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Presentazione

Gli sviluppi della scienza dei materiali hanno offerto, negli ultimi anni, un e-

sempio significativo di come il cammino parallelo di ricerca di base e sviluppi

tecnologici ha portato al raggiungimento di obiettivi fondamentali in un

nuovo campo della ricerca, detto nanoscienza.

I modelli tradizionali della fisica dei materiali presuppongono lunghezze

tipiche generalmente maggiori o eguali di 100 nm. La maggior parte degli

studi fatti fino agli inizi degli anni ’80 hanno riguardato proprietà di materiali

bulk o di singole molecole. Lo studio di sistemi con dimensioni intermedie

(inferiori a quelle critiche) come clusters di atomi, si è sviluppato a partire

da quando l’invenzione di nuovi strumenti capaci di esplorare la materia su

scale di pochi nm e, allo stesso tempo, l’introduzione di nuove tecniche di

manipolazione della materia alle stesse scale, aprirono la strada verso nuove

frontiere della scienza dei materiali.

L’essenza della nanotecnologia consiste nella capacità di manipolare la

materia a livello atomico, realizzando sistemi in cui il numero e/o la po-

sizione dei singoli atomi possono essere cambiati in modo controllato. La

maggior parte degli sforzi tecnologici è stata volta proprio al raggiungimento

del controllo di strutture e dispositivi a livello atomico e molecolare e, con-

temporaneamente, all’utilizzo di tali sistemi in modo efficiente. Dal punto di

vista della ricerca di base, è diventato chiaro che le proprietà di questi nuovi

sistemi nanometrici o nanostrutture non possono essere predette soltando

conoscendo quello che accade su scale di lunghezza molto maggiori. Gran

parte dell’interesse dato a questo nuovo campo della ricerca scaturisce proprio

dalla considerazione che riducendo le dimensioni compaiono nuovi fenomeni

legati al confinamento quantistico. La realizzazione e lo studio di nuovi sis-
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temi come “quantum dots”, fili quantici, films sottili, nanotubi di carbonio,

strutture a base di DNA, emettitori di luce laser, etc. hanno mostrato pro-

prietà uniche, del tutto assenti in sistemi “tradizionali”. E le possibili appli-

cazioni vanno dalla fisica alla biologia alla chimica, spesso senza la possibilità

di distinguere fra esse.

Uno degli aspetti più studiati delle nanostrutture è il fatto che riducendo

le dimensioni, molte proprietà fisiche (ottiche, di trasporto, etc.) diventano

fortemente dipendenti dalla dimensione, dando luogo ad un ampio spettro

di applicazioni. La possibilità di “accordare” la risposta del sistema con le

dimensioni ha l’obiettivo tecnologico di progettare le proprietà del dispositivi,

realizzando in questo modo sistemi adatti ad applicazioni differenti soltanto

variando il numero, le specie e le posizioni di singoli atomi e/o molecole.

Questi enormi, rapidissimi progressi hanno permesso un controllo com-

pleto non soltanto sulle dimensioni ma anche sulla forma. Recentemente, la

fabbricazione di quantum dots di geometria ellissoidale ha mostrato che la
possibilità di accordare la risposta del sistema con le dimensioni può essere

inteso in maniera più allargata, cioè esteso ad altre, interessanti proprietà

come la polarizzazione della radiazione emessa al variare dell’anisotropia del
sistema.

Questo lavoro di tesi è volto a dare un contributo teorico alla gran quantità
di studi fatti sui nanosistemi, studiando come la forma può modificarne le

proprietà fisiche rilevanti.

Il capitolo 1 è dedicato ad una breve rassegna sulla ricerca sperimentale

su questi nuovi sistemi, illustrando alcuni punti importanti riguardo la loro

fabbricazione e le loro proprietà ottiche e di trasporto.

Il capitolo 2 è incentrato sullo studio dei sistemi anisotropi, con parti-

colare riguardo alla dipendenza delle proprietà ottiche dall’anisotropia della

nanostruttura. L’equazione di Schrödinger a massa efficace è stata risolta

esattamente all’interno di un quantum dot ellissoidale, per mostrare le carat-

teristiche dello spettro di singola particella direttamente legate alla perdita

della simmetria sferica. L’analisi di tale spettro dimostra che le proprietà

ottiche nell’infrarosso vengono modificate rispetto al caso sferico, mostrando

una forte relazione fra la geometria del sistema e la polarizzazione della ra-

diazione assorbita o emessa. Sono stati studiati, inoltre, effetti di correlazione
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a due particelle mostrando come la configurazione spaziale e l’energia totale

del sistema risultano funzioni delle dimensioni della nanostruttura e della sua

geometria.

Il quantum dot ellissoidale è una delle poche eccezioni in cui, anche se

nell’approccio più semplice (cioè l’approssimazione a massa efficace), è possi-

bile esibire una soluzione esatta. Per un sistema di forma arbitraria, il proble-

ma diventa molto più complicato, in particolare nel caso in cui è necessario
tenere in conto la barriera di potenziale finita ai bordi della nanostruttura.

Questo problema diventa di particolare interesse se si pensa all’interazione

di tali strutture con un ambiente esterno. Infatti, riducendo le dimensioni

il decadimento della funzione d’onda di un elettrone o di una buca presenti

nella nanostruttura all’esterno di essa diventa sempre più rilevante. Ci si

aspetta che la sovrapposizione fra questa funzione d’onda e quella di una

molecola esterna che abbia un ruolo chiave nella reazione della nanostrut-

tura con l’ambiente esterno e, quindi, nelle applicazioni sensoristiche. Per

trattare sistemi più complicati, è stato elaborato un approccio variazionale

che include la barriera di potenziale finita al bordo. Il metodo, che è l’oggetto

del capitolo 3, è stato applicato al caso del silicio poroso. Questo materiale ha

ricevuto un largo interesse negli ultimi anni poiché il processo di fabbricazione

porta ad un sistema eterogeneo che appare come un insieme di fili quantici e

quantum dots. L’effetto principale sulle proprietà fisiche è il forte incremento

dell’emissione di fotoluminescenza rispetto al silicio bulk. La struttura com-

plicata di tale materiale è stata schematizzata tramite un modello geometrico

che consiste in un insieme di fili quantici deformati indipendenti. Nell’ambito

di tale modello, l’approccio variazionale è stato utilizzato per spiegare una

larga classe di dati sperimentali osservati per il silicio poroso. Sono stati in-

terpretati, in particolare, i risultati riguardo agli spettri di emissione e quelli

di assorbimento, mostrando una possibile spiegazione della differenza osser-

vata fra i rispettivi picchi (Stokes shift). Sono state studiate, inoltre, le pro-

prietà del silicio poroso in presenza di un ambiente esterno, mostrando come

il quenching ed il red-shift della fotoluminescenza in presenza di ossigeno

possano essere interpretati utilizzando l’approccio variazionale.

Il capitolo 4, infine, è dedicato all’analisi di un ulteriore effetto legato

alla fisica delle superfici in presenza di deformazioni di scala nanometrica.
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Viene mostrato come sotto condizioni opportune una nuova classe di stati di

superficie, demominati stati topologici di superficie, può essere individuata

per superfici a curvatura variabile. Il moto di una particella nelle vicinanze

di una superficie curva può dar luogo a stati quantici localizzati sui punti

della superficie in cui la curvatura massima e quella minima hanno la loro
differenza massima. Questo ha un interesse particolare poiché la presenza

di tali stati potrebbe significare un incremento della reattività di superficie

verso un ambiente esterno.

A pag. 8 è possibile trovare la lista degli articoli e dei proceedings di

conferenze in cui il lavoro presentato in questa tesi è stato pubblicato.



Introduction

Materials science developments in the last years have offered a significant

example on how the interplay between basic research and technology has

lead to the achievement of fundamental goals within a new field of research,

named nanoscience.

Traditional models in the materials science involve critical lengths gen-
erally of the order or larger than 100 nm. Most of the studies done until

the 1980s concerned either bulk material or single-molecule properties, while

systems with intermediate sizes, like atom clusters, were not studied at all.

The invention of new instruments able to explore the matter down to a scale

of a few nm and at the same time the introduction of novel techniques for
the matter manipulation at the same scale, aroused the interest of many

scientists in what could happen for sizes less than the critical lengths.

The essence of nanotechnology is the ability to work at atomic level,

namely the assembly of systems in which the number and/or the position
of single atoms can be varied in a controlled way. Most of the technological

efforts have been focused just in gaining control of structures and devices

at atomic and molecular level as well as in reaching efficient manipulation
and use of such systems. On the other hand it has become very clear that

the properties of these novel nanometric structures or nanostructures cannot

be predicted just by knowing what it happens at very large scales. Most of
the interest given to this new research world is due just to the considera-

tion that the small size gives rise to new phenomena related to quantum
confinement and inter-facial properties. New systems such as quantum dots,

quantum wires, thin films, carbon nanotubes, DNA-based structures, laser

emitters, etc. have been realized and studied, showing unique properties,

5
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completely absent in “traditional” systems. And the possible applications go

from physics to biology to chemistry, often without the possibility of distin-

guishing between them.

One of the most studied aspects of nanostructures is that on reducing

the dimensions, many physical (optical, transport, etc.) properties become

strongly dependent on the size, giving rise to a wide range of applications.
The possibility of tuning the system response with the dimension has the very

challenging technological goal of “designing” device properties, realizing in

this way systems suitable to different applications just by varying the number,
the species and the positions of single atoms and/or molecules.

These enormous, quick progresses have allowed a complete control not

only on the dimensions, but also on the shape. Very recently, the fabrication

of anisotropic, shape-controlled quantum dots has shown how the possibility

of tuning the system response with the dimensions can be intended in a larger

way, namely extended to other, interesting features, as the polarization of the

emitted radiation.

This thesis work is intended to give a theoretical contribution to the large

amount of studies done on nanosystems, studying how the shape can modify

their properties. Just because the goals achieved up to now have shown how

the comprehension of the underlying principles and the technological progress

run very closely to each other, chapter 1 is dedicated to a short review of

the experimental research on these novel systems, illustrating (very shortly)

some important points about both their fabrication and their optical and

transport properties.

Since the most studied geometry for quantum dots is the spherical one,

some fundamental concepts known in that case have been extended to an
ellipsoid geometry. The effective-mass Schrödinger equation has been exactly

solved within an ellipsoid quantum dot, in order to show the single-particle

spectrum features which are explicitly related to the loss of the full spherical
symmetry. The implications for the infrared optical properties have been in-

vestigated, stressing the strong relation between the shape and the response
to polarized light. Moreover, two-particle correlation effects have been stud-

ied, showing how they change with the system geometry. Dielectric effects, re-

lated to the dielectric mismatch between the dot and the surrounding medium
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have been included and discussed. This is the topic of chapter 2.

The ellipsoid quantum dot is one of the few exceptions in which, even in

the simplest approach (namely, the effective-mass approximation) an exact

solution can be attempted for. For an arbitrarily shaped system, the problem

becomes much more complicated, mostly if finite boundary conditions at the
nanostructure boundaries have to be considered. This problem becomes very

interesting if we think to the interaction of such structures with an external

environment. In fact, the small dimensions give rise to the wave function de-

cay outside the nanostructure. The overlap between this wave function and

that of an incoming molecule is expected to have a central role in the reac-

tion of the nanostructure with the external environment and, therefore, in

sensor applications. In order to treat more complicated systems a variational

approach has been built up, with the inclusion of a finite potential barrier
at the boundaries. The method, presented in chapter 3, has been applied to

the case of porous silicon. This material has received a wide interest in the

last years because the fabrication process leads to an heterogeneous system

which appears as a collection of quantum wires and dots. The main effect on

the physical properties is that a strong enhancement of the photolumines-
cence emission is observed with respect to bulk silicon. Within a geometrical

model which schematizes the very complicated structure of such material as a

collection of independent deformed quantum wires, the variational approach
has been used to explain a large class of experimental data which have been

observed for porous silicon.
Finally, chapter 4 analyzes a further effect related to surface physics in

presence of deformations with nanometric size. It is shown that under suitable

conditions a new class of surface states, named topological surface states, can
be found if surfaces with variable curvature are considered. The motion of

a particle in the neighbourhood of such surface can give rise to quantum

states localized on the surface points where the maximum and minimum
curvature have their maximum difference. This point has a particular interest

because the presence of such states could mean an enhancement of the surface
reactivity towards an external environment.
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Chapter 1

The Physics of nanostructures

The wide interest in studying the materials properties at nanometric scale

has grown up in the last years. It is in practice commonly accepted that the

nanoscience developments have opened new fields in the materials research,

but many more are expected to come in the future. A wide potential is

perceived in the study of nanometric structures, which has meant the increase

of the investments involved in such researches in all the advanced countries.

The statement which most effectively highlights it is from the US President’s

Advisor for Science and Technology [1]:

“If I were asked for an area of science and engineering that will

most likely produce the breakthroughs of tomorrow, I would point

to nanoscale science and engineering”.

Just to give an example, the US government has invested for the 2001 finan-

cial year about $500 million, 83% more than 2000.
The employment of so many human and economic resources can only be

explained by considering that as the dimensions are reduced down to nano-

metric scale, novel properties of matter appear, which makes nanostructures
suitable for novel and revolutionary industrial applications as well as one of

the most exciting fields of modern science. It is not a case that this field has
been defined as “leading to the next industrial revolution” [1].

In this chapter a general overview of the main aspects involved in the

physics of nanostructures is given. The experimental progresses done in both

11
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the fabrication of nanometric materials and the investigation of their proper-

ties will be described, giving just a few examples of how recent developments

of the materials science have lead to the possibility of exploring the matter

down to atomic resolution (sec. 1.1). The novel properties which come out

as the dimensions are reduced are discussed (sec. 1.2), giving relevance in
particular to their present or future applications, such as the possibility of

counting electrons one by one.

1.1 Nanoscience technology

The possibility of manipulating very small structures has given new perspec-

tives for the devices fabrication industry, allowing both the improvement of
the devices performances (the reduction of the dimensions has meant faster

devices, lower heat dissipation, etc.) and the fabrication of new nanostructure-

based devices such as single-electron transistors [2–7], quantum dots lasers

[8–10], storage devices [11] and fluorescence markers [12–14]. It must be

pointed out that the wide development of nanoscience in the last years can-
not be viewed simply as the natural evolution of miniaturization engineering

and microelectronics industry. Novel and exciting physical, chemical and bi-

ological properties occur at nanometric scale. As the structure dimensions
are reduced below about one hundred nanometres, that is structures with a

low number of atoms (compared with that of bulk crystals) are concerned,
quantum confinement effects on the electrons and holes motion appear. This

can be explained only in the framework of quantum mechanics. In fact, as the

particle de Broglie wave length becomes comparable with the structure di-
mensions, quantum effects become relevant, giving rise to the appearance of a

discrete spectrum of levels or of a mini-band structure depending on the sys-

tem dimensionality. Starting from a three-dimensional bulk structure and by
reducing one, two or all three dimensions, two-dimensional, one-dimensional

and zero-dimensional systems are obtained. They are usually referred to re-
spectively as quantum wells, quantum wires and quantum dots. For these

last ones atomic-like spectra are observed, which has gained for such struc-

tures the name of artificial atoms [15–25]. It is interesting to note how the
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lower dimensionality changes the density of states. This is shown in Fig. 1.1,

where the bulk semiconductor density of states is compared with that of

low-dimensionality systems. Because in this thesis work the main interest is

in studying quantum dots properties, what experimentally comes out if elec-

trons and/or holes quantum confinement in all three dimensions is achieved
will be illustrated more in detail.

Figure 1.1: A schematic diagram illustrating the electronic density of states that

occurs as dimensionality is varied from 3D to 0D, assuming free electrons. It is

interesting to note that for a three-dimensional semiconductor the density of states

has a
√
E dependence [26] while for 2D systems a step function is obtained, for

1D systems a 1/
√
E dependence and for 0D systems a δ-function-like dependence.
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1.1.1 Imaging the world down to atomic resolution

The possibility of exploring new, fascinating properties of matter at nano-

metric scale and at the same time of using them for novel applications such as

information storage was first pointed out by R. P. Feynmann in his 1959 lec-

ture at the annual meeting of the American Physical Society at the California

Institute of Technology [27]. The “visionary” title of this lecture was “There
is a plenty of room at the bottom”. Here he clearly expressed the need of new

technologies which could act as “eyes” and “fingers” in the nanoworld. This

technology was realized in the early 1980s with the invention of the scanning

electron microscopy (STM), an instrument which measures the quantum tun-

nel current flowing between a metallic tip and a conducting sample to give
surface topography at atomic scale. Since then, other powerful scanning probe

instruments such as the atomic force microscope (AFM), the magnetic force

microscope (MFM) and the scanning near-field optical microscope (SNOM)
have been developed [28].

The possibility of realizing atomically resolved surface images has meant
the first step towards the development of nanoscience and nanotechnology.

A further, significant contribution came just from these scanning probe tech-

niques, which allowed the possibility of manipulating and arranging the mat-

Figure 1.2: (a) Individual Xe atoms positioned on a Ni surface at 4K to form the

IBM logo (from ref. [29]). (b) A quantum corral formed by Fe atoms on a Cu(111)

surface. The rings represent the corral eigenstate of the Cu(111) electrons confined

within the circular arrangement of Fe atoms (from ref. [30]).
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Figure 1.3: (a) 6 nm×6 nm STM image of Br on Cu(100). The tracks in the lower

half (higher tunnel current) are atoms hopping from site to site. When the tunnel

current is reduced (upper half) the Br atoms stop moving (as those marked A,B,C

and D). (b) Controlled positioning of a single atom at room temperature. The

lower image is taken before and the upper image after a manipulation stroke on

the arrowed atom (from ref. [31]).

ter at so small scales [28]. For example, with STM the controlled positioning

of atoms on surfaces by controlling the interaction between the tip and the
surface has been realized. Some examples are given in Figs. 1.2 and 1.3.

In the same way molecules have been assembled by directly bringing single

atoms and/or molecules close to each other [32].

1.1.2 Nanoclusters fabrication

Scanning probe techniques are not the only way by which to arrange the

matter at so small scales. Chemical synthesis of nanoparticles is nowadays
a commonly used technique for assembling atoms or molecules [28]. The

strategy is based on the so-called bottom-up approach, which means that

the starting point are the constituent elements which via suitable chemical
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Figure 1.4: (a-c) TEM images of three quantum-rod samples with different sizes

and aspect ratios. (d-g) High resolution TEM images of four quantum rods (from

ref. [33]).

reactions are assembled together (quantum dots are viewed as extremely
large molecules or colloids). Colloidal synthesis of semiconductor clusters

has been widely explored. Quantum dots fabricated with these bottom-up

techniques have dimensions variable from a nearly molecular regime (≃ 1
nm) up to about 50 nm. It has been shown to be a very powerful technique,

being able of controlling nanoclusters size and, very recently, shape. In fact,
synthesis of rod-, arrow-, teardrop- and tetrapod-shaped CdSe [33, 34] and

rod-like Co [35] nanocrystals has been achieved, showing surprising flexibility

in anisotropically controlling the growth kinetic (oriented attachment). The
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nanorods aspect ratio has been varied from one to one (nearly spherical

quantum dots) up to ten to one (long nanorods). Some spectacular images

are shown in Figs. 1.4, 1.5, 1.6.

Within this field perhaps the most exciting perspective is the propensity

for self-assembling, self-organization and self-replication of natural biolog-

ical systems such as amino acids, nucleic acids (DNA, RNA) and viruses

[28, 36–39]. The application of molecular assembly processes to nanostruc-

tures synthesis is just one example of how, at nanometric scale, physics,

engineering, biology and chemistry have no longer a neat boundary, the only

possible approach being multi-disciplinary. This is one of the most challeng-
ing applications of nanostructures, the ultimate goal being the realization of

functional bio-inorganic structures biologically self-assembled [40]. An exam-

ple is shown in Fig. 1.7, where TEM images of polymer 1-Thy-Au aggregates

Figure 1.5: (a-f) Images of Co spherical nanoparticles prepared by colloidal synthe-

sis, by using different mixtures of reactants (from ref. [35]). The bars correspond

to 100 nm. Spherical particles self-assemble into a hexagonal superlattice (a-b).

Due to magnetic interactions, under suitable reaction conditions the nanocrystals

form closed loops to minimize their magnetic interaction (e-f). A transition region

between the two different kinds of arrangement is also observed, with a mixture of

hexagonal monolayer and closed loops (c-d).
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Figure 1.6: (a-f) Assemblies of hpc-Co magnetic nanorods prepared by colloidal

synthesis, by using different mixtures of reactants (from ref. [35]). The bars cor-

respond to 100 nm. Long ribbons of rods are formed, whose length is determined

by the magnetic properties of the single rods.

formed at different temperatures are shown. The temperature strongly affects

the morphology of the resulting ensembles, which ranges from discrete struc-

tures observed at the highest temperature (23 oC) to micro-scale discrete

spherical particles, consisting of 105-106 individual Thy-Au units observed
at the lowest temperature (−20 oC). The intermediate temperature 10 oC

corresponds to networks formation, which suggests that these networks are

an intermediate process in the formation of the giant assemblies at −20 oC.

The fabrication of nanostructures can be also approached from a com-
pletely different point of view, in which the nanometric dimensions are ob-

tained by gradually reducing bulk crystal dimensionality (top-down approach)

[17, 23, 28]. These techniques are usually based on combinations of molecu-
lar beam epitaxy, electron beam or x-ray lithography and etching and give

quantum dots in the size regime of 1 µm down to 10 nm. A typical example
is given by a GaAs thin layer (whose thickness must be less than the carrier

de Broglie wave length) embedded in two layers of AlxGa1−xAs. The con-

trolled composition of the tertiary alloy allows the tuning of the band gap
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Figure 1.7: TEM images of polymer 1-Thy-Au aggregates formed at (a) 23 oC,

(b) −20 oC and (c) 10 oC (from ref. [38]).

mismatch between the two materials, which gives rise to a quantum well po-

tential and, therefore, to the quantum confinement of carriers. Lithography

and etching can then be used to further confinement to one (quantum wires)

or zero (quantum dots) dimensions. The application of these techniques to

lattice-mismatched materials has also lead to the discovery that under suit-

able conditions nanometric-scale islands with a narrow size distribution form,

showing their tendency for self-assembling [23, 28].

1.2 Electrons and holes in artificial atoms and

molecules

Quantum dots are small nanocrystals whose dimensions usually are in the

range 1-100 nm, which corresponds to 103-106 lattice atoms. The number of
sites of a spherical quantum dot as a function of the dot diameter is shown

in Fig. 1.8. An fcc lattice with zincoblende structure has been assumed. The

inset shows an HREM image of a nearly spherical Si nanoparticle covered
by an amorphous shell (from ref. [41]). The main feature of such systems

is the fact that the electron or hole motion can be described by atomic-like
wave functions and energy levels. Because of the uncertainty principle the

spacing between these levels is of the order of !2/MR2 if M is the parti-

cle mass and R the typical dot dimension. The goal in the fabrication of
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quantum dots is that physical phenomena observed for atoms, such as light

emission, can be reproduced and tuned by artificially controlling the material

properties (such as shape, size, composition, etc.). The most evident exam-

ple is given by the strongly size-dependent optical properties achieved as the

dot dimensions are reduced [16, 25]. The energy gap shifts towards energies
higher than the correspondent bulk value, giving rise to size-tunable lumines-

cence at room temperature. At the same time, a strong enhancement of the

volume-normalized oscillator strength associated to the allowed transitions

is observed. The explanation is given by the fact that for bulk crystals both

the particle energy and its crystal momentum can be precisely defined, while

its position cannot. As the crystal dimensions are reduced, the particle en-

Figure 1.8: The number of sites in a spherical quantum dot as a function of the

dot diameter. An fcc lattice with zincoblende structure has been assumed. The

inset shows an HREM image of a nearly spherical Si nanoparticle covered by an

amorphous shell (from ref. [41]).
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ergy can be still defined but, because of the uncertainty principle, the spatial

localization imply that the crystal momentum can no longer be precisely de-

fined. Therefore, the nanocrystal atomic-like eigenfunctions may be viewed

as the superposition of many bulk momentum states and the energy spec-

trum changes from continuous bands to discrete levels. A direct consequence
is that the oscillator strengths, rather than being distributed over a contin-

uum of states as for bulk semiconductors, become concentrated over sharp

transitions [42–49]. The optical line-widths of single quantum dots are orders

of magnitude narrower than those observed in ensemble measurements, ap-

proaching the natural linewidths expected from radiative lifetimes [50]. This

is shown in Fig. 1.9, where high spatial resolution cathodoluminescence of

InAs quantum dots at 20 K is shown. This measurement unambiguously gives

the spectroscopic evidence of zero-dimensional δ-function electronic density
of states.

Therefore, quantum dots have an excitation spectrum (that is, the op-

tical spectrum at fixed number of electrons) quite similar to that of atoms.

Figure 1.9: High spatial resolution cathodoluminescence spectrum for InAs quan-

tum dots at 20 K (from ref. [43]). Ultra sharp lines (whose width is limited by the

spectral resolution of the experimental setup), in absence of thermal broadening,

clearly reveal the quantum confined spectrum.
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The new feature is the possibility of tuning with size the spacing between the

quantum confined levels. A typical example is given in Fig. 1.10a, where size-

and material-dependent emission spectra of several semiconductor nanocrys-

tals are shown. The blue, green and red sets of curves correspond respec-

tively to CdSe, InP and InAs nanocrystals. Within each set, different curves
correspond to different nanocrystal diameters, increasing from right to left.

Moreover, Fig. 1.10(b) shows a true-colour image of a series of nanocrystal

probes in aqueous buffer, all illuminated simultaneously with a hand-held ul-

traviolet lamp. A further example is given in Fig. 1.11, where the UV-visible

spectrum is shown, for CdSe quantum dots, for different sizes. The blue-shift

of the adsorption edge (corresponding to the quantum dot energy gap) on

reducing the dot size clearly comes out.

Figure 1.10: (a) Emission spectra of CdSe (blue curves), InP (green curves) and

InAs (red curves) nanocrystals with different diameters. Within each set of curves,

the size increases from right to left. (b) A true-colour image of a series of nanocrys-

tal probes in aqueous buffer, all illuminated simultaneously with a hand-held ul-

traviolet lamp (from ref. [13]).
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Figure 1.11: UV-visible spectrum for CdSe nanocrystals with different dimensions

(from ref. [51]). The blue-shift of the band edge on decreasing the dimensions is

clearly visible.

The size-dependence of the quantum dots spectrum gives, as we have

seen, the possibility of tuning their optical properties, which has made these
objects suitable, for example, to realize nanocrystal-based light emitting

diodes (LEDs). Atomic-like features can be observed also for the electron
or hole wave function. This has been brought out by magneto-tunnelling

spectroscopy (which is not STM-based and can be regarded as the analog of

STM in the momentum space). This technique has been applied to pyrami-
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dal self-assembled quantum dots [52], showing the elliptical symmetry of the

ground state and the characteristic lobes of higher energy states. The result

is shown in Fig. 1.12.

Figure 1.12: The magnetic field dependence of the differential conductance as ob-

tained from magneto-tunnelling spectroscopy applied to InAs self-assembled quan-

tum dots (from ref. [52]). It reproduces a map of the square modulus of the electron

wave function Fourier transform. The elliptical symmetry of the ground state and

the characteristic lobes of excited states clearly come out. The (x, y) plane corre-

sponds to the basis of the pyramidal dot.

Quantum confinement effects play a central role in determining the trans-
port properties of such structures as well. The most evident example is the

introduction of electrons one by one in nanoclusters coupled to a source and
drain electrodes. The single-electron properties of quantum dots [2–7,53–58]

have lead to the discovery of new, interesting effects such as Coulomb block-

ade. The basic idea is that the addition of a single electron to an N -electrons
system, because of the Coulomb repulsion, requires a charging energy, which

is analogous to the ionization energy for atoms, as shown in Fig. 1.13. In

other words, the electron-electron repulsion results in a considerable energy
cost for adding an extra electron charge and no current will flow until the

voltage provides this energy. By varying the bias voltage between the elec-
trodes, the device conductance and current show a peak structure, each peak

corresponding to the transport of a single electron. This reflects the struc-

ture charging energy as a function of N , known as addition spectrum. It is
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Figure 1.13: The scheme of a quantum dot coupled to source and drain electrodes,

explaining the origin of Coulomb blockade. The Fermi level of the source is above

that the drain source, the difference being eV if V is the bias voltage. The addition

of an electron to the quantum dot filled withN electrons (i) requires that the source

Fermi level is raised up to the quantum dot (N + 1)-electrons chemical potential

(ii). Sometimes the bias voltage (between the source and drain electrodes) is kept

constant and the addition of single electrons is performed by using a gate voltage

which allows the shift of the quantum dot energy levels with respect to the source

and drain Fermi levels. Note that the source and drain electrodes can either be

lithographically patterned electrodes or be formed by an STM tip and a substrate

on which the quantum dot is located.

explained by considering that to add or remove an electron to/from the dot

filled with N electrons, the source Fermi level must be raised up to or above
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the (N + 1)-electrons electrochemical potential or lowered down to or be-

low the N electrons electrochemical potential. For intermediate values of the

gate voltage electrons transport trough the tunnel junction can not occur.

The Coulomb oscillations in the current vs the gate voltage are shown in

Fig. 1.14c for a circular vertical quantum dot made from a double-barrier
heterostructure (obtained by embedding the dot between two barriers which

give quantum confinement in the vertical direction, as in Fig. 1.14a-b). Each

oscillation corresponds to just one electron entering the dot. The addition

spectrum of the dot is shown in the inset of the same figure. Let us note

that the device shown in Fig. 1.14a-b has cylindrical symmetry. If the dot

is approximated with a two-dimensional harmonic potential it is possible to

show [56] that it gives rise to a shell structure (like for atoms) for which

closed shells correspond to 2, 6, 12, . . . electrons in the dot. The numbers in
this sequence can be regarded as “magic” numbers for the two-dimensional

harmonic potential. The addition spectrum in the inset of Fig. 1.14c shows

addition energies unusually large just for N = 2, 6, 12 . . . . Finally, the ad-

dition energy becomes larger as N decreases, due to the increasing of the

Coulomb interaction. The shell structure of the addition spectrum explains
the wide interest in the quantum dot applications as single-electron transis-

tors. In fact, single-electron transistors are able to turn on and off each time

their charge varies of just one unit, unlike commercial transistors which are
able to turn on when many electrons are added to them. This gives, for exam-

ple, a quantum dot-based method for counting electrons [59, 60]. Moreover,
the sequential filling of the dot with electrons one by one allows the fabrica-

tion of artificial atoms analogous to the elements of the periodic table and

reveals peaks in the charging energies which are nothing else than the well
known Hund’s rules for atoms [56, 61–64]. It is important to stress that the

investigation of the atomic-like features of such structures can be performed

both by fixing the number of electrons (excitation spectrum) or adding elec-
trons one by one (addition spectrum). Nevertheless, measurements in which

both features come out have also been done, as shown for example in Fig.
1.15. Here the scanning tunnelling microscopy and spectroscopy of a sin-

gle InAs nanocrystal 3.2 nm in radius acquired at 4.2 K is shown. A series

of discrete levels comes out. For tunnelling through conduction band levels
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Figure 1.14: (a) Schematic diagram of a semiconductor heterostructure. The dot

is located between the two AlGaAs barriers. Electrons can tunnel from occupied

states in the drain via the dot to an empty state in the source. The source-drain

voltage Vsd determines the difference in the Fermi energies between the two elec-

trodes. The current is blocked when this energy window lies in-between two states

in the dot (see also Fig. 1.13). (b) Scanning electron micrograph of a quantum dot

heterostructure. (c) Coulomb oscillations in the current vs the gate voltage through

a vertical quantum dot. Each oscillation period corresponds to the addition of just

one electron in the dot. The distance between adjacent peaks corresponds to the

addition energies shown in the inset (from refs. [56, 57]).
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Figure 1.15: (a) Tunnelling I-V characteristic of a single InAs quantum dot 3.2

nm in radius acquired at 4.2 K. Single-electron tunnelling effects come out. The left

inset show a 10×10 nm STM topographic image of the nanocrystal. The quantum

dot is linked to a gold substrate by hexane dithiol molecule (DT), as shown in the

right inset. (b) Tunnelling conductance spectrum, dI/dV , versus the bias voltage

V . Ec is the single-electron charging energy, Eg the nanocrystal bandgap, and ∆V B

and ∆CB the spacing between levels in valence and conduction band respectively

(from ref. [65]).
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(positive bias), first a doublet is observed, corresponding to the occupancy

of the lowest conduction band confined state, the spacing between the two

levels corresponding to the single-electron charging energy Ec. This is con-

sistent with the degeneracy of the conduction-band ground state which has s

character. By increasing the bias voltage, further electrons are added to the
structure, resulting in the filling of the conduction band first excited state.

This corresponds to the second group of six levels, consistently with the p

character of the involved confined state. The addition of these electrons re-

quires an energy given by the sum of Ec and the spacing between the two

conduction band confined states. The spacing between the six p states is

given just by Ec, being these state degenerate in the single-particle picture.

The valence band filling (negative bias voltage) has a similar structure, even

if in this case the confined levels multiplicities cannot directly be related to
angular momentum degeneracies. This is a very clear evidence for atomic-like

properties of quantum dots. The same shell structure is observed for excitons

(electron-hole pairs) spectra, as shown for example in Fig. 1.16.

All these experimental evidences make the analogy between quantum dots

and atoms quite strict. This analogy is made even stronger by observations of
fine structure splittings and hyperfine shifts due to the spin of the electrons

and nuclei [67–69], Zeeman splittings and Stark shifts due to magnetic [69–75]

and electric fields [76]. But the strong correspondence between quantum dots
and atoms can go still farther. In fact, two or more quantum dots can be

coupled to form an artificial molecule [21,77–87]. Bonding and anti-bonding
states appear in the spectrum, just as for molecules. The ground state can be

delocalized over the two or more dots, with the possibility of investigating the

optical and transport properties of such structures as a function of the “in-
teratomic” distance. A quantum dot molecule can be realized, for example,

as the single-dot shown in Fig. 1.14a, except that the double barrier het-

erostructure is replaced by a triple barrier heterostructure. This is shown in
Fig. 1.17a. The central barrier thickness can be varied, giving rise to a strong

or weak coupling between the two dots. A gate voltage Vg is applied to inves-
tigate Coulomb-blockade effect, as explained previously. The vertical drain

current Id is measured as a function of the drain voltage Vd applied between

the substrate and the top contact, and Vg. The addition spectrum reveals
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Figure 1.16: High excitation spectroscopy of In0.60Ga0.40As quantum dots. The

recombination processes of one up to six excitons clearly come out (from ref. [66]).

“magic” numbers which mark the complete filling of a shell, as shown in Fig.
1.17b. Moreover, “strongly” coupled dots give a Coulomb diamonds structure

similar to that observed for the single dot [56] as observed in the grey-scale

plot of the device differential conductance dId/dVd in the (Vd, Vg) plane, as
shown in Fig. 1.17c. Black (white) lines correspond to positive (negative)

value of the differential conductance and identify bound and excited states.

The grey diamond-shaped regions correspond to Id = 0. The symmetry of the
diamonds with respect to the bias direction corresponds to delocalized states

over both the dots. This behaviour becomes much less marked for “weakly”
coupled dots [86]. Evidences for quantum dots chains [88, 89] and solids [90]

have also been shown. In Fig. 1.18 it is shown how faceted colloidal crystals

5 to 50 µm in size can be made from self-organization of CdSe quantum dots
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Figure 1.17: (a) A double-dot structure. The drain current Id flows vertically as a

response to the drain voltage Vd applied between the substrate and the grounded

top contact, and the gate voltage Vg. (b) “Strongly” coupled double-dot addition

spectrum. The single-dot addition spectrum is also shown for comparison. The pre-

viously discussed “magic” numbers can be recognized from the plot. (c) Gray-scale

plot of the differential conductance dId/dVd in the (Vd, Vg) plane for a “strongly”

coupled double-dot. The diamonds structure clearly comes out near Vd = 0 mV

(from ref. [86]).

2 nm in diameter. The optical spectra of close-packed CdSe quantum dots

show evidence of both quantum confinement in the individual dots and inter-

dot interaction [90]. Similarly, close-packed planar arrays of self-assembling
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Figure 1.18: (a) A dark-field optical micrograph of a faceted colloidal superlattice

formed by self-organization of CdSe quantum dots 2 nm in diameter. (b) A high

resolution TEM image of a <100>-oriented fcc array of dots 4.8 nm in diameter,

with the small angle electron diffraction pattern shown in the inset (from ref. [90]).

nanometric metal clusters covalently linked to each other by rigid organic
molecules have been realized [91]. The realization of nanometric metal is-

lands separated from each other by a tunnel barrier is of great interest for

nanoscale electronics. In fact, electric conductance of such structures can be
varied from the metallic to the insulating limit by controlling the size of the

islands and their coupling (that is, their spacing), as well as the length and
chemical structure of the organic molecules used as molecular interconnects.

The possibility of injecting electrons into the quantum confined states of

quantum dots has opened also the possibility of investigating their infrared
optical spectrum [92–94]. It has, indeed, been shown that, if conventional

doping (like for bulk materials) is unsuccessful and unstable for quantum

dots, n-type colloidal nanocrystals can be fabricated by using an electron
transfer approach commonly used for conducting organic polymers [93]. This

has allowed the direct measurement of the infrared absorption spectrum cor-
responding to the 1se-1pe transition between the ground and the first excited

electronic state, as shown in Fig. 1.19. Further studies have demonstrated

that the controlled electron occupation of quantum dots gives the possibil-
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ity of tuning their optical properties by an electrochemical potential. Elec-

trochromic quantum dots have been realized, showing that the injection of

electrons leads to a size-tunable intra-band transition, to the bleach of the

visible inter-band exciton transitions and a quench of the narrow band-edge

photoluminescence [94]. This gives a further support to future applications
of quantum dots for electronic or optoelectronic devices.

Figure 1.19: Infrared absorption spectrum of n-type CdSe colloidal nanocrystals,

with different diameters (from ref. [93]). The two nanocrystals with smallest size

give rise to a 1se-1pe transition which shows three different peaks, possible due to

the lifting of the three-fold degeneracy of the 1pe states.





Chapter 2

Volume confined states in

ellipsoid quantum dots

The study of the quantum confinement in low-dimensional structures can

be theoretically performed, as pointed out in appendix A, within different

schemes. A widely explored field is about how the nanostructure dimen-

sions can affect many physical properties of the system, such as absorption
and emission spectra, many-particle interactions, transport properties, etc.

Within the effective-mass approximation (described in appendix A), many

theoretical investigations have been done, in which the quantum dot is sim-
ulated with a confinement potential for electrons and holes, assumed to

be in the form of a spherical potential well [95–97], isotropic [98–104] or
anisotropic [105] harmonic potential (parabolic confinement), on-site repul-

sive potential [106], infinite barrier at the dot boundary [107–114], Gaus-

sian potential [115] (see also ref. [16]). There have been many numerical
approaches for studying few- and many-electron properties of these poten-

tials (such as variational calculations, Hartree and Hartree-Fock methods,

power series expansions, WKB approach and several diagonalization tech-
niques). The main problem is that, even in the simplest scheme, that is,

the infinite barrier at the dot boundary, it is very difficult to obtain ex-
act solutions, unless high symmetry structures, such as spherical quantum

dots, are considered. Anyway, this has allowed the investigation from the

theoretical point of view of many experimentally observed properties, and

35
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in particular the explanation of why they can be tuned just by changing

the system dimensions. Nevertheless, it is expected that if these properties

show a strong dependence on the dimensions, the system geometry should

play a fundamental role as well. Therefore, it could be interesting to investi-

gate how the physical properties of quantum dots can change for anisotropic
systems. The theoretical aspects of single- and many-particle properties of

anisotropic quantum dots have been studied for circular, elliptic and trian-

gular vertical quantum dots [116], ellipsoidally deformed vertical quantum

dots [117], quantum confinement within an ellipsoidally deformed harmonic

potential [105], CdSe ellipsoid quantum dots [118, 119]. In these last two

works, the dot anisotropy has been taken into account within a perturbative

scheme, as a correction to the spherical quantum dot spectrum, while the

valence band degeneracy has been properly taken into account. Nevertheless,
it could be relevant to find an anisotropic geometry in which, even in the

simplest effective-mass, infinite-barrier model, the Schrödinger equation can

be exactly solved. In fact, alternative schemes require perturbation or vari-

ational calculations which treat the system geometry as a deviation from a

reference, exactly solvable geometry, such as the spherical one and cannot
account for an arbitrary system anisotropy.

In this chapter it is shown that if an ellipsoid geometry is considered, the

single-particle confined energy levels can be exactly calculated, and some rel-
evant effects on the dot optical properties derived from them. In sec. 2.1 the

theoretical background needed for such calculations is given, showing how
the Schrödinger equation can be separated within an ellipsoid region, allow-

ing the exact calculation of the Hamiltonian eigenvalues and eigenvectors

(subsec. 2.1.1). Moreover, because real systems are usually constituted by a
dots matrix embedded in an external environment, the additional electro-

static potential due to the dielectric mismatch is exactly calculated (subsec.

2.1.2). The selection rules and electronic infrared (conduction band) transi-
tions are studied (subsec. 2.1.3), showing how they change with respect to

the spherical quantum dot, as effect of the anisotropy. Finally the effect of
the system geometry on the electron-electron interaction is studied, using a

variational scheme which allows to take in to account anisotropy-dependent

correlations (subsec. 2.1.4).
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In sec. 2.2 the numerical results obtained by using this theoretical back-

ground are shown, bringing out how all the main properties of the system

are affected by its geometry. In particular, it is shown that it is not enough

to specify just the system volume to explain the single-electron optical spec-

trum features (as for the spherical quantum dot) and that the optical transi-
tions induced by electro-magnetic radiation become dependent on the emit-

ted/absorbed radiation polarization.

2.1 Theory

2.1.1 Single-particle eigenfunctions and eigenvectors

The solution of the Schrödinger equation within an ellipsoid region can be

performed exactly as for the spherical quantum dot [108]. Let us consider an
ellipsoid quantum dot with rotational symmetry around the z direction and

indicate with a and c its semi-axes in the x-y plane and along the z direction

respectively (x, y and z are the coordinates in a Cartesian orthogonal system

with origin in the ellipsoid symmetry centre). The considered region is limited

by the surface S with parametric equations
⎧
⎨

⎩

x = a cosϕ sinΘ

y = a sinϕ sinΘ

z = c cosΘ

(2.1)

with 0 ≤ ϕ < 2π and 0 ≤ Θ ≤ π. This surface is shown in Fig. 2.1a for c > a

(prolate ellipsoid) and in Fig. 2.1b for c < a (oblate ellipsoid).

The problem is to solve the free-electron1 Schrödinger equation

−
!2

2m∗

−→
∇2Ψ (x, y, z) = EvΨ (x, y, z) (2.2)

(where m∗ is the electron effective-mass and Ev its volume confined energy)

with the boundary condition

Ψ (x, y, z)|(x,y,z)∈S = 0. (2.3)

1In the following, conduction-band electrons will be considered. The theory is valid
for holes as well, provided that valence band degeneracy and/or mixing do not make the
effective-mass approximation to fail.
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Because the surface has rotational symmetry only with respect to the z axis,

the considered Schrödinger system (that is, the free-particle Hamiltonian with

the associated boundary condition (2.3)) no longer commutes with all the

angular momentum operators, and spherical coordinates are not suitable if an

exact solution of the problem is needed. Therefore, a new coordinates system
(ξ, η,ϕ) must be found, such that eq. (2.2) is separable and that the equation

of the ellipsoid surface S reads ξ = constant. Let us consider [120, 121] the

following transformation (prolate spheroidal coordinates [122]):

⎧
⎪⎨

⎪⎩

x = f
√

(ξ2 − 1) (1− η2) cosϕ

y = f
√
(ξ2 − 1) (1− η2) sinϕ

z = fξη

, (2.4)

where 1 ≤ ξ < +∞, −1 ≤ η ≤ +1, 0 ≤ ϕ < 2π and f is a parameter.

By setting η = cosΘ with 0 ≤ Θ ≤ π and by comparing eq. (2.4) with the

boundary parametric equations (2.1), it is seen that the surfaces obtained by

setting ξ = constant represent a family of ellipsoids with semi-axes f
√
ξ2 − 1

and fξ (in the x-y plane and along the z direction respectively), all charac-

terized by the same focal distance 2f . Similarly, a family of hyperboloids is

obtained by setting η = constant and a family of half-planes with origin in

the z axis is obtained by setting ϕ = constant, as shown in Fig. 2.2a. These

three surfaces families are mutually orthogonal. The parameter f which ap-

pears in the definition of the new coordinates system (2.4) is determined by

the condition that the ellipsoid boundary S belongs to the surfaces family

ξ = constant, that is, it must exist a value ξ of ξ such that

⎧
⎨

⎩
f

√
ξ
2 − 1 = a

fξ = c
⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f = c

√
1−

1

χ2
= ce

ξ =
1

√
1−

1

χ2

=
1

e
, (2.5)

where χ = c/a is the ellipsoid aspect ratio and e = f/c its eccentricity.
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Figure 2.1: (a) A prolate ellipsoid. (b) An oblate ellipsoid. Let us note that the

oblate ellipsoid cannot be obtained by rotating the prolate ellipsoid around some

axis.

Figure 2.2: The orthogonal surfaces obtained by setting ξ = constant, η = constant

and ϕ = constant for (a) prolate and (b) oblate spheroidal coordinates.
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It is evident that eq. (2.5) is valid only if χ > 1, which follows from the fact

that the transformation (2.4) parameterizes the space with ellipsoid surfaces

which have the semi-axis along the z direction greater than the semi-axes in

the x-y plane. The case χ < 1 will be discussed later.

In order to write eq. (2.2) in the prolate spheroidal coordinates system it
is necessary to write the Laplacian operator in the new coordinates system

(2.4). It is possible to show that if (q1, q2, q3) indicate a generic curvilinear

coordinates system the following expression holds [123]:

−→
∇2 =

1√
detG

3∑

i,j=1

∂

∂qi

[
Gi,j

√
detG

∂

∂qj

]
, (2.6)

where G ≡ ||Gi,j|| = ||∂r⃗/∂qi · ∂r⃗/∂qj|| is the metric tensor and Gi,j the

ratio between the algebraic complement of Gi,j and detG. By using eq. (2.4)

((q1, q2, q3) ≡ (ξ, η,ϕ)) it is not difficult to show that

G =

∥∥∥∥∥∥∥∥∥∥

f 2 ξ
2 − η2

ξ2 − 1
0 0

0 f 2 ξ
2 − η2

1− η2
0

0 0 f 2 (ξ2 − 1) (1− η2)

∥∥∥∥∥∥∥∥∥∥

. (2.7)

It comes out that the non-diagonal elements of the metric tensor are zero,

showing that the coordinates system (2.4) is orthogonal. By using eqs. (2.6)

and (2.7) the expression of the Laplacian operator in prolate spheroidal co-

ordinates is easily obtained and eq. (2.2) becomes:

−
1

f 2(ξ2 − η2)

{
∂

∂ξ

[
(ξ2 − 1)

∂Ψ

∂ξ
(ξ, η,ϕ)

]
+

∂

∂η

[
(1− η2)

∂Ψ

∂η
(ξ, η,ϕ)

]
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2Ψ

∂ϕ2
(ξ, η,ϕ)

}
= εvΨ(ξ, η,ϕ), (2.8)

where εv = 2m∗Ev/!2, and the boundary condition (2.3) can be written as

Ψ(ξ, η,ϕ) = 0. (2.9)

It is easy to show that eq. (2.8) with the boundary condition (2.9) can be

solved with the separation of variables technique [120]. In other words, its
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solution can be written as Ψ (ξ, η,ϕ) = je (ξ)S (η) exp (imϕ), where it has

been taken into account the fact that, because of the rotational symmetry

around the z direction, it is possible to find a complete set of solutions of

eq. (2.2) which are simultaneously eigenfunctions of the z component of the

angular momentum with eigenvalues m! (m = 0,±1,±2, . . . ). In this way
eq. (2.8) separates in the two coupled equations (for je and S respectively)

d

dξ

[(
ξ2 − 1

) dje
dξ

]
−
(
A− h2ξ2 +

m2

ξ2 − 1

)
je = 0, (2.10a)

d

dη

[(
1− η2

) dS
dη

]
+

(
A− h2η2 −

m2

1− η2

)
S = 0. (2.10b)

Eqs. (2.10a) and (2.10b) are usually referred to as respectively the “radial”

and the “angular” equation. A represents the separation constant and h =
f
√
εv. It can be noticed that eqs. (2.10a) and (2.10b) are coupled by both

the separation constant and the eigenvalue (proportional to h2). Therefore,

the separation of the Schrödinger equation in spheroidal coordinates is more

difficult than in spherical or cylindrical coordinates. In fact, in these last

cases only the first equation contains the eigenvalue so that one can solve the
second equation by determining the A values which give a regular angular

solution, substitute these values in the first equation and then solve it to

get the radial solutions and the allowed energy levels. In this case the same
procedure can be followed, but the angular equation must be solved with

fixed h so that the discrete set of A values, obtained by requiring that the
angular solution is regular at the points η = −1 and η = +1, are functions

of h. Some further mathematical details are given in appendix B.

It must be pointed out that, if χ → 1 (that is, f, h → 0), the prolate
spheroidal coordinates tend to spherical coordinates (because the surfaces

ξ = constant become ellipsoids with a very small focal distance as shown

by eq. (2.5)). A direct consequence is that if in eq. (2.10b) the limit h →
0 is considered, we must obtain S (η) → P |m|

l (η) (where P |m|
l (η) are the

associated Legendre functions) and A ≡ A (h) → l (l + 1) with l = |m| , |m|+
1, |m| + 2, . . . . Therefore, it is possible to label the solutions of eq. (2.10b)

and the corresponding values of the separation constant as S (η) ≡ Sl,m (h, η)

and A ≡ Al,|m| (h) with |m| = 0, 1, 2, . . . and l = |m| , |m| + 1, |m| + 2, . . . .
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Correspondingly it can be set for eq. (2.10a) je (ξ) ≡ jel,m (h, ξ) (see also

appendix B). It can be shown [122] that the solutions of eq. (2.10a) and

(2.10b) can be written respectively as

jel,m (h, ξ) =

(
ξ2 − 1

ξ2

) |m|
2

+∞ ′∑

s=0,1

al,|m|
s (h) js+|m| (hξ) (2.11a)

and

Sl,m (h, η) =
+∞ ′∑

s=0,1

dl,|m|
s (h)P |m|

s+|m| (η) , (2.11b)

where jk is the spherical Bessel function of order k. The primate sum in-
dicates that the sum must be extended over even values or odd values of s

in which cases it begins from 0 and 1 respectively. This reflects the system

invariance with respect to parity transformations.

If c < a (that is, χ < 1) it is possible to follow the same procedure

indicated above but using oblate spheroidal coordinates defined as follows
[124]: ⎧

⎪⎨

⎪⎩

x = f
√
(ξ2 + 1) (1− η2) cosϕ

y = f
√

(ξ2 + 1) (1− η2) sinϕ,

z = fξη

(2.12)

with 0 ≤ ξ < +∞, −1 ≤ η ≤ +1 and 0 ≤ ϕ < 2π. The surfaces ξ =

constant represent a family of ellipsoids with semi-axes f
√
ξ2 + 1 and fξ

(the semi-axis in the x-y plane is in this case greater than the one along the

z direction). The orthogonal surfaces obtained by keeping constant ξ, η and

ϕ are shown in Fig. 2.2b. The condition that the considered ellipsoid belongs

to the surfaces family ξ = constant (given by eq. (2.5) for prolate spheroidal

coordinates) in this case becomes:

⎧
⎨

⎩
f

√
ξ
2
+ 1 = a

fξ = c
⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f = c

√
1

χ2
− 1 = ae

ξ =
1

√
1

χ2
− 1

=
χ

e
, (2.13)
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with χ < 1. The metric tensor is:

G =

∥∥∥∥∥∥∥∥∥∥

f 2 ξ
2 + η2

ξ2 + 1
0 0

0 f 2 ξ
2 + η2

1− η2
0

0 0 f 2 (ξ2 + 1) (1− η2)

∥∥∥∥∥∥∥∥∥∥

. (2.14)

By using eqs. (2.6) and (2.14) the expression of the Laplacian operator in

oblate spheroidal coordinates can be obtained and eq. (2.2) becomes:

−
1

f 2(ξ2 + η2)

{
∂

∂ξ

[
(ξ2 + 1)

∂Ψ

∂ξ
(ξ, η,ϕ)

]
+

∂

∂η

[
(1− η2)

∂Ψ

∂η
(ξ, η,ϕ)

]
+

ξ2 + η2

(ξ2 + 1)(1− η2)

∂2Ψ

∂ϕ2
(ξ, η,ϕ)

}
= εvΨ(ξ, η,ϕ). (2.15)

As for the case of prolate spheroidal coordinates, eq. (2.15) can be separated

in a radial and an angular equation given by:

d

dξ

[(
ξ2 + 1

) dje
dξ

]
−
(
A− h2ξ2 −

m2

ξ2 + 1

)
je = 0, (2.16a)

d

dη

[(
1− η2

) dS
dη

]
+

(
A+ h2η2 −

m2

1− η2

)
S = 0, (2.16b)

and their solutions provided in the form of a series expansion. Eq. (2.11a)

becomes:

jel,m (h, ξ) =

(
ξ2 + 1

ξ2

) |m|
2

+∞ ′∑

s=0,1

al,ms (h) js+|m| (hξ) , (2.17)

while eq. (2.11b) is formally unchanged.

The solution of eq. (2.10a) or eq. (2.16a) (depending on whether χ > 1 or

χ < 1 respectively) with the additional condition jel,m
(
h, ξ
)
= 0 (hard walls

boundary condition) gives the confined spectrum of the ellipsoid quantum

dot. Because for fixed l andm the boundary condition can be compatible with

a discrete set of values of h, an additional label n (principal quantum number)
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is needed to classify the eigenvalues, namely h ≡ hn,l,m(χ). Therefore, the

energy spectrum of the ellipsoid quantum dot will take the form [120]:

Ev
n,l,m =

!2

2m∗

ε̃ v
n,l,m(χ)

c2
, (2.18a)

where the adimensional quantity ε̃ v
n,l,m(χ) is given by the equation:

ε̃ v
n,l,m(χ)

c2
= εvn,l,m(χ) =

h2
n,l,m(χ)

c2
∣∣∣∣1−

1

χ2

∣∣∣∣

. (2.18b)

The corresponding eigenfunctions are given by:

Ψn,l,m(r⃗) = An,l,m jel,m(hn,l,m, ξ)Sl,m(hn,l,m, η) exp(imϕ), (2.18c)

where An,l,m is a normalization constant.

As already pointed out before, it is expected that the spherical quantum

dot limit is recovered as χ → 1. Let us remember that for the sphere a

complete set of eigenfunctions is given by

ΨSPHERE
n,l,m (r,ϑ,ϕ) = Bn,l,m jl

[
zn,l

r

R

]
Y m
l (ϑ,ϕ) , (2.19a)

where (r,ϑ,ϕ) are the spherical coordinates of the generic point, R is the

sphere radius, zn,l the n-th zero of the Bessel function of order l and Y m
l (ϑ,ϕ)

the spherical harmonics (Y m
l (ϑ,ϕ) ∝ P |m|

l (cosϑ) exp (imϕ)). This state has

energy (in units !2/2m∗)

εSPHERE
n,l =

z2n,l
R2

, (2.19b)

which is degenerate with respect to m. This energy levels can be labelled as

ns, np, nd, . . . , where s, p, d, . . . correspond to l = 0, 1, 2, . . . respectively.

From the mathematical point of view n and l−m are related to the number of
nodes respectively of the radial part and the angular part of the wave function

inside the sphere. Moreover, l (l + 1) !2 takes the physical meaning of total
angular momentum of the particle in the given quantum state, reflecting the

full rotational symmetry of the problem. This, of course, is no longer true

for the ellipsoid quantum states because this type of symmetry is lost. It
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is therefore important to stress that if χ ≠ 1 the label l which appears in

eqs. (2.11a), (2.17) and (2.11b) does not have the meaning of total angular

momentum of the particle. It has been used here because it obviously exists

a one-to-one correspondence between the quantum states in the sphere and

the ones in the ellipsoid, so that these last ones can be labelled with the same
quantum numbers of the state to which they reduce when f → 0, as pointed

out previously.

2.1.2 Dielectric effects

The single-particle picture shown in the last subsection allows the calculation

of the exact kinetic energy contribution to the effective-mass, single-particle

quantum confined states. Actually, an additional contribution has to be ac-

counted for to give a correct description of the electron motion inside the dot.

In fact it is known from classical electro-magnetism that if a charged particle

is moving within a certain region of space which has a dielectric constant
different from that of the surrounding medium, a surface polarization charge

appears on the interface between the two media. This polarization charge

generates an electrostatic potential which acts on the particle itself. Many

works [108, 125–129] have demonstrated that confined levels in nanometric

structures can be significantly modified by this additional contribution.

Let us consider a prolate ellipsoid and indicate with I the quantum dot

region (1 ≤ ξ ≤ ξ), with II the surrounding medium (ξ > ξ), and with εI
and εII the respective dielectric constants. The total electrostatic potential

V (r⃗; r⃗0) at a given point r⃗ due to a fixed electron at r⃗0 is given by the solution

of the Poisson equation

−→
∇2V (r⃗; r⃗0) = −

eδ(r⃗ − r⃗0)

ε0εI
, (2.20)

with the following boundary conditions:

|V (r⃗; r⃗0)| < +∞ ∀r⃗ ≠ r⃗0, (2.21a)

lim
|r⃗ |→+∞

|V (r⃗; r⃗0)| = 0 ∀r⃗0, (2.21b)
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lim
r⃗→r⃗ −

S

V (r⃗; r⃗0) = lim
r⃗→r⃗ +

S

V (r⃗; r⃗0) ∀r⃗S ∈ S, ∀r⃗0, (2.21c)

εI lim
r⃗→r⃗ −

S

n̂ ·
−→
∇V (r⃗; r⃗0) = εII lim

r⃗→r⃗ +
S

n̂ ·
−→
∇V (r⃗; r⃗0) ∀r⃗S ∈ S, ∀r⃗0, (2.21d)

where the symbols r⃗ → r⃗ −
S and r⃗ → r⃗ +

S mean r⃗ → r⃗S with r⃗ ∈ I and r⃗ ∈ II

respectively. It has been supposed that r⃗0 /∈ S. Eq. (2.21c) indicates that the

electrostatic potential must be continuous on the surface S which separates
the medium I from the medium II and eq. (2.21d) that its normal derivative

is discontinuous on S (the ratio between the external normal derivative to

the internal one in each point of S being εI/εII).

The most general solution of this problem can be written as [130]

V (r⃗; r⃗0) = VC(|r⃗ − r⃗0|) + VS(r⃗; r⃗0), (2.22)

where
VC(|r⃗ − r⃗0|) =

q

4πε0εI

1

|r⃗ − r⃗0|
(2.23)

is the Coulomb potential of a point charge q = −e at r⃗0 in the bulk material

(infinite medium with dielectric constant εI) and VS(r⃗; r⃗0) the potential due

to the surface polarization charge. The electrostatic problem can be solved

by using the expansion of VC(|r⃗− r⃗0|) in prolate spheroidal coordinates [131]:

VC(|r⃗ − r⃗0|) =
q

4πε0εI

1

f

+∞∑

l=0

(2l + 1)
l∑

m=0

ϵmi
m

[
(l −m)!

(l +m)!

]2
Pm
l (η0)P

m
l (η) ·

Pm
l (ξ<)Q

m
l (ξ>) cos [m (ϕ− ϕ0)] , (2.24)

where ϵ0 = 1, ϵ1 = ϵ2 = · · · = ϵm = · · · = 2, ξ< = min {ξ, ξ0} , ξ> =

max {ξ, ξ0} and Pm
l and Qm

l are respectively the first and second kind asso-

ciated Legendre functions. Moreover, by inserting eq. (2.22) in the Poisson

equation (2.20) it comes out that VS(r⃗; r⃗0) is an harmonic function, that is,
it is solution of the Laplace equation

−→
∇2VS(r⃗; r⃗0) = 0 (2.25)

in all the space and for any fixed r⃗0. By using eqs. (2.6) and (2.7) it is possible

to write eq. (2.25) in prolate spheroidal coordinates and show [131] that the
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set of linearly independent functions

v(1)l,m(r⃗) = P |m|
l (ξ)P |m|

l (η) exp(imϕ) (2.26)

is a basis set for the solutions of the Laplace equation (2.25) which are regular

at r⃗ = 0⃗ but not vanishing as |r⃗ | → +∞, while the set of linearly independent

functions

v(2)l,m(r⃗) = Q|m|
l (ξ)P |m|

l (η) exp(imϕ) (2.27)

is a basis set for the solutions of the Laplace equation (2.25) which are sin-

gular at r⃗ = 0⃗ but vanishing as |r⃗ | → +∞. In eqs. (2.26) and (2.27) we have

l = 0, 1, 2, . . . and m = −l, . . . , 0, . . . , l. Therefore, the most general solution

of eq. (2.20) which satisfies the conditions (2.21a) and (2.21b) is in the form:

V (r⃗; r⃗0) =

{
VC(|r⃗ − r⃗0|) + V (I)

S (r⃗; r⃗0) if r⃗ ∈ I

VC(|r⃗ − r⃗0|) + V (II)
S (r⃗; r⃗0) if r⃗ ∈ II

, (2.28)

where

V (I)
S (r⃗; r⃗0) =

+∞∑

l=0

l∑

m=−l

A(I)
l,m(r⃗0)v

(1)
l,m(r⃗), (2.29a)

Ṽ (II)
S (r⃗; r⃗0) ≡ VC(|r⃗ − r⃗0|) + V (II)

S (r⃗; r⃗0) =
+∞∑

l=0

l∑

m=−l

A(II)
l,m (r⃗0)v

(2)
l,m(r⃗). (2.29b)

It has been considered that in the region II there is not free charge, so that

both the Coulomb and the surface contributions are both harmonic functions.

The unknown coefficients A(I)
l,m and A(II)

l,m are determined by requiring that the
boundary conditions (2.21c) and (2.21d) are satisfied and using the expansion

(2.24) for the Coulomb potential. It can been shown [130] that

V (I)
S (r⃗; r⃗0) =

+∞∑

l=0

l∑

m=0

C(I)
l,m(ξ0, η0)P

m
l (ξ)Pm

l (η) cos[m(ϕ− ϕ0)], (2.30a)

Ṽ (II)
S (r⃗; r⃗0) =

+∞∑

l=0

l∑

m=0

C(II)
l,m (ξ0, η0)Q

m
l (ξ)P

m
l (η) cos[m(ϕ− ϕ0)], (2.30b)
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with:

C(I)
l,m(ξ0, η0) =

q

4πε0εI

s− 1

f
(2l + 1) ϵmi

m

[
(l −m)!

(l +m)!

]2
Pm
l (ξ0)P

m
l (η0) ·

Qm
l

(
ξ
)
Qm′

l

(
ξ
)

Pm
l

(
ξ
)
Qm′

l

(
ξ
)
− sQm

l

(
ξ
)
Pm′

l

(
ξ
) , (2.31a)

C(II)
l,m (ξ0, η0) =

q

4πε0εI

s

f
(2l + 1) ϵmi

m

[
(l −m)!

(l +m)!

]2
Pm
l (ξ0)P

m
l (η0) ·

Pm
l

(
ξ
)
Qm′

l

(
ξ
)
−Qm

l

(
ξ
)
Pm′

l

(
ξ
)

Pm
l

(
ξ
)
Qm′

l

(
ξ
)
− sQm

l

(
ξ
)
Pm′

l

(
ξ
) , (2.31b)

with s = εI/εII . r⃗, r⃗0 ∈ I because hard walls boundary conditions are as-

sumed, namely zero probability of finding the electron outside the dot.

The surface potential (2.30a) interacts with the electron which generated

the surface polarization charge, giving rise to a positive contribution to the

energy of the electron itself which in the following will be referred to as

surface self-interaction energy. This term can be calculated classically as the

work necessary to introduce a charge q inside the dot at r⃗0, by elementary
charge steps dq:

ES(r⃗0) =

∫ V
(I)
S (r⃗0;r⃗0)

0

qdV (I)
S =

∫ q

0

q
dV (I)

S

dq
dq =

1

2
qV (I)

S (r⃗0; r⃗0), (2.32)

where the factor 1/2 arises just because it is a self-interaction energy (which

means that the electron interacts with a potential which depend on the charge

of the electron itself).
If a second charge q′ is present inside the dot at r⃗, an interaction contri-

bution to the total system energy has to be taken into account, given by

EP (r⃗; r⃗0) = q′V (I)
S (r⃗; r⃗0). (2.33)

This term will be referred to in the following as surface interaction energy

because it represents the interaction of q and q′ via the surface polarization
charge.

The calculation of the dielectric potential due to the surface polarization

charge can be performed for an oblate ellipsoid as well.
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2.1.3 Infrared optical properties of ellipsoid quantum

dots

It is known [132] that the transition probability between two quantum states
|a > and |b > as effect of an electro-magnetic wave is proportional, in the

dipole approximation, to the square modulus of the momentum operator

between the two states. In other words, if ê is the polarization vector of the
incident wave, the relevant quantity is given by

pba = ê· < b|p⃗|a > . (2.34)

By using standard quantum mechanics [132] it is possible to show that the
momentum matrix element (2.34) is proportional to the matrix element of

the dipole operator d⃗ = qr⃗:

pba =
im∗

!
(Eb − Ea) ê· < b|r⃗|a >, (2.35)

where Ea and Eb are the energies of the states |a > and |b > respectively.

Moreover, it is possible to show that, depending on the particular symmetry

group of the considered Hamiltonian, the matrix element (2.35) or, equiva-
lently, (2.34), is not different from zero for any couple of the initial and final

states. Instead, non-zero values can be obtained provided that the initial

and final states satisfy well defined conditions, known as selection rules. The

transitions for which this matrix element is null, can be obviously allowed if

higher order terms than the dipole one are considered in the transition proba-
bility expansion, but they correspond to very small probabilities if compared

with transitions which are not forbidden in the dipole approximation. The

selection rules can be determined by requiring that

ê· < b|r⃗|a >≠ 0. (2.36)

Because the considered system has axial symmetry around the z axis, it is

interesting to study the inequality (2.36) for waves linearly polarized along
the z axis or circularly polarized in the x-y plane, in which cases it becomes

respectively

< b|z|a >≠ 0 (2.37)
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and

< b|
x± iy√

2
|a >≠ 0. (2.38)

This means that the selection rules can change according to the particular

polarization of the electro-magnetic wave.

The determination of the selection rules for radiation-induced transitions

in ellipsoid quantum dots requires the calculation of the matrix elements

which appear in eqs. (2.37) and (2.38) on the quantum confines states (2.18c).

Therefore, we can identify the initial and final states with three quantum

numbers, namely, |a >≡ |n′l′m′ > and |b >≡ |nlm >. Let us consider the

case of a prolate ellipsoid. From eq. (2.4) we get

z = fξη (2.39)

and

x± iy√
2

=
f
√
(ξ2 − 1)(1− η2) cosϕ± if

√
(ξ2 − 1)(1− η2) sinϕ√

2

=
f
√
(ξ2 − 1)(1− η2)√

2
exp(±iϕ). (2.40)

The matrix element for light linearly polarized along the prolate ellipsoid

major axis (cfr. eq. (2.37)) becomes

< nlm|z|n′l′m′ >=

∫ ξ

1

dξ

∫ 1

−1

dη

∫ 2π

0

dϕf 3(ξ2 − η2)Ψ∗
n,l,m(ξ, η,ϕ) ·

fξηΨn′,l′,m′(ξ, η,ϕ) = An,l,mAn′,l′,m′f 4I1I2, (2.41)

where it has been considered that

d3r⃗ =
√
detGdξdηdϕ = f 3(ξ2 − η2)dξdηdϕ. (2.42)

It has been set

I1 =

∫ ξ

1

dξ jel,m(hn,l,m, ξ) ξ jel′,m′(hn′,l′,m′ , ξ)

∫ 1

−1

dη(ξ2 − η2)η ·

Sl,m(hn,l,m, η)Sl′,m′(hn′,l′,m′ , η) (2.43)
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and

I2 =

∫ 2π

0

dϕ exp[i(m′ −m)ϕ]. (2.44)

It is straightforward to see that I2 = 2πδm,m′ , which leads to the selection

rule

m = m′. (2.45)

Moreover, we must consider that the integral I1 contains the integration over

η which is extended to an even interval. This means that because η(ξ2 − η2)

is odd with respect to η, the functions Sl,m and Sl′,m′ must have opposite

parity. This leads2 to the condition

(−1)l−m(−1)l
′−m′

= −1 ⇔ l − l′ = 2k + 1, k = 0,±1,±2, . . . , (2.46)

where eq. (2.45) has been taken into account.

If the radiation is circularly polarized in the x-y plane the matrix element
of the operator (2.40) (cfr. eq. (2.38)) has to be calculated. We get:

< nlm|
x± iy√

2
|n′l′m′ >=

∫ ξ

1

dξ

∫ 1

−1

dη

∫ 2π

0

dϕf 3(ξ2 − η2) ·

Ψ∗
n,l,m(ξ, η,ϕ)

f
√
(ξ2 − 1)(1− η2)√

2
exp(±iϕ)Ψn′,l′,m′(ξ, η,ϕ)

=
An,l,mAn′,l′,m′f 4

√
2

I3I4, (2.47)

where it has been set

I3 =

∫ ξ

1

dξ jel,m(hn,l,m, ξ)
√

(ξ2 − 1) jel′,m′(hn′,l′,m′ , ξ)

∫ 1

−1

dη(ξ2 − η2) ·
√
(1− η2) Sl,m(hn,l,m, η)Sl′,m′(hn′,l′,m′ , η) (2.48)

and

I4 =

∫ 2π

0

dϕ exp[i(m′ −m± 1)ϕ]. (2.49)

2Let us remember that, as pointed out in appendix B, the wave function (2.18c) has
parity (−1)l while Sl,m has parity (−1)l−m.
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In this case I4 = 2πδm′±1,m, which leads to the selection rule

m′ = m± 1. (2.50)

As for the case of linearly polarized radiation, a second selection rule can be
obtained by requiring that the integrand function in the integral I4 is even.

We get:

(−1)l−m(−1)l
′−m′

= 1 ⇔ l − l′ ± 1 = 2k, k = 0,±1,±2, . . . , (2.51)

where eq. (2.50) has been taken into account. Let us note that the previ-

ous equation is equivalent to eq. (2.46). Therefore, the selection rules for

radiation-induced transitions can be summarized [121] as follows:

∆l = l − l′ = ±1,±3, . . . for any polarization (2.52a)

and

∆m = m−m′ =

{
0 for radiation linearly polarized along the z axis

±1 for radiation circularly polarized in the x-y plane
.

(2.52b)

For oblate ellipsoids exactly the same selection rules hold, due to the fact that

from the mathematical point of view the oblate ellipsoid can be obtained from
the prolate one by performing the transformations ξ =→ −iξ and h → ih,

as pointed out in appendix B.

The description of the allowed radiation-induced transitions can be better

done by introducing the oscillator strength

fba =
2m∗

3!2
(Eb − Ea)| < b|r⃗|a > |2. (2.53)

It is an adimensional quantity, proportional to the square modulus of the

optical matrix element of the dipole operator between the two states. From

eq. (2.53) it is seen that an absorption process is characterized by a positive

oscillator strength, while it is negative for an emission process. The main

feature of the oscillator strengths is that they satisfy the sum rule
∑

b

fba = 1, (2.54)



2.1 Theory 53

where the sum is extended over a complete set of states. This is a quite

interesting property, because it allows to individuate which transitions from

or towards a given state |a > are the most important ones in determining

the system optical properties. Let us note that if we define

f (±1)
ba =

2m∗

3!
(Eb − Ea)

∣∣∣∣< b|
x± iy√

2
|a >

∣∣∣∣
2

(2.55a)

and

f (0)
ba =

2m∗

3!
(Eb − Ea)| < b|z|a > |2, (2.55b)

it can be shown that for any system with axial symmetry around the z axis

each individual component of the oscillator strength satisfy the sum rule
∑

b

f (α)
ba =

1

3
α = 0,±1 (2.56a)

and that ∑

α= 0,±1

f (α)
ba = fba (2.56b)

For the spherical quantum dot only transitions with ∆l = ±1 are al-
lowed. The lower degree of symmetry of the ellipsoid quantum dot relax this

selection rule, making in principle allowed any transition for which ∆l is odd.

Actually, as we will see, the transition probabilities rapidly decrease with ∆l,
restricting the observable transitions to very few. Moreover, it is worth noting

that the full rotational symmetry of the spherical quantum dot implies that

the oscillator strength components (2.55a) and (2.55b) are equal. For the el-

lipsoid quantum dot the effect of the anisotropy is that f (0)
ba ≠ f (+1)

ba = f (−1)
ba ,

reflecting the axial symmetry of the system.

2.1.4 Two-electron ground state

Let us consider two conduction-band electrons moving inside the ellipsoid

quantum dot. The ground state for the non-interacting system is simply

given by the product of two single-particle ground-state wave functions:

Ψ(2)
0 (r⃗1, r⃗2) = je0,0 (h1,0,0, ξ1)S0,0 (h1,0,0, η1) je0,0 (h1,0,0, ξ2)S0,0 (h1,0,0, η2) .

(2.57)
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The two-electron Hamiltonian actually contains interaction terms, as follows:

H(2) =
p21
2m∗

+
p22
2m∗

+
e2

4πε0εI

1

|r⃗1 − r⃗2|
−

1

2
eΦS (r⃗1)−

1

2
eΦS (r⃗2)− eΦP (r⃗1, r⃗2) ,

(2.58)

where ΦS (r⃗) = V (I)
S (r⃗; r⃗) is the surface self-interaction potential (cfr. eq.

(2.32)) and ΦP (r⃗1, r⃗2) = V (I)
S (r⃗1; r⃗2) is the surface electron-electron interac-

tion potential. In eq. (2.58) it has been considered that the classical energy

needed to realize the electrostatic configuration with both the electrons inside

the dot is given by the sum of their Coulomb repulsion, the interaction of the
two electrons with their respective surface charge (being a self-interaction

effect, a factor 1/2 arises for these contributions, as pointed out at the end

of subsec. 2.1.2) and the interaction of one electron with the surface charge

generated by the second one. If εI > εII (that is, s = εI/εII > 1), all the elec-

trostatic terms raise the system total energy. Moreover, the Coulomb repul-
sion and the electron-electron interaction via the surface polarization charge

tend to push the electrons far from each other while the self-interaction po-

larization terms have the opposite effect, pushing both electrons towards the
quantum dot centre. This appears clear from Fig. 2.3a, where the contour

plot of the surface self-interaction energy for χ = 2.0 is shown, and Fig. 2.3b

where the contour plot of the electron-electron surface interaction energy is

shown for three different positions of one of the two electrons (indicated with

a big dot).

If quantum dots with sufficiently small dimensions are considered, the

electrostatic terms can be treated as a first order correction to the kinetic

energy because the main contribution to the ground-state energy arises from

quantum confinement. Within this picture (called the strong confinement

regime [16]) the wave function (2.57) is assumed to describe with a good ap-

proximation the system of two almost non-interacting particles. Nevertheless,

the more the dot dimensions increase, the more both the polarization terms
and the Coulomb interaction correlate the two electrons. This means that

the wave function (2.57) realistically describes the two-electron system only

in the strong confinement regime3, but it is not suitable for studying large

3A qualitative criterion for the strong confinement regime of electrons can be given
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Figure 2.3: (a) The contour plot of the surface self-interaction energy is shown

for a prolate ellipsoid with χ = 2.0. (b) The contour plot of the surface electron-

electron interaction energy is shown for three different positions of one of the two

electrons (indicated with a big dot).

dots. Therefore the effect of both the dot dimensions and its anisotropy has
been investigated by using the variational method. The trial wave function

has been chosen as follows [130]:

Ψ(2) (r⃗1, r⃗2) = Ψ(2)
0 (r⃗1, r⃗2)Ψcorr (r⃗1 − r⃗2) , (2.59)

by assuming that the typical dot dimensions are much less than the electron Bohr radius
ae = 4πε0εI!2/m∗e2 [16]. For example, for CdSe we have ae ≃ 4 nm and we must require
that a, c << ae.
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where Ψ(2)
0 is given in eq. (2.57) and the correlated motion of the electrons

is described via the factor

Ψcorr (r⃗1 − r⃗2) = 1− α [1 + u (r⃗1 − r⃗2)] exp [−u (r⃗1 − r⃗2)] , (2.60a)

u (r⃗1 − r⃗2) =
√
β
[
(x1 − x2)

2 + (y1 − y2)
2]+ γ (z1 − z2)

2. (2.60b)

The function (2.59) reflects the system ground-state properties. In fact (i)
it depends only on ϕ1 − ϕ2 (that is, it is invariant for rotations of both

the electrons of the same angle around the z axis), (ii) it is invariant for

reflection of both the electrons (that is, with respect to the transformation
(r⃗1, r⃗2) → (−r⃗1,−r⃗2)), (iii) it is symmetric with respect to the exchange of

the two electrons (corresponding to the singlet spin state), (iv) it is null if

any of the two electrons is on the ellipsoid boundary, (v) it is continuous with

all its first and second partial derivatives. α, β and γ are three variational

parameters (0 ≤ α ≤ 1, β, γ ≥ 0), whose value must be determined by
requiring that the energy functional

E [α, β, γ] =

〈
Ψ(2)

∣∣H(2)
∣∣Ψ(2)

〉

⟨Ψ(2) | Ψ(2)⟩
(2.61)

be minimum. The particular choice of the correlated part of the wave function

(2.59) can be justified [130] by considering that (i) if α = 0 it becomes the

uncorrelated wave function, (ii) if α ≠ 0 it describes the correlated system
for which the probability of finding the two electrons at the same position

is |1− α|2 times smaller than that of finding them far from each other (this

probability being null if α = 1), (iii) if β ≠ γ it can account for the quantum

dot anisotropy and therefore for the dependence of the electron-electron cor-

relation on it, (iv) if the distance between the two electrons is very large, the

wave function becomes the uncorrelated one.

2.2 Numerical results

2.2.1 Single-particle states

The solution of eqs. (2.10a) and (2.10b) for prolate spheroidal coordinates and

eqs. (2.16a) and (2.16b) for oblate spheroidal coordinates has been performed
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by using the numerical procedure described in appendix B. In this way the

exact numerical4 single-particle confined states for an ellipsoidal quantum

dot as a function of the anisotropy have been first calculated [120,121].

The spectra both for prolate ellipsoids with fixed a and oblate ellipsoids

with fixed c as a function of χ are shown for the ground state and some

excited states in Fig. 2.4 and Fig. 2.5 respectively.
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Figure 2.4: The prolate ellipsoid quantum dot spectrum as a function of χ. The

energies are calculated with fixed a and are shown in units of !2/2m∗a2.

Some evident effects induced by the anisotropy clearly come out. First,

the degeneracy of the states with the same l but different m is removed as
a consequence of the loss of rotational symmetry around an arbitrary axis,

the only degeneracy being with respect to the sign of m. Second, it is seen
that if χ > 1 the states with the same n and m but different l become almost

4A brief discussion about the numerical accuracy of the results can be found in appendix
B.
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Figure 2.5: The oblate ellipsoid quantum dot spectrum as a function of χ. The

energies are calculated with fixed c and are shown in units of !2/2m∗c2.

degenerate as large values of χ are considered. Similarly, as χ approaches zero,

states with the same n group into two sets of almost degenerate states, each
set containing all the states with odd or even value of l−m. An explanation

can be given by considering that if with fixed a we increase χ or, equivalently,

c (prolate ellipsoids), more and more elongated quantum rods are obtained,
the limit geometry for χ → +∞ being a cylindrical quantum wire with

radius a. For such a geometry, the quantum confined states and their relative

eigenvalues can be written respectively as:

ΨQW
n,m,kz

= Cn,m,kzJ|m|

(
Zn,|m|

a
ρ

)
exp(imϕ) exp(ikzz) (2.62a)

and

EQW
n,m (kz) =

!2

2m∗

(
Z2

n,m

a2
+ k2

z

)
, (2.62b)
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where (ρ, z,ϕ) are the cylindrical coordinates (0 ≤ ρ < +∞, −∞ < z <

+∞, 0 ≤ ϕ < 2π), Js the s-th cylindrical Bessel function, Zn,s its n-th

zero and Cn,m,kz a normalization constant. It is seen that a mini-band energy

structure appears, with the edge of each mini-band depending on the two

quantum numbers n (related to the number of nodes of the radial part of the
wave function) and m (m! being the z component of the particle angular

momentum). On increasing c, each ellipsoid confined state changes contin-

uously in such a way that its limit is just a cylindrical quantum wire state

having the same m and the same number of nodes of the wave function along

the radial coordinate. In other words, all the ellipsoid quantum states with

the same n and m but different l reconstruct a mini-band of the cylindri-

cal quantum wire, which explains why, for example, the states with n = 1,

l = 0, 1, 2, 3, . . . , m = 0 appear nearly degenerate as c → +∞. The bottoms
of the cylindrical quantum wire mini-bands are indicated in Fig. 2.4 by the

arrows, showing that the numerical results clearly confirm the picture pre-

sented above. In the same way it can be explained the electronic spectrum

structure if with fixed c ellipsoids with smaller and smaller χ are consid-

ered (that is, with increasing a). In this case the limit structure is given by
two parallel planes (slab) with distance 2c, for which the eigenfunctions and

eigenvalues are respectively

ΨSLAB
n′,m,k = Dn′,m,kJ|m|(kρ) exp(imϕ) ·

⎧
⎪⎨

⎪⎩

cos
( π
2c

n′z
)

if n′ = 2n− 1

sin
( π
2c

n′z
)

if n′ = 2n

(2.63a)

and

E SLAB
n′ (k) =

!2

2m∗

(
n′2π2

4c2
+ k2

)

, (2.63b)

where n = 1, 2, 3, . . . , k ≥ 0 (k =
√
k2
x + k2

y), m = 0,±1,±2, . . . . and Dn′,m,k

is a normalization constant. This shows that a two-dimensional mini-band

structure appears, the bottom of each mini-band depending on n′. Let us note
that, as eqs. (2.63) bring out, for a given m and n, two families of states are

obtained, with opposite parity, given by (−1)m and (−1)m+1 respectively.

Because the sphere-ellipsoid-slab correspondence must be continuous and,
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therefore, preserve parity, each ellipsoid state with given n and m goes in

the first of the second family depending on whether (−1)l = (−1)m (namely,

l−m is even) or (−1)l = (−1)m+1 (namely, l−m is odd). Therefore, the fam-

ily of states {n, l = 0, 1, 2, . . . ,m} reconstruct, in the limit χ → 0, two slab

mini-bands, corresponding to even and odd l−m. It is possible to show that
this correspondence preserves, as it is expected, also the number of nodes

of the wave functions. A scheme of the ellipsoid - cylindrical quantum wire

and ellipsoid - slab correspondences is for clarity sketched in Fig. 2.6. This

correspondences confirm the validity of the procedure which has been fol-

lowed. The picture given above can also explain a third, interesting property

of the ellipsoid quantum dot spectrum. In fact, some accidental degeneracies

appear both for χ > 1 and χ < 1. This is because starting from the spherical

quantum dot spectrum (obtained with c = a) and by increasing or decreasing
χ, it has to be modified in such a way to reproduce the cylindrical quantum

dot spectrum for large values of χ or the slab spectrum for small values of

it. Because the energy levels in the two spectra are differently ordered, the

appearance of levels crossings is needed, which explains the presence of acci-

dental degeneracies. All these results bring out a very strong dependence of
the system electronic properties on the dot anisotropy [120,121].

A quantitative estimation of how the shape can modify the system prop-

erties can be done by considering constant volume properties. The volume of
the ellipsoid is given by:

V =
4

3
πa2c =

4

3
π
c3

χ2
, (2.64)

where it has been considered that χ = c/a. From eq. (2.64) we obtain that

c =

(
3V

4π

)1/3

χ2/3. (2.65)

Moreover, it is possible to define the “equivalent” sphere radius Req, namely

the radius of the sphere with the same volume of the considered ellipsoid. It
is given by the equation:

4

3
πR3

eq = V ⇒ Req =

(
3V

4π

)1/3

. (2.66)
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Figure 2.6: A simple scheme for the correspondence between the ellipsoid quantum

dot spectrum and the spectra of its limit structures: (a) cylindrical quantum wire

of radius a, (b) slab with distance 2c (p represents the parity of the considered

state).

Combining eqs. (2.18a), (2.65) and (2.66) we obtain that the quantum con-

fined spectrum of an ellipsoids family with constant volume V takes the
form:

Ev
n,l,m =

!2

2m∗

1

R2
eq

ε̃ v
n,l,m(χ)

χ4/3
. (2.67)

If the spherical quantum dot is considered, we get

lim
χ→1

ε̃ v
n,l,m(χ)

χ4/3
= z2n,l (2.68)

(compare with eq. (2.19b)) and the typical scaling of the confined eigenval-
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ues with 1/R2
eq ∝ V −2/3 is retrieved. Nevertheless, if ellipsoid geometries are

considered, an additional anisotropy dependence appears, as shown in Fig.

2.7, where the volume confined ground-state energy is shown as a function

of χ for two different ellipsoids families with constant volume (V = 905 nm3

and V = 2145 nm3). If χ = 1 we get the energies for spheres with radius
a = c = 6 nm and a = c = 8 nm respectively. The spherical conduction-band

effective mass for CdSe, which is m∗ = 0.13me (me is the free-electron mass)

has been used. Moreover, in Fig. 2.8 it is shown the ellipsoid quantum dot

spectrum obtained by keeping the volume constant at V = 905 nm3. Two

effects clearly come out. The first one is a volume effect, which corresponds

to the fact that for fixed χ the bigger the volume the lower the confinement

energy. The second and the most important one, is a shape effect, that is, the

strong dependence of this energy on the structure geometry. In particular,
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Figure 2.8: Constant volume energy spectrum calculated by keeping the ellipsoid

volume fixed at V = 905 nm3.

for a fixed volume the spherical geometry (χ = 1) shows the lowest value of

the ground-state energy while it is larger for anisotropic structures (χ ≠ 1).

Therefore, we can conclude that as far as isotropic structures are concerned,
quantum confinement can be explained in the simplest scheme as a pure vol-

ume effect (that is, the smaller the volume, the bigger the energy), the energy

levels shift being proportional to V −2/3, if V is the structure volume. But this
picture becomes misleading if quantum dots with anisotropic shape are con-

sidered, the electronic levels being strongly dependent on the geometry even
if the structure volume is kept constant. It can be useful to get interpola-

tion formulas for the quantum confined energy levels. It has been found [130]

that the following equations interpolate the numerical results within 0.4%
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for 0.5 ≤ χ ≤ 5.0:

ε̃ v
1,0,0(χ) = 2.97035 + 6.59569|χ+ 0.02361|1.95395, (2.69a)

ε̃ v
1,1,0(χ) = 11.0548 + 8.20660|χ+ 0.05827|1.88390, (2.69b)

ε̃ v
1,1,1(χ) = 3.16983 + 15.71608|χ+ 0.0416|1.97543. (2.69c)

It is straightforward to verify that the limit (2.68) is verified within less than

0.1%.

In Fig. 2.9 the contour plot in the x-z plane of the wave function square

modulus for the ground state and two excited states for χ = 2.0 is shown.

Figure 2.9: Contour plot of the wave function for the ground state and two excited

states for χ = 2.0. An “angular” distortion with respect to the spherical dot clearly

appears, giving rise in particular to l = 1 non-equivalent states.

The full spatial configuration of the probability density associated to these
states is obtained just by rotating these plots around the z axis. It is seen

that the ground-state probability density, which for the spherical quantum
dot has spherical symmetry, is deformed by the ellipsoidal boundary and

its contour levels assume an elliptical shape. But the dot anisotropy has

even more evident effects on the excited states n = 1, l = 1,m = 0 and
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n = 1, l = 1, |m| = 1. These states, which for the spherical quantum dot can

be obtained one from a rotation of the other one, are differently modified in

such a way that for prolate ellipsoids the first one is more localized along the

z direction while the second one in the x-y plane. This is a quite important

property because, as we are going to see, it significantly modifies the transi-
tions probabilities, in such a way that the system becomes sensitive to the

light polarization [121].

2.2.2 Dielectric corrections to single-particle states

The single-particle energies shown in the previous subsection do not contain

the contribution due to the dielectric mismatch described in subsec. 2.1.2. It

has been pointed out that the difference between the quantum dot dielectric

constant and that of the surrounding medium results in a surface polariza-

tion charge generated by the electron moving inside the dot. The electrostatic

potential of this charge gives rise to a self-interaction contribution to the elec-

tron energy, that has to be taken into account. This can be done within a

perturbative scheme [95, 108, 126], provided that the dimensions of the dot

and the dielectric mismatch are chosen in such a way that the dielectric self-

energy constitutes a small correction to the electron kinetic energy. Let us

note that in the calculations which will be shown, it has been assumed that

εI is the bulk dielectric constant. This could give incorrect results for the di-

electric contributions. In fact, many works [25, 133–136] have demonstrated

that on reducing the dot dimensions the dielectric constant gets lower values.

Nevertheless, all these calculations show that for dot dimensions R > 5 − 6

nm the difference between the confined and the bulk dielectric constants is

negligible. Therefore, because we are going to consider large dots, no sig-

nificant correction is expected to come out from a size-dependent dielectric

constant. The total single-electron energy can be written as [130]

E(1)
n,l,m = Ev

n,l,m + E(n,l,m)
S , (2.70)
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where Ev
n,l,m are the eigenvalues of the kinetic energy operator calculated in

the previous subsection and

E(n,l,m)
S =

〈
Ψn,l,m(r⃗)

∣∣∣∣−
1

2
eΦS(r⃗)

∣∣∣∣Ψn,l,m(r⃗)

〉

⟨Ψn,l,m(r⃗) | Ψn,l,m(r⃗)⟩
. (2.71)

The self-interaction potential is given by eqs. (2.30a), (2.31a) and (2.32)

and it does not actually depend on ϕ. The first order corrections to the

n = 1, l = m = 0 and n = 1, l = 1,m = 0,±1 energies have been numerically

calculated as a function of χ and of the dielectric mismatch s = εI/εII . The

corrections can be written as

E(n,l,m)
S =

1

2

e2

4πε0εIc
e(n,l,m)
S (s,χ), (2.72)

where e(n,l,m)
S (s,χ) is an adimensional quantity which has been fitted with a

polynomial expansion in the form:

e(n,l,m)
S (s,χ) = a(n,l,m)

0 (s) + a(n,l,m)
1 (s)χ+ a(n,l,m)

2 (s)χ2 + a(n,l,m)
3 (s)χ3, (2.73)

where 1 ≤ χ ≤ 5. In this interval this expansion reproduces numerical results

within 0.2%. The coefficients a(n,l,m)
i (s) for the three considered states are

given in the tables 2.1, 2.2 and 2.3 for some values of s. For χ→ 1 and s = 3

exactly the same result as in [126] for Si spherical quantum dots (εI = 12)

embedded in a SiO2 amorphous matrix (εII = 4) is obtained.

s a(1,0,0)0 a(1,0,0)1 a(1,0,0)2 a(1,0,0)3

0.1 −0.47356 −0.81860 −0.08409 +0.00935

0.5 −0.24803 −0.43431 −0.03175 +0.00343

1.5 +0.22243 +0.41346 +0.00936 −9.66578 · 10−4

3.0 +0.78634 +1.65047 −0.04828 +0.00494

5.0 +1.41225 +3.34807 −0.22987 +0.02251

8.0 +2.22401 +6.00116 −0.61168 +0.05794

10.0 +2.75832 +7.75776 −0.87992 +0.08161

Table 2.1: The coefficients of eq. (2.73) for n = 1, l = m = 0 calculated for some

values of s.
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s a(1,1,±1)
0 a(1,1,±1)

1 a(1,1,±1)
2 a(1,1,±1)

3

0.1 −0.45959 −1.06202 −0.08592 +0.01142

0.5 −0.25605 −0.52421 −0.03706 +0.00478

1.5 +0.24063 +0.45746 +0.01652 −0.00217

3.0 +0.87043 +1.72082 −0.01485 +1.57609 · 10−4

5.0 +1.54924 +3.42313 −0.18007 +0.01558

8.0 +2.43742 +6.02219 −0.52917 +0.04689

10.0 +2.96229 +7.82346 −0.81275 +0.07215

Table 2.3: The coefficients of eq. (2.73) for n = 1, l = 1, |m| = 1 calculated for

some values of s.

s a(1,1,0)0 a(1,1,0)1 a(1,1,0)2 a(1,1,0)3

0.1 −0.73749 −0.76860 −0.09947 +0.01084

0.5 −0.39373 −0.35488 −0.06676 +0.00756

1.5 +0.25187 +0.46482 −0.00474 +3.0815 · 10−4

3.0 +0.81584 +1.84286 −0.09099 +0.00814

5.0 +1.40464 +3.65983 −0.28333 +0.02536

8.0 +2.17478 +6.40324 −0.66170 +0.05921

10.0 +2.72084 +8.15061 −0.90728 +0.07999

Table 2.2: The coefficients of eq. (2.73) for n = 1, l = 1,m = 0 calculated for some

values of s.

In Fig. 2.10a the corrections to the three considered states are shown as a

function of s, for a CdSe ellipsoid quantum dot (εI = 10.0) with a = 2.5 nm

and c = 5.0 nm (χ = 2.0). The energy levels calculated without taking into
account the dielectric contribution are also shown for comparison. It comes

out that the correction to the kinetic energy eigenvalues become quite impor-
tant as the dielectric mismatch increases and, therefore, cannot be neglected

as far as the electronic spectrum is calculated. Nevertheless, if we consider

the infrared transition energies (which are the relevant quantities from the
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Figure 2.10: (a) The correction due to the dielectric self-interaction to the ground

and two excited states of a CdSe ellipsoid quantum dot (εI = 10.0) with a =

2.5 nm and c = 5.0 nm (χ = 2.0). The energy levels calculated without taking

into account the dielectric contribution are also shown for comparison. (b) The

correction to the first two allowed transition energies, as calculated by making the

difference of the curves shown in (a).

experimental point of view), the result shows that these energies have quite

small variations for effect of the dielectric contribution. These means that the
electronic spectrum is in practice almost rigidly shifted upwards, while the

absorption/emission energies keep almost unchanged [121]. Moreover, let us

note that the corrections E(110)
S and E(11±1)

S (respectively the red and green
curves in Fig. 2.10a) are almost coincident. The corrections to the transition

energies relative to the first two allowed transitions are shown in Fig. 2.10b,
where it is evident that these corrections are of the order of just few meVs.

The explanation of why the single-particle transition energies are almost in-

sensitive to the dielectric mismatch is that, as Fig. 2.3 shows, the surface
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Figure 2.11: Variation of the transition energy relative to the transition |100 >→
|110 > for ellipsoid quantum dots embedded in air (εII = 1) as a function of the

dots dielectric constant s = εI for different geometries.

self-interaction potential is a slowly varying function in the space if points

not too near to the dot boundary are considered. Therefore, unless we con-
sidered very excited states (for which the probability of finding the electron

near the surface becomes higher and higher with the energy), the mean value

of this potential is almost constant, independently from the state. This is
true for the spherical quantum dot as well. In order to clarify how both the

geometry and the dielectric mismatch affect the self-interaction energy cor-

rection, in Fig. 2.11 it is shown the variation of the transition energy relative
to the transition |100 >→ |110 > for ellipsoid quantum dots embedded in

air (εII = 1) as a function of the dots dielectric constant s = εI for differ-
ent geometries. Similarly, Fig. 2.12 shows the same variation but with fixed

εI = 10.0 (CdSe quantum dots) as a function of s (namely, of the inverse

external dielectric constant).
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2.2.3 Infrared properties

The calculation of the quantum confined eigenvalues and eigenfunctions for

an electron moving inside an ellipsoid dot allows the investigation of some

interesting features of the infrared (conduction-band) transitions in such sys-

tems. By using the wave function (2.18c) and the eigenvalues (2.18a) the op-

tical matrix elements (2.41) and (2.47) have been calculated for both linearly

polarized radiation along the z axis and circularly polarized radiation in the

x-y plane relative to transitions from the ground state |100 > (absorption

process). In this case, according to the selection rules (2.52), the allowed

transitions are

|100 >→ |nlm > l = 1, 3, 5, . . . |m| = 0, 1, (2.74)
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Figure 2.12: Variation of the transition energy relative to the transition |100 >→
|110 > for CdSe ellipsoid quantum dots (εI = 10.0) as a function of s for different

geometries.
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where |m| = 0 if linearly polarized radiation along the z axis is absorbed,

while |m| = 1 if circularly polarized radiation in the x-y plane is absorbed.

It is worth pointing out that if a given transition is allowed in the dipole

approximation with linearly polarized light, it cannot be allowed with circu-

larly polarized light and vice-versa. Therefore, for a given l = 1, 3, 5, . . . , the

only non-zero matrix elements of the dipole operator components z,
x± iy√

2
between the ground state and the states |n l m = 0,±1 > are (in units of c):

p∥ =

∣∣∣∣
1

c
< 100|z|nl0 >

∣∣∣∣
2

(2.75a)

and

p⊥ =

∣∣∣∣
1

c
< 100|

x± iy√
2

|nl ∓ 1 >

∣∣∣∣
2

. (2.75b)

It is straightforward to show that p∥ and p⊥ are functions only of χ and not

of a and c separately. The same holds for the oscillator strengths (2.55a) and

(2.55b). Because we expect that, differently from the case of the spherical

quantum dot, the system response to electro-magnetic radiation must depend

on its polarization, it is useful to introduce the optical anisotropy, defined as

ρ =
p∥ − p⊥
p∥ + p⊥

= ρ∥ − ρ⊥, (2.76)

where

ρ∥ =
p∥

p∥ + p⊥
(2.77a)

and

ρ⊥ =
p⊥

p∥ + p⊥
. (2.77b)

The optical anisotropy ranges between -1 and 1. Positive values correspond to

the case in which processes induced by radiation linearly polarized along the
z axis are predominant with respect to those induced by radiation circularly

polarized in the x-y plane. Negative values correspond to the opposite case.
Finally, it is zero for an isotropic system, in which the system response to the

radiation does not depend on the polarization. The transitions we are going

to consider are given in eq. (2.74) with n = l = 1, namely |100 >→ |110 >
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Figure 2.13: ρ∥ and ρ⊥ as a function of χ. Both for prolate and oblate ellipsoid

quantum dots the processes induced by the polarization along the major axis are

predominant.

(linear polarization) and |100 >→ |11 ± 1 > (circular polarization). These

are the first ones allowed from the ground state. In Fig. 2.13 the quantities ρ∥
and ρ⊥, defined in eqs. (2.77a) and (2.77b) respectively, are shown as a func-

tion of χ. The difference between the two curves gives the optical anisotropy

of eq. (2.76) relative to the optical transitions between the ground state and
the states with n = l = 1. It is seen that the predominant processes are al-

ways those which are induced by radiation polarized along the ellipsoid major

axis [121] (namely, linearly polarized radiation along the z axis for prolate
ellipsoids and circularly polarized radiation in the x-y plane for oblate ellip-

soids). This gives a clear evidence to the fact that by realizing anisotropic
systems, polarization-dependent processes are obtained. The more the dot

geometry is different from the spherical one, the more “anisotropic” is its

response to polarized radiation. This result is related to the quantum states
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Figure 2.14: The oscillator strengths (2.55a) and (2.55b) as a function of χ. The

dependence on the dot geometry is not very strong, but reveals interesting features

(see text).

deformation due to the geometry, which leads to n = 1, l = 1 states whose

spatial configuration is strongly dependent on m (see Fig. 2.9). In Fig. 2.14
the oscillator strengths (2.55a) and (2.55b) are shown for the same transi-

tions. It comes out that there is not a very strong variation with the dot

geometry, unless very anisotropic systems are considered. Nevertheless, we
can see that for prolate ellipsoids (χ > 1) the oscillator strength relative

to the transition allowed with linearly polarized light (namely, f (0)
|100>→|110>)

saturates towards 1/3 which means, according to the sum rule (2.56a), that
higher energy transitions with linearly polarized light (for example towards

the states |130> or |210>) become more and more inefficient as χ increases.
The opposite behaviour has the oscillator strength relative to the transition

allowed with circularly polarized light (namely, f (±1)
|100>→|11±1>), showing that

higher energy transitions allowed with circularly polarized polarization can
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be observed if the dot anisotropy is increased. The role of the polarizations

is inverted if oblate ellipsoids are considered. This also shows as polarization

dependent measurements (for example of the oscillator strength) can allow

to distinguish between prolate and oblate ellipsoids.

Finally, let us note that if the sum rule (2.54) is performed for the tran-

sitions from the ground state to the three states with n = l = 1, values of

about 0.96 are obtained. If the transitions towards the states with n = 1,

l = 3 are included, the value of the sum becomes about 0.99. This clearly

shows how for confined systems the oscillator strengths become concentrated

over very few, sharp transitions.

2.2.4 Two-electron ground state calculation

In this subsection the results relative to the two-electron ground-state prop-

erties in a prolate ellipsoid quantum dot are presented and discussed [130].

In the single-particle picture (see subsecs. 2.2.1 and 2.2.2) the total single-

electron energy E(1)
n,l,m is the sum of two contributions, the confinement (ki-

netic) energy Ev
n,l,m (calculated by exactly solving the Schrödinger equation

within the ellipsoid region) and the self-interaction energy E(n,l,m)
s (calculated

as a first order correction to the kinetic energy), as shown in eq. (2.70). Start-
ing from this single-particle picture, the two-electron ground state has been

investigated, looking in particular for the dependence of the electron-electron

correlation on the dot geometry. The ground-state energy has been first cal-

culated in the strong confinement regime, that is, by taking the Coulomb

interaction, self-interaction potential and surface interaction mean values on

the uncorrelated ground-state wave function (2.57). We get

E(2)
0 = 2Ev

1,0,0 + E(1,0,0)
C + 2E(1,0,0)

S + E(1,0,0)
P , (2.78)

where

E(1,0,0)
C =

〈
Ψ(2)

0 (r⃗1, r⃗2) |−eVC(|r⃗1 − r⃗2|)|Ψ(2)
0 (r⃗1, r⃗2)

〉

〈
Ψ(2)

0 (r⃗1, r⃗2) | Ψ(2)
0 (r⃗1, r⃗2)

〉 =
e2

4πε0εIc
e(1,0,0)C (χ) ,

(2.79)
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E(1,0,0)
P =

〈
Ψ(2)

0 (r⃗1, r⃗2) |−eΦP (r⃗1, r⃗2)|Ψ(2)
0 (r⃗1, r⃗2)

〉

〈
Ψ(2)

0 (r⃗1, r⃗2) | Ψ(2)
0 (r⃗1, r⃗2)

〉 =
e2

4πε0εIc
e(1,0,0)P (χ) .

(2.80)

As for the surface self-interaction correction, a polynomial interpolation has

been calculated for the surface electron-electron interaction:

e(1,0,0)P (s,χ) = b0(s) + b1(s)χ+ b2(s)χ
2 + b3(s)χ

3, (2.81)

with 1 ≤ χ ≤ 5. The coefficients bi are given in Table 2.4 for some values of

s. As χ→ 1 the previous formulas give e(1,0,0)P = s−1 as it is for the spherical

quantum dot [126]. Finally, the Coulomb energy has been calculated, giving

e(1,0,0)C (χ) = 1.77404 + 1.11755 |χ− 1.00962|0.85486 . (2.82)

Even in this case the spherical quantum dot limit [108] is obtained as χ→ 1.
The strong confinement regime description presented above treats the

electrostatic contributions to the two-electron ground state as “small” cor-

rections to their kinetic energy. However, it is known [16] that as the dot
dimensions increase, this calculation scheme cannot realistically describe the

system, because the electrostatic terms become comparable with the elec-

trons kinetic energy. Therefore, as explained in subsec. 2.1.4, a variational
calculation has been performed by choosing the trial wave function as shown

in eq. (2.59) to take into account correlation effects for geometries which
cannot be described within the strong confinement picture. The energy func-

tional (2.61) has been minimized, for different values of χ, with respect to

s b0 b1 b2 b3

0.1 −0.27246 −0.63340 +0.00514 +0.00119

0.5 −0.15523 −0.35255 +0.00801 −1.06126 · 10−5

3.0 +0.60112 +1.52815 −0.14044 +0.01235

10.0 +2.39414 +7.62111 −1.10527 +0.09866

15.0 +3.55329 +12.20102 −1.90988 +0.16719

Table 2.4: The coefficients of eq. (2.81) for some values of s.
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the three parameters α, β, γ (αmin, βmin, γmin will indicate their respective val-

ues at the minimum point). First the results obtained without taking into

account the dielectric effects will be shown, so that a better understanding

of the role played by the Coulomb repulsion can be reached. The implica-

tions of dielectric effects will be discussed later. In Fig. 2.15 the result of this
calculation performed for CdSe ellipsoidal quantum dots (m∗/me = 0.13,

εI = 10.0), with fixed a = 12 nm, as a function of c = aχ is shown. The black

line represents the energy functional calculated at its minimum point (that

is, E(2) ≡ E [αmin, βmin, γmin]), the red one the same energy but calculated

by setting β = 0 (that is, E [αmin, 0, γmin], which takes into account only

the electron-electron correlation along the z direction) and the green one

the ground-state energy in the strong confinement regime (which is given

by eq. (2.78) and corresponds to setting α = 0 in eq. (2.61)). It comes out
that on increasing χ or, equivalently, c, the ground-state energy (black line)

becomes coincident with the energy calculated taking into account only the

electron-electron correlation along the z direction (red line). This means that

for χ >> 1 the electron-electron correlation in the x-y plane is negligible, as

expected. In fact, on increasing c with fixed a, longer and longer quantum
rods are obtained. The total ground-state energy arises from the contribu-

tion of both the confinement energy which is minimum if both the electrons

are in the ellipsoid centre, and their Coulomb repulsion, which pushes the
electrons far from each other, towards the ellipsoid boundary. The minimum

energy configuration is reached with the two electrons placed along the z axis,
in such a way that they stay as much as possible far from each other and

from the ellipsoid boundary. On the contrary, as χ → 1 (spherical quantum

dot limit) we obtain that E [αmin, 0, γmin] becomes coincident with the un-
correlated ground-state energy. In other words, if only the electron-electron

correlation along a particular direction (the z axis in this case) is taken into

account, the same result as using the strong confinement regime approach
is obtained. This reflects the spherical symmetry of the problem, which can-

not give rise to a ground-state configuration in which the two electrons are
placed along some privileged direction. It is worth noting that a variational

approach for the two-electron ground state in CdS spherical quantum dots

has been done, using a different trial wave function, in [108]. These energies
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have been calculated by using the variational approach explained in subsec.

2.1.4 and exactly the same results have been obtained. A quite important

check for the calculation is that, in this case, βmin/γmin ≃ 1 within at most

1%.

The inset of Fig. 2.15 shows the values of α calculated with fixed a = 12
nm as a function of c, without (s = 1, black line) and with (s = 10, red line)

dielectric effects. On increasing c it is seen that α → 1, which corresponds
to a null probability of finding the electrons at the same point. This further

brings out the strong relation between the electron-electron correlation and
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Figure 2.15: The ground-state energy calculated by using the variational method

is shown (black line) for CdSe quantum dots, with fixed a = 12 nm as a function

of c. Dielectric effects have not been included. The energies calculated by taking

into account only the electron-electron correlation along the z axis (β = 0, red

line) and for uncorrelated electrons (α = 0, green line) are shown for comparison.

The inset shows the value of α at the minimum point as a function of c calculated

without (s = 1, black line) and with (s = 10, red line) dielectric effects.
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the dot geometry.

The projection of the pair correlation function (that is, the probability of
finding one electron at r⃗1 if the second one is at r⃗2 given by |Ψ (r⃗1, r⃗2)|2) in
the x-z plane is plotted for a CdSe ellipsoid quantum dot with a = 12 nm

and c = 24 nm in Fig. 2.16. The results obtained both without and with di-

electric effects (these last ones will be discussed later) are shown respectively

in the parts a and b of the figure. The pair correlation function is plotted
for different positions of the fixed electron (indicated with a big dot), to

better understand the ground-state spatial configuration. The yellow regions

correspond to a maximum of the function. As already stressed previously,

the configuration with maximum probability is with the two electrons placed

along the ellipsoid major axis.

The electron-electron interaction affects also the correlation energy, de-
fined as Ecorr = E(2)−E(2)

0 (that is, the difference between the black line and

the green one in Fig. 2.15). In Fig. 2.17a the ratio Ecorr/E(2) (that is, the rel-

ative error done if the uncorrelated ground-state energy is assumed) for three

values of a as a function of χ is shown. It is an increasing function of both a

and c. All the obtained results clearly show that for long quantum rods the
system description within the strong confinement regime becomes mislead-

ing. The same variational technique has been used including dielectric effects

for studying how they can affect the electron-electron correlation. The nu-
merical results obtained for the two-electron ground state of CdSe ellipsoidal

nanocrystals, with fixed a = 12 nm and s = 10 as a function of c are shown in
Table 2.5. For each value of c, the kinetic energy 2K, the Coulomb repulsion

Ec, the surface self-interaction energy 2Es and the surface electron-electron

interaction energy Ep are calculated both within the described variational
technique and in the strong confinement regime (α = 0). It comes out that

the more the two electrons have the possibility to be far from each other (on

increasing c) the more the correlation energy associated with their Coulomb
repulsion increases. Moreover, there is a quite relevant contribution to this

correlation energy arising from the surface electron-electron interaction for
high dot anisotropies. This can be explained by considering that this inter-

action pushes the electrons far from each other, even if it is less strong than

the direct Coulomb repulsion. Therefore this contribution to the correlation
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Figure 2.16: Projection of the pair correlation function in the x-z plane for a

CdSe ellipsoidal quantum dot with a = 12 nm and c = 24 nm. The results ob-

tained both (a) without and (b) with dielectric effects are shown. The position

of one electron is taken fixed and is indicated with a big dot. The yellow regions

correspond to a maximum of this function. The effect of the dielectric mismatch

spatial configuration of the two electrons clearly comes out (see text).

energy becomes more significant on increasing c, because in this case the elec-

trons quantum confinement decreases and their surface interaction is able to

push them far from each other, towards the ellipsoid boundary. This is also
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c = 12.0012 nm c = 18 nm

α = αmin α = 0 α = αmin α = 0

2K (meV) 41.34 40.17 34.12 32.55

Ec (meV) 18.34 21.53 14.97 19.10

2Es (meV) 117.4 116.5 102.8 101.7

Ep (meV) 107.4 108.0 92.42 93.57

c = 24 nm c = 36 nm

α = αmin α = 0 α = αmin α = 0

2K (meV) 33.11 29.65 32.24 27.27

Ec (meV) 11.02 17.21 6.478 15.18

2Es (meV) 94.49 92.35 84.87 81.30

Ep (meV) 80.22 83.90 62.72 71.90

Table 2.5: Two-electron ground-state kinetic (2K), Coulomb (Ec), surface self-

interaction (2Es) and surface interaction (Ep) energies calculated for CdSe ellip-

soidal quantum dots with fixed a = 12 nm and s = 10 as a function of c. Both the

strong confinement regime and the variational results are shown. It comes out that

on increasing the dot major axis a quite relevant contribution to the correlation

energy arises from the surface interaction energy.

supported from the fact that, on the contrary, on increasing c the surface

self-interaction energy calculated on the uncorrelated wave function becomes

smaller and smaller than the one calculated at the minimum point, showing
that the electrons are farther and farther from the ellipsoid centre. This result

is confirmed by comparing the values of αmin in the inset of Fig. 2.15 calcu-

lated without (s = 1, black line) and with (s = 10, red line) dielectric effects.
It is clear that by including dielectric effects, for nearly spherical quantum

dots smaller values are obtained (because the surface self-interaction poten-
tial pushes the electrons towards the ellipsoid centre), while on increasing

c greater values are obtained, because of the additional contribution to the

electron-electron correlation energy due to the surface interaction. The same
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comparison can be done on the pair correlation function, as in Fig. 2.16. It

comes out that the inclusion of dielectric effects in the minimization of the

functional (2.61) leads to a ground-state wave function where the distance

between the two electrons has increased with respect to the case s = 1. A

final check of these results is given in Fig. 2.17b, where the correlation energy
obtained by taking into account only the Coulomb repulsion (s = 1, black

line) and the one calculated by including dielectric effects (s = 5, red line

and s = 10, green line) are shown. Only for nearly spherical quantum dots

the correlation energy is smaller if dielectric effects are not included.
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Figure 2.17: (a) The ratio Ecorr/E(2) (relative error done if the uncorrelated

ground-state energy is assumed) for three values of a as a function of χ is shown. Di-

electric effects have not been included. The effect of the Coulomb electron-electron

correlation becomes relevant on increasing a and/or c. (b) The total correlation

energy calculated for a = 12 nm as a function of χ is shown for three values of the

dielectric mismatch s. The contribution of the surface electron-electron interaction

clearly comes out on increasing χ.
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Finally, in Fig. 2.18 the energy difference ∆ between the one- and two-

electron ground-state energies is shown, for CdSe nanocrystals with a = 12

nm, as a function of χ and for several values of the dielectric mismatch s. It is

a decreasing function of χ. This dependence becomes stronger and stronger

as εII → 1 (s = 10). If ∆ is plotted as a function of εII we get that, in the
same limit, a strong increase of ∆ is observed, in accordance with the results

shown in [137].
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ground state is shown for several values of s. It is a decreasing function of χ. This

shape dependence becomes very strong as εII → 1.





Chapter 3

A variational approach to

quantum confinement

As already pointed out in chapter 1, small crystallites (10 − 1000 atoms)

exhibit structural and physical properties distinct from those of the corre-

sponding bulk system. The electronic properties are strongly size-dependent

and quantum effects are relevant if the dimensions are smaller than a typical

value (about 5 nm in silicon). For such a dimension, less than 15% atoms
are surface atoms although this figure increases on reducing the dimensions.

In other words, surface and bulk will compete for the material electronic

properties control for small crystallites sizes. The crossover will depend on
the particular material and it is not clear when it occurs, if it occurs neatly.

When the surface is the dominating element, we can expect that the electronic
properties are strongly “receptive” to environment changes: small crystallites

become sensitive to the environment as far as an overlap occurs between the

crystallite and the external molecule wave functions. It is expected that vari-
ations of dimensions and surface chemistry determine the fundamental prop-

erties of such structures opening the way to new adsorption, electro-physical

and optical responses to a gas environment.

Porous silicon is a typical example of this class of materials [138]. It is
obtained from crystalline doped (either p or n) silicon by an electro-chemical

etching. The process results in a porous structure mainly composed by a not

ordered network of silicon wires and dots [139] with dimensions as small as a

85
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few nanometres. For example, in Fig. 3.1 TEM images of thin, high porosity

Si layers are shown. Columnar Si structures are indicated by the arrows. The

most spectacular feature of porous silicon is its ability of emitting very intense

visible light at room temperature with an efficiency of several percent [140].

Although the spectrum is broad, the photoluminescence peak energy can be
tuned from the infrared to the visible varying the processing conditions. It is

widely accepted that the strong photoluminescence emission in porous silicon

originates from localized electronic states in a quantum wire structure. The

combination of small nanostructure dimensions and high surface to volume

ratio makes porous silicon a good candidate both for technological sensor

Figure 3.1: TEM images of thin, high porosity non-luminescent (a) and lumines-

cent (b)-(h) Si layers. Columnar Si structures are indicated by the arrows (from

ref. [140]).
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applications [141–144] and to understand the quantum physical properties of

the nanosystems.

It is important to stress that the study of the sensing properties of very
small systems is a very general problem which concerns a wide class of ma-

terials. The fundamental point is the comprehension of how the electrical

and optical properties of such materials are related to the lower dimensional-
ity. Just to give a further example, in Fig. 3.2 scanning electron microscope

images of silicon nanowires are shown. The wires are maintained by two-
electrode pads (air bridge structure) and are fabricated by micro-machining

a silicon-on-insulator (SOI) substrate [145]. The current-voltage characteris-

tics of such wires show an anomalous behaviour of the electric conductivity,
related to the interaction with the external environment (that is, the absorp-

tion of external molecules on the wire surface).

Figure 3.2: Scanning electron microscope images of silicon nanowires (a) 20 nm

in width and 40 nm in thickness and (b) 74 nm in width and 95 nm in thickness.

The wires are maintained by two-electrode pads (air bridge structure) and are

fabricated by micro-machining a silicon-on-insulator (SOI) substrate (from ref.

[145]).
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In this chapter it is presented a theory for the description of the electronic

spectrum in confined systems of arbitrary shape by taking into account also

the effects of the environment (subsec. 3.1.1). Explicit calculations for nano-

metric deformed wires are shown (subsec. 3.1.2) . The aim is to explain

the behaviour of both the absorption and emission of light in porous silicon
and the modification induced by the external gas. The basic idea is that

quantum confinement within an undulating wire can give rise to a localized

electronic state within each undulation. The undulating morphology is sup-

ported from structural measurements, as those shown in Fig. 3.1. Moreover,

the large Stokes shift between light absorption and emission [146], the tem-

perature dependence of the electrical conductivity [147], the co-existence of

phonon-assisted and no phonon optical transitions [148] and a number of

time-resolved non-linear optical experiments which give information on the
photo-generated carrier dynamics [149, 150], are all evidence of the presence

of this type of states.

Some results obtained for the porous silicon absorption and emission spec-
tra have been obtained, showing in particular how the presence of localized

states within a quantum wire structure allows to explain the presence of the
large Stokes shift mentioned above (subsec. 3.2.1). Moreover, some experi-

mental results related to photoluminescence changes induced by an oxygen

atmosphere are discussed and interpreted (subsec. 3.2.2). It is shown that
the model is able to explain both the red-shift and the quenching of the

photoluminescence, which gives a strong support to the theory.

Finally, the accuracy of the variational approach in determining accu-

rately the ground-state properties of anisotropic systems is checked, by ap-

plying it to an ellipsoid quantum dot and comparing the results with the

exact ones shown in chapter 2 (subsec. 3.2.3).

3.1 Theory

In this section it is described the general method which allows to approach

the study of arbitrarily shaped nanostructures, with the possibility of taking

into account in a quite simple way the effects due to the finite potential
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barrier at the nanostructure boundary as well as the interaction with an

external environment via the surface.

3.1.1 The variational approach

Let us consider a particle moving within a confined region of arbitrary form

and indicate with S its surface. If finite boundary conditions at S are consid-

ered (namely, the probability of finding the particle outside that region in not

zero), the effective-mass Schrödinger equation which describes the motion of

the particle within an additional external potential v(r⃗) is

−
!2

2m∗

−→
∇2Ψ(r⃗) + v(r⃗)Ψ(r⃗) = EΨ(r⃗), (3.1)

together with the boundary condition
[

1

Ψ(r⃗S)

∂Ψ

∂n

]

in

=

[
1

Ψ(r⃗S)

∂Ψ

∂n

]

out

= −λ(r⃗S), (3.2)

where r⃗S ∈ S, ∂/∂n indicates the normal derivative at a given point of S
and the subscripts “in” and “out” indicate that the normal derivative is

calculated respectively from inside and outside the surface1. Eq. (3.2) gives

the matching of the wave function at the dot boundary and can be rewritten
as: [

∂Ψ

∂n
+ λΨ

]

r⃗∈S

= 0. (3.3)

The function λ(r⃗) is defined on S and is nothing other than the logarithmic

normal derivative of the wave function (changed of sign) calculated on S.

Let us consider the functional

E[Ψ] =
!2

2m∗

1∫

V

Ψ2dV

[∫

V

[
(
−→
∇Ψ)2 + ṽΨ2

]
dV +

∮

S

λΨ2dS

]
, (3.4)

where all the integrals are done on the volume V of the confined system except

the last at the right hand that is an integral on the surface S containing the

1It is worth stressing that the versus of the normal to S can be arbitrarily fixed but
must be the same in the calculation of “in” and “out” normal derivatives.
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system. ṽ is the single-particle external potential in units of !2/2m∗. It can be

shown [151–154] that the condition that the functional (3.4) is stationary with

respect to an arbitrary variation δΨ of Ψ (namely, δE = 0) implies that the

wave function Ψ satisfies both the Schrödinger equation (3.1) in the volume

of the system and the boundary condition (3.3). Therefore, by looking for the
extremum points of E[Ψ] it is possible to automatically take into account the

finite boundary conditions at S. This is a very important conceptual point.

In fact, the “standard” solution of the problem would require the solution of

eq. (3.1) both inside and outside the nanostructure and, as a second step, the

determination of the particle spectrum by imposing the matching condition

(3.2). This last step, even if in principle possible, can become very demanding

for complicated geometries, due to the fact that it is not possible, in general,

to find a suitable coordinates system in which both the Schrödinger equation
and the boundary condition are separable (an exception is given, for example,

by the quantum confinement of a particle within an ellipsoid quantum dot

with hard wall boundary conditions, as shown in chapter 2). Instead, within

the variational approach we are discussing, the probability density outside

the wire can be accounted for just by performing a suitable choice of the
function λ. In other words, the knowledge of the wave function Ψ inside the

nanostructure (namely, the volume V ) together with its normal logarithmic

derivative on the surface S is enough to completely describe the system, the
actual values of Ψ outside V not being needed. This makes the functional

(3.4) very general and suitable to study the electronic structure of quantum
nanostructures of any shape. Let us stress once again that this flexibility is

due just to the inclusion of the boundary condition in an integral form in eq.

(3.4), which prevents from performing the wave function matching (3.2) at
S.

There is another fundamental point of this theory which is worth bringing

out. The surface physics is lumped in the function λ which can be interpreted

as the spatial wave function decay outside the system2. This decay depends

2If simple geometries, like a spherical quantum dot or a cylindrical quantum wire,
are considered, the exact solution of the problem for a step potential barrier (ṽ = ṽ0 ≡
constant > 0 outside the nanostructure and 0 elsewhere) can be found. It comes out that
quantum states confined within the nanostructure exponentially decay outside it with an
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on the microscopic details of the gas-surface interaction which, in the case of

porous silicon, can be extremely complex. In general, one can say that gas ad-

sorption gives rise to a modification of both the density of surface states and

of surface electric dipoles. A particle (electron or hole) inside the nanostruc-

ture will be confined by an effective potential barrier (confining potential)
whose variations are localized near the surface S with a height which depends

on both the nature of the adsorbed gas and the surface passivation. When

an oxidizing or reducing gas interacts with the nanostructure surface, the

local charge transfer induces electric dipoles which can give either a positive

or a negative contribution to the confining potential. These potential height

variations may significantly change the quantum wire electronic structure to

a point where a clear signature is detectable in the optical and transport

properties. This effect becomes important on reducing the nanostructure di-
mensions. In this respect the gas sensing mechanism is strictly related to the

dimensionality of the system.

It is not easy, in general, to understand how the external gas can modify
the nanostructure surface properties and, in particular, the barrier height.

Microscopic models and atomistic calculations can be performed only if the

total number of atoms is low. The advantage of this model is that the mod-

ifications at the nanostructure surface are averaged and taken into account

just via the function λ, following the basic idea that the macroscopic prop-
erty which is changing as effect of the presence of the external gas is the

barrier height and, therefore, the wave function decay outside the nanostruc-

ture. The drawback is that the information about what it is happening at
microscopic level is lost.

If v0(r⃗S) is the barrier height at a point r⃗S of the surface layer, the wave

function decay λ(r⃗S) is approximately given by

λ(r⃗S) =

√
2m∗

!2
[v0(r⃗S)− E], (3.5)

where E is the eigenvalue corresponding to the quantum confined state3. The

exponential law exp(−λ|r⃗|) [155].
3For a spherical quantum dot and a cylindrical quantum wire eq. (3.5) is independent

from r⃗S and is a good approximation to the actual value of λ.
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form (3.5) of λmakes the solution of the variational problem difficult, because

it is necessary to proceed by attempts to obtain the self-consistency between

the fixed value of the energy in (3.5) and that calculated by minimizing the

functional (3.4).

It is worth pointing out that, for states localized inside the wire (the ones
we are interested in), λ > 0 (as we have said previously, λ−1 can be inter-

preted as the wave function decay outside the wire). Under this assumption it

can be shown that the condition δE = 0 leads to a minimum of the functional

(3.4).

3.1.2 Deformed cylindrical wire

Let us consider a deformed cylindrical quantum wire with rotational symme-

try around the z axis. If we indicate with ρ, z,ϕ the cylindrical coordinates,

the wire boundary can be described by using the following parametric equa-

tions: ⎧
⎨

⎩

x = R(u) cosϕ

y = R(u) sinϕ

z = u

, (3.6)

where −∞ < u < +∞ and 0 ≤ ϕ < 2π. The parametric equations (3.6)

are equivalent to the single equation ρ = R(z). The interest in solving eq.
(3.1) with the boundary condition (3.3) for such system is given from the

fact that, as already pointed out previously, absorption and emission spectra
of porous silicon can be explained as an effect of quantum confinement. One

possibility is, as we are going to see, that the wire-like configuration shown

in Fig. 3.1 induces quantum confinement in correspondence of wire bulges,
as it can be easily explained with the uncertainty principle. Let us consider a

deformed quantum wire as shown in Fig. 3.3. We indicate with R0 the radius

of the undeformed part of the wire, with ∆z the bulge width and with βR0

the bulge depth. It must be stressed that the geometry shown in Fig. 3.3

represents just a simplified, average nanostructure. It is expected that in a
real sample (as shown in Fig. 3.1) there are many bulges and that the wire

and bulge dimensions follow a certain distribution. Nevertheless, as it will be

explained better in the following (see subsec. 3.2.1), the hypothesis is that
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Figure 3.3: A deformed quantum wire. Explicit calculations will be performed by

assuming a Gaussian shape. R0 represents the radius of the undeformed part of

the wire, ∆z the width of the bulge and βR0 its depth.

the distance between two neighbouring bulges is large enough to make their
“interaction” negligible and that the distribution of their dimensions is sharp

enough to make the average description “realistic”.

If a particle is moving along the wire axis, near the bulge it must decrease
its kinetic energy accordingly to the uncertainty principle (in fact, the pres-

ence of the bulge increases the uncertainty on the particle distance from the

wire axis). This means that the geometrical deformation shown in Fig. 3.3
will act as an attractive potential for the particle motion along the z axis.

The contrary would happen if a bottleneck (β < 0) were considered instead
of the bulge (β > 0). Starting from the hard wall ground-state wave function

of a straight wire (β = 0, see eq. (2.62a) with kz = 0, m = 0 and n = 1) it

is possible to give a variational ansatz for the particle wave function Ψ, as
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follows [151–153]:

Ψ(r⃗) = J0

[
Z

ρ

R(z)

]
f(z), (3.7)

where J0 is the zero-order cylindrical Bessel function and Z a variational

adjustable parameter used to minimize the total energy consistently with

the boundary condition on the wire surface S (ρ = R(z)). The choice of

the variational wave function (3.7) is justified by the fact that if Z = Z1,0

(first zero of J0) an hard wall wave function is obtained (namely, the function

(3.7) becomes zero on the wire boundary ρ = R(z)) and that if a straight wire

is considered (namely, R(z) = R0 for any z) it becomes the corresponding

eigenfunction (2.62a). This wave function takes into account also the fact

that because of the cylindrical symmetry of the problem, the ground state

must be independent from ϕ.

The function f(z) describes the particle motion along the wire axis (name-

ly, the z axis). Two classes of states are expected as far as f(z) is concerned.

To the first class belong localized states whose z extension is limited within

the bulge (β > 0), according to the qualitative explanation given previously.

To the second class belong delocalized states characterized by a z extension
which comprises the entire wire, that is, they are very near to be plane waves.

As such, they have higher energies and a large density of states and therefore

they are the primary candidates for photon absorption. The localized states
have the lowest energies and are the ones involved in the photon emission.

The large Stokes shift observed for instance in porous silicon can be therefore

described in terms of these states whose character is entirely determined by

the quantum wire geometry and the surface layer chemistry, as we are going

to see in subsec. 3.2.1.

The described typology of electronic structure may have important effects

on the carrier transport. Both the direct and frequency dependent conduc-

tivity may be significantly modified by the gas environment through the sur-
face barrier variations. The corresponding conductivity variations are, in this

case, very sensitive to the nanostructures dimensions: smaller nanostructures
will respond better than large nanostructures [156]. However, a theoretical

quantitative assessment of these variations requires an understanding of the

actual carrier transport mechanism [157].



3.1 Theory 95

The nanostructure energy spectrum can be calculated by inserting in eq.

(3.4) the wave function (3.7). The volume and surface integrals which appear

in eq. (3.4) imply integrals over ρ, z and ϕ. It is not difficult to show that

the integrals over ρ and ϕ can be analytically performed. The result is that

the energy functional (3.4) depends only on f(z). By taking its variation
with respect to f(z) and by requiring that δE/δf = 0, it comes out that

the function g(z) = f(z)R(z) must satisfy the one-dimensional Schrödinger

equation [151–154] (it is supposed that no additional external potential ṽ(z)

is present)

−
d2g

dz2
(z) + ṽeff(z)g(z) = ε̃g(z), (3.8)

which contains the effective potential

ṽeff(z)=−h1(Z)

[
R′′(z)

R(z)
−

R′(z)2

R(z)2

]
+

2

3

R′(z)2

R(z)2
h2(Z)−

1 +R′(z)2

R(z)2
h3(Z)

+h4(Z)
λ(z)

R(z)

√
1 +R′(z)2 +

R′′(z)

R(z)
+

Z2

R(z)2
, (3.9)

where

h0(Z)=
1

J0(Z)2 + J1(Z)2
, (3.10a)

h1(Z)= J1(Z)
2h0(Z), (3.10b)

h2(Z)=

[
ZJ0(Z)J1(Z) + J1(Z)

2

(
Z2

2
− 1

)
+

Z2

2
J0(Z)

2

]
h0(Z), (3.10c)

h3(Z)= 2ZJ0(Z)J1(Z)h0(Z), (3.10d)

h4(Z)= 2J0(Z)
2h0(Z). (3.10e)

It depends on both the wire surface curvature and the wave function decay
λ−1, that is, the surface chemistry.

It must be pointed out that the trial wave function (3.7) does not ob-
viously span all the single-particle Hilbert space. This means that once the

effective Schrödinger equation is solved and the minimum energy with re-

spect to Z is found, this does not correspond to the absolute minimum of the
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energy, which instead is always overestimated. Nevertheless, if the starting

trial wave function is well chosen, this leads to a very good estimation of the

ground-state energy, as we shall see later.

If hard wall boundary conditions are used, that is, Ψ(r⃗)|r⃗∈S = 0, the

potential (3.9) becomes:

ṽeff(z) =
Z2

1,0

R(z)2
+

1 + Z2
1,0

3

R′(z)2

R(z)2
. (3.11)

This potential is the sum of two terms. The first one gives the dependence

on the deformed wire radius R(z) and corresponds to a pure adiabatic ap-
proximation (which consists in substituting in the straight wire spectrum

given in eq. (2.62b), the constant radius a ≡ R0 with the z dependent ra-
dius). The second term, proportional to R′(z)2, gives the dependence from

the wire curvature. In Fig. 3.4 and 3.5 the plot of the potential (3.11) for

different bulge geometries is shown. The potential is measured with respect
to its asymptotic value, given by Z2

1,0/R
2
0, namely the mini-band edge for the

straight wire. The bulge aspect ratio δ = βR0/∆z has been defined (let us

note that on increasing δ sharper and sharper deformations are considered).
It is clear that more confining potentials are obtained if higher values of both

β and ∆z are considered, provided that not too high aspect ratios values are
reached. In fact, as Fig. 3.5 and 3.4 show, small values of ∆z and/or high

values of β can give rise to positive maxima4.

4A theorem states that for a potential with a negative minimum (referred to its asymp-
totic value) the existence of a bound state in one and two dimensions is guaranteed [158],
no matter how weak the potential is, provided that it has no positive maxima. If positive
maxima appear, it is possible that there is no localized state associated to the potential.
The implication of this theorem in this case is that one may have a wire with a bulge with-
out any localization. This gives a strong dependence of the system properties on the wire
geometry. The results which will be shown demonstrate that for the typical geometries
involved in porous silicon structures the existence of the positive maxima in the effective
potential is not able to delocalize the ground state (see the discussion at p. 100 for further
details).
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Figure 3.4: The single-particle potential as derived from the variational approach

presented above if hard wall boundary conditions are assumed. The potential is

referred to its asymptotic value. Different bulge geometries are considered for com-

parison. β is kept fixed at 1.0, δ is the bulge aspect ratio.

3.2 Results

In this section the main results which come out by studying porous sili-

con optical properties within the calculation scheme previously discussed are

shown. First, the attention will be focused on the light absorption-emission

path, showing how it is possible to explain the Stokes shift existing between
the absorption and emission spectra. This is done even in the simplest scheme

of hard wall boundary conditions.

By preventing the wave function from having a tail outside the quantum
wire, it is not obviously possible to study the interaction between the nanos-

tructure and an external environment. The modification of the electronic

properties of the nanostructure, in fact, can be understood only by imaging
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that the electron or hole wave function interacts with the wave function of

an incident external molecule, so that some physical or chemical reaction can

take place at the wire surface. Therefore, calculations in the case in which

the electron or hole wave function has a non-zero decay length λ−1 outside

the wire have been performed. It is seen how the model can account for the
red-shift and quenching of the photoluminescence in presence of oxygen.

Finally, the validity of the model with hard wall boundary conditions
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Figure 3.5: The same as in Fig. 3.4, but by keeping fixed ∆z/R0.
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is checked by applying it to an ellipsoid quantum dot, for which the exact

calculation has been performed in chapter 2.

3.2.1 Emission and absorption spectra of porous sili-

con

By using the variational method explained in subsec. 3.1.2, the spectrum

of a single particle confined within the region of Fig. 3.3 has been studied
[151,152,154]. A Gaussian wire shape has been assumed, namely

R(z) = R0

[
1 + β exp

(
−

2z2

∆z2

)]
, (3.12)

where, as seen previously, R0 is the radius of the undeformed part of the wire
and the deformation region extends for ∆z along the z axis around the point

z = 0 with a maximum deformation βR0 with respect to the undeformed

wire (see Fig. 3.3).

In order to explain the absorption and emission spectra usually observed

in porous silicon, the effective single-particle Schrödinger equation, which
comes out from the variational procedure depicted in subsec. 3.1.2 has been

preliminarily solved. Hard wall boundary conditions have been used. The nu-

merical solution of this equation has been performed by a mid point shooting
method (see references in appendix B). Under suitable conditions on the wire

bulge, localized states within the bulge itself appear, which lie just below the
mini-band corresponding to quantum states delocalized over all the wire.

The geometrical parameters affect both the position of the confined energy

level with respect to the mini-band edge and the number of such states (ex-
cited confined levels can also come out). This is shown in Fig. 3.6, where

the localized ground and first excited states energies are shown for different

geometries. It comes out that not any deformation is able to bind a particle
within the bulge. In particular, the smoother the geometry, the less localized

the particle. This is confirmed by considering that the extension along the
z direction of these localized states increases if smoother and smoother ge-

ometries are considered. This is shown in Fig. 3.7 where the wave function

square modulus calculated for different geometries is plotted. Actually, let
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Figure 3.6: The ground-state energy for quantum states localized within the bulge

of Fig. 3.3, for three different wire geometries (solid lines). Among these geometries,

only the one with ∆z/R0 = 2.5 can support a localized excited state (dashed line).

us note that if very sharp geometries are considered, the confined energies

tend to decrease their modulus, as if the localization became less strong (this
corresponds to the presence of positive maxima in the effective potential,

as shown in Fig. 3.4 and Fig. 3.5). Nevertheless, we must say that we are

not interested to such geometries, because the ones involved in porous silicon
structures, as we are going to see, have aspect ratios ranging from nearly 0 to

0.5. However, the decreasing of the wave function localization for very sharp

geometries could be a spurious effect. In fact, it has been shown [151, 154]
that the variational approach which has been presented can be improved by

substituting the variational ansatz (3.7) with a more complicated wave func-
tion in the form of a series expansion. This gives rise to a system of coupled

differential equations, which can be solved within a perturbative scheme. It

comes out that as far as not very sharp geometries (such as those of interest
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within the bulge. This picture is valid provided that small aspect ratios are con-

sidered.

for porous silicon) are considered, the variational ansatz (3.7) gives a very

accurate result, the higher order corrections being completely negligible. Sig-

nificant corrections can instead be given for very sharp geometries, because

the wave function (3.7) has been written starting from the ground-state wave

function of the straight wire and, therefore, is expected to give reasonable
results only for those geometries which are not very far from the undeformed

one.

The main result which comes out from the calculation of the single-

particle spectrum is that the presence of the deformation modifies quite
significantly the properties of the wire, because it induces localized states

within the bulge, completely absent in the straight wire. This acquires much

more relevance if we think, as indicated previously, that the porous silicon



102 A variational approach to quantum confinement

morphology is just that of disordered arrays of deformed quantum wires.

The large Stokes shift usually observed, namely the fact that the absorption

and emission processes occur at different energies, can be explained just by

assuming the existence of localized states as the cooperative effects of quan-

tum confinement within a wire-like structure, which gives rise to a mini-band
structure (as for the straight wire) and shape effects, which give rise to local-

ized states whose energies lie below the mini-band edges. Because each mini-

band is characterized by a large density of states, absorption processes occur

between delocalized states, followed by a relaxation towards localized states.

Finally, light emission between localized states occurs. By considering this

widely accepted absorption/emission path, porous silicon optical absorption

and emission spectra have been studied. It must be stressed that the theory

contains four free parameters, namely the wire length L, R0, β and ∆z, which
must be set5. The calculated energies obviously depend on the wire length

L. For an undulating wire composed of many and different bulges, a clear

separation between localized and delocalized (mini-band) states is possible

only when the average distance L between bulges is greater that ∆z. When

this condition is satisfied, different bulges are independent from each other.
The calculations have been performed for a single bulge considered as an

average nanostructure in a wire of length L. The bulge extension ∆z has

been chosen to be the measured average nanostructure dimension. Moreover,
R0 has been calculated in such a way to obtain the observed absorption en-

ergies (let us remember that the light absorption occurs between mini-band
edges, whose position is fixed by the undeformed wire radius R0, provided

that L >> ∆z). Having fixed ∆z and R0, the aspect ratio δ (and, therefore,

β) has been adjusted in such a way to reproduce the measured photolumines-
cence peak. The wire length L has been increased up to a value beyond which

the calculated eigenvalues are independent from L, simulating in this way the

decoupling between bulges. The application of this procedure requires, for a
given sample, the measurement of the average nanostructure dimension, the

5Let us note that the numerical solution of the Schrödinger-like equation obtained by
the variational approach previously presented must be done on a finite structure of length
L. The results which are going to be shown have been obtained by assuming the wave
function zero at the wire extrema (z = ±L/2).
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optical band-gap and the photoluminescence peak energy. The comparison

with the experimental data allows to fit the porous silicon absorption and

emission energies, which sets the four parameters discussed above. It comes

out that the experimental data can be reproduced if the following relations

among the geometrical parameters hold [151]:

R 0(Å) = 5.704 + 0.307 ∆z(Å) (3.13a)

δ =
βR0

∆z
= 0.497− 0.010 ∆z(Å) (3.13b)

L= 260 Å (3.13c)

The absorption and emission energies have been calculated, as it has been

said, by assuming that the particle cannot penetrate into the outer region

(hard wall boundary conditions). This is physically meaningful because the

barrier potential at the surface of the porous silicon is very high.

The comparison with the absorption and emission energies calculated

by using eqs. (3.13) with the experimental data is shown in Fig. 3.8. The

black and red curves represent transitions between localized states within

the bulge (the considered geometries support more than one localized state).

The green curve represents transitions between delocalized states. The Stokes

shift (difference between the green curve and the black curve in figure) clearly
comes out. Moreover, it can be observed that the transition between localized

excited states (red curve) has energy very near to that of the first transition

between delocalized states (green curve), which can play a fundamental role

in the particle capture and transport. Some more details can be found in

refs. [151–154].

3.2.2 The effect of an external environment

The effect of bulge localization has also implications related to the gas-
surface interaction [153, 159, 160]. Let v be the confining potential barrier

at the nanostructure surface. As said above, this potential will contain many
contributions, one of the most important ones coming from surface dipoles.

These dipoles, which are generated by the local charge transfer between the

gas molecules and the surface atoms, can either increase or decrease the po-
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tential v. The actual potential variations will therefore depend on the electro-

negativity differences between the surface species and the gas molecules. In
Fig. 3.9 the results of the calculation for the emission energies as a function

of the confining potential height v for three different geometries are shown.

The barrier height has be assumed independent from z (v = v0). The effect
of quantum confinement consisting in an increase of the emission energies

on reducing the nanostructure dimensions is very evident. Moreover, it can
be observed the effect of the dimension on the curves slope variations. The

smaller the dimensions, the higher the slope. This result suggests that, by

taking the photoluminescence or a property related to it as a sensing signal,
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Figure 3.9: Calculated emission energies as a function of the surface barrier height

for different nanostructure geometries and dimensions.

only small nanostructures may have a measurable sensitivity to the confining

potential variations and therefore to the environmental changes.

Within this model, it is possible also to interpret the two main results
which experimentally come out if porous silicon is put in an external oxy-

gen environment, namely the photoluminescence red shift and quenching.

At this purpose, it has been developed a specific calculation shown in Fig.
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3.10, where the quantum wire has been taken of finite length L and the con-

fining potential has been progressively reduced from 4.5 to 3.0 eV over a

length L0 < L (see the inset of the figure). This progressive reduction takes

into account the fact that by exposing a porous silicon sample to an oxygen

atmosphere, the gas progressively covers the wire, starting from the bulge
(because of the presence of localized states within it, it is expected to be the

most sensitive region of the wire to an external environment). The coverage

produces a reduction of the barrier height at the wire surface with respect

to its value in presence of an inert atmosphere (assumed to be 4.5 eV). The

figure shows both the emission and the absorption energies as a function of

the coverage, defined as the ratio L0/L. First, the photoluminescence red

shift clearly comes out. It is an increasing function of the coverage. Second,

it is very interesting to note that the curves corresponding to the absorption
and emission energies have different slopes. In particular, the emission en-

ergy is sensitive to the barrier height variations only if the coverage length

is of the order of ∆z. For higher coverage lengths, it is almost constant,

reflecting the fact that the emission originates from states localized within

the bulge. On the contrary, the absorption energy has significant variations
for any coverage length, reflecting the fact that the absorption occurs from

states extending over the entire wire. Since these last states are also higher

in energy, their penetration inside the surface barrier will increase with the
coverage, making more efficient the electrons and holes access to surface traps

and non-radiative recombination centres [163]. As a consequence, the photo-
luminescence quenching will increase on reducing the nanostructure average

dimensions.

It is worth pointing out that other properties, such as impurity states
within a deformed wire, can be studied within this model. For example it

has been shown [164] that the impurity binding energy becomes larger than

that of a particle localized in the bulge without the impurity and larger
than that of a particle bounded to the impurity in a straight cylinder. It is

possible that, even when the impurity is very far from the bulge, the wave
function is localized only in the bulge region or on the impurity depending on

the geometrical parameters of the wire and on the dielectric constant. This

means that we can have an ionization of the impurity due to the irregularity of
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the wire. This purely geometrical effects may have significant consequences

on the charge carrier transport in these systems (particularly at very low

temperatures where a Coulomb blockade may be effective) and is a possible

nanostructure charging mechanism for porous silicon.

3.2.3 A check for the variational approach

It is important to stress that, by using the variational approach previously
discussed, all the energies are overestimated. It is reasonable to ask how

accurate is this overestimation. This is strongly related to how good the

variational ansatz for the wave function (see eq. (3.7)) is. A possible way
to check the approach, is to apply it to an exactly solvable geometry, so

that the approximate variational results can be compared with the exact

ones. For this purpose, the ground-state energy for a particle confined in an

ellipsoid quantum dot has been calculated [120] (the exact calculation has

been performed as shown in chapter 2).

The ellipsoid quantum dots shown in Fig. 2.1 can be studied by using

spherical coordinates (r,ϑ,ϕ). In this coordinates system their surface has

equation r = R(ϑ) where R (ϑ) = c/
√
χ2 + (1− χ2) cos2 ϑ represents the

distance of the generic point of the ellipsoid surface from its centre. Because

the ground-state trial wave function with hard wall boundary conditions Ψ(r⃗)

must become ΨSPHERE
1,0,0 (r,ϑ,ϕ) (see eq. (2.19a)) in the limit χ → 1, we can

set

Ψ0(r,ϑ,ϕ) = j0

[
π

R(ϑ)
r

]
f(ϑ). (3.14)

In eq. (3.14) it has been considered that for the spherical quantum dot ground
state we have l = m = 0, that the first zero of the zero-order spherical

Bessel function is z1,0 = π (so that the wave function (3.14) vanishes on

the boundary r = R(ϑ)) and that, because the problem is now invariant
only for rotations around the z direction, the ground state does not depend

on ϕ. The function f(ϑ) in eq. (3.14) takes into account the deformation
effects which the ellipsoid geometry induces with respect to the completely

symmetric spherical case. The function f(ϑ) has to be determined in such a

way that the energy functional
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E[f ] =

〈
Ψ0

∣∣∣∣−
!2

2m∗

−→
▽2

∣∣∣∣Ψ0

〉

⟨Ψ0 | Ψ0⟩
(3.15)

is stationary with respect to an arbitrary variation δf of f . This, according

to the variational principle, gives an upper bound to the ground-state energy.

Let us note that the functional (3.15) is obtained from the more general one

(3.4) with hard wall boundary conditions.

By taking the variation of eq. (3.15) with respect to f we obtain that

⟨Ψ0 | Ψ0⟩ δE[f ] + (⟨Ψ0 | δΨ0⟩+ c. c.)E[f ] =
(〈

Ψ0

∣∣∣∣−
!2

2m∗

−→
▽2

∣∣∣∣ δΨ0

〉
+ c. c.

)
,

(3.16)

where c. c. indicates the complex conjugate of the correspondent term in

parenthesis and δΨ0 = j0 [πr/R(ϑ)] δf(ϑ). The stationariness of the func-
tional (3.15) with respect to this variation of f(ϑ) is given by the condition

δE[f ] = 0. Moreover, because the variation δf(ϑ) is a function just of ϑ we

can compute in eq. (3.16) the integrals over dϕ and dr. The final equation,
which follows from simple algebraic manipulations and by considering that

δf(ϑ) is arbitrary, is

−
d

dϑ

(
sinϑ

df

dϑ

)
+

π sinϑ

2Si (2π)

[

1 +
(dR/dϑ)2

R2(ϑ)

]

f(ϑ) = ε̃
(sinϑ)R2(ϑ)

2πSi (2π)
f(ϑ),

(3.17)

where Si(u) =

∫ u

0

sin ρ

ρ
dρ and ε̃ = 2m∗E/!2. Eq. (3.17) must be solved with

the normalization condition

⟨Ψ0 | Ψ0⟩ =
∫ π

0

(sinϑ)
R3(ϑ)

π
f 2(ϑ)dϑ = 1. (3.18)

For χ→ 1 (that is, R(ϑ) → R constant) eq. (3.17) admits the solution f(ϑ) =
constant with ε̃ = π2/c2, that is, the ground-state energy for the sphere, as

expected. Finally, eq. (3.17) contains a term with the first derivative of f(ϑ)

which can be eliminated by setting f(ϑ) = g(ϑ)/
√
sinϑ. This leads to
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−
d2g

dϑ2
+

{
π

2Si (2π)

[

1 +
(dR/dϑ)2

R2(ϑ)

]

−
1

4 sin2 ϑ
−

1

4

}

g(ϑ) = ε̃
R2(ϑ)

2πSi(2π)
g(ϑ),

(3.19)

which shows that the confinement of the particle in the ellipsoid can be

viewed as the motion in an effective ϑ-dependent potential. The particle in
this picture behaves as if it had a position-dependent effective mass m̃(ϑ) =

m∗R2(ϑ)/2π Si(2π)c2.

The analogy with the deformed quantum wire described in subsec. 3.1.2

is clear. The starting point is a geometry where the Schrödinger equation

together with the boundary condition associated to it is separable. For this
geometry the complete set of eigenfunctions and their relative eigenvalues

are known. In this case we start from a spherical quantum dot, in the pre-

vious one from a cylindrical quantum wire. Then, the variational trial wave
function is chosen as the starting geometry ground state where the constant

radius (of the sphere or the cylinder in the two cases) is replaced with a
position-dependent radius which describes the surface of the deformed nanos-

tructure. This quantum state contains an unknown function which must take

into account the effects related to the deformation. By substituting the trial
wave function in the energy functional an effective single-particle Schrödinger

equation is obtained, where the deformation acts as an effective potential,

which depends on the position-dependent radius and its first derivative. An
effective position-dependent mass can appear or not, depending on the con-

sidered geometry.
In Fig. 3.11 it is shown the comparison between the ground-state energy

(as a function of χ) calculated with the exact method (black line) with the

one calculated using the variational approach (red line) described above. As
we can see, the results are in very good accordance provided we do not con-

sider geometries with χ very far from 1. Anyway, as expected, the variational

solution always gives an upper bound to the exact one. Moreover, the varia-

tional approach gives a very accurate estimation of the ground-state energy,

provided that the considered geometry does not have very large deviations
from the starting one.
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Chapter 4

Topological surface states

In chapters 2 and 3 it has been shown that the physical properties of a
nanostructure are strongly related, besides to the system dimensionality and

dimensions, to its shape. The properties of an ellipsoid quantum dot are very

different from those of a spherical quantum dot, as well as the presence of a
bulge in a cylindrical quantum wire can give rise to localized states completely

absent in a perfectly cylindrical structure. The main result is that it is not
possible to have out of consideration the system geometry, if the material

properties at the nanometric scale must be studied.

So far, only the properties related to bulk quantum states have been
investigated. On the other hand, it is known that the electrical and opti-

cal properties of a given material are determined by the presence of surface
states as well [165]. The study of surface defects is very important from both

the physical and technological point of view. In fact, despite the fabrication

techniques have reached an high degree of precision, the presence of struc-
tural defects cannot be avoided at all. Therefore, in presence for example of

interfaces such as Si/SiO2, quantum states localized on the surface appear,

due to a missing atom, to the presence of an impurity, and so on. This con-
stitutes a technological limit to the device performances because the carriers

can be trapped in quantum states localized on the interface. While the struc-
tural defects, which are extended over distances of few lattice constants, are

widely studied [165], there are not many studies about defects which are ex-

tended over many lattice constants. This last ones will be referred to in the

113
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following as topological, because they are related to the surface geometry. A

typical problem can be that of studying a deformed plane interface (thinking,

for example, to an Si/SiO2 interface in which the separation between Si and

SiO2 is not perfectly plane but characterized by Si bulges into the SiO2 layer

and/or vice-versa) or, more in general, a nanostructure whose lateral surface
is deformed in such a way that its curvature depends on the position. We

can ask if a purely geometrical effect can be brought out if surface states are

concerned. The answer to this question is the topic of this chapter.

The quantum states of a particle constrained to move in a thin region

around a two-dimensional surface embedded in the three-dimensional space

can be studied by assuming that the constraint to the surface is given by

an attractive potential sufficiently strong to confine the particle into the

surface neighbourhood. From the mathematical point of view this problem

has been studied [166, 167] by using concepts of differential geometry. The

results indicate that, depending on the mean and Gauss surface curvature, the

kinetic energy operator gives rise to an extra topological potential acting as

a confinement source for the motion along the surface. Since such a potential

is only due to the surface curvature, its action is independent from both the

particle charge and mass.

This purely mathematical problem gains a strong physical meaning if we

consider nanostructured systems such as quantum wires and dots. In many of
these systems there is a surface, generally closed, whose reconstruction and

interaction with the external environment produces a potential, located near
the surface, able to bind particles along the surface normal. Moreover, when

a nanostructure is exposed to an oxidizing or reducing gas, a distribution of

surface dielectric dipoles can be induced whose overall effect may be that of
giving a potential pushing the particle towards the surface [168]. An exam-

ple, in this respect, is given by light-emitting porous semiconductors such as

silicon [140] (discussed in chapter 3) and gallium arsenide [169], whose poros-
ity is obtained by an electro-chemical etching. The resulting nanostructures,

either quantum dots or wires or even a combination of the two depending on
the preparation process, have surfaces with a geometry highly irregular with

a complex chemistry, which induces the formation of dangling bonds and

partially ionic bonds [170]. Another instance is surely that of an accumula-
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tion layer, in particular that corresponding to the steepest band slope with

an extension of few nanometres. Such type of layer may be found in both

the two-dimensional systems [171] and nanostructures [145]. Unfortunately,

even if some physical hints can be given to understand that the existence

of that potential is not just a mathematical trick, it is a very difficult task
to construct it because of the large number of parameters and effects which

should be taken into account. At this stage it is not possible to be more than

speculative on this potential because its precise assessment would require

more experimental information on the nanostructured surface chemistry.

The interest here is to search for those geometries responsible for the par-

ticle localization on these nanostructure surfaces and discuss the implications

for both the optical and transport properties. It is expected, in fact, that the

surface trapping of electrons and/or holes could both open new channels for
optical emission and/or absorption and modify the electrical conductivity of

the material. Moreover, in view of the possible applications of porous sili-

con layers as the active material in a sensor device [141, 156], the presence

of these states is of particular relevance for the surface reactivity towards

a gas environment. It will be found, within the effective-mass approxima-
tion, that, depending on the surface curvature, a particle can have different

probabilities of being in different points of the surface [172–174]. This fact

is described through a topological effective potential which tends to localize
the particle mainly into those surface regions with maximum curvature. It

must be stressed that these are a new type of surface states whose origin
is linked to the surface topology rather than to either the breaking of the

lattice periodicity or surface defects.

In sec. 4.1 the concept of topological surface state is introduced, showing
the coordinate system suitable for studying such states as well as the surface

differential geometry quantities needed in such a study. Next, the derived

equations are applied to three different surface geometries (a deformed quan-
tum wire, a deformed plane and an ellipsoid quantum dot), to show how the

existence of surface confined states of topological nature can arise in very
different systems. The main numerical results are presented and discussed

(secs. 4.2, 4.3 and 4.4).



116 Topological surface states

4.1 Topological surface states

In this section the main concepts of differential geometry on which the re-

search on topological surface states is based are recalled. The original work

by da Costa [166] is followed.
Given the surface S with parametric equation r⃗ = r⃗(q1, q2), a point R⃗ in

the space can be determined through the relation

R⃗ = r⃗(q1, q2) + q3N̂(q1, q2) (4.1)

where N̂(q1, q2) is the versor of the normal to S in the point with coordinates

(q1, q2) and q3 is the algebraic distance of the point from the surface. In

practice, a point P ≡ R⃗ in the neighbourhood of S can be parameterized

by fixing a point Q ≡ r⃗ ∈ S and by moving along the normal to S at that

point, as shown in Fig. 4.1. It is clear that, in general, this represents just

a local mapping of the space. In fact, a one-to-one correspondence cannot

be obtained because the normals to S at different points cross, so that the

curvilinear coordinates of R⃗ will not be univocally defined. However, for the

geometries we are going to study it can be shown that a well-defined mapping

of the region of interest can be established.

Figure 4.1: The three-dimensional curvilinear coordinates chosen to parameterize

the neighbourhood of a surface S. q1, q2 are the curvilinear coordinates of a point

Q ≡ r⃗ ∈ S. The generic point P ≡ R⃗ can be identified by moving along the normal

to S at Q.
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From standard surface differential geometry it is known that the square

distance between two points on S is given by the first differential form by

Gauss [175], that is,

ds2 =
2∑

i,j=1

gijdqidqj (4.2)

where gij are the components of the metric tensor, defined as follows:

g =

∥∥∥∥
∂r⃗

∂qi
·
∂r⃗

∂qj

∥∥∥∥ . (4.3)

The area of the surface element is

dS =
√

detg dq1dq2, (4.4)

with

detg =

∣∣∣∣
∂r⃗

∂q1
×

∂r⃗

∂q2

∣∣∣∣
2

. (4.5)

The normal versor to S at a given point r⃗ ≡ (q1, q2) is given by

N̂(q1, q2) =
1√
detg

(
∂r⃗

∂q1
×

∂r⃗

∂q2

)
. (4.6)

The scalar product between an elementary displacement dr⃗ on the surface

and the correspondent variation dN̂ of the versor N̂ changed of sign is given

by the second differential form by Gauss [175]:

−dr⃗ · dN̂ =
2∑

i,j=1

hijdqidqj, (4.7)

where hij are the components of the tensor

h =
∥∥hij

∥∥ =

∥∥∥∥N̂ ·
∂2r⃗

∂qi∂qj

∥∥∥∥ . (4.8)

It is easy to show, starting from eq. (4.6), that the derivatives of the versor

N̂(q1, q2) lie in the tangent plane, so that they can be written as

∂N̂

∂qi
=

2∑

j=1

αij
∂r⃗

∂qj
, i = 1, 2 (4.9)
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where it has been introduced the matrix

α =
∥∥αij

∥∥ =
1

detg

∥∥∥∥∥∥

g12h21 − g22h11 g21h11 − g11h21

g12h22 − g22h12 g12h21 − g11h22

∥∥∥∥∥∥
. (4.10)

In the considered three-dimensional neighbourhood of S the metric tensor is
given by

G =
∥∥Gij

∥∥ =

∥∥∥∥
∂R⃗

∂qi
·
∂R⃗

∂qj

∥∥∥∥ i, j = 1, 2, 3. (4.11)

The explicit expressions of the Gij ’s are

Gij = gij + q3
[
αg + (αg)T

]

ij
+ q23

[
αgαT

]
ij

with i, j = 1, 2. (4.12)

Here the superscript ”T” indicates the transposed matrix. Moreover, since

the variable q3 has been chosen as normal to the surface tangent plane, the

other components of G are

Gi3 = G3i = 0 with i = 1, 2

G33 = 1
. (4.13)

This shows that, independently from the considered surface S, the coordinate

system which has been chosen is orthogonal.

It is possible now to write the Laplacian operator using the curvilinear

coordinates (q1, q2, q3) [123] and to obtain the following time-independent
effective-mass1 Schrödinger equation:

−
!2

2m∗

3∑

i,j=1

1√
detG

∂

∂qi

(√
detG Ḡij

∂ψ

∂qj

)
+ V (q3)ψ = Eψ, (4.14)

where Ḡij is the ratio between the algebraic complement of the element Gij

and detG and V (q3) is the confining potential in the direction normal to the

1See appendix A about the effective-mass approximation. It must be stressed that since
the followed approach is not an atomistic one, the validity of the results which are going
to be discussed is limited to those deformations whose extension comprises several atomic
distances. With this restrictions, a bulk effective mass can be used in eq. (4.14).
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surface2. By using eq. (4.13), eq. (4.14) can be rewritten as

−
!2

2m∗

2∑

i,j=1

1√
detG

∂

∂qi

(√
detG Ḡij

∂ψ

∂qj

)
−

!2

2m∗

[
∂2ψ

∂q23
+

∂

∂q3

(
ln
√
detG

) ∂ψ
∂q3

]
+ V (q3)ψ = Eψ. (4.15)

By using eq. (4.12), the volume element dV is given by

dV =
√
detG dq1dq2dq3 =

√
detg

[
1 + (trα)q3 + (detα)q23

]
dq1dq2dq3 =

H dSdq3 (4.16)

with H = 1 + (trα)q3 + (detα)q23. By defining

ψ(q1, q2, q3) =
χ(q1, q2, q3)√
H(q1, q2, q3)

(4.17)

and inserting eq. (4.17) in eq. (4.15), the following equation for χ is obtained:

−
√
H√

detG

2∑

i,j=1

∂

∂qi

[√
detGḠij

∂

∂qj

(
χ√
H

)]
−
∂2χ

∂q23
−

1

4H2

(
H2

1 − 2HH2

)
χ+ Ṽ (q3)χ = ε̃χ, (4.18)

with ε̃ = 2m∗E/!2, Ṽ (q3) = 2m∗V (q3)/!2, H1 =
∂H

∂q3
, H2 =

∂2H

∂q23
. Upon

assuming that the potential V (q3) is attractive and different from zero in a

thin sheet around the surface (that is, the particle is confined in the direction

normal to it), the limit q3 → 0 can be carried out. In this limit it can be easily
shown that eq. (4.18) can be solved by the separation of variables technique.

This means that the wave function χ can be written as

χ(q1, q2, q3) = σ(q1, q2)p(q3) (4.19)

2The fact that the confining potential depends just on q3 is an hypothesis done to
simplify the problem.
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with the function p(q3) solution of the one-dimensional Schrödinger equation

−
∂2p

∂q23
+ Ṽ (q3)p = ε̃np (4.20)

and σ(q1, q2) solution of the following two-dimensional Schrödinger equation

−
1√
detg

2∑

i,j=1

∂

∂qi

(√
detg ḡij

∂σ

∂qj

)
−
(
T 2

4
−D

)
σ = (ε̃− ε̃n) σ (4.21)

where T = tr α and D = detα. Here ḡij is the ratio between the algebraic

complement of the element gij and detg. Eq. (4.21) can be written as

[
−
−→
∇2

q1,q2 + ṼT (q1, q2)
]
σ(q1, q2) = (ε̃− ε̃n)σ(q1, q2), (4.22)

where
−→
∇2

q1,q2 =
∂2

∂q21
+

∂2

∂q22
is the Laplacian operator in the (q1, q2) plane

while ṼT (q1, q2) = −
(
T 2

4
−D

)
is a topological potential in the sense that

it depends on the metric and curvature properties of the surface [172]. In

fact, it can be easily shown that T = −2M and D = G where M and G are

respectively the mean and Gauss curvature of the surface3. Eq. (4.21) has
been derived also in refs. [166] and [167]. Collecting all these formulas, the

probability of finding the particle in volume element dV reads

dP = |ψ(q1, q2, q3)|2 dV = |σ(q1, q2)|2 |p(q3)|2 dSdq3. (4.23)

3Let us recall [175] that, at each point of a regular surface S, the curvature radius
varies over a continuous set of values but always assumes a maximum and a minimum
value Rmax and Rmin. In correspondence, there are a minimum and a maximum value of
the curvature, R−1

max and R−1

min
respectively. The surface mean curvature at the given point

is defined as M =
1

2

(
1

Rmin

+
1

Rmax

)
while the Gauss curvature as G =

1

RminRmax

, so

that ṼT (q1, q2) = −
1

4

(
1

Rmin

−
1

Rmax

)2

. This shows that this potential has its minimum

in the points where the maximum and minimum curvature have their maximum difference,
and is zero for the plane and spherical geometries, for which Rmin = Rmax at each point.
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Since

∫
|p(q3)|2 dq3 = 1, the quantity |σ(q1, q2)|2 dS gives then the probability

of finding the particle on the surface element dS for arbitrary values of the

coordinate q3.

Let us stress that, provided that the coordinates system be well defined
(which depends on the particular considered surface) and the existence of

a potential which confines the particle in the neighbourhood of the surface
be assumed, the mathematical calculations up to eq. (4.18) are exact. The

actual approximation is in performing the limit q3 → 0 in eq. (4.18) and

separating, in this way, its solution as shown in eq. (4.19) (this corresponds
to the decoupling of the motion along the surface S from the motion along

the direction normal to it). It is worth pointing out other two important

points [172–174]. First, the equation for the surface wave function contains

the topological potential (as indicated previously) which, as we are going

to see, is able to confine the particle in the points of the surface where
the maximum and minimum curvature have their maximum difference. This

property is related just to the surface geometry and in this sense we can speak

about a new class of surface states. Second, it could be look as if by deriving
eq. (4.21) from eq. (4.18) we had switched from a three-dimensional system

to a two-dimensional one. This is actually wrong and, perhaps, it is just this

point the most interesting feature of topological surface states. If we had

started from a two-dimensional surface, eq. (4.22) would not have contained

the topological potential but just the two-dimensional Laplacian operator,
describing in this way a free particle in two dimensions4. This becomes even

clearer if we think that by performing the limit as q3 → 0 in eq. (4.18) after

performing the transformation (4.19), the topological potential comes out

4Let us note that the two-dimensional Hamiltonian would depend in this case just on the
surface metric properties (namely, on the gij ’s and their derivatives). This means that the
two-dimensional motion on two isometric surfaces (for which correspondent points can be
found with the same gij ’s) would be the same. Because the surface mean curvature is not in
general the same for isometric surfaces (which is instead true for the Gaussian curvature),
eq. (4.21) must somehow “remember” the three-dimensional nature of the problem. This
is a very important conceptual point which has been stressed also in refs. [176] (with a
great mathematical detail), [177] and, from the point of view of the quantum field theory,
in ref. [178].
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from the Hamiltonian part containing the derivatives of ψ with respect to q3,

reflecting the fact that its origin is related to the three-dimensional nature

of the problem.

However, we are obviously considering a first-order approximation (namely,

the limit q3 → 0), but this is enough to focus the main point, that is, a
curvature-dependent localization.

4.2 Surface states on a deformed quantum

wire

4.2.1 Theory

Let us consider the deformed quantum wire as in Fig. 3.3. As shown in

chapter 3, this surface can be represented by the parametric equation (3.6)

⎧
⎨

⎩

x = R(u) cosϕ
y = R(u) sinϕ

z = u

with, as in eq. (3.12),

R(u) = R0

[
1 + β exp

(
−

2u2

∆z2

)]
,

0 ≤ ϕ < 2π and −∞ < u < +∞. It is worth recalling that the parameters of

the surface are: R0 (the radius of the undeformed part of the wire), β (βR0

determines the extension of a wire bulge (β > 0) or that of a wire constriction
(β < 0)) and ∆z, which gives the extension of the deformed part along the

z direction.

In chapter 3 it was shown that if the wave function decays exponentially
outside the confining volume, localized states with energy in the mini-band

gap of the confined semiconductor can appear. Their wave functions are
localized along the z direction with the maximum on the bulge. Moreover,

the conduction and valence mini-band edges are raised or lowered on reducing

or increasing R0 without a significant dependence on the other geometrical
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parameters. The coexistence of these localized states together with extended

states has allowed a possible explanation of the long-standing problem related

to the large difference between the absorption and the emission energies found

in porous silicon. The photoluminescence quenching and red shift [179] in the

presence of oxygen have been described within the same model.
Now, the same structural model (see Fig. 3.3) together with equations of

sec. 4.1 is used to study the existence of topological surface states in confined

systems with a view, in particular, to the case of porous silicon.

For the surface given by eqs. (3.6) and (3.12), the matrixes g, h and α

defined respectively in eqs. (4.3), (4.8) and (4.10) are:

g =

∥∥∥∥∥∥∥∥

1

F2(u)
0

0 R2(u)

∥∥∥∥∥∥∥∥
, (4.24a)

h = F(u)

∥∥∥∥∥∥∥∥

−
d2R

du2
0

0 R(u)

∥∥∥∥∥∥∥∥
(4.24b)

and

α = F(u)

∥∥∥∥∥∥∥∥∥

F2(u)
d2R

du2
0

0 −
1

R(u)

∥∥∥∥∥∥∥∥∥

, (4.24c)

with

F(u) =

[

1 +

(
dR

du

)2
]− 1

2

. (4.25)

The two-dimensional differential equation (4.21) applied to this case has

terms with the second derivative with respect to ϕ and u and a term with

the first derivative with respect to u. This last term can be eliminated by

performing the substitution

σ(u,ϕ) =
t(u)√
RF

exp(imϕ)√
2π

(4.26)
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where it has been taken into account the fact that, because of the rotational

symmetry of the surface (see Fig. 3.3), the angular part of the wave function

is exp(imϕ)/
√
2π with m = 0,±1,±2, . . . and m! the angular momentum

of the particle along the z axis. The Schrödinger equation for t(u) now reads

−F2 d
2t

du2
+

[
−F2

(
dΓ

du
− Γ2

)
−

T 2

4
+D +

m2

R2

]
t(u) = (ε̃− ε̃n) t(u), (4.27)

with Γ = −
1

2RF
d (RF)

du
. It is interesting to observe that in this one-dimensional

Schrödinger equation the particle behaves as it had a position dependent ef-

fective mass F−2 > 1 in a topological potential given by

v(u) = −F2

(
dΓ

du
− Γ2

)
−

T 2

4
+D +

m2

R2
. (4.28)

Since
d (RF)

du
= −RT

dR

du
(4.29)

the topological potential (4.28) depends on the curvatures and on the deriva-

tive of the average curvature of S and has the asymptotic behaviour

lim
u→±∞

v(u) =
1

R2
0

(
m2 −

1

4

)
, (4.30)

so that the effective potential defined as

veff(u) = v(u)−
1

R2
0

(
m2 −

1

4

)
(4.31)

is zero asymptotically. It is easy to see that veff(u)R2
0 and F(u) are adime-

sional quantities satisfying the scaling rules

veff(u)R2
0 = V

(
β,

R2
0

∆z2
,
u

R0

)
, (4.32a)

1

F2(u)
= M

(
β,

R2
0

∆z2
,
u

R0

)
. (4.32b)
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With the introduction of the adimensional variables w = u/R0 and ζ =

R2
0/∆z2, the differential equation (4.27) becomes [172] (the symbol t(w) will

be used instead of t(wR0))

−
1

M(β, ζ, w)

d2t

dw2
+ V(β, ζ, w)t(w) = γ t(w) (4.33)

with

γ =

[
ε̃− ε̃n −

1

R2
0

(
m2 −

1

4

)]
R2

0 (4.34)

and

R0

∫ +∞

−∞

dwM(β, ζ, w)t2(w) =

∫

S

dS
√
detg |σ(u,ϕ)|2 = 1. (4.35)

Therefore, it is possible to find in the plane (ζ, β), with −1 ≤ β < +∞
and 0 < ζ < +∞, the region in which eq. (4.33) has localized states, i.e.

wave functions t(w) with finite norm localized where the potential V(β, ζ, w)
is negative. This can either occur in the bulge or in a bottleneck of the

deformed wire, as we are going to see in the next subsection.

Before going on a discussion of the results related to equation (4.33), it

is important to give the correct energy references. Although not explicitly

indicated in eq. (4.15), the energy reference is the bottom (top) of the bulk

conduction (valence) band. Let us consider first, from eq. (4.33), the case in

which the wire surface has no deformations, that is, β = 0 in eq. (3.12). The

eigenvalues are given by

ε̃surf = k2
z +

1

R2
0

(
m2 −

1

4

)
+ ε̃n + Ec (4.36)

where kz is the quasi-momentum along the surface and Ec is the bulk con-

duction band minimum. This equation gives the surface mini-band structure

which is analogous to the quantum wire mini-band structure [151]

ε̃bulk = k2
z +

Z2
n,m

R2
0

+ Ec (4.37)

where Zn,m is the n-th zero of the cylindrical Bessel function Jm(x) (hard wall

boundary conditions). There are two interesting points in eq. (4.36). The first
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is that each state is labelled by the three numbers n,m, kz reflecting the fact

that, since the beginning, a three dimensional space has been considered. The

second, and perhaps the most important, is that the surface mini-band edges

depend on the wire radius R0 as the quantum wire confinement mini-bands

do in equation (4.37). From eqs. (4.36) and (4.37) some conclusions can be
drawn as far as the mini-band alignments (kz = 0) is concerned. By assuming

that the eigenvalues ε̃n of the potential Ṽ (q3) in eq. (4.20) are negative, that

is, the potential V (q3) goes rapidly to zero going from the wire surface to

the centre, it is seen that the surface mini-band edge with m = 0 lies in the

gap of both the bulk and confined structures (Z1,0 = 2.4048), as sketched in

Fig. 4.2. The complete surface electronic structure which comprises localized

and delocalized surface states may have some of those states with energies

which are resonant with the volume confined ones. The actual volume and
surface electronic structure alignment would require a precise knowledge of

the potential V (q3). However, the prediction that charge carriers can quickly

and easily be transferred from volume to surface states (and vice-versa) may

have interesting consequences for both the optical and transport properties.

4.2.2 Results

The energy spectrum of the topological surface states discussed in the last

subsec. has been studied [172–174] by solving eq. (4.33) numerically with an

ordinary mid-point shooting method (see the appendix B for references). All

the calculated localization energies are measured from the respective mini-

band edge (4.36) and in the following the corresponding adimensional value

γ defined in eq. (4.34) will be used. This means that the actual value of the

localization energy is given by (!2/2m∗R2
0)γ or, if we measure R0 in Å and

take m∗/me = 0.2588 (spherical conduction effective mass used for porous

silicon, where me is the free electron mass), by 14.725γ/R2
0 eV.

Let us consider a bulge (β > 0) and fix m = 0. The calculation of the

ground-state energy shows that not every geometry can support a localized
state. More precisely, for any fixed value of ζ, it comes out that there exists a

minimum value βmin of β such that only if β > βmin a localized ground state

is obtained. In other words, it is possible to draw, in the plane (ζ, β), the
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wire

Localized

Localized

Bulk Surface
Quantum

(a) (c)(b)

Figure 4.2: A schematic drawing showing the alignment of: (a) bulk band struc-

ture, (b) quantum wire mini-band structure and (c) surface mini-band structure.

The straight lines in (b) and (c) indicate the presence of localized states, while the

arrows indicate the mini-band edge shifts with respect to the bulk band edges.

curve β = βmin which separates the region corresponding to those geometries
which support a localized ground state from the region corresponding to

geometries for which a localized state does not exist. This is shown in Fig.

4.3a. It is interesting to observe that, for a given wire radius R0, a decrease
of the bulge extension ∆z (corresponding to an increase of ζ) must be paired

by a corresponding decrease of its minimum relative depth βmin. As it has
already been stressed, the phase diagram of Fig. 4.3a shows that not all

geometries can support a localized surface state. Let us take, as an example,

porous silicon for which the geometries compatible with the light emission
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Figure 4.3: Existence diagram for: (a) the ground localized surface state for β > 0

(bulge) and m = 0; (b) the first excited localized surface state for β > 0 and

both m = 0 and m = ±1. All the pairs (ζ,β) belonging to the region above the

respective curves give a localized state. The first excited state with m = ±1 exists

for all positive values of ζ.

have already been determined (see chapter 3 and ref. [151]). In this case the

bulge dimensions are characterized by having ∆z ranging from 1.0 nm to 4.5

nm, R0 from 0.9 nm to 1.9 nm with 0.81 > ζ > 0.18 and 0.5 > β > 0.1.
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With this range of parameters it is seen from Fig. 4.3a that surface states

can exist in a restricted region around ζ ∼ 0.8.

The calculated ground-state energies withm = 0 as a function of ζ and for

several values of β are shown in Fig. 4.4a where it can be seen that the general

trend is towards an increase of the modulus of the localization energies on
increasing the overall bulge dimensions, that is, the surface curvature.

In the range 1.5 ≤ ζ ≤ 5.0 and 0.4 ≤ β ≤ 1.0 it has been found the

following interpolation formula, which reproduces numerical results of Fig.

4.4a (ground state with m = 0) with an error at most of 4%

γ = [a(β) + b(β)ζ]ζ, (4.38)

with

a(β) = 0.01287 + 0.14874β − 0.17673β2 + 0.16472β3, (4.39a)

b(β) = 0.0133− 0.09564β − 0.15285β2 − 0.12083β3. (4.39b)

The wave functions corresponding to the calculated energies are localized

on the bulge centre, the point of maximum curvature, as it will be shown in
a following figure. Moreover, it has been verified that if the limit R0 → +∞
for fixed ∆z and βR0 (that is, for given bulge dimensions as Fig. 3.3 shows)

is considered, the system energy decreases asymptotically towards a finite
value. This reflects the fact that in the shown limit the surface becomes an

open undulating plane (let us remember that a cylinder of infinite radius or,
equivalently, of null curvature is a plane).

The case of a constriction (−1 < β < 0) is particularly interesting because

it has been found that a localized state is formed for any value of both β

and ζ. For example, the localization energies for m = 0 and β = −0.4 as a

function of ζ have been calculated and compared with those of a bulge with

β = 0.4. The results show that the modulus of the localization energies on
a constriction is always bigger than the one on the corresponding bulge and

the surface state always exists, even for very small values of ζ. The bulge
with β = 0.4 cannot sustain a localized state when ζ < 1.0.

Let us now analyze the lowest energy state with m = ±1. The calculated

localization energies as a function of ζ for several values of β > 0 are shown
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Figure 4.4: Ground-state localization energies for m = 0 (a) and m = ±1 (b)

with β > 0 (bulge) as a function of ζ = R2
0/∆z2. The energies are measured from

the bottom of the respective mini-band. Surface localized states for m = ±1 are

formed also for ζ < 1.

in Fig. 4.4b. The are two interesting points here. The first is that a localized
state is always formed, whatever are the values of the geometrical parameters

β and ζ (this explains why in Fig. 4.3a an existence diagram for this state is

not shown). The second is that the modulus of localization energies are larger
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than those with m = 0, as a direct comparison with Fig. 4.4a immediately

reveals. States with higher values of m, in other words, are more localized

on the bulge. This result, which is apparently paradoxical if we think that

m! represents the z component of the angular momentum of the particle, is

related to the fact that the effective potential (4.28) naturally contains the
confinement contribution m2/R2(u) whose weight increases with m in such a

way to enlarge the energy difference between the mini-band edges (because

its asymptotic value is positive and given by m2/R2
0) and, at the same time,

make the potential deeper (because for a bulge the functional form of this

term is that of a potential well). To gain more insight on this question, the

square modulus of the lowest energy normalized wave functions for same

values of both β and ζ with m = 0 and m = ±1 have been calculated. The

results are shown in Fig. 4.5 where from the panels (a) and (b) it is seen
that, as expected, the wave function shrinks on increasing either ζ or β. The

same effect is shown in the panel (c) of the same figure where, given β and ζ,

the wave function localization increases upon going from m = 0 to m = ±1.

The richness of the surface electronic structure which is being studied is

testified by the existence, for a given m, of several excited states. For the

first excited state with both m = 0 and m = ±1, it has been calculated the

existence diagram in the (ζ, β) plane whose curves are shown in Fig. 4.3b.

The first excited state with m = 0 does exist only for ζ > 1 whereas the first

excited state with m = ±1 can be found for any value of ζ.

All the presented results show that on the surface of a deformed quantum
wire a very rich surface electronic structure comes out from the surface topol-

ogy. The consequences of the existence of such surface topological states are

numerous. For the optical properties, they may play the role of surface traps
or even of active centres for non radiative recombinations. For the transport

properties, the existence of both localized and delocalized states may induce a

surface channel for the AC electrical conductivity as it has been demonstrated
for porous silicon [157]. Moreover, it has been shown [180] that the resistivity

of a mesoporous silicon structure is several orders of magnitude higher than
that of the substrate, and this has been explained within a charged surface

traps model. Finally, because of the possibility of an easy charge transfer

between the quantum wire bulk and its surface layers, the surface chemical
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Figure 4.5: Square modulus of the ground-state normalized wave functions for

m = 0 and m = ±1 with different values of β and ζ.

reactivity can significantly be enhanced by making a nanostructured material

with a disordered surface very interesting for sensor applications.

Porous silicon is the nanostructured semiconductor for which the above
consideration may be of relevance. The light-emitting material is composed

of undulating wires, that is, a combination of both bulges and constrictions

whose surface may support localized states. With the geometrical parameters
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calculated in chapter 3 (see eqs. (3.13)) the localized ground surface states

with m = 0 on a bulge (β > 0) cannot exist or have an energy of a few

meV. For typical values of the parameters as R0 = 1.34 nm, ∆z = 2.5 nm

and β = 0.46 corresponding to an emission energy of 1.7 eV, the ground

state with m = 0 does not exist while for m = ±1 an energy of about −13
meV is found. If the same calculation for a constriction characterized by the

same parameters indicated above (apart from the value of β which changes

sign) is done, it is found for m = 0 a localization energy of about −15

meV. These results indicate that if one wants larger localization energies,

the overall bulge dimension must be increased (ζ > 1 in Fig. 4.4a). However,

it must be pointed out that porous silicon is a very heterogeneous material

whose nanostructures have a wide distribution of dimensions [138] with only

a small fraction of them emitting light [181]. Most of the materials have
nanostructures with dimensions which, in the considered structural model,

correspond to the range ζ > 1 and it is therefore in this part of the structure

that localized surface ground states may easily form. If, for example, R0 = 9

nm, ∆z = 2.5 nm (that is, ζ = 12.96) and β = 1.0 a ground state for m = 0

with energy of about −105 meV is found. These results suggest that in porous
silicon the formation of localized surface states of the type discussed here is

favoured in those nanostructures where the light emission is either absent or

very inefficient [172–174].
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4.3 Topological surface states on a deformed

plane

The geometry studied in the previous section can be of interest, as already

pointed out, because materials such porous silicon appear just as a collection

of deformed quantum nanowires. Nevertheless, many experimental devices

which can be commonly encountered are constituted by an interface between

two different materials, such as the Si/SiO2 interface. In this case the prob-
lem of the topological surface states can become of particular interest. In

fact, on one hand interface properties can give rise just to an accumulation

layer of electrons or holes near the interface itself [165, 171]. On the other

hand, the interface roughness which is experimentally observed and mea-

sured [171] represents a deviation from the ideal, plane surface, which means

that the surface which separates the two materials has a curvature that is

not constant.

In this section topological surface states which appear on the surface of
a deformed plane are investigated, by assuming that the deformation is of

Gaussian shape.

4.3.1 Theory

Let us consider the surface with parametric equations

⎧
⎨

⎩

x = ρ cosϕ

y = ρ sinϕ

z = z0 exp(−kρ2)

, (4.40)

with 0 ≤ ρ < +∞ and 0 ≤ ϕ < 2π. z0 and k are the two parameters

which characterize the surface deformation. A simple sketch of this kind of

surface is shown in Fig. 4.6. For this surface the matrixes g, h and α become
respectively:

g =

∥∥∥∥∥∥∥∥

1

G2(ρ)
0

0 ρ2

∥∥∥∥∥∥∥∥
, (4.41a)
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Figure 4.6: The deformed plane surface parameterized in eq. (4.6). z0 is the de-

formation height while ∆z =

√
2

k
can be used as a measure of its extension along

the plane.

h = −2kz0 exp(−kρ2)G(ρ)

∥∥∥∥∥∥

1− 2kρ2 0

0 ρ2

∥∥∥∥∥∥
(4.41b)

and

α = 2kz0 exp(−kρ2)G3(ρ)

∥∥∥∥∥∥∥∥

1− 2kρ2 0

0
1

G2(ρ)

∥∥∥∥∥∥∥∥
, (4.41c)

with
1

G2(ρ)
= 1 + 4k2z20ρ

2 exp(−2kρ2). (4.42)

As for the deformed cylindrical wire, it is possible to put the solution of eq.

(4.21) in the form:

σ(ρ,ϕ) =
1

√
ρ G(ρ)

t(ρ)
exp(imϕ)√

2π
(4.43)

with m = 0,±1,±2, . . . . The ϕ-dependence of the wave function takes into

account the rotational symmetry around the z axis, which means that all the
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eigenstates of the full Hamiltonian are eigenfunctions of the z component of

the angular momentum as well. Moreover, the extra initial factor has been

introduced in such a way that the term of eq. (4.21) containing the first

derivative of the wave function with respect to ρ disappears, leading to the

Schrödinger-like equation:

−G2 d
2t

dρ2
+

[
−G2

(
dΩ

dρ
− Ω2

)
−

T 2

4
+D +

m2

ρ2

]
t(ρ) = (ε̃− ε̃n)t(ρ) (4.44)

where Ω(ρ) = −
1

2ρ G(ρ)
d(ρG)
dρ

. Therefore the motion of the particle confined

on the surface is subjected to the potential

v(ρ) = −G2

(
dΩ

dρ
− Ω2

)
−

T 2

4
+D +

m2

ρ2
. (4.45)

It is interesting to note that the particle is characterized by an effective mass
G−2 < 1. Differently from the case of the deformed cylindrical quantum wire,

the potential (4.45) is zero asymptotically (namely, as ρ → +∞). If we set

w0 =
√
kz0 and w =

√
kρ, it can be easily seen that the following scaling

rules are satisfied:

v(ρ) = kV(w0, w), (4.46a)
1

G2(ρ)
= M(w0, w), (4.46b)

where V and M are two adimensional functions. Eq. (4.44) becomes (the

symbol t(w) will be used instead of t(w/
√
k))

−
1

M(w0, w)

d2t

dw2
(w) + V(w0, w)t(w) = γt(w) (4.47)

where γ = (ε̃−ε̃n)/k. In this case the adimensional differential equation (4.47)
depends just on one parameter (namely, w0). Eq. (4.47) must be solved with

the normalization condition

1√
k

∫ +∞

0

dwM(w0, w)t
2(w) =

∫

S

dS
√
detg |σ(ρ,ϕ)|2 = 1. (4.48)
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4.3.2 Results

The main results obtained for curvature-induced localization on deformed

interfaces are presented here. Because the main points have already been

explained for the deformed wire (subsec. 4.2.2), less details will be given.

In Fig. 4.7 the adimensional energies γ (see above) obtained with m = 0

are shown as a function of w2
0. Let us note that the deformation aspect ratio

can be defined as δ = z0/∆z = w0/
√
2. It is seen that the modulus of the

localization energy increases with w0 or, equivalently, with the deformation
aspect ratio. Moreover, several excited states appear, even if for each state

there is a critical aspect ratio value below which it disappears.

The localized wave function square modulus is shown for the ground state

with m = 0 and for several values of w0, in Fig. 4.8. It is clear that the surface

state localization increases with the aspect ratio.
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Figure 4.7: Adimensional energy for the ground and the first four excited states

with m = 0. The increase of the modulus with w0 clearly comes out.



138 Topological surface states

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,4 0,8 1,2 1,6 2,0
0,0

0,1

0,2

0,3

0,4

0,5

0,6

 w2

0
 = 5.0

 w2

0
 = 4.0

 w2

0
 = 3.0

 w2

0
 = 2.0

|σ|2

w

Figure 4.8: Square modulus of the ground-state normalized wave functions for

m = 0 with different values of w0.

Finally, let us note that for the deformed wire localized states have been

found also with m = ±1. It has been shown that for a given geometry the

corresponding wave functions are more localized than those with m = 0. In

this case no localized states with |m| ≥ 1 are found. This is related to the fact

that the contribution to the potential (4.45) given by the term containing m

tends to push the particle away from the top of the deformation of Fig. 4.6

(therefore, in this case a repulsive contribution is obtained, differently from

the case of the deformed wire in which this contribution is attractive).
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4.4 Topological surface states on ellipsoid quan-

tum dots

In this section it is shown that topological surface states can arise also on

an ellipsoid closed surface [120], as one would expect because of their very

general nature.

4.4.1 Theory

The surface curvilinear coordinates (Θ,ϕ) suitable to describe an ellipsoid

surface are defined in eq. (2.1). Let us remember that we are considering an

ellipsoid with rotational symmetry around the z axis, that c and a are the
semi-axes along the z axis and in the x-y plane respectively, that χ = c/a

represents their ratio and that 0 ≤ Θ ≤ π, 0 ≤ ϕ < 2π.

For this surface the matrixes g, h and α become respectively:

g =

∥∥∥∥∥∥∥∥

1

H2(Θ)
0

0 a2 sin2 Θ

∥∥∥∥∥∥∥∥
, (4.49a)

h = acH(Θ)

∥∥∥∥∥∥

1 0

0 sin2 Θ

∥∥∥∥∥∥
(4.49b)

and

α = −cH(Θ)

∥∥∥∥∥∥∥∥

aH2(Θ) 0

0
1

a

∥∥∥∥∥∥∥∥
, (4.49c)

with
1

H2(Θ)
= a2 cos2 Θ+ c2 sin2 Θ. (4.50)

Similarly to the previous cases, it is possible to put the solution of eq. (4.21)

in the form:

σ(Θ,ϕ) =
1

√
a sinΘ H(Θ)

t(Θ)
exp(imϕ)√

2π
, (4.51)
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which leads to the Schrödinger-like equation:

−H2(Θ)
d2t

dΘ2
+

[
−H2(Θ)

(
dΞ

dΘ
− Ξ2

)
−

T 2

4
+D +

m2

a2 sin2 Θ

]
t(Θ) =

(ε̃− ε̃n)t(Θ) (4.52)

where Ξ(Θ) = −
1

2 sinΘ H(Θ)

d(sinΘ H)

dΘ
. Therefore the motion of the parti-

cle confined on the surface is subjected to the potential

v(Θ) = −H2

(
dΞ

dΘ
− Ξ2

)
−

T 2

4
+D +

m2

a2 sin2 Θ
. (4.53)

Even in this case it can be seen that the particle is characterized by an

effective mass H−2 < 1 and that scaling rules are satisfied, as follows:

v(Θ) =
V(χ,Θ)

c2
, (4.54a)

1

H2(Θ)
= c2M(χ,Θ) (4.54b)

where V and M are two adimensional functions. Eq. (4.52) becomes [120]:

−
1

M(χ,Θ)

d2t

dΘ2
+ V(χ,Θ)t(Θ) = γt(Θ) (4.55)

where γ = (ε̃− ε̃n)c2. As for the deformed plane, the adimensional differential

equation (4.55) depends just on one parameter (namely, χ). The normaliza-
tion condition reads, in this case:

c2
∫ π

0

dΘM(χ,Θ)t2(Θ) =

∫

S

dS
√
detg |σ(Θ,ϕ)|2 = 1. (4.56)

Because as χ→ 1 the solutions of eq. (4.55) are the associated Legendre
functions (as it can be easily shown), it is possible to label eigenvalues and

eigenfunctions with two indexes l and m with m = 0,±1,±2, . . . and l =

|m|, |m|+1, |m|+2, . . . (γ ≡ γl,m, t(Θ) ≡ tl,m(Θ) and σ(Θ,ϕ) ≡ σl,m(Θ,ϕ)).
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4.4.2 Results

Eq. (4.55) has been numerically solved [120] by using a mid-point shooting

method. In Fig. 4.9a the calculated energy spectrum is shown. The ground
state with l = m = 0 and the first two excited states (m = 0, l = 1, and

l = |m| = 1) are shown. These last two are degenerate for χ = 1, in which

case the ellipsoid degenerate to a sphere and the wave functions become

the spherical harmonics Y m
l (Θ,ϕ) with energies !2l(l + 1)/2m∗R2 (if R is

the sphere radius). In particular for χ = 1 the ground state has zero energy
which corresponds to the fact that the topological potential, being vanishing,

is unable to localize the wave function along the surface. This confirms the

topological nature of these states, namely their dependence on the system

geometry.

The calculation of the ground-state energy has been performed also by

solving eq. (4.55) with the variational method. An inspection of the effective

potential (4.53) suggests that a good choice of the ground-state trial wave
function can be

t̃0(Θ) =
√
(sinΘ) exp(Λ cos2 Θ) (4.57)

where Λ is a variational parameter which must be determined by the con-

dition of minimum energy. In Fig. 4.9b it is shown the ground-state energy

(solid line) and the value of the variational parameter (dashed line) as func-
tions of χ which have been determined in this way. This ground-state energy

always represents, as it has to be, an upper bound to the exact one (shown

in Fig. 4.9a, black curve) and is in very good accordance with it.

It is of interest to compare the energies of volume confined states with

those which are surface localized. By comparing the ground-state energy for

the volume confined states (see Figs. 2.4 and 2.5) and surface states (see Fig.

4.9a) it can be seen that these last ones are always (that is, for any χ) below

the first ones, confirming what it has been found for the completely different

geometry of the deformed quantum wire with an not limited surface.

In Fig. 4.10 it is shown the surface ground-state wave function calculated
for χ = 4.0 (a), χ = 2.5 (b) and χ = 0.5 (c). It can be seen that for values of

χ > 1 the surface state tends to localize at the positions Θ = 0 and Θ = π

while if χ < 1 we find a state localized at Θ = π/2. This means that the “Θ-
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Figure 4.9: (a) The topological surface states energy is shown for the ground

state l = m = 0 and the first two excited states l = 1, m = 0 and l = |m| = 1.

(b) The ground-state energy as calculated by using the variational method (solid

line) and the corresponding variational parameter (dashed line) are shown.

localization” of the surface state is opposite to that of the volume confined
state. Therefore, the possibility of a charge transfer from the bulk to this

particular class of states should be less efficient than on deformed quantum

wires (see subsec. 4.2.2).
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Figure 4.10: Surface ground-state wave functions for χ = 4.0 (a), χ = 2.5 (b) and

χ = 0.5 (c). The particle localization as a function of χ behaves in the opposite

way to volume confined ground state.





Conclusions

In this thesis work shape-induced effects in nanometric systems have been

investigated. The main point is that as the system dimensions are reduced

confinement effects become relevant, giving rise to a “new” physics whose na-

ture is strongly related to quantum mechanics. While size effects are widely

investigated in the literature, not very much work has been done in estab-

lishing if and how the shape of the nanostructure can modify the relevant
physical properties. This point becomes particularly interesting if we con-

sider that very recently, as shown in chapter 1, the fabrication of shape-

controlled nanocrystals has been experimentally realized. The applications

can be very relevant, mainly for all those devices which require, for example,

an anisotropic optical response.

First, ellipsoid quantum dots have been investigated (chapter 2). The

effective-mass Schrödinger equation has been exactly solved, showing the
significant effect of the shape on the single-particle spectrum. The loss of

symmetry with respect to the spherical quantum dot determines the removal

of degenerations as well as the appearance of accidental degenerations (en-

ergy level crossing) absent in the spherical geometry. The geometrical limits

of very long quantum rods or very oblate spheroids have been checked, show-
ing the complete accordance with the limit structures (that is, the cylindrical

quantum wire and the slab respectively). The inclusion of dielectric effects

shows that as far as the infrared transitions are considered, while they signif-
icantly modify the single-particle energies, they do not affect their differences

(namely, the transition energies) which are the relevant quantities from the
experimental point of view.

The effect of the anisotropy has been investigated also with respect to
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the optical transitions, showing as selection rules and oscillator strengths are

modified in such a way that the radiation polarization along the major axis

always becomes the more relevant one.

From all these results, it comes out that the fabrication of shape-controlled

ellipsoid quantum dots can have fundamental applications. First, the infrared

transition energies can be tuned as a function of both the dot shape and di-

mensions (see, for example, Fig. 2.8), giving the possibility of tuning the
system resonant frequency even keeping constant the dot volume. In other

words, asymmetric quantum dots can be realized, with the infrared absorp-

tion peak at any infrared wavelength. Second, the control on the ellipsoid

aspect ratio allows the fabrication of nanostructures which exhibit light emis-

sion and absorption spectra dependent on the radiation polarization. The

study presented in this work has been focused on the infrared spectrum,

for which experimental data are in practice not yet available (even if there

are some experimental evidences, such in Fig. 1.19, where the splitting of

the first allowed infrared transition peak could be attributed just to shape

effects). However, it must be stressed that experiments done on the pho-

toluminescence emission of anisotropic dots have given a clear evidence for

such applications. In particular, single-molecule luminescence spectroscopy

measurements on CdSe quantum rods have shown a sharp transition from

non-polarized to purely linearly polarized emission if the ellipsoid aspect ratio

is varied from 1 to 2, making these nanocrystals ideal for many orientation-

sensitive applications [182]. In the same way, it has been shown how by fixing

the minor axis a and changing only the major axis c, the emission wavelength

can be tuned over the same range as for spherical quantum dots, while the

emission from each individual CdSe quantum rod is highly linearly polarized

in contrast to the plane-polarized emission from spherical dots [183].

As the dot dimensions increase, many-particle effects can become inter-

esting and important as well, mostly if we think to how much work has
been done both experimentally and theoretically to understand the single-

electron features of quantum dots (addition spectra, I − V characteristics,
etc.). Therefore, just to have an indication on how the shape could modify

these properties, the two-electron system has been investigated, within both

a perturbative and a variational scheme. This last one has allowed the in-
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clusion of the electron-electron (Coulomb and dielectric) correlation effects

(not present in the perturbative scheme) and their study as a function of

the shape. It has been shown that both the energy spectrum and the two-

electron spatial configuration have a substantial change on varying the dot

anisotropy. In particular the energy necessary to add a second electron to
the dot changes in a quite relevant way. This could be of interest, as soon as

the possibility of investigating addition spectra of anisotropic quantum dots

will be experimentally available.

The investigation of shape effects can be extended also to open quantum

dots, namely to confined states which appear if, for example, quantum wires

with a deformation are considered. This has been shown in chapter 3, with
the aim of explaining some optical properties of porous silicon which exper-

imentally appears just like a collection of wires and dots. By studying an
average nanostructure given by a straight cylindrical wire with a Gaussian

deformation, some very interesting effects come out. The method used for

such a study is based on a variational approach which is in principle applica-
ble to arbitrarily shaped nanostructures and can account for the interaction

with an external environment as well.

The main point is that, if suitable geometrical parameters of the defor-

mation are considered, confined states (completely absent in the straight

wire) within the bulge appear. Their presence can give a possible, realistic

explanation of how all the porous silicon optical spectra show a significant

shift between absorption and emission. Absorption can occur between the

mini-bands which correspond to delocalized states and are characterized by

a large density of states (let us note that they are basically the same as the

straight wire). The relaxation towards localized states in the mini-band gap

and the following radiative recombination gives rise to an emission energy

peak which is lower than the absorption one. This explains the large Stokes

shift which is experimentally observed.

The presence of a localized wave function within the deformation together

with the finite barrier at the nanostructure boundary makes porous silicon
very interesting for sensor applications. In fact, the wave function tail outside

the nanostructure makes the deformation very reactive in presence of an

external environment. This has been investigated, showing how both the
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photoluminescence quenching and red-shift in presence of oxygen (which are

experimentally observed phenomena) can be accounted for. In this sense,

shape effects become relevant in the sensor application of such systems.

Finally, the presence of structural deformations has been shown to give

rise to a new kind of surface states (chapter 4), with topological nature. The
motion of a particle in the neighbourhood of a deformed surface can be char-

acterized by the presence of quantum states localized on the deformation.

It is not clear at the moment how such states could be observed and/or re-

produced experimentally. However, the possibility of surface shape-induced

localization can be of interest because the reactivity towards an external en-

vironment as well as the optical and transport properties of the system could

change because of the presence of such states. Besides, it must be pointed

out that the miniaturization of transistor devices down to nanometric scale
requires the absence of surface defects of any nature, to ensure a good device

efficiency. This study could bring out that also defects extended over many

lattice constants can worsen the performances of such devices in presence

of surfaces not flat enough. Finally, let us cite as a possible application of

such study the interpretation of some aspects of catalysis phenomena, such
as their enhancement near rough surfaces [171,184].



Appendix A

The effective-mass

approximation

The theoretical treatment of quantum confinement of electrons and holes

within nanostructures can be performed by following several schemes, each

one with its advantages and drawbacks. A very common point of view as-

sumes as a starting point the bulk material band structure and describes the

electric and optical properties of the material by accounting for the effects of
the periodic crystalline potential and of the many-body interactions within

the crystal just by a renormalization of the particle mass. This corresponds to

the assumption that only the zone centre of the energy bands of the bulk ma-
terial significantly contributes to determine the material properties and that

near the centre these bands can be approximated with a quadratic dispersion
law. Within this scheme, which is the one used in this thesis work, quantum

confinement in nanostructures can be described as a confining potential in

which the particle moves with a renormalized mass.

There are obviously other approaches, which start from an atomistic de-

scription and simulate the lattice atoms arrangement within the nanostruc-
ture. If dimensions small enough are considered, the number of surface atoms

becomes comparable with the total number of atoms contained in the struc-
ture. In this case the description starting from the bulk material band struc-

ture is expected to fail and the microscopic arrangement of the lattice atoms

must be properly taken into account, by including strain and surface effects,
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which are negligible for large structures.

In sec. A.1 the perturbative k⃗ · p⃗ method is described, showing how the

band structure of a given material can be calculated around a band extremum
point. This leads to the so-called effective-mass approximation, which as al-

ready stressed above consists in accounting for the microscopic lattice struc-

ture just by a mass renormalization.

If, in addition to the crystalline potential, an external potential is present,

the particle motion can be studied within the envelope wave functionmethod,

described in sec. A.2. It is shown how by using both the effective-mass and

the envelop wave function approximations, a very simple equation is reached,

which describes a particle with a renormalized mass moving just in the ex-

ternal potential.

Finally, some remarks are done in sec. A.3 about the use of such approx-
imations for the study of nanostructures.

A.1 The k⃗ · p⃗ method

It is known that the many-body Hamiltonian of an “ideal” lattice can be

treated by reducing it to a single-particle Hamiltonian with a self-consistent

potential which contains the contributions arising from the interaction of

each electron with both the periodic potential of the crystal lattice and the

other electrons. The details of the approximations involved in such a picture

can be found in many standard solid state physics textbooks [26, 132] and

will not be discussed. Here it is enough to stress that it is possible to derive

a single-particle Schrödinger equation which describes the motion of each

electron, as follows:

[
p2

2me
+ V (r⃗)

]
ψ(r⃗) = Eψ(r⃗), (A.1)

where V (r⃗) is the self-consistent mean potential which has the same peri-
odicity of the crystal lattice. The Hamiltonian on the left hand of eq. (A.1)

(which will be referred to as the crystalline Hamiltonian Hcr) is invariant

for translations generated by any vector belonging to the crystal lattice. By
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symmetry considerations it can be shown that the Bloch’s theorem holds,

that is, the most general solution of eq. (A.1) can be written has

ψn,⃗k(r⃗) =
1√
V

exp(i⃗k · r⃗)un,⃗k(r⃗), (A.2)

where k⃗ ranges through the first Brilluoin zone (according to the Born-von

Karman boundary conditions) and un,⃗k(r⃗) is a periodic function with the
same period of the crystal lattice. The wave function (A.2) has been nor-

malized for the crystal volume V . The quantum number n labels the energy
bands. For each fixed n, the quantum states within the same band are labelled

with k⃗. By substituting eq. (A.2) in the single-particle Schrödinger equation

(A.1), it is easy to show that the periodic part of the Bloch’s function un,⃗k(r⃗)
must satisfy the following equation:

[
p2

2me
+

!k⃗ · p⃗
me

+
!2k2

2me
+ V (r⃗)

]

un,⃗k = En,⃗kun,⃗k . (A.3)

At k⃗ = (0, 0, 0) eq. (A.3) becomes

[
p2

2me
+ V (r⃗)

]
un,⃗0 = En,⃗0un,⃗0 . (A.4)

Because un,⃗0 is a periodic function, this equation is easier to solve than the

general single-particle equation. Its solutions form a complete orthonormal

set of basis functions. If it is assumed that En,⃗0 and un,⃗0 are known, the

additional terms
!k⃗ · p⃗
me

and
!2k2

2me
on the left hand of eq. (A.3) for a generic

wave vector k⃗ can be treated perturbatively by using either non-degenerate

or degenerate perturbation theory. This is known as k⃗ · p⃗ method. The same

procedure can be followed by writing eq. (A.3) around any point k⃗0, provided
that the complete set of eigenfunctions relative to this wave vector or at least

the matrix elements on this basis of p⃗ can be calculated. In this way the
crystal band structure around any point in the Brilluoin zone can be known.

Let us consider a band which has an extremum around k⃗ = 0 and which is

not degenerate at this point. For example, this is the case of the conduction
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band minimum of direct-gap semiconductors such as CdSe and CdS. By

using the non-degenerate perturbation theory both the eigenfunctions un,⃗k

and the eigenvalues En,⃗k at a given point k⃗ near to the band extremum

can be expanded respectively to the first and second order in k using the

unperturbed wave functions un,⃗0 and eigenvalues En,⃗0. We get

un,⃗k = un,⃗0 +
!

me

∑

n′≠n

〈
un,⃗0

∣∣ k⃗ · p⃗
∣∣un′ ,⃗0

〉

En,⃗0 − En′ ,⃗0

un′ ,⃗0, (A.5)

En,⃗k = En,⃗0 +
!2k2

2me
+

!2

m2
e

∑

n′≠n

∣∣∣
〈
un,⃗0

∣∣ k⃗ · p⃗
∣∣un′ ,⃗0

〉∣∣∣
2

En,⃗0 − En′ ,⃗0

= En,⃗0 +
!2

2

3∑

i,j=1

(
1

m∗

)

ij

kikj, (A.6)

where in the eigenvalues expression the terms linear in k⃗ are null because
k⃗ = 0⃗ represents an extremum point. The reciprocal effective-mass tensor

defined as

(
1

m∗

)

i,j

=
δi,j
me

+
1

m2
e

∑

n′≠n

{
[〈
un,⃗0

∣∣ p⃗i
∣∣un′ ,⃗0

〉 〈
un′ ,⃗0

∣∣ p⃗j |un,0⃗⟩

+
〈
un,⃗0

∣∣ p⃗j
∣∣un′ ,⃗0

〉 〈
un′ ,⃗0

∣∣ p⃗i
∣∣un,⃗0

〉] 1

En,⃗0 − En′ ,⃗0

}

(A.7)

has been introduced1. It describes the properties of the n-th band near the

point k⃗ = 0. Its actual form depends on the crystal structure. Anyway, some

remarks can be done. For cubic crystals, symmetry considerations show that
the inverse mass tensor becomes:

(
1

m∗

)

i,j

=

(
1

me
+

2

m2
e

∑

n′≠n

∣∣〈un,⃗0

∣∣ p⃗
∣∣un′ ,⃗0

〉∣∣2

En,⃗0 − En′ ,⃗0

)

δi,j =
1

m∗
δi,j, (A.8)

1The additional index n should be appended to indicate the band which the tensor is
referred to. It is omitted for simplicity of notation.
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that is, it is diagonal. The effective mass m∗ of the n-th band depends on the

matrix elements
〈
un,⃗0

∣∣ p⃗
∣∣un′ ,⃗0

〉
and the distance between the considered band

and all the other ones. However, the main contribution to the effective mass at

a given extremum arises from the nearest band. In particular, for a minimum

point the nearest band is below the considered one (that is, En′ (⃗0) < En(⃗0))
and a positive mass is obtained. On the contrary, for a maximum point a

negative electronic mass is obtained (positive if the description in terms of
holes is used). This explains qualitatively why insulators with small energy

gaps have small effective masses and vice-versa.

The extension of this method to the calculation of the band dispersion
near a degenerate or a nearly degenerate band extremum is also possible but

will not be discussed here (see, for example, ref. [185]).

A.2 The envelope wave function approxima-

tion

In the previous section it has been shown that if the electronic energy lev-

els around a band extremum point are considered, it is possible to obtain a

quadratic dispersion law for that band by defining an effective-mass tensor.

Moreover, for crystals with particular symmetries this tensor is diagonal and

therefore it is possible to define an effective electronic mass. In this section

it is shown that, if the motion in a slowly varying external potential is con-

sidered, the electron motion can be described as that of a free particle in the

same potential, the effect of the crystal periodic potential being taken into

account by just assigning to this particle the electron effective mass.

Let us consider an electron moving inside a crystal with an additional

potential U(r⃗). The solution of the Schrödinger equation

[Hcr + U(r⃗)]ψ(r⃗) = Eψ(r⃗) (A.9)

can be found by expanding the function ψ(r⃗) over the basis of the Bloch’s
functions, as follows:

ψ(r⃗) =
∑

n,⃗k

Cn,⃗kψn,⃗k. (A.10)
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By considering that ψn,⃗k is an eigenfunction of Hcr with eigenvalue En(k⃗),

eq. (A.9) becomes:

En,⃗kCn,⃗k +
∑

n′ ,⃗k′

< n, k⃗|U |n′, k⃗′ > Cn′ ,⃗k′ = ECn,⃗k, (A.11)

with

< n, k⃗|U |n′, k⃗′ >=
1

NV0

∫

V0

dr⃗ exp
[
i(k⃗′ − k⃗) · r⃗

]
u∗
n,⃗k

(r⃗)U(r⃗)un′ ,⃗k′(r⃗).

(A.12)

Here V0 is the volume of the lattice primitive cell and N the number of

primitive cells contained in the crystal volume V (V = NV0). The external

potential can be expanded in a Fourier series as follows:

U(r⃗) =
∑

K⃗

ŨK⃗ exp(iK⃗ · r⃗). (A.13)

By supposing that this potential is a slowly varying function of r⃗ (with respect

to the crystal lattice period), the sum (A.13) can be truncated at small values

of |K⃗|. Under this hypothesis it is possible to show [186] that eq. (A.11)

becomes:

En,⃗kCn,⃗k +
∑

K⃗

ŨK⃗Cn,⃗k−K⃗ = ECn,⃗k. (A.14)

This last equation does not mix different bands (that is, if the external po-

tential is sufficiently smooth it cannot induce inter-band transitions), so that

the sum over n in eq. (A.10) can be neglected. Finally, by introducing the

envelope wave function

Fn(r⃗) =
1√
V

∑

k⃗

exp(i⃗k · r⃗)Cn,⃗k, (A.15)

it can be shown that eq. (A.14) becomes:
[
En(−i∇⃗) + U(r⃗)

]
Fn(r⃗) = EFn(r⃗). (A.16)

The last equation shows that for sufficiently smooth external potentials, it

is possible to find the electronic spectrum by treating !k⃗ exactly has the
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quantum mechanics momentum operator (which means that the classical

Hamiltonian - quantum mechanics correspondence is obtained with the pre-
scription that !k⃗ → −i!∇⃗). In the effective-mass approximation we have

En,⃗k = En,⃗0 + !2k2/2m∗, so that eq. (A.16) becomes:

[
−

!2

2m∗
∇⃗2 + U(r⃗)

]
Fn(r⃗) =

[
E − En(⃗0)

]
Fn(r⃗), (A.17)

which is just the Schrödinger equation of a particle of mass m∗ moving in
the external potential U(r⃗). In the same approximation eq. (A.10) becomes

ψ(r⃗) ≃
1√
V

∑

k⃗

Cn,⃗k exp(i⃗k · r⃗)un,⃗0(r⃗) = Fn(r⃗)un,⃗0(r⃗). (A.18)

This means that in this case the effect of the external potential on the electron

wave function is the modulation of the Bloch’s function un,⃗0(r⃗) with the

function Fn(r⃗). From eq. (A.18) the normalization condition for this function

is

∫
dr⃗ |F (r⃗)|2 = 1.

A.3 Some remarks about the study of nanos-

tructures

The simplest way of describing the motion of electrons and holes within a
nanostructure is to assume that the quantum confinement arises from an

infinite potential well (hard wall boundary conditions)

V (r⃗) =

{
0 inside the nanostructure

+∞ outside the nanostructure
. (A.19)

If S indicates the nanostructure surface, the presence of the potential (A.19)

corresponds to solving the effective-mass Schrödinger equation (A.17) with

the boundary condition F (r⃗)|r⃗∈S = 0. This can be easily done for geometries
which allow the separation of this equation. Typical examples have been

shown in chapter 2, where the solutions for a cylindrical quantum wire (eqs.

(2.62)), a slab (eqs. (2.63)), a spherical quantum dot (eqs. (2.19)) and an
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ellipsoid quantum dot (eqs. (2.18)) calculated within this scheme have been

given.

Many other theoretical models based on the effective-mass approxima-

tion have been done for investigating the single and many particle features
of quantum confinement in low-dimensional structures (see references at the

beginning of chapter 2). Extensions of the effective-mass approximation for

nanostructures with a degenerate valence band have also been done [118,119]
as well as many band effects (which lead to a non-parabolic energy spectrum)

have been investigated [187,188] in the framework of the Kane’s model [189]2.

Finally, generalized boundary conditions for the envelope wave function have

been done, to take into account the presence of interface states at the quan-

tum dot surface [190, 191]. However, it must be stressed that if too small
dimensions are considered, the effect of the surface becomes very relevant.

In this case an atomistic description is needed, because the simpler effective-

mass approximation, which starts from the bulk crystal band structure, fails.

One of the main reasons is that for small dimensions high confinement ener-

gies are achieved. This means that energy states far from the Brilluoin zone

centre are involved, and the effect of band non-parabolicities are relevant. In

this case an overestimation of the confinement energy is usually achieved [16].

Moreover, the effect of inter-facial strain and surface states leads to inter-

band coupling and wave function decay outside the nanostructure, which

can be properly described only by using an atomistic approach [192, 193].

The study of nanostructures where such effects make the effective-mass ap-

proximation failing can be done by using several approaches (see also ref. [25])

such as

2In particular, it has been shown that it is possible to analytically take into account
the finite barrier at the nanostructure boundary and the non-parabolicity (valence- and
conduction-band mixing). It comes out that for either quantum wells deep enough or large
nanostructure dimensions the electron envelop wave function is null at the boundary, as in
the parabolic single-band model used in this thesis. Moreover, a self-consistent equation
is derived, which gives the corrections to the confined electrons energy levels with respect
to the simpler effective-mass approximation, due to the conduction band non-parabolicity.
These corrections are size-dependent. If a spherical quantum dot with radius R > 5 nm
is considered, it is found that the single-electron ground-state energy varies at most of a
few meV.
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• non-local pseudo-potential semi-empirical method [133,134,194–198],

• local pseudo-potential empirical method [199–202] or empirical tight-

binding method [203–210] which assume the transferability of the bulk-

band structure parameters to the nanostructure,

• ab initio pseudo-potential methods [211–214],

• Wannier functions approach [215–217],

etc. The details of the advantages and drawbacks of each of these methods
will not be treated here.

In this thesis work the effective-mass approximation is widely used, with

the awareness that if on one hand this approach has the highest degree of
flexibility, on the other hand care must be taken in choosing the lowest nanos-

tructure dimension tractable within this scheme. However, it must be stressed

that mainly conduction band electrons properties have been studied, which

gives a wider applicability of the effective-mass approximation, the main

problems arising from confined states near the degenerate top valence band.
Moreover, the study which has been done is mainly focused in bringing out

how the nanostructure spectrum changes in presence of a deformation, rather

than bands mixing and degeneracy effects which have already been studied

by many authors and are not of interest here. An all inclusive calculation,

most if applied to nanostructures with a large number of atoms, even if in

principle possible, would be very demanding and perhaps give, for the di-

mensions which have been considered, results not very different from the

ones which have been shown.





Appendix B

The Schrödinger equation in

spheroidal coordinates

In this appendix some more details about the solution of the Schrödinger

equation in spheroidal coordinates are given. First, mathematical aspects

will be underlined. Second, a brief discussion about the numerical problems

involved in the determination of the electronic confined spectrum in ellipsoid

quantum dots will be presented.

B.1 Some mathematical aspects

The separation of the Schrödinger equation in prolate spheroidal coordinates

leads, as seen in subsec. 2.1.1, to a radial equation (eq. (2.10a)) and an angu-

lar equation (eq. (2.10b)). They are formally equivalent but must be solved
in different ranges of the respective variables, which means that the radial

equation involves the behaviour of the solution for ξ ranging between the sin-

gular point +1 and +∞ while the angular equation involves the behaviour of

the solution for η ranging between the two singular points −1 and +1. These

equations are coupled by both the separation constant A and h (proportional

to the eigenvalue). From a mathematical point of view the calculation scheme

is the following [131]:

• the solution of the angular equation is written in terms of a series

159
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of associated Legendre functions, always possible because they form a

complete basis set for functions defined in [−1,+1]:

S(η) =
+∞∑

s=0

dsP
|m|
|m|+s(η); (B.1)

• by inserting eq. (B.1) into eq. (2.10b) the following recursion formula

relating successive coefficients is obtained [122]:

s(s− 1)h2

(2s+ 2|m|− 1)(2s+ 2|m|− 3)
ds−2+

h2 (s+ 2|m|+ 1)(s+ 2|m|+ 2)

(2s+ 2|m|+ 3)(2s+ 2|m|+ 5)
ds+2+

[
h22(s+ |m|)(s+ |m|+ 1)− 2m2 − 1

(2s+ 2|m|+ 3)(2s+ 2|m|− 1)
+

(s+ |m|)(s+ |m|+ 1)− A

]
ds = 0 s = 2, 3, 4, . . . , (B.2)

which couples either all the odd coefficients or all the even ones. This

reflects the system invariance for parity transformations, which means

that the most general solution of eq. (B.2) can be found with the initial
conditions d0 ≠ 0, d1 = 0 or, vice-versa, d0 = 0, d1 ≠ 0;

• eq. (B.2) must be solved for fixed m and h. It comes out that for most
values of A the solution S which is obtained is finite at η = +1 but

infinite (not regular) at η = −1. Anyway, by solving that equation by

using the continued-fraction technique [124, 131], the result is that a

convergent series in all the interval [−1,+1] is obtained for a discrete

set of values of A. As already pointed out, there are actually two in-
dependent sets of values of A which give a regular solution, the first

one corresponding to even values of s, the second one corresponding

to odd values of s. If we arrange each set in order of increasing values
of A and label these values with an index l we get A ≡ Al,|m|(h) with

Al,|m|(h) < Al+1,|m|(h). For each fixed m and h, the lowest value of A

is labelled A|m|,|m|(h), the next one A|m|+1,|m|(h), and so on. The set of
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corresponding eigenfunctions Sl,m, where l = |m|, |m| + 1, |m| + 2, . . .

(with fixed m), is orthogonal;

• as already pointed out in subsec. 2.1.1, as h → 0, the equation for S

reduces to that for a single associated Legendre function Pm
l (η). The

function S can be normalized so that its behaviour near η = 1 is close

to that of P , independently from the value of h, namely:

lim
η→1

Sl,m(h, η) = Pm
l (1). (B.3)

This leads to the following normalization condition for the coefficients

dl,|m|
s :

+∞ ′∑

s=0,1

(s+ 2|m|)!
s!

dl,|m|
s (h) =

(l + |m|)!
(l − |m|)!

, (B.4)

where the primate sum has the same meaning as in subsec. 2.1.1 (it

runs only over even values of s, starting from 0, if l − m is even and

only over odd values of s, starting from 1, if l −m is odd);

• power series as h → 0 and asymptotic expansions as h → +∞ can be

obtained both for the coefficients dl,|m|
s (h) and the separation constant

Al,|m|(h). The unknown coefficients of these power series or asymptotic

expansions can be calculated by inserting these expansions and the

series (2.11b) into eq. (2.10b) [124,131];

• the series coefficient for the radial solution turn out to be related to

the dl,|m|
s (h) via the following relation [122]:

al,|m|
s (h) = (−1)

l−|m|−s
2

(s+ 2|m|)!
s!

(l − |m|)!
(l + |m|)!

dl,|m|
s (h). (B.5)

By using this relation, eq. (B.4) can be rewritten as:

+∞ ′∑

s=0,1

(−1)
(l−|m|−s)

2 al,|m|
s (h) = 1, (B.6)
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which corresponds to the requirement

jel,m(h, ξ) ≃
ξ→+∞

jl(hξ). (B.7)

This requirement is consistent with the fact that as ξ → +∞ we have√
ξ2 − 1 ≃ ξ which means that the ellipsoid surfaces ξ = constant

become nearly spherical.

The calculation scheme for oblate spheroidal coordinates, is exactly the

same. In this case the starting point is given by eqs. (2.16a) and (2.16b) (in-

stead of eqs. (2.10a) and (2.10b)). As for the previous case, they are formally

equivalent but must be solved in different ranges of the respective variables
(the radial equation involves the behaviour of the solution for ξ ranging be-

tween 0 and +∞ while the angular equation involves the behaviour of the

solution for η ranging between the two singular points −1 and +1). However,

it is worth noting that a simple transformation makes prolate coordinates into

oblate coordinates, as follows:

ξ → −iξ

f → if

h → ih

. (B.8)

Therefore, it is also possible in principle to get solutions for the Schrödinger

equation in oblate spheroidal coordinates, just solving the equations for pro-

late spheroidal coordinates (eqs. (2.10a) and (2.10b)), for complex values of

their arguments, as indicated in eq. (B.8). In other words, if je(prol)l,m (h, ξ) and

S(prol)
l,m (h, η) are the prolate functions of the prolate coordinates ξ and η and

parameter h, je(obl)l,m (h, ξ) = je(prol)l,m (ih,−iξ) and S(obl)
l,m (h, η) = S(prol)

l,m (ih, η)
are the oblate functions of the oblate coordinates ξ and η and parameter h.

In particular, the recursion equation for the angular solution series expansion,

is obtained from eq. (B.2) just by replacing h2 with −h2.
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B.2 The numerical solution

The solution of both the angular equation for fixed l,m and h and the radial

equation for fixed l and m and with hard walls boundary conditions is a

Sturm-Liouville problem. The general problem is to find a specified eigenvalue

Λ of a self-adjoint differential equation of the second-order

d

dx

[
P (x)

d

dx
g(x)

]
+Q(x;Λ)g(x) = 0 x1 < x < x2, (B.9)

together with boundary conditions at the two end-points x1 and x2 in the

form

a2g(x1) = a1P (x1)
d

dx
g(x1), (B.10a)

b2g(x2) = b1P (x2)
d

dx
g(x2). (B.10b)

We do not want to enter the details of the mathematical problem, which

can be found in many mathematical textbooks (see, for example, [218]). It is

enough to stress that under suitable conditions the numerical solution of this

problem can be numerically attempted by performing a Pruefer transforma-

tion [218, 219] first, and then by using a shooting method [220]. In particu-
lar we must require that P (x) is non-zero and of constant sign throughout

[x1, x2] and that
∂Q

∂Λ
is, as a function of x and for fixed Λ, of constant sign

and non-zero throughout (x1, x2).

The values of P (x)
d

dx
g(x) and g(x) at both x1 and x2 must be given

(actually just their ratio is needed). Each regular solution is called, as it is

known, an eigenfunction of the eq. (B.9), and the corresponding value of Λ
its eigenvalue.

The following table shows the boundary conditions used for the radial

equation both for prolate and oblate ellipsoids. By comparing eq. (B.9) with
eqs. (2.10a) and (2.16a) respectively, it is straightforward to get the explicit

form for P (x) and Q(x;Λ). In this case we have Λ = h2 while the separation

constant A is a parameter.
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χ > 1 χ < 1

P (ξ) ξ2 − 1 ξ2 + 1

Q(ξ;Λ) −
(
A− Λξ2 +

m2

ξ2 − 1

)
−
(
A− Λξ2 −

m2

ξ2 + 1

)

ξ1 ≡ x1 1 0

g(ξ1) (ξ1 − 1)
|m|
2

1 if l −m is even
0 if l −m is odd

P (ξ1)
dg

dξ
(ξ1) |m|g(ξ1)

0 if l −m is even

1 if l −m is odd

ξ2 ≡ x2 ξ ξ

g(ξ2) 0 0

P (ξ2)
dg

dξ
(ξ2) 1 1

Table B.1: The boundary conditions used for both prolate and oblate ellipsoids

to solve the radial Sturm-Liouville problem.

Similarly, boundary conditions for the angular problem can be get by

comparing eq. (B.9) with eqs. (2.10b) or (2.16b), as shown in table B.2. In

this case h is a parameter, while Λ = A.

The numerical problem in getting the ellipsoid quantum dot confined

spectrum is, as pointed out in subsec. 2.1.1, that the angular and radial
equation are coupled by both the separation constant and the eigenvalue.

Actually, only the solution of the radial equation would be enough to give

the spectrum, but this solution requires the knowledge of the separation

constant as a function of h. A way of skipping this problem consists in using

tabulated power series or asymptotic expansions of the function A(h) (see
above), but it has been verified that it works as h → 0 and h → +∞, while

there is a region of values of h in which neither the power series expansion

nor the asymptotic one provide enough accurate values of A. This gives not
very good numerical evaluations for those eigenvalues which correspond to

values of h ranging in this intermediate region. Therefore, a recursive method

has been used. Let us suppose we want to determine the eigenvalue Ev
n,l,m
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χ > 1 χ < 1

P (η) 1− η2 1− η2

Q(η;Λ)

(
Λ− h2η2 −

m2

1− η2

) (
Λ+ h2η2 −

m2

1− η2

)

η1 ≡ x1 −1

g(η1) (1 + η1)
|m|
2

P (η1)
d

dη
g(η1) |m|g(η1)

η2 ≡ x2 +1

g(η2) (1− η2)
|m|
2

P (η2)
dg

dη
(η2) −|m|g(η2)

Table B.2: The boundary conditions used for both prolate and oblate ellipsoids

to solve the angular Sturm-Liouville problem.

corresponding to h = hn,l,m. The following iteration procedure is followed:

i. an initial value h(0)
n,l,m is assigned to hn,l,m;

ii. by fixing h = h(0)
n,l,m, the (l − |m| + 1)-th eigenvalue of the angular

equation is calculated by using the numerical algorithms cited above.

The eigenvalue which is obtained is A(0)
l,m = Al,|m|(h

(0)
n,l,m);

iii. this value of the separation constant is used in the radial equation to
calculate its n-th eigenvalue. This gives a new value of h, let us say

h = h(1)
n,l,m;

iv. this value of h is compared with the initial estimation and the previous

steps are repeated till convergence has been achieved within a required
error.

It must be pointed out that the mathematical solution of the problem is exact,

because series or asymptotic expansions with respect to h can be obtained up

to any order. Nevertheless, as pointed out above, it is not possible to provide
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a closed form expression for the solutions, because the recursion equations

for the coefficients have not an analytical solution. This is the reason why
a numerical approach is needed. The eigenvalues are in this way determined

by the number of steps performed in the described iterative procedure (in

principle it can be increased as much as needed) and by the precision of
the numerical algorithm used to solve the Sturm-Liouville problem. Some

checks have been done in this respect, showing that the eigenvalues can be
determined with precision of the order of 0.01%. This is what we mean when

we say that we give a numerical, exact solution of the problem.
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