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ABSTRACT 

 

Antimicrobial peptides (AMPs), known also as host defense peptides, are fundamental 

evolutionarily conserved components of innate immunity. Constitutively or inducibly expressed in 

response to invasion by pathogens, they operate synergistically with other defence molecules to 

combat infections. Despite differences in their size and sequence, many of them share a net positive 

charge at neutral pH, and fold into amphipathic structures, often after contact with bacterial 

surfaces. HDPs are attractive alternative candidates for antibiotic treatment, because they offer 

several advantages over the currently used drugs. They combat pathogens by targeting bacterial 

membranes, thus impairing essential membrane-related functions, and, in some cases, also target 

intracellular components. Due to their peculiar mechanism, the resistance towards these peptides 

would be difficult for the bacteria to develop. Several proteins, including proteins apparently not 

involved in immunity, can behave as sources of HDPs hidden in their primary structures and 

released by the action of host and/or bacterial proteases. Recently it has been developed a 

bioinformatic tool allowing to identify such “cryptic HDPs”. Analyzing a library of 4000 proteins, 

we have identified and studied several novel cryptic HDPs from human and plant. Among these, 

three human peptides (GVF27, ApoBS and ApoBL) show pharmacologically relevant properties 

like significant antimicrobial activity on a broad spectrum of bacteria (including some clinical 

isolates), very promising antibiofilm properties (both on pre-formed and attached biofilm), strong 

affinity for endotoxins as LPS and LTA and immunomodulatory properties on LPS induced murine 

macrophages, while two peptides from plant (IKY31 and IKY23) are strong anti-biofilm agents and 

not toxic against eukaryotic cells. Overall our data suggest that these new cryptic HDPs, could serve 

as leads for the design of innovative antimicrobials with immunostimulating and 

immunomodulatory properties. 
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Riassunto 

 

I peptidi antimicrobici sono molecole naturali multifunzionali prodotte in vari 

organismi. La maggior parte di queste molecole sono cationiche e per questo anche note come 

cationic Host Defence Peptides (cHDPs), effettori del sistema immunitario innato che 

contribuiscono alla rapida eliminazione di agenti patogeni come batteri o funghi. In aggiunta alla 

loro attività antimicrobica e antifungina, i cHDPs sono anche in grado di modulare la risposta 

immunitaria. Questi peptidi possono agire direttamente o indirettamente, inducendo in modo 

selettivo la produzione di chemochine in cellule del sistema immunitario e il reclutamento di altre 

cellule immunitarie al sito di infezione. Questa particolare combinazione di attività 

farmacologicamente interessanti e lo sviluppo sempre più frequente del fenomeno di resistenza agli 

antibiotici tra i batteri patogeni, rendono i cHDPs un'alternativa molto valida agli antibiotici 

convenzionali. Alcuni cHDPs sono già in fase II / III di trial clinico. Il mio progetto di dottorato è 

stato incentrato sull’identificazione e caratterizzazione di nuovi cHDPs, ponendo particolare 

attenzione sia alla loro attività antimicrobica sia alla verifica della loro potenziale capacità di 

bloccare l’eccessivo effetto pro-infiammatorio di endotossine come l’LPS dei batteri Gram negativi 

o l’LTA dei Gram positivi. Recentemente, è stato sviluppato un sistema bioinformatico atto 

all'identificazione di proteine (cHDPs -Releasing Proteins) che possono contenere, ed 

eventualmente liberare, potenziali peptidi antimicrobici nascosti nella loro struttura primaria. Tale 

metodo si basa sul calcolo della carica netta, idrofobicità e lunghezza del peptide e permette una 

previsione semi-quantitativa della sua attività antimicrobica. Utilizzando tale metodo e consultando 

banche dati di proteine sia umane sia vegetali, diversi nuovi cHDPs criptici sono stati identificati e 

alcuni di questi sono stati oggetto di studio durante il dottorato.  

GVF27, ad esempio, è un cHDP identificato nella proteina HSD-3 umana. Tale proteina 

appartiene a una famiglia di deidrogenasi che agisce in maniera NADP- dipendente. L’analisi 

dell’attività antimicrobica di GVF27, ottenuta analizzando un ampio pannello di ceppi batterici sia 

Gram negativi sia Gram positivi e confrontata a quella della catelicidina da pollo CATH-2, ha 

confermato che questo peptide è un forte agente antimicrobico. Il potere antimicrobico di GVF27 è 

stato analizzato anche in presenza di concentrazioni fisiologiche di cationi bivalenti ottenendo con 

ciò un risultato piuttosto interessante se si considera che tali condizioni in genere sono inattivanti 

per la maggior parte dei peptidi antimicrobici. Allo scopo di investigare più approfonditamente 

l’attività antimicrobica di GVF27, è stato allestito inoltre un saggio in grado di valutare il livello di 

ATP extracellulare di due colture batteriche (Escherichia coli ATCC 25922 e Staphylococcus 

aureus multiresistente WKZ-2). I risultati ottenuti da tale saggio indicano chiaramente che GVF27 

ha un meccanismo di azione di tipo litico. Ulteriori analisi hanno evidenziato che GVF27 possiede 

anche proprietà antibiofilm. Infatti è stato osservato che GVF27 è in grado sia di inibire la 

formazione del biofilm sia di destrutturare biofilm preformati. In entrambi i casi analizzati inoltre 

va sottolineato che GVF27 conserva il suo potere citotossico nei confronti dei batteri incapsulati 

nella matrice del biofilm. Generalmente i peptidi antimicrobici cationici posseggono un particolare 

vantaggio che è quello della selettività di membrana per cui, essendo carichi positivamente, 

interagiscono preferenzialmente con le membrane cariche negativamente dei batteri piuttosto che 

con quelle eucariotiche (per lo più zwitterioniche). A tal riguardo sono stati allestiti esperimenti per 

verificare la potenziale tossicità di GVF27 su diverse linee cellulari e murine. I risultati ottenuti 
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evidenziano che GVF27, nonostante la sua spiccata tossicità per le cellule microbiche, non presenta 

alcun effetto tossico (anche a dosi superiori alle MIC) sulle cellule eucariotiche analizzate. Sono 

stati inoltre effettuati anche saggi di emolisi somministrando GVF27 a eritrociti di topo. Anche in 

questo caso è stata verificata l’assoluta non tossicità del peptide. Come descritto in precedenza, 

molti peptidi antimicrobici ricoprono anche un ruolo immunomodulante. Molti di questi infatti 

appartengono al sistema del complemento che permette il riconoscimento dei batteri patogeni dalle 

cellule del sistema immunitario. Altri invece attenuano risposte immunitarie eccessive che 

potrebbero portare a shock settici. In tale contesto, è risultato quindi opportuno investigare le 

eventuali proprietà immunomodulatorie di GVF27 attraverso esperimenti di ELISA e saggi di 

Griess condotti su macrofagi murini pre-trattati con LPS (endotossina specifica dei Gram negativi) 

e successivamente trattati con GVF27 oppure su macrofagi trattati con una miscela LPS/peptide 

hanno permesso di rilevare che il peptide in tutte le condizioni analizzate è in grado di attenuare 

significativamente sia la secrezione di Interleuchina-6 sia la produzione di ossido nitrico (NO), 

entrambi mediatori dell’infiammazione. Questi dati supportano l’idea che GVF27 possa interagire e 

bloccare l’LPS. Tuttavia sono stati condotti anche ulteriori esperimenti in cui le cellule era prima 

trattate con GVF27 e poi con LPS. Sorprendentemente, anche in questo caso il GVF27 è riuscito ad 

attenuare l’infiammazione indotta dall’LPS, in maniera indipendente dall’interazione diretta con 

questa molecola. Ulteriori evidenze, riguardo le proprietà immunomodulatorie di GVF27, sono state 

recentemente raccolte. I macrofagi sono cellule specializzate nella fagocitosi di agenti patogeni e 

nella loro digestione intracellulare. Tuttavia sono noti alcuni patogeni intracellulari che sono in 

grado di eludere i processi di digestione nei fagolisosomi. In questo caso è necessario che il 

potenziale antibatterico del macrofago venga incrementato e tale processo, può essere indotto grazie 

a segnali extracellulari, primo tra tutti l’IFN-γ. Questo meccanismo prende il nome di attivazione 

del macrofago e risulta difficoltosa in pazienti con carenza di IFN-γ o del suo recettore. Pertanto, 

oltre alle sopracitate attività anti-infiammatorie di GVF27, si è voluto anche indagare se il peptide 

presentasse la capacità di aumentare l’attività di macrofagi murini in seguito alla fagocitosi di un 

batterio. A tal riguardo è stato allestito un esperimento nel quale macrofagi murini pre-trattati con 

GVF27 sono stati successivamente incubati con il batterio Salmonella enterica serovar 

Thypimurium ATCC 14028. Al termine dell’incubazione, dopo aver eliminato mediante antibiotici 

tutti i batteri extracellulari, i macrofagi sono stati lisati ed è stata valutata la crescita dei batteri 

ancora vitali. In tal modo è stato possibile valutare il contributo di GVF27 all’uccisione 

intracellulare dei batteri fagocitati. Da tale esperimento è emerso che GVF27 è in grado di 

incrementare l’attività microbicida dei macrofagi in maniera dose dipendente. Inoltre, da dati 

pregressi in letteratura e da predizioni in silico emerge che anche le apolipoproteine umane sono 

fonte di peptidi bioattivi. L'apolipoproteina B è l'apolipoproteina principale dei chilomicroni, delle 

particelle VLDL, IDL e LDL ed è responsabile del trasporto di molecole di grasso, compreso il 

colesterolo, intorno al corpo (all'interno delle cellule esterne dell'acqua) a tutte le cellule di tutti i 

tessuti. Utilizzando il metodo bioinformatico sopra citato, sono stati identificati due nuovi HDP 

criptici nell'Apolipoproteina B (residui 887-922): chiamati ApoBL e ApoBS, rispettivamente di 38 

e 26 residui amminoacidici. È stato dimostrato che entrambi gli HDP sono dotati di un'attività 

antimicrobica ad ampio spettro e al contempo non mostrano né effetti tossici né emolitici verso le 

cellule eucariotiche. Oltre all’attività citotossica su cellule planctoniche, è interessante notare che 

per entrambi gli HDP è stata evidenziata anche un'importante attività anti-biofilm. I due peptidi 

infatti, quando sono stati saggiati sul biofilm formato da E. coli ATCC 25922, S. aureus MRSA 
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WKZ-2, P. aeruginosa ATCC 27853 e P. aeruginosa PAO1 presentano attività sia nei confronti del 

biofilm preformato sia durante la sua formazione, conservando in tutti i casi le proprietà puramente 

antibatteriche. Allo scopo di potenziare l'efficacia antimicrobica dei peptidi identificati da ApoB, 

nella prospettiva di un loro eventuale utilizzo terapeutico, si è deciso di allestire analisi denominate 

di terapia combinata, coadiuvando simultaneamente peptidi anti batterici e antibiotici in diverse 

combinazioni. Uno dei test più noti per valutare il sinergismo tra due composti è il cosiddetto 

esperimento "chequerboard" in cui viene utilizzata una serie bidimensionale di concentrazioni 

seriali di composti di prova come base per il calcolo di un indice di concentrazione inibitoria 

frazionaria (FIC) per dimostrare che combinazioni accoppiate di agenti possono esercitare effetti 

inibitori che non derivano semplicemente dalla somma degli effetti dei singoli componenti.  Tutte le 

combinazioni testate si sono dimostrate efficaci, sia con effetti addizionali sia sinergici tra peptidi e 

antibiotici.  Sui medesimi peptidi sono state condotte anche analisi di dicroismo circolare. Entrambi 

i peptidi tendono ad acquisire una conformazione specifica in presenza di SDS, TFE e LPS, mentre 

in acqua risultano destrutturati. Tale dato suggerisce che questi cHDPs, a contatto con le cellule 

batteriche, potrebbero adattarsi in prossimità delle membrane prima di agire su di essa, sia nel caso 

di un’azione destrutturante sia per essere trasportati all’interno della cellula. Va sottolineato inoltre 

che, in maniera analoga a GVF27, entrambi i peptidi derivanti da ApoB sono in grado di mitigare la 

produzione di interleuchina-6 e di ossido nitrico nei macrofagi murini indotti da LPS. Infine, 

risultati preliminari ottenuti su cheratinociti umani, indicano che i peptidi identificati in ApoB 

presentano interessanti proprietà di wound healing (in particolare ApoBL). Complessivamente i dati 

raccolti su questi nuovi cHDPs, compreso il sopracitato GVF27, aprono prospettive interessanti su 

un loro uso terapeutico.  

Inoltre, già durante il mio primo anno di dottorato è stato identificato per frammentazione in 

bromuro di cianogeno e caratterizzato il primo peptide antimicrobico criptico nascosto in PD-L4, 

una proteina inattivante il ribosoma di tipo 1 (RIP) dalle foglie di Phytolacca dioica L. Le proteine 

RIP sono degli enzimi identificati in piante, funghi, alghe e batteri. Essi sono dotati di attività di N-

glicosilasica, che determina la scissione di un residuo adenino-specifico in un sito conservato del 

rRNA 28S, con conseguente inibizione della sintesi proteica. Grazie all’approccio bioinformatico 

precedentemente citato, sono stati identificati, nel dominio N-terminale di PD-L1 / 2, un ulteriore 

membro del pool di proteine RIP di tipo 1 di P. dioica, due nuovi HDP criptici. Questi due peptidi, 

qui denominati IKY31 e IKY23, non presentano tossicità per le cellule eucariotiche ma presentano 

al contempo un’attività antibatterica ad ampio spettro. Oltre all’azione antimicrobica, è stato anche 

verificato che entrambi i peptidi posseggono significative proprietà antibiofilm. Infatti sia IKY23 

che IKY31 sono in grado di destrutturare il biofilm prodotto da due ceppi Gram-negativi: Klebsiella 

pneumoniae e Pseudomonas aeruginosa. È stato verificato che i peptidi derivati da PD-L1/2 sono in 

grado di indurre una forte riduzione, dose dipendente, della biomassa del biofilm, di influenzare lo 

spessore del biofilm e, nel caso di IKY31, di interferire sull’adesione cellula/cellula, probabilmente 

interagendo componenti strutturali del biofilm. Inoltre, mediante analisi CD, è stato anche rilevato 

che entrambi i peptidi derivati da PD-L1/2 sono in grado di assumere conformazioni stabili sia in 

presenza di agenti che mimano la struttura della membrana (TFE e SDS) sia di componenti di parete 

batteriche extracellulari, come LPS e alginato. Nel complesso, i dati raccolti su questi due peptidi 

danno un'ulteriore rilevanza all'importanza dei peptidi criptici derivanti da proteine RIP 

nell'interazione ospite/patogeno, in particolare nelle condizioni indotte da batteri che formano 

biofilm.  
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1. Introduction 

 

1.1 The plague of the antimicrobial resistance  

 

Since Dr. Fleming discovered in 1928 the first antibiotic from the fungus Penicillium 

chrysogenum, several other antimicrobial agents have been discovered and much progress has been 

made in the host defence field. From this first evidence, there was a widespread research of other 

new antibiotics with different targets: specific for one or few bacterial species or with a wide 

spectrum activity; intracellular activity directed on nucleic acids (quinolone, rifampicin), protein 

synthesis (tetracyclines, chloramphenicol) interfering with bacterial metabolism (sulfonamides, 

dapsone); directed on the cell wall (bacitracin, cephalosporins) or membrane (polymixins), specific 

or not for Gram negative (aminoglycoside) and positive (vancomycin) bacteria (figure 1). Their 

discovery should be considered, as well as the development of vaccines, one of the most influent 

reasons of the growth in human welfare [1].  

 

 
 

Figure 1. Mode of action of antibiotics (image adopted from [2]) 

 

However, even antibiotics have been shown their limits in their own properties. Nowadays, 

when common infections occur, antibiotics could easily eradicate them, but the healthy microbiota 

is seldom preserved, because of their multiplicity of target. This is a great disadvantage considering 

the positive role a healthy microbiota has on human health [3]. Moreover, antibiotics may cause 

side effects such as allergic reactions due to individual sensitivity to one or more components, 

toxicity to various organs or intolerance caused by interaction with other drugs. The abuse of drugs 

can lead to death. 

Among these, major problems could be carried by the antibiotic resistance.  

Antibiotic resistance was reported to occur when a drug loses its ability to inhibit bacterial 

growth effectively so that those bacteria become ‘resistant’ and continue to multiply in the presence 

of therapeutic levels of the antibiotics [4]. Generally, antibiotic resistance can occur as a natural 

selection process where nature empowers all bacteria with some degree of low-level resistance and 
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that is the reason why non-judicial use of antibiotic, in both biomedical and agricultural fields, is 

responsible for making microbes resistant [5]. The Center for Disease Control and Prevention 

(CDC) reported that 1.7 million people were nosocomially infected in hospitals in 2002 and 

99,000 deaths were occurring annually in the United States due to drug-resistant microbes [6]. 

Antibiotics fight to eliminate bacteria. But, bacteria tend to have a natural process that 

encourages resistance due to the exposure to antibiotics themselves. The resistance process can 

occur via gene level mutations. Antibiotics induce selective pressure and the genes act in 

association with selective pressure to favour bacteria that have gained the resistance, which results 

in a selective advantage. For example, β-lactam antimicrobial agents is the most common treatment 

for bacterial infections and continues, paradoxically, to be the prominent cause of resistance to β-

lactam antibiotics among Gram-negative bacteria worldwide. The persistent exposure of bacterial 

strains to a multitude of β-lactams has induced dynamic and continuous production and mutation of 

β-lactamase genes in these bacteria, expanding their activity even against the newly developed β-

lactam antibiotics [7]. Moreover, bacteria possess the ability to directly transfer genetic material 

between each other by transferring plasmids, this behaviour signifies that natural selection is not the 

only mechanism by which resistance evolves, but their mutual transformation could be a process of 

resistance amplification. Development of resistance may also likely occur if users fail to take their 

full course of prescribed antibiotic treatment. Bacteria subsequently remain untouched gaining more 

strength against the antibiotics. In this way, bacteria may collect multiple resistance traits over time 

and can become resistant to multiple classes of antibiotics [8]. Obviously, bacterial genetical 

resistance is translated in a protein-mediated system to avoid the mechanism of action: modifying 

their targets, enzymatically inactivating or eliminating antibiotics by efflux pumps. Different 

mechanisms of the common drug resistance are shown in Table 1 [4].  

 

 
 

Table 1. Table representing the mechanism of drug resistance of common antibiotics (image adopted from 

[4]. 
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Unfortunately, resistance has increasingly become a problem in recent years because the 

pace at which we novel antibiotics are discovered has slowed drastically now, while antibiotic use is 

rising. And it is not just a problem confined to bacteria, but all microbes, including parasites, fungi 

and viruses, that have the potential to mutate and render our drugs ineffective [9]. According to the 

prevision of deaths attributable to antimicrobial resistance every year compared to other major 

causes of death in 2050, victims of the ineffectiveness of antibiotics will be more numerous than 

those of cancer as shown in figure 2 [10]. 

 

 
 

Figure 2. Death due to AMR (AntiMicrobial Resistance) estimate in 2050 compared to mortalities caused 

by other major illnesses [10]. 

 

All these considerations have shown how mandatory the development of new antimicrobial 

molecules is and the importance of a constant renovation which had lead the scientific community 

to point their interest on alternative and new molecules e.g. antimicrobial peptides (AMPs) which 

are considered as an alternative to conventional drugs [11].  
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1.2 From antimicrobial peptides to host defence peptides (HDPs) 

 

Antimicrobial Peptides (AMPs), are small molecules consisting of 12-50 amino acids with a 

positive net charge widely diffused in most living organisms. Peptides with biological activity have 

been isolated from a high number of organisms belonging to both plant and animal kingdoms such 

as bacteria, plants, insects, amphibians and mammals. The skin of numerous species of amphibians, 

for example, has proved to be a rich source of peptides (bombesin, magainin, temporin, etc.), 

products and secretions from granular glands in response to a variety of stimuli [12]. In humans and 

in other mammals (like mouse, rat or rabbit), antimicrobial peptides belonging to the defensin 

family are stored as granules in neutrophils (blood cells specializing in phagocytosis), while 

polymorphonucleated leukocytes of bovine animals are rich in peptides belonging to the family of 

cathelicidins that demonstrated significant antimicrobial activity in vitro and in vivo. 

AMPs play a very important role in so-called innate or natural immunity, consisting of a 

series of non-specific defense mechanisms, that is, directed towards a wide spectrum of 

microorganisms and present in an individual since birth. These are pre-existing to exposure to 

foreign substance (antigen) and represent the first true defense barrier of the organism from the 

pathogens [13]. It has been shown that some peptides exhibit strong antimicrobial activity against 

both Gram-positive and Gram-negative bacteria, fungi and are also capable to inhibit the replication 

of some viruses [14]. The mechanism of action of most AMPs is due to the alteration of cell 

membranes following interaction between the peptide and membrane structures. The effects that 

can be achieved in this interaction are: disorganization of membrane structure, alteration of 

permeability, leakage of cytoplasmic components and lysis of the cell. Some peptides, such as 

buforin interact directly with intracellular targets (DNA and / or RNA) by inhibiting vital cell 

functions. Moreover, other AMPs (e.g. peptides derived from cathelicidins and defensins) act as 

demonstrated in recent years with a mechanism independent from direct microbial killing; in fact, in 

the presence of pathogenic agents they can act inhibiting the host's proinflammatory response and / 

or stimulate immune defense reactions, for this reason they are better named host defense peptides 

(HDP) [15]. Biological features of these molecules justify the interest in the scientific community 

as innovative and alternative therapeutic agents, especially in infections sustained by antibiotic-

resistant microorganisms. 

 

 

1.3 Features of host defense peptides 

 

HDPs are usually produced as pre-pro-peptides of about 60-170 amino acids. When 

they are released they are cut into their mature form due to the action of specific proteases.  HDPs 

vary considerably in size and secondary structure, but they have common characteristics including 

that most of these peptides are cationic and amphipatic. The specificity of HDPs for bacterial 

membranes is based on the differences in charge and lipid composition between membranes of 

prokaryotic and eukaryotic cells. The membrane of eukaryotic cells is rich in zwitterionic lipids, 

while that of prokaryotic cells is rich in negative charged lipids that can interact with cationic HDPs 

[16]. Cationic HDPs are divided into four subgroups on the basis of their amino acid composition 

and structure: (i) α-helical peptides, linear peptides enriched for specific amino acids (e.g. proline 

and arginine), (ii) peptides prone to form stable β-sheets stabilized by one or more disulfide bridges, 
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(iii) loop peptides with a single disulfide bridge; and (iv) peptides without a well-defined structure 

[17]. Cationic HDPs generally are small and contain 12–50 amino acids, with 2–9 positively 

charged lysine or arginine residues, and up to 50% hydrophobic amino acids. For these reasons, 

they tend to form amphipathic structures in the hydrophobic environment, characteristics that allow 

peptides, in contrast to conventional antibiotics, to interact with microbial membranes through not 

only electrostatic but also hydrophobic interactions [18]. In this manner, they can destroy bacterial 

membrane normal functions by forming ion channels or pores, dissolving the membrane as if they 

were detergents, or causing damages in the membrane itself.  

 

 

1.4 Mechanisms of action 

 

In the following paragraph some of the major mechanisms of action are described of host 

defense peptides: 

 

a. Direct bacterial killing 

b. LPS neutralization 

c. Intracellular targets 

d. Opsonization and intracellular killing 

 

 

Direct bacterial killing 

 

As already mentioned, HDPs have been also named host defense peptides for their 

involvement into immune system regulation and immune response modulation [15]. However, some 

peptides act, simply and directly, killing the target. This kind of peptides could be clustered in two 

big groups: peptides that have their target on the surface of bacteria or in their cytoplasm. Most of 

the peptides that act on the surface of bacteria form pores on this surface. Several models that 

particularly address the actions of defensins and linear amphiphilic cationic peptides propose 

formation of channels through and/or disruption of bacterial membranes [19].  

Killing of bacteria via pore formation in the bacterial membrane requires three principal 

steps: binding to the bacterial membrane, aggregation within the membrane, and formation of 

channels. The channel formation leads to leakage of internal cell contents, e.g. ATP molecules, and 

cell death [20].   

An HDP must cross the negatively charged outer wall of Gram-negative bacteria, which 

contains lipopolysaccharides (LPS), or the outer cell wall of Gram-positive bacteria, which contains 

acidic polysaccharides. The three well-established models for pore formation are the barrel-stave 

pore, the toroidal pore, and the carpet model (figure 3): 

 

1) Barrel stave model: multimers of HDP cross the cell membrane so that the hydrophobic 

part is facing the lipid bilayer and the hydrophilic part is facing the lumen of the pore. The 

assembled peptides form barrel-like channels resembling staves; 

2) Toroidal pore: the HDP form a monolayer by connecting the outer and inner lipid layers in 

the pore; 



11 
 

3) Carpet model: in this model peptides first cover the outer surface of the membrane like a 

carpet and then act like detergents, disrupting the membrane bilayer after reaching a 

threshold concentration. The pores are formed from micelle-like units.  

 

 

 
 

Figure 3. A. the barrel-stave pore; B. the thoroidal pore; C. the carpet model. (the image is by [19]) 

 

 

Intracellular targets 

 

There is increasing evidence for intracellular targeting of microbes as both alternative 

and synergistic pathways to membrane rupture and cell lysis [23]. The HDP buforin II, possessing a 

linear proline hinge and containing an amphipathic α-helical peptide, has been proven to translocate 

across the cell membrane without loss of the transmembrane potential and with intracellular 

contents intact even at five times the MIC. Cellular function of Escherichia coli is inhibited by 

accumulation of buforin II in the cytoplasm and via binding to DNA and RNA [24]. Some HDPs 

such as indolicidin have been demonstrated to penetrate bacterial cell membranes rendering them 

relatively undamaged but with antibacterial activity achieved by inhibition of RNA, DNA and 

protein synthesis [25]. Other hypotheses for intracellular action include stimulation of the autolytic 

enzyme cascade. Cationic HDPs, for example lactoferrin and lysozyme, may mimic the action of β-

lactam antibiotics and activate autolytic cell wall enzymes such as muramidases causing 

bacteriolysis [26]. Intracellular targeting of protein synthesis by degradation of proteins required for 

DNA replication has been shown to be a primary mechanism of action for indolicidin and the pig 

intestinal peptide PR-39. Further, apidaecin and oncocin inhibit protein translation in bacteria by 

binding to and inactivating the 70S ribosome and Bac7(1-35) accumulates within Escherichia coli 

to high concentrations and inhibits protein synthesis by binding to the ribosome [27]. 

 

LPS neutralization 

 

LPS is one of the most studied targets of HDPs for their ability to neutralize or 

modulate the aggregation of this endotoxin. LPS is a major component of the outer leaflet of the 

outer membrane in Gram-negative bacteria. LPSs consist of an O-specific chain that is highly 

variable in different bacterial strains, a core oligosaccharide, and lipid A. LPSs are essential for 
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bacterial growth and viability, but macrophages stimulated by LPS induce the release of pro-

inflammatory cytokines (TNF-α, IL-1 and IL-6) into the blood, resulting in septic shock [21]. 

Accordingly, LPSs are excellent target for HDPs because they have the potential to both directly 

inhibit the growth of multidrug-resistant bacteria and to neutralize the action of released LPS due to 

its stimulation of immune cells. HDPs generally bind to LPS through electrostatic interactions 

between their cationic amino acids (Lysine and Arginine) and head groups of LPS, and this 

complex is stabilized through hydrophobic interactions between the hydrophobic amino acids of the 

peptide and fatty acyl chains of LPS [22].  

 

 

Opsonization and intracellular killing 

 

The first line of defense of the organism by pathogens is represented by the epithelial 

barrier. Damages of this barrier facilitate host invasion by pathogens and the initiation of an 

infection process to which the body responds to the inflammatory state through immune system 

cells. Resolving inflammation requires the cooperation of many cellular components of the immune 

system, such as lymphocytes, T helper cells, neutrophils, natural killer cells (NK) or macrophages 

[28]. Macrophages are immune system cells specializing in the phagocytosis of infected, dead or 

tumorous eukaryotic cells, as well as pathogens such as viruses, parasites, or bacteria. Many of the 

HDPs are secreted as inactive pro-peptides from neutrophils, macrophages or epithelial cells and 

enzymatically activated to release the active form that is able to interact with the pathogen 

membrane. This interaction could promote the recognition of bacteria by the macrophages 

(opsonization) encouraging their phagocytosis and the follow eradication of the pathogen. LL37 is 

the most know human HDPs that is able to act as an opsonins [29]. 

After the phagocytosis, digestion of pathogens follows mediated by intracellular factors and 

vesicle acidification into the phagolysosomes. Normally, a macrophage is able to complete 

phagocytosis and bacterial clearance alone, but some pathogens of clinical relevance can 

chronically infect the macrophage by inactivating it. In fact, there are various mechanisms 

developed by bacteria to survive the intracellular environment of macrophages by inhibiting, for 

example, lysosomal fusion or acidification necessary for the activation of lysosomal proteases, or 

even invading the cell cytoplasm or further they can change their own outer membrane structure or 

decrease their negative charge to avoid cationic HDP effectiveness [30]. All these mechanisms can 

lead the macrophage to death. In order to avoid this process, the immune system developed a known 

counterfeit such as macrophage activation. This activation is carried out by type 1 T helper cells 

(TH1), which secrete additional activator signals that increase the antimicrobial capacity of the 

macrophages by allowing them to destroy intracellular pathogens. Activated macrophages become 

effective cells with powerful antibacterial activity: they more effectively blend the lysosomes with 

phagocytes, produce radical forms of oxygen and nitric oxide (NO), but also HDPs and proteases 

that can attack extracellular and intracellular pathogens. The reason why macrophages are normally 

in an inactivated state is that activated state requires greater energy consumption and increased 

macrophage aggression due to nitric oxide, protease or oxygen radicals toxicity. This would cause a 

danger to the healthy tissue of the host.  

Among the signal molecules necessary for the activation of macrophages there are the IFN-γ 

and the ligand of CD40, a receptor present on the macrophage membrane. Patients with genetic 
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diseases that determine IFN-γ deficiency, or its receptor, fail to control infections due to 

intracellular pathogens. Activation of macrophages induces increased CD40 and TNF-α receptors 

expression and promotes TNF-α production. This autocrine stimulus has a synergistic effect with 

IFN-γ secreted by TH1 cells in increasing the bactericidal action of the macrophage. All these 

signals lead to macrophage sensitization increasing their phagocytic activity and inner antimicrobial 

systems, however, not only these signals are able to activate it. For example, Crotamin is a peptide 

that has been discovered to stimulate macrophagic phagocytosis [31]. This process can also be 

triggered by small amounts of LPS or, as recently reported, by HDPs like LL37 alone or complexed 

with DNA [32]. Since some bacterial strains, like Salmonella enterica or Staphylococcus aureus are 

able to actively invade epithelial cells, intriguingly, has been also reported that HDPs, like temporin 

B, could defend these cells from invasive bacteria [33]. To note, as it is possible to activate 

macrophages, they may also be inhibited by anti-inflammatory factors, such as IL-10 secreted by 

TH2 cells. 

 

 

1.5 Cryptic host defense peptides and their in silico identification 

 

Some bacterial strains have acquired a limited resistance to HDPs by producing specific 

proteases [34]. To overcome this resistance, multicellular eukaryotes secrete “HDP-Releasing 

Proteins” (HDP-RPs) which release active peptides only after a partial proteolytic processing 

operated by bacterial and/or host proteases. Therefore, a bacterial strain producing defense 

proteases against HDPs “commits suicide” by triggering itself the release of “cryptic” HDPs from 

their precursors. This mechanism has been indeed demonstrated for Zf-3, a ribonuclease from 

Danio rerio [35]. Several proteins can be considered as HDP-RPs. Lysozyme is a well-known 

example in this sense as it exerts bactericidal action by hydrolyzing peptidoglycan but, if 

inactivated by proteolysis, it releases HDPs [36, 37]. Mammalian's lactoferrin, a multifunctional 

protein, owns bactericidal determinants at the N-terminus. Its proteolysis in infants’ stomach leads 

to the release of peptides, which are more bactericidal than the corresponding native protein on 

several strains, including antibiotic-resistant strains [38, 39]. Human thrombin, a key enzyme in the 

coagulation cascade, bears bactericidal determinants in the C-terminal region [40, 41]. Other 

interesting examples of cryptic HDPs can be seen in several heparin-binding domains [42], growth-

factors [43, 44] and chemokines [45]. 

Fast bioinformatic approaches highlighted the presence of putative antimicrobial regions 

that could be extremely useful for the discovery of new cryptic host defence peptides. Pane et al. 

[46] developed an efficient strategy to identify potential HDP-RPs and to locate antimicrobial 

fragment(s) hidden into their amino acidic sequence. This method also allows a semi-quantitative 

prediction of the antimicrobial activity and, due to the inclusion of some strain-specific variables, 

could be fine-tuned to predict efficacy on specific bacterial strains. This method assigns to any 

given peptide an antimicrobial score, known as “absolute score” (AS), based on net charge, 

hydrophobicity and length of the peptide and of two bacterial strain-dependent weight factors 

defining the contribution of charge and hydrophobicity to the antimicrobial activity. To analyse a 

protein potentially bearing hidden antimicrobial regions, the AS values of all the peptides of the 

desired length contained in a precursor protein can be plotted as a function of peptide sequence and 

length, thus obtaining an accurate map of the antimicrobial activity determinants.  
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This method has been recently used to identify two novel HDPS in the sequences of an 

archaeal transcription factor [47] two human apolipoproteins [48, 49], a human putative 

dehydrogenase [50], a type 1 ribosome inactivating protein (RIP) from Phytolacca dioica L. [51] 

and other different proteins, some of which described in this thesis. 

 

1.6 Aim of this thesis 

 

Due to the extreme necessity of new antibiotics, lately HDPs have decisively sparked 

research interest thanks to their successful properties like the multifunctional role, ductility in 

formulation and therapeutic application [52].   

Aim of this thesis was to report a wide characterization of six new cryptic HDPs from 

human and plants identified in silico by Professor Ennio Notomista [46]. This thesis concerns 

GVF27 [50], a peptide identified at the C-terminus of four isoforms of human 11-hydroxysteroid 

dehydrogenase-1 β-like; two peptides from human Apolipoprotein B [49] and three peptides from 

type 1 ribosome-inactivating proteins (RIPs) from leaves of Phytolacca dioica L., one from the 

protein PD-L4 [51] and two from the protein PD-L1/2.  
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2.1 Introduction 

 

In this chapter the characterization of a cryptic HDP is described. It is a 27 amino acids 

long peptide, identified in the C’ terminal region of the human 11-hydroxysteroid dehydrogenase-1 

β-like protein. This sequence has been named GVF27. Human 11-hydroxysteroid dehydrogenase-1 

β-like (also known as 11β-HSD3) (UniProtKB: Q7Z5J1, http://www.uniprot.org/uniprot/Q7Z5J1) is 

an uncharacterized protein, present in eight putative isoforms, whose have been produced 

experimental evidences just at a transcriptional level. From these data, it seems that transcripts are 

mainly expressed in brain and lung cells. One of these isoforms has been isolated from a human 

brain cDNA library and produced in heterologous form in Escherichia coli. In this work [1] authors 

demonstrate that the isoform b has the capability to catalyze the dehydrogenation of cortisol in the 

presence of NADP(+), but this is the only existing indication in this direction and, moreover, 11β-

HSD3 only poorly catalyzes conversion of cortisol to cortisone. To note, it predates the 

glucocorticoid receptor in evolution [2], presuming a primary function distinct from glucocorticoid 

biology [3] 

This putative enzyme is part of the short-chain dehydrogenase/reductase (SDR) family, that 

is a very large family of enzymes, most of which are NAD+ or NADP+ dependent oxidoreductases 

[4]. All the members of the family only have a residue identity level of typically 15–20%, but two 

motifs are highly conserved [5, 6]. 

Generally, HSD family members participate in the metabolism of steroids, prostaglandins, 

retinoids, aliphatic alcohols and xenobiotics. 11β-hydroxysteroid dehydrogenase catalyzes the 

interconversion of inactive glucocorticoids (cortisone in human, dehydrocorticosterone in rodents) 

and active glucocorticoids (cortisol in human, corticosterone in rodents). Two major isoenzymes 

belonging to this subfamily, 11β-HSD1 and 11β- HSD2, have been identified and widely 

characterized.  

11β-HSD1, also called “liver” type 11β-hydroxysteroid dehydrogenase acts mainly as a 

NADPH-dependent cortisone reductase [7]. The 11β-HSD1 gene is highly expressed in the liver, 

adipose tissue, bone and the brain [8, 9]. Its main function is activating glucocorticoids, but it is also 

expressed in the brain, with the highest levels found in the cerebellum, hippocampus, cortex, 

pituitary and hypothalamus; it plays an important role in human obesity and insulin resistance [7, 

10, 11]. 

11β-HSD2, the “kidney” type 11β-hydroxysteroid dehydrogenase, acts as an NAD+-

dependent cortisol dehydrogenase. The 11β-HSD2 gene is highly expressed in classical 

mineralocorticoid-selective target tissues such as kidney, colon and sweat glands [12, 13, 14, 15].  

Moreover, 11β-HSD2 expressed in human fetal brain acts to protect the developing nervous system 

from the deleterious consequences of glucocorticoid overexposure, but 11β-HSD2 is barely 

expressed in the human adult brain. Reductase activity of 11β-HSD1 increases local cortisol levels 

and leads to increased differentiation [16, 17]. The dehydrogenase activity of 11β-HSD2 decreases 

the availability of active cortisol thereby facilitating proliferation [18]. It was reported that 11β-

HSD2 is upregulated in different tumors which suggests that the inhibition of 11β-HSD2 activity 

can prevent the tumor from growing. These two enzymes have been deeply investigated, while 11-

hydroxysteroid dehydrogenase-1 β-like was only recently discovered and never thoroughly studied.  

Nevertheless, Huang et al. [1] revealed that the isoform b of 11β-HSD3 is highly expressed 

in the brain: in the cerebrum, hippocampal neurons, cerebellar glioma and meningioma. These 
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results suggest that 11β-HSD3 is a “brain type” hydroxysteroid dehydrogenase. 11β-HSD3 was a 

highly conserved protein during evolution. Its homologs were widely found in different species 

including animals and plants [19] Furthermore, the expression of 11β-HSD3 in lung cancer cell 

lines resulted to be upregulated and this effect suggests that the abnormal expression of 11β-HSD3 

in the lung maybe related to the development of lung cancer. To note, no evidences have been 

produced about the involvement of 11β-HSD3 in the host defense.  

As described in the Chapter 1, recently, the use of bioinformatic approaches has increased 

the possibility to highlight the presence of putative antimicrobial regions in proteins, thus 

representing an extremely useful tool for the discovery of new cryptic host defense peptides [20]. 

Indeed, analyzing a pool of human secreted proteins using the bioinformatic strategy developed by 

Professor Ennio Notomista [21], a region was identified rich in very high scoring peptides at the C-

terminus of four isoforms of human 11-hydroxysteroid dehydrogenase-1 β-like.  The region 

selected, named GVF27, corresponds to this local maximum plus the glycine residue located 

upstream the 26 residues. The glycine residue was included in the peptide as, according to [22], a 

glycine at the N-terminus of an HDP is favorable for the activity. 

In this chapter, GVF27 has been fully characterized describing its bactericidal properties 

against planktonic and sessile bacteria, its cytotoxic and anti-inflammatory effects on murine cells 

and its structural properties in the presence of mimic membrane agents and wall bacterial 

determinants, such as LPS and LTA. 
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2.2 Results  

 

2.2.1 Antibacterial activity and mechanism of action of GVF27  

 

The antibacterial effectiveness of synthetic GVF27 was determined by measuring its 

MIC values on a panel of Gram-negative and Gram-positive strains (Table 1). All GVF27 MIC 

values are comparable to those observed for control peptide chicken cathelicidin CATH-2 both on 

Gram-negative and Gram-positive strains (Table 1).  

In order to verify salt resistant properties of GVF27, MIC values were also determined in the 

presence of physiological amounts of divalent cations as CaCl2 and MgSO4 (0.265 g/L and 0.097 

g/L respectively). As shown in Table 2, MIC values determined in the presence of divalent cations 

were only slightly different to those obtained in NB, thus indicating that antimicrobial properties of 

GVF27 are not affected by the different experimental conditions tested.  

Moreover, an experiment was performed to detect GVF27 antimicrobial activity during time 

until 2 hours towards MRSA WKZ-2 and E. coli ATCC 25922. Colonies of the two strains were 

counted after the incubation with two doses of GVF27. When the killing rate of GVF27 was 

measured, none of the strains analyzed survived after 2 h at 10 M peptide doses (Figure 1).  

 

 

 

GRAM POSITIVE                                                              

STRAINS 

 

GVF27 

 

 

CATH-2 

 

GRAM 

NEGATIVE                                                              

STRAINS 

 

GVF27 

 

 

 

CATH-2 

MIC values (μM) MIC values (μM) 

 

MRSA 

WKZ-2 

 

5 

 

10 

 

 

E. coli 

ATCC 25922 

 

10 

 

10 

 

B. globigii 

TNO BMO13 

 

5 

 

5 

 

P. aeruginosa 

ATCC 27853 

 

10 

 

10 

 

B. licheniformis 

ATCC 21424 

 

5 

 

20 

 

P. aeruginosa 

PAO1 

 

20 

 

20 

 

S. aureus 

ATCC 29213 

 

5 

 

10 

 

S. enteriditis 

706 RIVM 

 

 

10 

 

10 

 

Table 1. Minimum Inhibitory Concentration (MIC, M) values of GVF27 peptide, compared to those 

obtained for CATH-2, against a panel of Gram-positive and Gram-negative bacteria. Values were obtained 

from a minimum of three independent trials.  
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GRAM 

POSITIVE                                                              

STRAINS 

 

0.5X NB 

 

 

0.5X NB + 

cations 

 

GRAM 

NEGATIVE                                                              

STRAINS 

 

0.5X NB 

 

 

0.5X NB + 

cations 

MIC values (μM) MIC values (μM) 

 

MRSA 

WKZ-2 

 

5 

 

10 

 

 

E. coli 

ATCC 25922 

 

10 

 

10 

 

B. globigii 

TNO BMO13 

 

5 

 

5 

 

S. enteriditis 

706 RIVM 

 

 

10 

 

40 

 

Table 2. Minimum Inhibitory Concentration (MIC, M) values of GVF27 peptide, tested in different media, 

against a panel of two Gram-positive and two Gram-negative bacteria. Values were obtained from a 

minimum of three independent trials.  

 

 

 

 
 

Figure 1: Antibacterial activity rate of GVF27, evaluated by colony count assay, against MRSA WKZ-2 and 

Escherichia coli ATCC 25922.  

 

One of the mechanisms through which HDPs kill bacterial cells is by forming pores into 

biological membranes, resulting in the leakage of small molecules [23]. We tried to collect data on 

the mechanism of the antibacterial activity of GVF27 by measuring ATP levels in the media in 

which bacterial cells are grown in the presence of the peptide. In fact, in bacterial cells intracellular 

ATP concentration is maintained constant and the release of ATP into the environment can be 

detected by chemiluminescence, which indicates the disruption of the cell membrane. Thus, we 

performed an assay to detect ATP leakage using two bacterial strains, E. coli and MRSA, treated 

with two different doses of GVF27 for 20 min. As shown in Figure 2 (panels A and B), the 

presence of ATP in the culture media is evident. Thus, we can confidently conclude that GVF27 has 

a lytic effect both on MRSA WKZ-2 and on E. coli cells, with MRSA WKZ-2 cells being 

particularly sensitive to the peptide. As it is shown in Figure 2, GVF27 induced in MRSA WKZ-2 

cells a release of 70% ATP at a concentration of 0.5 M. To obtain the same degree of ATP leakage 

in E. coli cells it was necessary to use a higher concentration of GVF27.  
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Figure 2: GVF27-induced ATP leakage in MRSA WKZ-2 (A) and Escherichia coli ATCC 25922 (B) after 

treatment with 0,5 or 2 μM of GVF27. The assays were performed in three independent experiments.  

 

 

2.2.2 Anti-biofilm properties of GVF27 

 

Bacteria mainly exist as multicellular aggregates embedded within a self-produced 

extracellular polymeric matrix. In this condition, known as biofilm, growing microbial cells are 

physiologically distinct from planktonic cells. As natural HDPs have emerged as promising anti 

biofilm candidates to be used as an alternative to conventional antibiotics, we evaluated if GVF27 is 

endowed with anti-biofilm activity by performing experiments on E. coli ATCC 25922 in BM2 

medium. E. coli was grown over-night, diluted in BM2 medium containing increasing 

concentrations of the peptide (from 0,125 to 32 μM), and then incubated for 24 h, at 37˚C to 

evaluate its effectiveness on the biofilm formation. Following incubation, the analysis of biofilm 

production by crystal violet staining revealed a dose-dependent inhibition of biofilm formation, 

with about 90% inhibition at the highest concentration of peptide tested (Figure 3A). We also 

collected data that would indicate that GVF27 peptide exerts a significant effect on biofilm 

attachment. To investigate this, we followed the experimental procedure described above with the 

only exception that bacterial cells were incubated with increasing concentrations of peptide for 4 h, 

at 37°C. Also in this case, we observed a dose-dependent inhibition of biofilm attachment, with 

almost total inhibition at 32 µM peptide concentration (Figure 3A). Interestingly, GVF27 was 

found to exert significant effects also on preformed biofilms. This was evaluated by incubating 

preformed biofilm with increasing concentrations of the peptide for 24 h, at 37°C. At the highest 

peptide concentration tested, we observed a significant (∼20%) reduction of the preformed biofilm 

(Figure 3A). 
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Figure 3: A. Biofilm inhibitory activity of GVF27 against E. coli strain in BM2 medium. The effects of 

increasing concentrations of GVF27 peptide were evaluated either on biofilm formation, biofilm attachment, 

or on pre-formed biofilm. Biofilm was stained with crystal violet and measured at 630 nm. Shown are mean 

+ SD values of three independent experiments. B. Effects of increasing concentrations of GVF27 peptide on 

the viability of E. coli ATCC 25922 bacterial cells inside the biofilm structure. Cell viability was assessed by 

colony counting assay and expressed as the percentage of viable bacterial cells in treated samples with 

respect to the control untreated sample. Shown are mean + SD values of three independent experiments. 

 

 

In all cases, we also evaluated the percentage of viable bacterial cells inside the biofilm by colony 

counting assay. We found (Figure 3B) an almost total reduction of bacterial viability when 32 M 

GVF27 was added prior to biofilm attachment, a significant reduction (90%) when it was added 

prior to biofilm formation and a reduction of about 50% when the peptide was tested on pre-formed 

biofilm.  
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2.2.3 Cytotoxicity assays of GVF27 on eukaryotic cells 

 

The promising interest in the use of HDPs stems from their selective action on bacterial 

cells. We thus studied the cytotoxic effect of GVF27 towards mouse macrophages and erythrocytes. 

The addition of increasing concentrations (from 0.6 to 40 μM) of GVF27 to mouse macrophages 

RAW cells 264.7 did not result, at 24 h of incubation time, in any significant reduction in cell 

viability (Figure 4A). The same peptide concentrations were tested also on mouse erythrocytes to 

detect any hemolytic activity of GVF27. As shown in Figure 4B, the peptide did not exert any lytic 

effect on mouse red blood cells, even at the highest concentration tested.  

 

 
 

Figure 4: Cytotoxicity of GVF27 on eukaryotic cells. A) Effect of GVF27 on the viability of mouse 

macrophages Raw 264.7. B) Hemolytic activity of GVF27 on mouse erythrocytes. In both experiments the 

mean values ± SD from three independent experiments run in triplicate are shown.  

 

 

The cytotoxicity of GVF27 was also measured against human keratinocytes (HaCat) and on human 

cervical cancer cells (HeLa). In all cases, no significant cytotoxicity was ever observed (data not 

shown). It should be underlined that GVF27 is toxic to bacterial cells at concentrations similar to 

that used in the cytotoxicity assays described above. This selective behavior is eligible for the 

perspective of a future in vivo application of GVF27. Moreover, it should be noted that all the 

experiments mentioned above were carried out after an incubation time of 24 h, since the analysis 

of GVF27 stability in serum indicated that peptide degradation was almost complete after 24 h 

(Table 3).   

 

 

 

 

 

 

 

 

 

 

Table 3. Analysis of serum stability of GVF27 by RP-HPLC (see Methods). 

Time (hour) Area % 

0 100 

1 63 

2 41 

3 30 

24 6 
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2.2.4 Conformational studies of GVF27: Circular Dichroism, Fluorescence and NMR. 

 

Structural analysis by CD spectroscopy provides a qualitative picture of the structural 

elements that are present in a given peptide. Far-UV CD spectra indicate that GVF27 is largely 

unstructured both in water and in 10 mM Hepes pH 7.4. On the contrary, it is structured in 40% 

TFE (Figure 5). This behavior can be observed also for other HDPs, all prone to assume a specific 

conformation when interacting with membrane-mimicking agents like TFE. Moreover, 

deconvolution data reported in Table 4, indicate that structured GVF27 adopts a predominant 

helical structure (approximately of ≈ 50%).  

 

 

Figure 5: Far UV CD of GVF27 in the presence of increasing concentrations of TFE. 

 

 

 -helical % -strand % coil 

GVF27 18.2 24.0 57.8 

GVF27 - 40 %TFE 52.6  7.2  40.2  

GVF27 - 0,4 mg/mL LPS from 

Pseudomonas aeruginosa 

strain 10 

30.8  18.6  50.6  

GVF27 - 0,4 mg/mL LPS from 

Pseudomonas aeruginosa 

strain KK27 

32.1  12.3  55.5  

GVF27 - LTA 0,4 mg/mL 33.0  19.5  47.5  

 

Table 4. Secondary structure content of GVF27, calculated by means of CDPRO program. 

 

To further characterize structural properties of GVF27, the interaction with LPS and LTA, 

the main constituents of the cell wall of Gram negative and positive bacteria, respectively, was 

analyzed. CD spectra in the presence of LPS isolated from two different P. aeruginosa strains 

(strain 10 and clinical isolate KK27 strain) are shown in Figure 6 (panels A and B).  

GVF27 spectrum in water has a minimum at around 205 nm, indicating that the peptide is in a 

disordered conformation. Instead, in the presence of LPS (Fig. 6A-B), the peptide spectra present 

two minima centered around 210 and 225 nm, suggesting that in both cases it is able to assume a 
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helical conformation upon interaction. The deconvolution data (Table 4) confirm that both LPSs 

induce a similar increase in the amount of helical structure (about 31-32%) but with slightly 

different amounts of beta and coil structure. 

CD spectra, acquired in the presence of LTA, (Figure 6C), showed a relatively flat shape minimum 

centered at 215 nm, due to the presence of significant amounts both of alpha and beta structures as 

shown by deconvolution data (Table 4).    

 

 
 

 

Figure 6: Far UV CD of GVF27 in the presence of increasing concentrations of LPS from P. aeruginosa 10 

(A), from P. aeruginosa KK27 (B) and of LTA from Staphylococcus aureus (C). 

 

C 

B 

A 
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Spectrofluorimetric data were also collected to investigate if the interaction of GVF27 with 

LPS and LTA could influence the tertiary structure of the peptide based on the presence in the 

sequence of three Trp residues (see Figure 7). Fluorescence spectra were recorded upon excitation 

at 280 nm and 295 nm and showed that the interaction of the peptide with LPS, LTA, and TFE 

results in a blue shift of the wavelength of the maximum of emission, indicating that GVF27 folds 

upon interaction with LPS or LTA, in agreement with CD data. However, in the presence of TFE a 

less marked effect was observed. 

 

 

 
 

Figure 7: Tryptophan fluorescence spectra for GVF27 in H2O and in the presence of TFE (40%), LPS (0,5 

mg/mL) and LTA (1 mg/mL). 

 

Moreover, a deeper investigation of the conformational preferences of peptide GVF27 was 

performed by NMR spectroscopy. NMR characterization of GVF27 was performed in TFE-d3/H2O 

30:70 (v/v) mixture at 298 K. Through this analysis, GVF27 was confirmed to have a helical 

conformation like showed in Figure 8.  

 

 

 
 

Figure 8: NMR structures of GVF27 in TFE-d3/H2O 30:70 mixture at 298 K A) Backbone superposition 

of the 20 energy-minimized structures and B) Ribbon model of a representative structure. 
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2.2.5 GVF27 assembles LPS aggregates 

 

Dynamic Light Scattering (DLS) is a well-known technique used to measure Brownian 

motion (diffusion) and size distribution of particles in solution. For this reason, DLS experiments 

were used to investigate whether peptide GVF27 may alter the size of micelles of LPS and LTA 

(above their critical micelle concentration). In both cases GVF27 displayed an associating action, 

promoting the formation of larger aggregates. In particular, the data indicate that LPS from 

Pseudomonas is poly-dispersed in solution with major size-populations having a hydrodynamic 

radius centered at about 40 nm (Figure 9). Incubation of LPS with GVF27 causes a shift of the 

average size of LPS micelles to a higher value centered at about 260 nm. On the other hand, when 

the peptide was incubated with LTA, a mean diameter of 100 nm of the aggregates was observed, 

indicating a weaker potency of GVF27 in associating LTA aggregates. 

It can be hypothesized that this aggregation action, already observed for other HDP [24], may be 

part of a LPS neutralization mechanism, inhibiting the interaction of LPS with its cell receptors, 

with the concomitant blocking of cytokine production and release [25].   

 

 

Figure 9: Effect of GVF27 on the structural organization of LPS or LTA micelles. Light scattering of 

LPS from P. aeruginosa 10 (top) or LTA (bottom) before and after incubation with the peptide. 

 

2.2.6 Anti-inflammatory properties of GVF27  

 

Data above would indicate that GVF27 is able to assume specific conformations in the 

presence of mimic membrane agents, LPS and LTA, as well as to induce aggregation of LPS, and to 

a lesser extent of LTA. As it has been already reported that several HDPs are able to mitigate up-

regulation of LPS-induced pro-inflammatory mediators and cytokines [26], it seemed interesting to 

verify if GVF27 could possess also putative anti-inflammatory properties. To collect data on 

possible anti-inflammatory properties of GVF27, nitric oxide production and interleukin Il-6 release 

in murine macrophages RAW264.7 treated with GVF27 and LPS were analyzed. Nitric oxide (NO) 

plays diverse roles in biological systems: it is a mediator of vasodilatation, platelet aggregation and 

neurotransmission, and regulates function, death and survival of various cell types including many 

of those involved in immunity and inflammation.  To study the effect of GVF27 on NO production 

in LPS induced RAW 264.7 cells, we performed three types of treatments: 1. medium containing 
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peptide alone (5 or 20 M) for an initial incubation of 2 h followed by addition of 50 ng/mL LPS 

from Salmonella Minnesota; 2. medium containing 50 ng/mL LPS for an initial incubation of 2h 

followed by addition of peptide (5 or 20 M); 3. medium containing a mixture of peptide (5 or 20 

M) and 50 ng/mL LPS. In all the cases, culture supernatants were collected after 24 h. As shown 

in Figure 10A, GVF27 exerts a strong dose-dependent attenuation of the production of NO when 

co-incubated with 50 ng/ml LPS. Conversely, when we performed a pre-incubation of RAW 264.7 

cells with peptide and subsequently we induced LPS infection, the effect of GVF27 on NO 

production was not significant (Figure 10A). Similarly, when RAW 264.7 cells were pre-incubated 

with LPS and subsequently treated with 5 or 20 M of GVF27, we revealed a slight dose dependent 

reduction of NO production (Figure 10A).  

Cytokines are small proteins (about 25 kDa) released by many cell types, usually after an 

activation signal, and they induce a response by binding specific receptors. IL-6 is a monomer 

produced by T cells, macrophages and endothelial cells. It is able to determine growth and 

differentiation of B and T cells, and the production of acute phase proteins, like C-reactive protein. 

When we analyzed by ELISA the effect of GVF27 on RAW 264.7 cells, following the same scheme 

observed in the NO production assay, we revealed a strong inhibitory effect exerted by the peptide 

on the secretion of IL-6 when the macrophages were co-incubated for 24 h with GVF27 (5 or 20 

M) and 50 ng/ml LPS (see Figure 10B). Moreover, we found that GVF27 was able to exert also a 

significant dose dependent protective effect on cells. Indeed, as shown in Figure 10B (on the 

center), when RAW 264.7 cells were pre-treated for two hours with 5 or 20 M GVF27 and then 

incubated for 24 h with 50 ng/ml LPS, it was possible to observe a limited secretion of IL-6. When 

cells, instead, were pre-incubated with LPS and then subjected to the action of the peptide (see 

Figure 10B – on the right), a slight secretion of IL-6 was revealed. This suggests that, although the 

incubation time with the endotoxin was too short, the peptide was still able to reduce the secretion 

of the analyzed interleukin. Collectively, these data indicate that GVF27 is able to exert an 

intriguing anti-inflammatory effect on LPS treated cells.   

 

 
Figure 10: (A) Effect of GVF27 on NO production in LPS induced mouse macrophages RAW 264.1. 

LPS extracted from Salmonella minnesota was assayed at a final concentration of 50 ng/mL. All experiments 

were carried out for an incubation time of 24 h. (B) Effect of GVF27 on IL-6 release in LPS induced 

mouse macrophages RAW 264.1 LPS extracted from Salmonella minnesota was assayed at a final 

concentration of 50 ng/mL. All experiments were carried out for an incubation time of 24 h. 

A B 
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Finally, the ability of GVF27 to bind LPS, was further confirmed by a different approach using the 

chromogenic LAL (Limulus amaebocyte lysate) assay [27]. Three different concentrations of 

GVF27 (6.25 - 12.5 – 25 μM) were incubated for 30 minutes at 37 °C with LPS from Escherichia 

coli 011:B4 following manufacturer instructions. As shown in Figure 11, a concentration of 12.5 

μM GVF27 was enough to neutralize about 40% of LPS whereas the presence of 25 μM GVF27 

completely neutralized LPS thus supporting the hypothesis that GVF27 might act in a dose-

dependent manner as a scavenger of Gram negative’s LPS (Figure 11). 

 

 
 

Figure 11: Neutralization LPS in the presence of GVF27. Peptide was incubated with the endotoxin (0.25 

units/ml) for 30 min and the amount of free endotoxin quantified by LAL assay (see methods). 

 

 

 

2.2.7 Intracellular killing 

 

As already mentioned in the introduction, macrophages are specialized cells in the 

phagocytosis of pathogens and their intracellular digestion. However, some intracellular pathogens 

can escape digestion in phagolysosomes [28]. To cope with these pathogens, the antibacterial 

potential of the macrophage must be increased. This process is named macrophages activation and 

it can take place through extracellular signals, i.g. with the IFN-γ. Such activation is difficult in 

patients with a deficiency in IFN-γ or its receptor, however, there are other signals that may trigger 

the macrophage, such as LPS of Gram negative bacteria. In this experiment, we wanted to 

investigate whether beyond the immune modulating activities already described for GVF27, there 

was also the capability to increase the activity of murine macrophages in the intracellular digestion 

of Salmonella enterica serovar Thypimurium ATCC 14028, as has been already demonstrated for 

other HDPs [29]. Raw cells were preliminarily treated with two different doses of GVF27 (1 and 10 

μM) for 2 hours. They were then infected with 1 x 10
8
 CFU / mL of Salmonella enterica for 1 h. 

Subsequently, with the use of antibiotics for 1h, all the bacterial cells remaining in the extracellular 

environment were killed. Finally, the macrophages were lysed to release the bacterial cells still 

alive. These cells were then plated on LB-agar and the next day the intracellular killing percentage 

was evaluated (Figure 12). 
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Figure 12: Intracellular clearance of Salmonella enterica induced by GVF27 in murine macrophages. 

 

From this experiment, carried out 5 times, it was found that the lowest tested dose of the 

peptide was not sufficient to determine the macrophage activation, however at the concentration of 

10 μM of GVF27, this was able to reduce to the number of viable intracellular bacteria more than 

50 % with respect to untreated control. Further investigation should explain the mechanism through 

which GVF27 is able to kill intracellular bacteria in macrophages. Major hypotheses to explain 

these phenomena are (i) that the peptide could be taken up by the macrophage from the media into 

the cytoplasm and there exert its antimicrobial activity; otherwise (ii) the peptide could 

extracellularly activate the macrophage as well as act on other known paracrine signals.  
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2.3 Conclusions  

A number of human proteins, whose primary functions are not necessarily related to 

host defense, contain HDPs hidden inside their sequence. In 2017, Pane Katia et al. [21] have 

established a bioinformatic procedure through which it is possible to identify host defense peptides 

in precursor protein sequences and predict their strain dependent antimicrobial propensities. By 

using this tool to analyze about 4,000 human secreted proteins, a cryptic peptide has been identified 

in human 11-hydroxysteroid dehydrogenase-1 -like (accession number UniProtKB: Q7Z5J1), here 

named GVF27, with potent antimicrobial activity. The experiments described in this chapter 

confirm that GVF27 peptide exhibits antibacterial activities, with MIC values comparable to that of 

a well-studied cathelicidin [30], against a broad spectrum of both Gram-positive and -negative 

strains. Interestingly, its antibacterial properties are not limited to planktonic cells but are 

significant also on sessile bacteria forming biofilm. Indeed, here we provide evidences that GVF27 

inhibits biofilm formation, as well as it is able to eradicate existing mature biofilm in a dose 

dependent manner. In addition, GVF27 is also able to induce a strong reduction of viable sessile 

bacterial cells. This suggests that our peptide presents affinity for biofilm components, presumably 

extracellular DNA and/or polysaccharides, but also retains its ability to attack bacterial membranes 

due to its amphipatic properties. This clearly confers to the peptide a relevant potential as an anti-

biofilm agent alternative to conventional antibiotics, the latter being almost totally ineffective 

against microbes encapsulated in biofilm.  

A crucial point regarding the development of membranolytic antimicrobial therapeutics 

is that they must not destroy the membrane of mammalian cells. We showed here that, although 

endowed with antimicrobial activity, GVF27 displays virtually no hemolytic and cytotoxic activity 

on an assortment of murine and human cell lines. This implies that GVF27, probably due to its net 

positive charge composition, has evident high membrane selectivity towards bacterial cells but not 

mammalian cells.  

From a structural point of view, in agreement with the canonical properties of most 

HDPs, we verified by CD and NMR experiments that GVF27 is unstructured in aqueous buffer 

whereas it tends to assume a helical conformation in the presence of TFE. Moreover, NMR data 

clearly indicate that the spatial segregation of polar and apolar amino acids of GVF27 are on 

opposite faces oriented along the axis of a helical structure. This would indicate that GFV27 is able 

to assume an optimal conformation to effectively promote strong membrane association. Further 

tests by CD and light scattering have also allowed to highlight that the peptide is able to interact 

both with LPS and LTA, albeit in a less effective manner with the latter, thus suggesting that it can 

bind to the microbial surfaces via these wall determinants.  

The ability of GVF27 to interact with LPS has been also confirmed by different 

approaches, thanks to which it has been possible to show that the peptide is able to inhibit the pro-

inflammatory response. Indeed, GVF27 strongly down-regulates the release of NO and the 

production of IL-6 both in LPS pre-treated murine macrophages cells and upon co-administration of 

the peptide and the endotoxin. Moreover, it is worth noting that in murine macrophages treated with 

GVF27 and then subjected to LPS, a decrease of both NO and IL-6 was still detectable, thus 

suggesting also a protecting action for the peptide. GVF27 also demonstrated that this protecting 

action could be exerted by enhancing macrophages intracellular antimicrobial systems that act on 

phagocyted bacteria like Salmonella enterica. This opens an interesting scenario because GVF27 is 

a “hidden” peptide in a protein that, although not yet been characterized, could be constitutively 



35 
 

present under physiological conditions and able to release, by induced proteolysis, a fragment 

containing GVF27 in response to pathogen invasion. Our hypothesis is substantiated by an in silico 

prediction of peptides obtainable as a result of hydrolysis, which was carried out on the isoforms in 

which we identified GVF27 by simulating hydrolysis mediated by neutrophil elastase. Indeed, as 

shown in Figure 13, possible peptides released by hydrolysis are virtually superimposable to 

GVF27 and all have high antimicrobial scores, thus clearly supporting our idea that human proteins 

may fascinatingly be seen as active reservoirs of HDPs.   

 

 

Figure 13. In silico prediction, on the C-terminal region of the four isoforms in which we have identified 

GVF27, of hypothetical peptides released by cleavage mediated by human neutrophil elastase.  

 

For each putative peptide (#1, #2, #3 and #4) the antimicrobial score by using the bioinformatic 

procedure described in Pane et al 2017 [21] has also been calculated. In our opinion at least three 

mechanisms could be responsible for GVF27 immune-modulatory properties. First, GVF27 might 

modulate cellular response to pro-inflammatory mediators by acting as an endotoxin scavenger 

during initial steps of infection. In this case the peptide could bind to and neutralize the endotoxin 

directly. Second, GVF27 might reduce inflammatory dysfunction during immune response by 

interacting with membrane receptors, i.e CD14, that then would activate down regulation of 

different pro-inflammatory pathways. Third, endogenous GVF27, or internalized from paracrine 

cells, may contribute to attenuation of the inflammatory response by interacting with intracellular 

targets. Based on these hypotheses and on the evidences described in this chapter, it is indisputable 

that the existence of cryptic HDPs implies that innate immunity is more complex than usually 

believed and that the human proteome is an unexplored and essential source of bioactive agents. In 

conclusion, GVF27 may offer several advantages compared to other antimicrobial agents: (i) it is 

non-immunogenic given its human origin; (ii) specifically targets bacterial strains, (iii) is not 

hemolytic and contributes to enhance anti-inflammatory response without altering cell viability. 

Thus, we confidentially believe that structural, immunomodulatory and antimicrobial data of 

GVF27 presented in this work, could serve as leads for the design of human-specific therapeutics. 
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2.4 Experimental procedures 

2.4.1 Peptide synthesis 

Peptide GVF27 was manually synthesized using the fluorenylmethyloxycarbonyl 

(Fmoc) solid-phase strategy (0.1 mmol). Synthesis was performed on NovaSyn TGA resin (loading 

0.25 mmol/g), using all standard amino acids. The first amino acid was bound to the resin by 

treatment with Fmoc-Thr(tBu)-OH (5equiv)/MSNT (5 equiv)/MeIm (3.75 equiv) in DCM for 3 h. 

Fmoc protecting group was removed by reaction with 30% piperidine in DMF (3 × 10 min). The 

amino acids in 10-fold excess were pre-activated with HBTU (9.8 equiv)/HOBT (9.8 equiv)/DIPEA 

(10 equiv) in DMF for 5 min and then added to the resin suspended in DMF. The reaction was 

carried out for 1 h and coupling efficiency was assessed by the Kaiser test. The peptide was cleaved 

off the resin by treatment with a mixture of trifluoroacetic acid (TFA)/water/triisopropylsilane 

(95:2.5:2.5 v/v/v) for 3 h at room temperature. Resin was filtered, and crude peptide was 

precipitated with diethyl ether, dissolved in H2O/ACN solution, and lyophilized. The product was 

purified by preparative RP-HPLC on a Shimadzu system equipped with a UV−visible detector 

SPD10A using a Phenomenex Jupiter Proteo column (21.2 × 250 mm; 4 μm; 90 Å) and a linear 

gradient of H2O (0.1% TFA)/ACN (0.1% TFA) from 20%–80% of ACN (0.1%TFA) in 20 min at a 

flow rate of 20 mL/min. Identity and purity of the compound were assessed by LC/MS using an 

AGILENT Q-TOF LC/MS instrument equipped with a diode array detector combined with a dual 

ESI source and an Agilent C18 column (2.1 × 50 mm; 1.8 μm; 300 Å) at a flow rate of 200 μL/min 

and a linear gradient of H2O (0.01% TFA)/ACN (0.01% TFA) from 5%–70% of ACN (0.01% 

TFA) in 15 min.  

 

2.4.2 Antimicrobial activity assays 

Antimicrobial activity of GVF27 peptide was tested against Escherichia coli ATCC 

25922, MRSA WKZ-2 (methicillin-resistant Staphylococcus aureus), Salmonella enteriditis 706 

RIVM, Bacillus globigii TNO BM013, Bacillus licheniformis ATCC 21424, Staphylococcus aureus 

ATCC 29213, Pseudomonas aeruginosa PAO1, and Pseudomonas aeruginosa ATCC 27853. 

Bacteria were grown to mid-logarithmic phase in Muller Hinton broth (MHB) at 37°C. Cells were 

then diluted to 2 x 10
6
 CFU/ml in Difco 0.5X Nutrient Broth (Becton-Dickenson, Franklin Lakes, 

NJ) containing increasing amounts of GVF27 (0,6-40 µM). Starting from a peptide stock solution, 

two-fold serial dilutions were sequentially carried out, accordingly to broth microdilution method 

[31]. Following over-night incubation, MIC100 values were determined as the lowest peptide 

concentration responsible for no visible bacterial growth. Alternative antimicrobial assays to test 

salt resistant properties of GVF27 have been carried out following the same procedure described 

above and using 0.5X Nutrient Broth medium containing physiological concentrations of divalent 

cations as CaCl2 and MgSO4 (0.265 g/L and 0.097 g/L respectively). 

 

 

 



37 
 

2.4.3 Killing kinetics 

To assess the time point of bacterial growth inhibition, killing kinetics with GVF27 

were performed. Two different peptide concentrations (1 or 10μM GVF27) were incubated with 

mid-logarithmic (2× 10
6 

CFU/ml) E. coli ATCC 25922 or MRSA WKZ-2. At 1, 5, 10, 20, 30, 60 

and 120 min, 100 μl aliquots were taken and immediately plated on TSA. Additionally, 20μl 

aliquots were diluted 10- to 1,000-fold and again 100μl was plated. After 16h incubation at 37 °C 

the surviving bacteria were counted. 

 

2.4.4 ATP leakage measurements  

MRSA WKZ-2 and Escherichia coli ATCC 25922 were grown in Muller Hinton broth 

(MHB) at 37°C to mid-logarithmic phase. Bacteria were centrifuged, resuspended in 10 mM 

phosphate buffer pH 7.0 + 1:100 MHB and diluted to 2×10
7
 CFU/ml. From each diluted sample, 60 

μl of bacterial suspension were incubated with 60 μl peptide solution (0.5 or 2 μM) for 20 min at 

37°C. Samples were then centrifuged, the supernatant was stored at 4°C until further use, and the 

bacterial pellet was suspended in lysis buffer and further incubated at 100°C. Cell lysates were 

centrifuged and supernatants were kept on ice. Subsequently, both intra- and extracellular ATP 

levels were determined using the Roche ATP bioluminescence kit HS II (Roche Diagnostics 

Nederland B.V., Almere, the Netherlands), according to the manufacturer's protocols. 

 

2.4.5 Serum Stability Assays 

The proteolytic susceptibility of GVF27 peptide was determined in 50% (v:v) human 

serum (Lonza, Basel, Switzerland). Human serum was previously activated by cooling at 4°C, 

centrifugation at 13,000g for 5 min and incubation at 37°C for 10 min in order to eliminate the lipid 

fraction. Then, 250 µL of serum was added to a 250 µL of an aqueous solution of GVF27 at a 

concentration of 1 mg/mL. The mixture was incubated at 37°C and, after 1, 2, 3 and 24 h, samples 

(25 μL) were centrifuged at 13,000g for 5 min and the supernatant was added to 75 L of H2O 

containing 0.1% TFA and further centrifuged. Supernatants were finally analyzed by the analytical 

Agilent 1200 Series Liquid Chromatograph, equipped with a binary pump delivery system, robotic 

autosampler, column thermostat and multi-wavelength detector. An ET 250/8/4 Nucleosil 5-C18 

column Machery-Nagel column (300 x 4mm, 5µm) and a linear gradient of H2O 

(0.1%TFA)/CH3CN (0.1%TFA) from 5 to 70% of CH3CN (0.1%TFA) in 30 min at flow rate of 

1mL/min were employed. The experiment was run in duplicate. 

 

2.4.6 Anti-biofilm activity assays 

Escherichia coli strain ATCC 25922 was grown over-night in Muller Hinton broth 

(MHB) and then diluted to 1×10
8
 CFU/mL in BM2 medium containing increasing peptide 

concentrations (0.125-32 µM). Incubation with the peptide was carried out either for 4 h, in order to 

test peptide effects on biofilm attachment, or for 24 h, in order to test peptide effects on biofilm 

formation. When peptide effects on preformed biofilm were evaluated, bacterial biofilms were 
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formed for 24 h at 37 °C, and then treated with increasing concentrations of the peptide (0.125-32 

µM).  In all the cases, at the end of the incubation, the crystal violet assay [32] was performed. To 

do this, the planktonic culture was removed from the wells, which were washed three times with 

sterile PBS prior to staining with 0.04% crystal violet for 20 min. The colorant excess was 

eliminated by three successive washes with sterile PBS. Finally, the crystal violet was solubilized 

with 33% acetic acid and samples optical absorbance values were determined at 630 nm by using a 

microtiter plate reader (FLUOstar Omega, BMG LABTECH, Germany). To determine the 

percentage of viable bacterial cells inside the biofilm structure, upon biofilm disruption with 0,1% 

Triton X-100, bacterial cells were ten-fold diluted on solid TSA and incubated for 16 h at 37 °C. 

Once evaluated the number of colony forming units, bacterial cell survival was calculated as 

follows: (CFUin treated sample/CFUin untreated sample) x 100.  

 

2.4.7 Cytotoxicity Assay 

Cytotoxic effects of peptide on Raw 264.7 cells were determined using the cell 

proliferation reagent WST-1 (Roche Applied Science, Mannheim, Germany), designed to be used 

for the spectrophotometric quantification of cell proliferation. Briefly 5×10
4 

cells were seeded into a 

96-well plate and incubated at 37°C with 5% CO2. Medium was then replaced with 100 μl of fresh 

media containing peptide solution to a final concentration ranging from 0–40 μM/well. After 24 h 

of incubation at 37°C, the peptide-containing medium was removed, and 100 μl of fresh medium 

containing 10% WST-1 reagent was added to each well and incubated for 30 min at 37°C in the 

dark. Subsequently, the absorbance was measured in a microtiter plate reader (FLUOstar Omega, 

BMG labtech) at 450 nm, using 650 nm as the reference wavelength. 

 

2.4.8 Hemolytic Assay 

EDTA anti-coagulated mouse blood was centrifuged for 10 min at 800 × g (20 °C) to 

sediment the red blood cells. Pelleted RBCs were washed three times and diluted 200-fold in PBS. 

In 96-well polypropylene plates, 75 μl of serial peptide dilutions (0–80 μM) were mixed with an 

equal volume of RBC suspension and incubated for 1 h at 37 °C. PBS served as baseline and a 0.2% 

(v/v) Triton X-100 solution served as a control for complete lysis. Supernatants, collected after 10 

min centrifugation at 1300 × g (20 °C), were transferred into polystyrene 96-wells plates and 

absorbance was measured at 405 nm. Hemolysis (%) was calculated as follows: ((APeptide 

−ABlank)/(ATriton − ABlank)) × 100. 

 

2.4.9 Measurement of nitric oxide production  

Nitric oxide production was assessed as the accumulation of nitrite (NO2
−
) in cell 

supernatants as a result of 24 h incubation period. Nitrite concentrations were determined by a 

colorimetric reaction using the Griess reagent. Briefly, cell culture supernatants were mixed with an 

equal volume of 1% sulfanilamide (dissolved in 2.5% phosphoric acid) and incubated for 5 min. 

The same volume of 0.1% N-(1-naphthyl) ethylenediamine dihydrochloride was added and 
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incubated for 5 min. The absorbance was measured at 520 nm using a 96-well microplate reader 

(FLUOstar Omega, BMG labtech). 

 

2.4.10 Inhibition of IL-6 production mediated by GVF27 

The ability of the peptide to modulate cytokine production in RAW 264.7 cells was 

measured by ELISA (enzyme-linked immunosorbent assay). Cells (5×10
4 

cells) were seeded into 

96-wells microtiter plates. Next day culture medium was discarded and replaced with fresh medium 

containing peptide alone (5 or 20 M) for an initial incubation of 2h followed by addition of 50 

ng/mL LPS from Salmonella Minnesota or, alternatively, with 50 ng/mL LPS for an initial 

incubation of 2h followed by addition of peptide (5 or 20 M) or of a mixture of peptide (5 or 20 

M) and 50 ng/mL LPS. In all the cases, culture supernatants were collected after 24 h. After each 

pre-incubation, either with LPS or with peptide, and prior to the subsequent addition of peptide or 

LPS to murine macrophages, at least three washing steps were performed to remove any residual 

traces of agents previously used. Expression levels of mouse IL-6 were measured using the 

commercial available DuoSet ELISA kits (R&D Systems), following the protocols provided by the 

manufacturer. All samples were centrifuged briefly at 5,000 rpm for 3 min at room temperature to 

remove cell debris prior to use. Microtiter plates were read at 450 nm using 550 nm as a reference 

wavelength to correct optical imperfections of the microtiter plate.  

 

2.4.11 LPS binding assay 

The ability of GVF27 to neutralize LPS was determined using the commercially 

available Limulus amebocyte lysate (LAL) assay (Pierce® LAL Chromogenic Endotoxin 

Quantitation Kit, Thermo Scientific, USA). Briefly, 25 μl of serially diluted peptide (25,12.5, 6.25 

µM) was added to 25 μl of 0.5 U/ml E. coli O11:B4 LPS for 30 min at 37 °C, followed by 

incubation with 50 μl of amoebocyte lysate reagent for 10 min. Absorbance at 405 nm was 

measured 10 min after the addition of 100 μl of the chromogenic substrate, Ac-Ile-Glu-Ala-Arg-p-

nitroanilide. The amount of non-bound LPS was extrapolated from a standard curve, and percentage 

inhibition calculated as: [(amount of free LPS in control samples) − (amount of free LPS in test 

samples)]×100/amount of free LPS in control samples. 

 

2.4.12 Spectroscopic studies 

CD spectra of GVF27 were recorded with a J-810 spectropolarimeter equipped with a Peltier 

temperature control system (Model PTC- 423-S, Jasco Europe, Cremella, LC, Italy). Far-UV 

measurements (190–260 nm) were carried out at 20° C using a 0.1 cm optical path length cell and a 

peptide concentration of 25M. Baseline was corrected by subtracting the complete buffer 

spectrum. CD spectra were carried out in the presence of LPS from Pseudomonas aeruginosa strain 

10 (Sigma, purified by phenol extraction) and from P. aeruginosa clinical strain KK27 [29]. Further 

analyses were carried out in the presence of lipotechoic acid from Staphylococcus aureus (LTA, 

Product Number L 2515, Sigma). All measurements were recorded using different concentration of 
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each compound (from 0.05 to 1.0 mg/ml). Baseline was corrected by subtracting the spectrum of 

both LPS and LTA alone at the same concentration. Additional CD spectra were performed using 

different concentrations of trifluoroethanol (TFE) (0-40%). Deconvolutions of CD spectra were 

obtained using the web-based program CdPro (http://lamar.colostate.edu/~sreeram/CDPro/). 

Fluorescence experiments were carried out under the same conditions used for CD analyses. Fluorescence 

spectra were collected at 20°C using a Varian Cary Eclipse spectrophotometer at excitation of 295 and 280 

nm, a 1.0 cm path length cell at 5 em and 5 ex. Emission spectra (300-400 nm) were collected in the 

presence of 40% TFE, 5 mg/ml LPS or 10 mg/ml LTA. 

 

2.4.13 LPS micelles measurements by using dynamic light scattering (DLS) 

To estimate the average size of the LPS particles, the Hydrodynamic Radii (RH) was 

measured by Dynamic Light Scattering technique (DLS). DLS measurements were carried out 

using a Zetasizer Nano ZS (Malvern Instruments, Westborough, MA) equipped with a 173° 

backscatter detector, at 25 °C, using a disposable sizing cuvette. DLS measurements in triplicate 

were carried out on aqueous LPS and LTA samples at 0.5 mg/mL. Data were analyzed using the 

Software of OMNISIZE (Viscotek). LPS and LTA size measurements were performed before and 

after peptide addition (0.5 mg/ml). 

 

2.4.14 Nuclear magnetic resonance spectroscopy 

NMR experiments were recorded at 25 °C on a Varian Unity INOVA 600 MHz NMR 

spectrometer equipped with a cold probe. Two-dimensional (2D) nuclear Overhauser effect 

spectroscopy (NOESY), total correlation spectroscopy (TOCSY) and 2D double-quantum-filtered 

correlated spectroscopy (DQFCOSY) experiments were recorded. NOESY mixing times were 200 

ms and TOCSY mixing times were 70 ms. These experiments were collected with 512 and 1024 

complex points with acquisition times of 64 and 128 ms in the indirectly and directly acquired 1H 

dimensions, respectively. The DQFCOSY experiment was collected with 1024 and 2048 complex 

points and acquisition times of 128 and 256 ms in the indirectly and directly acquired 1H 

dimensions, respectively. In all experiments water suppression was obtained using pre-saturation in 

order to simultaneously suppress the hydroxyl protons from TFE that are in fast exchange with 

protons from water. Hydroxyl protons from TFE were seen to attenuate signals in both 1D and 2D 

datasets in WATERGATE based suppression. 1D spectra were analyzed using ACD/NMR 

Processor 12.0 (ACD/NMR Processor Freeware, Version 12.01 Advanced Chemistry Development, 

Inc., Toronto, ON, Canada (2012), www.acdlabs.com). 2D TOCSY and NOESY spectra for 1H 

chemical shift assignment were analyzed using Neasy, a tool available in CARA (Computer Aided 

Resonance Assignment) software (Keller, R. L. J. The Computer Aided Resonance Assignment 

Tutorial.  CANTINA Verlag, 2004, downloaded from cara.nmr.ch). Structure calculation was 

performed with the program CYANA version 2.1 [33]. The NOE cross peak intensities were used to 

obtain distance constraints. The angle restraints were derived from 3JHNHα coupling constants. 

Structure calculations were initiated from 100 random conformers; the 20 structures with the lowest 

CYANA target function ns were analyzed with the programs MOLMOL [34] and PyMOL 

Molecular Graphics System, Version 1.8 Schrödinger, LLC. (http://www.pymol.org/). 

http://lamar.colostate.edu/~sreeram/CDPro/
http://www.pymol.org/
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2.4.15 Intracellular bacterial killing assay 

2x10
5
 RAW 264.7 cells were incubated with 1-10 M at 37°C for 2h and then washed 

three times with sterile PBS. Cells were incubated with 1x10
8
 CFU/mL of Salmonella enterica 

Typhimurium ATCC 14028 at 37°C in DMEM supplemented with 10% FBS, 2 mM L-glutamine 

but without any antibiotics. After 1 h of infection, cells were washed three times with PBS to move 

away un-phagocyted bacteria. To ensure that extracellular environment was free from bacteria, cells 

were incubated 1h at 37°C with DMEM supplemented with 10% FBS, 2 mM L-glutamine and Pen-

Strep as source of antibiotics. Then, cells were washed three times with PBS again. Cells were lysed 

using 0.1% Triton X-100 in PBS for 5 minutes at room temperature to release intracellular bacteria. 

Thereafter, the lysates were serially diluted and plated onto agar plates. The following day, viable 

bacteria were counted (CFU). 

 

2.4.16 Statistics 

Results are presented as the mean ± standard error of the mean (SEM) of at least three 

independent experiments. Statistical significance was assessed with one-way ANOVA in Prism 

software, version 6.02 (GraphPad Prism, La Jolla, CA, USA).  All samples were compared to the 

negative control. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Chapter 3 
 

Novel human bioactive peptides identified 

in Apolipoprotein B: Evaluation of their 

therapeutic potential. 
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3.1 Introduction 

 

Apolipoproteins are the main protein components of plasma lipoproteins and, 

intriguingly, a source of bioactive peptides. Reports have shown that peptides derived from the 

cationic receptor binding region of Apolipoprotein E (ApoE141-149) are endowed with broad anti-

infective activity [1]. Apolipoprotein B (ApoB) also contains two LDL (low-density lipoprotein) 

receptor binding domains, namely region A (ApoB3147-3157) and region B (ApoB3359-3367). 

Region B, more uniformly conserved across species and primarily involved in receptor binding, has 

been found to be endowed with a significant antiviral activity. Moreover, peptides derived from 

ApoB have been already used in vaccine preparations [2]. As mentioned in Chapter 1, recently, 

Pane K. et al. developed an in silico method [3] to identify HDPs in protein precursors and to 

predict quantitatively their antibacterial activity. This method allows the identification of novel 

HDPs within the sequence of known proteins (“cryptic” HDPs), as demonstrated by the 

identification of a novel cationic HDP endowed with antibacterial and immunomodulatory activities 

in human ApoE [4].  

Further, this method has been applied to the human Apolipoprotein B (ApoB) isoform, and 

two putative cryptic HDP have been predicted and named ApoBS and ApoBL. The sequence of 

peptide ApoBL is PHVALKPGKLKFIIPSPKRPVKLLSGGNTLHLVSTTKT, while that of peptide 

ApoBS is PHVALKPGKLKFIIPSPKRPVKLLSG. To evaluate the therapeutic potential of these 

peptides, we analysed their structure, antimicrobial and anti-biofilm activities, the ability to act in 

synergy with conventional antibiotics, their anti-inflammatory and wound healing properties, and 

their possible toxic effects on eukaryotic cells. 
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3.2 Results 

 

3.2.1 Antimicrobial activity of ApoBL and ApoBS peptides   

 

The antibacterial activity of ApoB derived peptides was determined by measuring their 

MIC100 values on a panel of Gram-negative and Gram-positive bacterial strains (Table 1). A 

significant antimicrobial activity of ApoBL and ApoBS peptides was detected towards four out of 

eight strains tested, i.e. E. coli ATCC 25922, P. aeruginosa PAO1, B. globigii TNO BM013, and B. 

licheniformis 21424, for which almost identical MIC100 values were calculated for both ApoB 

derived peptides. Notably, MIC100 values were found to be identical, or even significantly lower 

than those determined when cathelidin-2 (CATH-2) peptide, a known HDP from chicken [5], was 

tested as a positive control on the above mentioned strains.  

Hence, it can be concluded that ApoBL and ApoBS peptides are endowed with a broad-range 

antimicrobial activity, being effective on both Gram-negative and Gram-positive bacterial strains. 

On the other hand, ApoB derived peptides were found to be ineffective towards P. aeruginosa 

ATCC 27853, methicillin-resistant S. aureus (MRSA WKZ-2), and S. aureus 29213, while, in the 

case of S. enteriditis 706 RIVM, a significant antibacterial effect was exerted only by ApoBL 

peptide.    

 

 
 

Table 1. Minimum Inhibitory Concentration (MIC, µM) values determined for ApoB
L
 and ApoB

S
 peptides 

tested on a panel of Gram-positive and Gram-negative bacterial strains. Chicken CATH-2 peptide was used 

as a positive control. Values were obtained from a minimum of three independent experiments. 

 

 

3.2.2 Combination therapy analyses  

 

To potentiate the antimicrobial efficacy of ApoB derived peptides for therapeutic 

purposes, especially against P. aeruginosa and S. aureus strains, we carried out combination 

therapy analyses by concomitantly administrating peptides and antibiotics in different combinations 

to bacteria. One of the best known test to evaluate synergism between two compounds is the so 

called “chequerboard” experiment in which a two-dimensional array of serial concentrations of test 

compounds is used as the basis for calculation of a fractional inhibitory concentration (FIC) index 
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to demonstrate that paired combinations of agents can exert inhibitory effects that are more than the 

sum of their effects alone. It is generally accepted that FIC indexes ≤ 0.5 are indicative of 

“synergy”; FIC indexes comprised between > 0.5 and – 4.0 are, instead, associated to “additive” or 

“no interaction” effects, whereas FIC indexes > 4.0 are indicative of “antagonism” [6].   

As reported in Table 2, all the combinations tested were found to be effective, either with 

additive or synergistic effects between peptides and antibiotics. Notably, no FIC indexes higher 

than 2 were measured. The most potent combinations were obtained in the presence of EDTA, 

which was selected for its ability to affect bacterial outer membrane permeability, thus sensitizing 

bacteria to a number of antibiotics [7]. Very pronounced synergistic effects were observed for both 

ApoB derived peptides in combination with EDTA on S. aureus MRSA WKZ-2 and both P. 

aeuroginosa strains. We also found that both ApoBL and ApoBS showed synergism with the 

systemic antibiotic ciprofloxacin against all the strains tested. Similarly, we observed synergistic 

effects between both ApoB derived peptides and colistin against all the strains tested, except for S. 

aureus ATTC 29213. Synergistic effects were also observed in combination with vancomycin 

against S. aureus MRSA WKZ-2, P. aeruginosa strains and E. coli ATTC 25922. In the presence of 

erythromycin, synergistic effects were observed only against P. aeruginosa ATCC 27853, with a 

FIC index of 0.38 and 0.17 for ApoBL and ApoBS peptides, respectively.  

In the case of kanamycin, a different response was obtained depending on the peptide and the 

specific bacterial strain. In fact, ApoBL was found to act synergistically with this antibiotic 

prevalently on Gram-negative bacteria, particularly on the P. aeruginosa strains. ApoBS peptide, 

instead, was found to be very active against both S. aureus strains as well as against P. aeruginosa 

PAO1 strain (FIC indexes < 0.4).  

It should be emphasized that combinations of ApoB derived peptides with antibiotics and 

EDTA were found to have a strong antimicrobial activity also towards strains on which the peptides 

alone were found to be ineffective, such as both S. aureus strains and P. aeruginosa ATCC 27853 

(Table 2). Notably, we did not observe any antagonistic interactions between the peptides and the 

antimicrobials under test. 
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Table 2. Fractional inhibitory concentration (FIC) indexes determined for ApoB

L
 and ApoB

S
 peptides tested 

in combination with antibiotics or EDTA on Gram-positive and Gram-negative bacterial strains. Indexes 

were obtained from a minimum of three independent experiments, each one carried out with triplicate 

determinations. 

 

3.2.3 Anti-biofilm activity of ApoBL and ApoBS peptides   

 

Anti-biofilm peptides represent a very promising approach to treat biofilm-related 

infections and have an extraordinary ability to interfere with various stages of the biofilm growth 

mode [8]. To test whether ApoB derived peptides are endowed with anti-biofilm activity, we 

performed experiments on different bacterial strains, such as E. coli ATCC 25922, Pseudomonas 

aeruginosa PAO1, Pseudomonas aeruginosa ATCC 27853, and methicillin-resistant 

Staphylococcus aureus MRSA WKZ-2 in BM2 medium. As a control, the same experiments were 

performed using CATH-2 and LL-37 peptides. LL-37 is a human HDP known to have a significant 

anti-biofilm activity against multidrug-resistant bacterial strains [9].  
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At first, we evaluated the peptide effects on biofilm attachment. To do this, the bacterial 

culture, following over-night growth, was diluted in BM2 medium containing increasing 

concentrations of the peptide under test (0-1 μM), and incubated for 4 h at 37 ˚C. Following 

incubation, biofilm analysis by crystal violet staining revealed a significant dose-dependent 

inhibition of biofilm attachment in the case of E. coli ATCC 25922 (Fig. 1a) and S. aureus MRSA 

WKZ-2 (Fig. 1d) strains treated with ApoBL (continuous line in Fig. 1a, d) or ApoBS (smaller 

dashed line in Fig. 1a, d) peptides. Similar results were obtained on these two strains in the case of 

control peptides, such as CATH-2 (larger dashed line in Fig. 1a, d) and LL-37 (dotted line in Fig. 

1a, d). Strong effects were also exerted by ApoB derived peptides on biofilm attachment in the case 

of P. aeruginosa PAO1 strain. A less pronounced effect of ApoB derived peptides (about 20% 

inhibition) was observed, instead, on P. aeruginosa ATCC 27853 biofilm attachment.  

We also demonstrated that ApoB derived peptides have a strong effect on biofilm formation. 

To investigate this phenomenon, we followed the experimental procedure described above with the 

only exception that bacterial cells were incubated with increasing concentrations of peptides for 24 

h at 37 °C. Also in this case, we observed a significant dose-dependent inhibition of biofilm 

formation in the case of E. coli ATCC 25922 (Fig. 1b) and S. aureus MRSA WKZ-2 (Fig. 1e) 

strains treated with ApoBL (continuous line in Fig. 1b, e) or ApoBS (smaller dashed line in Fig. 1b, 

e) peptides. Similar effects on biofilm formation were also obtained in the case of control peptides 

CATH-2 (larger dashed line in Fig. 1b, e) and LL-37 (dotted line in Fig. 1b, e). ApoB derived 

peptides strongly affected also P. aeruginosa PAO1biofilm formation. In the case of P. aeruginosa 

ATCC 27853, instead, a less pronounced effect (about 20% biofilm formation inhibition) was 

observed for all the peptides under test.  

Even more interestingly, ApoB derived peptides were also found to strongly affect the 

preformed biofilm. In fact, by incubating E. coli ATCC 25922 (Fig. 1c) and S. aureus MRSA 

WKZ-2 (Fig. 1f) strains preformed biofilm with increasing concentrations of ApoBL (continuous 

line in Fig. 1c, f) or ApoBS (smaller dashed line in Fig. 1c, f) peptide, we found a significant 

inhibition (about 50%), even stronger than that observed in the case of CATH-2 control peptide 

(larger dashed line in Fig. 1c, f). Similar results were also observed in the case of P. aeruginosa 

PAO1 strain. When peptides were tested, instead, on P. aeruginosa ATCC 27853 preformed 

biofilm, a slight effect (about 20% inhibition) was observed for all the peptides except for CATH-2, 

which was found to exert a strong effect (about 50% inhibition,). We also evaluated the percentage 

of viable bacterial cells inside the biofilm structure by colony counting assay. We found that, even 

at the highest ApoB derived peptides concentrations tested, a significant portion of bacterial cells 

appeared to be still alive (continuous and smaller dashed lines in Fig. 2 and Table 3). Similar 

results were also observed in the case of LL-37 control peptide (dotted lines in Fig. 2). In the case 

of CATH-2 peptide, instead, a strong effect on cell viability was observed in the case of E. coli 

ATCC 25922 and S. aureus MRSA WKZ-2 strains (larger dashed lines in Fig. 2).  
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Figure 1. Anti-biofilm activity of ApoBL (‒), ApoBS (- - -), CATH-2 (‒ ‒ ‒), and LL-37 (•••) peptides on E. 

coli ATCC 25922 (a, b, c) and S. aureus MRSA WKZ-2 (d, e, f) strains in BM2 medium. The effects of 

increasing concentrations of peptides were evaluated either on biofilm attachment (a, d), biofilm formation 

(b, e), or on pre-formed (c, f) biofilm. Biofilm was stained with crystal violet and measured at 630 nm. Data 

represent the mean (± standard deviation, SD) of at least three independent experiments, each one carried out 

with triplicate determinations.    

 

 
 

Figure 2. Effects of increasing concentrations of ApoBL (‒), ApoBS (- - -), CATH-2 (‒ ‒ ‒), and LL-37 (•••) 

peptides on the viability of E. coli ATCC 25922 (a, b, c) and S. aureus MRSA WKZ-2 (d, e, f) cells inside 

the biofilm structure. Cell viability was assessed by colony counting assay, and expressed as the percentage 

of viable bacterial cells in treated samples with respect to the control untreated sample. Data represent the 

mean (± standard deviation, SD) of at least three independent experiments, each one carried out with 

triplicate determinations. 
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Table 3. Effect of ApoB
L
, ApoB

S
, CATH-2, and LL-37 peptides (1 µM) on biofilm attachment, formation, 

and eradication. To determine the percentage of viable bacterial cells inside the biofilm structure, biofilm 

was lysed with Triton X-100 (0,1%), bacterial cells were ten-fold diluted, and colonies were counted after an 

incubation of 16 h at 37 °C. Data are expressed as percentage with respect to control untreated samples, and 

represent the mean (± standard deviation, SD) of at least three independent experiments, each one carried out 

with triplicate determinations. 

 

 

3.2.4 Biocompatibility of ApoBL and ApoBS peptides  

 

The development of HDPs as therapeutic agents is strictly related to their selective 

toxicity towards bacterial cells [10]. The presence of zwitterionic phospholipids and cholesterol on 

the outer leaflet of eukaryotic cell membranes largely accounts for the preference of HDPs for 

bacterial membranes over eukaryotic membranes [11].  

To deepen on the therapeutic potential of ApoB derived peptides, we analysed their 

cytotoxic effects towards a panel of mouse and human eukaryotic cells. The addition of increasing 

concentrations (from 0.625 to 20 μM) of ApoB derived peptides to mouse macrophages Raw 264.7 

cells for 24 h did not result in any significant reduction in cell viability (Fig. 3a and b). A slight 

toxicity was detected only at the highest peptide concentrations tested (10 and 20 μM). Moreover, 

no significant toxic effects were detected when ApoB derived peptides were assayed on human 

cervical cancer HeLa cells (data not shown), while a slight toxicity (~20%) was observed in the 

case of human keratinocytes (HaCaT cells) at the highest peptide concentration tested (20 μM). 

ApoB derived peptides were also tested on murine red blood cells (RBCs) to exclude hemolytic 

affects. As shown in Fig. 4, both peptides did not exert any lytic effect on mouse RBCs, even at the 

highest concentration tested (20 μM). It should also be underlined that the antibacterial activity of 

ApoB derived peptides was detected at peptide concentrations comparable (Table 1) to those used 

in the cytotoxicity assays described above. 
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Figure 3. Effects of ApoBL (a) and ApoBS (b) peptides on the viability of RAW 264.7 cells. Cell viability 

was assessed by WST-1 assay, and expressed as the percentage of viable cells with respect to controls 

(untreated cells). Error bars indicate standard deviations obtained from at least three independent 

experiments, each one carried out with triplicate determinations.  

 

 
 

Figure 4. Hemolytic activity of ApoBL (a) and ApoBS (b) peptides towards murine red blood cells (RBCs) 

after 1 h of incubation at 37 °C. Data represent the mean (± standard deviation, SD) of at least three 

independent experiments, each one carried out with triplicate determinations. 

 

 

3.2.5 Analysis of the immunomodulatory activity of ApoBL and ApoBS peptides 

 

Since it is widely reported that HDPs are able to mitigate the pro-inflammatory effects 

induced by endotoxins [12], such as LPS, we tested the anti-inflammatory properties of ApoB 

derived peptides by monitoring their effects on LPS induced interleukin-6 (IL-6), as well as on 

nitric oxide (NO) release in murine macrophages (RAW 264.7 cell line). In fact, it is known that, 

upon activation by internal and external stimuli, macrophages produce and secrete various 
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endogenous inflammatory mediators, such as nitric oxide (NO) and pro-inflammatory cytokines, 

including interleukin-6 [13]. An excess of NO, produced by inducible nitric oxide synthase (iNOS) 

during inflammation, activates the synthesis of inflammatory mediators, which can in turn cause 

tissue damage, genetic mutations, and nerve injury [14]. 

To test the effects of ApoB derived peptides on the release of IL-6, ELISA assays were 

performed on LPS stimulated RAW 264.7 cells. As shown in Fig. 5a and b, a significant release of 

IL-6 was observed in control cells incubated with LPS from Salmonella Minnesota (50 ng/mL). 

When murine macrophages were incubated with LPS (50 ng/mL) in the presence of either ApoBL 

(Fig. 5a) or ApoBS (Fig. 5b) peptides, at 5 and 20 µM peptide concentration, a strong decrease of 

IL-6 release was observed with respect to control cells stimulated with LPS in the absence of 

peptides. Moreover, we found that peptides have a significant protective effect on LPS stimulated 

RAW 264.7 cells. In fact, when macrophages were pre-treated for 2 h with either ApoBL or ApoBS 

peptide and then incubated for further 24 h with LPS, a significant decrease of IL-6 release was 

observed (Fig. 5a and b). Similar results were observed when the effects of peptides were tested on 

NO release (Fig. 5c and d). Also in this case, following co-incubation of cells with LPS from 

Salmonella Minnesota and either ApoBL or ApoBS peptide, a significant attenuation of NO release 

with respect to control cells was detected (Fig. 5c and d). However, in this case, it has to be noticed 

that a significant effect of peptides on NO release was observed only at the highest peptide 

concentration tested (20 µM), while at 5 µM concentration both peptides were found to be almost 

ineffective (Fig. 5c and d). However, when RAW 264.7 cells were pre-treated for two h with 5 or 

20 µM of ApoBL or ApoBS peptides and subsequently stimulated for 24 h with LPS (50 ng/mL), a 

significant reduction of NO release was observed even at 5 µM peptide concentration (Fig. 5c and 

d), thus confirming a significant protective effect of both peptides on LPS stimulated RAW 264.7 

cells. 
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Figure 5. Effects of ApoB derived peptides on the release of IL-6 (a, b) and NO (c, d) in mouse 

macrophages RAW 264.7 stimulated with LPS (50 ng/mL) from Salmonella Minnesota. The effects of 

ApoBL (a, c) and ApoBS (b, d) peptides were evaluated either co-incubating cells with peptides (5 or 20 µM) 

and LPS (oblique grey lanes) or by treating cells with peptides (5 or 20 µM) for 2 h at 37 °C prior to 

incubation with LPS (chessboard bars). Results were compared to those obtained in the case of control 

untreated cells (white bars), cells stimulated with the LPS alone (black bars), or cells incubated with two 

different concentrations (5 or 20 µM) of peptide (grey bars). Data represent the mean (± standard deviation, 

SD) of at least three independent experiments, each one carried out with triplicate determinations.   

 

 

3.2.6 Wound healing activity of ApoBL peptide 

 

Numerous studies support the hypothesis that human HDPs promote wound healing in 

skin, by modulating cytokine production, cell migration, proliferation and, in some cases, 

angiogenesis [15]. Based on this, we performed experiments to evaluate if ApoBL peptide is able to 

stimulate “wound” re-epithelialization by human keratinocytes (HaCaT cell line). To this purpose, 

we performed a classical wound healing assay to evaluate peptide effects on cell migration. Hence, 
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HaCaT cell monolayers were pre-treated with 3 µM mitomycin C for 30 minutes, in order to inhibit 

cell proliferation, and then wounded with a pipette tip to remove cells from a specific region of the 

monolayer. Cells were then washed with PBS and incubated with increasing concentrations of 

ApoBL (0.5, 10, and 20 µM). It is well known that the spreading of cells in the wound area is due to 

two mechanisms, i.e. cell motility and cell proliferation [16]. Pre-treatment with mitomycin C 

allowed us to exclude any influence of cell proliferation on the wound healing process. In Fig. 6a, 

we reported the images acquired during a wound healing experiment for control cells, and cells 

treated with 20 µM ApoBL peptide at three time points, i.e. t=0 h, t=3 h after the lag time (tL), and 

t=5 h the after tL. By comparing the images obtained for each time point, the cells treated with 20 

µM peptide appear to close the wound faster than the control cells.  

In order to quantify the wound closure, we used an automated image analysis software, that 

allowed us to measure the size of the cell-free area (A) for each time point. Obtained values were 

normalized with respect to the value measured at time 0 (A0) for each field of view, and plotted as a 

function of time (Fig. 6b). In Fig. 6a, A/A0 values were found to be 0.20, and 0.07 for the control 

sample, and for the cells treated with 20 µM peptide, respectively, at t=5 h after tL. This evidence 

further confirms the ability of 20 µM ApoBL peptide to significantly stimulate wound re-

epithelialization by human keratinocytes.  As an example, we reported in Fig. 6b A/A0 values, 

obtained in the case of a control sample, as a function of time. It emerges that, after an initial lag 

phase, the wound area decreases with a constant velocity. The initial lag phase, corresponding to a 

transient time period (tL) before the linear decrease of the wound area, has been observed for all the 

analysed samples, and has been found to range between 3 and 5 h independently from peptide 

concentrations under test (Fig. 6c).  

Following the lag phase, A/A0 values were always found to linearly decrease over time. The 

slope (α) of the line represents the measure of the “wound” closure velocity. For each sample, this 

value (α) was normalized with respect to the value obtained in the case of the control sample (αcontr), 

and plotted as a function of peptide concentration (Fig. 6d). It appears that the cells treated with the 

peptide are characterized by an increase in the “wound” closure velocity with respect to the control 

cells (α/αcontr>1).  

Overall, our results indicate that ApoBL peptide is able to promote the migration and the 

consequent wound healing in HaCaT keratinocyte monolayers when tested at concentration values 

ranging between 0.5 and 20 µM.   
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Figure 6: Wound healing activity of ApoBL peptide on HaCaT cells monolayer. Cells were pre-treated for 

30 min with 3 µM mitomycin C, and then wounded prior to incubation with ApoBL peptide (10 – 20 µM) for 

12 h at 37 °C. Images were acquired for untreated HaCaT cells and for cells treated with 20 µM peptide (a). 

The lag phase time (tL) corresponds to the time interval before the linear decrease of the wound area. Images 

were acquired at time t=0 (a, on the left), 3 h after tL (a, in the middle) and 5 h after tL (a, on the right). For 

each sample, A/A0 values are reported, where A is the wound area after a specific incubation time and A0 is 

the wound area at time 0. Scale bar = 150 μm. In b, evolution in time of the wound area (A), normalized with 

respect to A0, is reported for a control sample. A homemade automated image analysis software was used to 

measure the size of the cell-free area (A) for each time point. For A/A0 values <0.8, a linear correlation with 

the incubation time was found. The slope -α of the linear fit, reported as a continuous line, represents a 

measure of the wound closure velocity. In c, determined tL values are reported as a function of peptide 

concentration (0.5 - 10 - 20 µM). In d, wound closure velocity (α), normalized with respect to control sample 

(αcontr), is reported as a function of peptide concentration (0.5 - 10 - 20 µM). The dashed line corresponds to 

α/αcontr =1. In c and d, each data point represents the mean (± standard error) of three independent 

experiments.  
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3.3 Conclusions 

 

Here, we focused our attention on the two identified ApoB derived HDPs, here named 

ApoBL and ApoBS, 38- and 26-residue long, respectively. Both peptides were found to exhibit 

antibacterial activities against both Gram-positive and Gram-negative strains, including the 

pathogenic strains P. aeruginosa PAO1 and B. globigii TNO BM013, while having negligible 

cytotoxic effects on a panel of human and murine cell lines. It has to be underlined that ApoB 

derived peptides were found to be ineffective towards P. aeruginosa ATCC 27853, methicillin-

resistant S. aureus (MRSA WKZ-2), and S. aureus ATTC 29213 strains, while, in the case of S. 

enteriditis 706 RIVM strain, a significant antibacterial effect was exerted only by ApoBL peptide. 

This observation is in agreement with previous findings indicating that most natural cationic HDPs 

do not appear to be highly optimized for direct antimicrobial activity, since it is likely that multiple 

modestly active peptides with concomitant immunomodulatory activities work effectively in 

combination and/or when induced or delivered to sites of infection [17]. 

Indeed, considering this, we performed combination therapy analyses and found that both 

ApoB derived peptides are able to synergistically act with either commonly used antibiotics or 

EDTA, which was selected for its ability to affect bacterial outer membrane permeability, thus 

sensitizing bacteria to a number of antibiotics [18]. Intriguingly, this application allows the 

reduction of therapeutic doses with a consequent mitigation of toxic effects, and possibility to target 

a broad spectrum of pathogens. In addition, certain combination therapies have prevented the 

development of drug-resistance in bacteria. A membranolytic action of HDP is expected to produce 

synergetic effects when administered in combination with conventional antibiotics, and several 

studies have reported such findings. Cirioni et al. [19] compared the synergies of magainin II and 

cecropin A administered with or without rifampicin against MDR Pseudomonas aeruginosa strains 

both in vivo and in vitro and found significant reductions in bacterial multiplication, LPS and TNF-

α secretion in plasma and mortality. This finding suggested that the membrane-permeabilizing 

activity of peptides allows rifampicin to gain access to its intracellular target.  

In this work, when combined with conventional antibiotics or EDTA, both ApoB derived 

peptides showed synergist activity towards most of the strains under test, including methicillin-

resistant S. aureus MRSA WKZ-2 on which peptides alone were found to be ineffective even at 

high concentrations (40 µM). Interestingly, both ApoBL and ApoBS peptides showed synergism 

with systemic antibiotic ciprofloxacin against all the strains under test (FIC indexes ranging from 

0.3 to 0.44). ApoB derived peptides also showed synergistic effects with colistin against all the 

strains under test, except for S. aureus ATTC 29213, and with vancomycin against S. aureus MRSA 

WKZ-2, both P. aeruginosa strains and E. coli ATTC 25922 (FIC indexes ranging from 0.14 to 

0.5). Since both colistin and vancomycin are responsible for toxic effects at high concentrations 

[20], the possibility to use combination therapeutic approaches based on a reduced frequency of 

antibiotic administration and/or exposure to antibiotic may offer several advantages over 

conventional dosing schemes, as adverse side effects might be reduced.  

However, the most potent synergism was observed for both ApoB derived peptides in 

combination with EDTA, with FIC indexes ranging from 0.089 to 0.4. It should be highlighted that, 

although in some cases FIC indexes very close to 0.5 make difficult to discriminate between 

synergistic and additive effects, no antagonistic interactions were observed between the peptides 

and the antimicrobials under test. Furthermore, combinations of ApoB derived peptides with 
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antibiotics and EDTA were found to have a strong antimicrobial activity also towards strains on 

which the peptides alone were found to be ineffective, such as both S. aureus strains and P. 

aeruginosa ATCC 27853, indicating that in drug combinations a reciprocal facilitation and 

potentiation of different mechanisms of action is realized. 

Interestingly, ApoB derived peptides are also endowed with anti-biofilm activity. 

Microorganisms growing in a biofilm state are very resilient to the treatment by many antimicrobial 

agents. Indeed, biofilm infections are a significant problem in chronic and long-term infections, 

including those colonizing medical devices and implants [21]. Specific cationic HDPs have recently 

been described to possess multispecies anti-biofilm activity, which is independent of their activity 

against planktonic bacteria. ApoB derived peptides were found to be effective on biofilm formation, 

biofilm attachment, and were also found to strongly affect pre-formed biofilm. Interestingly, ApoB 

derived peptides anti-biofilm activity was detected even on bacterial strains not sensitive to peptide 

direct antimicrobial activity, such as S. aureus MRSA WKZ-2. 

Moreover, it has to be highlighted that both ApoBL and ApoBS peptides were found exert 

immunomodulatory activities by significantly decreasing the release of pro-inflammatory IL-6 and 

NO in murine RAW 264.7 macrophages under LPS stimulation. Both ApoB derived peptides were 

found to efficiently act either when the cells were co-incubated with the peptide under test in the 

presence of LPS or when the cells were pre-treated with the peptide for 2 h and then incubated with 

LPS for further 24 h, thus indicating that both peptides were able to exert significant protective 

effects. However, it has to be noticed that, differently from ApoBL peptide, ApoBS was found to 

play anti-inflammatory activities, when co-incubated with LPS, only at the highest peptide 

concentration tested (20 µM), whereas both ApoBS concentrations under test (5 and 20 µM) were 

found to efficiently exert a protective effect. This might be due to the fact that ApoB derived 

peptides probably exert their immunomodulatory activity through different mechanisms, with 

ApoBL peptide mainly acting by binding to LPS and consequently interfering with its activity on 

target cells, and ApoBS peptide mainly acting on cell membrane and competing with LPS for the 

binding to specific cell sites. All these observations associated to their multifunctional properties 

open interesting perspectives to their therapeutic applications. 
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3.4 Experimental procedures 

3.4.1. Bacterial strains and growth conditions  

Eight bacterial strains were used in the present study, i.e. E. coli ATCC 25922, 

methicillin-resistant Staphylococcus aureus (MRSA WKZ-2), Salmonella enteriditis 706 RIVM, 

Bacillus globigii TNO BM013, Bacillus licheniformis ATTC 21424, Staphylococcus aureus 

ATTC 29213, Pseudomonas aeruginosa ATCC 27853, and Pseudomonas aeruginosa PAO1. All 

bacterial strains were grown in Muller Hinton Broth (MHB, Becton Dickinson Difco, Franklin 

Lakes, NJ) and on Tryptic Soy Agar (TSA; Oxoid Ltd., Hampshire, UK). In all the experiments, 

bacteria were inoculated and grown overnight in MHB at 37 °C. The next day, bacteria were 

transferred to a fresh MHB tube and grown to mid-logarithmic phase. 

 

3.4.2. Synthetic peptides 

CATH-2 peptide was obtained from CPC Scientific Inc. (Sunnyvale, USA), and LL-37 

peptide was from Sigma Aldrich, Milan, Italy. 

  

3.4.3. Measurement of IL-6 release 

IL-6 levels were determined by ELISA assay (DuoSet ELISA kits, R&D Systems, 

Minneapolis, MN) following the manufacturer’s instructions. Briefly, RAW 264.7 cells (5×10
4
) 

were seeded into 96-well microtiter plates, and grown to semi-confluency. After 24 h, the culture 

medium was replaced with fresh medium containing the peptides under test (5 or 20 µM) in the 

presence or in the absence of LPS from Salmonella Minnesota (50 ng/mL, Sigma Aldrich, Milan, 

Italy) for 24 h at 37 °C. When the protective effect of peptides was evaluated, cells were pre-

incubated with the peptides under test (5 or 20 µM) for 2 h at 37 °C. Following treatment, cells 

were washed three times with PBS prior to incubation with LPS (50 ng/mL) for further 24 h at 37 

°C. In each case, at the end of incubation, the culture supernatants were collected, and centrifuged 

at 5,000 rpm for 3 min at room temperature, in order to remove cell debris. Samples were then 

analysed by reading absorbance values at 450 nm using 550 nm as a reference wavelength at an 

automatic plate reader (FLUOstar Omega, BMG LABTECH, Ortenberg, Germany).  

 

3.4.4. Determination of NO production 

To determine the levels of NO released by RAW 264.7 cells, a colorimetric  assay based 

on the use of Griess  reagent (Sigma Aldrich, Milan, Italy) was performed. The levels of nitrite 

(NO
2−

) in cell supernatants were determined on the basis of a reference curve obtained by testing 

increasing amounts (from 1 to 50 μM) of sodium nitrite dissolved in water. Briefly, cell culture 

supernatants were mixed with equal volumes of 1% sulphanilamide dissolved in 2.5% phosphoric 

acid, and incubated for 5 min at room temperature. Samples were then diluted 1:1 (v/v) with 0.1% 

N-(1-naphthyl) ethylenediamine dihydrochloride, and incubated for further 5 min at room 

temperature. Absorbance values were then determined at 520 nm using an automatic plate reader 

(FLUOstar Omega, BMG LABTECH, Ortenberg, Germany). 
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3.4.5. Antimicrobial activity assay 

The antimicrobial activity of ApoB derived peptides was tested towards eight bacterial 

strains, i.e. E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA WKZ-2), 

Salmonella enteriditis 706 RIVM, Bacillus globigii TNO BM013, Bacillus licheniformis ATCC 

21424, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, and 

Pseudomonas aeruginosa PAO1. In each case, bacteria were grown to mid-logarithmic phase in 

MHB at 37 °C. Cells were then diluted to 2x10
6
 CFU/mL in Nutrient Broth (Difco, Becton 

Dickinson, Franklin Lakes, NJ) containing increasing amounts of either ApoBL or ApoBS peptide 

(0,6-40 µM). In order to add the same volume of peptide to each sample, starting from a peptide 

stock solution, two-fold serial dilutions were sequentially carried out, accordingly to broth 

microdilution method [22]. Following over-night incubation, MIC100 values were determined as 

the lowest peptide concentration responsible for no visible bacterial growth. 

 

3.4.6. Synergy evaluation 

Synergism between ApoB derived peptides and antimicrobial agents was assessed by 

the so called “checkerboard” assay against S. aureus MRSA WKZ-2, E. coli ATCC 25922, P. 

aeruginosa ATCC 27853, P. aeruginosa PAO1, and S. aureus ATCC 29213. To this purpose, 

ApoB derived peptides were tested in combination with EDTA or antibiotics, such as 

ciprofloxacin, colistin, erythromycin, kanamycin sulfate, and vancomycin. All these antimicrobial 

agents were from Sigma Aldrich, Milan, Italy. Two-fold serial dilutions of each ApoB derived 

peptide and each antimicrobial agent were tested in combination on each strain tested. To do this, 

we tested peptide concentrations ranging from 0 to 20 μM. In the case of antibiotics and EDTA, 

experiments were preliminarily performed to define for each compound the appropriate 

concentrations to use depending on the specific bacterial strain under test. Compound 

concentrations tested on each strain are reported in Table 4. The fractional inhibitory 

concentration (FIC) index was calculated as follows: FICA + FICB, where FICA = MIC of drug A 

in combination/MIC of drug A alone, and FICB = MIC of drug B in combination/MIC of drug B 

alone. FIC indexes ≤ 0.5 were classified as synergism, whereas FIC indexes between 0.5 and 4 

were associated to additive or “no interaction” effects [23]. Antagonism is usually associated to a 

FIC index > 4.  

 

Table 4. Range of antimicrobial agents concentrations tested for combination therapy analyses. Based on 

specific bacterial strain susceptibility, different concentrations of each compound were used in combination 

with ApoB derived peptides (0- 20 μM) to evaluate synergistic effects. 
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3.4.7. Anti-biofilm activity  

Anti-biofilm activity of ApoB derived peptides was tested on S. aureus MRSA WKZ-2, 

E. coli ATCC 25922, P. aeruginosa ATCC 27853, and P. aeruginosa PAO1 strains. Bacteria were 

grown over-night in MHB (Becton Dickinson Difco, Franklin Lakes, NJ), and then diluted to 

1×10
8
 CFU/mL in BM2 medium [24] containing increasing peptide concentrations (0 - 1 µM). 

Incubations with the peptides under test were carried out either for 4 h, in order to test peptide 

effects on biofilm attachment, or for 24 h, in order to test peptide effects on biofilm formation. 

When peptide effects on preformed biofilm were evaluated, bacterial cells were incubated for 24 h 

at 37 ˚C, and then treated with increasing concentrations (0 - 1 µM) of the peptides under test. In 

all the cases, at the end of the incubation, the crystal violet assay was performed. Samples optical 

absorbance values were determined at 630 nm by using a microtiter plate reader (FLUOstar 

Omega, BMG LABTECH, Germany). To determine the percentage of viable bacterial cells inside 

the biofilm structure, upon biofilm disruption with 0,1% Triton X-100 (Sigma Aldrich, Milan, 

Italy), bacterial cells were ten-fold diluted on solid TSA and incubated for 16 h at 37 °C. Once 

evaluated the number of colony forming units, bacterial cell survival was calculated as follows: 

(CFUin treated sample/CFUin untreated sample) ×100. 

 

3.4.8. Cytotoxicity assays 

Cytotoxic effects of ApoB derived peptides on RAW 264.7 cells were determined by 

using the cell proliferator reagent WST-1(Roche Applied Science, Mannheim, Germany). To this 

purpose, RAW 264.7 cells were plated into 96-well plates at a density of 5×10
4
 cells in 100 µL 

medium per well, and incubated over-night at 37 °C. Afterwards, cells were treated with 

increasing concentrations (0 - 20 μM) of the peptides under test for 24 h at 37 °C. Following 

incubation, peptide-containing medium was removed, and 100 μL of fresh medium containing 

10% WST-1 reagent was added to each well. Following an incubation of 30 min at 37 °C in the 

dark, sample absorbance values were measured at 450 nm using 650 nm as a reference wavelength 

at a microtiter plate reader (FLUOstar Omega, BMG LABTECH, Germany).  

 

3.4.9. Haemolytic activity 

The release of haemoglobin from mouse erythrocytes was used as a measure for the 

haemolytic activity of ApoB derived peptides. To do this, EDTA anti-coagulated mouse blood 

was centrifuged for 10 min at 800 x g at 20 °C, in order to obtain red blood cells (RBCs), which 

were washed three times, and 200-fold diluted in PBS. Subsequently, 75 µL aliquots of RBCs 

were added to 75 µL peptide solutions (final concentration ranging from 0 to 20 µM) in 96-well 

microtiter plates, and the mixture was incubated for 1 h at 37 ◦C. Following the incubation, the 

plate was centrifuged for 10 min at 1,300 × g at 20 °C, and 100 µL supernatant of each well were 

transferred to a new 96-well plate. Absorbance values were determined at 405 nm by using an 

automatic plate reader (FLUOstar Omega, BMG LABTECH, Germany), and the percentage of 

haemolysis was calculated by comparison with the control samples containing no peptide 

(negative control) or 0.2% (v/v) Triton X-100 (positive control, complete lysis). Haemolysis (%) = 
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[(Abs405 nm peptide − Abs405 nm negative control)/( Abs405 nm 0,2% Triton − Abs405 nm negative 

control)] × 100. 

 

3.4.10. Wound healing assay 

Wound heling activity of ApoBL peptide was evaluated as previously described [25]. 

Human HaCaT keratinocytes were seeded into 12-well plates at a density of 6.3 x 10
5
 cells/well in 

1 mL medium per well. Following an incubation of 24 h at 37°C, cells were pre-treated with 3 µM 

mitomycin C for 30 minutes, in order to inhibit cell proliferation [26]. Cell monolayers were then 

wounded with a pipette tip to remove cells from a specific region of the monolayer. The culture 

medium was then removed and the cells were washed twice with PBS. Cells were then incubated 

with fresh culture medium containing increasing concentrations of ApoBL peptide (0 – 0.5 – 10 – 

20 µM). Wound closure was then followed by multiple field time-lapse microscopy (TLM) 

experiments, using an inverted microscope (Zeiss Axiovert 200, Carl Zeiss, Germany) equipped 

with an incubator to control temperature, humidity and CO2 percentage. Images were iteratively 

acquired in phase contrast with a CCD video camera (Hamamatsu Orca AG, Japan) by using a 10x 

objective. The microscope was also equipped with a motorized stage and focus control 

(Marzhauser, Germany) enabling automated positioning of the acquired samples. The workstation 

was controlled through a homemade software in Labview. Each cell sample was analysed in 

duplicate, and in any case at least two fields of view were selected. Since three independents 

experiments were carried out, from 4 to 12 independent fields of view were analysed for each 

sample. The delay between consecutive imaging of the same field of view was set to 15 min. The 

wound closure dynamics were quantified by using a homemade automated image analysis 

software, that allowed to measure the size of the wound area for each time point (A). For each 

field of view, determined values were normalized respect to the value of the wound area at time 0 

(A0), and plotted as function of time. After an initial lag phase, the wound area was found to 

decrease with a constant velocity [27]. By reporting A/A0 values as a function of time, a linear 

decrease was observed for A/A0 values lower than 0.8. For each sample, the lag time tL was 

calculated as the time required to obtain an initial wound closure corresponding to A/A0=0.8. 

Being R
2
 typically higher than 0.98, the linear range of the curve was fitted, and the slope (-α) was 

considered a measure of the wound closure velocity. The values of wound closure velocity 

obtained for each field of view from three independent experiments were averaged (α), and 

normalized with respect to the value of the corresponding control sample (αcontr). For each peptide 

concentration tested, α/αcontr values obtained from three independent experiments were averaged 

and the standard error of the mean was calculated to account for reproducibility.  
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Chapter 4 
 

Novel bioactive peptides from PD-L1/2, a type 1 ribosome 

inactivating protein from Phytolacca dioica L.  

Broad evaluation of their antimicrobial properties and 

antibiofilm activities 
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4.1 Introduction 

 

Higher plants are sedentary and lack the adaptive immune system that many animals 

deploy when challenged by microbial pathogens. Nevertheless, plants are not defenseless, and have 

developed a variety of mechanisms to protect themselves against microbial attack.  

These include the production of proteins, secondary metabolites and reactive oxygen species that 

can inhibit the growth of microbial pathogens, the establishment of structural barriers such as lignin 

and polysaccharides that prevent penetration and colonization, and hypersensitivity responses that 

result in programmed cell death and isolate invading pathogens from sources of nutrients. Plants 

represent an extremely abundant and largely unexplored source of HDPs. The recent development 

of powerful high-throughput genomic techniques has disclosed the presence of large numbers, often 

even several hundreds of HDP-like genes in various plant genomes [1] indicating the importance of 

HDPs in the eukaryotes and particularly in plants. 

The innate immune system is a generic defense response of both animals and plants to fend off 

invading microbes. In plants, it does not show the same degree of specificity as the adaptive 

immunity of vertebrates that evolves a highly specific response after initial exposure to a challenge, 

but, as well as in animals, innate immunity is triggered after recognition of conserved microbe-

associated molecular patterns (MAMPs) by pattern recognition receptors. 

HDPs can occur in all plant organs. In unstressed organs, HDPs are usually most abundant in the 

outer cell layer lining the organ, which is consistent with a role for the HDPs in constitutive host 

defense against microbial invaders attacking from the outside.  

To note, as abundantly demonstrated, HDPs have the potential for use as anti-biofilm 

agents due to their different mechanisms, which include membrane-disrupting action, functional 

inhibition of proteins, binding with DNA, and detoxification of polysaccharides (lipopolysaccharide 

and lipoteichoic acid) and inhibiting molecules involved in biofilm formation induced via quorum 

sensing. Biofilms provide a survival advantage over planktonic or free-floating bacteria by 

enhancing nutrient trapping and colonization. Currently, biofilms are a widespread problem in 

hospitals and healthcare facilities. Indeed, the United States National Institutes of Health found that 

80% of chronic infections are related to biofilms. Moreover, many studies have found that biofilms 

are associated with dental plaque, endocarditis, lung infection, and infection through medical 

devices. Bacterial cells are embedded into a matrix of extracellular polymeric substance, which is 

composed of extracellular DNA, proteins, lipids, and polysaccharides with various configurations. 

These components are very important targets for overcoming both biofilms and drug-resistant 

bacteria.  

Specific databases with increasingly accessible information [2, 3] indicate that a number 

of HDPs were identified in proteins, known as HDP releasing proteins, not necessarily playing host 

defence activities. These proteins would release biologically active peptides upon proteolytic 

cleavage by bacterial and/or host proteases [4, 5]. A few of these bioactive peptides were found in 

cationic proteins (with an isoelectric point > 8.0), such as lysozyme [6], RNase A [7], histone H2A 

[8] and lactoferrin [9], all with high propensity to release unfolded peptides with a positive net 

charge.  

 In this framework, our research group identified, at first, an HDP in cationic PD-L4 enzyme, 

a type 1 ribosome inactivating protein (RIP) [10] from Phytolacca dioica L. [11], by a CNBr 

fragmentation approach performed on the native protein. RIPs are enzymes (3.2.2.22) identified in 
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plants, fungi, algae, and bacteria. They are endowed with N-glycosilase activity, which leads to the 

cleavage of a specific adenine residue at a conserved site of the 28S rRNA, with a consequent 

inhibition of protein synthesis [12]. They are classified as type 1 or 2 according to their structure. 

Type 1 RIPs are single-chain proteins, with a size of approximately 30 kDa and a basic pI, whereas 

dimeric type 2 RIPs consist of two peptide chains: an A chain of about 30 kDa, endowed with 

enzymatic activity, linked to a B chain of about 35 kDa, endowed with lectin activity and capable of 

binding to oligosaccharides containing galactose moieties [13]. Although the biological role of RIPs 

has not been completely elucidated, some reports indicate that they may be involved in host defence 

activities [14, 15].  

 To date, reports on HDPs derived from Phytolacca dioica L. are limited to our recent study 

[16] demonstrating that the identified peptide, named PDL440-65 exhibits structural and biological 

properties typical of host defence peptides. 

In order to evaluate the presence of novel bioactive peptides in further RIP members, such 

as PD-L1/2, dioicin1 and dioicin2 [17, 18], here we used the previously described bioinformatics 

approach, in order to identify potential cryptic HDPs in protein precursors and to predict their strain 

specific antibacterial activity [19]. As a result of this screening, two very promising HDPs have 

been identified in the N-terminal region of PD-L1/2 (amino acid position Ile50-Ser80, Fig. 1) [20], 

which were here named IKY23 and IKY31. The present chapter focuses on the characterization of 

the antibacterial and anti-biofilm activities of these two novel PD-L1/2 derived peptides. 
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4.2 Results 

 

4.2.1 Bioinformatics research in type 1 RIPs from P. dioica 

 

The sequence of PD-L1/2 was analysed by using a previously described tool for the 

detection of cryptic HDPs [19]. The isometric plot, which correlates the predicted antimicrobial 

“absolute score” (AS) to all the possible peptides of length between 18 and 40 residues in the 

primary structure of PD-L1/2, shows two local maxima corresponding to peptides 50-79 (AS = 7.3-

7.5) and 50-71 (AS = 6.8-7.0). These scores correspond approximately to predicted MIC values in 

the range 10-40 µM. On the basis of this analysis, we selected for the characterization peptides 50-

73 and 50-80 (Figure 1), herein called IKY23 and IKY31, respectively. The small polar residues 

Asn72 and Ser80 were included at the C-termini of IKY23 and IKY31, respectively, in order to 

avoid that the negatively charged C-termini of the peptides were close to the antimicrobial region 

[21]. 

 
 

Figure 1. PD-L1/2 structure and PD-L1/2 derived peptides primary structures. A. Crystallographic structure 

of PD-L1/2 (PDB code: 3H5K). IKY31 and IKY23 are highlighted in red and yellow, respectively; B. 

Primary structures of both PD-L1/2 derived peptides. Cationic residues are in blue; glutamine and asparagine 

are in red. 

 

 

4.2.2 Antibacterial activity 

 

In order to evaluate the antibacterial activity of IKY23 and IKY31 peptides, 

antimicrobial assays were carried out on a panel of Gram-negative and Gram-positive bacterial 

strains, including Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 (Table 1). 

Although PD-L1/2 derived peptides share a very similar amino acidic composition (Fig. 1), 

obtained MIC values highlighted that their antibacterial selectivity and potency are significantly 

different. Indeed, IKY23 exhibited a broad spectrum antimicrobial activity against both Gram-

positive and Gram-negative bacteria, with MIC values similar to those obtained for control peptide 

(P)GKY20 [22] against E. coli (MIC =12.5 µM) and S. aureus (MIC = 6.25 µM) strains. In 

contrast, IKY31 displayed selective antibacterial activity against Gram-positive bacteria with MIC 
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values of 25 µM and 50 µM versus S. aureus and E. faecalis, respectively.  Moreover, IKY31 was 

found to be ineffective against K. pneumoniae and P. aeruginosa strains, at least in our 

experimental conditions. It is worth noting that both bacterial strains are also strong biofilm 

producers. Bacteria living in biofilm growth mode are usually refractory to most conventional 

antibiotics, but they have been found to be sensitive to several HDPs, even at sub-MIC 

concentrations [23, 24]. Thus, we investigated PD-L1/2 derived peptides anti-biofilm properties 

against K.pneumoniae and P.aeruginosa strains. 

 

  

Compound 

MIC   

E. coli K. pneumoniae P. aeruginosa S. aureus E. faecalis B. spizizenii 

  

IKY31 

  

100 

  

>100 

  

>100 

  

25 

  

50 

  

50 

  

IKY23 

  

12.5 

  

50 

  

50 

  

6.25 

  

25 

  

50 

  

(P)GKY20
a

 

  
12.5 

  
12.5 

  
25 

  
6.25 

  
6.25 

  
50 

  

Polymyxin B
b

 

  

1  

  

1 

  

1 

  

>32 

  

>32 

  

>32 

  

Vancomycin
b

 

  

>32 

  

>32 

  

>32 

  

1 

  

>32 

  

4 

a

Values expressed in µM 
b

Values expressed in µg/mL 

 

 

 

Table 1. Antibacterial activity of PD-L1/2 derived peptides from Phytolacca dioica L. Assays were carried 

out by broth microdilution method in Nutrient Broth 0.5 X. MIC value shown are the highest values obtained 

from three independent experiments. 

 

4.2.3 Anti-biofilm activity  

 

To assess whether PD-L1/2 derived peptides affect bacterial biofilms, we first measured 

by crystal violet (CV) staining, the percentage of biofilm biomass formed in the absence or in the 

presence of increasing concentrations of each peptide (Fig. 2). We observed a dose-dependent 

reduction in biofilm biomass of P. aeruginosa and K. pneumoniae biofilms upon treatment with 

increasing concentrations of IKY31 (Fig. 2A) or IKY23 (Fig. 2B). 

We also determined the minimum biofilm inhibitory concentration, i.e. peptide concentration 

determining 50% biofilm reduction (MBIC50). We found that the MBIC50 for IKY31 was about 5 

µM against P. aeruginosa and about 0.6 µM against K. pneumoniae (Fig. 2A). Interestingly, it 

should be noted that peptide IKY31 exerted anti-biofilm activity even against bacterial strains that 

are not sensitive to peptide direct killing activity against planktonic cells (MIC >100 µM, Table 1). 

Using the same experimental set-up, peptide IKY23 was found to exert anti-biofilm activity, with 

MBIC50 values of about 50 µM and about 0.8 µM against P. aeruginosa PAO1 and K. pneumoniae, 

respectively (Fig. 2B). It has been previously reported that different peptides exhibiting low 

bactericidal activity are strong anti-biofilm agents. This may be due to peptide self-aggregation, a 

phenomenon shown to contribute to anti-biofilm activity [25], or may alternatively be mediated by 

several mechanisms of action [26].  
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In order to further investigate the anti-biofilm properties of PD-L1/2 derived peptides, we 

also performed analyses using confocal microscopy. First, we analysed the effects of both PD-L1/2 

derived peptides at sub-MIC concentrations (12.5 µM) on K. pneumoniae and P. aeruginosa 

biofilms. Incubations were carried out for 24 h at 37 °C in static conditions. Following incubation, 

chambers were double stained (Syto9/PI mix), in order to discriminate between live and dead 

biofilm cells. As shown in Fig. 3A, both peptides affected K. pneumoniae biofilm thickness. 

Indeed, the biofilm height of samples treated with IKY31 or IKY23 was reduced to about 16 µm 

and 22 µm, respectively, which was significantly lower than the value determined for the untreated 

sample (about 35 µm). Moreover, samples treated with IKY31 displayed a significant increase in 

cell death (Fig.3A, middle panels) together with reduced cell cohesion, which may be indicative of 

a disrupted extracellular matrix. On the other hand, treatment with peptide IKY23 led to decreased 

biofilm coverage (Fig.3A, bottom panels), although it did not dramatically reduce the number of 

adherent cells, which was found to be similar to that of the untreated control sample (Fig.3A, top 

panels). We also analysed the effect of both peptides against P. aeruginosa PAO1 biofilm 

formation (Fig. 3B). In this case, only the longest PDL1/2 derived peptide induced cell death, as 

indicated by the higher percentage of PI positive cells (Fig.3B, middle panels) with respect to 

control sample (Fig. 3B, top panels). However, in this case, no obvious biofilm morphology 

alterations were recorded in the presence of peptide. 

Altogether, these results indicate that both peptides significantly affect K. pneumoniae biofilm 

formation, in agreement with the crystal violet data obtained using the static microtiter plate assay. 

However, on the basis of our observations, it is possible to hypothesize that PD-L1/2 derived 

peptides exert their effects through different mechanisms of action. Collectively, the longest peptide 

(IKY31) seem to exert its anti-biofilm effects through an anti-adhesive mode of action, likely 

mediated by an alteration of the biofilm structural components (e.g., those within the biofilm 

extracellular matrix). Since biofilm matrix components of P. aeruginosa PAO1 are well-

characterized and, as described above, no remarkable biofilm morphology alterations were recorded 

when biofilms were grown under static conditions, we next investigated the anti-biofilm properties 

of PD-L1/2 derived peptides against P. aeruginosa PAO1 cells by using a more sensitive flow cell 

device apparatus. This system enables continuous monitoring of biofilm formation over time and 

thus constitutes an excellent platform for screening and identifying novel compounds endowed with 

biofilm detachment activity [27, 28]. PDL1/2 derived peptides were tested for their ability to 

eradicate 2-day-old pre-formed biofilm of the human pathogenic Gram-negative P. aeruginosa 

PAO1. As shown in Fig. 4, both peptides induced cell death when compared to the untreated 

control, as indicated by increased PI uptake into cells, which correlates with an altered membrane 

permeability. Interestingly, treatment with each peptide affected the biofilm mode of growth 

compared to the untreated control. Indeed, IKY23 substantially decreased adherent cells (Fig. 4, 

middle panels), whereas IKY31 (Fig. 4, bottom panels) reduced biofilm microcolonies, when 

compared to the untreated control (Fig.4, top panels). 

These results suggest that the longest peptide (IKY31) might be able to interfere with cell-to-cell 

cohesion and aggregation, a key feature of biofilm growth. In order to evaluate the effect of PD-

L1/2 derived peptides on structural biofilm features, we performed interaction studies with the 

exopolysaccharide alginate, an important component of the P. aeruginosa PAO1 extracellular 

biofilm matrix (see paragraph 4.3.3). 

 



72 
 

 
 

Figure 2. Biofilm biomass of wild-type P. aeruginosa PAO1 and K. pneumoniae ATCC 700603 upon 

treatment with PD-L1/2 derived peptides. Biofilms were grown at 37 °C for 48 h in the presence of 

increasing concentrations of IKY31 (A) or IKY23 (B), respectively. Biofilm growth was assessed by 0.1% 

crystal violet (w/v) staining and quantified at 595 nm. Data shown are the average values of experiments 

repeated twice independently ±SEM of biofilm mass percentage compared to biofilm mass growth in the 

absence of peptides. 

 

 
 

Figure 3. Analysis of the effect of PD-L1/2 derived peptides on static biofilm growth by CLSM 

imaging. A) K. pneumoniae ATCC 700603 and P.aeruginosa PAO1 wild type (B) untreated biofilm grown 

for 24 h in chambered coverglass slides (control) or in the presence of IKY31 (middle panels) or IKY23 

(bottom panels). Biofilm cells were stained by using LIVE/DEAD BacLight bacterial viability kit (Molecular 

Probes, Eugene, OR) containing 1:1 ratio of Syto-9 (green fluorescence, all cells; center panel) and 

propidium iodide (PI; red fluorescence, dead cells; left panel). Images are 2D projections of biofilm structure 

obtained by confocal z-stack using Zen Lite 2.3 software. All images were taken under identical conditions. 

Scale bar correspond to 10 μm in all the cases.  
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Figure 4. Anti-biofilm flow cell assays. Biofilm cells were stained by using a LIVE/DEAD 

BacLight bacterial viability kit (Molecular Probes, Eugene, OR) or Syto-9 alone prior to the 

microscopy experiments. A ratio of Syto-9 (green fluorescence, all cells; center panel) to propidium 

iodide (PI; red fluorescence, dead cells; left panel) of 1:1 was used. Microscopic analyses were 

performed by using a confocal laser-scanning microscope (Zeiss LSM 700 Laser Scanning 

Confocal), and three dimensional reconstructions were generated using the Imaris software package 

(Bitplane AG). Representative images out of two independent experiments are shown. Each panel 

shows reconstructions from the top in the large panel and sides in the right and bottom panels (xy, 

yz and xz dimensions). Scale bars correspond to 20 μm in all the cases. 

 

 

4.2.4 Secondary structure determination 

 

PD-L1/2 derived peptides conformation was characterized by circular dichroism (CD) 

spectroscopy. CD spectra were recorded in 10 mM sodium phosphate buffer pH 7.4, in the presence 

of increasing concentrations of TFE in phosphate buffer (10-30-50-70%) and in the presence of 20 

mM SDS. TFE is commonly used to induce alpha-helical structure and to stabilize protein 

secondary structure, whereas SDS, being an anionic detergent, forms micelles in aqueous solution at 

appropriate concentrations, thus mimicking bacterial membranes. 

Far-UV CD spectra recorded in phosphate buffer show negative peaks at ≈200 nm (Fig. 5), 

indicating that IKY23 and IKY31 are largely unstructured in absence of any likely interactor. 

However, in the presence of increasing concentrations of TFE (from grey to black line), a 

conformational change occurred for both peptides, as evidenced by the appearance of new minima 

at around 208 nm and 222 nm, indicative of a typical helical structure. 

The same conformation was induced also by 20 mM SDS (blue line) in the case of IKY31, whereas 

alpha helical content was found to be lower in the case of IKY23. This indicates that, upon 

interaction with membrane-mimicking agents, PD-L1/2 derived peptides are prone to assume an 
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alpha helical conformation, even if the effect was found to be less pronounced in the case of IKY23 

peptide. 

Since both peptides are endowed with antibacterial and antibiofilm activities, even if with 

differences in selectivity and potency, we also evaluated the effects on peptides secondary structure 

induced by LPS, a key molecule in Gram negative bacteria outer membrane, and alginate, is one of 

the main exopolysaccharides in PAO1 biofilm extracellular matrix [29].  

As shown in Fig. 5, in the presence of 0.2 mg/mL of LPS (green line), CD spectra showed a strong 

negative band at ≈216 nm, indicative of a beta sheet conformation. This was observed in the case of 

both peptides, although the effect was less pronounced for IKY23. A similar pattern was observed 

for both peptides when dichroic spectra were recorded in the presence of 0.2 mg/mL alginate (red 

line). In this case, a negative band switches from ≈216 nm (green line) to a ≈ 220 nm (red line). 

Taken together, CD data indicate that IKY23 and IKY31 conformations are altered by 

environmental factors. This might explain their different effects towards planktonic and sessile 

cells. 

 

 
 

Figure 5. CD spectra of IKY23 (A) and IKY31 (B) under different conditions. Far-UV spectra 

(wavelength from 190 to 260 nm) were recorded in the presence of phosphate buffer (dashed line), 

increasing concentrations of TFE (grey line), 20 mM SDS (blue line), 0.2 mg/mL LPS (green line) and 0.2 

mg/mL alginate (red line). 
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4.2.5 LPS binding assay  

 

Analyses by circular dichroism indicated that both PD-L1/2 derived peptides are able to 

interact with Gram-negative lipopolysaccharide. Hence, binding to LPS might play a crucial role in 

peptides antibacterial and anti-biofilm activity, since IKY23 mostly inhibits K. pneumoniae and 

P.aeruginosa PAO1 planktonic cells growth, whereas IKY31 exerts a strong anti-biofilm activity 

on both strains. Although several mechanisms of action might mediate peptides effects, it has been 

widely reported that many HDPs act via LPS neutralization [30]. On the other hand, LPS play a 

crucial role in determining cell-to-cell interactions in biofilm matrices [31]. 

On the basis of these observations, we examined PD-L1/2 derived peptides ability to neutralize 

LPS. To this purpose, we used the Limulus amebocyte lysate assay, which allows detection of traces 

of free LPS. Free LPS from Pseudomonas aeruginosa P10 was used as a positive control. The same 

amount of LPS was incubated with IKY23 or IKY31 (25 µM) for 30 minutes at 37 °C. As shown in 

Fig. 6, in the presence of both peptides, a significant reduction of free LPS amount was detected. 

However, IKY23 seems to be slightly more efficient, in agreement with data indicating that 

planktonic Gram-negative bacterial cells are more susceptible to this peptide rather than to IKY31. 

On the other hand, in the case of IKY31 peptide, the ability to neutralize LPS could concur to its 

anti-biofilm activity.  

 

 
 

Figure 6. LAL assay to determine IKY23 and IKY31 binding to LPS. Commercial LPS from 

Pseudomonas aeruginosa P10 was used to induce a colorimetric reaction (grey bar). Each PD-L1/2 derived 

peptide (25 μM) was pre-incubated at 37° C with 12.5 ng/mL LPS for 30 minutes. 

 

 

4.2.6 Cytotoxicity assays 

 

Since HDPs are gaining increasing attention as promising antimicrobial compounds, it 

is fundamental to demonstrate their selectivity of action and to exclude any possible toxic effects on 

mammalian cells.  PD-L1/2 derived peptides cytotoxicity was evaluated in vitro on human CaCo-2, 

HaCat and HeLa cell lines at three different incubation times (24, 48 and 72 h). As shown in Fig. 7, 

cytotoxicity of both peptides on CaCo2 or HaCat cells was negligible. Indeed, even at the highest 

concentration tested (100 µM), the percentage of viable cells was found to be higher than 90% even 

upon 72 h incubation. Similar results were obtained on HeLa cells as well (data not shown). 



76 
 

 

 
 

Figure 8. Effect of IKY23 and IKY31 peptides on eukaryotic cell viability. Cytotoxicity of PD-

L1/2 derived peptides on CaCo2 and HaCaT cells was evaluated at three different incubation times 

(24, 48 and 72 h), and reported on the left and on the right columns, respectively. In all the 

experiments, the mean values ± SD from three independent experiments run in triplicate are shown. 
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4.3 Conclusions 

Plants produce a diverse array of small proteins (less than 100 amino acid residues), 

most of which are cysteine-rich peptides (CRPs) that inhibit bacterial and fungal growth in vitro 

[32]. In plants, HDPs are mainly classified into cyclotides, defensins, thionins, lipid transfer 

proteins, snakins, and hevein-like vicilin-like and knottins. Plant hormones – gibberellins, ethylene, 

jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression 

of HDPs. However, as widely reported in the literature, it is not to be ruled out that larger proteins 

that are not directly related to host defense can release, by proteolysis, small peptides with 

antibacterial activity. 

Indeed, in a previous report, our group identified by chemical fragmentation, and 

characterized the first cryptic HDP hidden in PD-L4, a type 1 RIP from leaves of P. dioica [33]. 

Here, we identified, by using a recently described bioinformatic tool, a putative host defence region 

in the N-terminal domain of PD-L1/2, another member of the differently expressed pool of type 1 

RIPs from P. dioica. Starting from this finding, two peptides contained in this region, here named 

IKY31 and IKY23, have been designed and synthesized, in order to structurally and functionally 

characterize them. Collected data indicate that both PD-L1/2 derived peptides exhibit antibacterial 

activities, even if with some differences. IKY23 exert its antibacterial activity with MIC values 

comparable to those of control peptide GKY20, whereas IKY31 seems to possess antimicrobial 

propensity only on planktonic Gram-positive bacteria. Since IKY31 is ineffective towards some 

Gram-negative bacteria, that are strong biofilm producers, it seemed interesting to verify if PD-L1/2 

derived peptides showed the same antimicrobial trend highlighted on planktonic cells also on sessile 

bacteria forming biofilm. Interestingly, we provided evidences that IKY23 and IKY31 are able to 

induce a strong dose-dependent reduction in biofilm biomass with MBIC values lower than those 

obtained on planktonic cells.  

Moreover, we found that PD-L1/2 derived peptides are also able to affect biofilm thickness 

and, in particular, the longest peptide (IKY31) seems to exert its anti-biofilm activity through an 

anti-adhesive mode of action, likely mediated by an alteration of the biofilm structural components. 

This suggests that IKY31 peptide might be able to interfere with cell-to-cell cohesion and 

aggregation, a fundamental event in biofilm expansion. Interestingly, on the basis of these 

observations, PD-L1/2 derived peptides may be classified as effective anti-biofilm agents, to be 

used as an efficient alternative to conventional antimicrobial agents, often ineffective on bacterial 

biofilm. 

A key feature of membranolytic and anti-biofilm agents is their selectivity towards 

prokaryotic systems. To verify this, we performed experiments which stated that PD-L1/2 derived 

peptides specifically bind to prokaryotic membrane components and, at the same time, they are 

innocuous for eukaryotic cells. In agreement with the canonical properties of most HDPs, circular 

dichroism analyses indicated that these RIP derived peptides are unstructured in aqueous buffer, 

whereas they tend to assume a specific conformation in the presence of increasing concentrations of 

TFE and of a membrane mimicking agent, such as SDS. In addition, dichroic spectra also indicated 

that the conformation of both PD-L1/2 derived peptides is influenced by LPS and alginate, which 

might be indicative of a binding probably mediating the effects of the two peptides on sessile and 

planktonic bacteria.  
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Overall, the data herein collected also suggest the intriguing hypothesis that this consensus 

active region, also found in different members of type 1 RIPs, could play a rather important role in 

the host-pathogen relationship in plants. Indeed, during delicate physio-pathological processes, 

proteolytic events, induced by host and/or by plant, might promote the release of bioactive peptides, 

similar to IKY31 and IKY23, able to modulate the immune response.  

As future perspective and application has been proposed, intriguingly, that transgenically 

produced HDP-plants will become a means showing that HDPs are able to mitigate host defense 

responses while providing durable resistance against pathogens. [34] 
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4.4 Experimental procedures 

 

4.4.1 Bacterial strains  

 

Bacterial strains used in this study were: Escherichia coli ATCC 25922, Enterococcus 

faecalis ATCC 29212 and Klebsiella pneumoniae ATCC 700603 (kindly provided by Dr. Eliana De 

Gregorio), wild-type Pseudomonas aeruginosa PAO1 (kindly provided by Dr. Donatella De 

Pascale) and Staphylococcus aureus ATCC 6538P (kindly provided by Prof. Mario Varcamonti). 

 

 

4.4.2 Antimicrobial activity assay 

 

The antimicrobial activity of PD-L1/2 derived peptides against planktonic bacteria was 

evaluated by broth microdilution method, performed as previously described for HDPs [35] with 

minor modifications. Peptides were dissolved in sterile water, and their concentration was 

determined by bicinchoninic acid colorimetric assay (Pierce™ BCA Protein Assay). Peptides were 

dispensed into aliquots (200 µM) and stored at -20°C until use. Antimicrobial assays were carried 

out in sterile 96-well polypropylene microtiter plates (Costar Corp., Cambridge, MA). Bacteria 

from an over-night culture were diluted in Nutrient broth (Difco, Becton Dickinson, Franklin Lakes, 

NJ) to a final concentration of 3-5 x 10
5
 CFU/mL per well in the presence of two-fold serial 

dilutions of IKY23, IKY31, or (P)GKY20 peptide, respectively. (P)GKY20 peptide is a short 

cationic HDP derived from the C-terminus of human thrombin [36], here used as a positive control. 

In all the cases, two-fold serial dilutions of antibiotics (polymyxin B and vancomycin) were tested 

as control. Plates were incubated at 37 °C for 24 h. The MIC (Minimum Inhibitory Concentration) 

values were determined as the lowest concentrations of different compounds at which no visible 

bacterial growth was observed.  

 

 

4.4.3 Microtiter plate biofilm assay 

 

Biofilm formation was analyzed by using a static abiotic solid surface assay, as 

previously described [28]. To this end, stationary phase wild-type Pseudomonas aeruginosa PAO1 

and Klebsiella pneumoniae ATCC700603 cells, obtained from an over-night culture, were diluted 

1/100 in BM2 adjusted medium (62 mM potassium phosphate buffer, pH 7.0, 7 mM (NH4)2SO4, 0.5 

mM MgSO4, 10 µM FeSO4) containing 0.4% (wt/vol) glucose as a carbon source. Assays were 

carried out in sterile 96-well polypropylene microtiter plates (Costar Corp., Cambridge, MA) in the 

presence of different concentrations of PD-L1/2 derived peptides or antibiotics (polymyxin B and 

vancomycin). Samples in the absence of peptides were used as a positive control, whereas samples 

in the absence of bacteria were used as a negative control. Following incubation at 37 °C for 48 h, 

samples were gently washed with water, in order to remove planktonic cells, whereas biofilm 

biomass was stained with 0.1% crystal violet (Sigma Aldrich, Milan, Italy). Biofilm stained 

biomass was transferred into flat-bottom plystyrene 96-well plate and optical densities at 595 nm 

were measured using a microtiter plate reader (Synergy™ H4 Hybrid Microplate Reader, BioTek 

Instruments, Inc., Winooski, Vermont, USA). MBIC50 values were determined as the lowest 
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concentration values determining 50% inhibition of biofilm formation with respect to the positive 

control. 

 

 

4.4.4 Confocal microscopy (CLSM) analysis of static biofilm growth 

 

Biofilms were grown into chambered coverglass slides (Nunc Lab-Tek, ThermoFisher 

Scientific, USA) in BM2 adjusted medium in static condition at 37 °C for 24 h. Bacterial cells from 

an over-night culture were diluted to about 2 x 10
9
 CFU/mL and 2 x 10

8
 CFU/mL for 

K.pneumoniae and P.aeruginosa PAO1, respectively, and seeded into wells of the chambers. After 

bacterial attachment for 4h at 37 °C, peptides were added to bacterial samples at a concentration of 

12.5 µM and incubated for further 20 h. Upon incubation, non-adherent bacteria were removed by 

gently washing samples with sterile phosphate buffer. Viability of cells embedded into biofilm 

structure was determined by sample staining with LIVE/DEAD
®
 BacLight™ Bacterial Viability kit 

(Molecular Probes ThermoFisher Scientific, USA), performed accordingly to manufacturer 

instructions. Biofilm images were captured by using a confocal laser scanning microscopy (Zeiss 

LSM 710, Zeiss, Germany) and a 63 X objective oil immersion system. Biofilm architecture was 

analysed by using the Zen Lite 2.3 software package. Each experiment was performed in triplicate. 

All images were taken under identical conditions. 

 

 

4.4.5 Biofilm cultivation in flow chambers and microscopy 

 

P.aeruginosa PAO1 biofilm was grown for 72 h in the absence or presence of each PD-

L1/2 derived peptide (3 μmol/L) at 37 °C in flow chambers (channel dimensions of 1 by 4 by 40 

mm) in BM2 minimal medium. Silicone tubing (inner diameter, 0.062 in.; outer diameter, 0.125 in.; 

wall thickness, 0.032 in.; VWR, Radnor, PA, USA) was used and the device was assembled and 

sterilized by pumping a 10% hypochlorite solution through the system for 5 min using a 

multichannel peristaltic pump. The system was then rinsed with sterile water and medium for 5 min 

for each channel. Flow chambers were inoculated by injecting 400 μL of wild-type P.aeruginosa 

PAO1 over-night culture diluted to an OD600nm  of approximately 0.05. After inoculation, chambers 

were left without flow for 3 h, after which medium was pumped through the system at a constant 

rate of 2.4 mL/h. Bacteria were allowed to develop structured 2-day-old biofilms prior to peptide 

treatment for the following 22 h. Biofilm cells were stained using a LIVE/DEAD BacLight bacterial 

viability kit (Molecular Probes, Eugene, OR, USA) using a  1:1 ratio of Syto-9 (green fluorescence, 

all cells) to propidium iodide (PI; red fluorescence, dead cells). Microscopy analyses were carried 

out using a confocal laser scanning microscope (Zeiss LSM 700 Laser Scanning Confocal), and 

three-dimensional reconstructions were generated using the Imaris software package (Bitplane AG). 

Experiments were performed twice with identical results. 
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4.4.6 Circular dichroism analyses 

 

Circular dichroism (CD) spectra of PD-L1/2 derived peptides were recorded with a J-

810 spectropolarimeter equipped with a Peltier temperature control system (Model PTC- 423-S; 

Jasco Europe, Cremella, LC, Italy). Far-ultraviolet (far-UV) measurements (190–260 nm) were 

carried out at 25 °C using a 0.1 cm optical path length cell and a peptide concentration of 35 μm. 

CD spectra, recorded with a time constant of 4 s, a 2 nm bandwidth, and a scan rate of 10 nm·min
−1

 

were signal-averaged over at least three scans. CD spectra were acquired in 10 mM sodium 

phosphate buffer pH 7.2 and in the presence of different concentrations of trifluoroethanol (TFE), 

20 mM SDS, 0.2 mg/mL LPS from Escherichia coli 0111:B4 and 0.2 mg/mL alginate. Estimation 

of the secondary structure was carried out accordingly to the Variable Selection Method (CDSSTR) 

using DICHROWEB, as previously described [37]. 

 

 

4.4.7 Peptide binding to lipopolysaccharide (LAL assay) 

 

The ability of PD-L1/2 derived peptides to neutralize LPS was determined by using the 

commercially available Limulus amebocyte lysate (LAL) assay (Pierce
®
 LAL Chromogenic 

Endotoxin Quantitation Kit, ThermoFisher Scientific, Waltham, MA, USA) (Park et al., 2009). 

Briefly, 25 μL of each peptide (25 µM) were added to 25 μl of 12.5 ng/mL Pseudomonas 

aeruginosa P10 LPS (Sigma Aldrich, Milan, Italy) for 30 min at 37 °C. Upon incubation, 50 μL of 

amebocyte lysate reagent were added to samples for 10 min. Absorbance values at 405 nm were 

measured 10 min after the addition of 100 μL of the chromogenic substrate, Ac-Ile-Glu-Ala-Arg-p-

nitroanilide.  

 

 

4.4.8 Cytotoxicity on mammalian cells  

 

Cytotoxicity towards normal (HaCat) or tumor (HeLa and CaCo-2) cells was assessed 

by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction 

inhibition assay [38]. Cytotoxicity experiments were performed at least four times independently. In 

all the cases, cells were grown for 24, 48 and 72 h in the absence or in the presence of increasing 

concentrations (0.6 to 100 μM) of each peptide. Cell survival values are expressed as percentage of 

viable cells with respect to control untreated samples.  
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Concluding remarks 

Host defense peptides (HDPs) are important modulators in both mammalian and non-

mammalian systems to prevent microbial colonization and tissue damage [1]. HDPs beneficial 

effects may encompass direct antimicrobial activity, binding to endotoxins, such as LPS or LTA, 

which reduce the detrimental pro-inflammatory response, and one or more direct effects on cellular 

behaviors, such as enhanced migration and proliferation. The majority of HDPs share common 

biochemical features, including relatively small size, cationicity and amphipathicity in membrane-

mimicking environments. These features allow them to selectively interact with and damage 

bacterial membranes. Several proteins contain HDPs hidden inside their sequence called cryptic 

peptides [2, 3, 4].                     

Further, it is noteworthy that cryptic peptides were identified in larger proteins involved in 

not only host defense, but also sequences with completely different roles. Therefore, such functional 

cryptic peptides that are hidden in protein structures are named “cryptides” in general [5]. 

The cryptome consists of bioactive peptides generated by the proteolysis of precursor 

proteins. It is speculated that the cryptide repertoire increases the complexity of the proteome by an 

order of magnitude. Recently discovered cryptides are involved in the regulation of a diverse range 

of cellular processes including neuronal signaling, the inflammatory response, the adaptive immune 

response, and angiogenesis. They are derived from many well-studied proteins, including 

hemoglobin, cytochromes, laminins, and collagen [6, 7, 8, 9, 10].  

Due to their potential as therapeutic agents, there has been an increasing interest in studying 

cryptides [11] as well as host defense peptides in particular.  

HDPs, as a novel class of antimicrobial therapeutics, give hope to confining the rise of 

antibiotic resistances and to acting as promising novel weapons against microbial pathogens. 

Despite the success to date in antimicrobial development, the inexorable, ongoing emergence of 

resistance worldwide continues to spur the search for novel anti-infectives to replace and/or 

supplement conventional antibiotics. Human defensins, cathelicidin, and a significant number of 

diverse HDPs from bacteria, viruses, plants, vertebrates, and invertebrates all appear to have a 

universal multidimensional signature (i.e., a common three-dimensional structure) that defines 

antimicrobial activity. Manipulation of this chemical structure to create designer synthetic peptides 

represents a promising strategy for the development of HDPs as a new class of drugs to prevent and 

treat systemic and topical infections. Regarding to HDPs, there are several different potential 

strategies for their general therapeutic application: (1) as single anti-infective agents, (2) in 

combination with conventional antibiotics or antivirals to promote any additive or synergistic 

effects, (3) as immune stimulatory agents that enhance natural innate immunity, and (4) as 

endotoxin-neutralizing agents to prevent the potentially fatal complications associated with bacterial 

virulence factors that cause septic shock.  

Unfortunately, of the potential pool of thousands of natural peptides and millions of 

synthetic peptide possibilities, relatively few have actually proceeded into clinical trials based on 

promising data from in vitro and animal studies. Despite a continuing optimism, the commercial 

success remains elusive. In 2004, a list of HDPs in clinical trials was published, and to date, none of 

the peptides described has obtained FDA (Food and Drug Administration) approval for their 

various clinical indications. Reasons of this lack could be found looking at some disadvantages of 

HDPs. In fact, although HDPs have considerable advantages for therapeutic applications, 

including broad-spectrum activity, rapid onset of activity, and relatively low possibility of 
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resistance emergence, they also have some limitations for drug development as low stability to 

pH changes and protease action as well as potential hemolytic properties. In order to overcome 

those obstacles, many methods have been proposed. For instances, introduction of unusual amino 

acids (mainly D-form amino acids) or modification of the terminal regions (acetylation or 

amidation) improved the stability of peptides by preserving them from proteolytic degradation. 

Also, the use of efficient drug delivery systems, such as liposome encapsulation, can be effective 

for the improvement of the stability and reduction of potential toxicity.  

Moreover, since they are able to interact in some cases with eukaryotic cell membranes, as 

well, HDPs could be used as delivery vectors for several bioactive compounds. However, despite all 

of the benefits that have emerged with the development of HDPs, researchers aim to face several 

shortcomings and to enhance their antibacterial activity and mode of action by various 

modifications, leading to functionalized HDPs and HDP conjugates. In fact, HDPs can be 

functionalized to generate peptide conjugates, in which various substances are attached by different 

coupling strategies. The potential of such new HDP compositions was recently summarized by 

Brogden et al. [12]: for instance, antibiotics coupled to HDPs or HDP-like sequences, improving 

HDP activity by lipidation, decoration of particles and polymers with HDPs, conjugates out of 

HDPs and organometallic complexes.  
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APPENDIX 

 

Abbreviations:  

 

HDP: host defence peptides; LPS: lipopolysaccharide; LTA: lipoteichoic acid; MIC: Minimum 

inhibitory concentration; SD: standard deviation; CD: circular dichroism; TFE: trifluoroethanol; 

IL-6: interleukin 6; NO: nitric oxide; CFU: colony forming unit; RBC: Red blood cell; HBTU: 2-

(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; Oxyma: cyano-

hydroxyimino-acetic acid ethyl ester; DIPEA: N,N′-diisopropylethylamine; TFA: trifluoroacetic 

acid; MeIm: 4-methylimidazole; MSNT : 1-(Mesitylene-2-sulfonyl)-3-nitro-1,2,4-triazole; DMF: 

N,N-Dimethylformamide; ACN: Acetonitrile; DCM: dichloromethane; Fmoc: 

fluorenylmethyloxycarbonyl; CATH-2: cathelicidin-2; TSA: Tryptic Soy Agar; AS: absolute score; 

MHB: Muller Hinton broth; NB: Nutrient Broth; MRSA: methicillin-resistant Staphylococcus 

aureus; VRE, vancomycin-resistant enterococci; AMPs: Antimicrobial Peptides; ApoE: 

apolipoprotein E; ApoB: apolipoprotein B; LDL: low-density lipoprotein; IL-10: interleukin-10; 

TSA: Tryptic Soy Agar; AS: absolute score; NB: Nutrient Broth; SDS: sodium dodecyl sulfate; 

FIC: Fractional Inhibitory Concentration; iNOS: nitric oxide synthase; CATH-2: cathelidin-2; 

PBS: phosphate-buffered saline; WH: wound healing. CNBr: Cyanogen bromide; Na/P: Sodium 

phosphate buffer; Tris•Cl:Tris(hydroxymethyl)aminomethane-HCl buffer; SEM: Standard Error of 

the Mean; LAL: Limulus amebocyte lysate; PI: propidium iodide; OD: optical density. 
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