
UNIVERSITY   OF   NAPLES   FEDERICO II 
 
 

 
 
 

PH.D. PROGRAM IN 

CLINICAL AND EXPERIMENTAL MEDICINE 

CURRICULUM IN (CARDIOVASCULAR AND GERONTOLOGICAL SCIENCES) 
 

XXX Cycle 
(Years 2014-2017) 

 

Chairman: Prof. Gianni Marone 
 
 

PH.D. THESIS 
 
 

TITLE 
 

β-arrestin 2 deletion improves cardiac function during aging  
 
 
 
 

              TUTOR                      PH.D. STUDENT 

Prof. Nicola Ferrara                                 Dr.  Claudio de Lucia 
 
 
 



 1 

INDEX 
 
 
 

1. BACKGROUND        pag. 2 

2. METHODS          pag. 3 

3. RESULTS          pag. 5 

4. DISCUSSION          pag. 7 

5. REFERENCES          pag. 11 

6. FIGURES          pag. 15 

7. FIGURE LEGENDS         pag. 20 

8. TABLE          pag. 22 

 

  



 2 

BACKGROUND 

Over the last years, life expectancy has significantly increased although multiple diseases 

persist with aging as a risk factor. In fact, despite the improvement in treatments, many 

elderlies suffer from cardiovascular diseases(1).  The pathophysiological changes of the aging 

heart include left ventricular (LV) hypertrophy, diastolic and systolic dysfunction, increased 

fibrosis and reduced inotropic reserve(2-4). These changes make aged heart more vulnerable 

to stress, leading to a high prevalence of cardiac diseases such as arrhythmias, coronary artery 

disease, myocardial infarction and heart failure (HF) (1, 5).  All these alterations are mirrored 

in animal models used in aging studies. In particular, the application of genetically modified 

mice to aging research has identified numerous critical molecular mechanisms involved in 

cardiac aging such as altered adrenergic signaling, mitochondrial dysfunction, increased 

cardiomyocyte apoptosis and oxidative stress(2, 6, 7). β-arrestin-1 (βarr-1) and βarr-2 proteins 

belong to the arrestin family and are ubiquitously expressed. They have been originally 

discovered as regulators of the G protein–coupled receptor (GPCR) signaling but both are 

now well known to be also G protein–independent signal transducers and interact with many 

proteins and protein kinases both in vitro and in vivo(8, 9). In the cardiomyocytes, when β-

adrenergic receptors (β-ARs) are stimulated by catecholamines, the G protein-coupled 

receptor kinase 2 (GRK2) phosphorylates β-ARs that then become targets for the binding of 

β-arrs. This β-arr binding prevents β-ARs further coupling to the G protein, reduces the level 

of functional receptors and induces their internalization where they go on to be degraded or 

resensitized before recycling to the membrane(10).  It is well established that GRK2 is 

upregulated in failing heart leading to β-AR dysfunctional signaling(10).  

Differently, cardiac membrane GRK2 levels are not altered with aging and the main 

mechanism involved in the age–related β-AR down-regulation/desensitization in 

cardiomyocytes remains still unknown(11).  Interestingly, β-arr-2 protein levels are increased 

in the aged heart(12).  However it is not clear so far if β-arr-2 plays a role in the decreased 

adrenergic signaling during cardiac aging. Thus, in the present study we have tested the 

effects of β-arrestin-2 deletion in a murine model of aging on cardiac function and age-related 

β-AR dysfunction. 
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METHODS 

Experimental animals 

All animal procedures were performed in accordance with the guidelines of the Institutional 

Animal Care and Use Committee of Temple University School of Medicine. Genetically 

engineered, β-arr2 KO (on C57BL/6 background) and corresponding C57BL/6 wild type 

(WT) male mice were used for this study, as previously published(13). All animals were bred 

and maintained on a C57Bl/6 background. Mice were studied for a 15-24-month-long period 

according to different experiments. 

 

Two-Dimensional Echocardiography and Strain Analysis 

Transthoracic echocardiography has been used to assess cardiac structure and function using a 

VisualSonics VeVo 2100 system (VisualSonics, Toronto, Ontario, Canada), as described. 

Mice were anesthetized in a specific isoflurane sedation box (induction 3.0% and 

maintenance 1–3%). Mice were next shaved to remove hair from the ventral thorax (from the 

neckline to mid-chest level). Then, mice were placed in a supine position on a heated table 

with embedded ECG leads. During echocardiography, anesthesia was maintained throughout 

the procedure with 1–3% isoflurane. Images were acquired in the short-axis B-mode and M-

mode for LV diameters, anterior and posterior wall measurements, and subsequently ejection 

fractional (EF) with a 18–38 MHz probe(14, 15). 

Long-axis B-mode images were recorded for endocardial longitudinal and radial strain as well 

as longitudinal strain rate (SR) and radial SR analysis using the Vevo Strain software 

following, as published(14, 16).  Strain, which evaluates change in length relative to the initial 

length (Strain = Final Length [L]/ Initial Length [L0]) was calculated either in the radial (from 

the center of the ventricle cavity outward) or longitudinal axis (from the apex to the base). 

The rate of change in strain (Strain Rate = Strain/Time) was also measured(14). Average and 

regional (6 segments: anterior basal zone, anterior middle zone, anterior apex, posterior basal 

zone, posterior middle zone, posterior apex) LV endocardial longitudinal and radial strain/SR 

were evaluated(16, 17). After echocardiograms were recorded, image series were randomly 

ordered and renumbered. All images were analyzed under their coded numbers in a blinded 

fashion, then the code was broken and animal data was sorted by treatment group then 

analyzed. 
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Membrane Preparation and Radioligand Binding 

β-AR density was measured in isolated cardiac plasma membranes using 125I-CYP 

(Iodocyanopindolol), as described(18). Membrane preparations from LV samples were 

prepared by homogenization in ice-cold lysis buffer (25 mM Tris, pH 7.4, 5 mM EDTA, 1 

µg/mL aprotinin, 1 µg/mL leupeptin) and centrifuged at 1,000 × g for 5 min at 4 °C. The 

supernatant was centrifuged at 30,000 × g, and the crude membrane pellet was resuspended in 

lysis buffer containing 10% glycerol and stored at −80 °C until use. The density of βAR on 

membranes was determined by saturation binding experiments. Membrane preparations (25 

µg of protein) were incubated with [125I]cyanopindolol ([125I]CYP; 200 pM; PerkinElmer) in 

binding buffer (75 mM Tris, pH 7.4, 2 mM EDTA, 12.5 mM MgCl2, 1 µg/mL aprotinin, 1 

µg/mL leupeptin). Incubations were performed in the presence or absence of propranolol (10 

µM) to determine nonspecific binding. The reactions were performed in a 250-µL volume and 

allowed to equilibrate at 37 °C for 1 h before filtering the membranes through a glass fiber 

filter (Whatman GF/C; Brandel). Each filter was washed five times with 5 mL of ice-cold 

wash buffer (10 mM Tris, pH 7.4, 10 mM EDTA) to remove unbound drug. The amount of 

total and non-specific radiolabel bound to cell membranes was determined on a gamma 

counter. All assays were performed in triplicate. Receptor density was normalized to 

milligrams of membrane protein. 

 

Western blot analysis 

Western blotting has been performed as published(15). LV samples (0.1 mg) were lysed in a 

RIPA buffer with protease (cOmplete-Roche, Indianapolis, IN, USA) and phosphatase 

inhibitors (PhosSTOP-Roche, Indianapolis, IN, USA) cocktail. Protein content was quantified 

with the Bio-Rad BCA protein assay (Bio-Rad Laboratories, Richmond, California, USA). 

Protein samples were separated by 4–20% SDS–polyacrylamide gel electrophoresis (Thermo 

Fisher Scientific) and then transferred to nitrocellulose membrane (Bio-Rad Laboratories). 

After blocking with a specific blocking buffer (Odyssey, LI-COR, Lincoln, Nebraska, USA), 

the membranes were incubated and probed with the first antibody at 4 °C overnight according 

to manufacturer’s instructions. Then, the proteins were stained with a corresponding Alexa 

Fluor 680- (1:5,000; Thermo Fisher Scientific) or IRDye 800CW-coupled (1:5,000; Rockland 

Inc. Limerick, PA, USA) secondary antibody, followed by visualization of the proteins with a 

LI-COR infrared imager (Odyssey), and quantitative densitometric analysis was performed 

applying Odyssey version 1.2 infrared imaging software. Protein levels of: β-arr2 (Santa Cruz 
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sc-13140; 1:1,000); NOX4 (Epitomics #3187-1; 1:1,000), Mn-SOD (BD-Biosciences 

#611580; 1:1,000) were assessed. 

 

Real-time PCR and RT-PCR 

Total RNA was isolated from LV specimens with TRIzol (Thermo Fisher Scientific) 

according to the company’s instructions. After RNA isolation, cDNA was synthesized by 

reverse transcription of the RNA (iScript cDNA synthesis kit, Bio-Rad Laboratories). Real-

time PCR was performed in triplicates on a CFX96 real-time PCR detection system (Bio-Rad 

Laboratories) using the SYBR Green mix (Bio-Rad Laboratories) and specific primers for 

mouse β-arr1 as follows: forward 5’-AAGGGACACGAGTGTTCAAGA-3’; reverse 5’-

CCCGCTTTCCCAGGTAGAC-3’; 

β-arr2 as follows: forward 5’-GGCAAGCGCGACTTTGTA-3’; reverse 5’-

GTGAGGGTCACGAACACTTTC-3’(19). The expression levels were normalized to the 

rRNA 18S. Specificity of PCR products was confirmed by melting curve and gel 

electrophoresis(15).  

Conventional RT-PCR for the presence of β-arr2 transcript in mRNA extracted from LV 

samples was performed with specific primers for mouse β-arr2 as follows: forward 5’-

AAGTCGAGCCCTAACTGCAA-3’; reverse 5’-TTCCGGTCCTTCAAGTAGTCA-3’ 

 

RESULTS 

β-arr2 mRNA expression and protein levels in aging hearts 

To confirm that aging is associated with increased β-arr2 in the heart(12),  we measured LV 

β-arr2 protein levels in young and old mice. There was a 2.7 fold increase in β-arr2 protein 

levels in 15- versus 6-month-old WT-mice (p<0.0001) (Fig. 1B). Differently, we found 

similar mRNA expression of β-arr2 in samples from 15- versus 6-month-old mouse hearts 

(Fig. 1A). 

 

β-arr2 deletion did not affect neither β-arr1 cardiac expression nor age-related cardiac 

hypertrophy  

In order to investigate the impact on cardiac aging of the genetic deletion exclusively of β-

arr2, we utilized the available global β-arr2 KO mouse model (Figure 2A). These mice breed 

normally and did not present any basal altered cardiovascular phenotype(13). β-arr2 KO-Old 

mice did not show different β-arr1 expression when compared to WT-Old mice (Figure 2B). 

As expected, aging in WT mice was associated with increase in body weight (BW) (6- vs 24 
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month-old: 23±0.65 vs 33±0.87), heart weight (HW) (6- vs 24 month-old: 0.12±0.0032 vs 

0.17±0.0036), and HW to tibia length ratio (HW/TL) (6- vs 24 month-old: 7±0.19 vs 

9.3±0.18) (Figure 3, Table). Interestingly, when compared to WT-Old mice, β-arr2-KO Old 

mice did not show any changes in BW (33±0.87 vs 32±0.79), HW (0.17±0.0036 vs 

0.18±0.0063), HW/BW (5.2±0.18 vs 5.5±0.2), HW/TL (9.3±0.18 vs 9.5±0.34) (Figure 3, 

Table). β-arr2 deletion did not affect BW, HW, HW/BW or HW/TL in young (6-month-old) 

mice, as well (Figure 3, Table). 

 

β-arr2KO deletion improves cardiac function during aging 

There were no differences between groups (β-arr2 vs. WT) in any of the echocardiographic 

measures (standard echocardiography) when mice were 6-month-old (Figure 4 and Table). 

Aging was associated with a decline in LV EF (6-month-old:  57±1.3; 20-month-old: 49±1.3) 

as well as increased LV internal   end-diastolic diameter (LVIDd) (6-month-old:  4.1±0.054; 

20-month-old: 4.5±0.066), LV internal   end-systolic diameter (LVIDs) (6-month-old:  

3.0±0.053; 20-month-old: 3.5±0.067), and LV mass of the anterior wall  (LV Mass AW) (6-

month-old:  114±3.9; 20-month-old: 136±6) (Figure 4 and Table).  

β-arr2KO deletion in old mice resulted in blunted age-related cardiac dysfunction.  In fact, β-

arr2KO 20-month-old mice, when compared to WT 20-month-old mice, showed increased EF 

(49±1.3 vs 57±1.8; p<0.01) as well as reduced LVIDd (4.5±0.066 vs 4.2±0.067; p<0.01) and 

LVIDs (3.5±0.067 vs 3.1±0.11; p<0.01)  (Figure4 and Table). No difference was found in LV 

mass AW between the Old groups (β-arr2KO-Old vs WT-Old: 136±6 vs 136±9.7). 

Strain analysis was performed on long-axis B-mode images to check longitudinal and radial 

strain parameters. When young, β-arr2KO and WT mice demonstrated similar average 

longitudinal and radial strain as well as average longitudinal SR and radial SR (Figure 5 A, C, 

E, G). Average Radial strain and radial SR were reduced while average longitudinal strain and 

longitudinal SR were not affected during aging in WT mice (Figure 5). Significant 

improvements in both average radial strain and radial SR were observed in β-arr2-KO Old 

when compared to WT-Old mice (p<0.05) (Figure 5B, D, F, H) 

In addition, β-arr2 deletion improved regional radial and radial SR in the anterior basal zone 

and posterior apex during aging (p<0.05) (Figure 6 B, D). No differences were found in 

average and regional longitudinal strain and longitudinal SR between β-arr2-KO Old and WT-

Old mice (Figure 5 B, D and Figure 7 B, D) 
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β-arr2KO deletion restored age-influenced cardiac β-AR density 

In an effort to explore the molecular mechanisms underlying the effect of the absence of β-

arr2 on cardiac function during aging, we also investigated β-AR density in β-arr2 and WT 

mice both when young and old. Consistent with the functional data, total β-AR density in the 

aged WT (24-month-old) hearts was reduced compared to WT young (6-month-old) hearts 

(WT-Young vs WT-Old: 79±2 vs 62±6.8 fmol/mg protein) (Figure 8). Importantly, β-arr2 

deletion restored age-dependent β-AR downregulation (p<0.05) (WT-Old vs β-arr2-Old: 

62±6.8 vs 84±7.2) (Figure 8). No difference was found between young groups in term of  

cardiac β-AR density (Figure 8). 

 

β-arr2KO deletion reduced age-determined Nox4 upregulation 

We confirmed that cardiac Nox4 is upregulated during aging(20)  (increase of 3.7 fold in WT-

Old compared to WT-Young; *p<0.001) and discovered that MnSOD is unchanged and 

probably is not able to metabolize enough ROS produced determining increased oxidative 

stress. (Figure 9 A, B). Intriguingly, we found that Nox4 was significantly down-regulated in 

βarr-1 KO- and βarr-2 KO-Old mice compared to WT-Old mice (respectively 40% and 30% 

decrease vs WT-Old; respectively p<0.0001 and p<0.01 vs WT-Old) while Mn-SOD values 

were similar in cardiac samples from old groups. 

 

DISCUSSION 

In the present study, we have demonstrated that βarr-2 deletion in aged mice is able to: a) 

improve age-related cardiac dysfunction b) enhance average and regional cardiac radial strain 

as well as radial SR during in aging heart c) restore age-related cardiac β-AR desensitization   

d) reduce cardiac oxidative stress.  

Cardiovascular diseases impose a huge social, economical and clinical burden worldwide. 

The aging of the population in combination with increased survival in patients with coronary 

artery disease, hypertension, diabetes and arrhythmias has led to a tremendous growth in both 

the prevalence and incidence of HF(1, 21). Therefore, there is an enormous need to invest in 

treatments contributing to a successful aging and increasing the quality of life.  A lot of 

investments and efforts have been spent in the last decades in order to counteract the 

development and progression of cardiovascular diseases. Considerable advances in 

pharmacological treatment of HF have been achieved but researchers have not been focusing 

enough on cardiac age-related alterations (22). This is crucial since a frail heart is more prone 

to develop cardiac dysfunction after stress (myocardial infarction, hypertension, diabetes, 
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etc.).  Unfortunately, the basic mechanisms that cause the aging of the heart are still poorly 

understood. Age-related cardiac modifications are represented by cardiomyocyte hypertrophy, 

increased myocardial thickness and cardiac fibrosis, which together affect LV structure and 

function(2). Many studies have shown that the aging is characterized by changes of β-AR 

system such as increased plasma catecholamine levels, reduction of cardiac receptor density 

and their internalization as well as decreased adenylyl cyclase activity and cAMP 

production(6, 12, 23).  Cardiac β-AR dysfunction during aging leads to reduced exercise 

tolerance, decreased LV inotropic reserve and less susceptibility to β-blockade compared to 

young people(6). Although changes in β-AR agonist responsiveness in the failing and aging 

heart are quite similar, GRKs expression and activity seem to be unaltered during aging(24, 

25). Hence, the main molecular mechanism involved in β-AR dysfunction during aging is still 

undetermined. Interestingly, Dobson et al. studied potential molecular mechanisms of reduced 

β-AR signaling in the aged heart and found β-arr2 to be upregulated despite β-arr2 is known 

to be less expressed compared to β-arr1 in the heart(12, 26). In addition, a recent study 

elucidated the phosphorylation site of the β1-AR at Ser461/Ser462 in the distal part of the C-

terminus to determine β-arr2 recruitment and receptor internalization(27).  

Previous studies have demonstrated a role for β-arr1 and β-arr2 during myocardial ischemia. 

β-arr1 KO mice show improved cardiac function in a model of post–myocardial infarction 

HF. At this regard, the underlying mechanisms were referred to improved cardiac β-AR 

signaling and function due to cardiac β-Arr1 absence and, decreased circulating levels of 

cathecolamines and aldosterone due to adrenal β-Arr1 deletion(28). β-arr-2 KO mice have 

greater mortality compared to WT mice after MI and their infiltrated macrophages induce 

huge cardiac inflammation(29). Moreover, β-arr2 overexpression stimulate cardiac 

contractility and reduced LV dilation after MI via sarco[endo]plasmic reticulum Ca2+-

ATPase (SERCA2a) increased activity(30). However, it is not been shown whether β-arr2 

plays a role in age-dependent cardiac β-AR desensitization and functional decline.  

Our study is the first indicating that β-arr2 deletion is able to induce a significant increase in 

cardiac function, as indicated by the significant improvement in LV EF and blunted age-

related LV dilation observed in β-arr2 KO-Old compared to WT-Old (20-month-old) mice 

(Fig. 4 and Table). Importantly, the β-arr2 KO and WT mice showed similar cardiac 

parameters when young (6-month-old) (Fig.4 and Table).  No difference was found in HW, 

HW/BW, HW/TL or LV Mass AW (Fig. 3-4; Table) suggesting that β-arr2 is not involved in 

hypertrophic response during aging. 
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Recently, echocardiographic speckle-Tracking based strain imaging has emerged as an 

accurate non-invasive tool for the evaluation of LV function and morphology in mouse 

models, beyond the standard measurements(16, 31). It has been shown that echocardiographic 

strain analysis is a valuable and reproducible technique both in elderly patients and mouse 

models of cardiac aging(31-33). Interestingly, we found that that β-arr2 deletion was able to 

counteract the decrease in radial strain parameters during aging. In fact, β-arr2 KO-Old mice 

showed increased both average radial strain and average radial SR when compared to WT-Old 

mice (Fig.5). In addition, differently from WT-Old mice, β-arr2 KO-Old mice preserved 

radial strain and radial SR in the anterior basal zone and posterior apex. No differences were 

found in terms of longitudinal strain or longitudinal SR between β-arr2 KO and WT mice 

both at 6- and 20-months time-point.  

Interestingly, we found β-arr2 protein levels to be upregulated in aging heart while we did not 

find a difference in β-arr2 mRNA expression levels between in LV lysates from WT-Young 

and WT-Old mice (Fig. 1).  Probably, β-arr2 transcript and protein expression decoupling is 

due to age-related post-translational regulations. At this regard, it is well known a decrease in 

total rates of protein degradation with age and β-arr ubiquitination has been shown to be 

regulated by different proteins such as parkin and Mdm2(34, 35).   

In addition, our results indicate that β-arr2 deletion is not counterbalanced by β-arr1 

upregulation in aged hearts.  This is crucial since β-arrs have structural analogies and share 

several functions in GPCR regulation and GPCR-independent transduction signaling(36).  

In order to check the molecular mechanism involved, we have measured cardiac β-AR density 

in β-arr2 KO and WT mice when young and old. β-AR altered responsiveness and signaling 

are recognized to be a relevant pathogenic mechanism for reduced LV function during aging 

in animal models and in humans(6). However, therapeutic interventions able to restore age-

related cardiac β-AR abnormalities has not been found, yet. Our results showed that β-arr2 

deletion was able to completely restore β-AR down-regulation with β-AR levels similar to 

those observed in young mice. Tang et al. confirmed the importance of β-AR pathway during 

aging and showed that the activation of cardiac Adenylyl Cyclase 6 expression, effector 

molecule for β-AR signaling, improved aging-related LV systolic and diastolic function 

through enhanced sarcoplasmic reticulum calcium uptake(23). 

In our study, βarr-2 deletion induced results similar to those reported by Tang et colleagues, 

improving aging-impaired LV contractile function (Fig. 3-7). However, βarr-2 deletion should 

have more beneficial effect due to its multiple roles: 1) βarrs not only bind to GRK 

phosphorylated receptors to induce receptor internalization but also act as a scaffold protein 
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for numerous other molecules such as phosphodiesterase to further diminish β-AR-induced 

cAMP signal(37-39); 2) βarr-2 is involved in heterologous desensitization of βARs by other 

GPCR stimuli (such as dopamine or angiotensin II) which block β-adrenergic-induced protein 

kinase A phosphorylation of phospholamban and myocyte contractility. 

This latter finding is particularly relevant taking into consideration the age-dependent increase 

of local renin-angiotensin system in the myocardium(40).  

We believe that the different effects of β-arr-2 deletion during cardiac aging and post-

ischemic HF are due to different cells and molecular mechanism involved. In fact, 

macrophage β-arr-2 plays a protective role in MI-induced inflammation while during aging β-

arr-2 seems to be a crucial modulator of β-AR function in cardiomyocytes (Fig. 8)(29).   

With age, the heart shows a decrease in the number of cardiomyocytes, increase in their size 

and in fibrotic areas. All these phenomena are related to the production of ROS during aging, 

which are considered to be of mitochondrial origin(41). Nox4 is a key enzyme in ROS 

production while Mn-SOD shows an anti-oxidant role(20). It has been demonstrated that 

Nox4 is upregulated during aging especially in the mitochondria and its overexpression 

induces cellular senescence in fibroblasts and apoptosis in cardiomyocytes(20).  Intriguingly, 

Philip et al. have recently demonstrated that β-arrs are upregulated in cardiac fibroblasts from 

failing hearts and regulate mitochondrial superoxide production via Nox4(42). Our results 

show that β-arr2 is involved in age-dependent Nox-4 upregulation suggesting that reduced 

oxidative stress could improve, at least in part, cardiac function and remodeling in β-arr2 KO-

Old compared to WT-Old mice (Fig. 9). Although additional studies will be required to 

determine whether global deletion of β-arr2 is beneficial for cardiac aging due to β-arr2 role 

in cardiomyocytes or in other cardiac cell populations, our current data suggest a therapeutic 

potential for β-arr2 inhibition in aging hearts. 

 

CONCLUSIONS 

In summary, the present study reports that β-arr2 deletion reverses age-related cardiac 

dysfunction and LV dilatation. Importantly, the beneficial effects of β-arr2 deletion were 

found in global and regional radial strain parameters. As a contributing mechanism, improved 

LV function is associated with restored β-AR density and reduced oxidative stress in aged 

hearts. 
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Figure 3: 
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Figure 6: 
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Figure 8: 

 
 
 
 
Figure 9: 

 
  

βAR density

Young
Old

0

50

100

βA
R

 d
en

si
ty

 (f
m

ol
/m

g 
pr

ot
ei

n)

WT

β-Arr2KO

*

GAPDH&

NOX4&

WT-Young& WT-Old&A"

WT-Y
oung

WT-O
ld

0

1

2

3

4

5

NOX4

N
O

X4
/G

A
PD

H
 (F

ol
d 

ov
er

 W
T-

Yo
un

g)

*

GAPDH&

Mn-SOD&

WT-Young& WT-Old&B"

WT-Y
oung

WT-O
ld

0.0

0.5

1.0

1.5

MnSOD

M
nS

O
D

/G
A

PD
H

 (F
ol

d 
ov

er
 W

T-
Yo

un
g)

Barr1KO-Old&WT-Old& Barr2KO-Old&C"

GAPDH&

NOX4&

WT-O
ld

β-A
rr1

KO-O
ld

β-A
rr2

KO-O
ld

0.0

0.5

1.0

1.5

NOX4

N
O

X4
/G

A
PD

H
 (F

ol
d 

ov
er

 W
T-

O
ld

) #

**

D"

GAPDH&

Mn-SOD&

Barr1KO-Old&WT-Old& Barr2KO-Old&

WT-O
ld

β-A
rr1

KO-O
ld

β-A
rr2

KO-O
ld

0.0

0.5

1.0

1.5

Mn-SOD

M
n-

SO
D

/G
A

PD
H

 (F
ol

d 
ov

er
 W

T-
O

ld
)



 20 

FIGURE LEGENDS 
Figure 1: Aging is associated with increased β-Arrestin 2 protein levels: 
A:  Quantification of RT-PCR data showing β-Arrestin 2 mRNA levels of left ventricular 
(LV) samples from WT-Young (3 months old) and WT-Old (15 months old) mice. 
Quantitation normalized with 18s as control and expressed as fold of WT-Young.  
B: Representative Western blotting (top) and densitometric quantitation (bottom) in LV 
samples from WT-Young and WT-Old mice for β-Arrestin 2 . Representative blot shown 
includes GAPDH as loading control. Densitometric quantitation, normalized with GAPDH as 
control and expressed as fold of WT-Young.  n= 4 to 5 per group. *, p<0.0001 vs WT-Young. 
T-test was used between groups. 
 
Figure 2: β-Arrestin 2 deletion does not significantly alter β-Arrestin 1 expression 
during aging: 
A: PCR in cardiac mRNA isolated from β-Arrestin 2 KO or WT mice for confirmation of the 
absence of β-Arrestin2 transcript. 18s used as control. B: Quantification of RT-PCR data 
showing β-Arrestin1 mRNA levels of left ventricular (LV) samples from WT-Old (15 months 
old) and  β-Arrestin 2 KO-Old mice. Quantitation normalized with 18s as control and 
expressed as fold of WT-Old. n= 4 per group. T-test was used between groups. 
 
Figure 3: β-Arrestin 2 deletion does not affect cardiac hypertrophy during aging:  
Heart weight (HW) (A), HW/body weight (HW/BW) (B) and HW/tibia length (HW/TL) (C) 
in WT and  β-Arrestin 2 KO (β-Arr2KO) mice. Both mice have been studied when 3- 
(Young) and 24- (Old) -month-old. n= 6 to 26 per group. T-test was used between groups. 
 
Figure 4: β-Arrestin 2 deletion ameliorates age-related cardiac dysfunction:  
Ejection fraction (EF) (A, B), left ventricular internal diameter at diastole (LVIDd) (C, D) and 
left ventricular mass of the anterior wall (LV Mass AW) (E, F) as measured by standard 
echocardiography in WT and β-Arrestin 2 KO (Barr2KO) mice. Both mice have been studied 
when 6- and 20-month-old (6-mo and 20-mo). n= 6 to 19 per group. **p<0.01 vs WT-20mo. 
T-test was used between groups. 
 
Figure 5: β-Arrestin 2 deletion counteracts age-related radial strain dysfunction:  
Average longitudinal strain (A, B), longitudinal strain rate (SR) (C, D), radial strain (E, F) 
and radial SR (G-H) as measured by echocardiographic speckle-tracking based strain imaging 
in WT and β-Arrestin 2 KO (Barr2KO) mice. Both mice have been studied when 6- and 20-
month-old (6-mo and 20-mo). n= 6 to 18 per group. *p<0.05 vs WT-20 mo. T-test was used 
between groups. 
 
Figure 6: β-Arrestin 2 deletion improves segmental radial strain during aging:  
Radial strain (A, B) and radial strain rate (C, D) for 6 different segments of left ventricle 
(anterior basal zone, anterior middle zone, anterior apex, posterior apex, posterior middle 
zone and posterior basal zone) as measured by echocardiographic speckle-tracking based 
strain imaging in WT and β-Arrestin 2 KO (Barr2KO) mice. Both mice have been studied 
when 6- and 20-month-old.  n= 6 to 18 per group. *p<0.05. T-test was used between groups. 
 
Figure 7: β-Arrestin 2 deletion does not affect segmental longitudinal strain during 
aging:  
Longitudinal strain (A, B) and longitudinal strain rate (C, D) for 6 different segments of left 
ventricle (anterior basal zone, anterior middle zone, anterior apex, posterior apex, posterior 
middle zone and posterior basal zone) as measured by echocardiographic speckle-tracking 
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based strain imaging in WT and β-Arrestin 2 KO (Barr2KO) mice. Both mice have been 
studied when 6- and 20-month-old. n= 6 to 18 per group. T-test was used between groups. 
 
 
Figure 8: β-Arrestin 2 deletion ameliorates age-related β-adrenergic receptor 
dysfunction: 
β-adrenergic receptor (βAR) density (femtomoles of receptor per milligram of protein) in WT 
and  β-Arrestin 2 KO (β-Arr2KO) mice. Both mice have been studied when 3- (Young) and 
24- (old) month-old. n= 6 to 9 per group. *p<0.05. T-test was used between groups. 
 
Figure 9: β-Arrestin 1 or 2 deletion ameliorate oxidative stress during aging: 
Representative Western blotting (top) and densitometric quantitation (bottom) in left ventricle 
(LV) samples from WT-Young (3 months old) and WT-Old (15 months old) mice for 
NADPH oxidase 4 (NOX4) (A) and Manganese-dependent superoxide dismutase (MnSOD) 
(B). Representative Western blotting and densitometric quantitation in LV samples from WT-
, β-Arrestin 1KO (β-Arr1 KO)- and β-Arr2 KO- Old mice(15-month-old) for NOX4 (C) and 
MnSOD (D). Densitometric quantitation, normalized with GAPDH as control and expressed 
as fold of WT-Young or WT-Old, as appropriate. n = 4 to 5 per group. *p<0.001 vs WT-
Young. **p<0.0001 vs WT-Old; #p<0.01 vs WT-Old. T-test or One-way ANOVA and Tukey 
test were used between groups, as appropriate. 
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TABLE	
  
 6-month-old mice 20-month-old mice 
 WT β-Arr 2 KO p-value WT β-Arr 2 KO p-value 

BW (g) 23±0.65 23±0.66 NS 33±0.87 32±0.79 NS 

HW (g) 0.12±0.0032 0.12±0.0054 NS 0.17±0.003
6 

0.18±0.0063 NS 

HW/BW (mg/g) 5.4±0.11 5.4±0.14 NS 5.2±0.18 5.5±0.2 NS 

HW/TL 
(mg/mm) 

7±0.19 7.1±0.28 NS 9.3±0.18 9.5±0.34 NS 

HR (bpm) 492±8 462±13 NS 494±13 480±14 NS 

EF (%) 57±1.3 57±2.7 NS 49±1.3 57±1.8** <0.01 
LVIDd (mm) 4.1±0.054 4.1±0.13 NS 4.5±0.066 4.2±0.067** <0.01 
LVIDs (mm) 3.0±0.053 3.0±0.15 NS 3.5±0.067 3.1±0.11** <0.01 

LVAWd (mm) 0.79±0.033 0.82±0.059 NS 0.76±0.029 0.89±0.052* <0.05 
LVAWs (mm) 1±0.037 1.1±0.063 NS 1.1±0.029 1.2±0.028 NS 
LVPWd (mm) 0.72±0.02 0.7±0.022 NS 0.77±0.031 0.81±0.047 NS 
LVPWs (mm) 0.98±0.035 1±0.043 NS 0.91±0.052 1.1±0.035* <0.05 
LV Mass AW 114±3.9 113±5.3 NS 136±6 136±9.7 NS 

 
Table legend: Physical parameters and echocardiography measurements: 
Body weight (BW), heart weight (HW), HW/BW, HW/tibia length (HW/TL), heart rate (HR), 
ejection fraction (EF), left ventricular internal  diameter at diastole (LVIDd) and systole 
(LVIDs), anterior wall in diastole (LVAWd) and  systole (LVAWs), posterior wall in diastole 
(LVPWd) and systole (LVPWs), and mass of the anterior wall  (LV Mass AW) were 
evaluated in WT and β-Arrestin 2 KO (β-Arr2KO) mice. Both mice have been studied when 
6- and 20-month-old.  Values represent mean±SE. n=6 to 26 per group. *p<0.05 vs WT-20-
month-old **p<0.01 vs WT-20-month-old. T-test was used between groups. 
 
 
 


