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Introduction

A group G is said to be a Dedekind group if all its subgroups are
normal. Obviously, every abelian group has this property, and each
Dedekind group is not too far from being abelian. In fact, a classical
result of R. Baer [1] and R. Dedekind [14] proves that a non-abelian
group G has only normal subgroups if and only if G ' Q×A, where
Q is the quaternion group of order 8 and A is a periodic abelian
group with no elements of order 4. In these groups normality is tran-
sitive, which is not so for an arbitrary group, the alternating group
of order 4 being an example. This remark led H. Wielandt [62] to in-
troduce in 1939 the concept of “subnormal subgroup”: a subgroup
X of a group G is said to be subnormal in G if there is a finite series
of subgroups of the form

X = X0 /X1 / . . . /Xk = G;

the smallest non-negative integer k for which such a series exists
being called the subnormal defect of X in G. Thus a subgroup is normal
if and only if it is subnormal with defect at most 1. Subnormality is a
concept of highest importance in group theory; for instance, a finite
group is nilpotent if and only if all its subgroups are subnormal.

The structure of infinite groups in which every subgroup is sub-
normal can be much more complicated, and in fact H. Heineken and
I.J. Mohamed (see [35]) in 1968 were the first to construct an example
of an infinite group with trivial centre in which all proper subgroups
are subnormal. On the other hand, it was proved by J.E. Roseblade [58]
in 1965 that if G is a group, and there is a positive integer k such
that all subgroups of G are subnormal with defect at most k, then
G is nilpotent and its nilpotency class is bounded by a function of k.
Although the example of H. Heineken and I.J. Mohamed shows that
groups with all subgroups subnormal are in general far from being
nilpotent, a fundamental result of W. Möhres [46] of 1990 states that
these groups are at least soluble.

In 1972, R.E. Phillips [52] generalizes the subgroup property of
“being subnormal” introducing f-subnormality: a subgroup H of a
group G is said to be f-subnormal in G if there is a finite f-series from
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H to G, that is a finite chain of subgroups

H = H0 6 H1 6 ... 6 Hn = G

such that |Hi : Hi−1| <∞ or Hi−1 E Hi for every i ∈ {1, . . . ,n}.

Obviously this definition represents a substantial generalization of
subnormality only for infinite groups and the subgroup

H = 〈123〉 × S4 × S4 × . . .

is an example of an f-subnormal subgroup of the infinite group

G = S4 × S4 × S4 × . . .

which is not subnormal.

Groups with all f-subnormal subgroups have been characterized
by C. Casolo and M. Mainardis (see [8]) in 2001; their work is based
on a generalization of the result of Möhres mentioned above. In-
deed, their main theorem proves that a group with all subgroups
f-subnormal is finite-by-soluble and their Theorem 1.4 proves that
this result is the best possible.

Furthermore, it’s easy to verify that a finitely generated group
having only subnormal subgroups is nilpotent, and J.C. Lennox and
S.E. Stonehewer proved ([44], Theorem 6.3.3) that a finitely generated
group is finite-by-nilpotent if and only if all its subgroups are f-sub-
normal. It’s important to stress that in a finite-by-nilpotent group
all subgroups satisfy a stronger condition than f-subnormality. To be
more precise, in a finite-by-nilpotent group G, each subgroup has
finite index in a subnormal subgroup of G. This property has been
considered in the second chapter of this dissertation, with respect to
some “large subgroups”.

Let G be a group, H a subgroup of G and n,m two fixed non-
negative integers. If there is a subgroup H0 containing H such that
|H0 : H| 6 n and H0 is subnormal in G with subnormal defect
at most m, then we say that H is (n,m)-subnormal in G. We order
the pairs (n,m) lexicographically and, with this ordering, if H is
(n,m)-subnormal in G for some pair (n,m), then the least such pair
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is called the near defect of H in G (see [22, 42]).
The second chapter of this thesis deals with a generalization of Ro-

seblade’s theorem mentioned above. For fixed non-negative integers
n,m we define the group class S(n,m) to be the class of all groups
of infinite rank (and the trivial groups) whose subgroups of infinite
rank are (n,m)-subnormal in G and we prove that S(n,m)-groups
are finite-by-nilpotent in a large class of generalized soluble groups.
Recall that a group G is said to have finite (Prüfer) rank r = r(G) if
every finitely generated subgroup of G can be generated by at most r
elements, and r is the least positive integer with such property; if
such an r does not exist, we will say that the group G has infinite
rank.

In 1958 H. Wielandt [63] introduces the Wielandt subgroup w(G)
of a group G as the intersection of all normalizers of subnormal
subgroups of G. It is clear that w(G) = G if and only if every sub-
normal subgroup of G is normal in G and the consideration of the
infinite dihedral group proves that w(G) may as well be trivial; how-
ever, this cannot happen in a non-trivial group satisfying the minimal
condition on subnormal subgroups (see [63]). Under this hypothesis
D.J.S. Robinson [54] and J.E. Roseblade [57] proved that w(G) has
finite index in G.

In a nilpotent group G, the Wielandt subgroup obviously coincides
with the norm N(G) of the group, that was defined by R. Baer [2]
in 1935 as the intersection of the normalizers of all subgroup of
G. In 1960 E. Schenkman [59] showed that the norm of a group is
contained in the second centre of the group and so for the case of
nilpotent groups, the basic properties of the Wielandt subgroup are
known.

Using the f-subnormality we define the f-Wielandt subgroup w(G)
of a group G as the intersection of all normalizers of f-subnormal
subgroups of G. It is clear that

Z(G) 6 N(G) 6 w(G) 6 w(G)

where Z(G) is the centre of the group G, and an example in chapter
one will prove that w(G) can be strictly contained between N(G) and
w(G). In addition we study the behavior of the f-Wielandt subgroup
in a residually finite group and we prove that in a group G satisfy-
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ing the minimal condition on subnormal subgroups w(G) has finite
index in G.

As already noted, normality is not a transitive relation in an arbi-
trary group. Groups in which normality is a transitive relation are
called T -groups or said to have the T -property. Obviously, every sim-
ple group has the T -property, but soluble T -groups have a restricted
structure, that was studied by W. Gaschütz [27] in the finite case in
1957 and by D.J.S. Robinson [53] in the general case in 1964. In par-
ticular, it turns out that every soluble T -group is metabelian and that
a finitely generated soluble group with the T -property is either finite
or abelian.

Inspired by a relevant result of B.H. Neumann [47] which shows
that a group has a finite commutator subgroup if and only if each
of its subgroups has finite index in its normal closure, C. Casolo [7]
in 1989 investigated the class T∗ of all groups in which every sub-
normal subgroup has finite index in its normal closure. In particular,
he proved that a soluble T∗-group is finite-by-metabelian and that a
finitely generated soluble T∗-group is abelian-by-finite.
(Note that we will denote the normal closure and the core of a sub-
group H of a group G with HG and HG respectively.)

In a dual way, in 1995, S. Franciosi, F. de Giovanni and M. Newell
(see [26]) studied T∗-groups, namely groups in which each subnor-
mal subgroup X is normal-by-finite, or, that is the same, |X : XG| is
finite for each subnormal subgroup X of G. Using a famous result of
J. Buckley, J.C. Lennox, B.H. Neumann and H. Smith [5] proving that
a locally finite group whose all subgroups are normal-by-finite is
abelian-by-finite, it is proved that a subsoluble group, that is a group
having an ascending series with abelian factors consisting of sub-
normal subgroups, satisfying the property T∗, is metabelian-by-finite
and that in a subsoluble T∗-group every finitely generated subgroup
is abelian-by-finite and belongs to the class T∗.

In 2014 F. de Giovanni, M. Martusciello and C. Rainone defined
the normal oscillation of a subgroup X of a group G as the cardinal
number

min{|X : XG|, |XG : X|}.

It was proved in [28] that a locally finite group in which each sub-
group has finite normal oscillation, contains a nilpotent subgroup
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of finite index. The third chapter of this dissertation deals with the
study of the class T(∗) of groups consisting of all groups whose sub-
normal subgroups have finite normal oscillation. We prove that a
periodic subsoluble T(∗)-group is metanilpotent-by-finite and that a
finitely generated soluble T(∗)-group contains an abelian subgroup
of finite index.

Finally, in last chapter we show that the class of groups whose sub-
groups are f-subnormal and the group classes T∗, T∗, T(∗) are count-
ably recognizable. Recall that a class of groups X is said to be count-
ably recognizable if, whenever all countable subgroups of a group G be-
long to X, then G itself is an X-group. Countably recognizable classes
of groups were introduced by R. Baer [3]. In his paper, Baer produced
many interesting examples of countably recognizable group classes,
and later many other relevant classes of groups with such a prop-
erty were discovered (see for instance [20],[48],[50],[51],[60] and the
more recent papers [29], [30], [31], [32]). We will here give a general
method to prove that some f-subnormality related properties have
countable character (see [25]).

Most of the notation used in this dissertation is standard and can
for instance be found in [56].





Chapter 1

A Wielandt-like subgroup

In 1972 R.E. Phillips [52] introduces a generalization of subnormality
in this way: a subgroup H of a group G is said to be f-subnormal in G if
there exists an f-series from H to G, that is, a finite chain of subgroups

H = H0 6 H1 6 ... 6 Hn = G

such that either |Hi : Hi−1| <∞ or Hi−1 E Hi for every i ∈ {1, . . . ,n}1.

Clearly, all subgroups of a finite group are f-subnormal and therefore
it makes sense to study this property only in infinite groups.

Recall that the norm N(G) of a group G was defined by R. Baer [2]
in 1935 as the intersection of the normalizers of all subgroups of G
and, in a similar way, H. Wielandt [63] in 1958 gave the definition
of the Wielandt subgroup w(G) of a group G as the intersection of the
normalizers of all subnormal subgroups of G. He, among other re-
sults, proved that any minimal normal subgroup satisfying the min-
imal condition on normal subgroups is contained in w(G), but the
Wielandt subgroup can also be trivial as happens in the infinite dihe-
dral group.

Using the f-subnormality instead of subnormality we can define
the f-Wielandt subgroup w(G) of a group G as the intersection of the
normalizers of all f-subnormal subgroups of G. It is clear that

Z(G) 6 N(G) 6 w(G) 6 w(G)

where Z(G) is the centre of G and the following example proves that
w(G) can be strictly contained between Z(G) and w(G).

Let C be a cyclic group of order 7, let θ be an automorphism
of order 3 of C and put B be the locally dihedral 2-group, that is,
B = 〈x〉nA where A = C2∞ and x is such that ax = a−1 and x2 = 1.
Let Θ = 〈θ〉, D = CnΘ and consider the group G = B×D.
The norm of the group B coincides with the center of B, while

w(B) = w(B) = B.

1 Note that n is a non-negative integer.
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For the group D, instead, we have that

Z(D) = N(D) = w(D) = {1},

while w(D) = D.
It follows that for the group G, Z(G) = N(G) = Z(B), w(G) = B
and w(G) = G, namely, the norm, the f-Wielandt subgroup and the
Wielandt subgroup are three different subgroups of G.

In the first section of this chapter we examine some nice elemen-
tary properties of the f-Wielandt subgroup, while in the second sec-
tion we examine the behaviour of w(G) when G is a group satisfying
the minimal condition on subnormal subgroups. Our main result will
show that under such hypothesis, the f-Wielandt subgroup has finite
index in G.



1.1 Elementary results

In 1960 E. Schenkman [59] showed that the norm of a group G is
contained in the second centre of G and hence for the case of nilpo-
tent groups the basic properties of the Wielandt subgroup are known;
for instance, the following easy lemma shows that the Wielandt sub-
group of a torsion-free nilpotent group coincides with the centre of
the group.

Lemma 1.1.1 LetG be a torsion-free nilpotent group. Thenw(G) = Z(G).

Proof — Suppose by contradiction that there is an element x con-
tained in w(G) \ Z(G). Then there exists an element y ∈ G such that
[x,y] 6= 1. The element x normalizes each subgroup of G and in par-
ticular 〈y〉x = 〈y〉. It follows that yx = y−1 and hence [x2,y] = 1.
However 1 = [x2,y] = [x,y]2 and therefore [x,y] = 1. ut

In 1990 J. Cossey [13] proved that even in a residually nilpotent
group G, w(G) 6 Z2(G) and the first new result of this section pro-
vides the same result for the f-Wielandt subgroup in a residually
finite group. Note first that if G is a group and H is f-subnormal
in G, then w(G)∩H 6 w(H) and if N is a normal subgroup of G,
it is easy to prove that w(G)N/N 6 w(G/N). Clearly in a group
with all subgroups f-subnormal the f-Wielandt subgroup coincides
with the norm of the group and hence in the case of finite group
w(G) 6 Z2(G).

Lemma 1.1.2 In a residually finite group G the f-Wielandt subgroup
w(G) is contained in the second centre of G and, in particular w(G) is
a Dedekind group.

Proof — Let N be a normal subgroup of G such that G/N is finite.
Since w(G/N) 6 Z2(G/N) we have that[

w(G)N

N
,
G

N
,
G

N

]
= {1}

and hence
[w(G),G,G] 6 N.

This relation is true for all normal subgroups of G of finite index and
so [w(G),G,G] = {1}. It follows that w(G) 6 Z2(G).
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Since any subgroup of w(G) is subnormal in G, any subgroup of
w(G) will be normalized by w(G). Therefore w(G) is a Dedekind
group. ut

In a torsion-free residually finite group we can said more; in fact
the f-Wielandt subgroup is abelian.

Proposition 1.1.3 Let G be a torsion-free residually finite group. Then
w(G) is abelian.

Proof — Let a and b be elements of w(G) and let N be a normal sub-
group of finite index of G. The factor group w(G/N) is a Dedekind
group by Lemma 1.1.2 and so it is abelian or of the type Q × A,
where Q is the quaternion group of order 8 and A is a periodic
abelian group with no elements of order 4. In the first case we have
[a,b]N/N = 1 since w(G)N/N 6 w(G/N). In the second one, instead,
we have [a2,b]N/N = 1, that is [a2,b] ∈ N. In any case, [a2,b] ∈ M
for all normal subgroups M of finite index of G and so [a2,b] = 1.
By Lemma 1.1.2

1 = [a2,b] = [a,b]2,

and since G is torsion-free we have [a,b] = 1. ut

Furthermore the f-Wielandt subgroup of a torsion-free polycyclic
group coincides with the centre of the group. To prove this we need
to recall that in a polycyclic group G, the centralizer in G of w(G) has
finite index in G as a corollary of Theorem 1 of [13].

Proposition 1.1.4 Let G be a torsion-free polycyclic group. Then the
f-Wielandt subgroup of G coincides with the centre of G.

Proof — Let x be an element of w(G) and y∈G, then there exists a
positive integer n such that yn∈CG(w(G)). It follows by Lemma 1.1.2
that

1 = [x,yn] = [x,y]n

and hence [x,y] = 1 since the group G is torsion-free. ut



1.2 Conjugacy classes of f-subnormal subgroups

J.E. Roseblade [44, Theorem 1.7.10] and D.J.S. Robinson [54] have
proved that a subnormal subgroup has only finitely many conjugates
in a group satisfying the minimal condition on subnormal subgroups.
To prove a similar result for a f-subnormal subgroup we first need to
prove that for a group is equivalent to satisfy the minimal condition
on subnormal subgroups or the minimal condition on f-subnormal
subgroups.

Proposition 1.2.1 Let G be a group that satisfies the minimal condi-
tion on subnormal subgroups. Then G satisfies the minimal condition on
f-subnormal subgroups.

Proof — Let
G1 > G2 > G3 > . . .

be a descending chain of f-subnormal subgroups of G.
By [8, Proposition 3.1], G1 contains a subgroup R1 of finite index
such that R1 is subnormal in G and certainly we may assume that
R1 /G1. Then G2R1/R1 ' G2/(G2 ∩ R1) is finite and G2 ∩ R1 is f-sub-
normal in G. Applying [8, Proposition 3.1] again, we obtain a normal
subgroup R2 of finite index of G2 which is subnormal in G and such
that R2 6 G2 ∩ R1. Continue in this way and suppose that for some
positive integer i we have constructed a normal subgroup Ri of finite
index of Gi which is subnormal in G and such that Ri 6 Gi ∩ Ri−1.
It follows that

Gi+1Ri/Ri ' Gi+1/(Gi+1 ∩ Ri)

is finite. Since Gi+1 ∩ Ri is f-subnormal in G there is a normal sub-
group Ri+1 of Gi+1 such that Gi+1/Ri+1 is finite, Ri+1 is subnormal
in G and Ri+1 6 Gi+1 ∩ Ri by [8, Proposition 3.1].
This construction gives us a descending chain

R1 > R2 > R3 > . . .

of subnormal subgroups of G and the minimal condition on subnor-
mal subgroups then implies that there is a positive integer m such
that Ri = Ri+1 for all i > m. In particular, Gm/Rm is a finite group
and contains the descending chain

Gm+1/Rm > Gm+2/Rm > . . .
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and it follows that for some positive integer l > mwe haveGi = Gi+1
for all i > l.
This completes the proof. ut

Since the converse implication is obvious, a group G satisfies the
minimal condition on subnormal subgroups if and only if it satisfies
the minimal condition on f-subnormal subgroups.

Theorem 1.2.2 Let G be a group satisfying the minimal condition on
subnormal subgroups and let H be a f-subnormal subgroup of G. Then H
has only finitely many conjugates in G.

Proof — Suppose that this result is false and let G be a group satis-
fying the minimal condition on subnormal subgroups containing an
f-subnormal subgroup which has infinitely many conjugates.
By [44, Theorem 1.7.10] this subgroup is not subnormal in G. We
choose an f-subnormal subgroup of G, X say, minimal subject to con-
taining an f-subnormal subgroup H such that |X : NX(H)| is infinite,
and without loss of generality, we may assume that X = G. Since
G satisfies the minimal condition on subnormal subgroups, it has
the finite residual R of finite index. Put Y = HR and note that Y is
f-subnormal in G. If Y < G, then the minimal choice of G shows that
|Y : NY(H)| is finite and since |G : Y| is finite we obtain the contradic-
tion that |G : NY(H)| is finite. It follows that G = HR.
Let

H = H0 6 H1 6 . . . 6 Hn−1 6 Hn = G

be a series of f-subnormality of H in G. Then Hn−1 is f-subnormal
in G and we may assume that Hn−1 6= G. The minimal choice of G
shows that |Hn−1 : NHn−1(H)| is finite. If |G : Hn−1| is finite, then
we obtain a contradiction as before. Hence we may assume that
Hn−1 in normal in G. Let S be the finite residual of Hn−1, so that
S 6 NHn−1(H). Then [S,H] 6 H.
The subgroup S is normal in G, since it is characteristic in Hn−1 and
hence the factor group G/CG(Hn−1/S) is finite. Thus R is contained
in CG(Hn−1/S) and [R,Hn−1] 6 S. It follows that

[R,H,H] 6 [R,Hn−1,H] 6 [S,H] 6 H.

Hence H / H[R,H] / RH = G, so H is subnormal in G and in this
case |G : NG(H)| is finite by [44, Theorem 1.7.10], giving us a final
contradiction. ut
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The following result is now immediate.

Corollary 1.2.3 Let G be a group satisfying the minimal condition on
subnormal subgroups. Then |G : w(G)| is finite.





Chapter 2

Groups with subgroups of bounded near defect

A non-empty collection X of groups is a group class if every group
isomorphic to a group in X belongs itself to X and X contains a trivial
group.

A property θ pertaining to subgroups of a group is called absolute
if in any group G all subgroups isomorphic to some θ-subgroup are
likewise θ-subgroups. Thus θ is absolute if and only if there exists
a group class X = X(θ) such that in any group G a subgroup X
has the property θ if and only if X belongs to X. Thus among the
most natural absolute properties we have those of being an abelian
subgroup, a nilpotent subgroup, a finite subgroup.

A subgroup property θ, instead, is called an embedding property
if in any group G all images of θ-subgroups under automorphisms
of G likewise have the property θ. Of course, any absolute property
is trivially an embedding property, but the most relevant embedding
properties, like normality and subnormality, are embedding proper-
ties which are not absolute.

If θ is an embedding property for subgroups, a group class X is
said to control θ if it satisfies the following condition: if G is any
group containing some X-subgroup, and all X-subgroups of G have
the property θ, then θ holds for all subgroups of G.
This definition can of course be given also inside a fixed universe U.

Clearly, the class of cyclic groups controls periodicity, and the class
of finitely generated groups controls every local property but it is
well-known that the class of finitely generated groups neither con-
trols nilpotency nor solubility and although normality is controlled
by the class of finitely generated groups it is easy to see that most
of the significant embedding properties cannot be controlled by the
class of finitely generated groups.
For instance, it is well-known that there exist unsoluble groups in
which all finitely generated subgroups are subnormal, while an im-
portant result by W. Möhres [46] shows that every group in which all
subgroups are subnormal is soluble. Therefore subnormality cannot
be controlled by the class of finitely generated groups. This failure
depends on the fact that finitely generated groups are “too small”.

Therefore it is natural to consider the problem of “how large”
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should be X-groups in order to obtain that a group class X controls
the main embedding properties, at least within an appropriate uni-
verse. M. De Falco, F. de Giovanni and C. Musella give [16] in 2014

the following definition of class of large groups.

A group class X is called a class of large groups if it satisfies the
following conditions:

• if a group G contains an X-subgroup, then G belongs to X;

• if N is a normal subgroup of an X-group G, then at least one of
the groups N and G/N belongs to X;

• X contains no non-trivial finite cyclic groups.

Let X be now a class of large groups, and let θ be a subgroup
property. Since every group containing an X-subgroup likewise be-
longs to X, it follows that X controls θ if and only if whenever in an
X-group G all X-subgroups have the property θ, then θ holds for all
subgroups of G.
The easiest non-trivial example of a class of large groups is provided
by the class I consisting of all infinite groups (and the trivial groups);
however, the consideration of the locally dihedral 2-group shows that
normality, and therefore also the subnormality, cannot be controlled
by the class I, even in the universe of periodic metabelian groups.

A group G is said to have finite (Prüfer) rank r = r(G) if every
finitely generated subgroup of G can be generated by at most r ele-
ments, and r is the least positive integer with such property; if such
an r does not exist, we will say that the group G has infinite rank.
In particular, a group has rank 1 if and only if it is locally cyclic; it
is easy to see that the class of groups of finite rank is closed with re-
spect to subgroups, homomorphic images and extensions, and hence
groups of infinite rank (and the trivial groups) form a class of large
groups.

In a series of recent papers (see for instance [15, 18, 21, 23, 39])
it has been proved that in a (generalized) soluble group of infinite
rank the behaviour of subgroups of finite rank with respect to an
embedding property can be neglected in many cases, so that the class
of groups of infinite rank controls such embedding property in a
suitable universe of (generalized) soluble groups.
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The first relevant theorem of this topic was obtained by M.J. Evans
and Y. Kim [23] in 2004, and deals with the control of the property
of being subnormal with defect at most k, for some fixed positive
integer k, by the class of groups of infinite rank in the universe of
X-groups.
This group class X was defined by N.S. Černikov [11] in 1990 as the
closure of the class of all periodic locally graded groups D by the
group theoretical operators Ṕ, P̀, R, L (see the first chapter of [56]).

Recall that a group G is locally graded if every finitely generated
non-trivial subgroup of G contains a proper subgroup of finite in-
dex. The class of locally graded groups is rather large, it contains
for instance the locally finite groups, the locally soluble groups, the
residually finite groups, the locally (soluble-by-finite) groups and the
radical groups, and it is often considered in order to avoid finitely
generated simple groups, and in particular the so-called Tarski mon-
sters, that are infinite groups in which all proper subgroups are cyclic
of the same order.

It is easy to prove that any X-group is locally graded, and that the
class X is also closed with respect to forming subgroups; however
it is an open question whether an arbitrary locally graded group of
infinite rank must contain a proper subgroup of infinite rank but this
is true in the case of X-groups and this is an easy consequence of the
following result by M. Dixon, M.J. Evans and H. Smith (see [19]).

Proposition 2.1 Let G be a locally soluble group and suppose that every
proper subgroup of G has finite rank. Then G has finite rank.

In addition A.I. Mal’cev [45] proved the existence of an abelian
subgroup of infinite rank in a locally nilpotent group and a corre-
sponding result for locally finite groups was later proved by V.P. Šun-
kov [61]. Mal’cev’s theorem was extended by R. Baer and H. Heine-
ken [4] to the case of radical groups of infinite rank and recently the
study of generalized radical groups of infinite rank was carried out
in the papers [15, 37] (here a group is called generalized radical if it
has an ascending series whose factors are either locally nilpotent or
locally finite).

The structure of groups in which every subgroup of infinite rank is
subnormal has been investigated by L.A. Kurdachenko and H. Smith
(see [39, 40]) in 2004, who proved that locally (soluble-by-finite)
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groups with this property are soluble and all its finitely generated
subgroups are subnormal. Moreover, they were able to show that
the class of groups of infinite rank (and the trivial groups) controls
subnormality in the universe of torsion-free locally (soluble-by-finite)
groups and also in that of locally finite groups. On the other hand,
a their example proves that the class of groups of infinite rank (and
the trivial groups) cannot control subnormality even in the universe
of metabelian locally nilpotent groups.

Let G be a group, H a subgroup of G and n,m two fixed non-
negative integers. If there is a subgroup H0 containing H such that
|H0 : H| 6 n and H0 is subnormal in G with subnormal defect
at most m, then we say that H is (n,m)-subnormal in G. We order
the pairs (n,m) lexicographically and, with this ordering, if H is
(n,m)-subnormal in G for some pair (n,m), then the least such pair
is called the near defect of H in G (see [42]). This chapter is concerned
with subgroups with near defect at most (n,m), that is, subgroups
whose near defect (n0,m0) is such that n0 6 n and m0 6 m. Clearly
if H is subnormal in G of defect at most d, then H is (1,d)-subnormal
in G and every subgroup of a finite group G is (|G|, 0)-subnormal
in G. J.C. Lennox [42, 43] called a subgroup almost subnormal if it is
(n,m)-subnormal for certain non-negative integers n,m, a terminol-
ogy is also used in [8, 9, 17]. In [15], (n, 1)-subnormal subgroups are
called nearly normal.

Let G be a finite-by-nilpotent group and let N be a finite normal
subgroup of G such that G/N is nilpotent. Then it is clear that ev-
ery subgroup of G is of near defect at most (n,m), where n = |N|

and m is the nilpotency class of G/N. Lennox [42] proved the follow-
ing theorem (where we let γi(G) denote the ith term of the lower
central series of G).

Theorem 2.2 Let G be a group and let m,n be non-negative integers.
Suppose that every finitely generated subgroup is of near defect at most
(n,m). Then there is a function µ depending only on n and m such that
|γµ(m+n)(G)| 6 n!.

A fuller discussion of this theorem is contained in [44].

The bounds here cannot be omitted. The Heineken-Mohamed
groups (see [35]) are not finite-by-nilpotent, even though every sub-
group is subnormal and, as Lennox points out, FC-groups have the
property that each finitely generated subgroup is of finite index in
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its normal closure, but there are FC-groups that are not finite-by-
nilpotent as the group

Dr
n∈N

Sn

where Sn is the symmetric group of order n.
In the absence of these bounds however something can be salvaged
and C. Casolo and M. Mainardis [8] have shown that if G is a group
in which every subgroup has finite index in a subnormal subgroup,
then G is finite-by-soluble and besides, E. Detomi was able to partly
extend the Theorem 2.2 in [17].

For the fixed non-negative integers n,m we define the group class
S(n,m) to be the class of all groups of infinite rank (and the trivial
groups) whose subgroups of infinite rank are (n,m)-subnormal in G.
It was already shown in [15, Theorem B] that a generalized radical
group of infinite rank in which every subgroup of infinite rank is
nearly normal in G is finite-by-abelian.

The aim of this chapter is to prove that S(n,m)-groups are finite-
by-nilpotent in the class X, and this a generalization of the theorem
of Evans and Kim mentioned above.

The following section deals with some preliminary results show-
ing in particular that X-groups in the class S(n,m) are soluble-by-
finite. We shall often implicitly use the facts that subgroups and fac-
tor groups of S(n,m)-groups which are themselves of infinite rank
are also S(n,m)-groups.





2.1 Preliminary results

The first result of this section is well-known, here there is a proof.

Lemma 2.1.1 Let G be an X-group of infinite rank. Then G contains a
proper subgroup of infinite rank.

Proof — Suppose, for a contradiction, that every proper subgroup
of G has finite rank. If G is finitely generated then, since G is locally
graded, there exists N /G such that G/N is a non-trivial finite group
and clearly N has infinite rank, a contradiction. Thus G is not finitely
generated and it follows that every finitely generated subgroup of
G has finite rank. A result of N.S. Černikov [11] implies that G is
locally (soluble-by-finite) so, by [18, Theorem], G has a locally solu-
ble subgroup H of infinite rank. Using [19, Lemma 1] H is a proper
subgroup of G, a contradiction which completes the proof. ut

Corollary 2.1.2 Let G be an X-group of infinite rank whose proper sub-
groups of infinite rank are (n,m)-subnormal for some non-negative integers
n,m. Then G contains a proper normal subgroup N of infinite rank.

Proof — Let H be a proper subgroup of G of infinite rank, which
exists by Lemma 2.1.1. Then either HG or HG are proper normal
subgroups of infinite rank. ut

Lemma 2.1.3 Let G be an X-group in the class S(n,m). Then G is not
perfect.

Proof — Suppose for a contradiction that G is perfect. By Corol-
lary 2.1.2 there is a proper normal subgroup N of G of infinite rank
and every subgroup of G containing N is (n,m)-subnormal. Hence
G/N is finite-by-nilpotent by Theorem 2.2 and indeed there is a func-
tion µ = µ(m+n) such that γµ(G/N) has order at most n!. Since G is
perfect this implies that G/N has order at most n!, for each such nor-
mal subgroup N. Consequently the finite residual, R, of G satisfies
|G/R| 6 n!.

Since R has infinite rank and inherits the hypotheses, it contains
a proper normal subgroup of infinite rank, K say. Since R has no
proper normal subgroups of finite index R/K is finite-by-nilpotent
and certainly not perfect, so R ′ 6= R. Then G/R ′ is divisible-by-finite.
If R ′ has infinite rank, then G/R ′ is finite-by-nilpotent and since G
is perfect it follows that G/R ′ is finite, so R = R ′, a contradiction.
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Hence R ′ has finite rank and R/R ′ is divisible of infinite rank. Let
T/R ′ be the torsion subgroup of R/R ′. If T/R ′ has infinite rank, then
so does the socle S/R ′. Therefore G/S is finite-by-nilpotent and hence
is finite, since G is perfect. This is a contradiction, so T/R ′ has finite
rank as does T and R/T is a torsion-free divisible group of infinite
rank.

Factoring, we may assume that T = 1 and that R is an infinite di-
rect product of copies of the additive group of rationals. Since G/R
is finite, there is a finitely generated subgroup F such that G = RF.
Then F∩ R is normal in G and FR/R is finite, so F∩ R is a finitely gen-
erated abelian group and hence has finite rank. Factoring by F ∩ R
we may assume that G = Ro F, where F is now finite. By Maschke’s
theorem R is completely reducible as a QF-module (see [36, Corol-
lary 5.15]), so R = A × B, where A,B are normal subgroups of G
of infinite rank. In particular, G/A inherits the hypotheses on G, so
G/A is finite-by-nilpotent and clearly not finite. Hence G cannot be
perfect, a final contradiction. ut

Theorem 2.1.4 Let G be an X-group in the class S(n,m). Then G is
soluble-by-finite.

Proof — Let µ = µ(m+ n) as defined in Theorem 2.2. Suppose first
that γµ(G) has infinite rank and let

Γ =
⋂

{N /G | N has infinite rank}.

Then Γ 6 γµ(G). Now if M has infinite rank and M /G, then by The-
orem 2.2 |γµ(G/M)| 6 n!, so |γµ(G) : γµ(G) ∩M| 6 n!. If also N /G
has infinite rank, then by Remak’s theorem γµ(G)/(γµ(G)∩M∩N)
is isomorphic to a subgroup of

γµ(G)/(γµ(G)∩M)× γµ(G)/(γµ(G)∩N)

so is finite. Hence M∩N has infinite rank also, so

|γµ(G) : γµ(G)∩M∩N| 6 n!.

From this we deduce that |γµ(G) : Γ | 6 n!. Hence Γ has infinite
rank so, by Lemma 2.1.3, it is not perfect. Consequently Γ ′ has fi-
nite rank, otherwise Γ 6 Γ ′. By the theorem of N.S. Černikov [11]
the group F = Γ ′ is almost locally soluble. If S is the locally solu-
ble radical of F, then G/CG(F/S) is finite, so CG(F/S) has infinite
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rank, whence Γ 6 CG(F/S). Hence [F, Γ ] 6 S so, in particular, F/S is
abelian and hence F = S. Consequently F is locally soluble of finite
rank. By [56, Lemma 10.39] there is a non-negative integer k such
that F(k) is a periodic hypercentral group and a direct product of
Černikov p-groups.

Let R be the divisible part of F(k) and note that without loss of
generality we may assume R=1, so the p-primary components of F(k)

are finite. If P is such a p-primary component, then G/CG(P) is finite.
Thus CG(P) has infinite rank, so P 6 F 6 Γ 6 CG(P) and hence P
is abelian. Consequently F(k) is abelian, so F is soluble. Then Γ is
soluble. Since G/Γ is finite-by-nilpotent it is nilpotent-by-finite by a
well-known result of P. Hall (see [56, Theorem 4.25] for example).
Hence G is soluble-by-finite.

If γµ(G) has finite rank, then it is almost locally soluble by [11].
Let F be the locally soluble radical of γµ(G) and note, using the re-
sult [56, Lemma 10.39], that F has a periodic hypercentral G-invariant
subgroup L with Černikov primary components such that F/L is sol-
uble. Again, we may suppose, without loss of generality, that L has
finite primary components. If X is a finite characteristic subgroup
of L, then G/CG(X) is finite and Theorem 2.2 implies that

|γµ(G)/γµ(G)∩CG(X)| 6 n!.

It is then easy to see that also |γµ(G) : γµ(G) ∩ CG(L)| 6 n!. Since
G/F∩CG(L) is finite-by-nilpotent, it follows that it is also soluble-by-fi-
nite. Then G is soluble-by-finite, since clearly F∩CG(L) is soluble. ut

We next prove a very elementary result which nevertheless is very
useful.

Lemma 2.1.5 Let G be a group and suppose that A,B are (n,m)-subnor-
mal subgroups of G. Then A∩B is an (n2,m)-subnormal subgroup of G.

Proof — There are chains of subgroups

A 6 Am /Am−1 / · · · /A1 /A0 = G

and
B 6 Bm /Bm−1 / · · · /B1 /B0 = G,

where |Am : A|, |Bm : B| 6 n. It is clear that for each i we have
Ai+1 ∩ Bi+1 /Ai ∩ Bi and also that |Am ∩ Bm : A ∩ B| 6 n2, so the
result follows. ut
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The next lemma is very useful for the proof of the main result of
this chapter and we shall quite often use it without explicitly men-
tioning it.

Lemma 2.1.6 Let G be a group, let H be a subgroup of G and let

A = A1 ×A2 × . . .

be a subgroup of G of infinite rank that is direct product of infinitely many
H-invariant subgroups of finite rank. Suppose that there exists k such that

A∩H 6 A1 ×A2 × . . .×Ak.

Then there is a subgroup C = C1×C2 of A such that C1, C2 are H-invari-
ant subgroups, each of infinite rank, such that H∩C = 1.

Recall that a group G is called a Baer group if it is generated by
abelian subnormal subgroups. It is easy to show that the property
of being a Baer group is equivalent to the requirement that all cyclic
subgroups (or even all finitely generated subgroups) of G are subnor-
mal. Any Baer group is locally nilpotent, and in any group G, there
is a largest Baer subgroup, the so-called Baer radical of G.

The final part of this section deals with the locally finite version of
our main result, whose proof being somewhat simpler than that of
the general case. Notice that we shall say that the subgroup H of a
group G is finite-by-subnormal when it is (n,m)-subnormal for some
non-negative integers n,m.

Lemma 2.1.7 Let G be an X-group of infinite rank in which every sub-
group of infinite rank is finite-by-subnormal. IfG contains a periodic abelian
subgroup C of infinite rank, then the finite subgroups of G are finite-by-
subnormal. Furthermore, if G is an S(n,m)-group, then every finite sub-
group of G is (n2,m)-subnormal in G.

Proof — By hypothesis the subgroup C has finite index in a subnor-
mal subgroup X of G and so its core in X, CX, is an abelian subnormal
subgroup of infinite rank of G, so is contained in the Baer radical B
of G.

The torsion subgroup T of B has infinite rank since it contains C.
Let X be a finite subgroup of G. By [33, Theorem 1], T contains a
subgroup H that is an infinite direct sum of non-trivial X-invariant
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subgroups. Using Lemma 2.1.6, there are X-invariant subgroups H1,
H2 of H of infinite rank such that H1 ∩H2 = 1 and X∩ (H1×H2) = 1.

Consider X n (H1 × H2) and let S1 = X n H1 and S2 = X n H2.
Then S1 (respectively S2) has finite index in a subnormal subgroup K1
(respectively K2) of G. It follows that X = S1 ∩ S2 has finite index in
the subnormal subgroup K1 ∩ K2. The last part of the statement fol-
lows easily using Lemma 2.1.5. ut

Corollary 2.1.8 Let G be a periodic X-group in the class S(n,m). Then G
is finite-by-nilpotent. Indeed, |γµ(m+n2)(G)| 6 (n2)!.

Proof — By Theorem 2.1.4, G is soluble-by-finite, while by [4, Theo-
rem 6.3] G has a proper abelian subgroup of infinite rank. Let H be a
finitely generated subgroup of G, so H is finite and, by Lemma 2.1.7,
is also (n2,m)-subnormal in G. Theorem 2.2 now implies that G is
finite-by-nilpotent. ut





2.2 Proof of the Main Theorem

This section starts showing that the Baer radical of an X-group in the
class S(n,m) is nilpotent.

Lemma 2.2.1 Let G be a locally nilpotent S(n,m)-group. Then there is a
function f such that G is nilpotent of class at most f(m+n).

Proof — Let Y be a subgroup of G of infinite rank, so there is a
subgroup X such that |X : Y| 6 n and X is subnormal of defect at
most m in G. Let N = YX, the core of Y in X. Then X/N is a finite
nilpotent group, so Y/N is a subnormal subgroup of X/N of defect
at most n, since |X : Y| 6 n. Hence Y is a subnormal subgroup of G
of defect at most m+ n. By the theorem of Evans and Kim [23] G is
nilpotent of which is a function of m+n. ut

Lemma 2.2.2 Let G be an X-group in the class S(n,m). Then the Baer
radical of G is nilpotent.

Proof — The group G is soluble-by-finite, by Theorem 2.1.4, so G
has an abelian subgroup of infinite rank, by [4, Theorem 6.3] and
hence an abelian subnormal subgroup of infinite rank. Since the Baer
radical B of G is a locally nilpotent it follows that B is nilpotent by
Lemma 2.2.1. ut

Lemma 2.2.3 Let G be a group and F a finitely generated subgroup. Sup-
pose that A and B are subgroups of G such that A 6 Z(B), A has finite
rank, B/A has infinite rank and [B, F] 6 A. Then CB(F) has infinite rank.

Proof — Let F be generated by elements g1, . . . , gn and consider the
maps

φi : b ∈ B 7→ [b, gi] ∈ A.

By hypothesis φi is a homomorphism whose kernel is CB(gi). Then
B/CB(gi) has finite rank and therefore

B/CB(F) = B/

n⋂
i=1

CB(gi)

has finite rank. It follows that CB(F) has infinite rank. ut

A simple induction now proves the following corollary.
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Corollary 2.2.4 Let G be a group, let F a finitely generated subgroup
and N an F-invariant subgroup of G of infinite rank. Let A and B be two
central terms of a finite central F-invariant series ofN such that A has finite
rank while B has infinite rank. If [B, F] 6 A, then CN(F) has infinite rank.

The proof of the following proposition is based on that of
[41, Lemma 1.16].

Proposition 2.2.5 Let G be a S(n,m)-group, let g be an element of G
and let A be a torsion-free abelian 〈g〉-invariant subgroup of G of infinite
rank. If gA has infinite order, then 〈gq〉 is (n2,m)-subnormal in G, for
some prime q or q = 1.

Proof — Let E = A⊗Z Q. We regard E as a right Q〈g〉-module. It is
well-known that A ' A⊗Z Z. Let 1 6= c ∈ A. Set

C = 〈c〉〈g〉 = cZ〈g〉

and
D = cQ〈g〉.

Suppose first that AnnZ〈g〉(c) = 〈0〉. Then C ' Z〈g〉 has infinite rank.
Let q be a prime and write

Z〈g〉 = Z〈gq〉 ⊕Z〈gq〉g⊕ . . .⊕Z〈gq〉gq−1.

It follows that

C = Aq × (Aq)
g × . . .× (Aq)

gq−1

where Aq = 〈c〉〈gq〉. The subgroups Aq and A
g
q are 〈gq〉-invariant

subgroups of infinite rank. Since

〈gq〉 = 〈gq〉Aq ∩ 〈gq〉(Aq)g

it follows that 〈gq〉 is (n2,m)-subnormal in G, using Lemma 2.1.5.
Hence we may suppose thatAnnZ〈g〉(c) 6=〈0〉, soAnnQ〈g〉(c) 6= 〈0〉,

for all 1 6= c ∈ A. Since D ' Q〈g〉/AnnQ〈g〉(c) then dimQD is finite,
so C has finite rank and is a finitely generated Z〈g〉-module. Hence
[56, Corollary 1 of Lemma 9.53] may be applied to deduce that C
contains a free abelian subgroup L such that C/L is periodic and
π(C/L) is finite. Hence C is minimax and if a1, . . . ,an ∈ A, then
〈a1, . . . , an〉〈g〉 is minimax.
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Let A1 = 〈a1〉〈g〉 for some element a1 ∈ A. Then A/A1 has infinite
torsion-free rank so we may choose two infinite cyclic subgroups
〈a2A1〉 and 〈a3A1〉 such that

〈a2A1, a3A1〉 = 〈a2A1〉 × 〈a3A1〉.

Let A2 = 〈A1,a2,a3〉〈g〉, so r0(A2/A1) > 2. In this way we can con-
struct an ascending chain of 〈g〉-invariant subgroups

〈1〉 = A0 6 A1 6 . . .

such that An is a finitely generated Z〈g〉-module and

r0(An+1/An) > n+ 1.

A result of P. Hall [56, Lemma 5.35] implies that the factors An+1/An
satisfy Max-〈g〉 and so have finite torsion subgroups.

Clearly, A1 contains a free abelian subgroup C1 such that A1/C1
is Černikov. We let π be the (finite) set of prime divisors of (n2)! and
let σ be the complement of π(A1/C1)∪ π in the set of all primes. Let
p1 ∈ σ. Then A1/C

p1
1 is the direct product of its p-component P1/C

p1
1

and its p ′-component Q/Cp11 . It follows that A1/A
p1
1 is a non-trivial

Černikov group of finite exponent and hence is finite. Set B1 = Ap11 .
Since A2/A1 has finite torsion subgroup, it follows that

A2/B1 = S/B1 ⊕U/B1,

where S/B1 is the (finite) p1-component of A2/B1, containing A1/B1.
Let s = |S/B1|, so (A2/B1)

s is contained in U/B1. Arguing as before,
but in (A2/B1)

s, we can find a prime p2 6= p1 with p2 ∈ σ such that
A2/B2 is finite of rank greater than 2, where we set B2 = (A2)

sp2B1.
Moreover B2 ∩A1 = B1. Continuing in this way, we can construct an
ascending series

〈1〉 = B0 6 B1 6 B2 6 . . . 6 Bn 6 . . .

of 〈g〉-invariant subgroups satisfying the conditions:

(i) Bn 6 An and An/Bn is finite of rank at least n;

(ii) Bn+1 ∩An = Bn;

(iii) |π(An/Bn)| > n.
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Let E = ∪n>1An and B = ∪n>1Bn. Then E/B = ∪n>1AnB/B and

AnB/B ' An/An ∩B = An/Bn.

Consequently, E/B is a periodic group of infinite rank such that
π(E/B) is infinite, so it is a direct sum of infinitely many 〈g〉-invariant
subgroups. Set H = E〈g〉. Using Lemma 2.1.6 and Lemma 2.1.5, if
L/B is a finitely generated subgroup of H/B of finite rank, we deduce
that L/B is (n2,m)-subnormal in H/B. By Theorem 2.2, H/B has a fi-
nite normal subgroup F/B of order at most (n2)! such that H/F is
nilpotent of class bounded by a function of m and n only. Since
A1B/B ' A1/B1, an elementary abelian p1-group, has order rela-
tively prime to that of F/B, it follows that A1B/B · 〈gB〉 is nilpotent,
so [A1,t g] 6 B ∩A1 = B1 = A

p1
1 for some integer t depending only

on m and n. We note that p1 was an arbitrary prime in σ so, setting

L1 =
⋂
q∈σ

(A1)
q,

we have [A1,t g] 6 L1. Then, from A
q
1 ∩C1 = Cq1 , we have

L1 ∩C1 =
⋂
q∈σ

C
q
1 = 〈1〉.

Since A1/C1 is periodic, it follows that L1 = 〈1〉 and, as

[A1,t g] 6 L1 = 〈1〉,

it follows that 〈A1, g〉 is nilpotent. In particular, CE(g) 6= 〈1〉, so the
centre of H is non-trivial.

It is easy to prove that H/CE(g) is torsion-free. If CE(g) has infinite
rank, then H/CE(g) is nilpotent by Theorem 2.2, whence so is H. If
CE(g) has finite rank, then H/CE(g) satisfies the hypotheses of the
proposition so, as above, either H/CE(g) is nilpotent or the centre
of H/CE(g) is not trivial. Continuing in this way, we can prove that
H is hypercentral and hence locally nilpotent. By Lemma 2.2.1, H is
nilpotent in any case.

Using Corollary 2.2.4 we find that CE(g) has infinite rank in any
case. Finally, using Lemmas 2.1.6 and 2.1.5 it follows that 〈g〉 is
(n2,m)-subnormal in G. ut
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Lemma 2.2.6 Let G be a torsion-free S(n,m)-group. Suppose that G has
a nilpotent subgroup N such that G/N is infinite cyclic. If G = N〈g〉, then
CN(gs) has infinite rank for some natural number s.

Proof — Choose a non-negative integer l such that Zl(N) has finite
rank while Zl+1(N) has infinite rank. Using Proposition 2.2.5, there
is a natural number s such that 〈gsZl(N)〉 is (n2,m)-subnormal in the
group Zl+1(N)/Zl(N) · 〈gsZl(N)〉. Since a torsion-free almost cyclic
group is abelian it follows that Zl+1(N)/Zl(N) · 〈gsZl(N)〉 is locally
nilpotent and so even nilpotent by Lemma 2.2.1. Hence

Zl+1(N)/Zl(N)

has a subgroup A/Zl(N) of infinite rank such that [A, gs] 6 Zl(N), by
Corollary 2.2.4. A further application of Corollary 2.2.4 now shows
that CN(gs) has infinite rank. ut

Lemma 2.2.7 Let G be an X-group in the class S(n,m) and suppose that
the torsion subgroup T of the Baer radical B of G has finite rank. Then G is
finite-by-nilpotent. Indeed, |γµ(m+n2)(G)| 6 (n2)!.

Proof — First recall from Lemma 2.2.2 that the Baer radical B of an
S(n,m)-group is nilpotent. We prove that G/B is periodic, and so
locally finite, by Theorem 2.1.4. Suppose, for a contradiction, 〈g〉 is
an arbitrary infinite cyclic group such that B∩ 〈g〉 = 〈1〉.
By Lemma 2.2.6 B/T contains an abelian subgroup A/T of infinite
rank such that [A, gl] 6 T for some natural number l.

We apply Corollary 2.2.4 to A〈gl〉. Then CA(gl) has infinite rank.
Therefore it contains an abelian subgroup of infinite rank and using
Lemma 2.1.6 and Lemma 2.1.5 we see that 〈gl〉 is (n2,m)-subnormal
in G, so there is a natural number t such that 〈gt〉 is subnormal in G.
In this way we have proved that G/B is periodic.

Now let F be an arbitrary finitely generated subgroup of finite rank.
Let c be the nilpotency class of B and consider the series

1 6 Z1(B)∩ T 6 . . . 6 Zc(B)∩ T = T = C0 6 C1 6 . . . 6 Cc = B,

where C1/T is the centre of B/T and so on. There is an index i such
that Ci has finite rank while Ci+1 has infinite rank. Since FB/B is
finite each subgroup of Ci+1/Ci has only finitely many conjugates
in FCi+1/Ci and [15, Lemma 6] implies that FCi+1/Ci contains an
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infinite direct sum of F-invariant subgroups of finite but unbounded
ranks. Since F is polycyclic-by-finite, Lemmas 2.1.6 and 2.1.5 may be
applied to deduce that FCi/Ci is (n2,m)-subnormal in G. This clearly
holds for all finitely generated subgroups of finite rank of FCi+1/Ci,
so FCi+1/Ci is finite-by-nilpotent, using Theorem 2.2. Hence there is
an FCi/Ci-central finite series in the torsion-free subgroup Ci+1/Ci.
Using Corollary 2.2.4 we find that there is an abelian subgroupA1/Ci
of infinite rank which is FCi/Ci-central and so [A1, F] 6 Ci. A further
application of Corollary 2.2.4 shows that F is (n2,m)-subnormal in G
and since F is an arbitrary finitely generated subgroup of finite rank,
it follows that G is finite-by-nilpotent, again by Theorem 2.2. ut

If all primary components of the torsion subgroup T have finite
rank, then we can obtain bounds similar to those given in Lem-
ma 2.2.7.

Lemma 2.2.8 Let G be an X-group in the class S(n,m) and suppose that
the torsion subgroup T of the Baer radical B of G has infinite rank. If G is
not finite-by-nilpotent, then T contains a primary component of infinite
rank.

Proof — By Lemma 2.2.2, B is nilpotent and, by Theorem 2.1.4, G is
soluble-by-finite. We suppose that the result is false and for each
prime p let Tp be the p-component of T . Let F be a finitely generated
subgroup of G of finite rank and let L be a soluble subgroup of F of
finite index. Then L is a finitely generated soluble subgroup of G of
finite rank, so it is minimax. Hence F is also minimax. Thus T ∩ F is a
periodic soluble minimax group, so is a Černikov group.

Let π be the set of primes not dividing the orders of the elements
of T ∩ F and let K be the direct product of the Tp with p ∈ π. Then
K∩ F = {1}. It follows that K is a direct product of two subgroups,
each of infinite rank, so Lemma 2.1.5 implies that F is (n2,m)-sub-
normal in G. Theorem 2.2 now shows that G is finite-by-nilpotent.
This proves the result. ut

For the next result we need some information about modules over
Principal Ideal Domains and we here give a brief discussion of the
ideas we need (see [38], for example, for a more account).

Let R be a Principal Ideal Domain, which is not a field, and let A
be an R-module. For each maximal ideal P of R, let

AP = {a ∈ A : aPn = 0, for some n ∈N}
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and for each natural number n, let

AP[n] := {a ∈ A : aPn = 0}.

Then AP[n] 6 AP[n + 1], for all n ∈ N and AP =
⋃
n∈NAP[n]. If

{Pi}i∈I is the set of distinct maximal ideals of R, then it is well-known
that APi ∩ (

∑
j6=iApj) = 0. If C is a simple R-module, in which the

action of R is not trivial, then C ' R/Pi, for some i ∈ I and the
R-injective envelope of C is denoted by CPi∞ , the Prüfer Pi-module.
As with abelian group theory

CPi∞ ' lim−→ {R/Pni | n ∈N}

and every proper R-submodule of CPi∞ is isomorphic with the cyclic
module R/Pni , for some n ∈N.

If Pi = yR, then CPi∞ has a subset of elements, {an | n ∈ N}, such
that a1y = 0,an+1y = an, for each n ∈ N and CPi∞ ' ⋃n∈N anR.
As in abelian group theory, if AP[1] = C1 ⊕ · · · ⊕ Cn, where Ci is a
simple R-module for 1 6 i 6 n, then APi = E1⊕ · · · ⊕En, where Ej is
a Prüfer Pi-module, or Ej ' R/P

mj
i , for some mj ∈N, 1 6 j 6 n.

Let Fp denote the field with p elements. It is well-known that the
group ring Fp〈g〉 is a Principal Ideal Domain with infinitely many
maximal ideals, when 〈g〉 is an infinite cyclic group.

Proposition 2.2.9 Let G be an X-group in the class S(n,m)-group and
let A be a normal elementary abelian p-subgroup of G of infinite rank. Then
G is finite-by-nilpotent.

Proof — Let B be the Baer radical of G. Note that B is nilpotent using
Lemma 2.2.2. We prove that G/B is locally finite. Let g ∈ G be such
that 〈gB〉 is infinite and consider the group H = Ao 〈g〉. If the centre
of H has infinite rank, then using Lemma 2.1.5, we deduce that 〈g〉 is
(n2,m)-subnormal in G. Then there is a natural number k such that
〈gk〉 is subnormal in G and hence gk ∈ B. Therefore we may suppose
that the centre of H has finite rank. In this case, if gl is central in H,
for some l 6= 0, then we may use Lemmas 2.1.6 and 2.1.5 to show that
〈gl〉 is (n2,m)-subnormal in G. It follows that gk ∈ B, for some k 6= 0.
Hence we may assume the centre of H is finite.

Consider A as a Fp〈g〉-module. If AP 6= 0 for infinitely many max-
imal ideals P of Fp〈g〉, then Lemmas 2.1.6 and 2.1.5 imply that 〈g〉 is
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(n2,m)-subnormal in G. Then, as earlier, 〈gB〉 is finite, a contradic-
tion.

Hence we may assume that there are only finitely many non-trivial
subgroups of type AP. Suppose that all elements of A have finitely
many conjugates inH. Then there is a prime idealQ such that AQ has
infinite rank. If AQ[n] has infinite rank, then each of its subgroups
has finitely many conjugates in H and [15, Lemma 6] shows that
A contains an infinite direct sum of 〈g〉-invariant subgroups Xi of
increasing ranks. By Lemma 2.1.5 〈g〉 is (n2,m)-subnormal and, as
earlier, 〈gB〉 is finite, again a contradiction.

Suppose none of the subgroups AQ[n] has infinite rank. By our
comments above AQ[1] = C1 ⊕ . . . ⊕ Cn, where Ci is a simple
Fp〈g〉-submodule and AQ = E1⊕ . . .⊕En where either Ei is a Prüfer
module or is cyclic. Since AQ is infinite, then at least one of the Ei, E1,
say, is a Prüfer module. Hence there are elements a1,a2,a3, . . . of A
and an element y ∈ Fp〈g〉 such that a1y = 0 and an+1y = an. Then
C = 〈aiFp〈g〉 | i ∈N〉 is Fp〈g〉-divisible. The 〈g〉-invariant subgroup
A1 = 〈a1, a2〉〈g〉 is finite so |〈g〉 : C〈g〉(A1)| is also finite.
Let 〈x〉 = C〈g〉(A1) and note that C is an Fp〈x〉-module that is
Fp〈x〉-divisible. Since a1,a2 ∈ CA(x) we have

CQ∩Fp〈x〉[1] = D1 ⊕D2 ⊕ . . .⊕Dk

where k > 2. Then CQ∩Fp〈x〉 is a direct sum of at least two Prüfer
submodules, say E1,0 and E1,1, both of which have infinite rank, be-
ing infinite elementary abelian subgroups. Using Lemma 2.1.5, 〈x〉 is
(n2,m)-subnormal in G and again 〈gB〉 is finite.

Suppose now that there exists a ∈ A such that M = 〈a〉〈g〉 has
infinite rank, and set L = 〈a〉〈g〉〈g〉. We consider M as an Fp〈g〉-mod-
ule. Then M ' Fp〈g〉/I where I = AnnFp〈g〉(a). If I 6= 〈0〉, then
Fp〈g〉/I is finite, so a has only finitely many conjugates in L, which
is a contradiction. Therefore we may assume that I = 〈0〉 and in this
case M ' Fp〈g〉. Let q be a prime. Then

Fp〈g〉 = Fp〈gq〉 ⊕Fp〈gq〉g⊕ . . .⊕Fp〈gq〉gq−1.

It follows that

M =Mq × (Mq)
g × . . .× (Mq)

qq−1
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where Mq = 〈a〉〈gq〉. The subgroups Mq and Mgq are 〈gq〉-invariant
and infinite, so 〈gq〉Mq and 〈gq〉(Mq)q are subgroups of infinite
rank. Since their intersection is 〈gq〉, we have that 〈gq〉 is (n2,m)-sub-
normal in G, using Lemma 2.1.5 and once again 〈gB〉 is finite.

Consequently G/B is periodic, so is locally finite since G is soluble-
by-finite, by Theorem 2.1.4. Furthermore, B is nilpotent and A has
infinite rank. There exists i such that (Zi+1(B) ∩A)/(Zi(B) ∩A) has
infinite rank while Zi(B) ∩A has finite rank (and so it is also finite).
It is now easily proved, using [15, Lemma 6] and Theorem 2.2 that
G/(Zi(B)∩A) is finite-by-nilpotent, since each subgroup of

(Zi+1(B)∩A)/(Zi(B)∩A)

has finitely many conjugates in any finite extension of it. Conse-
quently G is finite-by-nilpotent. ut

Lemma 2.2.10 Let G be an X-group in the class S(n,m) and let T be a
nilpotent p-subgroup of G of infinite rank. Then G is finite-by-nilpotent.

Proof — There are G-invariant subgroups A 6 B of T such that B/A
is an elementary abelian p-group and A has finite rank. Then A is
Černikov and its divisible part D is central in A of finite index pr,
say. Hence A ′ is finite, as is C/A ′ = (A/A ′)[pr]. It suffices to show
that G/C is finite-by-nilpotent, so we may assume that C is trivial.

In this case A is divisible of finite rank, so it is contained in the cen-
tre of B. If b ∈ B, then [b,B] ' B/CB(b). Since A 6 Z(B), B/CB(b) is
elementary abelian and [b,B] 6 A, so |B/CB(b)| 6 pl, where l is the
rank of A. Hence B is a BFC-group, so B ′ is finite. Factoring, we may
assume B is abelian and note that then B[p] is infinite. The fact that G
is finite-by-nilpotent follows using Proposition 2.2.9. ut

As corollary of these results follows the main result of this chapter.

Corollary 2.2.11 Let G be an X in the class S(n,m). Then G is finite-by-
nilpotent.

Finally, note that in Corollary 2.1.8 and Lemma 2.2.7 we can spec-
ify bounds for the order of the finite subgroups obtained and the
nilpotency class of the corresponding factor group. We can also spec-
ify bounds when T does not contain a primary component of infinite
rank. However the proof of Proposition 2.2.9 makes such a bound
appear unlikely in general.





Chapter 3

Groups whose subnormal subgroups have finite
normal oscillation

Let G be a group, and let X be a subgroup of G. The normal oscillation
of X in G is the cardinal number

min{|X : XG|, |XG : X|}.

Clearly, X is normal in G if and only if it has normal oscillation 1,
and in particular, a group has the T -property if and only if all its
subnormal subgroups have normal oscillation 1. Moreover, X has fi-
nite normal oscillation in G if and only if either X has finite index
in its normal closure XG or it is finite over its core XG; in particular,
finite subgroups and subgroups of finite index have finite normal
oscillation. It has recently been proved that any locally finite group
whose subgroups have finite normal oscillation contains a nilpotent
subgroup of finite index (see [28]).

The aim of this chapter is to study the class T(∗) consisting of all
groups in which every subnormal subgroup has finite normal oscilla-
tion. Of course, T(∗) contains both group classes T∗and T∗ (see [7, 26]).
In the following section, the behavior of certain groups of automor-
phisms which play a central role in the study of the class T(∗) will be
studied.

Note that in this chapter we will denote the finite residual of a
group G with ρ∗F(G).





3.1 Automorphisms

Recall that an automorphism of a group G is called a power automor-
phism if it maps every subgroup of G onto itself. The set of all power
automorphisms PAut(G) of a group G is an abelian normal subgroup
of the full automorphism group Aut(G) of G, which is naturally in-
volved in the study of soluble groups with the T -property; in fact,
if G is a T -group and A is any abelian normal subgroup of G, then
G induces by conjugation on A a group of power automorphisms.
We refer to [12] for a detailed description of the behavior of power
automorphisms.

Let G be a group, and let Γ be a group of automorphisms of G.
If X is any subgroup of G, the Γ -oscillation of X is defined as the
cardinal number

min{|X : XΓ |, |XΓ : X|},

where
XΓ =

⋂
γ∈Γ

Xγ and XΓ = 〈Xγ | γ ∈ Γ〉.

Of course, Γ is contained in the group PAut(G) if and only if all
subgroups of G have Γ -oscillation 1. Moreover, if Inn(G) denotes the
group of all inner automorphisms of G, the normal oscillation of X in
G coincides with the Inn(G)-oscillation of X. In particular, a group G
has the T(∗)-property if and only if all its subnormal subgroups have
finite Inn(G)-oscillation.

In this section, there are some lemmas on groups of automorphisms
which determine finite oscillation for all subgroups of the group;
they will be relevant for the proofs of our main results on gener-
alized soluble T(∗)-groups.
This first elementary lemma shows in particular that if a subgroup
P of type p∞ of a group G has finite oscillation with respect to a
subgroup Γ of Aut(G), then P is fixed by Γ .

Lemma 3.1.1 Let G be a group, and let Γ be a group of automorphisms
of G. If X is a subgroup of G which has finite Γ -oscillation, then the finite
residual of X is Γ -invariant. In particular, if X has no proper subgroups
of finite index, then it is Γ -invariant.

Proof — Obviously, the finite residual of a group coincides with the
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finite residual of any of its subgroups of finite index. Therefore either

ρ∗F(X) = ρ
∗
F(X

Γ ) or ρ∗F(X) = ρ
∗
F(XΓ ),

and hence the finite residual of X is Γ -invariant. ut

The main results of this section deal with the case of automor-
phism groups of abelian p-groups (where p is a prime number).

Lemma 3.1.2 Let A be an abelian p-group (where p is a prime num-
ber) and let B be a residually finite subgroup of A. If Γ is a locally fi-
nite group of automorphisms of A such that every subgroup of finite index
of B contains a Γ -invariant subgroup on which Γ does not act as a group
of power automorphisms, then there exists a subgroup of A which has infi-
nite Γ -oscillation.

Proof — By hypothesis, Γ is not a group of power automorphisms
of A, and so there exists an element a1 of A and an automorphism
γ1 ∈ Γ such that 〈a1〉γ1 6= 〈a1〉. Put Γ1 = 〈γ1〉 and consider the finite
subgroup E1 = 〈a1〉Γ1 of A. Since B is residually finite, it has a sub-
group of finite index B1 such that E1 ∩ B1 = {1} and Γ does not act
as a group of power automorphisms on the largest Γ -invariant sub-
group C1 of B1. Thus there exist elements a2 of C1 and γ2 of Γ such
that 〈a2〉γ2 6= 〈a2〉. Of course, Γ2 = 〈γ1,γ2〉 is a finite subgroup of Γ ,
and E2 = 〈a1,a2〉Γ2 is a finite subgroup of A of order at least pk+3,
where pk is the order of a1. Let B2 be a subgroup of finite index of
B1 such that E2 ∩B2 = {1}; clearly, Γ does not act as a group of power
automorphisms on the largest Γ -invariant subgroup C2 of B2. The it-
eration of this argument allows to construct two increasing sequences
(En)n∈N and (Γn)n∈N of finite subgroups of A and Γ , respectively,
and a decreasing sequence (Bn)n∈N of subgroups of finite index of B,
satisfying the following conditions:

• Γn = 〈γ1, . . . ,γn〉

• En = 〈a1, . . . ,an〉Γn and |En| > pk+2n−1

• 〈an〉γn 6= 〈an〉

• En ∩Bn = {1} and an+1 ∈ (Bn)Γ = Cn.

Put
E = Drn∈N〈an〉,
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and suppose first that the Γ -invariant subgroup EΓ has finite in-
dex in E, so that there exist positive integers r and s with r < s
and EΓar = EΓas. Thus ara−1s belongs to the Γ -invariant subgroup
EΓ ∩Cr−1, so that also (ara

−1
s )γr lies in

EΓ ∩Cr−1 6 E∩Cr−1 = Drn>r〈an〉,

and hence
(ara

−1
s )γr = aλra

µ
s a
ε1
i1
· · ·aεtit ,

where i1, . . . , it are integers larger than r and different from s, and
the exponents λ,µ, ε1, . . . , εt are suitable integers. Therefore,

aγrr a
−λ
r = aγrs a

µ
s a
ε1
i1
· · ·aεtit

belongs to Er ∩ Br = {1}, which is impossible as 〈ar〉γr 6= 〈ar〉. It
follows that EΓ has infinite index in E. Assume now that the index
|EΓ : E| is finite, pm say. Clearly,

E∩ Em+1 = 〈a1〉 × · · · × 〈am〉 × 〈am+1〉,

and so
|Em+1 : 〈a1, . . . ,am,am+1〉| 6 |EΓ : E| = pm,

which is impossible because Em+1 has order at least pk+2m+1.
This contradiction shows that also the index |EΓ : E| is infinite, and
hence the subgroup E has infinite Γ -oscillation. ut

Lemma 3.1.3 Let A be a reduced abelian p-group, and let Γ be a group of
automorphisms of A such that all subgroups of A have finite Γ -oscillation.
If B is an infinite subgroup of A which has no non-trivial Γ -invariant sub-
groups, then there exists a finite Γ -invariant subgroup C of BΓ such that
Γ induces a group of power automorphisms on BΓ/C. In particular, each
element of BΓ has finitely many images under the action of Γ and BΓ = BC.

Proof — Since B has finite Γ -oscillation and BΓ = {1}, the index
|BΓ : B| must be finite. Assume for a contradiction that B contains
an element b admitting infinitely many images under the action of Γ ,
so that the subgroup 〈b〉Γ is infinite. Then U = 〈b〉Γ ∩B is an infinite
group of finite exponent, and so there exist subgroups V and W such
that U = VW, V ∩W = 〈b〉 and both indices |U : V | and |U : W| are
infinite. Obviously, VΓ = WΓ = {1} and hence V and W have finite
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index in 〈b〉Γ = VΓ = WΓ . It follows that 〈b〉Γ = VΓ ∩WΓ is a finite
Γ -invariant subgroup of A, and this contradiction shows that each
element of B has only finitely many images under the action of Γ .
Clearly, the same property also holds for all elements of BΓ .
Let X be any infinite subgroup of BΓ . Then also X ∩ B is infinite,
and so it has finite index in (X ∩ B)Γ . Moreover, there is a finite
subgroup Y of BΓ such that X = 〈X ∩ B, Y〉, and YΓ is finite by Dietz-
mann’s Lemma, so that also the index |XΓ : X| is finite. Application
of Lemma 2.9 of [7] yields now that BΓ contains a finite Γ -invariant
subgroup C such that Γ induces a group of power automorphisms
on BΓ/C. ut

The following result will be used in the study of T(∗)-groups, in
order to produce elements admitting only finitely many conjugates.

Lemma 3.1.4 Let A be an abelian p-group (where p is a prime number)
and let Γ be a locally finite group of automorphisms of A such that all sub-
groups of A have finite Γ -oscillation. Then A contains a non-trivial element
which has only finitely many images under the action of Γ .

Proof — Assume for a contradiction that the statement is false. Then
the group A cannot satisfy the minimal condition on subgroups, and
so its socle S is an infinite Γ -invariant subgroup. Clearly, A can be re-
placed by S, and hence it can be assumed without loss of generality
that A has exponent p. Since A has no finite non-trivial Γ -invariant
subgroups, it follows from Lemma 3.1.3 that every infinite subgroup
of A contains a non-trivial Γ -invariant subgroup. On the other hand,
all subgroups of A have finite Γ -oscillation, and so an application
of Lemma 3.1.2 yields that A contains a non-trivial Γ -invariant sub-
group W on which Γ induces a group of power automorphisms.
Clearly, each element of W has only finitely many images under the
action of Γ , and this contradiction proves the statement. ut

The next step is the study of automorphism groups of torsion-free
locally nilpotent groups. Note that the next lemma is non-trivial only
in the case of elements of infinite order.

Lemma 3.1.5 Let G be a group, and let Γ be a group of automorphisms
of G. If x is an element of G such that the cyclic subgroup 〈x〉 has finite
Γ -oscillation, then the index |〈x〉 : 〈x〉Γ | is finite.

Proof — It can obviously be assumed that the subgroup 〈x〉 has
finite index in 〈x〉Γ . Then there is a positive integer m such that
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(〈x〉Γ )m is contained in 〈x〉, and hence also in 〈x〉Γ .
As 〈x〉Γ is cyclic-by-finite, the factor group 〈x〉Γ/(〈x〉Γ )m is finite, and
so also the index |〈x〉 : 〈x〉Γ | is finite. ut

Lemma 3.1.6 Let G be a torsion-free locally nilpotent group. If x is an
element of G and γ is an automorphism such that 〈xn〉γ = 〈xn〉 for some
positive integer n, then 〈x〉γ = 〈x〉.

Proof — As 〈xn〉 is infinite cyclic, we have (xn)γ = xεn, where
ε = ±1 and so xn belongs to the center of the group 〈x, xγ〉. Then
〈x, xγ〉/Z(〈x, xγ〉) is finite, so that the commutator subgroup 〈x, xγ〉 ′
is finite by the celebrated Schur’s theorem (see for instance [56]
Part 1, Theorem 4.12) and hence 〈x, xγ〉 is abelian.
Therefore,

(x−εxγ)n = x−εn(xn)γ = 1,

and so xγ = xε. The lemma is proved. ut

Lemma 3.1.7 Let G be a torsion-free locally nilpotent group, and let Γ be
a group of automorphisms of G such that every subgroup of G has finite
Γ -oscillation. Then Γ is a group of power automorphisms of G.

Proof — Let γ be any element of Γ . If x is an arbitrary element of
G, the index |〈x〉 : 〈x〉Γ | is finite by Lemma 3.1.5, and so in particular
〈x〉γ = 〈x〉n for some positive integer n. It follows from Lemma 3.1.6
that 〈x〉γ = 〈x〉, and hence γ is a power automorphisms of G. ut

In the next section we will analyze the structure of T(∗)-groups.
Among other results, we shall prove that any periodic soluble
T(∗)-group contains a metanilpotent subgroup of finite index, and
that all finitely generated soluble groups with the T(∗)-property are
abelian-by-finite; moreover, it will be shown that torsion-free soluble
T(∗)-groups are abelian.





3.2 T(∗)-groups

Let G be a group, and let X be a subgroup of G which has finite nor-
mal oscillation. Then it is clear that X has finite normal oscillation in
every subgroup Y of G such that X 6 Y, and that XN/N has finite nor-
mal oscillation in G/N for each normal subgroup N of G. It follows
that the class T(∗) is closed with respect to subnormal subgroups and
homomorphic images.
As a direct consequence of Lemma 3.1.1, we have the following infor-
mation concerning Prüfer subgroups of T(∗)-groups.

Lemma 3.2.1 Let G be a T(∗)-group. Then the finite residual of any sub-
normal subgroup of G is normal. In particular, all subnormal subgroups of
type p∞ of G are normal.

Lemma 3.2.2 Let G be a T(∗)-group, and let

K = Dri∈IKi

be a periodic normal subgroup of G, where π(Ki)∩π(Kj) = ∅ if i 6= j. Then
there are only finitely many indices i ∈ I such that Ki contains a subnormal
subgroup which is not normal in G.

Proof — Let I0 be the set of all indices i such that Ki contains a
subnormal subgroup which is not normal in G, and for each i ∈ I0,
let Xi be a subnormal subgroup of defect 2 of Ki. Put

X = 〈Xi | i ∈ I0〉 = Dri∈I0Xi,

so that

XG = Dri∈I0(Xi)G and XG = Dri∈I0X
G
i .

As X is subnormal in G, and

(Xi)G < Xi < (Xi)
G

for all i in I0, it follows that the set I0 is finite, because X has finite
normal oscillation. ut

Of course, all subgroups of a Baer T -group are normal, and it
is also known that any Baer group in the class T∗ ∪ T∗ is nilpo-
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tent (see [7, 26]). The next statement shows that this result can be
generalized to the case of T(∗)-groups.

Lemma 3.2.3 Let G be a Baer group with the T(∗)-property. Then G is
nilpotent.

Proof — Assume for a contradiction that the group G is not nilpo-
tent. If x is any element of infinite order of G, the cyclic normal
subgroup 〈x〉G is infinite by Lemma 3.1.5 and so it is contained in
the center Z(G), because G is locally nilpotent. Thus the factor group
G/Z(G) is a periodic counterexample to the statement, and hence
without loss of generality it can be assumed that G is periodic. In
particular, G is the direct product of its Sylow subgroups, and it fol-
lows from Lemma 3.2.2 that all but finitely many of such factors have
the T -property, and so are Dedekind groups. Therefore, there exists a
prime number p such that the Sylow p-subgroup of G is not nilpotent,
and hence we may suppose that G is a p-group.

As the Baer group G is not nilpotent, it cannot be a Černikov group,
and so it does not satisfy the minimal condition on abelian subnor-
mal subgroups (see [55], Theorem E). Thus G contains an infinite
abelian subnormal subgroup U of exponent p, and the subgroup U
can be chosen even normal in G, because it has finite normal oscil-
lation. Application of Lemma 3.1.4 with Γ = G/CG(U) yields that U
contains a non-trivial element u which has only finitely many con-
jugates in G. Then the normal subgroup 〈u〉G is finite, and hence
Z(G) 6= {1}. Since the hypotheses are inherited by homomorphic im-
ages, it follows that each non-trivial homomorphic image of G has a
non-trivial center, and so G is hypercentral.

Now, let A be a maximal abelian normal subgroup of G, so that
CG(A) = A, and let B be a basic subgroup of A. As the subnor-
mal subgroup B of G has finite normal oscillation, there exists a
residually finite G-invariant subgroup B0 of A such that A/B0 is
finite-by-divisible, and so also divisible-by-finite. On the other hand,
every divisible normal subgroup of a periodic Baer group lies in the
center (see for instance [56] Part 1, Lemma 3.13), and hence the sub-
group

Z/B0 = A/B0 ∩Z(G/B0)

has finite index in A/B0.
It follows from Lemma 3.1.2 that B0 contains a subgroup V such

that the index |B0 : V | is finite and G induces a group of power au-
tomorphisms on the core VG of V . Moreover, by Lemma 3.1.3 the
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normal closure VG contains a G-invariant subgroup N such that
NVG/VG is finite and G induces a group of power automorphisms
on VG/NVG. The intersection

C=CG(VG)∩CG(NVG/VG)∩CG(VG/NVG)∩CG(B0/VG)∩CG(A/Z)

is a normal subgroup of finite index of G, and C/A is nilpotent, be-
cause it is isomorphic to a group of automorphisms of A stabilizing
a finite series. On the other hand, A is contained in Z6(C), so that
C is nilpotent and G is nilpotent-by-finite, which is impossible. This
contradiction proves that all Baer T(∗)-groups are nilpotent. ut

Recall that a group G is subsoluble if it has an ascending series with
abelian factors consisting of subnormal subgroups. Although for a
finite group (or even for a group satisfying the maximal condition)
the properties of being soluble or subsoluble are equivalent, it turns
out that there exist infinite subsoluble groups which have no abelian
non-trivial normal subgroups. It is easy to prove that a group G is
subsoluble if and only if the upper Baer series of G (i.e., the ascend-
ing series defined by transfinite induction of the consecutive Baer
radicals) terminates with G. Note also that if G is a subsoluble group
and A is its Baer radical, then CG(A) 6 A.

In [7] C. Casolo proved that a soluble T∗-group is finite-by-metabe-
lian and in [26] S. Franciosi, F. de Giovanni and M.L. Newell proved
that a subsoluble T∗-group is metabelian-by-finite; the aim of the fol-
lowing theorems is to generalized these results obtaining a similar
theorem for a subsoluble T(∗)-group.

Theorem 3.2.4 Let G be a periodic subsoluble T(∗)-group, and let A be
the Baer radical of G. Then A is nilpotent and G ′A/A is finite, so that G is
nilpotent-by-finite-by-abelian.

Proof — The Baer radical A of G is nilpotent by Lemma 3.2.3, and so
A/A ′ is the Baer radical of G/A ′ by Philip Hall’s nilpotency criterion
(see for instance, [56] Part 1, Theorem 2.27). Moreover, it is clearly
enough to show that the statement holds for the factor group G/A ′,
and hence without loss of generality it can be assumed that A is
abelian.

It follows from Lemma 3.2.2 that there are finitely many prime
numbers p1, . . . ,pt such that G induces by conjugation a group of
power automorphisms on the q-component Aq of A for each prime
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q 6= p1, . . . ,pt, and in particular [Aq,G ′] = {1} for all such q.
Let Bi be a basic subgroup of Api , for i = 1, . . . , t, so that Api/Bi is
divisible. Since Bi has finite normal oscillation in G, it follows that
there exists a residually finite G-invariant subgroup B∗i of Apisuch
that Api/B

∗
i is finite-by-divisible, and so it contains a divisible char-

acteristic subgroup Di/B
∗
i such that Api/Di is finite. Notice here

that Di/B∗i is a direct product of G-invariant subgroups of type p∞i
by Lemma 3.1.1, and hence G ′ acts trivially on it. Application of
Lemma 3.1.2 yields that B∗i has a subgroup of finite index Xi such that
G acts as a group of power automorphisms on the core Yi = (Xi)G.
Moreover, it follows from Lemma 3.1.3 that XGi contains a finite
G-invariant subgroup Ni such that G induces a group of power auto-
morphisms on XGi /NiYi. In particular, G ′ acts trivially on XGi /NiYi.
As the groups Api/Di,B

∗
i/X

G
i , and Ni are finite, it follows that G ′

contains a normal subgroup of finite index Ki stabilizing the series

{1} 6 Yi 6 NiYi 6 X
G
i 6 B∗i 6 Di 6 Api ,

and so the group Ki/CKi(Api) is nilpotent. Of course, the intersection

K =

t⋂
i=1

Ki

is a normal subgroup of finite index of G ′. Moreover,

t⋂
i=1

CKi(Api) = CK(A) 6 A

and so the factor group K/A is nilpotent. But A is contained in a
term with finite ordinal type of the upper central series of K, so that
K itself is nilpotent and hence it is contained in A. Therefore,

G ′A/A ' G ′/G ′ ∩A

is finite. ut

It is well known that if G is any group with a finite commutator
subgroup, then also the index |G : Z2(G)| is finite (see for instance,
[56] Part 1, Theorem 4.25). Therefore, Theorem 3.2.4 has the following
consequence.
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Corollary 3.2.5 Let G be a periodic subsoluble T(∗)-group. Then G is
metanilpotent-by-finite, and so also soluble.

Now, it will be considered the case of non-periodic subsoluble
T(∗)-groups. Here, a group is said to be of dihedral type if it is a semidi-
rect product 〈x〉 n A, where A is a non-trivial torsion-free abelian
group and x is an element of order 2 such that ax = a−1 for all a ∈ A.

Theorem 3.2.6 Let G be a subsoluble T(∗)-group, and let T be the largest
periodic normal subgroup of G. Then the factor group G/T is either abelian
or of dihedral type.

Proof — The replacement of G by the factor group G/T allows to
assume that G has no periodic non-trivial normal subgroups, so
that it follows from Lemma 3.2.3 that the Baer radical A of G is a
torsion-free nilpotent group. Then all subgroups of A have finite nor-
mal oscillation in G, and an application of Lemma 3.1.7 yields that
G induces a group of power automorphisms on A. It follows that
G/CG(A) has order at most 2. As CG(A) 6 A, we have in particular
that A is abelian and so CG(A) = A.

Suppose that G is not abelian, so that |G : A| = 2, and we may
consider an element g ∈ G \A. Then ag = a−1 for all a ∈ A, and
hence g2 = 1 and G = 〈g〉nA is a group of dihedral type. ut

Corollary 3.2.7 Let G be a subsoluble torsion-free T(∗)-group. Then G is
abelian.

From the last corollary, it follows that both a subsoluble torsion-free
T∗-group and a subsoluble torsion-free T∗-group are abelian, as noted
by S. Franciosi, F. de Giovanni and M.L. Newell in [26] for T∗-groups;
furthermore combining Theorems 3.2.4 and 3.2.6, we obtain the fol-
lowing information, where N denotes the class of nilpotent groups.

Corollary 3.2.8 Let G be a subsoluble T(∗)-group. Then G is soluble and
contains a subgroup of finite index which is in the class N3.

The last result shows that finitely generated soluble T(∗)-groups
are almost abelian, as is the case of the soluble finitely generated
T∗-groups and the subsoluble finitely generated T∗-groups (see re-
spectively, [7] and [26]), and should be seen in relation to the fact
that a finitely generated soluble T -group is either abelian or finite.
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Theorem 3.2.9 Let G be a finitely generated soluble T(∗)-group. Then G
contains an abelian subgroup of finite index.

Proof — Assume for a contradiction that the statement is false, and
let Ω be an arbitrary chain of normal subgroups of G such that G/N
is not abelian-by-finite for each element N of Ω. Put

W =
⋃
N∈Ω

N

and suppose that the factor group G/W is abelian-by-finite. Then
G/W is finitely presented, and so W is the normal closure of a finite
subset, which is of course impossible. Therefore, G/W is not abelian-
by-finite, and an application of Zorn’s lemma yields that G contains a
normal subgroup M which is maximal with respect to the condition
that G/M is not abelian-by-finite. As G/M is a counterexample to
the statement, it can be assumed without loss of generality that all
proper homomorphic images of G are abelian-by-finite.

Let T be the largest periodic normal subgroup of G. Then G/T is
abelian-by-finite by Theorem 3.2.6, so that T 6= {1} and hence the Baer
radical A of T is a non-trivial nilpotent normal subgroup of G. As-
sume that A ′ 6= {1}, so that the factor group G/A ′ is abelian-by-finite
and G is nilpotent-by-finite; it follows that G is polycyclic, so that T is
finite and hence G is finite-by-abelian-by-finite and so even abelian-
by-finite. This contradiction shows that A is an infinite abelian group.
As G/A is finitely generated and abelian-by-finite, we have that A is
the normal closure in G of a finite subgroup X. In particular, A has fi-
nite exponent, and so it contains two infinite subgroupsH and K such
that H∩K = X. Then HG = KG = A, and hence both indices |HG : H|
and |KG : K| are infinite. On the other hand, all subgroups of A have
finite normal oscillation in G, so that HG has finite index in H and
KG has finite index in K. In particular, the normal subgroups HG and
KG of G are not trivial, and hence the factor groups G/HG and G/KG
are abelian-by-finite. Moreover, the intersection HG ∩KG is finite, so
that G is finite-by-abelian-by-finite, and hence also abelian-by-finite.
This last contradiction completes the proof. ut



3.3 An open problem

In [27] W. Gaschütz proved that a subgroup of a finite soluble
T -group is still a T -group. In the infinite case D.J.S. Robinson [53]
showed that each soluble T -group of type 1 (namely, a non-abelian
group such that CG(G ′) is not periodic) has a subgroup which is
not a T -group. However H. Heineken and J.C. Lennox in [34] proved
that a subgroup H of finite index of a T -group G is still a T -group
if it contains some term of the derived series of G. Generalizing this
result, C. Casolo proved that a subgroup of finite index in a T∗-group
is again a T∗-group (see [6]).

Theorem 3.3.1 Let G be a group T∗-group and let H and L be subgroups
of G such that H 6 L. If H is subnormal in L and L has finite index in G,
then |HG : H| is finite.

Proof — Proceed by induction on the subnormal defect n of H in
L. For n = 0 the assert is obvious, so let n = 1. The subgroup
H ∩ LG is subnormal in G and then |(H ∩ LG)G : H ∩ LG| is finite.
If W = (H∩ LG)G we have also W 6 LG. Now, |HW/W| is finite and
NG(HW) > L, it follows that |G : NG(HW)| is finite too. By Dietz-
mann’s Lemma, (HW/W)G/W is finite. In particular, |(HW)G : HW|

is finite. Now, since the index |HW : H| = |W : H ∩ LG| is finite,
|(HW)G : H| is finite too and it follows that |HG : H| is finite.

Let now n > 1, and T = HL; then, by the case discussed above,
|TG : T | is finite. The subgroup H is subnormal of defect n− 1 in T
and by inductive hypothesis and the fact that TG is a T∗-group, the
index |HT

G
: H| is finite. Moreover the subgroup HT

G
is subnormal

in G and then |(HT
G
)G : HT

G
| is finite; it follows that |(HT

G
)G : H| is

finite and so |HG : H| is finite too. ut

Corollary 3.3.2 A subgroup of finite index in a T∗-group is again a
T∗-group.

In a dual way, S. Franciosi, F. de Giovanni and M.L. Newell in [26]
have easily proved an analogous result for the T∗-groups.

Theorem 3.3.3 Let G be a T∗-group, and let X be a subgroup of finite
index of G. Then X is a T∗-group.
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Proof — Let H be a subnormal subgroup of X. Then H ∩ XG is sub-
normal in XG and so also in G, so that (H ∩ XG)/(H ∩ XG)G is finite.
Since H ∩ XG has finite index in H, it follows that H/HG is finite. In
particular H/HX is finite, and X is a T∗-group. ut

It seems to be reasonable that a similar result should indeed be
obtained for the T(∗)-groups, however, we did not manage to prove
it.

Open problem: Let G be a T(∗)-group, and let X be a subgroup of
finite index of G. Is X still a T(∗)-group?



Chapter 4

Countable character of subnormal-like subgroups

A class of groups X is said to be countably recognizable if, whenever
all countable subgroups of a group G belong to X, then G itself is
an X-group. Countably recognizable classes of groups were intro-
duced by R. Baer [3].

The so-called local classes are of course countably recognizable: a
group class X is local if it contains all groups in which every finite
subset lies in some X-subgroup. It is clear that any variety of groups
is itself a local class, and so the property of being soluble of bounded
length and that of being nilpotent of bounded class are both local.
Although the class N of nilpotent groups and the class S of soluble
groups are not local, it is easy to see that they are at least countably
recognizable (see for instance [29, Lemma 2.1]).

A famous theorem of A.I. Mal’cev may be applied to prove that
many relevant group classes are local (see [56, Chapter 8], for a de-
scription of these methods). In particular, starting from suitable se-
ries of the members of a local system of a group G, Mal’cev’s result
allows to construct a new series of G. For instance, it follows that if B
is any variety, then the class of all groups admitting a series whose
factors are in B is local.

On the other hand, Mal’cev theorem does not allow to control the
order type of the new series, and the aim of this chapter is to provide
a general method to construct finite series of a group G based on
suitable finite series of the countable subgroups of G.

Let B1, . . . ,Bt be finitely many varieties of groups and consider a
subset M of {−1,−2, . . . ,−t}. Put

Q =
⋃
k∈N

(M∪ {0})k

and let q ∈ Q. If Σ is a non-empty initial segment of N, a sub-
group H of a group G is said to be (q,Σ)-subnormal in G if there
exists a (q,Σ)-chain from H to G, i.e., a finite chain of subgroups

H = H0 6 H1 6 . . . 6 Hn = G,
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where q = (q1, . . . ,qn) and for each i ∈ {1, . . . ,n} we have that

|Hi : Hi−1| ∈ Σ

if qi=0, while Hi−1 is normal in Hi and Hi/Hi−1∈B−qi when qi 6=0.

Define a partial order ≺ in Q by setting

(q1, . . . ,qm) = q ≺ q ′ = (q ′1, . . . ,q ′n) (n,m ∈N)

if and only if m 6 n and there is a strictly increasing function

ϕ : {1, . . . ,m} −→ {1, . . . ,n}

such that qi = q ′ϕ(i) for i ∈ {1, . . . ,m}. This means that, q ≺ q ′ if and
only if one can go from q ′ to q by removing some components. Note
that every subset of Q has an element which is ≺-minimal.

Fix now a non-empty initial segment Σ of N. We will then speak
of q-subnormality and q-chains instead of, respectively, (q,Σ)-subnor-
mality and (q,Σ)-chains.

The main result of this chapter is the following:
Theorem Let G be a group, H a subgroup of G and q=(q1, . . . ,qk) ∈ Q.
If H∩C is q-subnormal in C for every countable subgroup C of G, then H
is p-subnormal in G, for some p ≺ q.

Let X and Y be group classes. We shall denote by XY the prod-
uct of X and Y, i.e. the class consisting of all groups G containing
a normal X-subgroup N such that the factor group G/N belongs
to Y. It seems to be unknown under which hypotheses the product
of two countably recognizable classes is likewise countably recogniz-
able. On the other hand, this problem has a positive solution in the
case of varieties, since it is well-known that the product of two vari-
eties is again a variety (see for instance [49]). Moreover, if {Bn}n∈N

and {Cn}n∈N are sequences of group varieties, then [29, Lemma 2.1]
implies that the class of groups(⋃

m

Bm

)(⋃
n

Cn

)
=
⋃
m,n

(
BmCn

)
is countably recognizable. Furthermore, the class of groups with a
finite series (of bounded length) whose factors belong to

⋃
n∈N Bn
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is also countably recognizable. It follows for instance that the class
of metanilpotent groups, and more generally that of soluble groups
of bounded Fitting length is countably recognizable. Notice also that
the class of poly-B groups is countably recognizable for any group
variety B.

As a consequence of the Theorem, we generalize the above results
proving, for instance, that the class of all groups with a finite series
whose factors are either finite or belongs to a given variety is count-
ably recognizable.

The range of applicability of the Theorem and its method is not lim-
ited to properties of this type. In fact, in the last section of the chapter
we prove that many different properties defined by subnormality-
like conditions can be countably detectable. In particular, it turns
out that all group classes and subgroup properties considered in
[7, 8, 24, 26] have countable character: this is, for instance, the case
of f-subnormality, the property T∗, the property T∗ and the property
T(∗).





4.1 Proof of the Theorem

This section deals with the proof of the main result, that is labelled
as Theorem 4.1.1.

Theorem 4.1.1 LetH be a subgroup of a groupG and q = (q1, . . . ,qk)∈Q.
If H∩C is q-subnormal in C for every countable subgroup C of G, then H
is p-subnormal in G, for some p ≺ q.

Proof — Let C be the set of all countable subgroups of the group G.
For each C ∈ C, there is a qC ∈ Q such that qC ≺ q, H ∩C is qC-sub-
normal in C and qC is ≺-minimal with respect to these properties.
Set

Cp = {C ∈ C : qC = p},

for all p ∈ Q. Suppose that, for each p ≺ q, there is a Cp ∈ C which
is not contained in any element of Cp. Then, the countable sub-
group 〈Cp : p ≺ q〉 is not contained in any element of⋃

p≺q
Cp = C,

which is a contradiction. Therefore, there exists p ≺ q in Q such
that Cp is a countable system of G.

For each C ∈ Cp, there is a p-chain from H∩C to C with a smallest
number of infinite jumps, say s(C). If C1 6 C2 are elements of Cp,
then s(C1) 6 s(C2), and hence, the set

{s(C) : C ∈ Cp}

has a largest element s = s(C1). Thus, whenever C ∈ Cp and C > C1,
it follows that s(C1) = s(C), which also means that the number of
finite jumps is the same, say fj. Let now for convenience

C1p = {C > C1 : C ∈ Cp}.

Suppose that fj 6= 0. For each C∈C1p, there is a p-chain from H∩C
to C having fj finite jumps and, under this condition, such that the
sum j(C) of the orders of its finite jumps is the smallest possible.
Again, it can be easily proved that, if C1 6 C2 are elements of C1p,
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then j(C1) 6 j(C2). Suppose that the set

J = {j(C) : C ∈ C1p}

does not contains a largest element. Then there is a strictly increasing
sequence of numbers

j(C1) < j(C2) < . . . < j(Ci) < . . .

and the countable subgroup 〈Ci : i ∈N〉 is contained in a a suitable
element C∞ of C1p. However, this is a contradiction, since it should
be j(C∞) > j(Ci) for each i ∈N. Therefore, J has a largest ele-
ment j = j(C2). Notice that we have j(C2) = j(C), whenever C ∈ C1p
and C > C2. Clearly,

C2p = {C > C2 : C ∈ C1p}

is still a countable system of G and for every countable subgroup
C of C2p, there exists a p-chain

SC : H∩C = H0,C 6 H1,C 6 . . . 6 Hn,C = C

in which the orders of the finite jumps corresponding to the 0-com-
ponents of p are bounded by

l = min{j, sup(Σ)}.

Given SC, we define a binary relation RC on C by setting xRC y if
and only if ⋂

i :x∈Hi,C

Hi,C 6
⋂

i :y∈Hi,C

Hi,C.

The relation RC can be encoded as a function

fC : C×C −→ {0, 1}

such that fC(x,y) = 1 if and only if xRC y.

Applying now Lemma 8.22 of [56], it follows that there is a func-
tion

f : G×G −→ {0, 1}
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having the property that, for every finite subset

{x1, . . . , xm}

of G×G, there exists C ∈ C2p such that xi ∈ C×C and f(xi) = fC(xi)
for i = 1, . . . ,m. From this function we go back to a binary relation R

setting xRy whenever f(x,y) = 1, for each x,y ∈ G. Our next step in
the proof is to describe some properties of R in order to construct a
suitable chain from H to G.

We claim that R is a total and transitive relation. In fact, if x,y
are elements of G, then there is a C ∈ C2p such that fC(x,y) = f(x,y)
and fC(y, x) = f(y, x). However, the construction of RC shows that ei-
ther fC(x,y) = 1 or fC(y, x) = 1. Therefore R is total. The transitivity
can be proved in a similar way.

Another relevant property of R is that, given n+2 arbitrary el-
ements x1, . . . , xn+2 of G, there are two of them which are each
other in relation. In fact, assume for a contradiction that xiRxi+1
and xi+1�R xi, for each i ∈ {1, . . . ,n− 2}. Then there is C ∈ C2p such
that fC(xk, xh) = f(xk, xh) for all h, k ∈ {1, . . . ,n+ 2} and hence

xiRCxi+1 and xi+1��RC xi,

for i ∈ {1, . . . ,n− 2}, which cleary is a contradiction. Since we have
already shown that R is total and transitive, it follows that the above
property holds.

Finally, it can be proved that, for x,y, z ∈ G with xRz and yRz, one
has xy−1Rz. As before, there is a C ∈ C2p such that

fC(xy
−1, z) = f(xy−1, z), fC(x, z) = f(x, z) = 1, fC(y, z) = f(y, z) = 1.

Again, the costruction of RC shows that f(xy−1, z) = fC(xy−1, z) = 1,
which is what was claimed.

We can now proceed to construct the quoted chain from H to G.
Define by recursion a sequence of elements {xi}i∈N0

of G by put-
ting x0 = 1, and, by choosing xi+1 as an R-minimal element of G
such that xiRxi+1 and xi+1�Rxi, if there exists such an element and
by setting xi+1 = xi otherwise. By the above properties of R, this
sequence stops after at most n steps, and for each i = 0, . . . ,n the set

Hi = {x ∈ G | xRxi}
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is a subgroup of G. Notice that Hn = G. If h1,h2 are arbitrary ele-
ments of H, there is C ∈ C2p such that

fC(h1,h2) = f(h1,h2).

On the other hand, by the construction of SC, it follows that h1RCh2,
and so f(h1,h2) = 1, which means that h1Rh2. Therefore H is con-
tained in H0. Suppose by contradiction that there exist g ∈ G\H such
that gR1. Then fC(g, 1) = 1 for some C ∈ C2p. However, by construc-
tion, no element of C\(H∩C) is in relation with an element of H∩C.
This contradiction proves that H0 = H.

Assume that H < G and let

SG : H = H0 < . . . < Hm = G (m 6 n)

be the above constructed chain (here m 6 n). Take ei ∈ Hi\Hi−1
for i = 0, . . . ,m, with the convention that H−1=∅. Suppose by contra-
diction that SG does not correspond to any p ′-chain with

p ′ = (p ′1, . . . ,p ′m) ≺ p.

Then, for each p ′ ≺ p, the jump (Hi−1,Hi) does not correspond to p ′i
for some positive integer i 6 n. If p ′i = 0, we take elements

y1,p ′ , . . . ,yl+1,p ′ ∈ Hi

such that
yh,p ′y

−1
k,p ′ 6∈ Hi−1 ∀h, k ∈ {1, . . . , l+ 1},

and define

Vp ′ = {yj,p ′ , yh,p ′y
−1
k,p ′ | j,h, k ∈ {1, . . . , l+ 1}}.

Suppose instead that p ′i < 0 and that Hi−1 is not normal in Hi.
Then there are elements wp ′,1 and wp ′,2 in Hi such that

wp ′,2,w
wp ′ ,2
p, ′1 6∈ Hi−1 and wp ′,1 ∈ Hi−1.

In this case, we put

Vp ′ = {wp ′,1, wp ′,2, w
wp ′ ,2
p ′,1 }.
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Finally, if p ′i < 0 and Hi−1 is normal in Hi, there is a word θp ′

defining B−p ′i
and elements

z1,p ′ , . . . , ztp ′ ,p ′

in Hi such that

θp ′(z1,p ′ , . . . , ztp ′ ,p ′)

does not belong to Hi−1. In this case, define Vp ′ to be the set

{zj, θp ′(z1,p ′ , . . . , ztp ′ ,p ′) | j = 1, . . . , tp ′}.

Let
V =

⋃
p ′≺p

Vp ′

and put
U = V ∪ {e1, . . . , em}.

There exists C ∈ C2p such that f and fC act in the same way on U.
All elements of U which are in relation one another, are also in rela-
tion one another in relation with a unique ek, for some k = 0, . . . ,m.
It follows that all these elements lie in a set of the form K2\K1,
where (K1,K2) is a jump of SC. If we take the components of p corre-
sponding to these jumps ordered from H ∩C to C, we obtain a new
element p ′′ ∈ Q such that

(p ′′1 , . . . ,p ′′b) = p ′′ ≺ p.

Therefore, there is i 6 m such that the jump (Hi−1,Hi) does not cor-
respond to p ′′i and Vp ′′ ⊆ U. However, all elements of Hi\Hi−1 are
doubly in relation one another and also with ei, and hence they are
contained in the set L2\L1, where (L1, L2) is the jump of SC corre-
sponding to p ′′i . On the other hand, the relations between the ele-
ments of U show that this is impossible. The statement is proved. ut





4.2 Main consequences

Notice first that if we choose H = {1} in the statement of Theo-
rem 4.1.1, and with a suitable choice of the varieties defining Q, we
obtain that the property of being finite-by-abelian-by-finite is count-
ably recognizable (see also [29], where other proofs of this fact are
discussed).

The following statement is instead a special case of a more general
result proved in [29].

Corollary 4.2.1 Let X be a variety of groups. Then the class XF of all
groups containing an X-subgroup of finite index and the class FX of all
groups containing a finite normal subgroup with X-factor group are count-
ably recognizable.

In order to extend the range of applicability of the Theorem 4.1.1
we need the following result, in which Q is the set defined in the first
section of this chapter.

Corollary 4.2.2 Let G be a group, and let H be a subgroup of G such that
for each countable subgroup C of G there exists q ∈ Q such that H ∩ C
is q-subnormal in C. Then H is p-subnormal in G for some p ∈ Q.

Proof — Suppose by contradiction that the statement is false. Then
it follows from the Theorem 4.1.1 that for each q ∈ Q there is a count-
able subgroup Cq of G such that H ∩ Cq is not q-subnormal in Cq.
Let C be the countable subgroup generated by all Cq’s with q ∈ Q.
By hypothesis, there is a q ′ ∈ Q such that H∩C is q ′-subnormal in C,
which is a contradiction since H∩Cq ′ is not q ′-subnormal in Cq ′ . ut

As an immediate consequence of Corollary 4.2.2, we obtain the
following result.

Theorem 4.2.3 Let G be a group, and let H be a subgroup of G such
thatH∩C is f-subnormal in C, for each countable subgroup C of G. ThenH
is f-subnormal in G.

As an application of Corollary 4.2.2 for H = {1} and of [29, Lem-
ma 2.1] we have the following result.

Theorem 4.2.4 Let {B}n∈N be a sequence of varieties of groups. Then the
class of all groups admitting a finite series whose factors either are finite or
belong to

⋃
n∈N Bn is countably recognizable.
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A q-chain is said to be normal if all its terms are normal in the
group. In these circumstances a normal subgroup H of a group G
will be said q-normal if there is a normal q-chain from H to G. It
is easy to see that, with minor changes in the proofs, in the above
statement normality can be replaced by q-normality, obtaining thus
the following result.

Theorem 4.2.5 Let {Bn}n∈N be a sequence of varieties of groups, then
the class of all groups admitting a finite normal series whose factors either
are finite or belong to

⋃
n∈N Bn is countably recognizable.



4.3 Subgroup properties

Let Θ be a subgroup property. In the following, it will be often writ-
ten HΘG or “H is a Θ-subgroup of G” whenever H is a subgroup of
a group G and H has the property Θ in G. Following [29], we say
that Θ has countable character if a subgroup Y of an arbitrary group G
is a Θ-subgroup of G whenever Θ holds in G for all countable sub-
groups of Y.

Suppose now that Θ is such that HΘK follows from HΘG, for an
arbitrary group G and two its subgroups H 6 K. In this case, it can be
easily proved that Θ has countable character if, given a group G and
a subgroup H, we have HΘG whenever H∩CΘC for all countable
subgroups C of G. If Θ satisfies this latter property, we shall say
that Θ has strong countable character.

It is clear that, if Θ is actually an absolute property, then the con-
cepts of countable character, strong countable character and count-
able recognizability coincide. However, in general, they may not co-
incide. In fact, let Θ be the embedding property defined in the follow-
ing way: HΘG if and only if |G : H| 6 ℵ0. Obviously, Θ has countable
character, but the consideration of any uncountable group shows that
this character is not strong.

It was recently proved in [30] that the property of being closed
in the profinite topology has strong countable character. The Theo-
rem 4.1.1 gives directly a further contribution to the list of properties
of strong countable character, adding the property of being q-sub-
normal for a given set Q. In particular, choosing B1 to be the class
of all groups, Σ = {1} and M = {−1} we get that the property of
being subnormal and that of being subnormal of bounded defect
have both strong countable character (see also [29, Theorem 2.4]). On
the other hand, Theorem 4.2.3 shows the strong countable character
of f-subnormality. The aim of this section is to prove that many other
subgroup properties have strong countable character. We first prove
some corollaries of Theorem 4.1.1.

Corollary 4.3.1 Let G be a group, and let H be a subgroup of G. If
H ∩ C has finite index in a subnormal subgroup of C, for each countable
subgroup C of G, then H has finite index in a subnormal subgroup of G.

Proof — For each countable subgroup C of G, denote by l(C) the
smallest subnormality defect of a subnormal subgroup L of C such
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that H∩C 6 L and H∩C has finite index in L. Clearly, l(C1) 6 l(C2)
whenever C1 and C2 are countable subgroups ofG such that C1 6 C2.
Therefore the set of all l(C)’s ranging on all countable subgroups C
of G has a largest element, l = l(C∗) say. If C is any countable
subgroup of G, also the subgroup 〈C, C∗〉 is countable and clear-
ly l(〈C, C∗〉) = l(C∗) = l. It follows that H ∩ C has finite index in
a subnormal countable subgroup C of subnormal defect at most l.
An easy application of the Theorem 4.1.1 now gives the result. ut

The following result can be proved similarly. Note that in both
corollaries it is possible to add restrictions on the subnormality de-
fect and on the finite index.

Corollary 4.3.2 Let G be group and let H be a subgroup of G. If H∩C is
subnormal in a subgroup of finite index of C, for each countable subgroup
C of G. Then H is subnormal in a subgroup of finite index of G.

We prove now that both the property of having finite index in the
normal closure and that of having a finite number of conjugates have
strong countable character.

Corollary 4.3.3 Let G be a group and H a subgroup of G such that H∩C
has finite index (has index at most m, for some fixed positive integer m) in
its normal closure in C, for each countable subgroup C of G. Then H has
finite index (has index at most m) in its normal closure in G.

Proof — Fix B1 to be the class of all groups, Σ = N and M = {−1}.
Then, applying the Theorem 4.1.1 for q = (0,−1), we get that H is
either of finite index in G, or is normal in G, or has finite index in a
normal subgroup of G. In every case, H has finite index in its normal
closure.

If m is any positive integer, and Σ = {1, . . . ,m}, the same argument
proves the other point of the statement. ut

Corollary 4.3.4 Let G be a group and H a subgroup of G such that H∩C
has a finite number of conjugates in C, for each countable subgroup C of G.
Then H has a finite number of conjugates in G. Moreover, if H ∩C has at
mostm conjugates in C, for each countable subgroup C of G, and for a fixed
positive integer m, then H has at most m conjugates in G.

Next lemmas deal with the countable character of some further
embedding properties.
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Lemma 4.3.5 Let G be a group and let m be an element of N∪ {ℵ0}. If H
is a subgroup of G such that |(H∩C)C : (H∩C)C| < m for each countable
subgroup C of G, then |HG : HG| < m.

Proof — Suppose first that m 6= ℵ0 and assume by contradiction
that |HG :HG|>m. Then there are elements x1, . . . , xm of HG such
that xix−1j 6∈ HG for all i 6= j ∈ {1, . . . ,m}. Hence there exist ele-
ments g(i, j) such that xix−1j 6∈ Hg(i,j). Therefore we can find a count-
able subgroup L of G containing the elements g(i, j), for i 6= j, and
such that x1, . . . , xm belong to (H∩ L)L. This clearly implies that

|(H∩ L)L : (H∩ L)L| > m,

a contradiction. The proof is similar for m = ℵ0. ut

Notice that part of the above proof can be used to show that the
property of being finite (of bounded order) over the core has strong
countable character. The next lemma proves that the property of hav-
ing finite normal oscillation has strong countable character.

Lemma 4.3.6 Let G be a group and let m be an element of N∪ {ℵ0}. If H
is a subgroup of G such that, for each countable subgroup C of G, the sub-
group H∩C has normal oscillation strictly smaller than m in C. Then H
has normal oscillation strictly smaller than m in G.

Proof — We assume that m is finite (the proof is similar for m=ℵ0).
Suppose for a contradiction that |HG : H| > m and |H : HG| > m.
Let x1, . . . , xm be elements of H such that xiHG 6= xjHG if i 6= j, and
put

X = 〈x1, . . . , xm〉.

For all elements i and j of {1, . . . ,m} such that i 6= j ∈ {1, . . . ,m} there
exists an element g(i, j) of G such that x−1i xj does not belong to the
subgroup Hg(i,j). On the other hand, as |HG : H| > m, there are count-
able subgroups Y of H and Z of G such that X 6 Y and the normal clo-
sure YZ contains a subset W = {w1, . . . ,wm} for which wiH 6= wjH,
whenever wi 6= wj. Then

C = 〈Y,Z, g(i, j); i 6= j ∈ {1, . . . ,m}〉

is a countable subgroup of G, and it is obvious that the normal oscil-
lation of H∩C in C larger than m, a contradiction. ut
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Let G be a group. We say that a subgroup H has the χ property
in G if there is a subnormal subgroup H0 of G such that H0 6 H and
the index |H : H0| is finite. Groups in which all proper subgroups
have the χ property have been studied by C. Casolo and M. Mainar-
dis [8]. This section ends by sketching how to use the method of the
Theorem 4.1.1 in order to prove that χ has strong countable character.

Lemma 4.3.7 Let G be a group and let H be a subgroup of G such that,
for each countable subgroup C of G, there is a subnormal subgroup H0,C
of C, such that H0,C 6 H∩C and H0,C has finite index in H∩C. Then G
has a subnormal subgroup H0 such that H0 6 H and |H : H0| <∞.

Proof — Let C be the set of all countable subgroups of G, and let
C ∈ C. There exists a subnormal subgroup H10,C of C such that H10,C
is contained in H ∩C and H0,C has smallest subnormal defect, s(C)
say, in C, and among these the smallest index in H ∩C, f(C) say. As
in the proof of the Theorem 4.1.1, we can find a countable system C1

of G such that, for each C1,C2 ∈ C1 we have

s(C1)=s(C2) and f(C1)=f(C2).

For each C ∈ C1, consider the series

H0,C 6 H∩C = H1,C 6 H2,C = C

and the series of normal closures of H0,C in C

H0,C = K0,C < . . . < Kn,C = C.

Define now two binary relations R1,C and R2,C on C by put-
ting xR1,Cy if and only if⋂

i :x∈Hi,C

Hi,C 6
⋂

i :y∈Hi,C

Hi,C,

and, we set xR2,Cy if and only if⋂
i :x∈Ki,C

Ki,C 6
⋂

i :y∈Ki,C

Ki,C.

We can encode these two relations in a function

f : C×C −→ {0, 1, 2, 3},
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in such a way that f(x,y) = 1 whenever xR1,Cy and x���R2,Cy. Now,
applying Lemma 8.22 of [56], it follows that there is a function

f : G×G −→ {0, 1, 2, 3}

having the property that, for every finite subset {x1, . . . , xm} of G×G,
there exists a C ∈ C1 such that xi ∈ C × C and f(xi) = fC(xi) for
all i = 1, . . . ,m. From this function we go back to two binary rela-
tions R1 and R2 on G. Each of these relations has the analogous of
the properties mentioned in the proof of the Theorem 4.1.1. Hence,
we can define two series in G:

H0 6 H1 6 G
and

K0 6 K1 6 . . . 6 Kn = G.
Since

H0 = {g ∈ G : gR11} and K0 = {g ∈ G : gR21},
it is easy to show that H0 = K0. It can be also proved that Ki is nor-
mal in Ki+1, and that H0 is a subgroup of finite index in H. This
completes the proof. ut





4.4 Group properties

In [8], C. Casolo and M. Mainardis called S-groups, the groups in
which every subgroup is f-subnormal. Here we show that the class
of S-groups, the class of T∗-groups, the class of T∗-groups and, the
class of T(∗)-groups, are countably recognizable, as well as the other
classes of groups defined below (see also [7], where they were intro-
duced).

• The class of L-groups: a group G is said to be a L-group if for
every subgroup H of G there is a subnormal subgroup H0 of G
with H0 6 H and |H : H0| finite.

• The class of Tm-groups, for m ∈ N: a group G is said to be
a Tm-group if every subnormal subgroup of G has finite index
at most m in its normal closure.

• The class of V-groups: a group G is said to be a V-group if every
subnormal subgroup H of G has finitely many conjugates. This
clearly is equivalent to require that the normalizer of H has
finite index in G.

• The class of Vm-groups, for m ∈ N: a group G is said to be
a Vm-group if every subnormal subgroup H of G has at most
m conjugates. This clearly is equivalent to require that the nor-
malizer of H in G has index at most m.

• The class of U-groups: a group G is said to be an U-group if
|HG : HG| is finite for every subnormal subgroup H of G.

• The class of Um-groups, for m in N: a group G is said to be
an Um-group if |HG : HG| is at most m for every subnormal
subgroup H of G.

• The class of Tm-groups, for m ∈ N: a group G is said to be
a Tm-group if |H : HG| is at most m for every subnormal sub-
group H of G.

• The class of T(m)-groups, for m in N: a group G is said to be
a T(m)-group if either |H : HG| 6 m or |HG : H| 6 m for every
subnormal subgroup H of G.
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First, we introduce a lemma which enables us to pass from the strong
countable character of the embedding properties to the countable
recognizability of some group classes.

Lemma 4.4.1 Let Ξ be an embedding property with strong countable char-
acter and Θ any subgroup property such that X ∩H is a Θ-subgroup of H
whenever X is a Θ-subgroup of a group G and H 6 G. Then the class of
groups with all Θ-subgroups satisfying Ξ is countably recognizable.

Proof — Let G be a group and suppose that each countable sub-
group of G has all its Θ-subgroups satisfying Ξ. Take an arbitra-
ry Θ-subgroup H of G. Then H∩C is both a Θ-subgroup and a Ξ-sub-
group of C for each countable subgroup C of G. The strong countable
character of Ξ now implies that HΞG. The statement is proved. ut

Our final corollary is a trivial application of Lemma 4.4.1 and re-
sults of the previous section.

Corollary 4.4.2 The group classes S, L, T∗, Tm,V ,Vm,U,Um, T∗, Tm,
T(∗) and T(m) are all countably recognizable, for m ∈N.

The above corollary should be compared with some analogous re-
sults in the last part of [31]. Finally, we remark that if X is a sub-
group closed class of groups, it follows from the same results that,
for instance, the class of groups in which all X-subgroups are f-sub-
normal is countably recognizable. In particular, notice that the class
of groups with all abelian subgroups f-subnormal is countably recog-
nizable.
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