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Abstract

We analyze a quantum system consisting of a particle travelling in a model-environment made up
of a localised two-level subsystems. We examine the dynamics of the entanglement through which
the environment acquires information about the direction of propagation of the particle. Our study
reproduces, within a non perturbative investigation, an old result obtained by N. F. Mott in the early
days of Quantum Mechanics.
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Introduction

The subject of our investigation was first analysed in a paper by Sir Nevill Francis Mott published in
1929 [14].
Two years after the famed Solvay Congress of 1927, the 24 years old physicist, N. F. Mott, was wondering
about the appearance of classical-like tracks in a Wilson chamber (the first tracking chamber for particle
physics experiments).
According to the theory of radiating nuclei, developed by Gamow in 1928, the decay rate of an atom
emitting an α-particle is well fitted by assuming that the α-particle is described by a spherical wave
function. On the other hand an α-particle emitted by a nucleus manifests itself as a straight track in a
Wilson chamber. The words of Mott clearly express his thought: “It is a little difficult to picture how
it is that an outgoing spherical wave function can produce a straight track; we think intuitively that it
should ionise atoms at random throughout the space.”.
Mott guessed that the solution of the problem could be found considering “the α-particle and the gas [in
the Wilson chamber] together as one system”. To validate his conjecture he proposed a very simplified
model in which the gas within the Wilson chamber was composed by only two hydrogen atoms. The
nuclei of the atoms were considered fixed and the electrons interacted with the α-particle via Coulomb
forces. Using time independent perturbation theory he showed that “the atoms cannot both be ionised
unless they lie in a straight line with the radioactive nucleus”.
His approach, even though not entirely rigourous from a mathematical point of view, was undoubtedly
pioneering and largely outside the mainstream of ideas about the nature of the interaction of a quantum
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particle with a macroscopic system. His work can be considered as the first attempt to investigate the
emergence of the phenomenon nowadays referred to as decoherence induced by the environment (for a
review see [9]).
We present a model of a tracking chamber in which the detectors are realised with spins (equivalently
any two level subsystem) placed in fixed positions of space and the interaction between the α-particle and
the spins is modelled by a zero range potential. The Hamiltonian is chosen among the ones characterised
in [5] for the three dimensional case. The knowledge of the resolvent and of the spectrum allows to avoid
perturbation theory.
In the same spirit of many works in the field (see e.g. [1, 2, 4, 6, 7, 8, 10, 11, 12]) our aim is to use
solvable or almost solvable models to show that the interaction with the environment drives a quantum
object to behave more classically.
We prove that given an initial state with the particle described by an outgoing spherical wave function
centred in the origin and the spins both in the state down, the probability to find, as t goes to infinity,
the spins both in the state up has a maximum when the positions of the spins are aligned with the origin.

1 The model

The system we consider consists of one quantum particle in R3 and two spins 1/2 placed in fixed positions
of space, we indicate with y1, y2 ∈ R3 the positions of the two spins.
A spin 1/2 is described by a vector in C2. Then the natural Hilbert space for our system is

H := L2(R3)⊗ C2 ⊗ C2 . (1)

To define the Hamiltonian we follow what was done, in a more general setting, in [5] (see in particular
the Hamiltonians defined in Example 2). For the sake of clearness in this section we recall some notation
and we rephrase the results of [5] in the framework of a two spin system.
We indicate with a capital Greek letter a vector in H; given Ψ ∈ H the following decomposition formula
holds

Ψ =
∑

σ

ψσ ⊗Xσ , (2)

where σ indicates the two-components vector σ = (σ1, σ2) with σ1, σ2 = ± and the sum runs over all the
possible choices of σ1 and σ2. The vector Xσ in C2 ⊗ C2 is defined by

Xσ = χσ1 ⊗ χσ2 , (3)

where we chose χσ1 and χσ2 to be the normalised eigenvectors of the Pauli matrices, σ̂(1)
j , associated to

the first components of the two localised spins

σ̂
(1)
j =

(
0 1
1 0

)
; σ̂

(1)
j χσj

= σjχσj
σj = ± , j = 1, 2 . (4)

Functions ψσ belong to L2(R3) for each σ .
We indicate with 〈· , ·〉 the scalar product in H; it is defined, in a standard way, as

〈Ψ1,Ψ2〉 :=
∑

σ

(ψ1σ, ψ2σ)L2 ; Ψ1, Ψ2 ∈ H . (5)

In formula (2) the choice of χσ1 ⊗ χσ1 as a basis of the space C2 ⊗ C2 is obviously arbitrary and it was
made in accordance with the particular Hamiltonian that we will use as generator of the “free” dynamics.
As it was done in [5] we start defining the self-adjoint operator H generating the free dynamics i.e. the
evolution when there is neither interaction between the particle and the spins nor interaction between
the spins.
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Let H : D(H) ⊂ H → H be the operator defined as follows

D(H) := H2(R3)⊗ C2 ⊗ C2 (6)

H := − ~2

2m
∆ + α(σ̂(1)

1 + σ̂
(1)
2 ) ; α > 0 . (7)

here m is the mass of the quantum particle and α is a constant with the dimension of an energy. In
formula (7) the Laplacian is intended to act on C2 × C2 as the identity operator and the spin operators
σ̂

(1)
1 and σ̂(1)

2 act as the identity on H2(R3)
Using the decomposition formula (2) the action of H on its domain is easily obtained

HΨ =
∑

σ

[(
− ~2

2m
∆ + σ α

)
ψσ

]
⊗Xσ ; σ α = α(σ1 + σ2) . (8)

The resolvent of H, R(z) = (H − z)−1, is found to be

R(z)Ψ =
∑

σ

[(
− ~2

2m
∆− (z − σ α)

)−1

ψσ

]
⊗Xσ ; z ∈ ρ(H) . (9)

The spectrum of H can be derived from the spectrum of the free Laplacian

σpp(H) = ∅ ; σess(H) = σac(H) = [−2α,∞) . (10)

The strongly continuous unitary group e−i H
~ t generated by H (see, e.g., Th. VIII.7 [15]) can be explicitly

computed, and the solution of the Schrödinger equation

i~
dΨt

dt
= HΨt (11)

with initial data
Ψt=0 = Ψ0 ; Ψ0 ∈ H (12)

is
Ψt = e−i H

~ tΨ0 =
∑

σ

(
U tψ0

σ

)
⊗ e−

i
~ σ αtχσ , (13)

where U t is the integral kernel of the generator of the dynamics of a free particle of mass m

(
U tf

)
(x) =

(2m
~

) 3
2
∫

R3

ei m
~

|x−x′|2
2t

(4πit)
3
2
f(x′)dx′ . (14)

In order to simplify the notation, we will fix in the following 2m = 1 and ~ = 1.
In our model of a tracking chamber the spins are detectors for the position of the particle. For this reason,
among all the Hamiltonians that are point perturbations of H we chose the simplest ones generating
dynamics where the interaction affects the evolution of both spins and the particle (see Example 2 of [5]).
As it was shown in [5] the following operator is the resolvent of a self-adjoint operator that we will indicate
with Hγ

Rγ(z) := R(z) +
∑

j,σ,j′,σ′

(Γγ(z))−1
jσ,j′σ′〈Φz̄

j′σ′ , · 〉Φz
jσ ; z ∈ C\R . (15)

where the action of R(z) defined in (9), can be explicitly written as

R(z)Ψ =
∑

σ

∫
R3
Gz−σ α(· − x′)ψσ(x′)dx′ ⊗Xσ (16)
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with

Gz(x) =
ei
√

z|x|

4π|x|
; z ∈ C\R+ , Im

√
z > 0 . (17)

Vectors Φz
jσ in (15) are defined by

Φz
jσ = Gz−α σ(· − yj)⊗Xσ ; j = 1, 2

σ = (σ1, σ2), σ1, σ2 = ± ,
(18)

it is easy to check that they are in H. Functions (Γγ(z))−1
jσ,j′σ′ are the elements of a 8× 8 matrix whose

inverse is
(Γγ(z))jσ,j′σ′ = 0 j 6= j′ ;σ 6= σ′

(Γγ(z))jσ,j′σ = −Gz−σ α(yj − yj′) j 6= j′

(Γγ(z))jσ,jσ′ = 0 σk 6= σ′k for k 6= j

(Γγ(z))jσ,jσ′ = σ′j iγ σ′j 6= σj and σk = σ′k for k 6= j

(Γγ(z))jσ,jσ =
√
z − σ α

4πi

(19)

where γ is a positive constant. Notice that for γ →∞ the resolvent Rγ(z) converges to the free resolvent,
R(z). In this sense γ defines the inverse coupling strength between the particle and the spins. In
particular it is possible to show that 1/γ is proportional to the inverse of the effective scattering length
of the potential between the particle and the spins.
With ρ(Hγ) we indicate the resolvent set of the self-adjoint operator Hγ defined via the resolvent Rγ(z).
The domain of Hγ is

D(Hγ) := Ran[Rγ(z)] =
{

Ψ =
∑

σ

ψσ ⊗ χσ ∈ H :

Ψ = Ψz +
∑

jσ,j′σ′

(Γγ(z))−1
jσ,j′σ′ψ

z
σ′(yj′)Gz−σ α(· − yj)⊗Xσ;

Ψz =
∑

σ

ψz
σ ⊗Xσ ∈ D(H) ; z ∈ ρ(Hγ)

}
.

(20)

The action of Hγ on its domain is given by the relation

(Hγ − z)Ψ = (H − z)Ψz ; z ∈ ρ(Hγ) . (21)

The essential spectrum of Hγ coincides with the (absolutely continuous) spectrum of H (see, e.g., Th.
4.1.4 in [3]), σess(Hγ) = σac(H). The point spectrum of Hγ is given by the real solutions of the equation

Det
[
Γγ(z)

]
= 0 . (22)

We stress that the Krein’s resolvent formula implies that all the entries of the inverse of each Γγ(z)-matrix
are analytic functions of z ∈ ρ(Hγ).
From formulas (20) and (21) it is easily seen that a vector Ψ =

∑
σ ψσ⊗χσ ∈ D(H) such that ψσ(yj) = 0

∀σ and ∀j is also in the domain of Hγ , Ψ ∈ D(Hγ), and HγΨ = HΨ. For this reason we call Hγ a point
perturbation of H.
The following alternative characterisation of the domain of Hγ and of its action clarifies some details of
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the interaction between the particle and the spins

D(Hγ) =
{

Ψ =
∑

σ

ψσ ⊗Xσ ∈ H : Ψ = Ψz +
∑
j,σ

qjσ
ei
√

z−α σ|·−yj |

4π| · −yj |
⊗ Xσ;

Ψz ∈ D(H), z ∈ ρ(Hγ), Im
√
z − ασ > 0, qjσ ∈ C,

lim
|x−y1|→0

(
ψ(±,σ2)(x)−

q1(±,σ2)

4π|x− y1|

)
= ±iγq1(∓,σ2)

lim
|x−y2|→0

(
ψ(σ1,±)(x)−

q2(σ1,±)

4π|x− y2|

)
= ±iγq2(σ1,∓)

}
(23)

HγΨ = HΨz + z
∑
j,σ

qjσ
ei
√

z−α σ|·−yj |

4π| · −yj |
⊗ Xσ ; Ψ ∈ D(Ĥ) . (24)

Following the standard terminology used for the point perturbations of the Laplacian we refer to the
constants qjσ as charges. Notice that

qjσ = lim
|x−yj |→0

4π|x− yj |ψσ(x) =
∑
j′,σ′

(Γγ(z))−1
jσ,j′σ′ ψ

z
σ′(yj′) (25)

then qjσ is related to the coefficient of the singular term in the point yj of the wave function part of the
state Ψ relative to the configuration of the spins defined by σ. It is easy to convince oneself that the
charges qjσ do not depend on z.
The limits for |x − yj | → 0 in (23) define a sort of boundary conditions for the wave function part of
vectors in D(Hγ). The particular form the boundary conditions take in (23) indicate that the interaction
is local, inasmuch as both conditions refer to each yj separately.

2 Scattering theory

To analyse the state of the system when t goes to infinity we will make use of the scattering theory. In
this section we introduce some notation and we state the main results about scattering theory for the
pair of Hamiltonians Hγ and H.
Since Rγ(z)−R(z) is a finite rank operator the wave operators

W± := s - lim
t→±∞

eiHγte−iHt (26)

exist and are complete (see, e.g., [13]).

Proposition 1. Assume that (|y1 − y2|γ)−1 � 1 and γ2 � α then there are not eigenvalues embedded
in the continuous spectrum.

Proof. By a direct calculation one can show that

Det
[
Γγ(z)

]
=

(
γ2 +

√
z
√
z + 2α

(4π)2

)2(
γ2 +

√
z
√
z − 2α

(4π)2

)2

+O
(
(|y1 − y2|γ)−2

)
. (27)

Then the following series expansions hold for the eigenvalues, λ1 and λ2, of Hγ

λ1 = α−
√
α2 + (4πγ)4 +O

(
(|y1 − y2|γ)−2

)
λ2 = −α−

√
α2 + (4πγ)4 +O

(
(|y1 − y2|γ)−2

)
,

(28)

for γ2 � α both λ1 and λ2 are less than −2α.
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In the following we will assume that the hypothesis of proposition 1 are satisfied, in this way we will
avoid the occurrence of eigenvalues embedded in the continuous spectrum for the Hamiltonian Hγ .
With L2([σ α,∞),Ω) we indicate the Hilbert space with scalar product

(ψ1, ψ2)L2([σ α,∞),Ω) :=
∫ ∞

σ α

dλ

∫
Ω

dωψ1(λ, ω)ψ2(λ, ω) (29)

where Ω is the solid angle.
Define the map

Fγ : H →
⊕

σ

L2([σ α,∞),Ω) (30)

FγΨ :=
⊕

σ

〈Φσ
γ ,Ψ〉 =

⊕
σ

ψ̃σ
γ (31)

where

Φσ
γ (λ, ω) =

(λ− ασ)
1
4

4π
3
2

[
ei
√

λ−α σω · ⊗Xσ+

+
∑

j′,σ′,j

(Γγ(λ))−1
j′σ′,jσe

i
√

λ−α σωyj
e−i
√

λ−α σ′|·−yj′ |

4π| · −yj′ |
⊗ Xσ′

]
; λ ≥ σ α , λ ≥ σ′ α ,

(32)

and

Φσ
γ (λ, ω) =

(λ− ασ)
1
4

4π
3
2

[
ei
√

λ−α σω · ⊗Xσ+

+
∑

j′,σ′,j

(Γγ(λ))−1
j′σ′,jσe

i
√

λ−α σωyj
e−
√

α σ′−λ|·−yj′ |

4π| · −yj′ |
⊗ Xσ′

]
; λ ≥ σ α , λ ≤ σ′ α ,

(33)

with
(Γγ(λ))j′σ′,jσ = lim

ε→0+
(Γγ(λ− iε))j′σ′,jσ . (34)

Under the assumptions of proposition 1 the essential spectrum of Hγ is only absolutely continuous and
coincides with [ασ,+∞). We denote by Pσac(Hγ) the projector on the continuous part of the spectrum
of Hγ . The map Fγ is unitary on Hac(Hγ), where Hac(Hγ) = Pσac(Hγ)H, and its inverse is

F−1
γ :

⊕
σ

L2([σ α,∞),Ω) → Hac(Hγ) (35)

F−1
γ

⊕
σ

ψ̃σ
γ =

∑
σ

∫ ∞

σ α

dλ

∫
Ω

dωΦσ
γ (λ, ω)ψ̃σ

γ (λ, ω) . (36)

Define the map F : H →
⊕

σ

L2([σ α,∞),Ω)

FΨ :=
⊕

σ

〈Φσ,Ψ〉 =
⊕

σ

ψ̃σ (37)

where

Φσ(λ, ω) =
(λ− ασ)

1
4

4π
3
2

ei
√

λ−α σω · ⊗Xσ λ > σ α , (38)
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the map F is unitary on H and its inverse is F−1 :
⊕

σ L
2([σ α,∞),Ω) → H

F−1
⊕

σ

ψ̃σ =
∑

σ

∫ ∞

σ α

dλ

∫
Ω

dωΦσ(λ, ω)ψ̃σ(λ, ω) . (39)

The wave operator W−1
+ is given by

W−1
+ = F−1Fγ (40)

and it is unitary from Hac(Hγ) to H. Given Ψ ∈ Hac(Hγ), W−1
+ satisfies

lim
t→+∞

‖e−iHγtΨ− e−iHtW−1
+ Ψ‖ = 0 . (41)

3 Asymptotic estimates

Consider the initial state
Ψ0 = ψ0 ⊗X(−,−) ; with ψ0(x) = ψ0(|x|). (42)

In our setting ψ0(|x|) is a spherical wave function travelling out from the origin O.
In the spirit of the result of Mott we want to show that the large-time probability of having both spins
flipped is maximal if the spins lie on a straight line passing through the origin. We assume that the initial
state is orthogonal to the eigenfunctions of Hγ , i.e.,

Pσac(Hγ)Ψ0 = Ψ0 . (43)

Define Ψt := e−iHγtΨ0, we denote by ψt
(+,+) the function

ψt
(+,+) := (Ψt,X+,+)C2⊗C2 . (44)

The asymptotic probability to find both the spin in the state up is

P := lim
t→+∞

‖ψt
(+,+)‖L2 . (45)

Let us denote by B0(R) the open ball in R3, with center in the origin and radius R.

Proposition 2. Take Ψ0 like in (42). Assume that Ψ0 satisfies condition (43) and that supp[ψ0] ⊂
B0(R), with R < |yj |, j = 1, 2. Assume moreover that (|y1 − y2|γ)−1 � 1, γ2 � α and |y2| = |y1| + δ,
with δ > 0 and δ � |y2|. Then P has its maximum in correspondence of the minimum of |y1 − y2|.

Proof. Define Ψ0
a := W−1

+ Ψ0 and Ψt
a := e−iHtΨ0

a.
From formula (41) one obtains

lim
t→+∞

‖Ψt −Ψt
a‖ = lim

t→+∞

∑
σ

‖ψt
σ − ψt

a,σ‖L2 = 0 (46)

then
lim

t→+∞
‖ψt

σ − ψt
a,σ‖L2 = 0 ∀σ . (47)

Since
e−iHtΨ0 =

∑
σ

(
U tψ0

σ

)
⊗ e−iα σXσ , (48)

with U t = e−i(−∆)t, and U t is unitary in L2(R3), by using the result stated in equation (47), we have
that

P = lim
t→+∞

‖ψt
(+,+)‖L2 = lim

t→+∞
‖ψt

a,(+,+)‖L2 = ‖ψ0
a,(+,+)‖L2 = ‖(W−1

+ Ψ0)(+,+)‖L2 . (49)
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From the definition of W−1
+

‖(W−1
+ Ψ0)(+,+)‖L2 =

∫
R3
dx

∣∣∣∣ ∫ +∞

2α

dλ

∫
Ω

dωφ(+,+)(x;λ, ω)〈Φ(+,+)
γ (λ, ω),Ψ0〉

∣∣∣∣2 (50)

=
∫ +∞

2α

dλ

∫
Ω

dω
∣∣∣〈Φ(+,+)

γ (λ, ω),Ψ0〉
∣∣∣2 (51)

where φ(+,+) comes from the definition of F−1, see equation (39), and

φ(+,+)(x;λ, ω) =
(λ− 2α)

1
4

4π
3
2

ei
√

λ−2αωx . (52)

To obtain equation (51) from (50) we used the fact that∫
R3
dx

∣∣∣∣ ∫ +∞

2α

dλ

∫
Ω

dωφ(+,+)(x;λ, ω)f̃(λ, ω)
∣∣∣∣2 =

∫ +∞

2α

dλ

∫
Ω

dω
∣∣∣f̃(λ, ω)

∣∣∣2 . (53)

From the definition of the generalised eigenfunctions (32), we have that for λ ≥ 2α

〈Φ(+,+)
γ (λ, ω),Ψ0〉 =

(λ− 2α)
1
4

4π
3
2

∑
j,j′

(
Γγ(λ)

)−1

j′−−,j++
e−i

√
λ−2αωyj

∫
R3
dx
ei
√

λ+2α|x−yj′ |

4π|x− yj′ |
ψ0(|x|) . (54)

Let us pose

F (λ; |yj′ |) :=
∫

R3
dx
ei
√

λ+2α|x−yj′ |

4π|x− yj′ |
ψ0(|x|) . (55)

By a direct calculation one can verify that
(
Γγ(λ)

)−1

1−−,1++
=
(
Γγ(λ)

)−1

2−−,2++
and

(
Γγ(λ)

)−1

1−−,2++
=(

Γγ(λ)
)−1

2−−,1++
. Let us denote by

A(λ) :=
(
Γγ(λ)

)−1

1−−,1++
=
(
Γγ(λ)

)−1

2−−,2++
(56)

B(λ) :=
(
Γγ(λ)

)−1

1−−,2++
=
(
Γγ(λ)

)−1

2−−,1++
(57)

Under the assumptions, supp[ψ0] ⊂ B0(R) and R < |yj |, j = 1, 2, we obtain

F (λ; |yj′ |) =
ei
√

λ+2α|yj′ |

|yj′ |
f(λ) , (58)

where

f(λ) :=
1√

λ+ 2α

∫ R

0

d|x| |x| sin(
√
λ+ 2α|x|)ψ0(|x|) . (59)

Then

|〈Φ(+,+)
γ (λ, ω),Ψ0〉|2 =

√
λ− 2α
16π3

|f(λ)|2
∣∣∣∣A(λ)

(
e−i

√
λ−2αωy1+i

√
λ+2α|y1|

|y1|
+
e−i

√
λ−2αωy2+i

√
λ+2α|y2|

|y2|

)
+

+B(λ)
(
e−i

√
λ−2αωy1+i

√
λ+2α|y2|

|y2|
+
e−i

√
λ−2αωy2+i

√
λ+2α|y1|

|y1|

)∣∣∣∣2
(60)
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Under the assumption (|y1 − y2|γ)−1 � 1 one can see that A(λ) = O
(
(|y1 − y2|γ)−2

)
while B(λ) =

O
(
(|y1 − y2|γ)−1

)
, in particular

B(λ) = − e−i
√

λ|y1−y2|(4πγ)3(
(4πγ)2 −

√
λ
√
λ+ 2α

)(
(4πγ)2 −

√
λ
√
λ− 2α

) 1
|y1 − y2|γ

+O
(
(|y1 − y2|γ)−3

)
. (61)

By assuming that |y2| = |y1|+ δ, with δ > 0 and δ � |y2|, and taking into account (61) one obtains the
following estimate for the probability P

P =
8(4πγ)4

|y2|2|y1 − y2|2

∫ ∞

2α

√
λ− 2α |f(λ)|2(

(4πγ)2 +
√
λ
√
λ+ 2α

)2((4πγ)2 +
√
λ
√
λ− 2α

)2×
×
(

1 + cos(
√
λ+ 2αδ)

sin(
√
λ− 2α|y1 − y2|)√
λ− 2α|y1 − y2|

)
dλ+O

(
(|y1 − y2|γ)−3, (δ/|y2|)

)
.

(62)

The statement of the proposition follows from the fact that the function

1
L2

(
1 + cos(

√
λ+ 2αδ)

sin(
√
λ− 2αL)√
λ− 2αL

)
(63)

is decreasing in L.

Proposition 2 indicates that if the positions of the spins are such that |y2| = |y1|+δ with δ > 0 and δ � |y2|
then the probability to find both the spins in the state up has a maximum when their distance |y1 − y2|
is minimum. In particular this indicates that if the distances |y1| and |y2| are fixed the configuration in
which the probability P has a maximum corresponds to the configuration in which the spin are aligned
with the origin.

In figure it is plotted the probability P when the initial state is of the form

ψ0(|x|) = N
e−

|x|2

2s2
+ik0|x|

|x|
N =

1√
2sπ

3
4
, (64)

with s > 0 and k0 > 0, in a setting in which |y1| and |y2| are fixed. On the x-axis of the plot there is the
angle θ between y1 and y2, the plot clearly shows that the probability has a maximum when θ = 0.
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