
Technical Report: Anomaly Detection for a Critical
Industrial System using Context, Logs and Metrics

Mostafa Farshchi∗†, Ingo Weber†∗, Raffaele Della Corte‡, Antonio Pecchia‡, Marcello Cinque‡,
Jean-Guy Schneider∗†, John Grundy§,

∗Swinburne University of Technology, Melbourne, Australia. {mfarshchi, jschneider}@swin.edu.au
†Data61, CSIRO, Sydney, Australia. {firstname.lastname}@data61.csiro.au

‡Federico II University of Naples, Italy. {raffaele.dellacorte2, antonio.pecchia, macinque}@unina.it
§Monash University, Melbourne, Australia. john.grundy@monash.edu.au

Abstract—Recent advances in contextual anomaly detection
attempt to combine resource metrics and event logs to un-
cover unexpected system behaviors and malfunctions at run-
time. These techniques are highly relevant for critical software
systems, where monitoring is often mandated by international
standards and guidelines. In this technical report, we analyze
the effectiveness of a metrics-logs contextual anomaly detection
technique in a middleware for Air Traffic Control systems. Our
study addresses the challenges of applying such techniques to a
new case study with a dense volume of logs, and finer monitoring
sampling rate. We propose an automated abstraction approach to
infer system activities from dense logs and use regression analysis
to infer the anomaly detector. We observed that the detection
accuracy is impacted by abrupt changes in resource metrics or
when anomalies are asymptomatic in both resource metrics and
event logs. Guided by our experimental results, we propose and
evaluate several actionable improvements, which include a change
detection algorithm and the use of time windows on contextual
anomaly detection.

This technical report accompanies the paper “Contextual
Anomaly Detection for a Critical Industrial System based on
Logs and Metrics” [1] and provides further details on the analysis
method, case study and experimental results.

Index Terms—Anomaly detection, contextual anomaly, system
monitoring, log analysis, change detection.

I. INTRODUCTION

Anomaly detection is a core concern for dependability
practitioners. Research trends in this area propose the detection
of contextual anomalies (as opposed to point anomalies) [2],
[3]. These combine resource utilization metrics (e.g., CPU and
memory utilization, network traffic) and additional contextual
data with the aim of pinpointing unexpected system behaviors
and malfunctions. For example, resource utilization has been
supplemented with volume and latency of transactions [4], and
response time in virtualized infrastructures [5] and web-based
applications [6], for better anomaly detection. Recent work
attempts to combine resource metrics and event logs [7], [8]
for contextual anomaly detection. This is a promising direction
because event logs are ubiquitously emitted by computer
systems and contain large amounts of data on regular and
erroneous events occurring during operation [9], [10]. Logs
have in fact been successfully used for failure analysis over
the past decades. However, the approach of combining metrics
and event logs poses several major challenges. Most notably,
logs consist of unstructured text, which underlies the need for

transformation techniques before integration with numerical
data sources (e.g., resource utilization, response time). Further
challenges include the inference of statistically meaningful
relationships between metrics and logs, determining the most
sensitive metrics, and building a model to define assertions for
contextual anomaly detection.

This technical report explores the use of such contextual
anomaly detection in a critical industrial system. The aim of
this report is twofold: (i) experimenting with a metrics-logs
contextual anomaly detection method in a new compelling
domain, to gain data-driven feedback for potential improve-
ments to the method, and (ii) contributing real-world case
study experience for this technique.

Context-based techniques leveraging metrics-logs have been
previously proposed to assess HPC jobs through TACC stats
resource utilization data [7] and cloud rolling upgrade op-
erations based on CloudWatch [8]. We apply the approach
to industrial middleware supporting the integration of time-
sensitive Air Traffic Control (ATC) applications1 based on
our previous work in [8]. To the best of our knowledge, the
combination of metrics-logs has been not previously been
explored for mission critical systems. We start from the
contextual anomaly detection technique proposed in [8], which
is non-intrusive and unsupervised. The technique is potentially
valuable for critical software systems, such as the one ad-
dressed by this study, where monitoring is recommended –
if not mandatory – by international standards and guidelines
(e.g., IEC 61508-7, ISO-26262, DoD RAM Guide). Metrics
and logs are a byproduct of such a system execution that can
be leveraged for anomaly detection. Different from previous
work, the target system here generates dense and large volume
of logs (containing up to 240 lines per second, and 155
distinct event types) and resource utilization metrics have a
fine-grained 100-millisecond sampling period. We propose a
method to infer high-level system activities from the raw log
data. Regression analysis is then used to assess the correlation
between metrics and system activities (automatically inferred

1Middleware and applications are developed by a world-leading company
in electronic and information technologies for defence, aerospace, and land
security. They have been made available within an industry-academia collab-
oration project. Company and project are not disclosed here for double-blind
reviewing reasons.

1

from log data) and to derive the anomaly detector. We em-
ulated regular and failure executions of the ATC system by
running it in a controlled testing environment; around 2000
observations of metrics/context have been collected during the
experiments. We measured the effectiveness of the anomaly
detection technique by using typical metrics, such as precision,
recall, and accuracy. The key contributions of this work are:
• An automated abstraction method to infer system activi-

ties from logs. We adopt an automatic method to extract
regular expressions and find unique event types across
the logs of the reference system. The method combines
(i) POD-Discovery [11] to generate regular expressions
for each type and (ii) interpolated occurrence strength
measurements to cluster event types into activities. Par-
ticularlly, this addresses the limitation of applying the
previous method [8] on dense logs of common application
operation environments. We infer 17 system activities out
of the initial 155 types.

• An assessment of the limitations of metrics-logs con-
textual anomaly detection. We use a fault-injection ap-
proach to collect data records during system failures
and to elicit stressful operations. Experiments reveal that
– although the regression technique correctly predicts
spikes in resource utilization – a large difference between
the predicted and actual resource utilization causes spo-
radic false positives. Moreover, we found that contextual
anomaly detection is ineffective for errors suppressing
both the normative system activity and metric changes.

• Means for improving contextual anomaly detection.
Based on the results of our experimental analysis, we
proposed, implemented, and evaluated means for improv-
ing anomaly detection. A change detection algorithm
is proposed for significantly reducing the number of
false positives. We also propose a time-window-based
approach, which enlarges the observation period and
further increases detection accuracy.

The rest of the technical report is organized as follows: in
Section II, we discuss relevant approaches. Section III provides
an overview of the selected analysis method, followed by
sections IV, V, and VI presenting the reference ATC system
and how the method was tailored for it. Section VII presents
the assessment of contextual anomaly detection, while Section
VIII describes and evaluates the proposed improvements.
Sections IX discusses threats to validity. The report concludes
with a summary of the key contribution in Section X.

II. RELEVANT AND RELATED WORK

Anomaly detection has been broadly employed for sys-
tem health and performance monitoring. The majority of the
anomaly detection approaches have focused on point-based
techniques [3]. These techniques do not take into account the
impact of the dynamic nature of workload or the legitimate
contextual and behavioral factors that cause anomalous spikes
on system resource utilization. This issue motivated several
studies to propose context-based techniques, considering a set
of conditions or behavioral attributes of a system.

Wang et al. propose an approach based on workload
profiling using an incremental k-means clustering technique
to recognize access patterns and request volume from the
workload [12]. Local outlier factor (LOF), a machine learning
technique which works based on a concept of a local density,
was then employed to identify anomalous data instances for
each type of workload pattern. In this method, by measuring
the local density of a data point in comparison to the local
densities of its neighbors, the areas of similar density can
be detected, and objects that have a considerably smaller
density than their neighbors are tagged as anomalies. The
above approach has the advantage of being independent of
domain knowledge. However, it is not suitable for fine-grained
monitoring due to many clusters generated from workload
patterns [13]. It also has high computational complexity due
to workload pattern recognition and LOF calculation for each
arrival data instance. In addition, it is a supervised approach,
and hence requires labeled data.

In another study, Cherkasova et al. [4] present a regression-
based approach to model the resource consumption of Web
applications. They present a profiling method by identifying
application performance signature (using transaction count,
transaction latency, count of database calls, and latency of
outbound calls) to model the run-time application behavior, but
do not use log events. In addition, the exploratory/causation
aspect of the regression model is not used, in contrast to the
approach we used here.

Magalhaes and Silva [6] introduce an approach to detect
root-cause factors of observed performance variations due to
workload changes or application updates. This is done by
adopting the Pearson coefficient of correlation between system
metrics and aggregated workload. They employed Aspect
Oriented Programming (AOP) to monitor the response time of
every transaction and then Person correlation to model their
correlation. This approach is limited to just one metric of
workload at a time [14]. Moreover, by changing the source
code their approach is intrusive.

Pecchia et al. [15] assess the use of likely system invariants
–i.e., properties of a program or a system expected or observed
to hold in normative executions– for anomaly detection. Invari-
ants are inferred from monitoring logs in systems performing
batch work; invariants are based on typical metrics, such
as job/task completion time, CPU usage and status codes.
The key aspect of their proposal is abstracting workloads
by means of attributes, and inferring invariant relationships
among attributes. Evaluation is done with real datasets from
a Google cluster, whose traces are publicly available, and a
Software-as-a-Service platform.

Kang et al. [5] proposed DAPA (Diagnosing Application
Performance Anomalies), a statistical approach to model the
quantitative relationship between the application response time
and virtualized system metrics based on SLA violations. The
main criterion in their study for monitoring anomalies where
the indicators of SLA violation. However, anomaly detection
target metrics are not system resource metrics and application
response time is the only source of monitoring information for

2

detecting SLA violation. Being dependent on a single metric,
this approach is limited to the detection of failures that lead
to immediate performance anomalies.

Gurumdimma et al. [7] take advantage of both applica-
tion logs and resource metrics and propose a method called
CRUDE (Combining Resource Usage Data and Error Logs)
to detect errors. This relies on the computation of mutual
information, entropy and anomaly score, to identify the chain
of events that may lead to a failure. Logs are analyzed with
hierarchical clustering and feature extraction methods, and
Principal Component Analysis (PCA) is employed to detect
anomalous jobs within a period. CRUDE assumes that a higher
entropy (uncertainty) with reduced mutual information denotes
abnormal system behavior or a failure sequence, with the
opposite signifying normal behavior. This approach detects
sequence anomalies (rather than point-anomalies) based on the
sequence of events in relatively long time-windows (e.g., 60
minutes). In contrast, we aim to detect point anomalies in a
relatively small time window (within seconds).

The most suitable approach for our case study is arguably
the one by Farshchi et al. [8], [16]. It is non-intrusive and unsu-
pervised, that is, requires neither changes to the target system
nor labeled training data. Farshchi et al. [8], [16] use statis-
tical methods to select metrics and cluster event types, and
specifically regression analysis to find correlations between
relevant log events and metric changes. Like Gurumdimma et
al. [7], this approach can contextualize metric changes through
log events; but it can do so for smaller time windows (few
minutes in [8], [16]), and work point-based (needing fewer ob-
servations). In the approach by Gurumdimma et al. [7], setting
thresholds for various metrics needs repeated observations and
readjustment to find an optimal result. Instead, [8], [16] can
set thresholds based on the error estimates of the regression
model (although it remains configurable and can be overridden
if needed). We therefore decided to use the most recent and
complete version [8] of this approach in our analysis.

The domain of anomaly detection is large, and there are
several systematic surveys [2], [3], [17], [18]. A highlighted
issue in the domain of system monitoring is the lack of
cross-layer monitoring [19]. This is a challenging task, as
it is difficult to map different monitoring data types and to
interpret them in an integrated form. Our study contributes in
this direction as it considers two different types of monitoring
information (i.e. event logs and resource metrics) which can
span multiple layers.

III. OVERVIEW OF ANALYSIS METHOD

The contextual anomaly detection technique proposed in [8]
that we are building upon extracts a regression-based model
that exploits correlation between events (as captured in system
logs – e.g., logs) and resource metrics (collected by monitoring
services – e.g., CPU usage). The model is then used to generate
assertions to be used for anomaly detection.

The technique requires (i) a stream of time-stamped events,
such as events represented by log lines, representing the
behavioral context of a system’s operation, and (ii) at least one

EVENTS

ACTIVITIES

TIME

CLUSTERING

METRIC 1

METRIC 2

METRIC 3

A1 A2 A5A4A3

Fig. 1: The occurrence of log events and metric data over time
– A1..A5 denote activities; Metric1..3 denote metrics such as
CPU usage, RAM usage, heap size etc. Adapted from [8].

(preferably more) resource metric, representing the run-time
“state” of a system. As illustrated in Fig. 1, events generally
happen at irregular time intervals whereas resource metrics
are collected at regular intervals. In the following, we briefly
describe the main steps of the base technique (for details,
please refer to [8]).

• Data Collection and Preparation: set up and running
of a suitable experiment, collection of metric data and
log files, and translating metric information into a format
suitable for further processing (if required).

• Log Event Type Extraction: clustering of (generally low-
level) event traces, identification of unique event types,
and generation of regular expressions for each identified
event type.

• Representing Log Event Type as Quantitative Metric:
identification of a suitable anomaly detection time win-
dow and extraction of interpolated occurrence of event
types for each consecutive time window.

• Log Event Type Correlation Clustering into Activities:
clustering of highly correlated event types and identifica-
tion of high-level activities.

• Metric Filtering and Aggregation: given the collected raw
metrics, initial selection of suitable metrics for further
processing and, if required, definition of new, case-study
specific aggregated and/or derived metrics.

• Event-Metric Correlation Derivation: using a suitable re-
gression model, derive an events-metric correlation model
(with event type occurrences as independent variables and
a metric as dependent variable) for each of the metrics
chosen in the previous step.

• Target Metric selection: identify the predictability power
for each of the generated events-metric correlation models
and select the one(s) with the best “sensitivity” with
regards to detecting changes in system metrics.

• Assertion specification for anomaly detection: generation
of an assertion specification for the model(s) selected in
the previous step.

3

Fig. 2: High-level architecture of the reference system

IV. CASE STUDY SYSTEM

System overview. The example system considered in this
study is a middleware platform for the integration of mission-
critical applications in the Air Traffic Control (ATC) domain.

The high-level architecture of the system is shown in Fig. 2.
It consists of the middleware and two ATC applications: (i) a
Flight Data Processor (FDP), which generates/updates flight
data (i.e. data describing a flight, such as arrival/departure
time and flight trajectory) and publishes the data on the
middleware, and (ii) a web-based Controller Working Position
(CWP), which receives the data from the middleware and
presents it on a web console. The middleware consists of
transport and adaptation layers, implemented on top of the
JBoss application server (http://jbossas.jboss.org/). The trans-
port layer ensures the communication between the FDP and
CWP, according to the publish-subscribe paradigm and using
a commercial implementation of the OMG Data Distribu-
tion System (http://www.omg.org/dds/). The adaptation layers
allow applications to use the middleware and its services.
The monitoring service uses a Linux loadable kernel module
(LKM) to collect data through system probes. LKM allows
accessing metrics about each running process stored by the
Linux kernel in process descriptors, such as the open files
of the process, its state and resources usage (e.g., CPU and
RAM).

Testbed. The middleware has been deployed in a configu-
ration consisting of two nodes (Intel Xeon E5-1620 v2 with 8
cores, 16 GB of RAM, 1 GB/s network interface and Ubuntu
14.04) that emulate the ATC system, as illustrated in Fig. 2.
The two nodes run the FDP application and the web-based
CWP, respectively, on the middleware.

The OS processes running the FDP and the middleware
are monitored by the kernel probes with a 100-millisecond
sampling rate. It should be noted that – although we deployed
a controlled testbed for experimental purposes – both the ATC
middleware and applications consist of the real-world software
made available by an industrial partner for research purposes.

Workload. The system is exercised by a test suite used by
the industry provider to emulate real usage during operations.

The test suite generates and updates flight information, trough
the FDP. Data are published through the middleware and
consumed by the CWP, presenting them on a web console.

V. LOG ANALYSIS

This section describes how we process log files, identify
unique log event types, represent log events in a quantitative
form and cluster highly correlated log event types into a set
of log activities. The prerequisite step to process logs in the
considered approach is to make sure that log events include
timestamps. Timestamps are necessary to track log events
and also to map the occurrence of log events to the metric
observations.

A. Log Event Type Extraction

To observe how the activities reported in log events change
the state of resources, we are interested in tracking the
occurrence of log events. We needed a way to parse and trace
log events, and for this purpose we employ regular expressions
to derive a template of event logs. The goal of this step is
to extract the pattern of recurring event logs by automatically
separating the constant parts and variable parts of a raw log
message, and further derive a regular expression to associate
each log message with a specific log event type.

Log files are processed as follows: first, the timestamps and
log description are extracted for each log line, followed by
tokenization of the log message. Next, regular expressions are
generated for each token of the log message. Then, message
tokens are divided into two parts: constant tokens and vari-
able tokens, by analyzing the patterns of regular expressions
using a set of pre-defined rules. Lastly, the generated regular
expressions are combined to represent a unique log event type.
For each new log line, the log event is compared by pattern
matching with regular expressions, and if a pattern is not
found, the above steps are repeated for the new log line.

The middleware generates dense and large volume of logs.
For example, it can generate around 2,700 lines during five
minutes of operations and up to 240 lines per second. Unlike
the way performed in [8], extracting regular expressions and
finding unique event types in such a volume of log lines
cannot be done in a manual way. Therefore, we employed a
log abstraction tool, POD-Discovery [11], to generate regular
expressions for unique log events. POD-Discovery is used to
cluster low-level event traces into higher-level events. POD-
Discovery tokenizes each log message into several tokens. The
tokens of a log message can be divided into two parts: the
constant parts and the variable parts [20]. The constant tokens
of a recurring log event remain the same for a recurring log
event by default, while the variable tokens hold the runtime
information of a recurring log event, for example an IP
address or a port number. POD-Discovery employs a token
distance measure using the Levenshtein distance [21] for string
comparison. This method is used as a metric to know how
many similarities exist between a token of one log event and
another one. For pattern extraction of unique log events from
logs in our study, we began to set a distance measure of

4

Fig. 3: A screenshot of POD-Discovery - yellow circles show the tree nodes at 10% similarities, the selected node shows the
log events under the tree hierarchy of that node at the bottom of the screen

minimum similarities and generated log event types. Our initial
inspection of event types at the minimum level showed that
they were too low, as there were similar log events dispersed
over two or three event types. After trying this and a few
rounds of inspection and gradually increasing similarity levels,
we found that a 20% distance threshold gives us a level which
grouped similar log events into individual log event types. The
output of processing the log of the middleware led to 155
unique log event types.

B. Representing Log Event Type as Quantitative Metric

Middleware logs in the case study are available with
the precision of milliseconds. However, the occurrence of
logs varies between a few milliseconds to a few seconds.
Monitoring metrics are reported in approx. 100-millisecond
(ms) intervals.Given the interval occurrence of logs and the
availability of the data, we decided to choose a one-second
interval as our default time window. This time window is small
enough to provide fine-grained monitoring but not so small
that the lasting impact of the operation’s action on resources
would lead to too many false alarms.

We use an approach that converts the occurrence of log
events based on the interpolated occurrence strength of each
event type, as illustrated in the following. Given a log event
type, denoted as e, and the smallest unit of time that logs
can track, denoted as x, the current time window, denoted
as tw, and Dtw represents the duration of the time window,
then the weight-timing occurrence of an event type at time x

of a current time window and the next time window can be
obtained:

en(tw) =
Dtw − x
Dtw

en(tw+1) =
x

Dtw
(1)

For the sum of n occurrences of an event type in a time
window, we have:

Etw =

i=n∑
i=1

en(tw) (2)

For example, consider the two log events:

2015−09−28 1 2 : 2 6 : 1 6 , 5 6 2 INFO [MDW.FDD] (Thread−37) [
F D D F l i g h t D a t a L i s t e n e r I m p l] C l a s s Loader Updated

2015−09−28 1 2 : 2 6 : 1 6 , 9 7 4 INFO [MDW.FDD] (Thread−37) [
F D D F l i g h t D a t a L i s t e n e r I m p l] C l a s s Loader Updated

These log events are of the same event type and occurred
twice within a one-second time window with the timestamp
12:26:16; at 562 and 974ms, denoted as e1 and e′1, respec-
tively. The interpolated occurrence strength is as follows:

e112:26:16 =
1000− 562

1000
= 0.438 e112:26:17 =

562

1000
= 0.562

e1′12:26:16 =
1000− 974

1000
= 0.026 e1′12:26:17 =

974

1000
= 0.974

5

15:58:06,314 Creating Service FOService from WSDL: MDW_IOP-FOInterface.wsdl
15:58:06,539 Setting new service endpoint address in wsdl: http://localhost:8080/FOService
15:58:06,783 Setting new service endpoint address in wsdl: http://localhost:8180/FOService
15:58:06,819 Setting the server's publish address to be http://mdw-host:8180/FOService
15:58:06,904 WSDL published to: file:/home/mdw/wsdl/MDW_IOP-FOInterface.wsdl

15:58:07,996 Installing container for EJB FODataManagementBean
15:58:07,997 with dependencies:
15:58:07,997 with demands:
15:58:07,997 jboss-injector:topLevelUnit=WAC,ear,unit=FDD.war,bean=FODataManagement
15:58:07,997 jndi:ParticipantsManagerServiceBean/local
15:58:07,997 jndi:FOPersistenceManagerBean/local
15:58:07,997 with supplies:
15:58:07,997 Class:org.mdw.fddomain.internal.services.FODataManagementControl

15:58:11,195 instantiating TransactionManagerLookup: JBossTransactionManagerLookup
15:58:11,195 instantiated TransactionManagerLookup

Activity:
Create
Service

Activity:
Install

Container

Activity:
Instantiate
Transaction
Manager

Events occurring at
non-fix time intervals Events description

Fig. 4: An example of JBoss logs with clustering related log events to set of activities (original log messages are shortened to
improve the presentation).

Then the interpolated occurrence strength for e1 in the current
and next time window are determined as follows:

E112:26:16 = 0.438 + 0.026 = 0.464

E112:26:17 = 0.562 + 0.974 = 1.536

As the result shows, the impact of the occurrence of log
events is distributed between two time windows (two seconds),
where we have a higher interpolated occurrence strength for
the second time window compared to the first time window.
The interpolated occurrence strength is determined in the same
way for all other event types across all observed time windows.

C. Log Event Type Correlation Clustering

Systems application and operation logs are often at a more
fine-grained level than the system activities that affect the
status of resources. Most often a system behavior is not
characterized by a single log event – typically a set of log
events together cause a tangible impact on the status of
resources. Therefore, to find the impact of event logs on
resources we cluster related log events.

The aim of event type clustering is to identify those event
types with highly correlated occurrences. For this purpose, we
use the Pearson correlation coefficient, commonly represented
by the symbol r. Given two datasets x1, ..., xn and y1, ..., yn
containing n values each, r is defined as follows:

r =
n
∑
xiyi − (

∑
xi)(

∑
yi)√

[n
∑
x2i − (

∑
xi)2][n

∑
y2i − (

∑
yi)2]

(3)

In calculating the correlation occurrence between two log
event types:
• n is the number of monitoring observations.
• xi denotes the interpolated occurrence strength of event

type x at time i, e.g., E112:26:16 above.
• yi denotes the interpolated occurrence strength of event

type y at time i, e.g., E212:26:16 .
The Pearson correlation coefficient r ranges from −1 to +1.
A value of zero or very close to zero indicates that there is no

occurrence correlation between two log event types. A value
close to 1 indicates a strong positive correlation whereas a
negative correlation coefficient indicates that two event types
rarely co-occur. We defined a rule that, for event types to be
grouped into the same cluster, they must have a correlation
strength of more than 75% (r > 0.75).

As a result of this correlation analysis, the event types of
the middleware logs for our ATC applications are grouped
into 17 log activities. Fig. 4 shows a sample of log events
that belong to separate activities in the application server. By
looking at the timestamps, we can observe that the log events
are happening with different time intervals, with some sets of
log events occurring with closer timestamp than the others.
The number of log event types associated with each activity
varies widely from one event type to over 20 event types in a
group. We labeled these A01 to A17.

Note that this process of log abstraction, unlike many log
abstraction techniques that analyze the context of logs by
using pattern signature and feature extraction methods [22],
[23], [24], [25], [26], relies solely on statistical analysis based
on interpolated occurrence strength. No domain knowledge is
used or required for this process.

VI. MODEL BUILDING

A. Metric Selection

In this section, we describe how we identify metrics that
have the highest sensitivity to the log activities from the
operation. For our ATC case study, we analyzed middleware
monitoring data collected from system probes by the Loadable
Kernel Module. The monitoring data includes several non-
application2 metrics with timestamps of approximately 100-
millisecond frequency.

It is worth noting that there were some other monitoring
metrics included in the data of the case study such as Load
Average and Network traffic-related metrics show sensitivity

2Application metrics with valid timestamps were not available in our
data set. Therefore, from all the available metrics those ones that had valid
timestamp were used in our analysis.

6

Compute log-metric

correlation model

through regression

analysis

Strong

correlation and good

fit of the statistical

model?

Start

Analyze correlation

coefficient and

coefficient of

determination of events

logs for each metric

Yes

Assign the metric to be

evaluated for the

intended anomaly

detection

Monitoring metrics Event occurrence strength

No

Unsuccessful end

Successful

end

Fig. 5: Checking the relevance of a monitoring metric. Adapted from [8].

TABLE I: List of available metrics.

Metric Validity Status

CPU usage Valid
number of voluntary context switches Not Valid
number of involuntary context switches Not Valid
RAM usage Valid
VM current size Valid
VM peak size Valid
VM currently resident in RAM Valid
peak of VM resident in RAM Valid
VM size for data Valid
VM size for stack Not Valid
VM size for code Not Valid
number of page faults Valid
disk read Not Valid
disk write Not Valid
number of opened files Valid
number of sockets Valid
heap size Valid

to the activities of operation. However, due to the lack of
timestamps for monitoring records, we had to disregard them
for the analysis. This is because timestamp is a pre-requisite
for our analysis in order to map the log activities to the
monitoring metric data. Table I shows the list of metrics of
monitoring data that included timestamps. As can be seen in
Table I, Some of the metrics that were available could not be
used for statistical analysis as they did not come with complete
data: their values were filled with zero or just one constant
value was recorded for all records. Therefore, we dropped
these metrics from our analysis; the valid metrics are listed
in Table II. As a result of this filtering, we ended with 11
metrics that were suitable for the statistical analysis. We used
11 metrics for the analysis, listed in Table II.

We followed the process given in Fig. 5 and used the
monitoring metrics, along with the metrics derived from the
log activities, and performed regression analysis to assess the
sensitivity of each target monitoring metric to the system
operational activities reported in the logs.

Multiple regression is done for several independent variables
(IV) as predictors (i.e., activities clustered from event logs),
and one dependent variable (DV) (i.e., a monitoring metric) as
the outcome. An objective of applying regression technique is
to derive a model from input sample data with the minimum
absolute (squared) error [27]. Given:

• y is the dependent variable.
• β1, β2, . . . , βp are the regression parameters.
• x1, x2, . . . , xp are the independent variables, also

called predictors. These are the interpolated occurrence
strengths as per Equation 2 for a time window, for the
event types representing a given activity.

• ε is the error of estimate. The residual εi = yi− yi is the
difference between the value of the dependent variable
predicted by the model, yi, and the true value of the
dependent variable, yi.

• α denotes a constant value as an intercept, where it
indicates the mean value of y when all x=0.

The general form of a multiple linear regression function is

y = α+ β1x1 + β2x2 + · · ·+ βpxp + ε (4)

The coefficients β1x1+β2x2+ · · ·+βpxp denote the effect of
each variable on an overall model. The coefficient parameters
measure the individual contribution of independent variables
to the prediction of the dependent variable, after taking into
account the effect of all the independent variables [27].

Once a multiple regression equation has been constructed,
we can check how strong the regression output is in terms of
(i) correlation of the event logs with the target metrics, and
(ii) the model’s predictive abilities.

Given a sufficiently large number n of records of data
of a sample population, independent variables as predictors,
denoted by x1 . . . xp (log activities), the observed dependent
variable, denoted by yi (actual value of metric), the estima-
tion of yi using the regression model (also called the fitted
response), denoted by fi (predicted value of the metric), with
y being the mean of the observed dependent variable and fi
the mean of the estimations is:

y =
1

n

n∑
i=1

yi (5)

The total sum of squares is obtained as:

SStot =

n∑
i=1

(yi − y)2 (6)

Similarly, the sum of squares of residuals is defined as:

SSres =

n∑
i=1

(yi − fi)2 =

n∑
i=1

ε2i (7)

7

TABLE II: Coefficient correlation and coefficient determina-
tion results for each valid metric

Metric R R2 Adj.R2 p-value

CPU Usage 0.877 0.769 0.761 0.000
VM current size 0.716 0.513 0.498 0.000
VM peak size 0.542 0.294 0.271 0.000
Number of sockets 0.381 0.145 0.116 0.000
Number of opened files 0.380 0.145 0.115 0.000
VM size for data 0.308 0.095 0.064 0.000
Number of page faults 0.273 0.074 0.045 0.000
Heap size 0.246 0.060 0.028 0.021
VM in RAM(peak) 0.208 0.043 0.012 0.141
RAM usage 0.198 0.039 0.008 0.218
VM in RAM(current) 0.186 0.034 0.003 0.000

Using equations 6 and 7, we can determine how much varia-
tion of a dependent variable can be explained by a predictor.
The coefficient of determination R2 is defined as [27]:

R2 = 1− SSres

SStot
(8)

R2 indicates how well a model predicts new observations,
and can be used to assess the predictive power of a regression
model for the given predictors and target variables [27],
respectively. Adj.R2 is a slightly more conservative version
of R2 that penalizes a high number of predictor variables in
a model [27]. Adj.R2 is always equal or less than R2 and the
difference between R2 and Adj.R2 gets smaller as the sample
size increases. With p being the total number of independent
variables in the model and n is the sample size, Adj.R2 is
defined as:

Adj.R2 = 1− n− 1

n− p
(1−R2) (9)

In order to identify the most relevant metrics, the metrics
from the log activities are taken as the predictor variables
in the regression analysis, and each resource metric is taken
as a target metric. The result of applying regression analysis
is shown in Table II. R denotes the correlation between
a given monitoring metric and the occurrences of activities
from the event logs, and p-value the corresponding statistical
significance level. Table II indicates that the only metric with
a high prediction ability is CPU usage: R2 = 0.796 and
Adj.R2 = 0.761, respectively. The next “best” metric is VM
current size, with R2 = 0.513 and Adj.R2 = 0.498, indicating
a far weaker prediction ability compared to CPU usage. The
remaining metrics show fairly low to almost no correlation to
the log activities.

From this analysis, CPU usage emerges as the best candidate
metric for contextual anomaly detection for our ATC system.
Its strong correlation value suggests that the variation in
CPU usage should be explained by our regression model;
conversely, changes in CPU usage values that are not be
predicted from the log activities may be a good indicator of
anomalies. We investigate this hypothesis in the next section.

TABLE III: Coefficients for identified influential factors

Predictors β Std. Error B p-value

Intercept 1.480 0.104 — 0.000
A01 0.186 0.770 0.008 0.810
A02 -0.363 0.818 0.010 0.658
A03 -0.257 1.075 0.057 0.243
A04 -0.135 1.180 0.006 0.909
A05 4.975 2.231 0.085 0.260
A06 3.981 1.863 0.066 0.033
A07 19.799 1.091 0.405 0.000
A08 3.766 0.208 0.403 0.000
A09 -3.108 2.791 0.042 0.266
A10 -38.030 6.065 0.352 0.000
A11 4.368 1.970 0.086 0.027
A12 0.719 0.406 0.044 0.047
A13 11.157 2.348 0.106 0.012
A14 -14.192 5.904 0.145 0.001
A15 7.723 2.356 0.073 0.000
A16 48.403 5.112 0.000 0.000
A17 3.901 0.515 0.816 0.000
*Note. β = Unstandardized regression coefficient;
B = Standardized regression coefficient.

B. Assertion Derivation

One of the objectives of performing multiple regression
analysis is to find an explanatory relationship between the
independent variables (activities extracted from logs) and the
dependent variables (monitoring metrics). In the previous
section, we identified CPU usage as a good candidate metric
as it had high correlation with the log activities. In this section,
we analyze which of the log activities are affecting the target
metric (CPU usage), in order to derive assertion specifications
for the employed anomaly detection approach. To perform this
analysis, we take the regression coefficient for each predictive
variable of our multiple regression models generated by the
regression analysis. In this process, we take log activities as
input predictor variables and CPU usage as sole target variable
for the regression analysis.

The results are shown in Table III. The key indicator
for identifying predictors that do not have significance on a
regression model are Standardized regression coefficient(B)
and p-value. Therefore, by checking these two factors, we
observe that the coefficients of the activities A01, A02, A03,
A04, A05 and A09 are statistically insignificant (p > .05).3

These observations allowed us to narrow the set of contributing
activities down to the 11 activities.

Rerunning multiple regression with the 11 activities that
have statistical significance (p ≤ .05) resulted in the outcomes
shown in Table IV. By considering the standardized coefficient
values in Table IV, we can assess the predictive power of each
log activity for the CPU usage metric. In addition, we use
the unstandardized coefficient (β) values from Table IV and
regression function from Equation 4 to derive the assertion

3The p-value of 0.05 is commonly chosen as an acceptable level of
significance [28], [29].

8

TABLE IV: Coefficient for identified influential factors after
filtering

Predictors β Std. Error B p-value

Intercept 1.462 0.101 — 0.000
A06 4.606 1.819 0.077 0.012
A07 19.808 1.819 0.405 0.000
A08 3.766 0.208 0.403 0.000
A10 -30.411 3.955 0.281 0.000
A11 2.539 1.128 0.050 0.025
A12 0.797 0.394 0.049 0.025
A13 11.176 2.344 0.106 0.044
A14 -9.358 3.699 0.091 0.000
A15 7.741 2.351 0.073 0.012
A16 41.415 2.890 0.698 0.000
A17 3.557 0.463 0.216 0.000
*Note. β = Unstandardized regression coefficient;
B = Standardized regression coefficient.

equation (Equation 10) that can be used for predicting the
CPU usage at each second.

yi = 1.462 + 4.606 ∗A06i + ...+ 3.557 ∗A17i (10)

At each time ti, the actual value is expected to be predicted
from the regression equation with an error of estimate of
±6.059. Once the assertion is derived we can employ that
for monitoring the metric values at run-time and detect likely
anomalies when the prediction significantly deviates from the
actual values. In our experiment, we consider the difference of
the predicted and the actual value of CPU usage that is within
the error of estimate to be normal, |ac−pr| < ε, otherwise the
corresponding records is registered as an anomalous record.

VII. ANOMALY DETECTION WITH INITIAL APPROACH

The model building phase allowed us to identify the most
sensitive metric, CPU utilization, to infer the activities in the
log that most contribute to changes in this metric, and to derive
an assertion equation that can be used to predict CPU usage
from log event occurrence. We leverage this obtained model
for our contextual anomaly detection approach. It is important
to note that we performed our analysis based on four separate
experiments. In the normal run (without any fault injection),
we learned from normal run and derived the model. In this
section, we validate the accuracy of the learned model on three
new experiments. Collection of monitoring data, evaluation
metrics and results are presented below.

A. Data collection and evaluation metrics

Regular and anomalous data are collected by running the
reference system with three failure settings independently:
• Active hang: the system appears to be running, but its

services are perceived as unresponsive.
• Passive hang: the system appears to be running; its

services are perceived as unresponsive because the system
is indefinitely waiting for an event to occur.

(a) Experiments setup

(b) Data record collection

Fig. 6: Fault injection setup and records collection

• Crash: the system terminates unexpectedly and no ser-
vice is provided at all.

The above-mentioned failures are based on a widely-
accepted taxonomy in dependability research [30]. It should
be noted that these failure settings are not meant to be
exhaustive, but are sufficient to elicit a number of stressful
conditions requiring improvements for contextual anomaly
detection, which are discussed in Section VII-B.

Failures are induced by means of fault injection. To achieve
this, the source code of the ATC middleware is arranged
in order to allow an external component, called Injector in
the following, to activate and deactivate software faults on
demand, during the progression of the system execution. The
experiments have been conducted based on around 12000 log
lines (after cleansing process) and around 18000 metric points.

Fig. 6a shows the experimental setup. Fig. 6b depicts the
timing of the experiments. For each run, the ATC middleware
and applications (FDP, CWP) are initialized and then the
applications generate the workload described in Section IV.
The system is run regularly for several workload cycles until
the Injector activates a software fault (i.e. fault activation
switches from OFF to ON in Fig. 6b). Injection stays ON for
one minute, which causes the system to deliver an incorrect
service. In case of active/passive hang, the regular system func-
tion resumes after the injection (i.e. fault activation switches
from ON to OFF); in case of crash, the system goes out of
service a few seconds after the injection.

We collected data records throughout the system execution.
Each data record emitted by the approach contains the infor-
mation of 1-second time windows, namely the actual value of
CPU usage, the predicted value of CPU usage based on the
assertion equation from log activities, the anomaly status of
the record based on the comparison of actual and predicted
metric, and the status of fault injection for the record. Given
the above data, records are labeled as positive (P) if collected
under incorrect service; negative (N) otherwise (Fig. 6b). We
use the label as ground truth, or oracle, to assess the outcome
of the anomaly detector as per the confusion matrix in Fig. 7.
For example, a positive record (fault injection active) deemed

9

Fig. 7: Confusion matrix

negative by the detector (no anomaly detected) represents a
false negative (FN); similarly, a positive record flagged as
positive by the detector is a true positive (TP). FN and FP
mark cases where the detector did not work perfectly. The
four categories in Fig. 7 are the basis for calculating precision,
recall and accuracy values for the experiments [31].

B. Results

We ran anomaly detector against the labeled data records
collected during the experiments. Fig. 8 shows the difference
between actual metric value and the one predicted by the
regression model. Time series are shown by failure setting.
Fig. 8 also includes time series from a Normal run (Fig. 8a),
where no fault has been injected. This is used as a reference
of normal system behavior under the considered workload.
Table V provides an overview of the detection outcome
in terms of precision, recall, and accuracy. We discuss the
anomaly detection results below.

Active Hang. Fig. 8b shows that the predicted values
closely mimic the actual values in fault-free records; on the
top, the model can also predict abrupt increases on CPU usage.
Nevertheless, we noted that in some records (e.g., 92-94, 137-
138, 153-154, 488) the difference between actual-predicted
values is significant, which causes 8 FPs and a precision of
0.886. Although the presence of spikes in CPU utilization was
correctly predicted, the magnitude (or height) of the spikes
was not predicted precisely. Around record 334 – when the
active hang fault injection is started – it can be seen a sudden
significant gap between the actual value of CPU the predicted
value. Because of the gap, anomalies are detected with fairly
good accuracy throughout the duration of the fault injection.
Overall, in the active hang setting out of 513 records of data,
we had 443 cases of TN, 0 cases of FN, 62 cases of TP, and
eight cases of FP. The accuracy of the approach, that is, correct
assessments by the detector out all records, is 0.984. The main
limitation concerns the false positives (discussed below).

Passive Hang. Similar patterns can be observed in Fig. 8c
where predicted values mimic actual values. Surprisingly, there
is no gap between predicted and actual value when injection
is started around record 342. In this setting, we obtained 519
records of data, where we had 448 cases of TN, 60 cases of
FN, 0 cases of TP, and 11 cases of FP, as show in Table V.
Again, false positives are caused by a number of records where
the magnitude of CPU spikes was predicted imprecisely.

Having no TPs (meaning zero detection of anomalies) led
us to an important observation. During a passive hang, the
system goes into an indefinite waiting state for resources,

TABLE V: Initial anomaly detection results

Active Hang Passive Hang Crash

Total Records 513 519 387

True Negatives 443 448 372
False Negatives 0 60 0
True Positives 62 0 4
False Positives 8 11 11

Precision 0.886 0.000 0.267
Recall 1.000 0.000 1.000
Accuracy 0.984 0.863 0.972

causing a pause on operation activities; moreover, the passive
hang did not affect CPU usage. This experiment highlights the
existence of anomalies, which turn out to be asymptomatic in
the relation of logs and metrics. Accordingly, we state that
the detection technique assessed in this technical report is
ineffective for those errors which simultaneously suppress the
normative system activity and metric changes.

It must be noted that an asymptomatic anomaly does not
imply the lack of relevant lines in the log. To test this
hypothesis, we scrutinized the logs of normal execution and
passive hang. Our analysis reveals that the system generated
error messages during passive hang – which do not occur in
the normal run – reported in the following:

2015−09−28 1 3 : 0 0 : 1 4 , 6 1 0 INFO [STDOUT] (WorkerThread
0 [1 9 2 . 1 6 8 . 0 . 5 2 : 6 0 9 8 3]) Timeout r e a c h e d . j a v a . n e t .
S o c k e t T i m e o u t E x c e p t i o n : Rece ive t imed o u t

2015−09−28 1 3 : 0 0 : 1 4 , 6 1 3 INFO [STDOUT] (WorkerThread
0 [1 9 2 . 1 6 8 . 0 . 5 2 : 6 0 9 8 3]) S oc ke t c l o s e d j a v a . n e t .
S o c k e t E x c e p t i o n : So cke t c l o s e d

This observation suggests that asymptomatic anomalies can
be reasonably addressed by complementing metrics-logs con-
textual detection with existing log-based failure analysis tech-
niques. We believe this to be feasible in practice, given the
wide body of literature on pinpointing error messages from
logs or inferring models for conformance checking. An in-
depth investigation of this proposition would exceed the scope
of this report, and is thus left for future work.

Crash. In this setting, the prediction fairly resembles the
actual values before the injection; the operation execution is
aborted a few seconds after the injection around record 383 –
see Fig. 8d. In this process, out of 387 records of data we had
372 cases of TN, 0 cases of FN, four cases of TP, and 11 cases
of FP. Although the approach detected all the positive records,
precision appeared to be low. This indicates the existence of
too many false alarms in comparison to true positive alarms.

VIII. IMPROVEMENTS

A. Change Detection

The evaluation of the initial experiments into anomaly
detection highlighted that the predicted values mimic the
same pattern of actual values when the records are failure-
free. However, in some cases, it did not correctly predict the
magnitude of the spikes, leading to many FPs. For example, in

10

(a) Normal run (b) Active Hang

(c) Passive Hang (d) Crash

Fig. 8: Actual CPU usage versus predicted CPU usage for four separate runs: Normal, Active Hang, Passive Hang, and Crash
with highlighted fault activation periods where present

Algorithm 1 - Change Detection
- Anomaly Detection:

1: if (|ac− pr| < ε) then
2: anomaly ← false
3: else if (|ac −m| < σ AND |pr −m| < σ) OR (ac > m + σ

AND pr > m+ σ) OR (ac < m− σ AND pr < m− σ) then
4: anomaly ← false
5: else
6: anomaly ← true
7: end if

Fig. 8c (Passive Hang) record 160 shows a peak in CPU usage
in both predicted and actual values. However, the difference
between these two values is fairly large, as the actual value
indicates 76.16% CPU usage while the predicted one indicates
40.14% CPU usage; moreover, both values are far bigger
than the mean value of CPU usage, that is, 2.05%. Such a
big difference led to the anomaly detection approach used to
detect the obtained CPU usage spike, i.e., the actual value, as
an anomaly, despite it being caused by regular activities of
the ATC system. Therefore, a false positive alarm has been
generated for that record. A similar pattern can be observed
at record 94 in Crash run, Fig. 8d, where the actual value
is 48.81% and the prediction is 79.47% – both indicating a
spike on CPU usage but with significant gap between them,
leading also to a false positive. This is because the criterion for
detecting anomalous records used by the considered approach
was based on evaluating the gap between the predicted value
and the actual one being within the range of acceptable error
of estimate, that is, 6.059 in our analysis.

The problem of modeling workload bursts or spikes in
system monitoring, resource allocation and anomaly detection
has been a topic of interest in recent studies [32], [33], [34].
This observation inspired us to investigate whether we can
improve the accuracy of the anomaly detection approach from
the perspective of change detection along with the prediction

obtained from the assertion equation. We then used a new
threshold policy for detecting anomalies. This checks whether
both predicted and actual values indicate a significant change
from the mean. The algorithm underlying the proposed policy
is described in Algorithm 1, here referred as the Change
Detection algorithm. Let us denote the actual value as ac, the
predicted value as pr, standard deviation as σ, and standard
error of estimate as ε. The Change Detection algorithm first
checks whether the difference between ac and pr is within
the accepted error of estimate, i.e., ε. If the condition is not
satisfied then instead of reporting the record as an anomalous
instance, it checks if both ac and pr have similar changes
with respect to the standard deviation σ from the mean m.
Otherwise, it reports the record as an anomaly. It worth to note
that in most statistical based anomaly detection techniques,
standard deviations (σ) from the mean are used as a threshold
to detect significant deviation from normal behavior; often the
values larger than ±3.0σ are considered outliers [35]. The use
of tighter thresholds than in the literature becomes possible in
our setting, since we gain additional precision from analyzing
the log context.

We then applied this new Change Detection algorithm on
the records obtained by running the reference system with the
three failure settings as described above. Table VI shows the
results of this new analysis. It can be noted that there was a
reduction of the FPs for all three experiments with respect
to the ones obtained without Change Detection (Table V).
The obtained FP reduction ranges from 50% of the Active
Hang to the 73% of the Passive Hang. This translated into
an improvement in terms of both Precision and Accuracy.
Precision improved from 0.886 to 0.939 for Active Hang and
0.267 to 0.400 for Passive Hang. Accuracy improved from
0.984 to 0.992 for Active Hang, 0.863 to 0.869 for Passive
Hang, and 0.972 to 0.984 for Crash. We conclude that our
Change Detection algorithm provides an enhancement to the
original technique in dealing with the magnitude of spikes.

11

TABLE VI: Anomaly detection results (Change Detection)

Active Hang Passive Hang Crash

Total Records 513 519 387

True Negatives 447 451 377
False Negatives 0 60 0
True Positives 62 0 4
False Positives 4 8 6

Precision 0.939 0.000 0.400
Recall 1.000 0.000 1.000
Accuracy 0.992 0.869 0.984

B. Adaption of Time Windows

The anomaly detection results obtained from both the
original technique (Table V) and the one enhanced with the
Change detection algorithm (Table VI) were based on a default
time window of 1 second. In our study, we observed possible
delays between an operation action and its effect(s) becoming
observable which may not be reflected in first second of
time window. For instance, in the Passive Hang, Fig. 8c, the
prediction based on the activities form log predicted a spike
on CPU usage at 162th record, whilst the actual CPU spike
occurred in the next record (163). Also, some of the operations
may have a lasting impact for more than the default 1 second
time window on CPU usage, such as the case on the 89th
record in Passive Hang, where 59.57% is predicted, while
the actual values indicate 26.98% for the current second and
28.69% for the next second. This is because, in the reference
system an activity related to a service creation may take more
than one second to be completed.

Therefore, we investigated if a further improvement in terms
of accuracy can be obtained by enlarging the time window, that
is, the observation period. We expanded the time window to
a total of 3 seconds (±1 second from current time window)
and re-ran our anomaly detection analysis. In this process, the
detection of anomalies is decided with the relation to the status
of previous, current, and next time window.

Table VII shows the results obtained for both the original
technique, i.e., no CD, and the one with the Change Detection
algorithm, i.e., w/ CD. It can be noted that the FPs slightly
reduced in all three failure settings for both no CD and w/ CD
cases with respect to the ones obtained with the default time
window (Table V and Table VI), and the precision improved.
For example, FPs reduced from 8 to 5 and from 6 to 1 for
Active Hang no CD and Crash w/ CD, respectively, while pre-
cision improved from 0.984 to 0.990 and from 0.984 to 0.997,
respectively. It should be noted that an additional expansion
of the time window did not lead to further improvements of
the results.

The obtained results suggest the larger time-window as an-
other enhancement for the original technique, since it provides
a further improvement of the detection accuracy by enlarging
the observation period. In addition, the results in Table VII
highlighted again that the use of the Change Detection algo-
rithm is beneficial in terms of FPs reduction. For example,
no FPs have been observed for both Active Hang and Passive

TABLE VII: Anomaly detection results (3sec Time Window;
with (w/) or without (no) Change Detection (CD))

Active Hang Passive Hang Crash

Total Records 513 519 387

no CD w/ CD no CD w/ CD no CD w/ CD

True Negatives 446 451 449 459 375 382
False Negatives 0 0 61 60 0 0
True Positives 62 62 0 0 4 4
False Positives 5 0 9 0 8 1

Precision 0.925 1.000 0.000 0.000 0.333 0.800
Recall 1.000 1.000 0.000 0.000 1.000 1.000
Accuracy 0.990 1.000 0.865 0.884 0.979 0.997

Hang when the Change Detection algorithm is enabled and
the time window is expanded.

IX. THREATS TO VALIDITY

We briefly discuss the validity of the study based on the
most relevant of the aspects listed in [36].

Construct validity. This study builds on experiments aim-
ing to elicit stressful operations that require improvements
for contextual anomaly detection. Our system is run with
representative workloads provided by the industry vendor.
While they are from real world scenarios, they may not match
a particular scenario encountered in a specific deployment. We
also rely on foundational statistics (such as Pearson correlation
coefficient and regression models) and capitalize on the state-
of-the-art in log analysis.

Internal validity. We used a mixture of metrics, diverse
failures, and improvement strategies to mitigate internal valid-
ity threats. We assessed a wide range of resource utilization
metrics, including CPU, memory and disk. The system was
run with different failure settings to collect data records. We
inferred a statistically significant correlation between CPU
utilization and log activities, which provides a reasonable level
of confidence in the analysis.

External validity. We ran the techniques on one example
of a critical system from the ATC domain. However, the
steps of the analysis should be applicable to similar datasets
consisting of metrics and logs. Metrics are collectable by
many established monitoring tools and logs are ubiquitously
emitted by most applications/systems. The overhead entails
the time required to establish event types from the logs. We
addressed this step through POD-Discovery; moreover, several
alternative log parsing methods exist (e.g., SLCT, IPLoM,
LogSig).

Conclusion validity. Conclusions have been inferred by
replicating the analysis with different failure settings and
by assessing several practical improvements. Our findings,
supported by measurements on real systems and data, are
useful to get an overall understanding of contextual anomaly
detection, and its practicability and limitations for real-world
systems. We are confident that the details provided should
reasonably support the replication and generalization of our
study by future researchers and practitioners.

12

X. CONCLUSION

In this technical report we analyzed the effectiveness of an
anomaly detection approach based on log-metrics correlation
from the literature [8] for a mission-critical air traffic control
system. We selected this approach based on a literature review;
previously, this approach has only been applied to cloud
operations. Our initial evaluation revealed several weaknesses
of using the approach in our setting, specifically the inability to
detect asymptomatic anomalies like passive hangs, imprecision
in predicting the magnitude of spikes, and overly localized
view of 1sec time windows. We addressed these with sug-
gested improvements, specifically change detection and 3sec
time windows, and discussed to complement the approach
with the analysis of log behavior. The final evaluation detects
anomalies with high accuracy and low delay. In future work,
we plan to evaluate the approach in the presence of different
fault injection campaigns, and a deep investigation of suitable
techniques to complement the approach with behavioral log
analysis, to detect asymptomatic failures like passive hangs.

XI. ACKNOWLEDGMENTS

This research has been partially supported by the MINI-
MINDS PON Project (n. B21C12000710005) funded by the
Italian Ministry of Education, University and Research, and
by Programme STAR, financially supported by UniNA and
Compagnia di San Paolo under Project Towards Cognitive
Security Information and Event Management (COSIEM).

REFERENCES

[1] M. Farshchi, I. Weber, R. Della Corte, A. Pecchia, M. Cinque, J.-G.
Schneider, and J. Grundy, “Contextual anomaly detection for a critical
industrial system based on logs and metrics,” in Proc. 14th European
Dependable Computing Conference, (EDDC), Sep. 2018.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 15:1–15:54, 2009.

[3] O. Ibidunmoye, F. Hernandez-Rodriguez, and E. Elmroth, “Performance
anomaly detection and bottleneck identification,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 4, pp. 1–35, 2015.

[4] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
Application change? Or workload change? Towards automated detection
of application performance anomaly and change,” in Proc. Intl. Conf.
on Dependable Systems and Networks (DSN), Jun. 2008, pp. 452–461.

[5] H. Kang, X. Zhu, and J. L. Wong, “DAPA: diagnosing application
performance anomalies for virtualized infrastructures,” in Proc. USENIX
Hot-ICE Workshop, 2012, pp. 1–8.

[6] J. P. Magalhes and L. M. Silva, “Anomaly detection techniques for web-
based applications: An experimental study,” in Proc. IEEE Intl. Symp.
on Network Computing and Applications, Aug. 2012, pp. 181–190.

[7] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne,
“CRUDE: combining resource usage data and error logs for accurate
error detection in large-scale distributed systems,” in Proc. IEEE Sym-
posium on Reliable Distributed Systems (SRDS), Sep. 2016, pp. 51–60.

[8] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Metric selection
and anomaly detection for cloud operations using log and metric
correlation analysis,” Journal of Systems and Software, 2017.

[9] A. J. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proc. 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2007, pp. 76–86.

[10] M. Cinque, D. Cotroneo, R. Della Corte, and A. Pecchia, “Characterizing
direct monitoring techniques in software systems,” IEEE Transactions
on Reliability, vol. 65, no. 4, pp. 1665–1681, Dec. 2016.

[11] I. Weber, C. Li, L. Bass, X. Xu, and L. Zhu, “Discovering and
Visualizing Operations Processes with POD-Discovery and POD-Viz,”
in Proc. DSN, Jun. 2015, pp. 537–544.

[12] T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang, “Workload-
aware anomaly detection for web applications,” Journal of Systems and
Software, vol. 89, pp. 19–32, Mar. 2014.

[13] T. Wang, W. Zhang, C. Ye, J. Wei, H. Zhong, and T. Huang, “FD4C:
automatic fault diagnosis framework for web applications in cloud
computing,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 46, no. 1, pp. 61–75, 2016.

[14] T. Kelly, “Transaction mix performance models: Methods and applica-
tion to performance anomaly detection,” in Proc. 20th ACM Symposium
on Operating Systems Principles. ACM, 2005, pp. 1–3.

[15] A. Pecchia, S. Russo, and S. Sarkar, “Assessing invariant mining tech-
niques for cloud-based utility computing systems,” IEEE Transactions
on Services Computing, pp. 1–1, 2017.

[16] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, “Experience
report: Anomaly detection of cloud application operations using log and
cloud metric correlation analysis,” in Proc. IEEE Intl. Symp. on Software
Reliability Engineering (ISSRE), Nov. 2015, pp. 24–34.

[17] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, Oct. 2004.

[18] M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey
of numeric and symbolic outlier mining techniques,” Intelligent Data
Analysis, vol. 10, no. 6, pp. 521–538, 2006.

[19] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[20] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log
parsing and its use in log mining,” in Proc. IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks (DSN), June 2016, pp. 654–661.

[21] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions, and reversals,” in Soviet physics doklady, vol. 10, 1966, pp.
707–710.

[22] Q. Fu, J. G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proc. IEEE
Intl. Conf. on Data Mining, Dec. 2009, pp. 149–158.

[23] R. P. J. C. Bose and W. M. P. van der Aalst, “Discovering signature
patterns from event logs,” in Proc. IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), Apr. 2013, pp. 111–118.

[24] W. Xu, “System problem detection by mining console logs,” Ph.D.
dissertation, University of California, Berkely, 2010.

[25] J. Stearley, “Towards informatic analysis of syslogs,” in Proc. IEEE
International Conference on Cluster Computing, Sep. 2004, pp. 309–
318.

[26] R. Vaarandi, M. Kont, and M. Pihelgas, “Event log analysis with the
logcluster tool,” in Proc. IEEE Military Communications Conference,
(MILCOM), Nov. 2016, pp. 982–987.

[27] J. W. Osborne, “Prediction in multiple regression,” Practical Assessment,
Research and Evaluation (PARE), vol. 7, no. 2, pp. 1–9, 2000.

[28] J. P. Onyango and A. Plews, A textbook of basic statistics. East African
Publishers, 1987.

[29] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer, 2001.

[30] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

[31] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Performance
measures for information extraction,” in Proceedings of DARPA broad-
cast news workshop, 1999, pp. 249–252.

[32] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proc. 1st ACM Symposium on Cloud Computing. ACM,
2010, pp. 241–252.

[33] M. Sladescu, A. Fekete, K. Lee, and A. Liu, “GEAP: a generic approach
to predicting workload bursts for web hosted events,” in Proc. 15th
International Conference Web Information Systems Engineering (WISE).
Springer International Publishing, Oct. 2014, pp. 319–335.

[34] A. Mehta, J. Drango, J. Tordsson, and E. Elmroth, “Online spike
detection in cloud workloads,” in Proc. IEEE International Conference
on Cloud Engineering, Mar. 2015, pp. 446–451.

[35] A. Patcha and J. Park, “An overview of anomaly detection techniques:
Existing solutions and latest technological trends,” Computer Networks,
vol. 51, no. 12, pp. 3448–3470, 2007.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer Academic, 2000.

13

	Introduction
	Relevant and Related Work
	Overview of Analysis Method
	Case Study System
	Log Analysis
	Log Event Type Extraction
	Representing Log Event Type as Quantitative Metric
	Log Event Type Correlation Clustering

	Model Building
	Metric Selection
	Assertion Derivation

	Anomaly Detection with Initial Approach
	Data collection and evaluation metrics
	Results

	Improvements
	Change Detection
	Adaption of Time Windows

	Threats to Validity
	Conclusion
	ACKNOWLEDGMENTS
	References

