were evident already after one 

cyear of conditioning. In detail, pH values near the neutrality, high soil organic carbon content and 

good level of soil aggregation, as well as an improvement in soil microbial functionality, richness and 

diversity were observed in soil treated with organic amendments, especially when easily 

decomposable materials rich in labile carbon and organic nitrogen (i.e., alfalfa plus glucose) were 

applied at high rate once a year. In contrast, cumulated crop production at the end of the first year 

was higher in soil with ordinary managements than in soil with application of organic materia ls. 

However, during the second year of soil conditioning, an increase in productivity and quality of the 

crop was observed in soil treated with organic materials as compared to the soil subjected to 

conventional management. Finally, soil conditioned for two years was used to evaluate the effects 

that ordinary and organic management strategies had in the disease suppression of soilborne 

phytopathogenic fungi and viruses. Application of organic amendments, by positively affecting soil 

properties and soil microbiota, showed a restoration of natural soil suppressivines against soilborne 

pathogens (i.e., Sclerotinia sclerotiorum and Fusarium oxysporum f. sp. raphani). Surprisingly, this 

study reports for the first time that the use of organic matter reduces the incidence of Tomato spotted 
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wilt virus infection, as well as the mortality of infected plants, probably by the induction of systematic 

resistance.  

In conclusion, this study revealed that applications of organic materials have an immed iate 

positive effect on soil fertility as well as on soil microbiota, while the increase of crop productivity 

are of longer-term nature. In addition, the positive effect that organic amendments have on microbia l 

communities, including their abundance, diversity and richness of the several taxa, results in a 

recovery of the natural soil suppression against soilborne pathogens and the induction of plant 

resistance against airborne pathogens like viruses. However, the effects on crop production, soil 

fertility and disease suppression varied depending on quality, amount and frequency of application 

of organic matter. Therefore, future studies that include different combinations of organic amendment 

types and application frequencies, as well as different soil types, crop species and pathosystems, are 

needed to better understand the role of organic matter as a means to recover of soils affected by soil 

sickness. 
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