

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

ASSESSING AND IMPROVING INDUSTRIAL

SOFTWARE PROCESSES

VINCENZO DE SIMONE

TUTOR: PROF. ANNA RITA FASOLINO

COORDINATOR: PROF. DANIELE RICCIO

XXX CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

Assessing and Improving Industrial
Software Processes

Vincenzo De Simone

University of Naples Federico II

Contents

List of Acronyms . 7
List of Tables . 11
List of Figures . 13

1 Background 9
1.1 Software Process . 9

1.1.1 Software Process Models 10
1.1.2 Software Process Modeling 11
1.1.3 Software and Systems Process Engineering Meta-

model . 13
1.1.4 Software Process Improvement and Software Pro-

cess Characteristics 16
1.1.5 Process Quality Evaluation Frameworks 18

1.2 Application Lifecycle Management 20
1.3 Research Methodologies . 23

1.3.1 Research Strategies 24
1.3.2 Case Study Research 26

2 Using Application Lifecycle Management andModel Driven
Engineering for supporting Gap Analysis Processes 29

3

2.1 Introduction . 30
2.2 The Addressed Problem . 35

2.2.1 Roles of the Involved Actors 37
2.2.2 Involved Artifacts 38
2.2.3 Adopted Tools . 38
2.2.4 Performed Activities 39
2.2.5 Emerged Issues . 43

2.3 The Proposed Solution . 44
2.3.1 Adopting ALM for supporting QBGA processes . . . 44
2.3.2 Configuring the ALM using the MDE approach . . . 48
2.3.3 The GADGET Tool 61

2.4 Evaluation of the Proposed Solution: a Case Study in the
Automotive Domain . 66
2.4.1 Objects of the Study 68
2.4.2 Subjects of the Study 69
2.4.3 Case Study Design 69
2.4.4 Case Study Procedure 71
2.4.5 Case Study Findings 73
2.4.6 Case Study Results 79
2.4.7 Threats to Validity 80

2.5 Related Work . 81
2.6 Conclusions and Future Work 84

3 Improving Traceability Management in Software Processes
through Tool Integration 87
3.1 Introduction . 88
3.2 The Addressed Problem . 91
3.3 The Proposed Solution . 95

3.3.1 Architectural Design 97
3.3.2 Implementing Components and Connectors 98

4

3.3.3 Extending the ALM GUI 101
3.4 Evaluation of the Proposed Solution 102

3.4.1 Objects . 103
3.4.2 Subjects . 104
3.4.3 Considered Metrics 104
3.4.4 Case Study Procedure 106
3.4.5 RQ Answers . 109
3.4.6 Threats to Validity 112

3.5 Related Work . 113
3.6 Conclusions and Future Work 117

4 Approaches and tools for supporting the analysis and com-
prehension of spreadsheet based artifacts 119
4.1 Introduction . 120
4.2 The Addressed Problem . 124
4.3 The Proposed Solutions . 127

4.3.1 A Reverse Engineering Process to Recover Data Mod-
els from Spreadsheet based artifacts 128

4.3.2 Conceptual Model of VBA-based Spreadsheets . . . 135
4.3.3 The EXACT Tool 141

4.4 Evaluation of the Proposed Solutions 152
4.4.1 Evaluation of the Reverse Engineering Process . . . 152
4.4.2 EXACT Tool Evaluation 160

4.5 Related Work . 178
4.6 Conclusions and Future Work 181

5 Supporting the adoption of Software Product Lines in Soft-
ware Processes using Reverse Engineering 183
5.1 Introduction . 184
5.2 The Addressed Problem . 186
5.3 The Proposed Solution . 188

5

5.3.1 Domain Engineering 188
5.3.2 Application Engineering 192

5.4 Evaluation of the Proposed Solution 192
5.4.1 Discussions and lessons learned 194

5.5 Related Work . 195
5.6 Conclusions and Future Work 196

6 Conclusions and Future Work 199

6

List of Acronyms

The following acronyms are used throughout this text.

ALM Application Lifecycle Management

API Application Programming Interface

ASIL Automotive Safety Integrity Level

ASPICE Automotive SPICE

ATL ATLAS Transformation Language

BCM Body Computer Module

CLoC Commented Lines of Code

CMMI Capability Maturity Model Integration

DSML Domain Specific Modeling Language

ECU Electronic Control Unit

EMEA Europe, Middle East, and Africa

EXACT EXcel Application Comprehension Tool

7

FCA Fiat Chrysler Automobiles

FP Feature Profile

GADGET Gap Analysis Design and GEneration Tool

GUI Graphical User Interface

HIL Hardware-In-the-Loop

IPC Instrument Panel Cluster

ITL Incorrect Traceability Links

ITLRP Incorrect Traceability Links Reduction Percentage

KPI Key Performance Indicators

LoC Lines of Code

MB Model Based

MBD Model Based Design

MDE Model Driven Engineering

MTL Missing Traceability Links

MTLRP Missing Traceability Links Reduction Percentage

MIL Model-In-the-Loop

MOF Meta Object Facilities

MTL Model-to-Text Language

OMG Object Management Group

PA Product Architecture

8

PLA Product Line Architecture

QBGA Questionnaire Based Gap Analysis

QVT Query View Transformation

SCAMPI Standard CMMI Appraisal Method for Process
Improvement

SEI Software Engineering Institute

SIL Software-In-the-Loop

SPEM Software & Systems Process Engineering Metamodel

SPICE Software Process Improvement and Capability
Determination

SPML Software Process Modeling Language

SPL Software Product Lines

SWC SoftWare Component

SWF SoftWare Factory

SWFTC SoftWare Factory Test Cases

UML Unified Modeling Language

VBA Visual Basic for Applications

VP Variation Point

V&V Verification & Validation

XSLT eXtensible Stylesheet Language Transformations

9

This page intentionally left blank.

List of Tables

1.1 Process Characteristics . 17

2.1 QBGA Process - Emerged Issues 44
2.2 ALM Features . 45
2.3 ALM Features and the QBGA Process Issues they solve . . 46
2.4 Example of Question Lifecycle - States Transitions Table . . 58
2.5 Example of Roles Transitions Table 58
2.6 Mapping between QBGA Process Metamodel and ALM

Metamodel . 64

3.1 Case study selected objects 104
3.2 Rapidity Comparison Results 108
3.3 Traceability Management Effectiveness Comparison Results 109

4.1 Reverse Engineering Results 156
4.2 Evaluation Results . 157
4.3 New Process Results . 160
4.4 Selected Industrial Projects 163
4.5 Metrics about the Applications 164
4.6 Questions . 166

11

4.7 Executed Comprehension Tasks 169
4.8 Average correctness judgments (AJ) about the comprehen-

sion results . 170

5.1 SPL complexity metrics . 193
5.2 PA complexity metrics . 193

12

List of Figures

1.1 V-model . 12
1.2 SPMLs Categories . 12
1.3 Relations and base technology of SPMLs 14
1.4 Concepts exposed by the SPEM formalism 15
1.5 CMMI - Maturity Levels . 19
1.6 SPICE - Capability Levels 19
1.7 The three pillars of ALM 20
1.8 A common ALM foundation 22

2.1 Excerpt of a Requirement reported in the ASPICE and its
related questions . 40

2.2 Excerpt of a Requirement reported in the ISO 26262 Stan-
dard and its related questions 41

2.3 The MDE process for implementing the ALM-based tool . . 49
2.4 Questionnaire Completion and Analysis activities 50
2.5 QBGA Process Metamodel - Document of the Standard . . 53
2.6 QBGA Process Metamodel - Questionnaire 54
2.7 QBGA Process Metamodel - Process elements lifecycle . . . 57
2.8 Question Lifecycle - Statechart Diagram 59

13

2.9 ALM Metamodel . 60
2.10 GADGET - User Interface for QBGA Process Modeling . . 62
2.11 GADGET - Table Views . 62
2.12 Proposed Transformation Process 63
2.13 Involved Subjects Details 70
2.14 Excerpt ISO 26262 QBGA Process Model 75
2.15 ISO 26262-6 QBGA Polarion ALM Project 78
2.16 Evaluation Summary Report Page 79

3.1 Artifacts Relationships in SPEM 92
3.2 The MIL Testing Process in SPEM 93
3.3 The MIL Monitoring Process in SPEM 94
3.4 Proposed Tool Integration Architecture 99
3.5 Detailed Component Diagram of the proposed architecture 101
3.6 The extended Test Run GUI 102

4.1 Example of Step 2 execution 129
4.2 Analysis of non-empty cell areas belonging to Sheet1 exe-

cuted in Step 3 . 130
4.3 Example of Step 4 execution 131
4.4 Example of header cells pattern inferring a single class and

its attributes . 131
4.5 Example of header cells pattern inferring two classes and

their attributes . 132
4.6 Example of header cells pattern inferring a single class with

attributes and class name 132
4.7 Example of header cells pattern inferring two classes with

attributes, class names and their composing relationship . . 133
4.8 Example of Step 5 Execution 134
4.9 Example of Step 6 Execution 135
4.10 Example of Step 7 Execution 136

14

4.11 Conceptual Data Model - Structural Relationships 137
4.12 Conceptual Data Model - Excel Specific Relationships . . . 140
4.13 The Reverse Engineering Process 142
4.14 GolfTeeOffForm Structural View 146
4.15 frmChooseNames Relationships View 148
4.16 cboPlayer1 ComboBox Analysis 148
4.17 User Forms Event Handlers List and Event Handling Graph

Views . 149
4.18 Different types of Cell Dependencies 152
4.19 Inferred Conceptual UML class diagram for the Test Pat-

tern Information System . 153
4.20 Example of class proposal and its mapping with the spread-

sheet file . 154
4.21 Example of a histogram reporting a data replication anal-

ysis on the class Test Step of an example spreadsheet 159
4.22 Example of Step 8 execution 160
4.23 Example of Class Diagram reduction proposed by the do-

main expert . 161
4.24 Teams Statistics . 165

5.1 Fiat Punto IPC Example 186
5.2 Analyzed Specifications and Generated Feature Profile . . . 191
5.3 AutoMative Architecture . 191

15

Introduction

Software is undoubtedly becoming one of the key factors of our ev-
eryday life. People rely, often unwittingly, on software systems to carry
out their usual daily tasks. A simple example of this enormous diffusion
can be supported by the growing number of mobile applications that are
downloaded and used worldwide1. As a further point, this shift toward
software not only has impacts on the customers’ market, but it is also
affecting several industrial domains. In an increasing number of industrial
domains, features that were realized in the past by means of mechanical,
electrical or electronic systems are now governed by software. Even criti-
cal domains, such as avionics, automotive, railway, aerospace, health-care,
have been interested by this spreading shift toward software. Just to give
a practical example, most of the functions provided by a modern car are
now realized by means of software. Nowadays, about 100 million Lines
of Code (LoC) are deployed on 70 to 100 microprocessor-based Electronic
Control Unit (ECU)s networked throughout the body of a typical modern
car2. And these figures are bound to rise in the future. Also in the avionic
domain, there was an increase from the 135 thousand LoC for the software

1https://goo.gl/9Me7YU
2http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

1

https://goo.gl/9Me7YU
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

2

deployed on the F16A in 1974 to the 24 Million LoC of the F35 Lighting
II in 20123.

To be competitive on their respective markets and to design and pro-
duce quality products, guaranteeing better user experience, safety, secu-
rity, maintainability, the companies in which software systems are devel-
oped need to correctly manage their software development processes, i.e.
Software Processes. A software process represents the set of activities that
leads to the production of a software product. These activities may involve
the development of software from scratch or extending and modifying ex-
isting systems and by configuring and integrating off-the-shelf software or
system components [1].

Research and industrial communities are devoting great efforts in order
to propose approaches and tools for better supporting software processes,
assessing them in real industrial settings and for improving their quality
[2, 3, 4]. Even though, there are still several open issues and challenges
related to software processes and their assessment and improvement in
real industrial contexts.

One of the main issues that affects the management of complex phe-
nomenon is the ability to understand and assess its state and behavior
in order to propose effective and efficient solutions for mastering it. This
statement can be easily applied to software processes that are distributed
and sparse both geographically and from managerial viewpoint, involve
a lot of different actors having different roles, require the execution of
different time-consuming activities and the generation of a multitude of
artifacts. Since that there is the need of new paradigms and enabling tech-
nologies for gathering all the key information regarding the process and to
support its evaluation when it is needed. Moreover, companies involved
in the development of software systems are continually asked to improve

3https:// insights.sei.cmu.edu/sei_blog/2015/09/managing-software-complexity-in-models.
html

https://insights.sei.cmu.edu/sei_blog/2015/09/managing-software-complexity-in-models.html
https://insights.sei.cmu.edu/sei_blog/2015/09/managing-software-complexity-in-models.html

3

the adopted development practices in order to maintain and increase the
competitiveness in their markets [5]. These companies are required to ad-
here to well-known quality frameworks, such as the Capability Maturity
Model Integration (CMMI) [6] or the Software Process Improvement and
Capability Determination (SPICE) [7, 8] that specify how to carry out the
development tasks. Moreover, when the software process is performed in
safety-critical system domains, such as automotive, railway, or aerospace,
the software companies are even obliged to demonstrate that they do not
pose undue risk to people, property, or the environment, showing their
compliance with a Standard Development Approach [9]. To cite just a
few examples, Standard approaches for developing safety critical systems
exist for automotive (ISO 26262 - Road Vehicles Functional Safety [10]),
Medical (IEC 62304 Medical device software - Software life cycle processes
[11]), and Nuclear (IEC 61513 Nuclear power plants - Instrumentation and
control important to safety [12]) industries. The standard approach is to
carefully code, inspect, document, test, verify and analyze the systems be-
ing developed. In these contexts, companies require to adopt appropriate
approaches and technologies for supporting the preliminary evaluation and
assessment of their capability to comply with the requirements of these
Standards and Evaluation framework. Once identified the gaps which sep-
arate them from these standard, they can implement the needed improve-
ment actions in order to demonstrate the quality of their software process
and, consequently, the quality of the software products they develop.

As another relevant issue, software process execution involves a multi-
tude of different artifacts that need to be managed throughout the entire
software lifecycle. An artifact is defined as any deliverable that is cre-
ated, consumed, or modified by an activity. Artifacts have a type, define
a structure, and may be linked toward each other [13]. The complexity of
the artifacts and of the dense, and often hidden, interconnection among
them should be correctly managed during the software process. However,

4

despite the relevance of traceability in software processes is well-known,
the activities of traceability creation and management are not always ad-
equately supported in real software projects. The lack of integration be-
tween the tools adopted in the development processes is one of the main
causes of such an ineffective management, where traceability relationships
are still manually generated and maintained.

As another factor that may influence the correct traceability manage-
ment and also the effectiveness of the entire software process, there is the
need to handle the increasingly complex artifacts involved in its execution.
This demand is even stronger in domains in which software process are
carried out as a phase of the entire product development process, such as
the automotive, railway and others, that involve people, namely end-users,
having little or no software development skills. In these contexts, solutions
for supporting the comprehension of the artifacts involved in the software
development process and for easing their management and traceability are
required.

Another important issue is related to the great variability that com-
panies need to manage when they carry out software process. Compa-
nies need to realize products that are tailored according to customers’
requirements and preferences besides the different laws and the cultural
preferences of the market in which they are sold. This tailoring has a
great impact on the functionalities that the software products have to
provide. Since that, companies are obliged to manage different versions of
the same software product, tailored according the different requirements.
In this scenario, they need to adopt cost-effective software development
processes in order to manage the variability of the produced software. A
case-by-case basis approach, where the software variability is managed at
the end of the development process, can no longer be considered suitable
to resolve these issues. More systematic solutions need to be introduced
[14]. Software Product Lines (SPL) approach has proven to be a successful

5

solution for handling the complexity and variability of the software devel-
oped in different domains as shown by several success stories reported in
[15]. According to Clements and Northrop [16], "a software product line
is a set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way". Although the SPL bring actual benefits to the software
variability management also enabling software reuse, they strongly impact
on the overall software life cycle and requires the definition of appropriate
strategies supporting its effective adoption.

In order to address these issues and to guarantee software process im-
provement, I defined different approaches and tools exploiting software
engineering principles and appropriate enabling technologies. I also eval-
uated the proposed solutions through Case Studies carried out in real
industrial settings.

Thesis Contributions

This Thesis work contributes to the literature in software process as-
sessment and improvement by proposing:

• an approach for supporting the design and execution of Gap Analysis
processes with respect to Standards and Evaluation Frameworks that
foresees the adoption of Application Lifecycle Management (ALM)
systems and Model Driven Engineering (MDE) technologies;

• an approach for the automatic management of traceability links
among the artifacts involved in the development process that re-
lies on the integration of the tools supporting the enactment of the
software process;

6

• a reverse engineering process and a tool for supporting the compre-
hension of spreadsheet based artifacts involved in software processes;

• an approach and a software architecture for supporting the intro-
duction of Software Product Lines in real industrial processes. The
approach has the aim of managing the variability and enabling reuse
in software processes.

The feasibility of the proposed approaches and tools has been vali-
dated through real industrial case studies, conducted according to the
guidelines defined by Runeson et al. [17]. Some of the reported case stud-
ies were conducted in the context of the APPS4Safety Research Project
(PON03PE_00159_3)4, that is partially funded by the Italian Ministry
of Education and Research. Due to the complexity of software processes,
that involve several actors, artifacts, activities and tools, I decided to em-
ploy the case study research methodology to assess the feasibility of the
proposed approaches. In this way, I wanted to evaluate the proposed ap-
proaches in real software process settings. Moreover, in these studies I
exploited qualitative research methods, since they increase the amount of
information contained in the data collected. It also increases the diversity
of the data and thus increases confidence in the results through triangu-
lation, multiple analyses, and greater interpretive ability [18, 19]. The
raw data of the conducted case studies was not reported due to ethical
and logistical reasons. However, further material was made available in
an external repository5, such as the interview guides used for conducting
the case studies or the produced artifacts.

This Thesis work includes material from the following research papers
already published in peer-reviewed journals or conferences:

• Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino,
4http://www.ponrec.it/open-data/progetti/ scheda-progetto?ProgettoID=7111
5https://github.com/vindes2/Thesis-Material/

http://www.ponrec.it/open-data/progetti/scheda-progetto?ProgettoID=7111
https://github.com/vindes2/Thesis-Material/

7

and Stefano Scala. 2017. Improving traceability management
through tool integration: an experience in the automotive
domain. In the Proceedings of the 10th International Conference
on Software and System Process (ICSSP 2017). ACM. [20]

• Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Vincenzo De Simone, Giancarlo Di Mare, and Stefano Scala. 2015.
A Reverse Engineering Process for Inferring Data Mod-
els from Spreadsheet-based Information Systems: An Au-
tomotive Industrial Experience. Part of the Communications in
Computer and Information Science book series (CCIS, volume 178).
Springer. [21]

• Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino,
Porfirio Tramontana. 2016. EXACT: A tool for comprehend-
ing VBA-based Excel spreadsheet applications. Journal of
Software: Evolution and Process 28(6). Wiley. [22]

• Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino,
Mario Lubrano, Stefano Scala. 2016. Introducing Software Prod-
uct Lines in Model-Based Design Processes: An Industrial
Experience. In Proceedings of 13th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2016). IEEE. [23]

Thesis Outline

This dissertation is organized as follows:

• Chapter 1 reports the background of this work, focusing on Software
Processes and ALM. Moreover, it highlights the main elements of
the research methodologies I exploited to validate the approaches
proposed in this work;

8

• Chapter 2 describes the approach I designed for supporting compa-
nies in the definition and execution of Gap Analysis processes with
Standards and Evaluation frameworks. Moreover, it reports the re-
sults of a case study I conducted in collaboration with my research
group with the aim of assessing its feasibility;

• Chapter 3 shows the tool integration approach I proposed for sup-
porting the traceability management of the artifacts involved in real
software process and the results of an experiment I carried for as-
sessing its validity;

• Chapter 4 describes the approaches and tools I defined for supporting
the comprehension of the artifacts involved in software process that
are based on spreadsheet systems and the case studies I conducted
for validating them.

• Chapter 5 reports the approach based on SPL and the software ar-
chitecture I defined for supporting the management of variability in
software processes and the experience I gained by applying it in real
automotive software processes;

• Chapter 6 reports conclusive remarks and possible future work.

Chapter 1
Background

This Chapter illustrates the main topics covered in this dissertation.
More in detail, it reports an overview on Software process, that is the main
topic of this Thesis work, and on ALM, chosen as enabling technology for
solving the identified issues of software processes. Moreover, it illustrates a
brief introduction of the research methodologies exploited in the Software
Engineering domain, focusing on the one, i.e the Case Study Research
methodology, that was adopted for validating the approaches proposed in
this work.

1.1 Software Process

Software process describes the activities that are carried out to pro-
duce a software system. More precisely, a software process can be defined
as the coherent set of policies, organizational structures, technologies, pro-
cedures, and artifacts that are needed to conceive, develop, deploy, and
maintain a software product [24]. Often, software processes are also called
"software development processes". Even though, this term is not exhaus-
tive since many parts of software processes are not directly related to de-

9

10 CHAPTER 1. BACKGROUND

velopment (such as maintenance processes), they are also relevant in areas
where not only software is produced (e.g., when building software-based
systems).

Software processes are enacted, i.e. executed, in the real world and are
characterized by different aspects. In order to produce the final software
product, during its enactment different input artifacts are transformed
into output artifacts by consuming other products such as guidelines, best
practices. These transformations are carried out by human actors having
specific roles that defines the need skills, permissions for carrying out the
specific activities. Moreover, they are supported by tools that execute
all or parts of the required activities. The software process can be fur-
ther structured in subprocesses, activities, steps that define the different
lifecycle of the software product.

1.1.1 Software Process Models

A software process model is a standardized format for planning, or-
ganizing, and executing software development processes. It describes the
sequence of activities carried out in a software development process, and
the relative order of these activities [1]. A multitude of different software
process models have been proposed throughout these years, but they can
be considered small variations of a set of basic software process models.
A first effort for defining a comprehensive software process can be traced
back in the 70s with the definition of the Waterfall software process by
Royce [25], even though its definition was based on several previous work
[26, 27]. This process defines the development of software through the
execution of sequential activities. It is widely used since it reinforces
good habits, such as define-before- design, design-before-code, identifies
deliverables and milestones and can be used for mature products even
with weak development teams. Although, the waterfall model presents
different disadvantages: it is costly, it does not reflect iterative nature

1.1. SOFTWARE PROCESS 11

of exploratory development, it requires accurate requirements early in a
project, it leads to late software deliveries, delaying the discovery of serious
errors, it does not manage risks and it does not take into account possible
decision changes or evolution. Since that, a lot of different process models
have been proposed such as Exploratory Development, Throw-away Proto-
typing, Spiral Model [28]. All these process models have their advantages
and cons and should be applied considering the context in which soft-
ware is developed. Moreover, Agile software processes [29], such as Scrum
[30], XP, etc., have been proposed in last decades proposing processes
that can be adapted to changes and that do emphasis on people rather
than activities and documents. Moreover, there is in the last decades the
adoption in software process of approaches that focuses on models rather
than on code, such as Model Driven Architecture1 and Model Based De-
sign2. These approaches exploit modern technologies for supporting code
automatic generation from design models.

The most widely adopted software process model in Industrial setting
is the V-model. It is considered as an extension of the typical waterfall
model where relationships between each phase of the development life
cycle and its associated phase of testing are introduced. It is a mature
software process model and it allows to discover issues in the early stages
of development and it can manage risks and changes. It is the reference
model in different Standards for software development [31], even for safety
critical domains [10].

1.1.2 Software Process Modeling

One of the challenges for software development organizations is to find
the means of rationally describing and managing activities, resources, and
constraints of their software development processes while taking into ac-

1http://www.omg.org/mda/
2https://www.mathworks.com/solutions/model-based-design.html

http://www.omg.org/mda/
https://www.mathworks.com/solutions/model-based-design.html

12 CHAPTER 1. BACKGROUND

Figure 1.1. V-model

count all these characteristics. Software process should be appositely doc-
umented exploiting software process models. Process models can be used
to reason about processes, and to test and improve them to meet increas-
ing quality and cost expectations. Moreover, process models can also be
exploited to automate repetitive and non-interactive tasks. The software
community tried to answer the need for explicit process models with a
wide range of Software Process Modeling Languages (SPMLs).

Figure 1.2. SPMLs Categories

As reported in [32], the proposed SPMLs can be groped in three

1.1. SOFTWARE PROCESS 13

different categories, as can be seen in Figure 1.2. The first group of
grammar-based languages includes all studies that focus on formal lan-
guages, mathematical and programming, by means of rules or restrictions.
A second group contains several versions of Unified Modeling Language
(UML)-based SPMLs, and finally, the last group includes metamodel-
based SPMLs or DSLs. Figure 1.3 outlines the correspondence among
each SPML and the aforementioned groups. Following the proposed tax-
onomy where grammar-based SPMLs are shown with no background color
or frame, UML-based SPMLs are shown with background color and model-
based SPMLs are shown with a frame. Some of them were rules-based
(e.g., MARVEL), others Petri net-based (e.g., SPADE) or programming
languages-based (e.g., SPELL, APPL/A). While these first-generation lan-
guages were executable and put a strong emphasis on formality, they did
not gain much attention from industry [33]. Their complexity, their use
of low-level formalisms, and their inflexibility were among the causes of
their limited adoption [34]. Moreover, from the comparison carried out
in [35], resulted that the Software & Systems Process Engineering Meta-
model (SPEM) 2.0 3 is the most widely adopted Modeling language used
to describe Software Processes.

1.1.3 Software and Systems Process Engineering Meta-model

SPEM 2.0 was introduced as a language to define software and systems
development processes and their components. The scope of SPEM is pur-
posely limited to the minimal elements necessary to define any software
and systems development process, without adding specific features for par-
ticular development domains or disciplines. The goal is to accommodate
a large range of development methods and processes of different styles,
cultural backgrounds, levels of formalism, lifecycle models, and commu-
nities. SPEM is a process engineering meta-model as well as conceptual

3http://www.omg.org/spec/SPEM/

http://www.omg.org/spec/SPEM/

14 CHAPTER 1. BACKGROUND

Figure 1.3. Relations and base technology of SPMLs

framework, which can provide the necessary concepts for modeling, docu-
menting, presenting, managing, interchanging, and enacting development
methods and processes. An implementation of this meta-model would be
targeted at process engineers, project leads, project and program man-
agers who are responsible for maintaining and implementing processes for
their development organizations or individual projects. It was introduced
for:

• providing a standardized representation and managed libraries of
reusable method content;

• supporting systematic development, management, and growth of de-
velopment processes;

• supporting the enactment of a process for development projects.

1.1. SOFTWARE PROCESS 15

SPEM allows to describe all the elements of a software or system pro-
cess. To this aim it defined all the possible elements characterizing a
software and system process elements that are shown in Figure 1.4.

Figure 1.4. Concepts exposed by the SPEM formalism

As the Figure shows, SPEM differentiates between method content and
process content. Method content concepts such as Task, Work Product
and Role are used to define reusable descriptions that can be incorpo-
rated into several processes. The corresponding elements in the process
content, i.e. Task Descriptor, Work Product Descriptor and Role Descrip-
tor, are basically copies that contain the information from the method
content counterparts, but can be locally adapted as part of the process
description. The process content also includes Activity, Capability Pat-
tern and Delivery Process that can be used to organize and define work
breakdown structures and reusable process patterns. The method content
includes Category that can be used to define custom categories, e.g. Dis-

16 CHAPTER 1. BACKGROUND

cipline to categorize tasks and Tool to categorize tool-specific guidance.
The Guidance concept can be used to define specific guidance types, e.g.
Roadmap, Template, Checklist and Tool Mentor that can be associated
with both method and process content. Practice is a special guidance kind
for organizing elements that belong to the same practice [36].

1.1.4 Software Process Improvement and Software Process
Characteristics

"Ideal" or "Standard" software process that can be applied in all orga-
nizations or for all software products of a particular type does not exist.
Each company has to develop its own process depending on its size, the
background and skills of its staff, the type of software being developed,
customer and market requirements, and the company culture. Process
improvement, therefore, does not simply mean adopting particular meth-
ods or tools or using a published, generic process. Although organizations
that develop the same type of software clearly have much in common,
there are always local organizational factors, procedures and standards
that influence the process. It is difficult to be successful in introducing
process improvements bu simply attempting to change the process to one
that is used elsewhere. There is the need to consider the local environment
and culture and how this may be affected by process change proposals. In
Software Process Improvement initiatives, the companies have to consider
what aspects of the process are willing to improve. As an example, the
company might be interested in improving software quality and in intro-
ducing new process activities that change the way software is developed
and tested. As another aspect, the companies may have the goal to im-
prove some attribute of the process itself. In this case they have to identify
which process attributes are the most important for them. Examples of
process attributes that may be targets for improvement are listed in Table
1.1.

1.1. SOFTWARE PROCESS 17

Table 1.1. Process Characteristics

Process
Characteristic Key Issues

Understandability To what extent is the process explicitly defined and how
easy is it to understand the process definition?

Standardization

To what extent is the process based on a standard generic
process? This may be important for some customers who
require conformance with a set of defined process
standards. To what extent is the same process used in all
parts of a company?

Visibility
Do the process activities culminate in clear results,
so that the progress of the process is
externally visible?

Measurability
Does the process include data collection or other
activities that allow process or product characteristics
to be measured?

Supportability To what extent can software tools be used to support the
process activities?

Acceptability Is the defined process acceptable to and usable by the
engineers responsible for producing the software product?

Reliability
Is the process designed in such a way that process errors
are avoided or trapped before they result in product
errors?

Robustness Can the process continue in spite of unexpected
problems?

Maintainability Can the process evolve to reflect changing organizational
requirements or identified process improvements?

Rapidity How fast can the process of delivering a system from a
given specification be completed?

18 CHAPTER 1. BACKGROUND

Research community is devoting a great effort in proposing solutions
aimed at improving software processes. A recent study by Khan et al.
analyzed the most reviews carried out in the last decade and found out that
the study on Software Process Improvement mostly focused on analyzing
their success factors and possible process models [37]. Even though the
great number of work in this area, research in Software Processes and their
Improvements are still needed.

1.1.5 Process Quality Evaluation Frameworks

In order to guarantee the quality of software products, different stan-
dards and evaluation framework have been defined. These standards focus
on the quality of the software process in order to demonstrate the quality
of the produced software. To this aim they propose best practices and
guidelines to follow for reaching certain levels of capability or maturity of
their process.

The CMMI Evaluation framework, introduced by the Software Engi-
neering Institute (SEI), provides guidance for improving organizations’
capability to develop quality products and services that meet the needs of
customers and end users. It introduces best practices for improving effi-
ciency, speed, and product quality fueled by a lower number of defects. In
order to assess the organizations’ capability CMMI provides five Maturity
Levels for executing a rigorous benchmark rating method that enables you
to compare your organization’s capability to its competitors, its industry,
and itself over time. The CMMI Maturity Levels are described in Figure
1.5.

CMMI focuses on the goals rather than the way they are reached that
is important. Organizations may use any appropriate practices to achieve
any of the CMMI goals they do not have to adopt the practices recom-
mended in the CMMI.

Another widespread framework is the ISO/IEC 15504 (now ISO/IEC

1.1. SOFTWARE PROCESS 19

Figure 1.5. CMMI - Maturity Levels

330xx [7, 8, 38]) also known as SPICE, is the reference model for the ma-
turity models against which is possible to determine organizations’ capa-
bilities for delivering products, such as software, systems, and IT services.
The proposed capability levels, shown in Figure 1.6 are based on process
attributes that specify further generic practices to apply.

Figure 1.6. SPICE - Capability Levels

Both these Evaluation frameworks contain generic assessment models
for development processes, which provide a basis to rate organizations’

20 CHAPTER 1. BACKGROUND

capability. These process models are founded on best practices proven
across the entire software industry. When applying process assessment to
specialized areas of software development, better results may be provided
by using a tailored process model that reflects the particular practices of
the industry.

1.2 Application Lifecycle Management

ALM platform has been proposed with the objective to provide a com-
prehensive technical solution to monitor, control and manage software de-
velopment over the whole application lifecycle. The goal of an ALM plat-
form is to make software development and delivery more efficient, lower
its costs and improve the quality of produced software. However, the
concept of ALM is unclear and driven by tool vendors [?]. As reported
in Figure 1.7, ALM focused on three main aspects of software processes
that are defined the pillars of ALM, i.e. traceability, visibility and process
automation [39]. From many work emerges the idea that concepts such
as traceability, process automation, reporting and tool integration are the
foundations of ALM.

Figure 1.7. The three pillars of ALM

Traceability is born in the domain of requirements engineering where it
is addressed as the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction, from its origins, through its

1.2. APPLICATION LIFECYCLE MANAGEMENT 21

development and specification, to its subsequent deployment and use, and
through periods of on-going refinement and iteration in any of these phases
[40]. Traceability is also addressed as the degree to which each element in
a software development product establishes its reason for existing and to
understand at a glance why an artifact has been created [41]. Traceability
provides the means to track all the changes in the single artifacts and who
made these changes allowing to reconstruct its history. Finally, by correcly
implementing traceability the entire software development process it is
possible to check if result of the process and the quality of the produced
software, by identifying what tests are used to verify a requirement, by
checking that all requirements are covered by test cases and by helping to
identify if the implementation is in compliance with the requirements [42].

Visibility aims to offer to managers and stakeholders a closer look on
the progress of development efforts. Process automation, instead, focuses
on the automation of some process tasks to make the process more effective
and less time-consuming. ALM can be seen as a supervisor which covers
the whole development process from the initial idea to the end of the
product lifecycle through different core aspects: governance, development
and operations. Development is the process of creating and testing the
application. Once the application is deployed it must be monitored and
managed and the Operations area is the one responsible for this. It starts
before the end of the development process because the operations area is
also the one responsible of the deployment itself [43].

Each of the described lifecycle activities involves a multitude of tech-
nologies and tools and it’s important for a software development company
to successfully harness these technologies and tools. Even more impor-
tant, it is need to integrate the different tools involved in the development
process in order to ease the development activities and improve the man-
agement of the artifacts involved in their execution. Actors involved in the
software development process adopt tools suited to their needs. However,

22 CHAPTER 1. BACKGROUND

in a modern software development process it is required to share infor-
mation between different teams. From this aspect emerges the need of a
consistent support for the development process as a whole by adopting
a common foundation for application lifecycle management. Such com-
mon foundation let all the different teams use a common pool of tools, or
only one too for those activities that are in common between the different
areas, such as requirements management, build management, version con-
trol, bug tracking, test case management and dashboards and reporting,
as shown in Figure 1.8.

Figure 1.8. A common ALM foundation

Using a common foundation, it’s possible to keep all company’s devel-
opment projects and their artifacts in one place making it easier to share
code and development artifacts across different groups. A shared ALM
foundation also helps to implement the same development process across
all teams. Since everybody relies on the same underlying mechanisms,
using a common process gets easier. This simplifies management, and it
also allows improvements made by any group to spread quickly to all the
other groups [44]. Finally, an ALM foundation also eases the communi-
cation between the company and external partners that can update the
common repository to inform the company of their progress. It’s easy to

1.3. RESEARCH METHODOLOGIES 23

understand why having an ALM foundation can also improve traceability
management.

Nowadays many ALM tools are available on the market (IBM Rational
Team Concert4, HP Application Lifecycle Management, Siemens Polarion
ALM5) and all of them offer the functionality described before. However,
it is not simple to introduce this ALM tools in companies, since most of
them already have a de-facto development process and adopt legacy tools.
The transition toward ALM can be difficult and many companies may base
their choice on the features offered by the ALM platform, the ones needed
by the company’s development process and the work needed to tailor the
platform to the company’s need [45]. The selected solution should also be
the one that supports integration with the highest number of tools already
in use in the company. Having a direct and automatic link between the
tools and the ALM platform can minimize team members manual work
and chance of error.

1.3 Research Methodologies

In this section, a brief overview of research methods applied in Software
Engineering domain are reported, focusing on qualitative and quantitative
methods. Then, I motivate the choice to adopt the Case Study method-
ology for assessing our proposed approaches in real industrial contexts.

Research is a discipline for developing knowledge on the basis of the
analysis and processing of collected data regarding a phenomenon under
investigation [46]. There are two main research paradigms:

• the positivist paradigm considers a phenomenon is measurable by
using statistical instruments such as surveys, and observable by ex-
periments [47]

4http://www-03.ibm.com/software/products/ it/rtc
5https://polarion.plm.automation.siemens.com/products/polarion-alm

http://www-03.ibm.com/software/products/it/rtc
https://polarion.plm.automation.siemens.com/products/polarion-alm

24 CHAPTER 1. BACKGROUND

• the interpretivist paradigm focuses on the researchers viewpoint for
understanding the social reality [48] other than seeking for general-
izable truths

Scientific communities have considered both these approaches, showing
that they are complementary. More in detail, Quantitative research, based
on the positivist approach, consider the reality as static and observable
whereas the Qualitative research follows the interpretivist paradigm and
considers that there are various alternative interpretations that accommo-
date the scientific knowledge itself [49].

1.3.1 Research Strategies

In Software Engineering domain, different research methodologies have
been adopted [50], according to the proposed categories: quantitative re-
search where surveys, controlled experiments and simulations are per-
formed and qualitative research such as grounded theory, ethnography,
action research. There are two types of research paradigms that have
different approaches to empirical studies: Exploratory and Explanatory
Research [51].

Exploratory Research

Exploratory research requires the study and analysis of the phenomenon
in its natural setting, letting the findings emerge from observations. Since
that, Exploratory research methods is based on the application of flexible
research methods, or Qualitative research, that can be adapted to changes
of the observed phenomenon. This type of research method exploits qual-
itative data. It is an inductive method since it requires to interpret the
phenomenon based on the information, explanations, perceptions that are
reported by the subjects involved in the study. Subjects are people that
are taking part the study in order to evaluate an object. Qualitative re-

1.3. RESEARCH METHODOLOGIES 25

search is an approach aiming at investigating participants’ actions and
words for interpret patterns of meaning [52]. It relies on the collection of
information from the participants’ own words and definitions, and classify
them from their natural work settings or environment [53]. Qualitative re-
searchers exploit interviews, individual experiences, case studies and focus
groups to capture data about the values of people for investigative obser-
vations. The collected data can be documented in a contextual framework
for conducting a closer observation of words and view of the participants
and further inspection [54]. Typically, qualitative methods are inductive
and they are used to investigate a new or unexplored phenomena or some-
time to generate a theory. Moreover, it is required when interactions with
participants to seek in-depth answers or research are needed. Qualita-
tive studies are conducted in small groups or with a limited number of
participants; hence, the results in many cases are not generalizable [55].

Explanatory Research

Explanatory research is mainly concerned with quantifying a relation-
ship or to compare two or more groups with the aim to identify a cause-
effect relationship. The research is often conducted through setting up
controlled experiment. This type of study is a fixed design study, re-
quiring that all the factors involved in it are fixed before the study is
executed. Fixed design research is also known as Quantitative research,
since it exploits quantitative data. Quantitative data may be useful when
there is the need to evaluate the effects of some manipulations or activi-
ties. This kind of research requires that the data are compared by means
of statistical, mathematical analysis. Quantitative research foresees the
investigation of a phenomenon by collecting and analyzing numerical data
using mathematical methods [56] with the aim to quantify the interrela-
tions between different types of variables (e.g. independent, dependent),
mainly using statistical techniques [57]. Quantitative research is based

26 CHAPTER 1. BACKGROUND

on a conventional and a systematical process to gather data, which de-
scribes the information by cause and effects relations in a rigorous way
[58]. Quantitative research poses its ground on the assumption that the
world operates with a set of physical and natural laws and it provides
the means to test a hypothesis and sometimes conducts studies to observe
the cause-and-effect relationships among variables with empirical investi-
gations.

1.3.2 Case Study Research

Case study has been widely adopted in the Software Engineering com-
munity, often referring to study of specific case, in contrast to a sample
from a specified population. However, these studies claimed to be case
studies ranged from very ambitious and well-organized studies in the field
of operations (in vivo) to small toy examples in a university lab (in vitro)
[17].

Case study is a commonly used research strategy in social science con-
text (e.g., [59]), where they are conducted with the objectives of not only
increasing knowledge but also bringing change in the phenomenon being
studied. Software engineering research has similar high-level objectives,
that is, to better understand how and why software engineering should be
undertaken and, with this knowledge, to seek to improve the software en-
gineering process and the resultant software products. Case studies offer
an approach that does not require a strict boundary between the object of
study and its environment. Case studies do not generate the same results
on, for example, causal relationships, as controlled experiments do, but
they provide a deeper understanding of the phenomena under study [17].
Case studies have been criticized for being of less value, being impossible
to generalize from, being biased by researchers, and so on. This critique
can be met by applying proper research methodology practices and by
reconsidering that knowledge is more than statistical significance [60].

1.3. RESEARCH METHODOLOGIES 27

Software engineering is also distinctive in the combination of diverse
topics. Glass et al. [61] describe software engineering as an intellectu-
ally intensive, nonroutine activity, and Walz et al. [62] describe software
engineering as a multi-agent cognitive activity. Many of the interim prod-
ucts are produced either intentionally by the actors (e.g., the minutes
of meetings) or automatically by technology (e.g., updates to a version
of control system). Therefore, one of the distinctive aspects of software
engineering is the raw data that are naturally, and often automatically,
generated by the activities and technologies. There are clear overlaps with
other disciplines, such as psychology, management, business, and engineer-
ing, but software engineering brings these other disciplines together in a
unique way, a way that needs to be studied with research methods tailored
to the specifics of the discipline. Case studies investigate phenomena in
their real-world settings, for example, new technologies, communication
in global software development, project risk and failure factors, and so
on. Hence, the researcher needs to consider not only the practical re-
quirements and constraints from the researcher’s perspective, but also the
objectives and resource commitments of the stakeholders who are likely to
be participating in, or supporting, the case study. Also, practitioners may
want to intervene in future projects – that is, change the way things are
done in future projects – on the basis of the outcomes from the case stud-
ies, and often software engineering managers are interested in technology
interventions, such as adopting a new technology. This includes both soft-
ware process improvement (SPI) work [63] and design of solutions. There
are, therefore, distinctive practical constraints on case study research in
software engineering.

Case Study Process

As for other kind of empirical study, compare, for example, to the
processes proposed by Wohlin et al. [64] and Kitchenham et al. [65], Case

28 CHAPTER 1. BACKGROUND

Studies can be structured in the following five major steps:

1. Case study design – objectives are defined and the case study is
planned.

2. Preparation for data collection – procedures and protocols for data
collection are defined.

3. Collecting evidence – data collection procedures are executed on the
studied case.

4. Analysis of collected data – data analysis procedures are applied to
the data.

5. Reporting – the study and its conclusions are packaged in feasible
formats for reporting.

However, differently from other empirical studies, the case study is a
flexible design strategy, and can require an amount of iteration over the
steps [66], which is explicitly modeled on a process by Verner et al. [67].
Also the data collection and analysis may be conducted incrementally. If
insufficient data are collected for the analysis, more data collection may be
planned. However, the case study should have specific objectives set out
from the beginning. If the objectives change, it is a new case study rather
than the existing one, though this is a matter of judgment like all other
classifications. Empiricists in software engineering often complain about
the lack of opportunities to study software development process in real
settings. This really implies that we must exploit to collect and analyze
as much data of as many different types as possible. Qualitative data
is richer than quantitative data, so using qualitative methods increases
the amount of information contained in the data collected [19, 18]. To
these reasons I decided to exploit Case Study Research and qualitative
research methods to evaluate how the proposed approaches are applied in
real industrial contexts.

Chapter 2
Using Application Lifecycle
Management and Model Driven
Engineering for supporting Gap
Analysis Processes

In this Chapter I investigate on Questionnaire based Gap Analysis
process that are executed for assessing whether a company complies with
the requirements prescribed by Standards or Quality Evaluation frame-
work. The main issues affecting Questionnaire-based Gap Analysis pro-
cesses in industrial practices were identified through a survey conducted
in real industrial settings. Moreover, I evaluate the feasibility of adopting
state-of-the-art software engineering technologies for executing such pro-
cesses and overcoming the identified issues. Then, the Chapter describes
a novel approach based on Application Lifecycle Management for config-
uring and enacting Questionnaire-based Gap Analysis processes. The ap-
proach exploits Model Driven Engineering for configuring and implement-

29

30 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

ing the Application Lifecycle Management system. This configuration
activity is aided by a tool, named Gap Analysis Design and GEneration
Tool (GADGET), developed for modeling the process and automatically
transforming it towards the Application Lifecycle Management technol-
ogy. The feasibility of the proposed approach has been evaluated by a
case study conducted in the automotive domain. Two different Question-
naire Based Gap Analysis processes have been configured and implemented
in an Application Lifecycle Management system with the support of the
GADGET tool. The resulting ALM system was used to perform the Gap
analysis processes. Semi-structured interviews with the involved industrial
personnel were conducted to carry out a qualitative evaluation. The case
study results show that the introduction of ALM improves the quality of
the Questionnaire Based Gap Analysis processes. Moreover, the adoption
of MDE approach implemented by the GADGET tool provides a viable
solution for configuring ALM systems.

2.1 Introduction

Nowadays, software development companies continually strive to re-
fine and improve the adopted development practices in order to maintain
and increase the competitiveness in their markets [5]. To show the quality
of their development processes, or to improve them, these companies may
be appraised with respect to well-known quality frameworks, such as the
Capability Maturity Model Integration (CMMI) [6] or the Software Pro-
cess Improvement and Capability Determination (SPICE) [7, 8]. Software
organizations have to comply with the highest possible levels of maturity
and capability defined by these frameworks, if they want to excel in com-
petitions for software projects, win and retain more and more customers
[68].

On the other hand, in safety-critical system domains, such as auto-

2.1. INTRODUCTION 31

motive, railway, or aerospace, the software organizations are even obliged
to demonstrate that they do not pose undue risk to people, property, or
the environment, showing their compliance with a Standard Development
Approach [9]. To cite just a few examples, Standard approaches for de-
veloping safety critical systems exist for automotive (ISO 26262 - Road
Vehicles Functional Safety [10]), Medical (IEC 62304 Medical device soft-
ware - Software life cycle processes [11]), and Nuclear (IEC 61513 Nuclear
power plants - Instrumentation and control important to safety [12]) in-
dustries. The standard approach is to carefully code, inspect, document,
test, verify and analyze the systems being developed.

Before exposing themselves to a third party certification authority for
a formal appraisal, companies usually need to perform a preliminary in-
ternal assessment to understand how well their processes compare to these
standard methods or frameworks and to identify areas where improvement
can be made [69]. Perform Gap Analysis processes is a common approach
adopted in the practice for addressing this problem. Gap Analysis was
introduced in the business context as a technique to identify discrepancies
with respect to the achieving of an objective by Parasuraman et al. [70].

More in detail, the aim of Gap Analysis is to identify the "gaps" be-
tween the existing ’as-is’ state of the company and the target ’to-be’ sit-
uation to reach [71]. This analysis may rely on two different models that
represent the existing ’as-is’ situation of the company and the desired
’to-be’ one, respectively.

However, modeling the ’as-is’ situation is usually not straightforward
due to well-known difficulties in obtaining reliable, correct, and up-dated
documentation about the processes implemented by the company.

As to the ’to-be’ model, there is the issue of obtaining it because Stan-
dards do not usually define the target models, but they just provide a set
of requirements that must be satisfied in the ’to-be’ situation. As a conse-
quence, the organization has the issue of defining this model, carrying out

32 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

an expensive process of analysis and interpretation of the Standard, and
designing its solution according to its own interpretation of the standard
and its own perspective about it.

The task of defining the ’to-be’ model may prove to be very difficult to
be automatized since it requires the analysis of large textual documents
written in natural language that are not easily understood by everyone
and are usually open to different interpretations when they are examined
by different people [72, 73, 74]. This task may be even more difficult when
the Gap Analysis is performed with respect to a Standard that allows
specific requirements or methods to be not implemented by the company,
provided that a valid rationale is supplied.

Since that, a more pragmatic approach to Gap Analysis processes that
is usually applied in industrial settings is based on interviews or question-
naires [75].

The basic idea of Questionnaire Based Gap Analysis (QBGA), is to
assess the "gaps" by means of questionnaires that helps the company in
collecting evidences showing to what extent it is far from implementing all,
or subsets of, the requirements defined by the Standard. To implement this
approach, an organization just needs questionnaires that will be answered
by process experts in the company, and then the collected answers will be
used to evaluate the existing gaps.

QBGA processes present several open issues. A first issue regards the
setup of the questionnaires that are usually not defined by the Standard,
but need to be crafted by the company according to the specific goals of
the gap analysis and adapted to the industrial context where they will be
used. Designing a useful and usable questionnaire is usually not straight-
forward and requires a considerable manual effort, as already reported in
the literature [76, 77, 78].

Further issues may regard the activities of questionnaires completion,
analysis, and gaps evaluation. Implementing these activities requires the

2.1. INTRODUCTION 33

cooperation between different involved actors according to specific rules
defined by the company. These activities are even more difficult when they
are carried out without a proper tool support. The tools adopted in the
practice usually are spreadsheets, or simple word processors [79, 80] that
do not provide advanced or ad-hoc features like the ones provided by tools
designed for managing the questionnaire compilation and interpretation
process, such as Google Forms, SurveyMonkey. Finding more effective
technologies and tools to support the execution of these processes and
validating them in real industrial contexts is thus a relevant research issue.

ALM is a technology commonly used in companies for managing the
software development process. ALM systems focus on the products to
be developed and all their lifecycle activities, offering an integrated envi-
ronment and tools for working on the products, managing their versions
and the access by different persons and roles, automatically tracking and
notifying the product progress, and so on [81]. A relevant characteristic
of ALM systems is the possibility they offer to customize specific ALM
projects, defining the characteristics of the managed products, their life-
cycle rules, and possible constraints.

In this Chapter I focus on QBGA processes and I investigate the possi-
bility of introducing ALM systems to support the implementation of such
processes. To this aim, with the collaboration of my research group I
preliminary carried out a survey in several industrial settings, in order to
obtain the most critical issues experienced by companies in the execution
of QBGA processes. Thanks to the survey, we were able to define the
requirements of a tool, based on the ALM technology, that provides the
built-in features for overcoming the most critical and common issues of
QBGA processes.

To support the development of this tool I decided to rely on the MDE
approach that allows systems to be developed starting from models at
different degrees of abstraction and by applying automatic transformation

34 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

techniques [82].
In order to implement the MDE approach for developing the ALM-

based tool, I defined different metamodels that abstract the characteristics
of a generic QBGA process and of ALM systems. Moreover, I developed a
tool, named GADGET (Gap Analysis Design and GEneration Tool), that
supports both the modeling and the transformation steps of my MDE
process. The feasibility of the proposed approach has been evaluated in
a case study I performed in the automotive industrial context of the Fiat
Chrysler Automobiles (FCA) company. The results of the study showed
that the proposed GADGET tool well supported all the steps foreseen by
my proposed MDE process. Moreover, it showed that my approach aids
the execution of a QBGA processes, positively affecting several of their
quality characteristics.

This work contributes to the literature in software process quality and
improvement in four main aspects:

• it presents a survey conducted in real industrial settings for under-
standing how QBGA processes are executed and their main issues;

• it proposes the adoption of the ALM technology for supporting
QBGA processes execution;

• it defines a tool-supported MDE approach for generating an ALM-
based tool supporting the QBGA process execution;

• it presents a case study conducted in a real industrial setting, show-
ing the feasibility of the proposed approach for QBGA processes.

The reminder of the Chapter is organized as it follows: Section 2.2
reports the survey on gap analysis processes I carried out in industrial
settings. Section 2.3 presents the proposed approach based on ALM, the
MDE approach for supporting the design and development of the ALM
based tool supporting QBGA process execution. Moreover, it illustrates

2.2. THE ADDRESSED PROBLEM 35

the tool, named GADGET, I developed to support the design of QBGA
processes and its automatic implementation in an ALM-based tool. Sec-
tion 2.4 describes the industrial case study I carried out in collaboration
with my research group in order to evaluate the feasibility of the pro-
posed approach in supporting the development and execution of QBGA
processes. Section 2.5 discuss related Work whereas Conclusions & Future
Work are reported in Section 2.6.

2.2 The addressed Problem: QBGA processes in
industrial settings

My work on QBGA started with a preliminary study that I carried
out with my research group in real industrial settings with the aim of
understanding:

• how QBGA processes are executed in real industrial scenarios;

• which are the most critical issues real companies face when these
processes are performed.

To this aim, we conducted an industrial survey among employees of
selected companies involved in QBGA processes, which focused on five
different aspects: the performed activities, the actors involved in these
activities and their roles, the artifacts they exploited and the ones they
produced, the adopted supporting tools, and the issues that were most
frequently faced in the execution of these processes.

The survey we conducted relied on the execution of the following steps:

1. choice of the methodology for conducting the survey,

2. selection of the employees to be surveyed,

3. design and production of the survey forms,

36 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

4. conduction of the survey,

5. collection and analysis of the answers,

6. validation of the results.

As for the methodology, we decided to carry out the survey through
semi-structured interviews. Unlike the structured interview that has a
rigorous set of questions which does not allow one to change or submit
new questions during the survey execution, a semi-structured interview is
open, allowing new ideas to be brought up during the interview as a result
of what the interviewee answers. This freedom can help interviewers to
tailor their questions to the interview context/situation and to the people
they are interviewing.

As regards the people involved in the study, we chose to select per-
sonnel working in three different companies. The companies were selected
since they were involved in research projects carried out by our group and
they performed their activities in different industrial sectors, i.e. automo-
tive and embedded systems. They had different sizes in term of number
of employees and revenues. More precisely, the study involved three sub-
units of these companies that were involved in process assessment activ-
ities. The three sub-units had different sizes in terms of their employees
number, being composed by 8, 15 and 40 employees, respectively. We
selected these sub-units since they had been involved in the assessment
of different Standards. For each sub-unit, we selected five employees that
had more than two years of experience in process assessment and that
had been involved in QBGA processes related to different Standards or
Evaluation Frameworks. The selected employees agreed to participate in
the study.

We designed and prepared an interview guide that is actually an in-
formal grouping of topics and questions that the interviewer can ask in
different ways for different participants. We organized the guide in differ-

2.2. THE ADDRESSED PROBLEM 37

ent sections. Each section contained questions about one of the aspects of
the Gap Analysis we intended to focus on that are the roles of involved
actors, the involved artifacts, the adopted tools, the performed activities,
and the emerged issues.

Then we conducted the semi-structured interviews with the selected
subjects and collected their answers. Lastly, the data collected in each
company was analyzed and coded in order to gain findings about the
gap analysis process execution. The findings were validated through data
triangulation and allowed us to answer the reported questions. The results
that emerged from this study are reported in the following subsections.

2.2.1 Roles of the Involved Actors

In the considered companies we abstracted the following roles of the
actors involved in the execution of QBGA processes:

• Questionnaire Developer that is an actor involved in the develop-
ment of the questionnaire for executing the QBGA process.

• Questionnaire Responsible that is in charge of assigning to appropri-
ate employees the responsibility to compile parts of the questionnaire
and to analyze them.

• Respondent who has the responsibility to answer subsets of the ques-
tions composing the questionnaire.

• Reviewer that is involved in the analysis and evaluation of the an-
swers provided by the Respondents.

• Internal Assessor that is in charge of assessing the gaps of the com-
pany with the considered Standard according to the answers given
by the Respondents to the questionnaire.

38 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

2.2.2 Involved Artifacts

The following artifacts are produced and/or exploited for conducting
QBGA processes:

• Standard or Evaluation Framework document that contains the Stan-
dard/Evaluation Framework the company is willing to comply with.

• Questionnaire that is an artifact containing the questions designed to
understand the gaps of the company with respect to the requirements
reported in the considered Standard.

• Employees Questionnaire Assignment Form that reports the ques-
tions assigned to each selected employee involved in the QBGA pro-
cess

• Gap Analysis Report that lists the gaps identified by executing the
QBGA process.

2.2.3 Adopted Tools

The features offered by the following tools are exploited in the consid-
ered companies for executing QBGA processes:

• Spreadsheet tool for crafting the Questionnaires, the Employee Ques-
tionnaire Assignment Forms and the Gap Analysis Reports and for
supporting their completion.

• Word Processor tool for crafting the Questionnaires and supporting
their completion.

• Version control system for managing the shared repository storing
and versioning the Questionnaire artifacts

2.2. THE ADDRESSED PROBLEM 39

2.2.4 Performed Activities

Even if in the considered companies no proper process was defined to
carry out QBGA, we were able to understand that it was usually carried
out in three sequential steps, where three activities we named Question-
naire Development, Questionnaire Completion, and Questionnaire Analy-
sis were performed.

The Questionnaire Development activity was devoted to the imple-
mentation of the questionnaires related to a considered standard. Usually,
these questionnaires were appositely crafted by companies employees who
had knowledge about the Standard.

The Questionnaire Completion activity consisted in the distribution of
the questionnaire to the employees who were in charge of providing answers
to the questions related to specific aspects reported in the Standard.

In the Questionnaire Analysis activity, further personnel analyzed the
answers provided to the questionnaires, in order to identify the existing
gaps with respect to the considered Standard.

In the following sections I report specific details about these three
activities, which emerged through the survey.

Questionnaire Development activity

This activity was usually conducted by employees who had knowledge
about the considered Standard.

We interviewed a number of employees having been assigned with the
Questionnaire Developer role in the considered companies. Questionnaire
Developers declared that they did not use any specific approach or tool
to carry out this activity, but usually they proceeded by analyzing the
parts of the Standard and developing questions, or checklists for each of
its relevant parts. The parts of the Standard to consider were defined
according to the specific goals defined by the company. Depending on the

40 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

specific Standard and its considered requirements, either multiple-choice
or essay questions were developed.

As an example, Figure 2.1a reports an excerpt of the SWE.4.BP1
requirement from the Automotive SPICE (ASPICE) Standard. It regards
the strategy applied for software unit testing. Figure 2.1b shows three
two-choice questions defined in one of the considered company to assess
how this requirement is implemented.

(a) ASPICE SWE.4.BP1 Require-
ment

(b) Questions related to the AS-
PICE SWE.4.BP1 Requirement

Figure 2.1. Excerpt of a Requirement reported in the ASPICE and its
related questions

In another company, essay questions were considered more adequate to
gain as much information as possible to assess the level of compliance of the
company with specific requirements of a Standard. Figure 2.2a shows the
9.4.5 Requirement from the Part 6 of the ISO 26262 standard related to the
coverage of requirements at software unit level. This requirement reports
the possible coverage metrics to be adopted in testing at software unit
level and the required applicability for the four safety levels, also known
as Automotive Safety Integrity Level (ASIL), specified by the Standard.
For this requirement, four essay questions were defined in a spreadsheet
document. This was needed since the company wanted to obtain more
information about the applied methods and the rationale that motivated
their choices.

2.2. THE ADDRESSED PROBLEM 41

(a) ISO 26262 9.4.5 Requirement (b) Questions related to the ISO
26262 9.4.5 Requirement

Figure 2.2. Excerpt of a Requirement reported in the ISO 26262 Standard
and its related questions

The tools used for developing the questionnaires mostly included word
processors and spreadsheets that typically do not provide any explicit
feature for traceability management. As a consequence, the interviewed
subjects of all the considered companies complained about difficulties in
tracking the parts of the standard already accounted for, as the complexity
of the questionnaire grew up. They also reported difficulties in managing
the questionnaires as their size increased.

Questionnaire Completion activity

Once the questionnaires have been produced, they were distributed to
selected employees assigned with the Respondent role. In two out of the
three considered companies we found other additional actors, the Review-
ers, involved in this activity. When all the questions had been answered,
the Reviewers analyzed and validated them. When they did not accept
a given answer, a change request was usually sent to its Respondent that
had to analyze and answer the question again.

The overall Questionnaire Completion activity was usually managed
by an employee having the Questionnaire Responsible role. Usually these

42 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

tasks were not supported by specific tools. In two of the considered com-
panies, the actors having the Responsible role sent multiple copies of the
same questionnaire by email to the respondents. The Respondents had
to (1) identify in the questionnaire they received via mail their assigned
questions, (2) answer them and (3) sent the compiled questionnaire back
to the Responsible. All the Responsibles complained about their difficul-
ties in observing the Questionnaire completion progresses, reporting that
they were constrained to contact via email the Respondents and ask them
about the status of the assigned tasks.

In another company the Responsible made available to the Respon-
dents in a shared file repository a single questionnaire. The files could
be accessed by more respondents at the same time, thus resulting in fre-
quent version conflict errors due to multiple concurrent accesses. In this
case, the Responsible compiled the Employees Questionnaire Assignment
Form, reporting which questions an employee had to answer, and made it
accessible in the same shared file repository.

All the considered companies disregarded the adoption of more effec-
tive solutions, such as web-based systems for conducting surveys, because
these tools did not adhere with the company’s confidentiality and security
policies.

Another relevant issue regarded the questionnaire review management
process that was triggered when the Reviewer did not accept the answers
given by respondents and required further modifications. Whether the
answers were not accepted, the Reviewers had to identify the involved
Respondents and to contact them by email, asking to improve the answers.
In all the companies, no specific tool was exploited to track and manage
this process.

From the analysis of the executions of this activity, we understood
that the questionnaire and its elements showed a lifecycle that was not
effectively managed during the QBGA process execution.

2.2. THE ADDRESSED PROBLEM 43

Questionnaire Analysis activity

In all the considered companies, this activity was performed by the
Internal Assessor who interpreted and analyzed the answers collected by
the compiled questionnaires in order to assess the gaps with respect to
the considered Standard. One of the problems that arose from the sur-
vey regarded the difficulty of the assessors in gathering answers that were
scattered among several copies of the questionnaire and in obtaining ag-
gregate views about the collected data. This work was even more difficult
when many versions of the same answers existed, since they had been
reviewed multiple times. Moreover, almost all the Assessor complained
about the lack of features for aggregating data related to specific parts of
the Standard they wanted to analyze.

Since all these issues, the Assessors used to perform the analysis only
when the Questionnaire Completion activity was completed. Neverthe-
less, in all the considered companies the Assessors expressed the need for
features aiding the analysis that allowed them to easily aggregate answers
related to the different parts composing the Questionnaire and that eased
the application of the rating methods they had chosen.

As another aspect, almost all the interviewed assessors requested fea-
tures for gain visibility of the questionnaire completion process to carry
out the analysis of each part of the Questionnaire as soon as possible for
detecting possible gaps and to plan appropriate improvement actions.

2.2.5 Emerged Issues

According to the data obtained through the conducted interviews, we
were able to identify the main issues affecting QBGA processes in real
industrial settings that I reported in Table 2.1.

44 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Table 2.1. QBGA Process - Emerged Issues

QBGA
Issue Description

I1
Managing the traceability between the developed Questionnaire
and the document of the Standard

I2 Observing the questionnaire completion progress
I3 Managing multiple versions of the Questionnaire
I4 Handling Questionnaire version conflict errors
I5 Defining the lifecycle of the Questionnaire elements
I6 Managing the Questionnaire review process
I7 Merging different questionnaire versions
I8 Gathering questionnaire data
I9 Aggregating questionnaire data
I10 Visualizing questionnaire data

I11
Handling the assignments and permissions of the actors on the
Questionnaire

I12 Managing the communication among the involved actors

2.3 The proposed QBGAApproach based on ALM

The industrial survey provided me the evidence that the approaches
and the tools typically adopted to implement, to compile and to analyze
the Questionnaires were considered largely unsatisfactory from the point of
view of the actors involved in the process. Tools providing ad-hoc features
for supporting the QBGA process execution were needed.

2.3.1 Adopting ALM for supporting QBGA processes

To overcome the emerged limitations, I considered the possibility of
exploiting the ALM technology. ALM is the process of managing the en-
tire lifecycle of a software product. It encompasses requirements manage-
ment, software design, programming, software testing, software mainte-

2.3. THE PROPOSED SOLUTION 45

Table 2.2. ALM Features

ALM
Feature Description

F1
Manage the lifecycle of work items and software artifacts
via customized workflows

F2
Store the artifacts in version control repositories, so
every modification produces version history record

F3
Enable real-time communication among involved actors by means of
threaded discussions, wikis, notifications, and alerts

F4
Implement and assure the traceability links among the work items
and software artifacts involved in the process

F5
Aid the collaborative work through concurrent access to all the
work items and software artifacts

F6

Manage the roles of the actors involved in the process and
their privileges and permissions on the work items and
software artifacts workflows

F7
Monitor real-time the progresses of the process
execution via customized dashboards, reports and rich views

F8
Enable comment on all work items, approve them,
and verify approvals with digital signatures

nance, change management, continuous integration, project management,
and release management. Throughout the ALM process, each of these
steps is closely monitored and controlled, followed by proper tracking and
documentation of any changes to the application.

Nowadays, several commercial and Open Source ALM systems, such
as Tuleap1, IBM Rational Team Concert2, Siemens Polarion ALM3, are
available and are effectively exploited in different industrial settings. Table
2.2 presents the main built-in features they provide.

The ALM tools are highly configurable, allowing to adapt their exposed
features to the specific context and process to support. Their built-in

1https://www.tuleap.org/
2https://www.ibm.com/software/products/ it/rtc
3https://polarion.plm.automation.siemens.com/products/polarion-alm

https://www.tuleap.org/
https://www.ibm.com/software/products/it/rtc
https://polarion.plm.automation.siemens.com/products/polarion-alm

46 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

features are usually exploited to aid the execution of software development
activities [83] and to support process improvements [84].

In this Chapter, I propose the adoption of ALM systems for support-
ing QBGA process executions, since I observed that the ALM features
reported in Table 2.2 could be exploited to overcome the QBGA process
issues listed in Table 2.1. Table 2.3 shows for each ALM feature the QBGA
process issues they allow to solve.

Table 2.3. ALM Features and the QBGA Process Issues they solve

ALM
Feature

QBGA Process
Issues

F1 I5,
F2 I3, I4, I7
F3 I12
F4 I1
F5 I7
F6 I11
F7 I2, I8, I9, I10
F8 I6

My approach for supporting QBGA processes is based on four main
steps:

1. design the QBGA process;

2. develop the ALM-based tool for supporting the QBGA process exe-
cution;

3. questionnaire completion exploiting the implemented ALM-based
tool;

4. questionnaire analysis through the features offered by the ALM-
based tool.

2.3. THE PROPOSED SOLUTION 47

The first step of the process is devoted to the design of the QBGA
process and the configuration of the ALM system in order to implement
all the features required to support its execution. Any ALM system must
be preliminary configured for introducing it in a specific context and it
need to be tailored for supporting a given process. This configuration
step aims at specifying relevant properties of the supported process, such
as the artifacts involved in the process, their structural characteristics, the
worflows, the rules and the roles of actors involved in the different workflow
activities. This information is usually provided by an ALM project. By
deploying such ALM project, it is possible to realize an ALM-based tool
supporting the specific process execution.

This configuration step requires a high manual effort to manually de-
fine, through appositely user interfaces exposed by the ALM system, all
the properties of the QBGA process for the considered Standard [85], re-
sulting in time consuming activities. In order to carry out this configura-
tion step, a deep knowledge about the configuration features implemented
by the adopted ALM system and on how to map them with the QBGA
process concepts are needed.

In order to aid this configuration step, I developed a tool, named GAD-
GET, that offers a viable and more user-friendly solution to implement
an ALM project supporting QBGA processes. The tool allows a user
to describe the subject QBGA process using just models of the process
to be implemented and of the Standard it relies on. Once the models
have been defined, they will be automatically translated into an ALM
project using transformation engines, according to the implementation
details of the target ALM technology. All this approach is coherent with
the MDE principles. MDE simplifies the development of systems by fo-
cusing on models of the problem domain rather than on implementation
details. MDE approaches are being effectively applied in different contexts
[86, 86, 87] among which software processes [88]

48 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

More in detail, MDE combines Domains-Specific Modeling Languages
with Transformation engines/generators. Within a specific domain, the
Domains-Specific Modeling Languages are used to formalize the internal
structure of the software system to be implemented and its behavior, in-
dependently from the target technologies used for developing it. On the
other hand, the Transformation engines/generators are platform depen-
dent since they are able to synthesize automatically, starting from the
analysis of models, various types of artifacts, such as source code, XML
deployment descriptors and others [89]. In a typical MDE process [90]
transformations are defined on metamodels that abstract the character-
istics of the models to be developed. The transformations are aimed at
translating models defined according to a source metamodel toward mod-
els complying with the target metamodel.

Using MDE, the GADGET tool will aid the definition of suitable mod-
els of the QBGA process from which it will automatically develop and
configure the ALM project supporting its execution.

The models will have to define all the structural and behavioral as-
pects of the process, in accordance with specific metamodels that abstract
characteristics and constraints of the application domain. The models will
be automatically translated into the ALM project supporting the process
execution, using automatic transformation rules. These rules will be also
defined starting from a metamodel that describe the characteristic aspects
of any ALM systems and taking into account the specific ALM platform
where it is intended to be deployed.

2.3.2 Configuring the ALM using the MDE approach

The MDE process I defined for the design and development of the
ALM-based tool supporting QBGA processes is described in Figure 2.3.
This Figure reports a SPEM4 diagram, representing activities, artifacts,

4http://www.omg.org/spec/SPEM/2.0/

http://www.omg.org/spec/SPEM/2.0/

2.3. THE PROPOSED SOLUTION 49

roles, and tools of a given process using specific SPEM stereotypes.
The process comprises three sequential activities, namely Modeling the

QBGA Process, Generating the QBGA ALM Model, and Implementing
the QBGA ALM project that can be executed with the support of the
GADGET tool.

Figure 2.3. The MDE process for implementing the ALM-based tool

The Modeling the QBGA Process activity is carried out by the Ques-
tionnaire Developer who is in charge to produce the QBGA Process Model
on the basis of three specific input artifacts, namely the Document of the
Standard, the Metamodel of the Standard, and the QBGA Process Meta-
model. In this step, the designer is aided by the GADGET tool that offers
a modeling environment equipped with a rich user interface that provides
features for the design of the process model.

In the Generating the QBGA ALM Model activity, the QBGA Process
Model is automatically translated into a QBGA ALM model applying a
set of Transformation Rules defined according to an ALM Metamodel.

50 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Then, the Implementing the QBGA ALM project activity produces
a QBGA ALM Project for a specific ALM technology, applying a set of
Platform-dependent Transformation Rules to the QBGA Process Model.

Both the Generating the QBGA ALM Model and Implementing the
QBGA ALM project activities are fully automated and are performed by
the GADGET tool.

By deploying the ALM project on an ALM system, I obtain an ALM-
based tool able to support the execution of the Questionnaire Completion
and Analysis activities, as it is shown in Figure 2.4.

Figure 2.4. Questionnaire Completion and Analysis activities

The proposed MDE approach relies on two different metamodels: the
former is used to characterize the QBGA Process application domain,
whereas the latter one aims to specify the characteristics of the ALM
target platform that will be used to implement the tool supporting the
QBGA process execution. Details about the proposed metamodels are
reported in the following.

2.3. THE PROPOSED SOLUTION 51

The QBGA Process Metamodel

The first metamodel abstracts the characteristics of a QBGA process.
A QBGA process metamodel should comprise the concepts related to a
given Document of the Standard that the company is willing to comply
with, the Questionnaire for understanding if the company can satisfy the
requirements the Standard and the lifecycle of the elements of the process
that defines how it is to be carried out. I report the description of these
different aspects of the QBGA process Metamodel in the following.

The Document of the Standard

The first part of the QBGA process metamodel describes the Docu-
ment of the Standard that contains all the requirements to be satisfied.
The problem of defining models for representing the content of a spe-
cific Document of a Standard is not novel. Different works described in
the literature try to identify the peculiar elements characterizing a given
Standard and describe them by exploiting models, profiles or metamodels
[91, 92].

However, differently from most of the works presented in the literature,
I aimed at defining a generic metamodel that could be able to represent
the characteristics of more than one Standard. To this aim, I considered
several Standards defined for different purposes and in different domains
and tried to abstract their common characteristics. Examples of Standards
that I considered are the ISO/IEC 61508 (Functional Safety of Electrical/-
Electronic/Programmable Electronic Safety-related Systems in a generic
domain), the ISO 26262 (Functional Safety of Electrical/Electronic/Pro-
grammable Electronic Safety-related Systems in the automotive domain),
the ISO 10303 (Product data representation and exchange for production
manufacturing processes), the ISO/IEC 15504 (Software Process Improve-
ment and Capability Determination in any domain) and the Automotive

52 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

SPICE (Software Process Improvement and Capability Determination in
the automotive domain).

The metamodel reported in Fig. 2.5 proposes a representation of a
Document of the Standard that is made of the items and relations among
these items that are relevant to carry out a QBGA Process.

According to this metamodel, the Document of the Standard is com-
posed by several StructuralElements. They represent the different parts
in which the document is organized (e.g. headers, chapters, paragraphs).

As an example, the ISO 26262 standard is structured in Parts, com-
posed by Clauses, structured in Sub-Clauses as reported in its Table of
Contents.

A StructuralElement may contain other StructuralElements. As an
example, a Document of the Standard may be composed of Sections that
may be divided into more Chapters. Moreover, a Structural Element may
reference other ones when the information it reports should be integrated
with the one contained in the referenced Structural Elements .

Each StructuralElement contains one or more Requirements requested
by the Standard. A Requirement may report, among other things, con-
straints that need to be respected or techniques that should be applied.

The Document of the Standard may define several Levels of capability
of the company to apply what requested by the Standard. These levels
influence the applicability of the Requirements reported in the Standard.
Depending on the Level, the applicability for each requirement may be
Mandatory, optional or not required at all.

To represent this aspect, I introduced the RequiredApplicability class
in Figure 2.5 having the attribute applicabilityValue.

Examples of possible RequiredApplicability values may be: (1)Manda-
tory, (2) Optional, (3) Not applicable.

2.3. THE PROPOSED SOLUTION 53

[1..*] structuralElements

[0..*] containedElements [0..*] containedRequirements[0..*] referencedElements

[0..*] levels

[0..*] applicabilities

[1..1] requirement

[1..*] requirements

Figure 2.5. QBGA Process Metamodel - Document of the Standard

The QBGA Questionnaire

The Gap Analysis process I am interested in centers on the question-
naire that will be developed, completed, and analyzed during the QBGA
process. The main aspects of the questionnaire for a QBGA process are
described by the Metamodel shown in Figure 2.6.

This metamodel defines how a Gap Analysis Questionnaire can be
structured. The main element of this Metamodel, the Questionnaire, con-
tains all the Questions defined for each identified Requirement of the Stan-
dard. The Questionnaire is defined according to the Goal the company is
willing to achieve by the execution of the QBGA process. Different ques-
tionnaires could be associated to a Document of the Standard, according
to different goals pursued by the company.

Each Question reports a textual description that is defined for under-
standing if the company complies with a given Requirement. Questions
can be either Essay or MultiChoice questions. Each Question is linked to
the Answer that is provided to it. The Answer reports the given response
and a rationale for this choice.

54 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

[1
..*] q

u
e
s
tio

n
s

[1
..1

] s
ta

n
d

a
rd

[1
..1

] g
o

a
l

[0
..1

] le
v
e
l

[0
..*] re

q
u
ire

d
A

p
p
lic

a
b
ilitie

s

[1
..1

] re
q

u
ire

m
e
n

t

[1
..*] re

q
u

ire
m

e
n

ts

[0
..*] a

s
s
ig

n
e
d
Q

u
e
s
tio

n
s

[1
..1

] c
a
p

a
b

ility

[0
..*] q

u
e
s
tio

n
s

[0
..*] le

v
e
ls

[1
..*] s

tru
c
tu

ra
lE

le
m

e
n

ts

[1
..1

] c
lo

s
e

d
A

n
s
w

e
rs

[1
..1

] o
p

e
n

A
n

s
w

e
r

[1
..*] a

s
s
ig

n
e

d
R

o
le

s

[1
..*] e

m
p

lo
y
e
e
s

[0
..1

] ra
tin

g
M

e
th

o
d[1

..*] re
p

o
rts

[1
..1

] s
ta

n
d

a
rd

C
o

m
p

lia
n

c
e

[0
..1

] id
e
n
tifie

d
G

a
p

[0
..*] A

c
tio

n
s

[0
..*] c

o
n
ta

in
e
d
R

e
q
u
ire

m
e
n
ts

[0
..*] re

fe
re

n
c
e
d
R

e
q
u
ire

m
e
n
ts

[0
..*] c

o
n
ta

in
e
d
E

le
m

e
n
ts

[0
..*] re

fe
re

n
c
e
d
E

le
m

e
n
ts

[1
..1

] ra
tin

g
M

e
th

o
d

[1
..1

] e
le

m
e
n

tC
o

m
p

lia
n

c
e

[0
..*] e

v
id

e
n
c
e
s

[1
..*] ra

tin
g

s

F
igure

2.6.
Q
B
G
A

Process
M
etam

odel-Q
uestionnaire

2.3. THE PROPOSED SOLUTION 55

Depending on the type of Question, Essay or MultiChoice, the answer
either may be a statement, or it may assume one of its multiple predefined
values, respectively.

Possible predefined values of answers may be: Yes, Partially, No or Not
Applicable representing the cases in which the company is able to fully, par-
tially, does not achieve, or it is not possible to apply what requested by the
question, respectively. The possible AnswerValues usable for answering
a MultiChoice Question may be defined according well-known appraisal
methods (e.g. Standard CMMI Appraisal Method for Process Improve-
ment (SCAMPI)), such as Yes, No, Not Applicable, Not Answered.

Each answer may be characterized by a rationale that is used to explain
the reasons behind the given answer.

The rationale of an answer is relevant especially in case of Standards
for which the compliance can be met even if one of its requirements is not
satisfied, but a valid rationale is given for that choice.

The Questionnaire is carried out by different Employees. Each Em-
ployee may have different Roles in the execution of the questionnaire, such
as Respondent, Internal Assessor, and so on. Each Question is assigned
to an Employee that has the responsibility to answer it.

As another aspect, an Answer may be linked to different Evidences.
An Evidence represents the proof demonstrating the fulfillment of a given
requirement. Depending on the specific Standard, the evidences may be
either statements provided by an actor involved in a specific process, or the
produced artifacts. As an example, to demonstrate that the Unit Testing
activity is carried out in the company, reports produced as output of this
activity may be attached as Evidence.

The metamodel introduces also the elements that are needed to eval-
uate the gaps, at different degrees of detail, on the basis of the provided
answers. The Rating represent an evaluation of the compliance. It is char-
acterized by a complianceValue, that reports the defined value of compli-

56 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

ance and a rationale attribute. This class has different specialization. To
evaluate if and to what degree the company is able to comply with each
Requirement, the Rating is specialized by the Capability that is associated
to a Requirement.

To understand if and to what degree the company is able to comply
with all the Requirements belonging to a given StructuralElement, the
Rating is extended by the ElementCompliance. It is associated to a Struc-
turalElement and it presents the complianceValue attribute reporting the
compliance level for the associated StructuralElement.

Similarly, the Rating is also specialized by the StandardCompliance,
having the complianceValue to indicate the level of compliance of the com-
pany with respect to all the considered parts of the Standard.

The values for the capability of Each Requirement, each StructuralEle-
ment and of the Document of the Standard are defined according to the
RatingMethod defined for the Questionnaire.

For each Questionnaire it is possible to apply a specific RatingMethod
that could be of two different types, namely ExpertBased and Formula-
Based. It the first case, the evaluation is carried out by an expert. For
the FormulaBased, the evaluation is automatically performed by applying
the defined formulas.

When the analysis of the Gap Analysis Questionnaire will be accom-
plished, the results of this analysis will be summarized in different defined
Reports. A Report contains information about the values of compliance
reached for the considered Requirements of the Standard and the eventu-
ally identified gaps.

In addition, if a Gap related to a Requirement of the Standard is iden-
tified, the company may define Improvement Actions in order to reduce it
and to reach its defined goal.

2.3. THE PROPOSED SOLUTION 57

The QBGA process elements lifecycle

The proposed metamodel explicitly represents even the Dynamic as-
pects of the process that are necessary to rule the activity of Questionnaire
completion. For readability, these aspects are reported in the diagram of
Figure 2.7.

In order to specify how the QBGA process should be carried out, it is
needed to define the lifecycle for the Question and Rating elements.

To this reason, each one of these elements has its own Lifecycle that is
described by the States that the element can assume and all the possible
Transitions among them. A transition is characterized by its starting
and ending states. Each transition can be triggered only by actors having
specific Role. Moreover, a transition can be triggered only if peculiar Rules
are met. As an example, a Rule for the workflow of a Question may state
that is not possible to trigger a transition from a InProgress state to the
Done State if the value for its related Answer has not been set.

[1..1] lifecycle

[1..1] lifecycle

[1..*] transitions

[1..*] roles

[0..*] rules

[1..1] startingState [1..1] endingState

Figure 2.7. QBGA Process Metamodel - Process elements lifecycle

Possible roles that may be involved in the execution of a QBGA process

58 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Table 2.4. Example of Question Lifecycle - States Transitions Table

State Initial In Progress Done Reviewed
Initial startProgress

In Progress markDone
Done markUnreviewed markReviewed

Reviewed reOpen

Table 2.5. Example of Roles Transitions Table

Role Transition

Assignee startProgress
markDone

Reviewer markReviewed
markUnreviewed

are: (1) the Respondent, representing an employee to whom a question has
been assigned. The Respondent, on the basis of his knowledge and expe-
rience, is the only one having the rights to answer the questions assigned
to him and to provide the related rationale; (2) the Reviewer representing
a user having the rights to review the answered questions and to evaluate
the element assigned to him; (3) the Administrator who has the right to
assign the roles to the users and to assign the questions to the assignees
and the evaluation of the elements to the reviewers.

An example of a Question lifecycle is reported by the states-transitions
matrix reported in Table 2.4 and by the UML State Machine diagram in
Figure 2.8.

The Table 2.5 reports an example of how the roles involved in the
QBGA process may handle the lifecycle of a Question.

2.3. THE PROPOSED SOLUTION 59

InProgress Done

Reviewed

reOpen

markUnreviewed

markReviewed

markDone

startProgress

Figure 2.8. Question Lifecycle - Statechart Diagram

The Metamodel of the ALM platform

The other metamodel need by my approach describes the character-
istics of ALM systems that I chose as target technology to support the
execution of QBGA processes. A first attempt to model all the concepts
related to ALM systems was carried out by Picha et al. in [93]. In this
work, an ALM metamodel was defined in order to collect data for iden-
tifying project management anti-patterns. I adapted and extended the
proposed metamodel taking into account the ALM features I exploit in
the QBGA process execution. The ALM metamodel I introduced is re-
ported in Figure 2.9.

An ALM is structured in Projects, that may be organized in differ-
ent ProjectSegments, representing specific activities of the project. A pe-
culiar element managed by the ALM process is the WorkItem. It may
be specialized in WorkUnit, representing a task to carry out during the
project, or in Artifact produced or needed to carry out a task. Each Pro-
jectSegment may be structured in different WorkUnits, that may require
different WorkItems. A WorkItem may have CustomFields, that repre-
sent its peculiar properties, such as a filename for an Artifact. Moreover,
each WorkItem has a Workflow, representing its lifecycle. The Work-

60 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

[1..*] identity

[0..*] projectSegments

[0..*] workUnits

[0..*] workUnits

[0..*] relatedWorkUnits

[0..*] workItems

[0..*] competencies

[0..*] identities

[1..*] roles

[0..*] customFields [1..1] workflow

[1..*] transitions

[1..1] startingState

[1..*] reportedWorkItems

[0..*] transitions

[1..*] roles

[1..*] startingMemberEnd

[1..*] endingMemberEnd

[1..1] endingState

Figure 2.9. ALM Metamodel

flow is characterized by possible Transitions among its possible States.
WorkItems may be related to each other through a LinkRole, that may be
used for traceability purposes or to represent logical connections among
WorkItems. A LinkRole represents a unidirectional relationship between
a startingMemberEnd and an endingMemberEnd WorkItem.

An ALM may involve different Actors, each having its own Compe-
tencies. A competence represents expertise, certifications and skills of a
person. An Actor may have different Identities on the system, represent-
ing its different account on the ALM system. An actor may have a specific
Identity for each of the specific tools composing the ALM. The ALM al-
lows to define Groups for aggregating different Identities. Moreover, an
Identity may have several Roles. Each Role may have specific permissions
for triggering Transitions on WorkItems Workflow.

2.3. THE PROPOSED SOLUTION 61

2.3.3 The GADGET Tool

In order to support the QBGA process design and implementation,
GADGET was designed to provide two different types of features: model-
ing features for supporting the definition of the QBGA process and trans-
formation features to automatically produce the ALM-based tool for the
QBGA process execution. GADGET was developed as a graphical model-
ing workbench exploiting the features offered by Sirius. Sirius is an Eclipse
project which allows to easily create graphical modeling workbench by
leveraging the Eclipse Modeling technologies5.

More in detail, regarding the modeling support, GADGET provides
an editor and a graphic palette that can be exploited to define models of
QBGA Processes. It guides the design of these models by checking if these
models are compliant with the defined metamodels at editing time. As an
example, during the modeling phase, an error is highlighted if one of the
defined Requirement is not linked to a Structural Element.

Figure 2.10 shows the modeling user interface provided by GADGET.
It allows to design the model by exploiting the elements reported in the
Palette in the right side, to populate the diagram. It is possible to define
the attributes values of each selected element of the model, by means of
the properties box located in the bottom. Moreover, it exposes a Tree
View of the defined questionnaire in the box located in the left side of the
window.

It also provides specific views for the visualization of the QBGA pro-
cess dynamic aspects. As an example, in Figure 2.11 I reported the Ta-
ble Views exposed by GADGET in order to visualize the QBGA Process
Dynamic aspects. Fig. 2.11a shows the Transitions-States Table View
provided by GADGET. It reports the starting and ending States of the
transitions composing the defined Question Lifecycle. As shown in Fig.

5http://www.eclipse.org/sirius/overview.html

http://www.eclipse.org/sirius/overview.html

62 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Figure 2.10. GADGET - User Interface for QBGA Process Modeling

2.11b, GADGET reports for each defined transition the roles involved in
its execution through the Roles-Transitions Cross Table View .

(a) GADGET - Transitions - States Ta-
ble View

(b) GADGET - Roles-Transitions Cross
Table View

Figure 2.11. GADGET - Table Views

GADGET support the fully automatic execution of the transformation
process reported in Figure 2.12. This process can be easily triggered by
the Questionnaire Developer through the Rich IDE offered by the tool.

The process relies on the execution of two consecutive transformation
steps. The former step implements the Generating the QBGA ALM Model
activity. It performs a model-to-model transformation that translates the
QBGA Process model toward a generic QBGA ALM Project Model. The

2.3. THE PROPOSED SOLUTION 63

latter one is related to the Implementing the QBGA ALM Project activ-
ity. It is actually a model-to-text transformation aimed at translating the
QBGA ALM Project Model into a QBGA ALM Project instance that is
specific for a given ALM system, i.e., Siemens Polarion ALM, IBM Ratio-
nal Team Concert, Microsoft Team Foundation6.

Figure 2.12. Proposed Transformation Process

In order to define the model-to-model transformation rules for produc-
ing an instance of a QBGA ALM Project Model starting from a QBGA
Process Model instance I had to map each element of the QBGA Process
metamodel with its corresponding one in the ALM metamodel. Table 2.6
reports the mapping I proposed.

As an example, the Structural Elements and Requirements defined in
the modeling phase are mapped in apposite WorkItems in the QBGA ALM
Project Model. Moreover, the Relationship identified among elements are
translated to specific Link Roles. The Lifecycle is translated into the
Workflow of the mapped WorkItem. The defined Employees are mapped
to Persons and their Identities in the ALM Project Model. In the ALM
Project Model the Roles are specified according to the corresponding ones
defined for the QBGA Process Model.

Furthermore, in order to specify the model-to-text transformation rules
I had to map the elements of the ALM Metamodel with the corresponding
ones that are specific of the ALM system adopted in the company. As

6https://www.visualstudio.com/tfs/

64 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Table 2.6. Mapping between QBGA Process Metamodel and ALM Meta-
model

QBGA
Process Metamodel

ALM
Metamodel

Questionnaire Project
Goal Custom Field

Structural Element WorkItem
Requirement WorkItem
Relationship LinkRole
Question WorkItem
Answer Custom Field
Evidence WorkItem

ImprovementAction WorkItem
RequiredApplicability Custom Field

Level Enumeration
Employee Person

Role Role
Lifecycle Workflow
State State

Transition Transition
Report Report

2.3. THE PROPOSED SOLUTION 65

an example, I defined specific rules that take into account the specific
implementation details of one ALM system, i.e. Polarion ALM.

In order to implement the needed transformation rules, different stan-
dard transformation languages are already available, such as eXtensible
Stylesheet Language Transformations (XSLT), Query View Transforma-
tion (QVT), ATLAS Transformation Language (ATL), and Acceleo. I
decided to adopt ATL7 as language to define the needed model-to-model
transformation rules and Acceleo8 for supporting the model-to-text trans-
formation.

ATL is used in a transformational pattern to transform a source model
Ma into a target model Mb. The source and target models and the ATL
transformation definition conform to their metamodels MMa, MMb, and
ATL respectively [94]. These metamodels need to conform with the Meta
Object Facilities (MOF) core specification9 defined by the Object Man-
agement Group (OMG).

An example of the ATL transformation rules I defined is reported in
Listing 2.1. This rule is applied to transform a StructuralElement of a
QBGA Process Model to a WorkItem of a QBGA ALM Project Model.

I defined in Acceleo the platform-dependent transformation rules. Ac-
celeo is both a model-to-text transformation language and a tool; its main
purpose is to implement code generators. It is an implementation of the
MOF Model-to-Text Language (MTL) standard [95]. It provides a flexible
and simple environment to design and develop a variety of code genera-
tors, using simple and standard templates. An Acceleo program requires
a metamodel and a model compliant with that metamodel, from which
it generates text or source code according to a specified template. An
example of the defined Acceleo transformation rules is reported in Listing
2.1. This rule is applied to transform the Workflow of a WorkItem into

7http://www.eclipse.org/atl/
8http://www.eclipse.org/acceleo/
9http://www.omg.org/spec/MOF/2.4.2/

http://www.eclipse.org/atl/
http://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOF/2.4.2/

66 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

Listing 2.1. Sample ATL Transformation rule
-- Transforms a StructuralElement into an Work Item
rule StructuralElem2WorkItem{

from
s : Quest ionna i re ! Structura lElement

to
w : ALM!WorkItem(

type <− s . type ,
name <− s . name ,
d e s c r i p t i o n <− s . g e tDe s c r i p t i on ()

)
}

a Polarion ALM XML file. The generated XML file reports the transi-
tions related to a WorkItem specifying for each one of them its composing
States and the Roles that can trigger it.

2.4 Evaluation of the Proposed Solution: a Case
Study in the Automotive Domain

I conducted in collaboration with members of my research group a
validation experiment to evaluate the feasibility of the proposed approach
in real industrial settings. More in detail, we designed and performed an
industrial case study in the automotive domain according to the guidelines
proposed by Runeson et al. [96] for comprehending two different aspects.
The first one was the impact of the GADGET tool on the QBGA Pro-
cess Development activity. The second aspect was the impact of using
an ALM-based tool in executing QBGA Processes for carrying out the
Questionnaire Completion and Analysis activities. The study was aimed
at answering the following research questions:

2.4. EVALUATION 67

Listing 2.2. Sample Acceleo Transformation rule
[comment encoding = UTF -8 /]
[module generateALMProject (’http :// it.unina.

gapanalysisquestionnaire ’)]
[template public generateWorkflowXML (workItem :

WorkItem)]
[comment @main /]
[file (’workflow .xml ’, false , ’UTF -8’)]
<?xml version ="1.0" encoding ="UTF -8" standalone ="

no"?>
<workflow initial - action =" init" initial - status ="

planned " prototype =" WorkItem ">
<transitions >

[for (t : Transition | workItem . lifecycle)
]

<transition action =[t.name /] from
=[t. startingState /] to=[t.
endingState /]/>

[/ for]
</ transitions >
<actions >
[for (t : Transition | workItem . lifecycle)

]
<action id=[t.name /] />
<roles >
[for (r : Role | t.roles)]

<role name =[r.name /]/>
[/ for]
</roles >

[/ for]
</actions >

[/ file]
[/ template]

68 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

RQ1 How does the GADGET tool support the design and development
of ALM-based tools for aiding the QBGA Processes?

RQ2 How does ALM-based tools affect the QBGA Processes execution?

2.4.1 Objects of the Study

The Objects of the study were two QBGA Processes for assessing the
capabilities of two different divisions of FCA Europe, Middle East, and
Africa (EMEA) Region department to comply with the ISO 26262 Stan-
dard. The two QBGA processes were selected from the ones of interest
for the company at the time of the study. The first QBGA process, P1,
was planned for assessing the gaps of the software process implemented
by the D1 division with respect to the part 6 of the Standard, whereas,
the P2 QBGA process had the goal of assessing the capabilities of the D2
division to adhere with the part 9 of the same Standard.

The ISO 26262 Standard, entitled Road vehicles - Functional safety is a
functional safety standard an it is an adaptation of the IEC 61508 (Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems) Standard in the context of road vehicles. The functional
safety is defined by the standard itself as the absence of unreasonable risk
due to hazards caused by malfunctioning behavior of E/E systems. In order
to guarantee the functional safety, the ISO 26262 imposes the V-model as
a reference process model for the different phases of the product develop-
ment. Moreover, the standard defines four Levels to specify requirements
and safety measures, defined as ASIL. The ISO 26262 defines requirements
to be applied according to the Level of the ASIL of the product being de-
veloped. The Part 6 of the Standard focuses on the product development
at software level. The Part 9 of the Standard specifies the requirements
for Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses.

2.4. EVALUATION 69

2.4.2 Subjects of the Study

The Subjects of the study were FCA employees who were asked and
accepted to perform the QBGA processes exploiting our approach.

To evaluate the impact of the GADGET tool, we selected two differ-
ent employees, QD1 and QD2, who were in charge of developing the Gap
Analysis questionnaires in past QBGA processes carried out by the com-
pany. The selected employees had on average 5 years of experience on
Gap Analysis and had been involved in 4 different QBGA processes, on
average.

In addition, we recruited other ten employees, five in each selected
division, to carry out the QBGA process. These subjects had different
levels of expertise, had been involved in at least one past QBGA process
and had knowledge about the software processes applied by the division
they were employed in. All the subjects were familiar with ALM systems,
since they adopt it in their usual industrial practice. Box-plots diagrams
representing the level of expertise and the number of QBGA processes
performed by the selected employees of the D1 division, S_D1, and D2
division, S_D2, are reported in Figure 2.13b.

2.4.3 Case Study Design

We decided to perform the case study through a qualitative evaluation
exploiting semi-structured interviews with the involved study subjects. We
decided to employ a qualitative analysis since using qualitative methods
increases the amount of information contained in the data collected and
its diversity allowing to increase the confidence in the results through
triangulation, multiple analyses, and greater interpretive ability [18].

To carry out the evaluations, we designed two interview guides for
answering the proposed RQs.

The first interview guide, structured in three different parts, was crafted

70 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

(a) Years of Expertise (b) Number of Projects

Figure 2.13. Involved Subjects Details

for the two subjects having assigned the Questionnaire Developer role and
it was designed for answering the RQ1. The guide parts aimed at evalu-
ating the following aspects:

P1.1 how the subjects adopted the features provided by GADGET tool
for accomplishing their assigned tasks,

P1.2 how the tool supported the Questionnaire Development task execu-
tion,

P1.3 the main limitations of the tool.

In order to address RQ2, a further interview guide was designed for
the remaining ten involved subjects. The parts of this guide were aimed
at understanding:

P2.1 how the subjects exploited the ALM-based tool during the QBGA
process execution,

P2.2 how the tool features supported the subjects in their tasks execution,

2.4. EVALUATION 71

P2.3 how the adoption of the tool impacted on the quality of the QBGA
process,

P2.4 the main limitations of the tool.

To understand how the adoption of the ALM-based tool impacted
the quality of the QBGA process we considered the three quality pro-
cess attributes of visibility, acceptability and supportability. According
to Sommerville [97], the visibility of a process represents to what extent
the process activities culminate in clear results, so that the progress of
the process is externally visible. The acceptability of QBGA Processes
represents if they are acceptable to and usable by the subjects involved
in their execution whereas the process supportability describe to what ex-
tent software tools are available to be adopted for supporting the process
execution. To understand how the introduction of the ALM-based tool
influenced the process visibility, we queried the involved subjects which
process aspects they were interested in monitoring and if they were able
to obtain this information. To assess how our approach had impact on
the process acceptability, another part of the interview guide was aimed
at understanding which process factors influenced the process usability
from the involved subjects point of view, and whether these factors were
exposed by the proposed ALM-based tool. Regarding the supportability of
the QBGA process, specific questions were designed to understand what
kind of features the different involved subjects required and if they were
provided by the ALM-based tool.

2.4.4 Case Study Procedure

The Procedure we followed to conduct the case study consisted of seven
sequential steps.

At first, we performed a two phases Training Step to explain our pro-
posed approach to the subjects. The first phase was devoted to the Ques-

72 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

tionnaire Developers that were trained on the use of the GADGET tool. In
the second phase the remaining subjects were introduced in the use of the
ALM-based tool for accomplishing the tasks related to the Questionnaire
Completion and Analysis activities. Both the training phases were carried
out by one the researchers involved in the development of the approach
and each one lasted 8 hours. The researcher explained with detailed ex-
amples the different features offered by the GADGET and ALM-based
tools.

In the Questionnaire Development Step, we assigned the QD1 and
QD2 subjects with the task of developing the P1 and P2 questionnaires,
respectively. The two subjects carried out the assigned task exploiting the
GADGET tool. At the end of their tasks, they developed and deployed
the ALM-based tools configured for supporting the execution of the P1
and P2 processes.

In the Questionnaire Completion and Analysis Step, the other subjects
carried out the gap analysis tasks assigned them exploiting the produced
ALM-based tools. More in detail, the subjects belonging to the D1 divi-
sion carried out the P1 process whereas the others the P2 one.

In the Data Collection Step a researcher conducted the interviews with
all the study subjects exploiting the designed interview guides.

Then, a Data Analysis and Interpretation Step was performed. The
answers collected through the interviews were independently analyzed and
interpreted by two different researchers in order to assess how the proposed
approach had impact on QBGA process executions. In this step, they
coded the interviews in order to gain the relevant information and analyzed
them.

The analyzed data was submitted to a Data Validation Step. In the
first phase of this Validation step, the interviews results obtained by each
researcher were submitted to the interviewed subjects in order to find
possible misinterpretations and solve them. In a second phase, a data

2.4. EVALUATION 73

triangulation was carried out to compare and validate the results achieved
by the two researchers. The validated results were used to gain findings
about the performed processes and to answer the RQs.

2.4.5 Case Study Findings

In this section, I report the finding of the study, focusing on the as-
pects of interest about the Questionnaire development and Questionnaire
Completion and Analysis activities.

Questionnaire Development

As regards to the Questionnaire Development activity, the involved
QD1 and QD2 subjects were able to model the QDBA process related to
the Part 6 and Part 9 of the ISO 26262 standard exploiting the features
offered by the GADGET tool.

GADGET tool adoption. On the basis of the answers given to the part
P1.1 of the interview, we were able to understand that the involved subjects
successfully adopted the graphic editor offered by GADGET for modeling
the considered part of the Standard and the related QBGA process. As
an example, Figure 2.14a reports an excerpt of the Structural Elements
and the Requirements of the ISO 26262-6 Standard modeled by the QD1
subject. Figure 2.14b also shows three questions assigned to the 5.4.7
Requirement. As another aspect, both the subjects were able to define
the lifecycle of the questionnaire elements, specifying the roles and the
rules for carrying out the completion and analysis activities.

Using the transformation features offered by GADGET they were able
to produce the ALM-based tool. They manually deployed it on the target
ALM system.

Support provided by GADGET. Thanks to the answers given to the
Part P1.2 we understood that both the subjects considered the GADGET

74 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

features useful and usable. More in detail,they appreciated the visual-
ization features offered by the tool that simplified the execution of the
questionnaire development task. The QD2 subject extensively exploited
the Tree view offered by the tool that gave him a clear vision of the defined
questionnaire during its modeling. According to this point, he reported
that "... even if the gap analysis for the ISO 26262 required the definition
of a lot of questions, I had always a clearer vision of the entire question-
naire that I was developing ... ". Moreover, the subjects reported that
thanks to the consistency checks automatically enforced by GADGET,
they were able to identify errors in the model being developed and to cor-
rect them. As an example, the QD1 subject stated that during the task
execution he was able to identify some Requirements that were incorrectly
not linked to any Structural Element, and Requirements having no linked
Questions. The possibility to define through GADGET the lifecycle of
the involved elements was considered by both the subjects as crucial for
the QBGA process development. They reported that they had no means
to define them in past projects due to inadequate tool support. Both
the subjects considered straightforward to define these aspects exploiting
the contextual menus offered by the GADGET graphical editor. Finally,
they appreciated the capability of the GADGET tool of automatically
translating the model into the ALM-based tool, avoiding them tedious
implementation tasks.

GADGET tool limitations. According to the answers given to P1.3,
both the subjects reported the lack of tool features for optimizing the
model visualization as its size grows. According to the QD2 subject, fea-
tures for grouping and ungrouping the elements of the QBGA process
would have made the model more readable, easing its navigation. One
of the subject suggested to add a feature for automatically deploying the
produced ALM-based tool on a target ALM system, avoiding the man-
ual download and installation of the produced tool on the selected ALM

2.4. EVALUATION 75

(a) ISO 26262 - Excerpt Part 6 Sub-
Clause 5.4

(b) ISO 26262 Questionnaire - Ex-
cerpt Requirement 5.4.7

Figure 2.14. Excerpt ISO 26262 QBGA Process Model

system.

Questionnaire Completion and Analysis

Regarding the Questionnaire Completion and Analysis activities, we
were able to understand the impacts of the ALM-based tool on their execu-
tion, on the considered process attributes, as well as its main limitations.

ALM-based tool adoption. The answers to the part P2.1 of the interview
allowed us to understand that the subjects involved in the Questionnaire
completion and analysis activities were assigned with specific roles, ac-
cording to the ones defined in the QBGA process models. Overall, for
both the processes, one Responsible, three Respondents and one Internal
Assessor roles were assigned to different subjects. To carry out their tasks
they exploited the ALM-based tool features exposed to their roles.

Support provided by the ALM-based tool. According to the answers
given to the part P2.2 of the interview, all the subjects were able to suc-
cessfully carry out their tasks exploiting the features offered by the ALM-

76 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

based tool. For nine out of ten subjects the tool simplified their work. The
Responsible subjects were able to assign the defined roles to the involved
subjects and were able to monitor the progress of the process execution
through the ALM features. The Respondents appreciated the possibility
to easily take track of their assigned questions and the ones for accessing
the information related to questions they were analyzing. The Internal
Assessor exploited the gathering and report features offered by the tool
for carrying out their assigned tasks. One of the Internal Assessor reported
that the tool eased its work thanks to the aggregated views it provided
that gave him focused views on the elements he was assessing.

Impact on QBGA process attributes. The answers to the part P2.3 of
the interview gave us the evidence to state that the introduction in the
QBGA process of the ALM-based tool, positively affected the considered
process attributes. As for the process visibility, different roles were inter-
ested in different aspects of the QBGA process. The Responsible wanted
to evaluate the overall progress of the questionnaire completion. More
in detail, he had to track the progresses in the questions answering and
rating. Almost all the respondents were mainly interested in understand-
ing the advancement of their own assigned questions. As for the internal
assessors, their main focus was the progress of the questions related to the
elements they had to assess as well as their own assigned rating elements.
All the involved subjects, regardless of their role, reported that the infor-
mation they needed was always accessible through the ALM-based tool.
One of the subjects stated that " ... it was easy for me to have a clear idea
of the part of the process I was interested about. With a simple click I was
able to see how many of the questions assigned to me were In Progress,
Done. In this way, I could always be aware of how many and what other
questions had yet to be answered and I could better organize my work ...".

With respect to the process acceptability, the different roles involved in
the process reported similar usability requirements. Specifically, almost all

2.4. EVALUATION 77

the subjects claimed the necessity of an integrated working environment
where they could directly access to the parts of the questionnaire they
were involved in. At the same time, they expected features for directly
referring the documentation of the considered Standard.

Moreover, the capability for interacting with the other actors involved
in the process was another factor affecting the process acceptability for
seven out of ten subjects; on the other hand, the need to switch between
different artifacts limited the acceptability of the process for nine out
of ten subjects . According to the provided answers, we were able to
understand that the usability of the process was positively affected by
the introduction of the ALM-based tool that provided for nine out of
ten subjects an adequate support. According to their impressions, they
could easily carry out all their assigned tasks through a unique tool where
they find all the information needed to answer the questions or conduct
the analysis of the gaps. Moreover, the tool enabled and simplified the
collaboration among the involved actors. Only one of the actors considered
that the acceptability of the process was not influenced by the adoption of
the ALM-based tool, since he already considered the usual QBGA process
acceptable.

Considering the process supportability, according to the interviews an-
swers, all the involved subjects considered that had appropriate tool sup-
port for performing each of the activities of the QBGA process they were
involved in. As for the Responsible, the ALM-based tool provided specific
features for giving roles to the selected subjects and assign them questions
answering or rating activities. From the point of view of the Respondents,
the tool offered specific views aggregating the question assigned to each
subject and facilities for answering the questions. As an example, Figure
2.15 shows an excerpt of the questionnaire exposed by the ALM-based
tool. Its central frame lists all the questions. By selecting one of the
questions, the assigned Respondent was able to answer it or triggering

78 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

one of its lifecycle transition through the panel located on the upper right
side. Moreover, through traceability features, accessible through the bot-
tom right panel, the Respondents were able to easily access the question
referenced parts of the Standard.

Figure 2.15. ISO 26262-6 QBGA Polarion ALM Project

All the subjects assigned with the Internal Assessor role were able to
evaluate the gaps through the gathering and visualization features offered
by the ALM-based tool. The Report Views exposed by the ALM-based
tool was used to obtain the aggregated data they needed to carry out
their tasks, simplifying their activities. Example of a Report View they
exploited is reported in Figure 2.16. It aggregates the Question Answers
and the Compliance rating of the Structural Elements of the Standard.

ALM-based tool limitations Some limitation about the ALM-based tool
adoption emerged. from the answers of the interview P2.4 part. One of
the involved subjects having assigned the Respondent role reported that
even if the tool provided valuable features, it required numerous more in-
teractions. He was more accustomed to the use of spreadsheet systems for

2.4. EVALUATION 79

Figure 2.16. Evaluation Summary Report Page

carrying out his task and found the new features offered by the ALM-based
tool not so easy to be adopted. As another factor, he would have appre-
ciated a documentation of the ALM-based tool for better understanding
the QBGA process workflow and what elements and features he needed
to exploit.

2.4.6 Case Study Results

In the following I report the answers to the defined RQs according to
the reported findings.

RQ1: How does the GADGET tool support the design and de-
velopment of ALM-based tools for aiding QBGA Processes?

By analyzing the answers given by the Questionnaire Developers we
were able to gain evidences about the support given by the GADGET Tool
for the Questionnaire Development phase. The results showed that the
GADGET tool well supported the Questionnaire Developers in performing
their design and development tasks. The adoption of the tool simplified

80 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

the execution of the design tasks through the modeling and visualization
features. Moreover, its adoption allowed a more accurate design of the
QBGA process, allowing to easily define the lifecycle of its composing
elements. As another aspect, the tool eased the implementation of the
ALM-based tool for supporting the QBGA process execution, avoiding
the Questionnaire Developers to focus on implementation details.

RQ2: How does ALM-based tools affect the QBGA Processes
execution?

Thanks to the reported findings we were able to state that the in-
troduction of the ALM-based tool positively affected the QBGA process
execution. In particular, the features offered by the ALM-based tool eased
the execution of the tasks of the subjects involved in the process with dif-
ferent roles. Moreover, the adoption of the ALM-based tool made the
QBGA process visible for all the subjects regardless of their role. As
another aspect, the tool met the usability requirement of almost all the
subjects, which made the process more acceptable for them. According
to the judgments of the involved subjects, all the tasks foreseen by the
QBGA process were well supported by the produced ALM-based tool.

2.4.7 Threats to Validity

Internal Validity

This aspect of validity needs to be evaluated when causal relationships
are examined. It defines how sure I can be that the treatment actually
caused the outcome. In our case, also the subjects experience could be
another factor influencing the outcomes of the study. To mitigate this
threat, we selected, according to their availability, subjects with different
levels of expertise and that have been involved in a different number of
QBGA processes in the past. To further mitigate this threat, I plan to ex-

2.5. RELATED WORK 81

ecute a wider experimentation involving a large sample of subjects having
different levels of expertise on QBGA processes.

External Validity

External validity is related to what extent it is possible to generalize
the findings and if these are of interest to people outside the reported case.
A possible threat may be related to the application of the approach in a
specific industrial domain and for a specific standard. In order to mini-
mize this threat, a more extensive experimentation in different industrial
executing several QBGA processes with respect to different standards will
be performed.

Reliability

The reliability is concerned with to what extent the data and analysis
are dependent on the specific researchers having carried out the study.
Hypothetically, if another researcher later on conducts the same study,
the result should be the same. In order to mitigate this threat, we defined
and conducted a data validation steps aimed at avoiding possible misin-
terpretations. Moreover, we reported in this Chapter the experimental
procedure we followed for allowing replications of the case study.

2.5 Related Work

The use of Gap Analysis, as a technique to identify discrepancies with
respect to the achieving of an objective, can be tracked back in 1980s
when Parasuraman et al. [70] developed a service quality model based on
analysis of the gap between customers’ expectations and their perceptions
of the service. Since then, the use of gap analysis spread in many different
domains, especially business process management [98] and supply chain

82 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

management [99].
Gap analysis has been used in several other contexts. In Service Ori-

ented Architectures gap analysis has been exploited to determine how
available software services can be traced to new business models that best
meet organization goals [100, 101]. Moreover, it has been adopted in
frameworks for the evolution, modernization and management of legacy
software systems [102, 103].

Also in security domain, gap analysis techniques and methods are pro-
posed to evaluate the compliance of companies with information security
standards. In [104], a gap analysis methodology was proposed with the
aim of evaluating the compliance with the ISO 17799 Standard. This
methodology relied on the use of surveys. In this work, a case study in
a governmental organization that showed the accuracy and efficiency of
the proposed methodology was also presented. Another approach based
on gap analysis was proposed for assessing the compliance of information
systems in the context of SMEs with respect to the ISO 27001 standard
[105]. Their proposed approach was supported by an appositely developed
tool. An experimentation was conducted in different SMEs to show that
the tool helped in reducing the time needed to perform the gap analysis.
Moreover, Al-Mayahi and Monsoor reported in [80] results of four case
studies related to the execution of gap analysis performed to determine
the compliance of different organizations within the UAE e-goverment with
the requirements of the ISO 27001 Standard. Unlike ours that is intended
to be applicable to any Standard, all these approaches are strictly tied to
a specific Standard.

In the context of Knowledge Management, gap analysis is used as a
tool to evaluate enterprise knowledge management performance [106].

In the context of Software Processes, Gap analysis is used as a tool for
supporting organizations in assessing their processes, in seeking process
improvement or in planning compliance with a certain Standard [75].

2.5. RELATED WORK 83

Amaral et al. proposed a gap analysis methodology for assessing an
organization against the practices requested by the Team Software Pro-
cess (TSP) that was applied in one Portuguese organization [107]. This
methodology was specific for the TSP process and was based on elements
of the SCAMPI and ISO/IEC 15504 assessment methodologies. Cecca-
relli and Silva proposed in [69] a framework for gap analysis to measure
the compliance of company’s practices, knowledge and skills against the
requirements of a standard for the development of safety-critical systems.
They exploited the proposed framework to rate a company maturity in
the usage of the avionic standard DO-178B. In the last years several MDE
approaches have been proposed in the literature for supporting process
assessment tasks, and many of them targeted safety Standards. Falessi
et al. [108] introduced a model-based and tool-supported approach to as-
sist suppliers and certifiers in developing formal agreement to demonstrate
compliance with a safety standard. The approach was not formally eval-
uated, but it is considered a more effective way to do what it has already
been done manually. In [74] an approach based on model-driven engineer-
ing to analyze the evidence necessary to demonstrate compliance with a
safety standard was also proposed. They proposed an approach and web-
based supporting tool to systematically negotiate a consistent agreement
between suppliers and certifiers about the information to collect for safety
certification. The tool relies on an information model that captures core
concepts and their relations of a given safety standard. The approach was
evaluated through a case study of a sub-sea production control system
and a survey of industry practitioners. Our work differs from these ones
since it does not focus on the agreement between certifiers and suppliers
but it aims at supporting internal self-assessment processes regardless of
the considered Standard.

84 CHAPTER 2. SUPPORTING GAP ANALYSIS PROCESSES

2.6 Conclusions and Future Work

Gap Analysis is a widespread technique used in industry to assess
the implemented development processes with respect to the requirements
prescribed in Process Quality Frameworks or Standards. Thanks to an
industrial survey we conducted in several industrial settings, we became
aware of the main issues and limitations affecting gap analysis processes
carried out in the practice.

In order to address the emerged shortcomings, in this chapter I pro-
posed a tool-supported approach for aiding the execution of QBGA pro-
cesses. The approach exploited ALM, a technology widely adopted in the
practice for supporting the execution of software development processes.
ALM needs to be properly configured for introducing it in a specific con-
text for enacting a given process.

To guarantee that the ALM can be easily configured and adapted
for supporting different QBGA processes, I developed the GADGET tool
that provides features for modeling QBGA processes and for automatically
translating such models towards ALM systems, according to the MDE
paradigm.

The feasibility of the proposed approach was evaluated with an indus-
trial case study carried out in the automotive domain. In this context, the
approach was adopted to support two QBGA processes related to different
Parts of the ISO 26262 Functional Safety Standard. The study showed
that the execution of the QBGA process can be positively impacted by
the proposed approach. In particular, the GADGET tool aided the in-
troduction of the approach simplifying the design and the development
of the ALM tool. Moreover, the adoption of the latter tool improved the
visibility, acceptability and supportability of the QBGA processes. These
preliminary results suggest that the approach may be successfully adopted
in industrial practices.

2.6. CONCLUSIONS AND FUTURE WORK 85

As future work, I plan to extend the validation of the approach by case
studies that will involve more companies and QBGA processes targeting
different Standards. Moreover, we intend to extend the features offered by
the GADGET and ALM-based tools according to the comments collected
during the case study execution.

This page intentionally left blank.

Chapter 3
Improving Traceability
Management in Software Processes
through Tool Integration

In this Chapter I present a software architecture I designed for in-
tegrating ALM platforms with the tools used to carry out the testing
process. The architecture aimed at fully automating the execution of the
process and at automatically generating the appropriate traceability links
when they are established. It exploits the features offered by Continuous
Integration Engines that allowed the development of a modular, evolv-
able and reconfigurable integration architecture. The new architecture
was validated by an experiment performed in the automotive domain that
showed its capability in correctly and completely generating and handling
traceability links between artifacts involved in the testing process. The
experiment demonstrated that the integration solution produced also ben-
eficial effects on other quality attributes of the process.

87

88 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

3.1 Introduction

In 1994 Gotel et al. [40] defined the Requirement traceability as the
ability to describe and follow the life of a requirement, in both a forwards
and backwards direction. Intuitively, this definition is realized in practice
by establishing relationships, called trace links, between the requirements
and one or more artifacts of the system [109].

During the years this definition was extended and nowadays more in
general I talk about Software traceability for indicating the creation and
the use of links (or connections) between different kinds of software arti-
facts such as requirements, models, source code, test cases, or test results.
These connections are called trace links and connect in a bidirectional way
a source artifact to a target artifact. Many authors addressed the topic
of the traceability management that is the planning, the organization, and
the coordination of all the activities related to traceability, including the
creation, maintenance, and use of trace links [110].

Traceability is required by different software development standards
(SPICE, CMMI, ISO 26262, etc.) and its importance is well-recognized by
software engineering community [111]. Traceability leads to improvements
in software systems by supporting tasks related to maintenance, evolution,
reuse and more.

In practice, it is very difficult to guarantee an effective traceability
management since software projects are often developed by distributed
teams, both software artifacts and trace links undergo constant change,
and multiple stakeholders with different backgrounds are involved [110].
Moreover, traceability support in contemporary software engineering tools
is not satisfactory [112]. Nowadays, an effective solution for managing the
traceability between software artifacts is offered by ALM platforms. An
ALM platform consists of a set of tools, technologies, or techniques that
attempt to provide support for monitoring, controlling and managing soft-

3.1. INTRODUCTION 89

ware development over the whole application lifecycle [113]. At the same
time ALM platforms offer a unified storage and management of every soft-
ware artifact that is simply stored in version control repositories. They
may also provide the automatic implementation and management of trace-
ability relations among artifacts that are guaranteed via automatic change
control of every requirement.

ALM tools certainly offer a valuable support to the software lifecycle.
Unfortunately, the existing implementations of ALM do not provide tool
support for every lifecycle process, neither the existing ALM are able
to automatically integrate with any legacy tool and the artifacts it may
produce [114]. As a consequence, in many organizations ALM are just
used for storing the traceability links between artifacts, while traceability
generation and update are manually performed by the personnel involved
in the software lifecycle. This habit causes a great waste of time and
resources and may yield many inconsistencies, errors, and problems with
the manually produced links.

To overcome these limitations, more and more organizations are forced
to address the problems of integrating the adopted ALM platform with
their legacy software tools and of implementing the automatic generation
and update of the traceability links.

A feasible solution to these problems requires the creation of toolchains
that implement pipelines of existing tools. Several approaches have been
proposed in the literature to implement toolchains, such as [115] but they
are still not mature enough for being adopted.

In the practice, the organizations often implement ad-hoc solutions,
based on glue code, wrappers, adapters, and other software integration
mechanisms, which often result in scarcely maintainable and efficient sys-
tems.

In this Chapter I present an industrial experience I performed in collab-
oration with the FCA company within the research project APPS4SAFETY.

90 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

The main aim of the APPS4SAFETY research project was to improve the
traceability management in a software testing process performed in FCA.

In this project, I designed a software architecture for integrating the
existing ALM platform with the tools used in the testing process. This
solution aimed at fully automating the execution of the testing process and
at generating the appropriate traceability links when they are established
(in-situ creation). These links had to be automatically stored in the ALM
used in the company.

To implement this toolchain, I exploited a Continuous Integration En-
gine that allowed me to develop a modular, evolvable and reconfigurable
integration architecture, satisfying the design principles of low coupling
and location transparency.

In order to validate the proposed solution, I conducted in collabora-
tion with my research group, an experiment in the industrial organiza-
tion. The experiment involved real software testing projects conducted in
the company and the personnel involved in it. The experimental results
showed the capability of the proposed solution of correctly and completely
handling traceability links between software artifacts involved in a testing
process. Moreover, it demonstrated that the integration solution produced
beneficial effects on several quality attributes of the process.

The remainder of the Chapter is organized as follows. Section 3.2
presents the software testing process where I addressed the traceability
management and the integration problems. Section 3.3 illustrates the soft-
ware architecture of the proposed integration solution. Section 3.4 presents
the validation experiment. Section 3.5 provides background information
about ALM and solutions for software toolchain implementation. Section
3.6 finally reports conclusive remarks.

3.2. THE ADDRESSED PROBLEM 91

3.2 The Addressed Problem

In this Section I present the tool integration problem I addressed in the
context of embedded software development process. More precisely, I fo-
cused on the Model-In-the-Loop (MIL) testing process performed by FCA
EMEA SWF, the unit responsible for the development of embedded soft-
ware for two Electronic Control Units of the vehicle, i.e., the Instrument
Panel Cluster (IPC) and the Body Computer Module (BCM).

In the last years, the automotive field has been interested by the in-
troduction of Model Based (MB) [116] approaches and technologies in the
software development processes.

MB technologies yield many advantages to the software processes,
which become mostly focused on producing high-level models of the SoftWare
Component (SWC) that can be used for simulation in very early stages
of the development process. These technologies enable the engineers to
test the SWCs models in a virtual environment at a stage of the process
where they are inexpensive to be fixed, i.e. before the code is actually
implemented or integrated on the final hardware, i.e. ECU [117].

This first stage of testing is called MIL and consists of a testing activity
where the model and its environment are simulated (interpreted) in the
modeling framework (usually MATLAB/Simulink Stateflow) without any
physical hardware component [117].

The MIL testing process executed in FCA requires several steps and
involves six different testing artifacts having heterogeneous formats, i.e.,
Microsoft Word Files, Microsoft Excel Files, and MATLAB files. The
process exploits MATLAB as the virtual environment where the models
of the SWCs are tested and involves the use of an ALM platform. The
ALM stores all the artifacts necessary for and produced by the testing
process, manages their lifecycle and the traceability relationships between
artifacts. Moreover, it handles the roles of users involved in the process

92 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

Figure 3.1. Artifacts Relationships in SPEM

and regulates how they can interact with the artifacts.
Figure 3.1 reports the model of the artifacts (i.e. documents or work

products) stored in Polarion ALM and the �related work product� rela-
tionships that may exist among them. Instances of these relationships are
actually the traceability links that should be stored in the ALM.

As figure shows, a Test Run is a composition of one or more Test Case
documents. Each Test Case relates to the Software Component Release
work product to be tested. Any Software Component Release is linked to
the MATLAB Model artifacts simulating its behavior. A Test Case doc-
ument has its own Test Case Result work products. Issue work products
are associated to the Test Case founding them.

The considered MIL testing process is described in detail by the SPEM
1 model reported in Figure 3.2.

1http://www.omg.org/spec/SPEM/

http://www.omg.org/spec/SPEM/

3.2. THE ADDRESSED PROBLEM 93

Figure 3.2. The MIL Testing Process in SPEM

The Test Engineer manually �performs� the four activities required
for the process completion. Polarion ALM and MATLAB are the �used
tool� exploited for the accomplishment of these activities.

The MIL process starts with the Create Test Run activity. Here the
Test Engineer exploits Polarion ALM for creating a new Test Run. The
Test Cases needed for simulating a given Software Component Release are
linked to the newly created Test Run and these links are stored into the
ALM.

After, the Select Test Cases activity is performed. In this activity,
the Test Engineer exploits the ALM for selecting the actual Test Case
artifacts and choosing the MATLAB Models implementing the behavior
of the SWC Release under test.

These Test Cases are executed for simulating the MATLAB Models in
the Launch Test Cases activity, where the Test Engineer has to config-
ure, manually, the MATLAB testing environment before starting the Test
Cases execution. At the end of this activity a document containing the

94 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

Figure 3.3. The MIL Monitoring Process in SPEM

results of the Test Cases, i.e. the Test Case Results, is produced.

The last activity of the MIL testing process is the Import Test Case
Results. Here the Test Engineer manually stores, into the ALM, all the
results of the test case executions, along with the traceability links be-
tween Test Cases and Test Case Results. Polarion ALM is configured to
automatically produce an Issue work item for each failed Test Case, i.e.,
a Test Case that found at least a failure on a MATLAB Model. Polarion
ALM automatically links Test Cases and Issues.

The MIL Testing process is monitored by the Project Manager, using
the ALM tool. This monitoring process is performed according to the
SPEM model reported in Figure 3.3. The Project Manager accesses the
information about a SWC Release navigating through its related artifacts.
In this way, he is able to evaluate the process progress.

As the above descriptions highlighted, many tasks of the MIL process
were manually executed by the Test Engineer, essentially due to the lack

3.3. THE PROPOSED SOLUTION 95

of integration between the ALM and the remaining testing environment.
This caused many obvious disadvantages for the overall process. I was
able to identify its most important drawbacks:

• The slowness of the MIL process, due to the many manual and
time-consuming activities (of interacting with the ALM repository)
performed by the Test Engineer.

• The ineffectiveness of the traceability links management that are
manually introduced into the ALM by the Test Engineers. The
responsibility for the completeness and the correctness of these links
was left to the Test Engineers. A tracebility link could be incorrect
when it erroneously related two artifacts. Traceability is incomplete
when there is a missing link between two artifacts that need to be
related.

• The scarce visibility of the process from the point of view of the
Project Manager. This issue derived from the improper habit of the
Test Engineers of failing or delaying the traceability links updates
in the ALM repository. As a consequence, the current and actual
advancement state of the process could not be instantly visible to
the Project Manager.

• The process was scarcely accepted by its stakeholders. The Test
Engineers bothered that they had to spend a lot of manual effort for
accomplishing their tasks.

3.3 The Proposed Solution

To overcome the limitations of the current MIL testing process, it
was necessary to find a solution for reducing the manual intervention of
the Test Engineer in the process. To this aim, I decided to improve the

96 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

integration between the tools used in the process and to automate the
most tedious activities conducted by the Test Engineer, e.g., Select Test
Cases, Launch Test Cases and Import Test Results.

More in detail, the new testing process had to be executed carrying
out the following activities:

1. the Test Engineer will create the Test Run,

2. the Test Engineer will exploit a single point of access provided by
the Graphical User Interface (GUI) of Polarion ALM, where it:

• configure the MATLAB testing environment,

• launches the execution of the Test Cases composing the Test
Run.

3. the test case results will be automatically imported into Polarion
ALM at the end of the test cases execution,

4. the traceability links between test cases, test case results and issues
will be automatically created and stored into Polarion ALM.

To satisfy these requirements I had to find a solution for integrating
the ALM tool with the testing environment. According to Wasserman
[118] and Thomas [119], tools integration can be achieved at five different
levels:

• presentation integration: this integration solution provides a similar
look to the tools that have to be integrated or a single point of access
to all tools, to deliver a better user experience;

• data integration: such a solution manages data sharing between tools
and format and semantic transformations to make data available to
different tools;

3.3. THE PROPOSED SOLUTION 97

• control integration: it makes available the functions offered by a tool
to other tools in the environment;

• process integration: it provides process management tools with data
from development tools;

• platform integration: it provides network and operating systems
transparency for tools based on heterogeneous hardware.

My solution should provide four of these levels of integration. The
presentation integration was necessary because the Test Engineer had to
interact only with the GUI provided by the ALM. The data integration
was needed to guarantee the automatic import of the test results from
the MATLAB testing tool into the ALM and the automatic creation of
the traceability links. The control integration was required to allow the
automatic cooperation of the two tools.

Finally, the solution had to guarantee the aspect of process integration
since the data of the process management tool, i.e., Polarion ALM, had
to be automatically obtained from the development tool, i.e., MATLAB
testing tool.

I did not have to satisfy the platform integration aspect since the
involved tools did not run on heterogeneous hardware nodes.

3.3.1 Architectural Design

For developing the integration architecture, I had to choose a strategy
able not only to interconnect the ALM to the testing tool, but also of
automatically coordinating the execution of the process activities by the
supporting tools.

A first option consisted in exploiting the mechanism offered by Po-
larion ALM for interconnecting it with external tools and for extending
the ALM platform default features. This mechanism consists in adding

98 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

new plugins to the ones already present in the standard distribution of
the tool. Polarion ALM plugins are actually Java projects exploiting the
Application Programming Interface (API)s2 provided by Polarion ALM.
Through these APIs is it possible to programmatically execute all the fea-
tures of Polarion ALM, such as selecting an artifact, adding a new artifact,
adding a new traceability link between two artifacts, etc. Moreover, us-
ing Java commands for launching executable files, these plugins have the
capability of controlling third party tools.

However, I did not decide to follow this strategy that implements in the
ALM all the business logic of the process and couples the ALM directly to
the external tools. Vice versa, I decided to introduce an intermediate Co-
ordinator Component between ALM and more testing tool and to embed
all the business process logic into this component. Figure 3.4 describes
the proposed integration solution. The coordinator component will exploit
specific connectors for interfacing the ALM with one or more MATLAB
testing environments, respectively.

Such an alternative solution is more flexible and less invasive since it
does not require any modification neither in the ALM nor in the testing
tool. This architecture can be easily extended or adapted when new tools
have to be integrated with the ALM platform or the process workflow
needs to change.

3.3.2 Implementing Components and Connectors

The Coordinator Component has the responsibility for the automatic
execution of the two tasks of Launch Test Cases and Import Test Case Re-
sults. Basically, it acts as a broker between Polarion ALM and MATLAB
testing environment and vice versa.

Thanks to this component, Polarion ALM launches automatically the
selected Test Cases in the MATLAB testing environment. Then, the Test

2http://almdemo.polarion.com/polarion/sdk/doc/ javadoc/ index.html

http://almdemo.polarion.com/polarion/sdk/doc/javadoc/index.html

3.3. THE PROPOSED SOLUTION 99

<<component>>

Coordinator

<<component>>

Polarion ALM

<<component>>

MATLAB Testing

Environment

1..*

1

1

1

[1]

[1] [1]

[1]

Test Engineer

<<Data Connector>>

<<Call Connector>>

<<Data Connector>>

<<Call Connector>>

Interacts

Figure 3.4. Proposed Tool Integration Architecture

Case Results are automatically imported into the ALM as soon as the test
cases execution terminates.

I decided to implement this component by exploiting the features pro-
vided by the Jenkins automation engine3. Jenkins is a valid support for
building pipelines involving the execution of heterogeneous third party
tools in scenarios of continuous integration, automated testing, or contin-
uous delivery. Polarion ALM itself suggests to exploit Jenkins for building
automated testing toolchains, to this aim Polarion ALM provides a suit-
able connector, named PJ Connector4, allowing the automatic interaction
of the ALM with Jenkins.

Figure 3.5 shows details about the design of the overall architecture.
The Coordinator component has been implemented as a Jenkins based
Master/Slave architecture. The Jenkins Master component interacts with
the Polarion ALM component by means of two connectors [120]. The
Execute Test Run connector is a call connector exposed by the Jenkins
Master component and was realized exploiting the Jenkins Remote access

3https:// jenkins.io/
4http://www.emerasoft.com/pj-polarionjenkins-connector/

https://jenkins.io/
http://www.emerasoft.com/pj-polarionjenkins-connector/

100 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

API5. This connector is exploited by the ALM for launching a Test Run.
The Jenkins Master requires the data access connector Export Test Run
provided by Polarion ALM for querying the Test Cases belonging to the
Test Run to be launched.

The Jenkins Master delegates the execution of all the Test Cases be-
longing to a Test Run to one of the Jenkins Slaves by exploiting the Dis-
patch Jenkins connector. Each slave component is responsible for inter-
acting with just one testing environment. This is guaranteed by the two
connectors exposed by each testing environment. The Execute Test Cases
call connector allows the Jenkins slave to launch one or more test cases on
the MATLAB platform. The Read Test Results data access connector, is
used by the slave to load, from the testing environment, the results of the
tests execution. The slave exploits the two data connectors Update Test
Runs and Update Test Case provided by the ALM for updating the status
of both the Test Runs and the Test Cases.

All the connectors exposed by Polarion ALM are data access connec-
tors and were developed exploiting the APIs exposed by Polarion ALM
itself6 to access its stored elements.

On the other side, the MATLAB testing environment was a legacy
tool that did not expose any APIs exploitable to control its execution nor
to access its produced Test Case Results. As a consequence, in order to
define the Execute Test Cases call connector and the Read Test Result
data connector I had to implement a solution for wrapping the legacy
tool. To this aim, I carried out a reverse engineering process [121, 122]
to understand the features needed to allow and configure the tool control
and to access its produced results.

5https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
6http://almdemo.polarion.com/polarion/sdk/ index.html

https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
http://almdemo.polarion.com/polarion/sdk/index.html

3.3. THE PROPOSED SOLUTION 101

<<component>>

Coordinator

<<component>>

Polarion ALM

<<component>>

MATLAB Testing

Environment 1

<<component>>

Jenkins Master

<<component>>

Jenkins Slave 1

<<component>>

Jenkins Slave N
<<component>>

MATLAB Testing

Environment N

Update

Test

Case
Export

Test Run

Dispatch

Execute

Test

Run

Dispatch

Execute

Test Cases

Read Test

Results

Test Engineer

Execute

Test Cases

Read Test Results

Update

Test Run

Data Connector

Call Connector

Jenkins Connector
Interacts

Figure 3.5. Detailed Component Diagram of the proposed architecture

3.3.3 Extending the ALM GUI

In order to overcome the limitations of the previous process, where the
Test Engineer had to interact with the GUIs of two different environments,
I implemented a new GUI in the ALM offering a single point of access for
the execution of the MIL testing process.

To this aim, I exploited the Wiki-based mechanism provided by Po-
larion ALM7 to extend its default Test Run GUI, used in the original
process for defining the Test Run and for manually importing the Test
Case Results.

I enriched this GUI by two additional interaction panels.
The "Create Test Run" panel is reported in Figure 3.6a. It shows the

Test Cases available for a given SWC Release and allows the Test Engineer
to select the Test Cases to be run. Moreover, the panel shows the status
(i.e., Failed, Passed, Blocked, Waiting) of all these Test Cases.

The "Test Run Execution", shown in Figure 3.6b, is structured in sev-
7http://almdemo.polarion.com/polarion/help/?topic=/com.polarion.xray.doc.

user/ugchAppendix.html

http://almdemo.polarion.com/polarion/help/?topic=/com.polarion.xray.doc.user/ugchAppendix.html
http://almdemo.polarion.com/polarion/help/?topic=/com.polarion.xray.doc.user/ugchAppendix.html

102 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

eral sections. The testing environment can be configured through the "Test
Environment Configuration" section and the Test Run execution can be
launched by the "Execute Test Run" button. In addition, its "Test Run
Status" section offers an overview about the status of all the launched Test
Cases and the "Activity" section reports the last activities performed by
the users on the current Test Run.

(a) Create Test Run Panel

(b) Test Run Execution Panel

Figure 3.6. The extended Test Run GUI

3.4 Evaluation of the Proposed Solution

I conducted in collaboration with members of my research group a case
study [17] in the considered automotive context to evaluate whether the
proposed solution was able to mitigate the process drawbacks highlighted

3.4. EVALUATION OF THE PROPOSED SOLUTION 103

in Section 3.2. More in detail, the study aimed at answering the following
Research Questions:

RQ1 How does the adoption of the proposed solution affect the process
rapidity?

RQ2 How does the adoption of the proposed solution influence the effec-
tiveness of the traceability links management related to the process?

RQ3 How does the adoption of the proposed solution impact on the pro-
cess visibility from the point of view of the Project Manager?

RQ4 How does the adoption of the proposed solution impact the process
acceptability from the point of view of the Test Engineers?

To answer these RQs, I executed with my research group the MIL
Testing process using the new toolchain (hereafter "new process") on a
number of SWC Releases that had been already tested in the past in
the former infrastructure (from now on "original process"). Archival data
about these process executions was available, such as the time needed for
the execution of each activity of the process, or the number of traceability
links produced every day.

3.4.1 Objects

As objects of the study we considered SWC Releases belonging to the
IPC of a segment B mass market vehicle produced by FCA.

The selected SWCs were: the Speedometer responsible for filtering and
presenting to the driver the vehicle speed information; the Tachometer
that filters and presents to the driver the engine speed information and
the Trip providing features for calculating and presenting to the driver
some information related to one or more "trips", i.e. segments of traveling
selected by the driver, including travel duration and length, travel average

104 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

speed and estimation of distance that can be traveled until the fuel tank
will be empty. Table 3.1 shows for each SWC the number of the available
Test Cases for its testing.

Table 3.1. Case study selected objects

Software
Component

Number of Available
Test Cases

Speedometer 34
Tachometer 75

Trip 150

3.4.2 Subjects

The subjects of the study were employees of the EMEA SW Factory.
We selected a Project Manager and three Test Engineers involved in the
past execution of the original process on the IPC considered in the study.
However, they worked on SWC Releases different from the ones we con-
sidered in the case study. The selected Project Manager had more than
15 years of experience managing more than 15 different projects. The se-
lected test engineers had on average more than 20 years of experience in
the MIL testing process.

3.4.3 Considered Metrics

Now I report the metrics we used to collect the evidences necessary for
answering the RQs.

Rapidity

According to the definition of process rapidity provided by Sommerville
[1], the rapidity of the MIL testing process represents how fast can the
process deliver the test case execution results.

3.4. EVALUATION OF THE PROPOSED SOLUTION 105

To evaluate this process characteristic, we measured the execution time
of the whole testing process and of its composing activities.

The execution time of the overall MIL Testing process is T =
4∑

i=1
T (Ai),

where T (Ai) represent the Ai process activity execution time.

Effectiveness of Traceability Links Management

To evaluate the effectiveness of the traceability link management in a
given MIL process execution, we adopted the following two metrics:

• #ITL: the number of incorrect traceability links between Test Cases
and Test Case Results stored into the ALM

• #MTL: the number of missing traceability links between Test Cases
and Test Case Results.

These metrics were measured by a company employee who analyzed all
the traceability links stored in the ALM during the MIL Testing process
executions.

Visibility

According to Sommerville, the visibility of a process represents to what
extent the process activities culminate in clear results, so that the progress
of the process is externally visible. Usually the progress of a process can
be evaluated by observing the availability of specific artifacts delivered by
the process and measuring the quantity of these artifacts that are available
at specific points of the process execution.

To evaluate the process visibility, we designed a semi-structured inter-
view and submitted it to the Project Manager.

The interview aimed at understanding which artifacts of the MIL test-
ing process the Project Manager exploits to monitor the MIL testing pro-
cess and if this information can be obtained when needed.

106 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

Acceptability

The acceptability of the MIL Testing Process represents if the defined
process is acceptable to and usable by the engineers responsible for its
execution.

To evaluate the acceptability of a given MIL process, we designed a
semi-structured interview with the Test Engineers. The interview aimed
at understanding the usability requirements of the Test Engineers about
the MIL process, which process factors impacted the process usability from
their point of view, and whether these usability conditions were met by
the considered process.

3.4.4 Case Study Procedure

The case study was performed following a four steps procedure.

Subjects Allocation Step

The Project Manager randomly assigned to each Test Engineer the
execution of the MIL Testing process related to one of the selected SWC
Releases.

Execution Step

Each Test Engineer executed the testing process exploiting the pro-
posed tool architecture. They were asked to complete the assigned process
execution in a fixed time frame of five days, according to the standard com-
pany practices. For the new process executions, they had just to Create
the Test Runs and to launch their execution through Polarion ALM.

3.4. EVALUATION OF THE PROPOSED SOLUTION 107

Data Collection Step

At the end of the new process executions, the data needed to answer
the defined Research Questions was collected.

The data needed to calculate the T , T (Ai), #ITL and #MTL metrics
were available in Polarion ALM. One of the authors queried the ALM
to obtain the data regarding the new process executions. Archival data,
about the original process executions, stored in the ALM were also queried.

Moreover, another author conducted the designed interviews with the
study subjects and collected their answers.

Data Analysis Step

The collected data was analyzed to obtain the evidences to answer
the defined Research Questions. The values of the defined metrics for
the original and the new process executions were compared. To evaluate
how the rapidity of the process was influenced we calculated the Speedup
Percentage for the entire process, SP, defined according to the following
formula:

SP = Toriginal − Tnew

Toriginal
∗ 100 (3.1)

Moreover, the he Speedup Percentage, SP (Ai), for each Ai activity was
evaluated too. SP (Ai) is defined as:

SP (Ai) = Toriginal(Ai)− Tnew(Ai)
Toriginal(Ai)

∗ 100 (3.2)

Toriginal and Toriginal(Ai) represent the execution times for the entire
process and for its Ai composing activities in the original process obtained
through the archival data whereas Tnew and Tnew(Ai) refers to the ones
related to new process executions.

Table 3.2 shows the comparison results we obtained regarding the en-
tire MIL Testing process (MIL) and the Create Test Run (CTR), Select

108 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

Test Cases (STC), Launch Test Cases (LTC) and Import Test Case Re-
sults (ITCR) activities.

Table 3.2. Rapidity Comparison Results

Software Component (MIL) (CTR) (STC) (LTC) (ITCR)

Speedometer 7% 0 % 73% 0% 79%
Tachometer 9% 0.1% 81% 0% 90%

Trip 14% 0.1% 91% 0.3% 96%

To estimate the differences in effectiveness between the original and
the new process two metrics named Incorrect traceability links reduction
percentage (ITLRP), and Missing traceability links reduction percentage
(MTLRP) were proposed.

ITLRP is given by the formula reported below and it measures the
percentage reduction of the number of incorrect traceability links of the
new process, #ITLnew, with respect the ones of the original process,
#ITLoriginal.

ITLRP = #ITLoriginal −#ITLnew

#ITLoriginal
∗ 100 (3.3)

MTLRP measures the percentage reduction of the number of missing
traceability links of the new process, #MTLnew, with respect the ones
of the original process, #MTLoriginal. It is represented by the following
formula.

MTLRP = #MTLoriginal −#MTLnew

#MTLoriginal
∗ 100 (3.4)

Whether these comparison metrics assume negative values it means
that the proposed solution decreases the process performance.

Table 3.3 reports the comparison results we obtained at the end of the
study.

3.4. EVALUATION OF THE PROPOSED SOLUTION 109

Table 3.3. Traceability Management Effectiveness Comparison Results

Software Component ITLRP MTLRP

Speedometer 100% 100%
Tachometer 100% 100%

Trip 100% 100%

The data collected through the interviews carried out to compare the
visibility and the acceptability of the two processes was submitted to a
data triangulation step. More in detail, the interviews data was indepen-
dently analyzed by different authors and the results were compared.

3.4.5 RQ Answers

On the basis of the collected data I was able to answer the proposed
RQs.

RQ1: How does the adoption of the proposed solution affect the
process rapidity?

I was able to answer RQ1 on the basis of the data reported in Table
3.2.

The data highlights that the execution time of the overall process was
not essentially affected by the adoption of the proposed architecture since
the SP was always not greater than 14%

On the other hand, analyzing Speedup Percentage of each process ac-
tivity, I was able to understand that the Select Test Cases and Import Test
Results are the activities affected since they shows SP values always not
less than 73% and 79%, respectively. No substantial differences in terms of
execution time were measured for the other two activities of the process.

110 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

These results showed us that the adoption of the proposed architecture
leads to process rapidity improvement.

RQ2: How does the adoption of the proposed solution influence
the effectiveness of the traceability links management related to
the process?

Thanks to the analysis of the data reported in Table 3.3 I answered to
RQ2. All the incorrect and missing links introduced in the original process
due to their manual insertion were avoided in the new process executions
thanks to the automation of the Import Test Case Results activity.

The adoption of the proposed architecture leaded to 100% reduction
for both Incorrect and Missing traceability links for all the objects of the
study, improving the effectiveness of the process traceability links man-
agement.

RQ3: How does the adoption of the proposed solution impact on
the process visibility?

The interview showed that the Project Manager usually exploits the
percentage of the executed test cases for monitoring the progresses of the
MIL testing processes involving the Software Component Releases of its
own responsibility.

By analyzing his answers, I was able to understand that in the original
process, the Project Manager was able to monitor the progresses only on
two defined milestones (i.e., the third and fifth day of the testing process).
The other time he wanted to obtain the needed information he had to
directly inquire the assigned Test Engineers.

On the other hand, in the new process the Project Manager is able to
have a real time monitoring since the data are stored into the ALM as
soon they are produced. I report in the following some excerpts of the

3.4. EVALUATION OF THE PROPOSED SOLUTION 111

Project Manager statements that lead us to our conclusions:
"... with the original process, I could not check the information about

component testing progress in real time because the information in the
ALM did not reflect the real testing progress. To get real time information
I had to directly inquiry the involved Test Engineers...".
"... Test Engineers should report test results every time they finish a test
execution, but often they don’t have the time to do so due to strict dead-
lines. So we have established some milestones to enforce in the ALM the
executed test case results. When the milestone is reached, all the test cases
executed until that point must be reported in Polarion ALM. This happens
two times a week..."

The results of this qualitative analysis showed us the evidences that the
adoption of the proposed architecture leads to significant improvements
in the visibility of the MIL Testing process from the point of view of the
Project Manager.

RQ4: How does the adoption of the proposed solution impact
the process acceptability?

From this analysis of the collected answers I understood that the main
factors affecting the acceptability of the process from the point of view
of the Test Engineer are the number of different tools to exploit and the
tedious manual activities they have to perform for the accomplishment of
their work.

The data showed us that in the original process the Tester Engineers
need to switch between two different tools (Polarion ALM and MATLAB
Testing environment) and had to execute many time consuming and boring
tasks. On the contrary, thanks to the new architecture they use a single
tool and the most tedious tasks are automatically executed without any
manual intervention.

To give evidence of this, I report excerpts of statements given by one

112 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

of the interviewed Test Engineer:"... I have to use two tools for selecting
and executing test cases ... the import of the results is fully manual
this needs a great effort and distract me from the analysis of test results...
With the new approach I select the test cases to execute in Polarion and
launch their execution in the same tool... at the end of the test execution, I
do not need to insert the test results back in Polarion since they are stored
automatically."

The results confirmed us that the adoption of the proposed architecture
was successfully accepted by the Test Engineers.

3.4.6 Threats to Validity

Internal Validity

This aspect of validity needs to be evaluated when causal relationships
are examined. It defines how sure we can be that the treatment actually
caused the outcome. In our case, the subjects experience could be another
factor influencing the outcomes of the study. To mitigate this threat, we
selected subjects with different levels of experience. Moreover, a wider
experimentation with other subjects should be carried out.

External Validity

External validity is related to what extent it is possible to generalize
the findings and if these are of interest to people outside the reported case.
A possible threat could be related to the application of the approach in a
specific industrial domain and for a specific process. In order to minimize
this threat a further experimentation in different industrial domains and
for different processes will be performed.

3.5. RELATED WORK 113

Reliability

The reliability is concerned with to what extent the data and analysis
are dependent on the specific researchers. Hypothetically, if another re-
searcher later on conducts the same study, the result should be the same.
To minimize this threat, the case study protocol and the artifact produced
was reviewed by a group of researchers of the university. I reported, to the
extent possible, the followed case procedure in this Chapter. Furthermore,
data collected through the interviews and their analysis were reviewed by
case subjects in order to avoid possible misinterpretations

3.5 Related Work

Application Lifecycle Management has been proposed as a solution
for monitoring, controlling and managing software process over the en-
tire application lifecycle [45]. ALM can be seen as a supervisor which
covers the whole development process from the initial idea to the end of
the product lifecycle through different core aspects: governance, devel-
opment and operations [43]. They combine the supporting tool such as
Version Control Systems (VCS) to handle the artifacts to issue tracking
applications [123]. Nowadays many companies adopt Application Lifecy-
cle Management (ALM) platforms to follow the entire lifecycle of their
software product. The goal of an ALM platform is to make software de-
velopment and delivery more efficient, lower its costs and improve software
quality. ALM is based on three main concepts, called the pillars of ALM :
traceability, visibility and process automation [39]. In order to truly reach
these goals, an ALM platform should provide a holistic view on all the
software process. All the tools involved in the development process should
be able to interact among them through the ALM platform.

Although ALM tool support has increased during the past decades,
there is still a tool support ecosystem largely fragmented [114]. Many of

114 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

the ALM tools available on the market (e.g. IBM Rational Team Concert,
HP Application Lifecycle Management, Polarion ALM, etc.) are able to
reach the defined goals, but only through the integration of tools of their
ecosystems. Most companies already have a de-facto development process
and tools. For these reasons ALM platforms offer mechanisms to inter-
connect most commonly used tools like Microsoft Excel, Eclipse, IBM
DOORS and they also offer an Application Programming Interface (API)
for the integration with other tools.

There is still the need to provide solution able to integrate the differ-
ent tools used during the software development in order to automate its
process and to interconnect artifacts created through the adopted hetero-
geneous tools.

The need to link tools that address different aspects of the development
process, creating so called toolchains is emerged since 90s [118].

Tool integration is often achieved building automated tool-chains that
take care of all the needed interactions between tools, from data exchange
and manipulation, to the tools execution itself. Creating a toolchain is not
an easy task since every toolchain is specific for a particular development
process and environment. Based on the number of tools to integrate and
on the breadth of the development sub-process that must be automated, it
can be hard to properly describe, design and develop the needed toolchain.

Solutions to tool integration are based on the same principles: the
presence of a central repository for data management, a framework based
on a service oriented architecture or a component architecture for tool or-
chestration and a set of transformations to make data available to different
tools. In [124], in the context of MOGENTES project (a project aimed
at enhancing testing and verification of dependable embedded systems), a
service-oriented, model-driven, process-centric approach for the definition
of toolchains was proposed. Their approach leads to the creation of a tool
manager (the broker) to which the tools should be registered to offer their

3.5. RELATED WORK 115

functionality as services to the final user. However, each tool must expose
a well-defined interface to provide homogeneous programming interfaces
and hide heterogeneity.

In [115], a way to properly describe a toolchain defining a Domain
Specific Modeling Language (DSML), named Tool Integration Language,
was proposed. This language aims at mapping tool integration domain
concepts to language ones in order to fully describe a toolchain and to
allow its automatic generation using a Service Component Architecture
(SCA). Anyway, such approach is not used in practice where usually ad-
hoc solutions are developed, instead.

The tool integration was highly investigated in the automotive do-
main, where several research projects have been funded to investigate this
problem. These projects aim to create a toolchain that covers the en-
tire embedded software development process, starting from requirements
specification, to model design, to its implementation and testing.

The Cesar Project [125] offers a toolchain that is divided in two in-
terconnected parts, one for the requirements management and one for the
system design, safety analysis and V & V. The two parts use different
integration technologies and different repositories for their artifacts, but
the toolchain is able to offer full traceability of the application. The in-
tegration is achieved by using a defined meta-model and transformations
technologies.

The Amalthea Project [126] goal was to create an open source toolchain
for embedded software development in the automotive domain based on
the Eclipse Software development Framework and leaded to the Amalthea4Public
tool8. The proposed platform integrates a lot of existing tools already
supported by the Eclipse Framework. These tools can be plugged in
and executed automatically, but Amalthea platform adds to the standard
framework the possibility to define models using the Eclipse Modeling

8http://www.eclipse.org/community/eclipse_newsletter/2015/march/article2.php

http://www.eclipse.org/community/eclipse_newsletter/2015/march/article2.php

116 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

Framework and the presence of a high performance model repository to
store development models so that every tool in the framework can access
project data.

Many tools were proposed to help companies keeping traceability be-
tween the artifacts involved in the development process and choosing which
one to use is a complex task. The usually adopted tools to express and
maintain traceability were general purpose tools such as word processors
or, even better, spreadsheets. They are adopted to create a Traceabil-
ity Matrix, a matrix showing dependencies between artifacts. This ma-
trix is easily readable by an user and has the advantage of being a sin-
gle repository for documenting both forwards and backwards traceability
across all of the work products [127]. Traceability was also managed us-
ing Entity-Relationship (ER) Models and database technology, with the
development artifacts represented by entities, while relationship instances
represent links between artifacts [128]. But keeping such a matrixes or
tables always updated requires considerable manual efforts. With the ad-
vent of hypertext technology and special-purpose tools it became easier to
provide full traceability to a software project.

The importance of automatic traceability management tool has been
extensively investigated by the authors in [129] who conducted a series
of interviews with industrial and academic partners and software devel-
opment stakeholders to study the impact of such tool on the quality of
traceability links. The data from these interviews reveals two main chal-
lenges: traceability links are still mostly created manually and users must
cope with interconnected but highly heterogeneous artifacts across tool
boundaries.

3.6. CONCLUSIONS AND FUTURE WORK 117

3.6 Conclusions and Future Work

The ecosystem of artifacts, tools and platforms used in software devel-
opment processes executed in industrial organizations can be very complex
and heterogeneous. Software traceability represents a feasible solution
for managing the complexity of these ecosystems and ALM tools provide
a professional solution for storing and maintaining the traceability links
among artifacts.

In the practice, ALM and legacy tools adopted in real software pro-
cesses are not coordinated and integrated, and software organizations are
forced to adopt tool integration solutions if they want to automate and
improve the traceability management in their processes.

In this Chapter I reported our experience in developing a solution
for integrating an ALM tool with the software tools used in MIL testing
processes executed in FCA. The proposed solution exploits a Continuous
Integration platform to implement a toolchain aimed at automating the
manual activities of the process and at automatically creating the trace-
ability links between the involved artifacts. This architectural solution
is based on Master/Slave components, where the Master implements the
process workflow, while each Slave interfaces a single tool of the toolchain.
This architecture can be easily extended and reconfigured both to inte-
grate new tools with the ALM, both to implement new software processes.
The integration of another tool will require an additional Slave component
and the design of the connectors needed for interfacing the tool. The im-
plementation of a new process will require the modification of the Master
component too.

The proposed architecture was evaluated by a case study conducted
in the FCA EMEA SW Factory where I compared the results of the MIL
testing process execution before and after the introduction of the new
toolchain. The experimental results showed that the traceability manage-

118 CHAPTER 3. IMPROVING TRACEABILITY MANAGEMENT

ment, the testing process rapidity, visibility and acceptability improved
thanks to the new toolchain.

In future work, I plan to extend our architecture by integrating addi-
tional tools with the ALM and to reuse the architecture for implementing
different processes carried out both in the same context and in different
industrial domains.

Chapter 4
Approaches and tools for
supporting the analysis and
comprehension of spreadsheet
based artifacts

This Chapter presents a reverse engineering process and a tool I de-
signed to support the comprehension of spreadsheet based artifacts, even
the ones developed exploiting the VBA programming language. I decided
to focus on spreadsheet based artifacts, since they are widely adopted
to support different phases of the software development process and their
comprehension is still an open issue. The heuristic-based reverse engineer-
ing process I designed allows the inferring of data models from a corpus
of spreadsheet-based artifacts. The process is fully automatic and it is
based on seven sequential steps. Regarding the tool, named EXcel Ap-
plication Comprehension Tool (EXACT), it was developed for supporting
the comprehension of spreadsheet based artifacts, even the one imple-

119

120 CHAPTER 4. ARTIFACTS COMPREHENSION

mented exploiting the VBA programming language. The tool has been
implemented as an add-in that extends the Excel working environment by
providing analysis and visualization features. It provides features for the
automatic extraction of information about the elements composing the
analyzed Excel spreadsheet artifact, the functionality it exposes through
its User Interface and the dependencies among its cells. This informa-
tion is provided by means of interactive views. Both the applicability and
the effectiveness of the proposed reverse engineering process have been
assessed by an experiment I conducted with the support of my research
group in the automotive industrial context. The process was successfully
used to obtain the UML class diagrams representing the conceptual data
models of three different corpora of spreadsheet based artifacts. Finally,
the validity of the EXACT tool in supporting real comprehension tasks
has been assessed by another case study performed with professional end
users from the same automotive industrial domain.

4.1 Introduction

Spreadsheets are interactive computer application programs for organi-
zation, analysis and storage of data in tabular form. Their usage is diffused
in a community made by many millions of end user programmers [130] and
it has been estimated that 90% of desktop computers are equipped with
Excel [131], the most popular spreadsheet system belonging to the Mi-
crosoft Office suite. Spreadsheets are widely adopted within companies
and, although such systems were originally developed to support calcu-
lation and financial analyses, now they are widely used as organizational
performance tools [132] and as collaborative technology [133], in scientific,
business and industrial domains. Spreadsheet based artifacts are widely
used in software processes for supporting different phases of the develop-
ment. Hence, their comprehension has been not widely investigated by

4.1. INTRODUCTION 121

the research community.
In the most widely accepted sense, a spreadsheet is simply considered

as grids of cells filled with data or formulas to perform calculations. Never-
theless, a spreadsheet is usually more than that. Spreadsheet systems pro-
vide the possibility to enrich both the user interface and the functionality
provided by a basic spreadsheet through the employment of programming
languages, such as Visual Basic for Applications (VBA) used by Excel.
VBA is the most popular scripting language usable for extending any host
software application belonging to the Microsoft Office Suite1. It provides
mechanisms and programming constructs for defining both rich and inter-
active GUIs that allow end users to generate user events, and procedures
that will manage these events. These procedures may even implement
complex business rules that manipulate the data stored in spreadsheet
cells. By means of these mechanisms, end users are able to develop real
software applications that often turn out to be used for storing and pro-
cessing increasing amounts of data and for supporting growing numbers
of users over long periods of time [134]. In addition, these applications are
usually submitted to frequent maintenance interventions aiming to extend
and evolve their content and behavior.

Although additional and more modern technologies, such as C#, F#
or Javascript, are available for extending Excel spreadsheet applications,
VBA is still the most widely and frequently used one in this context.
Moreover, there is a huge amount of legacy spreadsheet applications hav-
ing a large part of VBA scripts that are still largely used. This kind of
applications are usually developed and maintained by end users who are
not software engineers and often do not have a full knowledge of the Excel
development environment too. As reported in [135], end users learn the
Excel system by using it or with the help of a colleague. They typically
develop the applications performing no preliminary planning, analysis or

1http://msdn.microsoft.com/en-us/ library/dd361851.aspx

http://msdn.microsoft.com/en-us/library/dd361851.aspx

122 CHAPTER 4. ARTIFACTS COMPREHENSION

design activities. These users alternate creative activities like thinking
and mechanical activities like typing, pointing cells or copying them. This
development process may lead to an uncontrolled growth of the complex-
ity of these applications, the frequent introduction of bugs and the lack of
any kind of development documentation.

The resulting scarce quality and comprehensibility problems of spread-
sheet applications are well known in the literature. Moreover, the horror
stories2 presented by the European Spreadsheet Risk Interest Group re-
port common problems with uncontrolled use of spreadsheet applications
and their impacts. They show the relevance of effectively comprehending
and analyzing Excel applications.

Reverse engineering techniques and tools may provide a valuable sup-
port to end users involved in software development processes in the tasks
of adopting, maintaining and evolving existing spreadsheet based artifacts.
Unfortunately, the Visual Basic Editor integrated in Excel lacks valid sup-
port for the comprehension and reverse engineering of VBA code. In addi-
tion, the software engineering research community did not devote adequate
attention to this field. While many problems regarding the management
of the data embedded in spreadsheet cells have been widely addressed in
the literature [136, 137] since the nineties, other relevant aspects concern-
ing the analysis, comprehension, and reverse engineering of the scripting
code components belonging to these applications have been disregarded.

I believe these topics are worth to be investigated, especially due to the
economic importance and diffusion of spreadsheets in many productive,
industrial and business environments, especially in the software process
domain. In addressing this issue, it can not be neglected that spread-
sheets are peculiar software applications that pose a number of different
challenges. As an example, they show the comprehensibility issues of an
hybrid software architecture, including the characteristics of both event-

2http://www.eusprig.org/stories.htm

http://www.eusprig.org/stories.htm

4.1. INTRODUCTION 123

based and data-shared software architectural styles [138]. Moreover, since
the core components of spreadsheets are their cells, which may contain
either data, or formulas, or even user interface components, it is not easy
to directly locate the different parts of interest of the application. Lastly,
their analysis and comprehension is aggravated by the existence of many
dependency relationships between cells that may be scattered in different
parts of the spreadsheet and that may not always be clear to end users.

In order to address these issues, I developed a reverse engineering pro-
cess and a reverse engineering tool, named EXACT (EXcel Application
Comprehension Tool), aimed at supporting the analysis and comprehen-
sion of Excel spreadsheet artifacts, even the ones based on VBA. The
reverse engineering process is based on the application of different heuris-
tic rules I defined through analysis of different spreadsheet based artifacts
corpora. The application of the process aims at producing, through subse-
quent refinements, a conceptual UML class diagram abstracting the data
model of the artifacts. On the other hand, the EXACT tool has been
implemented as an add-in that extends the Excel working environment
by providing analysis and visualization features. It is able to extract in-
formation about the elements composing the analyzed Excel spreadsheet
application, the functionality it exposes through its User Interface and
the dependencies among its cells. This information is provided by means
of interactive graph-based and list-based views. The usefulness of the
process and tool has been assessed with case studies that I performed,
supported by my research group, with professional end users from an au-
tomotive industrial domain where several spreadsheet based artifacts are
used to support and manage different phases of the embedded software
development process.

The remainder of the Chapter is organized as it follows: Section 4.2
describes background information about spreadsheet artifacts and reports
the main comprehension issues affecting them. Section 4.3 reports the so-

124 CHAPTER 4. ARTIFACTS COMPREHENSION

lution I proposed to solve the reported issues. More in detail, it describes
the reverse engineering process to recover conceptual models from spread-
sheet based artifacts, a conceptual model defined to represent a VBA-
based spreadsheet artifact and the characteristics of the EXACT tool.
Section 4.4 reports the case studies I carried out to validate the proposed
solutions in the automotive domain. In Section 4.5 related works about
reverse engineering techniques applied to spreadsheet based artifacts are
discussed. Eventually, section 4.6 presents conclusions and future work.

4.2 The Addressed Problem: Comprehension is-
sues of Spreadsheet based artifacts

Excel offers end users a simple and intuitive working environment for
implementing calculation sheets or simple data stores in tabular format.
From a structural point of view, an Excel application is made of a Work-
book, that usually includes a number of Worksheets, grids of Cells that end
users can fill in with data and formulas. In the same working environment
of Excel, end users can personalize and extend the GUI of the application
either by drawing graphical objects, named Shapes, over the cells or by
defining advanced User Forms.

Moreover, end users can also extend the application behavior by means
of Procedures written in VBA code. The Excel environment also provides
the Record Macro feature allowing end users to automate repetitive tasks
without directly writing a single line of code.

This feature permits to capture and record the user interactions with
the spreadsheet environment transforming them into aMacro, a re-executable
VBA code. End users can execute a recorded macro whenever needed. Al-
though this feature is considered really helpful, it produces inefficient code
[139], since each interaction of the user with the Excel environment is di-
rectly translated into VBA code. As a result, the automatically produced

4.2. COMPREHENSION ISSUES 125

code may result very difficult to be comprehended.

In addition, Excel provides a dedicated IDE, the VBA Editor, that
allows both to define user forms and to write VBA Procedures. The
execution of Procedures is driven by user events, since Excel supports the
event-handling mechanism. In particular, a Procedure can be defined as
event handler of a given Excel item (such as Worksheets, shapes, etc.)
and will be executed whenever a specific event occurs on this item. By
means of these features, end users can easily develop complex spreadsheet
applications, made by many data cells, organized in multiple sheets, and
embedding even complex business rules for managing user events fired on
the rich GUI of the application.

Analyzing and comprehending this type of applications are affected
by many specific issues. A first problem derives from the lack of a clear
separation between the presentation, business logic and data management
components of a spreadsheet application. The cells can be filled in with
either data, either formulas, or User Interface elements indistinctly. The
flexibility of the spreadsheet environment, mixing data and calculation,
may be beneficial for end users, simplifying their work. At the same
time, it may complicate the comprehension of the application, since end
users may feel confused and struggle with identifying the different parts
of interest during the accomplishment of comprehension tasks.

As another issue, it should be considered that Excel applications are
characterized by a hybrid software architecture that is a combination of
shared-data and event-based architectural styles [138]. The application
provides indeed a central data store, composed by all the data cells in-
cluded in its Worksheets, and a set of independent business logic compo-
nents given by all the Procedures of the application, whose execution is
driven by user events. Comprehending the behavior of event-based archi-
tectures is affected by the problem of finding and firing all the events that
may be executed. On the other hand, shared data architectures suffer from

126 CHAPTER 4. ARTIFACTS COMPREHENSION

the well-known problem that a change in shared data may imply changes
in all modules using it. As an example, whenever the format or content
of a cell changes, all the VBA Procedures relying on this data cell will
have to be detected and changed too. This task may be hard and time-
consuming, if we consider that data cells can also have hidden dependency
relationships with other cells that are due either to formulas or other VBA
Procedures. The necessity for an end user or for a maintainer of the appli-
cation to take into account these hidden inter-dependencies is well-known
in the literature [140]. Unfortunately, analyzing and comprehending this
web of interconnections may be a complex and time-consuming task, even
harder if we consider that Excel applications are often made by many
thousands of cells, scattered across many different worksheets, and they
often lack of any kind of effective internal and external documentation.

Another complication derives from the fact that the content and the
structure of a spreadsheet application are not fixed and may be varied at
run-time. An end user can add or delete, in a very easy way, elements
such as Worksheets or Shapes and content in different cells while using
the application. The end users may not have a clear vision of the impacts
of such modifications. Even a simple insertion of a value in a cell of a
given worksheet may cause implicit modifications of other elements of the
application such as VBA procedures and/or trigger the execution of other
events that the end user may not be aware of or informed about.

In order to address these comprehension issues, a feasible approach is
provided by reverse engineering processes and tools. According to [141],
there are different kinds of feature offered by these tools that can aid the
comprehension tasks. Browsing and Visualization features may support
the analysis, comprehension, and navigation inside the structural organi-
zation of the application. Locating features could provide a valid support
for recovering and accessing the different types of component making up
the application and for tracing their inter-relationships. Moreover, De-

4.3. THE PROPOSED SOLUTIONS 127

pendency Analysis features may ease the identification of dependencies
among data cells. Analysis and Abstraction features may support the
comprehension of the functions provided by the application through its
GUI. Consequently, I decided to develop a tool for supporting the execu-
tion of comprehension tasks on VBA-based spreadsheet applications by
providing features for:

• recovering and reporting the elements composing these applications
and the relationships existing among them in order to aid the com-
prehension of their different parts and to overcome the lack of a clear
separation between their different components

• retrieving and listing the event-handlers related to User Interfaces
graphical objects and all the components involved in their execution.
This feature is needed to support the comprehension of the user
functionality offered by means of event handling mechanisms

• recognizing and showing the dependencies that may be established
between several cells through different mechanisms like formulas,
data validation features and VBA code. Such a feature is needed
for supporting end users in comprehension tasks related to mainte-
nance, migration or knowledge transfer of spreadsheet applications
as reported in [140]

4.3 The Proposed Solutions

In this section I report the solutions I developed for supporting the
comprehension of spreadsheet based artifacts. Precisely, I defined a Re-
verse Engineering process for recovering Data Models from them and a
Reverse Engineering tool, named EXACT, providing visualization and
analysis features. More details about these solutions are reported in the
following.

128 CHAPTER 4. ARTIFACTS COMPREHENSION

4.3.1 A Reverse Engineering Process to Recover Data Mod-
els from Spreadsheet based artifacts

The industrial context of the work reported in this Chapter included
a large number of spreadsheet based artifacts, implemented by Excel files,
used in the development process of ECU in an automotive company. They
supported the Verification & Validation (V&V) activities and the manage-
ment of Key Performance Indicators (KPI) about the development process.
The spreadsheets inherited from a same template and included some VBA
functionalities providing data entry assistance. Moreover, their cells fol-
lowed well-defined formatting rules (i.e., font, colors, and size of cells) that
improved the readability and usability of the spreadsheets, and complied
to the following layout rule: all the data concerning the same topic in a
single spreadsheet file were grouped together in rows or columns separated
by empty cells or according to specific spreadsheets patterns [142]. Taking
the cue from other works proposed in the literature, I founded my data
model reverse engineering process on a set of heuristic rules. I defined a
process made of seven steps that can be automatically performed in order
to infer, with gradual refinements, the UML class diagram of the consid-
ered spreadsheet based artifacts composing a specific artifacts corpus. In
each step, one or more heuristic rules are executed. Each rule is based on
the analysis of one or more spreadsheet based artifacts belonging to the
corpus of spreadsheet files composing the subject information system. In
the following I describe the steps of the proposed process.

In the Step 1 I preliminary apply Rule 1 that abstracts a class named
Sp whose instances are the spreadsheet based artifact that comply with a
same template.

In the Step 2 I exploit the Rule 2 that is executed on a single spread-
sheet file of the corpus. This rule associates each non empty sheet of the
spreadsheet based artifact with a class Si, having the same name of the
corresponding sheet. Moreover, an UML composition relationship between

4.3. THE PROPOSED SOLUTIONS 129

the Sp class and each Si belonging to the file is inferred. The multiplic-
ity of the association on each Si side is equal to 1. Figure 4.1 shows an
example of the application of this rule on an example spreadsheet based
artifact.

Figure 4.1. Example of Step 2 execution

The Step 3 exploit the Rule 3 that is executed on a single spreadsheet
file of the corpus. This heuristic, according to [143] and [142], associates
a class Aj for each non empty cell area Areaj of a sheet already asso-
ciated to a class Si by the Rule 2. Each class Aj is named as follows:
Nameofthesheet_Areaj . Moreover, an UML composition relationship
between the Si class and each Aj class is inferred. The multiplicity of the
association on each Aj side is equal to 1. In Figure 4.2 an example of Step
3 execution is reported.

Step 4 foresees the sequential application of two different rules, i.e.
Rule 4.1 and Rule 4.2. The Rule 4.1 is applied to discriminate the header
cells [144] of each area Areaj that was inferred in the previous step. Rule
4.1 analyzes the content of the spreadsheet files belonging to the corpus in
order to find the invariant cells for each area Areaj . An invariant cell of an
area is a cell whose formatting and content is the same in all the analyzed

130 CHAPTER 4. ARTIFACTS COMPREHENSION

spreadsheets. The set of invariant cells of an area Areaj composes the
header of that area. Figure 4.3 shows how the Rule 4.1 works. In a first
phase, all the spreadsheets are queried to select, for each of them, the cells
of a given area.

Figure 4.2. Analysis of non-empty cell areas belonging to Sheet1 executed
in Step 3

In the next phase, all the selected cells are analyzed to recognize the
invariant cells for the considered area. Intuitively, overlapping the con-
tents of all the spreadsheets for a given area Areaj , then the header is
given by the cells that, for the considered area, are invariant in all the
files. Rule 4.2 is executed on the headers inferred by Rule 4.1. For each
area Areaj , this heuristic analyzes the style and formatting properties
of the cells composing its header. It permits to discriminate subareas
SubAream having header cells satisfying specific patterns. Rule 4.2 as-
sociates a class SAm for each SubAream. Each class SAm is named as
follows: Nameofthesheet_SubAream, if no name could be associated to
the class according to the recognized patterns. The names of the attributes
of the class are inferred from the values contained into the header cells.
Moreover, an UML composition relationship between the class Sj and each
related SAm class is inferred. The multiplicity of the association on each

4.3. THE PROPOSED SOLUTIONS 131

Figure 4.3. Example of Step 4 execution

class SAm side is equal to 1.

Figure 4.4. Example of header cells pattern inferring a single class and its
attributes

Some examples of Rule 4.2 executions are reported. As an example,
in Figure 4.4 an UML class, having the default name Sheet1_Area1, is
inferred since three consecutive header cells have the same formatting
style. The attributes of the class are named after the values contained
into the header cells. Figure 4.5 shows a variant of the example reported
in Figure 4.4. In this case two UML classes are inferred since two groups
of consecutive cells having the same formatting characteristics were found.

132 CHAPTER 4. ARTIFACTS COMPREHENSION

Figure 4.5. Example of header cells pattern inferring two classes and their
attributes

Figure 4.6. Example of header cells pattern inferring a single class with
attributes and class name

A further pattern is shown in Figure 4.6 where the header is structured
in two different levels. The upper level, composed of merged cells, permits
to infer a class named ClassA, while its attributes are named after the val-

4.3. THE PROPOSED SOLUTIONS 133

Figure 4.7. Example of header cells pattern inferring two classes with
attributes, class names and their composing relationship

ues contained in the header cells of the lower level. In the example shown
in Figure 4.7, the previous pattern is applied twice and a composition
relationship is inferred between the two obtained classes.

In the Step 5 I exploit Rule 5 that is applied on the whole corpus
of spreadsheets. Rule 5 is applied to all the subareas SubAream to find
possible sub-subareas made by groups of data cells having the same style
and formatting properties. If a subarea SubAream is composed by two
or more sub-subareas then the heuristic associates a class, SSAk for each
sub-subarea. Each class SSAk is named as follows: Nameofthesheet_-
SubSubAreak. Moreover, the new classes substitute the class associated to
the SubAream, and an UML composition relationship between the Ai class
and each SSAk class belonging to the area is inferred. The multiplicity of

134 CHAPTER 4. ARTIFACTS COMPREHENSION

the association on each class SSAk side is equal to 1.

Figure 4.8. Example of Step 5 Execution

Figure 4.8 shows an example of how Step 5 works.
Step 6 requires the application of Rule 6. This heuristic is applied to

the overall corpus of spreadsheets. It analyzes the formatting properties
of the cells belonging to consecutive subareas and sub-subareas in order
to infer association relationships and multiplicities between the classes
that were associated to these areas in the previous steps. An example
of how this rule works is reported in Figure 4.9. In this case two con-
secutive subareas are considered, i.e., SubArea1 related to columns A
and B and SubArea2 corresponding to columns C and D. The classes
named Sheet1_SubArea1 and Sheet1_SubArea2 were associated to the
SubArea1 and the SubArea2, respectively. Since for each spreadsheet a
tuple of SubArea1 is composed by a number of merged cells that is an inte-
ger multiple of the number of merged cells related to a tuple of SubArea2,
then Rule 6 infers a UML association between the two classes related to
the two subareas. The multiplicity of the association on the side related
to the class Sheet1_SubArea1 is equal to 1 whereas the one on the other
side is 1..*.

4.3. THE PROPOSED SOLUTIONS 135

Figure 4.9. Example of Step 6 Execution

In the Step 7 the Rule 7 is exploited. This heuristic is applied to the
overall corpus of spreadsheets. It analyzes the value of the cells in order
to infer association relationships between classes. As an example, if in all
the spreadsheets, for each cell of a column/row that was exploited to infer
an attribute of a class A there is at least a cell of a column/row that was
exploited to infer an attribute of a class B having the same value, then it is
possible to define a UML relationship between the UML Class A and the
UML Class B. Moreover, if the cells of the column A have unique values
then the A side and B side multiplicities of the inferred UML relationship
are 1 and 1..* respectively, as shown in Figure 4.10.

4.3.2 Conceptual Model of VBA-based Spreadsheets

Moreover, I intended to develop a reverse engineering tool, I named
EXACT, for supporting the comprehension of spreadsheet based artifacts.
In order to implement the reverse engineering features provided by the EX-
ACT tool, I preliminarily defined a Conceptual Data Model representing
a VBA-based Spreadsheet artifact in terms of its entities and the rela-
tionships existing among them. More in detail, I focused on: (1) the
peculiar elements belonging to any VBA-based spreadsheet artifact such
as Workbook, Worksheet, VBProject, Code Module, etc., (2) the entities
that are responsible for rendering their rich user interfaces, (3) the dif-
ferent elements needed for implementing the event-based mechanisms of
VBA-based spreadsheet applications, (4) the entities that are able to de-

136 CHAPTER 4. ARTIFACTS COMPREHENSION

Figure 4.10. Example of Step 7 Execution

fine dependencies among different cells such as Formulas, Data Validation
Feature and VBA code. The proposed model does not provide a compre-
hensive representation of all the elements of any spreadsheet application
but just the ones required for implementing the feature of EXACT. In
order to define this Conceptual Data Model I considered the Excel Object
Model that reports the COM-based object model of the Excel application.
This model is accessible exploiting the Office Primary Interop Assemblies
(PIAs) library3.

The proposed Conceptual Data Model is reported by two UML Class
Diagrams presented in the following.

3http://msdn.microsoft.com/en-us/ library/15s06t57.aspx

http://msdn.microsoft.com/en-us/library/15s06t57.aspx

4.3. THE PROPOSED SOLUTIONS 137

Modeling the structural components of a VBA-based Excel ap-
plication

The Class Diagram shown in Figure 4.11 reports the structural enti-
ties of an Excel application along with their properties, composition and
generalization relationships.

-name

-path

-format

-author

-creationTime

-lastModifiedTime

Workbook

-name

-positionIndex

Worksheet

-name

VBProject

-name

CodeModule

-name

-visibility

-LOC

-CLOC

-WLOC

-sourceCode

Procedure

-name

-title

UserForm

-name

-caption

Shape

-address

-value

Cell

ActiveX

Control

Form

Control

Document

Code Module

Standard

Code Module

Class Code

Module

UserForm

Code Module

-name

NamedRange

Sub Function Property

AutoShape

-type

-operands

DataValidation

Rule

0..*

0..1

1

0..*

1..*

1..*

1..*

1

0..*

1..*

0..1

0..*

0..1

1

1

1

1..*

1

0..*

Figure 4.11. Conceptual Data Model - Structural Relationships

The main entity is represented by the Workbook class, associated with
the Excel file of the application. The properties of a Workbook include
its name, the path where it is stored, its author, the fileFormat that is
the format of the analyzed Excel file (e.g. .xls, .xlsx, .xslm, etc.), the
date-time of its creation and the one of its last modification. A Workbook
can be composed by one or more Worksheet instances. Each Worksheet is
identified by its name and index related to its position, is composed by 1 or
more cells (Cell) where each Cell instance is characterized by its address,
identifying the location of the cell in the worksheet, and may contain a
value that can be a numeric one, a text, a formula, etc. Moreover, it is
possible to assign a mnemonic name to a cell or set of cells, defined as
Range, in order to reference them in formulas or in the VBA code. Each

138 CHAPTER 4. ARTIFACTS COMPREHENSION

Workbook may be composed of zero or more NamedRange instances. In
addition, Excel provides a data validation feature that can be exploited to
define restrictions on what data can be entered in a cell. These restrictions
can be defined through several types of data validation rules involving
additional operands. As an example, a Data Validation Rule of type List
indicates that a cell can be filled with one of the values specified by the
operands that may be Ranges of cells. In order to represent this aspect
of Excel, in the proposed conceptual data model a Cell may be associated
with a DataValidationRule Class that is characterized by a type and a list
of operands.

All these classes represent entities that logically implement the ’Data
Layer’ of the application. In addition, each Worksheet may also in-
clude items responsible for implementing the User Interface offered by the
spreadsheet. In particular, a Worksheet may include 0 or more Shapes, i.e.
specific widgets enriching the User Interface offered by the spreadsheet.
Each Shape is characterized by its name (for its identification) and, even-
tually, by a caption representing the text shown above the shape. Three
specific types of shape are represented by the ActiveX Control, Form Con-
trol and Auto Shape classes.

The FormControl shape class represents the original GUI objects that
are compatible with earlier versions of Excel and can be used either to
interact with cell data without using VBA code, or to run a Macro. The
ActiveX Control class contains GUI objects more complex than the Form
Control ones since they provide richer interactions to the final user having
more events that can be handled. The AutoShape class represents drawing
objects that may overlay the Excel GUI.

Each Workbook may have its User Forms too. The UserForm class,
characterized by its name and title caption, represents the custom windows
containing zero or more ActiveX Controls.

Finally, the model includes several classes representing the VBA code

4.3. THE PROPOSED SOLUTIONS 139

included in the application. The VBProject class represents the over-
all VBA code belonging to the application. It is organized into one or
more Code Module instances representing VBA code containers. There
are four types of VBA code modules, represented by the classes Document
Code Module, User Form Code Module, Class Code Module, and Standard
Code Module, respectively. The Document Code Modules class is meant
to enclose the event handlers belonging either to the Workbook or to its
Worksheets. The User Form Code Module class contains the VBA code
related to the event handler belonging to the User Forms. Each User
Form is associated to its User Form Code Module class. The Class Code
Module includes the VBA code defining custom classes and the Standard
Code Module includes code snippets related both to custom functions and
macros. A Code Module may include zero or more Procedures. A Proce-
dure class represents a VBA code block and is characterized by its name,
visibility, LoC and Commented Lines of Code (CLoC). VBA provides
three types of procedures that are Subs, Functions and Properties rep-
resented by Sub, Function and Property classes respectively. A Sub is a
procedure that does not have any returned value whereas the Function
does have a returned value and can be used inside a cell as a user-defined
formula. A Property procedure is meant to be used in a Class Code Mod-
ule to provide both set and get methods for its attributes.

Modeling the relationships between VBA-based Excel applica-
tion components

The class diagram reported in Figure 4.12 shows how different spread-
sheet entities can be associated with each other due to relationships im-
plemented either by means of VBA code or other Excel mechanisms (such
as formulas or data validation rules).

The main entity shown in this model is the Procedure class that may
present three types of association relationship with User Form entities

140 CHAPTER 4. ARTIFACTS COMPREHENSION

that are due to specific VBA code statements included in the procedure.
These relationships are reported in the left part of Figure 4.12. The shows
association relationship indicates that a Procedure may instantiate and
render zero or more User Forms. The unloads association tells that a
Procedure is potentially able to close zero or more User Forms, while the
hides relationship indicates that a Procedure may make invisible a set of
User Forms. These three associations have a bidirectional navigability. In
other words, a User Form may be loaded, unloaded or hidden by more
Procedures.

Procedure

UserForm

Cell

Worksheet Workbook

Sub

-event : Event

Event-Handler

Shape

DataDependency

Event-Handled

Element

-FormulaName

Formula

-DataValidationRule

DataValidation

-ProcedureName

VBACode

0..*

1..*

is called by

calls

0..*

0..*

0..*

0..*

is shown by

shows

0..*

0..*

reads

0..*

writes

0..*

0..*

is hidden by

hides

0..*

0..*

is unloaded by

unloads

0..*

0..*

reads

0..*

0..*

Figure 4.12. Conceptual Data Model - Excel Specific Relationships

The self-association calls between Procedures indicates the well-known
calling relationship between VBA procedures. Moreover, the model re-
ports that a Procedure may have reads and writes associations with zero
or more Cells. The former association means that a Procedure may load
the value of a set of Cell, whereas the latter one indicates that a Procedure
potentially changes the value of a group of Cells. Specific types of Shapes,
like ComboBoxes and Labels, may have a group of Cells as data source.
This relationship is represented by the reads association that may exist
between a Shape and zero or more Cell entities.

The model also reports some relationships concerning the event han-

4.3. THE PROPOSED SOLUTIONS 141

dling.
An Event-Handler is a specific type of Sub procedure. Each Event-

Handler is triggered whenever a specific event is fired on its Event-Handled
Element. The Event-Handled Element class generalizes the set of entities
that may have a registered Event-Handler, such as Workbook, Worksheet,
UserForm and Shape. Eventually the model reports some data dependen-
cies between spreadsheet entities.

The Data Dependency association class between Cells indicates an
inter-cells dependency that may be specialized in three different classes:
Formula, Data Validation, or VBA Code.

A Formula dependency exists between a cell C and n ranges of cells
(R1, . . . , Rn), if C contains an Excel formula having (R1, . . . , Rn) as operands.
There is a Data Validation dependency relationship between a cell C and
a range of cells R, if C has a Data Validation rule of type List having R
as operand. A VBA Code dependency relationship exists between a cell
Ci and a cell Cj if a VBA procedure Pi writes in Ci a value based on the
computation of the value contained in the cell Cj .

4.3.3 The EXACT Tool

The reverse engineering tool EXACT4 has been designed to analyze a
running VBA-based Excel application and to recover an instance of the
Conceptual Data Model presented in Section 4.3.2. Moreover, the tool
exposes the information contained in this model by means of several rich
and interactive views about the subject application that describe it at
different levels of detail.

In order to provide the end user with an intuitive and simplified access
to the tool functionality, EXACT has been implemented as an Excel add-
in component that extends the native Excel interface by a ribbon menu
composed by several buttons. Each button can be used to generate a

4http://github.com/reverse-unina/EXACT

http://github.com/reverse-unina/EXACT

142 CHAPTER 4. ARTIFACTS COMPREHENSION

specific type of view about the application. The tool has been implemented
using C# technology. In the following, I show further details about the
analysis implemented by the tool and the views it provides.

The reverse engineering technique

The analysis technique implemented by EXACT is based on three
steps that are performed while the application is in execution in the Excel
environment. Fig. 4.13 reports, for each one of these steps, the artifacts
required as input and the ones produced as output. In the first step,
named Structural Analysis, the Excel Object Model of the Running Excel
Application is analyzed in order to get information about its structure.
This step is performed exploiting the APIs offered by the PIAs library.
The extracted information is used to reconstruct a partial instance of the
conceptual model shown in Fig. 4.11. This instance will be stored into an
XML file. Each node of this file represents instance of a retrieved element
of the conceptual model with its properties. Moreover, the VBA code
embedded in the application is extracted and maintained by the tool.

Figure 4.13. The Reverse Engineering Process

4.3. THE PROPOSED SOLUTIONS 143

The subsequent VBA analysis step is performed to refine the partial
model instance obtained as output of the previous step. An island parsing
[145] of the VBA source code is executed, i.e., only source code fragments
of interest are parsed [146]. In this step, the information of the partial
model instance is also exploited. The parser is structured in several pro-
cedures aimed at recovering further elements and relationships. These
procedures were designed by taking into account peculiar Excel and VBA
characteristics. As an example, the pseudo code shown in Algorithm 1 de-
scribes one of the procedures I implemented for inferring the out-coming
relationships starting from the Procedure entities. The algorithm exploits
an instance of the ExcelModel class that provides the methods for creat-
ing, querying, updating and persisting the model instance.

The algorithm retrieves all the CodeModule objects belonging to the
model instance. All the procedures composing the retrieved code modules
are then analyzed. In particular, the tool applies specific string pattern
matching rules on the signature of the analyzed procedures for compre-
hending if they are event handlers of a GUI element. As an example, the
Procedure.signature.equals(GuiElementName_EventName) rule is one
of them. Other string pattern matching rules are used to identify poten-
tial procedure call relationships. Moreover, specific regular expressions are
aimed at identifying if the analyzed procedure shows/hides/unloads User
Forms, reads data from cells or writes data in cells. All the retrieved rela-
tionships are used to refine the model instance. To this aim, the update

methods provided by the ExcelModel class are exploited.

144 CHAPTER 4. ARTIFACTS COMPREHENSION

Algorithm 1 Algorithm inferring dependency relationships out-coming
from Procedure entities

CodeModules[]← excelModel.getCodeModules();
for all CodeModule c ∈ CodeModules[] do

Procedures[]← c.getProcedures();
for all Procedure p ∈ Procedures[] do

{(1) check if p is an event handler}
eventHandler ← excelModel.checkEventHandler(p);

{(2) find the procedures called by p}
calledProcedures[]← findCalledProcedures(p);

{(3) find the user forms shown, hidden and unloaded by p}
shownUserForms[]← executeRegExp(p, ”([,]∗).Show([,]∗)[s|(]?”);
hiddenUserForms[]← executeRegExp(p, ”([,]∗).Hide([,]∗)[s|(]?”);
unloadedUserForms[]← executeRegExp(p, ”([,]∗).Unload([,]∗)[s|(]?”);

{(4) find the cells read by p}
readCells[]← executeRegExp(p, ”([,]∗).Cells([,]∗)[s|(]?”);

{(5) find the cells written by p}
writtenCells[]← executeRegExp(p, ”([,]∗).Cells([,]∗)[s|(]?”);

{Update the Model Instance}
excelModel.updateEventHandler(p, eventHandler);
excelModel.updateCallsRelationships(p, calledProcedures[]);
excelModel.updateShowsRelationships(p, shownUserForms[]);
excelModel.updateHidesRelationships(p, hiddenUserForms[]);
excelModel.updateUnloadsRelationships(p, unloadedUserForms[]);
excelModel.updateReadsRelationships(p, readCells[]);
excelModel.updateWritesRelationships(p, writtenCells[]);

end for
end for

4.3. THE PROPOSED SOLUTIONS 145

The Views Generation is the last process step, where the current model
instance is queried to abstract and to produce several types of view about
the subject application.

Views produced by EXACT

EXACT generates high-level interactive and interconnected views about
the Excel application in execution. These views can be browsed to obtain
information about the application at different levels of detail. The tool
exposes both graph-based and list-based views.

The graph-based views may result familiar to Excel end users, since
they are very similar to the ones provided by the Excel environment for
representing inter-cell dependencies (e.g. Excel Inquire5). These views
are rendered in Microsoft Windows Forms exploiting the NodeXL Class
Libraries6 for the graph generation. The list-based ones are intended to
provide an enumeration of the elements of the application that can be
further analyzed by the end user. They are rendered through Microsoft
Custom Task Panes. A Navigation feature was implemented in order to
allow the end users to easily navigate between different interconnected
views. Moreover, EXACT offers a Flying feature that allows to navigate
between an element of the view and the corresponding part of the Excel
application. In the following I present the provided views with reference to
a real Excel Application containing VBA code. This application is named
GolfTeeOffForm7 and handles the booking of a golf course.

5https://support.office.com/en-us/article
/What-you-can-do-with-Spreadsheet-Inquire-ebaf3d62-2af5-4cb1-af7d-e958cc5fad42

6http://nodexl.codeplex.com
7http://www.contextures.com/GolfTeeOffForm.zip

https://support.office.com/en-us/article
/What-you-can-do-with-Spreadsheet-Inquire-ebaf3d62-2af5-4cb1-af7d-e958cc5fad42
http://nodexl.codeplex.com
http://www.contextures.com/GolfTeeOffForm.zip

146 CHAPTER 4. ARTIFACTS COMPREHENSION

Graph-based Views

EXACT produces four different types of graph-based views named
Structural View, Relationships View, Event Handling Graph View and
Cell Dependencies Graph View, respectively. Each type of view focuses
on different aspects of the application.

Structural View. This view is intended to provide an overview descrip-
tion of how the application is organized. It renders the analyzed applica-
tion as a tree whose nodes represent its components (and each different
type of component has a different graphical icon as reported in the leg-
end of Fig. 4.14), while edges indicate containment relationships between
components. Its root node represents the Excel Workbook.

The view can be used to support systematic comprehension strategies,
typically adopted by end users who do not have any knowledge about the
subject application. Fig. 4.14 reports the Structural View recovered from
the GolfTeeOffForm application.

Figure 4.14. GolfTeeOffForm Structural View

Relationships View. It is a graph showing, for a selected component
of the application, the other components it is related with. The types

4.3. THE PROPOSED SOLUTIONS 147

of edge reported in the view coincide with the relationships included in
the Conceptual Model presented in Section 4.3.2. In particular, each edge
reports the role name of the relationship it represents. On the other
hand, the relationships between an element and the procedures handling
its events are represented by black edges reporting the event name.

The aim of this view is to support ’in-depth’ comprehension of how a
given component of the application relates with other components, which
are potentially scattered in many different parts of the spreadsheet ap-
plication. As an example, if an end user is interested in understanding
additional details about the frmChooseNames User Form, he can exploit
its related Relationships View, shown in Figure 4.15. The view allows the
end user to understand the procedures responsible to: (1) show the User
Form or (2) to hide it and (3) possibly the procedures calling them.

This view presents an edge labeled shows from the ShowPlayerForm
procedure towards the frmChooseNames User Form, indicating that the
User Form is rendered when the ShowPlayerForm procedure is executed.
The edge labeled onClick toward the ShowPlayerForm represents that
this procedure handles the Click event related to the Rectangle_4 (Open
Form) Shape contained in the MemberList Worksheet. The view also
shows that ShowPlayerForm is called by the Workbook_Open procedure
that handles the Open event of the Workbook.

Eventually, the view describes that the User Form is closed by the
cmdClose_Click procedure that handles the Click event related to the
CmdClose Button.

The same type of view also provides further details about the graph-
ical elements composing the GUI. If the selected graphical element is, as
an example, a ComboBox, the related Relationships View will show the
handled events along with the respective event handler procedures and
possibly the range of cells used to fill the items of the ComboBox. For
instance, Figure 4.16 shows the Relationships View about the cboPlayer1

148 CHAPTER 4. ARTIFACTS COMPREHENSION

ComboBox (reported in Figure 4.16a) contained in the frmChooseNames
User Form.

Figure 4.15. frmChooseNames Relationships View

(a) cboPlayer1 ComboBox (b) cboPlayer1 Dependencies
View

Figure 4.16. cboPlayer1 ComboBox Analysis

Event Handling Graph View. This view is useful for the comprehension
of event-based GUIs since it provides a link between the GUI elements and
the code implementing the business logic of the application, as well as a
link between the business logic and the involved data [147]. It is a direct
graph whose nodes represent either (1) the graphical objects which the
event handler is attached to through an event handler, or (2) the call graph
of the procedures called by the event handler, or (3) the data cells read
or written by each procedure, and hence potentially involved in the event
handler execution. The edges represent possible relationships between

4.3. THE PROPOSED SOLUTIONS 149

the nodes, according to the model of VBA-based relationships reported
in Figure 4.12 . This view is accessible through the Event Handlers List
View (that will be presented hereafter).

As an example, Figure 4.17b reports the Event Handling Graph View
related to the userForm_Initialize event handler. This view shows that
the event handler is called each time the Initialize event is triggered on
the frmChooseNames User Form. Moreover, the graph displays that the
event handler calls two other procedures, each one having two reads de-
pendencies with different cell ranges.

(a) User Forms Event
Handlers List View

(b) frmChooseNames_Initial-
ize Event Handling Graph View

Figure 4.17. User Forms Event Handlers List and Event Handling Graph
Views

Cell Dependencies Graph View. This view is a direct graph showing
inter-cells dependencies. Comprehending how cells are related to each
other is a well-known issue in the field of spreadsheets and it could be
considered as a classical comprehension problem where end users ask ques-
tions like "How did that data get into that field?" [147]. Cell dependencies
are recovered by exploiting both features offered by the PIAs library and
appositely crafted parsing features for the analysis of the VBA code. The
nodes of the graph represent either single cells or ranges of cells. The
edges describe the existing relationships among the nodes. Edges may be

150 CHAPTER 4. ARTIFACTS COMPREHENSION

labeled in three different ways. A Formula dependency existing between
cells is represented as an edge reporting the formula name. As an example,
the view reported in Figure 4.18a illustrates that the cell J2 belonging to
the TeeOffTimes worksheet depends on the cells B2, D2, F2 and H2 of
the same worksheet by means of the formula COUNTA.

A data validation stereotyped edge represents a Data Validation de-
pendency between cells. For instance, thanks to the Cell Dependencies
Graph View reported in Figure 4.18b it is possible to understand that the
cell J1 of the MemberList worksheet depends on the range of cells named
TimeList. Moreover, by clicking on the node representing the TimeList
cells range, EXACT reports that it corresponds with the cells A2:A32
belonging to the TeeOffTimes worksheet.

The VBA Code relationships between two cells are represented by
edges labeled as VBA. The cells involved in a VBA Code dependency
may be precisely identified by the tool when the VBA procedure contains
an explicit cell reference. In other cases, when the code presents implicit
or dynamically defined cell references, the cells cannot be identified by
static analysis. In the latter case, EXACT just gives the pointers to the
involved code that can be further analyzed by the end user through the
VBA Code Dependency Highlighting feature. Thanks to this feature, by
clicking on a node representing a cell involved in a VBA Cell Dependency,
a view that highlights the part of code that allows the abstraction of the
dependency is reported.

List-based Views.

EXACT provides two different List-based views, called Event Handlers
List View and Cell Dependencies List View, respectively. The former view
lists all the event handlers defined through the VBA code whereas the
second one lists all the dependencies that may exist between cells ranges.

Event Handlers List View. Since the GUIs of Excel applications are

4.3. THE PROPOSED SOLUTIONS 151

event-based systems where event handlers may be attached to each graph-
ical object of the GUI, a possible GUI comprehension strategy requires the
end users to interact with each widget for firing events on them and to
observe the resulting behavior of the application. The proposed Event
Handlers List View aims at simplifying this process, by providing a direct
access to event handlers that may be attached to different items of the ap-
plication. This list-based view is organized into three different tabs. The
Workbook tab shows all the event handlers included in the Workbook. The
Active Worksheet tab displays the event handlers attached to the work-
sheet being analyzed at run-time and the GUI elements it contains. In
the User Forms tab the event handlers that may be attached to the user
forms of the application and their GUI elements are listed. Figure 4.17a
lists the event handlers related to the frmChooseNames User Form. This
view is interactive and by selecting one of the listed event handlers, the
related Event Handling Graph View is rendered.

Cell Dependencies List View. This view enumerates all the depen-
dencies between cells grouped into three different tabs. The Formula tab
reports all the Formula dependencies. The second tab, named Data Vali-
dation, lists all the Data Validation dependencies given by data validation
rules. The VBA Code tab reports all VBA Code dependencies. Once
the end user selects one of the listed cell-dependencies, the related Cell-
Dependencies Graph View is rendered.

Metrics & Reports View.

Finally, EXACT provides a view reporting eleven different metrics
about the analyzed spreadsheet application, related either to its structural
components (such as # Worksheets, # User Forms, # Procedures, #
Event Handlers, # Used Cells, # Formula Cells, etc.), and to its VBA
code, such as VBA LOCs, CLOCs and the counts of the different types
of Procedures. This view also provides features to generate graphical and

152 CHAPTER 4. ARTIFACTS COMPREHENSION

(a) Formulas Depen-
dencies

(b) Data Validation
Dependencies

Figure 4.18. Different types of Cell Dependencies

textual reports (in html format) listing summary data and including the
views offered by the tool.

4.4 Evaluation of the Proposed Solutions

In order to evaluate the effectiveness of the proposed solutions, namely
the reverse engineering process for recovering Data Models and the EX-
ACT tool, I carried out different case studies in the automotive domain.
The conducted case studies are detailed in the following.

4.4.1 Evaluation of the Reverse Engineering Process

To analyze the effectiveness of the proposed process, I performed a se-
ries of case studies involving different spreadsheet based artifacts corpora
from the same industrial domain. The goal of these case studies was to
evaluate the applicability of the process and the acceptability and pre-
cision of the inferred models. In the first case study, I used the process
to reverse engineer the conceptual data model from a legacy Spreadsheet
based artifacts corpus implemented in Microsoft Excel. This system was
used by the Hardware-In-the-Loop (HIL) Validation Team of FCA and

4.4. EVALUATION 153

provided strategic support for the definition of high-level testing specifica-
tions, named Test Patterns. Test Patterns represent essential artifacts in
the overall testing process [148] since they allow the automatic generation
of test cases, the Test Objects, necessary to exercise the ECUs of auto-
motive vehicles. The generation process is carried out thanks to a lookup
table that embeds both the translation of high-level operations to the cor-
responding set of low-level instructions, and the mapping between input
and output data to the set of ECU pins. Test Patterns were implemented
by means of a predefined Excel template file organized into 7 worksheets,
referred to different phases of the testing process.

Figure 4.19. Inferred Conceptual UML class diagram for the Test Pattern
Information System

The worksheets embedded the model of the data. In the considered
context, such template has been adopted to instantiate a set of 30,615 dif-
ferent artifacts, constituting the overall spreadsheet-based corpus. Each
spreadsheet contained on average 2,700 data cells. All of these files in-
evitably shared the same structure (i.e., the data model) with a high
rate of replicated data (about 20% of data cells recurred more than 1,300
times, while about the 50% more than 100 times). This high rate of repli-
cation was mainly due to the fact that data were scattered among multiple
spreadsheets. Therefore, the underlying model was not normalized, with

154 CHAPTER 4. ARTIFACTS COMPREHENSION

any information about related data. In addition, the automatic verifica-
tion of data consistency and correctness was not natively supported. At
the end of the process execution I obtained a UML class diagram composed
of 36 classes, 35 composition relationships and 23 association relationships.
Seven of these classes are associated with the worksheets composing each
spreadsheet file, while the remaining ones are related to the areas and
subareas of each worksheet. Figure 4.19 shows the conceptual data model
class diagram that was automatically inferred by executing the process.
For readability reasons, I have not reported all the association relation-
ships and the associations multiplicities, whereas I reported all the classes
and the composition relationships that were inferred. Figure 4.20 shows
an example of rules execution on the Test Pattern sheet that is the most
complex one. By executing the rules, I was able to infer five classes, 4 asso-
ciation relationships and 5 composition relationships. Moreover, it shows
how the Rule 4 was able to infer the two classes Test Step and Expected
Results and Rule 6 proposed the association relationship between them.

Figure 4.20. Example of class proposal and its mapping with the spread-
sheet file

In the second and third case study, I analyzed two further systems
used by the company. The systems included a Software Factory Test
Case (called SoftWare Factory Test Cases (SWFTC)) repository and a

4.4. EVALUATION 155

KPI repository (hereafter KPI). The SWFTC repository contains essen-
tial artifacts of MIL andSoftware-In-the-Loop (SIL) testing process in the
considered company, since they allow the automatic generation of exe-
cutable MATLAB test scripts necessary to validate both the models and
the source code of the software components that will be deployed on the
ECUs. This information system is composed by 14,000 Excel files inher-
iting from a common template composed by 10 sheets. Each spreadsheet
contained 4,000 data cells on average. About the 75% of data cells are
replicated in the spreadsheets. KPI repository is a spreadsheet-based in-
formation system used to manage the key performance indicators of each
development project regarding a software component belonging to a spe-
cific type of vehicle. The information system is composed by 1,500 Excel
files inheriting from a common template composed by 8 sheets. These
spreadsheets contained 1,370 data cells on average. About the 77% of
data cells are replicated in the spreadsheets.

To support the process execution a prototype software application was
developed. It is implemented in C# and takes as input the location of
the spreadsheets composing the information system under analysis. It
accesses to the underlying Excel object model of each spreadsheet in order
to extract the raw data that are needed for the automatic execution of the
steps, i.e., spreadsheet’s structure, data content, properties of cells, etc..
The tool is able to provide as output an XMI file representing the inferred
Class Diagram. To implement the Step 7, the prototype exploits some
features offered by the Data Quality tool Talend Open Studio8.

Table 4.1 shows the results of the conceptual data model reverse en-
gineering process related to the three case studies. It reports the number
of classes and relationships that were automatically inferred from each
information system. After the analysis, I performed a validation step in
order to assess the acceptability and the precision of the inferred models.

8https://www.talend.com/products/ talend-open-studio/

https://www.talend.com/products/talend-open-studio/

156 CHAPTER 4. ARTIFACTS COMPREHENSION

Table 4.1. Reverse Engineering Results

Information
System # Classes # Association

Relationships
Composition
Relationships

SW TC 49 33 48
Test Pattern 36 23 35

KPI 25 12 24

To this aim I enrolled three experts from the company belonging to the
application domains of the three information systems.

I submitted them: (1) the inferred data models, (2) a report containing
the description of each inferred UML item and one or more traceability
links towards the spreadsheet’s parts from which it was extracted, (3) a set
of questions in order to collect the expert judgments about the validity of
the UML item proposals. I asked the experts to answer the questions and
thus I was able to assess the effectiveness of the overall reverse engineering
process by means of the Precision metric reported below:

Precision = |V.I.E.|
|I.E.| ∗ 100

I.E. is the set of the UML elements, i.e., classes, class names, class
attributes, relationships between classes and multiplicities of the relation-
ships that were inferred by the process. |I.E.| is the cardinality of the
I.E. set.

V.I.E. is the number of the inferred UML elements that were validated
by the industrial expert and |V.I.E.| is the cardinality of this set.

Table 4.2 shows the precision values I obtained for each information
system. The precision values reported showed that more than 80% of the
inferred elements were validated by the experts. In the remaining cases,
the experts proposed some minor changes to the candidate classes. As an
example, with respect to the first system, the Test Patterns one, the expert
decided to candidate additional classes by extracting their attributes from
the ones of another candidate class, or to merge some of the proposed

4.4. EVALUATION 157

Table 4.2. Evaluation Results

Information
System Precision (%)

SW TC 81
Test Pattern 84

KPI 92

classes into a single one.

Lessons Learned

I analyzed in depth the results of the validation steps in order to assess
the applicability of the rules used throughout the process. In this way, I
was able to learn some lessons about the effectiveness of the heuristic rules.
In particular, with respect to the class diagram reported in Figure12, I
observed that the expert proposed (1) to discard the PlotOutput class and
to move its attributes into the ExpectedResult one and (2) to extract a new
class, named Repetition, having the attributes repetition and eventTime
that were given from the candidate class named Test Step. Similar changes
were proposed also in the other two case studies I performed. I observed
that: (1) when the expert decided to merge two candidate classes into a
single one, these classes had been considered as different by Rule 4.2, since
they derived from two subareas having headers with different colors but
actually belonging to the same concept. Whereas, (2) when the expert
decided to extract an additional class from a candidate one and assigned
it a subset of the attributes of the inferred one the Rule 4.2, Rule 5 and
Rule 6 were not able to identify this extra class since the cells associated
to these two concepts had the same formatting and layout style. As a
consequence, the proposed process was not able to discriminate between
them. In both cases the process failed because the spreadsheet did not

158 CHAPTER 4. ARTIFACTS COMPREHENSION

comply with the formatting rules exploited by the process. I studied in
detail the cases in which the experts proposed the changes in order to
understand if it was possible to introduce new heuristics. In the case (1) I
was not able to find any common property between cells belonging to the
classes that were proposed to be merged by the expert, as a consequence
no new heuristic was introduced. In case (2) I observed that the expert
proposed to extract the columns/rows of a candidate class into a new one
when they presented a high level of data replication percentage (>80%).
On the basis of this observation I proposed the following heuristic rule
that can be applied as a further Step of the proposed process, named
Step 8. In this step, the Rule 8 is exploited. This heuristic is applied
to the overall corpus of spreadsheets. It analyzes the data contained in
the columns/rows belonging to the classes that were inferred at the end
of Step 7. If two or more columns/rows related to a given class Ci have
a data replication percentage that is higher than 80% then a new class is
extracted from the original one. The attributes of the extracted class have
the same name of the considered columns. The extracted class is named
as follows: NameofCiExtractedi. A relationship association is inferred
between the classes. The multiplicity of the association on the side related
to the class Ci is equal to 1 whereas the one on the other side is 1..*. The
data quality tool Talend was employed to implement this heuristic. As
an example, by applying the Step 8 on the Test Step class I was able
to obtain a result similar to the one proposed by the expert. In detail,
the Rule automatically extracted a class, named TestStep_Extracted1,
having the attributes related to the repetition and eventTime columns.
The new class was inferred since the level of data replication of the two
considered columns was higher than 80%. Figure 4.21 shows one of the
data analysis views provided by Talend. The histogram reports the results
of the analysis about the data cells belonging to the columns repetition
and eventTime. By applying the formula reported below it is possible

4.4. EVALUATION 159

to observe that in this case the percentage of data replication is equal to
93,8%.

DataReplicationPercentage = RowCount−DistinctCount
RowCount ∗ 100

Figure 4.21. Example of a histogram reporting a data replication analysis
on the class Test Step of an example spreadsheet

Figure 4.22 shows an example of the application of the Step 8 on
the candidate class Test Step. To confirm the validity of the Rule 8, I
applied the Step 8 to the models that were inferred by the previous process
and measured the precision of the resulting class diagrams. The results
reported in Table 4.3 show that by applying this step the effectiveness
of the whole process increases. As to the rules I used to associate the
candidate classes with a name, only in 21 over 110 cases they failed, since
the spreadsheets did not include meaningful information to be exploited for
this aim. Furthermore, I observed that in some cases the expert decided
to discard some of the proposed composition relationships between the
inferred classes. This fact occurred when the proposed conceptual class
diagram presented a particular pattern, as reported in Figure 4.23. In this
case, the expert decided to move the attributes of the leaf class (Sheet_-
SubArea1) to the Sheet1 class and to remove the remaining classes. This
specific pattern occurred 8 times and in 6 cases the expert decided to make
these changes. This result showed the need to introduce new rules aimed
at reducing the complexity of the class diagram that may be used in the
occurrence of this particular pattern.

160 CHAPTER 4. ARTIFACTS COMPREHENSION

Figure 4.22. Example of Step 8 execution

Table 4.3. New Process Results

Information
System Precision (%)

SW TC 90
Test Pattern 92

KPI 95

4.4.2 EXACT Tool Evaluation

To validate the proposed reverse engineering tool, I decided to assess
its usefulness in aiding the comprehension of real VBA-based Excel spread-
sheet applications. To this aim, I performed a qualitative case study [149]
in a real automotive industrial context, with the support of members of
my research group. More in detail, this study was carried out in a Unit
of an automotive company having approximately one hundred employees
devoted to the development of Electrical and Electronic systems. In this
context, several VBA-based spreadsheet applications are used to support
different phases of the model-based embedded software development pro-
cess. The study was carried out to answer the following research questions:

RQ1 How does EXACT support professional end users to comprehend
VBA-based spreadsheet applications?

RQ2 What are the main limitations of EXACT according to the end-users’

4.4. EVALUATION 161

Figure 4.23. Example of Class Diagram reduction proposed by the domain
expert

point of view?

The proposed RQ1 will guide in comprehending whether or not EX-
ACT can be considered a valuable support for professional end users in the
correct accomplishment of comprehension tasks involving real VBA-based
spreadsheet applications. On the other hand, the results of RQ2 will help
to understand the aspects of EXACT that do not work well and need to
be improved.

Study design

Comprehension is not an end goal, but it is a step needed to carry out
different tasks: maintenance, software inspection, quality evaluation and
testing [141]. According to this statement, we decided to evaluate the use
of EXACT in supporting maintenance activities whose execution needs
the comprehension of spreadsheet applications. Moreover, we intended
to explicitly assess the correctness of the comprehension results obtained
with the support of the tool.

162 CHAPTER 4. ARTIFACTS COMPREHENSION

Objects.

As objects of the study we selected real maintenance projects from the
ones of interest for the company and that met the following criteria:

• the project had to involve a nontrivial VBA-based spreadsheet ap-
plication;

• the project had not yet started and no staff had been assigned to it.

On the basis of these criteria we selected three real projects.

Table 4.4 reports for each selected project a brief description and the
involved application.

The applications involved in the selected projects had been used in
the company for years and underwent several maintenance interventions.
They were mainly used as data storage and they provided several features
of data entry, data analysis and data validation. Table 4.5 shows some
complexity metrics about the applications involved in the selected projects.
These applications were nontrivial, since they presented a rich and com-
plex GUI and included a relevant part of VBA code composed by more
than one thousand lines of code. Moreover, the applications were hard
to be analyzed and comprehended because they did not present external
documentation and their internal documentation was inadequate. For all
the applications, the percentage of CLOC (Comment Lines Of Code) over
the number of LOC (Lines Of Code) was lower than 3%, as evidenced by
Table 4.5. Many of the GUI widgets implemented in VBA code did not
present a meaningful name, since they had been automatically generated
by the VBA Editor. For each application the percentage of Shapes having
default names was 38%, 67% and 54%, respectively.

4.4. EVALUATION 163

Table 4.4. Selected Industrial Projects

Project
ID

Involved
Applica-
tion

Project Description

P1 A1

Reverse Engineering: this project involved the
migration of the functionalities provided by A1
towards an MVC-based Web Application. The
main objective of this project was the reverse
engineering of the business logic and the user
functionality exposed by the application.

P2 A2

Re-Engineering: this project required the execution
of a re-engineering process involving A2. The
application had to be re-engineered towards a

Web-based architecture. Both the structure of the
data contained in the spreadsheet and the

functionalities and the user interfaces defined
through the use of VBA code needed to be

comprehended.

P3 A3

Re-Documentation: This project was carried out
with the aim of re-documenting A3. This

application was completely undocumented since no
description of the functionality it offers was

available in the company. The main aim of this
project was to produce a User Manual listing all the

functionalities it exposes.

Subjects.

To conduct the case study, we recruited company employees. We con-
sidered employees having different roles in the company. The inclusion
criteria we defined to select the subjects are described below.

• Each subject had at least one year of experience using and designing
Excel applications.

• Each subject had been involved in more than one project related to
VBA-based spreadsheet applications.

164 CHAPTER 4. ARTIFACTS COMPREHENSION

Table 4.5. Metrics about the Applications

Metrics A1 A2 A3
Worksheets 7 10 8
User Forms 16 6 6
Shapes 279 54 26
Default Named Shapes 105 36 14
Used Cells 17902 45298 5210
Formula Cells 0 2107 508
Code Modules 29 34 16
Procedures 164 72 34
Event Handlers 87 35 21
LOC 8020 4168 1320
CLOC 80 97 12

• Each subject had not to be familiar with any of the applications A1,
A2, and A3.

We selected 15 electronic engineers who agreed to participate in the
case study and who met the defined inclusion criteria. The subjects had
different levels of expertise on the use of spreadsheet applications: on
average a participant had 4 years of expertise working on 8 projects. None
of the recruited subjects had skills in software engineering.

The participants were grouped in 3 different teams (named Team A,
Team B and Team C) composed of five participants. Each team mixed
employees from several departments having different years of experience
and number of projects in which they had been previously involved.

Box-plot diagrams related to the years of experience and the number
of the projects are reported in Figure 4.24. As the diagrams show, we
distributed participants in order to guarantee teams with similar distribu-
tions.

Moreover, for each subject application we recruited in the company

4.4. EVALUATION 165

(a) Years of experience (b) Number of projects

Figure 4.24. Teams Statistics

an end user who had been involved in the maintenance of the application
in the past and had a deep knowledge about it. Each end user could be
considered as an expert of one of these applications.

Case Study Procedure.

I report the procedure we followed to carry out the case study. It was
performed in five different steps.

As first step, we assigned each project to one of the teams: P1, P2
and P3 were assigned to Team A, Team B and Team C, respectively. We
did not impose the teams any time limitation to accomplish the projects.
However, we recommended them to follow the ordinary company stan-
dards in the execution of their projects. Moreover, we did not impose
them any specific work assignment or to apply any particular comprehen-
sion process or strategy. This choice is coherent with the work presented
in [150] that shows how each professional follows its own process to com-
prehend an application. We just asked them to organize their work and
to use EXACT as best as they considered. Each team planned the tasks
needed for accomplishing its project goal. According to the team organi-
zation, one or more tasks were assigned to each participant that executed
them individually.

In the second step one of the authors explained to all the partici-

166 CHAPTER 4. ARTIFACTS COMPREHENSION

pants how the features provided by EXACT can be used. To this aim, a
four-hours training session was performed. More in detail, the researcher,
expert in the use of EXACT, explained through examples how to use the
different features offered by the tool. During the training, the GolfTeeOff-
Form application was exploited for showing the use of EXACT. After the
training, each team carried out its assigned project.

When the teams accomplished the projects, we performed a data collec-
tion step. We conducted a semi-structured interview with each participant
to gather information about the use of EXACT. The questions regarding
the use of EXACT are reported in Table 4.6.

Table 4.6. Questions

Q1 Which comprehension tasks did you perform to carry out
the assigned project?

Q2 For each comprehension task executed exploiting EXACT,
which results did you obtain?

Q3 For the execution of each comprehension task, how did
you use EXACT?

Q4 Which views provided by EXACT did you exploit for the
accomplishment of each comprehension task ?

Q5 How do you rate the views that were exploited for the
accomplishment of each comprehension task ?

Q6 Did you face difficulties in the use of the views provided
by EXACT? Explain these difficulties, if any.

Q7 What limitations of EXACT did you observe in the
accomplishment of the tasks?

These semi-structured interviews guided us to obtain the evidences
that allowed us to answer the research questions. Since in the study we
did not ask to execute a specific comprehension process, the answers to Q1
and Q2 allowed us to discover which comprehension tasks were executed
by each participant and which results they achieved. Q3, Q4 and Q5
were intended to understand how EXACT supported the end users in the

4.4. EVALUATION 167

execution of the comprehension tasks. Q6 and Q7 gave us information
about the difficulties faced by the participant in using EXACT and its
main drawbacks.

In the fourth step, a data analysis was performed. In order to improve
the reliability of the study, two different researchers analyzed the collected
data independently. They coded the interviews in order to gain the rel-
evant information and to analyze them. The results of the analysis were
compared and no significant anomalies were evident. Moreover, to avoid
misinterpretations, the results of the analysis were also reviewed by the
participants.

Finally, in order to evaluate the correctness of the comprehension re-
sults, an Assessment step was performed. In this step, we submitted to
the experts of the subject applications the answers given to Q2 by the pro-
fessional end users. We asked them to validate the comprehension results
and to rate them according to the following discrete scale: 1 if the result
was judged as incorrect, 2 if the result was considered as partially cor-
rect, and 3 if the result was considered as correct. When the same task
was performed more time in the same project, we evaluated the average
of the expert judgments.

Findings

In this section I report the findings of the study related to: (1) the
comprehension tasks executed with the tool, (2) the judgment about the
correctness of the comprehension results given by the experts, (3) the
features and views of EXACT exploited by the subjects, (4) the judgments
related to the features offered by the tool given by the end users and (5) its
main limitations. Table 4.7 reports, for each project, the comprehension
tasks that were executed with the support of the tool. We considered
that a comprehension task was executed in a project if it at least one of
the team participants performed it with the support of EXACT. Table

168 CHAPTER 4. ARTIFACTS COMPREHENSION

4.8 summarizes, for each comprehension task, the average of the expert
judgments about the correctness of the comprehension results. Moreover,
an additional finding of the study regarded the comprehension strategies
followed by the participants using the tool. These strategies were collected
and described according to the classifications reported in [147, 151].

P1 - Reverse Engineering Project.

As reported in Table 4.7, the team A performed overall 12 different
comprehension tasks for accomplishing P1. Moreover, the data reported
in Table 4.8 indicate that 10 of the comprehension results were judged as
correct by the expert and the remaining ones were considered as partially
correct. More in detail, the result of the execution of the T14 comprehen-
sion task was considered as not completely correct by the expert since some
dependencies of a specific cell range were not found by the participants.
In particular, several dependencies defined by means of VBA procedures
that needed a manual investigation were not correctly comprehended by
the participants. Similarly, the T15 comprehension task was also consid-
ered not completely correct. In this case, the participants were not able
to identify some of the cells involved in one of the application features.

Four participants used the Structural View as starting point of their
comprehension process. Thanks to this view they easily succeeded in un-
derstanding the general structure of the application and its composing
elements. Three of them needed to deeply investigate the relationships
among the elements of the application. To this aim, they exploited the
Navigation feature for rendering the Relationships View of each composing
element. The analysis of these views allowed them to understand how the
elements of the application were interconnected. The fifth subject followed
a different approach starting the comprehension process by exploiting the
Event Handlers List View. Thanks to this view he was able to gather a list
of all the event handlers defined on each Worksheet composing the appli-

4.4. EVALUATION 169

Table 4.7. Executed Comprehension Tasks

CT Comprehension Task Description P1 P2 P3

T1 What are the worksheets composing the
application ? 3 3 3

T2 What are the widgets included in a
worksheet ? 3 3 3

T3 What are the User Forms included in the
application ? 3 3 3

T4 What are the widgets composing a User
Form ? 3 3 3

T5 What are the procedures included in the
application? 3 3

T6 What is the list of the features accessible
through the GUI of the application? 3 3

T7 What procedures depend on a specific
procedure? 3

T8 What events are handled by a specific GUI
widget? 3 3 3

T9 What procedures may be executed when a
specific event is fired on a GUI widget? 3 3

T10 What is the fan-in of a specific procedure? 3

T11 What is the fan-out of a specific procedure? 3

T12
Which procedures allow the rendering of a
specific User Form ? 3 3 3

T13
Which procedures allow the hiding of a
specific User Form ? 3 3 3

T14
What are the dependencies of a specific
range of cells? 3 3

T15
What are the cells needed in the execution
of the features provided by the application? 3 3

170 CHAPTER 4. ARTIFACTS COMPREHENSION

Table 4.8. Average correctness judgments (AJ) about the comprehension
results

CT
AJ -
P1

AJ -
P2

AJ -
P3

T1 3 3 3
T2 3 3 3
T3 3 3 3
T4 3 3 3
T5 3 - 3
T6 3 - 3
T7 - 3 -
T8 3 3 3
T9 3 3 -

T10 - 3 -

T11 - 3 -

T12 3 3 3

T13 3 3 3

T14 2 2 -

T15 2 2 -

3 correct; 2 partially correct;
1 incorrect

4.4. EVALUATION 171

cation. Since the subject was interested in comprehending which elements
of the application were involved in the execution of each event handler,
he exploited the Event Handling Graph Views. He adopted the same ap-
proach for comprehending the behavior of the event handlers offered by
the User Forms of the application.

All the participants appreciated the Flying feature since it allowed
them to easily map the elements reported in the exploited views with
the corresponding parts of the application without navigating it. As an
example, one of the subject reported that "To better understand the appli-
cation, the graph-based views were not always enough for me. Sometimes,
I needed to know which parts of the application were actually referred by
the elements of the graph I was analyzing. Thanks to this feature I was
able to rapidly navigate the application by exploiting the graph represent-
ing it." The Cell Dependencies List View was exploited by all the subjects
involved in P1 for reconstructing the inter-cell dependencies. Thanks to
this view they were able to understand that no formula was used in the
application. As a consequence, they used both the VBA Code and Data
Validation Cell Dependencies Views. Three out of five participants also
exploited the Metrics and Reports View, but just to review the proposed
metrics. No participant exploited the report proposed by EXACT.

According to these finding, I could conclude that all the participants
followed a systematic comprehension strategy aiming at achieving an high
level comprehension of the application structure.

As to the answers given to Q5, all the participants gave EXACT a
positive evaluation. Three of them reported that the views they exploited
supported at least sufficiently their tasks. The Structural View was consid-
ered really helpful and its rate was more than sufficient on average. This
view made them aware of some aspects of the application not immediately
visible. One of the participants stated: "... the Structural View was really
helpful. Some of the elements present on the Worksheet were very difficult

172 CHAPTER 4. ARTIFACTS COMPREHENSION

to be identified without the support of this view. In fact, I was able to
discover both an hidden Worksheet and that the application had a Shape
that was difficult to be identified since it was positioned close to the row
9, 000 ...". The three subjects that exploited the Event Handling Graph
Views stated that these views guided them in the exploration and in the
understanding of the features provided through the GUI of the applica-
tion. They considered them useful since their use avoided the execution
of tedious tasks and allowed them to easily understand the impact of a
feature on different parts of the application. Only the support given by
the Cell Dependencies Views were considered just sufficient, since they
were considered too chaotic in some cases.

Different limitations were pointed out by the participants: (1) the lack
of a proper search mechanism related to the Cell Dependencies Views
and (2) difficulties in reading the Event Handling Graph Views related to
procedures having several data dependencies.

P2 - Re-Engineering Project.

As Table 4.7 shows, the accomplishment of P2 required the execution
of 13 different comprehension tasks. Moreover, data reported in Table 4.8
indicate that 11 of the comprehension results were judged as correct by the
expert and the remaining ones were considered as partially correct. The
T14 and T15 comprehension tasks were not considered completely correct,
according to the expert’s judgment. The dependencies of two different cell
ranges were not recovered correctly. They were VBA dependencies that
needed a further manual investigation. Moreover, the participants were
not able to identify all the cells involved in two different features offered
by the application.

Three participants started their comprehension process from the Struc-
tural View that was exploited to detect the elements of interest. Each
element was further analyzed through its Relationships View in order to

4.4. EVALUATION 173

understand its dependencies with the other elements of the application.
The other two participants, interested in comprehending the User Forms
composing the GUI, started their analysis from the Event Handlers List
View. In particular, they focused on the User Forms tab (see Figure 4.17a)
and used this tab for rendering the Event Handling Graph Views of each
handler provided by the forms. End users analyzed these views for under-
standing the dependencies between data cells and procedures that were
involved in the event handlers executions. The Cell Dependencies Views
were used by three subjects who were asked to modify the data structure
of the application. They mainly analyzed the ones due to VBA Code.
Subjects widely adopted the VBA Code Dependency Highlighting feature
for better understanding the VBA Code dependencies that were not stat-
ically defined. Only two participants exploited the Metrics and Reports
View to review the complexity of the application.

On the basis of the answers they gave, I could deduce that all the
participants followed an as-needed comprehension strategy. No subject
systematically navigated through all the elements composing the applica-
tion, but they focused only on the elements involved in their maintenance
task.

Analyzing the answers to Q5 I could state that all the subjects rated
more than sufficient the support given by EXACT. The Event Handling
Graph Views were considered the most helpful views. As an example,
one of the subject reported that "The Event Handlers List View and the
Event Handling Graph Views allowed me to explore the features offered
by the application in a more targeted and efficient way. I could easily
identify the elements potentially involved during the execution of a feature.
This allows me to test the feature of interest knowing which part of the
application needed to be examined." . The Structural View along with
the Relationships Views gave end users a more than sufficient support.
Also the support given by the Cell Dependencies View was considered

174 CHAPTER 4. ARTIFACTS COMPREHENSION

sufficient. Although, two subjects though that this kind of view need
some improvements. The Navigation feature was heavily adopted by all
the participants and was considered useful in the accomplishment of their
tasks.

Regarding the limitations of EXACT, two participants observed that
when a procedure had an high number of dependencies with data cells, the
Relationships Views and the Event Handling Graph Views became quite
difficult to be read. One of them remarked: " ... in these cases the tool
needs a feature to group the cell dependencies in some way, in order to
make the views more readable". Three subjects stated that VBA Code Cell
Dependencies Views should be improved avoiding the need to manually
investigate the VBA source code. The analyzed application presented two
different Excel Charts. EXACT does not have any feature for analyzing
the charts, since I did not consider them in the proposed conceptual model.
Two participants stated that they needed features for analyzing the charts
contained in the application and the data cells involved.

P3 - Re-Documentation Project.

The accomplishment of P3 needed the execution of 10 different com-
prehension tasks, as shown in Table 4.7. Moreover, data reported in Table
4.8 indicate that all the comprehension results were judged as correct by
the expert. Four participants started this project by preliminarily gener-
ating the report provided by the Metrics and Report View. They verified
if the report could be considered adequate as User Manual of the appli-
cation. Since the Report lacked some useful information, like screenshots
of the user interfaces, dependencies among cells ranges, etc. they needed
to exploit other features provided by EXACT. The Structural View and
the Relationships Views were exploited by the participants to compre-
hend the different parts of the application. Three participants were inter-
ested in re-documenting the features offered by the application through its

4.4. EVALUATION 175

GUI elements. To this aim the Event Handling Graph Views were widely
adopted. All the participants exploited the Flying feature during the ac-
complishment of their tasks, since in some cases they needed to capture
a screenshot of specific parts of the application related to the views they
were analyzing. Four participants exploited the Cell Dependencies Views
in order to document them into the User Manual. They were asked to
describe for each Worksheet of the application: (1) the cells whose values
change as the values of other cells vary; (2) the cells that may be filled
in only with specific values. To this aim they widely analyzed the Cell
Dependencies Graph Views related to the Formula and Data Validation
dependencies.

Thanks to the analysis of the process followed by the subjects involved
in this project, I was able to understand that all the subjects used EXACT
according to a systematic comprehension strategy.

Regarding the judgment of the features given by the answers to Q5
and views provided by EXACT, all the participants rated them more
than sufficient. The Structural View was the most appreciated one. Also
the support given by the Event Handlers List Views and Event Handling
Graph Views and by the Navigation and Flying features were rated more
than sufficient by all the participants.

Although, some limitations arose. Three participants stated that EX-
ACT lacked a mechanism for editing the provided views and updating the
generated reports. They also pointed out the need of a feature for select-
ing the elements of interest and for releasing them into the report. Four
participants recognized the need for a screen scraping feature to capture
and add screenshots of the application GUI to the report. Two subjects
stated that EXACT should provide a global view about the dependencies
among cells in order to ease their analysis.

176 CHAPTER 4. ARTIFACTS COMPREHENSION

Conclusions

The results of the case study allowed to answer the proposed research
questions.

RQ1: How does EXACT support professional end users to comprehend
VBA-based spreadsheet applications?

The end users exploited all the features produced by the EXACT tool
to approach the comprehension of unknown Excel applications. They
choose the views to be used depending on the maintenance task to be
accomplished and according to either systematic or ad-hoc comprehension
strategies. Overall, almost all the comprehension tasks performed with the
support of EXACT were carried out correctly by the end users.

On the basis of the end-users judgments, I could conclude that the
Structural View was able to orient them at an initial approach with an
unknown spreadsheet, offering an overview and comprehensive description
of all the different parts composing the application. On the other side, the
list-based views and the associated graph-based views were used to address
the specific comprehension issues that affect wide Excel applications, such
as the comprehension of the event management offered by the application,
or the detection of inter-dependencies between its different parts. In con-
clusion, the tool avoided the execution of repetitive and tedious tasks to
gather information and knowledge about the subject applications.

RQ2: What are the main limitations of EXACT?

The end users did not observe any particular or specific problem con-
cerning the functionality, the views, or the features offered by the EXACT
tool. They mostly indicated additional features of the tool they would ap-
preciate. These features included: 1) an advanced search functionality

4.4. EVALUATION 177

(such as a guided search) in order to better support the cell dependen-
cies analysis; 2) a more comprehensive view showing the different types
of dependency relationships; 3) the capability of analyzing further Excel
elements (such as Pivot Tables or Excel Charts) not yet addressed by the
tool; 4) some additional features for aiding the comprehension of not ex-
plicitly defined cell dependency relationships; 5) clustering mechanisms
for improving the readability of Event Handling Graph Views, as the the
size of these graphs grows.

Threats

Internal Validity. This aspect of validity needs to be evaluated when a
causal relationship is examined. To minimize the threat that the obtained
results could depend on the characteristics of the involved subjects, we
enrolled in the study subjects involved in different areas of the company
and having different levels of expertise. Moreover, this threat can be
further mitigated by considering a larger group of subjects from different
contexts. This aspect may be addressed in future experiments.

External Validity. External validity is related to what extent it is pos-
sible to generalize the findings and if these are of interest to people outside
the reported case. A possible threat could be the real representativeness
of the subjects and objects we choose to conduct the study. However, both
the subjects and objects we choose were very similar to others from differ-
ent contexts described in the literature [140] or in the stories reported by
the European Spreadsheet Risks Interest Group (EuSpRiG)9. To mitigate
this threat, a wider experimentation involving different types of subjects
and objects should be carried out.

9http://www.eusprig.org/stories.htm

http://www.eusprig.org/stories.htm

178 CHAPTER 4. ARTIFACTS COMPREHENSION

Reliability. The reliability is concerned with to what extent the data
and analysis are dependent on the specific researchers. Hypothetically, if
another researcher later on conducted the same study, the result should
be the same. To minimize this threat, the case study protocol and the
artifact produced was reviewed by a group of researchers of the univer-
sity. The case procedure we followed was reported, to the extent possible,
in this chapter. Furthermore, data collected and their analysis were re-
viewed by case subjects in order to avoid possible misinterpretations. To
increase the realism of the study we used real spreadsheets adopted by
our industrial partner that cannot be released due to confidentiality mat-
ters. Although similar studies can be conducted on different VBA-based
spreadsheet applications.

4.5 Related Work

A considerable number of works in the literature investigate problems
related to the comprehension of spreadsheets. Many of them focus on
the difficulties of understanding the global structure of a spreadsheet and
point out the necessity of evaluating the dependencies among its cells,
such as [152]. Other authors identify the need for different visualizations
to support spreadsheet comprehension, like Hodnigg et al. [153] who pro-
pose the use of complexity measures as indicators to choose the proper
visualization.

As to the tools supporting the visualization of the spreadsheet struc-
ture, Davis et al. [137] present an arrow tool aimed at supporting the au-
dit of a spreadsheet application representing data dependencies between
cells using arrows, Shiozawa et al. [136] propose a three-dimensional vi-
sualization of inter-cell dependencies to increase users comprehension of
spreadsheets and Breath et al. [154] implemented a three-dimensional vi-
sualization for spreadsheet based on the WYSIWYG (What You See Is

4.5. RELATED WORK 179

What You Get) paradigm.

Many contributions address the problem of inferring abstract data
models of the information extracted from a spreadsheet that may support
comprehension tasks. In [155] Mittermeir et al. introduce the concepts of
logical and semantic equivalent classes to support the comprehension of a
spreadsheets, while Hung et al. [156] present a technique based on explicit
extraction and transformation rules proposed by the users. Recently Chen
et al. [157] propose automatic rules to infer some information useful in
the migration of a spreadsheet into a relational database. They evaluated
the effectiveness of the proposed rules on a very large set including more
than 400 thousand of spreadsheets crawled from the Web. The works
of Abraham et al. [144, 143, 158, 159] instead propose techniques for
automatically inferring shared templates underlying a given spreadsheet
corpus that could be exploited for safe editing of the spreadsheets by end
users, avoiding possible errors. Also Ahmad et al. [160] propose simi-
lar approaches that exploit specific information about the type of data
contained in the spreadsheet cells. Clermont [161] instead introduces a
technique to analyze large spreadsheet programs decomposing them into
smaller units. Cunha et al. propose a technique to infer relational mod-
els from spreadsheets that exploits methods for finding functional depen-
dencies between data cells [162]. They also present techniques to infer
ClassSheets Models, previously introduced by Abraham and Erwig, from
spreadsheets [163]. They present a tool for embedding the visual rep-
resentation of ClassSheets Models into a spreadsheet system. In some
successive works, [164, 165, 166, 167], they propose a framework for the
employment of a Model Driven Development approach for the spreadsheet
context. In addition, they evaluated the impact of the proposed Model
Driven approach on users’ productivity through an empirical study [168]
and in [169] they perform a further empirically study aimed at comparing
the quality of automatically generated relational models against the ones

180 CHAPTER 4. ARTIFACTS COMPREHENSION

provided by a group of database experts.

Another set of relevant contributions is due to Hermans et al. who
propose a technique to recover a conceptual data model from spreadsheets
that is based on two-dimensional patterns proposed by the same authors
[142], as well as on other ones found in the literature (e.g. [170, 171, 172]).
The technique has been validated with respect to the spreadsheets corpus
proposed by Fisher and Rothermel [173]. Later, Hermans et al. presented
an approach to support users in understanding spreadsheet applications
by means of leveled dataflow diagrams [140]. The proposed diagrams were
intended to represent calculations within a spreadsheet. They evaluate the
proposed approach in a large financial company. In a successive work [174]
they propose a technique to detect data clones within spreadsheets and
to visualize them by means of dataflow diagrams. They quantitatively
evaluate the proposed data clone detection algorithm on the EUSES Cor-
pus [173] and the implication of data clones on real-life spreadsheets that
were used in a Dutch organization and in academia. Roy and Hermans
[175] presented a first study to evaluate the relevance of visual dependence
tracing techniques to understand cell-to-cell data flows. In the same work
they highlighted the need for a wider validation of visualization tools in
order to assess their effectiveness on real-life spreadsheet applications and
their usability.

Comprehension processes have been also presented for finding errors
and bad smells in spreadsheet applications. Hermans et al. investigate
the applicability of code smells to spreadsheet applications. In [176] they
analyze inter-worksheet smells, whereas in [177] they focus on formula
smells that were analyzed on the EUSES corpus [173] and on spreadsheets
developed by professional users. Abreu et al. [178] propose a technique to
automatically detect faults in spreadsheets using a catalog of spreadsheet
smells taken from [177, 179, 180].

The only contributions found in the literature addressing the analysis

4.6. CONCLUSIONS AND FUTURE WORK 181

of the code of procedures included in spreadsheets are due to Cheng and
Rival. These authors propose a static analysis techniques to infer type
constraints over spreadsheets cells to avoid type errors [181] and to detect
run-time type unsafe operations [182].

4.6 Conclusions and Future Work

In this Chapter I proposed the reverse engineering tool EXACT that
was designed to address the main comprehension issues that trouble VBA-
based Excel applications. This tool extends the Excel IDE offering analysis
and visualization features that can be exploited by end users involved in
the tasks of comprehending an existing application. Although the tool has
been developed just for VBA-based spreadsheet applications, many of its
features may be adapted for aiding the comprehension of spreadsheet ap-
plications implemented by different technologies. To this aim, the EXACT
conceptual data model should be adapted and specific code parsers should
be developed in order to correctly consider the specific characteristics of
those applications.

EXACT has been preliminary validated through a qualitative case
study that was conducted in a real automotive industrial context. The
study showed the usefulness of the tool in supporting the execution of
comprehension tasks carried out in real maintenance projects. The fea-
tures offered by the tool aided the end users in the execution of both
top-down and bottom-up comprehension processes. The experiment also
showed some limitations of the proposed tool and the need for additional
features.

In future work, I plan to extend the features offered by the tool and to
address some of its limitations emerged from the study. Moreover, I intend
to assess the effectiveness of the tool in a controlled experiment aimed at
comparing comprehension processes of Excel applications performed with

182 CHAPTER 4. ARTIFACTS COMPREHENSION

and without the tool. Eventually, an empirical study involving applica-
tions from different domains and end users from different contexts will be
also performed for validating the proposed tool.

Chapter 5
Supporting the adoption of
Software Product Lines in
Software Processes using Reverse
Engineering

In this Chapter, I report a software infrastructure I implemented for
supporting the introduction of SPL in industrial settings where Model
Based Design (MBD) software processes are adopted. The proposed ar-
chitecture, named AutoMative, exposes features for the semi-automatic
generation of Product Architecture (PA) from specification documents.
The feasibility of the architecture in supporting the introduction of SPL
approach was evaluated through an experience I performed in collabora-
tion with the FCA company for the application of the SPL in one of its
MBD processes.

183

184 CHAPTER 5. SPL ADOPTION

5.1 Introduction

Nowadays, the automotive market presents a huge number of vehicle
models and new models are placed on the market every year. In 2015 there
were 222 vehicle models available in the U.S. and 43 new models were intro-
duced 1. Vehicle models are tailored according to customer requirements
and preferences besides the different laws and the cultural preferences of
the market in which they are sold. This tailoring not only impacts on the
aesthetic design of the vehicle, but also on the functionalities it provides.
Functionalities typically range from basic safety functions, like brake and
airbag control, to driver assistance systems, like adaptive cruise control,
automatic parking and infotainment system. They are provided by spe-
cific control software made by almost 100 million lines of code that are
executed on 70 to 100 microprocessor-based ECUs networked throughout
the body of the car [183]. The variability of these functionalities has hence
a great impact on the control software implementing them.

In this scenario, automotive companies need to adopt cost-effective
software development processes in order to manage the variability of the
produced software. A case-by-case basis approach, where the software
variability is managed at the end of the development process, can no
longer be considered suitable to resolve these issues. Since that, more
systematic solutions need to be introduced [14].

Software Product Lines (SPL) approach has proven to be a successful
solution for handling the complexity and variability of the software de-
veloped in different domains as shown by several success stories reported
in [15]. According to Clements and Northrop [16], "a software product
line is a set of software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a

1http://www.statista.com/statistics/200092/total-number-of-car-models-on-the-us-
market-since-1990/

5.1. INTRODUCTION 185

prescribed way".

SPL were profitably applied in the automotive domain too, as reported
in [184, 185]. These works describe experiences at General Motors on
the application of SPL in the automotive context, for managing products
complexity and variability across the entire development lifecycle. To
this aim, a specific SPL aware software tool, i.e., BigLever Gears2, was
exploited. Even if a complete adoption is far from being reached, they
already getting value out of their efforts.

Although the SPL bring actual benefits to the software variability man-
agement, they strongly impact on the overall software life cycle. As a
consequence, one of the main challenges, for both academic and indus-
trial communities, is to find methodologies aiding the companies in the
adaption of their software development processes to the SPL [186].

In this Chapter, I describe the industrial experience performed in col-
laboration with a SoftWare Factory (SWF) of the FCA company. I report
the results of this experience in terms of: (1) the approach I applied for
adapting the current SWF development process to the SPL, (2) the infras-
tructure I designed and implemented for exploiting the SPL, (3) the costs
for introducing the approach, and (4) a brief discussion on the benefits
gained by SWF after the introduction of SPL.

The Chapter is structured as follows: Section 5.2 reports the industrial
context where I applied the approach presented in Section 5.3. Section 5.4
shows the feasibility of the approach and the results I obtained from its
application in the industrial automotive domain. Section 5.5 reports work
related to mine. Finally, Section 5.6 summarizes conclusions and possible
future work.

2http://www.biglever.com/solution/product.html

http://www.biglever.com/solution/product.html

186 CHAPTER 5. SPL ADOPTION

5.2 The Addressed Problem

I addressed the problem of introducing the use of SPL in one of the
embedded software development processes followed in FCA. More pre-
cisely, I adapted the usual development process carried out by its SWF
in a decoupled project for the implementation of the Instrument Panel
Cluster (IPC) control software.

The IPC, or Vehicle Dashboard, is the main component of the Human
Machine Interface (HMI) existing between the vehicle and the driver. It is
controlled by a dedicated IPC-ECU that elaborates the different signals
coming from the other ECUs composing the overall electric/electronic ar-
chitecture of the vehicle. Signals are processed in order to render on the
IPC information about the vehicle status.

Fig. 5.1 shows an IPC that is assembled on the dashboard of the
Fiat Punto3. It presents (A) a speed indicator, (B) a fuel level gauge,
(C) an engine coolant temperature gauge, (D) a tachometer and (E) a
multi-function display. In addition, it contains LED or lamp telltales and
acoustic signaling.

Figure 5.1. Fiat Punto IPC Example

3http://www.fiatia.com/fman-431.html

http://www.fiatia.com/fman-431.html

5.2. THE ADDRESSED PROBLEM 187

The FCA SWF, involved in the development of the application soft-
ware for the IPC-ECU, exploits a MBD approach [187]. SWF software
engineers receive requirements specification documents in different for-
mats, such as IBM DOORS and Microsoft Excel files, from teams of sys-
tem and components requirement engineers. Starting from these specifica-
tions, they develop prescriptive MATLAB/Simulink software architectural
models. Production embedded code is then automatically generated from
these models by exploiting the dSpace TargetLink automatic code gener-
ator tool4.

I analyzed the adopted MBD process and I observed that it suffered
from two main issues since no systematic reuse approaches were exploited.
As for the first issue, new prescriptive architectural models were developed
for each new vehicle, even if they implement same or very similar features.
Software engineers eventually just exploited opportunistic reuse strategies
such as clone-and-own or copy-paste-and-modify ones. It is well known
that these approaches are both error-prone and inefficient and they could
lead to resources waste. The second issue was related to the difficulties
in maintaining links and/or specific relationships between these models,
given that possible bug-fixes or modifications in one of their common parts
should be applied in all the different models separately.

I decided to introduce the use of SPL to overcome these issues, since
it is a well-known solution for these problems.

The introduction of SPL would require an adaption of every single
phase of the development process. This drastic change was considered too
risky. Instead, an incremental approach was undertaken, where I decided
to initially introduce SPL in the architectural design phase.

I defined an approach that allowed to adapt the MBD development
process followed in SWF towards the SPL. In order to exploit the SPL,
I designed and implemented an SPL infrastructure, named AutoMative,

4https://www.dspace.com/en/pub/home/products/sw/pcgs/ targetli.cfm

https://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm

188 CHAPTER 5. SPL ADOPTION

able to produce prescriptive MATLAB/Simulink architectural models tai-
lored for specific vehicles starting from their requirements specification
documents, in a semi-automatic way.

The approach I followed to introduce SPL in the architectural model
development phase is reported more in detail in the next section.

5.3 The Proposed Solution

Similarly to [188], my approach relayed on the execution of two differ-
ent processes: (1) a Domain Engineering process aimed at developing the
SPL Infrastructure and (2) an Application Engineering process needed to
generate specific products by exploiting this infrastructure. In the follow-
ing, I report more details about how these processes were carried out.

5.3.1 Domain Engineering

The main aim of this process was to identify the features of the IPC and
to define its Product Line Architecture (PLA). PLA provides the design
that is common to all SPL products, hence it describes all the mandatory
and varying features of the SPL domain [189]. A PA is obtained by tailor-
ing the PLA for a specific product. The tailoring is defined by means of
a Feature Profile (FP) representing the configuration of the overall archi-
tecture in terms of the features to provide and the values for configuring
them. The Domain Engineering Process required the execution of the
following activities:

Identify Features

it was carried out to infer a Feature Model of the IPC, where the
Feature Model is a widely used approach to describe commonalities and
variabilities in SPL. To this aim, I manually analyzed the IPC specification

5.3. THE PROPOSED SOLUTION 189

documents of different vehicle models and identified the main features and
the relationships existing among them.

Design the PLA

it was executed for designing the PLA of the IPC. PLA was actually
realized as a composition of configurable MATLAB/Simulink architectural
models. Each model was specific for one of the identified features and was
defined in terms of:

• composing parametric subsystems and their Variation Point (VP)s,
where a VP indicates a location in the model where a variation can
occur,

• configurable interconnections among parametric subsystems,

• constraints to be satisfied by both subsystems and interconnections.

In order to design the configurable MATLAB/Simulink architectural
models, commonalities and variabilities among different vehicle models
were identified. This can be done by employing a reverse engineering pro-
cess on the architectural models developed in previous projects and/or by
analyzing specification documents related to different vehicles. Once iden-
tified, commonalities and variabilities were exploited to define the fixed
and parametric parts of the generic architectural model.

Moreover, I specified the transformation rules needed to produce IPC
PAs. These rules define how instantiate and configure both the parametric
subsystems and the interconnections among them according to a given FP.

Define the Extraction Rules

it is executed to produce a FP starting from specification documents
of a given vehicle. This guarantees the semi-automatic generation of IPC

190 CHAPTER 5. SPL ADOPTION

PAs. Reverse engineering activity on various types of specification doc-
uments adopted by the company was performed in order to infer their
conceptual models. To this aim, I exploited the process defined in [190] to
recover models of the specifications expressed as spreadsheet information
systems. Exploiting these models, I defined specific extraction rules aimed
at analyzing the specification documents in order to identify the features
VPs and extract their values. Moreover, I also defined the rules needed to
map the extracted values and fill in a FP instance.

As an example, for the F1 feature, VPs and their values are identified
and extracted from different types of specification documents as shown in
Figure 5.2a and Figure 5.2b. The specification document of Figure 5.2a
reports for each behavior specification, its code, its key operating modes.
Each key operating mode has its behavior and configuration parameters.
The specification document of Figure 5.2b is another document report-
ing for each indication, the identifier of the associated Vehicle Function,
the identifier of the required behavior and its parameters. The values
extracted from the specification documents are used to fill in the FP, as
shown in Figure 5.2c. The FP reports for each feature, the involved indi-
cations, the required behaviors and their configuration parameters.

Develop the SPL Infrastructure

to support the automation of the application engineering process, I
developed an infrastructure, named AutoMative, that can be exploited
to semi-automatically produce IPC PAs tailored for specific products.
This infrastructure allows: (1) to handle the PLA, the configurable MAT-
LAB/Simulink models, the extraction and the transformation rules to be
applied and the implemented parametric subsystems defined in the domain
engineering process and (2) to automatically produce IPC PA starting
from the vehicle specification documents.

Figure 5.3 reports the AutoMative architecture. All the operations are

5.3. THE PROPOSED SOLUTION 191

(a) IPC Specifications

(b) IPC Behaviors Specs (c) IPC Feature Profile

Figure 5.2. Analyzed Specifications and Generated Feature Profile

managed by a Coordinator, that performs an orchestration of the compo-
nents in the architecture. The core of the architecture is a Model Trans-
former, that executes the transformation rules in order to produce a PA
starting from a FP. The Profile Manager, semi-automatically fills in a FP
according to the specification documents applying the defined extraction
rules. All the elements needed to generate the PAs are stored and managed
by the Repository component.

<<component>>

AUTOMATIVE

<<component>>

Coordinator

<<component>>

Model

Transformer

<<component>>

Repository<<component>>

Profile Manager
Execute Transformation

Modify Feature

Add Feature

Generate Model

Load Feature

Generate Model

Update Repository
Update Repository

Create Profile

<<delegate>>

<<delegate>>

Figure 5.3. AutoMative Architecture

192 CHAPTER 5. SPL ADOPTION

5.3.2 Application Engineering

The main goal of the Application Engineering process is to generate
PAs according to given vehicle specification documents by exploiting the
SPL infrastructure defined in the Domain Engineering Process. Two dif-
ferent activities need to be executed in this process:

Feature Profile Definition

it is performed to generate the FP of a specific vehicle starting from
its specification documents. If these documents comply with the models
inferred in the Extraction Rules Definition activity, then AutoMative is
able to automatically generate a FP. Otherwise, an additional manual
effort is required to fill in the FP values not automatically retrieved. In
this case, AutoMative provides features aiding the manual editing of the
missing values.

Product Architecture Generation

it is executed to automatically produce an IPC PA tailored to a specific
vehicle model on the basis of its FP. The automatic generation of PA is
performed by AutoMative that is able to: (1) analyze the FP, (2) generate
the MATLAB/Simulink models of the required features by instantiating
and configuring the needed parametric subsystems and the interconnec-
tions among them.

5.4 Evaluation of the Proposed Approach for the
development of a real IPC

To show the feasibility of the proposed approach, I adopted it for
introducing the use of SPL in the MBD development process for a subset
of the IPC features.

5.4. EVALUATION 193

Table 5.1. SPL complexity metrics

Feature
Implemented
Parametric
Subsystems

Identified
Variation
Points

F1 18 93
F2 17 76
F3 13 104
F4 3 196

Table 5.2. PA complexity metrics

Instantiated
Parametric
Subsystems

Filled
Variation
Points

40 164
124 418
208 1664
3 196

More in detail, the execution of the Domain Engineering Process al-
lowed us to implement the AutoMative infrastructure that was exploited
in executing the Application Engineering process for developing the IPC
PA for the Fiat TIPO.

The execution of the Domain Engineering process allowed us to identify
four main features of the IPC and to obtain its PLA. Table 5.1 reports,
for each feature, the number of the implemented parametric subsystems
and the overall number of identified variation points.

Regarding the costs of the Domain Engineering process, seven man-
months were spent for the AutoMative infrastructure development. On
the other end, the execution of the remaining activities required eleven
man-months.

194 CHAPTER 5. SPL ADOPTION

The execution of the application engineering process allowed us to ob-
tain IPC PA tailored to the FIAT Tipo. Table 5.2 reports the complexity
of the generated PA in terms of instantiated parametric subsystems and
filled variation points. The developed parametric subsystems were instan-
tiated by opportunely configuring their variation points. A parametric
subsystem could be instantiated multiple times, each time with a specific
configuration, for realizing a given Feature.

The effort for executing the Feature Profile Definition activity depends
on the nature of the specifications: if they comply with the model obtained
with the Extraction Rules Definition activity, AutoMative is able to auto-
matically produce a FP in tens of seconds. Otherwise, this activity can
be performed by an expert developer in a matter of hours, based on the
complexity of the specification documents. In the reported experience,
about a 30% of the variation point values had to be manually defined.

The proposed approach properly suited the currently adopted devel-
opment process. The experience in its application showed us its feasibility
related to both its implementation and application costs and the efficiency
improvements achieved.

5.4.1 Discussions and lessons learned

Our experience showed that it is possible to apply the approach for
introducing the SPL in a software development process based on MBD
paradigm.

Moreover, it was possible to introduce the SPL without any impact on
the entire development cycle. Our approach did not require any modifica-
tion of the specification documents and it produced MATLAB/Simulink
prescriptive models that can be processed by code-generation tools.

At the expense of the initial effort for the introduction of the SPL and
in particular for the implementation of the AutoMative infrastructure, the
overall development process has increased its effectiveness since few hours

5.5. RELATED WORK 195

are needed for implementing the IPC-ECU application software.
Another benefit of the introduction of the SPL is the semi-automatic

generation of the MATLAB/Simulink models from the specification doc-
uments. In this way, a reduced level of expertise in MATLAB/Simulink
software modeling is required during the development process.

5.5 Related Work

Software Product lines has been widely investigated by the Software
Engineering community. In this section I report the main literature work
related to SPL, according to the bibliometric analysis carried out by Hera-
dio et al. [191]. According to this analysis, the work on SPL proposed in
the literature focused on different topics, i.e Software Architecture, Fea-
ture Modeling, Software Design, Variability Management, Software Qual-
ity, Software Reuse, SPL Testing, and Product Derivation. In this work
I focused mainly on Software Architecture. More precisely, I focused on
PLA that represents a special kind of software architecture. It is designed
to describe the software architecture of a set of similar software products
that are developed in the context of an SPL [16]. In the literature, many
definitions have been presented to define PLA. These definitions consider
PLA as a core architecture that captures the variability of a set of software
products at the architecture level. However, they differ in terms of the
variability definition. Gomaa tried to specify the nature of the architec-
ture variability linking it with the architectural-elements [192]. Thus, in
his definition, PLA defines the variability in terms of mandatory, optional,
and variable components, and their connections.

Different approaches have been proposed to recover PLA. Koschke et
al. proposed an approach aiming at recovering PLA that identifies com-
ponent variants based on the detection of cloned code among the products
[193]. Acher et al. proposed an approach to reverse engineering architec-

196 CHAPTER 5. SPL ADOPTION

tural feature model [194]. This is based on the software architect’s knowl-
edge, the architecture dependencies, and the feature model. The feature
model is extracted based on a reverse engineering approach presented by
She et al. [195]. Pinzger et al. defined an approach for recovering PLA of
a family of software product variants [196]. For each software product, it
recovers a set of architecture views from the source code. Duszynski et al.
described an approach to visually analyze the distribution of variability
and commonality among the source code of product variants [197]. The
analysis includes multi-level of abstractions (e.g. line of code, method,
class, etc.) for facilitating the identification of reusable entities.

Differently from these proposed approaches, my work focused on mod-
els rather than on code. The proposed approach aims at recovering com-
monalities and variability from MATLAB/Simulinks models.

5.6 Conclusions and Future Work

In this Chapter, I report the industrial experience I carried out in a
SWF of FCA to introduce a more systematic reuse approach based on
SPL for the development of architectural models. In order to support this
approach, I developed a SPL infrastructure, named AutoMative, aimed
at semi-automatically producing MATLAB/Simulink architectural mod-
els tailored to given vehicles starting from their specification documents.
In order to evaluate the feasibility of the approach, I reported the experi-
ence of its application to develop architectural model tailored to a specific
vehicle and the lessons I gained.

The application of the approach, preliminary showed its feasibility and
allowed me to identify different points of improvement that will be ad-
dressed in future work. I plan to apply the SPL to the other phases of the
development process. Moreover, in order to guarantee the correct integra-
tion of the SPL within the current development process, the AutoMative

5.6. CONCLUSIONS AND FUTURE WORK 197

infrastructure should be opportunely integrated with the tools exploited
in FCA for the execution of the change management process.

This page intentionally left blank.

Chapter 6
Conclusions and Future Work

Software process is a complex phenomenon that is aimed at producing
a software product. It involves several actors having different roles that are
asked to perform a number of complicated activities involving a multitude
of artifacts, with the support of different tools.

Even if the Software Engineering community has been devoting a great
effort for proposing methodologies, approaches and tools for supporting
software process assessment and improvement, challenges and issues are
still open and new solutions have to be proposed that can be actually
applied in real industrial settings.

In this Thesis work, I propose different solutions, i.e. approaches and
tools, that can be applied in real industrial contexts for addressing some of
the open issues still affecting software processes. More in detail, I present
an approach that exploit both ALM and MDE for supporting the design
and execution of Gap Analysis processes that are planned and executed by
companies as Internal assessment against the practices and requirements
prescribed by Software Process Quality Standards or Quality Evaluation
Frameworks they are willing to comply with. In collaboration with my
research group, I identified the main issues affecting this kind of process

199

200 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

through a survey we conducted in real industrial settings. According to
the results of this study, I identified the requirements of a tool for sup-
porting the execution of Gap analysis processes and I proposed to adopt
the features of ALM for overcoming the identified issues and supporting,
in an effective way, the execution of this kind of processes. Moreover,
for supporting the tailoring of the ALM tool to the specific gap analysis
process with respect to a given Standard, I defined and implemented in
a tool, named GADGET, an MDE approach providing features for easing
the design of the Gap Analysis process and automatically producing the
tailored ALM based tool.

As another contribution of this work, I developed an approach for the
automatic management of artifacts involved in industrial software pro-
cess that leverages on a tool integration architecture. More in detail,
the proposed architecture integrates ALM platforms with the software
tools adopted for supporting software testing processes. It was realized by
exploiting the features offered by Continuous Integration platforms with
the aim of implementing a toolchain that is able to automate the man-
ual activities of the process and to automatically create the appropriate
traceability links between the involved artifacts. The architecture was de-
signed in order to be easily extended and reconfigured both to integrate
new tools with the ALM, both to implement new software processes. The
integration of other tools will require an additional component and the
design of the connectors needed for interfacing the tool with the ALM.
The architecture can be also adapted to support new processes requiring
to develop a component enacting the required workflow.

With respect to the issues tied to the comprehension of the artifacts in-
volved in the software process, I defined both a reverse engineering process
and a tool, able to automatically extract the needed information from them
and abstract the models required for easing their comprehension. More in
detail, I defined a heuristic based approach for reconstructing Conceptual

201

Data Models of spreadsheet based artifacts. The process requires the exe-
cution of seven sequential steps that allow to obtain, through subsequent
refinements, the information needed for automatically reconstructing its
conceptual Data Model. Moreover, I developed a tool, named EXACT,
providing visualization and analysis features for supporting the compre-
hension of VBA based spreadsheets. I decided to focus on these peculiar
artifacts since they are widely adopted for supporting different activities
of software development processes in several industrial domains.

Finally, in order to handle the variability that may characterize soft-
ware processes and to introduce in companies the adoption of a more
systematic reuse approach, I developed an SPL infrastructure, named Au-
toMative. This infrastructure provides features for semi-automatically
producing MATLAB/Simulink architectural models tailored to a given
software product, starting from its specification documents.

All the proposed solutions for addressing the considered software pro-
cess issues were validated through case studies conducted in industrial do-
mains, involving personnel employed in the execution of real software pro-
cesses. The case studies were conducted following the guidelines defined
by Runeson et al. in [17]. I chose to leverage on qualitative evaluations,
involving interviews and surveys with the involved subjects. In this way, I
was able to gain more information about the executed software processes,
the impacts of the proposed solutions on the processes and on the involved
personnel. According to the results of these case studies I conducted in
collaboration with members of my research group, I was able to evaluate
the feasibility and the validity of the proposed approaches and tools. The
case studies showed that our proposed approaches had positive impacts
on the software process leading to improvements in the considered process
characteristics. Moreover, according to the qualitative evaluations that
were carried out, I was able to identify possible limitations and points for
their improvement.

202 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

As future work, I plan to improve the proposed approaches and tools
and to further evaluate their validity through case studies involving soft-
ware processes in different domains, considering a greater number of sub-
jects and objects. In this way, I aim at assessing their generalization.
Moreover, I plan to design and develop a collaborative and configurable
environment, based on MDE and ALM technologies for integrating the
proposed and future solutions for supporting different Software process
Improvement initiatives, according to specific goals pursued by compa-
nies.

Bibliography

[1] I. Sommerville, Software Engineering. USA: Addison-Wesley Pub-
lishing Company, 9th ed., 2010.

[2] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. Pietro Picco,
“Modeling and improving an industrial software process,” IEEE
Trans. Softw. Eng., vol. 21, pp. 440–454, May 1995.

[3] M. Kuhrmann and S. Beecham, “Artifact-based software process im-
provement and management: A method proposal,” in Proceedings of
the 2014 International Conference on Software and System Process,
ICSSP 2014, (New York, NY, USA), pp. 119–123, ACM, 2014.

[4] M. Kuhrmann, P. Diebold, J. Münch, and P. Tell, “How does soft-
ware process improvement address global software engineering?,” in
2016 IEEE 11th International Conference on Global Software Engi-
neering (ICGSE), pp. 89–98, Aug 2016.

[5] F. Pettersson, M. Ivarsson, T. Gorschek, and P. Öhman, “A prac-
titioner’s guide to light weight software process assessment and im-
provement planning,” J. Syst. Softw., vol. 81, pp. 972–995, June
2008.

203

204 BIBLIOGRAPHY

[6] “CMMI - Capability Maturity Model Integration,” standard, CMMI
Institute, Pittsburgh, US Mar. 2015.

[7] “ISO/IEC 15504:2012 - Information technology – Process assess-
ment,” standard, International Organization for Standardization /
International Electrotechnical Commission, Geneva, CH, Feb. 2012.

[8] “ISO/IEC 330xx:2015 - Information technology – Process assess-
ment,” standard, International Organization for Standardization /
International Electrotechnical Commission, Geneva, CH, Mar. 2015.

[9] J. L. de la Vara, A. Ruiz, K. Attwood, H. Espinoza, R. K. Panesar-
Walawege, Ángel López, I. del Río, and T. Kelly, “Model-based spec-
ification of safety compliance needs for critical systems: A holistic
generic metamodel,” Information and Software Technology, vol. 72,
pp. 16 – 30, 2016.

[10] “ISO 26262:2011 - Road vehicles – Functional safety,” standard,
International Organization for Standardization, Geneva, CH, Nov.
2011.

[11] “IEC 62304 Medical device software – Software life cycle processes,”
standard, IEC, Geneva, Switzerland Mar. 2006.

[12] “IEC 61513 Nuclear power plants - Instrumentation and control im-
portant to safety,” standard, IEC, Geneva, Switzerland Mar. 2011.

[13] D. M. Fernández, B. Penzenstadler, M. Kuhrmann, and M. Broy,
“A meta model for artefact-orientation: Fundamentals and lessons
learned in requirements engineering,” in Proceedings of the 13th In-
ternational Conference on Model Driven Engineering Languages and
Systems: Part II, MODELS’10, (Berlin, Heidelberg), pp. 183–197,
Springer-Verlag, 2010.

BIBLIOGRAPHY 205

[14] S. Thiel and A. Hein, “Modeling and using product line variability
in automotive systems,” IEEE Softw., vol. 19, pp. 66–72, July 2002.

[15] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation. Springer Pub-
lishing Company, Incorporated, 2013.

[16] P. Clements and L. Northrop, Software Product Lines: Practices
and Patterns. Addison-Wesley Professional, 2001.

[17] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Re-
search in Software Engineering: Guidelines and Examples. Wiley
Publishing, 1st ed., 2012.

[18] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, and J. Sillito,
“Qualitative research in software engineering,” Empirical Softw.
Engg., vol. 16, pp. 425–429, Aug. 2011.

[19] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on Software Engineering, vol. 25,
pp. 557–572, Jul 1999.

[20] D. Amalfitano, V. De Simone, A. R. Fasolino, and S. Scala, “Im-
proving traceability management through tool integration: An expe-
rience in the automotive domain,” in Proceedings of the 2017 Inter-
national Conference on Software and System Process, ICSSP 2017,
(New York, NY, USA), pp. 5–14, ACM, 2017.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, V. De Simone,
G. Di Mare, and S. Scala, A Reverse Engineering Process for In-
ferring Data Models from Spreadsheet-based Information Systems:
An Automotive Industrial Experience, pp. 136–153. Cham: Springer
International Publishing, 2015.

206 BIBLIOGRAPHY

[22] D. Amalfitano, V. De Simone, A. R. Fasolino, and P. Tramontana,
“Exact: A tool for comprehending vba-based excel spreadsheet ap-
plications,” Journal of Software: Evolution and Process, vol. 28,
no. 6, pp. 483–505, 2016.

[23] D. Amalfitano, V. D. Simone, A. R. Fasolino, M. Lubrano, and
S. Scala, “Introducing software product lines in model-based design
processes: An industrial experience,” in 2016 13th Working IEEE/I-
FIP Conference on Software Architecture (WICSA), pp. 287–290,
April 2016.

[24] A. Fuggetta, “Software process: A roadmap,” in Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, (New
York, NY, USA), pp. 25–34, ACM, 2000.

[25] W. W. Royce, “Managing the development of large software systems:
concepts and techniques,” in Proc. IEEE WESTCON, IEEE Press,
August 1970. Reprinted in Proc. Int’l Conf. Software Engineering
(ICSE) 1989, ACM Press, pp. 328-338.

[26] H. D. Benington, “Production of large computer programs,” Annals
of the History of Computing, vol. 5, pp. 350–361, Oct 1983.

[27] T. E. Bell and T. A. Thayer, “Software requirements: Are they really
a problem?,” in Proceedings of the 2Nd International Conference on
Software Engineering, ICSE ’76, (Los Alamitos, CA, USA), pp. 61–
68, IEEE Computer Society Press, 1976.

[28] B. W. Boehm, “A spiral model of software development and en-
hancement,” Computer, vol. 21, pp. 61–72, May 1988.

[29] M. Aoyama, “Agile software process and its experience,” in Proceed-
ings of the 20th International Conference on Software Engineering,
pp. 3–12, Apr 1998.

BIBLIOGRAPHY 207

[30] L. Rising and N. S. Janoff, “The scrum software development process
for small teams,” IEEE Software, vol. 17, pp. 26–32, Jul 2000.

[31] “ISO/IEC 12207:2008 - Systems and software engineering – Software
life cycle processes,” standard, International Organization for Stan-
dardization / International Electrotechnical Commission, Geneva,
CH, Feb. 2008.

[32] L. García-Borgoñón, M. Barcelona, J. García-García, M. Alba, and
M. Escalona, “Software process modeling languages: A systematic
literature review,” Information and Software Technology, vol. 56,
no. 2, pp. 103 – 116, 2014.

[33] C. Wohlin and R. Prikladnicki, “Systematic literature reviews in
software engineering,” Information and Software Technology, vol. 55,
no. 6, pp. 919 – 920, 2013.

[34] K. Zamli, “Process modeling languages: A literature review,”
Malaysian Journal of Computer Science, vol. 14, no. 2, pp. 26–37,
2001. cited By 14.

[35] R. Bendraou, J. M. Jezequel, M. P. Gervais, and X. Blanc, “A com-
parison of six uml-based languages for software process modeling,”
IEEE Transactions on Software Engineering, vol. 36, pp. 662–675,
Sept 2010.

[36] B. Elvesæter, G. Benguria, and S. Ilieva, “A comparison of the
essence 1.0 and spem 2.0 specifications for software engineering
methods,” in Proceedings of the Third Workshop on Process-Based
Approaches for Model-Driven Engineering, PMDE ’13, (New York,
NY, USA), pp. 2:1–2:10, ACM, 2013.

[37] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and H. Zhang, System-
atic Literature Reviews of Software Process Improvement: A Ter-

208 BIBLIOGRAPHY

tiary Study, pp. 177–190. Cham: Springer International Publishing,
2017.

[38] K. E. Emam, Spice: The Theory and Practice of Software Pro-
cess Improvement and Capability Determination. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1st ed., 1997.

[39] J. Rossberg, Beginning Application Lifecycle Management. Berkely,
CA, USA: Apress, 1st ed., 2014.

[40] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the require-
ments traceability problem,” in Proceedings of IEEE International
Conference on Requirements Engineering, pp. 94–101, Apr 1994.

[41] “Ieee standard glossary of software engineering terminology,” ANSI/
IEEE Std 729-1983, pp. 1–40, Feb 1983.

[42] V. Kirova, N. Kirby, D. Kothari, and G. Childress, “Effective re-
quirements traceability: Models, tools, and practices,” Bell Labs
Technical Journal, vol. 12, no. 4, pp. 143–157, 2008.

[43] D. Chappell, “What is application lifecycle management?,” tech.
rep., 2014.

[44] D. Chappell, “Adopting a common ALM Foundation: why it makes
sense in a heterogeneous world,” tech. rep., 2011.

[45] J. Jwo, T. Hsu, and Y. C. Cheng, “Jumpstarting application lifecycle
management: A new approach with tool support,” J. Inf. Sci. Eng.,
vol. 29, no. 3, pp. 475–492, 2013.

[46] H. Coolican, Research methods and statistics in psychology. Hodder
Education, 2009.

BIBLIOGRAPHY 209

[47] C. H. L. Blaxter and M. Tight, How to research. Open University
Press, 2010.

[48] L. Given, The Sage encyclopedia of qualitative research methods.
SAGE Publications Ltd, 2008.

[49] C. Goulding, Grounded theory: A practical guide for management,
business and market researchers. SAGE Publications Ltd, 2002.

[50] R. D. Galliers and F. F. L, “Choosing appropriate information sys-
tems research approaches: A revised taxonomy,” in In Proceedings
of the IFIP TC8 WG8.2, pp. 317–335, 1990.

[51] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

[52] R. Stake, Qualitative Research: Studying How Things Work. The
Guilford Press, 2010.

[53] A. Holliday, Doing and writing qualitative research. SAGE Publica-
tions Ltd, 2007.

[54] S. Hesse-Biber and P. Leavy, The practice of qualitative research.
SAGE Publications Ltd, 2010.

[55] J. Maxwell, Qualitative research design: An interactive approach.
SAGE Publications Ltd, 2004.

[56] D. Muijs, Doing quantitative research in education with SPSS. SAGE
Publications Ltd, 2010.

[57] M. Balnaves and P. Caputi, Introduction to quantitative research
methods: An investigative approach. SAGE Publications Ltd, 2001.

210 BIBLIOGRAPHY

[58] J. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches. SAGE Publications Ltd, 2009.

[59] R. K. Yin, Case Study Research: Design and Methods (Applied So-
cial Research Methods). Sage Publications, fourth edition. ed., 2008.

[60] J. Miller, “Statistical significance testing: A panacea for software
technology experiments?,” J. Syst. Softw., vol. 73, pp. 183–192, Oct.
2004.

[61] R. L. Glass and I. Vessey, “Software tasks: intellectual, clerical ...
or creative?,” in 1994 Proceedings of the Twenty-Seventh Hawaii
International Conference on System Sciences, vol. 4, pp. 377–382,
Jan 1994.

[62] D. B. Walz, J. J. Elam, and B. Curtis, “Inside a software design
team: Knowledge acquisition, sharing, and integration,” Commun.
ACM, vol. 36, pp. 63–77, Oct. 1993.

[63] H. E. Thomson and P. J. Mayhew, “Approaches to software process
improvement,” Software Process: Improvement and Practice, vol. 3,
no. 1, pp. 3–17, 1997.

[64] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduc-
tion. Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[65] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines
for empirical research in software engineering,” IEEE Transactions
on Software Engineering, vol. 28, pp. 721–734, Aug 2002.

[66] C. Andersson and P. Runeson, “A replicated quantitative analysis
of fault distributions in complex software systems,” IEEE Trans.
Softw. Eng., vol. 33, pp. 273–286, May 2007.

BIBLIOGRAPHY 211

[67] J. M. Verner, J. Sampson, V. Tosic, N. A. A. Bakar, and B. A.
Kitchenham, “Guidelines for industrially-based multiple case studies
in software engineering,” in 2009 Third International Conference
on Research Challenges in Information Science, pp. 313–324, April
2009.

[68] F. S. Silva, F. S. F. Soares, A. L. Peres, I. M. de Azevedo, A. P. L.
Vasconcelos, F. K. Kamei, and S. R. de Lemos Meira, “Using cmmi
together with agile software development: A systematic review,”
Information and Software Technology, vol. 58, pp. 20 – 43, 2015.

[69] A. Ceccarelli and N. Silva, Computer Safety, Reliability, and Se-
curity: SAFECOMP 2015 Workshops, ASSURE, DECSoS. ISSE,
ReSA4CI, and SASSUR, Delft, The Netherlands, September 22,
2015, Proceedings, ch. Analysis of Companies Gaps in the Applica-
tion of Standards for Safety-Critical Software, pp. 303–313. Cham:
Springer International Publishing, 2015.

[70] L. L. B. A. Parasuraman, Valarie A. Zeithaml, “A conceptual model
of service quality and its implications for future research,” Journal
of Marketing, vol. 49, no. 4, pp. 41–50, 1985.

[71] J. Cadle, D. Paul, and P. Turner, Business Analysis Techniques: 72
Essential Tools for Success. British Comp Society Series, British
Computer Society, 2010.

[72] F. Redmill, “Installing iec 61508 and supporting its users – nine
necessities,” in 5th Australian Workshop on Safety Critical Systems
and Software, 2000.

[73] R. Feldt, R. Torkar, E. Ahmad, and B. Raza, “Challenges with soft-
ware verification and validation activities in the space industry,” in

212 BIBLIOGRAPHY

2010 Third International Conference on Software Testing, Verifica-
tion and Validation, pp. 225–234, April 2010.

[74] R. K. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “Support-
ing the verification of compliance to safety standards via model-
driven engineering: Approach, tool-support and empirical valida-
tion,” Inf. Softw. Technol., vol. 55, pp. 836–864, May 2013.

[75] P. E. McMahon, Integrating CMMI and Agile Development: Case
Studies and Proven Techniques for Faster Performance Improve-
ment. Addison-Wesley Professional, 1st ed., 2010.

[76] W. E. Saris and I. N. Gallhofer, Design, Evaluation, and Analysis
of Questionnaires for Survey Research. Wiley Publishing, 2007.

[77] C. E. Wilson, “Designing useful and usable questionnaires: You can’t
just "throw a questionnaire together",” interactions, vol. 14, pp. 48–
ff, May 2007.

[78] D. A. Dillman, J. D. Smyth, and L. M. Christian, Internet, Mail,
and Mixed-Mode Surveys: The Tailored Design Method. Wiley Pub-
lishing, 3 ed., 2008.

[79] M. Conrad, “Artifact-centric compliance demonstration for ISO
26262 projects using model-based design,” in Informatik 2012,
42. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 16.-
21.09.2012, Braunschweig, pp. 807–816, 2012.

[80] I. Al-Mayahi and S. P. Mansoor, “Iso 27001 gap analys - case
study,” in WorldComp 2012 - Proceedings of the World Congress in
Computer Science, Computer Engineering, and Applied Computing,
2012.

[81] M. Gatrell, “The value of a single solution for end-to-end alm tool
support,” IEEE Software, vol. 33, pp. 103–105, Sept 2016.

BIBLIOGRAPHY 213

[82] S. Kent, “Model driven engineering,” in Proceedings of the Third
International Conference on Integrated Formal Methods, IFM ’02,
(London, UK, UK), pp. 286–298, Springer-Verlag, 2002.

[83] A. Fuggetta and E. Di Nitto, “Software process,” in Proceedings of
the on Future of Software Engineering, FOSE 2014, (New York, NY,
USA), pp. 1–12, ACM, 2014.

[84] H. Lacheiner and R. Ramler, “Application lifecycle management as
infrastructure for software process improvement and evolution: Ex-
perience and insights from industry,” in 37th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, SEAA
2011, Oulu, Finland, August 30 - September 2, 2011, pp. 286–293,
2011.

[85] J. Jwo, T. Hsu, and Y. C. Cheng, “Jumpstarting application lifecycle
management: A new approach with tool support,” J. Inf. Sci. Eng.,
vol. 29, no. 3, pp. 475–492, 2013.

[86] F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adopting
mde for specifying and executing civilian missions of mobile multi-
robot systems,” IEEE Access, vol. 4, pp. 6451–6466, 2016.

[87] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “Cloudmf:
Applying mde to tame the complexity of managing multi-cloud ap-
plications,” in 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pp. 269–277, Dec 2014.

[88] J. A. Hurtado Alegría, M. C. Bastarrica, A. Quispe, and S. F. Ochoa,
“An mde approach to software process tailoring,” in Proceedings of
the 2011 International Conference on Software and Systems Process,
ICSSP ’11, (New York, NY, USA), pp. 43–52, ACM, 2011.

214 BIBLIOGRAPHY

[89] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineer-
ing,” Computer, vol. 39, pp. 25–31, Feb. 2006.

[90] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model
transformation tool,” Science of Computer Programming, vol. 72,
no. 1, pp. 31 – 39, 2008. Special Issue on Second issue of experimental
software and toolkits (EST).

[91] R. Panesar-Walawege, M. Sabetzadeh, L. Briand, and T. Coq,
“Characterizing the chain of evidence for software safety cases: A
conceptual model based on the iec 61508 standard,” in Software
Testing, Verification and Validation (ICST), 2010 Third Interna-
tional Conference on, pp. 335–344, April 2010.

[92] R. K. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “Support-
ing the verification of compliance to safety standards via model-
driven engineering: Approach, tool-support and empirical valida-
tion,” Information and Software Technology, vol. 55, no. 5, pp. 836
– 864, 2013.

[93] P. Picha and P. Brada, “Alm tool data usage in software process
metamodeling,” in 2016 42th Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA), pp. 1–8, Aug 2016.

[94] F. Jouault and I. Kurtev, “Transforming models with atl,” in Pro-
ceedings of the 2005 International Conference on Satellite Events
at the MoDELS, MoDELS’05, (Berlin, Heidelberg), pp. 128–138,
Springer-Verlag, 2006.

[95] J. Mtsweni, “Exploiting uml and acceleo for developing semantic web
services,” in 2012 International Conference for Internet Technology
and Secured Transactions, pp. 753–758, Dec 2012.

BIBLIOGRAPHY 215

[96] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Re-
search in Software Engineering: Guidelines and Examples. Wiley
Publishing, 1st ed., 2012.

[97] I. Sommerville, Software Engineering: (Update) (8th Edition) (In-
ternational Computer Science). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[98] N. Palmer and L. Mooney, “Building a business case for BPM – a
fast path to real result,” tech. rep., OpenText Corporation, 2007.

[99] P. Bolstorff and R. Rosenbaum, Supply Chain Excellence: A Hand-
book for Dramatic Improvement Using the Scor Model, Second Edi-
tion. New York, NY, USA: Amacom, 2007.

[100] D. K. Nguyen, W.-J. van den Heuvel, M. P. Papazoglou, V. de Cas-
tro, and E. Marcos, GAMBUSE: A Gap Analysis Methodology for
Engineering SOA-Based Applications, pp. 293–318. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009.

[101] M. Postina, I. Sechyn, and U. Steffens, “Gap analysis of application
landscapes,” in 2009 13th Enterprise Distributed Object Computing
Conference Workshops, pp. 274–281, Sept 2009.

[102] J. Moratalla, V. de Castro, M. L. Sanz, and E. Marcos, “A gap-
analysis-based framework for evolution and modernization: Mod-
ernization of domain management at red.es,” in 2012 Annual SRII
Global Conference, pp. 343–352, July 2012.

[103] A. D. Lucia, A. R. Fasolino, and E. Pompelle, “A decisional frame-
work for legacy system management,” in Software Maintenance,
2001. Proceedings. IEEE International Conference on, pp. 642–651,
2001.

216 BIBLIOGRAPHY

[104] B. Karabacak and I. Sogukpinar, “A quantitative method for iso
17799 gap analysis,” Computers & Security, vol. 25, no. 6, pp. 413
– 419, 2006.

[105] T. Valdevit and N. Mayer, “A gap analysis tool for smes targeting
ISO/IEC 27001 compliance,” in ICEIS 2010 - Proceedings of the
12th International Conference on Enterprise Information Systems,
Volume 3, ISAS, Funchal, Madeira, Portugal, June 8 - 12, 2010,
pp. 413–416, 2010.

[106] M. Cao, J. J. Fan, H. P. Lv, and J. L. Chen, “Evaluation of enter-
prise knowledge management performance based on gap analysis,”
in Management of Innovation and Technology (ICMIT), 2010 IEEE
International Conference on, pp. 894–897, June 2010.

[107] L. Amaral and J. Faria, “A gap analysis methodology for the team
software process,” in Quality of Information and Communications
Technology (QUATIC), 2010 Seventh International Conference on
the, pp. 424–429, Sept 2010.

[108] D. Falessi, M. Sabetzadeh, L. Briand, E. Turella, T. Coq, and
R. Panesar-Walawege, “Planning for safety standards compliance:
A model-based tool-supported approach,” Software, IEEE, vol. 29,
pp. 64–70, May 2012.

[109] A. Murugesan, M. W. Whalen, E. Ghassabani, and M. P. E. Heim-
dahl, “Complete traceability for requirements in satisfaction argu-
ments,” in 2016 IEEE 24th International Requirements Engineering
Conference (RE), pp. 359–364, Sept 2016.

[110] R. Wohlrab, J. P. Steghöfer, E. Knauss, S. Maro, and A. Anjorin,
“Collaborative traceability management: Challenges and opportu-

BIBLIOGRAPHY 217

nities,” in 2016 IEEE 24th International Requirements Engineering
Conference (RE), pp. 216–225, Sept 2016.

[111] G. Regan, M. Biro, D. Flood, and F. McCaffery, “Assessing trace-
ability—practical experiences and lessons learned,” Journal of Soft-
ware: Evolution and Process, vol. 27, no. 8, pp. 591–601, 2015.
JSME-15-0062.

[112] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using in-
formation retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, Sept. 2007.

[113] H. Lacheiner and R. Ramler, “Application lifecycle management
as infrastructure for software process improvement and evolution:
Experience and insights from industry,” in 2011 37th EUROMI-
CRO Conference on Software Engineering and Advanced Applica-
tions, pp. 286–293, Aug 2011.

[114] M. Gatrell, “The value of a single solution for end-to-end alm tool
support,” IEEE Software, vol. 33, pp. 103–105, Sept 2016.

[115] M. Biehl, J. El-Khoury, F. Loiret, and M. Törngren, “On the mod-
eling and generation of service-oriented tool chains,” Software &
Systems Modeling, vol. 13, no. 2, pp. 461–480, 2014.

[116] F. Franco, M. Mauro, S. Stevan, A. B. Lugli, and W. Torres, “Model-
based functional safety for the embedded software of automobile
power window system,” in 2014 11th IEEE/IAS International Con-
ference on Industry Applications, pp. 1–8, Dec 2014.

[117] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in Proceedings of the 2008 International Conference on

218 BIBLIOGRAPHY

Software Testing, Verification, and Validation, ICST ’08, (Washing-
ton, DC, USA), pp. 485–493, IEEE Computer Society, 2008.

[118] A. I. Wasserman, “Tool integration in software engineering envi-
ronments,” in Proceedings of the International Workshop on Envi-
ronments on Software Engineering Environments, (New York, NY,
USA), pp. 137–149, Springer-Verlag New York, Inc., 1990.

[119] I. Thomas and B. A. Nejmeh, “Definitions of tool integration for
environments,” IEEE Softw., vol. 9, pp. 29–35, Mar. 1992.

[120] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[121] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana, “A
wrapping approach for migrating legacy system interactive function-
alities to service oriented architectures,” J. Syst. Softw., vol. 81,
pp. 463–480, Apr. 2008.

[122] D. Bovenzi, G. Canfora, and A. R. Fasolino, “Enabling legacy sys-
tem accessibility by web heterogeneous clients,” in Seventh European
Conference onSoftware Maintenance and Reengineering, 2003. Pro-
ceedings., pp. 73–81, March 2003.

[123] P. Picha and P. Brada, “Alm tool data usage in software process
metamodeling,” pp. 1–8, Aug 2016.

[124] B. Polgár, I. Ráth, and I. Majzik, Model-based Integration Frame-
work for Development and Testing Tool-chains, pp. 227–235. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011.

[125] E. Armengaud, M. Biehl, Q. Bourrouilh, M. Breunig, S. Farfeleder,
C. Hein, M. Oertel, A. Wallner, and M. Zoier, “Integrated tool-chain

BIBLIOGRAPHY 219

for improving traceability during the development of automotive sys-
tems,” in Proceedings of the 2012 Embedded Real Time Software and
Systems Conference, 2012.

[126] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruh-
ner, E. Kamsties, and B. Igel, “Amalthea - tailoring tools to projects
in automotive software development,” in 2015 IEEE 8th Interna-
tional Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), vol. 2,
pp. 515–520, Sept 2015.

[127] L. Westfall, “Bidirectional requirements traceability,” tech. rep.,
2006.

[128] R. Wieringa, “An introduction to requirements traceability,” tech.
rep., 1995.

[129] S. Maro, A. Anjorin, R. Wohlrab, and J.-P. Steghöfer, “Traceabil-
ity maintenance: factors and guidelines,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 414–425, ACM, 2016.

[130] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers of end
users and end user programmers,” in Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on, pp. 207–214, Sept
2005.

[131] L. Bradley and K. McDaid, “Using bayesian statistical methods to
determine the level of error in large spreadsheets.,” in Software En-
gineering - Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pp. 351–354, May 2009.

220 BIBLIOGRAPHY

[132] R. Panko and D. Port, “End user computing: The dark matter (and
dark energy) of corporate it,” in System Science (HICSS), 2012 45th
Hawaii International Conference on, pp. 4603–4612, Jan 2012.

[133] W. Hussain and T. Clear, “Spreadsheets as collaborative technolo-
gies in global requirements change management,” in Global Software
Engineering (ICGSE), 2014 IEEE 9th International Conference on,
pp. 74–83, Aug 2014.

[134] B. Hofer, A. Perez, R. Abreu, and F. Wotawa, “On the empirical
evaluation of similarity coefficients for spreadsheets fault localiza-
tion,” Automated Software Engg., vol. 22, pp. 47–74, Mar. 2015.

[135] P. Mireault, “Structured spreadsheet modeling and implementa-
tion,” pp. 32–38, 2015.

[136] H. Shiozawa, K. Okada, and Y. Matsushita, “3d interactive visual-
ization for inter-cell dependencies of spreadsheets,” in Information
Visualization, 1999. (Info Vis ’99) Proceedings. 1999 IEEE Sympo-
sium on, pp. 79–82, 148, 1999.

[137] J. Davis, “Tools for spreadsheet auditing,” International Journal of
Human-Computer Studies, vol. 45, no. 4, pp. 429 – 442, 1996.

[138] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[139] R. Bovey, D. Wallentin, S. Bullen, and J. Green, Professional Excel
Development: The Definitive Guide to Developing Applications Us-
ing Microsoft Excel, VBA, and .NET. Addison-Wesley Professional,
2nd ed., 2009.

[140] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting profes-
sional spreadsheet users by generating leveled dataflow diagrams,” in

BIBLIOGRAPHY 221

Software Engineering (ICSE), 2011 33rd International Conference
on, pp. 451–460, May 2011.

[141] M. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on, pp. 181–191,
May 2005.

[142] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically ex-
tracting class diagrams from spreadsheets,” in ECOOP 2010 –
Object-Oriented Programming (T. D’Hondt, ed.), vol. 6183 of Lecture
Notes in Computer Science, pp. 52–75, Springer Berlin Heidelberg,
2010.

[143] R. Abraham and M. Erwig, “Inferring templates from spreadsheets,”
in Proceedings of the 28th International Conference on Software En-
gineering, ICSE ’06, (New York, NY, USA), pp. 182–191, ACM,
2006.

[144] R. Abraham and M. Erwig, “Header and unit inference for spread-
sheets through spatial analyses,” in Visual Languages and Human
Centric Computing, 2004 IEEE Symposium on, pp. 165–172, Sept
2004.

[145] L. Moonen, “Generating robust parsers using island grammars,” in
Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on, pp. 13–22, 2001.

[146] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and chal-
lenges in software reverse engineering,” Commun. ACM, vol. 54,
pp. 142–151, Apr. 2011.

[147] S. Wiedenbeck and A. Engebretson, “Comprehension strategies of
end-user programmers in an event-driven application,” in Visual

222 BIBLIOGRAPHY

Languages and Human Centric Computing, 2004 IEEE Symposium
on, pp. 207–214, Sept 2004.

[148] H. Shokry and M. Hinchey, “Model-based verification of embedded
software,” Computer, vol. 42, pp. 53–59, April 2009.

[149] P. Runeson and M. Höst, “Guidelines for conducting and report-
ing case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[150] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?,” in Software Engineering
(ICSE), 2012 34th International Conference on, pp. 255–265, June
2012.

[151] A. Karahasanović, A. K. Levine, and R. Thomas, “Comprehension
strategies and difficulties in maintaining object-oriented systems: An
explorative study,” Journal of Systems and Software, vol. 80, no. 9,
pp. 1541 – 1559, 2007. Evaluation and Assessment in Software En-
gineeringEASE06.

[152] B. A. Nardi and J. R. Miller, “The spreadsheet interface: A ba-
sis for end user programming,” in Proceedings of the IFIP TC13
Third Interational Conference on Human-Computer Interaction, IN-
TERACT ’90, (Amsterdam, The Netherlands, The Netherlands),
pp. 977–983, North-Holland Publishing Co., 1990.

[153] K. Hodnigg and R. T. Mittermeir, “Metrics-based spread-
sheet visualization: Support for focused maintenance,” CoRR,
vol. abs/0809.3009, 2008.

[154] R. Brath and M. Peters, “Excel visualizer: One click wysiwyg
spreadsheet visualization,” in Information Visualization, 2006. IV
2006. Tenth International Conference on, pp. 68–73, July 2006.

BIBLIOGRAPHY 223

[155] R. Mittermeir and M. Clermont, “Finding high-level structures in
spreadsheet programs,” in Reverse Engineering, 2002. Proceedings.
Ninth Working Conference on, pp. 221–232, 2002.

[156] V. Hung, B. Benatallah, and R. Saint-Paul, “Spreadsheet-based
complex data transformation,” in Proceedings of the 20th ACM In-
ternational Conference on Information and Knowledge Management,
CIKM ’11, (New York, NY, USA), pp. 1749–1754, ACM, 2011.

[157] Z. Chen and M. Cafarella, “Automatic web spreadsheet data extrac-
tion,” in Proceedings of the 3rd International Workshop on Semantic
Search Over the Web, SS@ ’13, (New York, NY, USA), pp. 1:1–1:8,
ACM, 2013.

[158] R. Abraham, M. Erwig, and S. Andrew, “A type system based
on end-user vocabulary,” in Visual Languages and Human-Centric
Computing, 2007. VL/HCC 2007. IEEE Symposium on, pp. 215–
222, Sept 2007.

[159] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,”
Software Engineering, IEEE Transactions on, vol. 35, pp. 94–108,
Jan 2009.

[160] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A
type system for statically detecting spreadsheet errors,” in Auto-
mated Software Engineering, 2003. Proceedings. 18th IEEE Inter-
national Conference on, pp. 174–183, Oct 2003.

[161] M. Clermont, “Analyzing large spreadsheet programs,” in Reverse
Engineering, 2003. WCRE 2003. Proceedings. 10th Working Con-
ference on, pp. 306–315, Nov 2003.

[162] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in Proceedings of the 2009 ACM SIGPLAN

224 BIBLIOGRAPHY

Workshop on Partial Evaluation and Program Manipulation, PEPM
’09, (New York, NY, USA), pp. 179–188, ACM, 2009.

[163] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring
classsheet models from spreadsheets,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2010 IEEE Symposium on,
pp. 93–100, Sept 2010.

[164] J. Cunha, J. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva,
“Bidirectional transformation of model-driven spreadsheets,” in
Theory and Practice of Model Transformations (Z. Hu and
J. de Lara, eds.), vol. 7307 of Lecture Notes in Computer Science,
pp. 105–120, Springer Berlin Heidelberg, 2012.

[165] J. Cunha, J. Fernandes, J. Mendes, and J. Saraiva, “Mdsheet:
A framework for model-driven spreadsheet engineering,” in Soft-
ware Engineering (ICSE), 2012 34th International Conference on,
pp. 1395–1398, June 2012.

[166] J. Cunha, J. Fernandes, J. Mendes, and J. Saraiva, “Towards an eval-
uation of bidirectional model-driven spreadsheets,” in User Evalua-
tion for Software Engineering Researchers (USER), 2012, pp. 25–28,
June 2012.

[167] J. Cunha, J. Saraiva, and J. Visser, “Model-based program-
ming environments for spreadsheets,” in Programming Languages
(F. de Carvalho Junior and L. Barbosa, eds.), vol. 7554 of Lecture
Notes in Computer Science, pp. 117–133, Springer Berlin Heidel-
berg, 2012.

[168] J. Cunha, J. Fernandes, J. Mendes, and J. Saraiva, “Embedding,
evolution, and validation of model-driven spreadsheets,” Software

BIBLIOGRAPHY 225

Engineering, IEEE Transactions on, vol. 41, pp. 241–263, March
2015.

[169] J. Cunha, M. Erwig, J. Mendes, and J. Saraiva, “Model inference
for spreadsheets,” Automated Software Engineering, pp. 1–32, 2014.

[170] D. Janvrin and J. Morrison, “Using a structured design approach
to reduce risks in end user spreadsheet development,” Information
Management, vol. 37, no. 1, pp. 1 – 12, 2000.

[171] R. Panko and J. Halverson, R.P., “Individual and group spreadsheet
design: patterns of errors,” in System Sciences, 1994. Proceedings
of the Twenty-Seventh Hawaii International Conference on, vol. 4,
pp. 4–10, Jan 1994.

[172] B. Ronen, M. A. Palley, and H. C. Lucas, Jr., “Spreadsheet analysis
and design,” Commun. ACM, vol. 32, pp. 84–93, Jan. 1989.

[173] M. Fisher and G. Rothermel, “The euses spreadsheet corpus: A
shared resource for supporting experimentation with spreadsheet
dependability mechanisms,” SIGSOFT Softw. Eng. Notes, vol. 30,
pp. 1–5, May 2005.

[174] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, “Data clone
detection and visualization in spreadsheets,” in Software Engineer-
ing (ICSE), 2013 35th International Conference on, pp. 292–301,
May 2013.

[175] S. Roy and F. Hermans, “Dependence tracing techniques for spread-
sheets: An investigation,” in Software Engineering Methods in
Spreadsheet (SEMS), 2014, First Workshop on, July 2014.

[176] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and visual-
izing inter-worksheet smells in spreadsheets,” in Software Engineer-

226 BIBLIOGRAPHY

ing (ICSE), 2012 34th International Conference on, pp. 441–451,
June 2012.

[177] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code smells
in spreadsheet formulas,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pp. 409–418, Sept 2012.

[178] R. Abreu, J. Cunha, J. Fernandes, P. Martins, A. Perez, and
J. Saraiva, “Smelling faults in spreadsheets,” in Software Mainte-
nance and Evolution (ICSME), 2014 IEEE International Conference
on, pp. 111–120, Sept 2014.

[179] J. Cunha, J. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a
catalog of spreadsheet smells,” in Computational Science and Its
Applications – ICCSA 2012 (B. Murgante, O. Gervasi, S. Misra,
N. Nedjah, A. Rocha, D. Taniar, and B. Apduhan, eds.), vol. 7336
of Lecture Notes in Computer Science, pp. 202–216, Springer Berlin
Heidelberg, 2012.

[180] J. Cunha, J. Fernandes, P. Martins, J. Mendes, and J. Saraiva,
“Smellsheet detective: A tool for detecting bad smells in spread-
sheets,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2012 IEEE Symposium on, pp. 243–244, Sept 2012.

[181] T. Cheng and X. Rival, “An abstract domain to infer types over
zones in spreadsheets,” in Static Analysis (A. Miné and D. Schmidt,
eds.), vol. 7460 of Lecture Notes in Computer Science, pp. 94–110,
Springer Berlin Heidelberg, 2012.

[182] T. Cheng and X. Rival, “Static analysis of spreadsheet applications
for type-unsafe operations detection,” in Programming Languages
and Systems (J. Vitek, ed.), vol. 9032 of Lecture Notes in Computer
Science, pp. 26–52, Springer Berlin Heidelberg, 2015.

BIBLIOGRAPHY 227

[183] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb.
2009.

[184] R. Flores, C. Krueger, and P. Clements, “Mega-scale product line
engineering at general motors,” in Proceedings of the 16th Inter-
national Software Product Line Conference - Volume 1, SPLC ’12,
(New York, NY, USA), pp. 259–268, ACM, 2012.

[185] L. Wozniak and P. Clements, “How automotive engineering is taking
product line engineering to the extreme,” in Proceedings of the 19th
International Conference on Software Product Line, SPLC ’15, (New
York, NY, USA), pp. 327–336, ACM, 2015.

[186] A. Leitner, R. Mader, C. Kreiner, C. Steger, and R. Weiß, “A devel-
opment methodology for variant-rich automotive software architec-
tures,” e & i Elektrotechnik und Informationstechnik, vol. 128, no. 6,
pp. 222–227, 2011.

[187] M. Schulze, J. Weiland, and D. Beuche, “Automotive model-driven
development and the challenge of variability,” in Proceedings of the
16th International Software Product Line Conference - Volume 1,
SPLC ’12, (New York, NY, USA), pp. 207–214, ACM, 2012.

[188] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2005.

[189] A. C. Contieri, G. G. Correia, T. E. Colanzi, I. M. S. Gimenes, E. A.
Oliveira, S. Ferrari, P. C. Masiero, and A. F. Garcia, Software Ar-
chitecture: 5th European Conference, ECSA 2011, Essen, Germany,
September 13-16, 2011. Proceedings, ch. Extending UML Compo-
nents to Develop Software Product-Line Architectures: Lessons

228 BIBLIOGRAPHY

Learned, pp. 130–138. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011.

[190] D. Amalfitano, A. R. Fasolino, P. Tramontana, V. De Simone,
G. Mare, and S. Scala, Data Management Technologies and Ap-
plications: Third International Conference, DATA 2014, Vienna,
Austria, August 29-31, 2014, Revised Selected papers, ch. A Reverse
Engineering Process for Inferring Data Models from Spreadsheet-
based Information Systems: An Automotive Industrial Experience,
pp. 136–153. Cham: Springer International Publishing, 2015.

[191] R. Heradio, H. Perez-Morago, D. Fernandez-Amoros, F. J.
Cabrerizo, and E. Herrera-Viedma, “A bibliometric analysis of 20
years of research on software product lines,” Information and Soft-
ware Technology, vol. 72, no. Supplement C, pp. 1 – 15, 2016.

[192] H. Gomaa, “Designing software product lines with uml,” in 29th An-
nual IEEE/NASA Software Engineering Workshop - Tutorial Notes
(SEW’05), pp. 160–216, April 2005.

[193] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann, “Ex-
tending the reflexion method for consolidating software variants into
product lines,” Software Quality Journal, vol. 17, pp. 331–366, Dec
2009.

[194] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire,
Reverse Engineering Architectural Feature Models, pp. 220–235.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[195] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki, “Re-
verse engineering feature models,” in Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE ’11, (New York,
NY, USA), pp. 461–470, ACM, 2011.

BIBLIOGRAPHY 229

[196] M. Pinzger, H. Gall, J.-F. Girard, J. Knodel, C. Riva, W. Pasman,
C. Broerse, and J. G. Wijnstra, Architecture Recovery for Product
Families, pp. 332–351. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004.

[197] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code
of multiple software variants for reuse potential,” in 2011 18th Work-
ing Conference on Reverse Engineering, pp. 303–307, Oct 2011.

