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SUMMARY 
 

 

Background: the p14
ARF

 tumor suppressor is an important sensor of oncogenic stimuli 

inducing cell cycle arrest and or apoptosis through both p53-dependent and 

independent pathways. It is widely demonstrated that ARF prevalent nucleo/nucleolar 

localization plays an important role in its tumor suppressor functions.  

Nevertheless, recent studies show that, despite its role in growth suppression, ARF is 

overexpressed in a significant fraction of human tumors, suggesting that it may possess 

a pro-survival function. Accordingly, in our lab it has been demonstrated that, 

following PKC stimulation, ARF protein is phosphorylated and accumulates in the 

cytoplasm where it is unable to efficiently control cell proliferation both in tumor and 

immortalized cell lines. These observations led to the hypothesis that ARF expression 

in cancer cells could aid tumor progression by conferring pro-survival properties to 

the cells. On the other hands, ARF cytoplasmic localization could highlight 

physiologic and novel roles of this versatile protein. 

In this scenario, the aim of my studies was to better understand ARF functions in HeLa, 

HaCaT and H1299 cell lines, where ARF is highly expressed and mainly localizes in 

the cytoplasm. 

Results and Conclusions: We unexpectedly found that ARF plays a role in 

cytoskeleton organization. Interestingly, during cytoskeleton remodelling induced by 

cell spreading, we observed a strong PKC activation resulting in an ARF protein levels 

increase and stabilization in the cytoplasm. Moreover, we demonstrated that, by aiding 

cytoskeleton assembly during spreading, ARF protects cells from anoikis blocking 

DAPK (Death Associated Protein Kinase) dependent apoptosis and promoting cell 

survival through FAK stabilization. Interestingly, we found that the ARF T8D mutant, 

mimicking the phosphorylation status of the protein, is able to mediate both cell 

spreading, FAK activation and cell proliferation through inhibition of DAPK 

functions. On this basis, we propose that the role of ARF in cell adhesion and survival 

strictly depends on both cell context and post-translational modifications. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1     INK4b-ARF-INK4a locus: a puzzling genomic structure 

The INK4b-ARF-INK4a locus, located on human chromosome 9p21 and on 

mouse chromosome 4, is conserved between human, mouse, rat and opossum (Quelle 

et al., 1995; Swafford et al., 1997; Sherburn et al., 1998). It encodes for three proteins 

that regulate the pathways of two potent cell cycle regulators: the retinoblastoma 

protein (pRB) and the p53 transcription factor. 

INK4a and INK4b genes encode for p16
INK4a

 and p15
INK4b

, two important members of 

the INK4 family (inhibitors of the cyclin-dependent kinases (CDKs)). In response to 

specific signals, they block the assembly of the catalytically active cyclinD-CDK4/6 

complex. In this way, the pRB protein, maintained in an active hypophosphorylated 

state, sequesters E2F transcription factors, causing G1 phase cell cycle arrest. 

(Sharpless and DePinho, 1999; Serrano, 2000) (Fig.1).  

The simple tandem arrangement of this locus is complicated by the insertion of an 

exon (called exon 1β) that is located 22kb upstream to the exon 1α of INK4a. Exon 1β 

is transcribed from its own promoter and the resulting transcript also includes the exon 

2 and 3 of INK4a (Duro et al.,1995; Mao et al., 1995; Stone et al., 1995) (Fig.1). 

Nevertheless, the protein product doesn’t share any amino acid homology with p16 

because the exon 2 is translated in a different open reading frame (Quelle et al.,1995). 

For this reason, the name of this protein is ARF (Alternative Reading Frame).   

Interestingly, ARF (known as p14
ARF

 in human and p19
ARF

 in mouse), like p16
 INK4a

, 

is a potent tumor suppressor, but is involved in the regulation of p53 pathway (Fig.1).  

The sharing of exon 2 and the fact that both p16
INK4a

 and ARF have the capacity to 

induce cell-cycle arrest raise intriguing questions about how this unique genomic 

arrangement might have come about (Gil and Peters, 2006). Evolutionary studies show 

that in the puffer fish Fugu rubripes genome, the region equivalent to the mammalian 

INK4b-ARF-INK4a locus specifies only a single gene (Fugu INK4a/b), that is a 
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homologue of INK4b, without any associated ARF-encoding potential region. This 

suggests that INK4b was the primordial gene at this locus and after the divergence of 

the lineage leading to mammals from fish, 450 million years ago, a gene duplication 

event generated the adjacent INK4a gene. No evidence for ARF has been found at the 

Fugu INK4 locus or in nearby surrounding regions (Gilley and Fried, 2001). Given 

that ARF protein is poorly conserved even between human and mouse, its evolutionary 

origins remain still unknown. Interestingly, Kim and colleagues (2003) reported that 

in chicken genome, which represents an intermediate between fish and man in the 

evolution, the INK4b-ARF-INK4a locus encodes the homologues of both p15
INK4b

 and 

ARF. Interestingly, the exon 1β has replaced the exon 1α causing the loss of p16
INK4a 

expression. Moreover, despite chicken ARF is encoded only by exon 1β because the 

splicing to exon 2 takes place in a different register to that used in mammals, the 

protein is yet functional. This finding is consistent with studies indicating that exon 

1β-encoded N-terminal region (aa. 1-64 for p14
ARF

) is necessary and sufficient for the 

known ARF tumor suppressor functions, while residues specified by exon 2 are 

dispensable (Quelle et al., 1997; Zhang et al., 1998; Lohrum et al., 2000; Weber et al., 

2000; Llanos et al., 2001).  

Nevertheless, recent evidences have shown that the exon 2-encoded sequences 

contribute significantly to ARF function in mammalian cells (see section 1.2 “ARF 

role in the cytoplasm”).  

Interestingly, it has been demonstrated that ARF constitutes a link between the pRb 

and p53 pathways and may act as a safety valve that triggers a p53-dependent 

checkpoint when the pRb pathway is compromised. Specifically, the inactivate pRb 

causes the release of E2F transcription factors, which induce ARF transcription (Stott 

et al., 1998; De Stanchina et al., 1998).  

The unique genomic arrangement of INK4b-ARF-INK4a locus reflects a common 

purpose for the encoded products. Indeed, all three proteins are main regulators of 

cellular senescence, a growth-arrest mechanism that protects cell from 

hyperproliferative signals and various forms of stress and, together with apoptosis, 

represents an important barrier against tumor formation (Gil and Peters, 2006). 

Understanding p16
INK4a

 and ARF role in this process is complicated by apparent 

differences in their behaviour between human and mouse cells. Indeed, while p16
INK4a

 



 4 

takes centre stage in senescence in human cells, ARF assumes a more prominent role 

in mouse cells. A possible explanation could be the fact that the stimuli that can lead 

to senescent states are different among the species. For example, while the replicative 

senescence of human fibroblasts appears to be mediated in large part by telomere 

attrition, senescence of mouse fibroblasts is completely independent of the telomere 

clock and is induced like a stress response (Collins and Sedivy, 2003).  

ARF and p16 seem to have a different behaviour between human and mouse cells also 

for their tumor suppressor function. In human cancer, although in most cases all three 

genes of this locus are lost (Chin et al.,1998; Sherr, 2001; Saporita et al., 2007), INK4a 

is inactivated by loss of function “mutations” (point mutation and deletion) and 

promoter methylation events more frequently than ARF or INK4b. Specifically, 

INK4a mutation occurs in a significant fraction of familial melanoma (Kamb et al., 

1994), sporadic esophageal and pancreatic adenocarcinomas (Schutte et al., 1997; 

Liggett and Sidransky, 1998). Conversely, it has been reported that some tumour types, 

like leukaemias and lymphomas, are associated with the specific inactivation of INK4b 

without any documented effects on INK4a (Ruas and Peters, 1998; Serrano, 2000; 

Sharpless and DePinho, 1999; Sherr, 1998). 

The first studies carried out in mouse model showed that, respect to p16, ARF seems 

to assume a more prominent role as tumor suppressor in mouse rather than in man, 

where the mutation frequency of its gene is very low. p19
ARF 

null mice develop tumors 

such as sarcomas (43%), lymphoid malignancies (29%), carcinomas (17%), and 

tumors of the nervous system (11%) early in life (after 9,5 months), and they die after 

one year. Furthermore, heterozygous mice also develop tumors, albeit after a longer 

latency compared to p19
ARF

 -/- mice. In p19
ARF

 +/- mice, it has been demonstrated that 

the tumor formation is accompanied by loss of the remaining allele (Kamijo et 

al.,1999).  

Recently, specific p14
ARF

 alterations have been identified in different human tumor 

contexts. Deletions and point mutations of exon 1β are frequent in familial melanoma 

(Rizos et al., 2001; Laud et al., 2006). Nine of fifty glioblastoma patients have a 

specific deletion of ARF (Nakamura et al, 2001). Furthermore, the promoter 

methylation of p14
ARF

 is frequent in a wide spectrum of human cancers such as 

colorectal (Esteller et al., 2000), gastric (Tsujimoto et al., 2002) and prostate 



 5 

carcinomas (Konishi et al., 2002). Moreover, in breast cancer, homozygous deletion, 

loss of heterozygosity and promoter hypermethylation have been described (Silva et 

al., 2001). Interestingly, in the majority of non-small cell lung cancer (NSCLC), 

p14
ARF

 protein is expressed at low levels albeit there are no gene mutations and 

transcriptional alterations, indicating an inactivation mechanism not yet identified 

(Vonlanthen et al., 1998).  

In conclusion, the INK4b-ARF-INK4a locus, whose evolutionary origins are not yet 

totally clear, plays an important role in human cancers showing a mutation frequency 

that is second only to the p53 locus (Hall et al.,1996; Hainaut et al., 1997), because 

encodes for master regulators of mechanisms (apoptosis, senescence, and cell cycle 

regulation) which represent an important barrier against tumor formation. 
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Figure 1: INK4b-ARF-INK4a locus and its protein products 

INK4b-ARF-INK4a locus, located on human chromosome 9p21, is less than 50 kb in length. 

It encoded for three tumor suppressor proteins: p15
INK4b

, p14
ARF 

(p19
ARF

 in mouse) and 

p16
INK4a

. In light blue, it is represented the CDKN2B gene, which encodes p15
INK4b

, and is 

composed by two exons. The CDKN2A gene encodes for p14
ARF

 (exons in dark blue) and 

p16
INK4a

 (exons in red). p16 transcript is composed by EX1α- Ex2- Ex3, while ARF transcript 

is composed by EX1β- Ex2-Ex3 and is translated in a different ORF respect to p16. The 

p16
INK4a

 and p15
INK4b

 proteins inhibit cyclin D-dependent CDK4 and CDK6 to prevent 

phosphorylation of the retinoblastoma protein (RB). The hypophosphorylated form of RB 

sequesters E2F transcription factors, blocking the transcription of different genes required for 

DNA replication, causing G1 phase cell cycle arrest. The ARF protein, biding the MDM2 E3 

ubiquitin ligase, prevents p53 polyubiquitylation and induce p53 activation. In turn, the p53 

transcription factor can induce the activation of p21CIP1, which inhibits CDK2-mediated RB 

phosphorylation causing G1 phase cell cycle arrest. If the cell damage is very strong, p53 
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activates other genes, that induce apoptosis. Inactivation of p53 leads to ARF induction, 

whereas inactivation of RB induces p16
INK4A

 expression (Sharpless and Sherr, 2015). 
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1.2      Role of ARF in tumor suppression 

One of well-studied ARF functions is its ability to suppress aberrant cell 

growth in response to altered mitogenic signals (such as Ras, c-Myc, E1A, E2F and v-

Abl) through p53 dependent and independent pathways (Ozenne et al., 2010). 

 

The ARF-MDM2-p53 pathway 

p53 has been labeled the “guardian of the genome” and its gene is mutated in 

approximately half of all human cancers (Vousden et al., 2002; Maggi et al., 2014). In 

response to a wide variety of cellular stresses, such as DNA damage and inappropriate 

oncogenic signaling, p53 is able to induce the expression of a plethora of target genes 

involved in cell cycle arrest, apoptosis, senescence, autophagy and DNA repair 

(Junttilla and Evan, 2009). 

Given the strong importance of p53 in the preservation of cell integrity, it is essential 

to keep its expression under tight modulation (Maggi et al., 2014).  

One of the most important negative regulators of p53 is the E3 ubiquitin ligase MDM2. 

It was reported that MDM2 binds p53 transcriptional activation domain to interfere 

with the recruitment of basal transcription machinery, blocking in this way the 

expression of p53-responsive genes (Momand et al., 1992; Oliner et al., 1993). 

Moreover, MDM2 regulates p53 protein stability because, through its intrinsic E3 

ubiquitin ligase activity, it promotes p53 polyubiquitylation and translocation from 

nucleoplasm to cytoplasm with resulting proteasomal degradation (Honda et al., 1997; 

Roth et al., 1998; Freedman and Levine, 1998; Tao and Levine,1999). In this way, 

MDM2 can keep the basal cellular levels and activity of p53 low enough to avoid 

interference with cell cycle progression and cell survival. Furthermore, a negative 

feedback loop exists because p53 can bind MDM2 promoter and stimulates its 

transcription (Maggi et al., 2014).  

ARF is an upstream regulator of MDM2-p53 axis. The interaction between MDM2 

and ARF has been documented both in vivo and in vitro (Kamijo et al.,1998; 

Pomerantz et al., 1998; Stott et al., 1998; Tao and Levine, 1999; Weber et al., 2000; 

Zhang et al., 1998). For the first time, Weber et colleagues (2000) identified the 

minimal interaction domains between ARF and MDM2 using specific deletion 

mutants. They demonstrated that the p19
ARF

 N-terminal domain contains two non-
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contiguous binding sites for MDM2 restricted to residues 1 to 14 and 26 to 37, 

respectively. Interestingly, the domain 26-37 has a dual function, because it is also 

necessary to induce p19
ARF

 nucleolar localization. Although p19
ARF

 ∆26-37 mutant 

retains the ability to bind MDM2 both in vitro and in vivo, it is strongly delocalized to 

the nucleoplasm, largely defective in inducing p53 accumulation and cell cycle arrest. 

These data indicate that the relocalization of Mdm2 to nucleoli by ARF is a necessary 

event to induce cell cycle arrest. Furthermore, the authors demonstrated that not only 

ARF but also MDM2 contributes to nucleolar localization of the ARF-MDM2 

complex. Indeed, they reported that in the nucleoplasm ARF binding to MDM2 causes 

the exposure of a cryptic NoLS (nucleolar localization signal) within MDM2. In line 

with this, in the human p14
ARF

 protein the region 2 to 14 is necessary both to bind 

MDM2 and allow ARF nucleolar localization (Weber et al., 2000; Zhang and Xiong, 

1999; Tao and Levine, 1999). Moreover, it has been reported that the interaction of 

ARF with MDM2 inhibits the ubiquitin ligase activity of MDM2 to promote p53 

stabilization (Honda and Yasuda, 1999). In the same way, ARF can also promote p53 

stabilization blocking the ubiquitin ligase activity of ARF-BP1/Mule (ARF-binding 

protein1/Mcl1-ubiquitin ligase E3) (Chen et al., 2005). Furthermore, a negative 

feedback loop exists to limit p53 activation because ARF transcription is negatively 

regulated by p53 (Maggi et al., 2014).  

 

p53-indepedent functions of ARF  

There are different evidences indicating that ARF can also perform its tumor 

suppressor function in a p53 independent manner. Indeed, ARF-/- and ARF +/- mice 

develop a broader spectrum of tumors than p53-null animals (Kamijo et al., 1999). It 

has also been reported that mice lacking ARF, MDM2 and p53 (TKO) develop 

multiple tumors at a frequency greater than those observed in animals lacking both 

p53 and Mdm2 (DKO). Moreover, reintroduction of p19
ARF

 into p53 null or TKO MEF 

can induce a G1 arrest (Carnero et al., 2000; Weber et al., 2000). It has also been 

described that p14
ARF

 is able to stop the cells in S phase and/or trigger apoptosis in 

p53-deficient human tumor cell lines (Yarbrough et al., 2002; Hemmati et al., 2002). 

In particular, in human lung tumor, p14
ARF

 induces G2 arrest followed by apoptosis 

both in vitro and in vivo (Eymin et al., 2003 and 2006).  
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All these data support the idea that ARF can play an independent role from MDM2-

p53 axis in tumor surveillance. 

In line with this, the discovery of multiple ARF interactors and the observation that, 

aside oncogenic stimuli, also viral, genotoxic, hypoxic and oxidative stresses activate 

an ARF-dependent response, suggest that this protein could exert a wider role to 

protect the cell (Eymin et al., 2006; Fatyol and Szalay, 2001; Garcia et al., 2006; 

Menendez et al., 2003).  

It has been hypothesized that ARF could play a role in ribosome biogenesis because it 

is mainly localized in the nucleolus, the most prominent substructure within the 

nucleus, site of rRNA transcription, processing and of ribosome assembly. Sugimoto 

and colleagues (2003) demonstrated for the first time that p19
ARF

 inhibits production 

of ribosomal RNA, retarding processing of 47/45S and 32S precursors. In line with 

this, Itahana and colleagues (2003) showed that in the nucleolus ARF is associated in 

high-molecular mass complexes with NPM (also known as B23), an abundant 

nucleolar phosphoprotein that is involved in different cellular processes such as 

ribosome biogenesis. The same authors demonstrated that ARF is able to regulate 

ribosome biogenesis inhibiting the endoribonuclease activity of NPM, promoting its 

poli-ubiquitylation and degradation through 26S proteasomal pathway. In spite of this, 

Brady and colleagues (2004) proposed that ARF sequesters NPM in the nucleolus and 

interferes with NPM shuttling. In this way, ARF impedes the ribosome export from 

nucleus to cytoplasm and induces growth arrest in a p53 independent manner. 

Additionally, chromatin immunoprecipitation experiments identified p14
ARF

 at the 

promoter of rDNA loci, suggesting a possible role in the regulation of rRNA 

transcription (Ayrault et al., 2004). In line with this hypothesis, it has been 

demonstrated that ARF negatively regulates the activity of UBF-1 and TTF-1, two 

important transcription factors involved in rRNA transcription (Ayrault et al., 2006; 

Lessard et al., 2010).  

Taken together these data indicate that, through the interaction with different 

molecular partners, ARF regulates all three phases of ribosome biogenesis 

(transcription, processing and export) and, in this way, it can coordinate cell growth 

(increase of cell size) with proliferation (increase of cell number). 
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It has been reported that ARF can also contribute to the DNA damage response, one 

of the main process involved in cancer development. Indeed, after cell exposure to 

DNA genotoxic agents (such as UV irradiation), PARP-1 activates ARF transcription 

at the sites of unrepaired SBs (DNA single strand breaks) (Orlando et al., 2014). In 

response to these signals, ARF can induce cell cycle arrest and/or apoptosis through 

p53 dependent and independent pathways. In particular, it has been reported that ARF 

can trigger the activation of ATM/ATR signaling pathway inducing the stabilization 

of Tip60 protein, a histone acetyltransferase that activates ATM through acetylation 

(Sun et al., 2005). In this way, ARF can induce p53-independent G2 cell cycle arrest 

(Eymin et al., 2006) or TNFα-dependent apoptosis (Rocha et al., 2003 and 2005). 

Other studies demonstrated that ARF can also regulate the nucleotide excision repair 

(NER) mechanism, stimulating XPC expression (Dominguez-Brauer et al., 2009) and 

control chromosomal stability regardless of p53 (Di Tommaso et al., 2009).  

 

Another p53-independent tumor suppressor function of ARF is its ability to regulate 

tumor angiogenesis, an important process that promotes cancer proliferation and 

metastatic spread providing an adequate supply of oxygen and nutrients and the 

removal of waste products to cancer cells. For the first time, Fatyol and Szalay (2001) 

reported that p14
ARF

 can directly inhibit the transcriptional activity of hypoxia-

inducible factor 1α (HIF-1α) by sequestering its α subunit into the nucleolus. HIF-1α 

is a critical transcription factor that regulates the expression of the vascular endothelial 

growth factor A (VEGFA), which is a key mediator of angiogenesis (Ferrara and Davis 

Smyth, 1997) and also acts as a potent tumor angiogenic factor (Carmeliet, 2005). 

Later, Kawagishi and colleagues (2010) demonstrated that p19
ARF

 suppresses the 

translation of VEGFA mRNA in absence of p53 and inhibits VEGFA-dependent tumor 

angiogenesis in nude mice. Additionally, they reported that p14
ARF

 expression and 

micro-vessel density are inversely correlated in human colon carcinomas (Kawagishi 

et al., 2010). 

 

ARF- induced sumoylation 

Equally remarkable is the fact that the enforced expression of ARF promotes 

the p53-independent sumoylation of several binding partners. The sumoylation is a 
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reversible post-translational modification that provides the covalent binding of small 

ubiquitin-like modifier (SUMO) to lysyl ɛ-amino groups located in the specific 

consensus sequence ΨKXE (Ψ = hydrophobic amino acid) of target proteins. It occurs 

through three enzyme cascade: an E1 activing enzyme, an E2 conjugating enzyme and 

an E3 ligase in analogous way used for ubiquitylation (Sheer, 2006). This process can 

have different functions, including alteration of protein trafficking, interference with 

ubiquitination and protein turnover, changes in DNA repair and sister chromatid 

cohesion, and regulation of gene expression (Tago et al, 2005; Sheer, 2006). It has 

been reported that ARF can facilitate the transfer of SUMO from the E2 complex to 

its binding proteins through a direct interaction with the SUMO-conjugating enzyme 

(E2) Ubc9 (Rizos et al., 2005), and it can also inhibit the function of a desumoylating 

protein, SENP3 (Haindl et al., 2008). 

Both human p14
ARF

 and mouse p19
ARF

 promote the sumoylation of MDM2 and NPM 

(Xirodimas et al., 2002; Tago et al, 2005). Tago and colleagues (2005) reported that 

the ARF sequence, that is required for the binding to MDM2 and NPM, is also 

necessary to induce their sumoylation.  

Although the functional significance of ARF-induced sumoylation is largely unknown, 

it has been reported that p14
ARF

 induces the sumoylation of Werner syndrome helicase 

(WRN) causing its redistribution from the nucleolus to the nucleoplasm (Woods et al., 

2004). Later, Liu and colleagues (2007) demonstrated that ARF-induced sumoylation 

of NPM regulates its subcellular localization, cell proliferation, and survival activities. 

It has also been described that in vivo, p14
ARF

 promotes EGR1 transcription factor 

sumoylation through ARF/Ubc9/SUMO system leading to the activation of the PTEN 

tumor suppressor gene (Yu et al., 2009). 

Moreover, ARF interacts with p63 (Calabrò et al., 2004), a member of p53 family of 

transcription factors involved in the development of skin and limb, to induce its 

sumoylation and proteasome mediated degradation (Vivo et al., 2009). 

Recently, it has been reported that ARF can bind REG-γ, an ubiquitin-independent 

activator of the proteasome, to promote its sumoylation as well as its translocation in 

the cytoplasm, where in turn it induces proteasome degradation of p16
INK4a

 as well as 

itself. Thus, these findings have uncovered a novel crosstalk of two key tumor 
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suppressors, ARF and p16
INK4a

, through ARF-induced sumoylation of REG-γ 

(Kobayashi et al., 2013).  

 

ARF role in the cytoplasm  

Since its initial discovery, ARF was described with a prevalent 

nucleo/nucleolar localization, playing an important role in its stability and tumor 

suppressor functions. Nevertheless, different groups reported that ARF can also 

localize in the cytoplasm.  

Careful sequence analysis showed that p14
ARF

 and p19
ARF

 transcripts contain a single 

internal methionine residue (Met 48 and Met 45, respectively), which is absent in other 

species (rat, opossum, pig and chicken). The translation from this methionine residue 

produces a short isoform of ARF protein called smARF (short mitochondrial ARF), 

which lacks N-terminus end required for MDM2 binding, p53-dependent cell cycle 

arrest and inhibition of rRNA processing. smARF is a short-lived protein (half-life 

<1hrs) that is rapidly degraded by proteasome, indeed represents less than 5% of total 

protein. In response to viral and cellular oncogenes, smARF is upregulated and 

localizes to mitochondria, where it is stabilized by the interaction with the 

mitochondrial p32 protein (Reef et al., 2007). It induces the dissipation of 

mitochondrial membrane potential in a p53 and Bcl-2 family independent manner, 

without the release of cytochrome c to the cytoplasm, suggesting that there is no 

apoptotic cell death. Furthermore, the overexpression of smARF in 293T cells causes 

caspase-independent cell death characterized by the accumulation of autophagic 

vacuoles. Interestingly, the knockdown of ATG5 or Beclin1, two important members 

of autophagy pathway, attenuates cell death in smARF-expressing cells, suggesting 

that the autophagic machinery contributes to the caspase-independent cell death 

process (Reef et al., 2006).  

 

Autophagy is an evolutionarily-conserved homeostatic process where cytosolic 

components are targeted for removal or turnover in membrane-bound compartments 

(autophagosomes) that fuse with the lysosome. This process targets damage or excess 

organelles, misfolded proteins and proteins too large to be delivered to the proteasome 

for degradation. It occurs constitutively at low levels to regulate the turnover of 
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cytoplasmic components and is greatly induced during periods of metabolic stress. In 

these conditions, lysosome-mediated digestion of proteins serves to release free amino 

acids that can be used to fuel ATP generation, thereby promoting cell survival 

(Balaburski et al., 2010). Nevertheless, it seems that autophagy can also result in cell 

death as described in the case of smARF. 

Interestingly, the role of smARF in autophagy is still subject of great debate. Indeed, 

Abida and Gu (2008) engineered a version of ARF in which the internal methionine is 

mutated in alanine, and showed that this nucleolar form, like the wt protein and the N-

terminal region alone, could still induce autophagy and caspase independent cell death 

in transfected cells. So, they suggest an important role of autophagy in tumor 

suppression via full-length ARF. In line with this, a recent paper published by 

Murphy’s group reported that p14
ARF

 and p19
ARF

 can induce autophagy, while mouse 

smARF localizes to mitochondria to induce mitophagy, a specific type of autophagy 

that selectively removes damaged or excessive mitochondria. Moreover, the authors 

identified a highly conserved domain located at the 5' end of ARF exon 2 that is 

necessary for autophagy induction by both human and murine protein. Interestingly, 

mutations in exon 2, that affect the coding potential of ARF, but not of p16
INK4a

, impair 

its ability to induce autophagy (Budina-Kolomets et al., 2013).  

The molecular mechanism through which ARF can promote autophagy in the cells is 

not yet clear. Abida and Gu (2008) demonstrated that ARF can induce autophagy in a 

p53 dependent and independent manner, depending on the cellular context. It has been 

reported that p53 itself can be a positive or negative regulator of autophagy based on 

its cellular localization and type of stress. In response to genotoxic stress, in the 

nucleus, p53 transcriptionally activates different genes with direct roles in autophagy, 

such as DRAM, or that encode inhibitors of mTOR activity. Instead, in unstressed cells 

cytosolic p53 inhibits autophagy (Balaburski et al., 2010).  

It has also been reported that at the mitochondria ARF physically interacts with the 

Bcl2 family member BCL-xL, that plays an important role in autophagy. BCL-xL 

interacts with Beclin-1 and negatively regulates the kinase activity of the 

Vps34/Beclin-1 complex, which is a key mediator of autophagy (Maiuri et al.,2007; 

Pattingre et al.,2005). Notably, ARF blocks the BCL-xL/Beclin-1 complex, releasing 

Beclin-1 to induce autophagy. 
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The role of ARF in the cytoplasm is further complicated as ARF full length protein 

can localize to the mitochondria not only to induce autophagy but also to induce 

apoptotic cell death. Indeed, Itahana and Zhang (2008) demonstrated that in the 

mitochondria, ARF interacts with p32 through the exon 2-encoded C-terminus causing 

a decrease in Δψm leading to release of cytochrome c and apoptotic cell death.  

 

A recent paper published by Per Guldberg group demonstrated that endogenous ARF 

is constitutively expressed as a cytoplasmic protein in melanocytes. Interestingly, ARF 

is recruited to dysfunctional mitochondria to induce the dissipation of membrane 

potential and maintain low steady-state levels of intracellular superoxide, suggesting 

a new ARF role in oxidative stress regulation. This mechanism could be activated by 

pharmacological inhibition of oxidative phosphorylation in normal melanocytes, as 

well as in senescent melanocytes and in melanoma cells undergoing a metabolic shift 

in response to inhibition of glycolysis. This mitochondrial activity of ARF is 

independent of its known autophagic and p53-dependent functions and involves the 

evolutionarily conserved acidic motif GHDDGQ (residues 65-70 in p14
ARF

), which 

mediates interaction with BCL-xL, that is also an important regulator of mitochondrial 

redox homeostasis. Interestingly, among 23 germline INK4a-ARF mutations found in 

human melanoma, six of these affect this acidic motif. In conclusion, the authors 

identified a new cell-protective mechanism of ARF in melanocytes that is targeted in 

familial melanoma (Christensen et al., 2014). 

 

 

 

 

 

 

 

 



 16 

 

 

Figure 2: Schematic representation of p53 dependent and independent tumor 

suppressor functions of ARF 
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1.3      ARF physiological functions 

ARF is not detectably expressed in most normal tissues during mouse fetal 

development or in young adult mice. 

Interestingly, it has been reported that ARF is expressed transiently in at least 3 normal 

cell types: mural components of the hyaloid vasculature system (HVS) within the 

vitreous of the developing eye (McKeller et al., 2002), male spermatogonia (Zindy et 

al., 2003; Gromley et al., 2009), and fetal yolk sac (Li et al., 2013).  

The first evidence of ARF involvement in eye development has been obtained from 

the observation that ARF-/- mice have slightly smaller eyes compared to wild type 

mice (Kamijo et al., 1999; Saporita et al., 2007; McKeller et al., 2002). Histological 

studies revealed the presence of a funnel-shaped retrolental mass of cells present in the 

vitreous of ARF-/- eyes on postnatal day 1 (P1) through P10. Normally, the retrolental 

vitreous in the newborn mouse eye contains elements of the hyaloid vascular system 

(HVS), that is composed of endothelial cells, several types of perivascular cells and 

regresses during the first 2 weeks of postnatal development (P6-P10). Interestingly, 

the presence of HVS elements in ARF-/- mice eyes suggests that ARF is involved in 

the physiological regression of HVS, a process that is required to ensure normal vision. 

Indeed, in wild type mice, ARF is expressed transiently in cells within the vitreous at 

P5 before the HVS regression. Importantly, these characteristics are not observed in 

p53−/− mice, indicating that this new ARF function is independent of p53 (McKeller 

et al., 2002). 

 

ARF is also expressed transiently during mouse male germ cell development. 

Spermatogenesis is a spatio-temporally coordinated process by which undifferentiated 

spermatogonia evolve into spermatocytes in the lumen through a series of mitotic and 

meiotic cellular divisions (Kotsinas et al., 2014). In mice, it occurs during the first 

month after birth and p19
ARF

 is selectively expressed in mitotic spermatogonia, but not 

in intratubular spermatocytes, suggesting that it may regulate the switch from mitotic 

to meiotic division. Interestingly, detachment of ARF-null progenitors from the 

tubular lining triggers DNA damage and p53-dependent apoptosis (anoikis) of primary 

spermatocytes, resulting in a reduced number of mature sperm and testicular atrophy. 
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These data surprisingly indicate that, in primary spermatocytes, ARF prevents p53 

from inducing apoptosis (Gromley et al., 2009). 

 

Li and colleagues (2013) reported that ARF is physiologically expressed in the fetal 

yolk sac, a tissue derived from the extraembryonic endoderm (ExEn), and marks late 

stages of ExEn differentiation in cultured embryoid bodies (EBs). ARF inactivation 

delays differentiation of the ExEn lineage within EBs. Interestingly, during ExEn 

formation, p19
ARF

 induces the expression of microRNA-205 (miR-205), that regulates 

a suite of genes that govern cell migration and adhesion. The re-expression of this 

miRNA is able to rescue ExEn formation in ARF-null embryonic or induced 

pluripotent stem cells. 

Interestingly, a paper published this year from Sherr group demonstrated that the re-

expression of smARF in ARF null mice is able to correct the developmental 

phenotypes of these mice, such as the block of HVS regression in the eyes and the 

reduction of sperm production, suggesting that these two p53-independent phenotypic 

defects depend on smARF alone (Van Oosterwijk et al., 2017).  

 

Vivo and colleagues (2009) demonstrated that the induction of the differentiation 

program in human primary keratinocyte and in HaCaT cells (immortalized 

keratinocytes) causes an increase of ARF levels leading to ∆Np63α sumoylation and 

proteasomal degradation. ∆Np63α, a specific isoform of the transcription factor p63, 

is strongly downregulated during keratinocyte differentiation.  

On the other hand, mice lacking p63 cannot form skin, exhibit craniofacial and skeletal 

defects, and die soon after birth. Interestingly, Su and colleagues (2009) reported that 

inactivation of p63 in mice is accompanied by aberrantly increased expression of the 

INK4a and ARF tumour suppressor genes. In turn, the anomalies of p63-null mice 

affecting the skin and skeleton are partially rescued in mice lacking either INK4a or 

ARF. In conclusion, the authors demonstrated that p63 negatively regulates the 

expression of both INK4a and ARF and that abnormal upregulation of these genes in 

the absence of p63 inhibits skin development.  
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All together, these data suggest that ARF protein plays an important role in 

physiological processes like angiogenesis, cell migration and differentiation. 

 

 

1.4      ARF turnover 

  p14
ARF 

(132 aa, 14 kDa) and p19
ARF 

(169 aa, 19 kDa) are highly basic (>20% 

arginine) and hydrophobic proteins. The basic nature of ARF renders it a highly 

insoluble protein and is likely the reason for its lack of structure. Indeed, neither NMR 

nor crystal structure have been determined despite its small size. ARF probably needs 

to form complexes with other molecules to assume specific spatial conformation and 

to neutralize its charge at physiological pH. This would explain the incredible number 

of ARF binding partners, which make it difficult to formulate a single model that 

expresses the role of this protein in cellular physiology (Sherr, 2006). 

ARF study is further complicated by the fact that human and mouse protein share only 

50% of homology. Interestingly, the exon 1β-encoded N-terminal region, that is 

necessary and sufficient for the known ARF tumor suppressor functions, is only 

modestly conserved between species, whereas the exon 2-encoded C-terminal region 

shows a strong degree of identity between human and mouse (57% of identity) (Stott 

et al., 1998).  

The mechanisms that regulate ARF protein turnover represent another dark side in the 

study of this protein.  

In eukaryotic cells, the pathways that degrade most cellular proteins are: the ubiquitin–

proteasome system (UPS), which usually degrades the majority of proteins, and 

autophagy, primarily responsible for the degradation of most long-lived or aggregated 

proteins and cellular organelles (Lilienbaum, 2013).  

The initial event in UPS degradation is the conjugation of ubiquitin to internal lysines 

of protein target through three enzyme cascade (E1-E2-E3) in analogous way used for 

sumoylation. Then, ubiquitinated proteins bind to the 19S particles, whose function is 

to open the 20S catalytic barrel-shaped proteasome core and allow protein entry and 

degradation (Hershko and Ciechanover, 1998; Pollice et al., 2008).  

Early studies excluded the possibility that ARF turnover is regulated by UPS because 

human protein is lysine-less and the murine one has a single lysine residue not required 
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for proteasome degradation. Nevertheless, the first evidence of a link between ARF 

and the proteasome is the observation that in primary cells, where the half-life of this 

protein is extremely short, both human and mouse ARF accumulate following 

treatment with proteasome inhibitor MG132, without effect on the transcriptional level 

(Pollice et al., 2004; Kuo et al., 2004; Rodway et al., 2004). Unlike to primary cells, 

ARF protein is very stable in cancer cells, where the proteasome degradation is 

strongly compromised (Chen et al., 2010).  

It has been reported that, although it lacks lysine, ARF can undergo to N-terminal 

polyubiquitination (Kuo et al., 2004). Indeed, through biochemical purification, it has 

been identified a specific ubiquitin ligase for ARF named ULF. ULF interacts with 

ARF both in vitro and in vivo and promotes the lysine-independent ubiquitylation and 

degradation of ARF. In human primary cells, ULF knockdown causes a strong 

stabilization of ARF, triggering ARF-dependent p53-mediated growth arrest. 

Moreover, NPM and c-Myc abrogate ULF mediated ARF ubiquitylation through 

distinct mechanisms, promoting ARF stabilization in cancer cells (Chen et al., 2010). 

NPM is not only a binding partner through which ARF regulates the ribosome 

biogenesis, but also plays an important role in the control of ARF turnover. Indeed, in 

response to increased levels of NPM, the turnover of p19
ARF

 is retarded, whereas NPM 

short hairpin RNAs accelerates its degradation (Kuo et al., 2004). In agreement, when 

NPM is inactivated, p19
ARF

 is excluded from nucleoli and destabilized, suggesting that 

the binding to NPM and nucleolar localization seems to be two important events to 

promote ARF stabilization (Columbo et al., 2005). In contrast to ARF, ULF is 

predominantly located in the nucleoplasm, suggesting that NPM overexpression in 

cancer cells induces ARF stabilization by keeping it away from its nucleoplasmic 

ubiquitin ligase. Indeed, ULF-dependent polyubiquitylation of ARF is severely 

inhibited by NPM overexpression.  

c-Myc, instead, binds ULF both in vivo and in vitro and stabilizes ARF, inhibiting the 

ULF-ARF interaction, through a transcription-independent mechanism (Chen et al., 

2010). 

Interestingly, it has been demonstrated that ARF can be degraded by 20S/REG-γ 

proteasome in a ubiquitin-independent manner (Pollice et al., 2007; Chen et al., 2007). 

REG-γ belongs to the REG or 11S family of proteasome activator, that has been shown 
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to bind and activate 20S proteasomes (Ma et al., 1992; Dubiel et al., 1992). It resides 

in the nucleus of the cells in interphase and is used for the degradation of small, 

unstructured proteins like p19 and p14
ARF

, p21, p16
INK4a

, that have no structural motifs 

when not associated with specific binding partners (such as cyclins and CDKs, for p21 

and p16, and NPM in the case of ARF) (Chen et al., 2007; Li et al., 2006). 

Pollice and colleagues (2004) demonstrated that one of the ATPases, component of 

the 19S proteasome, TBP-1/PSMC3, interacts with p14
ARF

 but, unexpectedly, instead 

of bringing it to degradation, it induces ARF stabilization. Indeed, overexpression of 

TBP-1 in various cell lines results in a strong increase of both transfected and 

endogenous ARF protein levels followed by the activation of p53 pathway.  

Later, the same group demonstrated that TBP-1 blocks, in vitro, the degradation of 

ARF by the 20S proteasome, in absence of an assembled 19S regulative cap. The first 

N-terminal 39 amino acids in p14
ARF

 are necessary for both interaction with and 

stabilization by TBP-1. They hypothesized that, upon binding, TBP-1 could cause a 

folding of ARF, rendering it a poor substrate for proteasome destruction (Pollice et al., 

2007).  

Altogether these data indicate that among the plethora of ARF interacting partners, 

only TBP-1 and NPM/B23 are involved in ARF stabilization using two different ways. 

Indeed, while NPM prevents ARF degradation retaining it into the nucleolus in an 

inactive form (Chen et al., 2010), TBP-1 is clearly excluded from the nucleolus and 

binds to ARF mainly in the nuclear compartment. This interaction causes an 

accumulation of ARF that results in the activation of the p53/MDM2 pathway (Pollice 

et al., 2008). 

 

Recently, it has been reported that also MDM2, another classical ARF biding partner, 

is able to regulate ARF protein stability. Specifically, Vivo and colleagues (2015) 

showed that MDM2 overexpression causes both endogenous and transfected p14
ARF

 

degradation through the proteasome in different cancer cell lines. This event does not 

require the ubiquitin ligase activity of MDM2 and preferentially occurs in the 

cytoplasm. Indeed, immunofluorescence experiments clearly show that MG132 

treatment causes an increase of ARF levels in the cytoplasm, strongly suggesting that 
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the reason why ARF is not usually detectable in this subcellular compartment resides 

in a more rapid turnover. 	

 

Furthermore, it has also been reported that the Protein Kinase C (PKC) is involved in 

the regulation of ARF stability. PKC represents a family of serine/threonine kinase, 

located typically under the plasma membrane and involved in the regulation of a wide 

variety of cellular processes such as proliferation, differentiation, apoptosis and cell 

survival (Nishizuka, 1995). For this reason, a strong activation of PKC has been 

observed in different types of tumors, but also in dermatological, autoimmune and 

neurodegenerative diseases and in many other important human diseases (Mochly-

Rosen et al., 2012). 

For the first time, Inoue and Shiraishi (2005) reported that the phorbol ester TPA, a 

known activator of PKC, increases the stability of transfected p14
ARF

 protein in a p53-

independent manner. In addition, the knockdown of PKCα, but not PKCδ, attenuates 

TPA-mediated p14
ARF

 stabilization.  

Vivo and colleagues (2013) demonstrated that in H1299 (human lung tumor cells, 

ARF+/+) and in HaCaT (immortalized keratinocytes) cell lines, endogenous p14
ARF

 is 

a PKC target. Indeed, upon the treatment of HaCaT cells with two major activators of 

PKC, TPA and Ca
2+

, p14
ARF

 levels are strongly increased; conversely, the treatment 

with Bisindolylmaleimide-I, a known inhibitor of the catalytic activity of this kinase, 

causes drastically decrease of p14
ARF

 protein levels. In vitro phosphorylation assay 

confirmed that ARF can be phosphorylated by PKC, while co-immunoprecipitation 

assay identified the physical interaction between active PKC and ARF in H1299 cells. 

Moreover, nucleo-cytoplasmic fractionation assay in H1299 cells showed that ARF is 

located in both cell compartments, but after TPA treatment, p14
ARF

 protein levels 

increase only in the cytoplasmic portion. Subsequently, treating the H1299 and HaCaT 

cytoplasmic protein extracts with λ phosphatase, it has been confirmed that the 

cytoplasmic portion of p14
ARF

 is actually phosphorylated. 

A careful protein sequence analysis of ARF revealed the presence of three potential 

PKC phosphorylation sites: the Threonine 8 and Serine 52 in the functional active 

domain of the protein, and the Serine 127 in the C-terminal region of the protein. 
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Interestingly, the Threonine 8 is located in a conserved domain (aa. 2-14) among all 

ARF orthologs (Fig. 3).  

To functionally characterize the role of Threonine 8, the authors constructed two single 

mutants: the T8A mutant, where Thr 8 is replaced by an Alanine residue, that cannot 

be phosphorylated; and the T8D mutant, where Thr 8 is replaced with an Aspartic Acid 

residue, that mimics the phosphorylation status of the protein. 

Although the T8A mutant has a very short half-life (about 2h), it retains both the 

nuclear/nucleolar localization and the ability to block cell proliferation with the same 

efficiency of wt protein. Surprisingly, the T8D mutant has a stability comparable to wt 

form (half-life about 6h), but it is located not only in the nucleus but also in the 

cytoplasm. Although T8D is able to bind MDM2 and stabilize p53, the ability to block 

cell proliferation is severely compromised. These data seem to suggest that the partial 

loss of the tumor suppressor function in mutant T8D could be ascribed to an alteration 

of a p53-independent ARF function.  

In conclusion, these data indicate that following the PKC activation in tumor cells 

(H1299) and immortalized keratinocytes (HaCaT), p14
ARF

 is phosphorylated and 

predominantly accumulates in the cytoplasm, where it is not able to efficiently control 

cell proliferation.  
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Figure 3: Schematic representation of p14
ARF

 phosphorylation sites identified in 

silico analysis. 

In light grey is indicated the conserved region aa. 2-14, that represents the first NoLS signal 

(nucleolar localization signal), located in the N-terminal domain encoded by exon 1β (aa. 1-

64), while in dark grey is represented the second NoLS signal (aa. 82-101) located in the exon 

2. PKC phosphorylation sites are shown in bold above the scheme, while target sites of other 

kinases are represented in grey below the scheme (Vivo et al., 2013). 
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1.5      A new pro-proliferative function of the tumor suppressor ARF 

  Despite its multiple growth suppression functions, ARF is inexplicably 

overexpressed in a significant fraction of human tumors, such as Burkitt’s lymphoma 

(Basso et al., 2005; Eischen et al., 1999), as well as the majority of tumors with mutant 

p53 (Kamijo et al., 1998). It has also been reported that p14
ARF

 is over-expressed in 

74 samples of aggressive B-cell lymphomas, where it mainly localizes in the 

nucleoplasm, and is associated with progression and unfavourable prognosis observed 

in this group of lymphomas (Sànchez-Aguilera et al., 2002). 

Lee and colleagues (2003) reported that p14
ARF

 mRNA is increased in patients with 

hematological malignancies, especially in the early stage of CML (chronic 

myelogenous leukemia), suggesting that this overexpression could be associated with 

CML development and loss of this gene could play a role in disease progression. 

Furthermore, inactivation of INK4a-ARF locus is rare in follicular adenomas and 

carcinomas, where p14
ARF

 protein levels are strongly increased and, remarkably, a 

delocalization to the cytoplasm has been observed in some aggressive papillary 

carcinomas (Ferru et al., 2006).  

Although sequencing analysis in these cancers didn’t show any mutation in the ARF 

gene, an ARF increase has been explained as accumulation of non-functional protein.  

 

Surprisingly, Humbey and colleagues (2008) reported that in myc-driven lymphomas 

cells, containing high levels of ARF and mutant p53, ARF silencing impairs autophagy 

induced by nutrient deprivation and hypoxia, leads to decrease cells viability and 

impedes the ability of these cells to establish tumors in vivo. In this paper, the authors 

proposed for the first time that ARF can promote the progression of specific type of 

tumors maybe through its ability to induce autophagy, that can help established tumors 

to survive during periods of metabolic or hypoxic stress. 

 

Further evidences that support this new pro-oncogenic activity of ARF result from 

different studies performed in prostate cancer models.  

Pandolfi group reported that in mouse prostate, the concomitant inactivation of the 

genes encoding both Pten and p53 leads to a rapidly lethal prostate cancer phenotype. 

Surprisingly, they noted that in Pten-deficient mice, the loss of p19
ARF 

expression in 
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prostate epithelium does not accelerate the prostate cancer phenotype as expected, but 

rather these mice (p19
ARF

-/- Pten-/-) exhibit a decrease in pre-neoplastic lesions. They 

also found that in TMAs (tissue microarrays) from human prostate specimens, 

complete loss of p14
ARF

 is extremely rare and increased levels of this protein are 

correlated with disease aggressiveness. In conclusion, they proposed that ARF could 

affect in vivo tumor growth in a tissue specific and p53-independent manners, possibly 

due to interactions with different targets in different cell types (Chen et al., 2009). 

  

Later, Xie and colleagues (2014) demonstrated that p19
ARF

 inactivation represses the 

EMT (epithelial-mesenchymal transition) phenotype of Pten/Trp53 double null mice 

through regulation of SLUG, a protein that promotes cell migration and cancer 

metastasis through the repression of E-cadherin and the regulation of EMT. 

Specifically, in the nucleus of PC3 cells, p14
ARF

 induces SLUG sumoylation to 

increase the stability of this protein resulting in down-regulation of E-cadherin and of 

cell-cell junctions. In this way, ARF can promote cell proliferation and migration in 

prostate cancer. 

In a recent paper, the same group demonstrated that ARF is able to induce EMT in 

prostate cancer also through the upregulation of MMP7, a member of the matrix 

metalloproteinases protein family, that induces ECM degradation to promote cell 

migration in a physiological context and invasion and metastasis in cancer (Xie et al., 

2016).  

 

Taken together, these data suggest that in addition to its well known tumor suppressor 

role, ARF can also perform a pro-proliferative function depending on cellular and 

genetic context and on the state of tumor aggressiveness. 
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CHAPTER 2 

 

AIM OF THE STUDY 

 
The majority of studies carried out on p14

ARF
 protein are focused on its 

important role as suppressor of cell proliferation in response to oncogenic stimuli in 

mammalian cells. Through the interaction with different biding partners, this protein 

plays a pivotal role in cellular processes that are essential to safeguard cell integrity, 

such as apoptosis, cell cycle regulation, senescence, DNA repair and chromosomal 

stability.  

Surprisingly, recent data from several laboratories demonstrated that ARF is 

overexpressed in a significant fraction of human tumors (Eischen et al., 1999; 

Sànchez-Aguilera et al., 2002, Basso et al., 2005; Ferru et al., 2006), and it can also 

perform a pro-proliferative function depending on cellular and genetic context and on 

the state of tumor aggressiveness (Humbey et al., 2008; Chen et al., 2010; Xie et al., 

2014 and 2016).  

When I joined the Prof. La Mantia lab, dott. M. Vivo had already demonstrated that, 

following activation of PKC, ARF protein is phosphorylated and accumulates in the 

cytoplasm, where it appears unable to efficiently control cell proliferation both in 

tumor and immortalized cell lines (Vivo et al., 2013). These findings can be explained 

proposing that ARF phosphorylation in these cell lines could be a way to escape ARF 

surveillance following oncogenic stress. Alternatively, these data raise the possibility 

that ARF expression in cancer cells could aid tumor progression by conferring 

unknown pro-survival properties to the cells. On the other hands, the cytoplasmic 

localization could highlight more physiologic roles for this versatile protein.  

On the basis of these hypotheses, the aim of my studies was to better understand ARF 

functions in HeLa, HaCaT and H1299 cell lines, where ARF is highly expressed and 

mainly localizes in the cytoplasm.  

Interestingly, we found that ARF plays an unexpected role in the organization of the 

cytoskeleton. Moreover, we demonstrated that, by aiding cytoskeleton assembly 

during spreading, ARF protects cells from anoikis blocking DAPK (Death Associated 
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Protein Kinase) dependent apoptosis and promoting cell survival through FAK 

stabilization (Vivo et al., 2017).  

In addition, we sought to investigate if ARF role in cell spreading and its functional 

relation with FAK could be regulated by PKC dependent phosphorylation (Fontana et 

al., submitted paper).  
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p14ARF interacts with the focal adhesion kinase and protects

cells from anoikis
M Vivo, R Fontana, M Ranieri, G Capasso, T Angrisano, A Pollice, V Calabrò and G La Mantia

The ARF protein functions as an important sensor of hyper-proliferative stimuli restricting cell proliferation through both p53-

dependent and -independent pathways. Although to date the majority of studies on ARF have focused on its anti-proliferative role,

few studies have addressed whether ARF may also have pro-survival functions. Here we show for the first time that during the

process of adhesion and spreading ARF re-localizes to sites of active actin polymerization and to focal adhesion points where it

interacts with the phosphorylated focal adhesion kinase. In line with its recruitment to focal adhesions, we observe that hampering

ARF function in cancer cells leads to gross defects in cytoskeleton organization resulting in apoptosis through a mechanism

dependent on the Death-Associated Protein Kinase. Our data uncover a novel function for p14ARF in protecting cells from anoikis

that may reflect its role in anchorage independence, a hallmark of malignant tumor cells.

Oncogene advance online publication, 24 April 2017; doi:10.1038/onc.2017.104

INTRODUCTION

The ARF protein functions as sensor of hyper-proliferative stimuli
restricting cell proliferation through both p53-dependent and
-independent pathways.1 In line with its tumor-suppressive role,
ARF-deficient mice develop lymphomas, sarcomas and
adenocarcinomas.2 In humans, the importance of ARF inactivation
in cancer development is less clear and p16INK4a appears to have
a more relevant role in tumor protection.3 More than 30 distinct
ARF-interacting proteins have been identified, suggesting
that ARF is involved in a number of different cellular processes.4

Although ARF expression levels in normal proliferating cells
are very low, studies based on its loss have revealed its
importance in different physiological and developmental
mechanisms.5–8

Since its initial discovery, ARF has been described to have a
prevalent nucleo-nucleolar localization. More recently, ARF has
been reported to localize also in the cytoplasm mainly associated
to mitochondria, and also because of its role in autophagy.9

Despite its role in growth suppression, ARF is overexpressed in a
significant fraction of human tumors.10 Increased expression of
p14ARF has been associated with progression and unfavorable
prognosis in hematological malignancies and in aggressive B-cell
lymphomas, and predicts a shortened lifespan.11 Furthermore,
recent findings suggest that ARF loss hampers, instead of
promoting, progression of prostate tumor,12 and in mouse
lymphomas displaying mutant p53, ARF has been described as
having a tumor-promoting activity correlated with its role in
autophagy.13 Interestingly, it has been reported that the p14ARF
protein level increases in thyroid cancer-derived tissues and,
remarkably, a delocalization to the cytoplasm has been observed
in some aggressive papillary carcinomas.14 Although in these
cancers ARF has been found to be wild-type, an ARF increase has
been explained as accumulation of non-functional protein.
Our previous data suggest that, following activation of protein

kinase C, ARF protein is phosphorylated and accumulates in the

cytoplasm where it appears unable to efficiently control cell
proliferation.15 These findings, together with the observations in
the cited literature, raise the possibility that ARF expression in
cancer cells could aid tumor progression by conferring unknown
pro-survival properties to the cells.
Here, we present data showing that during cell adhesion and

spreading, p14ARF is delocalized from nucleoli to sites of actin
polymerization concentrating at focal contacts where it colocalizes
with the focal adhesion kinase (FAK). Moreover, we show that ARF
depletion leads to defects in cell spreading and actin cytoskeleton
spatial organization in both tumor and immortalized cell lines.
Finally, we demonstrate that p14ARF can confer resistance to
death-associated protein kinase (DAPK)-dependent apoptosis.

RESULTS

ARF localizes to focal contacts during spreading

Cancer-derived HeLa cells express high levels of p14ARF, whereas
immortalized HaCaT keratinocytes express low levels of this
protein. Remarkably, in HaCaT cells ARF is mainly localized to the
cytoplasm.8 By immunofluorescence analysis in HeLa and
HaCaT cells, we noticed that ARF accumulated at the edge of
cells, in particular to lamellipodia and filopodia where rapid actin
filament dynamics take place. We therefore examined ARF
localization during the process of cellular adhesion and spreading.
To synchronize and follow the adhesion process, HeLa cells were
detached from the plate by trypsinization, plated onto coverslips
and collected at different time points. We analyzed ARF
localization by IF (immunofluorescence) while actin cytoskeleton
was visualized by tetramethylrhodamine-conjugated phalloidin
staining. Thirty minutes after plating, p14ARF was detected along
the plasma membrane, (Figure 1; 30 min). During spreading, ARF
protein localizes first to cytoplasmic blebs and later on to filopodia
(Figures 1, 3 and 5 h after plating). This localization was observed
with two different ARF antibodies, and on transfected p14ARF,
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either tagged with GFP or not (Supplementary Figures S1a–c).

Similar results were obtained on cells plated within a three-

dimensional substrate such as Matrigel thus suggesting that this

localization does not depend on the specific substrate used for

adhesion (Supplementary Figure S2a). Immunofluorescence stain-

ing of the nucleolar protein B23 showed that nucleoli were not

disassembled at any time after seeding (Supplementary

Figure S2b).

Figure 1. ARF localizes to the plasma membrane during adhesion/spreading process. HeLa cells were detached by gentle trypsin treatment,
re-suspended in growth medium and allowed to adhere onto fibronectin-coated coverslip, and at various times following plating, rinsed in
PBS (4 °C) and fixed with 3.75% PFA. Cells were fixed at different time points after plating (30’, 1 h, 3 h and 5 h), permeabilized and subjected to
IF with anti-ARF antibody and both tetramethylrhodamine phalloidin and DAPI staining to visualize actin cytoskeleton and nuclei.
Representative images of ARF subcellular localization are shown for each time point. Images were taken with a Zeiss confocal laser-scanning
microscope LSM 510 (Oberkochen, Germany) (scale bar, 7μm). A 40× objective was used and image analysis was performed using ImageJ.
Samples that were to be directly compared were imaged at the same sitting, and the same gain and exposure time were used. Histograms,
representing the mean of three independent experiments, reports the percentage of cells in which ARF localize with f-actin. For each time
point, 50 cells have been analyzed. S.d. are also shown. Asterisks (*) indicate statistically significant differences by unpaired two-tailed t-test
with Welch correction: *Po0.001 between each point and 1-h time point.
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Cell interaction with the extracellular matrix results in integrin-
mediated tyrosine phosphorylation and recruitment of FAK to

focal adhesions.16,17 We thus monitored ARF localization during
spreading by following the localization of phosphorylated FAK

and of its target, such as Paxillin phosphorylated on Tyrosine 118.
Confocal analysis showed ARF/FAK and ARF/Paxillin colocalization

at focal adhesions 5 h post-seeding (Figures 2a and b, IF and
graph), while 24 h after seeding ARF was mainly localized to the

Figure 2. ARF interacts with active FAK during adhesion. ARF colocalizes with active FAK (phosphorylated FAK on Tyr397) and phosphorylated
Paxillin during adhesion. HeLa cells were allowed to adhere onto fibronectin-coated coverslips for 5 and 24 h as described before, fixed and
subjected to IF with anti-ARF and either pFAK Y397 antibody or pPaxillin Tyr118 antibody. Representative images showing ARF and pFAK (a) or
ARF and pPaxillin (b). Subcellular localization are shown for each time point. Images were taken as described before (scale bar, 10 μm).
Histograms below each panel, representing the mean of three independent experiments, reports the percentage of cells in which ARF
colocalize with pFAK or pPAXillin Tyr118. S.d. are also shown. Asterisks indicate statistically significant differences (Po0.001) as described in
Figure 1. ARF and FAK co-immunoprecipitation. (c) Cytoplasmic HeLa extracts collected upon cell detachment (lanes 1–2), during spreading
(lanes 3–4), and 24 h after adhesion (lanes 5–6) were subjected to immunoprecipitation with anti-ARF antibody or IgG as negative control and
western blot with FAK and ARF antibodies. Inputs probed with anti-FAK antibody are shown. (d) Same experiment described in c performed
on HaCaT cells except that IB was performed with anti-pFAK Y397. Molecular weights of both ARF and FAK are shown on the left of each
western blot.
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nucleoli. We next performed co-immunoprecipitation experiments
of HeLa and HaCaT cytoplasmic extracts during cell spreading
(Figures 2c and d) with anti-ARF antibody followed by immuno-
blot with FAK antibodies. We detected an interaction between
p14ARF and FAK 5 h after plating (compare lane 4 with lane 2) that
was lost or reduced 24 h after plating (Figure 2c). Incubation with
anti-paxillin antibody did not show any interaction with ARF.
Reverse co-immunoprecipitation with anti-FAK antibody shows
interaction with both ARF and paxillin (Supplementary Figure S3).
The experiments thus suggest the existence of a time window
during spreading where a transient and specific ARF/FAK
interaction takes place at points of focal contacts.

ARF depletion induces actin cytoskeleton defects and decrease of
FAK levels

To analyze ARF role in cell spreading, we transiently transfected
cells with three different small interfering RNAs (siRNAs; siARF-1,
siARF-2 and siARF-3) targeting different regions of the unique
exon 1β of the INK4a/ARF locus (Supplementary Figure S4a). As
control, we found that p16INK4a levels were not significantly
affected upon ARF silencing (Supplementary Figures S4a and b).
Control and ARF-depleted cells were then detached and re-plated
to follow the spreading process over time by phase-contrast
microscopy. Five hours after seeding, control cells were almost
completely spread, whereas ARF KD (Knock-Down) cells exhibited
a clear round morphology (Figure 3a and Supplementary
Figure S4c). The same effect was seen at 24 h after plating
(Figure 3a). Quantification of spreading efficiency showed that less
than 50% of ARF-depleted cells were able to properly spread
(Figure 3b) As control, silencing of p16INK4a by RNA interference
does not affect cell morphology (Supplementary Figure S4d).
Staining with fluorescein isothiocyanate-conjugated phalloidin
showed that ARF KD cells present blebs around the cell periphery
and rare or shorter filopodia (Figure 3c). Similar results were
obtained in both HeLa and HaCaT cells grown on Matrigel
(Supplementary Figures S5a and b)
As it was previously shown that defects in FAK phosphorylation

induces cells to acquire a round morphology,18,19 we analyzed the
levels of phospho-FAK in ARF-depleted cells by FAK immunopre-
cipitation and phospho-Tyr immunodetection in HeLa cells not
subjected to re-plating (Figure 4a, left panels), and upon
detachment and re-plating (Figure 4a, right panels). No significant
change in FAK tyrosine phosphorylation occurred upon ARF KD
before re-plating. Instead, we found a decrease of FAK tyrosine
phosphorylation mirrored by total FAK levels reduction when ARF
KD cells were induced to spread. Quantitative reverse transcrip-
tase–PCR analysis showed no significant change in FAK mRNA
levels upon ARF depletion, neither in the expression levels of
genes involved in cell adhesion such as fibronectin, type IV
collagen and integrin β1 (Figure 4b). In agreement with this,
transfection of increasing amounts of ARF-expressing plasmid
induces an increase in the protein levels of FAK in HeLa cells
(Figure 4c). In addition to the 120 kDa FAK immunoreactive band,
slow migrating species, previously demonstrated to correspond
with SUMO-conjugated FAK forms,20 appear to be stabilized upon
ARF expression (Figure 4c, last lane). This is particularly evident in
HaCaT cells, where ARF overexpression induces a strong increase
of slow migrating FAK species (Figure 4d), and upon ARF and
SUMO co-transfection (Figure 4e) thus suggesting that ARF could
mediate FAK stabilization through sumoylation.21

ARF ectopic expression rescues both morphology and FAK
phosphorylation defects of ARF-depleted cells

To test if the effects of ARF silencing observed in HeLa cells were
strictly dependent on ARF, we performed a rescue experiment
transfecting both human and mouse ARF protein. Upon transfec-
tion with either an empty or an ARF-expressing vector, cells were

treated with scrambled or ARF-specific siRNA-1 for 48 h and then
induced to spread. Both p14ARF and p19ARF expression rescued
spread morphology defect caused by ARF silencing (Figure 5) thus
suggesting the existence of an evolutionary conserved mechan-
ism. In line with this, mouse protein also shows f-actin
co-localization during spreading (Supplementary Figure S6a).
To map ARF region responsible of this function, we performed a

rescue experiment by transfecting Hela cells with different ARF
deletion mutants corresponding to either aa 1–64, encoded by the
exon 1β, widely demonstrated to be necessary to elicit ARF cell
cycle arrest,22–24 or aa 65–132, encoded by the exon 2 (Figures 6a
and b). Transfected cells were treated with luciferase or ARF-specific
siRNA targeting the 5’-UTR region of endogenous transcript
(siARF-3). As both ARF mutants migrate with approximately the
same molecular weight of the endogenous protein, the silencing of
endogenous gene was checked in cells transfected with the empty
vector (data not shown). The evaluation of the spreading efficiency
(Figure 6c) clearly indicated that the ARF region encoded by exon 2
was able to rescue the spreading defect induced by depletion of
the endogenous protein. Regarding the exon 1β encoded domain,
we noticed that its expression per se (1–64 siSCR) impairs spreading
similarly to ARF depletion, and treatment with ARF siRNA (1–64
siARF) does not further affect cell spreading.
We next tested 65–132 mutant and p19ARF ability to rescue

FAK phosphorylation by FAK immunoprecipitation followed by
phospho-FAK immunodetection and observed that both proteins
restore normal levels of active FAK (Figure 6d and Supplementary
Figure S6b).
In order to map ARF domain required for ARF/FAK interaction

during spreading, either wt or ARF 65–132 deletion mutant were
transfected in HeLa cells and subjected to immunoprecipitation
(Figures 7a and b) with anti-ARF antibody. The 65–132 mutant
shows reduced pFAK binding (Figure 7b) thus suggesting that a
FAK-binding domain is present in the 1–64 amino-acid region. We
next analyzed binding efficiency of ARF 1–64 and of ARF 100–132
by immunoprecipitation with anti-GFP. Although ARF 100–132 is
still able to bind pFAK, the reduced binding shown by ARF 1–64
could reflect its impairment to induce FAK stabilization. We thus
probed the filter with antibody recognizing total FAK, thus
demonstrating that ARF 1–64 is still able to bind the FAK although
in a not phosphorylated form (Figure 7c).
We next analyzed the ability of these mutants to stabilize FAK,

by transfecting them in HeLa cells and evaluating pFAK levels
during spreading. We included in this analysis an ARF deletion
mutant devoid of 100–132 domain. The experiment shows that
only ARF 65–132 and ARF 100–132 are able to induce FAK
stabilization with an efficiency similar to the wt (Figure 7d).
Finally, we tested different ARF point mutants derived from

melanoma predisposing mutations25 affecting single residues
within an acidic motif (65–70 aa). We found that all of them are
still able to induce pFAK stabilization, at efficiency similar or higher
than the wt protein (Supplementary Figure S7). These experiments
collectively show that ARF binding to FAK is mediated by at least
two domains present in both the N-terminal and C-terminal
protein region. Moreover, binding is not sufficient to induce FAK
stabilization and this function is restricted to the 100–132 amino-
acid region of p14ARF.

ARF depletion induces anoikis in HeLa and HaCaT cells

We next analyzed the relationship between cellular morphology
and viability of ARF-depleted HeLa cells. Apoptosis analysis, by
both western blot of PARP-1 cleavage and FACS-based Annexin V/
7-aminoactinomycin D (7-AAD) assay, shows that ARF silencing
induces 50% increase of the number of cells in apoptosis, as soon
as cells were induced to spread (Figure 8a). As round cells could
be easily separated from attached cells, we analyzed them
separately. The experiment shows that round cells are
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Figure 3. p14ARF depletion affects cell morphology. (a) Contrast images of HeLa cells transiently transfected with the indicated stealth siRNAs
for 48 h, detached by trypsinization and re-plated at a density of 1× 105/ml in six-well plates. Images were collected and analyzed by phase-
contrast microscope 5 and 24 h after plating with a 20× objective (scale bar, 30 μm). (b) To quantify the percentage of each phenotype, for
each transfection point, we counted adherent and round cells in five different fields and pooled data from three to five experiments.
Spreading efficiency was measured by assaying the number of adherent cells relative on total cell number (graph). Cumulative data are
expressed as a mean value± s.e.m. of three independent experiments. Number of cells analyzed for each experiment: siSCR (200), siARF (200),
siLUC (200). Asterisks (*) indicate statistically significant differences by unpaired two-tailed t-test between siARF and both siLUC and siSCR:
*Po0.0002, whereas NS indicates non statistical significant values. (c) Confocal images of HeLa cells treated with control or specific ARF siRNA
for 48 h were left to adhere and doubly stained with fluorescein isothiocyanate (FITC)-conjugated phalloidin and DAPI (scale bar, 10 μm).
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7-aminoactinomycin D/Annexin V-positive and showed increased
PARP-1 cleavage (Supplementary Figures S8c and d).
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

assay and crystal violet staining show that ARF silencing significantly
reduced HeLa and HaCaT cell viability (Figures 8b and c).
To determine if apoptosis could be the cause of the so far

described spreading defect, ARF knockdown cells were treated
with the pan-caspase inhibitor Z-VAD-fmk. Quantification of
spreading efficiency showed that apoptosis inhibition does not
rescue the morphology defect of ARF silenced cells (Figure 8d).
This could suggest that apoptosis could be induced in cells that
cannot properly spread. To explore this hypothesis, we analyzed
apoptosis in ARF-depleted HeLa cells grown in suspension as
spheroids by changing the coating vessel surface. After 48 h of

suspension culture, no PARP-1 cleavage was observed in control
and ARF-depleted cells (Figure 9a) even if spheroids were
disaggregated and cells re-placed under suspension culture
conditions for additional 24 h (Figure 9b, left panel). Conversely,
re-plating onto an adhesive substrate resulted in PARP-1 cleavage
(right panel) thus indicating that cell-substrate contacts are
required for apoptosis induction in cells devoid of ARF expression.
The DAPK, a pro-apoptotic serine/threonine kinase, is activated and

induces apoptosis following cytoskeleton–matrix disengagement.26,27

We thus investigated a possible involvement of DAPK in apoptosis
induced by ARF silencing. Simultaneous abrogation of ARF and DAPK
in HeLa and HaCaT cells by RNA interference rescues apoptosis
induced by ARF depletion (Figure 9c; Supplementary Figure S9a)
suggesting that ARF depletion induces anoikis through a DAPK-

Figure 4. ARF depletion affects FAK activation. (a) HeLa total extracts of ARF and control-depleted cells (adherent cells) were
immunoprecipitated with anti-total FAK antibody or with IgG as negative control and analyzed by western blot with anti-pTyr antibody
and subsequently with anti-t-FAK antibody cells before (left panels) or after adhesion following detachment and re-plating (right panels).
Panels of inputs probed with anti-FAK, ARF and actin antibodies are also shown on the left of each immunoprecipitation experiment.
(b) Quantitative reverse transcriptase (qRT)–PCR analyses of FAK, collagen IV, fibronectin and integrin β1 mRNA levels normalized on G6PD
expression in cells treated with the indicated siRNA are shown. Cumulative data are expressed as a mean value± s.d. of three independent
experiments. Statistical analysis performed by unpaired, two-tailed Mann–Whitney test show no statistical (NS) difference between siSCR and
siARF samples. (c) HeLa and HaCaT cells were transfected with an empty vector (v) and increasing amount of p14ARF expression plasmid.
Twenty-four hours after transfection, cells were lysed and cellular extracts were immunoblotted and analyzed with anti-FAK, anti-ARF antibody
to detect exogenous ARF levels and anti-actin as loading control. (d and e) HaCaT cells were transfected with plasmids encoding ARF proteins
alone or in combination with plasmid encoding SUMO protein. Cellular extracts were analyzed as described before in b. Asterisks indicate
slow migrating FAK species. Western blots shown are representative of at least three independent experiments. Normalized FAK band
intensities are shown below each corresponding band, whereas sumo FAK are indicated on top above, and are expressed as fold enrichment
with respect to empty vector-transfected sample arbitrarily set to 1 (see Materials and Methods section for details).
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dependentmechanism.Moreover, both cell round phenotype and the
decrease of pFAK levels of ARF silenced cells were not affected by
DAPK abrogation, suggesting that were not caused by apoptosis
(Figure 9c, graph image and Supplementary Figure S9b). Interestingly,
upon ARF silencing a slight but reproducible increase of p53 levels
occurred both in HeLa, where the p53 pathway is not irreversibly
disabled,28 and HaCaT cells (Figure 9c and Supplementary Figure S9)
and is reversed by concomitant DAPK depletion.
Finally, rescue experiments with wt and mutant ARF expression

showed that both wt and ARF 100–132 are able to rescue cell
viability (Figure 9d) thus establishing a positive correlation
between increased pFAK levels and proliferation.

ARF depletion induces actin cytoskeleton defects but not anoikis
in H1299 cells

To get further inside on the role of ARF in cell spreading and FAK
phosphorylation, we extended our analysis to the H1299 cells,

expressing robust endogenous levels of p14ARF. Upon ARF
silencing, almost 50% cells failed to properly spread upon re-
plating until 24h after seeding (Figure 10a). Analysis of ARF
localization during adhesion and spreading by IF confirmed ARF
recruitment at points of active actin polymerization in a time-
dependent manner (Figure 10b, 8 h after plating).
Interestingly, we found that, in contrast with what described

previously, FAK levels do not change upon ARF silencing
(Figure 11a). In line with this, no difference in FAK RNA levels
nor in other adhesion-related genes were found between ARF and
control-depleted cells (Figure 11b). These results suggest that the
spreading defect does not depend on FAK levels in these
experimental conditions. Consistently, transient FAK silencing in
HeLa cells does not completely phenocopy ARF depletion as cells
retain the ability to spread (Supplementary Figure S10a). These
experiments collectively show that in H1299 cells, the molecular
circuitry linking cytoskeleton dynamics and FAK levels are

Figure 5. Both human and mouse ARF transfections rescue cell spreading defect of p14ARF-depleted cells. HeLa cells transiently transfected
with empty, flag-ARF or p19ARF vector for 24 h were treated with the indicated siRNAs for 48 h, detached and re-plated as described above.
(a) Western blot analysis with anti-Flag, ARF (human and mouse) and actin from collected cells. (b) Images of re-plated cells acquired by
phase-contrast microscope (scale bar, 30μm). (c) Cumulative data are expressed as a mean value± s.e.m. of at least three independent
experiments. Single experiment data have been tested as described in Materials and methods section to analyze normal distribution. Asterisks
(*) indicate statistically significant differences by paired two-tailed Wilcoxon test. *Po0.001 and **Po0.01 by paired Student's t-test. Number
of cells analyzed for each experiment: SCR siRNA+ empty vector (350), ARF siRNA+empty vector (330), ARF siRNA+Flag-ARF (300), SCR siRNA+
Flag-ARF (350), SCR siRNA+p19ARF (336) and ARF siRNA+p19ARF (300).
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disconnected, thus implying that the round phenotype relies on
specific ARF-dependent functions.
Interestingly, when we analyzed the role of ARF on cell viability

in H1299, we found no effect on cell growth (Figure 11c).
Moreover, cellular growth curves showed that, although ARF is
required for proliferation of HeLa and HaCaT cells but it is
dispensable for H1299, all tested cell lines require FAK expression
to proliferate (Figure 11d and Supplementary Figure S10b). In
agreement, western blot analysis shows that FAK-depleted HeLa
and H1299 cells present PARP-1 cleavage and thus undergo
apoptosis (Supplementary Figure S10a and data not shown),
suggesting that, rather than having a role in spreading, FAK
downregulation is the signal that halts cell growth in these
cell lines.
We thus tested ARF ability to interact with FAK in this cell line.

Moreover, as neither p53 nor DAPK are expressed in these cells,
we tested if their exogenous expression could have a role in this
interaction. The experiment shows that ARF and FAK interact in
this cell line and the binding increases when DAPK is transfected
(Figure 12a). Interestingly, transient transfection of both wt and
DAPK K42A, a mutant defective in apoptosis induction, induce a
decrease in FAK levels (Figure 12b). We thus wondered if it could
be possible to induce apoptosis and FAK decrease upon ARF
silencing in H1299 cells following DAPK and p53 re-introduction
by transient transfection. As a key feature of apoptotic cell death is
genomic DNA fragmentation, we extracted genomic DNA and
analyzed its integrity by agarose gel electrophoresis. As expected,
ARF silencing does not affect genomic DNA integrity in this cell

line (Figure 13a). Transfection of p53 and wt DAPK slightly affect
genomic DNA integrity, whereas DAPK K42A is not functional.
Interestingly, ARF silencing further induces degradation of
genomic DNA in cells expressing either p53 or WT DAPK, even
more when both proteins are expressed, whereas it does not in
cells expressing the inactive DAPK K42A mutant. Cells transfected
with the DAPK constitutive active mutant (DAPK DCAM) strongly
show DNA degradation irrespective of ARF status. Analysis of pFAK
levels shows that ARF silencing has no effect of pFAK levels in
untransfected cells (Figures 13a and b). DAPK expression instead
induces a decrease of FAK expression when ARF is silenced
(Figure 13b, compare lane 4 with lane 3). Expression of
constitutive active DAPK DCAM strongly induces apoptosis and
decrease of FAK levels. This effect is further exacerbated when
cells are induced to spread (Figure 13c).

DISCUSSION

Here we show, for the first time, that although in adherent cells
ARF localizes mainly in the nucleus, during the early phase of the
spreading process the protein is recruited or stabilized to cell
periphery at points of focal adhesions, in a precise time window.
This localization is substrate independent, and is involved in the
organization of actin structures during cell spreading. Reducing
ARF expression levels leads to defects in the spatial organization
of actin cytoskeleton during the process of cellular spreading. In
line with a role in this phenomenon, we noted that during cell
spreading ARF protein levels increase, through a protein kinase

Figure 6. Re-introduction of ARF exon 2 encoded domain in ARF-depleted cells restore both spreading and pFAK expression. Rescue
experiment was performed as described before, except that siRNA for the 5’-UTR of ARF gene was used (siRNA-3), and different ARF tagged
forms were tested. (a) Scheme of N-ter flagged forms of ARF used in this study. (b) Immunoblot analysis of flagged 14 ARF mutants and
tubulin (loading control) expression levels in whole-cell lysates of cells transfected and silenced with the indicated plasmids and siRNAs.
Asterisks indicate an aspecific flag band. (c) Quantification of spreading efficiency of cells. Data were quantified from three or more
experiments and 400 cells were analyzed for each transfection point in every experiment. Error bars represent the s.d. from the mean and
statistical analysis performed as described in Figure 5. *Po0.02 siARF-empty vector vs siSCR-empty vector; **Po0.0092 siARF-Flag-ARF vs
siARF-empty vector; ***Po0.0112 siARF-Flag 65–132 vs siARF-empty vector. (d) Analysis of pFAK and total FAK intracellular protein levels
upon rescue experiment by IP with anti-t-FAK antibody and IB with anti-pFAK Y397 antibody performed as previously described.
Representative western blots are shown. pFAK band intensities normalized versus t-FAK are shown below each corresponding band, and are
expressed as fold value with respect to empty vector siSCR-transfected sample, arbitrarily set to 1 (see Materials and Methods section for
details).
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C-dependent mechanism (Fontana, personal communication).
Interestingly, it has been reported that p19ARF-deficient MEFs
display a round phenotype, similar to the one reported in our

study, accompanied by activation of the PI3K-Rac1 pathway and
increased migration properties.29,30 Despite significant divergence
in amino-acid sequences, we show that this function is
evolutionary conserved and the expression of p19 per se increases

spreading efficiency (Figure 5c). In addition, our preliminary

experiments show that, in line with the aforementioned article,
ARF-depleted cells acquire increased migration properties.
Cell adhesion to the substrate is primarily mediated by integrins

that, connecting extracellular matrix with cytoskeleton, induce cell
survival pathways including phosphorylation and activation of

FAK,31,32 whose activation strongly correlates with tumor aggres-
siveness, cell migration and proliferation.33–35 Here we provide
evidence that p14ARF physically interacts with the FAK in its

Figure 7. (a) Scheme of N-ter EGFP tagged ARF constructs used in this study. (b) HeLa cells were transiently transfected with wt and ARF
65–132 mutants, and after 24 h cells were re-plated and cytoplasmic extracts immunoprecipitated with anti-ARF antibody and analyzed
by western blot with anti-pFAK Y397 and ARF antibodies. Panels of input are also shown on the right of immunoprecipitation experiment.
Bands corresponding to the immunoprecipitated protein were quantified with ImageJ and reported as percentage of input, quantified in the
same manner in order to obtain co-IP efficiency, indicated below the corresponding panel. (c) Cytoplasmic extracts of cells transfected
with empty vector, ARF 1–64 and ARF 100–132 were immunoprecipitated with anti-GFP antibody analyzed by western blot with anti-pFAK
Y397, t-FAK and GFP antibodies. Asterisk (*) indicates unspecific/degradation GFP products, arrow indicates immunoprecipitated FAK. Panel of
input is also shown on the right of immunoprecipitation experiment. Efficiency of co-IP is quantified as described in b. (d) Cytoplasmic
extracts were immunoprecipitated with anti-FAK antibody and analyzed by western blot with anti-pTyr antibody. Band intensity was
compared with wt ARF-transfected sample arbitrarily set to 1. Panels of input probed with anti-FAK, GFP and tubulin antibodies are
also shown.
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activated form. Given the observed reduction of total and
phosphorylated FAK during the cell spreading process in ARF-
depleted cells, we postulate that, through physical interaction, ARF
can exert a protective role on FAK upon detachment and
adhesion. Our experiments show that although the domains
necessary for FAK interaction are present both in the N-ter and
C-ter portion of the protein, the domain required for pFAK
stabilization is restricted to the exon 2 encoded region. It has to be
underlined that ARF region 100–132, required for both pFAK
activation and survival, has an established role in autophagy as
reported in Budina-Kolomets et al.36 thus suggesting that ARF

ability to regulate autophagy could be involved in this mechanism

and it is independent from the reported ARF functions in
mitochondrial homeostasis.25 However, from experiments per-
formed with mitotracker staining, we cannot exclude that ARF
localization to cell periphery during the early phases of cell
spreading (data not shown) could be in part mediated or primed

by mitochondria accumulation to sites of actin remodeling.
It has been reported that sumoylated FAK20 shows increased

stability compared with the un-modified counterpart (Kadare
et al.20 and our unpublished data), whereas ARF has been shown
to mediate sumoylation of its interacting partners.21,37 Our data

Figure 8. ARF depletion induces apoptosis. (a) HeLa cells were treated with the indicated siRNAs and analyzed by western blot 48 h later and
5 h and 24 h after plating. Silencing efficiency and viability was analyzed by western blot with anti-ARF and anti-PARP-1 antibody. Actin is a
loading control. The percentage of early apoptotic cells was quantified by FACS through PE Annexin V staining. Percentage of PE Annexin V+/
7-aminoactinomycin D-negative cells in siSCR and siARF-treated cells was reported in the graph. Cumulative data are expressed as a mean
value± s.d. of three independent experiments. Asterisk indicates statistically significant differences by paired two-tailed Student's t-test with
Po0.05. (b) HeLa, HaCaT and as negative control, MCF-7 cells (bearing INK4a/ARF locus deletion) cells were transiently transfected with the
indicated siRNAs for 72 h. Silencing efficiency was analyzed by western blot with anti-ARF antibody. Actin is a loading control, whereas cell
viability was analyzed by a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) based assay. The absorbance of each well (NT,
siSCR and siARF) is reported. Graphs represent mean values± s.d. of three independent experiments. Asterisks (*) indicate statistically
significant differences with P-value obtained through the RM one-way ANOVA with the Greenhouse-Geisser correction *P = 0.0158,
**P= 0.0025. No statistical (NS) difference between samples are indicated. (c) HeLa, HaCaT and MCF-7 were transiently transfected with the
indicated siRNAs for 5 days, and cell viability analyzed by crystal violet staining of the plates (CVS assay). The absorbance of each well (NT,
siSCR and siARF) was calculated as percentage of the control wells (NT) set to 100%. Statistically significant differences calculated as described
**P = 0.0002, *P= 0.0102. (d) HeLa cells were treated with control or specific ARF siRNA for 48 h and then re-plated in presence of the general
caspase inhibitor Z-VAD or DMSO as control for 5 h and analyzed by western blot to check silencing efficiency (left panel) and apoptosis
(middle panels) as described before and phase-contrast microscopy for analysis of cell morphology. Quantification of percentage of cells with
round phenotype was performed as described before. Cumulative data are expressed as a mean value± s.d. of three independent
experiments. For each experiment, 100 cells were analyzed for each transfection point. Unpaired two-tailed t-test shows NS difference
between siARF DMSO and siARF Z-VAD-treated samples.
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show that ARF expression induces the appearance of slow migrating
FAK species, thus supporting the hypothesis that by interacting with
FAK it could mediate its sumoylation and stabilization.
Proper organization of cytoskeletal structures allows the

transduction of survival pathways inside the cells whose dereg-
ulation can result in anoikis.38–42 Resistance to anoikis is a hallmark
of malignant tumor cells, resulting in anchorage independence.
DAPK is an actin-associated pro-apoptotic protein having an
important role in tumor suppression43,44 and anoikis.26,45 Our data
show that cell death induced by ARF depletion is DAPK
dependent, as we observe anoikis rescue in doubly depleted
ARF/DAPK cells. It has been previously reported that DAPK can
phosphorylate ARF in vitro and thus promote p53-dependent

apoptosis.39 Recently, we have shown that phosphorylated ARF
species are more stable in the cytoplasm.46 As we noticed a
decrease of ARF protein levels upon DAPK silencing (see
Figure 8c), we speculate that DAPK could increase ARF stability
through phosphorylation, suggesting the existence of a feedback
loop between ARF and DAPK, in which ARF blocks DAPK-mediated
apoptosis during cytoskeleton remodeling, whereas DAPK exerts a
positive effect on ARF stability. Moreover, our data show an
increase of p53 protein levels and of its transcriptional targets
Puma and Apaf-1 (preliminary data not shown) upon ARF
depletion, suggesting that DAPK apoptosis induction could be in
part mediated through p53. Interestingly, it has been observed
that ARF expression in spermatogonia prevents p53-dependent

Figure 9. ARF depletion induces anoikis through a DAPK-dependent mechanism. (a) Western blot analysis of HeLa cells allowed to grow in
suspension as spheres for 24 h and treated with control and specific ARF siRNA for 48 h. (b) Spheres were disaggregated by gentle trypsin
treatment and re-placed in the same culture condition (b, left panels) or in adhesion (b, right panels) for 5 h. (c) HeLa cells grown in adherent
conditions were treated with control or ARF and DAPK-specific siRNA alone or simultaneously for 72 h. Cells were re-plated as already
described and analyzed by western blot analysis and phase-contrast microscopy. Silencing efficiency and vitality was analyzed by western blot
with anti-ARF and anti-PARP-1 antibody. Actin is a loading control. WB are representative of at least three independent experiments.
Normalized p53 band intensities are shown below respective wb panel, and are expressed as fold enrichment with respect to siSCR sample
arbitrarily set to 1 (see Materials and methods section for details). Round phenotype was quantified and reported in graph as described.
Cumulative data are expressed as a mean value± s.d. of three independent experiments. For each experiment, 100–150 cells were analyzed
for each transfection point. Analysis of variance show no statistical differences between the indicated values (NS) by paired two-tailed
Wilcoxon test P= 0.2. (d) HeLa cells were transiently transfected with ARF of mutant vector as indicated for 24 h and were treated with control
or ARF-3 siRNA (siUTR) for 72 h. Cell viability was analyzed by CVS (cristal violet staining) assay. The absorbance of each well treated with
siARF-3 was calculated as fold of the control wells (siSCR) set to 1. Graphs represent mean values± s.d. of two independent experiments.
Analysis of variance shows statistical significant difference between empty vector and wt/mutant ARF-transfected points with P-valueo0.001
by Kruskal–Wallis test.
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apoptosis.47 Further experiments are needed to validate this
hypothesis.
It has been reported that overexpression of DAPK induces

morphological changes typical of apoptotic cells, such as cell
rounding and shrinkage.48 Our data only partially fit with these

observations, as we do not observe a rescue of round phenotype
in DAPK-depleted cells. In line with these results, we observe that
H1299 cells, not expressing DAPK, show a round morphology
upon ARF depletion and result in anoikis resistance.
DAPK-mediated apoptosis is accompanied by a specific

decrease of FAK tyrosine phosphorylation.45 As in H1299 we do

not observe a decreased FAK activation upon ARF silencing, we
hypothesized that the FAK downregulation observed in HeLa and
HaCaT cells is at least in part due to activation of DAPK upon

ARF depletion. In line with this hypothesis, re-introduction
of both wt and death inactive DAPK mutant, induces a strong
decrease of FAK levels upon cytoskeleton remodeling. More
importantly, restoration of DAPK expression in H1299 cells induces

apoptosis and this effect is further amplified by concomitant ARF
silencing.
On this basis, we propose that, far from being simply inactive to

restrain cell growth, ARF confers pro-survival properties by helping

Figure 10. ARF is required for spreading and localizes to the plasma membrane of H1299 cells. (a) Contrast images of H1299 cells transiently
transfected with the indicated siRNAs for 48 h and 72 h treated as described in Figure 4 and analyzed by phase-contrast microscope 8 h after
plating, (scale bar, 30 μm). Quantification of round phenotype was performed as described and is shown in the graph on the right. Cumulative
data are expressed as a mean value± s.e.m. of at least three independent experiments. For each experiment, 100–150 cells were analyzed for
each transfection point. Asterisks indicate statistically significant differences between ARF and SCR treated cells with P-value obtained by
unpaired two-tailed t-testo0.05. (b) H1299 cells were detached, re-suspended in growth medium, allowed to adhere onto coverslips and
were fixed at different time points after plating (1, 8 and 24 h). Permeabilized cells were subjected to IF with anti-ARF antibody and stained
with tetramethylrhodamine phalloidin to visualize actin cytoskeleton. Representative images showing ARF subcellular localization are shown
for each time point. Images were taken by Nikon fluorescence microscopy (scale bar, 5 μm).
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cells to spread and protecting them from anoikis as illustrated in
Figure 14. This is accomplished through inhibition of DAPK-
induced apoptosis, and stabilization of FAK.
Conflicting data exist on ARF pro-oncogenic activity in some

experimental settings. In particular, it has been reported that ARF

contributes to prostate cancer progression by stabilization
through SUMO modification of Slug protein.37 Moreover, the
ability of ARF to induce autophagy, a pro-survival mechanism

related to the phenomenon of tumor dormancy,49 also points to
the hypothesis that in particular cellular contexts ARF could have a

pro-proliferative or even oncogenic role. In this regard, it is
interesting to note that the effect of ARF loss on cell morphology
of prostate cells37 is the opposite of that observed in MEF cells and

in our experimental conditions.
Our findings point to a novel role of ARF on protection from cell

anoikis. This could have a strong impact on tumor growth and
dissemination. By providing insight into these previously unknown
functions of this protein, this study may have important

implications in development of novel strategies for cancer
therapy.

Figure 11. FAK levels and cell viability are unaffected by ARF depletion. (a) H1299 cells treated with control SCR and ARF-specific siRNA were
detached and induced to adhere. Total cell extracts (8 h after re-plating) were immunoprecipitated with anti-FAK antibody or with IgG as
negative control and analyzed by western blot with pFAK Y397 antibody and subsequently with anti-t-FAK antibody. Panels of inputs,
representative of three independent experiments, probed with anti-FAK, ARF and actin antibodies are also shown. (b) Quantitative reverse
transcriptase (qRT)–PCR analyses of FAK, collagen IV, fibronectin and integrin β1 mRNA levels normalized on G6PD expression in cells treated
with the indicated siRNA are shown. Cumulative data are expressed as a mean value± s.d. of three independent experiments. Statistical
analysis has been performed as described in Figure 4. Not statistically significant differences are indicated (NS). (c) H1299 cells were transiently
transfected with the indicated siRNAs and silencing efficiency analyzed by western blot with anti-ARF and actin as loading control. Viability
was checked with PARP-1 antibody, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and CVS (cristal violet staining) assay
as described previously. Data are expressed in c and d are mean value± s.d. of three independent experiments. (d) Growth curve of HeLa
and H1299 cells treated with the indicated siRNA at different time points. Asterisks indicate statistically significant differences by
unpaired two-tailed t-test, between FAK and NC sirna treated cells **P= 0.0048, or between ARF and SCR sirna treated cells *P= 0.0085 for
HeLa cells. In H1299 cells, *P= 0.0217 between FAK and NC at 72 h and **P= 0.0002 at 96 h. Not statistically significant differences are
indicated (NS).
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MATERIALS AND METHODS

HeLa cells were obtained from Dr Valeria R Villella, San Raffaele Scientific
Institute, Milan, Italy. All other cell lines (H1299, HaCaT and MCF-7) were
purchased from Cell Line Service (CLS, Eppelheim, Germany). Cells were
grown as described,15 transfected with Lipofectamine 2000, RNAiMAX
reagent or electroporation (Neon transfection System, Life Technologies
Carlsbad, CA, USA). Cells were routinely tested for mycoplasma contam-
ination and kept in culture for no more than 6 weeks.
ARF siRNAs (harboring the stealth modification) anneal in the exon 1β of

p14ARF transcript. ARF and p16INK4a siRNA sequences has been reported
in Vivo et al.8 and Kobayashi et al.50 DAPK, FAK and luciferase siRNAs
are available by Qiagen (Hilden, Germany). All siRNA were transiently
transfected at a final concentration of 10 μM, except siRNA-3 that was used
at 30 μM. Fibronectin purified from bovine plasma (Millipore, Billerica, MA,
USA; 10 μg/ml). Z-VAD fmk (BioVision, Milpitas, CA, USA) was used at final
concentration of 10 μM.

Quantitative reverse transcriptase–PCR analysis

Equal number of cells was lysed with RNA Mini Kit Ambion (Carlsbad, CA,
USA). In all, 1 μg of total RNA of each sample was reverse-transcribed and
quantitative PCR amplifications were performed as described in Vivo et al.8

Primers were used: p16INK4a forward 5′-CCAACGCACCGAATAGTTACG-3′,
reverse 5′-GCGCTGCCCATCATCATG-3′. FAK, DAPK, collagen IV, fibronectin
and integrin β1 primers were purchased from Qiagen (Quantitect Primer
Assay); G6PD forward 5′-ACAGAGTGAGCCCTTCTTCAA-3′ and reverse
5′-GGAGGCTGCATCATCGTACT-3′. Data presented represent the mean of
three biological replicates.
Western blot was performed as described.15 Band intensities were

quantified by ImageJ Software (free software, NIH), normalized to actin and
reported in graph as percentage of control. Each profile represents the
mean of three independent experiments.

The list of antibodies are as follows: anti-PARP-1, (Cell Signaling Denvers,

MA, USA, #9542); anti-ARF C-18, anti-actin I-19, anti-p53 DO-1, anti-caspase-

3 H-277, anti-FAK C-20, anti-pFAK (Tyr397)-R for IF, (Santa Cruz

Biotechnology, Heidelberg, Germany), anti-pFAK (Tyr397) (BD Milan, Italy;

clone 14 for wb), anti-ARF Ab2 14PO2 (Neomarkers from Bio-Optica, Milan,

Italy); anti-p19ARF (Novus Biologicals from Novus Italy, Milan, Italy; Ab80)

anti-DAPK-55 mouse monoclonal antibody (Sigma Aldrich, Milan, Italy);

anti-pPaxillin Tyr118 (Life Technologies) and anti-pTyr 05-321 (Upstate

from Millipore, Darmstadt, Germany).

Cell viability assays. Cell viability was determined by the crystal violet
staining method51 or through a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide)) MTT based assay.52 Dye uptake was measured at

580 nm using a spectrophotometer. Cell viability was calculated as dye

intensity and compared with untreated samples.

Microscopy and IF. Live phase-contrast images were acquired using a
(Nikon Eclipse microscope, Tokyo, Japan). Cell spreading was quantified as

described in Tamura et al.53 Fibronectin stimulation and IF were performed

as described in Schlaepfer and Hunter54 and Vivo et al.46 Cells were

incubated with Tetramethylrhodamine or fluorescein isothiocyanate-

conjugated phalloidin for 30 min, followed by DAPI (Sigma-Aldrich) for

3 min and washed with PBS/0.05% Tween. Coverslip were mounted with

Ibidi mounting medium (Ibidi GmbH, Martinsried, Germany).
Immunoprecipitation assays were performed either with cytoplasmic

extracts or total cellular extracts (from 5× 106 cells per sample). Subcellular

fractionation was done as previously described.15 For total cellular extracts,

cells were harvested, lysed with RIPA buffer and incubated with anti-ARF

antibody (C-18 Santa Cruz Biotechnology) or anti-FAK antibody.
Apoptosis was analyzed by PE Annexin V Apoptosis Detection Kit I (BD

Biosciences; cat no. 559763) following the manufacturer’s instructions.

Figure 12. ARF interacts with FAK in H1299 cells. (a) H1299 cells were transiently transfected with empty vector (v) or either p53 or DAPK-
expressing plasmids. After 24 h, cells were re-plated and cytoplasmic extracts immunoprecipitated with anti-ARF antibody and analyzed by
western blot with anti-pFAK Y397, ARF and p53 antibodies. Panels of input are also shown on the right of immunoprecipitation experiment.
(b) H1299 cells were transfected with an empty vector (v) or increasing amount of wt DAPK or DAPK K42A expression plasmids. Twenty-four
hours after transfection, cells were lysed and cellular extracts were immunoblotted and analyzed with anti-FAK, anti-DAPK and anti-tubulin as
loading control. WB shown are representative of at least three independent experiments. Normalized FAK band intensities are shown below
each corresponding band, and are expressed as fold enrichment with respect to empty vector-transfected sample arbitrarily set to 1.
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DNA content analysis for detection of apoptotic cells was performed as

described.55

Statistic. Data presented in this work was derived from experiments
performed at least in triplicate (biological replicates), except when

differently stated. The sample size of each experimental point is reported

in the relative figure legend, as well as the specific statistical analysis

performed. In all the experiments in which single cells were analyzed, 5–10
fields were randomly selected in the coverslip for each experimental point.
Data have been analyzed to assay normal distribution with different tests,
such as the D’Agostino and Pearson omnibus, the Shapiro–Wilk and the KS
normality test. Analysis of data not showing a normal distribution were
performed with the Wilcoxon, Mann–Whitney tests and Kruskal–Wallis test,
otherwise t-test and analysis of variance were performed using GraphPad
Prism 5.0 software (La Jolla, CA, USA).
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Fig. S1: p14ARF co-localization with F-actin using different type of anti-ARF antibodies and 

GFP tagged protein. a) MEF MDM2 -/- p53 -/- cells were transfected with p14ARF CMV 



vector for 24h, then were detached by gentle trypsin treatment, resuspended in growth medium 

and allowed to adhere onto fibronectin coated coverslip. Immunofluorescence was performed 

as previously described using anti-ARF 14P02 (upper panel) or anti-ARF 4C6/A (lower panel) 

antibodies and both TRITC phalloidin and DAPI staining to visualize actin cytoskeleton and 

nuclei. b) Direct fluorescence analysis (upper panel) or IF with anti-ARF 14P02 antibody 

(lower panel) was performed in MEF transfected with GFP tagged protein. Representative 

images of ARF subcellular localization are shown. Images were taken with a Zeiss confocal 

laser-scanning microscope Axio Observer (scale bar, 7µm) using suitable lasers as described 

in Fig 1.  

 

 

 



 

 

Fig. S2: a) p14ARF co-localizes with F-actin in 3D culture. Confocal images of ARF co-

localization with TRITC phalloidin and merge with Dapi, in HeLa and HaCaT cells 5 hrs after 

plating in growth medium with Matrigel 2,5% (scale bar, 10µm). b) Representative images of 

ARF and B23 localization in HeLa cells after 30’ and 2h post plating (scale bar, 10µm).  

 

 

 

 

 

 

 

 

 



 

Fig. S3: Reverse immuno-precipitation with anti-FAK antibody in HeLa cells during 

adhesion. Cytoplasmic HeLa extracts collected in adherent cells, upon cell detachment and 

during spreading were subjected to immuno-precipitation with anti-FAK antibody or IgG as 

negative control and analysed by western blot with anti-FAK, anti-pPAX Tyr118 and anti-

ARF antibodies. Inputs are also shown. * indicates IgG bands. 

 



 

 

Fig. S4: a) HeLa cells were treated with the indicated stealth siRNAs for 48hrs and analysed 

by western blot 5 hrs after plating. Silencing efficiency was analysed by western blot with anti 

ARF and anti p16 INK4a antibodies. Actin and tubulin are loading control. b) INK4a levels 



were analysed by quantitative real time PCR in control siLuc treated cells and in ARF depleted 

cells with a mix of the aforementioned specific ARF siRNA. Cumulative data are expressed 

as a mean value ± SD of 3 independent experiments. Statistical analysis performed by 

unpaired, two-tailed Mann-Whitney test show no statistical (ns) difference between siSCR and 

siARF samples. c) Contrast images of HeLa cells transiently transfected with the indicated 

siRNAs for 48hrs and analysed as described in Fig 3. Asterisks indicate statistically significant 

differences (P value <0.05) by unpaired two-tailed Student t test (*) = 0.0046; (**) = 0.0055. 

Number of cells analyzed for each experiment: SCR siRNA (50), siARF-2 (50), siARF-3 (50) 

(scale bar, 30 µm) d) Hela cells were treated with the indicated siRNA as described and 

silencing efficiency and spreading ability was analysed as described (scale bar, 30 µm).  

 

 

 

 

 

 

 

 

 



 

 

Fig. S5: p14ARF depletion affects cell morphology in 3D culture. a) Contrast images of HeLa 

and HaCaT cells transiently transfected with the indicated siRNAs for 48hrs, then detached by 

trypsinization and replated in growth medium containing Matrigel 2,5 %. Images were 

collected and analysed by phase-contrast microscope. b) To quantify the percentage of each 

phenotype, for each transfection point, we counted adherent and rounded cells in five different 

fields and pooled data from three to five experiments.  Number of cells analysed for each 

experiment: siSCR (250), siARF (250), siLUC (250). The experiments are expressed as a 

mean value ± SEM of 3 independent experiments collected as biological replicates. The 

statistical analysis was performed by Student t-test *P < 0.05; ** P < 0.01. 

 



 

 

Fig. S6:  a) p19ARF co-localizes with F-actin. MEF MDM2 -/- p53 -/- cells were transfected 

with p19ARF CMV vector for 24h, then were detached by gentle trypsin treatment, 

resuspended in growth medium and allowed to adhere onto fibronectin coated coverslip. 

Immunofluorescence was performed as previously described. Representative images of 

p19ARF subcellular localization are shown. Images were taken with a Zeiss confocal laser-

scanning microscope Axio Observer (scale bar, 5µm). b) Re-introduction of p19ARF in ARF 

depleted cells restore pFAK expression. Rescue experiment was performed as described 

before. Analysis of pFAK Y397 and t-FAK protein levels upon rescue experiment by IP with 

anti t-FAK antibody performed as previously described. Panel of input probed with anti 

p19ARF and p14ARF antibodies is also shown on the right of immuno-precipitation 

experiment. Tubulin is used as loading control.  

 

 

 

 



 

Fig. S7: CDKN2A missense mutations associated with melanoma did not affect pFAK 

protein levels. HeLa cells were transiently transfected with the indicated vectors for 24hrs and 

analysed by western blot with anti-pFAK Y397, anti-GFP antibodies. Tubulin is a loading 

control. Normalized pFAK Y397 band intensities, shown below each corresponding band, are 

expressed as fold enrichment respect to control cells arbitrarily set to 1.   

 



 

 

Fig. S8: Flow cytometric analysis of apoptosis in HeLa cells. HeLa cells were treated with 

the indicated siRNA and after 48h were replated as previously described. 24h after plating, 

adherent and rounded cells were collected (detached cells were collected with the supernatant, 

pelleted by centrifugation), washed and resuspended in 1x Annexin-V Binding buffer (BD 



Biosciences) at 1x106 cells/ml. A total of 0.4x106 cells were stained with PE-conjugated 

Annexin-V (BD Biosciences) following manufacturer’s instructions. An equal volume of 1x 

Annexin-V Binding buffer was added and samples were analysed within the next hour by flow 

cytometry with FACS Accuri C6 Flow Cytometer (BD Biosciences). Morphological analysis 

of ARF silenced cells by FACS showed the existence of two subpopulations of cells based on 

their size, with the population characterized by small size being the one in late apoptosis a) 

FSC (forward scatter) / SSC (side scatter) patterns and annexin-V/ 7-AAD staining (b) of cells 

gated for low FSC/high SSC profile (gate B-red circle) or high FSC/low SSC profile (gate A- 

black circle) are shown. Representative experiment out of three is shown (c) In ARF depleted 

cells, adherent and rounded cells were collected and analysed separately. FSC (forward 

scatter) / SSC (side scatter) patterns of each cell type and annexin-V/ 7-AAD staining of 

rounded cells gated for low FSC/high SSC profile (gate B) are shown.  

ARF depletion induces apoptosis in HaCaT cells (d) Cells were treated with the indicated 

siRNAs and 72hrs later adherent and suspension cells were separately collected and analysed 

by western blot with anti PARP-1. Silencing efficiency was analysed by western blot with anti 

ARF antibody. GAPDH is a loading control. 

 



 

Fig. S9: ARF depletion induces apoptosis in HaCaT cells through a DAPK dependent 

mechanism. a) Cells grown in adherent conditions were treated with control or ARF and DAP 

kinase specific siRNA alone or simultaneously for 72hrs. Cells were replated as already 

described and analysed by western blot analysis and phase contrast microscopy. 

Representative images of replated cells (scale bar, 20µm). Graph represents cumulative data 



expressed as a mean value ± SD of 2 independent experiments (biological replicates). Asterisk 

indicates statistically significant differences by unpaired two tailed Student T-test with 

*P<0.05; ns indicates no statistical (ns) difference. Silencing efficiency and vitality was 

analysed by western blot with anti ARF, anti DAPK, anti p53 and anti-PARP-1 antibody. 

GAPDH is a loading control. b) pFAK levels decrease are not induced by apoptosis (pFAK 

reduction in ARF KD cells is induced prior of apoptosis). HeLa cells grown in adherent 

conditions were treated with control or ARF and DAP kinase specific siRNA alone or 

simultaneously for 72hrs. Cells were replated as already described and analysed by western 

blot analysis. pFAK levels and silencing efficiency were analysed by western blot with anti 

pFAK Y397, ARF and DAPK antibodies. Tubulin is a loading control. Normalized pFAK 

Y397 band intensities, shown below each corresponding band, are expressed as fold 

enrichment respect to siLUC arbitrarily set to 1. Early apoptosis was evaluated 5h after plating 

by Annexin-V/7-AAD staining as previously described. Graph represents the percentage of 

apoptotic cells (PE-Annexin V positive and 7-AAD negative) observed in the indicated 

samples. 

 



 

 

Fig. S10: FAK depletion does not affect cell morphology a) Contrast images of HeLa cells 

transiently transfected with the indicated siRNAs for 48hrs, detached by trypsinization and 

replated as previously described. Images were collected and analyzed by phase-contrast 

microscope 5 hrs post plating (scale bar, 30µm). Silencing efficiency and viability was 

analysed by western blot with anti-ARF, anti-t FAK and anti-PARP-1 antibody. Actin is a 

loading control. b) Growth curve of HaCaT cells treated with the indicated siRNA at different 

time points. Asterisks indicate statistically significant differences by unpaired two tailed T-

test, between FAK and NC sirna treated cells *P= 0.0286, or between ARF and NC sirna 

treated cells **P=0.0108 
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ABSTRACT 

ARF role as tumor suppressor has been challenged in the last years by several findings 

of different groups ultimately showing that its functions can be strictly context 

dependent. We previously showed that ARF loss in HeLa cells induces spreading 

defects, evident as rounding morphology of depleted cells, accompanied by a decrease 

of protein levels of phosphorylated Focal Adhesion Kinase (FAK) and anoikis. These 

data, together with previous finding that a PKC dependent signalling pathway can lead 

to ARF stabilization, led us to the hypothesis that ARF functions in cell proliferation 

might be regulated by phosphorylation. In line with this, we show here that upon 

cytoskeleton assembly ARF is induced through PKC activation. In line with this, 

constitutive-phosphorylated ARF mutant on the conserved threonine 8 (T8D) is able 

to mediate both cell spreading and FAK activation through inhibition of DAPK 

functions. Finally, ARF-T8D expression confers growth advantage to cells thus 

leading to the intriguing hypothesis that ARF phosphorylation could be a mechanism 

through which pro-proliferative or anti proliferative signals could be transduced inside 

the cells in both physiological and pathological conditions. 

KEYWORDS: phosphorylation, stability, DAPK, FAK, anoikis 
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Introduction 

The p14ARF protein, encoded by the INK4a/ARF locus, was initially described as a 

tumor suppressor that, in response to different oncogenic stimuli, by protecting p53 

from proteasomal degradation, initiated a cell pathway leading to cell cycle block 

and/or apoptosis 
1,2

. Further studies indicated that, apart from p53, ARF functionally 

interacts with a high number of factors, thus mediating cellular response also through 

p53-independent activities 
3
. ARF has unexpectedly been found over expressed or 

stabilized in several types of cancers 
4-6

, to be involved in autophagy 
7-9

 and, recently, 

to have a role in protecting human melanocytes from free radicals arising upon 

mitochondrial dysfunction 
10

. In addition to this, it also appears to play a role during 

development
11-13

. These observations led to the conclusion that, somehow, ARF role 

within the cell can be highly pleomorphic or context-dependent, ranging from halting 

cell growth in some cases to favour proliferation in others. We recently demonstrated 

that ARF plays an unexpected role in the cytoplasm in the organization of the 

cytoskeleton. During cell adhesion, ARF accumulates at sites of polymerized actin 

such as filopodia, where it co-localizes with and induces activation of the Focal 

Adhesion Kinase (FAK). Interesting this mechanism appears to be conserved in 

mouse. By aiding cytoskeleton assembly during spreading, ARF protects cells from 

anoikis blocking DAPK (Death Associated Protein Kinase) dependent apoptosis 
14

.  

Our previous published data demonstrated that ARF is regulated through the activation 

of PKC pathway 
15

. The involvement of phosphorylation in controlling ARF activities 

has been suggested by different experimental approaches 
16-18

 
19

. Sequence prediction 

analysis shows that three PKC phosphorylation sites are present within ARF protein 

sequence, the threonine 8 and serine 52 in the functional active exon 1 beta encoded 

domain of the protein, while Serine 127 in the C-ter region of the protein. In vitro 

kinase assay shows that the protein can be specifically phosphorylated by PKC in vitro 

and that it is subjected to phosphorylation in vivo 
15

. Mimicking the un-

phosphorylatable status of the protein on Threonine 8 (T8A mutant), lying in the most 

conserved region of the protein, is highly unstable and displays the same ability of WT 

protein to restrain cell proliferation. Conversely, the T8D ARF mutant, that 

corresponds to the constitutive phosphorylation status of the protein, accumulates in 

the cytoplasm and is less efficient than the wt in halting cell growth. These data led to 
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the hypothesis that ARF function might be regulated by phosphorylation on this 

conserved residue. PKC plays important role in a number of cell functions 
20

. Among 

these, it has been shown that it is involved in the regulation of cell morphology 
21

 

through the phosphorylation of a high number of proteins involved in cell migration 

and in the generation of focal adhesion 
22,23

. 

On the basis of this evidence, we sought to investigate if ARF role in cell spreading 

and its functional relation with FAK could be regulated by PKC activity. Here we 

show that during cytoskeleton remodelling induced by cell spreading, ARF protein 

levels increase in the cytoplasm through a PKC dependent mechanism. Mimicking the 

phosphorylation status of the protein is sufficient to drive its localization in the 

cytoplasm and rescue spreading defect of ARF silencing in HeLa cells as well as FAK 

phosphorylation, resulting in an increased proliferative ability.  This is at least in part 

accomplished through the inhibition of DAPK negative effect on FAK during cell 

spreading. Taken together these data indicate that PKC activation can prime ARF 

involvement in cell spreading leading to increased FAK activation and cell 

proliferation.   
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Results 

Threonine to Aspartic mutation in Threonine 8 is sufficient to affect ARF 

localization. The threonine 8 is highly conserved within ARF protein sequence. To 

analyse the relation between this site and the other PKC consensus sites, we 

constructed double (T8-S52) and triple (T8-S52-S127) mutants in which each single 

potential PKC site was replaced either with an alanine (“A” serie), that cannot be 

phosphorylated, or with an aspartic acid (“D”), that mimicks the phosphorylation 

status of the protein (as described in Vivo et al., 2013). ARF protein displays various 

degree of accumulation in nucleoli and/or scattered throughout the nucleoplasm 
24,25

. 

We then tested if the inserted mutations could affect ARF subcellular localization by 

evaluating ARF subcellular localization in WT and mutant ARF proteins transfected 

U2OS cells by immunofluorescence. The experiment showed that both double and 

triple mutations mimicking the un-phosphorylatable status of the protein, although 

with small difference in the ratio of nucleoli/nucleoplasm staining (see Fig S1), show 

a localization pattern similar to WT and T8A mutant performed as control (Fig 1a). 

Transfection of the double and triple mutants of the “D” series showed for almost 50% 

(Fig 1a) of cells a nucleo-cytoplasmic localization of the protein, as reported for the 

T8D mutant 
15

. These results suggest that Thr8 mutation alone is sufficient to 

determine ARF localization, while the other residues are not involved in this function. 

This allowed us to statistically analyse the role of T to A mutations vs T to D mutations. 

Comparing the percentages of nucleo-cytoplasmic localization of mutants of the A 

series with those of the D series, we obtained the plot shown in Fig 1b. We could 

observe how the localization of un-phosphorylatable ARF proteins (as well as of the 

WT) is significantly different from that of the “D” mutants. Collectively these results 

suggest that mimicking phosphorylation on threonine 8 alone is the signal sufficient 

to induce ARF accumulation in the cytoplasm.  
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Figure 1. Threonine 8 mutation affects ARF localization  

a) percentage of transfected cells showing nuclear and nuclear-cytoplasmic localization 

pattern + SD, n=3. b) nucleo-cytoplasmic localization of mutants of the A series vs D series. 

Analysis of variance by two-tailed paired t-test, ** P=0.0060.  
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ARF is induced during cytoskeleton reorganization through PKC activation.  We 

recently put in light novel ARF functions in the organization of cytoskeleton. As T to 

D mutation on threonine 8 determines ARF localization in the cytoplasm together with 

its increased half-life 
15

 we now wondered if ARF phosphorylation could be the signal 

priming this ARF function. We first analysed if PKC activation could be detected 

during cytoskeleton remodelling. To this aim, we monitored levels of pPKC by 

western blot in HeLa cells during cell spreading. To follow spreading process over 

time, cytoplasmic protein extracts were collected from untreated (nt) and detached 

cells, as well as from replated cells five hours after seeding, when spreading process 

was almost completed. Cytoplasmic protein extracts were subjected to WB with an 

anti pPKC pan antibody that recognizes all the PKC isoforms phosphorylated at a 

carboxy-terminal residue homologous to serine 660 of PKC β II (activated pPKC). The 

experiment showed pPKC activation upon cell detachment (Fig 2a) mirrored by a 

parallel increase of ARF protein (Fig 2b, compare lane B with lane A and D). 

Treatment of cells with leptomycin B, that block nuclear export, does not block but 

rather increase ARF levels ruling out the hypothesis of re-localization of nuclear 

protein to the cytoplasm upon detachment (compare lane C with lane B Fig. 2b). As 

control, p53 levels increase in the nucleus of leptomycin treated cells.  

 

 

 

Figure 2. Active PKC and ARF protein levels increase upon detachment a) and b) 

Fractionated cellular extracts analysed by IB with anti pPKC Ser660, ARF, p53 and actin 

(loading control) antibodies. Representative western blots are shown. Quantification of ARF 

band intensities has been performed with Image J (See M&M for details) and are expressed as 

fold enrichment respect to NT sample, arbitrarily set to 1, using actin as normalizer. 
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To better analyse if the observed PKC activation is required to induce ARF increase, 

we knocked down PKC expression by RNA interference and analysed ARF 

cytoplasmic levels by western blot in HeLa cells. As control, cells were also treated 

with ARF specific siRNA. Untreated, control (siLuc and siSCR) and PKCalpha and 

ARF depleted cells were lysed 72hrs after transfection and subjected to subcellular 

fractionation. Cells were then subjected to trypsinization and divided in two aliquots. 

One was subjected to direct lysis (Fig 3a, detached cells), while the other replated and 

cells collected 24 hours after. In agreement with our hypothesis, ARF levels in PKC 

alpha depleted cells decrease with a similar efficiency to ARF depleted cells upon 

detachment, remaining low until 24h post plating. Western blot with anti-PKC 

antibody shows efficient silencing (Fig 3a), although small fraction of PKC molecules 

is resistant to silencing in line with the notion that HeLa cells also expresses epsilon 

and delta PKC isoforms both recognized by this antibody (data not shown). 

Pharmacological inhibition of PKC with Bisindolylmaleimide I (Bim), an inhibitor of 

the catalytic subunit of PKC, confirms the requirement of catalytic active PKC in this 

process (Fig 3b). Collectively these experiments show that during cytoskeleton 

remodelling PKC is activated resulting in increased cytoplasmic ARF protein levels. 
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Figure 3. PKC activation is required for ARF induction  

a) Cytoplasmic protein extracts of cells collected before or 24hours after replating analysed 

with anti ARF, t-PKC, and AKT (loading control) antibodies. ARF band intensities normalized 

versus AKT are shown as fold enrichment respect to siLUC. b) ARF and pPKC levels in HeLa 

cells treated with Bisindolylmaleimide I (Bim). Quantification of ARF band intensities has 

been performed as described.  
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ARF mutant mimicking T8 phosphorylation is involved in cell spreading. We 

previously showed that ARF silencing induces an evident morphological defect in 

different cell lines, including HeLa cells. In particular, due to inability of depleted cells 

to properly organize the cytoskeleton structures, cells display a striking round 

morphology 
14

.  

In line with this, PKC depleted as well as Bim treated cells, showed spreading defects 

similarly to ARF depleted cells (Fig S2). We thus explored the hypothesis that ARF 

phosphorylation could have a role in this mechanism. We tested if mutant ARF 

proteins reintroduction is able to fulfil the function of the endogenous protein in rescue 

experiment. HeLa cells were transfected with either T8A or T8D expressing vectors 

and empty vector as control. Twenty-four hours later, cells were treated with 

scrambled or ARF-specific siRNA targeting endogenous ARF transcript. To monitor 

and compare spreading efficiency, cells were detached by trypsinization, replated and 

images of spreading cells collected 5hours post plating. The ability to spread was 

quantified and plotted as shown in Fig 4a. Less than 40% of ARF-depleted cells were 

able to properly spread both in empty vector and T8A expressing cells. In line with 

our hypothesis, T8D transfection is able to rescue spread morphology defect caused 

by ARF depletion in full.  As shown previously rounding phenotype caused by ARF 

depletion is also accompanied by a decrease of FAK activation 
14

. During cellular 

adhesion and upon integrin binding to the extra cellular matrix (ECM), FAK is 

activated through auto-phosphorylation of tyrosine 397 (Y397). This activation is 

followed by increased Src binding to FAK resulting in its massive phosphorylation 

onto several tyrosine residues within FAK sequence 
26,27

. We thus preliminary checked 

if and which ARF mutant is also able to rescue FAK activation by western blot of 

crude extracts and of immunopurified FAK with anti pFAK antibodies. Results 

showed that in T8A expressing cells devoid of ARF expression, lower levels of both 

total and phosphorylated FAK are achieved, while no difference between siSCR and 

siARF could be detected in T8D expressing cells, mirroring the difference in spreading 

ability of the two mutants (Fig S3a). These experiments collectively suggest that T8A 

ARF mutant is impaired in both cytoskeleton re-organization and FAK stabilization. 

Interestingly, consequently to pFAK Y397 inactivation also downstream FAK 

phosphorylation events are impaired when endogenous ARF is replaced by T8A 
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mutant (Fig S3b). As ARF silencing affects both spreading and cell viability, we next 

checked if overexpression per se of either WT or mutant ARF proteins could induce 

an increase of FAK phosphorylation upon spreading induction. FAK 

immunoprecipitation followed by phospho-FAK immunodetection (both pFAKY397 

and pTyr) showed that, although all proteins are able to positively induce FAK 

activation, T8D has the higher efficiency (Fig 4b).  
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Figure 4. ARF T8D mutant rescues spreading defect of ARF depleted cells  

a) Spreading efficiency of HeLa cells transiently transfected as indicated. Error bars represent 

SD with n=3. P<0.05 by two way Anova with Tukey correction. b) Cytoplasmic extracts of 

indicated transfected cells induced to spread were immuno-precipitated with anti t-FAK 

antibody and analysed by western blot with anti pFAK Y397, pTyrosine, t-FAK. Panels of 

input are also shown. 
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Mimicking ARF phosphorylation drives cell proliferation. Our previous studies 

showed that FAK activation correlates with ARF ability to confer pro-proliferative 

properties to cells. We thus analysed if T8D mutant, in virtue of its ability to strongly 

activate FAK phosphorylation, could also confer a growth advantage when expressed 

in cells. To this aim, HeLa cells, that endogenously express p14ARF protein and are 

characterized by inactivation of the p53 pathway, were transfected with plasmids 

encoding WT, T8A and T8D ARF mutants and empty vector (CMV) and cell growth 

was evaluated by comparing residual cell number 72hrs after transfection. Comparable 

number of viable cells were found in both empty vector and ARF transfected samples, 

thus meaning that ARF expression in these cells has no effect on cell growth, as 

expected 
28-30

. Similar behaviour was observed in T8A expressing cells, while we 

constantly found an increased number of cells in T8D transfected samples (Fig. 5a). 

This suggested us that the T8D behaves as a constitutive active mutant. In addition, 

given that WT as well as the T8A protein has no effect on cell proliferation this could 

mean that in HeLa cells something can block this ARF function. Interestingly, in 

H1299 cells we did not observe differences in cell growth profiles of WT and mutant 

proteins transfected cells (Fig S3) and in this cell line we previously demonstrated that 

ARF-FAK pro-proliferative axis is interrupted due undetectable DAPK levels in this 

cell context. DAPK is a Serine/threonine kinase playing important roles in tumor 

suppression and apoptosis. We previously showed that ARF expression prevents 

DAPK mediated anoikis. It has been shown that FAK activation can be counteracted 

by DAP kinase expression 
31,32

 by disrupting signal transduction between integrin and 

FAK upon ECM interaction. We thus tested the hypothesis that ARF and/or T8D could 

be able to protect FAK by DAPK negative effect while T8A being less efficient. We 

thus checked the presence of DAPK in FAK immunoprecipitated samples, in presence 

of WT or T8A expression. Cells were transfected either with WT or T8A mutant 

expressing plasmids and 24h after transfection induced to spread. 

Immunoprecipitation was performed on cytoplasmic extracts followed by western blot 

with anti DAPK and anti-total FAK antibody. The experiment showed that a protein 

complex between FAK and DAPK is more abundant in T8A transfected cells than in 

WT transfected sample (Fig 5b, compare co-ip efficiency below DAPK panel).  
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Figure 5. ARF T8D mutant promotes cell viability  

a) The plots represent the relative cell number obtained with the indicated plasmids respect to 

empty vector set as 1. Error bars indicate S.D., n=3. P<0.05 by one-way ANOVA, using 

Tukey’s multiple comparisons b) Cytoplasmic extracts of transfected cells were treated as 

described and were immuno-precipitated as indicated. FAK band intensities in IP panels are 

shown below each corresponding band. Panels of input are shown. 
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Discussion 

Although to date the overwhelming majority of studies on ARF have focused on its 

tumor suppressor roles, a few of solid studies started to address the possibility that 

ARF might promote the survival of at least a subset of tumors. Here we presented 

evidences showing how p14ARF, upon PKC activation, is able to positively influence 

cell growth.  

The PKC family consists of at least ten serine/threonine kinases playing a central role 

in cell proliferation, differentiation, survival and death 
33,34

. We showed a novel and 

time-dependent ARF localization at focal adhesions thus highlighting ARF role in 

cytoskeleton organization upon cell spreading. We now further characterized this 

aspect, showing that this function is controlled by PKC activity and can account for 

some of ARF pro-proliferative capabilities. While mimicking a dephosphorylated 

status of the protein does not alter the nuclear localization of the protein, 

phosphorylation of Thr 8 is sufficient to lead to a strong increase of ARF protein levels 

in the cytoplasm. More interestingly, while the non-phosphorylatable mutant appears 

to retain the tumor suppressor properties of the WT protein, the T8D mutant instead 

behaves as a constitutive active mutant conferring pro-survival properties to the cells. 

Interestingly, also p21, a well-known tumor suppressor, has been shown to display that 

in some cell context its role as growth inhibitor has been substituted by promoting cell 

growth 
35,36

. This behaviour, also shared by p14, suggests how the cell 

environment/status acts epistatically in directing tumor supressors functions. 

The evidence that ARF functions can be thus modulated by phosphorylation events 

taking place on the conserved Threonine 8 leaves to the concept that ARF role in cell 

survival may more realistically depend on the cellular and/or tissue type and context, 

thus accounting for the controversy surrounding the topic.   

By means of pharmacological studies, protein kinase C has been implicated as a key 

molecule involved in cell spreading and migration, in part through interaction with 

beta1-integrins 
37-39

. Given the context dependency of ARF role within the cell, we 

focused on ARF function in cell spreading in a cell context in which ARF functions as 

tumor suppressor are blocked, thanks also to the inactivation of p53 pathway. Our data 

show that, during cytoskeleton remodelling induced by detachment, both the activated 

form of PKC and ARF protein levels increase in the cytoplasm. We previously showed 
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that ARF ability to favour cell spreading is accompanied by the transduction of growth 

signals arising from the integrin/FAK functional interaction 
14

. We now added data 

showing that T8A can only in part rescue FAK activation, although this is not enough 

to allow cell spreading. This can be explained by decreased stability of the T8A mutant 

respect to T8D protein 
15,40

. Our data depict a scenario in which during cell spreading 

or uncontrolled PKC activation, ARF stabilization and thus FAK activation could 

allow the pro-proliferative signal transduction within the cells. The so far described 

data, by reinforcing the previous finding, also provide a molecular mechanism based 

on the physical interaction between the Focal adhesion kinase and the DAPK. We 

found that during cell spreading DAPK interaction with FAK is un-favoured in 

presence of WT and T8D, being detectable only when cells express T8A.  

Our data led us to conceive a model in which, during cell spreading and PKC 

activation, p14ARF protein levels increase in the cytoplasm. In this time frame, we 

found that DAPK interacts with FAK, maybe preventing its unwanted/unproper 

activation. The increase of ARF protein levels gradually interferes with this 

mechanism by displacing DAPK from FAK, and/or through the formation of an active 

complex in which DAPK inhibition of FAK is impaired (Fig 6). In absence of ARF 

phosphorylation we indeed observe a stable DAPK/FAK complex in which FAK is 

not activated, maybe sequestered from integrin binding. The more efficient 

immunoprecipitation of FAK in T8A transfected sample led us to speculate that ARF 

post-translational modification could somehow interfere with antibody binding to 

FAK thus favouring the hypothesis of the existence of a complex ARF-FAK-DAPK. 

This would indicate that the increased stability of ARF upon PKC activation wouldn’t 

be sufficient to block DAPK activity, rather suggesting that a change in biochemical 

properties/binding ability of the protein to occurs. Further studies are needed to clarify 

this point. By interfering with the function of death associated protein kinase, ARF is 

able to induce full activation of the Focal Adhesion Kinase (Fig 6). This is associated 

with increased proliferation rate and higher level of ERK activation (data not shown) 

that mirrors FAK phosphorylation.  

It has been widely reported that PKC mediated phosphorylation regulates composition 

and turn-over of focal adhesions where assembly and disassembly of actin fibres take 

place upon different environmental inputs. In particular, cellular motility and 
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invasivity, two of worst signals of cancer progression, are sustained by this highly 

dynamic phenomenon 
20,41,42

. The involvement of PKC in tumor progression has thus 

gained recognition as potential therapeutic targets for the treatment of various 

malignancies. A deeper understanding of the PKC dependent ARF functions, both in 

physiological or pathological contexts, may provide useful informations about the 

environmental cues that determine ARF functions as tumor suppressor or tumor 

promoter.  

 

 

 

Figure 6. Upon PKC activation ARF stabilizes and activates the FAK. This is accomplished 

by disruption of the inactive FAK- DAPK complex.   
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Materials and Methods 

Cell cultures, transfection and treatments HeLa cells were purchased from SIGMA. 

U2OS and H1299 were purchased from the American Type Culture Collection 

(ATTC) and authenticated by STR DNA Profiling Analysis. Cells were grown as 

described (Vivo et al., 2013) and were routinely tested for mycoplasma contamination 

by PCR based method and kept in culture for no more than 6 weeks after resuscitation.  

ARF mutants used in this study were generated as described (Vivo et al., 2013). The 

cells were transfected with Lipofectamine 2000 reagent (Invitrogen) or with 

electroporation (Neon transfection System, Life Technologies Carlsbad, CA, USA).  

RNA interference experiments ARF siRNA (harbouring the stealth modification), 

that anneals in exon 1ß of p14ARF transcript, and scrambled siRNA (negative control) 

sequences have been reported in Vivo et al., 2009. PKC alfa and luciferase siRNAs 

are available by Qiagen (Hilden, Germany). For rescue experiment an ARF siRNA, 

that anneals in the 5’UTR region of ARF endogenous transcript, was used. All siRNAs 

were transfected using RNAiMAX reagent (Invitrogen). Rescue was performed as 

described in Vivo et al., 2017.  

Treatments in this study were performed as follows: treatment with 

Bisindolylmaleimide I (from Calbiochem): 24 after plating, HeLa cells were treated 

either with DMSO or Bisindolylmaleimide I at 5 µM and 2,5 µM final concentrations 

for 2 hours then were detached by trypsin to synchronize the adhesion/spreading 

process. An aliquot of cells was harvested and total extracts prepared for subsequent 

analysis as described. Another aliquot of cells was replaced in presence of 

Bisindolylmaleimide I at 2,5 µM as final concentration and, after 5hrs and 24 hrs post 

plating, the cells were harvested and total extracts prepared as described.  

Cell proliferation assay 4x10
6
 HeLa cells were transiently transfected by 

electroporation as described 
14

. For H1299, 4x10
6
 cells were transiently transfected by 

electroporation with the indicated plasmid at 500ng as final concentration. After 72hrs 

from transfection, the cells were counted using ScepterTM automatic cell counter 

(Millipore) following the manufacturer's protocol. The data obtained were analysed 

using Scepter™ Software Pro (from Millipore). A multifunction plot representing  the 

cell diameter (X-axis) and the cell counts (Y-axis) was created for each experiment 

and analysed. Cells were gated on the basis of their diameter: O1 for the whole cell 
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population, O2 for the cell population with low diameter (dead cells and debris) and 

O3 for the one with high diameter. The number of cells in O3 gate was used for the 

histogram showing in the figure.  

Immunoprecipitation assays were performed either with cytoplasmic extracts or 

total cellular extracts (from 5 × 10
6
 cells per sample). Subcellular fractionation was 

done as previously described (Vivo et al., 2013). For total cellular extracts, cells were 

harvested, lysed with Co-IP buffer (50mM Tris HCl pH 7.5, 150mM NaCl, 0,5% 

Np40, 5mM EDTA, 10% Glycerol, 100 mM NaF and 1mM NaVO3) and incubated 

with anti-FAK C-20 antibody as described in 
14

. 

WB and antibodies Western blot (WB) analysis was performed as previously 

described (Vivo et al., 2013). Proteins were visualized by enhanced 

chemiluminescence (western blotting substrate Thermo Scientific). Images were 

acquired by ChemiDoc Imaging System equipped with a CCD camera (Bio-rad) 

through the Quantity One software. Representative experiments are shown for each 

protein. Full-length western blots are represented in supplementary information 

(supplemental data S5, S6, S7). Band intensities were quantified by ImageJ Software 

(http://imageJ.nih.gov/ij/ free software, NIH), normalized respect to loading control 

and reported as fold enrichment respect to control sample. List of antibodies used in 

this study: anti-ARF C-18, anti-p53 DO-1, anti-FAK C-20, anti-actin I-19, anti-ß-

Tubulin H-235, anti-GAPDH 6C5 (Santa Cruz Biotechnology, Heidelberg, Germany), 

anti-pFAK (Tyr397) (BD Milan, Italy; clone 14 for wb), anti-DAPK-55 mouse 

monoclonal antibody (Sigma Aldrich, Milan, Italy); anti-pTyr 05-321 (Upstate from 

Millipore, Darmstadt, Germany), anti- PKC alpha, beta and gamma M110 (Millipore, 

Billerica, Massachusetts, Stati Uniti), anti- 6XHIS monoclonal antibody (Clontech), 

anti-AKT, anti-phospho PKC pan ßII Ser660 (Cell Signaling Technology, Leiden, The 

Netherlands).  

IF and localization were performed as described in 
15

, using anti His antibody to 

detect WT and mutant ARF proteins. 

Spreading efficiency HeLa cells were detached by trypsinization and replated at a 

density of 1x10
5
/ml. Live phase-contrast images were acquired using a Nikon Eclipse 

microscope (Tokyo, Japan) with 20x objective. 5 fields were randomly selected in the 

plates for each experimental point and images acquired with the Image Pro Plus 
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software (Media Cybernetics). To quantify the percentage of rounded cells, for each 

transfection point, we counted rounded (and adherent) cells in five different fields and 

pooled data from three to five experiments as described in 
14

.  

Statistical analysis Data presented in this work derive from experiments performed 

at least in triplicate (biological replicates), except when differently stated. The sample 

size of each experimental point is reported in the relative figure legend, as well as the 

specific statistical analysis performed. In all the experiments in which single cells were 

analysed 5 to 10 fields were randomly selected in the coverslip for each experimental 

point. t-test and ANOVA were performed using GraphPad Prism 5.0 software.  

 

ABBREVIATIONS 

PKC Protein Kinase C; ARF Alternative Reading Frame; FAK Focal Adhesion 

Kinase; DAPK Death Associated Protein Kinase; ECM Extra Cellular Matrix; Bim 

Bisindolylmaleimide I. 
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Supplementary information 

 

Figure S1. GFP tagged WT and mutant ARF proteins of the “A” series were expressed in 

NIH3T3 cells by transient transfection and subcellular localization analysed by fluorescence 

microscopy 24hrs later. Images were taken with a Nikon fluorescent microscope. a) 
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Visualization of the two different WT ARF localization patterns are shown on the top, while 

a schematic image of the nuclear and nucleolar staining is shown below IF panels. b) The 

histogram, representing the mean of three independent experiments, reports the percentage of 

transfected cells showing diffuse nuclear localization pattern. Standard deviations are also 

shown.  

 

 

 

 

Figure S2. a) Spreading efficiency of HeLa cells transiently transfected with the indicated 

siRNAs for 48hrs, detached by trypsinization and replated at a density of 1x10
5
/ml. 

Cumulative data are expressed as a mean value ± SEM of 4 independent experiments. Number 

of cells analyzed for each experiment: siSCR (200), siARF (200), siPKC (200). Asterisks 

indicate statistically significant differences by RM One-way Anova with Tukey’s correction 

between siARF and siPKC and the control siSCR, P < 0.05. b) spreading efficiency of Hela 

cells treated with BIM as described in Figure 4. Cumulative data are expressed as a mean value 

± SEM of 5 independent experiments. Asterisks indicate statistically significant differences 

by two-tailed paired t-test. P=0.002 
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Figure S3. Immunoprecipitated cell extracts were analysed by IB as indicated. Panels of 

inputs are shown on the right. FAK band intensities in IP panels are shown below each 

corresponding band, and are expressed as ratio between pFAK and tFAK band intensity. 

Representative western blots are shown. 
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Figure S4. Equal number of H1299 cells were transfected with the indicated ARF and mutant 

expression vectors and empty vector as control (CMV). Seventy-two hours after transfection 

the cell number in each sample was analysed with the Scepter cell count as described in M & 

M section. The plot represents the relative cell number obtained with the indicated plasmids 

respect to the empty vector set arbitrarily as 1. Error bars indicate s.d. n=3 independent 

experiments. Asterisks indicate statistically significant differences. P values were determined 

with one-way ANOVA, using Tukey’s multiple comparisons test (P<0.05) 
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CHAPTER 5 

 

CONCLUSIONS 

 

In primary cells, p14
ARF

 is not detectably expressed, but in response to 

aberrantly sustained and increased levels of mitogenic signals, ARF transcription is 

induced and this protein promotes cell cycle arrest and/or apoptosis through both p53 

dependent and independent pathways. Moreover, since its initial discovery, ARF was 

described with a prevalent nucleo/nucleolar localization, playing an important role in 

its stability and tumor suppressor functions.  

Nevertheless, recently, different groups demonstrated that ARF is 

overexpressed in a significant fraction of human tumors (Eischen et al., 1999; 

Sànchez-Aguilera et al., 2002, Basso et al., 2005) and, in specific cases, a strong 

delocalization to the cytoplasm has been observed (Ferru et al., 2006). In line with this, 

Vivo and colleagues (2013) reported for the first time that, in some cell lines 

expressing high levels of p14
ARF

, PKC activation induces its stabilization through 

phosphorylation and the protein predominantly accumulates in the cytoplasm, where 

it appears not able to efficiently control cell proliferation.  

On the other hand, it has been suggested by several reports (Humbey et al., 2008; Chen 

et al., 2010; Xie et al., 2014; Xie et al., 2016) that in some tumors ARF can perform a 

pro-proliferative function depending on cellular and genetic context and on the state 

of tumor aggressiveness, through molecular mechanisms not yet clear.  

 

Data presented in this thesis and in the provided papers add additional support to this 

new pro-proliferative role of ARF, giving further insight about the molecular 

mechanism.  

We demonstrated for the first time that ARF promotes cell survival helping cells to 

spread. During cytoskeleton remodelling induced by cell spreading, we observed a 

strong PKC activation resulting in an ARF protein levels increase and stabilization in 

the cytoplasm. Along with this phenomenon, ARF is recruited to cell periphery at 
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points of focal adhesions, where co-localizes and interacts with the active Focal 

Adhesion Kinase (pFAK
Y397

). Accordingly, we demonstrated that ARF silencing, 

causes spreading defects and actin cytoskeleton disorganization in both tumoral (Hela 

and H1299) and immortalized (HaCaT) cells. Interestingly, we also found that the 

reduced expression as well as catalytic activity inhibition of PKC causes spreading 

defects similarly to ARF depleted cells, highlighting the involvement of ARF 

phosphorylated form in this new function in adhesion/spreading process.  

In line with this, our rescue experiments show that the ARF T8D mutant (mimicking 

the phosphorylation status of the protein) displaying a nucleo/cytoplasmic localization, 

promotes cell spreading in ARF depleted cells, unlike the T8A version, which is 

mainly localized in the nucleus and preserves the ARF tumor suppressor functions. 

 

ARF-FAK-DAPK circuit 

The observation that, during spreading, ARF silencing causes a reduction of 

FAK tyrosine phosphorylation and apoptotic cell death in HeLa and HaCaT cells led 

us to deeply investigate this relation. We reported that the cytoskeleton disorganization 

induced by ARF KD causes anoikis through a mechanism dependent on the Death-

Associated Protein Kinase. The DAPK is a pro-apoptotic serine/threonine kinase, that 

is activated and induces apoptosis following cytoskeleton–matrix disengagement 

(Chen et al., 2006; Kuo et al., 2003). A link between ARF and DAPK has been 

previously shown. In particular, DAPK can promote ARF phosphorylation in vitro 

leading to p53 dependent apoptosis in vivo (Raveh et al., 2001). However, we 

demonstrated here that ARF silencing results in a DAPK increase upon cell 

detachment, thus suggesting that p14
ARF

 blocks DAPK functions avoiding DAPK-

dependent cell death. In line with our data, it has been reported that DAPK-dependent 

apoptosis is accompanied by a specific decrease of FAK tyrosine phosphorylation 

(Wang et al., 2002). Furthermore, in H1299, where DAPK expression is undetectable, 

we do observe neither apoptosis nor pFAK decrease upon ARF depletion. Finally, 

restoration of DAPK expression in ARF KD H1299 cells induces a strong decrease of 

FAK levels and cell death, in line with what we observed in HeLa cells. It is worth to 

report that, during cell spreading, DAPK interaction with FAK is favoured when cells 

express T8A, suggesting that in absence of ARF phosphorylation a stable DAPK/FAK 
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complex in which FAK is not activated exists. This model is supported by our data 

showing that only the T8D protein expression but not the T8A version, is able to induce 

pFAK stabilization and cell proliferation. 

On this basis, we propose that, far from being simply inactive to restrain cell growth, 

ARF confers pro-survival properties by helping some tumor cells to spread and 

protecting them from anoikis, through inhibition of DAPK-induced apoptosis and 

stabilization of FAK (Fig.4).  

One of the main way through which ARF regulates the function of its binding 

partners is promoting their sumoylation (Sherr, 2006). In agreement with this, we 

demonstrated that ARF promotes FAK sumoylation, which has been associated with 

increased protein stability, catalytically activation and preferential nuclear localization 

(Kadare et al., 2003). In the nucleus, FAK impairs transcription of p53-dependent 

genes either through the direct binding with p53 or promoting its proteasome 

degradation by MDM2 (Golubovskaya et al., 2005; Lim et al., 2008).  

Interestingly, our data show that in Hela cells, although p53 pathway is partially 

disabled by HPV-encoded E6 mediated degradation, an increase of p53 protein levels 

and of its transcriptional targets Puma and Apaf-1 (preliminary data not shown) occurs 

upon ARF depletion, suggesting that the observed apoptosis induction could be in part 

mediated through p53. In line with this, it has been observed that also during 

spermatogenesis, ARF expression transiently occurs and prevents p53-dependent 

apoptosis (Gromley et al., 2009).   
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Figure 4: Schematic model of the ARF-DAPK-FAK pathway. 
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Different groups demonstrated that ARF induces autophagy, a molecular 

mechanism that seems to be a double-edged sword in cancer because can have both 

pro- and anti-metastatic roles depending on cellular context and state of tumor 

aggressiveness. While Abida and Gu (2008) reported that autophagy contributes to 

ARF tumor suppression functions, Humbey and colleagues (2008) demonstrated that 

autophagy induced by p19
ARF

 is necessary to promote lymphoma survival both in vitro 

than in vivo, in response to nutrient deprivation. These data suggest that ARF induced 

autophagy may be cytoprotective only in specific type of tumors.  

Interestingly, we demonstrated that the conserved domain 100-132 (in ARF 

exon 2 encoded region), that it has been described to be necessary to induce autophagy 

(Budina-Kolomets et al., 2013), is able to promote FAK activation and cell survival, 

during spreading (Vivo et al., 2017).  

Autophagy can promote metastatic processes protecting matrix-detached epithelial 

cells from anoikis (Fung et al., 2008). In line with these data, Sandilands and 

colleagues (2011) demonstrated that in detached cells or in cells with low level of 

activated FAK, the block of autophagy induces anoikis. 

Since it has also been reported that FAK can induce autophagy through ERK/JNK/c-

JUN signalling cascade (Nollet and Miranti, 2013), we speculate that, in response to 

different stress, such as the cytoskeleton re-organization during spreading, ARF can 

induce autophagy promoting FAK activation to safeguard tumor cell survival.   

On the other hands, it has been reported that AuTophaGy-related (ATG) 

proteins (a group of proteins required for progression through specific stages of the 

autophagy pathway) are localized at focal adhesions where they show co-localization 

with FAK (Sandilands et al., 2011). Moreover, the basal autophagy regulates cell 

spreading, in particular cell protrusion extension (Kadandale and Kiger, 2010), and is 

required for focal adhesion turnover and cell migration (Sharifi et al., 2016). Again, it 

is possible to suppose that ARF can promote cell spreading through its ability to induce 

autophagy.  

In line with this hypothesis, our preliminary data seem to indicate that during 

spreading, the block of autophagic flux through chloroquine treatment induces HeLa 

cells to acquire rounded shape similarly to ARF depleted cells.  
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Further experiments will be necessary to validate our hypothesis and clarify the 

possible involvement of autophagy in this new ARF function in adhesion/spreading 

and/or in tumor progression.  

Another unresolved question deriving from our data is whether this new ARF 

role in cell spreading could represent a way through which this protein performs its 

oncogenic activity. Indeed, the adhesion/spreading process is strictly connected to cell 

migration, which is essential to promote tumor invasiveness and metastasis. 

Interestingly, it has been reported that p19
ARF

-deficient MEFs display a round 

phenotype, similar to the one reported in our study, accompanied by activation of the 

PI3K-Rac1 pathway and increased migration properties (Guo et al., 2003 and 2004).  

In line with the aforementioned article, our preliminary experiments show that ARF-

depleted HeLa cells acquire increased migration properties.  

On the other hand, adhesion/spreading interplay has a well-documented role not only 

in malignancy but also in physiological processes such as embryogenesis. Indeed, it 

has been reported that during the late stages of extraembryonic endoderm (ExEn) 

differentiation in cultured embryoid bodies (EBs), p19
ARF

 expression is required for 

the proper migration and sorting of differentiating ExEn cells to their final location on 

the EB periphery (Li et al., 2013). Further analyses are necessary to clarify this point. 

Finally, our data show that ARF involvement in cytoskeleton organization 

relies on an evolutionary conserved function/mechanism, suggesting a possible 

physiological role, as the mouse p19
ARF

 protein is able to rescue spread morphology 

defect caused by p14
ARF

 silencing. Moreover, the ARF exon 2 encoded region (aa. 65-

132), which shows a stronger degree of identity between human and mouse respect to 

the exon 1ß, is required for FAK binding, its activation and cell spreading. These 

observations add an important element in the understanding of the function(s) of exon 

2 sequences, in which the majority of mutations in human cancer have been identified 

so far.  
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