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ABSTRACT 

 

The primary cilium is an antenna-like sensory organelle able to 

receive extracellular signals and it is localized on the surface of 

most human cells.  

In my thesis, I investigated the connection between G-protein 

coupled receptor (GPCR) signaling and the ubiquitin 

proteasome system (UPS) pathway in the control of cilium 

stability.  I identified, at pericentriolar region, a trimeric 

complex composed by PCM1, NEK10 and PKA. I demonstrated 

that NEK10 has a crucial role for ciliogenesis. Phosphorylation 

by PKA primes NEK10 to proteasomal degradation. 

Disappearance of NEK10 promotes cilia resorption. I identified 

CHIP as the E3 ubiquitin ligase responsible of NEK10 

ubiquitination and I demonstrated that CHIP mediates the 

effects of cAMP on primary cilium stability. 

Dearangement of this control mechanism was observed in 

proliferative and genetic disorders. Collectively, the findings 

unveil a pericentriolar kinase signalosome that efficiently links 

the cAMP cascade with the ubiquitin-proteasome system, 

controlling essential aspects of ciliogenesis.  
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1 INTRODUCTION 

 

1.1 The cAMP-dependent signal transduction pathway 

 

The biological organisms are able to modify a variety of cellular 

processes to adapt themselves to multiple conditions. 

Subsequently to a change, the organism communicates to 

specific target cells through the extracellular messengers such as 

hormones, neurotransmitters and growth factors. 

The binding between a ligand and its specific receptor on the 

cell surface can lead to a different biophysical response through 

activation of specific second messengers. 

The second messengers trigger a biological response that may 

consist in the regulation of different cellular processes, as gene 

transcription, protein translation, hormone production, cellular 

differentiation and cellular division. 

The cyclic AMP (cAMP) is the most famous second messenger 

because it is involved in a wide array of biological processes
1, 2

.  

When an extracellular ligand binds a G-protein coupled 

receptors (GPCR), it starts the cAMP signaling cascade. 

The G protein-coupled family receptors (GPCRs) are a large 

family of trans-membrane proteins that transduce extracellular 

signals into the cell
3
. The binding of extracellular ligand to its 

GPCR activates the adenylyl cyclase (AC), an enzyme that 

converts the ATP in cAMP
4
. The activity of ACs is stimulated 

by the interaction with the stimulatory α subunit of the G-protein 

(Gαs). In basal conditions, Gαs forms an heterotrimeric complex 

with β and γ subunits. Subsequently to the binding of the 

extracellular messenger, the GPCRs causes the dissociation of 

heterotrimeric G-proteins, with consequent activation of ACs by 

the Gαs subunit
5
. 

In addition to AC, the levels of cAMP are regulated by the 

cyclic nucleotide phosphodiesterases (PDEs) and phosphatases 

(PPs).  
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Phosphodiesterases (PDEs) are involved in the regulation of the 

intracellular level of cAMP. They are part of a large superfamily 

of enzymes that hydrolize the 3′ - 5′ phosphodiester bond in the 

second messenger cAMP with the formation of 5′-AMP
6
. 

By reducing the levels of cAMP, PDEs regulate the duration and 

amplitude of the cyclic nucleotide signaling
7
. The subcellular 

localization of the enzymes is controlled by the N-terminal 

regulatory region
8
. The  distribution of PDEs in the cells 

generates intracellular micro domains that locally enhance the 

sensitivity and specificity of the intracellular response to the 

cAMP
9
. 

There are three distinct classes of direct effectors of the cAMP : 

cAMP-dependent protein kinase (PKA), RAP exchange proteins 

(EPACs), and cAMP gated ion channels (cNGC) (Fig.1). 

Among these effectors, the more studied is Protein kinase A 

(PKA). 
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Figure 1. Schematic diagram of cAMP synthesis and downstream 

effectors activation. When an extracellular ligand binds to and activates a 

seven-transmembrane G-protein-coupled receptor, the signal is passed 

through the heterotrimeric G protein to adenylyl cyclase. The activated 

adenylyl cyclase converts ATP into the second messenger cAMP. Principal 

effectors of cAMP are PKA, PDE and EPAC. The cyclic nucleotide 

phosphodiesterases (PDE) degrades the phosphodiester bond in the second 

messenger molecules cAMP and cGMP. RAP exchange proteins (EPACs) 

are cAMP-dependent guanine-nucleotide-exchange factors for the small 

GTPases, and are known to be important mediators of cAMP signaling. 

Finally there are cAMP gated ion channels (cNGC) that function in response 

to the binding of cyclic nucleotides as cGMP and cAMP. 

  

https://en.wikipedia.org/wiki/Cyclic_nucleotide_phosphodiesterase
https://en.wikipedia.org/wiki/Cyclic_nucleotide_phosphodiesterase
https://en.wikipedia.org/wiki/Phosphodiester_bond
https://en.wikipedia.org/wiki/Second_messenger
https://en.wikipedia.org/wiki/Second_messenger
https://en.wikipedia.org/wiki/Cyclic_adenosine_monophosphate
https://en.wikipedia.org/wiki/Cyclic_guanosine_monophosphate
https://en.wikipedia.org/wiki/Cyclic_nucleotide
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1.2 Protein Kinase A (PKA) 

 

Protein kinase A (PKA) is a serine/threonine kinase and it is one 

of the major effector of the cAMP. Indeed, every time an 

extracellular stimulus leads to an intracellular response cAMP-

mediated, PKA is activated
10

. 

PKA is a tetrameric protein composed by two catalytic (C) and 

two regulatory(R) subunits. The whole complex makes the 

holoenzyme inactive.  

In response to the binding of a ligand to GPCRs, there is a quick 

increase of the intracellular concentration of cAMP generated by 

the ACs proteins
2
. So cAMP binds to R subunits, this binding 

causes their dissociation from the catalytic subunits (fig. 2). In 

this way, the catalytic subunits are able to phosphorylate many 

different downstream cellular substrates that include ion 

channels and a lot of transcription factors
2
.  

The biochemical and functional features of PKA holoenzyme  

are largely determined by the structure, properties and relative 

abundance of the R subunits
11

. The conserved catalytic core in 

the C-subunit  is encoded from three different genes, Cα, Cβ e 

Cγ
12

. The catalytic subunit is a 350-amino acid protein and the 

kinase core is localized into 40-300 residues. The smaller N-

terminal lobe is composed by β-sheets and is responsible for 

nucleotide binding
13

, whereas the larger C-terminal lobe is 

composed by α-helics and it is responsible of substrates binding 

and catalysis
11

.  

 R-subunits are encoded by four different genes (R1α, R1β, R2α 

e R2β) that confer the different biochemical and biological 

characteristics to the PKA isoforms
12

. The R-subunit 

polypeptide contains an NH2-terminal dimerization domain, an 

autophosphorylation site (that is the principal contact site for the 

C subunit) and two cAMP binding sites. Another functional site 

present on the N-terminus of the R-subunits is the 

dimerization/docking (D/D) domain that provides a docking site 
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for the A Kinase Anchoring Proteins (AKAPs) 
14

. In addition, 

the R subunits are able to form both homo-and heterodimers 

generating a large number of combinations, which further 

contribute to diversity and presumably specificity in the cAMP 

signal pathway
15

.  

The PKAs that contain either RI or RII are identified as PKA 

type I or type II and they have different sensitivities to cAMP.  

They also differ for localization and expression.  PKA type I, in 

fact, is largely cytoplasmic, whereas PKA type II is confined to 

subcellular structures and compartments. Furthermore RIα and 

RIIα are ubiquitously expressed, RIβ has been mainly abundant 

in neuronal tissues while RIIβ has the highest expression in 

neuronal, adipose,  testes and heart tissues
12, 16

. Studies 

demonstrated that ablation of the gene encoding the RIβ leads to 

deficits in hippocampal long-term depression and 

depotentiation
17, 18

 but with a compensatory increase in total 

PKA activity, suggesting a unique role for RIβ in synaptic 

plasticity
19

. A targeted disruption of the RIIα gene yields viable 

mice with no physiological abnormalities, implying that PKAI 

and/or PKAIIβ compensates for the RIIα defect
20, 21

. The mutant 

mices with disruption of the mouse RIIβ gene are lean and have 

elevated metabolic rates caused by increases in both basal PKA 

activity and the basal rate of lipolysis 
22, 23

. RIIβ KO mice also 

display defects in neuronal gene expression, learning and 

behavior
24, 25

. The activity of PKA is regulated by specific 

protein phosphatases. It has been demonstrated that 

phosphatases belonging to the PP1 and PP2A families are 

responsible for dephosphorylation of PKA substrates. In turn, 

PKA can control phosphatase activity by phosphorylation of 

specific PP1 inhibitors, such as I-1 and DARPP32
26

.  

PKA signaling is compartmentalized thanks to AKAPs protein. 

They are a group of several scaffold proteins that anchor the Rs 

subunits to tissues and different cellular compartments.
15
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Figure 2. PKA molecular structure and activation mechanism. 

When two molecules of cAMP bind the regulatory subunits of PKA, the 

holoenzyme is disassociates causing the activation of catalytic subunits.  
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1.3 AKAP proteins 

 

PKA is targeted to specific cellular organelles or subcellular 

locations through interaction with a family of distinct but 

functionally homologous proteins called AKAPs (A-Kinase-

Anchor-Proteins)
27-29

.  

AKAPs contain a PKA-binding motif, approximately 14 

amminoacids, that are able to bind the R subunit
7, 30

. This region 

forms an amphipathic helix in which hydrophobic residues are 

located in the interior face while charged residues align on the 

exterior surface. This helical wheel binds with high affinity the 

N-terminal docking/dimerization (D/D) domain of the PKA-R 

dimer directing it in proximity of its substrates
31

  (Fig. 3). In the 

past have been identified several AKAPs that bind both RI and 

RII subunits
32

. 

Thought their targeting domain, AKAPs protein have been 

found in various cellular organelles such as centrosomes, 

dendrites, endoplasmic reticulum, mitochondria, nuclear 

membrane, plasma membrane and vesicles. The presence of 

PKA nearby of its substrates enhances the PKA-dependent 

phosphorylation of a large number of cellular substrates. Infact 

the cells that express high levels of PKA are more responsive to 

signals caused by the intracellular increase of second messenger 

cAMP
33, 34

.  

Although AKAPs have been defined on the basis of their 

interaction with PKA, several of these molecules are able to 

bind other enzymes such as receptors, effectors, protein 

phosphatases and kinases.  In fact in the cells, AKAPs form 

macro molecular complexes, named transduceosome, where 

distinct signaling pathways converge and are attenuated or 

amplified, improving the specificity  and efficiency of biological 

responses
34-36

.  
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J Mol Biol.The biological functions of A-kinase anchor proteins. 

Figure 3. Consensus sequence of AKAP-RII-binding domains. 

Consensus sequence derived from the alignment of the primary sequences of 

several AKAPs and the amphipathic helical wheel and the residues forming it 

are depicted as a thick line.  
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1.4 The ubiquitin proteasome system and E3 ubiquitin ligase 

CHIP 

 

In mammalian cells the post-translational modification of 

proteins is a common mechanism of cell regulation. The 

covalent modification of proteins by attachment of other protein 

is one such example. The control of this cellular mechanism is 

most important because every injury that affects this mechanism 

can lead to development of human diseases or disorders, 

including cancer. The balance between the synthesis and 

degradation of proteins is regulated by the ubiquitin-proteasome 

system (UPS).    

Ubiquitylation has a central role in several physiological 

processes and it is involved in the regulation of cell survival, 

differentiation, genetic integrity, protein quality control and 

signaling. Frequently, the substrates of ubiquitin are degradated 

through the proteasome
37

.  

This process requires the activity of three enzymes: E1 

(ubiquiting activating), E2 (ubiquitin conjugating) and E3 

(ubiquitin ligating) that act in series to catalyze ubiquitination. 

The E1 enzyme is the activating enzyme which ubiquitin is 

attached to in an ATP-dependent reaction. The E2 enzyme is the 

conjugating enzyme, which the ubiquitin is transferred to, from 

the E1. The E3 is the ubiquitin ligase, which directly or 

indirectly catalyzes the transfer of the ubiquitin to the lysine of a 

target protein, with the formation of an isopeptide bond
38

 

(Figure. 4). 

The ubiquitin substrates are not always directed to degradation 

via UPS. Infact the amount of ubiquitin tagged protein is 

balanced through the activity of deubiquitylating enzymes 

(DUBs) that reverse ubiquitylation by removing conjugated 

ubiquitin tags
39, 40

. The RING finger domain of E3 ubiquitin 

ligases contain a characteristic cysteine-rich-zinc-binding 
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domain composed by a pattern of conserved cysteine and 

histidine residues.  

The carboxyl terminus of Hsp70-interacting protein (CHIP), 

also known as STUB1 (STIP1 homology and U-box containing 

protein1), is a member of E3 ubiquin ligase that plays an 

important role in maintenance the protein homeostasis in the 

cytoplasm
41

.  

 In literature is described that CHIP binds several members of 

the molecular chaperones Hsp70/90 family that have a central 

role in the refolding of proteins
42, 43

. Specifically, the principal 

activity of CHIP is to remove, through the ubiquitin proteasome 

system, the misfolded or damaged proteins that can lead to 

development of human cancers or other disorders
44, 45

. 

The protein CHIP was first characterized in human heart
42

. The 

important domain that allows the binding between CHIP and 

Hsp70/90 is a tetratricopeptide repeats domain (TPR) located at 

N-terminus of the protein, whereas a U-box domain at the C-

terminus of CHIP displays the ubiquitin ligase activity. 

In literature are described several ciliopathies linked to a loss 

activity of CHIP, in particular several form of ataxia such as 

spinocerebellar ataxia autosomal recessive 16 (SCAR16)
46, 47

.  
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  Copyright ©http://www.progenra.com 

 
Figure 4. Schematic representation of ubiquitin system.  

The conjugation of ubiquitin molecules to substrates requires coordinated 

action of three enzymes: the ubiquitin activating enzyme (E1), the ubiquitin 

conjugating enzyme E2 and the E3 ligase that associates the ubiquitin 

molecules to the substrates.  Once ubiquitinated, the proteins can be degraded 

by the proteasome or de-ubiquitinated by a specific DUBs enzyme.   

  

http://www.progenra.com/
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1.5 Ciliogenesis  

 

The primary cilium is considered a sensory organelle able to 

receive extracellular signals and transmit them into cells. 

In mammalian cells primary cilia acts as “antennae” to sense 

signals such as growth factors, hormones, odorants and 

development morphogens
48, 49

. In the last years the focus on 

primary cilium has increased since this organelle has a critical 

role in regulating of different signaling pathways and during 

vertebrate development and tissue homeostasis
50

. 

Defects in ciliary assembly or its function can lead to several 

cilium-related human diseases called ciliopathies
51

. Ciliopathies 

are a group of genetic diseases caused by alterations of 

development, functioning and signaling of primary cilium. 

These syndromes present manifestations as polydactyly, retinal 

degeneration, mental retardation, anosmia, obesity and kidney 

cysts.  The list of ciliopathies continues to grow and at the 

present includes Bardet-Biedl Syndrome (BBS), Joubert 

Syndrome (JS), Oral-facial-digital Type I (OFD1), retinal 

degeneration, polycystic kidney disease
52

. 

Primary cilium usually forms during G1 phase of the cell cycle 

or when cells, deprived of nutrients and mitogens, exit from cell 

cycle and enter in quiescence state. 

The primary cilium grows out from centrosome, the main 

microtubule-organizing center (MTOC) in animal cells, and it is 

composed of a microtubule-based core structure called 

axoneme. The axoneme is nucleated by basal body that includes 

the mother centriole and associated pericentriolar material 

(PCM). Moreover the axoneme is surrounded by a ciliary 

membrane and it is assembled by nine parallel doublet 

microtubules which elongate from the basal body. The distal 

region of basal body, where the outer doublets begin to form, is 

called the transition zone. The ciliary pocket, an invagination of 
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the plasma membrane at the root of the cilium, is found on some 

types of mammalian cells
53

. (Fig. 5) 

 

 

 

Nature Neurology.Primary cilia in neurodevelopmental disorders 

Figure 5. Structure of primary cilium.  

 

Since the protein synthesis occurs into the cytoplasm, elongation 

of primary cilium requires the intraflagellar-transport machinery 

(IFT), two complexes that move themselves within the cilium. 

IFT complex B is responsible of anterograde transport of ciliary 

proteins from base to the tip of cilium, whereas IFT complex A 

is responsible of retrograde transport from tip to base of 

cilium
53

. In literature is described that IFT complex B is crucial 

for a correct assembly of primary cilia. In fact the lack of some 

IFT complex proteins causes short or absent cilia. By contrast, 
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IFT complex A transport back proteins to the basal body but it 

seems not be crucial for assembly of cilia
54

.  

In the cells there are a lot of positive and negative regulators that 

control the correct assembly of primary cilium. Examples of 

negative regulators are the centriolar protein Cp110 and the 

kinesin Kif24; they are able to destroy ciliary axoneme, so their 

abundance is lower during cilia assembly
55, 56

. Conversely, other 

proteins such as the ser/Thr kinase TTBK2 and MARK4 act to 

promote cilium formation. Upon serum deprivation, in fact, 

TTBK2 localizes at basal body where removes Cp110 and 

recruits IFT complexes
57

. The balance between cilia assembly or 

disassembly is regulated by also post-translational 

modifications. HEF1/Cas-L/NEDD9 is a component of focal 

adhesions that colocalizes with Aurora kinase A at the 

centrosome. Aurora A stimulates histone deacetylase 6(HDAC6) 

resulting in deacetylation of axonemal microtubules rendering 

them unstable
58

. 
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1.6 Correlation between cAMP signaling,  the UPS system and 

primary cilium 

 

In literature is extensively documented the tight correlation 

between ubiquitylation and cAMP pathway while the linkage 

that couples the cAMP cascade and primary cilium is a very 

current topic.  

Nevertheless several components of cAMP pathway, including 

G-protein coupled receptors (GPCRs), adenylate cyclases (ACs) 

and cAMP-dependent protein kinase A (PKA), conduct different 

important roles within the ciliary compartment
59

. 

In literature is documented that a pool of PKA is localized at 

centrosome, the basal structure of primary cilia
60-62

.  

In particular, PKA is a negative regulator of hedgehog (Hh) 

pathway that plays a critical role in embryonic development
63, 64

. 

In the absence of Hedgehog ligand, PKA phosphorylates Ci/Gli 

transcription factors promoting their proteolysis and the 

production of the repressor forms of Ci/Gli blocking Hedgehog 

target gene expression. In contrast, the activation of Hedgehog 

signaling increases the active forms of Ci/Gli resulting in 

Hedgehog target gene expression.  

The basal level of PKA activity in Hedgehog-responsive cells is 

precisely regulated and it is maintained at the basal body of 

cilium by interacting with A-Kinase-Anchor-Proteins 

(AKAPs)
62

. Probably, this regulation is conducted by another 

ciliary G-coupled receptor Gpr161 that, after stimulation of the 

transmembrane protein Smoothened (Smo), exits from the 

cilium maintaining inactive the PKA
65

. 

This strongly suggests the existence of a localized pool of PKA 

maintained at the base of cilium which targets Hh signaling 

during the essential steps of ciliogenesis. 

cAMP is a second messenger implicate in a wide of biological 

functions including the activity of several E3 ligases. In this 

manner, PKA modulating the activity of the principal enzymes 
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of ubiquity proteasome system, it controls the stability, the 

turnover and the biological activity of several cellular substrates. 

In neurons, PKA controls the neurite outgrowth, morphogenesis 

and improve the synaptic plasticity and memory. In response to 

an increase of intracellular levels of cAMP, the E3 ubiquitin 

ligase praja2 ubiquitinates and degrades NOGO-A, an important 

inhibitor of neurite outgrowth in mammalian brain
66

. 

Another one important correlation between cAMP cascade and 

UPS system is the regulation of the turnover of regulatory 

subunits of PKA by E3 ubiquitin  ligase praja2. When in the 

cells there is an increase of cAMP levels, praja2 promote 

ubiquitylation and subsequent proteolysis via UPS of R 

subunits,  regulate the strength and duration of PKA signal  in 

response to cAMP
67

.  

This relationship between these two systems suggest the exists 

of a circuit finely regulated in which cAMP pathway controls 

the turnover/stability of key elements of metabolic and 

proliferative pathways, but at the same time UPS regulates the 

stability of components of the cAMP cascade and the duration 

and amplitude of its signal
7
.  
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1.7 NimA related kinase 10 (Nek10) 

 

During the years, the scientific research has explained in which 

way the damages to cell cycle, checkpoint alteration and 

chromosome instability, can lead to development of cancers and 

other disorders. NIMA-related kinases (NEK) proteins are 

serine/threonine  kinase, involved in the regulation of cell cycle, 

were identified in several organisms from protists  to 

multicellular eukaryotes including  mice and humans
68, 69

. In 

literature is described that some members of this family are 

involved in ciliary functions and ciliopathies
70

. 

Statistical analysis have confirmed that this family of proteins 

coevolved with centrioles, which represent the microtubule-

organizing center and prime the assembly of basal bodies of 

cilia
71

. 

In human cells there are eleven genes that encode from NEK1 to 

NEK11 proteins. (Fig. 6)  

Nek10 gene localizes on the short arm of human chromosome 3 

(3p24.1). This gene encodes for fourteen transcripts the longest 

of which has 39 exons. The 4.25 Kbp transcript encodes a 

protein of 1172 residues with an estimate weight of 133 Kda
72

. 

Despite low overall sequence homology, the organizational 

features of NimA are broadly conserved among mammalian Nek 

kinases.  Infact all these proteins are characterized by a N-

terminal catalytic domain, except Nek10 that have its kinase 

domain in the central position. In addition to catalytic domain 

there are:  His-Arg-Asp (HRD) motif which is typical of ser/thr 

kinases regulated through phosphorylation
73

, coiled-coiled 

domains which mediate the oligomerization and PEST 

sequences which participate in ubiquitin dependent 

proteolysis
69

. 

In contrast with the conserved catalytic domain, the C-terminal 

region of NEK proteins is different in length, sequence and 

domain organization. As explained before, several NEK 
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members have important roles in cell cycle control, in particular  

NEK2 facilities spindle pole separation whereas NEK6, NEK7 

and NEK9 are important in generating the mitotic spindle
74, 75

. 

NEK1 is involved in the repair of DNA strand breaks at G1-S 

and G2-M transitions
76-78

 and NEK10 and NEK11 are involved 

in G2-M DDR checkpoint.  

Specially, NEK10 is required for the activation of extracellular 

signal-regulated kinase 1/2 (ERK1/2) signaling upon UV 

irradiation, but not in response to mitogens, such as epidermal 

growth factor. After the stimulation, NEK10 physically 

associated with Raf-1 and MEK1 in a Raf-1-dependent manner 

and the formation of this complex was necessary for Nek10-

mediated MEK1 activation. The appropriate maintenance of the 

G2/M checkpoint following UV irradiation required Nek10 

expression and ERK1/2 activation, indicating a role for Nek10 

in the cellular response to UV irradiation
68

. 
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Cell Div. Nek family of kinases in cell cycle, checkpoint control and cancer. 

Fig.6 The human NIMA-related protein kinase (NEK) family 

A schematic representation of human NEKs gene. Are indicated:  the kinase 

domains (purple), coiled-coils (green), degradation motifs (red), RCC1 

(regulator of chromatin condensation 1) domains (light blue) and armadillo 

repeats (yellow) 
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2 AIM OF THESIS 

 

The cAMP signaling pathway has been carefully studied in the 

laboratory where I practiced my PhD program. In the last years, 

our attention was focused on the relationship between 

ciliogenesis and cAMP pathway, in particular on the regulation 

of the primary cilium stability, via UPS, in response to GPCR 

signaling. By a proteomic analysis, we identified PKA as a 

component of a macromolecular complex that includes the 

pericentriolar matrix protein 1 (PCM1) and Nima-related Kinase 

10 (NEK10). PCM1 is a scaffold protein mostly localized in 

centriolar satellites and its role about the ciliogenesis is 

abundantly described
79

, whereas the involvement of NEK10 

kinase is widely unknown.  

During my PhD program, I studied the role of NEK10 in 

primary ciliogenesis. I found that NEK10 plays a major role in 

the formation of primary cilium. Activation of GPCR-cAMP 

signaling causes the disassembly of primay cilium and that this 

stimulus primes the degradation of NEK10 protein by the 

ubiquitin proteasome system through E3 ubiquitin ligase CHIP.  

Disappearance of NEK10 levels leads to cilia resorption, 

underlying the central role of cAMP-NEK10 axis in the control 

of primary cilium stability.  

Accordingly, the principal aims of my PhD thesis were the 

following: 

1. Identify NEK10 and PKA as novel components of the 

multimeric signaling complex assembled at pericentriolar region 

by PCM1.  

2. Determine the role and the mechanism of NEK10 and PKA in 

the control of ciliogenesis. 

3. Analyze the intersection between cAMP signaling and NEK10-

regulated ciliogenesis.  
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4. Study the role of NEK10 in the ciliopathies, such as the 

autosomal recessive spinocerebellar ataxia-16 (SCAR16). 
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3 MATERIALS AND METHODS 

 

3.1 Cell lines. Human embryonic kidney cell line (HEK293) and 

primary skin fibroblasts from SCAR16 patients were cultured in 

DMEM containing 10% fetal bovine serum (FBS) supplemented 

with 2mM L-glutamine, 100 IU/ml penicillin, in an atmosphere 

of 5% CO2 at 37°C.  

 

3.2 Plasmids, siRNAs and transfection. Vectors encoding for 

NEK10-flag (wild type and mutants) and PCM1-HA were 

provided by Dr Stambolic V. and Dr Kamiya A. respectively.  

HA-Ub, CHIP-myc (wild type and K30A mutant), HSP70-V5, 

were provided by Dr Carlomagno F. and epitope Myc tagged 

RIIβ vectors were kindley provided by Dr Ginsberg SH. NEK10 

phosphorylation mutants (T223A and T812A) were generated 

by PCR using specific oligonucleotides. siRNAs targeting 

distinct segments of coding regions of NEK10 and CHIP were 

purchased from IDT and Life technologies.  

The siRNA sequence (IDT) targeting the 3’-UTR (untranslated 

region) of human NEK10: sense sequence: 

CCACAAGACAUUAGUAAA UUUACTT antisense sequence: 

CGGGUGUUCUGUAAUC AUUUAAAUGAA or human 

CHIP sense sequence: UUACACCAACCGGGCCUUtt; 

antisense sequence: CAAGGCCC GGUUGGUGUAAta. 

siRNAs were transiently transfected using Lipofectamine 2000 

(Invitrogen) at a final concentration of 100 pmol/ml of 

culture medium.  

 

3.3 Antibodies and chemicals. Polyclonal antibodies directed 

against PCM1 were purchased from ABCAM and Cell 

Signaling and used at working 1:1000; rabbit polyclonal 

antibodies directed against phosphoPKA was purchased from 

Cell Signaling and used at working dilution of 1:1000; 
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monoclonal antibodies directed against RIIβ was purchased 

from BD Transduction and used at working 1:2000; 

haemagglutinin epitope (HA) was purchased from Covance and 

used at working diluition of 1:1000; monoclonal antibodies 

directed against flag and myc epitope used at working diluition 

1:3000 were purchased from Sigma; polyclonal antibodies 

directed against acetylated alpha tubulin was purchased from 

ABCAM. Forskolin was purchased from Sigma.  

 

3.4 Immunoprecipitation and pull down assay. Cells were 

washed twice with phosphate-buffered saline and lysed in a 

buffer (50mM TRIS–hydrogen chloride, pH 7.4, 150mM 

sodium chloride, 5mM magnesium chloride, 5mM dithiothreitol, 

1mM ethylene diamine tetraacetic acid, 1% Triton X-

100,containing aprotinin (5 g/ml), leupeptin (10 g/ml), 

pepstatin (2 g/ml), Na3VO4 and 1mM phenylmethylsulfonyl 

fluoride and protease inhibitors. The lysates were cleared by 

centrifugation at 15,000 g for 15 min. Cell lysates (2 mg) were 

immunoprecipitated in rotation at 4 °C overnight with the 

indicated antibodies. Pellets were washed four times in lysis 

buffer and eluted in Laemly buffer.An aliquot of whole cell 

lysates (WCE) (100 g) or immunoprecipitates were resolved on 

sodium dodecyl sulfate polyacrylamide gel and transferred on 

nitrocellulose membrane (Biorad, Milan, Italy) for 3 h. Filters 

were blocked for 1 h at room temperature in Tween-20 

Phosphate buffer saline (TPBS) (PBS- Sigma, 0, 1% Tween 20, 

pH 7.4) containing 5% non-fat dry milk. Blots were then 

incubated O/N with primary antibody. Blots were washed three 

times with TPBS buffer and then incubated for 1 h with 

secondary antibody (peroxidase-coupled anti rabbit (GE-

Healthcare) in TPBS. Reactive signals were revealed by 

enhanced ECL Western Blotting analysis system (Roche).  
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GST-fusions were expressed and purified from BL21 (DE3) 

pLysS cells. GST hybrid proteins immobilized on glutathione 

beads were incubated for 3 hr with cell lysates from HEK293 

cells transiently expressing flag-NEK10 constructs in lysis 

buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 5mM MgCl2, 

5mM DDT, 1 mM EDTA, 1% triton X-100) in rotation at 4 °C 

for 4 hours. Pellets were washed four times in lysis buffer 

supplemented with NaCl (1 M final concentration) and eluted in 

Laemmli buffer. Eluted samples were size-fractionated on SDS-

PAGE and immunoblotted. 

 

3.5 PKA phosphorylation assay. Cells transfected with either 

wild type NEK10-flag or with NEK10-flag mutants (T223A-

Flag and T812A-Flag) were left untreated or stimulated with 

FSK (15min). NEK10 was immunopurified with anti-flag 

antibodies. The precipitates were immunoblotted with anti-flag 

and with anti-phospho-(K/R)(K/R)X(S*/T*) specific antibodies. 

The quantification is shown from n=4 independent experiments 

(± SEM). 

 

3.6 Immunofluorescence and confocal analysis. For 

immunofluorescence studies, HEK293 cells transiently 

transfected with the expression vectors were plated on poly-L-

lysine (10µg/ml) coated glass coverslips. Cells were fixed with 

Paraformaldehyde for 20 minutes. After three washes, cells were 

immunostained with polyclonal antibodies directed against 

PCM1 was purchased from ABCAM, with polyclonal directed 

against NEK10 and used at working diluitions of 1:100; 

monoclonal antibodies directed against RIIβ was purchased 

from BD Transduction and used at working diluition of 1:400, 

monoclonal antibodies directed against Flag epitope used at 

working dilution of 1:400; polyclonal antibodies directed against  

acetylated alpha tubulin was purchased from ABCAM and used 

at working dilution of 1:100. High-resolution images were 
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acquired with a Zeiss LSM 880 confocal microscope equipped 

with Airyscan superresolution imaging module, using a 

63×/1.40 NA Plan-Apochromat Oil DIC M27 objective lens 

(Zeiss MicroImaging, Jena, Germany)  

 

3.7 Statistics Data were analyzed using analysis of variance 

(ANOVA) for each region and post hoc repeated-measure 

comparisons (Least Significant Difference (LSD) test). 

Rejection level was set at P < 0.05. 
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4 RESULTS 

 

4.1 NEK10, RIIβ and PCM1 form a macromolecular complex 

 

A proteomic analysis using full-length RIIβ as bait revealed that 

the pericentriolar matrix protein 1 (PCM1) and the Nima-related 

Kinase 10 (NEK10) form a complex with PKA. To verify the 

interaction between these proteins, I performed a co-

immunoprecipitation assay (Fig. 7a). HEK293 cells were 

transfected for 24 hours with NEK10-flag vector. Lysates were 

immunoprecipitated with anti-RIIβ or non-immune IgG 

antibodies and the precipitates were immunoblotted with anti-

PCM1, anti-flag and anti-RIIβ antibodies. The data in figure 7a 

show the existence of a trimeric complex composed of PKA, 

NEK10 and PCM1.I confirmed this interaction using an in vitro 

GST-pull down assays with the recombinant proteins (Fig. 7b). I 

transfected HEK293 cells with NEK10-flag vector and 

incubated the lysates with purified GST or GST–RIIβ fusion. 

The precipitates were immunoblotted with anti-PCM1, anti-flag 

and anti-RIIβ antibodies. Figure 7b confirmed the interaction 

between PCM1, NEK10 and RIIβ proteins. 
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Fig.7 (a) HEK293 cells were transiently transfected with NEK10-flag vector, 

lysates were immunoprecipitated with anti-RIIβ or non-immune IgG 

antibodies and immunoblotted with anti-PCM1, anti-RIIβ and anti-flag 

antibodies. (b) HEK293 cells were transiently transfected with NEK10-flag 

vector; lysates and immunoprecipitates were subjected to pull down assays 

with purified GST or GST–RIIβ fusion. The precipitates and lysates were 

immunoblotted with anti-PCM1, anti-flag and anti-GST antibodies.

 

a b 
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4.2  Endogenous PCM1, NEK10 and RIIβ colocalize in 

Human Embryonic Kidney 293 cells 

 

To demonstrate that PCM1, NEK10 and RIIβ are located within 

the same compartment, I analyzed the localization of the three 

proteins in HEK293 cells. For this experiment, I performed a 

triple immunofluorescence assay using anti-PCM1, anti-NEK10 

and anti-RIIβ antibodies (Fig. 8). As shown in the figure, 

immunostaining analysis revealed that the three signals partially 

colocalize at pericentriolar region, supporting the concept that a 

fraction of PCM1, NEK10 and RIIβ proteins is restricted within 

the same intracellular compartment. 

 

 

Fig.8 PCM1, NEK10 AND RIIβ colocalize in Human Embryonic Kidney 

cells. HEK293 were subjected to immunofluorescence assay with goat 

polyclonal anti-NEK10, rabbit polyclonal anti-PCM1 and mouse monoclonal 

anti-RIIβ antibodies. The merge composite of the signals shows co-

localization of PCM1, NEK10 and RIIβ at pericentriolar region. Scale bar: 5 

µm. 

 

 

 

4.3  NEK10 is required for ciliogenesis 
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NEK10 belongs to Nima related kinase family (NEKs) whose 

members take part to different events underlying to cell cycle 

progression, centrosome and microtubules formation, and 

mammalian ciliogenesis. Since these structures are intimately 

involved both in the assembly of the mitotic spindle and in 

ciliogenesis
69

, we asked if NEK10 also contributes to the 

primary cilium assembly. Firstly, I demonstrated that NEK10 

localizes at primary cilium. For this experiment, I deprived 

HEK293 cells from serum for 36 hours to induce primary cilium 

formation. Then, I performed a double immunofluorescence 

assay using anti-NEK10 and anti-acetylated tubulin antibodies. 

Acetylated tubulin is a modified variant of tubulin that 

selectively accumulates along the cilium. The immunostaining 

analysis shows that a significant amount of NEK10 protein 

localizes at the base and along the axoneme of primary cilium 

(Fig. 9) 

 

Fig.9 NEK10 localizes at primary cilium. HEK293 cells were serum-

deprived for 36 hours and then immunostained for NEK10 (red) and 

acetylated tubulin (green) antibodies. The signal was analyzed by confocal 

microscope equipped with Airyscan super resolution imaging module. A 

merge composite 2D and 3D of the signals shown that NEK10 localized 

along axoneme of primary cilium. 

 

 

Once demonstrated the localization of NEK10 in human cells 

along the primary cilium, I verified the role of NEK10 during 
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primary cilium assembly. To this aim, I transfected transiently 

HEK293 cells with siRNA targeting endogenous NEK10 and 

deprived cells from serum for 36 hours. The data shows that, in 

control (siRNAc) cells, serum deprivation significantly 

increased the number of primary cilia. In contrast, genetic 

knock-down of NEK10 drastically reduced the number of 

ciliated cells. Re-expression of NEK10 reversed the effects of 

NEK10 silencing, indicating that NEK10 is, indeed, a 

biologically relevant player of ciliogenesis. (Fig 10.a). 

Moreover, I repeated the experiment using the kinase-dead 

mutant of NEK10 (NEK10-KD) carrying an inactivating 

mutation within the catalytic domain (K548R). As shown in the 

figure, the NEK10 mutant critically reduced the number of 

ciliated cells. In the Fig 10.b are showed the levels of NEK10 in 

siRNA transfected cells monitored by immunostaining. 
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Fig.10 (a) NEK10 is required for ciliogenesis. HEK293 cells were 

transiently transfected with control (siCNT) or with siRNAs targeting 

NEK10 (siNEK10), serum deprived for 36 hours, fixed and immunostained 

with anti-acetylated alpha tubulin and with anti-Flag antibodies (for NEK10-

flag). Where indicated, NEK10-flag vector (either wild type or kinase dead, 

KD) was included in the siRNAs transfection mixture. Arrows indicate the 

localization of the cilium in cells expressing flag-tagged NEK10. Cumulative 

data from three independent experiments are shown (lower right panel). (b) 

The levels of NEK10 in siRNA‐transfected cells were monitored by 

immunostaining.  

 

 

 

 

 

 

a 

b 
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4.4 PKA regulates the stability of primary cilium 

 

The experiments above indicate that NEK10, PCM1 and PKA 

form a stable complex at pericentriolar region. A fraction of 

NEK10 localizes at- and regulates primary cilium formation. 

Previous work demonstrated that a pool of PKA is localized at 

the base of primary cilium through interaction with an as yet 

identified scaffold protein
62

. Localization of PKA at cilium is 

required for cilium formation. However, the impact of PKA 

activation cilium stability was largely unknown. Accordingly, I 

investigated the role of PKA activation on cilium stability. 

HEK293 cells where serum deprived for 36 hours and then 

stimulated with forskolin (FSK), a diterpene that activates 

adenylate cyclase (AC), or with isoproterenol (ISO), a beta-

adrenergic receptor (bAR) agonist. Cells were subjected to 

immunostaining analysis using anti-acetylated tubulin antibody. 

As shown in Fig.11, treatment with FSK or Isoprotenerol 

strongly decreased the number of ciliated cells. These data 

suggested that activation of cAMP signaling critically impacts 

on primary cilium stability.  

 

 

 

 

 

 

+ ISO 5m 
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Fig.11 cAMP induced resorption of primary cilium.  HEK293 cells were 

serum deprived for 36h and then left untreated (CNT) or stimulated with 

isoproterenol (Iso) or forskolin (FSK) for 3 hours. The same cells were 

immunostained with anti-acetylated tubulin and Draq5. Cumulative data from 

five independent experiments are shown (lower right panel) 
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4.5 PKA phosphorylation primes NEK10 for proteolysis via 

UPS 

 

Our data indicate that NEK10 is required for ciliogenesis, while 

PKA activation induces cilium resorption. Since NEK10 and 

PKA are present within the same multimeric complex assembled 

by PCM1, I tested if/how PKA activation regulates NEK10 

levels. To this aim, I monitored the levels of NEK10 in HEK293 

cells after the treatment with FSK for 1 hour. The data shown in 

Fig.12 revealed that the activation of PKA by FSK caused a 

severe decrease of NEK10 levels. The effects of forskolin on 

NEK10 levels were abrogated by pre-treating the cells with the 

proteasome inhibitor MG132. 

The data indicate that, in response to cAMP stimulation, NEK10 

undergoes to proteasomal degradation.  

 

 

 

  

 

 

 

 

Fig.12 PKA stimulation induces proteolysis of NEK10 by the 

proteasome. HEK293 cells were transiently transfected with NEK10-flag.  

After 24 hours, cells were harvested and treated with forskolin (40µM). 

Where indicated, cells were pretreated with MG132 (20µM/3 hours). Lysates 

were immunoblotted with anti-flag or anti-tubulin antibodies. 
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The data above indicate that, in response to cAMP stimulation, 

NEK10 undergoes proteasomal degradation. We assume that 

PKA phosphorylation primes NEK10 for proteolysis. Primary 

sequence analysis of NEK10 predicts two conserved PKA 

phosphorylation sites (T223 and T812) (Fig.13).  

 

 

 

 

 

 

 

 

Fig.13 Schematic diagram showing the protein sequence of human NEK10 

and the putative PKA consensus sites (thr223 and thr812). 

 

 

 

 

To ask if phosphorylation of one or both of these sites renders 

NEK10 susceptible to proteolysis, we generated mutant forms of 

NEK10 using a site-directed mutagenesis to substitute either 

T223 or T812 with alanine. We tested our hypothesis by 

analyzing the phosphorylation status of affinity-isolated NEK10 

with a PKA substrate antibody. In contrast to phosphorylation of 

the wild type and T223A NEK10 mutant, the substitution of 

T812A abolished both basal and FSK-induced NEK10 

phosphorylation (Fig.14). 

 

 

 

 

T223A T812A 



 

37 
 

 

 

Fig.14 PKA phosphorylates NEK10 at threonine 812. HEK293 cells were 

transfected with either wild type NEK10-flag or with NEK10-flag mutants 

(T223A-Flag and T812A-Flag) and were left untreated or stimulated with 

FSK (40µM715 min). NEK10 was immunopurified with anti-flag antibodies 

and the precipitates were immunoblotted with anti-flag and anti-phospho-

(K/R) (K/R) X(S*/T*) specific antibodies. 

 

 

 

  

Next, we asked if this phosphorylation by PKA is required to 

induce NEK10 proteolysis. To verify this hypothesis, I 

evaluated the levels of NEK10 in cells transfected either with 

NEK10 wild type or with T812A mutant vectors. Both cell lines 

were stimulated with FSK (Fig.15a) or Isoproterenol (Fig.15b) 

for 30 and 60 minutes. The figures show that the phospho 

mutant (T812A), not sensible to phosphorylation by PKA, is not 

degradated by FSK and ISO compared to wild type protein.  

 

Ubiquitination is required for proteasomal degradation of a 

variety of cellular substrates
80

. Accordingly, I asked if cAMP 

induces ubiquitination of NEK10. To test this hypothesis, I 

performed ubiquitination assays in HEK293 cells transfected 

either with hemagglutinin (HA)-tagged ubiquitin and NEK10 

(wild type or T812A mutant) and treated with FSK for 60 

minutes. The lysates were immunoprecipitates with anti-flag 
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antibody and the precipitates were immunoblotted with anti-HA 

antibody. Fig.15c shows that FSK induces the accumulation of 

poly-ubiquitinated forms of NEK10, whereas this poly-

ubiquitination was abrogated by the T812A mutation. These 

experiments confirmed that phosphorylation by PKA is 

necessary to prime proteolysis of NEK10 via UPS. 

 

 

 

 

 

Fig.15 (a) Phosphorylation by PKA drives proteolysis of NEK10. (a-b) 

Cells transfected with either wild type NEK10-flag or with T812A-flag 

mutant were left untreated or stimulated with forskolin (a) or isoproterenol 

(b) for 30-60 min. Total cell lysates were immunoblotted with anti-flag and 

anti-tubulin antibodies. (c) Cells were transiently co-transfected with 

NEK10-flag construct (either wild type or T812A mutant) and HA-ubiquitin. 

Lysates were subjected to immunoprecipitation with anti-flag and 

immunoblotted with anti-HA and anti-flag antibodies. 

 

a b 

c 
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Next, I tested if NEK10 phosphorylation was required for 

primary cilium disassembly induced by the cAMP cascade. 

Cells were transiently transfected with NEK10 (either wild type 

or the NEK10-T812A mutant), serum-deprived for two days and 

then treated with FSK. As shown in Fig.16, the T812A mutation 

prevented FSK-induced cilia disassembly, supporting the 

concept that PKA phosphorylation of T812 primes NEK10 for 

proteolysis, which results in cilia disassembly. 

 

 

Fig.16. Phosphorylation of NEK10 by PKA induced cilia resorption. 

HEK293 cells were transfected with either wild type NEK10-flag or with 

T812A-flag mutant. After transfection, cells were serum deprived for 36h and 

left untreated or stimulated with FSK (40µM/3 hours). Cells were subjected 

to a double immunofluorescence for flag (red) and acetylated tubulin (green). 

Cumulative data from three independent experiments are shown on right 

panel.  
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4.6  CHIP is the NEK10 E3 ubiquitin ligase 

 

Since NEK10 is efficiently ubiquitinated under cAMP 

stimulation, it was necessary to identify the E3 ligase 

responsible for this ubiquitination. A proteomic analysis 

identified several PKA partners; one of this is the E3 ubiquitin 

ligase C-terminus of HSP70 interacting protein (CHIP) known 

as STUB1. CHIP is a chaperone-associated E3ligase involved in 

the ubiquitination and degradation of HSP70-bound substrates 

and contains a tetra-tricopeptide (TPR) motif tandem repeats 

that mediates interaction with HSP70.  First, I verified the 

interaction between the two proteins. I performed a co-

immunoprecipitation assay using lysates from cells transfected 

with NEK10-flag, HSP70-V5 and CHIP-Myc vectors. The 

lysates were immunoprecipitated with anti-myc antibody and 

precipitates were immunoblotted with anti-flag, anti-V5 and 

anti-myc antibodies. As shown in Fig.17a the three proteins 

form a stable complex in cell lysate. 

Then, I tested if the binding between NEK10, CHIP and HSP70 

was regulated by cAMP. To this aim, I performed a co-

immunoprecipitation assay using lysates from cells transfected 

either with NEK10 wild type or with NEK-T812A mutant. Cells 

were induced with FSK for 30 minutes; the lysates were 

immunoprecipitated with anti-myc antibody and immunoblotted 

with anti-flag, anti-V5 and anti-myc antibodies. The Fig.17b-c 

shows that the binding between NEK10, HSP70 and CHIP 

increases after the treatment with FSK, in contrast, the T812A 

mutation significantly decreases NEK10 binding to CHIP. 
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Fig.17 (a) cAMP-induced binding of CHIP to NEK10. HEK293 cells were 

transiently co-transfected with NEK10-flag, HSP70-V5 and CHIP-myc 

vectors. To prevent NEK10 degradation by CHIP, cells were treated with 

MG132 (20µM/8hours) before harvesting. Lysates were immunoprecipitated 

with anti-flag or with control IgG. The precipitates and lysates were 

immunoblotted with the indicated antibodies. (b) Cells were co-transfected 

with NEK10-flag vectors (either wild type or T812A mutant), HSP70-V5 and 

CHIP-myc, serum deprived for 24 hours and then left untreated or stimulated 

with FSK (40µM/30 min). Lysates were immunoprecipitated with anti-flag 

antibody and were immunoblotted with the indicated antibodies. (c) 

Cumulative data of three independent experiments shown in b. 
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We then asked if CHIP degrades NEK10 in the absence of 

MG132. In the Fig. 17d I co-transfected cells with NEK10-flag 

and CHIP-myc vectors, alternately with wild type or with 

catalytically inactive mutant (K30A) of CHIP that does not bind 

HSP70. The lysates were immunoblotted with anti flag, myc and 

tubulin antibodies. The figure shows that  in presence of CHIP 

wild type there is a decrease of NEK10 levels whereas CHIP-

K30A mutant  in not able to degradate NEK10. 

In the Fig17.e I performed an ubiquitination assay using cells 

transfected with control siRNAs or siRNAs targeting 

endogenous CHIP. After transfection, cells were left untreated 

or stimulated with Isoprotenerol for 1 hour. The figure shows 

that in basal condition there is an accumulation of poly-

ubiquitinated form of NEK10 ISO dependent, by the contrast, 

the genetic knock-down of endogenous CHIP prevented ISO-

induced NEK10 polyubiquitination. These findings supported 

the idea that PKA controls NEK10 stability through CHIP. 

 

 

Fig.17 CHIP ubiquitylates NEK10. (d) Lysates from cells co-transfected 

with NEK10-flag and CHIP (either wild type or K30A mutant) were 

immunoblotted with the indicated antibodies (e) Cells co-transfected with 

HA-ubiquitin, NEK10-flag and siRNAs (either control siRNA or siCHIP) 

were serum-deprived overnight and stimulated with isoproterenol for 1 hour. 

Lysates were subjected to immunoprecipitation with anti-flag antibody. 

Ubiquitinated NEK10 was revealed by immunoblot with anti-HA antibodies. 

d e 
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Once determined that cAMP primes proteolysis of NEK10 

through the interaction with CHIP, we verified if CHIP mediates 

the effects of cAMP on cilia stability. To this aim, I transfected 

HEK293 cells with control siRNAs or siRNAs targeting 

endogenous CHIP. Twenty hours after the transfection I 

deprived the cells from serum for 36 hours and treated them 

with FSK for 3 hours. Cells were subjected to 

immunofluorescence assay with anti-acetylated tubulin 

antibody. As shown in the figure (Fig 17f), down regulation of 

endogenous CHIP prevented cilia resorption induced by FSK 

treatment.  

 

Fig.17 CHIP ubiquitylates NEK10 and mediates cAMP effects on 

primary cilium stability  (f) Cells were transiently transfected with control 

or with siRNAs targeting CHIP, serum-deprived for 36h and then left 

untreated or stimulated with FSK (40µM) for 3 hours. Primary cilia were 

visualized by immunostaining with acetylated tubulin antibody whereas 

nuclei with Draq5. Cumulative data from five independent experiments are 

shown in the graph near the figure.  

 

 

 

 

 

 

f 



 

44 
 

4.7 Dysregulation of CHIP affects cilia in SCAR16 disease 

 

Biallelic STUB1 mutations resulting in aberrant CHIP have been 

identified in patients with clinical features of autosomal 

recessive spinocerebellar ataxia-16 (SCAR16). This is a rare 

genetic syndrome characterized by truncal and limb ataxia 

resulting in gait instability, mild peripheral sensory neuropathy, 

and cognitive defects. Hypogonadism can also be present in 

these patients (Gordon Holmes syndrome, GHS), consistent with 

signaling defects and altered responses to hypothalamic 

hormones. Mice lacking STUB1/CHIP gene show a phenotype 

that recapitulates most of the SCAR16 features
81

. Accordingly, 

we determined if CHIP mutations affect primary cilia. We 

analyzed ciliogenesis in primary fibroblasts isolated from 

cutaneous biopsies of SCAR16 patients or from healthy 

volunteers. Fig.18 shows that FSK treatment in normal 

fibroblasts promoted resorption of cilia. In contrast, no major 

effects of FSK stimulation on cilia were evident in SCAR16 

fibroblasts. Interestingly, genetic silencing of NEK10 in 

SCAR16 fibroblasts markedly reduced the number of ciliated 

cells, even in the absence of FSK, further supporting a role of 

the CHIP-NEK10 axis in control of cilium stability. 
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Fig.18  CHIP, NEK10 and cilia in SCAR16 fibroblasts. Skin fibroblasts 

from healthy volunteers (BJ) and SCAR16 patients (AX71) were serum 

deprived for 48h and treated with FSK (80 µM/6h). Cells were fixed and 

stained for acetylated tubulin and Draq5. Where indicated, AX71 cells were 

transiently transfected with control siRNA or with siRNA targeting 

endogenous NEK10, before stimulation. Cumulative data from 4 independent 

experiments are shown.  
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5 DISCUSSION AND CONCLUSION 

 

Primary cilia are considered very important organelles that 

emanate from cell surface and are able to detect external signals 

and reintroduce them into cells. Primary cilia are present on the 

apical surface of the majority of cells in the human body and the 

structure that promotes the assembly of primary cilium is the 

centrosome, the principal microtubule organizing center 

(MTOC) in animal cells. The cilium is composed by axoneme 

and the basal body
53

.  

The primary cilium is a compartmentalized complex for signal 

integration and propagation relevant for many developmental 

processes. In dividing cells, the transition between centrosome 

and primary cilium is functionally linked. In mitotic interphase, 

centrosomes organize the cytoplasmic microtubule network, 

whereas in mitosis they regulate mitotic spindle dynamics and 

cytokinesis. In postmitotic cells, the centrosome migrates to the 

cell surface, and one of the centrioles differentiates into a basal 

body from which microtubules nucleate to form a primary 

cilium. In normal proliferating cells, the cilium can be 

transiently observed in G1 phase, disappearing when the cell 

enters the cell cycle
82

. A significant fraction of PKA is localized 

at the base of cilium through interaction with AKAPs, 

controlling essential aspects of ciliogenesis and the Hedgehog 

(Hh) pathway. However, the impact of PKA activation on the 

turnover of ciliary proteins and its role in primary cilium 

stability were largely unknown. 

As mentioned above, there is a  thigh connection between cAMP 

cascade and UPS system and derangements in these mechanisms 

are linked to arise several neurodegenerative and proliferative 

disorders.  

 In the thesis, I reported the identification of the serine/threonine 

kinase NEK10 as a novel positive regulator of ciliogenesis. 

NEK10 is member of the Nima-related kinases activated at 
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G2/M transition and its activity is required for proper cell cycle 

progression. I demonstrated the existence of a macromolecular 

complex in which NEK10 is localized at the primary cilium 

through the interaction with PKA and PCM1, a pericentriolar 

scaffold protein involved in different aspects of microtubule 

dynamics, cell division and ciliogenesis. I found that NEK10 

protein stability is a critical determinant for the 

assembly/disassembly of cilium and it is mediated by the GPCR 

signaling. By a combinatorial approach of biochemistry, cell 

biology and molecular genetics, I demonstrate the presence of a 

trimeric complex composed by NEK10, PCM1 and regulatory 

subunit of PKA (RIIβ) at pericentriolar region of mammalian 

cells. In particular, I found that NEK10 localizes at the base and 

along the axoneme of primary cilium.  NEK10 down regulation 

severely affected the assembly of primary cilium. 

I also analyzed the intersection between GPCR signaling and 

primary cilium. I found that NEK10 is a novel direct target of 

PKA. Phosphorylation of NEK10 by PKA at Thr812 primes 

NEK10 to ubiquitination and proteolysis. Disappearance of 

NEK10 promotes cilia resorption. A proteomic analysis allowed 

the identification of CHIP as the E3 ubiquitin ligase that binds 

to- and ubiquitylates NEK10, causing NEK10 proteolysis 

through the UPS and cilia resorption. Removal of CHIP 

prevented cAMP effects on cilium resorption. These findings 

point to CHIP as a novel regulator of protein turnover at ciliary 

sites that efficiently couples GPCR signaling to cilia dynamics. 

This mode of regulation was further supported by evidence that 

germline inactivating mutations of CHIP that cause SCAR16 

disease prevented cAMP-induced disassembly of cilia. 

Altogether, the findings reported in my thesis elucidate the 

mechanism(s) underlying cilia resorption during GPCR 

stimulation, both in healthy and disease conditions. They also 

provide mechanistic insights into how cAMP controls cell 

growth. It is well established that the cAMP cascade regulates 
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growth and differentiation of a wide variety of cell types. PKA 

activation can either induce or inhibit cell growth, depending on 

cell type or metabolic conditions
83

. In growth-arrested endocrine 

cells, the cAMP-PKA pathway promotes the transition from G0 

to G1 phase, allowing the cells to progress through the cell 

cycle
84

. The transition from quiescent to proliferative state 

requires disassembly of the primary cilium. 

Several targets of PKA have been identified and causally linked 

to induction of cell growth. However, if and how PKA 

activation modulates the activity of proteins controlling cilia 

stability in starved cells was largely unexplored. These findings 

help to define the relevance of PKA pathway in cilia resorption 

in the course of hormone stimulation. We show that PKA 

activation by cAMP agonists targets NEK10 for proteolysis 

through the UPS. The cAMP cascade induces cilia disassembly 

and promotes entry into the cell cycle by removing the NEK10 

pro-ciliogenic kinase. NEK10 thus represents a nodal point in 

the ciliary compartment where cAMP signaling and the UPS 

converge and integrate to control essential aspects of cilia 

dynamics and, most likely, cell growth. Mutations affecting any 

component of this proteolyitc machinery may alter the 

sensitivity of the cells to hormones or growth factors, 

profoundly impacting on cell growth and vertebrate 

development. 

Although the results of my thesis enhance the role of cAMP  

into disassembly of primary cilium, there are some points that 

need to be addressed. It is important to understand whether cilia 

resorption induced by cAMP has a physiologically relevant 

implications for cell biology. Previous work revealed that 

activation of cAMP pathway promotes ciliogenesis.
85, 86

. 

This apparent discrepancy could not be ascribed to the different 

cell models used, since we confirmed that in serum 

supplemented, confluent cells cAMP stimulation had no major 

impact on cilum stability (data not shown). These findings 
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suggest that cAMP pathway may have a dual effect on primary 

cilia depending on how growth arrest is achieved. In the 

presence of serum, cAMP contributes to primary ciliogenesis 

induced by cell confluency, while under serum starvation the 

same messenger promotes cilium disassembly. 

Finally, the findings reported in my thesis indicate that NEK10 

is a new ciliary protein that in concert with other centriolar  

proteins plays a major role in the regulation of 

assembly/disassembly of primary cilium.  

My next goal is the identification and the molecular 

characterization of the relevant NEK10 substrates involved in 

mammalian ciliogenesis. Derangement of this NEK10-regulated 

signaling circuitry may underpin to genetic and proliferative 

disorders human disorders.  

 In conclusion, I have identified a PCM1-centered multimeric 

complex that functionally links second messenger signaling 

(cAMP), kinase activities (PKA, NEK10) and the UPS (CHIP) 

to cilia dynamics. This mechanism explains how 

compartmentalized signaling networks regulate cilia formation 

in both physiological and pathological conditions. 
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Figure 19. Molecular mechanism model. Under resting conditions, PKA 

holoenzyme form a stable complex with PCM1 and NEK10, promoting 

ciliogenesis. Elevation of intracellular cAMP levels by ligand (L) stimulation 

of the adenylate cyclase (AC) efficiently activates PKA which 

phosphorylates NEK10. Phosphorylation primes ubiquitin-dependent 

proteolysis of NEK10 by E3 ligase CHIP. The decrease of NEK10 levels 

promotes the resorption of primary cilium.  
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6 APPENDICES 

AC Adenylyl cyclase 

GPCR G protein coupled receptor 

PKA Protein kinase A 

PDE Phosphodiesterase 

UPS Ubiquitin Proteasome System 

CHIP C-terminus of HSC70 interacting protein 

FSK Forskolin 

ISO Isoprotenerol 

cAMP cyclic AMP 

EPAC RAP exchange proteins 

cNGC cAMP gated ion channels 

AKAP A-Kinase-Anchor-Proteins 

TPR tetratricopeptide repeats domain 

SCAR16 spinocerebellar ataxia autosomal recessive 16 

PCM1 pericentriolar matrix protein 1 

NEK10 Nima-related Kinase 10 

RIIβ 51egulatory subunit of PKA 

Hh Hedgehog 
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