




Abstract

The basic assumption of re-optimization consists in the need of eiciently managing

huge quantities of data in order to reduce the waste of resources, both in terms

of space and time. Re-optimization refers to a series of computational strategies

through which new problem instances are tackled analyzing similar, previously

solved, problems, reusing existing useful information stored in memory from past

computations. Its natural collocation is in the context of dynamic problems, with

these latter accounting for a large share of the themes of interest in the multifaceted

scenario of combinatorial optimization, with notable regard to recent applications.

Dynamic frameworks are topic of research in classical and new problems spanning

from routing, scheduling, shortest paths, graph drawing and many others.

Concerning our speciic theme of investigation, we focused on the dynamical

characteristics of two problems deined on networks: re-optimization of shortest

paths and incremental graph drawing. For the former, we proposed a novel exact

algorithm based on an auction approach, while for the latter, we introduced a

new constrained formulation, Constrained Incremental Graph Drawing, and several

meta-heuristics based prevalently on Tabu Search and GRASP frameworks.

Moreover, a parallel branch of our research focused on the design of new GRASP

algorithms as eicient solution strategies to address further optimization problems.

Speciically, in this research thread, will be presented several GRASP approaches

devised to tackle intractable problems such as: the Maximum-Cut Clique, p-Center,

and Minimum Cost Satisiability.
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Chapter 1

Introduction

The common threads that link the topics which will be discussed in this thesis are the

challenges arising from the study of dynamic networks and the related optimization

problems. Particular emphasis will be put on the Shortest Path (SPP) and Graph

Drawing Problems (GDP) and their corresponding dynamic versions. It could be

superluous to point out the great importance and the impact which the shortest

path problem had in the history of the combinatorial optimization and operation

research. In its basic formulation, the objective is to determine the minimum cost

path from a given origin node to a destination node in a directed weighted network.

One of the reasons of great interest in studying this problem is motivated by the

fact that many optimization problems require the solution of the SPP as sub-task.

Some examples of these problems are Maximum-Flow Minimum-Cost Problems

[1], Vehicle Routing Problems [121], and several other variants of the SPP, spanning

from problems on time-dependent networks [96, 97] to general constrained SPP

[28, 29, 40]. An immediate extension of the SPP is the Shortest Path Tree Problem

(SPTP), where it is required to ind all the shortest paths starting from an origin

node by considering as destination all the other nodes in the network.

Concerning the purely dynamic aspect of the problem, re-optimizing shortest

paths on dynamic networks consists in solving a sequence of shortest path problems,

where each problem difers only slightly from the previous one, because the origin

node has been changed, some arcs have been removed from the network, or the cost

of a subset of arcs has been modiied. Each problem could be simply solved from

scratch, independently from the previous one, by using either a label-correcting or

a label-setting shortest path algorithm. Nevertheless, a clever way to approach it

is to design ad hoc algorithms that eiciently exploit informations resulting from

previous computations. This type of problems appears in a wide variety of contexts
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and application settings, including logistics [72, 128], telecommunications [118, 104],

transportation, urban traic [20, 100], and transit planning [1, 78]. Although the SPP

and SPTP together with their variants have been widely studied in literature, the

re-optimization version, Re-optimization SPP (R-SPP) and Re-optimization SPTP

(R-SPTP), gathered much less scientiic eforts over the years. A detailed list of the

approaches proposed for the re-optimization of shortest paths is surveyed in [43].

One of the irst eicient strategies was proposed by Gallo [55], where the R-SPTP

is addressed when either the origin node is changed, or when the cost of only one

arc is updated. Another relevant work was introduced by Florian et al. [51], which

presented a dual approach for the R-SPTP, when the origin node changes. Later,

Ramalingam and Reps [107] elaborated an algorithm for the R-SPTP when the weight

of one arc is increased, while Pallottino and Scutellá [101] addressed the problem

of recomputing the shortest path tree when a new cost is assigned to a subset of

arcs. On the same lines Buriol et al. [13] developed two diferent algorithms for the

R-SPP and R-SPTP to manage the case when the cost of one arc is either increased

or decreased. Others proposals to tackle the problem when a single arc or a set of

these is updated can be found in Chan and Yang [17], D’Andrea et al. [35], Nannicini

et al. [96]. According to best of our knowledge, and considering the list of works

just surveyed, several works were proposed to tackle the re-optimization problem

when the weight of the arcs changes, while much less were addressed to the case of

origin change.

In Chapter 2, the R-SPTP in the case of origin change will be introduced. Moreover,

a new approach, proposed in Festa et al. [50], will be presented. The algorithm tries

to update an initial optimal solution for a given SPTP in order to obtain a new

optimal solution for a new problem which requires to ind another shortest path

tree starting from a new origin node. The process which leads to the construction

of the new solution will act through a sequence of operations, called extensions, by

using a strongly polynomial auction algorithm based on the virtual source concept,

described in [15].

The second part of this manuscript, Chapter 3, will be focused on the Graph Draw-

ing Problem. Drawing a graph or network plays a role of fundamental importance

in many information visualization problems, like models in sotware, information

engineering, project scheduling and many others. For example, lows charts, state

transition diagrams, entity-relationships diagrams, and Petri nets are all cases of

graph drawing. Conventionally, the nodes of a graph are represented with boxes

or circles (containing text information) and the arcs with lines between the nodes.
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Graph drawing is an extensively studied area of research, especially in recent years,

and a considerable number of works were presented in this direction, refer to

Battista et al. [3] for a detailed survey. Nevertheless, the establishment of a uniform

criterion to evaluate the quality of a drawing is a much debated topic. Currently,

the hypothesis that seems to be the most supported from the scientiic community,

in order to evaluate the quality of a drawing, is the number of crossing arcs in

the layout of the graph.The hardness of achieving a clear graph drawing with this

evaluation criteria is easily relatable to the proof of Garey and Johnson, that showed

how the minimization of the number of crossing in a graph is a NP-complete problem.

As we can observe in Figure 1.1, according to the crossing-minimization criterion,

Figure 1.1(b) is considered better than Figure 1.1(a), in fact the correlations between

the nodes are clearer and structural information can be retrieved in a simpler way.

For our purpose we will consider only hierarchical directed acyclic graphs (HDAG),

1 2

3

4 5

1

2

3

4

5

(a) (b)

Fig. 1.1 Diferent representations of the same graph.

anyway this will not cause a loss of generality since each directed acyclic graph

(DAG) can be transformed into a HDAG through a sequence of steps as demonstrated

in [57]. One of the most established method to build an HDAG, starting from a DAG,

consists in disposing the nodes in layers in such a way that all the arcs point in the

same direction, ater this step, if there are some arcs which connect nodes that are

not in contiguous layers, then artiicial nodes can be added in order to generate a

graph will meet the desired requirements. Even in this case, [57] proves that the

problem of minimizing the number of crossing arcs in a HDAG with only two layers

is NP-complete. In Figure 1.2 is depicted an application of the method described

above.

The dynamic version of the GDP is known in literature with the name of

Incremental Graph Drawing Problem (IGDP), it consists in adding a set of new nodes

and corresponding arcs to the original HDAG. Referring to the nodes and arcs of the

original HDAG as original nodes and original arcs, the addition of the new nodes
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Fig. 1.2 Transformation from DAG to HDAG.

must not alter the relative positions of the original ones during the process of

minimization of the number of crossing arcs. As in the case of the SPP, also in this

circumstance the static version of the problem has been studied extensively, while

the dynamic one received much less attention. In fact, the only works proposed

for the IGDP were [82], limited to graph with only two layers , and [115], which

considers also graphs with more layers. In Figure 1.3 it is shown an example of

IGDP.
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1
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(a) (b)

Fig. 1.3 Example of Incremental Graph Drawing Problem. The new nodes introduced
in the HDAG contains characters and are depicted dotted, while the original nodes
contain numbers. Figure(b) represents the optimal solution ater the insertion of the
new nodes, the number of crossings is 2.

The problem of layouting dynamic graphs, thus graphs which evolve over the

time, introduces an additional aesthetic criterion known as preservation of the mental

map [92]. Each node in a graph appears with some graphical attributes, like position,

color, size, shape and others. The concept of mental map is used in behavioral
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geography and psychology to describe the process through to which an agent is

able to acquire and maintain information, related to the surrounding environment,

and how through this he can plan activities such as setting up connections between

several points or going along path already traveled. It’s clear how several evolution

of a graph could lead to a disruption of the agent’s mental map. In fact, it is suicient

to consider the example in Figure 1.4 to evaluate how a single evolution of the graph

can bring substantial changes to the initial mental map.
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1
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1

2

3

A

(a) (b)

Fig. 1.4 How the mental map changes.

With in mind the compromise between the two aesthetic criteria described above,

i.e. minimizing the number of crossing arcs and preserving the mental map, we

proposed in [98] a new version of the IGDP, called Constrained-IGDP (C-IGDP),

where the incremental version of the problem is enriched by an additional constraint

which limits the displacement of the original nodes within a certain range K, where

K is deined as position constraint. In Figure 1.5 is depicted an example of C-IGDP.

The comparison between Figure 1.4 and Figure 1.5 shows how the position constraint

considered in the C-IGDP lets the algorithm attain a solution that better preserves

the original disposition of the original nodes, and thus the mental map, although the

number of arc crossed in the new drawing increases.

For the C-IGDP, we developed several resolution strategies, based on GRASP

[39, 47, 48] and Tabu Search frameworks [60–63]. In particular, we designed three

constructive phases for the GRASP with a common local search, and a Tabu-like

algorithm. The Tabu algorithm adopts a constructive phase based on memory and

an improvement phase, which follows the principles of a Tabu Search paradigm. Both

the construction and the local search, in this last approach, have the main purpose
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Fig. 1.5 C-IGDP example, the position constraint is given by K = 1, then the original
nodes can be displaced at most of one position compared to the original one. The
number of crossings in the Figure (b) is 7.

of guaranteeing a degree of diversiication during the exploration of the solution

space. Finally, for all the algorithms a post-optimization phase with Path-Relinking

[76, 64, 110] has been implemented.

In the third part, Chapter 4, we survey and analyze other optimization problems

addressed and resolved with remarkable results by designing ad-hoc algorithms

based on the GRASP framework:

• p-Center Problem (p-CP): we hybridized a greedy adaptive constructive phase

with a smart and fast two-criteria local search based on the concept critical

node, [44, 45];

• Minimum Cost Satisiability Problem (MinCost-SAT): we implemented a GRASP

with an experimental stopping rule criterion, based on the probabilistic analysis

of the solution values collected by the algorithm during its execution, [38]

• Maximum Cut-Clique Problem (MCCP): for this ater the constructive phase

we consider an improvement one founded on the Two Phased Local Search

introduced in [106], [42].

Finally, in the concluding part, Chapter 5, the beneits obtained applying our

original methods for the several problems considered will be summarized, and the

possible future developments will be discussed.



Chapter 2

Re-optimization of Shortest Paths

In this chapter the mathematical formulations for the SPP and its variants are given,

and the best know techniques for these problems will be analyzed . Then, it will

be introduced the Re-optimization framework for the SPP with particular attention

to the Re-optimization Shortest Path Tree Problem (R-SPTP). For the latter we

presented in [41, 43] an ad-hoc algorithm, a smart and fast dual-based algorithm

which adopts an auction strategy.

2.1 Mathematical Formulations

All the problems which we will formulate rely on the following notation. Let

G = (V,A) be a connected directed graph, where

• V = {1, 2, . . . , n} is a set of nodes;

• A ⊆ { (i, j) ∈ V × V | i, j ∈ V ∧ i ̸= j } is a set of m arcs;

• c : A → R
+ is a function that assigns a non-negative cost cij to each arc

(i, j) ∈ A.

A path P is a sequence of nodes P = {i1, i2, . . . , ik} such that (il, il+1) ∈ A, for all

l = 1, . . . , k− 1. If the nodes il, i2, . . . , ik are distinct, the sequence P = {i1, i2, . . . , ik}

is called a simple path. The cost z(P) of a path P = {i1, i2, . . . , ik} is deined as

the sum of the costs of its arcs, that is, z(P) =
∑k−1

l=1 cilil+1
. Furthermore, for each

i = 1, . . . , n, let

• FS(i) = { j ∈ V | (i, j) ∈ A } be the forward star of node i;

• BS(i) = { j ∈ V | (j, i) ∈ A } be the backward star of node i.
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2.1.1 Shortest Path Point-to-Point Problem (P2P)

The problem consists in inding a shortest path P∗ = (v1, v2, . . . , vh) from a source

node v1 = s to a destination node vh = t, with s, t ∈ V . Introducing m Boolean

decision variables, xij, ∀ (i, j) ∈ A, such that:

xij =





1, if (i, j) belongs to P∗,

0, otherwise,

the mathematical formulation of the (P2P) problem is the following:

(P2P) z = min
∑

(i,j)∈A

wijxij

subject to:

(P2P-1)
∑

j∈BS(i)

xji −
∑

j∈FS(i)

xij = bi, ∀i ∈ V

(P2P-2) xij ∈ {0, 1}, ∀(i, j) ∈ A,

with bi = −1 for i = s, bi = 1 for i = t, and bi = 0 otherwise.

2.1.2 Shortest Path Tree Problem (SPTP)

Given an origin node r ∈ V , the aim of the SPTP is to ind a shortest (of minimum

cost) path from r to all other nodes in V . The SPTP admits the following linear

programming formulation:

(SPTP) min
∑

(i,j)∈A

cijxij

subject to:
∑

(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij = bi, ∀ i ∈ V,

xij ≥ 0, ∀ (i, j) ∈ A,

where xij is the low on the arc (i, j) and the right hand side bi = −n+ 1, for i = r

and bi = 1, for i ̸= r.
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2.1.3 Dual-Shortest Path Tree Problem (D-SPTP)

The linear programming formulation of the dual shortest path tree problem (D-SPTP)

for a given origin node r is the following:

(D-SPTP) max (−n+ 1)yr −
∑

j̸=r

yj

subject to:

yj − yi ≤ cij, ∀ (i, j) ∈ A,

where yi is the dual variable associated with the node i, called potential of i.

Without loss of generality, we can set yr = 0; in this case, the optimal dual solution

yi represents the minimum path cost from r to i.

2.2 An Overview of the Best-Known Approaches

A irst successful attempt to solve the SPP was originally proposed by Ford Jr

[52], Ford Jr and Fulkerson [53], although the most famous algorithm to solve P2P

and SPTP is a labeling method proposed by Dijkstra [32], whose pseudo-code is

reported in Algorithm 2.1. Let s ∈ V be the source node in a graph G, to ind a

shortest path from s to each other v ∈ V, i ̸= s, Dijkstra’s algorithm maintains and

updates for each node v ∈ V :

• dist[v], the distance of v from the source node s;

• pred[v], the predecessor of the node v in the incumbent path from s to v.

In addition, the following sets are used: S and Q, that are the sets of visited and

unvisited nodes, respectively. The algorithm starts with an initialization phase (lines

2-5), where the vectors pred, dist and the sets S and Q are initialized. Aterwards,

while set Q is nonempty, the algorithm selects an unvisited node v, relaxes all the

edges in FS(v), and insert v in S. The relaxation operation is described in lines 10-12.

If the cost function c is non-negative, the algorithm always terminates with the

correct shortest path distances stored in dist[], and shortest path tree in pred[].

The following theorem holds:

Theorem 1. If the cost function w is non-negative, then Dijkstra’s algorithm visits

nodes in non-decreasing order of their distances from the source, and visits each node

at most once.
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1 Dijkstra (G = (V,A), s)
2 dist[s] ← 0; pred[s] ← NULL; S ← ∅;

3 forall v ∈ V \ {s} do
4 dist[v] ← +∞;

5 pred[v] ← NULL;

6 Q← V;

7 while Q ̸= ∅ do
8 u ← extract_min(Q);

9 S ← S ∪ {u};

10 forall v ∈ FS(u) do
11 relax(u, v);

12 if dist[v] > dist[u] + cuv then
13 dist[v] ← dist[u] + cuv;

14 pred[v] ← u;

Fig. 2.1 Dijkstra’s algorithm.

In the case of P2P problem, bidirectional versions of Dijkstra’s algorithm were

proposed in [22, 33, 99]. The bidirectional framework is based on the consideration

that if s and t are the source and the destination node, respectively, then it is

possible to run the algorithm into two opposite directions: the irst from node s

to t, called the forward search, and the latter from t to s, the backward search.

The backward search operates on the reverse graph, obtained from G reversing the

direction of each arc in A. The algorithm terminates when the two paths meet.

Hart et al. [70] proposed another labeling method for SPP: an informed search

algorithm called A∗. It reines the Dijkstra’s method, using a best irst paradigm,

irstly exploring sub-paths which appear to lead most quickly to the solution. The

estimation of the most promising sub-paths is carried out by means of a potential

function πt. Let πt : V → R
+ be a non-negative function, giving an estimate on the

distance from each node v to t. The A∗ search uses a new set L, which contains

all the nodes that are relaxed at least once and whose label is not permanent. It

selects a node v ∈ L with the smallest value of k(v) = d(s, v) + πt(v), where d(s, v)

is the shortest distance from s to v.

A potential function πt is deined to be feasible if dπ(u, v) = d(u, v)−πt(u)+πt(v)

is non-negative for each arc (u, v) ∈ A. Goldberg and Harrelson [65] showed that

A∗ search with a feasible non-negative potential function visits no more nodes than

Dijkstra’s algorithm. In order to deine πt, in the Euclidean domain, it is possible to

use the canonical Euclidean distance to establish a lower bound. Such computation
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is carried out by means of a method based on the concept of landmarks selection

[65] and the triangle inequality.

An alternative and simple approach for the SPP was proposed by Bertsekas, this

algorithm is based on the auction strategy which was proposed by the same author

for the assignment problem in [8]. Since our algorithmic proposal, which will be

discussed in the follow of this chapter, is founded on this strategy we dedicate the

following paragraph to describe the auction strategy.

2.2.1 The auction strategy

The auction strategy was irstly proposed by Bertsekas in an unpublished report [8]

for the assignment problem, while the standard auction approach for the SPP was

developed, by Bertsekas himself, in 1991 [9] and a survey can be found in Chapter 4

of [10]. Any auction algorithm follows a primal-dual approach and consists of the

following three basic operations:

• path extension;

• path contraction;

• price increase.

For the SPP, given a graph G = (V,A) as before deined and the origin node r ∈ V ,

the algorithm maintains a path P starting at r and ending at a node t, called terminal

node and a set π of feasible node prices. The pair (P, π) satisies the following

conditions:

πi ≤ πj + cij, ∀ (i, j) ∈ A, (2.1)

πi = πj + cij, ∀ (i, j) ∈ P. (2.2)

Conditions (2.1) are known as Price Feasibility Conditions (PFC) and (2.2) as Com-

plementary Slackness Conditions (CSC). The algorithm starts with any pair (P, π)

satisfying conditions (2.1) and (2.2) (for example, P = {r} and πi = 0, ∀ i ∈ V ) and

proceeds in iterations, updating (P, π) into a new pair (P ′, π ′) satisfying (2.1) and

(2.2). At each iteration, if there is an arc (t, j) ∈ FS(t) such that πt = πj+ctj, then the

path P is extended along that arc and j becomes the new terminal node. Otherwise,

no extensions are possible and the price of t is increased through the following price

increase operation:

πt = min{ctj + πj : (t, j) ∈ FS(t)}. (2.3)
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1 Auction ( G = (V,A), C, s )
2 P ← (s);
3 π(·)← 0;
4 pred(·)← 0;
5 operation ← 1;
6 switch ( operation ) do
7 case 1 do
8 i← get-terminal-node(P);
9 if ( π(i) < min

(i,j)∈FS(i)
{cij + π(j)} ) then

10 operation ← 2;
11 else
12 operation ← 3;

13 case 2 do /* contract path */

14 π(i)← min
(i,j)∈FS(i)

{cij + π(j)} );

15 if ( i ̸= s ) then
16 P ← P \ {i};
17 operation ← 1;

18 case 3 do /* extend path */

19 ji ← argmin
(i,j)∈FS(i)

{cij + π(j)};

20 pred(ji)← i;
21 if ( All nodes have been terminal at least once ) then
22 return pred;
23 operation ← 1;

Fig. 2.2 Auction algorithm for the SPTP.

If the last arc of P violates condition (2.2) due to a price increase operation, P is

contracted by deleting the arc. The irst time a node i becomes the terminal node,

path P is a shortest path from r to i, its cost is given by πr−πi, and the predecessor

node of node i in P is stored to deine the primal solution, i.e., the shortest path tree.

The algorithm terminates as soon as all nodes have become the terminal node of the

path P at least once. It is easy to verify that the prices have a natural interpretation

as the opposite of dual variables. The auction algorithm starts with a feasible pair

(P, π) satisfying CSC and proceeds in iterations, transforming (P, π) into another

pair satisfying (2.1) and (2.2). Since the opposite of node prices can be used as node

dual potentials, price feasibility is equivalent to dual feasibility. At each iteration,

a dual feasible solution and a primal unfeasible solution (implicitly deined by the

predecessors) are available for which CSC hold. Therefore, the algorithm either

constructs a new primal solution (not necessarily feasible) or a new dual feasible

solution, until a primal feasible (and hence also optimal) is obtained. The typical

iteration of the standard auction algorithm for the SPTP is reported in Figure 2.2.
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2.3 Re-optimization Framework

In the context of SPP, previous information can be reused while tackling a problem

which difers only slightly from another SPP previously solved. This occurrence can

happen with one of the following changes in the network:

• the origin node has been changed;

• some nodes have been added or removed;

• some arcs have been added or removed;

• some arcs cost have been increased or decreased.

This problem can be addressed as a shortest path re-optimization problem [41],

which consists in solving a sequence of shortest path problems, where the kth

problem marginally difers from the (k− 1)th one.

In the irst case, we say that there was a root change from the (k−1)th problem to

the kth problem, in the remaining cases we say that the graph is dynamic. Moreover,

for what concerns problems on dynamic graphs, they can be classiied according to

the type of changes that can occur on the network. A dynamic graph is said to be

fully dynamic if both insertion and deletion of either edges or nodes are allowed.

In Figure 2.3, a diagram of the interplays among all possible cases of shortest path

re-optimization is depicted. The root change re-optimization problem does not

admit further sub-cases. For what concerns dynamic graphs, the problems can

be classiied in two diferent branches, depending on whether the changes involve

nodes or arcs. The only possible changes involving a node are addition or removal.

On the other hand, the arcs can be either added/removed or their cost can be

increased/decreased. It is worthy to note that the case of changes involving nodes

implies also arcs insertion or deletion. Without loss of generality, we can consider

the input graph G = (V,A) as a complete graph. Indeed, if G is not complete, for

each pair of nodes i and j, such that (i, j) ̸∈ A, it can be always added a dummy arc

from i to j with cij = +∞. This operation allows the following considerations:

• arc removal in the graph can be seen as a special case of arc cost increasing.

If an arc (i, j) is deleted, then the cost cij increases to +∞.

• Arc insertion can be seen as a special case of arc cost decreasing. If an arc

(i, j), must be inserted, then the cost cij is decreased from +∞ to the new

cost k.
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2.3.1 Root-change

The purpose of this paragraph is to show how, in the case of root change for the

SPTP problem, it is possible to obtain a well performing algorithm making wise use

of the information stored in a SPTP previously computed. Such result relies on some

remarkable theoretical properties proven by Gallo [55], starting from the assumption

that a single root shortest path tree problem has been solved. Let G = (V,A) be a

complete directed graph, and let Tr be a shortest path tree rooted at node r, i.e., a

tree that contains a shortest path from r to each node v ∈ V, v ̸= r. Let s be a node

of V , s ̸= r, and Ts be a SPTP rooted at node s. The following propositions show

how the knowledge of Tr provides useful informations on Ts. Let Tr(h) denote the

subtree of Tr which contains node h together with all its descendants, then

Proposition 1. Tr(s) ⊆ Ts and d(s, j) = d(r, j) − d(r, s), for any j ∈ Tr(s).

Henceforth, the paths contained in the subtree of Tr rooted in s still remain

optimal shortest paths from s to its descendants. This result shows how a wise

handling of the old solution is likely to be the most eicient strategy, since –especially

when the new root s is close to r – a consistent part of the previously optimal tree

Tr will remain optimal.

As formerly stated, beyond the theoretical insight given by Proposition 1, the

information provided by Tr can be employed in order to reduce the computational

time needed to solve the new SPTP problem, improving the classical Dial’s imple-

mentation of Dijkstra’s Algorithm (DDA) [30, 31]. In Dial’s implementation, in fact,

one of the most time consuming tasks consists in the identiication of the minimum

temporary node cost, due to the high number of comparisons to be performed.

This number of comparisons strongly depends on the maximum cost among the

arcs, cmax = max(i,j)∈A cij. Propositions 2 and 3 show how to reduce cmax without

changing the sets of feasible and optimal solutions.

Let π1, π2, . . . , πn be integer numbers such that

lij = cij + πi − πj ≥ 0 ∀(i, j) ∈ A. (2.4)

Proposition 2. The problem of inding the SPT from swith arc lengths cij is equivalent

to the problem of inding the SPT with arc lengths lij given by (2.4).

Proof. Let P be a generic path from a node k to a node h of G = (V,A), and let C(P)

and L(P) be the lengths of P pertaining to the length functions c and l, respectively.
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Then, it holds that

L(P) =
∑

(i,j)∈P

lij =
∑

(i,j)∈P

(cij + πi − πj) = C(P) + (πk − πh). (2.5)

Henceforth, the lengths C(P) and L(P) only difer by a constant depending only on

the source and the destination nodes of the path.

Ultimately, a shortest path tree Tr with respect to the arc length cij will remain

optimal with arc length lij.

A straightforward consequence of Proposition 2 is that lengths cij can be replaced

by lengths lij, and once the new shortest length d ′(s, h), h ∈ V , is found, the value

d(s, h) can be obtained as follows:

d(s, h) = d ′(s, h) − πs + πh. (2.6)

The results outlined above suggest that an appropriate choice of the integers

πi might decrease the distance from the source to the farthest node, and thus also

the computation time required by DDA. Indeed, when selecting πj = d(s, j) one has

d ′(s, j) = 0, for all j ∈ V , thus obtaining the validity of the following proposition:

Proposition 3. Let be πj = d(r, j), for all j ∈ Tr, and let be the arc lengths deined as

in (2.4). Let h be one of the farthest node from the origin s, then:

d ′(s, h) = d(r, s) + d(s, r). (2.7)

From Proposition 3 it follows that if nodes r and s are close enough, the compu-

tational efort required by DDA can be strongly reduced by a cost modiication of

type (2.4), with the vector π given by πj = d(r, j), for all j ∈ Tr.

As reported in Gallo [55], in terms of Linear Programming, such new costs

correspond to the reduced costs relative to a dual feasible, but primal unfeasible,

basis. This interpretation of the vector (π1, π2, . . . , πn) as a dual feasible solution for

the Shortest Path Problem is due to Bazaraa and Langley [4].

Deriving a cost reduction in a similar fashion, in 1982 Gallo and Pallottino [56]

devised an algorithm which outperforms both the one proposed in [55] and classical

from scratch optimization techniques. This algorithm reines the classical label setting

paradigm by partitioning the nodes of the graph in three distinct sets: NT , NP,

and NQ. As in a classical label setting algorithm, NT and NP are the set of nodes

whose labels are temporary and permanent, respectively. While, the nodes in NQ
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are those nodes such that d(s, v)=d(s, p(v)). This property ensures that such nodes

can be inserted straightaway in NP without further comparisons, thus speeding up

the execution of the algorithm. In [56], it has been noted how in any re-optimization

problem instances a large share of nodes of V is likely to be found in NQ.

The observations made by Gallo are the starting point of the work of Florian et al.

[51]: the shortest path tree rooted at node r is an optimal solution to a corresponding

linear program, but when a successive new source s is considered, the previous tree

is a dual feasible and primal infeasible solution for the new problem. The approach

proposed by Florian et al. [51] consists in the adaptation of the dual simplex method

to compute the shortest paths from the new root s. It is shown in [51] that the

proposed algorithm runs at most in O(n2). In order to evaluate the performances

of their method, the authors tested their code on graphs representing the regional

roads of the cities of Vancouver and Winnipeg, as in [55].

The experimental evaluations proposed in these works show how Gallo [55] is

slightly better performing than Dijkstra’s from scratch technique, meanwhile Gallo

and Pallottino [56] further improves the previous results. Although, among all, the

algorithm proposed by Florian et al. [51] appears to outperform the other competitive

methods.

2.4 Re-optimization Auction Algorithmic Scheme:

R-Auction

Given an optimal solution for the SPTP from node r to all other nodes, described

by the tree
r

T = (
r

V,
r

A), the predecessor vector pr ∈ V |V | and the distance vector

dr ∈ R
|V |, where dr(i) is the shortest distance from the origin node r to i, the

proposed auction algorithm operates on the original graph, by considering the

optimal reduced cost cij = cij + [dr(i) − dr(j)] associated with each arc (i, j) ∈ A.

In the case of origin change, that is, the current origin node r is replaced by a

new one denoted by s, at the beginning of the algorithm the arc connecting the

new origin s to its predecessor is removed and the subtree
s

T = (
s

V,
s

A) rooted at

s is taken as the initial portion of the new optimal solution. This produces a cut

(V ′, V ′′) in the graph, where V ′ =
s

V and V ′′ =
r

V \V ′.

We use two vectors ps ∈ V |V | and ds ∈ R
|V | to keep track of the predecessor

nodes and the distance of each node in the optimal solution under construction,

and two vectors π and w to store the potential and the weight for each node as

described in [15]. In particular, at any iteration k, wk(i) is 0 if the node i has not
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been involved yet, or it expresses the shortest distance from the source node s to i

plus the current minimum value of the function c + π on FS(i). Finally, a priority

queue Q is used to store the nodes that during the algorithm become virtual source,

according to the concept expressed in [15]. The complete auction algorithmic scheme

for the R-SPTP is described in Figure 2.4. In lines 2-4 the above mentioned data

structures are initialized and the reduced costs are computed in lines 5-6. In 7-13

the subtree rooted in
s

T is extracted from
r

T, and for each node in
s

V, traversing
s

T in

post-order, the relative ields in ds, ps, π,w are updated. Finally, each node in
s

V with

FS(·) ̸= ∅ is added in the priority queue Q used to store the nodes in non-decreasing

order according to w. Ater step 0 (lines 14-33), the algorithm performs a sequence

of extensions from the actual solution
s

T to a node x ∈ V ′′. Once the extension is

performed, the subtree rooted in x is added to
s

T and extracted from
r

T. The process

of the extension terminates when
r

T becomes empty.

An extension is performed in line 16 applying the virtual source algorithm [15],

whose pseudo-code is described in Figure 2.5. This algorithm is based on a primal-

dual approach and improves both the convergence and the complexity of the best

known auction-like algorithm. It uses a virtual source concept based on the following

consideration: when a node i is visited for the irst time by any algorithm which

preserves the dual feasibility conditions, then the shortest path from the source node

to i is found. Therefore, the shortest path from the source to the remaining nodes

can be computed by considering i as a łvirtualžsource. The virtual source method is

very eicient, since it does not require the execution of the path contraction phase.

Figure 2.6 and Figure 2.7 describe the main operations performed by our auction

approach to determine the values of the vectors ps, ds, π,w for the irst obtained

sub-tree and the general sub-tree determined ater the path extension phase.

2.4.1 Correctness of the R-Auction

Let G = (V,A) be a directed graph and let P1, P2, . . . , Pq denote a sequence of SPTP

problems. We assume that the generic problem P(k−1), 2 ≤ k ≤ q is aimed at inding

a shortest path tree rooted at r and we denote with
r

T = (
r

V,
r

A) an optimal solution

for the problem P(k−1), where:

•
r

V = V , is the set of nodes in
r

T;

•
r

A ⊆ A, is the set of arcs in
r

T.

The Pk problem, instead, requires to ind a shortest path tree on G rooted at s,

with s ̸= r.
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1 R-Auction ( G = (V,A), C, dr(·), pr(·), s, Tr )
2 π(·)← w(·) = 0;
3 ds(·)← +∞;
4 ps(·)← pr(·);
5 foreach ( (i, j) ∈ A ) do
6 cij ← cij + (dr(i) − dr(j));

/* *********************** step-0 ********************** */

7 Ts ← extractSubtree( s, Tr );
8 Tr ← Tr \ Ts;
9 ps(s)← 0;
10 foreach ( i ∈ Ts ) do /* in post-order visit */

11 set-tree-first( Ts, s, i, dr, π, w, C);
12 remove-BS( Ts, i );
13 enqueue ( Q, i ); /* if FS(i) ̸= ∅ */

/* ******************** end step-0 ********************* */

14 operation ← 1;
15 while (true) do
16 switch ( operation ) do
17 case 1 do

18 (i, j)← find-extension( Ts, Tr, Q, C ) /* extension from Ts to Tr */

operation ← 2;

19 case 2 do
20 Tj ← extractSubtree( j, Tr );
21 Ts ← Ts ∪ (i, j) ∪ Tj;
22 Tr ← Tr \ Tj;
23 operation ← 3;

24 case 3 do
25 ps(j)← i;
26 ds(j)← ds(i) + cij;
27 foreach ( q ∈ Ts ) do /* in post-order visit */

28 set-tree-general( Ts, i, j, q, dr, π, w, ds, C);
29 remove-BS( Ts, q );
30 enqueue ( Q, q ); /* if FS(i) ̸= ∅ */

31 operation ← 4;

32 case 4 do
33 if ( Tr = ∅ ) then
34 return Ts.
35 operation ← 1;

Fig. 2.4 Auction algorithm for the R-SPTP.
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1 find-extension ( Ts, Tr, Q, C )
2 operation ← 1;
3 switch (operation) do
4 case 1 do
5 if ( w(q) = +∞ ∀ q ∈ Q ) then
6 return NIL;
7 i← select-min( Q );

8 case 2 do
9 if ( π(j) = +∞ ∀ j ∈ FS(i) or FS(i) = ∅ ) then
10 π(i) = w(i) = +∞;
11 if (i ∈ Q) then
12 update(Q, i);
13 operation ← 1;

14 if ( π(i) < min
(i,j)∈FS(i)

{cij + π(j)} ) then

15 oldprice ← π(i);
16 π(i)← min

(i,j)∈FS(i)
{cij + π(j)};

17 w(i)← w(i) + (π(i) − oldprice);
18 update(Q, i);
19 operation ← 1;
20 break;

21 else
22 ji ← argmin

(i,j)∈FS(i)

{cij + π(j)};

23 ps(ji)← i;
24 ds(ji)← w(i);
25 π(ji)← min

(ji,q)∈FS(ji)
{cjiq + π(q)};

/* if FS(ji) = ∅ then π(ji) = +∞ */;
26 w(ji)← π(ji);
27 if ( π(ji) ̸= +∞ ) then
28 insert (Q, i );
29 return (i, ji);

Fig. 2.5 General scheme of the function that performs an extension in R-Auction,
based on the virtual source algorithm.

1 set-tree-first( Ts, s, i, dr, π, w, C)
2 ds(i)← (dr(i) − dr(s)) + ds(s);
3 π(i)← min

(i,j)∈FS(i)
{cij + π(j)};

4 w(i)← w(s) + π(i);

Fig. 2.6 Procedure set-tree-first of R-Auction which sets the information of the
irst fragment of the optimal solution.
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1 set-tree-general( Ts, i, j, q, dr, π, w, ds, C)
2 ds(q)← (dr(q) − dr(j)) + ds(j);
3 π(q)← min

(q,t)∈FS(q)
{cqt + π(t)};

4 w(q)← w(i) + π(q);

Fig. 2.7 Procedure set-tree-general of R-Auction which sets the information of
the generic sub-tree added to the current partial solution.

Let
s

T0,
s

T1, . . . ,
s

Tm be the sequence of sub-trees built during the execution of the

R-Auction, for determining an optimal solution to the problem Pk, starting from
r

T = (
r

V,
r

A).

In particular, at the initial step (step-0), R-Auction constructs the portion

of the optimal solution
s

T0. At each successive step, step-1, . . . , step-m, the

solution under construction will be enlarged through a sequence of extensions

(i1, j1), (i2, j2), . . . , (im, jm) with iq ∈
s

Vq and jq ∈ V \
s

Vq, for q = 1, . . . ,m.

The extensions will connect a node belonging to the current partial solution to a

node not yet included in the solution. Once an extension (iq, jq) has been carried

out, the node jq reached and the corresponding sub-tree Tjq will be integrated in

the current partial solution.

To prove the correctness of R-Auction, we will show that the operations executed

by R-Auction are equivalent to those performed by the auction algorithm, in the

sense that the extensions (i1, j1), . . . , (im, jm) produced by R-Auction starting from

the solutions
s

T0, . . . ,
s

Tm−1 are the same produced by the classical auction algorithm

(Figure 2.2) starting from the paths P0, . . . , Pm−1.

In order to prove formally the correctness of R-Auction, it is useful to introduce

the following deinitions and notations:

• pr and dr represent the predecessors and distances vectors corresponding to

the optimal solution of the problem P(k−1), respectively;

• (π0, w0), (π1, w1), . . . , (πm, wm) denote the sequence of potentials and weights

for each nodes, computed by the R-Auction;

• G0 = (V0, A0), G1 = (V1, A1), . . . , Gm = (Vm, Am) represent the sub-graphs

induced by
s

T0,
s

T1, . . . ,
s

Tm;

• C is the matrix of the reduced costs computed at lines 5-6 in Figure 2.4.

To prove the correctness of R-Auction, we rely on the following theorem.



22 Re-optimization of Shortest Paths

Theorem 2. Suppose that R-Auction and the classic auction algorithm (referred in

sequel to as Auction) are running on the same input graph G = (V,A), with cost

function c for the former and c for the latter. At the end of the (k − 1)th extension,

let πk be the potential vector generated by Auction and (πk, wk) the potential and

weight vectors generated R-Auction, respectively. Then, during the kth extension the

following conditions hold:

πk(i) = πk(i), ∀ i ∈
r

Vk; (2.8)

πk(i) = πk(i) + [dr(i) − dr(ji)], for (i, ji) = (ik, jk); (2.9)

wk(i) = ds(i) + πk(i), for (i, ji) = (ik, jk), (2.10)

where ji = argmin
(i,j)∈FS(i)

{cij + πk(j)}.

Proof. We prove the thesis by induction on the number of extensions produced

by the algorithms. At step-0 (before the irst extension), let
s

T0 = (
s

V0,
s

A0) be the

sub-tree extracted from
r

T, where:

•
s

V0 ⊂
r

V;

•
s

A0 ⊂
r

A.

This extraction produces a cut in the tree
r

T, generating two sub-trees:
s

T0 and a

new tree
r

T0 = (
r

V0,
r

A0), where:

•
r

V0 =
r

V \
s

V0;

•
r

A0 =
r

A \
s

A0;

Since
s

T0 is extracted from an optimal shortest path tree, it represents an optimal

solution to SPTP deined on the sub-graph G0 of G induced by
s

T0. Then, it is

possible to show that there is a sequence of iterations of the algorithm Auction,

which produces the same sub-solution starting from s (this solution is stored in the

vector pred in Figure 2.2).

At step-1 (irst extension), we suppose that P0 = (s, . . . , i1) in Auction, then the

algorithm will try to extend P from i1. In more detail, the possible scenarios are as

follows:

if π1(i1) = min
(i1,j1)inFS(i1)

{ci1j1 + π1(j1)}, then j1 = argmin
(i1,j1)inFS(i1)

{ci1j1 + π1(j1)},
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and path P is extended through the arc (i1, j1) (see lines 18-19 in Figure 2.2).

At the same time in R-Auction:

if π1(i1) = min
(i1,j1)inFS(i1)

{ci1j1 + π1(j1)}, then j1 = argmin
(i1,j1)inFS(i1)

{ci1j1 + π1(j1)},

and
s

T0 is extended through the arc (i1, j1) (see line 19 in Figure 2.4).

Thus, for each node v ∈
r

V0, it results that:

π1(v) = π0(v) in Auction;

π1(v) = π0(v) in R-Auction.

Given that π0(v) = 0 and π0(v) = 0, then for step-1 condition 2.8 is satisied.

Concerning i1, it holds that:

π1(i1) = ci1j1 + π1(j1) in Auction;

π1(i1) = ci1j1 + π1(j1) in R-Auction;

w1(i1) = w1(i1) + (π1(i1) − π0(i1)) in R-Auction.

Moreover, since j1 ∈
r

V0, it follows that π1(j1) = π1(j1) = 0 and by substituting, we

obtain that:

π1(i1) = ci1j1 in Auction;

π1(i1) = ci1j1 in R-Auction;

w1(i1) = w1(i1) + (π1(i1) − π0(i1)) in R-Auction.

Since ci1j1 = cij + [dr(i1) − dr(j1)] (lines 5-6 in Figure 2.4), it follows that:

π1(i1) = ci1j1 + (dr(i1) − dr(j1)) in R-Auction,

then also condition 2.9 is veriied:

π1(i1) = π1(i1) + (dr(i1) − dr(j1)).
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Concerning condition 2.10, for
s

T0,

w1(i1) = w1(i1) + (π1(i1) − π0(i1))

= ds(i1) + ci1j1 (2.11)

= ds(i1) + π1(i1),

where equation(2.11) is true by the induction hypothesis (as stated and proved

in [14, 15]).

Ater the extension, the algorithm R-Auction inserts in the partial solution the

arc (i1, j1) and the sub-tree rooted in j1, obtaining the partial solution
s

T1 = (
s

V1,
s

A1).
s

T1 is an optimal solution to SPTP deined on the sub-graph G1 of G induced by
s

T1.

At this point,
s

T1 is extracted from
r

T0, obtaining a new sub-tree
r

T1 = (
r

V1,
r

A1),

where:

•
r

V1 =
r

V0 \
s

V1;

•
r

A1 =
r

A0 \
s

A1.

At step-k (kth extension), let
s

Tk−1 = (
s

Vk−1,
s

Ak−1) be the portion of the current

optimal solution to the SPTP deined on the sub-graph Gk−1 of G induced by
s

Tk−1,

while
r

Tk−1 = (
r

Vk−1,
r

Ak−1).

Thus, there is a sequence of iterations of the algorithm Auction which produces

the same sub-solution starting from s, and, looking at the pseudocode in Figure 2.2,

this solution is stored in the vector pred. Suppose that Pk−1 = (s, . . . , ik) in Auction,

then the algorithm will try to extend P from ik. In particular:

if πk(ik) = min
(ik,jk)inFS(ik)

{cikjk + πk(jk)}, then, jk = argmin
(ik,jk)inFS(ik)

{cikjk + πk(jk)},

then path P is extended through the arc (ik, jk), as described in lines 18-19 of

Figure 2.2. At the same time, in R-Auction:

if πk(ik) = min
(ik,jk)inFS(ik)

{cikjk + πk(jk)}, then, jk = argmin
(ik,jk)inFS(ik)

{cikjk + πk(jk)},

and
s

Tk−1 is extended through the arc (ik, jk), as described in line 19 of Figure 2.4.

Thus, for each node v ∈
r

Vk−1:
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πk(v) = πk−1(v) in Auction;

πk(v) = πk−1(v) in R-Auction.

Given that πk−1(v) = 0 and πk−1(v) = 0, then for step-1 condition 2.8 is true.

Concerning ik, it holds that:

πk(ik) = cikjk + πk(jk) in Auction;

πk(ik) = cikjk + πk(jk) in R-Auction;

wk(ik) = wk(ik) + (πk(ik) − πk−1(ik)) in R-Auction.

Moreover, since jk ∈
r

Vk−1, it follows that πk(jk) = πk(jk) = 0 and by substituting,

we obtain that:

πk(ik) = cikjk in Auction;

πk(ik) = cikjk in R-Auction;

wk(ik) = wk(ik) + (πk(ik) − πk−1(ik)) in R-Auction.

Given that cikjk = cikjk + [dr(ik) − dr(jk)], computed at lines 5-6 in Figure 2.4, it

follows that:

πk(ik) = cikjk + (dr(ik) − dr(jk)) in R-Auction,

then the condition 2.9 is true

πk(ik) = πk(ik) + (dr(ik) − dr(jk)).

Concerning the condition 2.10, for
s

Tk−1,
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wk(ik) = wk(ik) + (πk(ik) − πk−1(ik))

= ds(ik) + cikjk (2.12)

= ds(ik) + πk(ik),

where equation( 2.12) is true by the induction hypothesis (as stated and proved

in [14, 15]).

Ater the extension, the algorithm R-Auction inserts in the solution under con-

struction the arc(ik, jk) and the subtree rooted in jk, obtaining the partial solution
s

Tk = (
s

Vk,
s

Ak).
s

Tk will be an optimal solution for the subgraph Gk of G induced by
s

Tk. At this point,
s

Tk will be extracted from
r

Tk−1, obtaining a new subtree for the

nodes not yet in solution,
r

Tk = (
r

Vk,
r

Ak), where:

•
r

Vk =
r

Vk−1 \
s

Vk;

•
r

Ak =
r

Ak−1 \
s

Ak.

2.4.2 Re-optimization Dijkstra algorithmic scheme: R-Dijkstra

Adopting the same principle used for R-Auction we designed a Dijkstra-like algorithm

for addressing the R-SPTP, in the case of origin change, which reuses information

related to the previous optimal solution. During its executions, the classical Dijkstra

algorithm maintains for each node v ∈ V a distance label d(v), a predecessor p(v),

and a status S(v) ∈ {unreached, labeled, scanned}. All nodes with a not scanned

status are stored in non-decreasing order, according to the label d(), in a priority

queue Q.

Let
r

T = (
r

V,
r

A) be an optimal solution to the problem P(k−1). In order to solve

the problem P(k), which requires inding a shortest path tree rooted in a new origin

s ̸= r, the R-Dijkstra algorithm extracts from
r

T the sub-tree rooted in s,
s

T (lines

4-6 in Figure 2.8). Then, it visits in post-order
r

T and for each visited node v,

it assigns p(v), d(v), deletes BS(v). Furthermore, if FS(v) = ∅, the algorithm sets

S(v) = scanned; otherwise, it sets S(v) = labeled and inserts v in Q, lines 6-11.

Starting from these initial settings, the classical Dijkstra’s algorithm is then applied,

line 12.
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The correctness of R-Dijkstra is evident and very simple to prove.
s

T is an

optimal solution for the subgraph G̃ of G induced by
s

T and the rest of the solution

is built according to the classical Dijkstra’s paradigm.

1 R-Dijkstra( G = (V,A), C, dr(·), pr(·), s, Tr )
2 ds ← +∞ ;
3 ps ← NIL ;
4 Ts ← extractSubtree( s, Tr, );
5 Tr ← Tr \ Ts ;
6 foreach ( i ∈ Ts ) do /* in post-order visit */

7 ds(i)← dr(i) − dr(s);
8 ps(i)← pr(i);
9 remove-BS( Ts, i );
10 enqueue ( Q, i ); /* if FS(i) ̸= ∅ */

11 ps(s)← 0;
12 DIJKSTA( G, C, ds, ps, s, Q );
13 return {ps, ds};

Fig. 2.8 The pseudocode of the re-optimization Dijkstra algorithmic scheme.

2.4.3 Computational complexity

We will analyze the theoretical computational complexity of the algorithms described

above, R-Auction and R-Dijkstra.

Theorem 3. The computational complexity of R-Auction is O(n2 logn).

Proof. Since |V | = n and |E| = m, for the R-Auction, we have that:

• the computation of the reduced costs matrix, C (lines 5-6 in Figure 2.4),

requires O(m);

• tree and queuing operations, lines 10-12, and line 13, require in the worst

case O(m). This case can occur if and only if s is the only child of r. In this

case, only one extension is required to complete the solution.

Furthermore, we know from a theorem proved in [15] that the worst case complexity

for the whole virtual source algorithm, whose essential policy is used in our

R-Auction to extend the actual solution, is O(n logn), i.e. n− 1 iterations in each

of which one extension, with complexity O(logn), is performed. Then our function

find-extension is O(logn). R-Auction performs at most n− 1 extensions, if and
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only if each sub-tree integrated in the solution consists of only one node. This is

the worst case for R-Auction, whose complexity is given by:

max
{

O(n logn),O(m),O
 n∑

i=1

i logn
}

,

where n logn is the time required for n− 1 applications of the procedure

find-extension, O(m) is the time required for the deletion of all backward stars,

and O
∑n

i=1 i logn


is the time required for the tree setting operations. Since we

are considering the worst case, the under construction solution grows one node at

each iteration and the updating of the node labels requires O(logn). It is easy to

conclude that the computational complexity is given by:

n∑

i=1

i logn =
1

2
n(n+ 1) logn = O(n2 logn).

Theorem 4. R-Dijkstra has the same computational complexity of the classical

Dijkstra’s algorithm, O(m logn)

Proof. In the algorithm, described in Figure 2.8, the procedure extractSubtree

works in O(n), subsequent phase, when the nodes of the extracted sub-tree are

inserted in Q, requires O(logn). While the last phase that recalls a procedure that

applies the Dijkstra algorithm starting from the node in Q is O(m logn).

2.4.4 Computational Results

The aim of this paragraph is to assess the behavior of the proposed solution

approaches (i.e., R-Auction and R-Dijkstra algorithms) in terms of computational

cost and to compare them to a classic approach from scratch, based on the Dijkstra

algorithm (referred in the sequel to as R-Scratch). All the algorithms have been

coded in C, compiled with gcc 5.4.0 and tested by using an Intel(R) core(TM) i7 CPU

4720HQ, 2.60 GHz, ram 8.00 GB, under a ubuntu 16.04 LTS operating system.

To make a fair comparison among all the algorithms used in the testing phase,

we have adopted the same data structure to represent the priorities queue. This

structure was inspired by the Multi-Level Bucket proposed in [18, 19]. It must be

highlighted that this structure was designed ad hoc for the Dijkstra algorithm.
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Test Problems

The instances used in the testing phase can be grouped into the following main four

diferent categories:

1. Grid-instances: the test problems belonging to this set were built by using the

network generator described in [46]. In particular, the following three diferent

typologies of grid networks are considered.

PURE-GRID: they are classical two-dimensional grids G = (V,A), where the

set V = {1, . . . , n2} is composed by n levels of nodes. All nodes v ∈ V are

divided into the following three main sets:

corner-node: (CN), deined as CN = {1, n, n2 − n+ 1, n2};

lateral-node: (LN), that is, LN = {v | 1 < v < n and n2 − n + 1 < v <

n2 and mod (v, n) = {0, 1}} \ CN;

inner-node: (IN), the remaining nodes, IN = V \ CN \ LN;

The aforementioned node sets are characterized by the following connec-

tions: ∀ v ∈ CN⇒ |BS(v)| = |FS(v)| = 2, ∀ v ∈ LN⇒ |BS(v)| = |FS(v)| =

3, ∀ v ∈ IN⇒ |BS(v)| = |FS(v)| = 4.

CYLINDER: the structure is similar to the PURE-GRID one:

CN = {∅};

LN = {v | 1 < v < n and n2 − n+ 1 < v < n2};

and there are supplementary bilateral connections for each pair of nodes

(u, v) such that v = u+ (n− 1), where mod (u,n) = 1.

TORUS: the structure is similar to the CYLINDER one:

LN = {∅};

and there are supplementary bilateral connections for each pair of nodes

(u, v) such that v = n2 − n+ u, where 1 < u < n.

The computational experiments were carried out by considering instances of

increasing dimensions. In particular, for each type of grid (i.e.,PURE-GRID,

CYLINDER, TORUS) the number of nodes was chosen equal to: {100×100,

200×200, 300×300, 400×400, 500×500}.

2. GRIDGEN-instances: obtained by using the network generator implemented by

Bertsekas, [11], which constructs a two-dimensional grid with wraparound
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structure. The skeleton structure is made up of a n×n grid, where each node

is connected to four neighbors nodes. Since the generator was proposed for

the minimum cost low problem, each grid contains two special nodes, source

and sink, which are connected to each other node in the grid. In this way,

for each node v, |FS(v)| = |BS(v)| = 6. Furthermore, it is possible to add a

given number of supplementary arcs between randomly selected nodes. The

experiments were carried out on square grids, where the nodes were set

equal to {100×100, 150×150, 250×250, 500×500}. For each size, we generated

three diferent typologies of network: n×n-6N the standard skeleton network;

n×n-6N+25 standard network with 25% of additional randomly chosen arcs;

n×n-6N+50 standard network with 50% of additional randomly selected arcs.

3. REAL-instances: these test problems were chosen from the USA road net-

works available at the web page of 9th DIMACS Implementation Challenge

- Shortest Paths, [27]. Each graph comes in two versions: physical distance

and transit time arc lengths. For our experiments, we considered three diferent

road networks which describes the area of New York City, San Francisco Bay

and Colorado.

4. RANDGRAPH-instances: these networks were generated with a command line

tools generator, which builds diferent types of graphs and presented in [27, 103].

For our experiments we generated random graphs with a ixed maximum out

degree according to the size of the graph. In particular, let n be the selected

dimension (number of nodes) of the graph, we generate three diferent kinds

of graph such that the maximum-out degree for each node δ+ is given by:

0.1%, 0.25% and 0.5% of n. In the computational experiments, we considered

networks for which the number of nodes was set equal to {10000, 50000,

100000}. For each size we generated three diferent typologies of network:

n-outx1, n-outx2 and n-outx3, where n establishes the size, x1 = 0.1 · n,

x2 = 0.25 · n and x3 = 0.5 · n deines the maximum random out degree for each

node.

Experiments setup and results

The computational experiments were carried out on the networks described in the

previous paragraphs. Since the R-SPTP in the case of origin changes is considered

in this paper, given an instance G = (V,A), two sets R = {r1, r2, . . . , rp} of random

łoldž-sources and S = {s1, s2, . . . , sq} of random łnewž-sources have been selected,
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with ri, sj ∈ V and ri ̸= sj, ∀ 1 ≤ i ≤ p and 1 ≤ j ≤ q. In particular, in our settings

p = 5 and q = 10.

All the algorithms were executed for all the pairs in the Cartesian product R × S.

For each type of network, three diferent instances are generated, by randomly

choosing the arc cost according to a uniform distribution, within the range [0, 100000].

In particular, the rand() function of the stdlib library with srand(time(NULL))

initialization is used.

The computational results are reported in Tables 2.1 - 2.5, where the follow-

ing information is given: the irst two columns indicate the instances, with the

corresponding name and dimension, the second, third and forth pair of columns

summarize the results obtained by each algorithm.

In particular, the ield łavg-timežindicates the average computational time (in

seconds), while the ield ł%-winžindicates for each algorithm and for each instance

the win rate, deined as the percentage of experiments (rounded to the nearest

integer) in which a given algorithm łwinsžthe others, that is, it shows a lower

computational time. To point out the best performances, for each instance, we

highlight in bold the algorithm that is either the fastest or behaves the best in the

majority of instances.

To better analyze the behavior of the considered approaches, it is useful to

consider the results given in Figures 2.9 - 2.12, in which a graphical representation

of the computational results achieved in the testing phase through the box-plot

diagrams is given.

The computational times (in seconds) are given on the axis of the ordinates,

while information related to the considered algorithms (R-Auction, R-Scratch and

R-Dijkstra) are reported on the horizontal one.

The box-plots are generated on the basis of the algorithms’ running times.

In addition, Figures 2.13-2.16 highlight the win rate in the form of a radar-chart.

Grid-instances results The computational results obtained on the Grid-instances

are given in Table 2.1 and in the radar-chart of Figure 2.13. It is evident that for the

irst set of test problems, the win rate of R-Auction is always higher than the value

obtained for the other algorithms. However, for the instances CYLINDER-100x100,

TORUS-100x100 and PURE-GRID-200x200 the best running times, on average, are

achieved by R-Dijkstra. Grouping the instances according to their typologies,

on the PURE-GRID networks, the win rate is equal to 88.9%, 2.8% and 7.4% for

R-Auction, R-Scratch and R-Dijkstra, respectively; on the CYLINDER networks the
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percentages are: 81.8% for R-Auction, 6% for R-Scratch and 12.4% for R-Dijkstra;

inally on TORUS networks: 53.2% for R-Auction, 15% for R-Scratch and 34.6%

for R-Dijkstra. The superiority of the proposed approach is more evident on the

PURE-GRID and the CYLINDER networks, while on the TORUS instances, R-Dijkstra

becomes competitive.

Table 2.1 Test results on Grid-instances.

instance R-Auction R-Scratch R-Dijkstra

type size t-avg %-win t-avg %-win t-avg %-win

PURE-GRID 100x100 0.009 91 0.010 2 0.010 8
CYLINDER 100x100 0.011 74 0.011 8 0.010 18
TORUS 100x100 0.013 71 0.013 5 0.012 25
PURE-GRID 200x200 0.052 78 0.053 9 0.052 12
CYLINDER 200x200 0.050 78 0.053 11 0.053 11
TORUS 200x200 0.071 65 0.075 8 0.074 28
PURE-GRID 300x300 0.130 88 0.148 0 0.144 12
CYLINDER 300x300 0.143 71 0.153 6 0.149 23
TORUS 300x300 0.217 42 0.233 25 0.228 34
PURE-GRID 400x400 0.272 92 0.314 3 0.309 5
CYLINDER 400x400 0.293 89 0.328 3 0.323 8
TORUS 400x400 0.494 45 0.524 22 0.522 34
PURE-GRID 500x500 0.497 100 0.567 0 0.565 0
CYLINDER 500x500 0.536 97 0.606 2 0.599 2
TORUS 500x500 0.955 43 0.991 15 0.985 42

GRIDGEN-instances results The results obtained on the GRIDGEN-instances are

given in Table 2.2 and Figure 2.14. From the radar-chart in Figure 2.14, it is quite

clear that R-Auction outperforms both R-Scratch and R-Dijkstra. In fact, analyzing

Table 2.2, for more details, one can establish that with the sole exception of the

instances 250x250-6N+50 and 500x500-6N+50 where the win rate of R-Auction is

equal to 77% and 70%, respectively, in all other cases it is around 90%. As far as

the comparison between the two Dijkstra-like algorithms is concerned, R-Dijkstra

outperforms R-Scratch. More speciically, in the majority of cases, the win rate of

R-Dijkstra is close to 10% (with a peak of 23% for the instance 250x250-6N+50).

On the other hand, in only one case R-Scratch reaches a win rate of 13% while in

all others it is between 0% and 3% (see Table 2.2).
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Table 2.2 Test results on instances generated with GRIDGEN generator, [11]. The name
of the instances indicates the relative dimension, given by "n×m", and the number of
connections. The default number of arcs is given by the skeleton structure, 6·(n×m),
to which have been added 25% and 50% of new connections, respectively.

instance R-Auction R-Scratch R-Dijkstra

type size t-avg %-win t-avg %-win t-avg %-win

100x100-6N 100x100 0.112 87 0.125 0 0.124 13
100x100-6N+25 100x100 0.170 93 0.213 3 0.212 4
100x100-6N+50 100x100 0.180 90 0.261 3 0.254 7
150x150-6N 150x150 0.832 97 0.986 0 0.956 3
150x150-6N+25 150x150 0.995 90 1.328 0 1.282 10
150x150-6N+50 150x150 1.044 87 1.530 0 1.471 13
250x250-6N 250x250 8.117 90 9.127 0 8.814 10
250x250-6N+25 250x250 9.186 90 11.528 0 11.100 10
250x250-6N+50 250x250 11.394 77 15.153 0 14.358 23
500x500-6N 500x500 288.259 90 419.797 3 399.360 7
500x500-6N+25 500x500 319.562 90 403.882 3 393.683 7
500x500-6N+50 500x500 375.822 70 530.773 13 522.269 17

REAL-instances results For this set of networks, two diferent settings for the

experiments have been considered. In the irst case, the same setup strategy used

for the other instance classes as described in 2.4.4 is adopted. The related results,

reported in Table 2.3, clearly underline that the Dijkstra-like strategies outperform

R-Auction, both on the win rate and the average running times. In particular,

the win rate of R-Auction is on average 14.5%, whereas it is 34% and 51.5%,

for R-Scratch and R-Dijkstra, respectively. In addition, the comparison between

R-Scratch and R-Dijkstra, underlines that the former behaves the best. Indeed,

R-Dijkstra is about 4% faster than R-Scratch, according the running times, while

the diference in the win rate is around 20% in favor of R-Dijkstra, with the sole

exception of the instance USA-road-SFbay where the diference is 2%. The speciic

behavior of R-Auction on this set of test problems, that is not in line with the one

observed on the Grid and GRIDGEN instances, can be justiied by considering the

speciic data structure used to store the nodes with temporal label, i.e. the priority

queue. We underline that since R-Auction is based on a dual approach (unlike a

Dijkstra-like algorithm), it considers the arc costs as reduced costs. Therefore during

the execution of a Dijkstra-like algorithm, for each node i, the label associated with

the node speciies the cost of the best path found so far from the origin node to i. If

i is a scanned node (see Paragraph 2.4.2 for more details) then its label indicates the
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cost of the shortest path from the origin to i (and the label will not change anymore),

otherwise the label is an upper bound on the shortest path cost from the origin

to i and it could be decreased aterwards. On the contrary, the label associated

with a given node i during the execution of R-Auction represents the reduced cost

of the best path found so far from the origin to i. By using the same terminology

of the Dijkstra framework, if i is a scanned node (that is FS(i) = ∅, see Paragraph

2.4 for more details) then the label will not change anymore and a shortest path is

found, otherwise the label could be increased aterwards. This diference between

the two approaches justiies the deterioration of the performance and the eiciency

of R-Auction, if a priority queue, well tailored to a Dijkstra-like approach is used,

as in our case.

In order to investigate this issue better, another set of instances were generated,

by deining opportunely the set S of the łnew ž-sources. Indeed, the new sources

are selected on the basis of their distance from the old source, in decreasing order.

In particular, the nodes belonging to the set of łoldž-source R are selected randomly,

as speciied in Paragraph 2.4.4, while the nearest k nodes from the łoldž-source

are inserted in S. The results obtained on this new set of instances are reported in

Table 2.4. The trend observed for the R-Auction is considerably diferent from that

shown with the other REAL-instances. Indeed, R-Auction behaves the best, both in

terms of win rate and average running times.

In particular, R-Auction is around 9% and 10% faster than R-Dijkstra and

R-Scratch, respectively, considering the average of running times. On the other

hand, as regarding the win rate, the value obtained with R-Auction is almost always

greater than 90%, with the sole exception of the instances USA-road-COL-t, for

which a win rate of the 89% is observed, and USA-road-SFbay, where it is 51%,

while R-Scratch and R-Dijkstra show a win rate almost always lower than 10%,

except for the instance USA-road-SFbay.

RANDGRAPH-instances results The computational results obtained on this set of

test problems are given in Table 2.5 and in Figures 2.16 and 2.12. On this class

of instances, the experimental results are comparable with those obtained on the

GRIDGEN networks. In fact, the radar-chart in Figure 2.16 clearly underlines that

R-Auction outperforms R-Scratch and R-Dijkstra, both in terms of win rate and

computational overhead. Looking at the results of Table 2.5, it is evident that the win

rate of R-Auction is ever greater than 90%. Furthermore, the good performances

of R-Auction are also conirmed by the box-plot in Figure 2.12. In particular, for



2.4 Re-optimization Auction Algorithmic Scheme: R-Auction 35

Table 2.3 Test results on real instances, from 9th DIMACS Implementation

Challenge - Shortest Paths, [27]. In instances with suix "-t" the arc costs
is given by the travel time, in the other by physical distance.

instance R-Auction R-Scratch R-Dijkstra

name size t-avg %-win t-avg %-win t-avg %-win

USA-road-NY 264346 0.842 14 0.512 33 0.509 52
USA-road-SFbay 321270 0.651 32 0.463 33 0.438 35
USA-road-COL 435666 3.149 2 0.577 41 0.569 57
USA-road-NY-t 264346 1.262 2 0.863 38 0.841 60
USA-road-SFbay-t 321270 1.161 35 0.706 22 0.683 43
USA-road-COL-t 435666 4.300 2 0.787 37 0.780 62

Table 2.4 Test results on real instances, from 9th DIMACS Implementation

Challenge - Shortest Paths, [27]. Where the new sources were chosen on the
basis of their distance from the old source, in decreasing order. The set of "old"-
source R is selected random as speciied above in the setup section, while the set of
"new"-source S is recomputed from scratch at each test and it is given by the list of
the irsts q nodes further from the actual old-source.

instance R-Auction R-Scratch R-Dijkstra

name size t-avg %-win t-avg %-win t-avg %-win

USA-road-NY 264346 0.415 92 0.426 2 0.425 6
USA-road-SFbay 321270 0.430 51 0.436 22 0.435 27
USA-road-COL 435666 0.502 94 0.550 2 0.546 5
USA-road-NY-t 264346 0.576 100 0.680 0 0.679 0
USA-road-SFbay-t 321270 0.539 92 0.675 3 0.673 5
USA-road-COL-t 435666 0.720 89 0.745 5 0.743 6
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Table 2.5 Test results on random instances generated with RANDGRAPH generator,
[103]. The names of the instances indicates the structure of the relative network. In
particular, the irst number indicates the dimension, in thousands, while the number
ater "out" speciies the maximum outgoing degree of each nodes.

instance R-Auction R-Scratch R-Dijkstra

type size t-avg %-win t-avg %-win t-avg %-win

10k-out10 10000 0.021 97 0.040 0 0.039 3
10k-out25 10000 0.047 90 0.135 0 0.133 10
10k-out50 10000 0.047 100 0.329 0 0.322 0
50k-out50 50000 6.025 100 12.715 0 12.611 0
50k-out125 50000 4.405 100 20.448 0 20.376 0
50k-out250 50000 5.317 100 23.490 0 23.351 0
100k-out100 100000 40.039 100 161.805 0 153.912 0
100k-out250 100000 46.957 100 158.978 0 152.527 0
100k-out500 100000 40.798 100 250.255 0 248.564 0

the instance of dimension equal to 10000, R-Auction is around 78% and 77% faster

than R-Scratch and R-Dijkstra, respectively; for the instance of dimension 50000,

R-Auction is around 72% and 71% faster than R-Scratch and R-Dijkstra; inally,

for the instance of dimension 100000, R-Auction is around 78% and 77% faster than

R-Scratch and R-Dijkstra, respectively.

R-Auction with an ad-hoc priority queue

The computational results reported in the previous paragraphs show that, in some

cases (i.e., especially for the Grid and only moderately for GRIDGEN instances)

R-Auction exhibits signiicant variability in the execution time.

In order to overcome this drawback, we developed an ad-hoc structure to

implement the priority queue for the R-Auction, and we report in this paragraph

some computational results, for the sole purpose of showing how it is possible to

make the proposed auction algorithm more stable from a computational point of

view.

The related results are given in Table 2.6 and box-plots in Figures 2.17 2.18, 2.19

and 2.20, where the auction algorithm for the re-optimization equipped with the

new priority queue is referred to as R-Auction-b.

In particular, Table 2.6 reports the averages of the Relative Standard Deviations

(RSDs) for the two versions of the Auction algorithm. The RSDs were computed to

measure the dispersion of the probability distribution of the running times collected
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in the testing phase. From the data reported in the aforementioned table, it is

evident that the variability in the running times is drastically reduced when the new

structure is adopted. In addition, an improvement in the eiciency is also observed.

In what follows, we analyze the results for each category of test problems.

Table 2.6 Average of RSD for R-Auction-b and R-Auction. REAL∗ indicates the
special case, considered only for the REAL-instances, when the new sources are
taken from the list of the further nodes from the old origin.

class-instance R-Auction-b R-Auction

Grid 10.442 16.897
GRIDGEN 17.568 22.726
REAL 12.993 25.454
REAL∗ 7.652 19.863
RANDGRAPH 17.119 44.800

Grid-instances (Figure 2.17): for this set of test problems, the use of the ad-hoc

priority queue allows also a reduction in the execution time to be obtained,

with the exception of the instances PURE-GRID-100x100 and CYLINDER-100x100.

In particular, R-Auction-b is on average 53% times faster than R-Auction.

While, the win rate is around 75%, 80% and 93% for R-Auction-b and around

23%, 16% and 6% for R-Auction, considering the average of the win rate

for the classes PURE-GRID, CYLINDER and TORUS, respectively. In all the cases,

especially for the instances of dimension greater than 300x300 an execution

time variability reduction in comparison with R-Auction is observed.

GRIDGEN-instances (Figure 2.18): the R-Auction-b is more eicient than R-Auction

on this set of instances. In particular, it is about three time faster than

R-Auction. Except for the instance 150x150-6N, the execution time variability

is appreciably less than the one observed for the R-Auction and the two

Dijkstra-like techniques (R-Scratch and R-Dijkstra);

REAL-instances (Figure 2.19): the computational results collected on this set of

instances underline two important issue. The irst one is related to the

eiciency of the proposed approach. Indeed, R-Auction-b is competitive with

the Dijkstra-like approaches, also when the new sources belonging to the set

S are chosen randomly. In particular, R-Auction-b is around 19% and 17%

faster than R-Scratch and R-Dijkstra, respectively, when the new source is
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selected randomly. Meanwhile, R-Auction-b is around 25% and 24% faster

than R-Scratch and R-Dijkstra when the new source is selected according

to the second criterion speciied in Paragraph 2.4.4. This behavior was not

observed for R-Auction (see Table 2.3). Finally, looking at the box-plot, it is

evident that the stability of the algorithm is increased with the adoption of

the new ad-hoc structure.

RANDGRAPH-instances (Figure 2.20): the proposed R-Auction showed a stable trend

when a general data structure was adopted (see Figure 2.12) in relation with

the Dijkstra-like strategies. This trend is conirmed for R-Auction-b and a

better behavior is observed when the new data structure is used (see Figure

2.20). For this class, R-Auction-b is about 56% faster than R-Auction, and the

average win rate, considering all the instances, is around 77% for R-Auction-b

and 13% for R-Auction, respectively.

Finally, it is important to point out that we have also implemented and tested the

R-Scratch and R-Dijkstra, by using the ad-hoc structure, proposed to represent

the priority queue for our auction approach. However, the collected computational

results showed that the performance of the Dijkstra-like approaches deteriorates.

Thus, we have decided to not include the related results.
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Fig. 2.9 Grid-instances box-plot.
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Fig. 2.10 GRIDGEN-instances box-plot.
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Fig. 2.11 REAL-instances box-plot.
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Fig. 2.12 RANDGRAPH-instances box-plot.
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Fig. 2.17 Grid-instances box-plot considering an alternative ad hoc structure for the
priority queue of R-Auction.
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Fig. 2.18 GRIDGEN-instances box-plot considering an alternative ad hoc structure for
the priority queue of R-Auction.
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Fig. 2.19 REAL-instances box-plot considering an alternative ad hoc structure for the
priority queue of R-Auction.
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Fig. 2.20 RANDGRAPH-instances box-plot considering an alternative ad hoc structure
for the priority queue of R-Auction.



Chapter 3

Graph Drawing Problem

In this chapter, we discuss the classical graph drawing problem in its two variants,

Two Layers Crossing Minimization Problem and Multi-Layer Crossing Minimization

Problem. Moreover, the dynamic version of the problem (Incremental Graph Drawing

IGDP) and the novel problem that we proposed (Constrained IGDP, C-IGDP) will

be addressed. For these problems we will present their mathematical models, and

both recent and well known approaches designed for them. Finally, an exhaustive

discussion will be devoted to our new problem, where we introduce the resolutive

strategies designed for the C-IGDP , and an extensive numerical evaluation section

where we will compare their performances.

3.1 Two Layer Crossing Minimization Problem

(TLCMP)

Let G = (V1, V2, A) be a bipartite graph with |V1| = n1 and |V2| = n2. The Two-Layer

Crossing Minimization Problem (TLCMP) consists of determining the minimum number

of crossing among the two layer of G such that nodes can be permuted in both

layers and edges are drawn as straight lines. Any solution is uniquely determined

by the permutations π1 and π2 of V1 and V2. The mathematical formulation for this
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problem is as follows:

(TLCMP) min
∑

(i,j),(k,l)∈A

cijkl

subject to:

− cijkl ≤ yjl − xik ≤ cijkl, ∀ (i, j), (k, l) ∈ A, j < l (3.1)

1− cijkl ≤ ylj + xik ≤ 1+ cijkl, ∀ (i, j), (k, l) ∈ A, j > l (3.2)

0 ≤ xij + xjk − xik ≤ 1, ∀ 1 ≤ i < j < k ≤ n1 (3.3)

0 ≤ yij + yjk − yik ≤ 1, ∀ 1 ≤ i < j < k ≤ n2 (3.4)

xij, yij, cijkl ∈ {0, 1}, (3.5)

where, xij = 1 if if i precedes j, i.e. π1(i) < π1(j), 0 otherwise. In the same way

for the second level, yij = 1 if π2(i) < π2(j), 0 otherwise. Furthermore, cijkl = 1 if

and only if xik · ylj = 1 or xki · yjl = 1. The problem of minimizing the arc crossing

between two layers is NP-complete [57].

3.2 Multi Layer Crossing Minimization Problem

(MLCMP)

Let G = (V,A) be a multi-layered graph, where V is partitioned into disjoint sets:

V1 ∪V2 ∪ · · · ∪Vp with |Vi| = ni such that for each edge (u, v) ∈ A⇒ u ∈ Vi and v ∈

Vi+1,∀i = 1, . . . , p− 1. The set of edges, A, can be expressed as A1 ∪ A2 ∪ . . . Ap−1,

where Ai represents all connections between the layer i and i+1, for i = 1, . . . p−1.

The mathematical formulation for this problem is as follows:

(MLCMP) min

p−1∑

t

∑

(i,j),(k,l)∈At

ctijkl

subject to:

− ctijkl ≤ xt+1
jl − xtik ≤ ctijkl, ∀ (i, j), (k, l) ∈ At, j < l (3.6)

1− ctijkl ≤ xt+1
lj + xtik ≤ 1+ ctijkl, ∀ (i, j), (k, l) ∈ At, j > l (3.7)

0 ≤ xtij + xtjk − xtik ≤ 1, ∀ 1 ≤ i < j < k ≤ nt (3.8)

xtij, c
t
ijkl ∈ {0, 1}, (3.9)
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3.3 Incremental Graph Drawing Problem (IGDP)

Let H = (V,A, k, L) be the corresponding hierarchical graph obtained from G through

the procedure described in [57], where

• L(v) : V 7→ {1, 2, . . . , k}, is a function which indicates the layer where the node

v resides;

• Li = {v ∈ V | L(v) = i}, for i = 1, . . . , k, indicates the set of nodes in the layer

i;

Starting from H, an incremental graph IH = (IV, IA, p, L) is deined as the graph

resulting by adding to V a set of new nodes V̂ , with their corresponding arcs, such

that IV = V ∪ V̂ , A ⊆ IA and L(v) : IV 7→ {1, 2, . . . p}, with the value not changing

for v ∈ V . A drawing for H is deined as D = (H,Φ), where Φ = {φ1, φ2, . . . , φk},

in particular φi establishes the ordering of the nodes in the layer i. With φi(j) we

indicates the node in position j in the layer i. To ind the position of a node v in

the drawing D we can use π(v) as in the case of the formulation for the TLCMP, in

Paragraph 3.1, in this way if π(v) = φi(j) then π(v) = j.

Starting from D, the aim of the IGDP is to ind a new drawing ID = (IH,Φ) for

IH, in order to minimize the number of crossings while keeping the same relative

ordering for the original node V . To better understand the goal of the problem: let

u and v be two original nodes in V , such that π(u) < π(v) in H, then in the new

solution IH, the new positions for u and v, π ′(u) and π ′(v), must be such that

π ′(u) < π ′(v). To obtain a mathematical formulation for the IGDP, one can easily
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extend the model proposed for the MLCMP in Paragraph 3.2.

(IGDP) min

p−1∑

t

∑

(i,j),(k,l)∈IA
and

L(i)=L(k)

ctijkl

s.t.:

− ctijkl ≤ xt+1
jl − xtik ≤ ctijkl, ∀ (i, j), (k, l) ∈ IA,

L(i) = L(k), j < l,

1− ctijkl ≤ xt+1
lj + xtik ≤ 1+ ctijkl, ∀ (i, j), (k, l) ∈ IA,

L(i) = L(k), j > l,

0 ≤ xtij + xtjk − xtik ≤ 1, ∀ i, j, k ∈ IV, i < j < k

L(i) = L(j) = L(k),

xtij = 1, ∀ i, j ∈ V, L(i) = L(j),

π(i) < π(j),

xtij = 0, ∀ i, j ∈ V, L(i) = L(j),

π(i) > π(j),

xtij, c
t
ijkl ∈ {0, 1},

3.4 Constrained-Incremental Graph Drawing Problem

(C-IGDP)

With a view to reach a widely acceptable compromise between the crossing mini-

mization and preservation of the mental map, we proposed a constrained version of

the IGDP. The C-IGDP requires an additional constraint that restricts the shit of

the original nodes. Considering n1, n2, . . . , np be the numbers of original nodes in

each layer, such that:

ni =
∑

v∈V
and

v∈L(v)

1, ∀ i = 1, . . . p. (3.10)

Let i ∈ V be an original node, and π(i) its starting position, given a positive integer

input value K such that K ≤ ni,∀ i = 1, . . . , p. Then, the new positions π ′(i)
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occupied by each original node in the solution must be such that:

max{1, π(i) − K} ≤ π ′(i) ≤ min{π(i) + K,n ′
L(i)}, ∀ i ∈ V, (3.11)

where n ′
L(i) represents the number of total nodes in the layer L(i) considering also

the incremental ones. Any original positions for the original nodes can be computed

with:

π(i) = nL(i) −
∑

j∈V
and

j∈L(i)

xij (3.12)

Now, the mathematical formulation for the C-IGDP is obtained as follows:

(C-IGDP) min

p−1∑

t

∑

(i,j),(k,l)∈IA
and

L(i)=L(k)

ctijkl

s.t.:

− ctijkl ≤ xt+1
jl − xtik ≤ ctijkl, ∀ (i, j), (k, l) ∈ IA,

L(i) = L(k), j < l,

1− ctijkl ≤ xt+1
lj + xtik ≤ 1+ ctijkl, ∀ (i, j), (k, l) ∈ IA,

L(i) = L(k), j > l,

0 ≤ xtij + xtjk − xtik ≤ 1, ∀ i, j, k ∈ IV, i < j < k

L(i) = L(j) = L(k),

xtij = 1, ∀ i, j ∈ V, L(i) = L(j),

π(i) < π(j),

xtij = 0, ∀ i, j ∈ V, L(i) = L(j),

π(i) > π(j),

LBi ≤ π ′(i) ≤ UBi, ∀ i ∈ V,

xtij, c
t
ijkl ∈ {0, 1}, π ′(i) ∈ N

+,

where the penultimate constraint is called position constraint, and LB and UB

represent a lower and an upper bound for the new position of each original node,

in particular LBi = max{1, π(i) − K} and UBi = min{π(i) + K,n ′
L(i)} for each i ∈ V .
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3.5 Strategies for the C-IGDP

In this paragraph we will analyze four diferent strategies proposed for the C-IGDP

and presented in [98]. The irst three methods are based on the GRASP-framework,

while the last is memory based and adopts a Tabu-like approach. Since all the

mathematical formulations surveyed in the previous paragraphs have as objective the

minimization of the number of crossing arcs, an explanation of what is mathematically

considered as a crossing follows. Let (u1, v1) and (u2, v2) be two pairs of arcs.

Naturally, both u1 and u2, and v1, v2, respectively reside on the same layer. Let us

suppose that u1, u2 ∈ Li and v1, v2 ∈ Li+1. Then, (u1, v1) and (u2, v2) are crossings if

one of the following statements is true:

π(u1) < π(u2) and π(v1) > π(v2),

π(u1) > π(u2) and π(v1) < π(v2).

One of the most consolidated method in literature to minimize the number of

crossings arcs in a HDAG is the barycenter. According to the barycenter method,

the selected position for a node u in a level Li, with 2 < i < k− 1, indicated with

bc(u, i), is given by:

bc(u, i) =

∑

v∈BS(u)

π(v)

2|BS(u)|
+

∑

v∈FS(u)

π(v)

2|FS(u)|
,

where BS(u) = {v ∈ V | (v, u) ∈ A} and FS(u) = {v ∈ V | (u, v) ∈ A}. Naturally, if u

is a node in the irst layer BS(u) = ∅ or if u is a node in the last layer FS(u) = ∅.

All the strategies described below have been included in a multi-start framework, in

which all the constructive phases are executed for a given number of iterations and

for each iteration a new solution is built. Subsequently an improving method will

be applied to each solution built ater the constructive phase.

3.5.1 GRASP Proposals

GRASP is a well established iterative multi-start meta-heuristic method for diicult

combinatorial optimization problems [39, 111]. The reader can refer to [47, 48] for

a study of a generic GRASP meta-heuristic framework and its applications. Such

method is characterized by the repeated execution of two main phases: a construction

and a local search phase. The construction phase iteratively adds one component
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1 GRASP(α)

2 x∗ ← NULL ;
3 z(x∗)← +∞ ;
4 while a stopping criterion is not satisied do
5 Build a greedy randomized solution x ;
6 x← LocalSearch(x) ;
7 if z(x) < z(x∗) then
8 x∗ ← x ;
9 z(x∗)← z(x) ;

10 return x∗

Fig. 3.1 A generic GRASP for a minimization problem.

at a time to the current solution under construction. At each iteration, an element

is randomly selected from a restricted candidate list (RCL), composed by the best

candidates, according to some greedy function that measures the myopic beneit of

selecting each element.

Once a complete solution is obtained, the local search procedure attempts to

improve it by producing a locally optimal solution with respect to some suitably

deined neighborhood structure. Construction and local search phases are repeatedly

applied. The best locally optimal solution found is returned as inal result. Figure 3.1

depicts the pseudo-code of a generic GRASP for a minimization problem.

GRASP construction version 1: C1

Given an instance I for the C-IGDP, the irst version of the GRASP builds a new

solution from scratch, considering all the nodes in I as nodes to insert in the solution.

First of all, in its construction phase, the algorithm builds a list DEG∗ containing all

the original nodes with maximum degree:

DEG∗ = {v ∈ IV | deg(v) ≥ deg(v ′),∀v ′ ∈ IV and v ′ ̸= v},

where, deg(v) = |BS(v)|+ |FS(v)|, is the sum of the in degree and the out degree of

v. The algorithm selects randomly a node v from DEG∗, and put the node in its

layer according the following rules:

• if v is an original node, then put it in a random position π ′(v) such that

LBi ≤ π ′(v) ≤ UBi (according to the position constraint).

• otherwise, if v is a new node, then put it in a random position in the layer.
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Once the irst node has been inserted in the solution, the remaining nodes in IV are

inserted in a Candidate List, CL. Staring from CL a Restricted Candidate List, RCL,

is built as follows:

RCL = {v | v ∈ CL and degnew(v) ≥ αdegmax},

where, α is an input parameter of the GRASP and it is a real value in the range

[0, 1], degnew(v) is given by the sum of the in and out degree of v according to the

under-construction solution, while degmax is given by:

degmax = max
v∈CL

degnew(v).

Until the solution is not complete, a node v∗ is randomly selected by the RCL and

added to the solution in a position π ′ computed according to the barycenter method

and taking into account if the v∗ is an original or a new node. In fact, let bc(v∗, L(v∗))

be the barycenter computed for the node v∗ according the under-construction

solution, then two diferent approaches are allowed:

• if v∗ is an original node, the nearest feasible position to bc(v∗, L(v∗)) is selected,

tacking into account the position constraint and the remaining original nodes

which have still to be inserted in the solution;

• otherwise, if v∗ is a new node, the nearest feasible position to bc(v∗, L(v∗)) is

selected, tacking into account only the remaining original nodes which have

still to be inserted in the solution.

The pseudocode of the algorithm described above is reported in Figure 3.2

GRASP construction version 2: C2

The second constructive phase of the GRASP for the C-IGDP adopts the same

methodology of the irst one to ind a position for the node in the new solution,

using the barycenter method, but initially preserves the old positions for the original

nodes. Speciically, let I an instance for the problem, the algorithm copies in the

new solution all the original nodes in their old positions, and subsequently builds

the CL containing only the new nodes. Then, starting from the candidate list, the

algorithm builds the RCL according to the same rule adopted by the version 1. Ater

that, iteratively, nodes are selected from RCL and inserted in the under-construction

solution until a new solution is built. When a node v∗ is randomly selected by
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1 C1(α, x̂)

2 Build the list of nodes with maximum degree, DEG∗ in x̂;
3 v← select_node_randomly(DEG∗);
4 x∗ ← add_node_to_solution(v);
5 Build the candidate list, CL;
6 forall v ∈ CL do
7 if degnew(v) ≤ αdegmax then
8 RCL← RCL ∪ {v};

9 while x∗ is not complete do
10 v∗ ←select_node_randomly(RCL);
11 x∗ ← add_node_to_solution(v∗);
12 rebuild RCL;

13 return x∗

Fig. 3.2 Constructive phase C1 for the C-IGDP.

the RCL, the algorithm tries to put it in the new position bc(v∗, L(v∗)), then the

following cases can occur:

• if the position bc(v∗, L(v∗)) is free, the node is added in that position,

• otherwise, the algorithm tries to shit up of one position all the nodes that

occupies consecutive position starting from bc(v∗, L(v∗)).

An example of construction phase C2 is depicted in Figure 3.3.

GRASP construction version 3: C3

This last variant of the GRASP constructive phase adopts a greedy criterion for

the eligibility of the nodes in the RCL which is signiicantly diferent from classic

barycenter method, used in C1 and C2. The idea of proposing a new greedy criterion

depends from the fact that although the barycenter is a consolidated method to

minimize the number of crossings in a HDAG, it doesn’t follows a real greedy criterion.

In fact, during the construction of a solution for the C-IGDP , a purely greedy choice

would insert a node in a position such that it involves a minimum increase of

the number of crossings. Usually, the barycenter method does not guarantee this

behavior, see the example in Figure 3.4. For this reason we introduce a new greedy

criterion to build the RCL. As in the case of C2, also the C3 inserts all the original

nodes in their initial positions and the candidate list will be composed by only new

nodes. Let I an instance for the problem, then CL = {v | v ∈ IV \ V}. Let C(v, p)
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barycenter is given by (π ′(0) + π ′(1) + π ′(2))/3 = 1. Then, the algorithm tries to insert B in that position.
(See le legend bottom right, for complete information.)

[5]

[4]

[3]

[2]

[1]

[0]

Position

3

2

1

0

Layer 0

2

1

0

Layer 1

3

2

1

0

Layer 2

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

3

2

1

0

Layer 0

2

1

0

Layer 1

3

2

1

0

Layer 2

Node ”B” in Layer 0 is inserted in positon 1, all the nodes from the position 1 are shi�ed up. The insertion
can be done, because the shi�ing of the original nodes do not violate the position constraint. A�er the
insertion of B, the RCL = {A(L.1), B(L.2), A(L.0), A(L.2)}. Suppose that the node ”A” in Layer 1 is selected to
be inserted in solution.

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

3

2

1

0

Layer 0

2

1

0

Layer 1

3

2

1

0

Layer 2

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

3

2

1

0

Layer 0

A

2

1

0

Layer 1

3

2

1

0

Layer 2

The barycenter for A is given by (π ′(0) + π ′(3))/2 = 2 for the Layer 0, plus (π ′(1))/1 = 1 for the Layer 2,
all divided for 2, (2 + 1)/2 = 1.5 h 2. The node can be inserted in that position. The RCL is uptated, RCL
= {B(L.2), A(L.0), A(L.2)}. Suppose that, the node ”A” in Layer 0, is randomly selected to be inserted.

[5]

[4]

[3]

[2]

[1]

[0]

Position

B

A

3

2

1

0

Layer 0

A

2

1

0

Layer 1

3

2

1

0

Layer 2 Legend:

Position constraint value: k = 1

] Original nodes (not in solution) @ Incremental nodes (not in solution)

] Original nodes (in solution) @ Incremental nodes (in solution)

“]” Integer value “@” Character

The algorithm tries to inserts the node ”A” in Layer 0, in position 2, the computed barycenter given by
(π ′(1)+π ′(2))/2 = 2, but the original nodes cannot be shi�ed up otherwise they would violate the position
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Fig. 3.3 Example of constructive phase C2.
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Fig. 3.4 Suppose that starting from Figure (a), a new node will be inserted in layer
2, which is connected with node in position [2], [4] and [18] in layer 1. According
to the barycenter method the selected position for this will be the position [8] in
layer 2. Analyzing the Figure (b) it can be noted that this insertion increase by 4 the
number of crossings. While, an insertion of the new node in position [4], see Figure
(c), increase by 3 the number of crossings.

be a function which assigns to each node v in CL a cost related to each possible
position p in the layer where the node itself resides. Each of such costs is computed
on the basis of the number of crossing generated in the under-construction solution
by inserting the node v in position p. According to this function, if the cost of the
under-construction solution is c and the algorithm inserts the node v in p the new
cost of the partial solution will be c+ C(v, p). All the positions where a node in CL

could be inserted will be examined and the best one will be selected, the elected
position, then, will be p∗ such that C(v, p∗) = min

p
C(v, p). For all the nodes in CL

the best position, and the RCL will be composed as follows:

RCL = {v ∈ CL | C(v, p∗) ≤ τ},

where

τ = min
v∈CL

C(v, p∗) + α


max
v∈CL

C(v, p∗) −min
v∈CL

C(v, p∗)


.

Also in this case α is a real value in the range [0, 1]. In this way the, RCL is built
according a greedy criterion which selects as candidate nodes those that achieve a
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1 C3(α, x̂)

2 x∗ ← copy_original_nodes(x̂);
3 CL← IV \ V ;
4 forall v ∈ CL do
5 compute C(v, p∗) and τ;
6 forall v ∈ CL do
7 if C(v, p∗) ≤ τ then
8 RCL← RCL ∪ {v};
9 while x∗ is not complete do
10 v∗ ←select_node_randomly(RCL);
11 x∗ ← add_node_to_solution(v∗);
12 recompute C and τ;
13 rebuild RCL;
14 return x∗

Fig. 3.5 Constructive phase C3 for the C-IGDP.

relative low increment to the cost of the solution. During the construction phase
a node at time is randomly extracted for the RCL, added to the solution, and the
process ends when the new solution is complete. When a node is selected to be
added to the solution, then the selected position can be free or already occupied by
another node. In the irst case the node is added immediately to the solution, in the
latter a shit up operation, as in the case of C2, is required. The pseudocode of the

construction phase described above is reported in Figure 3.5.

3.5.2 Tabu approach

Tabu search, proposed by Glover [59], is one of the most well-known and most

successful strategies proposed in recent decades and it achieved impressive practical

successes in applications ranging from scheduling and computer channel balancing

to cluster analysis and space planning and many others combinatorial optimization

problems. It is a method for solving challenging problems where the goal is to

identify the best ruling decision in order to maximize some measure of merit or to

minimize some measure of demerit. The strength of this method lies in the ability

to elude the local optima, in fact the Tabu approach enriches the behavior of a

classical local search, whenever the search encounters a local optimum, by allowing

non-improving moves. To do this, the method adopts a memory to prevent the

repetition of actions already carried out in recent previous iterations.
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For an exhaustive and detailed introduction and analysis of this algorithmic
proposal refer to [60, 61, 63, 64].

Construction with memory: C4

Unlike the previous constructive phases this one adopts a mechanism based on
memory to diversify the solutions in order to better investigate the feasible region.
This phase is described as a Tabu-like approach because, during the construction of
the solution, the actual choices of the algorithm are inluenced by the previous ones.
As in the case of C2 and C3 also this algorithm reports the original nodes in their
initial position in the under-construction solution. Let I an instance for the problem,
and CL the candidate list given by {v | v ∈ IV \ V}. The algorithm uses the same
function C(v, p) used in C3 and an additional structure F(v, p) which contains for
each node v ∈ CL and each possible positions p in the layer an integer value which
speciies the number of times that the node v was inserted in the position p in the
previous iterations. Now, a new function C̄(v, p) = C(v, p) + (β · F(v, p)) is deined,
where β is a real number in the range [0, 1]. All the positions where a node in CL

could be inserted will be examined and will be selected the best one p∗ such that
C̄(v, p∗) = min

p
C̄(v, p). For all the nodes in CL will be computed the best position

and the RCL is composed as follows:

RCL = {v ∈ CL | C̄(v, p∗) ≤ τ},

where τ is deined as in the case of C3 but considering C̄ instead of C. We notice
that, unlike the GRASP approaches, in this case the parameters taken in input by the
constructive phase are two instead of one, in fact in addition to α there is also β.
All these parameters have been tuned during a training phase as will be reported in
the paragraph where the computational results will be discussed.

3.5.3 Improvement phase for C1, C2, and C3 : Local Search

The basic behavior of the local search used both in the GRASP and Tabu algorithm
is the same. It is constituted by two sub-phases:

1. Swapping phase: where all the new nodes are swapped between other new
nodes which reside in the same layer in order to try to improve the current
solution,
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2. Sliding phase: subsequents to the Swapping one, where the new nodes are
slided up or down in the layer.

We underline that swapping and sliding are diferent operations in our algorithm.
In fact, given two nodes i and j in two non-consecutive positions, π ′(i) and π ′(j),
swapping i and j does not involve the nodes which occupy positions between π ′(i)

and π ′(j). This operation is performed by an exchange of pointers and so it requires
constant time, O(1). Diferently, if a node i is slided from a position π ′(i) to a
position π ′(i)+ l, then, the node i will be exchanges at irst with the node in position
π ′(i) + 1 then, with the node in position π ′(i) + 2, and so on, until the node i does
not reach the position π ′(i) + l. Anyway the two sub-phases introduced above are
analyzed in details in the following paragraphs.

Swapping

Let ID be the drawing obtained ater one of the constructive phase, and suppose

that V̄i = {v̄1, v̄2, . . . , v̄t} are the new nodes in a layer i of ID. During this phase of

the local search, for each node v̄j ∈ V̄i, 1 ≤ j ≤ t, the algorithm tries to swap it with

all the other new nodes v̄l ∈ V̄i, 1 ≤ l ≤ t and l ̸= j. At the end of the investigation

of the neighborhood of the node v̄j, the best swap in terms of improvement in

the objective function is performed, and the neighborhood of another new node is

analyzed. This process is iterated for all the layers of the graphs and when the last

layer is reached the algorithm restarts form the irst one until the solution can not

be further improved. The pseudocode of this phase is reported in Figure 3.6.

Sliding

For this second phase we designed two versions: best-improvement and irst-

improvement. Let ID be the graph obtained ater the Swapping phase local search,

and suppose that V̄ = {v̄1, v̄2, . . . , v̄t} are the new nodes in a layer i of ID. During

this phase of the local search, for each node v̄j ∈ V̄, 1 ≤ j ≤ t, the algorithm tries to

perform two actions:

• Slide-up: where the node v̄j is slided up from its initial position in ID, π ′(v̄j),

until the last position in the layer or until the furthest position allowed by

the position constraint. During this process, the algorithm stores the position

which leads to either the bests or the irst improvement , π ′∗. If a position π ′∗

is found, then the node v̄j is slided according to π ′∗, otherwise the algorithm

applies Slide-down procedure,
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1 Swapping(x̂)

2 best_cost ← c(x̂);
3 x∗ ← x;
4 improvement ← true;
5 while improvement do
6 improvement ← false;
7 forall layers: i = 1 . . . k do
8 forall nodes: v ∈ Li | v is a new node do
9 best-swap ← −1;
10 forall nodes: v̄ ∈ Li | v̄ is a new node do
11 if v̄ ̸= v then
12 x∗ ← swap(v, v̄);
13 if c(x∗) < best_cost then
14 best_cost ← c(x∗);
15 best_swap ← v̄;
16 x∗ ← swap(v̄, v);
17 if best_swap ̸= −1 then
18 x∗ ← swap(v,best_swap);
19 improvement ← true;
20 return x∗;

Fig. 3.6 Swapping phase local search for C-IGDP.
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1 Slide-down-best-improvement(x̂, v̄j)

2 best_cost ← c(x̂);
3 x∗ ← x̂;
4 best_position ← π ′(v̄j);
5 initial_position ← π ′(v̄j);
6 forall positions: p = initial_position−1 . . . 0 do
7 v← get_node_in (p);
8 x∗ ← swap (v, v̄j);
9 if x∗ does not violate position constraint then
10 if c(x∗) < best_cost then
11 best_cost ← c(x∗);
12 best_position ← p;
13 else
14 x∗ ← swap (v̄j, v);
15 return best_position;
16 return best_position;

Fig. 3.7 Slide-down phase, best-improvement, local search for C-IGDP.

• Slide-down: the algorithm performs the same operations of Slide-up but in
opposite way, i.e. the nodes are slided down in this case.

The pseudocodes of Slide-down in the best-improvement and irst-improvement
variants are reported in Figures 3.7 and 3.8. The operations Slide-up or Slide-down

are performed for each new node in each layer and, as in the case of the Swapping-phase,
when the last layer is reached the algorithm restarts from the irst one until the
solution can not be further improved.

A complete representation of the two phases of the local search is depicted in
Figure 3.9.

3.5.4 Improvement phase for C4: Tabu Search

The strategy presented in paragraph 3.5.3 is the local search used as improvement
phase ater the construction phase for the GRASP approaches (C1, C1 and C3), while

a variant with memory is considered for C4. In this variant the algorithm uses an

additional structure M(l, v) which stores for each node v the last iteration in which

it changed position, and a constant real input user value, tabu_range, used in the

computation of a threshold, usually named - tenure - in the tabù-search strategy,

which speciies for how many iterations a node must be considered "tabù". In other

words, if in the solution obtained at the iteration i the node v, in the level l, chose
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1 Slide-down-first-improvement(x̂, v̄j)

2 cost ← c(x̂);
3 x∗ ← x̂;
4 initial_position ← π ′(v̄j);
5 forall positions: p = initial_position−1 . . . 0 do
6 v← get_node_in (p);
7 x∗ ← swap (v, v̄j);
8 if x∗ does not violate position constraint then
9 if c(x∗) < cost then
10 return p;
11 else
12 x∗ ← swap (v̄j, v);
13 return initial_position;
14 return initial_position;

Fig. 3.8 Slide-down phase, irst-improvement, local search for C-IGDP.

the last time to change position, then M(l, v) = i. Now, considering the iteration
i+ j, during the improvement phase the same node, v, can choose to move if and
only if ((i+ j) −M(l, v)) > tenure. It is important to emphasize that in this phase
a node which is not tabù must move also if the action does not improve the value
of the current solution, in fact if an improvement action is not available, then the
node will choose the movement which is the "least worst". As in the case of α and

β, also tabu_range is a parameter that has been tuned during the training phase.

Since the tenure in our implementation was computed as follows:

tenure = ⌊tabu_range · λ⌋

where, λ = |
|L|

min
j=1

{v ∈ Lj | v ∈ V̂}|, i.e. the minimum number of new nodes in a layer

between all the layers in the instance, for tabu_range we considered the following

range of possible choices to be appropriate: {0.25, 0.5, 0.75}.

3.5.5 Post-optimization Phase: Path Relinking

In support of the construction and the improving phase we provided a post-

optimization phase for our algorithms which is based on the Path Relinking. Path

relinking (PR) is an approach suggested to integrate intensiication and diversiication

[62]. During the execution this method explores trajectories which connect good-
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Suppose that a�er the construction phase, the solution above is computed. It’s cost is 20. The phase 1 of
the local-search plans to perform for each layers a sequence of swapping for the new nodes only in order
to reduce the number of crossing edges.
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In the Layer 0, swapping the nodes ”A” and ”B” does not lead to an improvement. While in the Layer 1, the
swap between the nodes ”C” and ”B” reduce the number of crossing from 20 to 19, others swaps in Layer
1 does not lead to an improvement, neither in Layer 2. The phase 1 ends when no others swaps reduce
number of crossings edge. The phase 2, is formed by two sub-phase: slide-up or slide-down. Starting from
Layer 0, the algorithm tries, at �rst, to slide the node ”A” up. The �rst slide, with the node ”0”, reduce the
numeber of crossings, form 19 to 16.
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Continuing the slide-up of the node ”A”, the number of crossings is still improved, from 16 to 15. The
shi�-up continue untill the best slide is found for the node ”A” (otherwise, in case of �rst-improvement
local-search untill an improvement is found). The slide-down is performed only if the slide-up does not
lead to improvement of the solution cost.
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In Layer 1, there are not slides for the new nodes which improve the quality of the solution. While in the
Layer 2 the slide-up of the node ”B” leads a signi�cant improvement.

Fig. 3.9 An application of the local search for the C-IGDP.
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quality solutions, stored in a set called Elite Set. Starting from one of these solution,
called source solution, a path to connect all the other solutions, called target

solutions,is generated. In the exploration, the algorithm will ind several intermediate
solutions which reside in the neighboring space of the solutions in the Elite Set.
Although several variants of PR exist, they difer from the way in which the path to
connect solutions in the Elite Set is chosen. Given two solutions x1 = {x11, x12, . . . , x1n}

and x2 = {x21, x22, . . . , x2n} if c(x1) < c(x2), considering a minimization problem, then
the solution x1 is better than x2, and the following path-inding strategies are possible:

• Forward PR: as source solution is considered x2 while as target one x1. A list
of intermediate solutions x̂ in the neighborhood of x1 and x2 are analyzed. At
the beginning x̂ = x2, and for each j = 1 . . . n, x̂ = x̂ \ {x2j} ∪ {x1j};

• Backward PR: in this case a path which starts form the worst solution to the
best one is generated;

• Mixed PR: in this case two paths are generated, the irst starting from x1 to
x2 and the second one inthe opposite direction. At each iteration any solution
makes a step in direction of the other one. When the two paths meet in an
intermediate solution of the neighboring space of x1 and x2 the exploration
ends.

Laguna and Marti [76] adapted the PR in a GRASP framework as an intensiication
method, anyway for an exhaustive list of examples of GRASP with PR refer to
Resende and Ribeiro [110]. In our context we designed an algorithm for the PR which
adopts the same strategy described in [116] and for our experiments we considered
only the forward variant of PR. Given two solutions IDs (source solution) and IDt

(target solution) for the C-IGDP, each single move generated by the PR consists in
the replacement of an entire layer from a current solution with a layer from the
target solution. The total numbers of solutions generated by the PR during the path
from IDs to IDt is k(k+1)

2
− 1. In Figure 3.10 an illustration of the algorithm. Starting

for the source solution, IDs, at the irst step the algorithm generates three diferent
solutions exchanging the layers 1, 2 and 3 of IDs with the corresponding layers in
the target solution IDt. Then, the path continues from the intermediate solution ID2

since it is the solution with the best cost and the algorithm generates other two
solutions, ID4 and ID5. Finally, the path is completed from ID4 to IDt. During the
execution the PR inds two improving solutions in the neighborhood of IDs and IDt,
i.e. ID2 and ID4 both of which with cost 0. Also in the post-optimization phase are
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Fig. 3.10 A representation of the PR for the C-IGDP.

present some parameters which have been tuned in training phase. In particular,
an integer value which speciies the dimension of the Elite Set, and a real value γ

in the range [0, 1] which denotes the degree of diference between two solutions.
Speciically, let x and x̂ be two solutions and π ′ and π̂ ′ the corresponding positions
of the nodes in x and x̂, then, according to our criterion of diversiication, their
diference is given by summing up, for each layer l ∈ L, the number of nodes v ∈ Ll

such that π ′(v) ̸= π̂ ′(v) and dividing this sum for |IV |. Ater each improving phase,

let ES = {x1, . . . , xt} be the Elite Set, a solution x̂ can be inserted in ES according to

the following requirements:

• if c(x̂) ≤ c(xj) for each xj in ES, in this case if the ES is full the solution with

the worst value is replaced;

• else if ES is full, then

– if ∃xj ∈ ES | c(xj) > c(x̂) and ∀xj ∈ ES the diversiication degree between

xj and x̂ is greater than γ, then x̂ can be inserted in ES in place of the

worst solution;

– else x̂ can not be inserted in ES;

• else if ∀xj ∈ ES the diversiication degree between x̂ and xj is greater than γ,

then x̂ can be inserted in ES;

• else x̂ can not be inserted in ES.
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3.5.6 Experimental Results

All the algorithms proposed were implemented in C++, compiled with gcc 5.4.0, and
the experiments were conducted on a Intel Corei7-4020HQ CPU @2.60Ghz x 8. In
the testing phase we compared the algorithms GRASP and Tabu among them and with
an implementation in CPLEX of the model described in Paragraph 3.4 on a set of 250
instances. The set of instances used are available at http://www.optsicom.es/igdp,
and as described in [116] the hierarchical graphs were generated following the
guidelines in the literature Laguna et al. [77]. In each instance all the nodes for each
layer have either an in-degree and out-degree of at least one. The nodes in the irst
layer have in-degree zero while the nodes in the last layer have out-degree zero. All
the instances can be grouped in ive categories which difer by number of layers:
2, 6, 13, 20, 50. In particular, we considered 60 instances with 6, 13, and 20 layers
and 10 instances with 50 layers. The total number of original nodes for each layers
is between 5 and 30, while the total number of new nodes, for each layer 1 ≤ i ≤ k,
is given by (1 + δ)ni, where ni is the number of original nodes in the layer and δ is
a parameter chosen in the set {0.2, 0.6}. A summary about the characteristics of the
instances is reported in Table 3.1, where the irst column represents the Layers, the
second the average of total nodes, the third one the average of new nodes and the
last one the average of arcs for each instances grouped according the layer number.

Table 3.1 Summary of the instances properties.

L/s n new m

2 26.60 7.90 88.85
6 126.60 37.60 421.17

13 312.30 92.90 997.20
20 490.45 146.05 1618.72
50 1291.42 325.31 3991.76

A key parameter in the experimentation phase is the separation value K, which
establishes the distance between the initial position of the original nodes and the
inal one. Since the aim of our new formulation is to keep the original nodes close
to their original position in order to preserve the user’s mental map, we expected
low K values, speciically K = 1, 2, 3. Therefore for each graph we generated three
diferent instances, one for each K value. Note that, in few instances, the number
of new nodes in a given layer is less than 2 or 3, then some value of K cannot
be considered. In this way we obtained a testing set consisting of a total of 639
instances.
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Preliminary Experiments

In a preliminary stage we carried out a training phase in order to ind the best
setting for the parameters of the algorithms. In this phase we have taken into account
a sub-set with a 10% of the total instances in the testing set, precisely 62 instances,
considering only the graph with 3, 6, 13, and 20 layers, we name it training set. The
parameter tuned were:

• α for C1, C2, C3, and C4,

• β for C4,

• tabu_range for the tabu search,

• |ES| and γ, for the post-optimization phase.

A summary with the data collected during the tuning of the parameter α for con-
struction phase of the irst GRASP algorithm is reported in Table 3.2. We considered
four diferent values for α: 0.25, 0.5, 0.75 and [0, 1], the last one corresponding to a
totally random setup, for a total of 1000 iterations each. The column C indicates
the average crossings between all the best solutions found by the algorithm for
the instances considered in the training set, Dev the the standard deviation, Best
measures the number of times when an algorithm obtains better solution than the
others, Score measures the number of times when an algorithm does not obtain
worse solutions than the others, while t(s) expresses the average of the CPU running
times in seconds. As can be observed in Table 3.2 the best setting for α is totally
random.

Table 3.2 Tuning of the parameter alpha for C1.

α C Dev Best Rate t(s)

0.25 17711.800 0.0076 13 0.462 1.795
0.50 17747.100 0.0082 10 0.430 1.891
0.75 17780.100 0.0086 10 0.344 1.884
[0, 1] 17645.500 0.0002 55 0.957 1.837

In Table 3.3 the tuning of the parameter β used in C4 is reported. This
construction phase takes as input two parameters, α and β. The best settings
for this construction phase is given by α = [0, 1] and β = [0, 1], even if there is a
substantial balance between the diferent settings.
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Table 3.3 Tuning of the parameter beta for C4.

α, β C Dev Best Rate t(s)

[0, 1], 0.25 17420.100 0.0094 18 0.500 2.308
[0, 1], 0.50 17399.900 0.0080 12 0.500 2.121
[0, 1], 0.75 17361.400 0.0085 17 0.538 2.091
[0, 1], [0, 1] 17387.600 0.0084 20 0.532 2.185

A complete overview of the best setting for all the parameters used in our
heuristics can be found in Table 3.4, and in Table 3.5 the diferent constructive
phases with their best settings are compared.

Table 3.4 Best settings for all the parameters used by the heuristics for the C-IGDP.

constructive Tabu Search PR

C1 C2 C3 C4

α α α α β tabu_range |ES| γ

-1.0 -1.0 -1.0 -1.0 -1.0 0.75 20 0.2

Table 3.5 Comparison constructive phases with their best settings.

methods C Dev Best Rate t(s)

C1 17645.500 0.0379 0 0.204 1.837
C2 17681.900 0.0377 0 0.156 1.973
C3 17395.300 0.0101 29 0.796 2.076
C4 17387.600 0.0027 36 0.860 2.185

Using these best settings, in a subsequent phase we carried out a testing phase
in order to evaluate the performances of our proposals and establish a dominant
strategy whenever possible. From this preliminary stage it emerges that, although
they are more expensive according the computational point of view, both C3 and C4

return qualitatively better solutions.

Final Experiments

In the testing phase, for all the algorithms we considered 100 diferent constructions
for all the instances taken into account, and a time-limit of 30 minutes. Furthermore,
for each instance we considered three diferent choices for the separation value,
K = {1, 2, 3}. In the experiments, we used the following denominations:



72 Graph Drawing Problem

• GRASP1 is the GRASP with construction C1 and local search,

• GRASP2 is the GRASP with construction C2 and local search,

• GRASP3 is the GRASP with construction C3 and local search,

• Tabu is the algorithm with construction C4 and tabu search,

• GRASP3+PR, is the algorithm GRASP3 with Path Relinking.

In Table 3.6 only the instances where CPLEX found an optimal solution in the
time-limit are summarized. In these tests the heuristics adopts only the improvement
phase. In such table the irst column express the average of the crossings, the second
one the average of the gap percentage, i.e. the distance between the optimal solution
and the solution obtained by the heuristics, the third column reports the number
of times when an algorithm inds the best solution, the forth one the number of
optimal solution found, and in the last one the average of the execution times in
seconds is reported.

In the Tables 3.7 and 3.8, are presented the results, instance by instance, when
CPLEX is not able to ind an optimal solution within the time-limit. Comparing,
respectively, CPLEX with the heuristics with only the improvement phase and the
combination of improvement phase and post-optimization.The best values found
are reported in red.

In Table 3.9, GRASP3, that we consider as our best algorithm taking into ac-
count the quality of the solutions and the running times, is compared with CPLEX

and LocalSolver. LocalSolver (http://www.localsolver.com/home.html) is a new-
generation meta-heuristic solver with hybrid mathematical programming solver, it
combines the best of all optimization technologies to solve complex combinatorial
problems. In this experimentsall the instances are included in the analysis , also
when CPLEX did not obtain the optimal value.

Finally, in Table 3.10, we compare GRASP3+PR with LocalSolver on the largest
instances, based on graphs with 50 layers, and report instance by instance the
solution value and the computational time.

What clearly emerges from the computational testing is that, in general, all the
algorithms proposed obtain solutions of extremely high quality. Considering only
the constructive and the subsequent improvement phases, as shown in Table 3.6,
the solutions obtain in average gaps much smaller than 1%. In fact in the worst case
the higher gap is 0.24%, obtained by GRASP1 on instances with 20 layers but in
correspondence of an average running time of 4.7 seconds against 107.44 exhibited
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Table 3.6 CPLEX vs Heuristics, only optimal solutions.

methods C % gap Best Opt t(s)

2 Layers instances

CPLEX 2408.50 - 171 171 0.77
GRASP1 2408.53 0.00 167 167 0.09
GRASP2 2409.46 0.04 159 159 0.13
GRASP3 2409.19 0.03 161 161 0.16
Tabu 2408.70 0.01 150 150 0.55

6 Layers instances

CPLEX 9362.31 - 157 157 33.70
GRASP1 9369.82 0.08 73 73 1.62
GRASP2 9373.45 0.12 73 73 1.52
GRASP3 9367.46 0.05 81 81 2.35
Tabu 9365.84 0.04 55 55 5.76

13 Layers instances

CPLEX 17610.20 - 128 128 115.48
GRASP1 17643.90 0.19 19 19 3.03
GRASP2 17633.00 0.13 31 31 4.22
GRASP3 17637.80 0.16 27 27 4.13
Tabu 17631.00 0.12 11 11 18.49

20 Layers instances

CPLEX 27451.70 - 116 116 107.44
GRASP1 27517.20 0.24 10 10 4.70
GRASP2 27498.60 0.17 20 20 5.94
GRASP3 27507.40 0.20 20 20 7.82
Tabu 27495.90 0.16 2 2 30.68

by CPLEX. The goodness of our proposals is more evident when CPLEX is not able
to ind an optimal solution, as highlighted in Table 3.7 and 3.8. In fact in the irst
Table we have that all the algorithms exhibit a negative average gap which spans in
percentage from −2.08 for GRASP1 to −2.14 for Tabu, and this gap increases further
when we consider also the post-optimization phase, in the second Table. This
certiies that the post-optimization phase signiicantly reines the solutions of the
algorithms obtained ater the improving phase.

In Table 3.9 we compare our best method, GRASP3, also with LocalSolver and it

is clear how the diference between the solutions obtained, and the computational

times, supports the goodness of our approach. Finally, in Table 3.10 the superiority

of our proposals is conirmed also when we consider the largest instance, taking



74 Graph Drawing Problem

Table 3.7 CPLEX vs Heuristics, no optimal solutions.

instance CPLEX GRASP1 GRASP2 GRASP3 Tabu

L/s dens K C t(s) C % gap t(s) C % gap t(s) C % gap t(s) C % gap t(s)

6 0.30 2 59687 1826.4 59595 -0.15 18.9 59524 -0.27 6.3 59535 -0.26 16.8 59590 -0.16 1.4
6 0.30 3 59748 1824.8 59381 -0.62 19.3 59363 -0.65 13.1 59366 -0.64 57.0 59368 -0.64 19.7

13 0.30 2 69119 1831.4 69008 -0.16 3.6 68996 -0.18 5.4 69082 -0.05 5.6 69012 -0.16 41.7
13 0.30 3 68881 1834.9 68593 -0.42 15.8 68411 -0.69 41.5 68565 -0.46 11.0 68511 -0.54 64.3
13 0.30 2 86298 1800.0 82095 -5.12 43.0 82092 -5.12 25.3 82097 -5.12 28.3 82094 -5.12 136.9
13 0.30 3 86298 1800.0 81803 -5.49 23.2 81801 -5.50 71.6 81816 -5.48 6.2 81802 -5.50 188.2
13 0.30 1 121127 1800.0 116500 -3.97 2.4 116532 -3.94 36.2 116531 -3.94 12.5 116524 -3.95 132.6
13 0.30 2 115360 1880.2 115375 0.01 33.9 115493 0.12 64.4 115451 0.08 17.3 115472 0.10 165.7
13 0.30 3 120180 1880.0 114716 -4.76 29.9 114706 -4.77 109.3 114496 -4.96 60.1 114460 -5.00 111.2
13 0.30 2 60284 1828.9 60277 -0.01 0.6 60280 -0.01 19.5 60302 0.03 18.9 60282 -0.00 57.0
13 0.30 3 59915 1831.2 59876 -0.07 10.9 59955 0.07 22.8 59963 0.08 40.2 59889 -0.04 137.6
13 0.30 2 63066 1827.8 62118 -1.53 2.5 62115 -1.53 4.8 62155 -1.47 27.0 62135 -1.50 133.4
13 0.30 3 62615 1827.8 61840 -1.25 33.0 61738 -1.42 47.3 61646 -1.57 30.7 61793 -1.33 7.4
13 0.30 2 70589 1838.0 69402 -1.71 18.2 69343 -1.80 14.3 69349 -1.79 34.6 69422 -1.68 97.5
13 0.30 3 71303 1839.9 69040 -3.28 23.9 68758 -3.70 7.4 68942 -3.42 75.8 68837 -3.58 27.7
20 0.17 3 55940 1848.7 56153 0.38 16.9 55994 0.10 77.0 56058 0.21 16.5 56098 0.28 167.6
20 0.17 3 31770 1826.9 32071 0.94 13.3 32037 0.83 13.6 31919 0.47 2.3 31929 0.50 79.9
20 0.30 2 78214 1849.8 77344 -1.12 5.2 77323 -1.15 40.5 77342 -1.13 60.3 77319 -1.16 77.6
20 0.30 3 77754 1849.5 76866 -1.16 46.6 76896 -1.12 1.4 76811 -1.23 19.0 76855 -1.17 4.8
20 0.30 2 188868 1800.0 177698 -6.29 53.0 177460 -6.43 54.6 177577 -6.36 129.9 177482 -6.42 139.3
20 0.30 3 188868 1800.0 176712 -6.88 83.8 176387 -7.08 96.3 176753 -6.85 183.6 176444 -7.04 44.4
20 0.30 1 137460 1800.0 132409 -3.81 11.8 132409 -3.81 57.3 132411 -3.81 8.7 132415 -3.81 232.1
20 0.30 2 137460 1800.0 131565 -4.48 77.8 131524 -4.51 81.8 131558 -4.49 52.2 131553 -4.49 290.3
20 0.30 3 137460 1800.0 130933 -4.98 27.7 130967 -4.96 88.0 130852 -5.05 97.8 130885 -5.02 269.9
20 0.30 2 77628 1853.6 73963 -4.96 20.0 73933 -5.00 20.1 74000 -4.90 29.8 73975 -4.94 3.7
20 0.30 3 73874 1852.5 73666 -0.28 21.7 73476 -0.54 16.4 73552 -0.44 28.3 73561 -0.43 127.6
20 0.30 2 103062 1877.9 98829 -4.28 18.9 98805 -4.31 59.8 98786 -4.33 5.3 98864 -4.25 105.0
20 0.30 3 99590 1882.5 98125 -1.49 53.0 98075 -1.54 65.0 98043 -1.58 7.7 98074 -1.55 86.2
20 0.30 2 50524 1825.5 50526 0.00 13.3 50523 -0.00 3.4 50524 0.00 21.0 50532 0.02 38.6
20 0.30 3 50201 1825.2 50148 -0.11 29.1 50156 -0.09 34.2 50124 -0.15 31.4 50129 -0.14 91.6
20 0.30 2 87356 1864.4 87086 -0.31 33.8 87043 -0.36 42.2 87048 -0.35 23.4 87037 -0.37 54.8
20 0.30 3 90878 1862.2 86715 -4.80 38.2 86719 -4.80 64.4 86718 -4.80 19.3 86690 -4.83 105.0
20 0.30 2 94124 1875.3 93972 -0.16 39.9 93973 -0.16 50.0 94009 -0.12 64.0 93979 -0.15 107.7
20 0.30 3 96522 1875.3 93295 -3.46 57.9 93284 -3.47 99.5 93283 -3.47 102.6 93314 -3.44 13.9
20 0.30 3 75612 1847.5 75288 -0.43 15.1 75202 -0.55 30.7 75204 -0.54 1.7 75084 -0.70 2.1
20 0.30 2 57637 1836.5 57415 -0.39 31.1 57389 -0.43 25.8 57402 -0.41 22.7 57395 -0.42 22.8
20 0.30 3 57511 1838.5 57220 -0.51 11.9 57213 -0.52 39.2 57258 -0.44 41.4 57217 -0.51 49.7

avg -2.08 avg -2.14 avg -2.13 avg -2.14

into account in this case only the comparison with LocalSover. In Figure 3.11 is
depicted a test case where the performances of the GRASP C3 with local search
and a combination of local search and post-optimization are compared.
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Table 3.8 CPLEX vs Heuristics+PR, no optimal solutions.

instance CPLEX GRASP1+PR GRASP2+PR GRASP3+PR Tabu+PR

L/s dens K C t(s) C % gap t(s) C % gap t(s) C % gap t(s) C % gap t(s)

6 0.30 2 59687 1826.4 59590 -0.16 33.8 59524 -0.27 6.3 59521 -0.28 46.4 59527 -0.27 114.9
6 0.30 3 59748 1824.8 59364 -0.65 43.0 59362 -0.65 62.5 59361 -0.65 68.2 59362 -0.65 145.2

13 0.30 2 69119 1831.4 68999 -0.17 38.4 68996 -0.18 21.7 68998 -0.18 51.5 69012 -0.16 41.7
13 0.30 3 68881 1834.9 68478 -0.59 38.0 68398 -0.71 63.1 68525 -0.52 74.0 68408 -0.69 167.2
13 0.30 2 86298 1800.0 82095 -5.12 43.0 82090 -5.13 55.0 82086 -5.13 61.9 82085 -5.13 156.6
13 0.30 3 86298 1800.0 81798 -5.50 59.0 81752 -5.56 78.7 81795 -5.51 39.5 81791 -5.51 205.3
13 0.30 1 121127 1800.0 116500 -3.97 2.4 116516 -3.96 18.3 116520 -3.95 51.8 116496 -3.98 139.3
13 0.30 2 115360 1880.2 115375 0.01 33.9 115493 0.12 64.4 115385 0.02 88.8 115395 0.03 187.7
13 0.30 3 120180 1880.0 114452 -5.00 87.6 114636 -4.84 111.5 114400 -5.05 124.0 114460 -5.00 111.2
13 0.30 2 60284 1828.9 60274 -0.02 35.1 60275 -0.01 40.7 60291 0.01 44.7 60264 -0.03 139.0
13 0.30 3 59915 1831.2 59876 -0.07 10.9 59888 -0.05 59.0 59932 0.03 63.1 59845 -0.12 173.1
13 0.30 2 63066 1827.8 62118 -1.53 2.5 62115 -1.53 4.8 62070 -1.60 52.2 62080 -1.59 155.2
13 0.30 3 62615 1827.8 61740 -1.42 41.0 61738 -1.42 47.3 61646 -1.57 30.7 61724 -1.44 189.8
13 0.30 2 70589 1838.0 69393 -1.72 40.5 69331 -1.81 52.7 69349 -1.79 34.6 69343 -1.80 153.7
13 0.30 3 71303 1839.9 68807 -3.63 46.0 68758 -3.70 7.4 68701 -3.79 83.7 68836 -3.58 199.8
20 0.17 3 55940 1848.7 56052 0.20 59.9 55979 0.07 91.6 56015 0.13 101.1 56011 0.13 186.2
20 0.17 3 31770 1826.9 31866 0.30 30.4 31964 0.61 54.9 31919 0.47 50.1 31850 0.25 128.5
20 0.30 2 78214 1849.8 77323 -1.15 47.7 77320 -1.16 52.5 77327 -1.15 63.3 77319 -1.16 77.6
20 0.30 3 77754 1849.5 76713 -1.36 58.4 76726 -1.34 78.5 76775 -1.28 84.7 76711 -1.36 249.4
20 0.30 2 188868 1800.0 177463 -6.43 134.1 177451 -6.43 142.5 177477 -6.42 176.7 177459 -6.43 370.9
20 0.30 3 188868 1800.0 176434 -7.05 158.7 176387 -7.08 96.3 176424 -7.05 222.6 176327 -7.11 495.1
20 0.30 1 137460 1800.0 132409 -3.81 11.8 132409 -3.81 50.9 132411 -3.81 71.5 132415 -3.81 249.8
20 0.30 2 137460 1800.0 131488 -4.54 95.5 131514 -4.52 105.5 131501 -4.53 124.0 131492 -4.54 326.2
20 0.30 3 137460 1800.0 130791 -5.10 112.7 130793 -5.10 146.1 130848 -5.05 163.0 130842 -5.06 391.3
20 0.30 2 77628 1853.6 73923 -5.01 47.9 73916 -5.02 61.8 73914 -5.02 63.9 73940 -4.99 193.4
20 0.30 3 73874 1852.5 73536 -0.46 55.7 73451 -0.58 83.3 73515 -0.49 88.3 73474 -0.54 239.2
20 0.30 2 103062 1877.9 98829 -4.28 18.9 98798 -4.32 5.9 98746 -4.37 84.4 98772 -4.34 223.4
20 0.30 3 99590 1882.5 98085 -1.53 74.0 98075 -1.54 65.0 98034 -1.59 114.8 98017 -1.60 275.6
20 0.30 2 50524 1825.5 50526 0.00 30.3 50523 -0.00 3.4 50521 -0.01 38.8 50515 -0.02 124.4
20 0.30 3 50201 1825.2 50148 -0.11 29.1 50114 -0.17 48.8 50110 -0.18 53.2 50073 -0.26 155.7
20 0.30 2 87356 1864.4 87027 -0.38 58.1 87015 -0.39 64.9 87035 -0.37 66.7 87027 -0.38 219.3
20 0.30 3 90878 1862.2 86678 -4.85 70.2 86690 -4.83 90.2 86701 -4.82 91.4 86689 -4.83 290.0
20 0.30 2 94124 1875.3 93935 -0.20 69.1 93956 -0.18 83.2 93921 -0.22 89.6 93979 -0.15 107.7
20 0.30 3 96522 1875.3 93281 -3.47 79.1 93277 -3.48 115.9 93271 -3.49 116.3 93294 -3.46 296.6
20 0.30 3 75612 1847.5 75200 -0.55 54.0 75194 -0.56 78.2 75074 -0.72 86.0 75084 -0.70 2.1
20 0.30 2 57637 1836.5 57391 -0.43 42.1 57387 -0.44 49.6 57388 -0.43 50.0 57386 -0.44 182.0
20 0.30 3 57511 1838.5 57215 -0.52 43.7 57209 -0.53 66.7 57211 -0.52 70.2 57213 -0.52 224.8

avg -2.17 avg -2.18 avg -2.19 avg -2.20



76 Graph Drawing Problem

Table 3.9 CPLEX and LocalSolver versus GRASP3

methods C % gap Dev Best Opt t(s)

2 Layers instances

CPLEX 2408.50 - 0.000 171 171 0.77
GRASP3 2409.19 0.03 0.001 161 161 0.32
GRASP3+PR 2408.92 0.02 0.001 164 164 0.41
LocalSolver 2785.47 13.53 0.170 12 12 20.11

6 Layers instances

CPLEX 9995.70 - 0.000 157 157 56.24
GRASP3 9997.43 0.02 0.008 81 81 5.31
GRASP3+PR 9994.32 -0.01 0.000 100 98 5.43
LocalSolver 11024.90 9.34 0.166 0 0 62.43

13 Layers instances

CPLEX 23469.00 - 0.002 131 128 273.77
GRASP3 23319.40 -0.64 0.003 29 27 15.22
GRASP3+PR 23305.20 -0.70 0.002 54 44 15.32
LocalSolver 25530.20 8.07 0.162 0 0 162.06

20 Layers instances

CPLEX 37918.20 - 0.003 118 116 383.73
GRASP3 37522.40 -1.05 0.003 21 20 25.77
GRASP3+PR 37495.40 -1.13 0.002 49 29 28.32
LocalSolver 40954.10 7.41 0.147 0 0 328.77

Table 3.10 LocalSolver versus GRASP3+PR on largest instances.

K = 1

GRASP3+PR LocalSolver

C t(s) C t(s)

53048 49.92 59220 1019.69
47051 42.85 52037 1003.95
72018 64.73 78800 1058.08

101428 93.84 110649 1127.93
55112 51.73 61279 1016.93
89599 76.68 97372 1093.13
58829 54.32 65527 1023.40
79236 75.52 87359 1069.29
58147 55.45 65320 1028.31
84496 79.64 92960 1112.17

K = 2

GRASP3+PR LocalSolver

C t(s) C t(s)

52010 77.02 62547 1020.65
46152 66.63 54934 1004.17
70711 99.65 83344 1058.18
99767 142.35 108847 1128.66
54020 79.18 63984 1016.26
88247 115.74 100745 1093.07
57639 84.00 67388 1023.72
77716 111.58 91685 1070.21
57160 83.56 68692 1028.18
82910 123.70 96252 1113.10

K = 3

GRASP3+PR LocalSolver

C t(s) C t(s)

51413 99.90 63430 1019.81
45361 83.13 57458 1004.67
69940 132.82 84770 1058.01
98704 187.58 120328 1128.18
53298 106.53 65782 1016.16
87324 155.52 103617 1093.30
56783 111.33 70991 1024.39
76828 152.64 94363 1072.14
56527 106.78 70587 1027.96
81838 160.89 91291 1112.31
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Fig. 3.11 GRASP C3, Local Search vs Path Relinking





Chapter 4

GRASP Approaches for Other

Combinatorial Problems

In this chapter several GRASP approaches will be introduced in order to obtain
eicient solutions to three combinatorial optimization problems: Maximum Cut-Clique
(MCCP), p-Center (p-CP) and Minimum Cost Satisiability Problem (MinCost-SAT).
All the strategies proposed are based on the classical GRASP framework, with a
constructive and an improvement phase. Furthermore, for the MinCost-SAT in
[38] a new and original stopping rule has been proposed, which proved to be
extremely efective in deciding when the search space has been explored extensively
enough. All the designed algorithms were compared for each speciic problem with
state-of-the-art approaches.

4.1 Maximum Cut-Clique Problem (MCCP)

One of the classical problem in combinatorial optimization is the Max Clique Problem,
which inds diferent applications in a very heterogeneous context. This problem,
belonging to Karp’s 21 NP-complete problems Karp [75], has many practical appli-
cations, ranging from pattern recognition in communication networks to sotware

validation and veriication, from computer vision to computational biology. Below

are the notations used during the illustration of the problem. Let G = (V, E) be a

undirected graph, where:

• V : is the set of nodes,

• E = {(i, j) | i, j ∈ V}: is the set of edges,
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• d(v),∀v ∈ V : the degree of the node v,

• ∀S ∈ V,G(S) = (S, E ∩ S × S): the sub-graph induced by S,

• E = {(i, j) ∈ V × V | (i, j) ∈ E and i ̸= j}: the complementary set of E,

• G = (V, E): the complementary graph of G,

• N(i) = {j ∈ V | (i, j) ∈ E}: the set of the nodes which are adjacent to i in G,

• N(i) = {j ∈ V | (i, j) ∈ E}: the set of the nodes which are adjacent to i in G.

4.1.1 Maximum Clique Problem (MCP)

Given a undirected graph G, a clique C is a sub-set of V such that G(C) =

(C, E ∩ C × C) is complete, i.e. for each i, j ∈ C, i ̸= j then (i, j) ∈ E ∩ C × C.
Γ(G) indicates the set of all the cliques in G. The Maximum Clique Problem (MCP)
consist in determining a clique of G with maximum cardinality. It is interesting
to note that the MCP is closely correlated to other two well known combinatorial
problems: Maximum Independent Set (MISP) and Minimum Vertex Cover (mVCP). An
independent set is a sub-set of V such that for each v ∈ V only one of the following
is true:

1. v ∈ S,

2. N(v) ∩ S = ∅.

The aim of the MISP is to ind a maximum independent set of V . A vertex cover is a
sub-set V ′ of V such that for each (i, j) ∈ E only one of the following is true:

1. u ∈ V ′,

2. v ∈ V ′.

The aim of the mVCP is to ind a vertex cover with minimum cardinality. It easy to
check that these tree problems are equivalent, in fact C is a clique of G if and only
if C is an independent set in barG and if and only if V \ V ′ is a vertex cover in G.
All three problems were proved to be NP-hard, Karp [75]. A simple formulation for
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the MCP was presented by Bomze et al. [12]:

(MCP) min
∑

i∈V

xi

subject to:

xi + xj ≤ 1, ∀ (i, j) ∈ E

xi ∈ {0, 1}, ∀ i ∈ V

where |V | binary decision variables are introduced such that:

xi =





1, if i belongs to the clique,

0, otherwise.

The second constraint expresses that for each edge in G at most one node belongs
to the clique. An alternative formulation was proposed in Della Croce and Tadei [26]:

(MCP) min
∑

i∈V

xi

subject to:
∑

j∈N(i)

xj ≤ |N(i)|(1− xi), ∀ i ∈ V

xi ∈ {0, 1}, ∀ i ∈ V.

A more recent formulation was proposed by Martins, where the following decision
variables were introduced:

∀q ∈ Q,wq =





1, if the clique has cardinality q,

0, otherwise,

∀i ∈ V and ∀q ∈ Q, vqi =





1, if the clique has cardinality q and i belongs to it,

0, otherwise

where, Q = {qmin, . . . , qmax} is a set of values of consecutive sizes. If the set of cliques
with max cardinality in G is indicated with ω(G), then qmin ≤ ω(G) ≤ qmax. The
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mathematical formulation is obtained as follows:

(MCP) min
∑

i∈V

xi

subject to:
∑

j∈N(i)

vqj ≥ (q− 1)vqi , ∀ i ∈ V and q ∈ Q

∑

i∈V

vqi = qwq, ∀q ∈ Q

∑

q∈Q

wq = 1,

vqi ∈ {0, 1}, ∀ i ∈ V and q ∈ Q

wq ∈ {0, 1}, ∀ q ∈ Q.

According to Martins [85] the three models presented above can be used according
to the feature of the input graph. In fact, the irst model is recommended for dense
graph, the second one for sparse graph while the third one for intermediate cases.

4.1.2 MCCP: Mathematical Formulation

Let G be an undirected graph and C a clique of G. A cut-clique of C is indicated by:

E ′(C) = {(i, j) ∈ E | i ∈ C and j ∈ V \ C},

i.e. it is the set of all edges in the cut (C,V \ C). In addition, if C is a singleton,
namely C = {i}, E ′(C) is denoted by E ′(i). Since by deinition every clique induces
a complete sub-graph, denoting by Γ(G) the set of all cliques of G, the MCCP can
be stated as follows:

(MCCP) max
C∈Γ(G)

{
∑

i∈C

|E ′(i)|


− |C|(|C|− 1)
}

Although this problem received little attention in the scientiic literature it is well
known to be NP-hard [75, 85].

4.1.3 State of the Art Approaches for the MCCP

Although the MCCP is a problem very similar to a classic and well known problem as
the MCP, the MCCP is a very little studied problem, in fact the only work presented
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in literature was [86]. In this work were proposed several adaptations of the Iterated
Local Search (ILS) Framework. All the designed algorithms are based on the two
main operations:

• add : is used to build a feasible solution in incremental way. If this process
leads to an infeasible solution, then the second operation is used,

• swap: in the event that the irst operation builds an infeasible solution, this
latter tries to transform the current solution in a feasible one.

Two main strategies are developed depending by the way in which the nodes are
selected in the add and swap operations, these strategies are Random-ILS (D-ILS)
and Degree-ILS (R-ILS). In the matter the nodes are selected in a random way while
in the latter strategy the nodes are selected according to their degree.

4.1.4 A GRASP for the MCCP

In order to tackle the MCCP we devised in [42] a meta-heuristic algorithm which,
within a GRASP framework, hybridized a greedy randomized adaptive constructive
phase with an improvement phase based on the Phased Local Search (PLS).

Construction Phase

The GRASP construction phase developed for the MCCP puts together the clique C

one node at time, such nodes are selected from the RCL. The RCL in our case is
made up of the nodes with highest degree among those neighboring the elements of
C selected up to the previous step. The construction phase stops whenever there is
no node v ∈ V \C such that v ∈ N(u),∀u ∈ C. The pseudocode of the construction
phase is shown in Figure 4.1.

Improvement Phase based on the Phased Local Search

Given the analogies with MCP, we decided to use as local search in our GRASP a
suitably adapted version of the PLS proposed in [106], and depicted in Figure 4.2.
Let K0(C) be the set of nodes of V connected to all the elements of the clique C and
K1(C) be the missing one set, made up of nodes v connected to all but one elements
of C, i.e,

K0(C) = {v ∈ V | C ∪ {v} is a clique}; K1(C) = {v ∈ V | ∃!u ∈ C : u /∈ N (v)}.
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1 construction-GRASP-MCCP (G, α)
2 C← ∅;
3 Q← V ;
4 while |Q| > 0 do
5 dmin ← min{dG(Q)(u) | u ∈ Q};
6 dmax ← max{dG(Q)(u) | u ∈ Q};
7 RCL← {u ∈ Q | dG(Q)(u) ≥ dmin + α(dmax − dmin)};
8 u←select_node_randomly(RCL);
9 C← C ∪ {u};
10 Q← Q \ {u} \ {v | v ̸∈ N(u)};

Fig. 4.1 GRASP construction for MCCP.

The main feature of the PLS consists in the phase sub-routine which adopts three
diferent selection criteria to move from the current clique C to an adjacent one. A
clique C ′ is adjacent to C if it is obtained either by adding to C a node of K0(C)

or swapping a node v ∈ K1(C) with the only u ∈ C \ N (v). Starting from the
clique C built in the aforementioned construction phase, and up to an user-deined
maximum selection number, the PLS repeatedly applies the phase sub-routine in
the three following setups: 1) Random select: in which the nodes to be added, or
respectively swapped, are randomly selected from K0(C) and K1(C); 2) Degree
select: in which the nodes are selected from K0(C) and K1(C) according to their
degree; 3) Penalty select: in which the nodes are chosen from K0(C) and K1(C)

on the basis of a penalty function, which penalizes frequently selected nodes. As
described in the paper of Martins et al. [86], we implemented two diferent versions
of our algorithm: GRASP-PLS and GRASP-PLSp. The latter implementation exploits
the following proposition proposed in [86]:

Proposition 4. Given a clique C of G and a node i ∈ V \ C. If |E ′(i)| < 2|C| then

the node i will not belong to K0(C), and then it does not belong to any one optimal

solution with a clique of cardinality |C|+ 1 or higher. Furthermore, if |E ′(i)| = 2|C| if

the node i is inserted in C then the cardinality of the cut given by C will not increase.

The results obtained by the Proposition 4 allows to recognize nodes whose
addition (or swap, in case of nodes of K1(C)) generates an improvement in the value
of the current cut-clique.
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1 PLS-for-MCCP (C, max_sel)

2 C∗ ← C ;
3 for i = 1 to max_sel do
4 C← Random_selection(n_iter_1) ;
5 C← Degree_selection(n_iter_2) ;
6 C← Penalty_selection(n_iter_3) ;
7 update_solution(C, C∗) ;
8 return C∗

Fig. 4.2 The phased local search procedure used in our GRASP.

4.1.5 Experimental Results

All the algorithms considered in the computational experiments were implemented in
C++ and compiled with g++ 5.4.0 with the lag -std=c++11. All tests were run on an
Intel Core i7-4720HQ CPU @2.60GHz × 8. The instances tackled in our experiments
are taken from the second DIMACS implementation challenge, and are the same used
in [86]. For the sake of scientiic fairness, for our testing we implemented in C++
the algorithms of [86] (originally implemented in FORTRAN). Each algorithm was
executed for 100 runs. The results obtained, reported in Table 4.1, show how the
proposed algorithm outperforms the previous methods on the vast majority of the
benchmark set. The occurrences in which one algorithm yields either the absolute
best or tied-best objective function mean value and the best computation time are
reported in bold.

4.2 p-Center Problem (p-CP)

The p-Center Problem (p-CP) is one of the best-known location problems irst
introduced in 1964 by Hakimi [68]. It consists of locating p facilities and assigning
clients/users to them in order to minimize the maximum distance between a client
and the facility to which the client is assigned. The p-CP arises in many diferent
real-world contexts, whenever one designs a system for public facilities, such as
schools or emergency services. Formally, we are given a complete undirected
edge-weighted bipartite graph G = (V ∪ U,E, c), where

• V = {1, 2, . . . , n} is a set of n potential locations for facilities;

• U = {1, 2, . . . ,m} is a set of m clients or demand points;

• E = {(i, j)| i ∈ V, j ∈ U} is a set of n × m edges;
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Table 4.1 Average of the solution values (avg-z) and execution time (avg-t) of the
algorithms. The p subscript speciies when the implementation uses Proposition 4.

D-ILS D-ILSp R-ILS R-ILSp GRASP-PLS GRASP-PLSp

instance avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t avg-z avg-t

C125.9 2766 0.176 2766 0.176 2766 0.189 2766 0.186 2766 0.152 2766 0.161
C250.9 8123 0.277 8123 0.279 8119.45 0.284 8119.68 0.285 8123 0.25 8123 0.264
C500.9 22367.3 0.476 22353.5 0.478 22325.2 0.487 22334.5 0.487 22616.6 0.43 22578.8 0.453
C1000.9 55371.7 0.826 55263.2 0.826 54675.6 0.854 54725.7 0.849 56500.5 0.731 56499 0.794
C2000.5 16036.9 2.86 16000.1 2.86 15890.4 3.12 15889.6 3.1 15973.6 2.25 15939.2 2.36
C2000.9 127363 1.56 127231 1.55 125979 1.6 125998 1.61 130832 1.34 130730 1.48
C4000.5 34268.4 5.63 34263.2 5.68 34011.9 6.08 34059.2 6.05 34194.5 4.46 34182 4.74
keller4 1140 0.169 1140 0.17 1140 0.199 1140 0.199 1140 0.16 1140 0.168
keller5 15030.5 0.48 15020.7 0.481 15156.8 0.54 15147.8 0.542 15184 0.445 15184 0.487
keller6 141174 1.61 140868 1.61 139669 1.79 142883 1.78 147728 1.42 147452 1.64
MANN-a9 412 0.658 412 0.664 412 0.73 412 0.732 412 0.679 412 0.688
MANN-a27 31080.5 0.28 31077 0.289 31136.4 0.268 31137.5 0.26 31254.4 0.234 31249.8 0.247
MANN-a45 232838 0.787 232900 0.801 232813 0.732 232786 0.704 234382 0.601 234382 0.643
MANN-a81 2418810 2.66 2418990 2.7 2417850 2.9 2417860 2.76 2418930 3.01 2418930 2.86
p-hat300-1 789 0.449 789 0.449 789 0.51 789 0.511 789 0.34 789 0.354
p-hat300-2 4637 0.379 4637 0.381 4637 0.417 4637 0.417 4637 0.327 4637 0.342
p-hat300-3 7740 0.333 7740 0.333 7740 0.355 7740 0.354 7740 0.296 7740 0.314
p-hat500-1 1621 0.682 1621 0.684 1621 0.776 1621 0.78 1621 0.537 1621 0.563
p-hat500-2 11539 0.541 11539 0.543 11539 0.587 11539 0.586 11539 0.493 11539 0.52
p-hat500-3 18859 0.456 18859 0.457 18858.8 0.49 18858.8 0.49 18859 0.422 18859 0.453
p-hat700-1 2606 0.92 2606 0.921 2606 1.05 2606 1.05 2606 0.729 2606 0.766
p-hat700-2 20425 0.701 20425 0.703 20425 0.763 20425 0.763 20425 0.644 20425 0.684
p-hat700-3 33480 0.587 33480 0.589 33479.4 0.629 33479.4 0.626 33480 0.548 33480 0.59
p-hat1000-1 3556 1.27 3556 1.27 3556 1.45 3556 1.46 3556 1.01 3556 1.06
p-hat1000-2 31174 0.973 31174 0.977 31172.9 1.05 31173.2 1.06 31174 0.895 31174 0.952
p-hat1000-3 53259 0.796 53259 0.797 53259 0.854 53259 0.853 53259 0.744 53259 0.811
p-hat1500-1 6018 1.87 6018 1.87 6018 2.14 6018 2.15 6018 1.5 6018 1.58
p-hat1500-2 67486 1.32 67486 1.31 67480.5 1.42 67478.6 1.43 67486 1.24 67486 1.34
p-hat1500-3 112867 1.03 112864 1.03 112842 1.12 112841 1.12 112873 1.01 112873 1.12
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• c : E 7→ R
+ ∪ {0} is a function that assigns a nonnegative distance cij to each

edge (i, j) ∈ E.

The aim of the problem is to ind a subset P ⊆ V of size p such that its weight,
deined as

C(P) = max
i∈U

min
j∈P

cij (4.1)

is minimized. The minimum value is called radius. Although it is not a restrictive
hypothesis, we consider the special case where V = U is the node set of a complete
graph G = (V, E), each distance cij represents the length of a shortest path between
nodes i and j (cii = 0), and hence the triangle inequality is satisied.

In 1979, Kariv and Hakimi [73] proved that the problem is NP-hard, even in
the case where the input instance has a simple structure (e.g., a planar graph of
maximum node degree 3). In 1970, Minieka [91] designed the irst exact method for
the p-CP viewed as a series of set covering problems. His algorithm iteratively
chooses a threshold r for the radius and checks whether all clients can be covered
within distance r using no more than p facilities. If so, the threshold r is decreased;
otherwise, it is increased. Inspired by Minieka’s idea, in 1995 Daskin [23] proposed a
recursive bisection algorithm that systematically reduces the gap between upper
and lower bounds on the radius. More recently, in 2010 Salhi and Al-Khedhairi [114]
proposed a faster exact approach based on Daskin’s algorithm that obtains tighter
upper and lower bounds by incorporating information from a three-level heuristic
that uses a variable neighborhood strategy in the irst two levels and at the third
level a perturbation mechanism for diversiication purposes.

Recently, several facility location problems similar to the p-center have been
used to model scenarios arising in inancial markets. The main steps to use such
techniques are the following: irst, to describe the considered inancial market via a
correlation matrix of stock prices; second, to model the matrix as a graph, stocks
and correlation coeicients between them are represented by nodes and edges,
respectively. With this idea, Goldengorin et al. [67] used the p-median problem to
analyze stock markets. Another interesting area where these problems arise is the
manufacturing system with the aim of lowering production costs [66].

Due to the computational complexity of the p-CP, several approximation and
heuristic algorithms have been proposed for solving it. By exploiting the relationship
between the p-CP and the dominating set problem [71, 83], nice approximation
results were proved. With respect to inapproximability results, Hochbaum and
Shmoys [71] proposed a 2-approximation algorithm for the problem with triangle
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inequality, showing that for any δ < 2 the existence of a δ-approximation algorithm
would imply that P = NP.

Although interesting in theory, approximation algorithms are oten outperformed

in practice by more straightforward heuristics with no particular performance

guarantees. Local search is the main ingredient for most of the heuristic algorithms

that have appeared in the literature. In conjunction with various techniques for

escaping local optima, these heuristics provide solutions which exceed the theoretical

upper bound of approximating the problem and derive from ideas used to solve the

p-median problem, a similar NP-hard problem [74]. Given a set F of m potential

facilities, a set U of n users (or customers), a distance function d : U × F 7→ R, and a

constant p ≤ m, the p-median problem is to determine a subset of p facilities to open

so as to minimize the sum of the distances from each user to its closest open facility.

For the p-median problem, in 2004 Resende and Werneck [112] proposed a multi-

start heuristic that hybridizes GRASP with Path-Relinking as both, intensiication

and post-optimization phases. In 1997, Hansen and Mladenovic [69] proposed three

heuristics: Greedy, Alternate, and Interchange(node substitution). To select the

irst facility, Greedy solves a 1-center problem. The remaining p−1 facilities are then

iteratively added, one at a time, and at each iteration the location which most reduces

the maximum cost is selected. In [34], Dyer and Frieze suggested a variant, where

the irst center is chosen at random. In the irst iteration of Alternate, facilities are

located at p nodes chosen in V , clients are assigned to the closest facility, and the

1-center problem is solved for each facility’s set of clients. During the subsequent

iterations, the process is repeated with the new locations of the facilities until no

more changes in assignments occur. As for the Interchange procedure, a certain

pattern of p facilities is initially given. Then, facilities are moved iteratively, one

by one, to vacant sites with the objective of reducing the total (or maximum) cost.

This local search process stops when no movement of a single facility decreases

the value of the objective function. A multi-start version of Interchange was also

proposed, where the process is repeated a given number of times and the best

solution is kept. The combination of Greedy and Interchange has been most oten

used for solving the p-median problem. In 2003, Mladenovic et al. [93] adapted it

to the p-CP and proposed a Tabu Search (TS) and a Variable Neighborhood Search

(VNS), i.e., a heuristic that uses the history of the search in order to construct a

new solution and a competitor that is not history sensitive, respectively. The TS is

designed by extending Interchange to the chain-interchange move, while in the VNS,

a perturbed solution is obtained from the incumbent by a k-interchange operation
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and Interchange is used to improve it. If a better solution than the incumbent is
found, the search is re-centered around it. In 2011, Davidovic et al. [24] proposed
a Bee Colony algorithm, a random search population-based technique, where an
artiicial system composed of a number of precisely deined agents, also called
individuals or artiicial bees.

To the best of our knowledge, most of the research efort devoted towards the
development of meta-heuristics for this problem has been put into the design of
eicient local search procedures. The purpose of this article is propose a new
local search and to highlight how its performances are better than best-known
local search proposed in literature (Mladenovic et al. [93] local search based on VNS
strategy), both in terms of solutions quality and convergence speed.

4.2.1 A GRASP for the p-CP

For the p-center problem, we propose in [44] a new smart local search based on the
critical node concept and embed it in a GRASP framework. This strategy obtained
remarkable results on the well-known p-CP benchmark instances, while in [45] we
extends this approach also considering optical networks.

Construction phase

Starting from a partial solution made of 1 ≤ randElem ≤ p facilities randomly
selected from V , our GRASP construction procedure iteratively selects the remaining
p− randElem facilities in a greedy randomized fashion. The greedy function takes
into account the contribution to the objective function achieved by selecting a
particular candidate element. In more detail, given a partial solution P, |P| < p, for
each i ∈ V \P, we compute w(i) = C(P∪ {i}). The pure greedy choice would consist
in selecting the node with the smallest greedy function value. This procedure instead
computes the smallest and the largest greedy function values:

zmin = min
i∈V\P

w(i); zmax = max
i∈V\P

w(i).

Then, denoting by µ = zmin+β(zmax−zmin) the cut-of value, where β is a parameter
such that β ∈ [0, 1], a restricted candidate list (RCL) is made up of all nodes whose
greedy value is less than or equal to µ. The new facility to be added to P is inally
randomly selected from the RCL. The pseudocode is shown in Figure 4.3, where
α ∈ [0, 1].
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1 construction-GRASP-pCP (G, p, α, β)

2 P ← ∅ ;
3 randElem← ⌊α · p⌋ ;
4 for k = 1, . . . , randElem do // random component

5 f←select_node_randomly(V \ P);
6 P ← P ∪ {f} ;
7 while |P| < p do
8 zmin ← +∞ ;
9 zmax ← −∞ ;
10 for i ∈ V \ P do
11 if zmin > C(P ∪ {i}) then
12 zmin ← C(P ∪ {i}) ;
13 if zmax < C(P ∪ {i}) then
14 zmax ← C(P ∪ {i}) ;
15 µ← zmin + β(zmax − zmin) ;
16 RCL← {i ∈ V \ P | C(P ∪ {i}) ≤ µ} ;
17 f←select_node_randomly(RCL) ;
18 P ← P ∪ {f};
19 return P;

Fig. 4.3 GRASP construction for p-CP.

Improvement Phase: Plateau Surfer, a New Local Search Based on the Critical

Node Concept

Given a feasible solution P, the Interchange local search proposed by Hansen and
Mladenovic [69] consists in swapping a facility f ∈ P with a facility f /∈ P which
results in a decrease of the current cost function. Especially in the case of instances
with many nodes, we have noticed that usually a single swap does not strictly
improve the current solution, because there are several facilities whose distance
is equal to the radius of the solution. In other words, the objective function is
characterized by large plateaus and the Interchange local search cannot escape
from such regions. To face this type of diiculties, inspired by Variable Formulation
Search [94, 102], we have decided to use a reined way for comparing between valid
solutions by introducing the concept of critical node. Given a solution P ⊆ V , let
δP : V 7→ R

+ ∪ {0} be a function that assigns to each node i ∈ V the distance between
i and its closest facility according to solution P. Clearly, the cost of a solution P can
be equivalently written as C(P) = max { δP(i) : i ∈ V }. We also give the following
deinition:
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Fig. 4.5 Plateau escaping. The behavior of our plateau surfer local search (in red)
compared with the Mladenovic’s one (in blue). Both algorithms work on the same
instances taking as input the same starting solution. Filled red dots and empty blue
circles indicate the solutions found by the two algorithms. Mladenovic’s local search
stops as soon as the irst plateau is met.
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Fig. 4.6 Plateau escaping. The behavior of our plateau surfer local search (in red)
compared with the Mladenovic’s one (in blue) on other two diferent instances.



94 GRASP Approaches for Other Combinatorial Problems

1 local-search-GRASP-pCP (G, P, p)

2 repeat
3 modified ← false;
4 forall i ∈ P do
5 best_flip ← best_cv_flip ← NULL;
6 bestNewSolValue← C(P);
7 best_cv ← maxδ(P);
8 forall j ∈ V \ P do
9 P ← P \ {i} ∪ {j};
10 if C(P) < bestNewSolValue then
11 bestNewSolValue ← C(P);
12 best_flip ← j;
13 else if best_flip = NULL and maxδ(P) < best_cv then
14 best_cv ← maxδ(P);
15 best_cv_flip← j;
16 if best_flip ̸= NULL then
17 P ← P \ {i} ∪ {best_flip};
18 modified := true;
19 else if best_cv_flip ̸= NULL then
20 P ← P \ {i} ∪ {best_cv_flip};
21 modified ← true;
22 until modified ← false;
23 return P;

Fig. 4.7 Pseudocode of the plateau surfer local search algorithm based on the critical
node concept.
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the pseudocode that goes from line 7 to 14. Starting from an initial solution P, the
algorithm tries to improve the solution replacing a node j /∈ P with a facility i ∈ P.
Clearly, this swap is stored as an improving move if the new solution P = P \ {i}∪ {j}

is strictly better than P according to the cost function C. If C(P) is better than the
current cost C(P), then P is compared also with the incumbent solution and if it is
the best solution found so far, the incumbent is update and the swap that led to this
improvement stored (lines 9-11).

Otherwise, the algorithm checks if it is possible to reduce the number of critical
nodes. If the new solution P is such that P <cv P, then the algorithm checks if P is
the best solution found so far (line 12), the value that counts the number of critical
nodes in a solution is update (line 13), and the current swap stored as an improving
move (line 14).

To study the computational complexity of our local search, let be n = |V | and
p = |P|, the number of nodes in the graph and the number of facilities in a solution,
respectively. The loops at lines 3 and 7 are executed p and n times, respectively. The
update of the solution takes O(n). In conclusion, the total complexity is O(p · n2).

4.2.2 Experimental Results

In this section, we describe computational experience with the local search proposed
above. We have compared it with the local search proposed by Mladenovic et al.
[93], by embedding both in a GRASP framework. The algorithms were implemented
in C++, compiled with gcc 5.2.1 under Ubuntu with -std=c++14 lag. The stopping
criterion is maxTime = 0.1 ·n+ 0.5 · p. All the tests were run on a cluster of nodes,
connected by 10 Gigabit Ininiband technology, each of them with two processors
Intel Xeon E5-4610v2@2.30GHz.

Table 4.2 summarizes the results on a set of ORLIB instances, originally introduced
in [5]. It consists of 40 graphs with number of nodes ranging from 100 to 900, each
with a suggested value of p ranging from 5 to 200. Each node is both a user and a
potential facility, and distances are given by shortest path lengths. Tables 4.3 and 4.4
report the results on the TSP set of instances. They are just sets of points on the
plane. Originally proposed for the traveling salesman problem, they are available
from the TSPLIB [108]. Each node can be either a user or an open facility. We used
the Mersenne Twister random number generator by Matsumoto and Nishimura [90].
Each algorithm was run with 10 diferent seeds, and minimum (min), average (E)
and variance (σ2) values are listed in each table. The second to last column lists the
%-Gap between average solutions. To deeper investigate the statistical signiicance
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of the results obtained by the two local searches, we performed the Wilcoxon test
[21, 127].

Generally speaking, the Wilcoxon test is a ranking method that well applies
in the case of a number of paired comparisons leading to a series of diferences,
some of which may be positive and some negative. Its basic idea is to substitute
scores 1, 2, 3, . . . , n with the actual numerical data, in order to obtain a rapid
approximate idea of the signiicance of the diferences in experiments of this kind.

Table 4.2 Results on ORLIB instances.

GRASP + mladenovic GRASP + plateau-surfer

Instance min E σ2 min E σ2 %-Gap p-value

pmed01 127 127 0 127 127 0 0.00
pmed02 98 98 0 98 98 0 0.00
pmed03 93 93.14 0.12 93 93.54 0.25 0.43
pmed04 74 76.21 1.33 74 74.02 0.04 -2.87 1.20E-16
pmed05 48 48.46 0.43 48 48 0 -0.95
pmed06 84 84 0 84 84 0 0.00
pmed07 64 64.15 0.27 64 64 0 -0.23
pmed08 57 59.39 1.36 55 55.54 0.73 -6.48 3.37E-18
pmed09 42 46.87 2.83 37 37.01 0.01 -21.04 2.80E-18
pmed10 29 31.21 0.81 20 20.01 0.01 -35.89 9.38E-19

pmed11 59 59 0 59 59 0 0.00
pmed12 51 51.89 0.1 51 51.41 0.24 -0.93
pmed13 42 44.47 0.73 36 36.94 0.06 -16.93 1.04E-18
pmed14 35 38.59 3.24 26 26.85 0.13 -30.42 2.11E-18
pmed15 28 30.23 0.7 18 18 0 -40.46 1.09E-18
pmed16 47 47 0 47 47 0 0.00
pmed17 39 40.71 0.23 39 39 0 -4.20 8.69E-20
pmed18 36 37.95 0.29 29 29.41 0.24 -22.50 6.37E-19
pmed19 27 29.32 0.42 19 19.13 0.11 -34.75 6.25E-19
pmed20 25 27.05 0.99 14 14 0 -48.24 1.46E-18

pmed21 40 40 0 40 40 0 0.00
pmed22 39 40.06 0.24 38 38.94 0.06 -2.80 1.30E-18
pmed23 30 32.02 0.44 23 23.21 0.17 -27.51 7.16E-19
pmed24 24 25.38 0.34 16 16 0 -36.96 4.37E-19
pmed25 22 22.62 0.24 11 11.89 0.1 -47.44 2.77E-19
pmed26 38 38 0 38 38 0 0.00
pmed27 33 33.96 0.06 32 32 0 -5.77 2.15E-22
pmed28 26 26.78 0.17 19 19 0 -29.05 2.20E-20
pmed29 23 23.43 0.31 13 13.68 0.22 -41.61 8.00E-19
pmed30 20 21.18 0.47 10 10 0 -52.79 6.50E-19

pmed31 30 30 0 30 30 0 0.00
pmed32 30 30.37 0.23 29 29.62 0.24 -2.47
pmed33 23 23.76 0.2 16 16.28 0.2 -31.48 4.31E-19
pmed34 21 22.42 0.66 11 11.56 0.25 -48.44 1.59E-18
pmed35 30 30.01 0.01 30 30 0 -0.03
pmed36 28 29.37 0.31 27 27.65 0.23 -5.86 4.52E-18
pmed37 23 24.07 0.37 16 16 0 -33.53 2.74E-19
pmed38 29 29 0 29 29 0 0.00
pmed39 24 25.08 0.11 23 23.98 0.02 -4.39 4.68E-21
pmed40 20 21.81 0.43 14 14 0 -35.81 5.14E-19

Average -16.78

More formally, let A1 and A2 be two algorithms, I1, . . . , Il be l instances of
the problem to solve, and let δAi

(Ij) be the value of the solution obtained by
algorithm Ai (i = 1, 2) on instance Ij (j = 1, . . . , l). For each j = 1, . . . , l, the
Wilcoxon test computes the diferences ∆j = |δA1

(Ij) − δA2
(Ij)| and sorts them in
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Table 4.3 Results on TSPLIB instances (1)

GRASP + mladenovic GRASP + plateau-surfer

Instance p min E σ2 min E σ2 %-Gap p-value

pcb3038

50 534.48 608.49 1068.09 355.68 374.66 51.05 -38.43 3.90E-18
100 399.49 481.75 1285.58 259.67 270.2 17.56 -43.91 3.90E-18
150 331.62 428.69 1741.11 206.71 215.78 23.73 -49.67 3.90E-18
200 301.01 386.56 3161.87 177.79 190.88 10.4 -50.62 3.90E-18
250 292.48 359.59 3323.62 155.03 163.75 19.24 -54.46 3.90E-18
300 261.28 349.42 2902.71 143.39 151.89 10.04 -56.53 3.90E-18
350 258.82 336.08 3755.72 123.85 136.22 22.45 -59.47 3.90E-18
400 249.78 337.14 4033.46 119.07 122.31 1.2 -63.72 3.90E-18
450 214.97 321.36 3373.23 115 117 0.6 -63.59 3.90E-18
500 209.35 299.4 3378.98 102 110.38 5.78 -63.13 3.90E-18

pr1002

10 3056.55 3313.49 10132.77 2616.3 2727.45 2260.95 -17.69 3.90E-18
20 2404.16 2668.29 8244.65 1806.93 1886.89 1516.07 -29.28 3.90E-18
30 2124.26 2358.07 4432.11 1456.02 1505.55 910.93 -36.15 3.89E-18
40 1960.23 2172.63 7831.77 1253.99 1302.76 751.62 -40.04 3.90E-18
50 1755.7 1992.08 5842.66 1097.72 1156.77 815.35 -41.93 3.90E-18
60 1697.79 1865.5 5872.47 1001.25 1042.82 257.42 -44.1 3.89E-18
70 1569.24 1736.41 4078.39 900 954.04 307.65 -45.06 3.89E-18
80 1486.61 1633.87 3278.4 851.47 889.5 407.29 -45.56 3.88E-18
90 1350.93 1543.17 3922.25 764.85 809.78 382.29 -47.52 3.89E-18

100 1312.44 1472.47 2616 743.3 767.62 77.4 -47.87 3.89E-18

pr439

10 2575.12 2931.83 38470.59 1971.83 1972.28 19.61 -32.73 3.79E-18
20 1940.52 2577.03 23638.88 1185.59 1194.12 124.58 -53.66 3.71E-18
30 1792.34 2510.91 23692.47 886 919.1 442.37 -63.4 3.89E-18
40 1525.2 2413.33 53876.4 704.45 728.19 39.31 -69.83 3.88E-18
50 1358.54 2252.46 89633.71 575 595.4 64.21 -73.57 3.82E-18
60 1386.09 2170.85 110065.93 515.39 537.66 75.43 -75.23 3.89E-18
70 1370.45 1898.53 116167.77 480.23 499.65 4.93 -73.68 3.73E-18
80 1140.18 1815.1 118394.68 424.26 440.27 166.06 -75.74 3.89E-18
90 1191.9 1699.64 91388.99 400 406.17 31.71 -76.1 3.88E-18

100 1190.85 1679.73 94076.45 375 384.27 98.91 -77.12 3.89E-18

rat575

10 81.32 92.98 9.27 73 74.71 0.79 -19.65 3.90E-18
20 68.07 73.86 3.7 50.54 53.04 0.63 -28.19 3.90E-18
30 59.81 64.61 3.67 41.79 43.53 0.47 -32.63 3.90E-18
40 54.13 58.37 3.43 36.12 37.43 0.29 -35.87 3.90E-18
50 47.68 53.78 3.56 32.45 33.36 0.17 -37.97 3.90E-18
60 45.62 50.03 3.21 29.15 30.17 0.19 -39.7 3.90E-18
70 43.68 46.96 2.97 27 27.78 0.13 -40.84 3.90E-18
80 39.81 44.2 2.75 25.02 25.99 0.11 -41.2 3.90E-18
90 38.48 41.98 2.06 23.85 24.4 0.07 -41.88 3.90E-18

100 37.01 39.93 1.4 22.2 23.01 0.08 -42.37 3.89E-18

rat783

10 102.22 110.93 13.17 83.49 87.82 1.65 -20.83 3.90E-18
20 80.53 88.56 7.68 59.68 62.8 1.41 -29.09 3.90E-18
30 69.58 76.92 7.87 49.25 51.48 0.74 -33.07 3.90E-18
40 62.97 69.63 4.62 42.05 44.27 0.53 -36.42 3.90E-18
50 59.41 65.26 5.59 38.29 39.6 0.42 -39.32 3.90E-18
60 54.82 60.35 4.77 34.48 35.92 0.24 -40.48 3.90E-18
70 49.4 56.56 7.48 32.06 33.11 0.24 -41.46 3.90E-18
80 48.51 53.76 4.03 29.55 30.94 0.21 -42.45 3.90E-18
90 46.07 51.82 3.53 28.18 28.85 0.11 -44.33 3.90E-18

100 43.97 49.5 4.68 26.31 27.49 0.14 -44.46 3.90E-18

Average -46.84
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Table 4.4 Results on TSPLIB instances (2)

GRASP + mladenovic GRASP + plateau-surfer

Instace p min E σ2 min E σ2 %-Gap p-value

rl1323

10 3810.84 4185.89 24655.46 3110.57 3241.79 3290.56 -22.55 3.90E-18
20 2996.4 3348.31 23183.21 2090.87 2236.28 2798.56 -33.21 3.90E-18
30 2689.44 2979.79 14205.75 1730.78 1808.94 1544.85 -39.29 3.90E-18
40 2337.92 2712.93 14193.05 1479.24 1576.25 1710.4 -41.9 3.90E-18
50 2195.91 2462.95 9835.09 1300 1363.88 950.66 -44.62 3.90E-18
60 2021.87 2278.94 16400.27 1181.3 1244.03 657.55 -45.41 3.90E-18
70 1900.77 2128.45 11883.58 1076.2 1127.98 475.13 -47 3.90E-18
80 1866.8 2033.24 4501.73 988.87 1048.87 438.82 -48.41 3.89E-18
90 1634.37 1966.13 4643.42 935.02 978.6 289.18 -50.23 3.89E-18

100 1631.5 1909.56 8483.55 886.85 914 238.2 -52.14 3.89E-18

u1060

10 3110.65 3373.87 7541.61 2301.7 2440 599.42 -27.68 3.86E-18
20 2652.6 2818.37 5787.51 1650.34 1749.15 2814.03 -37.94 3.90E-18
30 2501.72 2684.87 3811.23 1302.94 1373.21 912.92 -48.85 3.90E-18
40 2442.07 2616.15 5267.85 1118.59 1176.14 593.6 -55.04 3.90E-18
50 2378.36 2591.96 7266.77 950.66 1021.55 418.91 -60.59 3.90E-18
60 2301.83 2602.13 13579.82 860.49 919.97 374.54 -64.65 3.90E-18
70 2378.36 2606.64 10944.09 790.13 828.16 441.03 -68.23 3.90E-18
80 2351.82 2622.32 12980.39 720.94 753.64 306.94 -71.26 3.90E-18
90 2248.61 2562.01 10260.36 667.55 708.04 107.79 -72.36 3.90E-18

100 2060.29 2494.08 11025.91 632.11 653.15 110.65 -73.81 3.90E-18
110 2049.18 2444.22 10385.95 570.49 613.02 148.7 -74.92 3.90E-18
120 2122.97 2406.19 9191.4 570 579.93 96.23 -75.9 3.90E-18
130 1839.55 2390.82 12029.95 538.82 561.62 78.78 -76.51 3.90E-18
140 1924.48 2316.25 12982.87 500.39 527.66 172.51 -77.22 3.90E-18
150 1942.27 2300.45 13245.06 499.65 503.26 20.49 -78.12 3.90E-18

u1817

10 592.97 646.89 325 466.96 485.44 104.33 -24.96 3.90E-18
20 462.3 564.44 560.9 330.2 348.15 53.96 -38.32 3.90E-18
30 418.91 530.34 1018.29 265.19 283.4 58.43 -46.56 3.90E-18
40 407.19 526.44 956.01 232.25 245.78 43.42 -53.31 3.90E-18
50 330.21 507.52 2889.76 204.79 217.05 26.96 -57.23 3.90E-18
60 352.88 497.35 3539.09 184.91 197.26 21.79 -60.34 3.90E-18
70 321.27 477.43 4139.93 170.39 181.53 13.67 -61.98 3.90E-18
80 289.61 445.35 4866.81 154.5 166.46 22.68 -62.62 3.90E-18
90 283.99 422.34 3828.2 148.11 153.5 13.72 -63.65 3.90E-18

100 283.99 416.69 2660.21 136.79 146.67 7.4 -64.8 3.90E-18

Average -54.9
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non decreasing order. Accordingly, starting with a smallest rank equal to 1, to each
diference ∆j, it assigns a non decreasing rank Rj. Ties receive a rank equal to
the average of the sorted positions they span. Then, the following quantities are
computed

W+ =
∑

j=1,...,l : ∆j>0

Rj,

W− =
∑

j=1,...,l : ∆j<0

Rj.

Under the null hypothesis that δA1
(Ij) and δA2

(Ij) have the same median value,
it should result that W+ = W−. If the p-value associated to the experiment is less
than an a priori ixed signiicance level α, then the null hypothesis is rejected and
the diference between W+ and W− is considered signiicant. The last column of
each table lists the p-values where the %-Gap is signiicant, all the values are less
than α = 0.01. This outcome of the Wilcoxon test further conirms that our local
search is better performing than the local search proposed by Mladenovic et al.

4.3 A GRASP for the Minimum Cost Satisiability Prob-

lem (MinCost-SAT)

Propositional Satisiability (SAT) is a well known problem in logic and optimization
belong to the NP-complete problems [58]. This problem plays an important role
in the theory of complexity, where it is used to model complex problems. In logic
supervised learning, for example, a dataset of samples is given, each of which
represented by a inite number of logic variables, and a particular extension of the
classic SAT problem - the Minimum Cost Satisiability Problem (MinCost-SAT) - can
be used to iteratively identify the diferent clauses of a compact formula in Disjunctive
Normal Form (DNF) that possesses the desirable property of assuming the value True
on one speciic subset of the dataset and the value False on the rest. The MinCost-
SAT for learning propositional formula from data is described in [37] and [122]. There
are several reasons that motivate the validity of this approach for the supervised
learning, in fact it is proved to be very efective in several applications, particularly
on those derived from biological and medical data analysis [6, 2, 125, 126, 124, 16].

One of the main drawbacks of the approach described in [37] lies in the diiculty
of solving MinCost-SAT exactly or with an appropriate quality level. Such drawback
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is becoming more and more evident as, in the era of Big Data, the size of the datasets
that one is to analyze steadily increases. Feature selection techniques may be used to
reduce the space in which the samples are represented (one such method speciically
designed for data in logic form is described in [7]). While the literature proposes
both exact approaches ([54, 105], [122], and [123]) and heuristics ([119]), still the need
for eicient MinCost-SAT solvers remains, and in particular for solvers that may take
advantage of the speciic structure of those MinCost-SAT representing supervised
learning problems.

In [38] we tried to ill this gap ofering a GRASP-based meta-heuristic designed
to solve the MinCost-SAT problems that arise in supervised learning, although
GRASP-based approaches were already proposed in literature but for diferent
satisiability problems [49, 109]. Furthermore, we developed a new probabilistic
stopping criterion that proves to be very efective in limiting the exploration of the
solution space - whose explosion is a frequent problem in meta-heuristic approaches.
The method has been tested on several instances derived from artiicial supervised
problems in logic form, and successfully compared with four established solvers in
the literature (Z3 from Microsot Research [25], bsolo [79], MiniSat+ [36], and PWBO

[87, 89, 88].

MinCost-SAT is a special case of the well known Boolean Satisiability Problem.

Given a set of n boolean variables X = {x1, . . . , xn}, a non-negative cost function

c : X 7→ R
+ such that c(xi) = ci ≥ 0, i = 1, . . . , n, and a boolean formula ϕ(X)

expressed in CNF, the MinCost-SAT problem consists in inding a truth assignment

for the variables in X such that the total cost is minimized while ϕ(X) is satisied.

Accordingly, the mathematical formulation of the problem is given as follows:

(MinCost-SAT) z = min
n∑

i=1

cixi

subject to:

ϕ(X) = 1,

xi ∈ {0, 1}, ∀i = 1, . . . , n.

It is easy to see that a general SAT problem can be reduced to a MinCost-SAT

problem whose costs ci are all equal to 0. Furthermore, the decision version of the

MinCost-SAT problem is NP-complete [54]. While the Boolean Satisiability problem

is far famed in the landscape of scientiic literature, MinCost-SAT has received less

attention.
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4.3.1 A GRASP for the MinCost-SAT

In the implementation of our GRASP we treat the MinCost-SAT as particular covering
problem with incompatibility constraints. In particular, we consider each literal
(x,¬x) as a separate element, and a clause is covered if at least one literal in the
clause is contained in the solution. The algorithm tries to add literals to the solution
in order to cover all the clauses and, once the literal x is added to the solution,
then the literal ¬x cannot be inserted (and vice versa). Therefore, if the literal x
is in solution, the variable x is assigned to true and all clauses covered by x are
satisied. Similarly, if the literal ¬x is in solution, the variable x is assigned to false,
and clauses containing ¬x are satisied.

Construction Phase

During this phase, the algorithm adds a literal at a time, until all clauses are covered
or no more literals can be assigned. At each iteration, of this phase, if a clause can
be covered only by a single literal x – due to the choices made in previous iterations
– then x is selected to cover the clause. Otherwise, if there are not clauses covered
by only a single literal, the addition of literals to the solution takes place according
to a penalty function penalty(·), which greedily sorts all the candidates literals, as
described below.

Let cr(x) be the number of clauses yet to be covered that contain x, then the
following amount is computed:

penalty(x) =
c(x) + cr(¬x)

cr(x)
. (4.2)

The penalty function evaluates both the beneits and disadvantages that can result
from the choice of a literal rather than another. The beneits are proportional to
the number of uncovered clauses that the chosen literal could cover, while the
disadvantages are related to both the cost of the literal and the number of uncovered
clauses that could be covered by ¬x. The smaller the penalty function penalty(x),
the more favorable is the literal x. According to the GRASP scheme, the selection
of the literal to add is not purely greedy, but a Restricted Candidate List (RCL) is
created with the most promising elements, and an element is randomly selected
among them. Concerning the tuning of the parameter β, whose task is to adjust the
greediness of the construction phase, we performed an extensive analysis over a
set of ten diferent random seeds. Such testing showed how a nearly totally greedy
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1 construction-GRASP-MinCostSAT (C, X, β)

/* C is the set of uncovered clauses */

/* X is the set of candidate literals */

2 s← ∅ ;
3 while C ̸= ∅ do
4 if c ∈ C can be covered only by x ∈ X then
5 s← s ∪ {x};
6 X← X \ {x,¬x};
7 C ← C \ {c | x ∈ c};
8 else
9 compute penalty(x) ∀ x ∈ X;
10 th← min

x∈X
{penalty(x)}+ β(max

x∈X
{penalty(x)}−min

x∈X
{penalty(x)}) ;

11 RCL← { x ∈ X : penalty(x) ≤ th } ;
12 x̂← rand(RCL) ;
13 s← s ∪ {x̂};
14 X← X \ {x̂,¬x̂};
15 C ← C \ {c | x̂ ∈ c};
16 return s

Fig. 4.8 GRASP construction phase for the MinCost-SAT.

setup (β = 0.1) allowed the algorithm to attain better quality solutions in smallest
running times.

Let |C| = m be the number of clauses. Since |X| = 2n, in the worst case scenario
the loop while (Figure 4.8, line 3) in the construction-GRASP-MinCostSAT function
pseudo-coded in Figure 4.8 runs m times and in each run the most expensive
operation consists in the construction of the RCL. Therefore, the total computational
complexity is O(m · n).

Improvement Phase

In the improvement phase, the algorithm uses a 1-exchange (lip) neighborhood
function, where two solutions are neighbors if and only if they difer in at most one
component. Therefore, if there exists a better solution x that difers only for one
literal from the current solution x, the current solution s is set to s and the procedure
restarts. If such a solution does not exists, the procedure ends and returns the
current solution s. The local search procedure would also re-establish feasibility if
the current solution is not covering all clauses of ϕ(X). During our experimentation
we tested the one-lip local search using two diferent neighborhood exploration
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strategies: irst improvement and best improvement. With the former strategy, the
current solution is replaced by the irst improving solution found in its neighborhood;
such improving solution is then used as a starting point for the next local exploration.
On the other hand, with the best improvement strategy, the current solution x is
replaced with the solution x ∈ N (x) corresponding to the greatest improvement
in terms of objective function value; x is then used as a starting point for the next
local exploration. Our results showed how the irst improvement strategy is slightly
faster, as expected, while attaining solution of the same quality of those given by the
best improvement strategy. Based on this rationale, we selected irst improvement
as exploration strategy in our testing phase.

Stopping Rule: Probabilistic Stop

Most meta-heuristics present a shortcoming in the efectiveness of their stopping
rule. In fact, the stopping criterion is based on a bound on the maximum number of
iterations, a limit on total execution time, or a given maximum number of consecutive
iterations without improvement. For our GRASP we propose a probabilistic stopping
criterion, inspired by [113]. The stopping rule is articulated in two phases and it can
be sketched as follows. First, let X be a random variable representing the value
of a solution obtained at the end of a generic GRASP iteration. In the irst phase –
the fitting-data procedure – the probability distribution fX (·) of X is estimated,
while during the second phase – improve-probability procedure – the probability
of obtaining an improvement of the current solution value is computed. Then,
accordingly to a threshold, the algorithm either stops or continues its execution.

Speciically, the fitting-data procedure tries to represent the random variable
X with a theoretical distribution. In fact, examining, at the end of each iteration,
the trend of the objective function values and summing up their frequencies, using
for example an histogram diagram, it is possible to establish a promising family of
probability distributions. Ater that, by means of a Maximum Likelihood Estimation

(MLE), as described in [117], a choice is made by regarding the parameters characterizing

the best itting distribution of the chosen family.

In order to conduct an empirical analysis of the objective function value we

represents the data in the following way: let I be an instance and F the set of

solutions obtained by the algorithm up to the current iteration, and let Z be the

multiset of the objective function values associated to F . Since we are facing with a

minimum optimization problem during the analysis of the values in Z we expect to

ind an higher concentration of elements between the mean value µ and the max(Z).
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1 improve-probability (k, θ, z∗)

/* z∗ is the value of the incumbent */

2 p← pgamma(z∗, shape = k, scale = θ);
3 return p

Fig. 4.11 Improve probability procedure.

The second phase of the probabilistic stop takes place once that the probability
distribution function of the random variable X , fX (·) has been estimated. Let ẑ be
the best solution value found so far, then, it is possible to compute an approximation
of the probability of improving the incumbent solution by:

p = 1−

∫max(Z)−ẑ

0

fX (t) dt. (4.4)

The result of fitting-data and improve-probability consists in an estimate
of the probability of incurring in an improving solution in the next iterations. Such
probability is compared with a user-deined threshold, α, and if p < α the algorithm
stops. More speciically, in our implementation the stopping criterion works as
follows:

a) let q be an user-deined ìpositive integer, and let Z̄ be the sample of initial
solution values obtained by the GRASP in the irst q iterations;

b) call the fitting-data procedure, whose input is Z̄ is called one-of to estimate
shape and scale parameters, k and θ, of the best itting gamma distribution;

c) every time that an incumbent is improved, improve-probability procedure
(pseudo-code in Figure 4.11) is performed and the probability p of further
improvements is computed. If p is less than or equal to α the stopping
criterion is satisied. For the purpose of determining p, we have used the
function pgamma of R package stats.

4.3.2 Experimental Results

Our GRASP has been implemented in C++ and compiled with gcc 5.4.0 with
the lag -std=c++14. All tests were run on a cluster of nodes, connected by 10
Gigabit Ininiband technology, each of them with two processors Intel Xeon E5-
4610v2@2.30GHz.
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We performed two diferent kinds of experimental tests. In the irst one, we
compared the algorithm with diferent solvers proposed in literature, without
use of probabilistic stop. In particular, we used: Z3 solver freely available from
Microsot Research [25], bsolo solver kindly provided by its authors [79], the MiniSat+

[36] available at web page http://minisat.se/, and PWBO available at web page

http://sat.inesc-id.pt/pwbo/index.html. The aim of this irst set of computational

experiment is the evaluation of the quality of the solutions obtained by our algorithm

within a certain time limit. More speciically, the stopping criterion for GRASP, bsolo,

and PWBO is a time limit of 3 hours, for Z3 and MiniSat+ is the reaching of an

optimal solution.

Z3 is a satisiability modulo theories (SMT) solver from Microsot Research that

generalizes boolean satisiability by adding equality reasoning, arithmetic, ixed-size

bit-vectors, arrays, quantiiers, and other useful irst-order theories. Z3 integrates

modern backtracking-based search algorithm for solving the CNF-SAT problem,

namely DPLL-algorithm; in addition it provides a standard search pruning methods,

such as two-watching literals, lemma learning using conlict clauses, phase caching

for guiding case splits, and performs non-chronological backtracking.

bsolo [79, 80] is an algorithmic scheme resulting from the integration of several

features from SAT-algorithms in a branch-and-bound procedure to solve the binate

covering problem. It incorporates the most important characteristics of a branch-

and-bound and SAT algorithm, bounding and reduction techniques for the former,

and search pruning techniques for the latter. In particular, it incorporates the search

pruning techniques of the Generic seaRch Algorithm-SAT proposed in [81].

MiniSat+ [36, 120] is a minimalistic implementation of a Chaf-like SAT solver

based on the two-literal watch scheme for fast boolean constraint propagation

[95], and conlict clauses driven learning [81]. In fact the MiniSat solver provides a

mechanism which allows to minimize the clauses conlicts.

PWBO [87, 89, 88] is a Parallel Weighted Boolean Optimization Solver. The

algorithm uses two threads in order to simultaneously estimate a lower and an

upper bound, by means of an unsatisiability-based procedure and a linear search,

respectively. Moreover, learned clauses are shared between threads during the

search.

For testing, we have initially considered the datasets used to test feature selection

methods in [7], where an extensive description of the generation procedure can

be found. Such testbed is composed of 4 types of problems (A,B,C,D), for each of

which 10 random repetitions have been generated. Problems of type A and B are of
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moderate size (100 positive examples, 100 negative examples, 100 logic features),
but difer in the form of the formula used to classify the samples into the positive
and negative classes (the formula being more complex for B than for A). Problems
of type C and D are much larger (200 positive examples, 200 negative examples,
2500 logic features), and D has a more complex generating logic formula than C.

Table 4.5 reports both the value of the solutions and the time needed to achieve
them (in the case of GRASP, it is average over ten runs).1 For problems of moderate
size (A and B), the results show that GRASP inds an optimal solution whenever one
of the exact solvers converges. Moreover, GRASP is very fast in inding the optimal
solution, although here it runs the full allotted time before stopping the search. For
larger instances (C and D), GRASP always provides a solution within the bounds,
while two of the other tested solvers fail in doing so and the two that are successful
(bsolo, PWBO) always obtain values of inferior quality.

The second set of experimental tests was performed for the purpose of evaluating
the impact of the probabilistic stopping rule. In order to do so, we have chosen ive
diferent values for threshold α, two distinct sizes for the set Z̄ of initial solution,
and executed GRASP using ten diferent random seeds imposing a maximum number
of iterations as stopping criterion. This experimental setup yielded for each instance,
and for each threshold value, 20 executions of the algorithm. About such runs, the
data collected were: the number of executions in which the probabilistic stopping
rule was veriied (łstopsž), the mean value of the objective function of the best
solution found (µz), and the average computational time needed (µt). To carry out the
evaluation of the stopping rule, we executed the algorithm only using the maximum
number of iterations as stopping criterion for each instance and for each random
seed. About this second setup, the data collected are, as for the irst one, the
objective function of the best solution found (µẑ) and the average computational time
needed (µt̂). For the sake of comparison, we considered the percentage gaps between
the results collected with and without the probabilistic stopping rule. The second
set of experimental tests is summarized in Table 4.6 and in Figure 4.13. For each pair
of columns (3,4), (6,7), (9,10), (12, 13), the table reports the percentage of loss in terms
of objective function value and the percentage of gain in terms of computation times
using the probabilistic stopping criterion, respectively. The analysis of the gaps
shows how the probabilistic stop yields little or no changes in the objective function
value while bringing dramatic improvements in the total computational time.

1For missing values, the algorithm was not able to ind the optimal solution in 24 hours.
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Table 4.5 Comparison between GRASP and other solvers.

GRASP Z3 bsolo MiniSat+ pwbo-2T

Inst. Time Value Time Value Time Value Time Value Time Value

A1 6.56 78.0 10767.75 78.0 0.09 78.0 0.19 78.0 0.03 78.0
A2 1.71 71.0 611.29 71.0 109.59 71.0 75.46 71.0 121.58 71.0
A3 0.64 65.0 49.75 65.0 598.71 65.0 10.22 65.0 5.14 65.0
A4 0.18 58.0 4.00 58.0 205.77 58.0 137.82 58.0 56.64 58.0
A5 0.29 66.0 69.31 66.0 331.51 66.0 9.03 66.0 30.64 66.0
A6 21.97 77.0 5500.17 77.0 328.93 77.0 32.82 77.0 359.97 77.0
A7 0.21 63.0 30.57 63.0 134.20 63.0 19.34 63.0 24.12 63.0
A8 0.25 62.0 6.57 62.0 307.69 62.0 16.84 62.0 11.81 62.0
A9 12.79 72.0 1088.83 72.0 3118.32 72.0 288.76 72.0 208.63 72.0
A10 0.33 66.0 42.23 66.0 62.03 66.0 37.75 66.0 1.81 66.0

B1 6.17 78.0 8600.60 78.0 304.36 78.0 121.25 78.0 20.01 78.0
B2 493.56 80.0 18789.20 80.0 4107.41 80.0 48.21 80.0 823.66 80.0
B3 205.37 77.0 7037.00 77.0 515.25 77.0 132.74 77.0 1.69 77.0
B4 38.26 77.0 7762.03 77.0 376.00 77.0 119.49 77.0 1462.18 77.0
B5 19.89 79.0 15785.35 79.0 3025.26 79.0 214.52 79.0 45.05 79.0
B6 28.45 76.0 4087.14 76.0 394.45 76.0 162.31 76.0 83.72 76.0
B7 129.76 78.0 10114.84 78.0 490.30 78.0 266.25 78.0 455.92 81.0*
B8 44.42 76.0 5186.45 76.0 5821.19 76.0 1319.21 76.0 259.07 76.0
B9 152.77 80.0 14802.00 80.0 5216.95 82.0 36.28 80.0 557.02 80.0
B10 7.55 73.0 1632.87 73.0 760.28 79.0 370.30 73.0 72.09 73.0

C1 366.24 132.0 86400 – 8616.25 178.0* 86400 – 343.38 178.0*
C2 543.11 131.0 86400 – 323.90 150.0* 86400 – 1742.68 174.0*
C3 5883.6 174.1 86400 – 6166.06 177.0* 86400 – 421.64 177.0*
C4 4507.63 176.3 86400 – 6209.69 178.0* 86400 – 2443.20 177.0*
C5 5707.51 171.2 86400 – 314.18 179.0* 86400 – 67.73 178.0*
C6 6269.91 172.1 86400 – 1547.90 177.0* 86400 – 2188.82 177.0*
C7 6193.15 165.9 86400 – 794.90 177.0* 86400 – 730.36 178.0*
C8 596.58 137.0 86400 – 306.27 169.0* 86400 – 837.71 178.0*
C9 466.3 136.0 86400 – 433.32 179.0* 86400 – 3455.92 178.0*
C10 938.54 136.0 86400 – 3703.94 180.0* 86400 – 4617.24 179.0*

D1 3801.61 145.3 86400 – 307.25 175.0* 86400 – 127.69 180.0*
D2 2040.64 139.0 86400 – 7704.92 177.0* 86400 – 2327.23 177.0*
D3 1742.78 143.0 86400 – 309.10 145.0* 86400 – 345.97 178.0*
D4 1741.95 135.0 86400 – 6457.79 177.0* 86400 – 295.76 178.0*
D5 1506.22 134.0 86400 – 6283.27 178.0* 86400 – 238.81 173.0*
D6 1960.87 144.5 86400 – 309.11 173.0* 86400 – 2413.42 178.0*
D7 1544.42 143.0 86400 – 4378.73 179.0* 86400 – 1250.07 178.0*
D8 1756.15 144.0 86400 – 1214.97 179.0* 86400 – 248.85 179.0*
D9 2779.38 137.0 86400 – 303.11 146.0* 86400 – 4.73 179.0*
D10 5896.86 149.0 86400 – 319.45 170.0* 86400 – 1239.93 176.0*

Y 16.05 0.0 0.73 0.0 9411.06 974* 1.96 0 0.23 0.0

*sub-optimal solution
– no optimal solution found in 24 hours

The experimental evaluation of the probabilistic stop is summarized in the three
distinct boxplots of Figure 4.12. Each boxplot reports a sensible information related
to the impact of the probabilistic stop, namely: the number of times the probabilistic
criterion has been satisied, the gaps in the objective function values, and the gaps in
the computation times obtained comparing the solutions obtained with and without
the use of the probabilistic stopping rule. Such information are collected, for each
instance, as averages of the data obtained over 20 trials in the experimental setup
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Table 4.6 Probabilistic stop on instances A, B, C and D.

threshold α inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %-gap z %-gap t(s) inst %gap z %gap t(s)

5 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.0 D1 -5.0 79.3
1 · 10−2 A1 -0.0 83.1 B1 -2.1 87.1 C1 -6.6 76.1 D1 -5.0 79.3
5 · 10−3 A1 -0.0 83.0 B1 -2.1 87.1 C1 -5.0 74.8 D1 -4.9 78.7
1 · 10−3 A1 -0.0 2.5 B1 -2.1 87.1 C1 -3.8 70.7 D1 -1.7 58.9
5 · 10−4 A1 -0.0 -15.3 B1 -2.1 87.2 C1 -2.6 70.2 D1 -1.2 49.0
1 · 10−4 A1 -0.0 -11.8 B1 -0.5 86.1 C1 -1.3 52.5 D1 -0.2 31.6

5 · 10−2 A2 -0.0 84.0 B2 -0.7 87.0 C2 -3.5 76.0 D2 -0.1 79.1
1 · 10−2 A2 -0.0 84.1 B2 -0.7 87.0 C2 -3.5 76.2 D2 -0.1 79.1
5 · 10−3 A2 -0.0 83.6 B2 -0.7 86.9 C2 -3.5 76.7 D2 -0.1 79.1
1 · 10−3 A2 -0.0 84.0 B2 -0.7 87.0 C2 -1.9 76.4 D2 -0.1 79.1
5 · 10−4 A2 -0.0 84.9 B2 -0.7 87.0 C2 -1.9 76.1 D2 -0.1 75.7
1 · 10−4 A2 -0.0 57.9 B2 -0.1 71.3 C2 -1.9 65.2 D2 -0.1 53.5

5 · 10−2 A3 -0.0 83.4 B3 -2.7 87.0 C3 -2.7 76.3 D3 -1.8 75.2
1 · 10−2 A3 -0.0 83.8 B3 -2.7 87.0 C3 -2.1 73.0 D3 -1.8 75.2
5 · 10−3 A3 -0.0 82.9 B3 -2.7 87.0 C3 -1.7 68.0 D3 -1.7 74.8
1 · 10−3 A3 -0.0 8.3 B3 -2.6 86.6 C3 -0.6 40.9 D3 -0.8 38.5
5 · 10−4 A3 -0.0 -1.6 B3 -2.0 84.1 C3 -0.0 28.3 D3 -0.5 19.1
1 · 10−4 A3 -0.0 -6.8 B3 -0.7 58.4 C3 -0.0 9.9 D3 -0.3 14.5

5 · 10−2 A4 -0.0 86.4 B4 -2.3 86.9 C4 -4.3 78.8 D4 -2.2 75.0
1 · 10−2 A4 -0.0 6.4 B4 -2.3 86.9 C4 -3.3 68.0 D4 -2.2 70.9
5 · 10−3 A4 -0.0 3.5 B4 -2.3 86.9 C4 -2.2 63.9 D4 -2.2 66.8
1 · 10−3 A4 -0.0 1.4 B4 -2.3 87.0 C4 -1.0 51.2 D4 -2.0 41.0
5 · 10−4 A4 -0.0 5.6 B4 -2.3 86.9 C4 -0.8 48.6 D4 -1.2 29.1
1 · 10−4 A4 -0.0 6.4 B4 -0.6 74.8 C4 -0.3 38.1 D4 -1.2 18.9

5 · 10−2 A5 -0.0 87.6 B5 -0.7 86.6 C5 -2.6 79.7 D5 -5.6 75.2
1 · 10−2 A5 -0.0 12.2 B5 -0.7 86.6 C5 -1.5 71.5 D5 -4.9 75.1
5 · 10−3 A5 -0.0 12.5 B5 -0.7 86.6 C5 -0.4 68.1 D5 -4.9 75.2
1 · 10−3 A5 -0.0 12.4 B5 -0.7 86.6 C5 -0.2 53.2 D5 -4.7 67.6
5 · 10−4 A5 -0.0 12.3 B5 -0.6 86.3 C5 -0.0 46.8 D5 -3.8 60.0
1 · 10−4 A5 -0.0 12.5 B5 -0.1 19.0 C5 -0.0 33.2 D5 -3.3 49.8

5 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -3.3 79.9 D6 -7.9 76.0
1 · 10−2 A6 -0.9 87.2 B6 -0.8 86.6 C6 -2.0 70.5 D6 -5.9 74.8
5 · 10−3 A6 -0.9 87.2 B6 -0.8 86.6 C6 -1.3 65.4 D6 -5.0 74.0
1 · 10−3 A6 -0.8 87.1 B6 -0.7 86.3 C6 -0.2 49.6 D6 -2.5 71.1
5 · 10−4 A6 -0.5 86.8 B6 -0.1 72.1 C6 -0.2 39.9 D6 -2.5 71.2
1 · 10−4 A6 -0.0 66.1 B6 -0.0 7.6 C6 -0.0 36.6 D6 -2.5 67.3

5 · 10−2 A7 -0.0 87.5 B7 -3.1 86.2 C7 -3.8 74.4 D7 -6.5 75.5
1 · 10−2 A7 -0.0 11.7 B7 -3.1 86.2 C7 -2.4 65.7 D7 -5.3 72.1
5 · 10−3 A7 -0.0 11.7 B7 -3.1 86.2 C7 -1.9 60.7 D7 -4.0 68.0
1 · 10−3 A7 -0.0 11.3 B7 -3.1 86.2 C7 -0.8 43.0 D7 -2.8 61.2
5 · 10−4 A7 -0.0 11.5 B7 -3.0 86.0 C7 -0.0 36.4 D7 -2.2 60.6
1 · 10−4 A7 -0.0 11.4 B7 -0.8 75.8 C7 -0.0 14.0 D7 -2.2 57.4

5 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.6 73.9 D8 -11.5 76.2
1 · 10−2 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.7 D8 -6.7 73.4
5 · 10−3 A8 -0.0 88.1 B8 -1.5 86.7 C8 -3.3 74.4 D8 -6.7 73.4
1 · 10−3 A8 -0.0 16.4 B8 -1.2 86.4 C8 -3.3 73.7 D8 -4.4 68.2
5 · 10−4 A8 -0.0 16.6 B8 -0.8 74.5 C8 -3.2 65.6 D8 -3.4 67.9
1 · 10−4 A8 -0.0 16.5 B8 -0.0 7.8 C8 -2.2 60.5 D8 -2.4 64.9

5 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -4.1 75.3 D9 -2.1 75.2
1 · 10−2 A9 -0.0 88.0 B9 -1.9 85.9 C9 -2.7 74.8 D9 -2.1 75.2
5 · 10−3 A9 -0.0 88.0 B9 -1.9 85.9 C9 -1.1 74.4 D9 -2.1 75.2
1 · 10−3 A9 -0.0 16.0 B9 -1.9 85.9 C9 -1.1 66.6 D9 -2.1 75.2
5 · 10−4 A9 -0.0 16.0 B9 -1.7 84.9 C9 -0.2 56.5 D9 -2.1 67.7
1 · 10−4 A9 -0.0 15.9 B9 -0.5 45.2 C9 -0.2 55.7 D9 -1.9 60.4

5 · 10−2 A10 -0.0 83.3 B10 -0.3 87.7 C10 -0.4 76.3 D10 -7.1 73.7
1 · 10−2 A10 -0.0 75.4 B10 -0.3 87.6 C10 -0.4 76.2 D10 -6.9 73.8
5 · 10−3 A10 -0.0 0.5 B10 -0.3 87.7 C10 -0.3 67.9 D10 -6.4 73.1
1 · 10−3 A10 -0.0 -5.4 B10 -0.3 87.6 C10 -0.3 48.0 D10 -4.5 62.0
5 · 10−4 A10 -0.0 -4.8 B10 -0.0 87.4 C10 -0.3 48.0 D10 -4.3 57.3
1 · 10−4 A10 -0.0 -4.7 B10 -0.0 35.7 C10 -0.2 27.0 D10 -3.1 38.6
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Fig. 4.12 Experimental evaluation of the probabilistic stopping rule. In each boxplot,
the boxes represent the irst and the second quartile; solid line represent median
while dotted vertical line is the full variation range. Plots vary for each threshold α.
The dots connected by a line represent the mean values.

described above. The irst boxplot depicts the number of total stops recorded for
diferent values of threshold α. Larger values of α, indeed, yield a less coercive
stopping rule, thus recording an higher number of stops. Anyhow, even for the
smallest, most conservative α, the average number of stops recorded is close to
50% of the tests performed. In the second boxplot, the objective function gap is
reported. Such gap quantiies the qualitative worsening in quality of the solutions
obtained with the probabilistic stopping rule. The gaps yielded show how even
with the highest α, the diference in solution quality is extremely small, with a
single minimum of −11.5% for the instance D8, and a very promising average gap,
slightly below −2%. As expected, decreasing the α values the solutions obtained
with and without the probabilistic stopping rule will align with each other, and
the negative gaps will accordingly grow up to approximately −1%. The third
boxplot shows the gaps obtained in the computation times. The analysis of such
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gaps is the key to realistically appraise the actual beneit provided by the use of
the probabilistic stopping rule. Observing the results reported, it is possible to
note how even in the case of the smallest threshold, i.e., using the most strict
probabilistic stopping criterion, the stops recorded are such that an average time
discount close to the 40% is encountered. A more direct display of this time gaps
can be obtained straightly considering the total time discount in seconds: with the
smallest α we have experienced a time discount of 4847.6 seconds over the 11595.9

total seconds needed for the execution without the probabilistic stop. Analyzing
in the same fashion the values obtained under the largest threshold, we observed
an excellent average discount just over 80%, which quantiied in seconds amounts
to an astonishing total discount of 8919.64 seconds over the 11595.9 total seconds
registered for the execution without the probabilistic stop.
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Fig. 4.13 Comparison of objective function values and computation times obtained
with and without probabilistic stopping rule for diferent threshold values.





Chapter 5

Conclusions

5.1 Re-optimization Shortest Path Tree

In Chapter 2, the re-optimization shortest path tree problem, in the case of source
node change, has been addressed. To handle the problem of interest, a dual
approach, based on a strongly polynomial auction algorithm, has been deined.
The theoretical complexity of the proposed approach has been investigated and an
extensive computational study has been carried out to assess the performance of
the proposed solution strategies. A comparison with a Dijkstra-like approach and a
from scratch procedure has been also conducted on diferent types of networks and
real instances. The computational results have shown that the proposed approach
always outperforms the others on grid and random networks, and performs better
than Dijkstra-like approach on real instances when an ad-hoc priority queue is
used.

5.2 Constrained Incremental Graph Drawing

In Chapter 3, we presented a new dynamic version of the classical graph drawing
problem, inspired by the incremental graph drawing, with the aim of preserving the
mental map. In fact, in the novel formulation, the displacement of the original nodes,
taking into account their original position, is limited by an upper and lower bound.
This was made possible thanks to the introduction of an additional constraint, the
position constraint. Furthermore, several resolutive strategies were designed ad-hoc
for the problem, based on the GRASP and Tabu Search paradigms. In particular,
three diferent constructive phases for the GRASP, and another one which adopts a
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Tabu matrix in order to diversify the range of the initial solutions were presented.
To support the constructive phases, were elaborated two improvement strategies, a
local search for the GRASP and a Tabu Search for the Tabu-like constructive. Finally,
a post-optimization based on Path Relinking was considered to accurately reine the
solutions ater the improvement phase.

All the designed algorithms obtain extremely accurate solutions, very close to

the optimum, in very low computational times.

5.3 Maximum Cut-Clique

In Section 4.1, an hybrid meta-heuristic based on a GRASP and a Phased Local Search

for MCCP was proposed. The method has been tested and compared with the most

recent heuristic approaches, R-ILS and D-ILS [86]. The preliminary computational

results suggest that, compared with the other competitor algorithms, our proposal

produces good-quality solutions for all instances demonstrating that it is a well-suited

approach for Max Cut-Clique.

5.4 p-Center

In Section 4.2, a new local search heuristic for the p-center problem is presented,

whose potential applications appear in telecommunications, in transportation logistics,

and whenever one must design a system to organize some sort of public facilities,

such as, for example, schools or emergency services. The testing phase underlines

that the plateau surfer is able to reduce the number of local optimal solutions using

the concept of critical node, and it outperforms the results of the best known local

search for the problem.

Future lines of investigation will be focused on a deeper analysis of the robustness

of our proposal by applying it on further instances coming from inancial markets

and manufacturing systems.

5.5 Minimum Cost Satisiability

In Section 4.3, we have investigated a strategy for a GRASP heuristic that solves

large sized MinCost-SAT. The method adopts a straight-forward implementation

of the main ingredients of the heuristic, but proposes a new probabilistic stopping

rule. Experimental results show that, for instances belonging to particular class of
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MinCost-SAT problems, the method performs very well and the new stopping rule
provides a very efective way to reduce the number of iterations of the algorithm
without observing any signiicant decay in the value of the objective function.

The work presented has to be considered preliminary, but it clearly indicates
several research directions that we intend to pursue: the reinement of the dynamic
estimate of the probability distribution of the solutions found by the algorithm, the
comparative testing of instances of larger size, and the extension to other classes of
problems. Last, but not least, attention will be directed toward the incorporation of
the proposed heuristic into methods that are speciically designed to extract logic
formulas from data and to the test of the performances of the proposed algorithm
in this setting.
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