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Abstract 

 Chromic acid anodizing has been used for almost a century to enhance corrosion protection 

of aerospace alloys. For some applications, hydrothermal sealing in hexavalent chromium-

containing solution is required to enhance further the corrosion resistance but, due to environmental 

concerns, the use of hexavalent chromium must be discontinued. Good progress has been made to 

replace chromates during anodizing but comparatively less effort has focused on the sealing 

process. In this work, porous anodic oxides were produced by traditional and modified tartaric 

sulfuric anodizing (TSA) processes and sealed in hot water, chromate and cerium based solutions. 

The sealing behaviour of a film with relatively coarse porosity, generated at high voltage 

(traditional TSA), was compared to the sealing behaviour of a film with finer porosity and 

generated at reduced potential (modified TSA). After sodium chromate sealing, the two anodizing 

cycles produced film with similar anticorrosion performance. 

 Conversely, after hot water or cerium sealing, the finer oxides generated at low voltage 

(modified TSA) provided much better corrosion resistance. EIS performed in-situ during sealing 

revealed that chromate sealing is very aggressive to the porous skeleton compared to the other 

sealing treatments. Therefore, the original morphology has little effect on the final performance, 

since both fine and coarse oxides are substantially attacked. In contrast, the oxide morphology has a 

substantial effect when sealing is performed in hot water or cerium-based solution. Overall, it is 

possible to obtain films with anticorrosion performance equivalent or improved compared to that 

obtained by traditional TSA anodizing cycle sealed with chromate by combining the low voltage 

anodizing cycle with the cerium-based sealing.  

This thesis focuses also on the trivalent chromium pre-treatment (TCP) and its commercially 

available variants. The rationale for the focus of this paper is that in the near term, the aeronautics 

industry needs to move away from Cr(VI) towards a more benign commercially available chemical 
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treatment that can help protect the aluminium alloys used by that industry. TCPs are currently 

available commercially and have undergone numerous tests by multiple organizations to establish 

their effectiveness in reducing corrosion of both bare and painted aluminium alloys. 
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Chapter 1 - Aluminium Alloys 

1.1 Introduction 

 Aluminium has a relatively short history. Today it is extensive used for its high corrosion 

resistance and its extreme versatility that make it suitable for a wide range of products from the 

essential construction material for generations of aircraft and space vehicles. Aerospace applications 

need strength, toughness, corrosion resistance and light weight; so aerospace industry has provided 

the greatest stimulus for alloy development and corrosion research, which continues even today.  

Aluminium and its alloys offer a diverse range of desirable properties that can be matched 

precisely to the demands of each application by the appropriate choice of composition, temper and 

fabrication mode. Aluminium can be rolled, forged, slit and sheared and shaped by extrusion 

through dies of a multiplicity of shape or can be cast directly into shaped products. Aluminium and 

its alloys are readily recyclable, with recycled scrap providing an increasingly important and 

growing contribution of 23 Mt per year to the more than 60 Mt total annual metal supply [1, 2].  

 

1.2 Aluminium and its alloys 

 In nature, aluminium exists as the mineral bauxite, rich in alumina. Because of its high 

reactivity with oxygen, aluminium requires a large amount of energy to be extracted from its ore. In 

1885 aluminium was isolated as a pure element by Hans Christian Oerstedand. Its commercial 

production started in 1886 [3]. Nowadays bauxite production has reached 200 million tonnes 

worldwide; where Australia and China are the largest producers. Four tons of bauxite is used to 

produce two tons of alumina, which then produces one ton of aluminium [4].  

Aluminium is silver-white with an atomic number of 13, an atomic weight of 27 and a 

melting point 683°C. It is a soft, ductile, non-toxic and paramagnetic material, with a high electric 

and thermal conductivity and has an excellent resistance to corrosion [3, 5, 6]. Aluminium reacts 
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with oxygen to produce coherent thin oxide aluminium (Al2O3) layer of 1-5 nm on its surface that 

protects the metal from further corrosion. 

It can be easily extruded to form bars and tubes and rolled to foils, sheets and plates and is 

suitable for low cost recycling processing [3, 5]. These properties make it irreplaceable for food and 

pharmaceutical packaging. Additionally, it can be cast, mainly by sand and/or die casting, and 

machined. It is widely used in both mechanical and electrical conducting applications in modern 

industry. 

 

1.3 Description of alloys and tempers 

 Traditionally, the global prescription of aluminium alloys for use in engineering was 

difficult owing to the alloy designations differing from country to country [3]. For this reason, the 

introduction of an International Alloy Designation System (IADS) introduced in the 1970s was a 

welcome rationalization and advance. The IADS, and its European Standard equivalent (EN573), 

give each wrought alloy a four-digit number of which the first digit is assigned on the basis of the 

major alloying element(s), as is summarized in Table 1, along with the associated temper 

description [2, 3]. 
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Table 1 - Aluminium alloy and temper designation systems [3]. 

 

 

Since additions of alloying elements have great effect on the performance of aluminium 

alloys, an international designation system was required. The American aluminium association 

developed a designation system for wrought and casting alloys [7]. A four-digit numerical system 

was adopted; XXXX for wrought and XXX.X for cast aluminium alloys, respectively, where the 

latter incorporate three digits followed by a decimal. The first digit indicates the aluminium alloy 

series, representing its main alloying element. For example, 2XXX is for the aluminium-copper 

alloy series where the main alloying element is copper. In the 3XXX series; manganese is the main 

Alloy identification systems Temper designations
(Added as suffix letters of digits to the alloy number)

Suffix letter F, O, H, T or 

W indicates basic 
treatment of condition

First suffix digit indicates 

secondary treatment used 
to influence properties

Second suffix digit for 

condition H only indicates 
residual hardening

As-fabricated

Annealed-

wrought 

products only

Cold-worked 

(strain 

hardened)

Heat treated 

(stable)

Cold-worked only

Cold-worked and partially 

annealed

Cold-worked and stabilized

Partial solution plus natural 

ageing

Annealed cast products only

Solution plus cold-work

Solution plus natural ageing

Artificially aged only

Solution plus artificial ageing

Solution plus cold-work 

plus artificial ageing

Solution plus artificial ageing 

plus cold-work 

When a second digit is used 

for T tempers, or a third is 

used for condition H, this 

indicates a specific treatment, 

e.g. amount of cold-work to 

secure specific properties.

Refer to specifications or 

manufacturer ’s literature for 

details.

Examples of alloy and temper 

descriptions:

(1) 5152 H36= aluminium 

magnesium alloy, cold 

worked and stabilized to 

develop a ¾ hard 

condition.

(2) 6061 T6= aluminium 

magnesium silicon alloy 

solution heat treated 

followed by artificial 

ageing.

1/4 Hard

1/2 Hard

3/4 Hard

Hard

Extra Hard

F

O

H

T

1

2

3

1

2

3

4

5

7

8

9

2

4

6

8

6

Solution plus stabilizing

94-digit

series

Aluminium

content or main

alloying elements

1 xxx

2 xxx

3 xxx

4 xxx

6 xxx

7 xxx

8 xxx

99.0 % minimum

Copper

Manganese

Silicon

Magnesium and

Silicon

Zinc

Other

The first digit indicates the 

alloy group (as above), the 

second indicates 

modifications to alloy or 

impurity limits and the last 

two identify the aluminium 

alloy or indicates the 

aluminium purity
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alloying element. The second digit indicates the modification or level of impurities, if the second 

digit is zero it means an original alloy. The last two digits identify different aluminium alloys in a 

group of aluminium alloys [5-9]. Table 2 summarises the aluminium alloy series, according to their 

microstructure precipitates, reactivity towards the aluminium matrix as well as the applications of 

these series. 

Table 2 - Designation, precipitates and applications of wrought and cast aluminium alloys [9]. 

Wrought 

Alloys 

Cast 

alloys 
Description 

Typical precipitates and 

their reactivity 
Applications 

1XXX 1XXX 
Aluminium of 99% 

minimum purity. 

Al3Fe [Cathodic], Al3Mn2 

[Cathodic], α-(Fe-Mn)Si 

[Cathodic ] 

Electrical conductors, 

chemical process equipment 

foils, decorative finishes, 

food & pharmaceutical, 

packaging 

2XXX 2XXX 
Aluminium-copper 

alloys 

Al2Cu [Cathodic ], 

Al2CuMg [Anodic], 

Al(Cu-Fe-Mn) [Cathodic], 

Mg2Si 

Pistons, rivets, fuselage for 

aircraft 

constructions, fuel thanks 

3XXX 3XXX 

Aluminium-

manganese 

alloys. 

Silicon and copper 

and/or magnesium 

alloys. 

Al3Mn[Cathodic], 

Al6Mn[inert], 

Al3(Fe-Mn)[ Cathodic], 

Al6(Fe-Mn) [Cathodic]. 

Foil, roofing sheets, 

manufacturing beverage cans 

4XXX 4XXX 
Aluminium-silicon 

alloys 

Si [Cathodic], α-AlFeSi 

[Cathodic], α-Al(Fe-Mn)Si 

[Cathodic ] 

 

5XXX 5XXX 

Aluminium 

magnesium 

alloys 

β-Al8Mg5 [Anodic], 

Al6(Fe-Mn) [Cathodic] 

Transportation structural 

plates, large tanks for petrol, 

milk, grain, pressure vessel, 

architectural components. 

6XXX Unused 

Aluminium 

magnesium-silicon 

alloys 

β-Mg2Si[Anodic], Al5 

Cu2Mg8Si8 [Cathodic] 
 

7XXX 7XXX 

Aluminium-zinc-

magnesium alloys. 

Aluminium and zinc 

alloys. 

η-MgZn2 [Anodic], 

Al7Cu2Fe [Cathodic] 
 

8XXX 8XXX 

Miscellaneous 

alloys, e.g. 

Aluminium-lithium 

alloys. 

Aluminium-tin 

alloys. 

 
Nuclear energy installation, 

Bottle caps and soft bearing 
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 The mechanical properties of aluminium alloys can be modified by different tempers, via 

selecting the temperature and time of heat treatment duration, to change the size, volume fraction 

and type of precipitated particles that greatly affect the mechanical properties of the treated alloy 

[10, 11]. These techniques and others are designated with different tempers as shown in Table 3 

[12].  

 

Table 3 - Temper designations for techniques applied for alloy performance enhancement [12]. 

Temper Enhancement techniques 

F As-fabricated 

O Annealed 

H Strain-or work-hardened 

W Solution heat treated 

T Treated 

 

 A second treatment is represented by the first suffix digit, for example, cold worked. A 

second suffix digit indicates second cold worked and annealed [3] as in Table 4. 
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Table 4 - Mechanical properties of AA 2024 at different tempers [3, 13]. 

Temper Temper details 

Tensile 

Strength 

(MPa) 

Yield 

strength 

(MPa) 

Hardness 

(HB) 

O Annealed. 185 75 47 

T3 
Solution heat treated, cold worked and 

natural aged. 
485 345 120 

T351 

Solution heat treated at 495°C, quenched, 

stretched 1.5-3% and natural aged for several 

months. 

470 325 120 

T4 Solution heat treated and naturally aged. 470 325 120 

T6 
Solution heat treated and artificial aged at 

190°C for 12hrs. 
475 395 - 

T8 
Solution heat treated, cold worked and 

artificially aged at 190°C for 12hrs. 
480 450 - 

 

More common heat treatment tempers are added as suffix letters and digits to the alloy number. For 

example, temper T351 means that the alloy is solution heat treated, quenched, stretched 1.5-3% and 

naturally aged for several months [3]. In general T3 and T4 are used to indicate naturally aged 

tempers with combination of high strength and good damage tolerance as in AA2024-T3 alloy. 

AA2024-T351 alloy is one of 2xxx heat treatable aluminium alloys and is the focus of this study. 
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1.4 Pure aluminium  

 Corrosion resistance of unalloyed aluminium increases with increasing metal purity. The use 

of the 99.8% and 99.9% grades is usually confined to those applications in which very high 

corrosion resistance or ductility is required. The chemical industry can advantageously use these 

purities for handling some products, but because of their low mechanical strength, they are 

sometimes used as a cladding material for a stronger substrate. Decreasing the purity results in 

modestly increased strength for the 99% and 99.5% grades, which still retain a high resistance to 

corrosion.  

The 99% pure metal may be considered the more useful general-purpose metal for lightly 

stressed applications such as cooking utensils. These alloys are known as the 1xxx series alloys, and 

the last two of the four digits indicate the minimum aluminium percentage. For example, 1050 is 

aluminium with a minimum purity of 99.5%. Alloys for electrical use are of special composition 

(i.e., AA1350 conductor alloys). 

 

1.5 Aluminium-manganese alloys 

 Manganese has a relatively low solubility in aluminium. The maximum solubility of 

manganese in α solution is 1.82 wt.% at the eutectic temperature of 657.8°C [14]. A minor addition 

of manganese to Al-Cu series alloys can modify the precipitation process, forming fine precipitates 

that restrict grain boundary movements resulting in greater age hardening and an increased cathodic 

polarization, providing higher corrosion resistance [15]. Additions of manganese of up to 1% form 

the basis for an important series of non-heat-treatable (3xxx series) wrought alloys, which have 

good corrosion resistance, moderate strength and high formability. These alloys are applied in 

construction; beverage cans industries, pressure vessels and gasoline and oil tanks [8, 14, 16]. 
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1.6 Aluminium-magnesium alloys 

 Magnesium has a relatively high solubility in aluminium. Magnesium intensifies 

precipitation, which considerably improves the alloy strength. The improvement in performance is 

highly dependent on the amount of added magnesium [14]. However, additions of magnesium as an 

alloying element are known to reduce solid solubility of copper in Al-Cu-Mg alloys [17, 18].  

Aluminium-magnesium alloys are widely used in construction, chemical storage tanks as 

well as in automotive and marine industries [8], because of their weld ability and relatively high 

corrosion resistance. 

 

1.7 Aluminium-silicon alloys 

 Silicon additions alone can lower the melting point of aluminium while simultaneously 

increasing fluidity, which is very important and is largely the basis of aluminium casting alloys and 

the associated shape-casting industry [19]. Wrought 4xxx series aluminium–silicon alloys are used 

extensively as cladding materials for brazing alloys. Where free machining characteristics are 

required, this may be achieved by additions of cadmium, antimony, tin or lead. 

 

1.8 Aluminium-copper alloys 

 Copper is one of the most common alloying additions to aluminium since it has both good 

solubility and a significant strengthening effect by its promotion of age-hardening response. 

Because of the low solid solubility of copper in aluminium solid solution, copper is added with less 

than 5 wt.%. The addition of copper along with magnesium in 2xxx series alloys has a great effect 

on the strength and toughness of the alloy, but conversely decreases the alloy weld ability and 

corrosion resistance [3, 8, 19]. Hence, aluminium-copper alloys are widely used in the aerospace 

industry, for example as pistons, rivets and fuselage skin in aircraft construction. 
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1.9 Aluminium-zinc alloys 

 Zinc is added to certain types of casting alloys, and wrought binary aluminium-zinc alloys 

are used as clad layers to sacrificially protect aerospace and armour alloys. However, binary alloys 

show a limited age hardening response, which is significantly increased by the addition of 

magnesium and copper. The high-strength 7xxx series alloys derive much of their strength from the 

precipitation of the Z-phase (MgZn2) and its precursor forms. The heat treatment of the 7xxx series 

alloys is complex, involving a range of heat treatments that have been developed to balance strength 

and stress corrosion cracking performance [20]. 

 

1.10 Other alloys classified as 8xxx alloys 

 Certain alloys high in lithium are classified as 8xxx alloys. This designation also includes 

alloys containing high levels of iron and manganese near the ternary eutectic content, such as 8006, 

that have useful combinations of strength and ductility at room temperature and retain their strength 

at elevated temperatures. These properties are due to the fine grain size stabilized by the finely 

dispersed iron-rich second phase. These alloys are used in nuclear power generation for applications 

demanding resistance to aqueous corrosion at elevated temperatures and pressures. Other alloys 

included in the 8xxx series are bearing alloys commonly used in cars and trucks which are based on 

the Al–Sn system (e.g., 8280 and 8081) [21]. 
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Chapter 2 - Aluminium alloy 2024 

2.1 Introduction 

 AA2024 alloy belongs to the aluminium-copper alloy 2xxx series characterized by high 

strength, but suffers from low corrosion resistance. In general, this series is used where strength and 

toughness are required. Therefore, AA2024 alloy is normally used in aircraft structure, rivets, truck 

wheels, and screw machine products. 

 

2.2 Chemical compositions 

 It is well-known that the desired mechanical properties of aluminium alloys especially high 

strength are developed, as a result of a heterogeneous microstructure which is produced by careful 

addition of alloying elements and heat treatment [12]. The additives in AA2024 alloy are within the 

range limit of their solubility in the aluminium solid solution. The chemical compositions of 

AA2024 alloy in weight percentage as a maximum and a minimum are presented in Table 5 [13]. 

 

Table 5 - Composition limits of AA2024 in wt.% [13]. 

Element Cu Mg Fe Mn Si Zn Cr Ti Others Al 

Min. 3.8 1.2 0.0 0.30 0.0 0.0 0.0 0.0 0.0 Bal. 

Max. 4.9 1.8 0.9 0.5 0.5 0.25 0.10 0.15 0.15 Bal. 

  

 Copper is the major alloying element and plays a major role in strengthening of aluminium. 

It is added in a percentage within the solid solubility. The maximum solid solubility of copper in 

aluminium is 5.67 wt.% at 548°C and decreases to less than 0.25 wt.% at room temperature [11].  
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Magnesium accelerates the hardening process by enhancing the strength through 

precipitation of particles during aging. The presence of manganese increases the resistance of 

aluminium against pitting corrosion [22]. 

 

2.3 Microstructure development in Al-Cu alloys 

 Chemical composition and presence of Cu, Mg and other elements alongside impurities such 

as Si and Fe produce insoluble compounds distributed uniformly in the aluminium matrix. These 

intermetallics are identified as Al2Cu, Al2CuMg, Al2Cu2Fe, Al7Cu2Fe, Al12Si(FeMn)3, 

Al20Cu2(FeMn)3, Al20Cu3Mn3 in AA2024-T3 with different electrochemical behaviour of anodic 

and cathodic cells [22-24]. Intermetallic particles with their comparatively large size, up to 50 μm, 

are randomly distributed in the AA2024 alloy microstructure with spherical and irregular shapes, 

and are visible with low magnification optical microscopy. In AA2024 alloy Cu and Mg are the 

highest wt.% alloying elements compared to other elements where, they provide precipitate 

enhancement. Precipitates are formed during natural ageing by nucleation and growth from 

supersaturated solid solution. They can be in different shapes such as laths, needles and plates with 

small sizes ranging from a few angstroms to 0.1 μm [3, 25]. Cu in aluminium does not simply 

precipitate, but rather it forms metastable precipitates phase, before finally forming the equilibrium 

phase, such as Al2Cu called θ-phase and Al2CuMg called S-phase. The S-phase (Al2CuMg) is one 

of the key strengthening precipitates in AA2024 alloy. 

However, this phase can cause a significant reduction in the corrosion resistance [15]. A 

preferential growth of precipitates at grain boundaries leads to copper-depleted zones, as a result of 

Cu consumed by the formation of these precipitates, as suggested by Zhang et al. [26] in their 

studies on AA2024 alloy, accumulation of S-phases along the grain boundaries in a chain formation 

lead to intergranular corrosion. 
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Chapter 3 - Fundamentals of corrosion 

3.1 Introduction 

 Corrosion is an electrochemical reaction of a metal with its environment [27]. So that a 

phenomenon of corrosion happens are necessary i) an anode (an active metal), where electrons are 

produced or lost; ii) a cathode (a more noble and less active metal), where electrons are consumed 

or gained; iii) a conductor for the transport of electrons; iv) an ionic conductor which is so called 

electrolyte for transport of ions in a solution.  

If one of the four components is missing, corrosion cannot occur [27]. There are two types 

of reaction occurring on the surface of a corroding metal, i.e. oxidation and reduction reactions. 

Oxidation reactions release electrons at the anode to be consumed by reduction reactions at the 

cathode. Corrosion occurs at a rate determined by the equilibrium between these opposing 

electrochemical reactions. A potential difference between the anodic and cathodic reactions on the 

metal surface represents the driving force for the corrosion reaction. 

  

3.2 Electrochemical reactions 

 Electrochemical reactions result in an electrical current which depends on the difference in 

potential between the metal and the solution. The metal is oxidized forming M
n+

 cations of the 

metal which are freed into the solution [8]: 

 

𝑀 → 𝑀𝑛+ + 𝑛𝑒− (Loss of electrons, resulting in anodic current(-ve current))   (1) 

 

 A flux of electrons within the metal is called anodic current flow Ia, by equal consumption 

of these electrons from the ions in the solution and transformed to another chemical species. Ions 
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are reduced in the solution resulting in a cathodic current flow Ic, flowing from the solution to the 

metal. 

 

𝑀𝑛+ + 𝑛𝑒− → 𝑀 (Reduction of ions, resulting in cathodic reduction current Ic(+ve current))   (2) 

 

 When there is no external source for electric current, the circuit formed by the metal and the 

solution is an open electric circuit. This means the anodic current and the cathodic current are 

flowing in opposite directions at equal rates. At this point, the intersection between two polarization 

curves, defines the corrosion intensity Icorr and the corrosion potential Ecorr which is also called 

solution potential [28]. 

The study of corrosion phenomena is done through these polarisation curves which are 

determined experimentally, either by varying I and measuring E, or by varying E and measuring I. 

Kinetics of anodic and cathodic electrochemical reactions are represented by the relationship 

between the potential E and the corresponding electrical intensity I [8, 27]. The driving force for a 

corrosion reaction is the potential difference between anodic and cathodic reactions on the metal 

surface. Under this driving force a current flows through the corrosion cell [16, 29, 30]. The 

standard electrode potential for a reaction is related to the change in free energy by the equation. 

 

∆𝐺0 = −𝑅𝑇𝑙𝑛𝑘   (3) 

 

Where ΔG
0
 is the standard Gibbs free energy change of the reaction, R is the universal gas constant 

(R= 8.3144595 J mol
-1

K
-1

), T the absolute temperature and k is the equilibrium constant. 

 

𝑀𝑒 → 𝑀𝑒𝑛+ + 𝑛𝑒− 𝑒𝑞𝑢𝑎𝑙𝑠 𝑀𝑒𝑛+ + 𝑛𝑒− → 𝑀𝑒   (4) 
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The potential of this electrode is then given by the Nernst equation: 

 

𝐸 = 𝐸0 +
𝑅𝑇

𝑛𝐹
𝑙𝑜𝑔𝑀𝑛+   (5) 

 

Where n is the number of electrons involved (valence electrons) and F is Faraday ’s constant 

(F = 96.485,3365 C mol
-1

), E
0 

is the standard potential for the metal and [Me
n+

] is the concentration 

of the metal ions in the solution. 

 

 

Figure 1 - Pourbaix diagrams for the Al-H2O system at 25°C [16]. 
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 The Nernst equation is very important in electrochemistry as it relates the cell potential E to 

the standard potential E
0
 and concentration of the electro-active ion [27, 30]. It is used for 

construction of Pourbaix diagrams shown in Figure 1, which shows the thermodynamically most 

stable species at different combinations of electrode potential, pH and ion activity [27, 31].  

The Pourbaix diagram for the Al-H2O system, Figure 1, shows different regions for the 

behaviour of aluminium in water. In the corrosive region, corrosion occurs by general dissolution of 

the metal. In the immune region, the metal is immune because the potential of the metal is so far 

depressed that the reaction is not thermodynamically possible. In the passive region, the potential of 

the metal is elevated and the metal becomes covered with a protective oxide film, isolating the 

metal from its environment. The metal is possibly resistant to corrosion in areas where the film is 

stable, because this thin layer, usually based on oxide, leads to a decrease in the rate of the anodic 

reaction. 

 

3.3 Electrochemical polarisation 

 The current density due to the anodic or cathodic reaction at Ecorr is called the corrosion 

current density, Icorr, and is a measure of the corrosion rate. Hence polarization can be defined as 

potential change from the equilibrium potential to the corrosion potential [32]. When the metal is 

not in equilibrium with the solution  |Ia| > |Ic| the metal is corroding, where |Ia| < |Ic| the metal is 

plated from solution. This means that Nernst equation is not obeyed so the actual potential is 

different from the equilibrium potential which can be obtained by subtracting 𝐸 − 𝐸0 =  which is 

known as the polarization potential or overvoltage. 

A polarization curve of metal that shows active-passive behaviour is shown in Figure 2, 

which represents the potential versus current density. The polarization curve shows three specific 

behaviours: active, passive and transpassive. To be noted is the fact that the anodic polarization 

(dissolution) curve in Figure 2 is only possible for those metals capable of passivation, i.e. able to 
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form an oxide layer which protects the metal from further corrosion. Examples of metals and alloys 

which passivate include aluminium, titanium and stainless steels. 

 

 

Figure 2 - Schematic diagram of polarization behaviour of metal [33]. 

 

 As can be seen in the figure, the scan starts from point 1 and progresses in the positive 

(potential) direction until termination at point 2. There are a number of notable features on the 

curve. The open circuit is located at point A. At this potential the sum of the anodic and cathodic 

reaction rates on the electrode surface is zero. As a result, the measured current will be close to 

zero. 

At point A, the potential is called the corrosion potential Ecorr or open circuit potential and 

the current density Icorr can be evaluated. For potentials higher than this point, the corrosion current 

density increases as potential value increase and reaches a maximum at the passivation potential at 
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point B (Epp). Further increase in potential over Epp, a passive region (region E), is formed, because 

of aluminium forming an oxide film Al2O3 on the surface, reducing the corrosion rate, where the 

formed oxide film is characterised by poor ionic/electronic conductivity. A sudden rapid increase in 

current as indicated at point F is the pitting potential Ep and defined as breakdown of the passive 

film where pits grow and propagate with the breakdown of the oxide layer above Ep. 

 

3.4 Corrosion of aluminium alloys 

 Aluminium is a very reactive metal with high affinity for oxygen. This is indicated from its 

position on the electromotive force series. The metal is nevertheless highly resistant to most 

atmospheres and to a great variety of chemical agents. This resistance is due to the inert and 

protective character of the aluminium oxide film which forms on the metal surface and reforms 

rapidly if damaged. The protective oxide film on aluminium attains a thickness of about 1 nm on 

freshly exposed metal in seconds. The protective oxide film inhibits corrosion because it is both 

resistant to dissolution and a good insulator that prevents electrons produced by oxidation of the 

metal from reaching the oxide/solution interface, where either the cathodic reduction of oxygen or 

water can take place.  

Corrosion of aluminium is an electrochemical process that involves the dissolution of metal 

atoms; so it can take place only once the protective oxide film has been dissolved or damaged. 

Aluminium is amphoteric in nature, meaning its oxide film is stable in neutral conditions but 

soluble in acidic and alkaline environments. The thermodynamic stability of aluminium’s oxide 

film is expressed by the potential versus pH (Pourbaix) diagram shown in Figure 3 [34]. 
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Figure 3 - Pourbaix diagram for Aluminium. 

 

 This diagram indicates the theoretical circumstances in which aluminium should show 

corrosion (forming Al
3+

 at low pH values and AlO
2-

 at high pH values), passivity due to 

hydrargillite, that is, Al2O3 3H2O (at near-neutral pH values) and immunity (at high negative 

potentials).  

The nature of the oxide actually varies according to temperature, and above about 75°C 

boehmite (Al2O3 H2O) is the stable form. It should be noted that the potential versus pH diagram 

does not indicate one of the most important properties of aluminium, that is, its ability to become 

passive in strongly acidic solutions of high redox potential such as concentrated nitric acid. The 

corrosion behaviour of aluminium alloys is dependent on the existence of intermetallic particles on 

the surface of the alloy [35]. These intermetallic particles have different electrode potentials from 



Chapter 3 – Fundamentals of corrosion 

44 

 

the α-Al matrix, creating microgalvanic cells (anodic sites). On the other hand, these intermetallics 

result in a deformed and thinner oxide film layer, allowing the alloy to be more prone to corrosion 

[36, 37]. 

For aluminium-copper alloys, e.g. AA2024-T351 alloy, due to the large difference of 

electrode potentials between the copper-containing particles and the aluminium matrix, the resultant 

galvanic cells initiate corrosion in the presence of aqueous solution [21]. In addition, the thinner 

Al2O3 film grown on top of those intermetallic particles leads to an increase in the rate of dissolving 

film thus accelerating corrosion. The dissolution of aluminium in aqueous solution is as follows 

[38]. 

The dissolution of aluminium in water: 

 

𝐴𝑙 → 𝐴𝑙+3 + 3𝑒−   (6) 

 

It undergoes a possible hydrolysis reaction as follows: 

 

𝐴𝑙+3 + 𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)+2 + 𝐻+   (7) 

 

𝐴𝑙 + 2𝐻2𝑂 → 𝐴𝑙𝑂2
− + 4𝐻+ + 3𝑒−   (8) 

 

𝐴𝑙 + 2𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)2+ + 𝐻+ + 3𝑒−   (9) 

 

𝐴𝑙 + 3𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)3+ + 3𝐻+ + 3𝑒−   (10) 

 

2𝐴𝑙 + 4𝐻2𝑂 → 𝐴𝑙2𝑂3 ∙ 𝐻2𝑂 + 6𝐻+ + 6𝑒−   (11) 
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Dissolution of aluminium in chloride 

 

𝐴𝑙+3 + 𝐶𝑙− → 𝐴𝑙𝐶𝑙+2   (12) 

 

A faster reaction is: 

 

𝐴𝑙𝑂𝐻+2 + 𝐶𝑙− → 𝐴𝑙(𝑂𝐻)𝐶𝑙+   (13) 

 

The dissolution of aluminium in sulphate aqueous solutions is as follows [38]: 

 

2𝐴𝑙+3 + 3𝑆𝑂4
2− → 𝐴𝑙2(𝑆𝑂4)3   (14) 

 

𝐴𝑙𝑂𝐻+2 + 𝑆𝑂4
2− → 𝐴𝑙(𝑂𝐻)𝑆𝑂4   (15) 

 

The above reactions illustrate the reactions leading to the corrosion of aluminium. 

 

3.4.1 General dissolution 

 As a general rule, general dissolution occurs spontaneously in strongly acidic or strongly 

alkaline solutions (as predicted by the Pourbaix diagram), but there are specific exceptions. Thus, in 

concentrated nitric acid, the metal is passive and the kinetics of the process is controlled by ionic 

transport through the oxide film, while inhibitors such as silicates permit the use of some alkaline 

solutions (up to pH 11.5) to be used with aluminium.  

Even where corrosion may occur to a ‘limited’ extent, aluminium is often preferred to other 

metals because its corrosion products are colourless. 
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3.4.2 Pitting corrosion 

 This is the most commonly encountered form of aluminium corrosion. In certain near-

neutral aqueous solutions, a pit once initiated will continue to propagate as the solution within the 

pit becomes acidified and the alumina is no longer able to form a protective film to prevent pit 

growth [39]. Pitting corrosion is generally associated with localised breakdown of the protective 

film on the surface of a metal when exposed to environment containing aggressive Cl
-
 ions [4]. Pits 

may form at scratches, mechanical defects or stochastic local discontinuities in the oxide film. 

Pitting occurs only in the near neutral pH range since the oxide is unstable in a bulk sense under 

acidic or alkaline conditions. Chlorides facilitate the breakdown of the film by forming AlCl
3
, 

which is also usually present in the solution in the pits. When aluminium ions migrate away from 

the pits, alumina precipitates as a membrane, further isolating and intensifying local acidity, and 

sustained pitting of the metal results. 

Pitting corrosion in aluminium alloys follows three stages: 

 

1. Pits initiation: the presence of intermetallic particles on the surface work as preferential site 

for pits to initiate, because of difference in potentials with the substrate. 

 

2. Metastable pits: pits initiate and then grow up to a point below the critical pitting potential 

and then re-passivate for a short time (at low current pits re-passivate). At the end of this 

stage the protective thin film breaks down. 

 

3. Pits stabilization: Pits propagate again and reach stability in growth. This occurs when the 

potential reaches a certain level called critical pitting potential (i.e. 10
−2

 A/cm
2
 is required 

for stable growth of pits to be maintained in the aggressive solution) [15, 31, 39].  
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 There are several factors playing important roles in the process of pitting corrosion in 

aluminium and aluminium alloys. Two electrochemical reactions, i.e. anodic and cathodic reactions, 

occur in a pit as illustrated in Figure 4.  

 

 

Figure 4 - Schematic diagram for pit propagation mechanism of aluminium alloy in chloride 

solution adapted from reference [21]. 

 

Anodic reaction proceeds with dissolution of aluminium at the base of the pit: 

 

𝐴𝑙 → 𝐴𝑙+3 + 3𝑒−   (16) 
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 In order to initiate pitting, aggressive anions are necessary. Chloride anions can migrate 

from the bulk electrolyte to pits in order to satisfy charge neutrality. This leads to the decrease in 

pH by hydrolysis as follow: 

 

𝐴𝑙+3 + 3𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)3+ + 3𝐻+   (17) 

 

𝐴𝑙+3 + 𝐻2𝑂 + 𝐶𝑙− → 𝐻+ + 𝐴𝑙𝑂𝐻𝐶𝑙+   (18) 

 

2𝐻+ + 2𝑒− → 𝐻2   (19) 

 

2𝐴𝑙 + 6𝐻+ + 4𝐶𝑙− →  3𝐻2 + 2𝐴𝑙𝐶𝑙2
+   (20) 

 

In neutral/alkaline environment: 

 

2𝐻2𝑂 + 2𝑒− →  𝐻2 + 2𝑂𝐻− (Hydrogen evolution)   (21) 

 

𝑂2 + 2𝐻2𝑂 + 4𝑒− → 4𝑂𝐻− (Oxygen reduction)   (22) 

 

 While the shape of the pits can vary rather significantly depending on the alloy type and 

environment, pit cavities are nominally hemispherical. This distinguishes pits from other forms of 

corrosion such as intergranular or exfoliation corrosion. Pitting is strongly influenced by the alloy 

type and microstructure, electrolyte concentration and temperature.  
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3.4.2.1 Influence of alloy composition 

 Alloying composition determines the formation of second-phase particles such as Al2CuMg 

and Al2Cu that appear on the aluminium alloy surface. Alloying noble elements like Mo, Cr, W, Nb 

or Cu increase the pitting potential, where alloying active elements like Ga, Hg, Mg or Zn decrease 

the pitting potential. Alloys containing high alloying levels of Cu are basically more prone to pitting 

corrosion than those with lower levels or no Cu [40]. 

 

3.4.2.2 Effect of electrolyte concentration 

 Pit nucleation rate increases with an increase in Cl
-
 ion concentration and applied anodic 

potential, during polarisation testing [41]. However, Berzins et al. [42] suggested that, there is no 

threshold for the chloride concentration below which pitting will not occur. In fresh water, the 

chloride ions directly affect the corrosion potential of aluminium. The higher the chloride ion 

concentration, the more negative the corrosion potential is, resulting in a faster corrosion of a metal 

[43]. The outcome is that chloride ions accelerate the corrosion process. Whether due to oxide film 

breakdown or supporting the anodic reaction an explanation is still unclear [43]. 

 

3.4.2.3 Effect of variation in pH 

 Duan Weng and Shizhong Huo studied the effect of pH on pit development [44]. They 

found that the pit’s growth in aluminium in seawater (3-4 % NaCl) was autocatalytic in the early 

stage. This can be related to pH decrease and chloride concentration increase within the pit as a 

result of the formation of hydrogen ions by hydrolysis of aluminium ions. Furthermore, the violent 

hydrogen release from pit causes the fluctuation of anodic current. Mc Cafferty et al. [45] calculated 

the pH within the internal pit to be around of 2.28. However, over a range of pH values of 4 to 

approximately 8.5, the pitting potential was found to be independent of pH [45, 46]. Tabrizi et al. 
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[47] studied the effect of pH values from 8 to 13 for alkaline solutions on corrosion rate of 

aluminium in long term corrosion, and showed that the corrosion rate increased rather slowly with 

an increase in pH value from 8 to 10; however, when pH value is above 10, much larger increase in 

corrosion rates were obvious. Their interpretation was that below pH value of 10, the specimens 

developed pit-like morphology under the thin film. At pH value of 11, cavities developed in the 

crystalline film can allow greater solution access result in an increase in corrosion rate. At pH value 

of 12, cavities developed into pits followed by rapid disintegration and dissolution of the exposed 

substrate [47]. 

 

3.4.2.4 Effect of temperature 

 Temperature can greatly affect passive film stability, for instance, the oxide film on 

aluminium surface can be unstable at temperature above 230°C [6, 8, 48]. Further, in chloride 

solutions pitting potential Epit of aluminium decreases very slowly with an increase in temperature 

from 1 to 30°C and decreases faster with the increase of temperature up to 70°C. It was found that, 

at lower temperatures, the film is a single layer of bayerite, while at higher temperatures it consists 

of an inner layer of pseudo-boehmite and an outer layer of bayerite [49]. 

 

3.4.3 Galvanic corrosion 

 Aluminium is anodic to many other metals, and when it is joined to them in a suitable 

electrolyte which may even be a damp, porous solid, the resultant potential difference (see Table 6) 

causes a current to flow and result in considerable corrosion. Corrosion is most severe when the 

resistance of the electrolyte is low, for example, seawater. In some cases, surface moisture on 

structures exposed to an aggressive atmosphere can give rise to galvanic corrosion. 
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Table 6 – Comparison of measured corrosion potentials according to ASTM G-69. 

Alloy/material Corrosion potential (VSCE) 

Al (99.999) -0.75 

Cr (99.9) +0.23 

Cu (99.999) +0.00 

Fe -0.55 

Mg -1.64 

Zn -0.99 

1100 -0.74 

2014-T6 -0.69 

2024-T3 -0.60 

3003 -0.74 

5052 -0.76 

5154 -0.77 

6061-T4 -0.71 

6061-T6 -0.74 

6063 -0.74 

7039-T6 -0.84 

7055-T77 -0.75 

7075-T6 -0.74 

7075-T7 -0.75 

7079-T6 -0.78 

8090-T7 -0.75 
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 The corrosion potentials for aluminium alloys with some other standard corrosion potentials 

based on measurements made according to ASTM G69 are shown in Table 6. In practice, copper, 

brasses and bronzes in marine conditions cause the most trouble. The danger from copper and its 

alloys is enhanced by the slight solubility of copper in many solutions and its subsequent 

redisposition on the aluminium to set up active local cells. This can occur even when the copper and 

aluminium are not originally in contact: for example, when water running over cuprous surfaces 

subsequently comes into contact with aluminium. Similarly, water washings from lead can cause 

pitting of aluminium.  

The controlling factor with lead and cuprous washings is the solvency of the water, so soft 

water is the most damaging in this respect. The successful utilization of these metals in close 

proximity to aluminium, for example, in plumbing and roofing, therefore requires careful design to 

avoid the transfer of a harmful solute to the aluminium. Contact with steel, though less harmful, 

may accelerate attack on aluminium, but in some natural water and other special cases, aluminium 

can be protected at the expense of ferrous materials. Stainless steels may increase attack on 

aluminium, notably in seawater or marine atmosphere, but the high electrical resistance of the two 

surface oxide films minimizes bimetallic effects in less aggressive environments. Titanium appears 

to behave in a similar manner to steel. Aluminium–zinc alloys are used as sacrificial anodes for 

steel structures, usually with trace additions of tin, indium or mercury to enhance dissolution 

characteristics and to render the operating potential more electronegative. Aluminium-55% zinc 

alloys applied as hot dip coatings are also used extensively as a protective coating for steel for 

roofing and automotive applications. 

Additions of elements such as zinc, tin, indium and mercury activate aluminium 

electrochemically and are 4 of the 10 elements that can enhance aluminium dissolution in aqueous 

electrolytes when contained as solute in the aluminium solid solution. The full list of these 

activators is antimony, zinc, lead, cadmium, thallium, bismuth, tin, indium, gallium and mercury in 
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the order of increasingly negative potential. When these activators are mixed, the potential is 

controlled by the dominant activator which is the one with the highest melting point. Aluminium 

alloys are similarly activated by additions of the activator elements to the electrolyte. These 

additions may be used to turn aluminium into an anode plate for dry cells or metal-air batteries. The 

best addition for this purpose has been found to be tin together with an addition of magnesium. The 

magnesium addition is required to prevent a higher level of activation, and hydrogen production 

associated with the use of activators that can form hydrides [50].  

Aluminium in contact with galvanized steel may accelerate attack on the zinc coating and 

this is particularly noticeable when there is an unfavourable area ratio, as with galvanized fittings on 

aluminium sheets. In alkaline solutions, however, aluminium may be preferentially attacked. The 

copper-bearing aluminium alloys are nobler than most other aluminium alloys and this can 

accelerate galvanic attack on these, notably in seawater. Mercury and all the precious metals are 

harmful to aluminium. Bimetallic corrosion of aluminium is a frequent cause of service-related 

corrosion failures, as the rate of attack can be rapid and corrosion can be severe and unexpected. In 

automotive applications, galvanic corrosion of aluminium is found in accelerated vehicle and 

component tests, particularly where aluminium is in direct electrical and electrolytic contact with a 

nobler metal. The solution is generally simple and involves providing sufficient protection using 

combinations of paints and barrier tapes to ensure that either electrical or electrolytic continuity is 

broken.  

 

3.4.4 Crevice corrosion 

 If a crevice is formed between two aluminium surfaces, or between the surfaces of 

aluminium and a non-metallic material (i.e., a polymer) localized corrosion may occur within the 

crevice in the presence of electrolyte. Crevice corrosion is due to the formation of a local cell, since 

at the mouth of the crevice (whether it is submerged or not) the concentration of oxygen is higher 
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than that within the crevice. The difference in oxygen concentration leads to a difference in local 

corrosion potentials leading to corrosion in the ‘less noble’ area, which is the oxygen depleted zone. 

 Concomitantly, the oxygen rich zone (i.e., the mouth) assumes the role of the cathode. This 

mode of attack is often termed ‘differential aeration cell corrosion’ or ‘concentration cell corrosion,’ 

which are terms that may be applied more generally to describe corrosion phenomena other than 

crevice corrosion. Crevice corrosion can be a very problematic form of corrosion in an engineering 

sense, as the sites for crevice corrosion are often difficult to avoid in ‘real’ constructions which 

include welded lap joints, rivetings, valve seats, or even deposits that arise in service [51]. Crevice 

geometry is the governing factor that determines the susceptibility, or conversely the resistance, to 

crevice corrosion. As a result, crevices are defined by their degree of tightness and their depth 

(distance from the mouth). The general rules for the severity of crevice corrosion are presently 

under active research for several metal alloy systems, including aluminium [51-53]. Typically, in 

aluminium, tighter crevices lead to more rapid initiation of attack (owing to less electrolyte and a 

steeper oxygen concentration profile being achieved more rapidly). In addition, increasing crevice 

depth may also increase the likelihood of crevice initiation. Elimination of crevices should be done 

at the design stage where possible, and when unavoidable, they should be kept as open and shallow 

as possible or possibly even sealed with some type of appropriate non-crevice-forming sealant. 

 

3.4.5 Intergranular corrosion 

 Intergranular corrosion can be summarized as a process whereby the grain boundary region 

of the alloy is anodic to the bulk or adjacent alloy microstructure. Corrosion is often microgalvanic 

(or even nanogalvanic), with activity developing as a result of some heterogeneity in the grain 

boundary structure. In aluminium–copper alloys, precipitation of Al2Cu particles at the grain 

boundaries leaves the adjacent solid solution anodic and more prone to corrosion [54]. With 

aluminium-magnesium alloys, the opposite situation occurs, since the precipitated Mg2Al3 phase is 
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less noble than the solid solution. However, serious intergranular attack in these two alloys may be 

avoided, provided correct manufacturing and heat treatment conditions are observed. Intergranular 

corrosion differs from pitting corrosion.  

 While intergranular corrosion may initiate from a pit, propagation of intergranular corrosion 

proceeds more rapidly than pitting corrosion, and while both may have a deleterious effect on 

corrosion fatigue, intergranular corrosion is more detrimental as the sharper corrosion front 

compared to a more rounded pit front is a higher stress concentrator that reduces the number of 

cycles to failure. 

 

3.4.6 Exfoliation corrosion  

 Exfoliation corrosion [55] of aluminium alloys is also frequently due to intergranular 

corrosion. Exfoliation corrosion is a form of intergranular corrosion associated with high strength 

aluminium alloys. Alloys that have been extruded or otherwise worked intensively, with a 

microstructure of elongated grains, are mostly prone to this damage [55]. In exfoliation corrosion, a 

separation or detachment of non-corroded layer or layers from the bulk alloy occurs due to the 

action of the volume of the corrosion products at the interface of the separation [56]. It was 

suggested that the initiation of exfoliation corrosion is related to the breaking down the passive film 

[52].  

 Exfoliation corrosion is observed on aircraft components, for example, around riveted or 

bolted components or wing brackets. Testing for exfoliation corrosion is carried out by a number of 

ASTM tests. AA2xxx, AA5xxx, and AA7xxx alloys with elongated microstructure have high 

susceptibility to exfoliation corrosion while aluminium alloy series AA1xxx, AA3xxx and AA6xxx 

have excellent resistance to exfoliation corrosion [52, 56, 57]. 
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3.4.7 Stress-corrosion cracking 

 Stress-corrosion cracking is a time-dependent, predominantly intergranular fracture mode in 

aluminium alloys that requires the simultaneous presence of a susceptible alloy, a sustained tensile 

stress and a corrosive environment. The minimum tensile stress required to cause stress-corrosion 

cracking in susceptible alloys is usually small and significantly less than the macroscopic yield 

stress [58, 59]. The effect of an electrolyte is to cause the metal to fail prematurely at lower stresses 

due to stress-corrosion cracking, as indicated in Figure 5.  

 

 

Figure 5 - Schematic diagrams of four stages in the initiation of stress-corrosion cracks with takes 

place in an intergranular corrosion cracking form. σ denotes the direction of applied stress and the 

fourth stage is the propagation stage [60]. 

 

 Both film rupture and anodic dissolution take place in the process of stress-corrosion 

cracking in AA2xxx aluminium alloys [61]. However, anodic dissolution and hydrogen-induced 
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cracking occur in the mechanism of stress-corrosion cracking in AA7xxx aluminium alloy [57]. 

 Compression stress tends to decrease susceptibilities to stress-corrosion cracking, because it 

acts as a crack closer, conversely tensile stress accelerates the crack opening [60, 62]. stress-

corrosion cracking can be minimised by relieving of residual stress, avoiding applied stress as well 

as by reducing the precipitation of second phase particles at the grain boundaries [56]. 

 

3.5 Corrosion behaviour of copper-containing aluminium alloys  

3.5.1 Introduction 

 There is significant interest in the corrosion behaviour of copper-containing aluminium 

alloys [63]. Copper, whether it is present at matrix regions or as a constituent of secondary phases, 

is generally considered to affect the corrosion resistance. Generally, the microstructure of the 

aluminium alloys has a large influence on their corrosion behaviour. The dominant feature of alloy 

microstructures is the distribution of second phase particles that contains high concentrations of 

alloying and impurity elements [64]. These particles often exhibit distinctly different 

electrochemical characteristics compared to the surrounding matrix microstructure. In particular, the 

presence of intermetallic compounds of copper, which act as cathodic sites, play an important role 

in the corrosion behaviour of aluminium alloys [65]. 

 

3.5.2 Effect of intermetallic particles 

 Localized corrosions in AA2024-T3 alloy often occurs in the vicinity of copper containing 

second phase particles [40]. It can strongly depend on anodic/cathodic activities of Cu-rich 

intermetallic particles such as S-phase (Al2CuMg), θ-phase (Al2Cu), and particles of varying 

composition containing Al, Cu, Mn, and Fe with copper as the main alloying element. The 

importance of intermetallic particles as initiation sites for corrosion have been discussed from many 
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authors [65-68]. The susceptibility of aluminium alloys to localised corrosion strongly depends on 

the distribution and electrochemical properties of intermetallic compounds and second phase 

particles [69, 70]. Several studies have shown that the susceptibility of commercial Al-Cu alloys to 

corrosion is principally due to copper-rich, magnesium-rich and iron-rich intermetallics [17, 18, 66, 

71]. 

 

3.5.2.1 Al2Cu (θ-phase) 

 Al2Cu (θ-phase) contains about 70 Al and 27 Cu (at.%) [72]. The presence of Cu in the -

phase supports cathodic transfer reaction [73]. It has a cathodic behaviour with respect to the Al 

matrix [74, 75]. The open circuit potentials of the Cu and Al2Cu are ≥ 0.75 V more positive than 

that of Al in inert solutions ranging from pH 2 to 12 [73, 76, 77]. In aerated/deaerated solutions 

containing 0.2 to 1.0 M chloride ions, the OCP of θ-phase ranges from -590 to -700 mV [74]. The 

higher potential of θ-phase with respect to the aluminium matrix plays an important role in 

determining the susceptibility of Al-Cu alloys to localized corrosion. Scully et al. [78] suggested 

that the presence of Al2Cu phase can make the potential of the Al matrix sufficient to promote pit 

initiation. It was also reported that the precipitation of θ-phase at the grain boundaries make Al-Cu 

alloys susceptible to intergranular corrosion [75, 79].  

 

3.5.2.2 Al2Cu Mg (S-phase) 

 A further, important copper-rich intermetallic particle is the S-phase (Al2CuMg). These 

particles are the ones most often observed in AA2024-T3 alloys. Chemical composition of S-phase 

Al2CuMg is 56.3±3.8Al, 20.4±1.5 Cu and 21.9±2.4 Mg in at.% [80]. S-phase (Al2CuMg) is anodic 

with respect to the aluminium matrix [15, 81, 82], causing severe pitting corrosion of the alloy 

when exposed to a chloride-containing environment [23, 82-86]. The mechanism for pitting 
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associated with S-phase intermetallic particles in AA2024-T3 has been discussed by Buchheit et al. 

[23]. They found that corrosion of AA2024-T3 starts from the dealloying of anodic S-phase 

particles as a result of galvanic corrosion driven by the galvanic couple of anodic S-phase and the 

cathodic aluminium matrix. The schematic illustration of corrosion mechanism is illustrated in 

Figure 6. 

 

 

Figure 6 - Schematic illustration of corrosion mechanism of Al2CuMg phase in Al alloys [83]. 

 

 The S-phase dissolution leaves Cu-rich particle remnants or as a residue, which were 

cathodic to the aluminium matrix and consequently caused the peripheral formation of pits around 

the particle. The presence of S-phase is a major contributor to the poor corrosion resistance of 

AA2024 alloy. Moreover, S-phase in Al-Cu alloys is responsible for the initiation of intergranular 

corrosion which could also lead to stress corrosion cracking (SCC) [81]. 
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Chapter 4 - Corrosion preventions 

4.1 Inhibitors 

 Corrosion of aluminium and aluminium alloys can be controlled by use of inhibitors added 

to aggressive aqueous environments. For the purpose of this discussion, an inhibitor is a chemical 

substance, soluble in water, that slows the corrosion cell process on aluminium. The range of 

inhibitors that slow corrosion of aluminium is large, and there are a number of useful ways to 

deliver chemical inhibitors when corrosion is a risk. 

 Soluble corrosion inhibitors act by slowing either the anodic reaction or the cathodic 

reaction or both. This gives rise to a useful scheme for classifying chemical inhibitors. Those that 

slow the anodic reaction are referred to as ‘anodic’ inhibitors, those that slow the cathodic reaction 

are ‘cathodic’ inhibitors, and those that slow both reactions are ‘mixed’ inhibitors. 

For aluminium alloys, anodic inhibitors typically act to increase the pitting potential in 

electrochemical testing, or slow or suppress the onset of pitting in exposure testing. Even with good 

anodic inhibitors, pitting may occasionally occur if pre-existing defects on the alloy surface are 

weak enough. Additionally, anodic inhibitors may have no effect on slowing the growth of existing 

pits. Cathodic inhibitors are usually substances that slow the rate of the oxygen reduction reaction 

on aluminium alloy surfaces. By slowing down oxygen reduction, the companion aluminium 

oxidation reaction must also slow down. This results in an overall decrease in the corrosion cell 

kinetics, as well as a decrease in the free corrosion potential. For the best inhibitors, the decrease in 

the corrosion potential is usually to a value well below the alloy’s pitting or repassivation potential.  

Cathodic inhibitors have the advantage of being able to improve corrosion resistance at very 

low concentrations. For example, chromate added at micromolar concentrations to an aerated dilute 

chloride solution is enough to significantly reduce the rate of oxygen reduction leading to 

significant corrosion protection. Soluble corrosion inhibitors are usually ions in solution. Important 
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inorganic anions that inhibit aluminium corrosion include chromate, phosphate, permanganate, 

nitrate, vanadate, molybdate, tungstate and silicate. Cations of strontium, cerium and the 

lanthanides as well as zinc are inorganic cationic inhibitors. Organic substances that are inhibitors 

of aluminium corrosion include phosphonates, sulfonates, benzoates, thiols, azoles, amines, fatty 

acids and natural compounds such as tannins. Among these, special attention must be given to 

chromates.  

Chromate is an exceptionally powerful inhibitor of oxygen reduction and an excellent 

inhibitor of aluminium corrosion. Chromates are used across all industries as aluminium corrosion 

inhibitors. However, their use is becoming increasingly restricted over concerns for work-place 

safety and environmental pollution because chromates are human carcinogens. Inhibitors can be 

incorporated into coating systems in a variety of ways. Sparingly soluble inorganic compounds and 

ion exchange materials are used as corrosion inhibiting pigments in coating formulations. Inhibitor 

ions can be attached to reactive sites on coating resin polymers or directly applied to aluminium 

surfaces using an evaporable solvent. 

 

4.2 Conversion coatings 

 Aluminium alloys are often treated by conversion coating to convert the metal substrate to a 

corrosion resistant surface that more easily accepts and bonds to subsequently applied coatings [87, 

88]. This method of protecting aluminium and its alloys from corrosion by conversion coatings has 

been in use since 1915 [89]. The conversion coating process involves contacting the surface to be 

coated with an aqueous solution containing surface activators and coating-forming ingredients. 

 Conversion coatings can be applied to aluminium alloys by conventional techniques (rinse, 

immersion or spray) or by non-rinse processes. An important criterion for non-rinse formulations is 

that they do not leave water soluble salts in the pre-treatment film following reaction with the metal 

surface [90]. As a result, some formulations developed for rinse application are not suitable as non-
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rinse. Non-rinse processes give films of a generally uniform composition throughout the full film 

thickness apart from some concentration of the polymeric species in the surface regions of the film 

[90]. The thickness of the conversion film formed using the non-rinse processes can be controlled 

by the formulation concentration or by the thickness of solution applied to the surface. Conversion 

coatings are not as protective as anodized coatings, and in most cases, conversion coated surfaces 

are subsequently primed or painted. Conversion coatings are used for stand-alone corrosion 

protection when mild to moderate, occasionally condensing, atmospheric exposure conditions are 

expected, or for temporary corrosion protection. 

 

4.2.1 Chromate-based conversion coatings 

 Chromate conversion coatings are noted for their ability to self-heal. Self-healing refers to 

the ability of the coating to resist corrosion from scribes or defects in the coating. This phenomenon 

is attributed to the release of labile hexavalent chromium in the coating into an aggressive solution 

contacting the surface. The performance of the chromate conversion coatings has been attributed to 

several factors [91, 92]. In particular, chromate conversion coatings contain residual hexavalent 

chromium which provides a barrier that separates aggressive environments from the aluminium 

substrates [93]. Hexavalent chromium compounds adsorb on aluminium oxides so as to minimise 

the otherwise positive surface charge, which makes the films less susceptible to adsorption of 

chloride. Moreover, it provides barrier protection of aluminium matrix due to its hydrophobic 

character. Chromate conversion coating on aluminium alloys is generated by the reaction of the 

alloy with an acidic solution containing dichromate. The formation of chromate conversion coating 

on aluminium alloys requires the presence of fluoride at a pH of 1.2-1.9, to thin the oxide on the 

surface, thus allowing the charge transfer reactions to proceed [87, 91]. The chromate-fluoride baths 

contain about 3 to 4 g/l of chromic acid, 3 to 5 g/l of sodium dichromate, and about 1 g/l sodium 

fluoride. 
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The morphology and composition of the chromate conversion film can be influenced by the 

formulation of the bath, although structurally the films are composed of amorphous, hydrated 

Cr2O3 nH2O with an underlying, thin Al2O3 layer which has been penetrated by fluoride species. 

The temperature, pH and concentration of fluoride affect the growth rate of chromate conversion 

coatings. In particular, at low temperature thick coatings are obtained: the coatings produced above 

pH 2.5 are thin and less protective and finally too high fluoride concentration results in powdery 

and thin coatings which give poor corrosion resistance. The growth of chemical conversion coatings 

on high strength copper-containing aluminium alloys such as AA2024 and AA7075 is complicated 

by their heterogeneous microstructure, which includes a matrix phase and a variety of intermetallic 

particles of varying sizes and electrochemical behaviour. Meng et al. [94] suggested that the 

chromate conversion coating formation on intermetallic particles is dependent on several factors, 

such as electrochemical reactivity of the intermetallics, local pH, and the reaction between the 

intermetallic particles and the bath composition. Waldrop and Kendig [95] studied the nucleation 

and growth of chromate conversion coatings on AA2024-T3 aluminium alloys.  

The chromate conversion coating deposited on the aluminium matrix phase was found to 

nucleate and grow very fast in the form of nodules. Nucleation and growth of the conversion 

coating was observed to be faster on Al-Fe-Cu-Mn particles than on Al-Cu-Mg. This is due to the 

fact that Al-Fe-Cu-Mn intermetallic particles are more cathodically active than the matrix while the 

Al-Cu-Mg intermetallics are less cathodically active than the matrix thus supporting slow growth of 

coating [95, 96]. Chromate conversion coating formation and growth of on intermetallic particles 

strongly depend on the size, shape and composition intermetallic particles [95, 96]. This result is 

consistent with the observation by Hagans and Haas [97] observing that the matrix of the AA2024-

T3 aluminium alloys rapidly oxidise followed by slower oxidation copper-rich and iron-rich 

intermetallics under chromating bath conditions. 
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The corrosion protection provided by chromium-based conversion coatings on aluminium 

alloys can be influenced by many factors such as alloy composition, microstructure and enrichments 

of the alloying elements within the alloy. The microstructure and morphology of the surface of 

aluminium alloys is are factors that affect the nucleation, growth and protective properties of 

chromate conversion coatings. Liu et al. [98] studied the growth kinetics of chromate conversion 

coatings on high purity aluminium. They found that the addition of copper and gold to aluminium 

reduces the kinetics of growth of the coating. In the case of gold, increased addition further slows 

coating development. The results showed enrichments of copper and of gold developing in the alloy 

beneath the coating. Moreover Liu et al. [98] studied that chromate conversion coatings on Al-Cu 

and Al-Au alloys contain increased numbers of cathodic sites following achievement of the relevant 

maximum enrichments of the alloys.  

Several possibilities may then arise: the particles may physically weaken the bonding of the 

coating to the substrate; enhanced reduction of chromate may generate new coating material at a 

relatively high rate within the existing coating, with stresses leading to detachment; hydrogen gas 

may be evolved with pressures mechanically disrupting the pre-existing and newly forming coating 

near the alloy/coating interface [98]. Increased evolution of hydrogen may also slow down coating 

growth if the rate of reaction is under anodic control.  

Waldrop and Kendig [95] studied the difference in coating nucleation behaviour on the alloy 

matrix and on two distinct intermetallic phases. After a short immersion in a chromate bath, the film 

nucleation was reported to be faster on the Al-Cu-Fe-Mn particles than on the aluminium matrix, 

whereas that on the Al-Cu-Mg particles was considerably slower [95].  

Alodine 1200s is a hexavalent chromium-based pre-treatment from Henkel Corporation. The final 

solution is mixed from a powder and can be applied by immersion, spray, or wipe. Depending on 

the substrate alloy, the colour ranges from light tan to gold. It has been used as the control standard 
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by many researchers during testing of Cr(VI) alternatives [99]. The primary components are 

chromic acid, complex fluorides, and ferric compounds [100]. 

 

4.2.2 Trivalent chromium conversion coatings 

 Conversion coatings can be developed on aluminium using baths containing trivalent 

chromium [101, 102]. With the demand for a safer alternative, there is no question that there is a 

need to define and test a process that can readily be industrialized and can replace hexavalent 

chromium conversion coatings. The process needs to be able to provide a similar level of corrosion 

protection to that currently provided by Cr(VI)-containing treatments. However, it also needs to be 

devoid of the environmental complications associated with Cr(VI). It must comply with the 

European directives including REACH (Registration, Evaluation, Authorisation of Chemicals) 

[103], RoHS (Removal of Hazardous Substances) [104], WEEE (Waste Electrical and Electronic 

Equipment) [105], and ELV (End of Life Vehicles) [106], as well as the new regulations from 

OSHA (Occupational Safety and Health Administration) in the USA [107]. Not only must the 

Cr(VI) alternative be able to protect the aluminium substrate, but it also needs to be adaptable to an 

industrial process. In practice, it is desirable to develop a “drop-in process” that can easily replace 

the current procedure using hexavalent chromium. 

 

4.2.2.1 Formation of trivalent coatings 

 Trivalent Chromium Process (TCP) coatings formed during immersion develop through 

multiple chemical steps. The formation appears to be associated with a pH increase at the interface. 

The initial step is believed to be the dissolution of the air formed (native) oxide layer [108]. It is 

supposed that the oxygen reduction reaction (ORR) and possibly the hydrogen evolution reaction 

(HER) result in an increase in pH at cathodic sites. Aluminium is amphoteric and is therefore 
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susceptible to corrosion at both low and high pH values. The air-formed aluminium oxide is 

dissolved as a result of an increase in pH near the cathodic sites. It is generally assumed likely that 

dissolution of the air-formed oxide film to expose the bare aluminium is an essential first step in the 

formation of the TCP coating. It is also likely that the as-formed coating consists primarily of 

Cr(III) species such as Cr(OH)3, Cr2O3 and CrOOH.  

Research [108] also suggests that the Cr(III) forms on most areas of the aluminium alloy but 

not over all the Cu-rich intermetallics. Others [109] have suggested that the high potential 

difference at Al-Cu in 2024-T3 could inhibit the deposition of the film at these cathodic sites. Guo 

[110] indicates that the Cr(VI) coating on the surface of 2024-T3 has a non-uniform thickness and 

that it is known to be thinner above intermetallics. He suggests that further work should be done to 

see if this is the case for TCP - especially above the Cu-rich intermetallics. Although no Cr(VI) 

species were detected by the authors [108] immediately after coating formation (or in the TCP 

solution), Cr(VI) was sometimes observed after as little as one hour of air drying and in all coatings 

after immersion in air saturated NaCl or Na2SO4. Interestingly, they observed that the Cr(III) and 

Cr(VI) oxide peaks are not distributed uniformly over the entire TCP-coated surface but rather 

appear to be localized in and around pits. 

Liangliang, et al. [111] were able to show definitively that there is a significant pH increase 

during the formation of two different pretreatment conversion coatings - one a Cr(III) coating 

(Alodine 5900) and the other a Non-Cr system (Alodine 5200). They used a tungsten 

microelectrode to measure the interfacial pH change. They report that the pH increased from 3.9 to 

4.8 in the case of the Cr(III) TCP and from 2.5 to 6.9 for the non-Cr treatment.  

 

4.2.2.2 Structure of trivalent coatings 

 Early work by Nickerson [109] indicated that the NAVAIR TCP is essentially a zirconium 

and oxygen film with an embedded hydrated trivalent chromium oxide inhibitor species. NAVAIR 
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(Naval Air Systems Command) patented trivalent (Cr
+3

) chromium conversion coating chemistry 

for aluminium in 2002 [112]. Zirconium oxide coating alone has very little corrosion protection; 

however, by adding small amounts of trivalent chromium oxides and hydroxides, a non-toxic, non-

carcinogenic conversion coating (CC) is formed. A coating model based on zirconium oxide and 

Cr(III) species was proposed for the trivalent chromium coating. These authors proposed a three 

layer structure. The following three figures present simplified versions of the various proposed 

coatings. This has been done in order to make comparison of the different concepts possible. A 

simplified version of the TCP structure proposed by Nickerson [109] is presented in Figure 7. It 

shows an aluminium/coating interface having Al / O / F. The central layer is composed of 

zirconium and chromium oxides and the external layer is made up of Zr / Cr / O / F.  

 

 

Figure 7 - Simplified version of Nickerson's structure [99]. 

 

 Guo [110] indicated that the TCP (Alodine 5900) coating has a bi-layered structure 

primarily composed of Zr oxide with a small amount of Cr(III). This is shown schematically in 

Figure 8. She observed that there was an aluminium oxide and/or oxyfluoride at the interface 

between the AA2024-T3 substrate and the TCP coating. Guo and Frankel [113] report that the 

thickness of the layer depend on conversion time, with the film being 40-70 nm after 10 minutes. 
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Figure 8 – Guo’s concept of a two layer TCP structure [99]. 

 

 The work by Qi, et al. [114] with SurTec 650 also indicates that the coating formed on high-

purity aluminium consists of two layers (schematically shown in Figure 9). An inner aluminium 

rich layer having a thickness of a few nanometers, and an outer layer having a thickness that 

increases significantly with time of immersion in the coating bath. They propose that the protective 

characteristics of the coating are primarily from the inner layer. The absence of diffraction patterns 

also suggests that the coating is amorphous. 

Coating thickness was determined from multiple measurements along the length of 

ultramicrotomed cross sections and found to be about 93 nm after a 600 s immersion. This is in 

reasonable agreement with the work by Guo [110]. According to Qi, the trivalent chromium 

conversion coating formed on the high purity aluminium consists of two main layers. The outer 

layer, which constitutes most of the coating thickness, consists of AlF3, Al2O3, AlOxF, Cr(OH)3, 

CrF3, Cr2(SO4)3, ZrO2 and ZrF4 species. The inner layer is aluminium-rich, with the presence of 

oxide and fluoride species. They believe that the inner coating layer provides the main corrosion 

protection. 

  

 



Chapter 4 – Corrosion preventions 

69 

 

 

Figure 9 – Structure of TCP coating based on Qi’s results [99]. 

 

 While the three structure concepts are not identical there is a substantial amount of 

agreement. All see an aluminium-fluoride-oxygen inner layer. The outer layer (or outer two layers 

in the case of Nickerson) consist of zirconium / chromium (III) / oxygen. Both Nickerson and Qi 

report the presence of fluoride in the outer layer, but Guo does not. Qi observes the presence of 

sulphur throughout the depth of the coating, but neither Nickerson nor Gao report this. Qi attributes 

the sulphur to sulphur in the coating bath. Dardonaa and Jaworowski [115] employed in situ 

spectroscopic ellipsometry to monitor the development of a TCP film in real time. The film was 

developed on pure (99.998%) aluminium using 15% SurTec 650. The authors were able to confirm 

that the chemical thinning of the native oxide is a requirement for the initiation of TCP film 

formation on aluminium. The initial reduction in the thickness of the native oxide would increase 

the probability of electron tunneling as well as the electric field across the oxide enabling the 

migration of Al ions. In addition they were able to identify three distinct periods during film-

development: (i) an initial induction period of approximately 100 s. During this period there is no 

significant growth of the film and the authors assume the chemical thinning of the native oxide 

occurs during this time; (ii) a linear growth period during which the TCP film develops at a constant 
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rate of 0.4 nm s
-1

 to a thickness of about 50 nm; and finally (iii) a logarithmic growth period to an 

ultimate film thickness of 125 nm after 880 s. 

 

4.2.2.3 Electrochemical behaviour of TCP-coated aluminium alloys 2024-T3 

 Li et al. [108] studied the formation of the TCP coating on AA2024-T3. They present open 

circuit potential (OCP) data during the formation of the coating. They note that within the initial 50-

75 seconds the OCP displays a negative shift of more than 400 mV and equate this to the 

dissolution of the air-formed aluminium oxide. After going through a minimum, the OCP recovers 

slightly to achieve a reasonably steady state. They repeated the test with a thicker oxide and note 

that the cathodic shift in OCP is slower, but the final OCP values for the thick surface oxide and the 

thinner surface oxide are within 50 mV of each other. They conclude that once the oxide is 

dissolved the TCP formation likely proceeds in an identical manner considering the similarity in the 

OCP values. In addition, the research revealed little difference in OCP values between the TCP-

coated and TCP-uncoated samples. 

Qi, et al. [114] report similar behaviour of the OCP in naturally aerated SurTec 650. Initially 

there is a rapid decrease in the OCP followed by a gradual rise to a relatively stable value. He also 

proposes that the initial fall in potential is due to thinning of the native oxide film. In Qi’s case, the 

initial rapid decrease in potential is reported to be 350 mV. This is comparable to that reported by 

Li, et al. (400 mV), despite the fact that Li’s research is on AA2024-T3 and Qi’s data is for a high-

purity electropolished aluminium - in addition, the research was carried out with two different TCP 

solutions - Qi uses SurTec 650 and Li used Alodine 5900. 

Potentiodynamic curves [108] for TCP-coated and TCP-uncoated samples carried out in 

0.5 M Na2SO4 revealed that both the anodic and cathodic currents were substantially attenuated for 

the TCP-coated sample. The Rp value is inversely proportional to the corrosion rate, so as the Rp 

increases the corrosion rate decreases. The Rp values found for TCP-coated samples were 
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approximately 10 times that of the non-TCP coated sample - indicating that the TCP is providing 

some protection to the alloy. 

Potentiodynamic polarization curves for AA2024-T3 in aerated dilute Harrison’s solution 

(0.35 wt.% (NH4)2 SO4 and 0.05 wt.% NaCl in distilled water) reported by Guo et al. [113] 

indicated that the breakdown potential (Eb) for the surface treated with TCP was 200 mV higher 

than the non-coated sample; however, similar behaviour was observed for a non-TCP-coated 

sample that had undergone desmutting (acid treatment). They suggest that this indicates desmutting 

is a critical step for improving corrosion performance. This observation would seem to agree with 

findings that indicate the corrosion protection provided by TCP is sensitive to the pretreatment 

process. The cathodic polarization curves indicate that the oxygen reduction reaction on the 2024-

T3 substrate is suppressed by the presence of the TCP coating. This is in agreement with early work 

that was carried out by Nickerson and Lipnickas [109] who observed that the trivalent chromium 

coating inhibits the initiation of corrosion through suppression of the oxygen reduction reaction. In 

addition, the authors also comment that their electrochemical studies indicate that the trivalent 

chromium coating exhibits significantly lower protection with respect to the hexavalent chromium 

coating. 
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4.2.3 Other non-chromate conversion coatings 

 The hexavalent chromium present in several coating systems is known to be carcinogenic 

and environmentally hazardous [116-118]. This is the reason why the development, testing and 

usage of chromate-free conversion coating systems are increasing.  

 

4.2.3.1 Zirconium-based conversion coating 

 Zirconium-based conversion coating on aluminium alloys is generated by the reaction of the 

alloy substrate with a zirconium-based bath. Film formation occurs by interaction of the 

fluorozirconate with hydroxides at the surface of the metal substrate. Zirconium-based conversion 

coating is assumed to form by the precipitation of zirconium oxide due to an increase in pH 

(hydrogen evolution at cathodic sites leads to a local increase in pH) of the bath solution at the 

metal oxide/liquid interface. The solubility of the coating compound decreases when the pH 

increases, resulting in precipitation of coating material. 

Zirconium, aluminium, oxygen and fluorine are the main constituents of the conversion film, 

with zirconium accounting for about 36% of the total weight [90]. It has been considered that 

zirconium species are bonded to the hydrated aluminium film covering the aluminium surface [90]. 

From in-depth elemental profiles through the resultant film, the film has been considered to be 

multi-layered, with Al2O3 adjacent to the aluminium surface, a Zr / O / F containing outer layer and 

ZrO2 sandwiched between the previous layers. The literature reveals that zirconium is always 

present in its dioxide form ZrO2, and some hydroxy-oxide or hydroxyfluoride may also be present 

depending on the composition of the conversion bath [119]. 
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4.2.3.2 Titanium-based conversion coating 

 The performance of several titanium-based conversion coatings has been studied by Fedrizzi 

et al. [120]. They reported that fluorotitanate or fluorozirconate coatings can give similar 

performance to conventional chromate-based treatments, when used as pre-treatment for an organic 

coating. Smit et al. [121] studied the performance and characteristics of a no-rinse titanium-based 

conversion coating on AA3003 aluminium alloy. They concluded that the application of a H2TiF6 

based conversion coating to AA3003 aluminium alloy improves the anodic inhibition of the alloy 

and reduces the corrosion current density [121]. 

 

4.2.3.3 Cobalt-based conversion coating 

 Cobalt-based conversion coatings have been developed primarily for the aircraft industry as 

possible replacements for chromate-based formulations [90]. This coating process is currently 

finding application in the marine and automotive industries. The conversion coating contains a 

trivalent or tetravalent cobalt/valence stabiliser complex. The coating formulations are prepared by 

dissolution of Co(III) salts and a metal acetate to form a solution of cobalt (III) hexacarboxylate 

complex [90]. Bath formulations based on cobalt acetate give the best overall performance, but the 

best paint performance is obtained using cobalt nitrate [90]. Conversion coating can be applied on 

aluminium surfaces by immersion, hand or spray processes. 

 

4.2.3.4 Cerium-based conversion coating 

 Some of the most promising chromate replacement conversion coatings are derived from 

these rare-earth elements, particularly cerium (Ce), which is relatively abundant in nature and offers 

the best degree of inhibition due to the formation of a compact film of cerium oxide and hydroxides. 

Corrosion protective film can be simply formed by immersion of an aluminium alloy in a solution 
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containing 100-1000 ppm cerium chloride [90]. Many studies have been undertaken on the 

mechanism of inhibition of cerium conversion coatings deposited on copper-containing aluminium 

alloys in aqueous solutions containing cerium salts. Aldykiewicz, et al. [122] suggested that the 

inhibition of the aluminium alloys is achieved by deposition of a cerium-rich film on the copper-

containing intermetallics which blocks the cathodic reduction of oxygen at these sites. Inhibition of 

corrosion by cerium is also believed to involve decreasing the rate of cathodic oxygen (O2) 

reduction by precipitation of Ce(III) hydroxide (Ce[OH]3) at regions of high pH [90, 123]. This 

mechanism requires the activation across the metal surface of many electrochemical cells associated 

with microscopic features such as grain boundaries, precipitates, constituent phases and inclusion, 

or submicroscopic features such as flaws in existing naturally occurring oxide films [124]. The 

cathodic processes generate alkaline conditions close to the metal surface. These conditions lead to 

localized precipitation of an hydrated cerium oxide and the formation of the film.  

 

4.3 Anodizing and sealing processes 

4.3.1 Introduction 

 Aluminium and aluminium alloys can be anodized to enhance corrosion protection and 

improve adhesion of subsequently applied coatings, and improve a range of other surface 

properties. Anodized coatings are formed electrochemically in an aqueous solution that results in an 

aluminium oxide surface film. Anodized coatings on aluminium alloys are on the order of 2–50 µm 

in thickness. Anodizing is most commonly carried out in chromic acid solutions and sulfuric acid 

solutions. To improve corrosion protection, anodized coatings can be sealed in a second step in the 

process. 
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4.3.2 Pre-treatment of aluminium surface prior to anodizing  

 Pre-treatment of aluminium prior to anodizing is of considerable importance because the 

method used inevitably determines the final texture of the finish, since with the most popularly used 

sulphuric acid anodizing process the anodic coating formed is essentially transparent and follows 

the contours of the pre-treated surface almost exactly.  

 

4.3.2.1 Cleaning and degreasing 

 In order to remove oil, grease and soil on the aluminium surface, is need a clean with a rag, 

moistened with an organic solvent. This method leaves the metal surface in a suitable conditions for 

the subsequent treatment. 

 Another method of degreasing is to use an emulsion. Emulsion cleaning consists of 

immersing components in a bath containing organic solvents and wetting agents added to a paraffin 

base. The aluminium is soaked in the mixture for 5-10 minutes, allowing grease or oil to be 

loosened or removed, followed by two running water rinses to emulsify and remove any residual 

surface contaminants.  

 

4.3.2.2 Alkaline etching 

 An effective etch or pre-treatment prior to anodizing is such as to produce a surface which, 

when anodized, appears smooth, of the right degree of mattness or brightness and without any 

visible blemishes of any description. The most frequently used method for etching aluminium is in 

aqueous solutions of sodium hydroxide, with or without additives. 
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4.3.2.3 Desmutting treatment 

 After a sodium hydroxide-based etch, a black smut is left on the aluminium surface. This 

tends to be greater the lower the purity of the aluminium and the more highly alloyed it is, and it is 

particularly heavy on copper-based alloys. It consists of particles of oxide, intermetallics, silicon, 

etc., which are insoluble in the alkaline solution, and in general are quite loosely held on the 

surface. Smut is usually removed by a dip in an acid solution, most commonly 25-50% V/V nitric 

acid, used at room temperature. This removes normal smut layers, including those on high copper 

containing alloys quite quickly. 

 

4.3.3 Anodizing processes  

4.3.1 Introduction 

 When aluminium is anodically polarized in an electrolyte, the negatively charged anion in 

solution migrates to the anode where it is discharged with the loss of one or more electrons. In an 

aqueous solution the anion consists in part of oxygen which unites chemically with the aluminium. 

The result of the anodic oxidation depends on a number of factors, particularly the nature, 

concentration and temperature of the electrolyte and the electrolytic operating conditions such as 

current and voltage. There are some processes that can occur at the anode: 

 

1) The reaction products may be essentially insoluble in the electrolyte, and form a strongly 

adherent barrier-type film on the aluminium. Film growth continues until its resistance 

prevents current from reaching the anode. The films are extremely thin and dielectrically 

compact. 
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2) The reaction products may be sparingly soluble in the electrolyte. An adherent film forms as 

above, but is accompanied by localized field-assisted dissolution which produces a regular 

array of essentially parallel-sides pores in the film. There pores allow continuing current 

flow and thus film growth. Electrolytes used are generally acid and include sulphuric, 

phosphoric, chromic and oxalic acids. The films formed are used to pre-treat aluminium 

surfaces to facilitate good adhesion of paints, lacquers or adhesives, and as they may be very 

hard and many microns thick, they find extensive application for protective and decorative 

purposes. 

 

3) The reaction products may be moderately soluble. Under these conditions, electropolishing 

may be possible if a suitable electrolyte is used. 

 

4) If the anode reaction products are fully soluble in the electrolyte, then the meal is dissolved 

until the solution is saturated. This reaction takes place in some strong inorganic acids and 

bases. 

 Anodizing is a passivation process to increase the thickness of the natural oxide layer 

formed on the metal to increase the corrosion and wear resistance. Figure 10 shows a simplified 

apparatus for anodizing treatment.  
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Figure 10 – Schematic diagram of aluminium anodizing in electrolyte. 

 

 The electrochemical cell consists of a two-electrode system, e.g., the platinum (Pt) sheet 

acting as the counter electrode (the cathode), and Al sheet acting as the working electrode (the 

anode). Both electrodes are immersed in the electrolyte, mostly acids, such as boric acid [125], 

sulfuric acid [126, 127], oxalic acid [125, 127, 128], and phosphoric acid [129, 130]. 

Chromic acid anodizing (CAA) is widely used in the aeronautic industry to improve 

corrosion resistance of aluminium alloys [131]. Since the beginning of the 1990s, however, the high 

toxicity associated with Cr (VI) has imposed restrictions on their use in industrial applications. As a 

consequence, numerous attempts have been made to find less toxic alternatives [117, 118]. 

Anodizing with dilute sulfuric acid (DSA) has been used to obtain thin anodic films (1–5 μm) that 

provide some protection without excessive deterioration of the fatigue life for specific aerospace 

alloys. Although the fatigue performance of DSA is acceptable, the corrosion resistance is lower 
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than that of parts anodized in chromic acid (CAA). More recently, a new anodizing procedure, 

involving the addition of tartaric acid in dilute sulfuric acid electrolyte and called tartaric-sulfuric 

acid anodizing (TSA), was introduced [132, 133]. The addition of tartaric acid to sulfuric acid baths 

improves significantly the anticorrosive properties of the anodic layers compared to those obtained 

by sulfuric acid anodizing [134].  

Recent work [134], however, indicates that the mechanism of porous film growth is not 

significantly affected by tartaric acid additions and that tartaric acid is not incorporated in 

significant amounts into the oxide material. Thus the corrosion resistance provided by TSA is likely 

to be associated with residuals of tartaric acid adsorbed on the porous skeleton. Tartaric acid 

concentration in the order of ppm, has been proved to be effective in reducing both the oxide 

dissolution rate in acidic environments and the anodic reaction rate. The effect of tartaric acid on 

the anodic film morphology and corrosion resistance of anodized AA2024-T3 was studied by 

Boisier et al. [135]. Observing the anodized surface by SEM, they suggested that the addition of 

tartaric acid to the anodizing electrolyte generates anodic films with a reduced porosity. However, 

this observation might be also due to the reduced chemical dissolution of the external pore regions 

during anodizing rather than to a difference in the growth mechanism. The latter statement is 

supported by other works indicating that the presence of tartaric acid in the anodizing electrolyte 

reduces the growth rate under potentiostatic conditions, but it does not change the anodic film 

composition, morphology or fundamental growth mechanism [134, 136]. 

 

4.3.3.2 Types of anodic aluminium oxide 

 Anodic oxide films can be classified into two types, based on the reactivity of electrolyte 

with the oxide layer. One is a non-porous barrier film which is dense and has a good wear resistance 

and behaves as an electrical insulator (Figure 11) [130, 137]. Another is a porous oxide structure 

(Figure 11) with a high aspect ratio [137]. Barrier oxide film can form on aluminium in several 
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different neutral or basic solutions, such as boric acid or alkali borates, which possess little or no 

ability to dissolve the oxide layers. It is generally accepted that the thickness of barrier-type alumina 

is mainly determined by the applied voltage [138], although the difference of electrolytes and 

anodizing temperature also play a role [139, 140]. The maximum attainable thickness in the barrier-

type alumina film was reported to be less than 1 μm, corresponding to breakdown voltages in the 

range of 500 - 700 V. Dielectric breakdown of the films occurs above the limiting voltage [138]. 

Oxide films of this type possess unique electrical properties and have been used extensively in 

electrolytic capacitors and rectifiers [141]. 

 

 

Figure 11 – Schematic diagram of AAO structure: Barrier-type and Porous-type alumina. 

 

 However, the anodizing of aluminium in certain strong acid electrolytes, which could 

dissolve the oxide layers, leads to the formation of an anodic aluminium oxide film on the surface. 

 This film is comprised of a relatively thick porous outer layer with regularly spaced pores 

extending from the outer surface toward the aluminium substrate, and a relatively thin nonporous 

barrier layer adjacent to the aluminium metal/oxide interface (Figure 11). As anodizing time 

increases, the aluminium metal is converted to aluminium oxide at the aluminium metal/oxide 

interface, and the pores extend further into the film. This porous aluminium oxide typically exhibits 



Chapter 4 – Corrosion preventions 

81 

 

a uniform array of hexagonal cells, each cell containing a cylindrical pore [137, 142-145]. With 

films formed in electrolytes that react appreciably with the oxide, a relatively high, steady current 

flow and continued film growth has been observed. The amount of oxide formed is generally a 

function of current and time. In this case, the film is formed with a porous structure due to the 

reaction between the oxide layer and the electrolyte [146].  

 Both the barrier and porous layer consist of a native oxide layer formed with aluminium an 

outer oxide layer grown on top of the native oxide layer by the anodizing process. 

 

4.3.3.3 Porous film growth and morphology 

 Porous anodic films formed on aluminium in electrolytes such as sulphuric acid are 

characterized by a very uniform morphology. Pores are approximately cylindrical, situated in 

generally close-packed hexagonal cells and separated from the aluminium by a thin layer of oxide 

(Figure 12).  

 

 

Figure 12 – Model structure of anodic porous alumina. 
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 The course of porous film development is revealed by monitoring the change of voltage 

when anodizing at constant current, or current when anodizing at constant voltage (Figure 13) 

[147]. 

 

 

Figure 13 – Schematic diagrams showing the development of a porous anodic film on aluminium in 

(a) constant current and (b) constant voltage conditions. 

 

 The compact barrier layer thickens during stage I (Figure 13). Incipient pores develop in the 

barrier film during stage II (Figure 13), while the classical film morphology starts to arise during 

stage III (Figure 13). steady-state propagation of the pores continues through stage IV (Figure 13). 

Consequently, when anodizing at a constant current density, the film thickness is proportional to the 

anodizing time. This relationship falls down for thicker films and those produced under particularly 

aggressive solution conditions, where the effects of chemical dissolution became significant. 
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The anodic reaction that leads to film growth takes place at the metal/oxide interface, and 

therefore the film is effectively growing from within rather than building up on its outer surface, as 

is the case with plating or painting processes. This means that the outer part of the film is in contact 

with the electrolyte for full anodizing time and may become considerable dissolved chemically by 

the end of the anodizing process. Underlying regions of the film are progressively attacked to lesser 

extents. Thus, the pores are tapered being wider at their mouths than near the aluminium substrate. 

 It then follows that the maximum film thickness achievable depends on the ability of the 

electrolyte to chemically dissolve the film. When anodizing has been continued for sufficient time 

that the pore walls at the outer surface are vanishingly thin, then although anodizing may continue 

to produce film material at the metal/oxide interface, no further net film thickening takes place. 

Understanding the factors that control this balance between the rate of film formation and the rate of 

film dissolution forms a vital part of practical anodizing technology. 

 

4.3.4 Sealing process 

4.3.4.1 Introduction 

 The most effective way to improve the corrosion resistance of aluminium anodic oxide is to 

seal the pore structure and form a thick protective barrier between the Al surface and the 

environment, which is called sealing. Excellent corrosion resistance can be achieved using the thick 

porous structure in conjunction with a suitable surface treatment and protective protocol. In this 

process, the anodized aluminium is immersed in a solution of boiling water or other solutions such 

as nickel acetate in order to seal the pores. The sealing produces a hydrated oxide layer with 

improved protective properties. Figure 14 illustrates how the initially porous anodic film evolves 

during the sealing process. 
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Figure 14 – Schematic description of the evolution of a porous anodic film on aluminium as a 

function of the sealing rime at 85°C. 

 

 Hydrothermal sealing is a treatment that involves the prolonged immersion of the anodized 

parts in a suitable electrolyte, generally maintained at elevated temperatures (90-100°C). Such 

procedure results in the partial hydration of the aluminium oxide that constitutes the porous oxide 

film [148]. Specifically, during the early stages of hydrothermal sealing, the sealing solution fills 

the pores, and a layer of hydrated products forms at the pore mouths. This layer separates the 

solution within the pore from the external solution. Inside the pores, the pore walls partially 
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dissolve, and the internal solution becomes saturated with alumina hydrates. When the temperature 

is reduced, hydrated alumina precipitates filling the pore and, over time, it crystallizes [149]. The 

type of electrolyte where sealing is performed has an important impact on the sealing behaviour, on 

the composition and on the protective performance of the resulting layer. For example, simple hot 

water sealing increases the durability of the anodic film purely due to an improvement of the barrier 

effect associated with the pore closure. On the other hand, when sealing is performed in hot 

hexavalent chromium containing solutions (generally sodium chromate), the re-precipitated 

products contain significant amounts of hexavalent chromium, and therefore can act as a corrosion 

inhibitor reservoir [148, 150].  

Due to the higher energy costs inherent in hydrothermal sealing, chemical manufacturers 

have developed mid-temperature seals (70 to 90°C). These seals, which contain metal salts such as 

nickel, magnesium, lithium, and others, have become very popular due to the lower energy costs 

and their ease of operation [52]. 

 

4.3.4.2 Hot water sealing 

 The method used to seal the anodic films of the considered samples is the hot water, in 

which the treated aluminium alloy is immersed in deionized water nearest to the boiling point. This 

method may partially convert the alumina of anodic coating to aluminium mono-hydroxide. The 

mechanism of sealing occurred in boiling water is considered as the hydration of the anodic film. 

The aluminium oxide reacts with water to form aluminium hydroxide, which fills pores in the 

coating and seals the surface [151]  

L. Hao et al. [148] illustrated the hot water sealing. Boiling deionized (DI) water treatment 

is a traditional sealing process [152, 153] that is environmentally benign, as there are no toxic 

chemicals involved in hot water sealing. The sealing quality relies on the pH value, purity, and 

temperature of hot water, sealing time, and current density used in anodizing. If the sealing process 
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is well controlled, hot water sealing is capable of substantially improving the corrosion resistance of 

anodized aluminum. Hot water sealing is the best sealing process for enhancing the dielectric 

strength of anodic coatings on aluminum. Water temperature must be above 95°C in hot water 

sealing. The optimal pH range is from 5.5 to 6.5. Silicate and phosphate are inhibitors in hot water 

sealing. Other harmful ions include cupric, ferrous, fluoride, sulfate, and chloride. Sealing time is a 

function of coating thickness, usually 2 min/micron recommended in common practice. According 

to an investigation, the weight loss of anodized samples with hot water sealing in acid dissolution 

tests (ADT) decreases with the increase in anodizing current density.  

The anodic coatings on most alloys, except 2024, produced at 1.94 A/dm
2
 and 2.58 A/dm

2
 

followed by hot water sealing, can easily pass the ADT test while the sealed anodic coatings on 

both 2024 and 7075 resulting from low current density failed in accordance with ISO 7599-1983(E) 

specification. This result suggests that the anodic coatings produced at 2.58 A/dm2 have superior 

corrosion resistance to those produced at 1.08 A/dm
2
 if hot DI water is used as a post sealing 

treatment. It is understandable that the sealing quality of the coatings produced at high current 

density are better than that at low current density, because the pore size at high current density is 

smaller than that at low current density [1] and the smaller the pore size, the easier the closure of the 

pore.  

Although hot water sealing is able to significantly improve the corrosion resistance of 

anodic coatings, smut is often produced on the surface leading to an unacceptable appearance. 

Rapid pH variation and contamination (e.g., phosphate, silicate, and chloride) of boiling water are 

hard to control in mass production, leading to a short bath life. Hot water requires a relatively long 

sealing time (2 min/µm). High energy consumption is an apparent disadvantage of hot water 

sealing. Also, consistency is a great challenge when hot water sealing is used. Buffers, such as 1 g/L 

ammonium acetate [154] and other proprietary additives [155], may be added to DI water to 

improve the sealing quality in practice.   
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4.3.4.3 Sodium chromate-based sealing 

 Sealing in chromate or dichromate solutions was first patented by Dunham in Britain [156] 

and by Edwards in the USA [157] for sealing anodic coatings. Coatings possess exceptionally good 

resistance to corrosion because of the corrosion-inhibiting properties of chromate [90]. 

Tomashov and Tyukina [158] have shown that chromate sealing consists of absorption of 

chromate, followed by the formation of either aluminium oxidichromate or aluminium 

oxychrornate, followed in turn by hydration of the coating due to reaction with water. When the pH 

of the bath is increased from 3.7 of a straight potassium dichromate solution, the rate of hydration 

of the film increases. In other words, due to an increase in the rate of hydration, the rate of sealing 

increases as the pH is increased, a limit being set by rapid dissolution of the film at pH's in excess 

of 10. The above investigations have shown that the extent of leaching of chromate from sealed 

films by sodium chloride solution or by water is less when the pH of the sealing bath is increased. 

 Extremely effective and rapid sealing is claimed by the use of baths of pH between 6 and 7, 

due to high absorption of chromate and rapid hydration, with but little leaching of chromate from 

the coatings on exposure. In addition, the stability of the amphoteric Al203 is stated to be greatest 

between pH 6 and 7. 

From the results of these authors two solutions were recommended: 

(i) For highest corrosion resistance, a solution containing 100 g/l potassium dichromate and 

13 g/1 sodium hydroxide is suggested. 

 

(ii) For reduced chromate consumption, a solution containing 15 g/l potassium dichromate and 

3 g/1 sodium hydroxide is suggested. 

 

The suitability of the method has been confirmed in protection coatings on Al-Mn, Al-Mg, Al-Si 

and Al-Cu-Mg-Mn alloys as well as on clad alloys. The results have been confirmed by corrosion 



Chapter 4 – Corrosion preventions 

88 

 

resistance tests carried out by Whitby [159]. The state of the water attached to the film and the 

structure and the properties of the film itself depend sharply on temperature. The protective 

properties of the film were increased to the greatest extent by treatment in water at 90-95°C for 30-

60 minutes. The improvement in protective properties was caused by the partial closing of pores in 

the film. The corrosion protection properties of chromate are well known, but chromate sealing 

apparently also has less effect on the mechanical properties of anodized aluminium than water 

sealing. Chromate sealing is therefore generally recommended for aluminium in military or 

aeronautical use. 

 

4.3.4.3 Cerium(III) nitrate-based sealing 

 Hinton and Arnott investigated the effectiveness of rare earth metal salts as corrosion 

inhibitors for aluminium alloys [124, 160, 161]. Mansfeld and co-workers evaluated the effects of 

chemical passivation by immersion in a cerium chloride solution on corrosion resistance of 

aluminium alloys [162, 163]. 

Wilson and Hinton [164] involving the addition of hydrogen peroxide (H2O2) to cerium 

chloride bath to form a cerium oxide/hydroxide film on Al-Cu alloys in a very short time 

(approximately 10 min). The acceleration effect of H2O2 may simply be related to the rapid increase 

in pH caused by its reduction that favours the precipitation of cerium oxide/hydroxide [165]. 

Hydrogen peroxide also enhances the oxidation of Ce (III) to Ce (IV) ions in solution and this 

results in an hydroxide film containing cerium mainly in the 4-valent state, as observed by XPS 

studies [165, 166].  

 

 The formation of a cerium-rich layer on the anodic film involves several chemical reactions. 

Cerium can be precipitated due to an increase of the pH value on the interface between the anodic 
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oxide film and the post-treatment solution. The first step is the dissolution of the anodic alumina 

film in the cerium-based solution (pH 3.75): 

 

𝐴𝑙2𝑂3 + 6𝐻+ → 2𝐴𝑙3+ + 3𝐻2𝑂   (23) 

 

The second step is the precipitation of cerium on the surface of the anodic film and within the pores 

due to the local rise in pH. Hydrogen peroxide present in the solution plays an important role in 

transforming Ce
3+

 to Ce
4+

 at pH > 2. Oxidation of Ce
3+

 to Ce
4+

 by H2O2 occurs also when the pH 

increases. This process changes the colour of the solution from colourless to yellow, according to 

[167, 168]. Increase of the pH value contributes to precipitation of cerium oxide/hydroxide through 

2 pathways. The first pathway is through Ce (III), present in the initial Ce (III) nitrate solution 

(Equations 24, 25), and the second pathway is through Ce (IV) species (Equations 26-29) [168]. 

The latter is possible only in the presence of H2O2. Concerning the Ce (III) pathway, the 

precipitation of cerium products is described by the following reactions: 

 

𝐶𝑒3+ + 3𝑂𝐻− → 𝐶𝑒(𝑂𝐻)3   (24) 

 

2𝐶𝑒(𝑂𝐻)3 → 𝐶𝑒2𝑂3 + 3𝐻2𝑂   (25) 

 

Concerning the Ce(IV) pathway, initial oxidation of Ce(III) takes place in the hydrogen peroxide-

containing solution (at pH above 2). 

 

2𝐶𝑒3+ + 2𝑂𝐻− + 𝐻2𝑂2 → 2𝐶𝑒(𝑂𝐻)2
2+   (26) 

Subsequently, for pH values between 2 and 5: 
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𝐶𝑒(𝑂𝐻)2
2+ + 2𝑂𝐻− → 𝐶𝑒(𝑂𝐻)4 → 𝐶𝑒𝑂2 + 2𝐻2𝑂   (27) 

 

Also, other reactions in H2O2-assisted solutions are possible, where Ce
3+

 ions can be directly 

oxidized to Ce(IV) species without intermediate Ce(OH)2
+2

 by the following reactions: 

 

2𝐶𝑒3+ + 6𝑂𝐻− + 𝐻2𝑂2 → 2𝐶𝑒(𝑂𝐻)4   (28) 

 

2𝐶𝑒3+ + 6𝑂𝐻− + 𝐻2𝑂2 → 2𝐶𝑒𝑂2 + 4𝐻2𝑂   (29) 

 

 These reactions show that the oxidation of Ce
3+

 to Ce(OH)4 occurs through intermediate 

species, such as Ce(OH)
3+

 at pH < 2 and Ce(OH)2
+2

 at pH > 2, according to the E-pH diagrams of 

the  

Ce - H2O - H2O2 system.. Thus, Ce(IV) can exist in several species, such as Ce(OH)
3+

, Ce(OH)2
+2

 

and Ce(OH)4. 

The concentration of Ce
3+

 is higher for samples anodized in TSA followed by cerium-based 

post-treatment. It is likely that the addition of tartaric acid to the anodizing electrolyte decreases the 

chemical dissolution rate of the alumina oxide film in the acidic environment [169]. Thus, the local 

pH near the interface between the alumina and post-treatment solution remains lower compared to 

the pH in proximity of the oxides generated in the absence of tartaric acid. This could result in 

increased Ce
3+

[170]. 
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Chapter 5- Experimental tests 

5.1 Experimental set up 

 In order to perform an experiment to evaluate the corrosion resistance of materials, a number 

of components must be assembled and appropriately prepared. First, an electrochemical cell which 

contains both the metal to be investigated, the environment in which the measurement is to be 

performed, as well as all of the implements required to conduct the measurement, must be acquired. 

 Prior to performing the experiment, the specimen surface must be prepared such that the 

initial condition, or starting point, of the measurement is well defined and does not vary from test to 

test. Finally, equipment capable of performing the measurement and acquiring data is required. 

 

5.1.1 Electrochemical cell 

 The typical electrochemical cell is consist of cell body, the electrodes and the implements 

used to monitor and control the environment. 

 

5.1.1.1 Cell body 

 The body of the cell is required to contain the test environment, which may or may not be 

aggressive. The material chosen to construct the cell from should take into consideration the 

requirements of the experimentation which will be conducted within, such as the operating 

temperature range, pH, need for aeration/deaeration, etc. Typical materials include glass, acrylic  

and polytetrafluoroethylene. 
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5.1.2 Electrodes 

 There are typically three electrodes - the working electrode, the counter electrode, and the 

reference electrode. The working electrode is the sample being interrogated, and will vary. The 

reference electrode provides a stable “reference” against which the applied potential may be 

accurately measured, as will be illustrated below. The counter electrode is used to provide the 

applied current, and as such should be composed of a highly corrosion resistant material, such as 

platinum. 

 

5.1.2.1 Reference electrode 

 A range of reference electrodes is available (Table 7- [171]).  

 

Table 7 - Common reference electrodes [171]. 

Common Name Electrode Reaction E (V vs SCE) 

Standard Hydrogen (SHE) H2(1atm)|H
+
(a=1) 2H

+
+2e

-
=H2 0 

Saturated Calomel Hg|Hg2Cl2, KCl (sat) Hg2Cl2+2e
-
=2Hg+2Cl

-
 +0.244 

Silver/Silver Chloride (0.1M) Ag|AgCl, KCl (0.1M) AgCl+e
-
=Ag+Cl

-
 +0.288 

Silver/Silver Chloride/seawater Ag|AgCl, seawater AgCl+e
-
=Ag+Cl

-
 +0.250 

Copper/Copper sulphate Cu|sat.CuSO4 Cu
2+

+2e
-
=Cu +0.318 

 

 The standard reference electrode which is often referred to is the standard hydrogen 

electrode (SHE) or normal hydrogen electrode (NHE). All other reference electrodes can be 

expressed in terms of some constant deviation from the SHE. The SHE is based upon the reaction:  

 

2𝐻+ + 2𝑒− → 𝐻2(𝑔)   (30) 

 

 It should be noted that this potential is independent of temperature (not true for many other 

electrodes) and a function only of the reference electrolyte pH. Some of the more commonly 
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utilized reference electrodes include the saturated calomel electrode (SCE), the silver-silver chloride 

reference electrode, and the copper-copper sulphate reference electrode (least accurate, but most 

durable of the three). The saturated calomel electrode consists of pure mercury covering a platinum 

wire which passes through a sealed glass tube. The mercury is covered with mercurous chloride and 

immersed in saturated potassium chloride. 

 

𝐻𝑔2𝐶𝑙2 + 2𝑒− → 2𝐻𝑔 + 2𝐶𝑙−   (31) 

 

The silver-silver chloride reference electrode consists of a silver or silver plated wire, the surface of 

which has been chloritized (transformed to silver chloride), typically in dilute hydrochloric acid. 

 

𝐴𝑔𝐶𝑙 + 𝑒− → 𝐴𝑔 + 𝐶𝑙−   (32) 

 

Finally, the copper - copper sulphate reference electrode consists of a piece of reasonably pure 

copper immersed in saturated copper sulphate. 

 

𝐶𝑢2+ + 2𝑒− → 𝐶𝑢   (33) 

 

 Note that the appropriate reference electrode for a particular application will depend on the 

solution. Thus, a saturated calomel electrode must have saturated KCl as the solution in contact 

with the Hg/Hg2Cl2 paste. This means that the SCE tends to leach chloride (and potassium of 

course, although this is usually less significant for corrosion) into the solution in contact with it. 

 This leaching will contaminate the solution in contact with the reference electrode. Whether 

or not this leads to a serious problem depends on the test solution and the configuration of the 

reference electrode. In general, it is beneficial to use reference electrodes based on anions that are 



Chapter 5 – Experimental tests 

94 

 

already present in the test solution. Thus, SCE is fine for seawater and other solutions containing 

high concentrations of chloride, but would be undesirable in chloride-free solutions. 

 

5.1.2.2 Counter electrode 

 In some cases, typically when working with microelectrodes, or when the current is very 

small for some other reason, it is possible to use the reference electrode as the counter electrode. 

 The use of a specific counter electrode can also be avoided by using two working electrodes, 

and this may be useful in the measurement of polarization resistance or electrochemical impedance 

(seen already). In all other cases where current is applied to the working electrode, a counter 

electrode is required as the second connection to the test solution. In most cases, the counter 

electrode should not affect the measurement, and it should therefore have the following properties:  

 

- It should have a relatively low polarization resistance so that the potential drop between the 

counter electrode and the solution does not limit the polarization that can be applied. 

 

- It should not contaminate the solution. In practice, there will always be some 

electrochemical reaction at the counter electrode, and what we really need is for the products 

of that reaction to be harmless or easily removed. Inert electrodes, such as platinum or 

graphite are often used, in which case the reaction products are usually gases (oxygen or 

chlorine when anodic or hydrogen when cathodic) that can be removed by bubbling air or 

nitrogen past the counter electrode (although there may also be a pH change at the counter 

electrode). In closed systems (e.g., in autoclave studies), it is more difficult to dispose of 

gaseous reaction products, and it may be better to use a reactive electrode and trap the 

reaction products close to the counter electrode (e.g., by using an ion-exchange membrane 

between the counter electrode and the working electrode). It is also wise to check that 
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supposedly inert electrodes are actually inert – some platinum dissolution can occur at high 

enough anodic current densities and graphite electrodes tend to release traces of impurities 

into the solution as the graphite is oxidized to CO2. Note that many metals, including carbon 

steels and stainless steels, are essentially inert when cathodically polarized, and they can 

therefore be used as counter electrodes when only anodic polarization of the working 

electrode is required (e.g., when studying pitting breakdown potentials of stainless steel). 

 

- It is often stated that the area of the counter electrode should be large compared with the 

working electrode, but this may be less important than ensuring that the overall cell 

configuration provides the required current density distribution. Thus, a counter electrode of 

the same size as the working electrode, mounted parallel to it, may optimize the current 

distribution without significant adverse effects from the size of the counter electrode. 

 

5.2 Potentiodynamic polarization measurements 

 Polarization studies can provide valuable information regarding the corrosion mechanism, 

corrosion rate and susceptibility to corrosion of metallic specimens in designated environments. 

One of the most common electrochemical methods in corrosion research and testing is the 

determination of the polarization curve – the relationship between the current and the potential, 

usually over a relatively wide range (of the order of a volt). Polarization curves can be measured 

either by controlling the current and measuring the potential or by controlling the potential and 

measuring the current. The characteristics of passive/active conditions for metals can be readily 

defined using this technique. Details for laboratory application can be found in ASTM Standard G5. 

 The potential changes with a certain scan rate while the potentiodynamic is being 

performed. The speed of the scan rate will largely influence the type of information obtained. In 

general, higher scan rates do not allow sufficient time for the system to stabilize at each potential. 
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 As a result, parameters such as the location and size of the active nose, the passivation 

potential, and the pitting potential are often shifted to more positive values. The ASTM standard 

scan rate is 0.1667 mV/s. 

 

5.2.1 Anodic and cathodic curves 

 A schematic anodic polarization curve is illustrated in Figure 2 and more details regarding 

the curve are discussed above in Section 3.3. A schematic cathodic polarization scan is present in 

Figure 15.  

 

 

Figure 15 – Schematic cathodic polarization curve. 

 

 In a cathodic potentiodynamic scan, the potential is varied from point 1 in the negative 

direction to point 2. The open circuit potential is located at point A. As with the anodic scan, the 

 



Chapter 5 – Experimental tests 

97 

 

open circuit potential represents the potential at which the sum of the anodic and cathodic reactions 

occurring on the electrode surface is zero. Depending on the pH and dissolved oxygen 

concentration in the solution, region B may represent the oxygen reduction reaction. Since this 

reaction is limited by how fast oxygen may diffuse in solution there will be an upper limit on the 

rate of this reaction, known as the limiting current density. Further decreases in the applied potential 

result in no change in the reaction rate, and hence the measure current (region C). Eventually, the 

applied potential becomes sufficiently negative for another cathodic reaction to become operative, 

such as illustrated at point D. As the potential, and hence driving force, becomes increasingly large, 

this reaction may become dominant, as illustrated in region E. This additional reaction is typically 

the reduction of other species in the environment (such as the hydrogen evolution reaction, also 

known as the water reduction reaction). 

 

5.3 Electrochemical Impedance Spectroscopy (EIS) 

 The Electrochemical Impedance Spectroscopy (EIS), also known as AC impedance method, 

is a widespread experimental technique usually applied in electrochemical system analysis, and 

mainly used to characterize both the electrode and the interface processes [172]. Electrochemical 

impedance is usually measured by applying an AC potential to an electrochemical cell and then 

measuring the current through the cell. Assume that we apply a sinusoidal potential excitation. The 

response to this potential is an AC current signal. This current signal can be analysed as a sum of 

sinusoidal functions (a Fourier series). Electrochemical impedance is normally measured using a 

small excitation signal. This is done so that the cell's response is pseudo-linear. In a linear (or 

pseudo-linear) system, the current response to a sinusoidal potential will be a sinusoid at the same 

frequency but shifted in phase (see Figure 16).  
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Figure 16 – Sinusoidal current response in a linear system. 

 

The excitation signal, expressed as a function of time, has the form  

 

𝐸𝑡  =  𝐸0  sin(𝜔𝑡)   (34) 

 

where Et is the potential at time t, E0 is the amplitude of the signal, and ω is the radial frequency. 

The relationship between radial frequency ω (expressed in radians/second) and frequency ƒ 

(expressed in hertz) is: 

 

𝜔 = 2𝜋 ƒ   (35) 

 

In a linear system, the response signal, It, is shifted in phase (φ) and has a different amplitude, I0.  

 

𝐼𝑡 = 𝐼0  sin(𝜔𝑡 + 𝜑)   (36) 
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An expression analogous to Ohm's Law allows us to calculate the impedance of the system as: 

 

𝑍 =
𝐸𝑡

𝐼𝑡
=

𝐸0 sin(𝜔𝑡)

𝐼0  sin(𝜔𝑡+𝜑)
= 𝑍0

sin(𝜔𝑡)

sin(𝜔𝑡+𝜑)
   (37) 

 

The impedance is therefore expressed in terms of a magnitude, Z0, and a phase shift, φ. If we plot 

the applied sinusoidal signal E(t) on the X-axis of a graph and the sinusoidal response signal I(t) on 

the Y-axis, the result is an oval (see Figure 17). 

 

 

Figure 17 – Origin of Lissajous figure. 
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 This oval is known as a "Lissajous Figure". Analysis of Lissajous Figures on oscilloscope 

screens was the accepted with Eulers relationship,  

 

𝑒𝑥𝑝(𝑗𝜑)  = cos 𝜑 + jsin 𝜑   (38) 

 

It is possible to express the impedance as a complex function. The potential is described as,  

 

𝐸𝑡 = 𝐸0𝑒𝑥𝑝(𝑗𝜔𝑡)    (39) 

 

and the current response as, 

 

𝐼𝑡 = 𝐼0𝑒𝑥𝑝(𝑗𝜔𝑡 –  𝜑)   (40) 

 

The impedance is then represented as a complex number, 

 

𝑍(𝜔) =
𝐸

𝐼
= 𝑍0 exp(𝑗𝜑) = 𝑍0 (cos 𝜑 + jsin 𝜑)   (41) 

 

 The application of a perturbation to a system in equilibrium conditions causes a response, 

which is entirely determined by the injected signal. If the system is at equilibrium, it should be able 

to return to its original state when the perturbation is removed. Moreover, if the system has a linear 

behaviour, the response to a sum of single perturbations is equal to the sum of each response; this is 

the principle of the EIS. 
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 The EIS measurement produces a set of amplitude and phase values for a range of 

frequencies, and there are two main ways of presenting these: 

 

- The Bode plot presents log(amplitude) and phase against log(frequency). Figure 18 presents 

a Bode plot. 

 

- The Nyquist plot normally plots the imaginary part of the impedance against the real part 

(Figure 19). The Nyquist plot invariably inverts the imaginary axis (i.e., it plots the 

imaginary component of impedance with increasingly negative values on the y-axis), so that 

capacitive circuit elements plot above the x-axis. One weakness of the Nyquist plot 

compared with the Bode plot is that it does not implicitly include the frequency of each 

measurement point, so at least some points should have their frequency indicated. 

 

 

Figure 18 – Example Bode plot. 
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Figure 19 – Example Nyquist plot. 

 

5.3.1 Interpretation of EIS measurements 

 The interpretation of the EIS data can be supported through mathematical models. 

Particularly, equivalent circuit models (ECM) are suitable tools for electrode/electrolyte interface 

characterization [173]. Adopting an equivalent circuit, different electrical components are used to 

characterize the different physical processes. For example, the impedance plot in Figure 18 can be 

fitted using the circuit in Figure 20.  
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Figure 20 – The Randles equivalent circuit for a corrosion interface. 

 

 This circuit is known as the Randles equivalent circuit and has three components: Rs is the 

resistance of the solution, Rp is the polarization resistance of the metal–solution interface, and Cdl is 

the double-layer capacitance of the metal–solution interface). On the Bode plot, a resistor produces 

a horizontal line on the amplitude plot with amplitude equal to the resistance and a constant phase 

of zero on the phase plot. A capacitor produces an amplitude that falls with a slope of -1 as the 

frequency increases (the amplitude of the impedance is 1/(2πfC), where f is the frequency and C the 

capacitance), and a constant phase of -90°; as we are normally dealing with resistors and capacitors, 

it is common to invert the phase axis (i.e., plot–phase) so that capacitive circuit elements give data 

above zero.  

Any resistor network will appear from the outside as a pure resistor (i.e., the measured 

impedance will have constant amplitude and zero phase). Consequently, in order to obtain a valid 

interpretation, it is important to use prior knowledge of the expected behaviour in order to model 

the real physical system. the components of the system under investigation to be modelled by 

electrical equivalent circuit elements that have similar characteristics to the actual processes 

concerned. Thus, a paint film can be modelled as a resistor (corresponding to ionic current passing 

through the film) in parallel with a capacitor (corresponding to the capacitance of the paint film 

acting as a parallel plate capacitor); underneath the paint film the metal–solution interface gives rise 

to a resistor (corresponding to the charge transfer resistance) in parallel with a capacitance (the 
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double layer capacitance). The response of the resultant electrical circuit is then modelled using 

conventional methods from electrical engineering, and the parameter values adjusted to optimize 

the fit between the model and real data. Note that the equivalent circuit is derived first, based on the 

physical processes occurring; it may then be necessary to modify the equivalent circuit to fit 

features of the measured data. It is important that the added elements are linked to a physical 

process; some less-experienced workers try different equivalent circuits to find the one that best fits 

the measured data and then try to work out what the elements correspond to; while this may provide 

a good fit to the data, the circuit may have the wrong configuration so that the values of circuit 

elements give no information about the real processes occurring.  

 

5.3.1.1 Resistor 

The current Δi(t) and voltage Δv(t) relation for a resistor is 

 

∆𝑣(𝑡) = 𝑅∆𝑖(𝑡)   (42) 

 

where R is the resistance. Laplace transform of (Equation 42) for the sinusoidal input gives 

 

∆𝑉(𝑗𝜔) = 𝑅∆𝐼(𝑗𝜔)   (43) 

 

The impedance for the resistor is thus 

 

𝑍(𝑗𝜔) =
∆𝑉 (𝑗𝜔)

∆𝐼(𝑗𝜔)
= 𝑅   (44) 
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 The impedance of a resistor is independent of frequency and has no imaginary component. 

With only a real impedance component, the current through a resistor stays in phase with the 

voltage across the resistor. 

 

5.3.1.2 Inductor 

The current Δi(t) and voltage Δv(t) relation for an inductor is 

 

∆𝑣(𝑡) = 𝐿 
𝑑∆𝑖(𝑡)

𝑑𝑡
   (45) 

 

Laplace transform of (Equation 45) for the sinusoidal input gives 

 

∆𝑉(𝑗𝜔) = 𝑗𝜔𝐿∆𝐼(𝑗𝜔)   (46) 

 

where L is the inductance. The impedance for the inductor is thus 

 

𝑍(𝑗𝜔) =
∆𝑉(𝑗𝜔)

𝛥𝐼(𝑗𝜔)
= 𝑗𝜔𝐿    (47) 

 

 The impedance of an inductor increases as frequency increases. Inductors have only an 

imaginary impedance component. As a result, the current through an inductor is phase-shifted -90 

degrees with respect to the voltage.  
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5.3.1.3 Capacitor 

The current Δi(t) and voltage Δv(t) relation for a capacitor is 

 

∆𝑖(𝑡) = 𝐶
𝑑∆𝑣(𝑡)

𝑑𝑡 
    (48) 

 

where C is the capacitance. Laplace transform of (Equation 48) for the sinusoidal input gives 

 

∆𝐼(𝑗𝜔) = 𝑗𝜔𝐶∆𝑉(𝑗𝜔)   (49) 

 

The impedance for the capacitor is thus 

 

𝑍(𝑗𝜔) =
∆𝑉(𝑗𝜔)

∆𝐼(𝑗𝜔)
=

1

𝑗𝜔𝐶
   (50) 

 

 The impedance versus frequency behaviour of a capacitor is opposite to that of an inductor. 

A capacitor's impedance decreases as the frequency is raised. Capacitors also have only an 

imaginary impedance component. The current through an capacitor is phase shifted 90 degrees with 

respect to the voltage. 

 

5.3.1.3.1 Constant Phase Element (CPE) 

The Constant Phase Element [174] (CPE) is a non-intuitive circuit element that was invented while 

looking at the response of real-world systems. Mathematically, it is defined as 

 

𝑍(𝑗𝜔) =
1

𝑗𝜔𝛼𝐶𝛼
   (51) 
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with two parameters α and Cα. It reduces to pure resistor, capacitor and inductor when α = 0, α = 1 

and α = -1 respectively. However, in the real application of this element, α is defined between 0 and 

1 and this element can be thought of as a fractional generalization of a conventional capacitor. 

 

5.3.1.4 Generalized Finite-Length Warburg Element 

 Mathematically, the Generalized Finite-Length Warburg Element (GFLW) is the solution to 

the one-dimensional anomalous diffusion equation subject to the absorbing boundary [175]  

 

𝑍(𝑗𝜔) = 𝑅𝐺𝐹𝐿𝑊
tan(𝑗𝜔𝐶𝐺𝐹𝐿𝑊)𝛼𝐺𝐹𝐿𝑊

(𝑗𝜔𝐶𝐺𝐹𝐿𝑊)𝛼𝐺𝐹𝐿𝑊    (52) 

 

with three parameters RGFLW, CGFLW and αGFLW. When (jω CGFLW)
 αGFLW

 »1, it reduces to a CPE as 

in (Equation 51).  

 

When αGFLW = 0:5, it reduces to a Finite-Length Warburg (FLW) element [176]  

 

𝑍(𝑗𝜔) = 𝑅𝐹𝐿𝑊
𝑡𝑎𝑛√𝑗𝜔𝐶𝐹𝐿𝑊

√𝑗𝜔𝐶𝐹𝐿𝑊
   (53) 

 

with two parameters RFLW and CFLW. Again, in the real application of this element, αGFLW is defined 

between 0 and 0.5. GFLW element gives a half-tear-drop arc called Warburg arc in the Nyquist plot 

as shown in Figure 21. For the FLW element, the slope at the high-frequency part is 45° as in 

Figure 21. For the GFLW element, the arc is more depressed and the slope at the high-frequency 

part is less than 45° as in Figure 21. 
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Figure 21 – Schematic Nyquist plots of a Finite-Length Warburg (FLW) element and a Generalized 

Finite-Length Warburg (GFLW) element. 

 

5.3.1.5 Serial and Parallel combination of circuit element 

 EIS models usually consist of a number of elements in a network. Both serial (Figure 22) 

and parallel (Figure 23) combinations of elements occur. 

 

Figure 22 – Impedance in series. 

 

 

Figure 23 – Impedance in parallel.  
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 Fortunately, there are simple formulas that describe the impedance of circuit elements in 

both parallel and series combination. For linear impedance elements in series you calculate the 

equivalent impedance from: 

 

Z 𝑒𝑞 = 𝑍1 + 𝑍2 + 𝑍3   (54) 

 

For linear impedance elements in parallel you calculate the equivalent impedance from: 

 

1

Z 𝑒𝑞
=

1

𝑍1
+

1

𝑍2
+

1

𝑍3
   (55) 

 

We will calculate two examples to illustrate a point about combining circuit elements. Suppose we 

have a 1Ω and a 4Ω resistor in series. The impedance of a resistor is the same as its resistance (see 

Table 8).  

 

Table 8 - Common electrical elements. 

Component Current vs. Voltage Impedance 

Resistor E=IR Z=R 

Inductor E=L di/dt Z=jωL 

Capacitor I=C dE/dt Z=1/ jωC 

 

We thus calculate the total impedance as: 

 

Z 𝑒𝑞 = 𝑍1 + 𝑍2 = 𝑅1 + 𝑅2 = 1Ω + 4Ω = 5Ω   (56) 
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Resistance and impedance both go up when resistors are combined in series. Now suppose that we 

connect two 2 μF capacitors in series. The total capacitance of the combined capacitors is 1 μF. 

 

Z 𝑒𝑞 = 𝑍1 + 𝑍2 =
1

𝑗𝜔𝐶1
+

1

𝑗𝜔𝐶2
=

1

𝑗𝜔(2𝑒−6)+1
+

1

𝑗𝜔(2𝑒−6)
=

1

𝑗𝜔(1𝑒−6)𝑗
   (57) 

 

Impedance goes up, but capacitance goes down when capacitors are connected in series. This is a 

consequence of the inverse relationship between capacitance and impedance. 

 

5.3.2 Physical electrochemistry and equivalent circuit elements 

5.3.2.1 Electrolyte resistance 

 Solution resistance is often a significant factor in the impedance of an electrochemical cell. 

A modern 3 electrode potentiostat compensates for the solution resistance between the counter and 

reference electrodes. However, any solution resistance between the reference electrode and the 

working electrode must be considered when you model your cell. The resistance of an ionic solution 

depends on the ionic concentration, type of ions, temperature, and the geometry of the area in which 

current is carried. In a bounded area with area, A, and length, l, carrying a uniform current, the 

resistance is defined as, 

 

𝑅 = 𝜌
𝑙

𝐴
   (58) 

 

ρ is the solution resistivity. The reciprocal of ρ(κ) is more commonly used. κ is called the 

conductivity of the solution and its relationship with solution resistance is: 

 

𝑅 =
1

𝜅

𝑙

𝐴
→ 𝜅 =

𝑙

𝑅𝐴
   (59) 
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 Standard chemical handbooks will often list κ values for specific solutions. For other 

solutions, you can calculate κ from specific ion conductance. The unit of κ is the Siemens per meter 

(S/m). The Siemens is the reciprocal of the ohm, so 1S=1/Ohm. Unfortunately, most 

electrochemical cells do not have uniform current distribution through a definite electrolyte area. 

 The major problem in calculating solution resistance therefore concerns determination of the 

current flow path and the geometry of the electrolyte that carries the current. A comprehensive 

discussion of the approaches used to calculate practical resistances from ionic conductance is well 

beyond the scope of this manual. Fortunately, you usually don't calculate solution resistance from 

ionic conductance. Instead, you calculate it when you fit experimental EIS data to a model. 

 

5.3.2.2 Double layer capacitance 

 An electrical double layer exists on the interface between an electrode and its surrounding 

electrolyte. This double layer is formed as ions from the solution "stick on" the electrode surface. 

 The charged electrode is separated from the charged ions. The separation is very small, often 

on the order of angstroms. Charges separated by an insulator form a capacitor. On a bare metal 

immersed in an electrolyte, you can estimate that there will be 20 to 60 µF of capacitance for every 

1 cm
2
 of electrode area. The value of the double layer capacitance depends on many variables. 

Electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode 

roughness, impurity adsorption, etc. are all factors. 

 

5.3.2.3 Polarization resistance 

 Whenever the potential of an electrode is forced away from its value at open-circuit, that is 

referred to as “polarizing” the electrode. When an electrode is polarized, it can cause current to flow 

through electrochemical reactions that occur at the electrode surface. The amount of current is 
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controlled by the kinetics of the reactions and the diffusion of reactants both towards and away from 

the electrode. In cells where an electrode undergoes uniform corrosion at open circuit, the open 

circuit potential is controlled by the equilibrium between two different electrochemical reactions. 

 One of the reactions generates cathodic current and the other anodic current. The open 

circuit potential ends up at the potential where the cathodic and anodic currents are equal. It is 

referred to as a mixed potential. The value of the current for either of the reactions is known as the 

corrosion current. Mixed potential control also occurs in cells where the electrode is not corroding. 

While this section discusses corrosion reactions, modification of the terminology makes it 

applicable in non-corrosion cases as well. When there are two simple, kinetically controlled 

reactions occurring, the potential of the cell is related to the current by the following equation. 

 

𝐼 = 𝐼𝑐𝑜𝑟𝑟(𝑒
2.303(𝐸−𝐸𝑜𝑐)

𝛽𝑎 − 𝑒
−2.303(𝐸−𝐸𝑜𝑐)

𝛽𝑐    (60) 

 

where, 

I = the measured cell current in amps, 

Icorr = the corrosion current in amps, 

Eoc = the open circuit potential in volts,  

βa = the anodic Beta coefficient in volts/decade, 

βc = the cathodic Beta coefficient in volts/decade. 

 

If we apply a small signal approximation to Equation 60, we get the following: 

𝐼𝑐𝑜𝑟𝑟 =
𝛽𝑎𝛽𝑐

2.303(𝛽𝑎𝛽𝑐)
(

1

𝑅𝑝
)   (61) 
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which introduces a new parameter, Rp, the polarization resistance. As you might guess from its 

name, the polarization resistance behaves like a resistor. If the β slopes are known, the Tafel 

constants, you can calculate the Icorr from Rp using Equation 60. Icorr in turn can be used to calculate 

a corrosion rate. 

 

5.3.2.4 Charge transfer resistance 

 A similar resistance is formed by a single kinetically controlled electrochemical reaction. In 

this case we do not have a mixed potential, but rather a single reaction at equilibrium. Consider a 

metal substrate in contact with an electrolyte. The metal can electrolytically dissolve into the 

electrolyte, according to,  

 

𝑀𝑒 ↔ 𝑀𝑒𝑛+ + 𝑛𝑒−   (62) 

 

or more generally 

 

𝑅𝑒𝑑 ↔ 𝑂𝑥 + 𝑛𝑒−   (63) 

 

 In the forward reaction in the first equation, electrons enter the metal and metal ions diffuse 

into the electrolyte. Charge is being transferred. This charge transfer reaction has a certain speed. 

The speed depends on the kind of reaction, the temperature, the concentration of the reaction 

products and the potential. The general relation between the potential and the current (which is 

directly related with the amount of electrons and so the charge transfer via Faradays law) is: 

 

𝑖 = 𝑖0(
𝐶𝑜

𝐶∗𝑜
exp (

𝛼𝑛𝐹

𝑅𝑇
) − (

𝐶𝑅

𝐶∗𝑅
exp(

−(1−𝛼)𝑛𝐹

𝑅𝑇
))   (64) 
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with, 

i0 = exchange current density 

CO = concentration of oxidant at the electrode surface 

C
O*

 = concentration of oxidant in the bulk 

C
R
 = concentration of reductant at the electrode surface 

= overpotential (Eapp – Eoc) 

F = Faradays constant 

T = temperature 

R = gas constant 

α= reaction order 

n = number of electrons involved 

 

When the concentration in the bulk is the same as at the electrode surface, CO=C
O*

 and CR=C
R*

. 

This simplifies Equation 64 into: 

 

𝑖 = 𝑖0(exp (𝛼
𝑛𝐹

𝑅𝑇
) − (exp(−(1 − 𝛼)

𝑛𝐹

𝑅𝑇
)   (65) 

 This equation is called the Butler-Volmer equation. It is applicable when the polarization 

depends only on the charge-transfer kinetics. Stirring the solution to minimize the diffusion layer 

thickness can help minimize concentration polarization. When the overpotential, , is very small 

and the electrochemical system is at equilibrium, the expression for the charge transfer resistance 

changes to: 

𝑅𝑐𝑡 =
𝑅𝑇

𝑛𝐹𝑖0
   (66) 

From this equation the exchange current density can be calculated when Rct is known. 

5.3.2.5 Diffusion 
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 Diffusion also can create an impedance called a Warburg impedance. The impedance 

depends on the frequency of the potential perturbation. At high frequencies, the Warburg 

impedance is small since diffusing reactants don't have to move very far. At low frequencies, the 

reactants have to diffuse farther, increasing the Warburg-impedance. The equation for the "infinite" 

Warburg impedance is: 

 

𝑍𝑊 = (𝜔)−
1

2(1 − 𝑗)   (67) 

 

 On a Nyquist Plot the Warburg impedance appears as a diagonal line with an slope of 45°. 

On a Bode Plot, the Warburg impedance exhibits a phase shift of 45°. In Equation 67,  is the 

Warburg coefficient defined as: 

 

 =
𝑅𝑇

𝑛2𝐹2𝐴√2
(

1

𝐶∗𝑜√𝐷𝑜
+

1

𝐶∗𝑅√𝐷𝑅
)   (68) 

 

in which, 

ω= radial frequency 

DO = diffusion coefficient of the oxidant 

DR = diffusion coefficient of the reductant 

A = surface area of the electrode 

n = number of electrons involved 

 

 This form of the Warburg impedance is only valid if the diffusion layer has an infinite 

thickness. Quite often, however, this is not the case. If the diffusion layer is bounded, the 

impedance at lower frequencies no longer obeys the equation above. Instead, we get the form: 
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𝑍𝑜 = 𝜔−
1

2(1 − 𝑗)tan ((
𝑗𝜔

𝐷
)

1

2)   (69) 

 

with, 

= Nernst diffusion layer thickness 

D = some average value of the diffusion coefficients of the diffusing species 

This more general equation is called the "finite" Warburg.  

 

5.3.2.6 Coating capacitance 

 A capacitor is formed when two conducting plates are separated by a non-conducting media, 

called the dielectric. The value of the capacitance depends on the size of the plates, the distance 

between the plates and the properties of the dielectric. The relationship is, 

 

𝐶 =
0𝑟𝐴

𝑑
   (70) 

 

with, 

0 = permittivity of free space ( “electric constant”) 

r = dielectric constant (relative electrical permittivity) 

A = surface of one plate 

d = distances between two plates 

 

 Whereas the permittivity of free space is a physical constant, the dielectric constant depends 

on the material. Table 9 gives you some useful r values. 
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Table 9 – Typical dielectric constants. 

Material r 

Vacuum 1 

Water 80.1 (20°C) 

Organic coating 4-8 

 

 Notice the large difference between the dielectric constant of water and that of an organic 

coating. The capacitance of a coated substrate changes as it absorbs water. EIS can be used to 

measure that change. 

 

5.3.3 Common equivalent circuit models 

 Walter, in a review of impedance plot methods used for corrosion performance analysis of 

painted metals [177], presented a small library of Bode and Nyquist plot shapes.  

 

5.3.3.1 Simple RC equivalent circuit models 

 In simple systems, combinations of  resistors and  capacitors each  give a  characteristic plot 

shape in both  Nyquist  and  Bode  plots, so that  analysis of the plot shape will not only allow 

calculation of individual component values, but may also indicate how they are combined together. 

For example, the series resistor/capacitor combination shown in Figure 24 gives a different plot 

shape to the parallel resistor/capacitor combination shown in Figure 25. 
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Figure 24 - A series resistor, R, and capacitor, C (a), and its Nyquist (b) and Bode (c) impedance 

plots [177]. 

 

 

Figure 25 - A parallel resistor, R, and capacitor, C (a), and its Nyquist (b) and Bode (c) impedance 

plots [177]. 

 

 However in more complex system the frequency response of a system does not uniquely 

determine the circuit to be used to model that response, a fact pointed out by MacDonald et al. [178] 

The resistor, capacitor component values of Figs. 24a and 25a can be determined using the methods 

shown in Figs 24b,c and 25b, c, respectively. 
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 The value of resistor R, in Figure 24a, is obtained from the Nyquist plot in Figure 24b by 

reading off the value of a at the point where the vertical line intersects the a-axis, i. e. where b=0. 

From the Bode plot in Figure 24c, the value of R is obtained by extrapolation of the frequency 

independent horizontal line to the r-axis and reading off the value of r (=R). 

The value of capacitor, C, in Figure24a, can be determined from the Nyquist plot in Figure 24b by 

reading off the value bi at any frequency, fi, according to Equation 71. 

 

𝐶 =
1

2𝜋f𝑖𝑏𝑖
    (71) 

 

The value of C can be determined using Equation 72 from the Bode plot in Figure 2c by reading off 

the value ri at any frequency, fi, where the slope of the curve (or an extrapolation of the curve) is -1. 

At slope =-1,  

 

𝐶 =
1

2𝜋f𝑖𝑟𝑖
   (72) 
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5.3.3.2 Unpainted metal equivalent circuits 

The impedance of the circuit is shown in Figure 26a. 

 

 

Figure 26 - Equivalent electrical circuit used to represent the unpainted metal/solution interface (a) 

and its Nyquist (b) and Bode (c) impedance plots [177]. 

 

𝑍 = 𝑅0 +
𝑅𝑡(

1

𝑗𝜔𝐶𝑑
)

𝑅𝑡(1+𝑗𝜔𝐶𝑑)
= 𝑅0 + (

1

𝑅𝑡
1

𝑅𝑡
2+𝜔2𝐶𝑑

2
) −

𝑗𝜔𝐶𝑑
1

𝑅𝑡
2+𝜔2𝐶𝑑

2
   (73) 

 

Which is of the form 

𝑍 = 𝑎 − 𝑗𝑏   (74) 

where 

 

𝑎 = 𝑅0 + (

1

𝑅𝑡
1

𝑅𝑡
2+𝜔2𝐶𝑑

2
)   (75) 

𝑏 =  
𝜔𝐶𝑑

1

𝑅𝑡
2+𝜔2𝐶𝑑

2
    (76) 
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The term 
1

𝑅𝑡
2 + 𝜔2𝐶𝑑

2 can be eliminated from Equations 75 and 76 to give  𝜔 =
𝑏

𝑎−𝑅0(𝑅𝑡𝐶𝑑)
 

which can be substituted into Equation 75 and rearranged to give Equation 77: 

 

(𝑎 − 𝑅0 −
𝑅𝑡

2
)2 + 𝑏2 = (

𝑅𝑡

2
)2   (77) 

 

 This is the equation of a circle radius 
𝑅𝑡

2
 and centre at 𝑅0 +

𝑅𝑡

2
 and explains the shape of the 

Nyquist complex plane semicircle in Figure 26b which results from parallel combination of Rt and 

Cd. The shape of the corresponding log r Bode plot (Figure 26c), is two frequency independent 

horizontal lines at low and high frequencies giving values on the log r axis for R0 and (R0+Rt), 

respectively, and a central portion at intermediate frequencies with a slope approaching -1 caused 

by the capacitor, Cd. The phase angle, dotted plot in Figure 26c, show θ dropping towards zero at 

low and high frequencies, corresponding to the resistive behaviour of R0 and (R0+Rt), and rinsing 

towards -90° at intermediate frequencies, corresponding to the capacitive behaviour of Cd.  

 

5.3.3.3 Painted metal equivalent circuits  

 An equivalent circuit model for the painted metal/solution interface requires inclusion of the 

paint film parameters to the circuit of Figure 26a. 

 The resistor, Rpƒ, has been interpreted as the pore resistance due to electrolyte penetration 

[179, 180] and at damaged areas of the film [179], or as areas where more rapid solution uptake 

occurs, namely, pre-existing holes or porous areas where inadequate cross-linking of the polymer is 

present [181]. The capacitor Cpƒ, has been interpreted as the capacitance of the electric capacitor 

consisting of the metal and electrolyte, with the paint film as dielectric [179]; or simply as the 

capacitance of the intact film [180], or as the capacitance of the areas where rapid solution uptake 

does not occur [181]. In many cases, one modification takes into account diffusion processes within 
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pores in the paint film, which are modelled by the inclusion of a Warburg or pseudo-impedance, Zω, 

placed in series with Rt, where Zω is defined according to Equation 78: 

 

𝑍𝜔 = 𝜔−
1

2(1 − 𝑗)   (78) 

 

where 

 

= Warburg impedance coefficient (Ohm s
1/2

) 

Ω= 2πƒ(rad s
-1

) 

 

Nyquist and Bode plots for the equivalent electrical circuit of Figure 27a are shown in Figures 27b-

d.  
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Figure 27 - Painted metal/solution interface equivalent circuit model in the presence of diffusion (a) 

and its Nyquist (b) and Bode (c,d) impedance plots [177]. 

 

 When values of  are about equal to Rt, this diffusion tail begins to overlap the second 

semicircle (curve 3) and subtends an angle of 45° to the a-axis. As  increases still further (curve 4), 

this overlap becomes increasingly more severe, but the diffusion tail eventually becomes inclined at 

an angle of 45° to the a-axis at low frequencies. Finally, when  is significantly greater than Rt the 

diffusion tail completely distorts the semicircular shape (curve 5), being initially greater than 45° to 

the a-axis. This angle decreases as the frequency is lowered. 

When there is no diffusion impedance, =0 and the low frequency portion of the log r Bode 

plot (see curve 1 in Figure 27c) is a line horizontal to the frequency axis indicating a purely resistive 

value of modulus r equivalent to (R0+Rt+Rpƒ), whilst the phase angle (curve 1 in Figure 27d) 



Chapter 5 – Experimental tests 

124 

 

approaches zero. As the value of  increases, the log r le at low frequencies is no longer horizontal 

but curves upwards, becoming steeper and approaching a slope of -1/2 at higher values of  (curve 

4 in Figure 27c). the corresponding low frequency portions of the phase plot ( curves 1-4 in Figure 

27d) show values of θ decreasing from 0 towards -45° as  increases. If the values of  increases 

still further, becoming significantly greater than Rt as in curve 5 of Figure 27c, the slope of -1/2 is 

approached at low frequencies around 0.3 kHz, but is a higher slope at higher frequencies up to the 

break pint at around 30 Hz. The corresponding phase plot (curve 5 in Figure 27c) shows θ 

approaching -45° at 0.1 Hz from lower θ values. 

 

5.4 Scanning Electron Microscopy (SEM) 

 The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to 

investigate surface morphology, chemical composition, etc.  

SEM has long been recognised as a tool to give a simulated ‘visual’ image of a surface, with 

a magnification which is sufficiently large for both macro- and micro-structures to be studied [182]. 

The scanning electron microscope (SEM) is a microscope that uses electrons rather than light to 

form an image. There are many advantages to using the SEM instead of a light microscope. SEM 

has a large depth of field, which allows a large amount of the sample to be in focus at one time. 

SEM also produces images of high resolution, which means that closely spaced features can be 

examined at a high magnification. Preparation of the samples is relatively easy since most SEM 

only require the sample to be conductive. The combination of higher magnification, larger depth of 

focus, greater resolution, and ease of sample observation makes the SEM one of the most important 

tool used in research areas today [183]. Conventional light microscopes use a series of glass lenses 

to bend light waves and thus create a magnified image. The SEM (Figure 28) creates the magnified 

images by using electrons instead of light waves. 
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Figure 28 - Schematic view of the operation of SEM. 

 

 It shows very detailed 3-dimensional images at much higher magnifications than is possible 

with an ordinary light microscope. The images created without light waves are rendered black and 

white. The specimen (which has been carefully prepared to withstand the vacuum inside the 

microscope) is then placed inside the microscope's vacuum column through an air-tight door. After 

the air is pumped out of the column, an electron gun, situated at the top, emits a beam of high 

energy electrons. This beam travels downward through a series of magnetic lenses which are 

designed to focus the electrons to a very fine spot. Near the bottom, a set of scanning coils hastens 

the focused beam back and forth across the specimen. As the electron beam hits each spot on the 

specimen, secondary electrons are knocked loose from the specimen surface. An electron detector 

counts these electrons and sends the signals to an amplifier. The final image is built up from the 
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number of electrons emitted from each spot on the specimen. The intensity of the emitted electrons 

from a specimen of a given homogenous composition depends on the local angle of the surface to 

the scanning beam moderated by the probability of their reaching the detector [182]. Thus, the 

image of the surface appears to have been viewed along the axis of the incident beam with a 

contrast that is expected if the sample is illuminated by a beam of light from the direction of the 

detector [182].  

 EDS can be used to determine which chemical elements are present in a sample, and can be 

used to estimate their relative abundance. The accuracy of this quantitative analysis of sample 

composition is affected by various factors. Many elements will have overlapping X-ray emission 

peaks (e.g., Ti Kβ and V Kα, Mn Kβ and Fe Kα). The accuracy of the measured composition is also 

affected by the nature of the sample. X-rays are generated by any atom in the sample that is 

sufficiently excited by the incoming beam. These X-rays are emitted in all directions (isotropically), 

and so they may not all escape the sample. The likelihood of an X-ray escaping the specimen, and 

thus being available to detect and measure, depends on the energy of the X-ray and the composition, 

amount, and density of material it has to pass through to reach the detector. Because of this X-ray 

absorption effect and similar effects, accurate estimation of the sample composition from the 

measured X-ray emission spectrum requires the application of quantitative correction procedures, 

which are sometimes referred to as matrix corrections [184]. 
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Chapter 6 - Experimental work 

6.1 Anodizing and sealing processes 

6.1.1 Materials and pre-treatments of anodizing  

 The material used in this study was AA2024-T3 wrought aluminium alloy, with nominal 

chemical composition given Table 10. Specimens were obtained from 1.6 mm thick sheets by 

guillotine cutting and degreased in acetone. Degreasing was followed by etching in 10wt. % sodium 

hydroxide at 60°C for 30 s. After etching, the specimens were desmutted in 30vol. % nitric acid for 

15 s at room temperature and dried in a cool air stream. The pretreated specimens were stored in a 

desiccator until required. Prior to anodizing, the specimens were masked with beeswax, in order to 

expose an area of 10 cm
2
 to the anodizing electrolyte.  

 

Table 10 - Nominal composition of AA2024-T3 alloy in weight %. 

Alloy Cu Mg Mn Si Fe Zn Ti Al 

2024-T3 4.50 1.44 0.60 0.06 0.13 0.02 0.03 Bal. 

 

6.1.2 Anodizing process 

 For the traditional TSA, anodizing was undertaken in 0.46 M sulfuric acid with the addition 

of 80 g/l tartaric acid (TSA). The anodizing electrolyte was gently stirred during the anodizing 

process. Anodizing was performed at 37°C for 20 min under potentiostatic control following a 

typical industrial voltage/time cycle, which involved an initial voltage ramp, followed by 

20 minutes potentiostatic anodizing at 14 V (SCE). The modified TSA cycle was undertaken in 

3.2 M sulphuric acid with the addition of 0.53 M tartaric acid at 25°C. Anodizing was performed 

under potentiostatic control with a very fast voltage ramp (applied only with the aim of limiting the 
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initial current overshoot) followed by potentiostatic anodizing at 7 V for 20 minutes. The 

concentration of sulfuric acid for the modified TSA cycle was selected on the basis of previous 

results [185-187], such as the steady current attained during anodizing at 7 V (25°C) was similar to 

that attained during anodizing at 14 V and 37°C (circa 8 mA cm
−2

). As a result, the charge passed 

during both anodizing cycles was closely similar (circa 10.2 C cm
−2

 and 9.5 C cm
−2

 for traditional 

and modified TSA, respectively), and films with similar thickness could be obtained. Thus, the 

comparison of the behaviour of films with a similar thickness but obtained applying different 

potential/time regimes enables evaluation of the contributions due to oxide morphology alone.  

 A three-electrode cell was used, with the specimen as the working electrode, a saturated 

calomel reference electrode and an aluminium cathode. The anodizing electrolyte was stirred during 

both the anodizing processes. Following anodizing, the specimens were rinsed repeatedly in 

deionized water to remove residual acid and dried in a cool air stream.  

 

6.1.3 Sealing process 

 Following anodizing, three different sealing treatments were applied: the first in hot water, 

the second in a solution containing sodium chromate and the third in a cerium (III) nitrate-

containing solution. During sealing, electrochemical impedance spectra were acquired, as described 

in detail later. As a control for a condition where no sealing occurs, EIS measurements were also 

performed on as-anodized specimens immersed in cold water with the addition of 1g/l of sodium 

sulphate, to enhance the electrolyte conductivity during EIS measurement.  

Hot water sealing was performed in a solution of deionized water, with the addition of 1g/l 

of sodium sulphate to increase the conductivity to enable reliable EIS measurements. The pH was 

corrected at pH=6 with a few drops of a solution 10g/l sulfuric acid. The treatment required 

30 minutes at 96°C. 
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Chromate sealing was performed in 70g/l Na2CrO4 and deionized water. The specimens were 

immersed in this solution for 30 min at 96°C.  

The solution for cerium (III) nitrate sealing was prepared with 0.015 M hydrated Ce(NO3)3, 

0.029 M H2O2 and deionized water. The hydrogen peroxide was added to increase the deposition 

rate since it accelerates the oxidation of Ce
+3

 ions to Ce
+4

, thereby reducing the time required to 

form the layer and improving its uniformity. The treatment time was 30 minutes at a temperature of 

37°C.  

 

6.1.4 Electrochemical Impedance Spectroscopy (EIS) measurements 

6.1.4.1 Monitoring of the sealing treatment 

 The monitoring of the sealing treatment was carried out by EIS. A two-electrode cell was 

used for the measurement, with one specimen as the working electrode (connected to the working 

and sense cable of the potentiostat), and another identical specimen as counter electrode and 

reference electrode (connected to the counter and reference electrode cables of the potentiostat). 

This two electrode configuration was selected since it enables to measure the EIS spectra without 

imposing a constraint on the absolute value of the electrodes potential, as discussed in detail in 

[188]. Thus, the perturbation of the sealing process due to the measurement of EIS is minimized, 

even in conditions where a significant transient in potential occurs.  

By using this configuration, the measured impedance is the sum of the impedances of the 

individual electrodes, since they are placed in series. Under the assumption that the two electrodes 

are identical (i.e. have identical impedance), the impedance of each electrode (including half of the 

total solution resistance) can be calculated by dividing by two the measured impedance. The result 

can be then be normalized by dividing for the area of one electrode. Considering that the two 

electrodes are in series, if the assumption of identical electrodes is violated, for example due to a 
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localized reaction occurring only on one of the two electrodes, the overall response is dominated by 

the high impedance electrode. This might be an issue during corrosion measurement, when 

localization is likely to take place, but it is unlikely to occur during the processes investigated here.  

The spectra were acquired continuously, and each acquisition required approximately 6 minutes. 

Thus, each spectrum represents a 6 minute window in the sealing process, i.e.0-6 min; 6-12 min; 

12-18 min; 18-24 min; 24-30 min. It should be noted that the majority of the time required to 

acquire an EIS spectrum is needed to obtain the last low-frequency points; thus, the high/medium 

frequency of the spectrum effectively provides information at 0, 6, 12 minutes and so on.  In order 

to be reliable, electrochemical impedance measurements require the measured system to be 

stationary, i.e. that it does not evolve with time. Clearly, the measurement of EIS spectra during 

sealing is not conducted under stationary conditions, due to the progressive modification of the 

electrodes surface. If the surface evolves relatively rapidly, as for the systems studied in this work, 

the reliability of the complete impedance spectra might be questionable. However, considering one 

by one the points of an impedance spectrum, it is evident that the time required to acquire a point at 

high frequency is substantially lower than that required to acquire a point at low frequency. Thus, 

the vast majority of the measurement time is employed for the last few low-frequency points. As a 

consequence, the high frequency region of the spectra is intrinsically reliable (since the timescale of 

evolution of the system is large with respect to the measurement time) whereas the low frequency 

region is less reliable and might contain artefacts (since the changes on the surface occur on a 

timescale that is comparable to that of the measurement). In this situation, one can either avoid the 

acquisition of the spectra, or acquire the spectra even on the non-stationary system and then 

consider critically the results obtained, i.e. remembering that the high frequency regions are 

intrinsically more reliable than the low-frequency regions. 

The specimens were immersed in the respective sealing solutions and the area exposed was 

10 cm
2
. EIS was performed in potentiostatic mode, applying a sinusoidal potential perturbation with 
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amplitude of 10 mV in the frequency range from 100 kHz to 20 mHz. The DC level between the 

two identical electrodes was set to 0 V, which is equivalent to short circuiting the two electrodes. 

After sealing, the specimens were rinsed in deionized water and dried in a cool air stream. 

 

6.1.4.2 EIS measurements after sealing treatments 

 Following sealing, EIS was also carried out in cold 1M Na2SO4 solution at room 

temperature, to characterize the sealed oxides after all the dissolution and precipitation processes 

had terminated. In this case, a three-electrode cell was used, with the specimen as the working 

electrode, a saturated calomel reference electrode and an aluminium cathode. The area exposed for 

these measurements was 2 cm
2
. The impedance spectra were acquired in potentiostatic mode at the 

open circuit potential by applying voltage sinusoidal perturbation with amplitude of 10 mV over the 

frequency range from 100 kHz to 5 mHz. Before EIS, the open circuit potential was monitored for 

15 minutes. Each electrochemical test was repeated three times in order to evaluate the 

reproducibility; generally, very minor differences (of the order of 10% of the impedance modulus), 

if any, between repeated tests were found. 

 

6.1.4.3 EIS measurements during corrosion tests 

 In order to monitor the corrosion resistance , the specimens were immersed in aggressive 

solution of 3.5 wt.% sodium chloride for 15 days. EIS spectra were measured at regular intervals 

with the same three electrodes setup and amplitude. The frequency range inspected varied from 

100 kHz to 5 mHz. Between measurements, the specimens were left to corrode freely in the sodium 

chloride solution. 
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6.1.5 Scanning Electron Microscopy (SEM)  

 Scanning Electron Microscopy (SEM) was undertaken by using an EVO 60 microscope and 

TM 3000 Hitachi operating at an accelerating voltage 20 kV in high vacuum, in order to analyse the 

surface morphologies of specimens after anodizing and after sealing. The specimens were not 

metalized prior to observation. 

 

6.2 Trivalent chromium conversion coating 

6.2.1 Materials and pre-treatments 

 The material used in this study was AA 2024-T3 with nominal composition given in Table 

10. The specimens supplied by aeronautical industry, Leonardo Company, with dimensions of 

75mmx250mmx1mm. The list and operating parameters of the pickling solutions used are in Table 

11.  

Table 11 – List and operating parameters of the pickling solutions. 

Pickling Composition 
Concentration 

(g/l) 
pH 

T 

(°C) 
Time 

Deoxidizer 6-16 
Deoxidizer BAC 5765 

Nitric Acid 42B 
650 1.1 70 5-15 min 

 

Turco Aluminetch#2 

 

Turco Smut Go NC 

Aluminetch 30-40 12.3 60 30 sec 

Smut Go NC 

Nitric Acid 42 B 

200-245 

50-80 
0.68 25 10 min 

Turco Deoxalume 

2310 

Deoxalume 

Nitric Acid 42 B 

140-280 

280-420 
0.35 25 10 min 

Oakite LNC Nitric Acid 42B 25-43 0.7 25 10 min 

 

 Specimens were degreased in acetone. Degreasing was followed by alkaline cleaning (Turco 

4215NC-LT) and the specimens were rinsed in in industrial water (B grade). This type of water has 
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a pH value of 5.0-8.5 and a conductivity of < 400µS/cm. After cleaning, the specimens were 

deoxidizing in four different solutions. The first was an acid solution containing Cr (VI), Deoxidizer 

6-16, and it was considered as benchmark. The specimens were immersed at 70°C for 5-15 min. 

 The second pre-treatment provided a first alkaline solution containing Turco Aluminetch#2 

where the specimens were immersed at 60°C for 30 s, after the specimens were rinsed and 

following it was immersed in acid Turco Smut Go NC at 25°C for 10 min. The third acid solution 

containing Turco Deoxalume 2310 and the specimens were immersed at 25°C for 10 min; finally 

the fourth acid solution is Oakite LNC and the specimens were immersed at 25°C for 10 min. After 

each pre-treatment the specimens were rinsed in B grade water. The surface chemical pre-

treatments were summarized in Figure 29. 

 

 

Figure 29 – Process flow.  

 Solvent manual Cleaning

Acetone, NTA 72268

Alkaline Cleaning

Turco 4215 NC-LT

Rinse

Deoxidizing

Deoxidizer 6/16

Deoxidizing

Turco Aluminetch#2

Desmutting 

Turco Smut Go NC

Deoxidizing

Turco Deoxalume 2310

Deoxidizing

Oakite LNC

Rinse Rinse Rinse Rinse

Rinse
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6.2.2 Industrial cycle of Alodine 1200s 

 The list and operating parameters of the Alodine 1200s conversion coating used is in Table 

12. 

The surface treatment of Alodine 1200s on alloy 2024-T3 involves a series of steps schematized in 

Table 13. 

 

Table 12 - List and operating parameters of hexavalent chromium conversion treatment. 

Chemical conversion coating Commercial name Operating parameters Range 

Hexavalent Chromium Alodine 1200s 

Concentration 

pH 

Temperature 

Time 

7.5-22.5 g/l 

1.3-1.7 

35-38°C 

1-3 min. 

 

Table 13 – Industrial cycle of Alodine 1200s. 

 

  

Alkaline 
degreasing 

Rinse 
Alkaline 

degreasing 
Rinse 

DEOXIDIZER 6-16 
(Cr(VI)) acid pickling 

Rinse 
Alodine 1200s 

conversion coating 

Rinse Drying 
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6.2.3 Innovative cycle – Total Green 

 The list and operating parameters of the Cr(III)conversion coating used is in Table 14. The 

surface treatment of Cr(III)on alloy 2024-T3 involves a series of steps schematized  in Table 15. 

 

Table 14 - List and operating parameters of trivalent chromium conversion treatment. 

Chemical conversion coating Commercial name Operating parameters Range 

Trivalent Chromium SurTec 650 

Concentration 

pH 

Temperature 

Time 

20% 

3.70-3.95 

30°C 

4 min. 

 

Table 15 – Innovative cycle - Total Green. 

 

  

Alkaline 
degreasing 

Rinse 
Alkaline 

degreasing 
Rinse 

Cr-free pickling:  

Smut Go NC/ Deoxalume 2310/ 
Oakite LNC 

Rinse 
SurTec650  

conversion coating 

Rinse Drying 
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6.2.4 Surface analysis 

 In order to analyse the surface morphologies of specimens after each pre-treatment, scanning 

electron microscopy (SEM) images were taken with Hitachi TM 3000 equipped with energy 

dispersive X-ray spectroscopy (EDS). 

 

6.2.5 Electrochemical measurements 

6.2.5.1 Potentiodynamic polarization measurements  

 The surface of specimens after each pre-treatment and after each conversion coatings in Cr 

(VI) and Cr-free, respectively, were characterised by potentiodynamic polarizations. 

Electrochemical measurements were performed in 3.5 wt.% sodium chloride (NaCl) solution at 

room temperature. A conventional electrochemical three-electrode cell was used with the specimen 

as the working electrode, a saturated calomel reference electrode (SCE) and a platinum counter 

electrode.  

 Before tests open circuit potential (OCP) was evaluated waiting the steady state at least for 

15 min. Cathodic curves were carried out starting 10 mV above the OCP value while anodic curves 

were carried out starting 10 mV below the OCP value; both curves were recorded using a scan rate 

of 0.16 mV/s. Experiments were repeated at least three times in order to evaluate the 

reproducibility. 

 

6.2.5.2 Electrochemical Impedance Spectroscopy measurments  

 Corrosion behaviour was carried out by EIS in aerated 3.5 wt.% NaCl solution for 14 days at 

room temperature with three electrodes setup cell with amplitude of sinusoidal potential 

perturbation of 10 mV; the area exposed was 7 cm
2
. The frequency range inspected varied from 
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100 kHz to 20 mHz. Before each measurement, the OCP was acquired for 15 minutes. Between 

measurements, the specimens were left to corrode freely in the test solution.  
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Chapter 7 - Results and discussions 

7.1 Anodizing and sealing processes 

7.1.1 Anodizing results 

Anodizing was carried out according to two different electrical regimes, as depicted in Figure 30.  

 

Figure 30 – Applied potential -time regimes (a, b) and resulting current responses (c,d) for 

traditional TSA (a, c) and modified TSA (b, d). 
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 The first electrical regime (traditional TSA) is the typical cycle applied in industry for the 

tartaric-sulfuric anodizing process and involves an initial potential ramp from 0 to 14 V (SCE) 

during the first 5 minutes of anodizing, followed by 20 minutes of potentiostatic anodizing at 

14 V (SCE). The time evolution of the applied potential is presented in Figure 30a. The alternative 

electrical regime (modified TSA), involved a much faster potential ramp (0.2 V/s) followed by a 

potentiostatic hold at 7 V (SCE) and was performed in the electrolyte with higher concentration of 

sulfuric acid maintained at room temperature. The initial fast potential ramp in this cycle is not 

required to improve the properties of the anodic oxide, but it has been applied here to avoid current 

overloading in the potentiostat, which has a limit of 100 mA and interrupts the experiment in case 

of overloading. With a conventional two electrode power supply that is capable of self-limiting 

current in case of overload without interrupting the test, the first ramp would not be required.  

 The current responses presented in Figures 30c, indicate that the steady current during the 

potentiostatic hold in the two conditions was very similar (in the region of 8 mA cm
−2

). This is due 

to the fact that the lower anodizing potential is applied in the more concentrated solution. This 

result is expected, since these conditions have been selected based on previous works focusing on 

optimization of the anodizing cycles [169, 185, 186]. The aim here was to generate films with 

comparable thickness but different oxide morphologies. In particular, traditional TSA exhibits very 

fine pores in the outer regions, generated initially at low potential during the ramp, which 

progressively coarsen toward the metal interface. The majority of the film, thus, has a coarse 

morphology, generated during high potential step at 14 V. In contrast, oxides generated with the 

modified TSA have much finer pores throughout the thickness and do not display the outer regions 

of very fine porosity, since the initial ramp is fast and terminates before the pores fully nucleate. All 

the morphological aspects associated with the two processes are presented and discussed in detail 

elsewhere [169, 185, 186]. It is worth also noticing that the oxides obtained by traditional and 

modified TSA are expected to have a very similar chemical composition, since the only difference 
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between the two anodizing electrolytes is the concentration of sulfuric acid. Concerning the 

electrical response recorded during the initial ramp, for the traditional TSA process, two peaks, 

associated with the oxidation of second phases were clearly visible. During the fast ramp applied in 

the second cycle, peaks in the current response were not clearly visible, since the charge passed was 

not sufficient to induce complete oxidation of the second phases, but only to generate a thin oxide 

layer on the alloy surface. After the ramp was terminated, the current decreased rapidly, to attain a 

steady value after approximately 200 seconds. Such decrease is associated with the initial 

thickening of the oxide layer, followed by pore nucleation and propagation [189, 190]. 

 Simultaneously, second phase oxidation occurs. In particular, it is well known that the 

traditional TSA oxide displays a porosity that is relatively closed in the external regions, since these 

are generated during the early stages of the potential ramp, thus at low potential, and relatively 

coarse throughout the majority of the thickness, since it is generated later during the stage of high 

potential hold. Conversely, the modified TSA cycle displays a much finer porosity throughout the 

thickness, since the film is generated by anodizing at 7 V. 

 

7.1.2 EIS responses during and post-sealing treatments  

 The impedance spectra recorded on the two porous anodic oxides immediately and after 

24 minutes of immersion in cold water with the addition of sodium sulphate are reported in Figure 

31.  
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Figure 31 - EIS spectra (a,b) acquired from specimens supporting porous anodic oxides generated 

by traditional TSA and by modified TSA. Spectra presented were acquired immediately after and 

after 24 minutes of immersion in the cold water solution. 
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impedance associated with the modified TSA cycle were slightly higher than that of the traditional 

TSA cycle. The EIS spectra acquired in the cold control conditions (not aggressive to the oxide or 

to the alloy) already reveal significant differences between the oxides generated by the two 

treatments. In particular, it is evident that the oxide generated at lower potential has a slightly higher 

capacitance (consistent with a thinner barrier layer) but higher low-frequency impedance modulus. 

 This observation suggests that the low-frequency impedance modulus is not uniquely 

determined by the thickness of the barrier layer on the multiphase alloy under study, since if this 

was the case a thinner barrier layer would necessarily also be associated to a lower impedance 

modulus.  

The impedance response measured during sealing in hot water for both anodizing cycles is 

reported in Figure 32.  
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Figure 32 - EIS spectra acquired from specimens supporting porous anodic oxides generated by 

traditional TSA and by modified TSA. Spectra presented were acquired immediately after and after 

24 minutes of immersion in the hot water solution. 
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slight increase in the low frequency values of the modulus of impedance with increasing sealing 

time. The behaviour during sealing in sodium chromate (Figure 33) was markedly different.  

 

 

Figure 33 - EIS spectra acquired from specimens supporting porous anodic oxides generated by 

traditional TSA and by modified TSA. Spectra presented were acquired immediately after and after 

24 minutes of immersion in the sodium chromate solution. 
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 In particular, a significant increase in capacitance (evident as a left shift of the medium-

frequency regions of the spectra) was observed during the sealing process, and an increase in the 

low-frequency values of the impedance modulus. However, the increase in capacitance was 

proportionally more significant for the films obtained in the traditional TSA compared to those 

obtained with the modified TSA process. Such increase in capacitance observed during chromate 

sealing is due to a substantial thinning of the barrier layer due to the relatively aggressive sealing 

solution [191, 192]. The impedance spectra obtained during cerium sealing are presented in Figure 

34. 
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Figure 34 - EIS spectra acquired from specimens supporting porous anodic oxides generated by 

traditional TSA and by modified TSA. Spectra presented were acquired immediately after and after 

24 minutes of immersion in the cerium-based solution. 
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TSA cycle showed virtually no variation during the sealing process, but the initial value was 

significantly higher than for traditional TSA [191, 193]. Figure 35 presents the comparison of the 

impedance spectra measured in the cold solution of sodium sulphate after the various sealing 

treatments were applied.  

 

 

Figure 35 - EIS spectra acquired at room temperature in 1M Na2SO4, a) unsealed oxides, b) hot 

water sealed oxides, c) sodium chromate sealed oxides and d) cerium sealed oxides. Comparison 

between responses of the oxides generated by traditional TSA (red diamonds) and modified TSA 

(blue squares). 
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process. This second time constant is evident only after sealing, when the measurement is 

performed at low temperature, because it is associated to the precipitation of the hydrated sealing 

products within the pores. During sealing, at higher temperature, such hydrated products are in the 

form of gels and, due to the relatively low resistance, cannot be resolved by EIS measurement 

[192]. The behaviour during the various sealing treatments  also indicates that the anodic oxides 

obtained with the modified TSA process respond better to sealing. In particular, higher values of 

low frequency impedance modulus are consistently observed during the last cycle of the in situ EIS 

measurements. This can be rationalized again by considering the reduced presence of defects in the 

oxides generated by the modified TSA process. Specifically, it is evident that no significant 

modification of the barrier layer properties (and, by extension, of the majority of the porous 

skeleton) is associated with the application of any of the non-chromium containing sealing 

processes. This is highlighted by the fact that the capacitance of the barrier layer, and thereby its 

thickness, does not change substantially during sealing in chromate-free solution. Thus, the effects 

of such procedures are limited to the external regions of the oxide, and are likely to involve only a 

limited dissolution of the porous skeleton. In contrast, when sealing is performed in sodium 

chromate, the dissolution of the pre-existing porous skeleton is very substantial, as it is evident for 

the rapid increase in capacitance, associated with barrier layer thinning, and corresponding decrease 

in resistance during the first minutes of sealing. Thus, the original porous skeleton is substantially 

attacked during chromium sealing, and the final properties of the sealed film are mainly determined 

by the properties of the re-precipitated layer. Upon cooling, the precipitation of the sealing products 

takes place, followed by crystallization. After sealing, the comparison between the two treatments is 

of particular interest; clearly, the time constant present at medium frequency range and associated 

with the precipitation of the sealing products was more pronounced for the modified TSA process 

compared to the traditional TSA. This can be rationalized by considering that finer pores are much 

easier to completely seal once the precipitation processes are triggered.  
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7.1.2.1 Equivalent circuit analysis of sealed oxides generated by Traditional TSA 

 Before analysing the information obtained from equivalent circuits, it is appropriate to report 

the graphs showing the complete monitoring of the sealing of the oxides anodized in TSA (Figure 

36).  

 

 

Figure 36 - Evolution of impedance modulus and phase angle measured a) in the control condition 

(cold water), b) during hot water sealing, c) during sodium chromate sealing and d) during cerium 

(III) nitrate sealing. Arrows in the spectra indicate increasing treatment time and lines between 

points are intended as a guide to the eyes. 
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by traditional TSA, two equivalent circuits models were used to fit the data (Figure 37). The 

software used to fit the experimental EIS data was ZView. 

 

 

Figure 37 - Equivalent circuits representing sealed porous anodic oxide (a) general model, (b) 

model used to fit the data acquired during sealing and (c) model used to fit the data acquired after 

sealing. 
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capacitance and resistance due to the presence of the barrier layer, and Rseal and CPEseal represent 
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circuit of Figure 37b can be used, and it was employed here to analyse the data obtained during 

sealing [135], when the resistance of the sealing products is comparatively low. Constant phase 

elements were used for the fitting and, values of capacitance for the plots were obtained by using 

the approach described in Hirschorn, et al. [196] applicable to a distribution of time constants 

perpendicular to the electrode surface. During sealing, the re-precipitated hydroxide layer is likely 

to contain significant amount of water and is likely to be in the form of gel until it is maintained at 

high temperature. As a result, the conductivity is relatively high, and the layer cannot be resolved 

directly by EIS measurement. On the contrary, after cooling, the sealing product precipitate and 

might crystallize. As a result, ionic migration becomes significantly more difficult compared to the 

gel products. Thus, the sealing product layer appears as a second time constant in the spectra, and 

for this reason a circuit that include the resistance and the capacitance associated to the precipitated 

sealing products (Rseal and CPEseal) is used for the fitting, and the circuit of Figure 37c is used to 

analyse the data. In order to account for the non-planarity of the various layers, constant phase 

elements are used for the fitting in lieu of ideal capacitors. Figures 38 and 39 show typical 

calculated (lines) and experimental (symbols) spectra obtained during (Figure 38) and after (Figure 

39) sealing. The results of the fitting procedure are reported in Tables 16 and 17. 

 

 

Figure 38 - Typical experimental (symbols) and calculated (line) impedance spectra acquired (a) 

during hot water sealing, (b) during sodium chromate sealing and (c) during cerium (III) nitrate 

sealing. 
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Figure 39 - Typical experimental (symbols) and calculated (line) impedance spectra acquired (a) 

after hot water sealing, (b) after sodium chromate sealing and (c) after cerium (III) nitrate sealing. 

 

Table 16 - Results of the fitting procedure during sealing treatment. 
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Table 17 - Results of the fitting procedure after sealing treatment. 

After sealing 
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Ω∙cm
2
 

CPEbl 

s
n 
Ω

-1
cm
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n 
Rseal 

Ω∙cm
2
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n 

Cold water 6.79∙10
6
 2.30∙10

-6
 0.94 7.07∙10
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 0.94 

Hot water 1.50∙10
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 9.10∙10
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 0.93 5.12∙10

3
 4.44∙10

-7
 0.78 

Sodium Chromate 7.50∙10
7
 5.78∙10

-6
 0.96 7.73 3.08∙10

-8
 1.00 

Cerium(III) Nitrate 2.40∙10
8
 8.57∙10

-7
 0.95 1.96∙10

3
 1.36∙10

-6
 0.91 

 

 The time evolution of the barrier layer resistance and of the barrier layer capacitance during 

sealing, together with the final values obtained after sealing, are presented in Figures 40 and 41, 

respectively.  

 

Figure 40 - Time Evolution of the barrier layer resistance measured during and after sealing 

processes.  
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Figure 41 - Time evolution of the barrier layer capacitance measured during and after sealing 

processes. 
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2
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first test electrolyte, followed by rinsing and drying, might have induced some hydration of the 

oxide, with subsequent re-precipitation (self-sealing). Such re-precipitation, although not 

substantial, might have contributed to cover some defects statistically present in the oxide layer. 

 The time evolution of the estimated capacitance associated to the barrier layer is presented in 

Figure 41. The capacitance inversely correlates with the thickness of the barrier layer beneath the 

pores. For the control condition, the capacitance was unchanged for all the measurements, as 

expected since no significant reduction of the barrier layer thickness should occur at low 

temperatures. The behaviour was similar for both hot-water sealing and cerium sealing, although for 

cerium sealing slightly lower values of capacitance were estimated. After sealing, the capacitances 

of hot water and cerium-sealed films coincided. Substantially different behaviour was observed 

during chromium sealing. Initially the value of capacitance was similar to that measured for the 

other treatments but, after 6 minutes, the capacitance increased substantially and remained 

approximately constant until 30 minutes. After sealing, the capacitance slightly decreased, but it 

was still higher compared to that measured for the control specimen.  
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7.1.3 SEM 

 Scanning electron micrographs of specimens treated in TSA solution after anodizing and 

after sealing are presented in Figure 42.  

 

 

Figure 42 - Scanning electron micrographs of the surface of  specimen treated in TSA solution (a) 

anodized, (b) hot water sealed, (c) sodium chromate sealed and (d) cerium (III) nitrate sealed. 
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behaviour of the various metallurgical phases present on the alloy [186, 189, 197]. After sealing in 

hot water (Figure 42b), the surface morphology did not appear substantially different from the one 
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observed on the as anodized specimen. Conversely, after sealing in chromate-containing solution, 

the surface of the oxide film appeared substantially modified, with a homogeneous deposit of 

sealing products clearly evident above the anodic oxide layer. The cerium treatment (Figure 42d), 

induced the precipitation of finely dispersed cerium-rich clusters above the porous anodic oxide 

film. Such cerium-rich deposits on anodized aluminium and aluminium alloy surfaces have been 

observed previously and characterized in detail by Gordovskaya et al.[198]. The attack of the 

porous oxide skeleton associated with cerium sealing is minimal, but a significant amount of 

precipitation products are formed, as evident from SEM images.  
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 The SEM images of specimens treated in Modified TSA solution are shown in Figure 43.  

 

 

Figure 43 - Scanning electron micrographs of the surface of  specimen treated in Mod.TSA solution 

(a) anodized, (b) hot water sealed, (c) sodium chromate sealed and (d) cerium (III) nitrate sealed. 

 Also in this case the surface of specimen anodized (Figure 43a) reflected the scalloped 

morphology generated by etching treatment. The surface of samples after sealing in hot water 

(Figure 43b) and chromate-based solution (Figure 43c) are similar to that observed for TSA oxides 

sealed. The cerium treatment (Figure 43d), induced the precipitation cerium-rich clusters but are 

less evident compared to TSA oxide. 
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7.1.4 EIS measurements during corrosion tests 

 After the selected anodizing and sealing treatments, the specimens were immersed in 

3.5 wt.% NaCl and impedance measurements were taken at regular intervals for 14 days. In Figure 

44, the results obtained from the control unsealed specimens are presented.  

 

 

Figure 44 - Series of EIS spectra of unsealed anodic oxides obtained during 336 hours of exposure 

in 3.5% NaCl: a, c) TSA and b, d) modified TSA. 
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 During the 336 hours of immersion, for both anodizing treatments, a progressive decrease in 

values of impedance was observed. However, such decrease was more marked for the specimen 

anodized with the traditional TSA cycle, which attained a low frequency value of impedance 

modulus of 10
4
 ohm cm

2 
after 336 hours. The low-frequency impedance modulus of the specimen 

anodized by the modified TSA cycle also decreased with time, but the final value was 

approximately one order of magnitude higher. Importantly, a substantial increase in capacitance, 

evident as a shift toward the left of the EIS spectra, was revealed for the traditional TSA process, 

whereas such increase was almost absent for the modified TSA process. Further, the modified TSA 

process displayed a new high-frequency time constant for long immersion times, which was not 

evident for the traditional TSA process. The behaviour measured after hot water sealing (Figure 45) 

was significantly different.  



Chapter 7 – Risults and discussions 

161 

 

 

Figure 45 - Series of EIS spectra of hot water sealed anodic oxides obtained during 336 hours of 

exposure in 3.5% NaCl: a, c) TSA and b, d) modified TSA. 
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impedance values was observed after 7 days, and a significant increase in capacitance was evident 

between 168 and 336 hours.  

 

 

Figure 46 - Series of EIS spectra of chromate sealed anodic oxides obtained during 336 hours of 

exposure in 3.5% NaCl: a, c) TSA and b, d) modified TSA. 
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traditional TSA and subsequently cerium sealed (Figure 47) displayed a progressive decrease in 

impedance values over 336 hours, with a corresponding increase in capacitance.  

 

 

Figure 47 - Series of EIS spectra of cerium sealed anodic oxides obtained during 336 hours of 

exposure in 3.5% NaCl: a, c) TSA and b, d) modified TSA. 
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increased more, with increasing immersion time. The modified TSA process, due to the finer 

porosity that is more impervious to the penetration of aggressive species (in the unsealed condition) 

and that respond better to sealing, consistently displayed an impedance that is much higher than the 

traditional TSA process, as evident from the EIS spectra acquired during corrosion in 3.5 wt.% 

NaCl. The behaviour revealed by EIS was mirrored by the observations from real time imaging of 

the corroding surfaces. On traditional TSA, the anticorrosion performance of cerium sealing was 

comparable with that of chromate sealing, with only minor signs of corrosion after 328 hours. On 

the modified TSA process, with reduced pore diameter, the corrosion performance of both hot water 

and cerium sealing was significantly increased compared to that of films generated in traditional 

TSA and subsequently sealed in the same solutions.  

 In contrast, the performance of chromate sealing was similar or marginally worse. These 

observations can be rationalized considering that chromate sealing is much more aggressive to the 

pre-existing anodic oxides and the anticorrosion performance arises from active inhibition provided 

by the residual chromate ions, rather than from an improvement in barrier effect. Thus, given the 

aggressiveness of chromium sealing and the active inhibition due to chromate ions, the geometry of 

the initial porous skeleton is not particularly important in determining the anticorrosion 

performance after sealing. In contrast, for the other two treatments (hot water and cerium based), 

the geometry of the pre-existing anodic oxide is much more important, since it is not disrupted as 

much as for chromate sealing. For hot water sealing, the improvement in corrosion resistance is 

mainly due to barrier effects associated with the precipitation of hydrated products and pore closure. 

 Thus, if the pore geometry is finer, it is easier to be filled homogeneously by hydration 

products. Similar arguments apply to the cerium sealing, where the hydration of the porous skeleton 

is less important, but a significant precipitation of cerium products occurs within and above the 

pores, as shown by the appearance of the second time constant (see Figure 35).  
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7.1.5 Corrosion imaging 

 In order to corroborate the EIS results, couples of anodized and sealed specimens were 

masked and immersed vertically in 3.5 wt.% NaCl solution, at the free corrosion potential. In 

Figures 48-51, the surface appearance of the specimens during corrosion is compared.  

 

Figure 48 - Surface appearance during corrosion in 3.5 wt% NaCl of the specimens anodized by the 

traditional TSA process and sealed with the different treatments. Pairs of nominally identical 

specimens were corroded and this figure reports the specimen appearing less corroded. 
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Figure 49 - Surface appearance during corrosion in 3.5 wt% NaCl of the specimens anodized by the 

traditional TSA process and sealed with the different treatments. Pairs of nominally identical 

specimens were corroded and this figure reports the specimen appearing more corroded. 
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Figure 50 - Surface appearance during corrosion in 3.5 wt% NaCl of the specimens anodized by the 

modified TSA process and sealed with the different treatments. Pairs of nominally identical 

specimens were corroded and this figure reports the specimen appearing less corroded. 
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Figure 51 - Surface appearance during corrosion in 3.5 wt% NaCl of the specimens anodized by the 

modified TSA process and sealed with the different treatments. Pairs of nominally identical 

specimens were corroded and this figure reports the specimen appearing more corroded. 

 

 It is evident that the sealing treatment that provided the best anticorrosion performance was 
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cerium based sealing, produces film with anticorrosion performance that is equivalent or exceeds 

that of chromate sealed traditional TSA. This is due to the effect of the fine pore morphology that 

enhances the barrier properties and facilitates the sealing, combined with the active inhibition 

provided by cerium ions. 

 

7.2 Trivalent Chromium conversion coatings 

7.2.1 Industrial cycle Alodine 1200s 

 The potentiodynamic polarizations are performed in order to determine the characteristics of 

the aluminium alloy when it is exposed in aggressive environments. Such measures have been 

carried out according to ASTM G3 and ASTM G5. 

 

7.2.1.1 Potentiodynamic polarization results 

 The analysis of the various step of the Alodine cycle have performed, particularly the 

corrosion behaviour of the alloy after two degreasings, after chromate pickling and after pickling 

with Alodine 1200s conversion coating will be analysed. Electrochemical tests were carried out in 

an aggressive solution containing Cl
-
 ions (3.5 wt.% NaCl). Experiments were repeated at least 

three times in order to evaluate the reproducibility. The area exposed for these measurements was 

3 cm
2
. In Figure 52, the alloy behaviour is compared at each step of the cycle.  
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Figure 52 - Electrochemical behaviour of the Alodine cycle in 3.5 wt.% NaCl solution. 
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 After the first and second degreasing, the cathodic curve assume lower current values than 

that of the untreated alloy. The kinetic of oxygen reduction diminishes and the surface is more 

homogeneous with the first degreasing.  

Following acid pickling, the oxide and the second phase are eliminated and the presence of 

Cr
+6

 allows the formation of a first conversion layer protecting the aluminium alloy. This is found 

in the cathodic curve where it can be noted that currents assume lower values. 

After Alodine 1200s conversion coatings, the cathodic curve greatly improves by obtaining 

lower currents of one order of magnitude than that untreated alloy. 

Instead, considering the curves that represent the anode process, it is noted that Ecorr value increases 

with the various steps of the process. It can be noted, in Table 18, that its value increases by 40 mV 

compared to the value that it assume with the alloy subject only the first degreasing.  

 

Table 18 – Potentiodynamic polarization results of classical industrial cycle. 

Steps Ecorr, V vs SCE icorr, A/cm
2
 Epit, V vs SCE 

AA 2024-T3 untreated -0.645 3.9810
-7

 -0.645 

Degreasing 1 -0.600 9.7410
-7

 -0.600 

Degreasing 2 -0.584 1.2210
-6

 -0.584 

Deoxidizer -0.576 6.1510
-7

 -0.576 

Alodine 1200 s -0.610 2.3810
-7

 -0.564 
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7.2.1.2 EIS results 

 Electrochemical impedance spectroscopy were carried out perturbing to the least one the 

corrosion potential, therefore, are designed to not destroy the specimen. A monitoring was 

performed for 15 days in a solution containing 3.5 wt. % NaCl. The area of the specimen exposed 

was 7 cm
2
.  

The impedance modulus trend of the untreated alloy is shown in Figure 53, while the trend 

of the corresponding phase angle is reported in Figure 54.  

 

Figure 53 – Impedance modulus of untreated alloy 2024-T3 obtained during 15days of exposure in 

3.5% NaCl. 
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Figure 54 – Phase angle of untreated alloy 2024-T3 obtained during 15 days of exposure in 3.5% 

NaCl. 
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Figure 55 - Impedance modulus of alloy after first degreasing obtained during 15days of exposure 

in 3.5% NaCl. 

 

Figure 56 – Phase angle of alloy after first degreasing obtained during 15days of exposure in 3.5% 

NaCl. 
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 Even in this case, considering the measured values at very low frequencies, it can be seen 

that Considering the low-frequency values, a low impedance can be observed at the beginning of 

immersion in the solution test, a low impedance value is detected. This is a pits trigger index on the 

surface. After 2 day of exposure, the low-frequency impedance modulus increases and the phase 

angle is stable. Overall, the impedance modulus increases up to 7 days, after 15 days the modulus 

reveals slightly lower values.   

The impedance modulus behaviour of the alloy after second degreasing is reported in Figure 

57, while the trend of the corresponding phase angle is shown in Figure 58.  

 

Figure 57 - Impedance modulus of alloy after second degreasing obtained during 15days of 

exposure in 3.5% NaCl. 
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Figure 58 - Phase angle of alloy after second degreasing obtained during 15days of exposure in 

3.5% NaCl. 

 

 Considering the low-frequency values, a low impedance can be observed at the beginning of 

immersion in the aggressive solution. This indicate the presence of the pits on the surface. After 2 

days of exposure, the low-frequency impedance modulus increases and the phase angle is stable that 

remain unchanged up to 4 days of exposure. Subsequently a reduction of the impedance modulus is 

observed after 7 and 15 days after which the modulus assumes slightly lower values. 

The impedance modulus trend of the alloy after pickling process is reported in Figure 59, 

while the trend of the corresponding phase angle is shown in Figure 60.  
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Figure 59 - Impedance modulus of alloy after Deoxidizer 6-16 acid pickling obtained during 

15days of exposure in 3.5% NaCl. 

 

Figure 60 – Phase angle of alloy after Deoxidizer 6-16 acid pickling obtained during 15days of 

exposure in 3.5% NaCl. 
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 The low-frequency impedance modulus behaviour is very similar in the different exposure 

days and the phase angle is more stable than that in the previous steps. This behaviour is attributable 

to the presence of hexavalent chromium which forms a first conversion layer protecting the alloy 

from corrosion. 

The impedance modulus trend of the alloy after Alodine process is displayed in Figure 61, 

while the trend of the corresponding phase angle is reported in Figure 62.  

 

Figure 61 – Impedance modulus of alloy after Alodine 1200s obtained during 15days of exposure 

in 3.5% NaCl. 
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Figure 62 – Phase angle of alloy after Alodine 1200s obtained during 15days of exposure in 3.5% 

NaCl. 

 

 The low-frequency impedance modulus increases up to 4 days of exposure. An ideal 

behaviour of the specimen is noticed because the curve assume a slope of -1. After 7 days of 

exposure, the impedance modulus behaviour decreases slightly, reaching higher values than that 

measured in the other steps of the industrial cycle. The phase angle is stable at 80° for four 

frequency ranges, indicating that the material are assuming an ideal dielectric behaviour.  

The electrochemical measurements carried out on AA202-T3 after the various treatment, 

reveal the each step of the industrial cycle improved the corrosion resistance of the alloy. This is 

visible not only with an increase of 40 mV of the corrosion potential but also by the increasing 

behaviour of the low-frequency impedance modulus and by a greater stability of the phase angle 

observed during EIS. The EIS spectra exhibited that the incubation times of the pits extended 

considerably after an exposure of 15 days in the considered solution. So all process steps are 

functional to have an improvement in corrosion resistance of the alloy AA202-T3. 
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7.2.1.3 Surface analysis 

 After performing the electrochemical tests on aluminium alloy, the evaluation of the 

degradation of the sample is carried out by observation its surface. The specimens are examined 

after 15 days exposure in aggressive environment. 

The images were processes with ImageJ software, obtaining a percentage estimate of the 

pitting areas. ImageJ can view, edit, analyse, process, save and print images in gray (8 bit, 16 bit, 32 

bit) and color (8 bit and 24 bit) scales. Processing is done with a few steps: (i) the whole or portion 

image is selected, (ii) the color of each pixel is converted to a grayscale and adjusting the brightness 

and the contrast, the minimum and maximum values of the scale can be change. In this way, the 

program, through the light-dark, can distinguish the areas where the pits are present;  only then it 

can estimate the area affected by the pitting phenomenon by providing absolute values (according to 

the scale set) or expressed as a percentage of surface area. 

 

AA2024-T3 untreated 

 The Figures 63 and 64 display an uniform distribution of small pits. In particular a 

percentage of area affected by pitting is estimated at about 53% (Figure 63). 
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Figure 63 – Image of untreated AA2024-T3 surface after corrosion test, 35x. 

 

 

Figure 64 - – Image of untreated AA2024-T3 surface after corrosion test, 100x. 
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AA2024-T3 after first degreasing 

Analysing the alloy, a not uniformly distribution of medium sized pits is observed on the surface, as 

shown in Figures 65 and 66; the percentage of area affected by pitting is 10% (Figure 65).  

 

Figure 65 – Image of aluminium alloy 2024-T3 after first degreasing at the end of corrosion test, 

35x. 

 

Figure 66 - Image of aluminium alloy 2024-T3 after first degreasing at the end of corrosion test, 

100x. 
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AA2024-T3 after second degreasing 

The alloys surface after the second degreasing exhibits a few pits as reported in Figures 67 and 68; 

in fact the percentage of area affected by pitting is 6%. 

 

Figure 67 - Image of aluminium alloy 2024-T3 after second degreasing at the end of corrosion test, 

35x. 

 

Figure 68 - Image of aluminium alloy 2024-T3 after second degreasing at the end of corrosion test, 

100x. 
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AA2024-T3 after Deoxidizer 6-16 acid pickling 

The alloy surface after the pickling exhibits a few pits. Figures 69 and 70 show the area most 

affected by pits but they should not be considered as a representative of the whole surface. In 

particular, as seen in Figure 69, a percentage of area affected by pitting is estimated at 10%. 

 

Figure 69 – Image of area detail of aluminium alloy most affected by pits after Deoxidizer 6-16 

acid pickling, at the end of corrosion test, 35x. 

 

Figure 70 – Image of area detail of aluminium alloy most affected by pits after Deoxidizer 6-16 

acid pickling, at the end of corrosion test, 100x.  
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AA2024-T3 after treatment Alodine 1200s 

The alloy surface after treatment in Alodine displays very few pits of extremely small dimensions, 

as shown in Figures 71 and 72; the percentage of area affected by pitting is estimated by 1% (Figure 

71). 

 

Figure 71 - Image of aluminium alloy 2024-T3 after Alodine 1200 s conversion coating at the end 

of corrosion test, 35x. 

 

Figure 72 - Image of aluminium alloy 2024-T3 after Alodine 1200 s conversion coating at the end 

of corrosion test, 100x.  
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 In each step of the industrial process, the number of pits decreases as well as their size, 

ranging from an uniform distribution of 53% to 1%. In can be concluded that all steps of the process 

are functional to have an improvement in corrosion resistance of the alloy AA2024-T3. 

 

7.2.2 Chromium free picklings 

 In order to identify the pickling with competitive characteristics with that of chromium 

pickling, the electrochemical behaviour of each selected pickling was compared to deoxidizer 

containing hexavalent chromium. 

 

7.2.2.1 SEM analysis with EDS probe 

 SEM analysis with EDS probe was carried out on the material provided by Leonardo 

Company, which does not undergone any tests to verify its initial state and surface composition. 

 

Deoxidizer 6-16 pickling  

Figures 73 and 7 show different magnifications of the specimen surface after Deoxidizer 6-16 

pickling treatment. 

The surface observed reveals the presence of precipitates. The elements of the typical alloy 

composition (Cu, Fe, Mn, Mg) are observed by performing an EDS, whose results are shown in 

Table 19. In addition, EDS analysis exhibit Cu and Fe islands and elements such as N, Cr, (whose 

compounds are present in the pickling solution).  
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Figure 73 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxidizer 6-16 

acid pickling, 500x. 

 

 

Figure 74 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxidizer 6-16 

acid pickling, 2000x. 

  

 

 

Spectrum 1 

Spectrum 9 Spectrum 10 

Spectrum 8 Spectrum 7 

Spectrum 6 Spectrum 5 
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Table 19 – EDS analysis of AA2024-T3 after Deoxidizer 6-16 hexavalent pickling. 

Name wt.% N wt.% O wt.% Mg wt.% Al wt.% Cr wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 

 

1.988 1.639 89.97 

 

0.519 

 

5.881 

Spectrum 2 2.294 15.84 0.384 35.01 0.613 4.202 6.058 35.6 

Spectrum 3 2.586 17.53 0.355 37.9 0.692 3.723 4.873 32.34 

Spectrum 4 1.729 2.529 1.332 89.45 

 

0.957 

 

4 

Spectrum 5 1.391 8.15 0.901 61.36 0.472 3.049 3.437 21.24 

Spectrum 6 0.687 1.548 1.434 91.2 0.224 1.198 

 

3.709 

Spectrum 7 

 

2.833 1.672 87.61 0.104 

  

7.779 

Spectrum 8 

 

2.432 1.6 88.37 0.08 0.575 

 

6.943 

Spectrum 9 0.74 2.669 1.446 87.96 

 

0.801 

 

6.386 

Spectrum 10 2.243 17.21 0.688 42 0.775 2.812 4.094 30.18 
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Smut Go NC Pickling 

The different magnifications of specimen surface after Smut Go NC alkaline pickling treatment are 

shown in Figure 75 and Figure 76. 

 

Figure 75 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

alkaline pickling, 500x. 
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Figure 76 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

alkaline pickling, 2000x. 

 

The surface reveals the presence of precipitates. The elements of the typical alloy composition (Cu, 

Fe, Mn, Mg) are observed performing an EDS, whose results are shown in Table 20. 

Table 20 - EDS analysis of AA2024-T3 after Smut Go NC alkaline pickling. 

Name wt.% O wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Cu 

Spectrum 1 

 

1.361 93.295 

  

5.344 

Spectrum 2 2.207 1.363 89.947 

 

1.252 5.231 

Spectrum 3 1.903 1.383 90.284 

 

0.72 5.709 

Spectrum 4 

 

1.345 93.267 

  

5.387 

Spectrum 5 5.296 1.34 86.147 1.481 

 

5.736 

Spectrum 6 4.658 1.241 87.121 1.584 

 

5.396 

Spectrum 7 

 

1.519 92.656 

  

5.824 

  

Spectrum 6

Spectrum 5

Spectrum 7

Spectrum 4

Spectrum 2

Spectrum 3

Spectrum 1
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Deoxalume 2310 pickling  

The different magnifications of specimen surface after Deoxalume 2310 acid pickling treatment are 

shown in Figure 77 and Figure 78. 

 

 

Figure 77 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

acid pickling, 500x. 
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Figure 78 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

acid pickling, 2000x. 

 

Table 21 - EDS analysis of AA2024-T3 after Deoxalume 2310 acid pickling. 

Name wt.% O wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Cu 

Spectrum 1 3.121 1.279 89.761 

  

5.839 

Spectrum 2 3.84 1.332 90.221 

  

4.607 

Spectrum 3 2.879 1.264 91.472 

  

4.386 

Spectrum 4 4.881 1.276 87.842 0.8 

 

5.202 

Spectrum 5 6.162 1.285 85.514 1.193 

 

5.846 

Spectrum 6 3.201 1.426 89.381 

 

0.695 5.296 

Spectrum 7 11.471 1.495 80.783 

  

6.251 

 

 The surface is homogeneous without precipitates, both at low magnifications (Figure 77 – 

500x) and at high magnifications (Figure 78 – 2000x). The EDS results, shown in Table 21, reveal 

Spectrum 1

Spectrum 2

Spectrum 5

Spectrum 4

Spectrum 3 Spectrum 6

Spectrum 7
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the element of the typical aluminium alloy composition (Cu, Fe, Mn, Mg) and a minimal presence 

of N contented in the pickling solution.  

 

Oakite LNC pickling  

The different magnifications of specimen surface after Oakite LNC acid pickling treatment are 

shown in Figure 79 and Figure 80. 

 

 

Figure 79 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC acid 

pickling, 500x. 
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Figure 80 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC acid 

pickling, 2000x. 

 

Table 22 - EDS analysis of AA2024-T3 after Oakite LNC acid pickling. 

Name wt.% O wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 2.066 1.388 90.952 

   

5.594 

Spectrum 2 1.515 1.441 90.404 

   

6.64 

Spectrum 3 1.797 2.288 91.388 

   

4.527 

Spectrum 4 1.72 1.559 91.437 

   

5.285 

Spectrum 5 4.298 1.333 77.176 0.623 

  

16.57 

Spectrum 6 4.408 1.513 80.161 1.03 1.463 0.956 10.468 

Spectrum 7 4.06 1.405 88.145 0.902 

  

5.487 

Spectrum 8 2.096 1.426 82.92 

 

1.542 1.646 10.37 

 

  

Spectrum 8

Spectrum 7

Spectrum 6

Spectrum 5

Spectrum 4

Spectrum 3

Spectrum 2

Spectrum 1
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 The presence of precipitates on the alloy surface is observed. The elements of the typical 

alloy composition (Cu, Fe, Mn, Mg) and Si and Cu islands, are observed by performing an EDS, 

whose results are shown in Table 22. 

The samples surface, analysed by SEM with EDS probe, reveal a distribution of elements 

contained in the pickling solution and the presence of precipitates are present. 

 

7.2.2.2 Potentiodynamic polarization results 

 Figure 81 shows the electrochemical behaviour of the specimens after pickling treatment 

reported in Table 2. Deoxidizer 6-16 pickling, containing hexavalent chromium and used for the 

classical Alodine cycle, is considered as benchmark.  

 

Figure 81 – Potentiodynamic polarization responses of the aluminium alloy after various pickling 

treatments.  
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 In order to evaluate the electrochemical behaviour of different samples, the following 

parameters must be considered: the free corrosion potential (Ecorr), the trend of cathodic and anodic 

currents. The curve of the sampled treated with Deoxidizer (purple curve) has a value of Ecorr of -

 0.591V, cathode current is low, in order of 10
-6

 A/cm
2
 and the trend of the anode is typical of 

localized or pitting corrosion. Following alkaline pickling, Aluminetch and Smut Go NC (black 

curve), the cathodic curve moves to slightly higher current values than that Deoxidizer 6-16 

pickling, while Ecorr potential and anodic curve assume lower values than those of the benchmark, 

highlighting the loss of nobility of the surface. Deoxalume 2310 acid pickling (blue curve) shows a 

lower Ecorr than Deoxidizer 6-16 pickling and cathode currents values significantly higher than 

those of benchmark pickling. Following the Oakite LNC acid pickling (red curve) is reported. The 

curve of cathodic process moves to slight higher current values than the sampled pickled with 

deoxidizer and the potential Ecorr and the anode curve are significantly lower than those with 

chrome benchmark.  

 

7.2.2.3 EIS results 

 The corrosion behaviour of the pickled sample with Deoxidizer 6-16, in which hexavalent 

chromium is present, constitutes the benchmark of this comparison. In particular, Figure 82 shows 

the trend of the impedance modulus while Figure 83 shows the corresponding phase angle.  

.  
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Figure 82 - Impedance modulus of alloy after Deoxidizer 6-16 acid pickling obtained during 

15days of exposure in 3.5% NaCl. 

 

Figure 83 – Phase angle of alloy after Deoxidizer 6-16 acid pickling obtained during 15days of 

exposure in 3.5% NaCl. 
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 The behaviour of low-frequency impedance modulus is very similar during different 

exposure day. This behaviour is attributable to the presence of hexavalent chromium which form a 

first layer of conversion coating in order to protect aluminium from corrosion. Capacitance 

decreases during test and the values of impedance modulus is 10
4
Ohm cm

2
. 

Figure 84 reveals the trend of impedance modulus of AA2024-T3 after Smut Go NC 

alkaline pickling. The behaviour of corresponding phase angle is reported in Figure 85. 

 

Figure 84 – Impedance modulus of alloy after Smut Go NC alkaline pickling obtained during 

15days of exposure in 3.5% NaCl. 
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Figure 85 – Phase angle of alloy after Smut Go NC alkaline pickling obtained during 15days of 

exposure in 3.5% NaCl. 

 

 The capacitance is stable in medium frequency range. At low-frequency the impedance 

modulus is not stable. After two days of immersion in NaCl solution, the value of impedance 

modulus is 10
6
Ohm cm

2
 but the trend decreases with time.  

The trend of impedance modulus of specimen AA2024 T3 after Deoxalume 2310 acid 

pickling is indicated in Figure 86, while the phase angle is reported in Figure 87. 
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Figure 86 – Impedance modulus of alloy after Deoxalume  2310 acid pickling obtained during 

15days of exposure in 3.5% NaCl. 

 

Figure 87 – Phase angle of alloy after Deoxalume  2310 acid pickling obtained during 15days of 

exposure in 3.5% NaCl. 
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 The sample has a degreasing capacitance over time as demonstrated at medium frequencies. 

Contrary to the behaviour of the alkaline solution and similarly to benchmark sample, the low-

frequency impedance modulus has stable value of 10
4
Ohm cm

2
. 

In Figure 88 is reported the trend of sample pickled with Oakite LNC acid solution. The 

trend of corresponding phase angle is reported in Figure 89. 

 

 

Figure 88 – Impedance modulus of alloy after Oakite LNC acid pickling obtained during 15days of 

exposure in 3.5% NaCl. 
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Figure 89 – Phase angle of alloy after Oakite LNC acid pickling obtained during 15days of 

exposure in 3.5% NaCl. 

 

 The capacitance, at medium frequencies, decreases during exposure time to the aggressive 

solution. The impedance modulus, after the first days of immersion, decreases slightly assuming 

values of the order of 10
4
Ohm cm

2
.  

On the basis of the observed results ad in terms of ranking of the various pickling it is 

possible to conclude that: 

DEOXIDIZER 6-16 > DEOXALUME 2310 = OAKITE LNC > SMUT GO NC 
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7.2.3 Cr-free picklings with Alodine conversion coating 

7.2.3.1 SEM analysis with EDS probe 

 In order to better understand the role of hexavalent chromium within the steps of the 

industrial cycle, the specimens were analysed after Cr-free pickling and subsequent application of 

Alodine 1200s.  

Here again SEM analysis with EDS probe was carried out on the material provided by 

Leonardo Company, which does not undergone any tests to verify its initial state and surface 

composition. 

 

Deoxidizer 6-16 pickling with Alodine conversion coating 

 Figures 90 and 91 show different magnifications of the specimen surface after Deoxidizer 6-

16 pickling treatment with Alodine 1200s conversion coating. 
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Figure 90 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxidizer 6-16 

pickling treatment with Alodine 1200s conversion coating, 500x. 

 

 

Figure 91 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxidizer 6-16 

pickling treatment with Alodine 1200s conversion coating, 2000x. 
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Table 23 - EDS analysis of AA2024-T3 after Deoxidizer 6-16 pickling treatment with Alodine 

1200s conversion coating. 

Name wt.% O wt.% Mg wt.% Al wt.% Cr wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 17.392 1.019 72.081 4.366 0.458 0.350 4.335 

Spectrum 2 18.447 1.118 69.289 5.719 0.708 0.341 4.377 

Spectrum 3 12.673 1.000 72.822 8.804 0.945 0.699 3.055 

Spectrum 4 17.372 1.094 72.501 4.156 0.497 

 

4.381 

Spectrum 5 17.099 1.003 66.682 4.049 0.987 1.486 8.694 

Spectrum 6 13.998 0.875 60.913 2.933 0.376 

 

20.906 

Spectrum 7 17.488 1.142 72.122 4.302 0.461 

 

4.485 

Spectrum 8 18.969 1.073 70.160 4.956 0.459 

 

4.382 

Spectrum 9 21.431 0.891 64.855 7.402 0.386 0.482 4.553 

 

 The surface observed reveals the presence of precipitates. The elements of the typical alloy 

composition (Cu, Fe, Mn, Mg) are observed by performing an EDS, whose results are shown in 

Table 23. In addition, EDS analysis exhibit some Cu island and element such as Cr (which 

compound is present in the Alodine 1200s solution).  
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Smut Go NC pickling with Alodine conversion coating 

 Figures 92 and 93 show different magnifications of the specimen surface after Smut Go NC 

alkaline pickling treatment followed by Alodine 1200s conversion coating. 

 

Figure 92 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

pickling treatment with Alodine 1200s conversion coating, 500x. 
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Figure 93 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

pickling treatment with Alodine 1200s conversion coating, 2000x. 

 

Table 24 - EDS analysis of AA2024-T3 after Smut Go NC pickling treatment with Alodine 1200s 

conversion coating. 

Name wt.% O wt.% Mg wt.% Al wt.% Cr wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 23.692 1.002 61.81 7.795 0.718 0.929 4.054 

Spectrum 2 21.915 0.958 63.238 6.709 1.098 1.065 5.017 

Spectrum 3 23.979 1.022 61.938 8.31 

 

0.945 3.805 

Spectrum 4 23.696 0.922 63.573 7.038 0.482 0.849 3.44 

Spectrum 5 19.468 1.121 69.672 4.706 0.639 0.413 3.981 

Spectrum 6 23.535 0.988 63.78 6.869 0.507 0.758 3.563 

 

 The surface reveals, performing an EDS, the presence of elements of the typical alloy 

composition (Cu, Fe, Mn, Mg). EDS analysis, whose results are shown in Table 24, reveal an 

uniform distribution of Cu and the presence of Cr contained in the Alodine solution. 

Spectrum 4

Spectrum 6

Spectrum 5

Spectrum 3

Spectrum 2

Spectrum 1
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Deoxalume 2310 pickling with Alodine conversion coating 

 The different magnifications of specimen surface after Deoxalume 2310 acid pickling 

treatment with Alodine 1200s conversion coating are shown in Figures 94 and 95. 

 

Figure 94 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

pickling treatment with Alodine 1200s conversion coating, 500x. 
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Figure 95 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

pickling treatment with Alodine 1200s conversion coating, 2000x. 

 

Table 25 - EDS analysis of AA2024-T3 after Deoxalume 2310 pickling treatment with 

Alodine 1200s conversion coating. 

Name wt.% O wt.% Mg wt.% Al wt.% Cr wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 24.611 1.018 61.981 7.87 0.508 0.864 3.148 

Spectrum 2 23.928 0.997 61.257 9.031 0.468 1 3.319 

Spectrum 3 24.306 0.974 60.919 8.342 0.558 1.149 3.752 

Spectrum 4 24.16 0.944 62.38 7.975 0.565 0.841 3.135 

 

 The surface reveals an homogeneous surface. The EDS analysis, reported in Table 25, show 

the element of the typical aluminium alloy composition (Cu, Fe, Mn, Mg) and the presence of Cr, 

contained in the conversion coating solution.  
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Spectrum 4

Spectrum 3

Spectrum 2



Chapter 7 – Risults and discussions 

210 

 

Oakite LNC pickling with Alodine conversion coating 

 Figures 96 and 97 show different magnifications of the specimen surface after Oakite LNC 

acid pickling treatment with Alodine 1200s conversion coating. 

 

Figure 96 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC 

pickling treatment with Alodine 1200s conversion coating, 500x. 
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Figure 97 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC 

pickling treatment with Alodine 1200s conversion coating, 2000x. 

 

Table 26 - EDS analysis of AA2024-T3 after Oakite LNC pickling treatment with Alodine 1200s 

conversion coating. 

Name wt.% O wt.% Mg wt.% Al wt.% Cr wt.% Mn wt.% Fe wt.% Cu 

Spectrum 1 23.669 1.031 63.582 7.104 0.441 0.729 3.444 

Spectrum 2 13.471 0.728 59.899 3.072 1.758 5.02 16.051 

Spectrum 3 23.041 0.888 54.809 4.586 0.43 9.484 6.76 

Spectrum 4 24.148 1.008 61.075 8.229 0.4 0.942 4.198 

Spectrum 5 23.908 1.044 62.739 7.353 

 

0.946 4.01 

 

 The presence of precipitates on the alloy surface is observed. The elements of the typical 

alloy composition (Cu, Fe, Mn, Mg) are observed by performing an EDS, whose results are shown 

in Table 26. Furthermore the analysis reveal the presence of some Cu and Fe islands and element 

such as Cr (which compound is present in the Alodine 1200s solution).  

Spectrum 1

Spectrum 2

Spectrum 3

Spectrum 4

Spectrum 5
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 The samples surface, analysed by SEM with EDS probe, reveal a distribution of hexavalent 

chromium contained in the Alodine 1200s solution and the presence of some precipitates, such as 

Cu and Fe, are present. 

 

7.2.3.2 Potentiodynamic polarization results 

 Potentiodynamic polarization measurements were carried out on samples after various 

picklings and Alodine 1200s chemical conversion coating. Figure 98 shows the curves of all the 

analysed samples. The curve with Deoxidizer 6-16 and subsequent Alodine 1200s, in which 

hexavalent chromium is present in both steps, is the benchmark of this comparison. 

 

Figure 98 - Potentiodynamic polarization responses of the aluminium alloy after various pickling 

treatments followed by Alodine1200s conversion coating.   
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 A clear improvement of polarization curve is noted compared to the curves obtained with 

the only picklings. In fact, there is a noticeable increase in the corrosion potential. Considering the 

cathode currents, no specimen approaches the performance obtained in the classical cycle 

Deoxidizer 6-16 with Alodine 1200s. Instead, observing the anode currents, it is noted that all the 

treated samples have very similar behaviour to that of the classical cycle. 

 

7.2.3.3 EIS results 

 The corrosion behaviour of the specimen after classical treatment of Alodine 1200s is shown 

in Figure 99 while Figure 100 shows the corresponding phase angle.  

 

 

Figure 99 – Impedance modulus of alloy after classical treatment of Alodine 1200s obtained during 

15days of exposure in 3.5% NaCl. 
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Figure 100 – Phase angle of alloy after classical treatment of Alodine 1200s obtained during 

15days of exposure in 3.5% NaCl. 

 

 Considering the low frequencies, high impedance modulus values can be observed up to 4 

days of exposure. An ideal behaviour of the specimen is noticed because the curve assume a slope 

of -1. After 7 days of exposure, the impedance modulus behaviour decreases and it assumes a lower 

value of two order of magnitude after exposure equal to 15 days.  

The corrosion behaviour of the specimen after Smut Go NC alkaline pickling and following 

chemical conversion in Alodine 1200s is shown in Figure 101 while Figure 102 shows the 

corresponding phase angle.  
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Figure 101 - Impedance modulus of alloy after Smut Go NC alkaline pickling followed by 

Alodine 1200s treatment obtained during 15days of exposure in 3.5% NaCl. 

 

Figure 102 – Phase angle of alloy after Smut Go NC alkaline pickling followed by Alodine 1200s 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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 Considering the low-frequency values, a low impedance modulus can be observed at the 

beginning of immersion in the solution test; in fact the value of impedance modulus is lower than 

that it assumed in the following days. After 2 days of immersion, the low-frequency impedance 

modulus remains constant and the value is 10
6
Ohm cm

2
. 

The trend of impedance modulus of specimen AA2024-T3 after Deoxalume 2310 acid 

pickling and following Alodine 1200s conversion coating is reported in Figure 103, while the phase 

angle is reported in Figure 104. 

 

Figure 103 – Impedance modulus of alloy after Deoxalume 2310 acid pickling followed by 

Alodine 1200s treatment obtained during 15days of exposure in 3.5% NaCl. 
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Figure 104 – Phase angle of alloy after Deoxalume 2310 acid pickling followed by Alodine 1200s 

treatment obtained during 15days of exposure in 3.5% NaCl. 

 

 The behaviour of low-frequency impedance modulus is similar to that found for alkaline 

pickling. Also in this case the impedance modulus remains constant after the second exposure day 

and the value magnitude is 10
6
Ohm cm

2
. 

In Figure 105 is reported the trend of sample pickled with Oakite LNC acid solution with 

Alodine 1200s conversion treatment. The trend of corresponding phase angle is reported in Figure 

106. 
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Figure 105 – Impedance modulus of alloy after Oakite LNC acid pickling followed by 

Alodine 1200s treatment obtained during 15days of exposure in 3.5% NaCl. 

 

Figure 106 – Phase angle of alloy after Oakite LNC acid pickling followed by Alodine 1200s 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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 The behaviour of low-frequency impedance modulus is similar to the previous specimens 

while the capacitance is better than the previous ones. Even the phase angle is more stable than the 

previous samples. 

Electrochemical impedance spectroscopy shows a marked improvement in corrosion 

resistance compared to the pickled samples and to the untreated alloy. The impedance modulus of 

all samples exhibit a stable trend during the 15 days of exposure in the aggressive solution, so it is 

better than the Deoxidizer 6-16. The order of magnitude of the impedance modulus is 10
6
Ohm cm

2
. 

On the basis of the observed results ad in terms of ranking of the various pickling and following 

conversion coating it is possible to conclude that: 

 

DEOXIDIZER 6-16 with ALODINE >OAKITE LNC with ALODINE > DEOXALUME 2310 with 

ALODINE= SMUT GO NC with ALODINE. 

 

7.2.4 Innovative cycle - Total Green 

 In order to create an innovative total green process, which involves the elimination of 

hexavalent chromium in the pickling process and the chemical conversion process, Cr-free 

picklings (previously discussed) followed by trivalent chromium conversion coating (SurTec 650) 

were analysed. 

 

7.2.4.1 SEM analysis with EDS probe 

 SEM analysis with EDS probe was carried out on the material provided by Leonardo 

Company, which does not undergone any tests to verify its initial state and surface composition. 
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Smut Go NC pickling with SurTec conversion coating 

 Figures 107 and 108 show different magnifications of the specimen surface after 

Smut Go NC alkaline pickling treatment followed by SurTec 650 conversion coating. 

 

Figure 107 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

alkaline pickling treatment followed by SurTec 650 conversion coating, 500x. 
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Figure 108 - Scanning electron micrographs of the surface of AA-2024-T3 after Smut Go NC 

alkaline pickling treatment followed by SurTec 650 conversion coating, 2000x. 

 

Table 27 - EDS analysis of AA2024-T3 after Smut Go NC alkaline pickling treatment followed by 

SurTec 650 conversion coating. 

Name wt.% O wt.% F wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Cu wt.% Zr 

Spectrum 1 5.611 1.422 1.238 84.31 

 

0.809 5.197 1.412 

Spectrum 2 4.965 

 

1.276 87.287 

  

4.293 2.179 

Spectrum 3 6.044 

 

1.313 85.578 

  

4.718 2.347 

Spectrum 4 3.937 1.331 1.272 88.62 

  

4.839 

 

Spectrum 5 5.936 1.238 1.394 84.788 

  

5.019 1.625 

Spectrum 6 5.691 1.482 1.392 83.399 

 

0.861 5.34 1.834 

Spectrum 7 8.454 1.706 1.132 80.487 1.229 

 

5.369 1.622 

Spectrum 8 5.837 1.185 1.315 85.206 

  

4.753 1.704 

Spectrum 9 6.354 

 

1.04 76.434 1.001 1.293 12.294 1.584 
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 The surface reveals an homogeneous surface. The EDS analysis, reported in Table 27, show 

the element of the typical aluminium alloy composition (Cu, Fe, Mn, Mg) and the presence of Si, F 

and Zr (contained in the conversion coating solution).  

 

Deoxalume 2310 pickling with SurTec conversion coating 

 Figures 109 and 110 show different magnifications of the specimen surface after 

Deoxalume 2310 acid pickling treatment with SurTec 650 conversion coating. 

 

 

Figure 109 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

acid pickling treatment followed by SurTec 650 conversion coating, 500x. 
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Figure 110 - Scanning electron micrographs of the surface of AA-2024-T3 after Deoxalume 2310 

acid pickling treatment followed by SurTec 650 conversion coating, 2000x. 

 

Table 28 - EDS analysis of AA2024-T3 after Deoxalume 2310 pickling treatment followed by 

SurTec 650 conversion coating. 

Name wt.% O wt.% F wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Fe wt.% Cu wt.% Zr 

Spectrum 1 5.877 1.581 1.391 86.039 

   

5.113 

 

Spectrum 2 6.578 

 

1.22 85.258 

   

4.936 2.007 

Spectrum 3 6.046 

 

1.411 87.537 

   

5.006 

 

Spectrum 4 7.334 0.545 1.108 76.921 1.077 1.412 1.159 10.443 

 

Spectrum 5 10.342 

 

1.038 65.718 0.992 1.037 2.653 15.6 2.619 

Spectrum 6 7.328 1.492 1.482 81.184 1.255 

  

7.258 

 

Spectrum 7 7.975 1.714 1.426 80.459 1.437 

  

6.989 

 

Spectrum 8 5.431 

 

1.365 85.816 

   

5.649 1.739 
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 The elements of the typical alloy composition (Cu, Fe, Mn, Mg) are observed by performing 

an EDS, whose results are shown in Table 28. Furthermore the analysis reveal the presence of some 

Cu and Fe islands and elements as F, Si and Zr (which compound is present in the SurTec 650 

solution).  

 

Oakite LNC pickling with SurTec conversion coating 

 Figures 111 and 112 show different magnifications of the specimen surface after 

Oakite LNC acid pickling treatment with SurTec 650 conversion coating. 

 

Figure 111 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC acid 

pickling treatment followed by SurTec 650 conversion coating, 500x. 
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Figure 112 - Scanning electron micrographs of the surface of AA-2024-T3 after Oakite LNC acid 

pickling treatment followed by SurTec 650 conversion coating, 2000x. 

 

Table 29 - EDS analysis of AA2024-T3 after Oakite LNC pickling treatment followed by 

SurTec 650 conversion coating. 

Name wt.% O wt.% F wt.% Mg wt.% Al wt.% Si wt.% Mn wt.% Fe wt.% Cu wt.% Zr 

Spectrum 1 7.675 1.773 1.384 81.753 

   

5.196 2.219 

Spectrum 2 9.008 2.011 1.361 78.322 

 

1.41 

 

4.656 3.232 

Spectrum 3 7.95 2.569 1.407 80.239 

   

4.811 3.024 

Spectrum 4 9.756 2.788 1.774 76.903 

   

5.546 3.233 

Spectrum 5 9.47 1.573 1.264 79.338 1.366 

  

5.07 1.918 

Spectrum 6 8.778 

 

0.951 67.326 1.599 1.469 2.368 15.977 1.533 

Spectrum 7 10.667 2.275 1.178 76.662 1.327 

  

5.145 2.745 

Spectrum 8 9.73 2.369 1.08 68.791 1.104 5.36 

 

8.411 3.154 
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 The presence of precipitates on the alloy surface is observed. The elements of the typical 

alloy composition (Cu, Fe, Mn, Mg) are observed by performing an EDS, whose results are shown 

in Table 29. Furthermore the analysis reveal the presence of some Cu and Fe islands and elements 

as F, Si and Zr (which compound is present in the SurTec 650 solution).  

The samples surface, analysed by SEM with EDS probe, reveal a distribution of Zirconium 

contained in the SurTec 650 solution and the presence of some precipitates, such as Cu and F, are 

present. 

  



Chapter 7 – Risults and discussions 

227 

 

7.2.4.2 Potentiodynamic polarization results 

 Potentiodynamic polarization measurements were carried out on samples after various 

picklings followed by SurTec 650 chemical conversion coating. Figure 113 shows the curves of all 

the analyzed samples.  

 

Figure 113 - Potentiodynamic measurements of the aluminium alloy after various pickling 

treatments followed by SurTec 650 conversion coating. 

 

 A clear improvement of Deoxalume 2310 anodic curve is noted compared to the curves 

obtained with picklings and Alodine 1200s. In fact, there is a noticeable increase in the corrosion 

potential and the cathode current is unchanged. The cathode currents of the other treatments are one 

order of magnitude lower than that samples with Alodine 1200s while the anode currents are 

unchanged.   
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7.2.4.3 EIS results 

 The corrosion behaviour of the specimen after Smut Go NC alkaline pickling and following 

chemical conversion in SurTec 650 is shown in Figure 114 while Figure 115 shows the 

corresponding phase angle.  

 

 

Figure 114 – Impedance modulus of alloy after Smut Go NC alkaline pickling followed by 

SurTec 650 treatment obtained during 15days of exposure in 3.5% NaCl. 
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Figure 115 – Phase angle of alloy after Smut Go NC alkaline pickling followed by SurTec 650 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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Figure 116 - Impedance modulus of alloy after Deoxalume 2310 acid pickling followed by 

SurTec 650 treatment obtained during 15days of exposure in 3.5% NaCl. 

 

Figure 117 – Phase angle of alloy after Deoxalume 2310 acid pickling followed by SurTec 650 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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 Considering the low-frequency values, a high impedance modulus can be observed at the 

beginning of immersion in the solution test and it remains constant during immersion time with a 

value of 10
6
Ohm cm

2
. 

In Figure 118 is reported the trend of sample pickled with Oakite LNC acid solution 

followed by trivalent chromium conversion treatment. The trend of corresponding phase angle is 

reported in Figure 119. 

 

 

Figure 118 – Impedance modulus of alloy after Oakite LNC acid pickling followed by SurTec 650 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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Figure 119 – Phase angle of alloy after Oakite LNC acid pickling followed by SurTec 650 

treatment obtained during 15days of exposure in 3.5% NaCl. 
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that of classical cycle with hexavalent chromium. 
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7.2.5 Corrosion imaging 

 In order to corroborate the EIS results imagines of specimens were acquired. In Figure 120 

the surface appearance of the specimens during corrosions is compared. 

 

 

Figure 120 - Surface appearance after corrosion test in 3.5 wt.% NaCl of all specimens. 
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 It is evident that the Cr-free treatment that provided the best anticorrosion performance was 

Deoxalume 2310 acid pickling with SurTec 650 conversion coating, followed by Oakite LNC acid 

pickling with SurTec 650 conversion coating and Smut Go NC alkaline pickling with SurTec 650. 

Further, the innovative cycle was substantially better than the traditional cycle, with minimal sign of 

corrosion for specimens treated with Deoxalume 2310 pickling followed by SurTec 650.  

 Overall, Deoxalume 2310 with SurTec 650 provided better anticorrosion performance when 

compared to the traditional industrial cycle. This imagines corroborate all electrochemical results 

showed previously.  
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Chapter 8 - Conclusions 

 In this study, electrochemical impedance spectroscopy was used to characterize in-situ the 

sealing behaviour of an aerospace aluminium alloy anodized with the industrially accepted tartaric-

sulfuric anodizing process. Two treatments were compared: traditional TSA, producing a film with 

relatively coarse morphology, and modified TSA, producing a film with much finer porosity. The 

specimens anodized with the two treatments were sealed by three different processes: sodium 

chromate, hot water, and cerium based sealing.  

 Electrochemical impedance spectroscopy measurements performed during sodium 

chromate, cerium nitrate and hot water sealing, revealed that the overall behaviour is significantly 

different in the three solutions. In particular, during sodium chromate sealing, the porous oxide 

skeleton is heavily attacked by the solution, and a significant increase in capacitance is observed. 

This is associated with a substantial thinning of the barrier layer of the porous oxide, which is not 

observed during hot water and cerium nitrate sealing. On the contrary, cerium nitrate sealing does 

not attack the porous skeleton, but it induces the precipitation of cerium-containing compounds 

above the and within the pores of the anodic oxide. Furthermore, electrochemical impedance 

spectroscopy performed during sealing indicated that the finer morphology obtained by the 

modified TSA cycle responded better during sealing, as evident by higher values of low frequency 

impedance.  

Post sealing measurements performed in non-aggressive electrolytes also indicated that the 

porosity was more closed for the specimens obtained by modified TSA, for all of the sealing 

treatments. In agreement, the anticorrosion performance of the modified TSA process was 

consistently better than that of the traditional TSA, regardless of the sealing method. Overall, 

cerium sealing has environmental advantages compared to the other processes since it requires a 

much lower temperature (37°C) compared to sodium chromate and hot water sealing (96°C), enable 
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energy saving, and does not use environmentally harmful compounds such as hexavalent chromium. 

Finally, the combination of modified TSA anodizing cycle with cerium sealing produced oxides 

with properties comparable, if not superior, to those that are achieved by chromate sealed traditional 

TSA.  

Furthermore a number of different pre-treatments have been analysed to confirm the 

effectiveness of Trivalent Chromium Process in terms of corrosion protection. In general, in this 

work it has been found that the specimens treated in Deoxalume 2310 acid pickling followed by 

SurTec 650 chemical conversion show a corrosion resistance comparable, if not superior, to those 

that of classical cycle with hexavalent chromium. 
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