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Cancer, a growing health problem around the world, affects millions of people every year, so that 

innovative anticancer drugs with specific molecular mechanisms of action are essential in 

chemotherapeutic treatment to kill specific cancer types, and to overcome toxic side effects as well 

as chemoresistance. Impaired apoptosis and autophagy seem to play a central role in cancer 

development and constantly limit the efficacy of conventional cytotoxic therapies. Indeed, current 

research efforts are focused on a deeper understanding of the cellular response and/or resistance to 

anticancer treatments, including the role of cell death pathways activation by 

metallochemotherapeutics such as novel ruthenium-based drugs, proposed as safe and effective 

potential drugs. Moreover, in the last few years nanostructures have gained considerable interest for 

the safe delivery of therapeutic agents. 

In these fields, we have recently developed a novel approach for the in vivo delivery of novel Ru(III) 

complexes, preparing stable nucleolipidic-based formulations endowed with considerable 

antiproliferative activity. In particular, aiming at improving the suitability of Ru(III) complexes in 

biological environment - specifically of AziRu, a pyridine NAMI-A analog - as well as their 

advantages for biomedical applications, we have designed innovative nanoaggregates by means of 

high-functionalized nucleolipidic Ru(III) complexes, ad hoc mixed with zwitterionic or cationic 

lipids to provide stable and biocompatible liposome formulations for cancer therapy.   

Hence, in line with this project and by in vitro bioscreens in the frame of preclinical studies, we have 

focused on the ability of nucleolipidic ruthenium-containing liposomes to inhibit cancer proliferation 

in selected human breast cancer models in vitro, possibly by predisposing cells to programmed cell 

death. In the case, breast cancer is the second most common cancer worldwide after lung cancer, the 

fifth most common cause of cancer death, and the leading cause of cancer death in women. The global 

weight of breast cancer exceeds all other cancers and the incidence rates of breast cancer are 

increasing. Luckily, the total survival rates of most cancers have been prolonged due to the energies 

of both clinicians and scientists. Behind an in-depth microstructural characterization, we have herein 
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demonstrated that the most efficient ruthenium-containing cationic nanoaggregates we have hitherto 

developed are able to elicit both extrinsic and intrinsic apoptosis, as well as autophagy. Using 

especially designed fluorescent formulations and confocal microscopy approaches for targeted 

studies of intracellular localization, in addition to subcellular fractionation and inductively coupled 

plasma-mass spectrometry (ICP-MS) to assess cellular accumulation, we have detected, unlike the 

naked AziRu, a wide both cytosolic and nuclear distribution of the active Ru(III) complex. This would 

allow the ruthenium to interact with both mitochondrial and nuclear molecular targets, accounting for 

its ability to inhibit breast cancer cell proliferation by the activation of multiple cell death pathways, 

possibly via mitochondrial perturbations involving Bcl-2 family members, and Ru(III) ions 

incorporation into double-stranded DNA. To limit chemoresistance and counteract uncontrolled 

proliferation, multiple cell death pathways activation is a promising strategy for targeted therapy 

development, especially in aggressive cancer diseases such as triple-negative breast cancer with 

limited treatment options. The heterogeneity of breast cancers makes them both a fascinating and 

difficult solid tumour to diagnose and treat. Triple-negative breast cancers in particular are difficult 

to define lacking Her2 expression, estrogen and progesterone receptor, and do not respond to 

hormonal therapies or Her2-targeted therapies; hence, new systemic therapies are desperately needed. 

The oncology community needs for a new dawn of innovative and creative means to overcome these 

challenges so we can witness further breakthroughs. Moreover, allowing for the importance of the 

tumour microenvironment as well as of the stromal components playing both critical role in the 

tumourigenic process, the function of cancer-associated immune cell system and their cellular secrets 

were also investigated, in order to achieve a deeper understanding of the typical molecular pathways 

involved in the cross-talk between tumour components and stromal cells; this would allow to properly 

act on tumour microenvironment in order to further improve the efficacy of chemotherapy. In this 

case, the EPO/ESA treatment – commonly used in therapy for anaemia – can induce tumour 

progression and growth, because of its impact on the anti-cancer immune response. 



9 
 

So overall these outcomes discharge original knowledge in the field of anticancer therapy and on 

ruthenium-based candidate drugs, thus providing new insights for future optimized cancer treatment 

protocols.  
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1.1 Cancer: incidence and mortality patterns 

The term “cancer” indicates a group of diseases where abnormal cells divide without control 

and can invade neighboring tissues. Cancer cells can also spread to other parts of the body 

through the blood and lymphoma system. 

Cancer is an important condition, both in terms of the number of people affected and of the 

impacts on those people and people close to them. Millions new cancers are diagnosed 

annually worldwide, across over a lot of different cancer types. Each of these cancer types 

has different presenting features, though there may be overlap. Although there have been 

large advances in treatment and survival, with a half of cancer sufferers now living at least 

ten years after diagnosis, it remains the case that more than a quarter of all people alive now 

will die of cancer. 

Based on the EUCAN estimates (Foucher et al., 2014), more than 3.4 million new cases of 

cancer (excluding non-melanoma skin cancer) were diagnosed in Europe in 2012; almost 

80% of them in the European Union. The most common cancers were those of breast, large 

bowel, prostate and lung, all of which represented more than 1.7 million cases annually. The 

cancer with the largest number of incident and prevalent cases was breast cancer (464,000 

cases), while by far the largest number of deaths was due to lung cancer (353,000 deaths) 

(Ferlay et al., 2012). 

For women, there was a clear southeast-northwest gradient in incidence of all cancers 

(Figure 1) with the highest incidence in Denmark (European age-standardized rate, ASR(E) 

454 per 100,000) and the lowest in Greece (ASR(E) 192 per 100,000). There was a similar 

but less consistent pattern for males (Figure 2) with the highest incidence in France (ASR(E) 

551 per 100,000) and the lowest in Bosnia-Herzegovina (ASR(E) 254 per 100,000). A 

comprehensive overview of cancer patterns in Europe is provided elsewhere. 
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Figure 1. Estimated incidence of all cancers excluding non-melanoma skin, females, Europe 2012 (Ferlay et 

al., 2012). 

 

 

 

 

Figure 2. Estimated incidence of all cancers excluding non-melanoma skin, males, Europe 2012 (Ferlay et al., 

2012). 
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1.2 Most common therapeutic approaches 

The "surgery therapy" is the oldest and most effective strategy to eradicate the tumour, but 

its limits were clear in view of the small size of the tumour and its inaccessibility, or the 

extent of invasion, the presence of metastasis and, above all, the involvement of important 

organism structures (such as vases and nerves). Also, the radiation therapy is more efficient 

if the tumour is not largely diffused. Often it is used in combination with chemotherapy and/ 

or surgery. 

A more recent approach is the Immunotherapy, which consists in stimulating the immune 

sistem by administering a vaccine containing an antigen derived from tumours able to 

stimulate the production of antibodies or by direct somministration of antibodies monoclonal 

cells directed towards a precise type of tumour antigen. 

The use of chemotherapeutic agents is certainly the most widely used approach to reduce 

metastases as well as primary tumour, which is particularly important since the mortality of 

cancer patients is often attributable to the proliferation of metastases rather than the 

development of the primary tumour. 

In fact, if this can be surgically removed, drug therapy is the only choice for the treatment 

of metastases, which often develop before the tumour is diagnosed. 

It has spread from the second half of the twentieth century when research has led to the 

creation of a wide range of drugs that block tumour cell DNA replication by various 

mechanisms of action such as DNA alkylating agents to form a covalent bond with the purine 

or pyrimidine bases of the DNA), antimetabolites (such as folic acid analogs, pyrimidine 

analogs and purine analogs), antimitotes, blocking the cell division phase, topoisomerase 

inhibitors. 
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1.3 Breast cancer: clinical classification and standard of care 

Breast cancer is the most common type of diagnosed malignancy and the second leading 

cause of cancer death in women worldwide (Ferlay et al., 2015). Nowadays, most breast 

cancers are diagnosed early enough to be successfully treated with surgery, chemotherapy, 

radiotherapy, or a combination thereof. However, despite the success of screening 

programs and the development of adjuvant therapies, a significant percentage of breast 

cancer patients will suffer a metastatic disease that, to this day, remains incurable and 

justifies the search of new therapeutic strategies. Among the new therapies that have been 

developed in recent years, the emergence of targeted therapies has been a milestone in the 

fight against cancer (García-Aranda and Redondo, 2017). 

Clinically, breast cancer can be divided into distinct subtypes that have prognostic and 

therapeutic implications. Thanks to the deep sequencing of breast cancer genome and 

transcriptome, this heterogeneous disease has been classified into four major molecular 

subtypes of invasive breast cancer (HER2-enriched, luminal A, luminal B and basal-like) 

(Tamimi et al., 2012), with different prognosis and treatment response (Miller et al., 2017; 

Tamimi et al., 2012; García-Aranda and Redondo, 2017). 

▪ HER2-Enriched 

Human epidermal growth factor receptor 2 (HER2)-enriched mammary tumors have been 

extensively studied and are well described. Together with HER1 (EGFR/ErbB-1), HER3 

(ErbB-3), and HER4 (ErbB-4), HER2 (ErbB2/neu) is a member of the ErbB membrane 

tyrosine kinase receptors family, closely related to the transcription of signaling pathways 

leading to cell proliferation, differentiation and inhibition of apoptosis pathways (Segovia-

Mendoza et al., 2015). HER2 is constitutively activated in approximately 20-30% of breast 

cancers (Segovia-Mendoza et al., 2015). Given that HER2 overexpression is widely known 

to dysregulate cell proliferation in the aggressive HER2-positive breast cancers, this 



15 
 

protein represents an important therapeutic target for patients with this breast cancer 

subtype. Moreover, knowing that the presence of tumour-infiltrating lymphocytes was 

associated with favorable outcomes in HER2-positive and triple-negative breast cancer, 

immunotherapy (with immune checkpoint blockade) induced long-lasting responses and 

improved survival in hard-to-treat malignancies (ie, melanoma and non-small cell lung 

cancer), changing treatment paradigms in a variety of neoplastic diseases (Lambertini et 

al., 2017). 

The approved therapy is the humanized monoclonal antibody trastuzumab (Herceptin) that 

is able to blocks the extracellular domain of HER2. Although trastuzumab has dramatically 

improved the outcome for patients with this type of cancer, appearance of resistance is a 

frequent problem that has motivated the search of alternative therapies targeting this 

tyrosine kinase receptor. In this context, small kinase inhibitors like lapatinib/Tykeb, 

neratinib (Prove et al., 2016), gefitinib (Segovia-Mendoza et al., 2015), or afatinib (Zhang 

et al., 2014), have shown preclinical and clinical evidence in the treatment of HER2-

enriched tumors. 

However, identification of patients who are most likely to benefit from immune checkpoint 

blockade remains challenging, with many patients not responding to treatments and a 

significant financial cost. The combination of immune checkpoint blockade with 

conventional cancer treatments such as chemotherapy, radiotherapy, targeted therapies or 

with other immunotherapies is a promising strategy to potentiate its efficacy in breast 

cancer although further research is required to effectively identify who will respond to 

these immunotherapies (Solinas et al., 2017). 

▪ Hormone Receptor Positive (Luminal-A, Luminal-B) 

Both luminal-A and luminal-B breast cancer subtypes, which account for up to 75% of 

breast tumor cases (Zhang et al., 2015), are hormone receptor-positive (HR-positive), and, 
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therefore, they express estrogen receptors (ER), progesterone receptors (PR), and/or 

estrogen-responsive and ER-dependent gene products (Chang et al., 2012). As the estrogen 

hormone (17 β-estradiol) plays an important role during different hallmarks of cancer, 

luminal-A and luminal-B breast carcinomas are, theoretically, sensitive to hormone-

targeted treatments. Indeed, Tamoxifen (TMX, Nolvadex) is the most common drug used 

in clinical practice over the past decades as first-line treatment in pre- and post-menopausal 

women with ER-positive breast cancer (Carlson et al., 2003). However, although this 

competitive ER-receptor antagonist has shown a significant reduction of reappearance (40–

50%), and the risk of death from breast cancer (30–35%), the existence of an important 

number of cases with natural or acquired resistance to tamoxifen along with long-term 

toxicities has motivated the search for new approaches for HER2-enriched breast cancer 

patients (García-Aranda and Redondo, 2017). 

▪ Basal-Like 

Basal-like breast tumors are characterized by a gene-expression profile similar to that of 

the basal-myoepithelial layer of the normal breast along, with the absence of HER2 

overexpression and the absence or low levels of estrogen receptor expression (Foulkes et 

al., 2010). The triple negative breast cancer (TNBC) subtype, which constitutes 

approximately 80% of the basal-like tumors, accounts for approximately 10–15% of breast 

carcinomas, and is characterized by the lack of expression of both hormone receptors 

(estrogen and progesterone) and HER2-receptor over-expression (Dawood et al., 2010). 

For these reasons, both TNBC and basal-like breast cancers usually lead to an aggressive 

disease, with a high probability of metastasis (Foulkes et al., 2010), and with poor 

prognosis, which is due, in part, to the absence of an existing effective targeted therapy 

(García-Aranda and Redondo, 2017). 

 



17 
 

1.4 Several types of cell death induced by chemotherapeutics 

Cell death is the last fate of the life cycle of cells. In physiological condition, such as during 

development, accurate patterns of cell death determine the size and shape of limbs and other 

tissues (Ngabire and Kim, 2017). Cells can also die when they become damage or infected. 

In these and many other cases - in particular for cancer cells - cell death is not a random 

process but occurs by a programmed sequence of molecular events, in which the cell 

systematically destroys itself from within and is then eaten by other cells, without trace. 

Different pathways involved in cell death are known to date, and are mostly represented by 

apoptosis, autophagy and necrosis. Cells dying by apoptosis undergo characteristic 

morphological changes, such as shrinkage and condensation, cytoskeleton shock, the 

disassembling of nuclear envelope as well as condensation of nuclear chromatin. In this way, 

and also for the autophagy pathway, the cell dies neatly and is rapidly cleared away, without 

causing a damaging inflammatory response. In contrast, necrotic cells swell and burst, 

spilling their contents over their neighbors and eliciting an inflammatory response. 

 

 

 

                             

Figure 3. The three major cell death pathways. (Ngabire and Kim, 2017) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ngabire%20D%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
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1.4.1 Necrosis 

Necrosis regroups a considerable variety of cell death pathways that share their loss of 

physiological structure of the cellular cytoplasmic membrane to which follows the dispersion 

of cytoplasmic elements. It can arise as a result of many events that affect cellular 

homeostasis or repeated extensive damage and both will cause cell death with loss of cellular 

integrity. Some examples are high temperature, repeated freeze/thaw series, or during other 

stressful situations. In these cases, necrosis can be considered as a passive process because 

there is not activation of specific pathways of proteins. Cytoplasmic cell membrane rupture 

may also be considered in the late steps of apoptotic or autophagic deaths, especially when 

phagocytosis does not suppress dead cell from circulation. As no signaling pathway is here 

implicated, it is mainly called secondary necrosis, to differentiate it from other programmed 

deaths such as apoptosis, necroptosis or autophagy. Necrosis is not entirely a result of pure 

risk or passive processes, since it can group well-organized successive events (Ngabire and 

Kim, 2017). In most cases, necrosis is linkely to be caused by energy depletion, which leads 

to metabolic defects and loss of the ionic gradients that normally exist across the cell 

membrane. One form of necrosis, called “necroptosis” (Yuan and Kroemer, 2010), is a form 

of programmed cell death that is triggered by a specific regulatory signal from other cells 

and dependent on a receptor-interacting protein kinase (RIP). This process demands the 

kinase activity of RIP3, and can lead to a quick cell death with characteristics specific to 

necrosis (Towers and Thorburn, 2016). 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ngabire%20D%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yuan%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21123646
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kroemer%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21123646
https://www.ncbi.nlm.nih.gov/pubmed/?term=Towers%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=28029600
https://www.ncbi.nlm.nih.gov/pubmed/?term=Thorburn%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28029600


19 
 

1.4.2 Apoptosis 

The process of programmed cell death, or apoptosis, is generally characterized by distinct 

morphological characteristics and energy-dependent biochemical mechanisms. It is 

considered a vital factor of several processes including normal cell turnover, correct 

development and functioning of the immune system, hormone-dependent atrophy, 

embryonic development and chemical-induced cell death. While inappropriate apoptosis, is 

a factor in many human conditions including neurodegenerative diseases, autoimmune 

disorders, ischemic damage as well as different types of tumour, where it is a mechanism 

typically dysregulated. 

Apoptosis is triggered by members of a specialized intracellular family proteases, which 

cleave specific sequences in numerous proteins inside the cell. These proteases, called 

caspases, have a cysteine residue at their active site and cleave their target proteins at specific 

aspartic acids residues. Caspases are synthetized in the cell as inactive precursors and are 

activated only during apoptosis. There are three major classes of apoptotic caspases: initiator 

caspases (caspase-2, -8, -9, -10), effectors or executioner caspases (caspase-3, -6, -7) and 

inflammatory caspases (caspase-1, -4, -5) (Cohen, 1997; Rai et al., 2005). Initiator caspases, 

as their name implies, begin the apoptotic process. In fact, an apoptotic signal causes the 

assembly of large protein platforms that bring multiple initiator caspases together into large 

complexes. Within these complexes, pairs of caspases associated to form dimers, resulting 

in protease activation. The principal role of the initiator caspases is the activation of the 

executioner caspases. As the former ones, also these latter ones exist as inactive dimers 

which rearrange to an active conformation after cleavage. One initiator caspase complex can 

activate many executioner caspases resulting in an amplifying proteolytic cascade. To date, 

research indicates that there are two main apoptotic pathways: the extrinsic - or death 

receptor pathway - and the intrinsic - or mitochondrial pathway (Elmore, 2007). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Elmore%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17562483
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Furthermore, there is now clear evidence that the two pathways are linked and that molecules 

in one pathway can influence the other (Igney and Krammer, 2002). 

The intrinsic pathway is activated by a numerous of stress signals, such as DNA damage 

caused by chemo- and radiotherapies. Upon cellular stresses, a signal is transmitted to the 

mitochondria, leading to the mitochondrial outer membrane permeabilization (MOMP) and 

the release of apoptotic proteins. This crucial event in the intrinsic apoptosis pathway, is 

controlled by B cell lymphoma 2 (Bcl-2) family proapoptotic effector proteins Bax and Bak, 

which are activated by proapoptotic BH3-only Bcl-2 family proteins and antagonized by 

antiapoptotic Bcl-2 family proteins (i.e., Bcl-2, Bcl-XL, Bcl-B). 

Moreover, recent studies suggested the presence of an additional pathway that implies T-cell 

mediated cytotoxicity and perforin-granzyme-dependent killing of the cell (Figure 4) 

(Elmore, 2007). 

All the pathways converge on the same execution pathway. This pathway starts by the 

cleavage of caspase-3 and ends in several events, such as DNA fragmentation, degradation 

of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, 

expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. 

However, the granzyme A pathway can activate a parallel, caspase-independent cell death 

pathway via single stranded DNA damage (Martinvalet et al., 2005). 
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Figure 4. Schematic illustration of apoptotic events. The two main pathways of apoptosis are extrinsic and 

intrinsic as well as a perforin/granzyme pathway. Each requires specific triggering signals to begin an energy-

dependent cascade of molecular events. Each pathway activates its own initiator caspase (8, 9, 10) which in 

turn will activate the executioner caspase-3. However, granzyme A works in a caspase-independent fashion. 

The execution pathway results in characteristic cytomorphological features including cell shrinkage, chromatin 

condensation, formation of cytoplasmic blebs and apoptotic bodies and finally phagocytosis of the apoptotic 

bodies by adjacent parenchymal cells, neoplastic cells or macrophages (Elmore, 2007). 

 

 

 

Dysfunction of apoptosis pathways can confer cancer-treatment resistance, as most 

conventional chemotherapies as well as radiotherapy depend on their ability to provoke 

apoptotic cell death in cancer cells. Therefore, apoptosis pathways can be therapeutically 

exploited for cancer treatment. 

Apoptosis is tightly regulated by the balance between pro- and anti-apoptotic proteins and 

becomes dysregulated when the balance between pro- and antiapoptotic proteins is altered. 

In human cancers, overexpression of antiapoptotic proteins is frequently observed and has 

been linked to tumour progression, treatment resistance, and poor prognosis. Therefore, 

targeting antiapoptotic proteins with the goal to recreate the apoptotic response has been 

considered as a promising cancer therapeutic strategy in the past decade (Bai and Wang, 

2013). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bai%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24188661
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24188661
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1.4.3 Autophagy 

Autophagy is an evolutionarily conserved lysosomal pathway involved in the turnover of 

long-lived proteins and organelles (Klionsky and Ohsumi, 1999; Meijer and Codogno, 

2004). To date, three forms of autophagy are known—chaperone-mediated autophagy, 

microautophagy, and macroautophagy (Ngabire and Kim, 2017). The latter one is the most 

referred to when autophagy is mentioned. Both differ from each other due to their initiation, 

the mechanisms involved and the mode of destruction during delivery to the lysosome. 

Autophagy is one of the most preserved cell death pathways, characterized by the 

elimination of large parts of cytoplasmic components after being consumed by a multilayer-

membrane-bound vesicle called an autophagosome. The autophagosomal membrane is 

derived from a pre-autophagosomal structure of uncertain origin (Mizushima et al., 2011; 

Mizushima and Komatsu, 2011). In mammalian cells, a structure called the phagophore 

contributes to the formation of the autophagosome (Fengsrud et al., 1995). A first step 

towards the formation of the autophagosome is the expansion of the pre-autophagosomal 

membrane. This step is dependent upon signaling molecules that modulate the activity and 

the expression of some “autophagy genes”. About cellular homeostasis, autophagy plays a 

dual role promoting both cell survival and cell death (Kang et al., 2007). Furthermore, in 

cancer cells, autophagy plays a major role -triggered in response to cellular stress, such as 

nutrient and growth factor starvation or hypoxia - acting as either tumour suppressor or 

tumour promoter (Kang et al., 2007). Such diverse role of autophagy largely depends on the 

type and genetic background of cancer cells (Elmore, 2007). In the tumour 

microenvironment, it is able to regulate the differentiation of macrophages into tumour-

associated macrophages (TAMs) and fibroblasts into cancer-associated fibroblasts (CAFs), 

the most abundantly components present in the tumour microenvironment.  

https://link.springer.com/article/10.1007%2Fs00418-017-1590-4#CR32
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ngabire%20D%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
http://www.sciencedirect.com/science/article/pii/S1357272504000536?via%3Dihub#BIB37
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Although autophagy is linked to multiple cancer-related pathways, the most relevant and 

best studied is phosphatidylinositol 3-kinase/protein kinase B/mammalian target of 

rapamycin (PI3kinase/Akt/mTOR) signaling pathway. In fact, this signaling pathway plays 

a major role in transmitting autophagic stimuli because of its ability to sense nutrient, 

metabolic and hormonal signals. In addition, autophagy, just because characterized by a flux 

of membrane from the formation of the autophagosome to the fusion with the lysosome, is 

regulated by GTPases, similarly to the vesicular transport along the exocytic/endocytic 

pathway (Meijer and Codogno, 2004). 

Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein, distributed 

ubiquitously in mammalian tissues and cultured cells, that plays an important role in the 

autophagy process. During autophagy, autophagosomes engulf cytoplasmic components, 

including cytosolic proteins and organelles. Concomitantly, a cytosolic form of LC3 (LC3-

I) is conjugated to phosphatidylethanolamine (PE) to form LC3-phosphatidylethanolamine 

conjugate (LC3-II), which is recruited to autophagosomal membranes. This newly formed 

complex, LC3-II, is very important for the fusion of autophagosomes with lysosomes. As 

soon as this step is terminated, the autophagosome fuses with lysosomes, and from the 

fusion, will result in one double membrane vesicle called autolysosome. Simultaneously, 

LC3-II in autolysosomal lumen is degraded. Thus, lysosomal turnover of the 

autophagosomal marker LC3-II reflects starvation-induced autophagic activity, and 

detecting LC3 by immunoblotting or immunofluorescence has become a reliable method for 

monitoring autophagy and autophagy-related processes, including autophagic cell death 

(Tanida et al., 2008). 

Inadequate autophagy can be deleterious, as can be exorbitant activation, therefore 

autophagy in a cell must be strictly controlled. The induction together with the regulation of 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gtpase
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/vesicular-transport-protein
https://link.springer.com/article/10.1007%2Fs00418-017-1590-4#CR32
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autophagy has been well investigated, mostly in yeast, in mammalian cells, and in 

Drosophila. The formation and maturation of the autophagosome in the cytoplasm are 

controlled and regulated by a set of multiple proteins both related to autophagy (ATG 

proteins) (Figure 5). The preinitiation complex is formed first, and is made of different 

proteins (such as ULK1, FIP200 protein, and ATG13). Two major proteins regulate this 

complex: the mammalian target of rapamycin complex 1 (mTORC1) from the PI3k-Akt 

pathway which inhibits autophagy, and adenosine monophosphate (AMP)-activated protein 

kinase (AMPK) that inhibits mammalian target of rapamycin complex 1 (mTORC1) (Kim 

et al., 2011). This step marks the autophagy initiation phase. When ATP molecules are being 

consumed and not successfully replaced, AMP together with adenosine diphosphate (ADP) 

accumulate and activate AMPK. The activated AMPK initiates indirectly autophagy by 

suppressing the activity of mTORC1. Thus, the preinitiation complex plays a major role in 

the inhibition of mTORC1 and/or activation of AMPK. The preinitiation complex attracts 

and then activates another initiative complex with Beclin-1, a protein in the class III PI3K 

(Vps34), and a kinase protein Vps15. In addition, Beclin-1 is confined by antiapoptotic 

proteins like Bcl2 and Bcl-XL (Luo et al., 2010), and therefore inhibits the activity of the 

initiation complex. 
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Figure 5. Activation and regulation of autophagy (Ngabire and Kim, 2017). 

 

 

 

1.4.3.a) Apoptosis and autophagy: their molecular crosstalk  

Apoptosis and autophagy are in a complex crosstalk sharing molecular components that 

directly regulate them and can be triggered by common upstream signals (Fimia and 

Piacentini, 2010). Both processes can either induce cell death in a coordinated manner, or 

the cell can switch between the two responses in a mutually exclusive way. Consequently, 

autophagy can antagonize apoptotic cell death by promoting cell survival, and apoptosis-

associated caspase activation can disrupt the autophagic process. Understanding the 

interplay between these key processes in cancer and other diseases is fundamental for the 

development of successful therapy. In fact, the manipulation of autophagy for therapeutic 

purposes is crucial to recognize its role in both cytoprotection and cytotoxicity, since 

interfering with one type of cell death may activate another cell-damaging pathway.  

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ngabire%20D%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=28930154
https://link.springer.com/article/10.1007%2Fs00418-017-1590-4#CR14
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1.5 Anticancer metal-based therapy: ruthenium complexes as a new class of 

chemotherapeutics 

In recent years, research efforts are focused on a deeper investigate and development of 

antineoplastic agents. Among these, metallodrugs represent a very important class of 

chemotherapeutics, exhibiting a wide range of interesting biological activities (McQuitty, 

2014). 

Cisplatin and its analogues have hitherto dominated the field of metal-based compounds 

endowed with high importance in cancer treatment, so that platinum-based drugs are 

currently the most widely used chemotherapeutics (Petrelli et al., 2016). Activation of 

cellular apoptosis caused by DNA targeting seems to be the most factor in causing 

bioactivity of cisplatin and its derivatives (Dasari and Tchounwou, 2014). Thanks to the 

evident clinical applications of these platinum-based drugs, in the field of inorganic 

biochemistry the number of researches to find other metallodrugs - that can be used for 

cancer therapy - has significantly increased. Although anticancer platinum compounds 

continue to be designed and synthesized through numerous different approaches in order to 

improve the therapeutic effects as well as to overcome their limitations, the use of transition 

metal compounds different to platinum has also attracted attention (Komeda and Casini, 

2012). In particular, ruthenium-based drugs have attracted great interest due to their lower 

toxicity, often associated with the ability to overcome the resistance encountered with 

platinum drugs. In fact, they possess several favorable chemical properties marking them as 

strong antitumour candidates in a rational drug discovery approach (Mühlgassner et al., 

2012). The major advantages of ruthenium complexes are related to their peculiar features, 

as for example: i) the facility to exchange O- with N-donor ligands similarly to platinum-

based drugs; ii) their octahedral geometry, which offers unique possibilities for the binding 

to nucleic acids; iii) the high versatility in terms of oxidation states, including II, III and 
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perhaps IV in the biological fluids; iv) the possibility to be transformed into poorly reactive 

prodrugs, with the ruthenium ion in the +3 oxidation state that can be reduced, and thus 

activated, selectively in solid tumour masses as a result of their low oxygen content 

(Mazuryk et al., 2012). 

Since the early 80’s, Alessio, Sava and co-workers have been pioneers in studying transition-

metal complexes in a biomedical perspective as potential anticancer agents, developing, 

among others, the very active Ru(III) complex ImH+ [trans-RuCl4(DMSO)Im-] called 

NAMI-A (Sava et al., 2002; Rademaker-Lakhai et al., 2004). This compound, with 

indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) and [Ru(η6-p-

cymene)Cl2(pta)](pta is 1,3,5-triaza-7-phosphaadamantane) (RAPTA-C), successfully 

completed phase I, has been introduced into advanced clinical trials currently (Sava et al., 

1999; Hartinger et al., 2008; Berndsen et al., 2017). Despite of their structural similarities 

(Figure 6), these Ru derivatives exhibit distinctly different anticancer effects (Frasca et al., 

1996; Mazuryk et al., 2012). In fact, while NAMI-A shows a remarkable and selective 

activity against cancer metastases, mostly of solid lung tumours, KP1019 present a high 

cytotoxic effect on primary cancers (Kapitza et al., 2005). 

 

 

 

Figure 6. Molecular structure of KP1019 (A), NAMI-A (B) and RAPTA-C (C) (Ranier et al., 2017). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Rademaker-Lakhai%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=15173078
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hartinger%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=18972504
https://www.ncbi.nlm.nih.gov/pubmed/?term=Frasca%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18475755
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mazuryk%20O%5BAuthor%5D&cauthor=true&cauthor_uid=23010324
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Similar to KP1019 and NAMI-A, which are both based on a Ru III ion, the Ru II complex 

RAPTA-C also appears to be well tolerated in vivo showing less side-effects compared to 

platinum-based drugs (Weiss et al., 2014). However, RAPTA-C has recently demonstrated 

to exert a strong anti-angiogenic effect (Nowak-Sliwinska et al., 2011), similar to that of 

sorafenib, a clinically used anti-angiogenic small molecule drug (Weiss et al., 2014). 

Moreover, there are characteristics shared by RAPTA-C and NAMI-A, exhibiting limited 

direct cytotoxic effects on cancer cells in vitro as well as anti-metastatic behavior in vivo. 

NAMI-A has also presented an anti-angiogenic activity, demonstrated by its ability to induce 

and activate apoptosis cell death pathway in a spontaneously transformed human endothelial 

cell line (ECV304) through the inhibition of MEK/ERK signaling (Sanna et al., 2002). 

In these compounds, similarly to cisplatin, the chloride ligands of the ruthenium complex 

can be replaced by water molecules or hydroxide ions, leading to partial hydrolysis of the 

complex and poly-oxo species formation – ultimately responsible for the antimetastatic 

activity. 

Along with ligands release and/or substitution - which occurs rapidly under physiological 

conditions in vitro and in vivo - the biological reduction of ruthenium III complexes is a 

possible process, especially in high proliferating cells, thereby promoting a unique activation 

process of this kind of metal-based drug in tumour tissues (Ravera et al., 2004). 

Nevertheless, in the general uncertainty concerning their mechanism of action, it cannot be 

excluded that Ru III complexes, properly transported into tumour cells, can interact in their 

original redox status with potential molecular targets. Furthermore, the possibility to be 

transported by the transferrin/transferrin receptor (Tf/TfR) network in place of iron, might 

allow for a natural ruthenium accumulation within cancer cells, typically requiring high iron 

amounts to accommodate for their rapid proliferation (Pessoa et al., 2010; Palermo et al., 

2016). 
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Despite the positive outcomes throughout advanced preclinical and clinical evaluations of 

the anticancer ruthenium(III)-based compounds NAMI-A - the most advanced candidate 

drug having completed Phase II clinical trials - and KP1019, various drawbacks have been 

observed, mainly related to their limited stability in physiological conditions, impairing both 

their general pharmacokinetic and pharmacodynamic profiles (Chen et al., 2007). 

 

 

 

1.6 AziRu: a new organometallic ruthenium complex analogue of NAMI-A 

In 2012, almost concurrently, two different research groups – Walsby et al. (Webb et al., 

2012) and Paduano et al. (Vaccaro et al., 2009; Simeone et al., 2012) – revisited a pyridine 

analogue of NAMI-A, called NAMI-Pyr by the first group and AziRu by the second. In 

comparison with NAMI-A, AziRu has a pyridine ligand replacing the imidazole one, and 

sodium replacing imidazolium as the counterion (Figure 7). 

 

 

 

Figure 7. Molecular structure of AziRu (Mangiapia et al., 2012). 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Webb%20MI%5BAuthor%5D&cauthor=true&cauthor_uid=22224431
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NAMI-A and AziRu have great similarities as far as their behavior in aqueous solutions and 

in vitro bioactivity are concerned. In particular, both rapidly replace chloride and DMSO 

ligands with water molecules or hydroxide ions. Biological experiments in vitro have shown 

very low cytotoxicity for AziRu on different cancer cell lines. Although AziRu showed a 

moderate cytotoxicity against human cancer cells, it is interesting to note that its IC50 value 

is half that of NAMI-A towards MCF-7 breast cancer cells (Table 1) (Mangiapia et al., 2012). 

One possible reason for this difference lies in the presence of a pyridine ligand to replace the 

imidazole, giving greater lipophilicity to AziRu, improving cellular uptake efficiency. 

Additionally, the ligands may also play an important role in biomolecular interactions and 

recognition processes. Indeed, hydrophobicity, cellular uptake efficiency and cytotoxic 

effects of anti-proliferative drugs on cancer cells are often strictly correlated. Since the 

AziRu and NAMI-A mechanism of action should be the same, this finding emphasizes the 

importance of the transition-metal complex physical and chemical properties which can play 

a critical role in the vehiculation of the active metal to the molecular targets, thus modulating 

its bioavailability. 

 

 

 

Table 1. IC50 values (µM) relative to NAMI-A and AziRu in the indicate cancer cell lines after 48h of 

incubation (Mangiapia et al., 2012). 

 

 

 

As mentioned above, these Ru(III) compounds behave as valid prodrugs with somehow 

limited side-effects (Dragutan et al., 2015), being likely activated to the more reactive and 

MCF-7 WiDr C6

NAMI-A 620±30

AziRu 305±16 441±20 318±12
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cytotoxic Ru(II) derivatives within the reducing microenvironment of solid tumours (Ravera 

et al., 2004). Furthermore, it has been proposed for Ru(III) complexes that their lower 

toxicity to healthy tissues may be precisely attributed to the so-called “activation by 

reduction” mechanism. 

This kind of mechanism is also shared by other types of compounds (Ravera et al., 2004) 

which, after a reduction, are able to procedure a more active form.  

 

 

 

1.7 The importance of tumour microenvironment and the impact of the immune system 

on tumour progression 

For many years, cancer studies and cancer-related research were focused only on cancer as 

being limited just to cancer cells, ignoring the environment created in the tumour, believing 

it as just a disease characterized by a cell-autonomous process. However, it has been 

acknowledged that tumours are heterogeneous organs, made of a various number of stromal 

components which are crucial players and not just participants in the tumourigenic process. 

One of the interests of cell laboratories is to investigate the role of cancer-associated 

macrophages, tumour-infiltrating lymphocytes (TILs), cancer-associated fibroblasts, and the 

extracellular matrix components that they secrete (Hui and Chen, 2015). Obtaining a much 

better understanding of the usual molecular pathways involved in the interactive bi-

directional communication between tumour components and stroma cells will help 

researchers to manipulate the tumour microenvironment. 

It is known that it contains innate immune cells (including macrophages, neutrophils, mast 

cells, myeloid-derived suppressor cells, dendritic cells, and natural killer cells) and adaptive 

immune cells (T and B lymphocytes) in addition to the cancer cells and their surrounding 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hui%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26276713
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26276713
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stroma (which consists of fibroblasts, endothelial cells, pericytes, and mesenchymal cells). 

Numerous epidemiological, clinical and experimental studies shown that tumour 

microenvironment and infiltrating immune cell subsets are important for regulating the 

process of tumour angiogenesis, classical hallmark of cancer onset. These infiltrates involve 

the adaptive immune system including several types of lymphocytes (TILs) as well as cells 

of the innate immunity such as macrophages, neutrophils, eosinophils, mast cells, dendritic 

cells and natural killer cells (Stockmann et al., 2014). Macrophages are specialized 

phagocytes that are able to incorporate invaliding cell debris and microbes as well as to 

secrete different immunomodulatory cytokines. Depending on dynamically changing 

microenvironments that encounter, they have a unique ability to adapt their phenotype. 

Generally, monocytes/macrophages can be polarized to M1 or M2 macrophages (Yang and 

Zhang, 2017; Stockmann et al., 2014). The M1 phenotype, activated by interferon-ɣ and 

microbial products, is characterized as proinflammatory - since produce proinflammatory 

and immunostimulatory cytokines - and is involved in helper T cell (Th) 1 responses to 

infection. M2 macrophages, “alternatively” activated macrophages, exhibit a T-helper-2 

cytokine expression pattern and are considered to be rather immunosuppressive. Although 

most confirmed tumour-promoting cytokines are “M1 cytokines,” TAMs – tumour 

associated macrophages - are considered to have an M2 phenotype (Grivennikov et al., 

2010). Neutrophils represent the largest population of blood leukocytes and are critical for 

the initial inflammatory reaction to invading microbes. They are particularly plentiful in the 

invasive part of the tumour (Bellocq et al., 1998) and neutrophils infiltration has been 

reported in different type of cancer. Moreover, PMN-MDSC population, positive for 

Ly6G+CD11b+ markers, can be found in tumour infiltrate showing tumourigenic activity. 

Some studies demonstrate that, like TAM, CD11b+/Ly6G+ tumour-associated neutrophils 

(TAN) also have differential states of activation/differentiation, suggesting a classification 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28241846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=28241846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Grivennikov%20SI%5BAuthor%5D&cauthor=true&cauthor_uid=20303878
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bellocq%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9422526
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scheme for TAN similar to that of TAM: TAN can thus take an anti-tumourigenic (what we 

are calling an “N1-phenotype”) versus a pro-tumourigenic (“N2”) phenotype (Fridlender et 

al., 2009). Also infiltrates of mast cells have been observed in solid tumours as well as 

hematological malignancies. Mast cells are able to release an array of angiogenic factors, 

including VEGF and fibroblast growth factor (FGF)-2. 

Natural killer cells are cells of the innate immunity characterized by a high cytolytic capacity 

against transformed cancer cells. In addition to their important role in immunosurveillance, 

NK cells can contribute to neovascularization. 

CD4 T cells play essential roles in the function of the immune system. They help B cells 

make antibody, enhance and maintain responses of CD8 T cells, regulate macrophage 

function, orchestrate immune responses against a wide variety of pathogenic 

microorganisms, and regulate/suppress immune responses both to control autoimmunity and 

to adjust the magnitude and persistence of responses. 

CD4 T cells are important mediators of immunologic memory, and when their numbers are 

diminished or their functions are lost, the individual becomes susceptible to a wide range of 

infectious disorders. The initial understanding of the existence of distinctive populations of 

differentiated CD4 T cells came from the analysis of mouse CD4 T cell clones that were 

shown by Mosmann and Coffman (Mosmann et al., 1986) and slightly later by Bottomly and 

her colleagues (Killar et al., 1987) to be divisible into two major groups, designated Th1 and 

Th2 cells by Mosmann and Coffman. Th1 and Th2 clones could be distinguished mainly by 

the cytokines produced by the cells, but also through the expression of different patterns of 

cell surface molecules. About the expression of cytokine, Th1 cells tend to be good IL-2 

producers, and many make TNF-α as well. By contrast, Th2 cells fail to produce IFN-γ or 

lymphotoxin. Their principal cytokines are IL-4, IL-5, and IL-13, but also make TNF-α, and 

some produce IL-9 (Figure 8). 
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Figure 8. Immune suppressive mechanisms of the solid tumor microenvironment. Tumor-derived 

immunosuppressive mechanisms include secreted cytokines and chemokines that recruit and sustain immature 

and suppressive immune cells. These secrete Th2 factors, creating a chronic anti-inflammatory environment 

which promotes and predominates malignant progression (left). NK cell therapy has the potential to reverse 

the anti-inflammation to engender dominant pro-inflammatory signaling through secretion of IFN-γ, Th1 

cytokines, and activation of both innate and adaptive immune cells (right). By elimination of tumor cells and 

immature suppressive cells, NK cells have the potential to reverse the anti-inflammatory signals and eliminate 

tumor progression (Gras Navarro et al., 2015). 

 

 

 

Moreover, other types of CD4 T cells were recognized, such as NKT, but also into Th9 or 

Th17. The latter are mainly observed at the epithelial barriers where they help B and 

epithelial cells to block entrance of pathogens. Another type of CD4 T cells, T regulators 

(Treg), are important in the tolerance and secrete cytokine leading to the inhibition of 

immune cells (Zhu et al., 2010). 
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1.6.1 Regulation of the immune system 

It is known that tumour angiogenesis is critical for tumour development. Although tumour 

cells were first believed to fuel tumour angiogenesis, numerous studies have shown that the 

tumour microenvironment and infiltrating immune cell subsets are important for regulating 

the process of tumour angiogenesis (Stockmann et al., 2014). Besides their known immune 

function, these infiltrating cells are now recognized for their crucial role in regulating the 

formation and the remodeling of blood vessels in the tumour as well as the growth and 

development of tumour. 

Because of their activity, immune system cells could represent a possible target for cancer 

therapy. Many factors can act on the cells of the immune system and therefore interfere with 

the way the immune response functions, such as stress and ageing now consistently appear 

in the literature as factors that act upon the immune system in the way that is often damaging 

(Vitlic et al., 2014). Among these, the EPO can act on macrophages, neutrophils, 

lymphocytes T and B, through a particular receptor. 

The renal cytokine hormone erythropoietin (EPO) regulates bone marrow erythrocyte 

production by stimulating the differentiation and inhibiting the apoptosis of erythroid 

progenitor cells (De Maria et al., 1999; Liu et al., 2006). The production of EPO is controlled 

by a classical feedback loop mechanism and its effects are mediated through the cell surface 

erythropoietin receptors (EpoR). However, EPO also bears extra-hematopoietic properties 

that are transduced by receptors (EpoRs) expressed on various nonerythroid tissues including 

immune cells (Brines and Cerami, 2005; Jelkmann, 2007). Taking into consideration the 

pleiotropic effects of EPO in extraerythroid tissues, the expression of EpoRs on immune 

cells, and the partial similarities between EPO- and cytokine-mediated signal transduction, 

we questioned whether EPO may exert putative immune-modulatory effects, which could 

be of clinical relevance in certain inflammatory diseases. Furthermore, there are provided 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vitlic%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24562499
javascript:void(0);
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evidences that EPO acts as a potent anti-inflammatory immune modulator by specifically 

targeting NF-κB p65-driven inflammatory effector pathways (Nairz et al., 2011). 

Few studies have explored in depth the impact of EPO-delivery on the immune system. 

Interestingly, immunosuppressive role of EPO in humans has already been described 

favouring kidney graft survival by decreasing T cell function (Cravedi, 2014). In an auto-

immune encephalomyelitis mouse model, this beneficial effect of EPO was attributed to a 

Th2-polarized immune response. Recently, EPO was described to dampen 

monocyte/macrophage Th1-cytokine production in a DSS-induced colitis, decreasing 

inflammation and disease development (Nairz et al., 2017). On another hand, EPO was 

shown in a mouse model of infection, to inhibit macrophage activation, through NF-κB 

pathway inhibition, impairing antibacterial function (Nairz et al., 2011). Conversely, other 

studies reported improved humoral and cellular immune functions against vaccine antigens 

in CKD patients under ESA supplementation (Cravedi, 2014), which remain unconfirmed 

since then. 

 

 

 

1.6.2 Benefits and drawbacks of using EPO 

The circulating red cell mass reflects a dynamic balance between EPO-regulated red cell 

proliferation and the subsequent loss or destruction of mature erythrocytes. Factors which 

affect oxygen delivery to the kidney, such as the inspired partial pressure of oxygen or 

defective cardio-pulmonary function perturbing normal renal perfusion, can increase EPO 

production and stimulate erythropoiesis. Conversely, increased oxygen supply to the kidney 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nairz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21256055
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reduces the stimulus to EPO synthesis. The EPO is able to avoid the risk of viral transmission 

and also all the immune reactions. However, even if the EPO is extremely well tolerated, 

some patients can develop anti-EPO neutralizing antibodies.  

Since EPO is the primary hormone responsible for the maintenance of the erythroid lineage, 

anemia - a very common disorder and probably still quite under recognized - may be 

classified based on levels of this hormone present in the circulation, but also according to 

mechanisms such as levels of red blood cell production, destruction, or loss, and by 

parameters of red blood cell morphology, such as the size, color and shape, as well as the 

red blood cell (RBC) indices, mean corpuscular volume (MCV), mean corpuscular 

hemoglobin concentration (MCHC) and mean corpuscular hemoglobin (MCH) (Hodges et 

al., 2007). 

Erythropoietin (EPO), the most widely used erythropoiesis-stimulating agent (ESA), is 

commonly used to promote red blood cell production in the treatment of anemia associated 

with chronic kidney disease (CKD) (Eschbach et al., 1987) and also in cancer-related 

anemia, associated with conventional chemotherapy (Littlewood et al., 2002), even if this 

supportive therapy remains subject of controversy. Indeed, although this condition is 

considered as an independent prognosis factor in various cancers, such as cervical 

carcinoma, head and neck cancer, chronic lymphocytic leukemia and Hodgkin disease, ESAs 

have been reported to further reduce overall survival, increasing cardiovascular and venous 

thromboembolism risks in cancer patients, as well as inducing tumour progression 

independently of the type of cancer or the anti-cancer treatment (Bohlius et al., 2009; Henke 

et al., 2003). 

Mechanisms underlying the role of EPO/ESA on tumour proliferation still remain highly 

controversial. Multiple studies showed that various human tumour cells express EPO-

receptor (EpoR) and respond to EPO stimulation by activating specific signaling pathways 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hodges%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=17656101
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eschbach%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=3537801
https://www.ncbi.nlm.nih.gov/pubmed/?term=Littlewood%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=12147430
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bohlius%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19410717
https://www.ncbi.nlm.nih.gov/pubmed/?term=Henke%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14575968
https://www.ncbi.nlm.nih.gov/pubmed/?term=Henke%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14575968
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and subsequent tumour proliferation (Feldman et al., 2006; Um et al., 2006; Um et al., 2007; 

Henke et al., 2007). However, it has also been claimed that EpoR detection on tumour cells 

is due to commercially unspecific anti-EpoR antibodies and absence of EPO activation on 

tumour cells lacking its receptor has been described (Elliott et al., 2013). Alternatively, 

EPO’s action on tumourigenesis might be mediated, at least in part, by EPO’s role in 

angiogenesis as demonstrated in mouse models (Okazaki et al., 2008), through activation of 

endothelial cells, which is also a matter of debate (Sinclair et al., 2010). 

Keeping in mind what was said before, it was hypothesize that anemia, through both 

endogenous EPO secretion, and exogenous ESA administration constitute bad prognosis 

factor in cancer patients as a consequence of the activation of multiple biological pathways, 

among which the immunological component may be a major one. In this setting, the overall 

project framework of Professeur Hacein-Bey-Abina’s team is the characterization of EPO’s 

treatment impact on the anti-cancer immune response, by using in vivo studies. 

The 4T1 cell line displays multiple interesting features for this project, such as an aggressive 

phenotype, being characterized as triple negative tumour cells, a strong metastasis potential 

similar to human breast cancer (Lelekakis et al., 1999), and the lack of EpoR expression. 

The latter characteristic allows Hacein-Bey-Abina’s team to exclude any direct effect of 

EPO on tumour-cell proliferation or survival. 

They conducted in vivo studies to evaluate the immune suppressive role of EPO in this 

model. For this purpose, 4T1 breast tumour cell lines were intra-dermal injected nearby the 

mammary gland and followed for tumour growth. Mean tumour volume measured every 2 

days was calculated using the following formula: (length × width × thickness)/2. 

Preliminary data showed that EPO-treated mice displayed higher tumour volumes compared 

to control group (Figure 9). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Feldman%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16161153
https://www.ncbi.nlm.nih.gov/pubmed/?term=Okazaki%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18714393
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Figure 9. Impact of EPO on tumour establishment and development. Tumour size was measured by a caliper 

and the volume estimated using the following formula, V=length*Width2/2. Values are expressed as the mean 

+/- SEM of 2 independent experiments, n=14 mice per group. Statistics: unpaired t test, *p<0.05, **p<0.01, 

***<0.001. 

 

 

 

Moreover, to gain further insight into the mechanisms involved in the tumourigenic EPO 

effect, the same team analyzed the infiltration and the activation status of immune cells at 

the primary tumour site. Interestingly, results showed that the proportion of TIL decreased 

over time more dramatically in EPO-treated mice as compared to PBS-treated control mice, 

from D10 to D16 pi, with a higher impact on CD4 T helper cells (CD4 Th) than on CD8 T 

cells (Figure 10). These differences are maintained throughout the analysis of intra-tumour 

immune infiltrate. 
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Figure 10. Impact of EPO on TIL proportion. Tumour-infiltrating immune cells were purified using 

Histopaque gradient and then incubated with specific antibodies -CD16-32, -CD45-PE, -CD3-BV785, 

-CD4-BV421, -CD8 -AF700, during 30 min at 4°C before flow cytometry acquisition (Fortessa). Data 

are analysed on FlowJo.10. Values are expressed as mean +/- SEM of 3 independent experiments, n=15 mice 

per group. Statistics: unpaired t test, *p<0.05, **p<0.01, ***<0.001. 

 

 

 

Blood analysis revealed comparable kinetics of T cell concentrations between EPO- and 

PBS-treated mice indicating that EPO effect is not attributable to a systemic action but rather 

associated to an inhibition of T-cell recruitment within the tumour site. In order to analyze 

deeply the effect of EPO on adaptive immune response initiation, the team has planned to 

characterize T-cell activation in draining lymph nodes and polarization toward effector T 

cell subsets. The same analysis has been also planned for TIL. 
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INNOVATIVE DRUG DELIVERY SYSTEM 
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The use of pharmaceutical technologies can be an astute choice for developing innovative 

therapeutic strategies. The association of nanotechnologies provides new therapeutic 

possibilities due to the combined properties of different skills. Nanocarriers can localize the 

drugs administration to the specific target tissue. In addition, drugs encapsulated within or 

conjugated to nanoparticle vehicles display pharmacokinetics that are markedly different 

from those of free drugs, in fact nanocarriers can provide additional drug sustained release 

or different pharmacokinetic and bio distribution profiles, improving the drug therapeutic 

index. Furthermore, they could facilitate the passive targeting as well as the active one, 

leading to less side effects. 

Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, 

dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for 

medical applications, such as cancer therapy, anesthesia, the treatment of cutaneous and 

infectious diseases, the administration of antidepressants, and the treatment of unexpected 

diseases, such as alopecia. Among all, liposomes are the most commonly used vehicles, and 

most of the currently approved nanoparticle chemotherapy formulations are liposomal (Lee 

et al., 2017). 

 

 

 

2.1 Drug delivery strategies by using nucleolipidic nanovectors 

Nucleolipids - hybrid molecules carrying lipid moieties covalently attached to nucleoside 

scaffolds - have recently attracted great interest, in both the design of artificial molecular 

devices (Mao et al., 2000; Petitjean et al., 2004; Rosemeyer et al., 2005) and the development 

of novel therapeutic agents. (Krutzfeldt et al., 2005) In contrast to classical amphiphiles, 

nucleolipids possess a highly informative polar headgroup (adenine, thymine, guanine, 

http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/pharmaceuticals
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/time-release-technology
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/pharmacokinetics
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/biodistribution
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/liposome
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/micelle
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nanocapsules
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nanoparticle
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dendrimers
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/fullerenes
http://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/antidepressants
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uracil, or related analogs) with additional H-bonding and p-stacking capacity allowing them 

to enhance their self-aggregation properties and specifically recognize other nucleobases 

(Barthelemy et al., 2005; Onda et al., 1996). 

Nanostructuring in pseudo-physiological conditions leads to efficient cellular uptake 

through the phospholipid bilayers as well as confers protection to the drug from extracellular 

enzymatic degradation. On the other hand, full reversibility—within the cells—of the 

chemical bonds connecting the nucleoside decorations may be a powerful strategy to prevent 

toxicity, thus opening the way to a completely new approach for drug delivery. 

As mentioned before, even if our low molecular weight Ru complex – AziRu – is more 

effective that the well-known NAMI-A, it presents some limitations, in particular due to its 

low stability in physiological environment, in which it can be converted in non-soluble poly-

oxo species. Although the formation of poly-oxo species does not seem to significantly 

hamper the ruthenium bioactivity, at least when tested on some tumour cell lines, an 

important consequence of these degradation processes is that only a limited amount of the 

administered drug can be effectively internalized into cells (Sava et al., 1999). Therefore, 

aiming at improving the stability of the ruthenium(III)-based drugs in biological 

environment, as well as their suitability for biomedical applications, an innovative strategy 

for their transport in vivo by means of nanobiotechnological tools has recently proposed. In 

detail, the project is based on the incorporation of AziRu, (Simeone et al., 2011; 

Montesarchio et al., 2013) used as a core molecular scaffold - into suitable nucleolipidic 

structures, developing a mini-library of highly functionalized amphiphilic ruthenium(III) 

complexes, including differently decorated nucleolipids (Figure 11). In particular, three 

different types of nucleolipids are used: 

- ToThy : 3- [4-pyridylmethyl] -30-O-oleoyl-50-O (monomethoxy) triethylene glycol-acetyl-

thymidine; 
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- HoThy : 3- [4-pyridylmethyl] -30-O-oleyl-50-O (benzyloxy) exaetilen glycol-acetyl-

thymidine; 

- DoHu : 3- [4-pyridylmethyl] 20, 30 of O-oleyl-50-O (benzyloxy) esaetilen glycol-acetyl-

uridine 

In these structures, the active metal part -AziRu - was attached to the nucleobase of a 

nucleoside, which was further decorated with one or two long aliphatic chains able to 

promote the assembly into ordered nanosized aggregates in aqueous solutions and with one 

oligoethylene glycol chain of variable length, behave as a protective “stealth” agent for the 

nanoaggregates (Vaccaro et al., 2009; Lasic et al., 1991). 

 

 

 

Figure 11. Molecular structures of Ru(III)-containing complexes. The investigated Ru(III) nucleolipidic 

complexes (A) ToThyRu, (B) HoThyRu and (C) DoHuRu, along with the low molecular weight Ru(III) 

complex (D) AziRu (Mangiapia et al., 2012). 

 

 

 

The resulting nucleolipidic Ru(III) complexes - named ToThyRu, HoThyRu and DoHuRu- 

are endowed with a marked propensity for self-aggregation in physiological solutions and 
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high in vitro antiproliferative activity against human cancer cells, thus proving to be 

promising lead compounds for future in vivo studies (Irace et al., 2017). 

However, knowing that cholesterol (fundamental constituent of organism) plays a critic role 

in keeping the fluidity of the cell membrane as well as the endocytosis phenomena, Paduano 

and co-workers focused on the design of bio-mimetic model membranes system that, 

exploiting the advantages of the similarity to the biological membranes, could be a new 

strategy for the drug delivery. Thus, the inclusion of cholesterol in membrane models can 

have different advantages. It increases the rigidity of the lipid bilayer and reduces its 

instability in the blood, due to the serum protein binding (Mabrey et al., 1978). Furthermore, 

recognized by receptors of low-density lipoprotein (LDL), it can facilitate the endocytosis 

(Krieg et al., 1993). In this context, a ruthenium complex, covalently linked to a cholesterol-

containing nucleolipid and stabilized by co-aggregation with a biocompatible lipid, has been 

synthetized. The amphiphilic ruthenium complex, named ToThyCholRu, is intrinsically 

negatively charged and has been inserted into liposomes formed by the cationic 1,2-dioleyl-

3-trimethylammoniumpropane chloride (DOTAP) to hinder the degradation kinetics 

typically observed for known ruthenium-based antineoplastic agents (Figure 12). These 

nanovectors, containing up to 30% in moles of the ruthenium complex and stable for several 

weeks, revealed an important antiproliferative activity and, most remarkably, the highest 

ability in ruthenium vectorization measured so far (by in vitro bioactivity experiments) and 

fast cellular uptake in human carcinoma cells (by fluorescence microscopy experiments - 

following the incorporation of rhodamine-B within the ruthenium-loaded liposomes). 
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Figure 12. Molecular structure of the nucleolipid ToThyCholRu (Simeone et al., 2012). 

 

 

 

In the first series of compounds developed, the pyridine residue – chosen as the privileged 

ligand for ruthenium – was anchored to the N-3 position of the pyrimidine part. Therefore, 

in order to take advantage of the recognition abilities of the nucleobases and their potential 

interactions with nucleic acids via Watson–Crick hydrogen bonds or stacking contacts, these 

should not be blocked by hindered groups. Then, based on the promising results obtained for 

the first generation of ruthenium(III) complexes, Paduano and co-workers have designed a 

novel nucleolipid where the pyridine ligand is not attached at the N-3 but at the C-3′ position 

on the sugar, identified as a model compound for a second generation of metal-complexed 

nucleolipids (Montesarchio et al., 2013). 

This compound, named HoUrRu, has an oleic acid residue at the 2′-position and a heptakis 

(ethylene glycol) chain at the 5′- position. The peculiarity of this compound is in the presence 

of the pyridine in the 3′-position (Figure 13), but with preservation of the same decoration 

present in HoThyRu. All three linked groups – the pyridine moiety and the hydrophilic and 

the lipophilic chains – are linked to the sugar, so the uracil nucleobase is not hampered in 

hydrogen-bond formation or in stacking interactions with potential in vivo targets. 
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Figure 13. Molecular structure of nucleolipidic ruthenium(III) complex (Bn = benzyl) (Montesarchio et al., 

2013). 

 

 

 

It is interesting to highlights that, with respect to other amphiphilic Ru-complexes previously 

investigated, HoUrRu exhibited enhanced capability to co-aggregate with different lipids. In 

vitro bioactivity assays showed (when it’s co-aggregated with POPC or DOTAP) a much 

more inhibition of the human cancer cells MCF-7 and WiDr growth, respect to the reference 

ruthenium-complex AziRu. Furthermore, compared with previously synthesized analogs 

HoThyRu, ToThyRu and DoHuRu, HoUrRu showed similar antiproliferative ability on 

MCF-7 cells - with IC50 values in the 10 μM range - and notably, a higher impact on WiDr 

cells, with IC50 values in the 10–20 μM range (Figure 14; Table 2) (Montesarchio et al., 

2013). 
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Figure 14. Cell survival index values, evaluated by MTT assay and total cell count, in MCF-7 and WiDr cell 

lines incubated for 48h with a range of concentrations (10 → 100 μM) of the different Ru-containing 

formulations and with HoUrRu and AziRu, as indicated in the legend. AziRu, a NAMI-A analog, is here used 

as a reference drug (Montesarchio et al., 2013). 

 

 

 

 
 

Table 2. IC50 values (μM) in the indicated cell lines following 48 h of incubation with cisplatin (CDDP), 

NAMI-A, Azi-Ru and with POPC or DOTAP (in parentheses) formulations of DoHuRu, HoThyRu, ToThyRu 

and HoUrRu (in bold) amphiphilic ruthenium-complexes (Montesarchio et al., 2013). 

 

 

 

So, based on the amazing results obtained, there are many benefits related to the use of 

nanostructures in metal-based drug delivery, including the potential to transport greater 

amounts of the metal in the bloodstream, to obtain “stealth” aggregates to produce 

aggregates selectively captured by specific cancer cell lines by inserting, within the 

aggregates, targeting molecules specifically recognized by receptors overexpressed in 

tumour cells (Mangiapia et al., 2012). 

 

 

 

Cell lines CDDP NAMI-A Azi-Ru

MCF-7 25 ± 3 620 ± 30 305 ± 16 71 ± 6 (13 ± 5) 7 ± 4 (15 ± 7) 9 ± 4 (19 ± 8) 14 ± 7 (8 ± 5)

WiDr — — 441 ± 20 99 ± 5 (41 ± 10) 40 ± 5 (65 ± 8) 75 ± 4 (50 ± 11) 20 ± 8 (12 ± 5)

DoHuRu POPC 

(DOTAP)

HoThyRu POPC 

(DOTAP)

ToThyRu POPC 

(DOTAP)

HoUrRu POPC 

(DOTAP)
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2.2 Co-aggregation with biocompatible lipids 

Nucleolipids have been selected as scaffold for building up the amphiphilic Ru complexes 

because of their capability to mime the molecular organizations of the biological systems, as 

well as for the possibility to form a wide variety of supramolecular systems such as 

liposomes/vesicles, cubic phases, ribbons, etc. (Barthelemy et al., 2009; Fortini et al., 2004), 

that have found an increasing application in the biomedical field.  

However, as NAMI-A and “naked” AziRu, these amphiphilic ruthenium-complexes 

described, when left in aqueous solutions, also tend to be unstable, forming insoluble 

precipitates in a period ranging from few hours, in phosphate buffer, to a few days, when 

dissolved in pure water. 

For that reason, besides enhancing their biostability as well as aiming at biocompatible 

systems, these nucleolipidic complexes are also co-aggregated with biocompatible lipids, 

giving rise to stable and biomimetic ruthenium-based nanoaggregates acting as efficient 

nanovectors. These nanoaggregates - which have been subjected to an in-depth 

microstructural characterization - are ad hoc designed to present high stability in aqueous 

condition as well as to transport high ruthenium amounts in cells, thereby ensuring more 

effective metal-based treatments. Nucleolipids, being amphiphilic compounds, offer unique 

properties of spontaneous self-assembly providing nano-sized nanoaggregates with exquisite 

tunability in terms of volume and shape (Lainé et al., 2012; Licona et al., 2017). 

 

 

 

2.2.1 Zwitterionic lipid POPC 

The synthesized molecules have been studied as pure aggregates, as well as in mixture with 

palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) (Mangiapia et al., 2012), at 
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selected POPC/Ru molar ratios (85:15). Indeed, the combination of Ru complexes with 

phospholipids can allow a fine tuning of the metal amount to be administered, as well as 

protection from degradation, since the ruthenium complex is stuck in the liposome bilayer. 

Among phospholipids, POPC (its structure is shown below) is of particular interest because 

it is one of the components of natural membranes (Arriaga et al., 2009). 

 

 

 

 

 

The aggregation behavior of the prepared nanoaggregates has been investigated through an 

experimental strategy that combines dynamic light scattering (DLS) to estimate aggregate 

dimensions, small angle neutron scattering (SANS) to analyze the aggregate morphology 

and to determine their geometrical characteristics, and electron paramagnetic resonance 

(EPR) to get information on the dynamics of the lipid hydrophobic tail in the bilayer. The 

evaluation of the “cell survival index” emerging from concentration/effect curves, suggested 

that these nanocarriers produce a cytotoxic effect substantially similar to that of the “naked” 

AziRu, although they enclose only 15% of ruthenium in moles. They exhibited IC50 values 

much lower (∼6 times) than AziRu (Table 3) and other known organometallic complexes, 

but on the other hand, they required quite long times (>6 h) to produce relevant cytotoxic 

effects, probably as a consequence of their slow cell uptake (Mangiapia et al., 2012). 
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Table 3. IC50 values relative to NAMI-A, AziRu and to the effective ruthenium concentration carried by 

ToThyRu/POPC, HoThyRu/POPC and DoHuRu/POPC liposomes in the indicated cell lines after 48 h of 

incubation (MCF-7: human breast adenocarcinoma cell line. WiDr: human epithelial colorectal 

adenocarcinoma cell line. C6: tumour rat glioma cells) (Mangiapia et al., 2012). 

 

 

 

2.2.2 Cationic lipid DOTAP 

In order to enhance the antineoplastic activity, by increasing the ruthenium content within 

the aggregates and favoring their cell uptake, the coaggregation of the nucleolipids whit the 

cationic lipid 1,2-dioleyl-3- trimethylammoniumpropane chloride (DOTAP) (shown below) 

in the mixture 50:50 has been tested. 

 

 

 

 

 

The resulting nanoaggregates are specifically designed to present high stability in biological 

environment even at high Ru-complex content. The aggregation behavior of the prepared 

nanoaggregates, as well as their stability in the time, has been investigated through dynamic 

MCF-7 WiDr C6

NAMI 620 ± 30

AziRu 305 ± 16 441 ± 20 318 ± 12

DoHuRu/POPC 71 ± 6 99 ± 5 24 ± 5

HoThyRu/POPC 7 ± 4 40 ± 5 81 ± 7

ToThyRu/POPC 9 ± 4 75 ± 4 36 ± 8
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light scattering (DLS) to estimate aggregate dimensions, small angle neutron scattering 

(SANS) to analyze the aggregate morphology and to determine their geometrical 

characteristics, neutron reflectivity and zeta potential to gain structural information on the 

bilayer, and electron paramagnetic resonance (EPR) to get information on the dynamics of 

lipid hydrophobic tails in the bilayer.  

Based on the IC50 values (Table 4), the three mixed amphiphilic ruthenium 

complexes/DOTAP nanoaggregates are much more active than the precursor AziRu and also 

than the analogues nanoaggregates via POPC, perhaps due to their faster cellular up-take, 

that results massive after only 3h (Montesarchio et al., 2013). 

 

 

 

Table 4. IC50 values relative to AziRu and to the effective ruthenium concentration carried by 

ToThyRu/DOTAP, HoThyRu/DOTAP and DoHuRu/DOTAP liposomes in the indicated cell lines after 48 h 

of incubation. IC50 values are reported as means ± SEM. (MCF-7: human breast adenocarcinoma cell line. 

WiDr: human epithelial colorectal adenocarcinoma cell line. C6: tumour rat glioma cells.) (Montesarchio et 

al., 2013). 

 

 

 

The cationic liposomes are emerged as valid alternative to the neutral vesicles, and could 

bring different benefits, such as the major interaction with the cell membranes (Wiethoff et 

al., 2001). 

MCF-7 WiDr C6

AziRu 305 ± 16 441 ± 20 318 ± 12

ToThyRu/DOTAP 19 ± 8 50 ± 11 54 ± 8

HoThyRu/DOTAP 15 ± 7 65 ± 8 43 ± 11

DoHuRu/DOTAP 13 ± 5 41 ± 10 34 ± 9

IC50 [μM]
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The positive charge can also enhance the aggregation with the negative one of the 

nucleolipids forming the amphiphilic ruthenium complex and thus make a more stable 

liposome (Figure 15). 

 

 

 

Figure 15. Representation of the amphiphilic ruthenium complex/DOTAP nanoaggregates (Mangiapia et al., 

2013). 

 

 

 

2.3 Up-take investigations 

Because transition metal-based anticancer drugs target DNA in the nuclear cage, the cellular 

uptake characteristics and the nuclear entry ability have emerged as central factors 

influencing their antiproliferative efficacy. Thus, in order to evaluate the kinetics of cellular 

up-take as well as the investigation of the mechanism of action of the synthesized Ru(III) 

complexes, experiments of fluorescent microscopy were carried out into human MCF-7 

cancer cells, by using the fluorescent probes Rhodamine B lipid derivative, 1,2- dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) ammonium salt - 

inserted in the liposomal bilayer of DoHuRu/DOTAP - and fluorogenic group of the dansyl 

– linked to HoThyRu for deeper studying the cell internalization process and metabolic fate. 
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Thus, the new nucleolipidic Ru(III) complex, named HoThyDansRu, was synthesized. It 

contains the dansyl group attached through a sulfate bridge in the 2′-position, an oleic acid 

residue at the 3′-position, an ethylene glycol chain in the 5′-position and a pyridinylmethyl 

arm at N-3 (Figure 16). 

 

 

 

Figure 16. Chemical structure of the fluorescently labelled ruthenium(III) complex HoThyDansRu (Bn = 

benzyl) (Mangiapia et al., 2013). 

 

 

 

About the cell uptake, the fluorescent microphotographs (Figure 17), showed a high 

propensity of DoHuRu/DOTAP liposomes to cross cell membranes, and the cell entry 

appears to be a very fast process (Mangiapia et al., 2013). Furthermore, merged images - 

where fluorophore emission is overlapped at the same location - suggest also a nuclear 

localization of the aggregates. By means of their lipid properties, it is feasible that the Ru 

complexes/DOTAP nanoaggregates are taken up by cells directly via membrane fusion and 

by endocytosis. 
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Figure 17. Fluorescent microphotographs of monolayers showing the cellular uptake of liposomes by human 

MCF-7 breast adenocarcinoma cells. MCF-7 were incubated with 100 μM of the rhodamine-added 

DoHuRu/DOTAP liposome solution for 30 min, 1 h, and 3 h. DAPI is used as a nuclear stain (shown in blue). 

Rhodamine-dependent fluorescence (Rhod) of DoHuRu/DOTAP liposomes is shown in green. In merged 

images (Merge), the two fluorescent emissions are overlapped (Mangiapia et al., 2013). 

 

 

 

On the other hand, to assess the fate of the active ruthenium complex, additional in vitro 

fluorescence experiments were performed on MCF-7 cells treated with the dansyl-labeled 

ruthenium complex HoThyDansRu co-aggregated with DOTAP. In this way, fluorescently 

labeled HoThyDansRu (Figure 18) localizes rapidly within the cells. The analysis of 

fluorescent emission also suggests that the complexes lodged in DOTAP liposomes enter the 

cytoplasm before being predominantly delivered to discrete foci in the perinuclear 

compartment; moreover, although attenuated by DAPI nuclear staining, dansyl-dependent 

fluorescence emission is also detectable in the nuclei area. Overall, in addition to 

demonstrating an effective process of cellular uptake, the fluorescent patterns seem to 
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suggest an intracellular liposome degradation coupled with the release of the 

pharmacologically active agent within the cytoplasm. This would explain the prevalent 

rhodamine-associated fluorescence and the concomitant generation of discrete dansyl-

associated spots following cellular uptake and disaggregation of nanocarriers. 

 

 

 

Figure 18. Fluorescent microphotographs of monolayers showing the cellular location of dansylated- 

HoThyDansRu complex into human MCF-7 breast adenocarcinoma cells subsequent to nanocarriers 

application. MCF-7 were incubated with 100 μM of the intrinsically fluorescent HoThyDansRu/DOTAP 

liposome solution for 30 min, 1 h, and 3 h. DAPI is used as a nuclear stain (shown in blue). Dansyl dependent 

fluorescence (Dans) of HoThyDansRu/DOTAP liposomes is shown in red. In merged images (Merge), the two 

fluorescent emissions are overlapped (Mangiapia et al., 2013). 
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AIM OF THE PROJECT 
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This proposal is part of a broader multidisciplinary research project aimed at the 

development of biocompatible and stable amphiphilic molecules containing Ru(III) 

complexes, assembled in selective nanostructures able to improve their efficacy and 

bioavailability with respect to the well-known NAMI complex, already under clinical trial. 

The interest toward ruthenium arises from its promising anticancer properties as reported in 

literature by others and our research team, showing the high antiproliferative activity of 

novel Ru-complexes. At this stage we have tested the amphiphilic nucleolipid ruthenium-

based complexes (named ToThyRu, HoThyRu and DoHuRu), which contain the low 

molecular weight complex AziRu as "active metal part", and which are co-aggregated with 

the lipids POPC (1-palmitoil-2oleoil-sn-glycero-3fosfocolina) and DOTAP (N- [1- (2,3-

dioleoilossi) propyl] -N, N, N-trimetilammonio methyl-sulfate) (Mangiapia et a., 2013; 

Vitiello et al., 2015). The evaluation of the biological activity of Ru-based complexes is 

achieved by means of in vitro experimental models of human tumours and metastases of 

different histological origin. As well, the in vitro bioactivity profile toward healthy cells will 

be also assessed in order to establish the biocompatibility of the compounds under testing. 

The used human tumour cell lines - characterized by different metastatic potential and 

cultured according to the ATCC (American Type Culture Collection) procedures - are 

included in the cellular lines panel of the National Cancer Institute (USA) for the 

bioscreening of the antitumour and antimetastatic effects. 

Many different ruthenium compounds have been recently tested for their anticancer 

properties, without enough investigations into both their mode of action at cellular level and 

their mechanism of action at the molecular level. In this frame, given that the identification 

of the exact mode of action is critical not only for drug classification but also for the rational 

design of new compounds with enhanced properties, an important goal of this work is to 

deeper elucidate the molecular mechanisms of action of ruthenium in cancer cells, giving 
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more insights about the activated cell death pathways as well as the main molecular 

biological targets involved through a series of in vitro bioscreens. In particular, by focusing 

on well-established breast cancer cell lines as in vitro models for human mammary tumours 

(such as the endocrine-responsive (ER) breast adenocarcinoma MCF-7 and the triple-

negative breast adenocarcinoma (TNBC) MDA-MB-231 cell models, together with their 

variants CG5, MDA-MB-436 and MDA-MB-468), we report via preclinical bioscreens how 

ruthenium complexes administration can activate specific molecular cell death pathways, 

thereby interfering with cancer cells growth and proliferation.  

In addition, given the importance of tumour microenvironment for the efficacy of the most 

common anticancer therapy, as for the Ru(III) complexes (because of their “activation by 

reduction”), and considering that the microenvironment is rich in immune adaptive cells, a 

further study of this work, realized in collaboration with the clinical immunology laboratory 

at the faculty of Pharmacy in Paris, concerns the role of EPO on extra-erythroid components 

- such as immune system cells - and the evaluation of exogenous EPO administration impact 

on tumour intake/growth and on tumour immune environment in the 4T1 mouse mammary 

carcinoma cells transplanted into Balb/c female mice. In this respect, some studies have 

shown that EPO might promote tumour proliferation both in vitro on primary or cell lines 

and in vivo models, whereas other show an absence of a direct action on tumours. Otherwise, 

EPO’s action on tumorigenesis might be mediated, at least in part, by EPO’s role in 

angiogenesis as demonstrated in mouse models, through activation of endothelial cells, 

which is also a matter of debate. 

Furthermore, recent studies have explored in depth the impact of EPO-delivery on the 

immune system. EPO receptors expression at the mRNA level has already been 

demonstrated in T cells, B cells and macrophages in several species, including human. 

Despite huge efforts and years of research spent on both clinical and experimental model 
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development, neither mechanisms underlying the increase in tumour progression nor the 

markers of susceptibility have been identified. However, the individual EPO susceptibility 

might modulate immunity and impact tumour surveillance.  

Giving that CD11b+Ly6G+ tumour-infiltrating lymphocytes population is decreased in EPO-

treated mice, as described before, in order to evaluate the gene expression profiles by RT-

qPCR on FACS-sorted and to discriminate between the anti-tumourigenic (such as IL-12, 

TNF𝛼 , ICAM1), and the pro-tumourigenic (such as Arginase 1, iNOS, MMP9, CCL3) 

phenotypes, as well as to classify the different polarization of the adaptive immune cells, 

such as CD4 (Th1, Th2, Th17 or Treg), 4T1 breast tumour cells were intra-dermal injected 

nearby the mammary gland of Balb/c female mice. 

In addition, a further step of this study is focused on the determination of cytokine and 

chemokine profiles induced by EPO in the tumour microenvironment and peripheral blood 

as well as in draying lymph nodes. Identifying the most relevant source of immune 

suppressive factors (such as TGF-β and IL-17) produced by immune cells and/or tumour 

cells themselves could be an important step in the characterization of the cascade of events 

underling the EPO tolerogenic effect. To this aim, a large panel of cytokines and chemokines 

has been analyzed in purified tumour-associated immune cells as well as in serum of tumour-

bearing mice. In this setting, the levels of the main Th1-, Th2-, Th17- and Treg-derived 

cytokines as well as chemokines known for their neutrophil attraction potential has been 

analyzed by Cytometric Bead Array or ELISA. 

 

 

 

 

 



61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATERIALS AND METHODS 
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4.1 Cell cultures 

Human cancer cell lines have been a useful tool for the study of the genetics, molecular 

biology, biology, and therapy of cancer in many tumor types, including breast cancer 

(Chavez et al., 2010). 

Human breast adenocarcinoma cells, epithelial-like type as MCF-7, CG-5, MDA-MB-231 

and MDA-MB-468 lines, and pleomorphic-like type as MDA-MB-436 line, were grown in 

DMEM (Invitrogen, Paisley, UK) supplemented with 10% fetal bovine serum (FBS, 

Cambrex, Verviers, Belgium), L-glutamine (2 mM, Sigma, Milan, Italy), penicillin (100 

units/ml, Sigma) and streptomycin (100 μg/ml, Sigma), and cultured in a humidified 5% 

carbon dioxide atmosphere at 37°C, according to ATCC recommendations. MCF-7 and CG-

5 are endocrine-responsive (ER) breast cancers; MDA-MB-231, MDA-MB-468 and MDA-

MB-436 are triple-negative breast cancers (TNBC) (Lacroix et al., 2004; Holliday et al., 

2011). Human HaCaT keratinocytes and rat L6 skeletal muscle cells, used as healthy control 

cell lines, were grown in the same experimental conditions. 

- MCF-7 cells, (HTB-22, ATCC), human breast adenocarcinoma cells isolated from a 

69-year-old Caucasian woman. Initially they are distributed in monolayer ("Cell 

Biology" ATCC protocol) retaining several characteristics of differentiated 

mammary epithelium including ability to process estradiol via cytoplasmic estrogen 

receptors and the capability of forming domes. Their growth is inhibited by the tumor 

necrosis factor alpha (TNF α). The cells express the WNT7B oncogene. 

- CG-5 cells, derived from a casual contamination by MCF-7 cells of a primary culture 

from a pleural effusion of a patient with postmenopausal advanced breast cancer, a 

generous gift from Dr Sica (Institute of General Histology and Embryology, Catholic 

University “Sacro Cuore”, Rome, Italy) (Natoli et al., 1983). The characterization of 

this MCF-7 variant revealed chromosomal properties highly similar and alloenzyme 
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phenotypes identical to those of MCF-7 cells. However, CG-5 cells contain higher 

concentrations of steroid receptors and are more sensitive to the proliferative effect 

of estrogens than MCF-7 cells (Badino et al., 1996). 

- MDA-MB-231 cells, are aneuploid female, with chromosome counts in the near-

triploid range. Normal chromosomes N8 and N15 were absent. Eleven stable 

rearranged marker chromosomes are noted as well as unassignable chromosomes in 

addition to the majority of autosomes that are trisomic (ATCC HTB-26). Many of 

the marker chromosomes are identical to those shown in the karyotype reported by 

Satya-Prakash and coworkers (Satya-Prakash et al., 1981). MDA-MB-231 cells 

present a precise spectrum of proteolytic activities; they are also characterized by a 

relatively rare steroid receptor status (two of them are estrogen receptor-negative 

(ER−)/progesterone receptor-positive (PgR+), the third is ER+/PgR−) (Lacroix et al., 

2004). 

- MDA-MB-468 cells, were isolated in 1977 by Cailleau et al., from a 51-year-old 

female patient with metastatic adenocarcinoma of the breast, and is commonly used 

in cancer research (Cailleau et al., 1978). These cells were extracted from pleural 

effusion of mammary gland and breast tissue, and have proven useful for the study 

of metastasis, migration and invasion of breast cancer (ATCC HTB-132). MDA-468, 

is a breast cancer cell line with a very high number of EGF receptors and is growth-

inhibited at EGF concentrations, that stimulate most other cells (Filmus et al., 1985). 

- MDA-MB-436, breast cancer cell line was first derived from pleural fluid obtained 

from a 43-year-old breast cancer Caucasian patient in 1976. MDA-MB-436 is 

pleomorphic with multinucleated component cells and reacts intensely with anti-

tubulin antibody. In vitro, the MDA-MB-436 cell line has abundant activity in both 

the Boyden chamber chemo invasion and chemotaxis assay (ATCC HTB-130).  
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4.2 Synthesis of the ruthenium complexes ToThyRu, HoThyRu and DoHuRu and 

preparation of the lipid-based nanoaggregates 

The ruthenium complexes investigated, ToThyRu, HoThyRu and DoHuRu were prepared 

by reacting in stoichiometric amounts the starting nucleolipids, named ToThy, HoThy or 

DoHu (Simeone et al, 2011) with the Ru complex [trans-RuCl4(DMSO)2]−Na+ following a 

previously described procedure (Mangiapia et al., 2012). All the synthetic intermediates and 

the final nucleolipidic Ru(III) complexes were obtained in a pure form and characterized by 

ESI-MS and NMR analysis in order to confirm their identity. Remarkably, the signals in the 

1H NMR spectra of the nucleolipid-based Ru(III) complexes are particularly diagnostic of 

the effective complex formation (Velders et al., 2004). Detailed microstructural 

characterization of these nucleolipidic complexes was carried out in pure water and in a 

pseudo-physiological solution, through an experimental strategy combining small-angle 

neutron scattering (SANS) to analyze the aggregate morphology as well as to determine their 

geometrical characteristics, dynamic light scattering (DLS) to estimate aggregate 

dimensions and electron paramagnetic resonance (EPR) to provide information on the 

dynamics of the lipid hydrophobic tail in the bilayer. Furthermore, biological validation of 

these nanocarriers was carried out by studying their cytotoxicity profiles on a panel of 

different human and non-human cell lines (Riccardi et al., 2017). 

 

 

 

4.3 In vitro bioscreens 

The anticancer activity of ruthenium-containing nucleolipidic nanoparticles and of AziRu 

was investigated through the estimation of a “cell survival index”, arising from the 

combination of cell viability evaluation with cell counting (Mangiapia et al., 2012). More 
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specifically, the cell survival index is calculated as the arithmetic mean between the 

percentage values derived from the MTT assay and the automated cell count, providing a 

more accurate parameter of the concrete number of cells that survive after a preclinical in 

vitro study (Irace et al., 2017). Cells were inoculated in 96-microwell culture plates at a 

density of 104 cells/well, and allowed to grow for 24 h. The medium was then replaced with 

fresh medium and cells were treated for further 48 h with a range of concentrations (1 → 

1000 μM) of AziRu, and of ToThyRu and DoHuRu complexes lodged either in POPC or 

DOTAP liposomes (ToThyRu/POPC and ToThyRu/DOTAP, DoHuRu/POPC and 

DoHuRu/DOTAP, respectively). Using the same experimental procedure, cell cultures were 

also incubated with ruthenium-free ToThy/POPC, ToThy/DOTAP, DoHu/POPC and 

DoHu/DOTAP liposomes as negative controls, as well as with cisplatin (cDDP) - a positive 

control for cytotoxic effects. Cell viability was evaluated using the MTT assay procedure, 

which measures the level of mitochondrial dehydrogenase activity using the yellow 3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, Sigma) as substrate. 

The assay is based on the redox ability of living mitochondria to convert dissolved MTT into 

insoluble purple formazan. Briefly, after the treatments, the medium was removed and the 

cells were incubated with 20 μl/well of a MTT solution (5 mg/ml) for 1 h in a humidified 

5% CO2 incubator at 37 °C. The incubation was stopped by removing the MTT solution and 

by adding 100 μl/well of DMSO to solubilize the obtained formazan. Finally, the absorbance 

was monitored at 550 nm using a microplate reader (iMark microplate reader, Bio-Rad, 

Milan, Italy). Cell number was determined by TC10 automated cell counter (Bio-Rad, Milan, 

Italy), providing an accurate and reproducible total count of cells and a live/dead ratio in one 

step by a specific dye (trypan blue) exclusion assay. Bio-Rad’s TC10 automated cell counter 

uses disposable slides, TC10 trypan blue dye (0.4% trypan blue dye w/v in 0.81% sodium 

chloride and 0.06% potassium phosphate dibasic solution) and a CCD camera to count cells 
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based on the analyses of captured images. Once the loaded slide is inserted into the slide 

port, the TC10 automatically focuses on the cells, detects the presence of trypan blue dye 

and provides the count. When cells are damaged or dead, trypan blue can enter the cell 

allowing living cells to be counted. Operationally, after treatments in 96-microwell culture 

plates, the medium was removed and the cells were collected. Ten microliters of cell 

suspension, mixed with 0.4% trypan blue solution at 1:1 ratio, were loaded into the chambers 

of disposable slides. The results are expressed in terms of total cell count (number of cells 

per ml). If trypan blue is detected, the instrument also accounts for the dilution and shows 

live cell count and percent viability. Total counts and live/dead ratio from random samples 

for each cell line were subjected to comparisons with manual hemocytometers in control 

experiments. The calculation of the concentration required to inhibit the net increase in the 

cell number and viability by 50% (IC50) is based on plots of data (n = 6 for each experiment) 

and repeated five times (total n = 30). IC50 values were obtained by means of a concentration 

response curve by nonlinear regression using a curve fitting program, GraphPad Prism 5.0, 

and are expressed as mean values ± SEM (n = 30) of five independent experiments. 

 

 

 

4.4 Cell morphology 

Human breast cancer cell lines were grown on 60 mm culture dishes by plating 5 × 105 cells. 

After reaching the subconfluence, cells were incubated for 48 h with IC50 concentrations of 

the ruthenium-containing liposomes (DoHuRu/POPC and DoHuRu/DOTAP) under the 

same in vitro experimental conditions described above and were then morphologically 

examined by a phase-contrast microscope (Labovert microscope, Leizt) for autophagic 
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vacuoles and apoptotic markers. Microphotographs at a 200 × total magnification (20 × 

objective and 10 × eyepiece) were taken with a standard VCR camera (Nikon).  

 

 

 

4.5 Fluorescence microscopy and fluorescent probes 

To evaluate the cellular uptake of the liposome, rhodamine B lipid derivative, 1,2- dioleoyl-

sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) ammonium salt 

(λex 560 - λem 583 nm) (Figure 19), was used as a fluorescent probe by adding 2% mol 

during the synthesis of DoHuRu/DOTAP liposome. Sterile coverslips were placed in twenty-

four-well plates. MCF-7 cells were seeded at a concentration of 5×104/ml in the same 

twenty-four-well plates. Following a growth period of 24 h at 37°C in RPMI 1640 medium 

containing 10% FBS, the medium was replaced with serum-free RPMI 1640 medium, which 

was followed by the addition of fluorescent liposomes at final concentration 100 μM or free 

PBS saline solution to each well. The cells were incubated for additional times (30 min, 1, 3 

and 6 h) with liposomes and washed with PBS three times to remove unassociated liposomes. 

The cells were then fixed at room temperature in 4% paraformaldehyde for 20 min. After 

washing with PBS three times, the cells were treated with diaminophenylindole (DAPI) 

(Sigma) to stain the cell nuclei. The coverslip from each well was mounted onto a glass 

microslide with 80% fluorescence-free glycerol mounting medium. Finally, the interaction 

of liposomes with MCF-7 cells and the cellular uptake was monitored using a fluorescent 

microscope (Leica Microsystems GmbH, Wetzlar, Germany) to visualize DAPI (345/661 

nm) and fluorescent liposomes (557/571 nm). Images were taken using an AxioCam HRc 

video-camera (Zeiss) connected to an Axioplan fluorescence microscope (Zeiss) using the 

AxioVision 3.1 software. 
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Furthermore, a fluorescently labeled nucleolipid has been designed using HoThyRu as the 

model compound. The dansyl group (λex 370 - λem 450 - 550 nm) has been here selected to 

provide the fluorescent tag because it offers several advantages, for example, high chemical 

stability, limited steric hindrance compared to other commonly used fluorescent dyes, and 

simple installation protocols. In addition, dansyl derivatives are very sensitive to the solvent 

polarity conditions, thus providing relevant information on the local environment in which 

they are found. The dansyl-labeled nucleolipid Ru(III) complex (here indicated as 

HoThyDansRu) and depicted in Figure 19 thus contains the following moieties: 

• one pyridine-methyl arm at the N-3 position, as the privileged 

ligand for the ruthenium complexation; 

• a dansyl group attached via a sulfate bridge at the 2′position; 

• one oleic acid residue at the 3′ position; 

• one hexa(ethylene glycol) chain, capped with a benzyl group, in 5′ position. 

 

 

 

Figure 19. Molecular structure of a) Rhodamine-based fluorescent probe and b) HoThyDansRu (Mangiapia et 

al., 2013). 
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4.6 Immunostaining and confocal microscopy 

For a detailed investigation of the cellular mechanism of action of the synthesized Ru(III) 

complexes, aiming at a deeper comprehension of their cell internalization process and 

metabolic fate, the fluorescent dansyl- labeled nucleolipidic complex HoThyDansRu (above 

described) has been used. Hence, human MCF-7 breast adenocarcinoma cells were exposed 

or not to 100 µM of the cationic dansylated HoThyDansRu/DOTAP nanoaggregate for 30 

min, 1, 2, 3, and 4 hours, in the same experimental condition described for bioscreen in vitro. 

After treatments, cells were fixed for 20 minutes with a 3% (w/v) paraformaldehyde (PFA) 

solution and permeabilized for 10 minutes with 0.1% (w/v) Triton X-100 in phosphate-

buffered saline (PBS) at room temperature. To prevent nonspecific interactions of 

antibodies, cells were treated for 2 h in 5% bovine albumin serum (BSA) in PBS. 

Immunostaining was carried out by incubation with Alexa Fluor 647 Anti-Human CD324 

(E-Cadherin) Antibody (BIOLEGEND) (Shamran et al., 2017); DAPI/Moviol Pro Long 

Diamond Antifade Mountant with Dapi (Invitrogen) was used as nuclear stain. The slides 

were mounted on microscope slides by Mowiol. The analyses were performed with a Zeiss 

LSM 510 microscope equipped with a plan-apochromat objective X 63 (NA 1.4) in oil 

immersion.  

 

 

 

4.7 Subcellular fractionation and ICP-MS analysis for ruthenium intracellular 

localization 

Breast cancer cells, such as MCF-7 and MDA-MB-231 cells, were grown on standard plastic 

100 mm culture dishes by plating 8 × 105 cells. After 24 h of growth, the cells were incubated 

with IC50 doses of the “naked” AziRu and DoHuRu/DOTAP liposome for 48 h under the 
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same experimental conditions described for bioscreens. At the end of the treatment, the 

culture medium was collected and the cells were enzymatically harvested by trypsin, then 

centrifuged at RT for 3 min at 1300 × g. The cell pellets obtained were, then, resuspended 

in 500 μl of a solution I (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM MgCl2, 0.1 mM 

EDTA, 0.1 mM DTT, Protease Inhibitor Cocktail) and centrifuged at 2000 × g for 10 min at 

4°C. The supernatant, representing the cytosolic f raction, was separated from the pellets 

which instead contained the nuclear and mitochondrial fraction. Furthermore, the pellets 

were washed 3 times with the solution I and 200 μl of lysis buffer (10mM HEPES, 3 mM 

MgCl2, 40 mM KCl, 5% glycerol, 1 mM DTT, 0.2% NP40) was added and incubated for 30 

min in ice. After centrifugation at 4°C for 30 min at 1300 ×g, the pellets containing the 

nuclear fraction were obtained. 

Furthermore, to obtain the purified DNA fraction, the pellets were suspended in DNA lysis 

buffer (50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 100 mM NaCl, 1% SDS, 0.5 mg/mL 

Proteinase K) and incubated at 50 °C for 1 h. After incubation, 10 mg/ml RNase was added 

to the lysates and incubated for 1 h at 50°C. DNA was precipitated with NaOAc pH 5.2 and 

ice cold 100% EtOH and centrifuged at 14000 × g for 10 min. Pellets were dissolved in TE 

buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). Aliquots of culture medium, cellular pellet, 

cytosolic fraction, nuclear fraction and DNA sample were analyzed by inductively coupled 

plasma-mass spectrometry (ICP-MS) to determine the ruthenium amounts.  
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Figure 20. Schematic representation of subcellular fractionation coupled to ICP-MSS spectrometry.  

 

 

 

4.8 DNA fragmentation assay 

MCF-7 and MDA-MB-231 cells were grown on standard plastic 60 mm culture dishes by 

plating 5 × 105 cells. After 24 h of growth the cells were treated for 48 h with IC50 doses of 

DoHuRu/ POPC and DoHuRu/DOTAP liposomes under the same experimental conditions 

described for bioscreens, as well as with IC50 doses of cisplatin (cDDP) - a positive control 

for in vitro apoptosis (Okamura et al., 2004). The DNA fragmentation assay was carried out 

as previously reported (Vitiello et al., 2015). After treatments, cells were collected and the 

pellets were suspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 100 mM 

NaCl, 1% SDS, 0.5 mg/mL Proteinase K) and incubated at 50°C. After 1 h incubation, 10 

mg/ml RNase was added to the lysates and incubated for 1 h at 50 °C. DNA was precipitated 

with NaOAc pH 5.2 and ice cold 100% EtOH and centrifuged at 14000 × g for 10 min. 

Pellets were dissolved in TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). A 20 μl aliquot 

of each DNA sample was analyzed on a 1.5% agarose gel stained with ethidium bromide 

and visualized under UV light. 
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4.9 FACS analysis 

Annexin V-FITC (fluorescein isothiocyanate) was used in conjunction with a vital dye, 

propidium iodide (PI), to differentiate apoptotic (Annexin V-FITC positive, PI negative) 

from necrotic (Annexin V-FITC positive, propidium iodide positive) cells (Misso et al., 

2013). Briefly, cells were incubated with Annexin V–FITC (MedSystems Diagnostics, 

Vienna, Austria) and propidium iodide (Sigma, St. Louis, MO, USA) in a binding buffer (10 

mM HEPES, pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2.5 mM CaCl2) for 10 min 

at room temperature, washed and resuspended in the same buffer. Analysis of apoptotic cells 

was performed by flow cytometry (FACScan, Becton 4 Dickinson) (Esposito et al., 2009). 

For each sample, 2 × 104 events were acquired. The study was carried out by triplicate 

determination on at least three separate experiments (Figure 21). 

 

 

 

Figure 21. Double method of PI and Annexin V detection of apoptosis by FACS analysis 

(www.lifesci.dundee.ac.uk). 

 

 

 

4.10 Labeling of autophagic vacuoles with monodansylcadaverine (MDC) 

To quantify the induction of the autophagic process, MCF-7 and MDA-MB-231 cells, 

treated with IC50 concentrations of the DoHuRu/POPC and DoHuRu/DOTAP formulations, 

were stained with the autofluorescent agent monodansylcadaverine (MDC), a selective 
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marker for autophagic vacuoles (AVOs), especially for autolysosomes (Grimaldi et al., 

2015). Treated cells were incubated with 50 μM MDC in PBS at 37°C for 15 min. After 

incubation, cells were washed twice with PBS, and immediately analyzed by flow cytometry 

with a FACScalibur flow cytometer (Becton Dickinson). The fluorescent emissions were 

collected through a 530 nm band pass filter (FL1 channel). At least 104 events were acquired 

in log mode. For the quantitative evaluation of MDC, CellQuest software (Becton 

Dickinson) was used to calculate mean fluorescence intensities (MFIs) (Figure 22). The 

MFIs were calculated by the formula (MFI treated/MFI control), where MFI treated is the 

fluorescence intensity of cells treated with the various compounds and MFI control is the 

fluorescence intensity of untreated and unstained cells. 

 

 

 

 

Figure 22. Schematic representation of the autophagic phases (www.frontiersin.org). 

 

 

 

4.11 Preparation of cellular extracts 

MCF-7 and MDA-MB-231 cells were cultured in standard plastic 60 mm culture dishes by 

plating 5 × 105 cells. Behind reaching the subconfluence, cells were incubated for 48 and 72 
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h with IC50 concentrations of the ruthenium-containing liposomes (DoHuRu/POPC and 

DoHuRu/DOTAP) under the same experimental conditions described above. After 

treatments, cells were washed and collected by scraping with PBS containing 1 mM EDTA 

and low-speed centrifugation. Cell pellets were then lysed at 4°C for 30 min in a buffer 

containing 20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 5% (v/v) glycerol, 10 

mM NP-40 and protease inhibitor tablets (Roche) (Miniaci et al., 2016). The supernatant 

fraction was obtained by centrifugation at 15,000 × g for 10 min at 4°C and then stored at 

−80°C. Protein concentration was determined by the Bio-Rad protein assay (Bio-Rad, Milan, 

Italy). 

 

 

 

4.12 Western blot analysis 

For Western blot analysis, samples containing 30–50 μg of proteins were loaded on 10% 

SDS–PAGE and transferred to nitrocellulose membranes (Fiorito et al., 2013; Marra et al., 

2013). After blocking at room temperature in milk buffer [1 × PBS, 5–10% (w/v) non-fat 

dry milk, 0.2% (v/v) Tween-20], the membranes were incubated at 4°C overnight with: 

1:500 rabbit polyclonal antibody to human caspase-8 (Santa Cruz Biotechnology, Santa 

Cruz, CA); 1:500 mouse monoclonal antibody to human caspase-9 (Santa Cruz 

Biotechnology); 1:500 rabbit polyclonal antibody to human caspase-3 (Santa Cruz 

Biotechnology); 1:500 rabbit polyclonal antibody to human Bcl-2 (26 kDa) (Santa Cruz 

Biotechnology); 1:250 rabbit polyclonal antibody to human Bax (Santa Cruz Biotechnology, 

Santa Cruz); 1:1000 rabbit polyclonal antibody to human LC3B (Novus Biologicals); 1:100 

mouse monoclonal antibody to human BECN1(E-8) (Santa Cruz Biotechnology, Santa 

Cruz). Subsequently, the membranes were incubated with peroxidase-conjugated goat anti-
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rabbit IgG, or with peroxidase-conjugated goat anti-mouse IgG+IgM (all the secondary 

antibodies were purchased from Jackson ImmunoResearch Laboratories). The resulting 

immunocomplexes were visualized by the ECL chemoluminescence method (ECL, 

Amersham Biosciences Little Chalfont, Buckinghamshire, UK) and analyzed byan imaging 

system (ImageQuantTM400, GE Healthcare Life Sciences) (Russo et al., 2016). 

Densitometric analysis was conducted using the GS-800 imaging densitometer (Bio-Rad). 

Normalization of results was ensured by incubating the nitrocellulose membranes in parallel 

with the tubulin antibody. 

 

 

 

4.13 Analysis of CD4 T helper polarization in draining lymph nodes 

CD4+ T helper (TH) cells play a central role in the adaptive immune system. Indeed, 

according to the type of pathogens (extracellular-, intracellular pathogens), CD4+ Th cells 

will polarize either into Th1, Th2, Th9 or Th17. Thus CD4+ T cells secreting Th1 cytokines 

help macrophages and cytotoxic CD8 T cells to kill cancer or infected cells. Th2 cells secrete 

cytokine necessary for B cell differentiation into plasmocytes secreting antibodies. This type 

of adaptive immunity is necessary to eliminate extracellular pathogens. Finally, Th17 cells 

are mainly observed at the epithelial barriers where they help B and epithelial cells to block 

entrance of pathogens. Another type of CD4 T cells, named T regulators (Treg) are important 

in the tolerance. They secrete cytokine leading to the inhibition of immune cells. In order to 

study the polarization of CD4 helper T cells and the balance T effector/Treg, we choose to 

study gene expression of specific transcription factors or cytokines. The selected genes are 

represented in the Table 5.  
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Table 5. Main transcription factors and cytokines produced by the different populations of CD4 T cells. In 

bold appear the genes of which I analyzed expression. 
 

 

 

4.14 FACS and cell sorting 

Before analyzing the expression of these different genes, we need to purify CD4 T cells in 

the draining lymph nodes. To do that, the total cell population is stained with -CD4 and -

CD8 antibodies coupled to fluorochromes and isolated thanks to the FACS (Fluorescence-

activated Cell Sorting) (Figure 23). After isolation the CD4 T cells are lyzed and the total 

RNA are isolated according to the manufacturer’s instruction (Qiagen).  

 

 

 

Figure 23. Protocol of CD4 T cell isolation and RNA extraction. Cells obtained from the draining lymph node 

were stained with specific antibodies α-CD16-32, α -CD4-BV421, α -CD8 α -AF700, during 30 min at 4°C. 

One experiment is representative of 7. The CD4 were then isolated thanks to the FACS technology (ARIA) 

and the total RNA was extracted and analyzed. 

 

 

 

CD4 populations Transcription factors cytokines 

Th1 Tbet/Eomes IFN- 

Th2 GATA-3 IL-4 ; IL-10 

Th17 RORt IL-17 ; IL-22 

Treg FoxP3 TGF-; IL-10 
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4.15 RT-qPCR 

RT-qPCR can be performed in a one-step or a two-step assay. One-step assays combine 

reverse transcription and PCR in a single tube and buffer. In two-step assays (which we 

used), the reverse transcription and PCR steps are performed in separate tubes, with different 

optimized buffers, reaction conditions, and priming strategies. 

By using this method, gene expression profiles of tumour-infiltrating immune cells have 

been analyzed. In particular, IFN-ɣ (Fw: GGATGCATTCATGAGTATTGC; Rv: 

CCTTTTCCGCTTCCTGAGG) , Tbet (Fw: GATCATCACTAAGCAAGGACGGC; Rv: 

AGACCACATCCACAAACATCCTG), IL-4 (Fw: TCGGCATTTTGAACGAGGTC; Rv: 

GAAAAGCCCGAAAGAGTCTC), FoxP3 (Fw: CACCCAGGAAAGACAGCAACC; Rv: 

GCAAGAGCTCTTGTCCATTGA) were analyzed. The housekeeping genes used are: 

GADPH (Fw: TGCGACTTCAACAGCAACTC; Rv: ATGTAGGCCATGAGGTCCAC); 

Rpl13 (Fw: ACAGCCACTCTGGAGGAGAA; Rv: GAGTCCGTTGGTCTTGAGGA); 

PPIA (Fw: TGGAGAGAAAGGATTTGGCTA; Rv: AAAACTGGGAACCGTTTGTG); 

b2m (Fw: ACTGATACATACGCCTGCAGAGTT; Rv; 

TCACATGTCTCGATCCCAGTAGA) and SDHA (Fw: 

ACACAGACCTGGTGGAGACC; Rv: GGATGGGCTTGGAGTAATCA). 

 

 

4.16 Statistical analysis 

All data were presented as mean values ± SEM. The statistical analysis was performed using 

Graph-Pad Prism (Graph-Pad software Inc., San Diego, CA) and ANOVA test for multiple 

comparisons was performed followed by Bonferroni’s test. 
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5.1 In vitro bioscreens for anticancer activity 

The antiproliferative properties of the liposomes containing the Ru(III)-nucleolipids were 

screened on human breast cancer models by means of selected mammary malignant cells 

endowed with different phenotypic and/or genotypic features and different replicative and/or 

invasive potential (MCF-7, CG-5, MDA-MB-231, MDA-MB-468 and MDA-MB-436 cell 

lines). The concentration-effect curves (Figure 24) - here reported in terms of a “cell survival 

index” (CSI) which combines the measurements of cell number and viability - show a typical 

concentration-dependent sigmoid trend yielding IC50 values in the low micromolar range. In 

particular, CSI is an adimensional value calculated by the arithmetic mean between the 

percentage values emerging from the MTT assay (a functional assay to evaluate cell 

viability) and the automated cell count (to determine the live/dead cells ratio). The 

simultaneous evaluation of cell survival by means of both a functional parameter and the 

actual number of live/dead cells allows for a more accurate information about cellular 

response to treatments during preclinical in vitro testing. According to the IC50 values (Table 

6), the ToThyRu/DOTAP and DoHuRu/DOTAP formulations are the most effective in 

reducing the proliferation of all the used cell lines. This result, consistent with our previous 

reports, is likely associated to the positive charge of DOTAP formulations which can 

promote the interaction with the plasma membranes allowing a faster and quantitative drug 

cellular uptake (Mangiapia et al., 2013). Moreover, in relation to their effectiveness in vitro, 

there are no significant differences between the ToThyRu and DoHuRu nucleolipidic Ru(III) 

complexes used in our liposomial formulations, consistently with the rationale that the 

ruthenium center is the bioactive species, and the nucleolipids are simply carrier molecules 

(Riccardi et al., 2017). IC50 data normalization in favour of the actual ruthenium content 

enclosed in ToThyRu/DOTAP and DoHuRu/DOTAP liposomes (15% mol/mol), leads up to 

values of IC50 of about 3–4 μM in CG-5 cells and of about 10 μM in MCF-7 cells, suggestive 
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of a marked antiproliferative bioactivity in vitro. Overall, the calculated ruthenium IC50 

values for DOTAP liposomes are in the low micromolar range (≤ 20 μM), similar or lower 

than those measured for cisplatin used in the same experimental conditions as a reference 

drug. All the breast cancer cells used in this screening are therefore sensitive to the action of 

metal-based drugs. The ruthenium IC50 values relative to cell growth inhibition in the 

presence of ToThyRu/POPC and DoHuRu/POPC formulations are also relevant, reaching 

values below 20 μM as in the case of MDA-MB-468, MCF-7 and CG-5 cancer cells. 

Looking further at IC50 values, the “naked” low molecular weight Ru(III) complex AziRu 

exhibits a milder antiproliferative activity on the same breast cancer cells, showing IC50 

values constantly greater than 250 μM. These values are generally in agreement with those 

reported in the literature for the antimetastatic NAMI-A (Groessl et al., 2007), and once more 

highlight the critical importance of the delivery strategy to ensure the drug stability in the 

extra-cellular environment, a quantitative transport across the membranes and the 

bioavailability at the biological targets. Noteworthy, the bioactivity potentiating factors 

calculated as the ratio of IC50 values of the Ru(III)-containing liposomes with respect to the 

IC50 of AziRu, reach values of more than 20 in terms of antiproliferative ability (Vitiello et 

al., 2015). 
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Figure 24. Cell survival index, evaluated by the MTT assay and monitoring of live/dead cell ratio for MCF-7, 

MDA-MB-231, MDA-MB-436, MDA-MB-468, and CG-5 cell lines following 48 h of incubation with the 

indicated concentration (the range 1 → 1000 μM has been explored, the one 1 → 250 μM is shown) of AziRu, 

and of the ruthenium-containing (15% mol/ mol) POPC formulations (ToThyRu/POPC and DoHuRu/POPC) 

and DOTAP formulations (ToThyRu/DOTAP and DoHuRu/DOTAP), as indicated in the legend. Data are 

expressed as percentage of untreated control cells and are reported as mean of five independent experiments ± 

SEM (n = 30). 

 

 

 

 

 

Table 6. IC50 values (μM) relative to the specified POPC and DOTAP ruthenium-containing liposomes, and 

to cisplatin (cDDP), used as cytotoxic reference drug, and to the naked Azi-Ru complex in the listed breast 

cancer cell lines following 48 h of incubation. The ruthenium IC50 values corresponding to the effective metal 

concentration (15% mol/mol) carried by each nanoaggregate are reported as mean values ± SEM (n = 30). (NA 

= not assessed). 

 

 

 

 

 

Cell lines

Total 

liposome
Ru

Total 

liposome
Ru

Total 

liposome
Ru

Total 

liposome
Ru AziRu c DDP

MCF-7 185 ± 0.1 27.8 ± 0.1 126 ± 0.1 18.9 ± 0.1 74.6 ± 0.1 10.1 ± 0.1 67.3 ± 0.2 10.3 ± 0.2 >250 17 ± 1

MDA-MB-231 239 ± 3 35.8 ± 3 98 ± 1 14.7 ± 1 79.5 ± 0.2 10.8 ± 0.2 81 ± 0.3 12.1 ± 0.3 >250 19 ± 1.5

MDA-MB-436 >250 >37.5 245 ± 1 36.7 ± 1 110 ± 0.2 15.0 ± 0.2 130.9 ± 0.2 20.0 ± 0.2 >250 NA

MDA-MB-468 111.1 ± 0.1 15.7 ± 0.1 136 ± 0.8 20.4 ± 0.8 107.8 ± 0.1 14.7 ± 0.1 95 ± 0.1 14.2 ± 0.1 >250 24 ± 1

CG-5 138 ± 0.2 19.4 ± 0.2 204 ± 0.8 30.6 ± 0.8 30.1 ± 0.2 4.1 ± 0.2 21.5 ± 0.2 3.3 ± 0.2 >250 NA

IC50(μM±SEM)

ToThyRu/POPC DoHuRu/POPC ToThyRu/DOTAP DoHuRu/DOTAP
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5.2 Cellular morphological changes 

Monitoring the cellular morphological changes over time can provide an additional support 

to the antiproliferative effects produced by ruthenium-based nanoaggregates. Throughout 

the in vitro trials, imaging end-points were collected by light microscopy from cells to assess 

cellular morphological changes induced by drug administration. Microphotographs in Figure 

25a of MCF-7 and MDA-MB-231 breast adenocarcinoma cells, nowadays among the most 

reliable in vitro models of breast cancer, in the presence of DoHuRu/POPC and 

DoHuRu/DOTAP (at their IC50 concentrations for 48 and 72 h) are suggestive of the 

characteristic cell shrinkage as well as loss of cell-cell contact that accompanies apoptosis 

occurrence. Moreover, after in vitro treatments cells were morphologically examined at a 

higher magnification by a phase-contrast microscope for autophagic vacuoles formation. As 

shown in Figure 25b, in addition to apoptotic hallmarks, autophagic vacuoles clearly appear 

when MCF-7 cells were treated with the DoHuRu/DOTAP liposomes for 48 h at IC50 

concentration, providing a morphological support of autophagy activation. These 

observations were further confirmed by FACS analysis, discussed below. Thus, the AziRu 

in vitro treatment by the DoHuRu/POPC liposome seems to trigger exclusively apoptosis, 

whereas the one with the cationic DoHuRu/DOTAP seems to simultaneously activate 

apoptosis and autophagy. 
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Figure 25. Cytomorphological alterations on cell monolayers (a) Representative microphotographs at a 200 × 

magnification (20 × objective and a 10 × eyepiece) by phase-contrast light microscopy of MCF-7 (left panels) 

and MDA-MB-231 (right panels) breast cancer cells treated for 48 and 72 h with ruthenium IC50 micromolar 

concentrations of DoHuRu/POPC (18.9 and 14.7 μ M, respectively) and DoHuRu/DOTAP liposomes (10.3 

and 12.1 μM, respectively), showing the cellular morphological changes and the cytotoxic effects on cell 

monolayers. The shown images are representative of three independent experiments. (b) Representative 

microphotographs of untreated (left panel) and 48 h DoHuRu/DOTAP treated (right panel) MCF-7 cells by 

phase-contrast light microscopy at a 600 × magnification (30 × objective and a 20 × eyepiece). 

DoHuRu/DOTAP (at IC50 concentration) induces the formation of autophagic vacuoles detectable in cell 

cytoplasm. Inset: higher magnifications of MCF-7 cells before and after treatment. 

 

 

 

5.3 Pro-apoptotic effects in breast cancer cells 

Changes both in the cell morphology and in the monolayers appearance suggest that 

liposomes containing the nucleolipidic Ru(III)-complexes might have chemotherapeutic 

effects in human breast cancer initiating cells towards specific cell death pathways. The 

evaluation of apoptosis induction via FACS analysis has revealed that both DoHuRu/POPC 

and DoHuRu/DOTAP formulations are able to induce remarkable pro-apoptotic effects on 

MCF-7 cells and MDA-MB-231. In fact, as depicted in Figure 26a,c with reference to MCF-

7 cells, the 46% of total cell population is in advanced stage of apoptosis following 48 h of 

exposure to IC50 concentrations of DoHuRu/DOTAP; further 24 h of treatment results in the 



84 
 

82% of cell population in late apoptosis phase. Milder pro-apoptotic effects, but nonetheless 

of significance, are detected in the case of DoHuRu/POPC treatment, leading after 48 h to 

about 36% of total MCF-7 cell population in early apoptosis and to a 37% in late apoptosis 

after 72 h. As a further validation of these data, no significant signals of apoptosis 

perturbation, such as an increased necrosis, were detectable by FACS analysis. A similar 

distribution of cell population among the different apoptotic stages has been observed by 

investigating the effects of liposomes containing nucleolipidic Ru(III)-complexes on MDA-

MB-231 cells (Figure 26b,d), confirming the increased in vitro efficacy - especially as a 

trend over time - of the cationic nanoaggregates (i.e., the DoHuRu/DOTAP ones) with 

respect to the zwitterionic POPC ones. This scenario is fully consistent with our previous 

studies (Mangiapia et al., 2013;Vitiello et al., 2015). As a result of different cellular uptake 

kinetics, ruthenium-containing cationic liposomes (DoHuRu/DOTAP) induce faster 

biological effects by way of cellular apoptosis activation than those dependent by the neutral 

liposomes (DoHuRu/POPC). 
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Figure 26. Induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. Apoptosis was evaluated 

by FACS analysis, after cell labeling with propidium iodide (PI) and FITC-Annexin V. MCF-7 (a) and MDA-

MB-231 (b) cells were both unlabeled and untreated (CTR−), labeled and not treated (CTR + ), treated with 

DoHuRu/POPC or with DoHuRu/DOTAP for 48 and 72 h using IC50 concentrations, as indicated. The lower 

left quadrants of each panels show the viable cells, which exclude PI and are negative for FITC-Annexin V 

binding. The upper left quadrants contain the non-viable, necrotic cells, negative for FITC-Annexin V binding 

and positive for PI uptake. The lower right quadrants represent the cells in early apoptosis, that are FITC 

Annexin V positive and PI negative. The upper right quadrants represent the cells in late apoptosis, positive 

for both FITC-Annexin V binding and for PI uptake. The experiments were performed at least three times with 

similar results. Quantitative analysis of viable, non-viable (necrotic), early and late apoptotic MCF-7 (c) and 

MDA-MB-231 (d) cells after 48 and 72 h of treatments are shown. Data are expressed as percentage of 

untreated control cells and are reported as mean of four independent experiments ± SEM (n = 24); ***p < 

0.001 vs. control (untreated cells). 

 

 

 

5.4 DNA fragmentation in MCF-7 and MDA-MB-231 breast cancer cells 

It is generally accepted that DNA damage and subsequent induction of apoptosis is the 

primary cytotoxic mode of action of cisplatin and other metal-based antiproliferative drugs. 

In addition to shrinkage and fragmentation of the cells and nuclei, the apoptotic process is 
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accompanied by degradation of the chromosomal DNA into nucleosomal units. Indeed, late 

events of apoptosis typically lead to DNA cleavage, resulting in a “ladder” formation 

detectable by agarose gel electrophoresis. To verify apoptosis induction in breast cancer cells 

in a direct manner, we analyzed DNA degradation on genomic DNA samples obtained from 

treated cells. As depicted in Figure 27, though with a non-canonical nuclear fragmentation 

pattern in MCF-7 due to inherent caspase-3 expression deficiency, the DNA damage 

markedly increased in cells exposed to both DoHuRu/POPC and DoHuRu/DOTAP for 48 h 

at IC50 doses. Moreover, the typical internucleosomal DNA laddering of cell undergoing 

apoptosis clearly appeared in MDA-MB-231 cells, with a fragmentation pattern similar to 

that induced by IC50 doses of cisplatin in vitro, herein used as positive control (Okamura et 

al., 2004). 

 

 

 

Figure 27. DNA fragmentation assay on MCF-7 and MDA-MB-231 cells treated or not (C) with IC50 

concentrations of DoHuRu/POPC (RuPOPC) and DoHuRu/DOTAP (RuDOTAP) for 48 h, and with IC50 doses 

(17 and 19 μM, respectively) of cisplatin (cDDP) as the positive control for DNA fragmentation. After 

incubation, the DNA was extracted and visualized on 1.5% agarose gel as detailed in the Methods section. The 

lane in the middle corresponds to the molecular weight markers. The agarose gel is representative of three 

independent experiments. 
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5.5 Apoptotic-related proteins in MCF-7 and MDA-MB-231 breast cancer cells 

Given that the expression profile of pro-apoptotic proteins is a central determinant for the 

death mode induced by ruthenium-based drugs, we analyzed the expression of proteins 

linked to the two main pathways that control mammalian apoptosis, i.e. the extrinsic (or 

death receptor) and intrinsic (or mitochondrial) apoptotic pathways. As determined by 

Western blot analysis reported in Figure 28a,c,e, protein extracts from MCF-7 exposed for 

48 and 72 h to IC50 concentrations of DoHuRu/POPC and DoHuRu/DOTAP showed a 

remarkable increase in caspase-9 activity compared with control, whereas in the same 

experimental conditions no caspase-8 activation was detectable. Indeed, the activation of 

pro-caspase-9 involves intrinsic proteolytic processing, resulting in the production of an 

active p35 subunit. Moreover, as clearly detectable by immunoblot, an additional cleavage 

occurred producing a large p37 subunit which is known to amplify the apoptotic response. 

On the other hand, full length pro-caspase-8 expression was not affected by in vitro 

treatments. Taken together, these results suggest a ruthenium-dependent activation of the 

apoptotic mitochondrial pathway, wherein Bax and Bid are key cell death factors increasing 

mitochondrial permeability and release of cytochrome c. Conversely, cell survival factor 

Bcl-2 inhibits actions of Bax and Bid on mitochondria (Zheng et al., 2016). In MCF-7 cells 

Bax was significantly increased and Bcl-2 decreased upon DoHuRu/POPC and 

DoHuRu/DOTAP treatment - a cellular response predisposing to apoptosis activation. These 

biological effects were time-dependent and more evident following in vitro treatment with 

the cationic DoHuRu/ DOTAP liposomes. In the same way, ruthenium treatment in MDA-

MB-231 breast cancer cells via DoHuRu/POPC and DoHuRu/ DOTAP in vitro 

administration at IC50 concentrations elicited caspase-9 activation after 48 h, and this anew 

was coupled to the simultaneous Bax and Bcl-2 up-regulation and down-regulation, 

respectively (Figure 28b,d,f). Furthermore, in this breast cancer cell line DoHuRu/DOTAP 
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seemed able to promote full length pro-caspase-8 cleavage, as evidenced by the formation 

of the active p10 and p18 fragments. In turn, activated initiator caspases further process other 

caspase members, including caspase-3 and caspase-7, to initiate a caspase cascade, which 

generally leads to complete the programmed cell death process. In fact, the immunoblotting 

analysis performed on MDA-MB-231 cells exposed to Ru(III)-containing liposomes further 

revealed a marked proteolytic cleavage of the inactive proenzyme to activate caspase-3. 

Hence, the evaluation of apoptosis regulatory proteins in breast cancer models for the in vitro 

preclinical evaluation of ruthenium biological effects suggests the invariable induction of 

the mitochondrial apoptotic cell death pathway, but also the cell-specific activation of the 

extrinsic death pathway particularly in the case of the cationic nanoaggregate. Interestingly, 

the treatment with either DoHuRu/POPC or DoHuRu/DOTAP alters the expression profile 

of Bax and Bcl-2 proteins with respect to basal amounts, radically changing the Bax/Bcl-2 

ratio. The Bax up-regulation and Bcl-2 down-regulation observed in concert following 

ruthenium action may predispose cells to apoptosis (Zheng et al., 2016). 
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Figure 28. Apoptotic regulatory proteins in MCF-7 and MDA-MB-231 cells. Western blot analysis showing 

the effects of IC50 concentrations of DoHuRu/POPC and DoHuRu/DOTAP following 48 and 72 h of 

incubations in MCF-7 (a) and MDA-MB-231 (b) cells on caspases-3, -8 and -9 expression and activation, and 

on Bax and Bcl-2 expression, to characterize the apoptotic response. Shown are blots representative of four 

independent experiments. After chemoluminescence, the bands resulting from MCF-7 (c, e) and MDA-MB-

231 (d, f) cell extracts were quantified by densitometric analysis and plotted in line (solid and dotted line for 

Bax and Bcl-2 proteins, respectively) and bar (caspases-3, -8 and -9) graphs as percentage of control in relation 

to the used ruthenium-containing nanoaggregate, as indicated. Shown are the average ± SEM values of four 

independent experiments. The anti-tubulin antibody was used to standardize the amounts of proteins in each 

lane. **p < 0.01 vs. control cells; ***p < 0.001 vs. control cells. 
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5.6 Autophagy activation in MCF-7 and MDA-MB-231 breast cancer cells 

In addition to apoptosis, cellular suicide can also be executed via non-apoptotic forms of 

programmed death such as autophagy. The simultaneous evaluation of apoptosis and 

autophagy by means of the herein used methods is not mutually exclusive, i.e. it is possible 

to ascertain the degree of autophagy independently from that of apoptosis. Thus, to 

investigate whether DoHuRu/POPC and DoHuRu/DOTAP can also induce autophagy in 

MCF-7 and MDA-MB-231 cells, we have examined the formation of autophagic vacuoles 

using monodansylcadaverine (MDC), a selective autofluorescent dye for autolysosomes 

detection. Autolysosomes occurrence, which results from lysosomes-autophagosomes 

fusion, exclusively characterizes late steps in the autophagic cell death process. In order to 

verify this circumstance, cells were exposed for 48 and 72 h to ruthenium IC50 concentrations 

enclosed within DoHuRu/POPC and DoHuRu/DOTAP nanoaggregates (18.9 and 10.3 μM, 

respectively for MCF-7, 14.7 and 12.1 μM, respectively for MDA-MB-231) and the 

quantitative evaluation of MDC staining by means of FACS analysis was performed (Figure 

29). As a result of MDC accumulation and consistently with phase contrast cell imaging, the 

cationic DoHuRu/DOTAP formulation induced an evident increase in the Mean 

Fluorescence Intensity (MFI), in particular 4.3 and 5.8-fold higher at 48 and 72 h for MCF-

7, and 3.9 and 5.3-fold higher for MDA-MB-231 than untreated control cells. These results 

indicate an increased formation of the MDC-labeled vacuoles after ruthenium treatment via 

DoHuRu/DOTAP cationic liposomes and suggest the activation of autophagy in presence of 

apoptosis. Conversely, by using the zwitterionic DoHuRu/POPC liposomes, no significant 

autolysosomes formation was detected, at least up to 72 h. 
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Figure 29. Autophagy activation in MCF-7 and MDA-MD-231 breast cancer cells.  

Quantitative flow cytometric analysis of autophagosomes formation (MDC incorporation) in MCF-7 (a) and 

MDA-MB-231 (b) breast cancer cells, unlabeled and untreated (CTR−), labeled and untreated (CTR+ ), treated 

with IC50 concentrations of DoHuRu/POPC or with DoHuRu/DOTAP for 48 and 72 h, as indicated. The main 

fluorescence intensities (MFIs) were calculated, as described in ‘Materials and Methods’. In the corresponding 

bar graphs, values are expressed as percentage of control cells and are reported as mean of four independent 

experiments ± SEM (n = 24); ***p < 0.001 vs. control (untreated cells). 

 

 

 

5.7 Evaluation of the expression of the main autophagy-related proteins 

Autophagy is bulk degradation of cytoplasmic components during which double-membrane 

vesicles, called autophagosomes, carry unwanted cell components to the lysosomes within 

an inner autophagic membrane. They then fuse liberating the autophagic body and its 

contents into the lumen of the vacuole for degradation. This is a complex process involving 

at least 16 proteins (Divac et al., 2017). However, LC3 is the only one known to form a 

stable association with the membrane of autophagosomes. It is known to exist in two forms: 

LC3-I, which is found in the cytoplasm and LC3-II, which is membrane-bound and is 

converted from LC3-I, to initiate formation and lengthening of the autophagosome (Ngabire 

and Kim, 2017). In this frame, detection of LC3 expression by immunoblot analysis is a 

useful biomarker to detect possible autophagy activation.  
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As can be evidently observed in Figure 30, protein samples from MCF-7 and MDA-MB-231 

show evidence of a significant increase in both forms of LC3 protein following exposure in 

vitro to DoHuRu/DOTAP cationic Ru(III)-containing liposomes. Antibody for LC3 

detection recognizes both the forms: LC3-II differs from LC3-I only in the fact it is 

covalently modified with lipid extensions and has undergone removal of a short amino acid 

sequence (Romao et al., 2014). This scenario is consistent with the previous reported 

detection of autophagic vacuoles in the same experimental conditions, as well as of 

autolysosomes occurrence in late steps of autophagic cell death process. Hence, allowing for 

the role of LC3 within the autophagic pathway and in the light of all the obtained data, 

DoHuRu/DOTAP is able to induce autophagy activation in addition to apoptosis, the main 

pathways of programmed cell death inhibiting the uncontrolled proliferation of cancer cells 

in vitro. On the other hand but still in accordance with the results shown above, the treatment 

with the zwitterionic DoHuRu/POPC formulation results in a non-significant increase in 

LC3 protein, thus suggestive of no autophagy activation. 

These data were further substantiated by the study of the expression of the regulatory protein 

Beclin 1 throughout preclinical in vitro evaluations. Beclin 1 - a Bcl2 interacting protein - is 

the first identified mammalian gene to mediate autophagy and also has tumour suppressor 

and antiviral function (Ngabire and Kim, 2017). As already mentioned, autophagy is 

important for differentiation, survival during nutrient deprivation, and normal growth 

control, and is often defective in tumour cells. Indeed, expression of the Beclin 1 protein is 

frequently decreased in malignant breast epithelial cells (Packer et al., 2015). Based upon 

these observations, it is speculated that Beclin 1 may work through induction of autophagy 

to negatively regulate tumorigenesis and to control viral infections. Indeed, the autophagy-

promoting activity of Beclin 1 in MCF-7 cells is associated with inhibition of cellular 

proliferation (Gong et al., 2013). Whilst not disposing of the healthy counterpart of MCF-7 
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cells as appropriate control to actually detect Beclin 1 down-regulation in cancer cell models, 

immunoblot experiments here show there are not neither significant changes following 

exposure to both neutral and cationic nucleolipidic Ru(III)-containing liposomes, nor further 

decrease in protein content with respect to untreated cells. This invariable basal amount of 

Beclin 1 we have detected in treated or not MCF-7 and MDA-MB-231 adenocarcinoma cells 

would be essential to enable the possible activation and execution of autophagic pathways 

following the administration of ruthenium-based drugs in vitro, as demonstrated by previous 

experiments. Certainly, some recent experimental evidences have shown a lack of autophagy 

pathways following total Beclin 1 depletion induced by different conditions.  

 

 

 

Figure 30. LC3 protein expression in MCF-7 and MDA-MB-231 cells. Western blot analysis showing the 

effects of IC50 concentrations of DoHuRu/DOTAP following 48 and 72 h of incubations in MCF-7 (a) and 

MDA-MB-231 (b) cells on LC3-I and LC3-II, to characterize the autophagic response. Shown are blots 

representative of four independent experiments. The anti-β-actin antibody was used to standardize the amounts 

of proteins in each lane.  
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Figure 31. Beclin 1 protein expression in MCF-7 and MDA-MB-231 cells. Western blot analysis showing the 

effects of IC50 concentrations of DoHuRu/DOTAP following 48 and 72 h of incubations in MCF-7 (a) and 

MDA-MB-231 (b) cells on Beclin1, to characterize the autophagic response. Shown are blots representative 

of four independent experiments. The anti-β-actin antibody was used to standardize the amounts of proteins in 

each lane.  

 

 

 

5.8 Sub-cellular compartmentalization and localization of Ru complexes 

The internalization and accumulation of metal-based drugs into cancer cells is crucial for the 

therapeutic effect against tumours (McQuitty, 2014). For this reason, as already described in 

the introduction, we have previously investigated nucleolipidic Ru-containing liposomes 

interactions with cell membranes, along with the cell internalization processes (Mangiapia 

et al., 2012). To this aim, standardized protocol based on a rhodamine B fluorescent probe 

loaded into POPC and DOTAP liposomes has been used to evaluate their uptake in human 

carcinoma cells. Furthermore, additional in vitro fluorescence experiments have been 

performed by dansyl-labeled ruthenium complex loaded into nucleolipidic liposomes in 

order to assess the fate of the active ruthenium complex once inside target cancer cells. In 

this way we have demonstrated that nucleolipidic nanoaggregates rapidly interact with 

biological membranes allowing a massive cellular uptake, even after short incubation times 

such as 30 min and 1 h, in a process of cell internalization probably occurring by nonspecific 

patterns via membrane fusion and/or endocytosis. Therefore, once the ability of our 

nanovectors to transport the active ruthenium to cancer cells has been established, to give an 
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insight into the action mechanism of the AziRu complex so as to suppose possible 

interactions with specific biomolecular targets, new and more targeted experiments have 

been carried out to determine the accurate subcellular location of the active ruthenium. In 

particular, using ad hoc designed fluorescent formulations and confocal microscopy 

approaches, coupled to subcellular fractionation and inductively coupled plasma-mass 

spectrometry (ICP-MS), we have now further confirmed that Ru-nanovectors have a high 

propensity to cross cell membranes, and to massively accumulate within both cytoplasm and 

nuclear compartment, thus allowing ruthenium to interact with mitochondrial and nuclear 

molecular targets. 

As far as confocal microscopy is concerned, aiming at a deeper comprehension of their cell 

internalization process and metabolic fate, a fluorescently labeled nucleolipid has been 

designed using HoThyRu as the model compound, as detailed in the experimental section. 

The dansyl group has been here selected to provide the fluorescent tag because it offers 

several advantages, e.g. high chemical stability, limited steric hindrance compared to other 

commonly used fluorescent dyes, and simple installation protocols. In addition, dansyl 

derivatives are very sensitive to the solvent polarity conditions, thus providing relevant 

information on the local environment in which they are found (Giordano et al., 1985). The 

dansyl-labeled nucleolipid Ru(III) complex - here indicated as HoThyDansRu - has been co-

aggregated with DOTAP under the same conditions used for HoThyRu, ToThyRu, and 

DoHuRu (Mangiapia et al., 2013). In this way, the fate of the active ruthenium complex can 

be directly assessed, thereby examining its location after nanocarriers application to cells 

monolayers. Consistently with our previous results, fluorescently labeled 

HoThyDansRu/DOTAP localizes rapidly within MCF-7 cells, and microphotographs in 

Figure 32 clearly show a time course accumulation as the duration of incubations increased. 

The dansyl-dependent fluorescence occurs after very short contact times, and following 2 
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hours from the start of the treatment the fluorescent maximum diffusion is reached. 

Accordingly, the analysis of fluorescent emission also suggests that the complexes lodged 

in DOTAP liposomes enter the cytoplasm, spreading then to the whole cell including the 

perinuclear compartment; moreover, although attenuated by DAPI nuclear staining, dansyl-

dependent fluorescence emission is also detectable in the nuclei area. After 4 hours of 

contact, cytotoxic effects induced on MCF-7 by ruthenium-containing liposomes begin to 

be detectable, e.g. altered adherens-junctions to bind cells together, as it is evident by the 

appraisal of the red E-cadherine-associated fluorescence. Cadherins are a class of type-1 

transmembrane proteins which play important roles in cell adhesion, forming adherens 

junctions. They are dependent on calcium (Ca2+) ions to function, hence their name. Cell-

cell adhesion is mediated by extracellular cadherin domains, whereas the intracellular 

cytoplasmic tail associates with a large number of adaptor and signaling proteins, 

collectively referred to as the cadherin adhesome (Shamran et al., 2017). Overall, in addition 

to demonstrating an effective process of cellular uptake, the fluorescent patterns seem to 

suggest an intracellular liposome degradation coupled with the release of the 

pharmacologically active agent within the cytoplasm. This would explain the widespread 

dansyl-associated fluorescence and the concomitant generation of discrete dansyl-associated 

spots following cellular uptake and disaggregation of nanocarriers.  

All these data on AziRu intracellular and metabolic fate following nucleolipidic liposomes 

application to cells were further confirmed by subcellular fractionation protocols performed 

on MCF-7 adenocarcinoma cells, coupled with subsequent analysis by inductively coupled 

plasma-mass spectrometry (ICP-MS). As shown in bar graph in Figure 33 and in comparison 

to the naked Azi-Ru complex, ruthenium assessment and localization in breast cancer cells 

after treatments in vitro firstly prove that cellular uptake is considerably increased by suitable 

nanovehiculation: although sufficiently lipophilic, much of Azi-Ru remains in the culture 

https://en.wikipedia.org/wiki/Transmembrane_protein
https://en.wikipedia.org/wiki/Cell_adhesion
https://en.wikipedia.org/wiki/Adherens_junction
https://en.wikipedia.org/wiki/Adherens_junction
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/Ion
https://en.wikipedia.org/wiki/Adhesome
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medium, whereas large amounts of ruthenium are found at cellular level after treatment with 

DoHuRu/DOTAP liposome. Moreover, ICP-MS analysis performed on the isolated 

subcellular fractions indicate that the liposomial ruthenium entering the cells is widely 

distributed amongst the intracellular compartments, but above all at the nuclear level, as 

evidenced by the high metal content bound to nuclear DNA. 
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Figure 32. Fluorescent microphotographs by confocal microscopy of cell monolayers showing the intracellular 

localization of dansylated-HoThyDansRu complex into human MCF-7 breast adenocarcinoma cells subsequent 

to nanocarriers application. MCF-7 were incubated with 100 μM of the intrinsically fluorescent 

HoThyDansRu/DOTAP liposome solution for 30 min, 1, 2, 3, and 4 h. DAPI is used as a nuclear stain (shown 

in blue); fluorescent immunostaining of E-cadherine is used to highlight cell membranes (shown in red); 

dansyl-dependent fluorescence in  HoThyDansRu/DOTAP liposomes is used to label the AziRu complex 

(shown in green). (a) In merged images of the time course experiment, the three fluorescent emissions are 

overlapped. The images shown are representative of three independent experiments. (b) Merged images and 

green channel imaging during the time course experiments to analyze the intracellular distribution of AziRu 

following 100 µM HoThyDansRu/DOTAP administration to MCF-7 for the indicated times. 
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Figure 33. Localization and ruthenium accumulation by Inductively Coupled Plasma-Mass Spectrometry 

(ICP-MS) analysis following AziRu and DoHuRu/DOTAP application to MCF-7 cells and subcellular 

fractionation protocols, as deeply described in the experimental section. As shown in bar graph, and in 

comparison to the naked AziRu complex, the ruthenium assessment and localization in breast cancer cells after 

treatments with the cationic DoHuRu/DOTAP liposome is investigated, making an allowance for culture 

medium and cellular pellets, and for the subcellular cytosolic and nuclear compartments, as well as for DNA 

fraction. 

 

 

 

5.9 Analysis of Th1 and Th2 related gene expression and EPO impact on Treg 

population 

The data obtained show that gene expression of IFN-ɣ and Tbet is higher in PBS mice 

compared to EPO one at D14 after 4T1 engraftment (Figure 34, left and middle panel). At 

D16 and D20, expression of these genes is low in PBS and EPO groups (data not shown). 

Thus, EPO decreases the differentiation of CD4 T cells into Th1 profile. Surprisingly, 

whereas it is well known that Th1/Th17 cytokines inhibit Th2 development and vice and 

versa, we observed that at days 16 and 20, the gene expression level of IL-4 is also reduced 

in EPO mice (Figure 34, right panel). This last result needs to be confirmed, as the number 
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of experiment is low. Moreover, the analysis of IL-10 and GATA-3 gene expression will 

increment these preliminary results on EPO’s effect on Th2 polarization.  

 

 

 

Figure 34. Analysis of Th1 and Th2 related gene expression. Gene expression of CD4 T cells from draining 

lymph node was analyzed on Light Cycler 480 (Roche) according to the manufacturer’s instructions. At d14 

n=4, D16 n=1, D20 n=2. Statistics: unpaired t test, *p<0.05, **p<0.01, ***<0.001. 

 

 

 

As Treg suppress immune response, we also analyze effect of EPO on this population. To 

do so, we studied their specific transcription factor FoxP3 by RT-qPCR and evaluated the 

Treg number in the dLN. There is neither difference in the expression of FoxP3 gene in the 

CD4 population (Figure 35, left panel), nor difference in the absolute number of Treg in the 

dLN (Figure 35, right panel). In order to confirm this result, we will also analyzed the 

expression of TGF- gene. 
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Figure 35. Analysis of EPO impact on Treg population. Left panel: gene expression of CD4 T cells from 

draining lymph node was analyzed on Light Cycler 480 (Roche) according to the manufacturer’s instructions. 

At d14 n=4, D16 n=1, D20 n=2. Right panel: Treg population was analyzed by FACS and their count was 

calculated by multiplying the percentage of FoxP3+ CD4+ CD3+ cells among alive cells by the number found 

when we count cells at the microscope. At day 14-20 n=5. Statistics: unpaired t test, *p<0.05, **p<0.01, 

***<0.001. 

 

 

 

Finally, the team is also interested to look at the impact of EPO on Th17 polarization. The 

analysis of RORt and IL-17 gene expression is ongoing. 

 

 

 

5.10 Analysis TIL cells in tumour 

In order to analyze the consequence of changes in Th polarization in dLN due to EPO 

treatment, we made the same analysis on Tumour-infiltrating lymphocytes. Unfortunately, 

no difference in the expression of genes specific for Th1, Th2 or Treg was found in the 

tumour (data not shown).  

However, the proportion of CD8 T cells was already found to be decreased after EPO 

treatment. By analyzing gene expression of these cytotoxic CD8 T cells, we found a decrease 

of Tbet et IFN- gene expression at D14 after tumour engraftment in EPO-treated mice 
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compared to controls (Figure 36). A slight expression of Tbet in CD8 correlates with an 

exhaustion phenotype of CD8, that may explain the decrease of IFN- gene expression. 

Further studies need to be done to confirm this preliminary result (n=1). Moreover, the 

analysis of Eomes and KLRG1 gene expression as well as protein presence in CD8 TIL, is 

needed to conclude on EPO impact on CD8 effector T cells. 

 

 

 

Figure 36. Analysis of EPO impact on CD8 TIL. Gene expression of CD8 T cells from tumour was analyzed 

on Light Cycler 480 (Roche) according to the manufacturer’s instructions. At d14 n=1. Statistics: unpaired t 

test, *p<0.05, **p<0.01, ***<0.001. 
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Innovative anticancer drugs with new molecular mechanisms of action are essential in 

chemotherapeutic treatment to kill specific cancer types, and to overcome toxic side effects 

as well as chemoresistance (Hutchinson et al., 2010). Current research efforts are focused on 

a deeper understanding of the cellular response and/or resistance to anticancer treatments, 

including the role of cell death pathways activation, such as apoptosis and autophagy, by 

using chemotherapeutics (Holohan et al., 2013). Recently, we have developed new 

biocompatible ruthenium-based nanosystems, proved to be particularly effective against 

specific cell lines derived from human solid tumours (Mangiapia et al., 2013; Simeone et al., 

2012; Riccardi et al., 2017). Starting from these encouraging data, we have first confirmed 

their efficacy focusing on a panel of human tumour cells arising from breast cancer. At the 

moment, the endocrine-responsive (ER) breast adenocarcinoma MCF-7 and the triple-

negative breast adenocarcinoma (TNBC) MDA-MB-231 cell models account for the great 

majority of investigations on breast cancer cells and are considered the most reliable in vitro 

models of breast cancer together with their variants CG5, and MDA-MB-436 and MDA-

MB-468, respectively (Lacroix et al., 2004; Holliday et al., 2011). All these cells are 

sensitive to cisplatin in vitro, so that cisplatin is currently the drug-based option in the 

therapeutic armamentarium. Although new types of ruthenium complexes with bigger 

anticancer activity in vitro have been meanwhile reported (Koceva-Chyła et al., 2016), the 

induction of comparable or even greater cytotoxic effects than cisplatin have been herein 

confirmed for nucleolipidic Ru(III) formulations. Then, aiming at an in-depth investigation 

of their mode of action, we have shown that amphiphilic ruthenium complexes, properly 

delivered by suitable nano-systems, are able to kill cancer cells by activating specific 

apoptotic processes, coupled in some cases to cellular autophagy. Indeed, in the last decade 

many different ruthenium compounds have been tested for their anticancer properties. 

However, all the reported studies have not clearly evidenced a unique mode of action at 
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cellular level, nor unambiguously defined a specific mechanism of action at molecular level 

(Alessio et al., 2016; Riccardi et al., 2017). In-depth bioanalytical studies have been so far 

performed especially for cisplatin, which have validated nuclear DNA as the main final drug 

target causing adducts formation and DNA damage, leading to cell division inhibition and 

cytotoxicity. In analogy with cisplatin, some of us have recently demonstrated that also 

AziRu and NAMI-A can interact with DNA model systems, with Ru(III) ions being 

incorporated into oligonucleotide structures via stable linkages (Musumeci et al., 2015). 

However, since an increasing number of evidences demonstrate that both ruthenium(II) and 

(III)-based drugs are able to interact with both intra- and extra-cellular protein targets, 

currently other molecular mechanisms of action cannot be excluded. Beyond molecular 

targeting, we have observed an invariable activation of programmed cell death pathways 

which confirms that the primary mode of action in breast cancer models of AziRu via 

DoHuRu/POPC and DoHuRu/DOTAP formulations is the induction of apoptosis. These 

data are largely in accordance with several reports highlighting the occurrence of distinct 

hallmarks of apoptosis after ruthenium administration in vitro. Cellular morphological 

changes and DNA fragmentation provided additional evidence of an apoptosis-inducing 

activity at the basis of the anticancer properties of AziRu. The regulation of apoptotic cell 

death orchestrated by intracellular caspases plays a fundamental role in the response to 

chemotherapeutics, as evasion of apoptosis is one of the central features of malignant 

progression as well as of drug resistance. Indeed, survival of malignant mammary cells is a 

key event in disease occurrence and progression, but also in therapy failure and 

chemoresistance development. Physiological mammary cells growth is controlled by a 

balance between cell proliferation and apoptosis. A large body of evidence has clarified that 

tumour growth is not just a result of uncontrolled proliferation but also of reduced apoptosis, 

so that the balance between proliferation and apoptosis is crucial in determining the overall 
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growth or regression of the tumour in response to chemotherapy. Two main pathways of 

caspase activation have been described in mammalian cells, which result in final control of 

apoptosis. In the intrinsic pathway, typically activated by intracellular stress signals, pro-

apoptotic cell death factors belonging to the Bcl-2 family increase mitochondrial 

permeability and release of cytochrome c, as well as of other proteins from the 

intermembrane space of mitochondria. Apaf-1, a downstream mediator of apoptosis, along 

with cytochrome c, associates with caspase-9 in cytoplasm and leads to its activation. The 

resulting apoptosome initiates a cascade of effector caspases, which include caspases-3, -6, 

and -7. In turn, the active caspase-3 triggers DNA fragmentation factor (Caspase-Activated 

DNase, CAD) and promotes DNA internucleosomal cleavage. All the formulations 

containing nucleolipidic Ru(III)-complexes we have tested activate the mitochondrial 

apoptotic cell death pathway in breast cancer cells, as highlighted by a remarkable activation 

of caspase-9. Interestingly, this occurs independently of the cell ability to complete apoptosis 

process via the executioner caspase-3, as demonstrated by Ru-dependent activation of 

apoptosis in MCF-7. This adenocarcinoma model is known to be resistant to some 

chemotherapeutics due to a deletion in the CASP-3 gene that leads to an inherited deficiency 

of caspase-3. Caspase-3 - commonly turned on by numerous death signals - cleaves a variety 

of important cellular proteins and is ultimately responsible for apoptotic DNA 

fragmentation. Despite the lack of caspase-3 expression, liposomes containing nucleolipidic 

Ru(III)-complexes have hitherto shown to be particularly effective on this in vitro model. It 

has been also reported that MCF-7 undergoes cell death by apoptotic stimuli in the absence 

of the typical DNA fragmentation, and recent observations further suggest that large and 

small DNA fragments coupled to even single-strand cleavage events occur during apoptotic 

death. Consistently with our results, these observations have raised relevant questions on the 

degradation pattern of nuclear DNA in agarose gel electrophoresis detection, which remains 
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controversial. However, morphological changes and MCF-7 cell death were independent of 

caspase-3 and may correlate with the activation of different apoptotic pathways and other 

effector caspases, such as caspase-6 or -7. As far as the activation of programmed cell death 

pathways is concerned, DoHuRu/DOTAP formulation seems capable to concurrently 

activate the two major pathways of apoptosis in a cell-specific mode. In fact, MDA-MB-231 

cells, undergoing the apoptotic mitochondrial pathway after exposure to DoHuRu/DOTAP, 

show an apparent proteolytic processing of pro-caspase-8 to form various fragments, 

including the active p18 and p10. The extrinsic pathway is activated by extracellular ligands 

able to bind to death receptors on the cell surface, which leads to the formation of the death-

inducing signaling complex (DISC). This death receptor pathway is triggered by members 

of the death receptor superfamily such as CD95 and tumour necrosis factor receptor. 

Formation of a death-inducing signaling complex induces caspase-8 activation and thereby 

the downstream caspase cascade (Kiraz et al., 2016). We hypothesize that the cationic 

DOTAP nanoaggregate, by means of its inherent surface charge, can interact in peculiar 

manner with the external surface of cell membranes, as suggested by the faster cellular 

uptake kinetics compared to POPC formulations observed in a previous study. Although a 

hypothesis, exclusive molecular interactions coupled to local drug release could stimulate 

specific surface receptors involved in the activation of the extrinsic pathway. Indeed, not 

infrequently the killing of tumour cells by anticancer chemotherapeutics has been linked to 

activation of extrinsic apoptosis pathways. These outcomes are consistent with former 

investigations and demonstrate that some ruthenium(II) and (III) complexes can 

simultaneously trigger intrinsic and extrinsic apoptosis pathways. As far as the Bcl-2 family 

proteins are concerned, we believe that some central aspects closely linked to ruthenotherapy 

have emerged. Members of this family are regulatory proteins involved in the control of cell 

death, by either inducing (pro-apoptotic factors) or inhibiting (anti-apoptotic factors) 
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apoptosis. Bcl-2 is a crucial anti-apoptotic protein to be regarded as an oncogene, playing an 

important role in promoting cellular survival by inhibition of pro-apoptotic proteins. On the 

other hand, the pro-apoptotic effectors of the Bcl-2 family, including Bax, normally act on 

the mitochondrial membrane to promote permeabilization coupled to the release of both 

cytochrome c and ROS as important signals in the apoptosis cascade. Several clinical studies 

have provided support for an overexpression of the antiapoptotic Bcl-2 protein as a negative 

prognostic marker in various tumours. Alternatively, decreased Bax levels have been found 

in correlation with shorter survival in patients with breast cancer and colorectal cancer 

(Sturm et al., 2000). In MCF-7 and MDA-MB-231 we found an important effect induced by 

both DoHuRu/POPC and DoHuRu/DOTAP treatment on the cellular content of Bcl-2 and 

Bax, which could be correlated to the induction of the mitochondrial cell death pathway. The 

significant increase in Bax/Bcl-2 ratio detected in treated cells with respect to untreated cells 

could have an important impact in the regulation of cell fate by interfering with breast cancer 

cell survival. Indeed, in accordance with experimental and clinical investigations, tumours 

dependent on Bcl-2 family members are likely sensitive to Bcl-2 modulation in order to 

survive; in turn high Bax expression has been associated with a better response to 

chemotherapy in many cancers forms. Consistently with our results, it should be possible to 

circumvent the inherent apoptosis deficiency of malignant cells by directly affecting the 

mitochondrial function. In this way, following mechanisms yet to be clarified, the ruthenium 

complexes may interact with mitochondrial targets, possibly via selective accumulation and 

ROS generation. At the same time, dysfunction of mitochondria might be responsible for 

autophagic cell death. More and more studies underline the important interplay between 

apoptosis and autophagy, and suggest that apoptosis activation is often related to increased 

autophagy processes. As in the case of apoptosis, autophagy plays a vital role in cellular 

proliferation and survival, and dysregulated autophagy activation has been described in 
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many pathologies, including cancer. Although the role of the autophagic programmed cell 

death in neoplastic development remains to be clarified in vivo, cancer cells with up-

regulated autophagy exhibit a less aggressive behavior as well as an increased susceptibility 

to chemotherapy. Autophagic degradation of cellular contents is employed by eukaryotes 

from yeast to man in order to maintain cellular homeostasis and protect against disease. The 

process involves the coordinated activity of a family of autophagy-related (ATG) proteins 

to mediate sequestration of cargo in a double-membrane vesicle (autophagosome) that then 

fuses to a lysosome (autolysosome) filled with, among other components, lysosomal 

enzymes. Studies now suggest that multiple forms of selective autophagy are continuously 

active at some basal level in order to maintain cellular homeostasis, whereas specific stimuli 

can activate selective autophagic pathways in order to address particular stressor. Coincident 

with its importance in maintaining cellular homeostasis, the disruption of selective 

autophagy pathways has been shown to play a role in diverse disease processes including 

cancer. In particular, studying the role of selective autophagy pathways has in part unraveled 

the complex role of autophagy in cancer as tumour suppressive and pro-tumourigenic 

dependent on context. Importantly, understanding the precise roles of various forms of 

selective autophagy in maintaining tumour growth provides the opportunity to target these 

processes more selectively. In this frame, the molecular mechanisms of selective autophagy 

receptor action and regulation are complex. The autophagy core machinery consists of a set 

of ATG proteins. Among these, LC3 is at the core of the autophagic process. As 

demonstrated by an ever-growing number of evidence, it is the only essential autophagy 

protein that can be found in the autophagosome after its completion, and therefore is the 

marker par excellence to experimentally monitor the fate of these vesicles. As above 

mentioned, the role of autophagy in cancer is extremely complex, as demonstrated by a 

growing literature describing situations where autophagy can either promote or inhibit 
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tumourigenesis. The most likely explanation is that the role of autophagy in cancer is 

dynamic with both tumour-suppressive and pro-tumourigenic roles, which depend on 

multiple factors including tumour stage, cellular context, and tissue of origin. Autophagy 

was initially considered a mechanism by which to suppress tumour initiation. However, 

recent work has brought to light tumour-suppressive selective autophagy pathways that can 

mitigate oncogenic signals and conversely selective autophagic pathways that support 

tumour maintenance and progression. More direct evidence of autophagy as a tumour 

suppressor came from mouse genetic studies of core autophagy machinery including ATG5, 

ATG7, and BECN1 (Beclin 1) showing that when autophagy is impaired, there is an increase 

in tumour initiation. Indeed, from a mechanistic standpoint, inhibition of autophagy leads to 

an accumulation of reactive oxygen species, increased DNA damage, and mitochondrial 

defects, all implicated in tumourigenesis. Another potential mechanism for tumour 

suppression by autophagy is via its role in cellular senescence. Cellular senescence is a 

program of permanent arrest of the cell division cycle that can be induced by cells in response 

to oncogenes in order to prevent malignant transformation. For sure, while the situation is 

very complex in vivo, the activation in vitro of autophagic pathways represents another 

challenging possible molecular mechanism to inhibit uncontrolled proliferation of cancer 

cells. However, studying the role of autophagy pathways in cancer has in part unraveled the 

complex role of autophagy in cancer as tumour suppressive and pro-tumourigenic, 

dependent on context. Importantly, understanding the precise roles of various forms of 

selective autophagy in maintaining tumour growth provides the opportunity to target these 

processes more selectively. 

Since the effectiveness of many apoptosis-inducing chemotherapies can be affected by 

specific mutations in genes orchestrating apoptotic regulation, the activation of alternative 

cell death pathways, in tandem with or in the absence of an efficient apoptotic machinery, 
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may represent an attractive goal for novel metal-based chemotherapeutics. In this 

perspective, recent evidence supports the occurrence of the simultaneous induction of 

apoptosis and autophagy in cancer cells as a result of specific signaling. In addition, 

autophagy can be also activated upon exposure to genotoxic compounds, including several 

metal-based drugs able to target DNA. The induction of autophagy in the case of cationic 

nucleolipidic formulations could be linked to the ruthenium-induced down-regulation of the 

prosurvival protein Bcl-2, evident in both MCF-7 and MDA-MD-231 cells. Indeed, 

disturbances in the interaction between Beclin 1 and Bcl-2 family proteins, by which Beclin 

1 is inhibited in normal conditions, has been established to stimulate cellular autophagy. 

Thus Ru(III) complexes activity in inhibiting breast cancer cells proliferation via 

DoHuRu/DOTAP administration would lie in the crosstalk connecting the main molecular 

mechanisms involved in the regulation of apoptosis and autophagy processes. Nevertheless, 

the existence of other non-apoptotic nor necrotic cell death pathways, triggered upon 

exposure to ruthenium-containing nanoaggregates we have documented in breast cancer 

models, needs further and more targeted studies. According to our previous findings 

(Mangiapia et al., 2012) and to recent literature reports (Koceva-Chyła et al., 2016; Qian et 

al., 2013) it cannot be excluded that the simultaneous activation of different mechanisms of 

cell death can be caused by multiple potential interactions at the subcellular/molecular level, 

both nuclear and cytosolic. Nevertheless, the activation of multiple death pathways by metal-

based chemotherapeutics in aggressive cancer diseases with limited treatment options is a 

largely desired goal, in order to possibly restrict the onset of chemoresistance as well as to 

efficiently counteract uncontrolled proliferation (Figure 37). 

Furthermore, giving the great importance of the tumour microenvironment on cancer growth 

as well as on the efficacy of the chemotherapy, upcoming investigations on the evaluation 

of the Ru(III)-containing liposomes impact on the tumour-infiltrating immune system cells 
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are underway to strengthen knowledge in favor of future in vivo applications for these high 

potential candidate drugs. 

For a long time, tumour-related investigations were focused only on cancer cells, ignoring 

the environment created around the tumour. Indeed, it has been known that tumours are 

heterogeneous organs, rich in various number of components which are very important for 

the cancer growth and proliferation. In this setting, given that the immune cell compartment 

within the tumour is recognized as major driver, directly or indirectly, of angiogenesis and 

vascular remodeling in addition to the tumour cell itself (Li and Zhang, 2017), one of the 

interests of cell laboratories is to investigate the role of tumour-infiltrating immune system 

cells (such as TAM, TIL, CD4 T cells) and their secreted components, as well as their 

possible modulation. 

In particular, CD4 T cells play essential roles in the function of the immune system. They 

are able to regulate different functions, such as to regulate/suppress immune responses both 

controlling autoimmunity and adjusting the extent and persistence of responses. They are 

divided into two major groups, designated Th1 and Th2 cells by Mosmann and Coffman, 

which are distinguished by the cytokines produced and through the expression of different 

patterns of cell surface molecules. Other types of CD4 T cells recognized are T regulators 

(Treg) - important in the tolerance and so able to the inhibition of immune cells - NKT, but 

also into Th9 or Th17 ( Zhu et al., 2010). 

Moreover, recent studies have shown a possible role of EPO in regulating tumour-infiltrating 

immune system cells within its micro environment, since EPO receptors -endowed with 

critical functions - have been identified on these cells surface (Feldman et al., 2006; Um et 

al., 2006; Henke et al., 2006). 

Erythropoietin (EPO), the most widely used erythropoiesis-stimulating agent (ESA), is 

largely used in the treatment of anemia associated with chronic kidney disease (CKD) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Feldman%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16161153


113 
 

(Eschbach et al., 1987), and also in cancer-related anemia in association with conventional 

chemotherapy (Littlewood et al., 2002). 

Although erythropoiesis-stimulating agents (ESAs) reduce anemia in patients with cancer 

and could improve their quality of life, these drugs have been reported to might increase 

mortality (Bohlius et al., 2009). Indeed, they could induce tumour progression independently 

of the type of cancer or the anti-cancer treatment (Henke et al., 2003; Bohlius et al., 2009)., 

even if mechanisms underlying the role of EPO/ESA on tumour proliferation still remain 

unknown and highly controversial. 

Interestingly immunosuppressive role of EPO in humans has already been described by 

decreasing T cell function (Cravedi et al., 2003). In another hand, in an auto-immune 

encephalomyelitis mouse model, the beneficial effect of EPO was attributed to a Th2-

polarized immune response. Moreover, EPO was shown in a mouse model of infection, to 

inhibit macrophage activation, through NF-κB pathway inhibition, impairing antibacterial 

function (Nairz et al., 2011). 

In particular, studies carried out by Hacein-Bey-Abina’s team show that EPO decreases the 

differentiation of CD4 T cells into Th1 profile, which is an anti-tumourigenic profile. 

Moreover, whereas it is well known that Th1/Th17 cytokines inhibit Th2 development (and 

vice and versa), we have observed that the gene expression level of IL-4 – principal cytokine 

secreted by Th2 - is also reduced in EPO treated mice. 

Moreover, preliminary studies on the PNM:MDSC genes expression profile would indicate 

an increase in the expression of cytokines with immunosuppressive action but these results 

cannot be confirmed and so for the time we cannot conclude on the commitment toward the 

N2 profil, but further experiments are ongoing. 

Therefore, in agreement with literature data, these results lastly demonstrate that in vivo EPO 

administration leads to an increase in tumour growth and proliferaition, probably due to a 
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direct effect on the immune system cells polarization within tumour microenvironment, 

showing an immunosuppressive profile along with a pro-tumourigenic activity. 

 

 

 

Figure 37. Mechanism of action of ruthenium-based nucleolipidic nanosystems, assumed on the basis of a 

series of experimental evidences. From the selective cellular uptake in the tumor microenvironment to the 

possible interaction with specific mitochondrial and nuclear biomolecular targets, responsible for the activation 

of specific programmed cell death pathways. 
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