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Abstract

The demand for improved measurements, communication and computation has led to search

for new physical systems suitable to encode, manipulate and transmit information. Quantum

systems have proven to be a major resource since they allow for information processing that

could not be performed by classical ones, e.g. providing speedups over classical algorithms

or improving channels capacity and security.

Basically, there exist two fundamental approches for encoding quantum information, the

discrete- and the continuous-variable one, that can be endowed with a �nite- or an in�nite-

dimensional Hilbert space. In the former approach, information is encoded into a quantum

variable having a discrete spectrum so, when carrying out a measurement it is possible to

obtain a discrete set of possible results (e.g. 0-1 for dichotomic variables). The latter provides

information encoding into a system whose relevant degrees of freedom are represented by

operators with continuous spectra.

The initial trend has been choosing the qubits (states of a quantum system with a two-

dimensional Hilbert space) as the information unit. However two level systems are not the

only possibility, since it turns out that it is possible to encode information in the continuous

degrees of freedom of a quantum system. Although these approaches may seem to stand in

opposition, recently they are converging into more powerful hybrid protocols [1].

In the context of quantum optics the system whose degrees of freedom are employed to

store information is the electromagnetic �eld. The quantum information and computation

approach that involves radiation modes has many advantages with respect to approaches

that use matter degrees of freedom such as ion traps and nuclear magnetic resonance. Indeed
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ABSTRACT 2

it reduces both the problems of decoherence and scalability at expense of requiring a greater

e�ort to overcome the di�culties due to the absence of an interaction between photons as a

consequence of the electromagnetism abelianity.

Radiation �eld o�ers the possibility to develop both discrete and continuous approches

thanks to its particle- and wave-like behaviour. One common discrete approach stands in the

use of photon polarization that lives in a two-dimensional Hilbert space. Another discrete

degree of freedom is represented by the orbital angular momentum. This is a characteristic

of light that occurs from single photon level up to intense classical beams and is independent

from the polarization. Light carrying orbital angular momentum has a particular spatial

distribution of the �eld and shows a peculiar shape of wavefronts that result to be helices.

The bene�ts of encoding information onto the orbital angular momentum, instead of ex-

ploiting polarization, reside in the amount of information storable into a single mode thanks

to the fact that orbital angular momentum lives in a Hilbert space of a higher dimension [2]

[3]. On the other hand, electromagnetic �eld possesses peculiarities allowing also a continuous

variable approach [4]. Indeed electromagnetic �eld quadratures, a Hermitian combination of

the bosonic mode operators, are observables with a continuous spectrum. It is possible to

de�ne a pair of "orthogonal" quadrature so that they represent the analogue, for the elec-

tromagnetic �eld, of the position and momentum of a quantum mechanical oscillator; they

are the real and the imaginary amplitude of the �eld. They form a pair of Hermitian con-

jugate observables and then obey to an uncertainty principle that forbids measuring with

an arbitrary precision both the quadratures. Among the continuous variable states of elec-

tromagnetic �eld a prominent role is played by Gaussian states. These states are of great

practical relevance in applications to quantum information since they are experimentally easy

to produce and manipulate and of simple theoretical description. Gaussian states description

and characterization are carried out in phase space where they possess a Gaussian Wigner

function. Despite being in�nite dimensional states they can be described by few mathe-

matical objects that are the �rst and the second moments of the �eld quadratures. These

statistical objects form the covariance matrix of the state, a quantity actually measurable in

experiments.
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Non-classical correlations are another key element in quantum information and commu-

nication protocols. This pure quantum feature may occur in composite systems in which

correlations, that cannot be explained classically, are estabilished among the quantum sys-

tem subparts. These correlations can occur both among discrete and continuous degrees of

freedom and give rise to a great variety of phenomena so being the basis for many applications

in quantum science. Continuous variable (quadratures) and discrete variables (polarization

and orbital angular momentum) are, together with entanglement the main building blocks

constituing the scenario in which this thesis lies.

In the present dissertation we describe the generation of a Gaussian bipartite entangled

state in which the two subsystems are multi-distinguishable thanks to the fact that they have

di�erent polarization and carry an opposite amount of orbital angular momentum along the

propagation direction.

Polarization entangled states are produced by using an optical parametric oscillator as

spontaneous parametric down conversion source. This is able to produce a bipartite state

consisting of collinear thermal crossed polarized modes exhibiting entanglement. These two

modes have the same frequency and constitute a continuous variable bipartite entangled

system in which each of the modes can be labeled by the polarization degree of freedom. Once

these two polarization entangled states are produced, the bipartite state is endowed with an

additional degree of freedom constituted by orbital angular momentum, that makes possible

to further distinguish between these two co-propagating modes. The two-dimensional Hilbert

polarization space is mapped into the orbital angular momentum one by means of Gaussian

operations i.e. physical trasformations that preserve Gaussianity. In order to achieve this task

we used a liquid crystal optical device called q-plate, where q represents the plate topological

charge. This device is able to couple polarization and orbital angular momentum degrees

of freedom by making the passing through beam acquire orbital angular momentum that

depends on the topological charge and the polarization of the incoming beam. Moreover, the

setup enginereed to achieve this task is also capable of generating squeezed vortex beams i.e.

single-mode states for which the quadrature noise is below the standard quantum limit.

After producing the bipartite entangled state it enters the characterizaton stage. Its



ABSTRACT 4

�quantumness� is investigated by witnessing both squeezing and non classical correlations via

balanced optical homodyne, a phase sensitive detection method that permits, by measuring

the electromagnetic �eld quadratures statistics to reconstruct the state of the system. In

order to retrieve the quantum state with an high �delity, homodyne detector needs to be

optimized. This, besides imposing stringent conditions on the optical components involved

in the setup, forces to improve the mode matching between the signal and the local oscillator

that plays a central role in determining the overall detector e�ciency. Although homodyne

is a consolidated detection scheme, herein it is proposed an innovative extension of this

technique to structured modes that opens the doors for homodyning directly in the orbital

angulam momentum space. The very central role, in this detection method, is played by

interference between the signal under investigation and a strong coherent reference beam

called local oscillator. Besides behaving as an ampli�er for the quadrature under scrutiny,

local oscillator also acts as a spatial and frequency �lter, selecting for the measure the part

of the signal that shares with it the same spatio-temporal properties. Hence, in order to

ensure interference, in case of a signal carrying orbital angular momentum a further e�ort is

required. Indeed, also the local oscillator has to be in the same helical mode, in particular

the two beams have to transport the same amount of orbital angular momentum along the

propagation direction. So by suitably designing the overall experimental setup it is possible

to homodyne the bipartite entangled state carrying orbital angular momentum directly in

this degree of freedom Hilbert space. Once the covariance matrix of the bipartite Gaussian

state has been reconstructed, thanks to Gaussianity, it is possible to assess entanglement

between the vortex modes by means of entanglement criteria based on covariance matrix

elements such as the Peres�Horodecki-Simon (PHS) and the Duan ones.

The present dissertation is organized as follows. The �rst chapter will deal with the

theoretical concepts aiming at provide all the theoretical tools necessary for the comprehnsion

of the experiment realization. In the second chapter the experimental realization of the

entanglement source and the experimental scheme designed to add the further degree of

freedom represented by the orbital angular momentum to the bipartite entangled state will

be described. The third chapter will be devoted to the realization of a homodyne detection
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scheme capable of fully characterize a bipartite entangled state constituted of vortex beams.

Eventually in the last chapter results will be presented and commented.



Chapter 1

Theoretical Background

This chapter will brie�y give all the theoretical tools and concepts necessary for the compre-

hension of the experiment we have performed. First of all, the key elements of the Electro-

Magnetic (EM) �eld will be summarized, with particular attention to one of its main degrees

of freedom: the Angular Momentum (AM). The problem of the analytical separation between

its spin and orbital part will be faced both from a classical and a quantum point of view

since these two independent degrees of freedom play a central role in the experiment. There

will be also given examples of EM �eld modes carrying Orbital Angular Momentum (OAM)

and will be presented some of the most di�use techniques nowadays available to generate and

manipulate the polarization and the spatial pro�le of laser beams. Later we will discuss some

classes of quantum states of the EM �eld. In particular we will introduce squeezed states

that are central to the nature of the experiment due to the intimate connection between

squeezing and entanglement that are nothing but two faces of the same phenomenon.

Eventually, criteria to assess the presence of entanglement will be given with speci�c

reference to the class of Gaussian States (GSs) that includes most of the EM states usually

accessible in an optic laboratory.

6



CHAPTER 1. THEORETICAL BACKGROUND 7

1.1 Electromagnetic Field

1.1.1 Classical Electromagnetic Field

EM �eld can be regarded as the combination of electric and magnetic �eld and is responsible

for the EM interaction, one of the four fundamental interactions of the nature. From a

classical point of view, EM radiation propagates in form of waves and is generated both from

electric currents and charged particles at rest. However, EM �eld is a real physical entity

and can exist regardless the presence of sources since electric �eld can be generated by a time

variation of the magnetic one and vice-versa, in a self-sustaining process.

A mathematical description of the EM �eld is provided by the Maxwell equations that,

in the most general formulation using the SI, can be written as [5]:

∇ ·D = % ∇ ·B = 0

∇× E = −∂B
∂t

∇×H = J + ∂D
∂t

(1.1)

where % and J are respectively the charge and the current densities. This is a system of eight

scalar partial di�erential equations in which D is the electric displacement �eld and H is

the magnetic induction �eld, which, in a dielectric material, are respectively related to the

electric �eld E and to the magnetic �eld B by:

D = ε0E + P (1.2)

H =
B

µ0

−M (1.3)

where ε0 and µ0 are respectively the vacuum permittivity and the vacuum permeability, while

P and M are respectively the polarization density and the magnetization of the material. In

the free space, in absence of charges and currents, the system of equations (1.1) assumes the
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following simpler form:

∇ · E = 0 ∇ ·B = 0

∇× E = −∂B
∂t

∇×B = 1
c2
∂E
∂t

(1.4)

where c = (ε0µ0)−
1
2 is the speed of light in vacuum.

As it is clear from the equation concerning the divergence of the electric �eld, despite the

case with sources, in vacuum the electric �eld is transverse so it is forced to oscillate whitin

a plane orthogonal to the propagation direction. The direction in which this �eld vibrates

describes an important EM waves property: the polarization. Polarization is also known as

Spin Angular Momentum (SAM) for reasons that will be more clear when we will move to

the quantum description and we will treat it more in detail.

By suitably manipulating these equations it is possible to obtain the D'Alembert equations

for both the �elds:

�E = 0 �B = 0 (1.5)

Similar equations hold when the vector and the scalar potential A(x, y, z, t) and φ(x, y, z, t)

are introduced. These �elds are related to the electric and the magnetic �elds by the expres-

sions:

E = −∂A
∂t
−∇φ. (1.6)

B = ∇×A (1.7)

However, one can always perform the following transformation, with a scalar �eld χ:

A
′
= A +∇χ (1.8)

φ′ = φ− ∂χ

∂t
(1.9)

that leads to the same �elds E and B. It means that there is not a one-to-one correspondence

between �elds and potentials. In order to have a univocal relation one has to �x the gauge;
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two of the most used gauges are the Lorenz and the Coulomb ones:

∇ ·A =− 1

c2

∂φ

∂t
Lorenz gauge (1.10)

∇ ·A = 0 Coulomb gauge (1.11)

When searching for harmonic monochromatic solutions (which posses a sinusoidal time de-

pendence):

E(x, y, z, t) = Re
[
E(x, y, z)eiωt

]
(1.12)

of the D'Alembert equations, it is easy to see that the spatial part of the �eld has to satisfy

the Helmholtz equation:

∇2E + k2E = 0 (1.13)

with |k| = ω
c
. Depending on the speci�c problem this equation can have di�erent solutions

e.g. plane waves, spherical waves and Bessel solutions. There are essentially four relevant

quantities associated to the EM �eld, one is the EM density of energy stored by the �eld per

unit volume, that is given, in vacuum, by:

u =
ε0

2
|E|2 +

1

2µ0

|B|2 (1.14)

Another important quantity is the Poynting vector de�ned as:

S =
1

µ0

(E×B) (1.15)

that represents the density of energy transported by an EM wave per unit area and time.

Besides transporting energy, an EM wave can carry momentum in its linear and angular

components. Linear momentum density of light is de�ned in terms of the �elds as:

p =
〈S〉
c

(1.16)

where 〈S〉 is the time-averaged Poynting vector. The dimensions of (1.16) are that of a
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preassure so it is known as radiation preassure. Eventually, the angular momentum density

is de�ned as:

j = ε0r× (E×B) (1.17)

and as it is evident it cannot possess a component along the propagation direction.

1.1.2 The quantized �eld

Quantum theory of light is of paramount importance expecially when the number of photons

is small and the �elds are not continuous, making the classical description to fail. The

traditional approach of quantization consists in identifying the coordinates and the conjugate

momenta of a quantum system, promoting them to operators, and stating their commutation

rules. Following this approach, it will be shown that the quantized �eld is nothing more than

a system of decoupled harmonic oscillators.

In order to carry out the quantization, it is convenient to start from the Helmholtz

equation (1.13) whose solutions depend on the speci�c problem and geometry. In particular,

when looking for solutions of the Maxwell equations in a cubic region of space, plane waves

are good solutions satisfying the boundary conditions and represent a basis for each EM �eld

with the same demands at the boundary. This implies that in free space it is possible to

expand the EM �eld in the plane wave basis [6]:

E(x, t) =
∑
k

Ek
(
ak(t)e

−ikx + a†k(t)e
ikx
)

(1.18)

where the coe�cients of the expansion are ak(t) = ake
iωt and Ek is a normalization factor

containing the information on the polarization. Quantization essentially consists in promoting

the coe�cients of this expansion to operators âk and â†k , that are the creation and the

annihilation operators of the standard harmonic oscillator, satisfying the following bosonic

commutation rules: [
âk, â

†
k′

]
= δkk′ (1.19)

Since an expression similar to (1.18) holds for the magnetic �eld, it is straightforward, by
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using expression (1.14), to show that the Hamiltonian of the EM �eld is:

Ĥ =
∑
k

~ωk
(
â†kâk +

1

2

)
(1.20)

where n̂ = â†kâk is called number operator. As previously predicted, the Hamiltonian (1.20)

is nothing but that the sum of an in�nite number of harmonic oscillators each corresponding

to a mode of the �eld.

1.1.3 Electromagnetic �eld quadratures

Bosonic mode operators â and â† are not observables associated to the EM �eld since they are

not represented by Hermitian operators and cannot be measured in a real physical experiment.

In order to introduce quantities actually measurable let us consider, without any loss of

generality, a single mode (�xed k):

Ê(x, t) = E
(
âe−i(kx−ωt) + â†ei(kx−ωt)

)
(1.21)

By using the Eulero formula it is easy to rewrite (1.21) as:

Ê(x, t) =
√

2E
[
X̂cos(kx− ωt) + Ŷ sin(kx− ωt)

]
(1.22)

where X̂ and Ŷ are respectively the amplitude and the phase quadratures de�ned as the

following combinations of the mode operators:

X̂ =
â+ â†√

2
(1.23)

Ŷ =
â− â†√

2i
(1.24)

These dimensionless operators are Hermitian, and so observables, and are equivalent to the

position and momentum operators for a harmonic oscillator. They are conjugate observables,
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indeed by using expression (1.19) it is easy to show that:

[
X̂, Ŷ

]
= i (1.25)

Moreover, they are Continuous Variables (CV) associated to the EM �eld since they are

operators with a continuous spectrum de�ned in the Hilbert space.

1.1.4 Uncertainty principle

Heisenberg uncertainty principle is a pillar of quantum mechanics and can be enunciated in

the following way:

Given two observables characterizing a quantum system, to whom are associated two non

commuting and conjugate Hermitian operators Â and B̂, de�ned in the Hilbert space of the

system so that: [
Â, B̂

]
= i~ (1.26)

then the product of their uncertainties cannot be smaller than ~
2

4A4B ≥ ~
2

(1.27)

This inequality translates in an operational indetermination, i.e. the impossibility of carrying

out measurements on one of the two observables without perturbing the other one. This

principle has been then reformulated by Kennard for the standard deviations of conjugate

Hermitian operators, instead of the uncertainties on a single measurement,

σAσB ≥
~
2

(1.28)

with σA =

√〈
Â2
〉
−
〈
Â
〉2

and σB =

√〈
B̂2
〉
−
〈
B̂
〉2

evaluated on a particular state of the

system. In this case measurements are repeated on many identical copies of the quantum

system. This means that the indetermination is intrinsic. The amplitude and the phase

quadrature operators X̂ and Ŷ , introduced before, are Hermitian and conjugate. Therefore,
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by using the Kennard's term, it stands:

σXσY ≥
~
2

(1.29)

As we will see in the following this inequality allows to make a classi�cation of the EM �eld

states. In particular, it permits to introduce a speci�c class of EM �eld states characterized

by the fact that the �uctuations on the quadratures are distributed in an asymmetric manner.

1.1.5 Examples of states of the electromagnetic �eld

1.1.5.1 Vacuum and Fock states

Number states or Fock states are de�ned as the eigenstates of the number operator n̂ and

are suitable to describe the energy levels of the harmonic oscillator [6], so we have:

n̂ |n〉 = n |n〉 (1.30)

where n is an integer number and corresponds to the number of the �eld excitations (photons)

in the state. This number can be raised or lowered respectively through the bosonic mode

operators â† and â that are therefore said the creation and the annihilation operators. It can

be shown that,

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.31)

â |n〉 =
√
n |n− 1〉 (1.32)

The state in which there are not photons is said to be the vacuum state |0〉 and is a Hamilto-

nian eigenstate with energy E = ω~
2
. Starting from it, it is possible to obtain any Fock state

by using:

|n〉 =
1√
n!

(
â†
)n |0〉 (1.33)
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These states are a basis for the Hilbert space being a complete and orthonormal system:

∑
n

|n〉 〈n| = Î Completeness relation (1.34)

〈m| n〉 = δnm Orthonormality condition (1.35)

where Î is the identity operator. For a Fock state we have:

〈
n
∣∣∣X̂∣∣∣n〉 =

〈
n
∣∣∣Ŷ ∣∣∣n〉 = 0 (1.36)

〈
n
∣∣∣X̂2

∣∣∣n〉 =
〈
n
∣∣∣Ŷ 2
∣∣∣n〉 =

2n+ 1

2
(1.37)

so being

σXσY =
2n+ 1

2
(1.38)

Only the vacuum state (n = 0) full�lls the Heisenberg inequality with the equal sign. A

pictorial representation of the vacuum state in phase space is shown in �g. 1.1

Figure 1.1: Pictorial representation of the vacuum state in phase space. The mean value of
both the quadratures is zero and the relative �uctuations are equal to 1

2
.
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Eventually, since these states are eigenstates of the number operator, we have

σ2
n =

〈
n
∣∣n̂2
∣∣n〉− 〈n |n̂|n〉2 = 0 (1.39)

and the number of quanta in the state can be known exactly.

1.1.5.2 Coherent states

Coherent states are de�ned as being the eigenstates of the annihilation operator [6],

â |α〉 = α |α〉 (1.40)

where α = |α| eiϕ is a complex number and ϕ represents the phase of the quantum state.

Coherent states can be obtained by applying to the vacuum state the displacement operator

D̂(α),

|α〉 = D̂(α) |0〉 = exp
(
αâ† − α∗â

)
|0〉 (1.41)

that is a unitary operator such that:D̂
−1(α) = D̂ (−α)

D̂ (α) D̂† (α) = D̂ (α) D̂−1 (α) = Î

(1.42)

Coherent states satisfy the following completeness relation:

1

π

ˆ
d2α |α〉 〈α| = Î (1.43)

where d2α = d(Re[α])d(Im[α]). However, they form an overcomplete system since they are

not a set of mutually orthogonal vectors, indeed,

|〈α| β〉|2 = exp
(
− |α− β|2

)
(1.44)
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Despite the case of Fock states for which the number of photons is known exactly, for a

coherent state, whose expression in Fock basis is the following,

|α〉 =
∞∑
n=0

e−
1
2
|α|2 α

n

√
n!
|n〉 (1.45)

the probability to �nd n photons in the state |α〉 is given by the Poisson distribution,

Pn (α) = |〈n| α〉|2 =
|α|2n

n!
e−|α|

2

(1.46)

and (4nα)2 = 〈n̂〉α = |α|2. Beyond these features, coherent states have an important

peculiarity for what concerns the uncertainty principle, indeed they are states with minimum

uncertainity:

σXσY =
1

2
(1.47)

since σ2
X = σ2

Y = 1
2
. A pictorial representation of a coherent state is shown in �g 1.2

Figure 1.2: Pictorial representation of a coherent state in phase space. Uncertainities on
both the quadratures are equal.
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1.1.5.3 Thermal states

When the EM �eld is at thermal equilibrium with a heat bath at temperature T it is in a

thermal state and its radiation is said to be black body radiation. The energy distribution

of the state is described by the Boltzmann distribution [6],

ρ̂ =
exp

{
−Ĥ/kBT

}
Tr
[
exp

{
−Ĥ/kBT

}] (1.48)

where kB is the Boltzmann constant and Ĥ = ~ωk
(
n̂k + 1

2

)
is the energy of the k-th mode

of the �eld. By using expression (1.48) it is possible to calculate the density matrix of a

thermal state,

ρ̂ =
∑
nk

Pnk |nk〉 〈nk| (1.49)

where

Pnk = 〈nk| ρ̂ |nk〉

= e−nk~ωk/kBT
(
1− e−~ωk/kBT

)
(1.50)

and where the formula
N∑
n=0

xn = 1
1−x has been employed. By setting βk = ~ωk

kBT
, we get:

Pnk = e−βknk
(
1− e−βk

)
(1.51)

so

ρ̂ =
∑
nk

e−βknk
(
1− e−βk

)
|nk〉 〈nk| (1.52)

Let us now calculate:
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〈n̂k〉 = Tr (n̂kρ̂)

=
∑
nk

nk e
−βknk

(
1− e−βk

)
(1.53)

By using the relation
∑
nk

nk e
−βknk = eβk

(eβk−1)
2 , expression (1.53) becomes:

〈n̂k〉 =
eβk

(eβk − 1)2

(
1− e−βk

)
=

1

eβk − 1
(1.54)

so from (1.54) we get:

eβk =
〈n̂k〉+ 1

〈n̂k〉
(1.55)

and eventually the expression of the density matrix becomes:

ρ̂ =
1

1 + 〈n̂k〉
∑
nk

(
〈n̂k〉

1 + 〈n̂k〉

)nk
|nk〉 〈nk| (1.56)

It is also possible to calculate:

〈
n̂2
k

〉
=
eβk + 1

eβk − 1
= 2 〈n̂k〉

(
〈n̂k〉+

1

2

)
(1.57)

in order to obtain the following expression of the �uctuation on the photon number:

4n2
k =

〈
n̂2
k

〉
− 〈n̂k〉2 = 〈n̂k〉 (1 + 〈n̂k〉) (1.58)

1.1.5.4 Squeezed states

Squeezing is a pure quantum feature of light and has many applications in optical communi-

cations [7] and optical measurements [8]. As we have seen before, coherent states are those

states for which the uncertainty region is circularly symmetric since both phase and ampli-

tude have identical variances σ2
X = σ2

Y = 1
2
. However, the Heisenberg uncertainty principle

only �xes a lower limit for the product of the variances so, in principle, it is possible to reduce
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one of the two �uctuations under this limit at the expense of the �uctuation on the other

conjugate variable. Light that shows such a behaviour is said to be (quadrature) squeezed;

in other words a squeezed state of EM radiation, is a state for which [6]:

4X2 <
1

2

(
4Y 2 <

1

2

)
(1.59)

In particular, if even stands

4X4Y =
1

2
(1.60)

the state is also a minimum uncertainity state. A single mode squeezed state can be obtained

through the action of the squeezing operator:

Ŝ (ξ) = exp

[
1

2

(
ξ∗â2 − ξ

(
â†
)2
)]

(1.61)

on a coherent state, where the complex number ξ = reiφ is the squeezing parameter. This

operator is a sort of �evolution operator� under the Hamiltonian,

Ĥ = i~
(
g
(
â†
)2 − g∗â2

)
(1.62)

representing a non-linear two-photon interaction process, with g coupling constant and ξ

playing the role of time. By using the Heisenberg equations it is easy to show that:Ŝ
† (ξ) âŜ (ξ) = â cosh r − eiφâ† sinh r

Ŝ† (ξ) â†Ŝ (ξ) = â† cosh r − e−iφâ sinh r

(1.63)

Since, as we will see, squeezing is a phase dependent property, it is convenient to generalize

the expression for the �eld quadratures by introducing:

X̂(ϑ) =
âe−iϑ + â†eiϑ√

2
(1.64)
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It is clear from this expression that (1.23) and (1.24) are particular cases of (1.64) corre-

sponding respectively to ϑ = 0 and ϑ = π
2
. As previously said, a squeezed coherent state can

be easily obtained by applying the squeezing operator to a coherent state, so without loss of

generality let us consider the vacuum state

|ξ〉 = Ŝ (ξ) |0〉 (1.65)

so obtaining a squeezed vacuum. The variance of the generalized quadrature X̂ (ϑ) is:

(4X (ϑ))2
ξ =

〈
ξ
∣∣∣X̂2 (ϑ)

∣∣∣ ξ〉− 〈ξ ∣∣∣X̂ (ϑ)
∣∣∣ ξ〉2

=
〈
ξ
∣∣∣X̂2 (ϑ)

∣∣∣ ξ〉 (1.66)

=
1

2

[
e2r sin2

(
ϑ− φ

2

)
+ e−2r cos2

(
ϑ− φ

2

)]

so the state |ξ〉 is squeezed if

sin2

(
ϑ− φ

2

)
<
(
e2r + 1

)−1
(1.67)

In particular, when ϑ− φ
2

= nπ the state is a minimum uncertainity squeezed state since:

(4X (ϑ))2 =
1

2
e−2r (1.68)

(
4X

(
ϑ+

π

2

))2

=
1

2
e2r (1.69)

and

(4X (ϑ))
(
4X

(
ϑ+

π

2

))
=

1

2
(1.70)

It can be seen that a squeezed vacuum state can be written in Fock basis as [9]:

|ξ〉 =
1√

cosh r

∞∑
n=0

(
eiφ tanh r

2

)n √
(2n)!

n!
|2n〉 (1.71)
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So the squeezed vacuum state is a superposition of states with an even number of photons.

It is also easy to show that:

〈n̂〉 = 〈ξ| n̂ |ξ〉 = |sinh r|2 (1.72)

while, 〈
n̂2
〉

= 〈ξ| n̂2 |ξ〉 = 〈n̂〉 (3 〈n̂〉+ 2) (1.73)

so

4n2 = 2 〈n̂〉 (〈n̂〉+ 1) (1.74)

that is twice the variance of the photon number of a thermal state. In �g 1.3 and in �g 1.4

are shown the pictorial representations of a squeezed coherent state and the squeezed vacuum

with respect both the quadratures.

Figure 1.3: Pictorial representation of a squeezed coherent state in phase space. Uncertaini-
ties on the quadratures are distributed in an asymmetric way.



CHAPTER 1. THEORETICAL BACKGROUND 22

Figure 1.4: Pictorial representation of a X- and Y-squeezed state in phase space.

1.1.5.5 Two-mode squeezed states

The two-mode squeezing operator is given by the following expression:

Ŝ2 (ξ) = exp
(
ξ∗âb̂− ξâ†b̂†

)
(1.75)

where â = âν+δν and b̂ = âν−δν are the bosonic mode operators for modes symmetrically

placed around a certain frequency ν. The form of this operator is due to the interaction

Hamiltonian that in this case is:

Ĥ = i~
(
gâ†b̂† − g∗âb̂

)
(1.76)

with g coupling constant. A two-mode squeezed state can be obtained by applying this

operator to the two-mode vacuum state:

|ξaξb〉 = Ŝ2 (ξ) |0a0b〉 (1.77)
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As in the case of single-mode squeezed state, it is possible to expand this state in the number

basis, obtaining [9]:

|ξaξb〉 =
1

cosh r

∞∑
n=0

(
e−iφ tanh r

)n |nanb〉 (1.78)

This state is an entangled state, as will be more clear in the following, in which the two

modes â and b̂ contain the same photon number. Moreover, each of the two modes is a

single-mode thermal state of EM radiation. Indeed, when calculating the expectation value

of an observable Â, only acting on the mode â subspace, we get:

〈ξaξb| Â |ξaξb〉 =
1

(cosh r)2

∞∑
n=0

(tanh r)2n 〈na| Â |na〉 (1.79)

that is the same expression that is possible to obtain from (1.49) and (1.56) by:

e−β~ω → tanh2 r (1.80)

in order to have 〈n̂〉 = sinh2 r. Starting from the modes â and b̂ , it is possible to de�ne two

additional modes as: B̂ = 1√
2

[
â+ e−iδ b̂

]
B̂† = 1√

2

[
â† + eiδ b̂†

] (1.81)

and their respective amplitude and phase quadrature operators:

X̂B =
B̂ + B̂†√

2
(1.82)

ŶB =
B̂ − B̂†√

2i
(1.83)

By using the commmutation rules for â and b̂:

[
â, â†

]
=
[
b̂, b̂†

]
= 1

[
â, b̂
]

= 0 (1.84)
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it is easy to show that X̂B and Ŷ †B are conjugate operators,

[
X̂B, ŶB

]
= i =⇒ 4XB4YB ≥

1

2
(1.85)

By de�ning the generalized quadrature:

X̂B (ϑ) =
B̂e−iϑ + B̂†eiϑ√

2
(1.86)

it is possible to show that [6]:

4XB (ϑ) =
1

2

[
e2rsin2

(
δ

2
− ϑ
)

+ e−2rcos2

(
δ

2
− ϑ
)]

(1.87)

So, similary to the single-mode case there is squeezing in correspondence of ϑ = δ
2

+nπ (and

antisqueezing for ϑ+ π
2
).

In addition to the modes â and b̂, we can make some additional cases:

1. Mode c: δ = 0, B̂ → ĉ = â+b̂†√
2

4Xc (ϑ) =
1

2

[
e2r sin2 (ϑ) + e−2r cos2 (ϑ)

]
(1.88)

and the mode ĉ is coherent squeezed for ϑ = 0;

2. Mode d: δ = π, B̂ → d̂ = â−b̂†√
2

4Xd (ϑ) =
1

2

[
e2r cos2 (ϑ) + e−2r sin2 (ϑ)

]
(1.89)

so the mode d̂ is coherent squeezed for ϑ = π
2
;

3. Mode e: δ = π
2
, B̂ → ê = â−ib̂†√

2

4Xe (ϑ) =
1

2

[
e2r sin2

(π
4
− ϑ
)

+ e−2r cos2
(π

4
− ϑ
)]

(1.90)
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so the mode ê is coherent squeezed for ϑ = π
4
;

4. Mode f : δ = −π
2
, B̂ → f̂ = â+ib̂†√

2

4Xf (ϑ) =
1

2

[
e2r sin2

(
−π

4
− ϑ
)

+ e−2r cos2
(
−π

4
− ϑ
)]

(1.91)

so the mode f̂ is coherent squeezed for ϑ = −π
4
.

In conclusion, a squeezing source possessing a Hamiltonian of interaction corresponding to

the two-mode squeezing operator (1.75) generates a two-mode entangled state in which the

single modes are thermal states of radiation. When considering particular combinations

of two-modes, it is possibile to �nd single-mode squeezing in correspondence of particular

angles, like those introduced just before for the modes c, d, e and f that will be usefull in the

following of this dissertation.

1.2 Angular Momentum of light: fundations and manip-

ulation

1.2.1 SAM and OAM of the classical radiation �eld

As well known, when dealing with a system of pointlike masses there are two independent

components contributing to the total AM. One is linked to rotations of the center of mass

of the system with respect to some origin and it is strictly dependent on the choice of the

reference frame (external degree of freedom (d.o.f.)). The other component is related to

rotations with respect to the center of mass itself and cannot be canceled by a change of

reference (internal d.o.f). This clear distinction is not so trivial when dealing with light,

which is constituted by photons that are massless particles. Despite the total AM of light

is a well de�ned quantity descending from the invariance of the free EM �eld action under

the Poincaré group of transformations, the analytical separation between the spin and the

angular part is impossible [10, 11].
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SAM is related to an intrinsic property of the EM �eld carrier; the photon. This ele-

mentary particle is a massless gauge boson impossible to be observed in its rest frame, so

instead of speaking about spin it is more correct to refer to its helicity that is the component

of the spin along the propagation direction. Photon helicity can only assume the values ±~

depending on whether the projection of spin onto the momentum and the momentum itself

are parallel or antiparallel. These two values correspond, pictorially, to right- (−~) and left-

handed (+~) rotations of the particle around itself that macroscopically coincide with two

possible states of photon polarization: the right and the left circular ones.

OAM [12, 13], whose existence has been experimentally proven [14], is a light degree of

freedom unrelated to polarization that arises at single photon level and is related to the �eld

spatial distribution. It consists of two components, one that is �internal� since it is di�erent

from zero for any possible choice of the origin of coordinates and is associated to beams with

helical wavefronts, and one that is �external� since it depends on the choice of the reference.

A starting point to attempt the analytical separation between these two d.o.f. could be

the angular momentum density in the expression (1.17). It is worth noting that this formula

implies that for a plane wave the AM component along the propagation direction is always

null. However this feature is in contrast with the fact that a left- or right-handed circularly

polarized plane wave carries an AM in the direction of propagation, as proven by Beth in

1936 [15]. Even if this seeming paradox can be solved by asserting that plane waves are only

a pure abstraction, other drawbacks arise in attempting the separation.

When computing the conserved charges due to rotational invariance of the free EM �eld,

one come across the following expression for the total AM in which the requested separation

shows up,

J =
∑

ε0

i=x,y,z

ˆ
d3r Ei(r×∇)Ai + ε0

ˆ
d3r E×A (1.92)

This is the expression of the canonical angular momentum and is obtained by choosing the

Coulomb gauge. It can be shown that expressions (1.92) and (1.17) (once integrated over all

to space) coincide in the case of �elds that vanish fast enough outside a �nite region of space.

However, even though the total AM J is gauge invariant, its two components are ill de�ned
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since they depend on the gauge. Indeed expression (1.92) holds in the Coulomb gauge. A

way to circumvent this problem consists in rewriting the total AM from the density in (1.17)

and using the expression B = ∇⊗A⊥ in which only the radiative (gauge invariant) part of

the vector potential is involved. In this way we obtain:

Jlong =

ˆ
d3r %(r×A⊥) (1.93)

Jrad = ε0

∑
i=x,y,z

ˆ
d3r E⊥i (r×∇)A⊥i + ε0

ˆ
d3r E⊥ ×A⊥ (1.94)

= Lrad + Srad

Since we are dealing with free EM �elds (there are no charges or electric currents) the

longitudinal part can be neglected, and it seems that we have �nally obtained the desired sep-

aration and the gauge independence of both the components. Unfortunately this expression

leads to other problems when moving to a quantum treatment. In particular these problems

concern the fact that the respective quantum operators do not satisfy the algebra of angular

momenta. In this way they do not generate rotations nor in physical space neither in the

polarization one.

Among the various e�orts to solve this problem it has been suggested that for a correct

separation to hold, one has to take into account the angular momentum �ux density rather

than the angular momentum density [16]. However, fortunately most of the case we will deal

with can be treated in the so called �paraxial approximation� for which this separation works

�nely.

1.2.2 Angular Momentum separation in Paraxial Wave Approxima-

tion

Dealing with solutions that are �paraxial�, the problem of the separation between the inter-

nal and the external component of the AM can be easily carried out. A paraxial wave is
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essentially a wave for which energy travels in a de�ned direction. Solutions of the Helmholtz

equation (1.13) such as plane waves and spherical waves are not suited to describe light beams

commonly used in laboratories since the former have an in�nite extension while the latter do

not possess a privileged direction for the propagation.

In order to solve this issue, the so called paraxial wave approximation is used. This

consists in searching for solutions of (1.13) of the form:

E(x, y, z) = A(x, y, z)e−ikz (1.95)

where we have supposed the wave to propagate along the z direction. The complex envelope

A(x, y, z) is a slowly varying function of z within distances of the order of wavelenght λ:

d2A

dz2
� k

dA

dz
(1.96)

so that this wave locally behaves as a plane wave with the normals to the wave fronts that

are paraxial rays, i.e. they form small angles with the propagation direction. Taking into

account (1.96), by substituting (1.95) into the Helmholtz equation, we obtain the following

paraxial Helmholtz equation:

∇2
TA+ 2ik

dA

dz
= 0 (1.97)

where ∇T is the transverse Laplace operator,

∇2
T =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
(1.98)

As previously said in section 1.2.1, the general expression for the total AM emerging from

Noether theorem is:

J =
∑
ε0

i=x,y,z

´
d3r Ei(r×∇)Ai + ε0

´
d3r E×A (1.99)
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Expression (1.99) for a plane wave given by:

E = E0e
−iωt + E0

∗eiωt (1.100)

can be written as:

J = ε0
2iω

∑
i=x,y,z

´
d3r E∗i (r×∇)Ei + ε0

´
d3r E∗ × E (1.101)

It can be demonstrated that in paraxial approximation, when considering the z component

of the total AM Jz, its two components [11]:

Sz '
ε0

2iω

¨
rdrdϕ(E∗xEy − E∗yEx) (1.102)

Lz '
ε0

2iω

¨
rdrdϕ(E∗x

∂

∂ϕ
Ex + E∗y

∂

∂ϕ
Ey) (1.103)

behave as real angular momenta even in the quantum regime.

1.2.3 Hermite-Gauss and Laguerre-Gauss modes

There are many solutions of pratical interest of the equation (1.97) depending on the speci�c

problem and on the particular choice of the coordinate system. In cartesian coordinates this

equation leads to the so called Hermite-Gauss (HG) beams that are a family of spatial modes

whose �eld distribution has the following expression:

Elm(x, y, z) = Elm
w0

w(z)
Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
e
−x

2+y2

w2(z) e
−i
(
kr2

2R(z)
+kz+(m+l+1)ξ

)
(1.104)

where Hl (x) are the Hermite polynomials of order l. These modes have an intensity distri-

bution in a transverse plane, with respect to the propagation direction, shown in �g. 1.5 and

propagate with paraboloidal wavefronts.
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Figure 1.5: Hermite-Gauss modes intensity pro�les. The numbers in the picture correspond
respectively to the couple l,m.

The lowest order corresponding to the choice l = m = 0 represents the so called �Gaussian

beams� suitable to describe the radiation �eld produced by a common laser source, whose

expression is:

E(x, y, z) = E00
w0

w(z)
e
−x

2+y2

w2(z) e
−i
(
kr2

2R(z)
+kz+ξ

)
(1.105)

The attribute �Gaussian� is referred to the fact that its intensity distribution, in a plane

orthogonal to the propagation direction, is a Gaussian with a width given by w(z), called

spot size. The latest depends on z in the following way:

w(z) = w0

√
1 +

(
z

z0

)2

(1.106)

and assumes the smallest value w0, called beam waist, in z = 0, given by:

w0 =

√
λz0

π
(1.107)
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with z0 being the Raileigh distance where w(z0) =
√

2w0. In expression (1.105) R(z) is the

curvature radius,

R(z) = z

[
1 +

(
z

z0

)2
]

(1.108)

that is null in correspondence of the waist, determining an in�nite value for the curvature

(plane wavefront). Eventually ξ = tan−1( z
z0

) is the Gouy phase and denotes the retardation

with respect to a plane wave. A di�erent choice of the coordinate system, more convenient

for problems exhibiting a cylindrical simmetry, leads to the so called Laguerre-Gauss (LG)

beams:

E(r, θ, z) = Emp
w0

w(z)

(√
2r

w(z)

)|m|
L|m|p

(
2r2

w2(z)

)
e
− r2

w2(z) e
−i
(
k r2

2R(z)
+kz+mθ−(2p+1+|m|)ξ

)
(1.109)

that are a family of solutions of the paraxial Helmholtz equation in cylindrical coordinates.

L
|m|
p are the generalized Laguerre polynomials, whose expression is given by:

L|m|p =

p∑
k=0

(−1)k
(
p+m

p− k

)
xk

k!
(1.110)

where x = 2r2

w2(z)
and p and m are two parameters. The intensity distribution of this familiy of

spatial modes, shown in �g. 1.6, is deeply di�erent from the one of (1.104). LG modes have

an intensity distribution, in a transverse plane, characterized by the presence of alternating

dark and bright concentric rings whose number is given by p+ 1 , where p is the radial index

and corresponds to the number of radial nodes.
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Figure 1.6: Laguerre-Gauss modes intensity pro�le. Image taken from Wikipedia.

This behaviour is due to the presence in (1.109) of the azimuthal phase term eimθ. The

central point (r = 0) in which the �eld vanishes is a phase singularity (where both the real

and the imaginary amplitude of the �eld vanish making the phase unde�ned) referred to as

optical vortex. Besides having a di�erent intensity distribution, (1.104) and (1.109) possess

di�erent physical properties. Indeed another consequence of the presence of an azimuthal

phase dependence is the fact that LG modes carry OAM whose amount is determined by the

value of |m|. This value is the topological charge of the vortex and is de�ned as:

m =


C

∇χds (1.111)

that is the closed path integral of the gradient of the phase χ = k r2

2R(z)
+kz+mθ−(2p+1+|m|)ξ

around the singularity. This translates into helical wavefronts, see �g. 1.7, consituted by |m|

winding helices.
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Figure 1.7: Di�erent helical wavefronts are shown in the left column. In the central column
the phase fronts, and in the right one the corresponding intensity distributions. Image taken
from Wikipedia.

LG beams are not the only ones carrying OAM, indeed Ince-Gaussian modes [17], Bessel-

Gaussian modes [18], Hypergeometric modes [19], Hypergeometric-Gaussian modes [20] are

all eigenstates of OAM.

1.2.4 How to generate and manipulate SAM

The polarization of the EM �eld can be manipulated through optical devices that take ad-

vantage of the anisotropies of matter. These devices are capable to modify the state of

polarization of a single photon or a light beam. The polarization state of a light beam

can be manipulated via wave plates and polarizers. When a light beam crosses a polarizer,



CHAPTER 1. THEORETICAL BACKGROUND 34

the emerging �eld is linearly polarized and its electric �eld oscillates along a well de�ned

direction.

A convenient way to treat analitically the problem is to introduce the Jones matrix

formalism. In this formalism the polarization state of the �eld is represented by a two-

dimensional vector. By using the Dirac notation, if we choose the two-dimentional basis

constituted by the vectors |H〉 and |V 〉 given by:

|H〉 =

(
1

0

)
(1.112)

|V 〉 =

(
0

1

)
(1.113)

where |H〉 and |V 〉 stand for horizontal and vertical linear polarization, then a polarizer that

transmits radiation only along the horizontal direction is represented in a such space by a

2× 2 matrix:

PH =

 1 0

0 0

 (1.114)

The general expression for a polarizer that transmits only the component of the �eld along

a certain direction n̂ is given by the following matrix:

Pφ =

 cos2φ 1
2
sin2φ

1
2
sin2φ sin2φ

 (1.115)

where φ is the angle that the direction of the electric �eld forms with the horizontal direction.

There are other equivalent basis suitable to describe the state of polarization of light,

one is the circular basis constituted by the vectors |R〉 and |L〉 respectively indicating right

circular polarization and the left circular one. A way to circularly polarize a previously

linearly polarized beam is through wave plates. These optical devices are constituted by a

slab of material exhibiting birefringence. In the Jones formalism a wave plate is represented
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by the matrix:

WP (δ, φ) =

 cos δ
2

+ isin δ
2
cos2φ isin δ

2
sin2φ

isin δ
2
sin2φ cos δ

2
− isin δ

2
cos2φ

 (1.116)

where δ represents the retardation introduced by the device while φ is the direction in which

the fast axis is oriented with respect to the horizontal. The value of δ individuates di�erent

kinds of wave plate carrying out di�erent transformations:

δ =
π

2
quarter wave plate (1.117)

δ = π half wave plate (1.118)

δ = 2π full wave plate (1.119)

A full wave plate acts as an identical transformation leaving unchanged the state of polar-

ization. A Half Wave Plate (HWP),

HWP = WP (π, φ) =

 icos2φ i sin 2φ

i sin 2φ −icos2φ

 (1.120)

when crossed by a linearly polarized wave, rotates of 2φ its direction of polarization. Even-

tually a Quarter Wave Plate (QWP) can transform the polarization of a beam from linear

to circular if the direction of polarization forms a ±π
4
angle with the fast axis.

QWP = WP (
π

2
,±π

4
) =

1√
2

 1 ±i

±i 1

 (1.121)

1.2.5 How to generate and manipulate OAM carrying beams

Vortex beams �nd many applications in fundamental investigation but also in many pratical

uses. In this context the generation and the manipulation of both single photons and beams

carrying an intented amount of OAM is a crucial issue. In other words there is the need to
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have a device capable of converting a Gaussian mode outing from a common laser source into

a helical beam with the desired eimϕ phase dependence.

Nowadays there are many ways to generate OAM such as Spiral Phase Plates (SPP),

Spatial Light Modulators (SLM), Computer-Generated Holograms (CGH), or Q-Plates (QP).

Only one of these methods, involving QP, will be treated more in detail in the following since

this is the device we employ in this thesis to generate vortex beams.

1.2.5.1 Q-Plate

The optical devices we have mentioned up to now act only on the spatial distribution of

the �eld that can be modulated through the non-uniformity of isotropic media (such as

holograms). On the other hand, as we have seen before, polarization can be controlled by

taking advantage of the anisotropy.

Combining these two properties of materials gives rise to a spin-orbit coupling device,

the QP. More in detail QP is constituted by a thin Liquid Crystal (LC) �lm sandwiched

between two glasses whose optic axis form a non-uniform pattern in the transverse plane

characterized by the topological charge q that is an integer or half-integer number. This

device is able to couple polarization and OAM degrees of freedom by making the crossing

beam acquire OAM with an amount depending on the topological charge (l = 2q~), and a

sign, along the propagation direction, depending on the polarization of the incoming beam.

Due to the intrinsic birefringence of liquid crystals q-plate acts as an ordinary waveplate by

introducing a retardation δ between the components of the �eld in the directions of the slow

and the fast axis. This retardation depends on the thickness of the plate (that is homogenous),

the wavelength of the radiation, the ordinary and extraordinary refractive indices of LCs and

the orientation of the optic axes of the molecules with respect to the propagation direction.

As will be more clear in the following, in optimal �working conditions� this retardation has

to be π, so that the device acts as a half wave plate on the polarizarization:

HWP =

 cos2α sin2α

sin2α −cos2α

 (1.122)
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where α = tan−1
(
ny
nx

)
, and n̂ = (nx, ny) the direction of the LCs molecular director. For

example for a circularly polarized input beam:

HWP |R〉 ∝ |L〉 e−2iα (1.123)

HWP |L〉 ∝ |R〉 e2iα (1.124)

In a q-plate α is patterned:

α = qϕ+ α0 (1.125)

so, by substituting (1.125 ) into ( 1.123) and (1.124) we have:

QPπ |L, 0〉 ∝ |R〉 e2iqϕe2iα0 = |R, 2q〉 e2iα0 (1.126)

QPπ |R, 0〉 ∝ |L〉 e−2iqϕe−2iα0 = |R,−2q〉 e−2iα0 (1.127)

Eventually in the most general case in which δ can assume all values in the range [0, 2π]

QPδ |L,m〉 = cos
(
δ

2

)
|L,m〉+ isin

(
δ

2

)
e2iα0 |R,m+ 2q〉 (1.128)

QPδ |R,m〉 = cos
(
δ

2

)
|R,m〉+ isin

(
δ

2

)
e−2iα0 |L,m− 2q〉 (1.129)

So in this case a part of the incoming signal remains unconverted while the other part inverts

its circular polarization and acquires ±2q unit of OAM, in the direction of propagation,

depending on whether the intial polarization is left or right respectively. If the ingoing beam

is linearly polarized, the action of the q-plate can be derived by rewriting it in the circular

basis:

|H〉 =
1√
2

(|R〉+ |L〉) (1.130)

|V 〉 =
1√
2

(|R〉 − |L〉) (1.131)

and using (1.128) and (1.129) for each component. The retardation can be controlled by
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applying to the plates an alternate voltage [21] and depends on the temperature [22]. In �g

1.8 an example of the action of a QP.

Figure 1.8: Example of a QP with topological charge 1 acting on a right- and a left- circular
polarized Gaussian input. Image taken from Wikipedia.

1.3 Entanglement

1.3.1 Entanglement for pure states

Entanglement is a genuine quantum property that arises when two subparts of a compound

system share correlations stronger than any classical interaction. These quantum correlations

are so intense that it is impossible to describe each single part of the system independently

of the other one, whatever their reciprocal distance is.

Entanglement �nds a lot of applications in many quantum communication protocols,

hence it is important to build a formal apparatus to achieve both characterization and quan-

ti�cation of this property. Bipartite pure states are the simplest scenario to de�ne entangle-

ment, although many e�orts are oriented to achieve a conclusive characterization even in the

cases of mixedness and multipartite systems; not the least the case of systems with an in�-

nite Hilbert space where entanglement can occur among degrees of freedom with continuous

spectra.

Let us now recall the concept of pure states. A quantum system is in a pure quantum
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state when it can be described by a vector |ψ〉 in its Hilbert space. Pureness corresponds to

the maximum information encodable in a state, that is the ability of predicting the outcome

of a measurement performed on it. Indeed in pure states the uncertainity is restricted only

to the quantum one. A bipartite state is constituted by two subsystems A and B and its

Hilbert space turns to be the vector product of the two Hilbert subspaces HA and HB:

H = HA ⊗HB (1.132)

We can �nally de�ne an entangled or not separable state as a state that cannot be written

as a product:

|ψ〉AB is entangled ⇐⇒ |ψ〉AB 6= |ϕ〉A ⊗ |η〉B (1.133)

where |ϕ〉A ε HA and |η〉B ε HB. Although being intuitive, this de�nition is not suitable to

pratical uses and an operational criterion to state whether a system is entangled or not is

needed. It can be seen that for a bipartite pure state it is always possible to �nd the following

decomposition:

|ψ〉AB =
d∑
i=1

λi |ϕi〉A |χi〉B λi ≥ 0,
d∑
i=1

λi = 1 (1.134)

where d = min {dimHA, dimHB} and |ϕi〉 and |χi〉 are orthonormal vectors belonging respec-

tively to HA and HB. This decomposition is known as Schmidt decomposition and is unique,

while the number d (number of the λi 6= 0) is the Schmidt number. Relation (1.134) provides

the following criterion to witness the presence of entanglement:

|ψ〉AB is entangled ⇐⇒ d > 1 (1.135)

1.3.2 Entanglement for mixed states

Opposed to pure states there are mixed states that are statistical ensambles in which the

state of the system is described by a sum of vectors belonging to the Hilbert space, each with

a certain probability (e.g. the state of unpolarized light). The case of mixedness is more

plausible in the practice since in most of the cases the state of the system is not known and



CHAPTER 1. THEORETICAL BACKGROUND 40

the previous description fades making way for the density matrix formalism. The density

matrix is analog to phase-space probability in classical statistical mechanics. It is de�ned as:

ρ̂ =
∑
n

pn |ψn〉 〈ψn| (1.136)

where the coe�cients pn are non-negative and add up to 1 and |ψn〉 are vectors of the Hilbert

space not necessary mutually orthogonal. These are classical probabilities making this state

di�erent from a quantum supersposition. Indeed while a quantum superposition, descending

from the linearity of the Schrödinger equation, is characterized by a quantum uncertainty

on the measure of an observable, the indetermination on a mixed state is both classical and

quantum. The density matrix operator is semi-positive de�nite, Hermitian and Tr (ρ̂) = 1.

In case of pure states, it assumes the following form of a projector:

ρ̂ = |ψ〉 〈ψ| (1.137)

and, besides the property listed above, the operator is also idempotent ρ2 = ρ. Due to this

property characterizing pure states, it is natural to introduce a measurement of the pureness

of a quantum state as to be

µ = Tr
(
ρ̂2
)

= 1 (1.138)

that can take values in the range [1/N, 1] for a system endowing a n−dimensional Hilbert

space. The minimum of the range corresponds to a maximally mixed state that coincides

with the maximum blindness on the knowledge of the state. It is worth noting that the

density matrix does not identify univocally the state of the system since di�erent ensambles

of states can possess the same density operator. In particular it is possible to de�ne a class

of states sharing the same density matrix as those states that are equal up to a unitary

transformation. Up to now we have dealt with systems de�ned on a single Hilbert space. Let

us consider a bipartite state constituted by two susbsystems A and B endowing the Hilbert

space H = HA⊗HB. If ρ̂AB is the density matrix of the whole system, it is possible to de�ne
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the reduced density matrix relative to one of the two subsystems as:

ρ̂A = TrB(ρ̂AB) (ρ̂B = TrA(ρ̂AB)) (1.139)

that is itself a density matrix. Once the partial density matrix is de�ned, it is worth noting

that the Schmidt decomposition, previously introduced, corresponds to the pure states:

ρ̂A = |ϕ〉 〈ϕ| (1.140)

ρ̂B = |χ〉 〈χ| (1.141)

when the Schmidt number is 1. Conversely if d > 1

ρ̂A =
d∑
i=1

λ2
i |ϕi〉 〈ϕi| (1.142)

ρ̂B =
d∑
i=1

λ2
i |χi〉 〈χi| (1.143)

this means that entanglement has something to do with local mixedness. In analogy with

pure states, we can now de�ne a mixed bipartite state to be separable if and only if:

ρ̂AB =
∑
i

λi (φA ⊗ φB) (1.144)

with λi > 0 ,
∑
i

λi = 1, and φA and φB states respectively belonging to the two Hilbert

subspaces.

An operative way to witness entanglement in such a case is represented by the Peres�Horodecki

condition [23, 24]. This criterion is also known as �Positivity under Partial Trasposition�

(PPT) since it is based on the simple idea that if a quantum system is separable, a local

trasformation (e.g. partial transposition) carried out on one of its subparts has not to have

consequences on the other subsystems.

More in detail, this criterion states that by taking the partial transpose of the density
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matrix belonging to only to one of the subsystems A or B of a state that is separable, i.e.

for which relation (1.144) stands, none of the eigenvalues of %T (A)
k has to be negative. Hence

if (%i)
T � 0, (i = A,B) then the bipartite state is entangled. This criterion represents a

necessary and su�cient condition for separability for 2×2 and 2×3 Hilbert spaces as proven

by Horodecki.

Up to now we have considered systems with a discrete Hilbert space. In the next sec-

tion the characterization of entanglement will be discussed for CV systems with particular

attention to GSs of continuos variable for which, as will be more clear in the following, this

problem considerably simplifes.

1.4 Gaussian states

A particular class of CV states is that of Gaussian states. The paramount importance

of this class of quantum states in CV systems stems from the feasibility to both generate

and manipulate them with a high degree of control, thanks to the techniques and devices

commonly present in optics labs. Beyond their formal de�nition, that will be given in the

following, GSs have privileges both from a theoretical and an experimental point of view.

GSs include ground and thermal states of all physical systems in the harmonic approx-

imation in particular for what concerns the EM �eld are Gaussian states, thermal states,

squeezed and squeezed thermal states but also coherent states that are the ones currently

produced by a common laser source. As we are going to see more in detail the formalism

required to completely characterize a GS consists of few elements making this class of states

equally powerful and essential. Moreover the Gaussianity of the state survives to most of

the transformations carried out in a laboratory with linear optical devices since they are

represented, in the Hilbert space of the system, by transformations that map GSs into GSs.

Moreover the understanding and the quanti�cation of entanglement properties are easily

handling for this class of states. In particular for bipartite Gaussian states there are some

necessary and su�cient criteria to witness the presence of quantum correlations. In this

section we are going to hint, without claiming to be complete, the phase space description of
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a quantum system since GSs live in such space. Then we will formally de�ne GSs and their

basic properties. After introducing single-mode GSs a particular attention will be devoted to

bipartite GSs since they have a leading role in this dissertation and are the simplest scenario

to investigate CV Gaussian states entanglement. Eventually there will be given the tools to

establish whether a state is entangled and the topic of Gaussian states transmission over a

noisy channel, essential for communications, will be faced.

1.4.1 Phase space description of quantum systems

When considering a quantum system there are di�erent ways to construct a formal apparatus

convenient for its description. The most common one is the operator formalism in which a

quantum system is characterized by observables (that are the quantities actually accessible

via experiments) represented by Hermitian operators de�ned in the Hilbert space of the

system itself. Also the quantum state of the system is described by an operator, the density

matrix, whose knowledge gives the full information about its current state and its evolution.

An alternative approach consists in the phase space formulation in which a 2n-dimensional

phase space, instead of a n-dimensional Hilbert space, is involved. This approach is similar

to the classical Hamiltonian formalism so making easier the understanding of the �transition�

between the classical and the quantum regime.

More in detail, from a classical perspective, the Hamiltonian formalism takes place on the

phase space that is a manifold on which the Poisson parenthesis are introduced. Observables

are represented by functions of the canonical position and momentum f(q(t), p(t), t) de�ned

in phase space and their evolution, under a certain Hamiltonian H, is determined by the

Poisson parenthesis:

{f, g} =
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(1.145)

as:
df(q(t), p(t), t)

dt
= {f,H}+

∂f

∂t
(1.146)

In the usual operatorial approach, when �switching to quantum�, positions and momenta
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become non-commuting operators de�ned on a Hilbert space and the state of the system is

no more a point of phase space but it becomes a vector of the Hilbert space or in the more

general case, in which the description of mixed states is encompassed, a density matrix %.

The canonical quantization is made by adopting the so called correspondence principle that

associates to each classical function g of the phase space an operator ĝ in Hilbert space and

replaces Poisson parenthesis with commutators. Although being quite easy in the case of

position and momentum operators, for more complex operators this quantization method

is a�ected by the operators ordering problem that becomes crucial. This problem has been

solved by Weyl who introduced a map stating a one-to-one correspondence between functions

and normal ordered operators. Moreover Wigner introduced a quasi-probability distribution

(it can assume negative values) that is exactly the function associated in the phase space by

the Weyl map to the density matrix.

The Wigner distribution is not the only possible one, there exist other distributions

such as Husimi quasi-probability distribution and the Glauber-Sudarshan one, depending

respectively on whether observables are expressed by using normal or symmetric ordering.

When dealing with electromagnetic �eld it is more correct to talk about optical phase

space that is the space of EM �eld quadratures X and Y (position- and momentum-like

operators) whose de�nition and commutation rules have been given in previous sections and

will be recalled later.

1.4.2 Gaussian states de�nition

The best way to deal with GSs is to use the theoretical phase-space approach [9, 25]. Let us

start by introducing the basic notation and concepts essential to provide a formal de�nition

of a GS. As discussed before, the quantized EM �eld, or more in general a system made

of n bosons, can be treated by considering each mode k (k = 1, ...., n) of the �eld as an

independent harmonic oscillator described by the annihilation and the creation operators âk

and â†k that respectively destroy and create a photon with frequency ωk. We recall that these
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two operators satisfy the following commutation rule:

[
âk, â

†
l

]
= δkl (1.147)

from wich descends the non-commutativity of the position- and momentum-like operators for

the k − th mode that we de�ned as to be the amplitude and the phase quadratures of the

EM �eld. The commutation rule between the quadratures can be written in the following

more convenient way that is more suitable to the symplectic structure of the phase space and

enables us to use a more compact notation,

[
R̂k, R̂l

]
= iΩkl (1.148)

where R̂ is the column vector R̂ =
(
X̂1, Ŷ1, .....X̂n, Ŷn

)T
and Ω is the symplectic matrix,

given by:

Ω =
n
⊕
k=1

ω ω =

 0 1

−1 0

 (1.149)

satisfying ΩT = −Ω = Ω−1. So we have abandoned the tensor product structure of the

n−dimensional Hilbert space to switch to a 2n−dimensional phase space ℘ = (R2n,Ω) having

a direct sum structure.

While the system is described by a density matrix %̂ in the Hilbert space, it is possible to

associate to it the following characteristic function in phase space:

χ [%̂] (Λ) = Tr
[
%̂ exp

{
−iΛTΩR̂

}]
(1.150)

where Λ = (a1, b1,......an, bn)T ε R2N , D̂ (Λ) = exp
{
−iΛTΩR̂

}
=

n
⊗
k=1

D̂k (λk) , with D̂k (λk) =

exp
{
λkâ

†
k − λ∗kâk

}
being the single-mode displacement operator de�ned in subsection 1.1.5.2

and λk = 1√
2

(ak + ibk). We are now ready to de�ne a GS state as a continuous variable state

with a Gaussian characteristic function, in other words a state is Gaussian if and only if its
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characteristic function can be written as:

χ [%̂] (Λ) = exp
{
−1

2
ΛTΩσΩTΛ− iΛTΩ

〈
R̂
〉}

(1.151)

where σ is the Covariance Matrix (CM) (second moments) whose elements are:

σkl =
1

2

〈{
R̂k,, R̂l

}〉
−
〈
R̂k

〉〈
R̂l

〉
(1.152)

with
{
R̂k,, R̂l

}
= R̂kR̂l + R̂lR̂k being the anticommutator and

〈
R̂
〉

= Tr
[
%̂R̂
]
the �rst-

moment vector. Since the commutation rule (1.147) holds, it can be proven that this matrix

has to ful�ll the following constraint,

σ +
i

2
Ω ≥ 0 (bona �de condition) (1.153)

also implying σ ≥ 0; in order to have a corresponding positive-semide�nite matrix %̂ and

consequently a �physical� GS. The CM can be re-organized in a block form that will prove

to be usefull in the following when we will deal with entanglement of GSs:

σ =


σ1 υ12 · · · υ1n

υT12 σ2 · · · υ2n

...
...

. . .
...

υT1n υT2n · · · σn

 (1.154)

σk are 2×2 matrices corresponding to the single-mode k while υij are 2×2 matrices too, but

they relate a mode to each other indicating potential correlations both quantum and classical.

In particular for a product state the o�-diagonal matrices vanish and the covariance matrix

simply reduces to σ =
n
⊕
k=1

σk. By taking the Fourier transform of the characteristic function

we get the Wigner function:

W [%̂] (X) =
1

(2π2)n

ˆ
R2n

d2nΛ exp
{
iΛTΩX

}
χ [%̂] (Λ) (1.155)
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where X = (x1, y1, ......xn, yn)T ε R2n. It is possible to show that for a GS the Wigner function

is still Gaussian and assumes the form:

W [%̂] (X) =

exp
{
−1

2

(
X −

〈
R̂
〉)T

σ−1
(
X −

〈
R̂
〉)}

πn
√
det [σ]

(1.156)

hence it is possible to indi�erently refer to GSs as states with a Gaussian characteristic func-

tion or a Gaussian Wigner function in phase space. This function, as previously predicted, is

real (if %̂ is Hermitian) and it is a quasi-probability distribution since it can assume negative

values. A GS is completely speci�ed by the �rst and the second statistical moments of the

quadrature �eld operators.

Since it is possible to make the �rst moments to vanish by using local unitary operations,

(e.g. displacements in phase space) while leaving unchanged any informationally relevant

property, such as entanglement, from now on we will set them to 0 without any loss of

generality. With this in mind, it is possible to rewrite the Wigner distribution as:

W [%̂] (X) =
exp

{
−1

2
XTσ−1X

}
πn
√
det [σ]

(1.157)

So despite the in�nite dimension of the Hilbert space, GSs have turned to be easy to

characterize thanks to the fact that they can be simply encoded into the 2n× 2n covariance

matrix σ that contains all the information about the state. For instance the purity of a

Gaussian state in phase space description is:

µ (%̂) =
1

2n
√
det [σ]

(1.158)

As predicted before, among the bene�ts of GSs, there is the Gaussianity robustness. GSs

indeed, preserve their character, under all the unitary transformations generated by Hamil-

tonians that are at most bilinear in the bosonic mode operators. Indeed, this transformation

carried out in the Hilbert space, corresponds to a symplectic transformation in phase space

i.e. a transformation that does not alter the symplectic structure of the space. In other
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words if we consider a classical system described by coordinates {q1, ....., qn} and momenta

{p1, ....., pn}, whose evolution is governed by the Hamiltonian H, then, equations of motion

(Hamilton equations) are written as:

Ṙm = Ωmn
∂H

∂Rn

(1.159)

where the point stands for the time derivative and Ω is the symplectic matrix (1.149) intro-

duced before. A transformation of coordinates represented by a 2n× 2n matrix S, such that

R′ = SR, is canonical,

Ṙ
′

l = SlmΩmnSni
∂H

∂R
′
i

(1.160)

if and only if SΩST = Ω (symplectic condition), with detS = 1. Such a transformation

leaves unchanged the equations of motion and preserves the Poisson parenthesis. This, after

quantization, translates in leaving una�ected the canonical commutation relations (1.148).

It can be seen that all transformations ful�lling the symplectic condition form a group called

the symplectic group Sp (2n,R).

Among the symplectic transformations an extremely important role is played by the

one that diagonalizes the CM. The diagonalizability of the CM is ensured by an important

theorem due to Williamson [26] that states that the covariance matrix σ can always be written

as:

σ = SWST (1.161)

through a symplectic transformation S ε Sp (2n,R), where W =
n
⊕
k=1

dkI2 is the covariance

matrix of a n-mode thermal state with Nk = dk− 1
2
(average number of photons in the k− th

mode) and {dk}nk=1 are the moduli of the symplectic eigenvalues {±dk}nk=1 of iΩσ. In the

Hilbert space formalism this translates in the statement that every Gaussian state %̂ can be

obtained by starting from a thermal state ν̂ through a unitary transformation US associated

to the symplectic matrix S that in turn has been generated by a Hamiltonian at most bilinear
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in the �eld mode operators:

%̂ = US ν̂U
†
S (1.162)

Eventually it can be shown that the uncertainty relation (1.153) imposes the following con-

straint:

dk ≥
1

2
∀k (1.163)

on the covariance matrix symplectic eigenvalues. The above constraint represents nothing

but that the symplectic representation of the uncertainty principle. Moreover from equation

(1.158) it is easy to understand that for a pure GS, equation (1.163) is ful�lled with the equal

sign.

It can be shown that the most general Hamiltonian that preserves Gaussianity can be

written as:

Ĥ =
n∑
k=1

g
(1)
k â†k+

n∑
k≥l=1

g
(2)
kl â

†
kâl+

n∑
k,l=1

g
(3)
kl â

†
kâ
†
l + h.c. (1.164)

This Hamiltonian consists of three building blocks, each leading to a unitary evolution. The

�rst term corresponds to the displacement operator, the second one instead encompasses

two di�erent processes. On one hand, when k = l the process is that of free evolution and

corresponds to nothing but that adding an overall phase term that although being meaningless

in the case of a single-mode evolution, plays a crucial role in interference phenomena; in the

context of optics this transformation is carried out by linear optical devices called phase

shifters. On the other hand, the process that involves di�erent mode operators corresponds

to a linear mixing of the two modes; this is the typical transformation made by a Beam

Splitter (BS).

Eventually the last addend describes the non-linear interaction in which starting from a

photon of a certain energy and momentum, two photons are generated in the full respect of

the energy and momentum conservation laws. This corresponds to the squeezing operator

previously seen and, depending on the so called phase matching conditions, it is possible

to generate the two photons in the same mode (single-mode squeezing) or in two di�erent

modes (two-mode squeezing). In order to carry out such a tansformation, due to the non
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self-interacting character of EM, non-linear processes involving matter (non-linear crystals)

are strictly necessary. So in conclusion a GS can be e�ciently displaced, squeezed and rotated

with current optical technologies without loosing its properties.

1.4.3 Single-mode Gaussian states

Let us now consider a single-mode GS starting from expression (1.162). It can be shown [9]

that for a single-mode GS equation (1.162) can be rewritten as:

%̂ = D̂ (α) Ŝ(ξ)ν̂th (N) Ŝ†(ξ)D̂† (α) (1.165)

where D̂ (α) and Ŝ(ξ) are respectively the single-mode displacement and squeezing operators

with ξ = reiψ, whose associated CM in phase space is given by:

σ =
1 + 2N

2

 cosh (2r) + sinh (2r) cosψ sinh (2r) sinψ

sinh (2r) sinψ cosh (2r)− sinh (2r) cosψ

 (1.166)

while the �rst moments are
〈
R̂
〉

=
√

2 (Re [α] , Im [α])T . The purity of the state is given by:

µ =
1

1 + 2N
(1.167)

and depends only on the average number of thermal photons.

1.4.4 Two-mode Gaussian states

Two-mode GSs play an important role both in this dissertation and in the CV states scenario

since they are the archetype of bipartite entanglement encoded into CV. According to what

we said before, the 4× 4 covariance matrix of a bipartite GS can be written in the following

block form:

σ =

 A C

CT B

 (1.168)
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where A, B, C are two-dimentional matrices. It is possible to de�ne four local symplectic

invariats, i.e. quantities that are unaltered by a symplectic transformation,

I1 = det [A] I2 = det [B] I3 = det [C] I4 = det [σ] (1.169)

It can be shown that the CM can be reduced to the following standard or normal form:

σ =


a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b

 (1.170)

where:

a2 = I1 b2 = I2 c1c2 = I3 (ab− c2
1) (ab− c2

2) = I4 (1.171)

Also the two symplectic eigenvalues can be written in terms of these invariants as:

d± =

√√√√4 (σ)±
√
4 (σ)2 − 4I4

2
(1.172)

with 4 (σ) = I1 + I2 + 2I3 and the uncertainty relation turns to be :

d− ≥
1

2
(1.173)

Among the two-mode GSs the two-mode squeezed thermal states are of huge relevance.

These states are obtained by applying to a two-mode thermal state, the two-mode squeezing

operator i.e.:

% = S2 (ξ) νth (N1)⊗ νth (N2)S†2 (ξ) (1.174)
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The covariance matrix of such a state is proven to be:

σ =
1

2

 A12 CRξ

CRξ B12

 (1.175)

where ξ = r is real and,

A = (1 +N1 +N2) cosh (2r) + (N1 −N2)

B = (1 +N1 +N2) cosh (2r)− (N1 −N2)

C = (1 +N1 +N2) sinh (2r)

Rξ = sinhr

 cosψ sinψ

sinψ −cosψ

 (1.176)

In particular if N1 = N2 = 0 the state is said to be a two-mode squeezed vacuum or a

Twin-Beam State (TBS) since there is a perfect correlation in the number of photons of the

two modes. A state of this kind can be generated by using single-mode squeezer and a linear

mixer such as a BS.

1.4.5 Entanglement Criteria for Gaussian States

As stated before, entangled states are those states that are not separable; among them the

simplest scenario is constituted by bipartite states.

In section (1.3.2) we introduced the PPT criterion as an operational way to assert whether

a state is entangled or not. Although, the di�culties associated to perform both partial

transposition and diagonalization, increase with the dimension of the space. In most of

the cases, these operations are expected to became very di�cult. These problems have

been circumvented by Simon [27] who observed that the partial transposition on the density

matrix corresponds to a mirror re�ection for the Wigner distribution in phase space ΛA =

diag(1,−1, 1, 1)
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Hilbert Space Phase Space

↓ ↓

%̂ −→ %̂T ⇔ W (XA, YA, XB, YB) −→ WΛA(XA,−YA, XB, YB)

(1.177)

So, in view of the above, a state % is said to be separable if its Wigner distribution, under

a partial transposition, goes into a mirror re�ected and equally well de�ned Wigner distri-

bution. This fact has consequences also on the covariance matrix of the state. Indeed also

the transformed matrix σ̃ = ΛAσΛA has to ful�ll the constraint imposed by the uncertainty

relation,

σ̃ +
i

2
Ω ≥ 0 (1.178)

and the symplectic invariants become:

Ĩ1 = I1 Ĩ2 = I2 Ĩ3 = −I3 Ĩ4 = I4 (1.179)

this leads to the following PPT condition:

d̃− ≥
1

2
(1.180)

where d̃− is the lower of the symplectic eignenvalues of σ̃,

d̃± =

√√√√4̃ (σ)±
√
4̃ (σ)2 − 4I4

2
(1.181)

with 4̃ (σ) = I1 + I2− 2I3. The state is entangled if and only if condition (1.180) is violated.

Equivalently by referring to the standard form of the covariance matrix the PPT criterion
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reads:

4
(
ab− c2

1

) (
ab− c2

2

)
≥ a2 + b2 + 2 |c1c2| −

1

4
(1.182)

and the violation of this condition witnesses the presence of quantum correlation between

the two subsystems.

Another entanglement witness is provided by the Duan criterion [28] that is based on the

calculation of the total variance of a pair of Einstein-Poldolsky-Rosen (EPR) type operators.

This quantity has a lower bound for a separable state due to the uncertainty principle.

However this bound can be exceeded for an entangled state and this provides a su�cient

condition for inseparability that turns to be also necessary for GSs. It can be demonstrated

that for a bipartite Gaussian state with the covariance matrix in the standard form (1.170)

this criterion reads as:

aγ2 +
b

γ2
− |c1| − 2 |c2| < γ2 +

1

γ2
(1.183)

with γ2 =
√(

b− 1
2

) (
a− 1

2

)
. If for a state it stands this inequality the state is entangled.

1.4.6 Fidelity Criterion

Among the various crititeria to witness entanglement the �delity criterion [29], we are going

to introduce, involves the �delity of the states and is able to predict if a state, obtained by

mixing two squeezed not correlated states, will be entangled starting from the properties of

the two input states. More in detail this criterion states that the interaction between two

uncorrelated GSs through a bilinear exchange Hamiltonian, gives rise to entanglement if and

only if the �delity between the two input states is less than a threshold condition depending on

their purities, �rst moments and on the strength of the coupling. In practice when two single

mode Gaussian states interact through a bilinear Hamiltonian, their evolution is described,

in the covariance matrix formalism, by the following block-matrix:

Σ =

 Σ1 Σ12

Σ12 Σ2

 (1.184)
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whose elements are

Σ1,2 = τσ1,2 + (1− τ)σ2,1 (1.185)

Σ12 = τ(1− τ)(σ2 − σ1) (1.186)

with τ coupling parameter and σ1,2 the covariance matrices of the two input single-mode

states. The presence of the o�-diagonal terms suggests the existence of a correlation between

the two modes that depends on the �similarity� of the inputs. This similarity is quanti�ed

by the �delity of the the states de�ned as to be:

F (σ1, σ2) =

(√
det[σ1 + σ2] + 4

(
det[σ1]− 1

4

)(
det[σ2]− 1

4

)
(1.187)

−

√
4

(
det[σ1]− 1

4

)(
det[σ2]− 1

4

))−1

If and only if this quantity falls under the following threshold:

Fth(σ1, σ2) =
(

4µ1µ2

√
τ(1− τ)

)−1

(√
(1− µ2

1)(1− µ2
2)− 4τ(1− τ)(1 + µ2

1)(1 + µ2
2) (1.188)

−
√

4τ(1− τ)(1− µ2
1)(1− µ2

2)

)−1

that depends on the purities and the trasmission of the BS, entanglement is sat and the

bipartite system emerging from the mixing is an unseparable state.

1.4.7 Propagation over a lossy channel

Pure states are far from being produced in a laboratory indeed, due to the unevoidable in-

teraction with classical environment, pure states decohere, evolving into statistical mixtures.

Pure quantum features, such as entanglement, can be strongly compromised by this mech-

anism so it is of fundamental interest to know how the interaction alters the parameters

determining the �quantumness� of a state. In optics due to absorption and di�raction, one of



CHAPTER 1. THEORETICAL BACKGROUND 56

the main cause producing decoherence is represented by the loss of photons. Another factor

of noise arises from the interaction between the quantum system and a thermal environment.

In the contest of open systems approach [30] by modeling the enviroment on a thermal bath,

under the hypotesis of markovianity, secularity and validity of the Born approximation, the

evolution of a quantum system experiencing a Gaussian noisy trasmission channel is well

described, in the density matrix formalism, by the Kossakowski-Lindblad equation [9] that

translates, for bipartite Gaussian states, into the Fokker-Planck Master equation written in

terms of the Wigner quasi-probability distribution:

∂tW (K, t) =
1

2

(
∂TKΓK + ∂TKΓσ∞∂K

)
W (K) (1.189)

where K runs on the two modes quadratures, Γ =
2
⊕
h=1

Γh12 , and σ∞ =
2
⊕
h=1

σh,∞, with,

σh,∞ =
1

2

 (1
2

+Nh) + Re[Mh] Im[Mh]

Im[Mh] (1
2

+Nh)− Re[Mh]

 (1.190)

This is the di�usion matrix and represents the asymptotic covariance matrix of the system

with Nh and Mh respectively the e�ective photon number and the squeezing parameter of

the bath. This, in terms of the covariance matrix, becomes:

σ(t) = G1/2
t σ(0)G1/2

t + (1−Gt)σ∞ (1.191)

with Gt =
2
⊕
h=1

e−Γht12. As one can see, expression (1.191) suggests that the action of the

lossy channel on the covariance matrix characterizing the system is in all equivalent to the

action of a �ctitious BS that couples the system to the environment through its trasmission

coe�cient T = e−Γt.



Chapter 2

OAM-carrying entangled states

generation

In this chapter we will illustrate the generation stage of our setup and we will report how the

bipartite entangled state is produced. First of all, our source of polarization entangled states

will be described. It is made of a triply resonant Optical Parametric Oscillator (OPO) working

below threshold that provides two collinear entangled beams having the same frequency but

cross polarized. The heart of this device is a second order non-linear process: the parametric

down conversion. After a brief introduction, just to recall the main second-order non-linear

phenomena, we will focus on parametric down conversion since this phenomenon generates

both squeezing and entanglement.

We will illustrate this process both from a classical and a quantum point of view by

further specializing to the case in which the presence of an optical cavity is encompassed.

As it will be discussed later indeed, due to the small cross section of this phenomenon, for

practical uses it is more convenient to enhance this process, placing the crystal into an optical

resonator, obtaining in this way an OPO.

Once introduced the main features of the OPO source, the procedure for imprinting on

the state OAM as a further d.o.f. will be reported in detail. Eventually it will be shown that

the architecture of the setup, besides the generation of bipartite entangled vortex beams,

57
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encompasses the possibility to generate single-mode squeezed vortex beams.

2.1 Non-linear optical phenomena

By observing the structure of the squeezing Hamiltonian (1.62), it is easy to understand

that it describes a two-photon process. This translates, in practice, in the need of non-linear

optical phenomena in order to produce squeeezing.

When talking about non-linear optical phenomena, it refers to the behaviour of some

materials, usually crystals, that respond in a non-linear way when they are illuminated by

strong EM radiations. The non-linearity in the response concerns the relation that stands

between the polarization vector P (t) and the electric �eld E (t) . In the linear optical regime

they are proportional [31]:

P (t) = χ(1)E (t) (2.1)

where χ(1) is the linear susceptibility. This quantity is in general represented by a rank-2

tensor but for linear, homogeneous and isotropic dielectric media, it is simply a constant. To

write (2.1) the material is also assumed to be lossless and not dispersive. In such a way it

is possible to assume that the value taken by the polarization depends instantaneously on

the value taken by the electric �eld. Out of the linear regime, equation (2.1) generalizes as

follows:

P (t) = χ(1)E (t) + χ(2)E2 (t) + χ(3)E3 (t) + .... (2.2)

where χ(1,2,3,..p) are the susceptibilities at higher orders and are rank-(p+ 1) tensors if the

vectorial nature of both polarization and electric �eld is taken into account. Depending

on the considered order, di�erent processes take place; we will focus in particular on the

second-order processes that occur exclusively in non-centrosymmetric crystals (not displaying

inversion symmetry).

It is possible to show that in case of non-linearity the wave equation, in Gaussian units,

assumes the following form:

∇2E − n2

c2

∂2E

∂t2
=

4π

c2

∂2P

∂t2
(2.3)
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being n the refractive index of the material. This is an inhomogeneous equation and expresses

the fact that, when the right-hand side is di�erent from zero, charges are accelerated so

emitting EM radiation in agreement with the Larmor's theorem.

Let us suppose that the electric �eld impinging on a second order non-linear crystal has

two-frequence components:

E = E1e
−iω1t + E2e

−iω2t + c.c. (2.4)

By considering the second order term in (2.2) we get:

P (2) (t) = χ(2)E2 (t)

= χ(2)[E2
1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t (2.5)

+2E1E
∗
2e
−i(ω1−ω2)t + c.c.] + 2χ(2) [E1E

∗
1 + E2E

∗
2 ]

By using the following notation:

P (2) (t) =
∑
n

P (ωn) e−iωnt (2.6)

we have:

P (2ω1) = χ(2)E2
1 (SHG) (2.7)

P (2ω2) = χ(2)E2
2 (SHG) (2.8)

P (ω1 + ω2) = 2χ(2)E1E2 (SFG) (2.9)

P (ω1 − ω2) = 2χ(2)E1E
∗
2 (DFG) (2.10)

P (0) = 2χ(2) (E1E
∗
1 + E2E

∗
2) (OR) (2.11)

where the �rst to lines are referred as Second Harmonic Generation (SHG) while the terms

involving the sum and the di�erence between the two frequencies are the Sum Frequency
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Generation (SFG) and the Di�erence Frequency Generation (DFG). Eventually the last non-

radiative term is the Optical Recti�cation (OR). Although there are four di�erent frequency

components, the related phenomena occur one at a time depending on the so called phase

matching conditions that can be tailored by acting on the polarization of the beam illumu-

nating the crystal and its relative orientation. We will focus now only on the DFG, essential

for the generation of our entangled states.

2.2 Parametric down conversion and optical parametric

oscillation

Expression (2.10) involves the phenomenon pictorially depicted in �g 2.1. A pump beam,

with frequency ω3 impinges on a second-order non-linear crystal together with a beam of

energy ~ω1 that is used as a seed to stimulate the emission at its frequency. Consequently

two beams at frequency ω1 and ω3 − ω1 appear.

Figure 2.1: Pictorial representation of DFG. A pump beam at frequency ω3 and a seed at
frequency ω1 impinge on a second-order non-linear crystal generating two beams in agreement
with the energy conservation.

At single photon level, in view of the energy conservation, this phenomenon has to be

seen as shown in �g 2.2.
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Figure 2.2: Pictorial representation of DFG at single photon level. A photon of energy ~ω3 is
absorbed and due to the presence of a seed at frequency ω1 a photon of energy ~ω1 is emitted
with the consequent emission of another photon in agreement with the energy conservation.

Hence the process involves the absorption of a photon of energy ~ω3 with the consequent

emission of a photon of frequency ω1 and another one with the di�erence frequency [31]. This

process acts as an ampli�er with respect to the lower frequency. Indeed the presence of a seed

with frequency ω1 stimulates the emission of a photon at the frequency di�erence and another

with frequency ω1. This is the reason why this phenomenon is called parametric ampli�cation

or parametric down conversion. It occurs, with a reduced e�ciency, even without the seed. In

such a case the phenomenon is called spontaneous parametric down conversion or parametric

�uorescence. In order to enhance the process e�ciency without using a seed, the crystal

can be placed into an optical resonator in this way realizing an OPO, whose schematic

representation is shown in �g. 2.3.

Figure 2.3: Pictorial representation of an OPO. A second order non-linear crystal is placed
inside an optical resonator. A pump beam at frequency ω3 determines the emission of two
photons in agreement with the energy conservation.

The two mirrors have high re�ectivity at ω1 and/or ω2 = ω3 − ω1 so that this device is

able to build up strong �elds. The wanted photon at frequency ω1 is said to be signal while

the other unwanted one is called idler. Since does not exist a precise selection rule for the

frequency of the signal (only the conservation of the total energy and momentum have to be
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satis�ed), its frequency can be controlled by adjusting the phase matching conditions.

2.3 Parametric down conversion: classical treatment

The starting point to treat non-linear optical phenomena is the wave equation for non-linear

optical media (2.3). Let us recall that [31]:

P = P(1) + PNL

D = D(1) + 4πPNL

D(1) = E + 4πP(1)

By substituting these relations into the wave equation (2.3) we obtain:

−∇2E +
1

c2

∂2D(1)

∂t2
= −4π

c2

∂2PNL

∂t2
(2.12)

If we assume the medium to be dispersive, each frequency component of E, D, and P must

be considered. So, by only taking into account of positive frequencies, we get:

E (r, t) =
∑
n

En (r, t) =
∑
n

En (r) e−iωnt + c.c. (2.13)

D(1) (r, t) =
∑
n

D(1)
n (r, t) =

∑
n

D(1)
n (r) e−iωnt + c.c. (2.14)

PNL (r, t) =
∑
n

PNL
n (r, t) =

∑
n

PNL
n (r) e−iωnt + c.c. (2.15)

Moreover, D(1)
n (r, t) = ε(1) (ωn)En (r, t), where ε(1) (ωn) is a frequency-dependent dielectric

tensor. By taking all these relations into account equation (2.12) turns to be:

−∇2En (r, t) +
ε(1) (ωn)

c2

∂2En (r, t)

∂t2
= −4π

c2

∂2PNL
n (r, t)

∂t2
(2.16)
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valid for each frequency component. It can be seen that for the parametric down conversion

for the signal ω1 and the idler ω2, in the case of strong non depleted pump one has:

dA1

dz
=

8πiω2
1d

k1c2
A3A

∗
2e
i4kz (2.17)

dA2

dz
=

8πiω2
2d

k2c2
A3A

∗
1e
i4kz (2.18)

being 4k ≡ k3 − k1 − k2 and d a coupling constant between the �elds and the polarization.

Ai (z) (i = 1, 2, 3) are slowly varying amplitudes of the �elds, respectively of the signal, the

idler and the pump, considered as to be plane waves-like solutions,

Ei = Ai (z) ei(kiz−ωit) (2.19)

traveling along the z−axis inside the non-linear crystal. By introducing the quantities:

g =

√
κ1κ∗2 − (4k/2)2 with κi =

8πidA3

kjc2

the solutions of (2.17) and (2.18) are:

A1 (z) =

[
A1 (0)

(
cosh gz − i4k

2g
sinh gz

)
+
κ1

g
A∗2 (0) sinh gz

]
ei4kz/2 (2.20)

A2 (z) =

[
A2 (0)

(
cosh gz − i4k

2g
sinh gz

)
+
κ2

g
A∗1 (0) sinh gz

]
ei4kz/2 (2.21)

Under the hypothesis of perfect phase matching4k = 0 and A2 (0) = 0 , the solutions reduce

to:

A1 (z) = A1 (0) cosh gz (2.22)

A2 (z) = i

(
n1ω2

n2ω1

)
A3

|A3|
A∗1 (0) sinh gz (2.23)

for large z , the asymptotic behaviour of these two solutions, is given respectively by:

for large z ∼ 1

2
A1 (0) egz (2.24)
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for large z ∼ O (1)A∗1 (0) egz (2.25)

where O (1) means of the order of unity. So both solutions experience a growth with z.

When the presence of the cavity is encompassed, losses, due to the not perfect re�ectivity

of mirrors, have to be taken into account since they introduce a threshold for the parametric

down conversion to occur. This threshold value can be obtained by imposing that in a single

pass inside the cavity the fractional energy gain must equal the fractional energy loss. In

perfect phase matching condition, by supposing re�ectivities of the two mirrors to assume the

same value R for the signal and the idler and 1−R� 1, the threshold condition becomes:

e2gL − 1 = 2 (1−R) (2.26)

where L is the crystal length. For 2gL� 1,

gL = 1−R Threshold condition (2.27)

This condition can be expressed as:

A1 (0) =

[
A1 (0) cosh gL+

κ1

g
A∗2 (0) sinh gL

]
(1− l1) (2.28)

A∗2 (0) =

[
A∗2 (0) cosh gL+

κ∗2
g
A1 (0) sinh gL

]
(1− l2) (2.29)

where li = 1 − Rie
−αiL is the fractional amplitude loss per pass and αi the absorption

coe�cient of the crystal at frequency ωi. The simultaneous validity of these two equations

leads to:

cosh gL = 1 +
l1l2

2− l1 − l2
(2.30)

that is the trashold condition for both singly and doubly resonant OPO.
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2.4 Parametric down conversion: quantum treatment

The parametric down conversion is one of the possible second-order non-linear phenomena

in which a photon of the pump is annihilated to give a pair of photons (signal and idler) for

which [31, 32]:

ωp = ωs + ωi (2.31)

kp = ki + ks (2.32)

energy (2.31) and momentum (2.32) conservations stand. The full Hamiltonian (free �elds

+ interaction) under which the �elds evolve is given by:

Ĥ =
∑
i

~ωiâ†i âi − i~χ(2)
(
âpâ

†
i â
†
s − â†pâiâs

)
(2.33)

where i runs over (s, i, p) and χ(2) is the second order non-linear susceptibility of the crystal.

For bosonic operators referring to the same EM �eld mode, the usual commutation relation

(1.19) stands while operators referred to di�erent modes commute with each other. The �rst

term of the Hamiltonian is the sum of the three independent free �eld Hamiltonians of each

mode involved in the process. The second term concerns the non-linear interaction occurring

inside the crystal, i.e. the annihilation of a pump photon and the creation of the signal and

the idler photons.

In most of cases, due to the weakness of the coupling constant χ(2) , the pump beam, that

is tipically a strong coherent beam provided by a laser source, is not signi�cantly depleted by

the photon conversion. Hence, it is possible to make the following assumption of a classical

pump �eld:

âp −→ Ap classicality of the pump (2.34)

in which the pump is no longer represented by an operator rather by a classical �eld ampli-

tude.

We will face now the case in which the two �elds (signal and idler) share the same

frequency (that is half the value of the pump) but can be distinguished through their polar-
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ization d.o.f since we suppose them to be cross polarized. By doing these assumptions the

Hamiltonian (2.33) becomes:

Ĥ =
~ωp
2

(
â†sâs + â†i âi

)
− i~χ

(2)

2
Ap

(
â†i â
†
s − âiâs

)
(2.35)

Looking to the interaction part it is easy to notice that it is equal to (1.76) as long as we

make the substitution g → 1
2
χ(2)Ap. Therefore, by recalling the results we obtained in the

previous general treatment of subsection 1.1.6, we can assert that this Hamiltonian leads to

a two-mode squeezed state in which the quadratures that show squeezing are the following

combinations of the signal and the idler modes:

ĉ =
âs + âi√

2
(2.36)

d̂ =
âs − âi√

2
(2.37)

ê =
âs − iâi√

2
(2.38)

f̂ =
âs + iâi√

2
(2.39)

Since the signal and the idler are cross polarized, these combinations correspond respec-

tively to the diagonal (2.36) and the anti-diagonal (2.37) modes, and the right-circular (2.38)

and left-circular polarized(2.39) modes in the polarization basis of the signal and the idler

pictorially represented in �g. 2.4.
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Figure 2.4: Pictorial representation of squeezed modes in the polarization basis of the signal
and the idler.

Moreover since for each photon produced with frequency ωs, also a photon with frequency

ωp − ωs is generated, the two modes at the OPO output show a strong correlation in the

number of photons so being in an entangled state.

2.5 Optical parametric oscillator threshold

So far, the presence of an optical resonator has been neglected. When considering the case in

which the crystal is placed inside an optical resonator, one can imagine the environment sur-

rounding the cavity as a heat bath constituted by an in�nite number of harmonic oscillators

that, at room temperature, can be considered to be in their ground state. The interaction

of the radiation con�ned inside the cavity with the external environment is caused by the

not perfect re�ectivity of the two mirrors that leads to unavoidable losses. The interaction

Hamiltonian that couples a single mode of radiation â inside the cavity with a harmonic

oscillator of the bath b̂, has the following form [31, 32]:

Ĥin−out = i~
∞̂

−∞

dω κ (ω)
(
b̂† (ω) â+ b̂ (ω) â†

)
(2.40)
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where κ (ω) is the strength of the coupling. The evolution under the Hamiltonian (2.40) of

the modes inside the cavity is governed by the following Langevin equation:

dâ

dt
= − i

~

[
â (t) , Ĥ

]
− γâ (t) +

√
2γain (t) (2.41)

where Ĥ is the Hamiltonian inside the cavity i.e., in our case, the non-linear Hamiltonian

introduced in the previous section. The term γâ (t) is related to the losses due to absorption

and di�ractions of mirrors, while the driving term
√

2γain (t) is related to the interaction

with the bath. In particular it describes the entrance, inside the cavity, of a vacuum mode

coming from the external environment. When specifying equation (2.41) for the pump, the

signal and the idler, we get:

dâs
dt

= −γâs + χ(2)âpâ
†
i +
√

2γâins (t) (2.42)

dâi
dt

= −γâi + χ(2)âpâ
†
s +
√

2γâins (t) (2.43)

dâp
dt

= −γpâp −
(
χ(2)
)∗
âiâ
†
s + Ap +

√
2γpâ

in
p (t) (2.44)

being Ap the external coherent pump. These non-linear equations can be solved thanks to a

linearization procedure according to which the operator,

â −→ α + δâ (2.45)

is decomposed in a sum of a term involving a complex amplitude α and a term δâ related to

the operator �uctuations. By setting α = αs = αi the following equation is obtained:

α3 − χ(2)Ap − γpγ
(χ(2))

2 α = 0 (2.46)

Solutions of the equation (2.46) depend on the value of Ap. In particular there exsist a

threshold Ath = γpγ

χ(2) , for the pump value, in order to parametric down conversion occurs even

in presence of losses. In the above threshold case Ap ≥ Ath the system is proven to generate
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the so called twin beams since they show a strong correlation between the �uctuations on the

photon number. We will only focus on the case Ap ≤ Ath in which the system admits the

stable solution α = 0 and αp = Ap
γp

(below threshold condition). In this case the system has a

non-classical behaviour with �non-classicality� increasing with getting closer to the threshold.

2.6 Fluctuations of the output �elds

Let us consider the �elds outing from the OPO cavity as a sum of a steady state and a

quantum operator �uctuation α + δâ. The Langevin equations turn out to be [32]:

d (δâi)

dt
= −γδâi + χ(2)αpδâ

†
s + rδâp +

√
2γaini (t) (2.47)

d (δâs)

dt
= −γδâs + χ(2)αpδâ

†
i + rδâp +

√
2γains (t) (2.48)

d (δâp)

dt
= −γpδâp − χ(2) [δâs + δâi] +

√
2γpa

in
p (t) (2.49)

By introducing the modes ĉ and d̂, already de�ned in previous sections as combination of idler

and signal modes, and their relative amplitude and phase quadtrature operators X̂c,d and Ŷc,d

the �uctuations on these quantities satisfy the following uncoupled equations:

d
(
δX̂c,d

)
dt

= − (γ ∓ ℘) δX̂c,d +
√

2γX̂ in
c,d (2.50)

d
(
δŶc,d

)
dt

= − (γ ± ℘) δŶc,d +
√

2γŶ in
c,d (2.51)

where ℘ = χ(2)αp. The squeezing spectrum for the �uctuations of outing �elds results to be:

〈
4δX̂out

c (ω)
〉2

= Sc (ω) =
〈
4δŶ out

d (ω)
〉2

(2.52)

〈
4δŶ out

c (ω)
〉2

= Sd (ω) =
〈
4δX̂out

d (ω)
〉2

(2.53)
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where,

Sc,d (ω) =
1

2

(
1± 2

℘γ

(γ ∓ ℘)2 + ω2

)
(2.54)

Hence the mode ĉ (d̂) exhibits antisqueezing (squeezing) on the amplitude quadrature and

vice-versa for the phase quadrature.

2.7 Threshold in terms of the cavity parameters

If the OPO cavity is spherical, the inner �elds have a Gaussian intensity pro�le. In such a

case it is possible to show that the threshold value for the pump power can be written in

terms of the cavity parameters as follows:

Pth =
π2

4FsFiBupENL
(2.55)

where Fs,i, are the �nesse of the cavity at signal and idler frequency, Bup is the build up

parameter for the pump and is given by the pump power inside the cavity over the one at the

entrance, while ENL is a non-linear coe�cient depending on the second order susceptibility

and on the phase matching 4k = kp − ks − ki. Since it is better to work with a low pump

power in order to avoid thermal e�ects on the crystal it is important to experimentally tailor

its value. It is possible to show that Fi and Bup take their heigher values in triply resonance

condition, moreover ENL is maximum when perfect phase matching condition is achieved.

2.8 Experimental setup

The part of the whole experimental scheme, devoted to the generation of the entangled cross

polarized modes is depicted in �g 2.5. The laser source (whose main characteristics are

reported in table 2.1) is a Continuous Wave (CW) Nd:YAG laser (Innolight-Diabolo dual

wavelength) emitting a single mode TEM00 linearly polarized @1064 nm with a slightly

elliptical spot. The laser also provides a second output @532 nm
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λ nm 1064
Pmax mW 400

FWHM kHz < 1
Coherence length Km > 1
Waist location mm 50
Drift frequency MHz/min 2

Table 2.1: Laser properties.

used as the OPO pump. Once have been produced, the green pump beam passes through

an Electro Optic Modulator (EOM) and a Faraday Rotator (FR). The �rst one is employed

to modulate the phase of the laser beam in order to adjust the OPO cavity length thanks

to a Pound-Drever-Hall (PDH) [33] control system that ensures the resonance of the pump

beam. The second acts as an insulator protecting the laser source from back scattered light.

A HWP, together with a Polarizing Beam Splitter (PBS), allows to control the pump power

to be sent to the OPO. Another HWP adjusts the polarization of the beam before entering

the OPO cavity. Before entering the cavity the beam crosses a matching lens that improves

the coupling of the pump beam to the TEM00 mode of the cavity.

Figure 2.5: Experimental setup for the generation of the entangled cross polarized modes.

The non-linear crystal of the OPO is a 1 × 1.5 × 25 mm3 periodically poled (poling
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period 448 µm) α−cut KTP crystal (PKTP). It ensures a type-II phase matching for two

collinear orthogonally polarized and frequency degenerate beams (λs = λi = 2λp = 1064 nm)

at T = 326K (53°C). The crystal temperature is actively controlled with residual peak-to-

peak �uctuations of . 3 mK over 20 min. The OPO cavity is composed by two mir-

rors having the same curvature radius R = 51.68 mm. The cavity input mirror has a

trasmittivity Tin (1064 nm) = 0.0075% and Tin (532 nm) = 4.5% while for output mirrors

Tout (1064 nm) = 4.6% and Tout (532 nm) = 0.1%. The cavity optical length at 1064 nm

is approx 95 mm (between the confocal and the concentric con�guration). The measured

threshold power for the pump beam is Pth ≈ 70 mW . As previously said, in order to op-

timize the non-linear process inside the cavity, the system has to work in triply resonance

conditions [32]. The resonance condition for the pump beam is insured by a PDH control sys-

tem that allows to tailor the cavity length via a piezoelectric crystal mounted on the output

cavity mirror. This system locks the cavity to the pump mode TEM00. By �nely controlling

the temperature of the crystal it is possible to achieve the triply resonance condition while

keeping the pump locking.

2.9 OAM imprinting of the SAM entangled modes

Once the two entangled modes have been produced by the OPO, the bipartite state is endowed

by an additional d.o.f. represented by OAM. It constitutes a further way to distinguish

between the two co-propagating modes and increases the information-carrying capacity of

the state. The OAM-imprinting is realized thanks to the q-plate introduced in previous

sections. The scheme for the OAM imprinting is shown in �g. 2.6.
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Figure 2.6: OAM-imprinting experimental scheme.

As discussed above the OPO source, working below threshold, generates a bipartite state

in which the two modes have the same frequency but they are cross polarized. Let us indicate

these modes as âH,0 and b̂V,0 where the labels H,V concern the SAM and stand respectively

for the horizontal and vertical polarization. The second label, that is 0 for both the modes

at the OPO output, indicates that none of the two modes carry OAM so being Gaussian

TEM00 modes. The �rst QWP, placed at the OPO output, transforms the linear crossed

polarizations of the two entangled beams into opposite circular ones.

The waveplate is placed in such a way that its fast axis forms 45° angle with the polariza-

tion of the ingoing beam. Let us recall the matrix representing the related transformation:

MQWP (45°) =
1√
2

 1 i

i 1

 (2.56)



CHAPTER 2. OAM-CARRYING ENTANGLED STATES GENERATION 74

This matrix acts on the two crossed polarizations as:

MQWP |H〉 =
1√
2

 1 i

i 1

 1

0

 =
1√
2

 1

i

 = |L〉 (2.57)

MQWP |V 〉 =
1√
2

 1 i

i 1

 0

1

 =
1√
2
i

 1

−i

 = i |R〉 (2.58)

Therefore the two modes outing from the OPO undergo the following transformation:

âH,0 −→ âL,0 (2.59)

b̂V,0 −→ ib̂R,0 (2.60)

These two circularly polarized modes then cross a q-plate having a topological charge q = 1
2
.

As discussed in the section dedicated to this device, the QP, when crossed by a Gaussian

circularly polarized mode, converts the TEM00 into a vortex beam by making it to acquire

an OAM equal to ±2q~ (depending on whether the initial polarization was left (+) or right

(−)) and inverts its polarization. Hence, in our speci�c case, the mode âL,0 acquires an OAM

equal to ~ and its polarization becomes right. Conversely, the mode b̂R,0 acquires an opposite

amount of OAM and its polarization becomes left. Therefore, schematically we have:

âL,0 −→ âR,1 (2.61)

ib̂R,0 −→ ib̂L,−1 (2.62)

Therefore the QP provides the two cross polarized modes with two opposite amounts of

OAM in the propagation direction. The two modes, degenerate in frequency, that previously

could be discerned by polarization, become now multi-distinguishable. Therefore our setup

is capable of generating a bipartite entangled state carrying OAM. After being produced this

state undergoes the characterization stage; its covariance matrix is measured via homodyne

detection and entanglement between the two modes is assessed.
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2.10 Helical squeezed single-modes generation

Our experimental setup is also capable of generating squeezed single modes carrying OAM.

As previously discussed, the modes ĉ, d̂, ê and f̂ are all squeezed single-modes obtained as

combinations of the two entangled thermal modes â and b̂ provided by the OPO.

In order to realize such modes and endow them with OAM, the following con�guration

of optical elements, shown in �g. 2.7, is implemented. As depicted in the �gure, the beams

encounter on their propagation a QWP that besides rotating (changing the direction of its fast

axis with respect to the polarization of the crossing beam) can also be temporally removed

from the setup. Then the beams outing from the OPO encounter a QP that provides them

with OAM. Eventually the last two waveplates, free to rotate, act suitably on the polarization

of the vortex modes, before sending the desired mode to the Homodyne Detector (HD).

Figure 2.7: Experimental setup for the generation of the modes â, b̂, ĉ, d̂, ê and f̂ provided
with OAM.

2.10.0.1 Mode ĉ and d̂ generation

The con�guration scheme for the generation of the modes ĉ and d̂ is depicted respectively in

�gs 2.8 and 2.9. This experimental con�guration scheme aims to both achieve the wanted

combination of the two initial modes and to endow these combinations with the intented

amount of OAM. Once this goal is accomplished these modes are sent to HD to charac-

terize the quantum state via the measure of the statistical distributions of their associated

quadrature operators.
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Figure 2.8: Experimental scheme for the generation of the mode ĉ.

Figure 2.9: Experimental scheme for the generation of the mode d̂ .

By using the notation early adopted, the two modes outing from the OPO source are

denoted by âH,0 and b̂V,0. It is convenient to rewrite such modes in the polarization circular

basis |R〉 and |L〉 as:

âH,0 =
1√
2

(âL,0 + âR,0) (2.63)

b̂V,0 =
1√
2i

(
b̂L,0 − b̂R,0

)
(2.64)

The �rst optical element they encounter is a QWP whose fast axis forms a 90° angle with the

polarization of the beams. It is represented in the polarization space by the following Jones

matrix:

MQWP (90◦) = e−i
π
4

 1 0

0 i

 (2.65)
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in this way carrying out the following transormation on their polarizations:|H〉 → e−i
π
4 |H〉

|V 〉 → ie−i
π
4 |V 〉

(2.66)

Therefore, after passing through the quarter wave plate, the two modes undergo the following

transformation:

âH,0 →
e−i

π
4

√
2

(âL,0 + âR,0) (2.67)

b̂V,0 →
e−i

π
4

√
2

(
b̂L,0 − b̂R,0

)
(2.68)

Subsequently the two modes encounter the QP that endows each component in the circular

basis with an OAM equal to ±~

e−i
π
4

√
2

(âR,1 + âL,−1) (2.69)

e−i
π
4

√
2

(
b̂R,1 − b̂L,−1

)
(2.70)

Eventually the last QWP oriented at 45°realizes the following transformation:

e−i
π
4

√
2

(âH,1 + iâV,−1) (2.71)

e−i
π
4

√
2

(
b̂H,1 − ib̂V,−1

)
(2.72)

At this stage if these two modes cross a HWP oriented at 0°, represented by the following

Jones matrix:

MWP (π, 0°) = i

 1 0

0 −1

 (2.73)

up to a phase factor this transformation act essentaly as an identity so the two modes become:

e−i
π
4

√
2

(iâH,1 + âV,−1) (2.74)
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e−i
π
4

√
2

(
ib̂H,1 − b̂V,−1

)
(2.75)

To obtain the above relations we have used the fact thatMWP (π, 0°) carries out the following

transformation on the vectors representing the horizontal and the vertical polarizations:

|H〉 → i |H〉

|V 〉 → −i |V 〉
(2.76)

The PBS placed after the HWP will leave to pass only the horizontally polarized components.

Therefore the mode that will reach the HD in such a case is the following combination:

ĉ =
e−i

π
4

√
2
i
(
âH,1 + b̂H,1

)
(2.77)

corresponding to the mode ĉ.

If the last HWP is instead oriented at 45° , then it carries out the transformations reported

in (2.57) and (2.58) so it inverts the polarizations giving:

e−i
π
4

√
2

(iâV,1 − âH,−1) (2.78)

e−i
π
4

√
2

(
ib̂V,1 + b̂H,−1

)
(2.79)

This time the PBS will leave to pass the combination:

d̂ = −e
−iπ

4

√
2

(
âH,−1 − b̂H,−1

)
(2.80)

corresponding to mode d̂.

2.10.0.2 Mode ê and f̂ generation

The scheme for the generation of the modes ê and f̂ is depicted respectively in �gs 2.10 and

2.11.
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Figure 2.10: Experimental scheme for the generation of the mode ê.

Figure 2.11: Experimental scheme for the generation of the mode f̂ .

In order to generate the combinations of the initial entangled modes corresponding to the

�elds ê and f̂ the �rst QWP is removed from the setup and the two modes directly ungergo

the action of the QP. By remembering the relations between the linear and the circular basis

(2.63),(2.64) we have:

âH,0 →
1√
2

(âR,1 + âL,−1) (2.81)

b̂V,0 →
1√
2i

(
b̂R,1 − b̂L,−1

)
(2.82)

When crossing the QWP the two modes become:

1√
2

(âH,1 + iâV,−1) (2.83)
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1√
2i

(
b̂H,1 − ib̂V,−1

)
(2.84)

From now on the evolution of the two modes depends on the orientation of the HWP. In

particular if it is oriented at 0° the polarizations remain the same up to an overall phase

factor:
1√
2

(iâH,1 + âV,−1) (2.85)

1√
2

(
b̂H,1 + ib̂V,−1

)
(2.86)

In such a case the PBS will leave to pass the following combination:

ê =
1√
2
i(âH,1 − ib̂H,1) (2.87)

corresponding to the ê mode endowed with an OAM equal to ~. Di�erently, in the con�gu-

ration shown in �g. 2.11, the two modes, after the HWP will be:

1√
2

(iâV,1 − âH,−1) (2.88)

− 1√
2
i
(
ib̂V,1 + b̂H,−1

)
(2.89)

so the mode that will reach the HD is:

f̂ = − 1√
2

(âH,−1 + ib̂H,−1) (2.90)

corresponding to the mode f̂ carrying −~ of OAM.



Chapter 3

OAM-entangled states characterization

Optical balanced homodyne is a widely consolidated technique used to reconstruct, via tomo-

graphic measurements, the quantum state of the electromagnetic �eld since it yields phase-

sensitive measurements allowing this way for the detection of squeezing. This kind of detector

has been used up to now only for Gaussian modes and never for more complex spatial struc-

tured modes. In the present chapter besides recalling its basic concept we will present an

extension of this technique to �elds carrying OAM. In particular we report on the develop-

ment of a homodyne detector suitably designed to be able to infer the quadrature statistics

of a travelling optical �eld provided of OAM. Such a powerful scheme meets the need, in

the quantum information context, of accessing the information carried by a single quantum

EM mode by employing photonic degrees of freedom with a higher Hilbert space dimension-

ality. In this more complex case the problem of the mode matching between the signal and

the Local Oscillator (LO) becomes more critical requiring a structured LO with the same

characteristics of the signal mode under scrutiny.

3.1 Optical Balanced Homodyne

The basic scheme of four-port HD of the quadrature components of single-mode �elds is

depicted in �g 3.1

81
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Figure 3.1: Basic scheme of four port homodyne detector.

It is based on the controlled inteference between a weak �eld and a strong coherent beam

called LO. These two beams are coherently mixed on a 50% re�ecting BS whose two output

ports are recoiled by two linear high e�ciency photodiodes (PD1 and PD2), temporally

integrated and eventually electronically subtracted.

Let âLO and âS be the bosonic mode operators associated respectively to the LO reference

beam and to the signal. These two �elds are transformed by the BS, represented by the

unitary matrix [6]:

M =

 1√
2
− 1√

2

1√
2

1√
2

 (3.1)

into the modes â1 and â2 given by:

(
â1

â2

)
= M

(
âS
âLO

)
⇐⇒

 â1 = 1√
2
(âS − âLO)

â2 = 1√
2
(âS + âLO)

(3.2)

Since the LO is an intense beam consituted by many photons we can treat it classically by

setting âLO −→ ALO = |ALO| eiϑ. Currents measured by the two photodiodes (PD1 and

PD2) are both proportional to the number of photons impinging on their active area, so we

have:

n̂1 = â†1â1 =
1

2
(â†S âS − â

†
SALO − A

∗
LOâs + |ALO|2) (3.3)

n̂2 = â†2â2 =
1

2
(â†S âS + â†SALO + A∗LOâs + |ALO|2) (3.4)
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The di�erence between the two photocurrents will be:

n̂12 = n̂2 − n̂1 = |ALO| (âSe−iϑ + â†Se
iϑ) =

√
2 |ALO| X̂S (ϑ) (3.5)

where X̂S (ϑ) = âse−iϑ+â†seiϑ√
2

is the generalized quadrature. This interferometric scheme allows

measurement of the input state quadrature as a function of the relative phase angle ϑ since

the di�erence in the two measured photocurrents is proportional, through the LO amplitude,

to the �eld quadrature selected by varying the LO phase. This phase shift can be introduced

by changing the relative optical path lenghts. Similarly for the variance we have:

4n12 ∝ |ALO|4X (ϑ) (3.6)

We also can see that in such a way classical noise associated to laser amplitude �uctuations

is rejected.

3.1.1 Mode Matching between the signal and the LO

HD e�ciency is in�uenced by several factors, among which, one is taken into account by

the mode matching coe�cient [34]. This coe�cient is related to the matching between the

spatial-temporal mode of the signal to be detected and the LO one. Besides behaving as

an ampli�er for the quadrature under study, the LO selects the only part of the signal that

interferes with the LO �eld. To give a quantitative measure of this concept, let us start from

the following expression of the quantized electric �eld:

Ê(x, t) =
∑
k

Ek(âkvk(x)e−iωkt + â†kv
∗
k(x)eiωkt)

= Ê(+)(x, t) + Ê(−)(x, t) (3.7)

where without loss of generality the �eld is linearly polarized. The functions vk(x) are the

spatial modes of the �eld and are particular solutions of the Helmholtz equation depending

on the speci�c problem. Due to the Hermiticity of the Laplace operator, they are orthogonal,
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so they satisfy the following condition:

∞̂

−∞

∞̂

−∞

∞̂

−∞

dx v∗k(x)vk′(x) = δkk′ (3.8)

moreover they full�ll the completeness relation:

∑
k

v∗k(x)vk(x
′) = δ(3)(x− x′) (3.9)

Photodiodes measure the intensity of the �eld, related to the energy density that is pro-

portional to |E(x, t)|2. However, at optical frequency, the terms
(
Ê(+)(x, t)

)2(
Ê(−)(x, t)

)2

oscillate too rapidly to be observed by real photodiodes that require a temporal integration.

So, the quantity actually measured in photodetection is the �ux of photons recoiled by the

active area of the PD rather than the energy density of the �eld. For this purpose it is

convenient to de�ne the �ux operator:

φ̂(x, t) =
∑
k

âkvk(x)e−iωkt (3.10)

that, once integrated over all the space, gives the total number of photons for unit time:

∞̂

−∞

∞̂

−∞

∞̂

−∞

dxdydz φ̂†(x, t)φ̂(x, t) =
∑
k

â†kâk (3.11)

We can assume that the photocurrent measured by the photodiodes is proportional to the

�ux of photons that reaches the detector surface D during the time interval [0, T ]

n̂ =

Tˆ
dt

0

¨
D

dxDdyD φ̂†(xD, t)φ̂(xD, t) (3.12)

Since for the whole �eld (including the spatial part) relations similar to (3.2) stand:

E
(+)
1 (x, t) =

1√
2

(E
(+)
S − E(+)

LO ) (3.13)
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E
(+)
2 (x, t) =

1√
2

(E
(+)
S + E

(+)
LO ) (3.14)

we can write also for the �uxes:

φ̂1(x, t) =
1√
2

(φ̂S − φ̂LO) (3.15)

φ̂2(x, t) =
1√
2

(φ̂S + φ̂LO) (3.16)

The photon number di�erence is:

n̂12 =

T̂

0

dt

¨
D

dxDdyD [φ̂†LOφ̂S + φ̂†Sφ̂LO] (3.17)

Supposing φLO ∝ αLOvLO(x, t) +h.c. with αLO = |αLO| eiϑ and with vLO(x, t) = vLO(x)e−iωt,

let us de�ne:

â ≡
T̂

0

dt

¨
D

dxDdyDφ̂S(xD, t)v
∗
LO(xD, t) (3.18)

Let us now suppose that the �ux φ̂S consists of two parts:

φ̂S = âsvS (x, t) + φ̂0 (3.19)

where the �rst addend is the signal one wishes to observe, while the other is a vacuum �eld

that takes into account other potential modes in φ̂S . Let us de�ne the quantity:

η
1/2
M ≡

T̂

0

dt

¨
D

dxDdyDvS(xD, t)v
∗
LO(xD, t) (3.20)

such that η1/2
M ≤ 1, as to be the mode matching coe�cient that takes into account the

superposition between the spatio-temporal part of the signal under scrutiny and the LO. Let
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us also de�ne the quantity:

(1− ηM) âM =

T̂

0

dt

¨
D

dxDdyDφ̂0(xD, t)v
∗
LO(xD, t) (3.21)

then:

â ≡
T̂

0

dt

¨
D

dxDdyD

[
âsvS (x, t) v∗LO(xD, t) + φ̂0(xD, t)v

∗
LO(xD, t)

]
= η

1/2
M âs + (1− ηM) âM (3.22)

So

n̂12 = |αLO|
√
ηM

(
e−iϑâS + eiϑâ†S

)
+ |αLO|

√
1− ηM

(
e−iϑaM + eiϑâ†M

)
(3.23)

In conclusion the mode mismatch can be described by a simple model in which the mode

matching coe�cient can be regarded as the trasmission coe�cient of a �ctitious beam splitter;

the transmitted part is detected while the re�ected one is lost. As we can observe, if the

perfect mode macthing conditions are achieved (ηM = 1) then homodyne detects exactly the

signal mode and:

n̂12 =
√

2 |αLO| X̂S (ϑ) (3.24)

4n̂12 = |αLO|24X̂S (ϑ) (3.25)

3.1.2 Homodyne e�ciency

Homodyne e�ciency depends not only on the mode matching between the signal and the

reference LO beam. Indeed, so far we have assumed the photodiodes to possess a perfect

quantum e�ciency ηPD = 1 such that all impinging photons are detected. However this

whished situation is far from being real and losses due to the real ηPD < 1 have to be taken
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into account [34].

Figure 3.2: Schematic representation in which the �nite e�ciency ηPD of the HD photodi-
odes is modeled with a BS of transmittivity equal to ηPD positioned before each of the two
photodiodes.

Let us suppose that the quantum e�ciencies of the two HD photodiodes coincide and let

us model this loss e�ect by �guring the presence of two BSs, preceding the photodiodes, and

possessing a trasmission coe�cient equal to the quantum e�ciency of the photodiodes ηPD

(see �g 3.2). If â
′
1 and â

′
2 are the modes outing from the two ports of the 50-50 homodyne

detector BS:

â
′′

1 =
√
ηPDâ

′

1 +
√

1− ηPDb̂1 (3.26)

â
′′

2 =
√
ηPDâ

′

2 +
√

1− ηPDb̂2 (3.27)

where b̂1 and b̂2 are the annihilation operators of vacuum that �ll the two unused ports of
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the two BSs. It can be shown that:

n̂21 = â
′′†
2 â

′′

2 − â
′′†
1 â

′′

1 (3.28)

= ηPD

(
â
′†
2 â
′

2 − â
′†
1 â
′

1

)
+
√
ηPD (1− ηPD)

(
â
′†
2 b̂2 + b̂†2â

′

2 − â
′†
1 b̂1 − b̂†1â

′

1

)
+ (1− ηPD)

(
b̂†2b̂2 − b̂†1b̂1

)
(3.29)

By supposing the LO to be very intense, we eventually get:

n̂21 =
√
ηPDα

∗
LO

(√
ηPDâS +

√
1− ηPDb̂

)
+ h.c. (3.30)

where b̂ = 1
2

(
b̂2 − b̂1

)
. So in conclusion losses due to the not perfect mode matching and to

quantum e�ciency of photodiodes can by combined by immagining a BS before the HD with

transittivity equal to η = ηPDηM that corresponds to the overall HD e�ciency.

3.1.3 Homodyne detector visibility

As seen before a crucial role in homodyne detection is played by the �mode matching� between

the signal and the reference coherent beam. HD is essentially an interferometeric device so

it is characterized by a visibility and a related contrast. These two quantities are a measure

of the degree of superposition between the two beams and consequently of the HD e�ciency.

Figure 3.3: Schematic representation of an interferometric device.
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By looking �g. 3.3, if r1 is the re�ectivity of BS1 we have:

E1 =
√

1− r2
1Ein E2 = r1Ein (3.31)

After passing through the phase shifter, if r2 is the re�ectivity of BS2 we get:

E
′

1 = −r2E1 +
√

1− r2
2E2e

iΦ (3.32)

E
′

2 =
√

1− r2
2E1 + r2E2e

iΦ (3.33)

By setting:

A = r2

√
1− r2

1 B = r1

√
1− r2

2

C =
√

(1− r2
1) (1− r2

2) D = r1r2

It is easy to show that:

E
′

1 =
(
−A+BeiΦ

)
Ein (3.34)

E
′

2 =
(
C +DeiΦ

)
Ein (3.35)

So the two intensities are proportional to:

I
′

1 (Φ) =
∣∣∣E ′1∣∣∣2 =

(
A2 +B2 + 2AB cosΦ

)
Iin (3.36)

I
′

2 (Φ) =
∣∣∣E ′2∣∣∣2 =

(
C2 +D2 + 2CD cosΦ

)
Iin (3.37)

Visibility is de�ned as:

V IS =
CNT

V ISperf
=
I1 + I2

2
√
I1I2

V ISperf (3.38)

being:

CNT =
I
′
max − I

′
min

I ′max + I
′
min

=
AB

A2 +B2
(3.39)
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the contrast, while:

V ISperf =
2
√
I1I2

I1 + I2

(3.40)

the perfect visibility. In case of perfect balancing of the interferometer branches V ISperf = 1

and consequently V IS = CNT .

3.1.3.1 Interference between Gaussian beams

Let us recall that the expression describing a Gaussian beam is given by:

E(x, y, z) = E00
w0

w(z)
e
−x

2+y2

w2(z) e
−i
(
kr2

2R(z)
+kz+ξ

)
(3.41)

We want to calculate the contrast, just de�ned, between two Gaussian beams having the

following expressions:

E1 (x, y, z) =

√
2

π
exp

[
− (x− x0)2 − y2 (3.42)

−ikz − i(x
2 + y2)

2R
+ iξ + iη

]
(3.43)

E2 (x, y, z) =

√
2

π
exp

[
−x2 − y2 (3.44)

−ikz − i(x
2 + y2)

2R
+ iξ

]
(3.45)

where η is an external phase shift and the expressions are renormalized with respect w (z).

Here we are supposing the beams to have the same linear polarization and to propagate along

the z axis. By recalling that the waist of the beam is given by:

w0 =

√
λz0

π
(3.46)

if we suppose that the two beams have the same confocal parameter b = 2z0 then they have

the same waist. The two wave vectors are parallel but not collinear since the centers of the

two Gaussian envelopes do not coincide (they are shifted by x0). Moreover since the waist

is located for both the beams in z = 0, the two beams have the same curvature radius. The
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situation is pictorially depicted in �g 3.4.

Figure 3.4: Pictorial representation of two non-concetric Gaussian baeams impinginig on a
screen.

The contrast is given by:

CNT =

´ ´
dx dy Ω (x, y)

2
(3.47)

where Ω (x, y) is the interference term in I = I1 + I2 + Ω:

Ω (x, y) = E∗1E2 + c.c (3.48)

and we have supposed: ¨
dx dy I1 =

¨
dx dy I2 = 1 (3.49)

Integration is carried out over all the space since the dimensions of the beam are supposed

to be smaller than the active area of photodiodes and so integrating over this area or over

all the space leads to the same result. By doing the explicit calculation we get:

CNT (x0) = e−
x20
2 cos [η] (3.50)

By setting η = 0 the behaviour of the contrast with varying the distance between the centers

of the two Gaussian envelopes is shown in the following �g. 3.5.
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Figure 3.5: CNT for two Gaussian beams vs the separation between the Gaussian centers x0.

As it is evident from the plot, the maximum CNT is achieved when the two beams are

concentric.

3.1.4 Homodyne for structured beams

Up to now we have considered the case of Gaussian beams. However the entangled beams we

produce carry OAM and their spatial structure is more complex than the Gaussian ones. In

ordinary HD, in which the signal is not spatially structured, the factors playing a leading role

in enhancing interference are essentially those related to the optical path, to the polarization

and to the the geometrical properties of the two beams. When introducing OAM d.o.f.,

a further e�ort is required in order to improve the mode matching and, in such a way, to

enhance the overall homodyne detector e�ciency.

In particular, it is important that, when impinging the homodyne beam splitter, both the

beams have the same spatial structure. Since these modes have a peculiar spatial structure,

related to the OAM amount they carry, it is important in order to ensure interference that

the two beams possess the same OAM value. However, as will be more clear in the following,

this request alone is not enough, since a central role is played by the OAM component along

the propagation axis.
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3.1.4.1 Interference between Laguerre-Gauss beams

Let us now perform the calculation of the contrast in the case of two Laguerre-Gauss modes

as an example of beams carrying OAM and having a peculiar spatial structure. We recall

that the expression describing the LG modes is the following:

E(r, θ, z) = Emp
w0

w(z)

(√
2r

w(z)

)|m|
L|m|p

(
2r2

w2(z)

)
e
− r2

w2(z)

e
−i
(
k r2

2R(z)
+kz+mθ−(2p+1+|m|)ξ

)
(3.51)

In particular we want to calculate the interference term, and consequently the contrast,

between two beams carrying the same amount of OAM ~ and having the same component

along the propagation direction:

E1(x, y, z, θ) =

√
2

π

(√
2

√
(x− x0)2 + y2

)
exp

[
− (x− x0)2 − y2 − ikz − ix

2 + y2

2R
− iθ + 2iξ + iδ

]
(3.52)

E2(x, y, z, θ) =

√
2

π

(√
2
√
x2 + y2

)
exp

[
−x2 − y2 − ikz − ix

2 + y2

2R
− iθ + 2iξ

]

where δ is an external phase shift and the beams are supposed to propagate along the z

direction with the same linear polarization. As in the previous case the confocal parameters

of the two beams coincide, the wave vectors are parallel and the waist is located in the same

position z = 0. The centers of the two Gaussian envelopes are separated by a distance x0

and the two expressions are renormalized with respect to w(z). For both the beams m = 1

and p = 0
(
L
|m|
0 (x) = 1

)
. This situation is pictorially depicted in �g 3.6
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Figure 3.6: Pictorial representation of two non-concentric LG beams impinging on a screen.

In this case the interference term turns to be:

Ω (x, y) = 4

(
2

π

)
exp

[
−2x2+2xx0−x20−2y2

]
√
x2 + y2

√
(x− x0)2 + y2 cos [δ] (3.53)

By setting δ = 0 we get the following behaviour shown in �gure 3.7

Figure 3.7: CNT for two LG beams vs the separation between the Gaussian centers x0.

As in the case of Gaussian beams the maximum contrast is reached when the centers of

the two Gaussian envelopes coincide. In �g 3.8 is displaced a plot in which the contrasts for

Gaussian and LG beams are compared.
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Figure 3.8: Comparison of the behaviours of CNT at varying the separation between the
center of the two beams for Gaussian and LG beams.

As it is possible to infer from the plot Gaussian beams are more sensitive to concentricity

with respect to vortex beams. It is also possible to show that when the two beams have

opposite (or more in general di�erent) amounts of OAM along the propagation direction

they do not interfere.

3.2 The Homodyne detector

The experimental scheme of the homodyne detector is depicted in �g 3.9.
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Figure 3.9: Homodyne detector experimental scheme

It consists of a 50% re�ecting BS (optimized to work in p polarization) to whom are sent

both the OPO output and the LO after being endowed with OAM. The polarization of the

ingoing beams are adjusted thanks to a PBS placed on the signal branch and a HWP on the

LO branch that permits polarization rotations. The BS is positioned on a support provided

of a rotatory stage with micrometric screws that allow to tailor the system alignement. BS

outputs are sent to a pair of high quantum e�ciency photodiodes (Epitaxx ETX300) PD1

and PD2 ηPD ' 0.97
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Dark currents 1.0− 5.0 nA
Responsivity (@1300nm) 0.80− 0.90 A/W

Parasite capacity 5.0− 8.0 pF
Active area 300 µm
Bandwidth 0.4 GHz

Saturation power 6 mW

Table 3.1: Photodiodes characteristics

Due to their small active area, two focusing lenses f1 and f2 (f = 50 mm) are placed in

front of each photodiode. Before the photodiode PD1 a movable mirror allows to divert the

beam to a CCD in order to monitorate its shape and to facilitate the measurement of both

HD visibility and contrast. The two photodiodes are internally ampli�ed and possess two

outputs. The AC outputs are connected to an hybrid power splitter/combiner (power s/c)

returning both the sum and the di�erence of the incoming signals. The di�erence between the

two photocurrents is ampli�ed by a low noise high gain ampli�er (Miteq AU1442 G = 34 dB,

noise) and is sent to a mixer connected to a signal generator that realizes the product between

the two signals. Lastly after being �ltered the mixer output is sent to the acquisition stage.

The two DC outputs of the photodiodes are used to check homodyne balancing.

3.3 Mode matching between the signal and the LO

As previously discussed, the achievement of a good mode matching is essential to enhance

the e�ciency in detection. A testbed for the goodness of mode matching is given by the

visibility of our interferometric setup. In order to experimentally determine the visibility,

the OPO cavity is locked to the TEM00 mode of an IR beam that travels all the way down

to the HD to interfere with the LO. Both the LO and the signal are endowed with the same

amount of OAM in the propagation direction for the reasons discussed above.

In particular the mode that is used in this procedure is the mode â outing from the OPO.

As discussed before this mode is produced by the OPO with a linear polarization and, thanks

to the setup described in section 2.1.8 it acquires along its propagation an amount of OAM

equal to ~. The IR laser output (@1064 nm) is tailored in order to interfere with the beam
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coming from the OPO. Their intensities are kept to be equal during this procedure (only

when HD is ready to use LO amplitude is increased). The matching between the confocal

parameters is achieved by making the LO beam to pass through a passive cavity (Mode

Cleaner, (MC)), with the same properties of the OPO one. This cavity is resonant with the

Gaussian TEM00 mode thanks to a PDH active control system identical to the OPO one. The

equality of the optical paths followed by the two beams after outing the cavities is ensured

by adjusting the optical path of the LO by means of an optical delay line, positioned at the

MC output. The relative phase of the LO with respect to the OPO is changed thanks to a

PZT, driven by a linear ramp, that changes the length of the optical delay line so changing

the phase in an interval of [0, 2π]. After outing from the MC cavity the beam is made to

acquire the same amount of OAM, along the propagation direction, thanks to the experimetal

scheme shown in �gure 3.10

Figure 3.10: Setup to endow LO beam with OAM equal to ~ in the propagation direction

The �rst QWP at 45◦ transforms the horizontal polarization of the LO into left circular

one, then the beam crosses the QP by aquiring OAM equal to ~ in the propagation direc-

tion and �ips its polarization that turns to be right. The following QWP, with the same

orientation, makes the beam linearly polarized again in the horizontal direction, eventually

the HWP oriented at 0◦ adds nothing but that an overall phase factor. As seen in previous

calculation the superposition between the two LG beams is maximum when they are coaxial

(when their singularities are made to coincide). This condition is achieved thanks to a beam

steering (HR @1064) that aligns the LO direction, monitored during the procedure thanks



CHAPTER 3. OAM-ENTANGLED STATES CHARACTERIZATION 99

Figure 3.11: Signal measured by an oscilloscope connected to the DC output of one of HD
photodiodes. The oscillatory behaviour is due to the interference between the seeded OPO
and the LO, both provided with OAM, achieved by varying their relative phase in time.

to a CCD (TM 745 Spiricon). A further HWP after the beam steering corrects potential

rotation due to the presence of the mirrors.

The phase shift between the LO and the OPO beams makes each of the beams outing from

the two HD beam splitter outputs to show an oscillatory behaviour. One of these two beams

is recoiled by one of the two HD photodiodes whose DC output is sent to an oscilloscopy. A

quantitative measurement of the contrast:

CNT =
Imax − Imin
Imax + Imin

(3.54)

is carried out so that mode matching quality is monitored by measuring deviations from the

value 1 of the contrast. Typical visibility:

V IS =
2
√
IsILO

IS + ILO
CNT (3.55)

obtained are V IS = 0.97± 0.02 .



Chapter 4

Data acquisition and processing

In this last chapter we report the main experimental results of this dissertation together

with the procedure for the acquisition of the data and their subsequent processing. The goal

of the experiment, whose building blocks have been illustrated in previous chapters, con-

sists in characterizing the quantum bipartite state we produce in order to establish whether

entanglement between the two subparts persists. Witnessing the presence of entanglement

is of huge importance to establish if the state can be exploited as a support for quantum

protocols. Indeed as previously pointed out, entanglement is a pure quantum feature and,

as such, it can easly be corrupted by decoherence due to the interaction with the external

environment. In order to assess the presence of quantum correlations, the knowledge of the

covariance matrix is essential, since in it, the whole information on the state is stored. Its

elements are measured via homodyne detection technique, by elaboration of the acquired

data. Since the generation stage produces a helical bipartite Gaussian state, its CM is a

4 × 4 matrix whose elements are the second moments of quadrature operators. As will be

clari�ed in the following section, it would be needed in principle a double HD scheme in order

to fully evaluate the CM. However a trick to avoid the second HD will be presented and its

experimental realization will be depicted.

In the �rst part of this chapter the technique to characterize bipartite states using a single

HD will be explained, then it will be presented the aquisition stage.

100
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Eventually a typical CM is presented and the information on the properties of this state

will be discussed.

4.1 Full characterization of a bipartite state using a single

HD

GSs have the priviledge of being fully characterized by the knowledge of their CM. The

elements of this matrix assume, the form of equation (1.152) so the whole CM for a bipartite

state is:

σ =


4X̂2

a 4X̂aŶa 4X̂aX̂b 4X̂aŶb

4ŶaX̂a 4Ŷ 2
a 4ŶaX̂b 4ŶaŶb

4X̂bXa 4X̂bŶa 4X̂2
b 4X̂bYb

4ŶbX̂a 4ŶbŶa 4ŶbX̂b 4Ŷ 2
b

 (4.1)

where the labels a and b indicates the two subsystems of the state. Let us consider for

instance the term σ13, whose expression is the following:

4X̂aX̂b =
1

2

〈{
X̂a, X̂b

}〉
−
〈
X̂a

〉〈
X̂b

〉
In this element of the covariance matrix, belonging to one of the two blocks concerning with

correlations between the two modes, the expectation value of the product of the two modes

appears. This means that during the acquisition stage an experimental scheme consisting of

two HDs simultaneously working would be needed. However it has been proposed a powerful

scheme [35], involving repeated measurements of single-mode quadratures that is capable of

circumvent this issue.

It is possible to introduce four additional modes, combination of the modes â and b̂, in

such a way to rewrite the matrix (4.1) in a more convenient way for pratical experimental
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uses. These four modes are the following combination of â and b̂:

ĉ =
â+ b̂√

2
d̂ =

â+ b̂√
2

ê =
â− ib̂√

2
f̂ =

â+ ib̂√
2

It is possible to show, with some algebra, that the matrix (4.1) can be rewritten as a sum-

mation of two matrices:

σ = V −M (4.2)

being,

V =
1

2



2
〈
X̂2
a

〉 〈
Ẑ2
a

〉
−
〈
T̂ 2
a

〉 〈
X̂2
c

〉
−
〈
X̂2
d

〉 〈
Ŷ 2
e

〉
−
〈
Ŷ 2
f

〉
〈
Ẑ2
a

〉
−
〈
T̂ 2
a

〉
2
〈
Ŷ 2
a

〉 〈
X̂2
f

〉
−
〈
X̂2
e

〉 〈
Ŷ 2
c

〉
−
〈
Ŷ 2
d

〉
〈
X̂2
c

〉
−
〈
X̂2
d

〉 〈
X̂2
f

〉
−
〈
X̂2
e

〉
2
〈
X̂2
b

〉 〈
Ẑ2
b

〉
−
〈
T̂ 2
b

〉
〈
Ŷ 2
e

〉
−
〈
Ŷ 2
f

〉 〈
Ŷ 2
c

〉
−
〈
Ŷ 2
d

〉 〈
Ẑ2
b

〉
−
〈
T̂ 2
b

〉
2
〈
Ŷ 2
b

〉


(4.3)

and,

M =



〈
X̂a

〉2 〈
X̂a

〉〈
Ŷa

〉 〈
X̂a

〉〈
X̂b

〉 〈
X̂a

〉〈
Ŷb

〉
〈
Ŷa

〉〈
X̂a

〉 〈
Ŷa

〉2 〈
Ŷa

〉〈
X̂b

〉 〈
Ŷa

〉〈
Ŷb

〉
〈
X̂a

〉〈
X̂b

〉 〈
X̂a

〉〈
X̂b

〉 〈
X̂b

〉2 〈
X̂b

〉〈
Ŷb

〉
〈
Ŷb

〉〈
X̂a

〉 〈
Ŷb

〉〈
Ŷa

〉 〈
Ŷb

〉〈
X̂b

〉 〈
Ŷb

〉2


(4.4)

Where, recalling the de�nition of generalized quadrature:

X̂k (ϑ) =
âke

iϑ + â†ke
−iϑ

√
2

(4.5)

the following notations have been employed:

X̂k ≡ X̂k (0) Ŷk ≡ X̂k

(π
2

)
Ẑk ≡ X̂k

(π
4

)
Ẑk ≡ X̂k

(π
4

)
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For simmetry reasons, this method involves the measurement of 14 di�erent quadratures

pertaining to six single-mode �elds in order to reconstruct the full CM and to extract from

it the needed information. However, it is possible to show that one of the modes is not

necessary so that �ve modes are su�cient to reconstruct the CM.

4.2 Experimental implementation and data acquisition

We now describe the procedure carried out to measure the CM of the bipartitie state applying

of the above proposed conceptual scheme.

Let us recall the main features of our experimental setup, by looking to �g 4.1.

Figure 4.1: Schematic representation of the overall experimental setup employed both for the
generation and the characterization, via HD of the bipartite OAM-entangled state.

As explained in previous sections, the laser provides two outputs @1064 nm and @532 nm,

the green beam is used as a pump for the OPO. After adjusting the alignment of the inter-

ferometer in order to achieve a good visibility the threshold power for the pump is evaluated

(minimum value for which the SPDC occurs). Typical threshold values are about 70 mW

and, in order to make the OPO to work below threshold, its power has been sat at about

the 70% of the measured threshold. Then the triply resonance condition for the OPO cavity
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is achieved by suitably tailoring the crystal temperature and the laser frequency [32]. Even-

tually the OPO cavity is locked on the Gaussian TEM00 mode thanks to the PDH control

system. The other IR laser output is used as LO. Its power is augmented in order to a have

a strong coherent beam. A fraction of the LO is used as OPO seed and it is injected into the

OPO cavity with a diagonal polarization in order to stimulate the production of parametric

down converted beams with orthogonal polarizations. The seed is then obscured during the

actual acquisition stage. After passing through the MC cavity, whose function as been al-

ready discussed, the LO encounters on its propagation direction the optical elements depicted

in �g 4.1. When the optimal working conditions have been accomplished, the OPO cavity

provides two collinear and orthogonally polarized modes that then undergo the sequence of

optical elements shown in �gure 4.1.

In order to evaluate the covariance matrix, aiming at applying the single HD scheme

described in previous section, modes â, b̂, ĉ, d̂ and f̂ are obtained by suitably choosing the

relative orientations of the waveplates on the OPO branch. This experimental con�guration

permits both to select the wanted mode to be sent to the detection stage and to endow these

modes with the desired amount of OAM. The way to select each of the modes and transform

it into an helical beam has been exaustively explained in sections 2.1.8 and 2.1.9. Here we

recall the con�guration corresponding to each mode schematically in table 4.1

OPO branch QWP1 QP QWP2 HWP
â mode 45◦ Y 45◦ 0◦

b̂ mode 45◦ Y 45◦ 45◦

ĉ mode 90◦ Y 45◦ 0◦

d̂ mode 90◦ Y 45◦ 45◦

ê mode N Y 45◦ 0◦

f̂ mode N Y 45◦ 45◦

Table 4.1: Recap of the con�guration scheme to obtain the combination of the modes outing
from the OPO with OAM.

â , ĉ and ê are provided with OAM equal to ~ while b̂, d̂ and f̂ show OAM equal to −~.

Then, these modes are sent one at a time to the HD by suitably changing the con�guration

of optical elements thanks to a remote LabView control routine.
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In order to detect the modes via HD, as previously discussed, it is essential in order to

have interference, that the two modes, LO and signal, carry the same amount of OAM along

the propagation direction.

In order to achieve this condition LO is tailored thanks to the sequence of waveplates on

its branch so to aquire the right amount of OAM depending on the mode that has been sent

to HD. In particular the wave plates on the LO branch switch between the con�gurations

|H〉 |1〉 and |H〉 |−1〉, shown in table 4.2, corresponding to the two di�erent components of

OAM in the propagation direction involved in the experiment.

LO branch QWP3 QP QWP4
â, ĉ, ê modes 45◦ Y 45◦

â, d̂, ê modes −45◦ Y −45◦

Table 4.2: Recap of the con�gurations of the vaweplates on the LO branch corresponding to
OAM ±~.

During the acquisition stage the LO phase is spanned over the interval [0, 2π]. Homodyne

traces, obscuring both the LO and the OPO branch, are collected in order to take into account

of the background noise. Subsequently a trace of the vacuum state obtained obscuring only

the OPO branch is acquired in order to �x the shot noise level. Subsequently instantaneous

measures of the quadrature corresponding to the mode sent to HD are acquired thanks to a

data acquisition board. For each mode the corresponding LO con�guration is chosen . In �g

4.2 picture a typical homodyne trace corresponding to the the single-mode �eld ĉ exhibiting

squeezing is shown.
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Figure 4.2: Homodyne trace of the mode ĉ exhibiting squeezing.

4.3 Data processing

After collecting the values of the quadratures for the six modes discussed above thanks to a
Mathematica c, routine data are processed in order to extract from them the quadratures
needed to reconstruct the CM according to the procedure discussed in section 4.1. A typical
CM experimentally obtained is the following:

σ =


0.61± 0.02 −0.00(3)± 0.02 0.29± 0.02 −0.00(08)± 0.02

−0.00(3)± 0.06 0.61± 0.02 −0.00(5)± 0.02 −0.23± 0.02

0.29± 0.02 −0.00(5)± 0.02 0.60± 0.02 −0.00(1)± 0.02

−0.00(08)± 0.02 −0.23± 0.05 −0.00(1)± 0.06 0.60± 0.02

 (4.6)

where the elements con�dent with 0 are reported with the highest signi�cant digit in paren-

thesis. In order to establish whether entanglement subsists the PHS and the Duan criteria

have been applied to the matrix. Let us recall that, according to the PHS (PPT) criterion a

bipartite state represented by a CM of the form (1.170) is separable if:

a2 + b2 + 2 |c1c2| − 4(ab− c2
1)(ab− c2

2) ≤ 1

4
(4.7)

since this inequality is violated by our state (the lhs results to be 0.51) the helical modes a

and b generated by the setup described above are OAM-entangled beams. The state results



CHAPTER 4. DATA ACQUISITION AND PROCESSING 107

to be non-separable also according to the Duan criterion for which a state is entangled if:.

√
(2n− 1) (1m− 1)− c1c2 < 0 (4.8)

indeed the lhs for the CM (4.6) is −0.31.

From experimental single-mode data, corresponding to the squeezed modes ĉ, d̂, ê, f̂ ,

have been extracted, thanks to the equation (1.191), the values of the trasmission coe�cients.

This coe�cent is a marker of the losses due to the e�ciency of the whole setup. By averaging

the values of these four modes we have obtained the value 0.53 corresponding to losses of

the 47%. This value is compatible with losses evaluated by considering the e�ects due to the

various building blocks of the experimental setup. One of these factors is associated to the

transmittivity of the cavity output mirror Tout that is chosen in order to ensure, toghether

with the crystal losses (κ), and other losses mechanisms (Tin), an output coupling parameter

ηout = Tout/ (Tin + κ) that @1064 nm results to be ∼ 0.73. Another factor that has to be

taken into account are the losses due to the QP that possess a transmission of about 0.85% ;

eventually, as previoulsy said, PDs e�ciency is (∼ 0.9) while the HD visibility (> 0.95) . All

these factors lead to an overall e�ciency of detection equal to 0.53, in agreement with the

experimental value.

4.4 Joint probability distribution

Given the CM of the state it is also possible to retrive the joint photon number distribution

p (n,m). This distribution is given by [9] the following expression:

p (n,m) =

ˆ

C2

d2λ1d
2λ2

π2
χ (λ1, λ2)χn (−λ1)χm (−λ2) (4.9)

with χ (λ1, λ2) being the characteristic function of the bipartite state de�ned as:

χ (λ1, λ2) = e−
1
2(ΛT σΛ) (4.10)
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where σ is the covariance matrix of the bipartite state while,

Λ =


a

b

c

d

 (4.11)

and λ1 = a+ ib, λ2 = c+ id are complex numbers. χn (λ1) has the following expression:

χn (λ1) = e−
1
2
|λ|2Ln

(
|λ|2
)

(4.12)

with Ln
(
|λ|2
)
being the Laguerre polynomials. In the picture 4.3 is shown the joint photon

number distribution for the experimental state represented by the CM (4.6)

Figure 4.3: Joint photon number probability distribution p (n,m) of the experimental entan-
gled state of modes a and b outing from the OPO and then provided with OAM.

In �g.4.4 are instead shown the single-mode distributions p (n) for the modes b and d .
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Figure 4.4: Single-mode distributions p (n) for the modes b and d.

The CM (4.6) is not the one corresponding to the state generated into the OPO crystal.

Indeed this state is not a pure state since it has interacted with the environment. The pure

state generated inside the crystal has the following covariance matrix:

σp =


0.79 0 0.61 0

0 0.79 0 −0.61

0.61 0 0.79 0

0 −0.61 0 0.79

 (4.13)

This matrix can be retrived thanks to equation (1.191) and by calculating the purity it is

easy to see that it is a pure state, indeed:

µ =
1

4(detσp)
= 1 (4.14)

When taking into account of losses the distributions shown above turn to be the ones

depicted in �g. 4.5.
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Figure 4.5: Joint photon number probability distribution p (n,m) of the pure entangled state
of modes a and b.

The distribution of the mode b̂ is typical of a thermal state, while for the mode d̂ the

probability of having a two-photon state is greater than the single-photon state as expected.

For what concerns the joint probability it is possible to see that there are only states in

which the numbers of photons n and m are equal. The pure state that is the one generated

inside the crystal before any transmission takes place, is a twin beam entangled state. The

population of levels with two di�erent numbers of photons shown in the plot of �g 4.3 is

probably due to the interaction with the environment.

In order to obtain these plots the CM corresponding to the pure state at the OPO output

has been retrived from the experimental one (4.6) by means of equation (1.191).

4.5 The Fidelity Criterion

A further evidence of the presence of entanglement between the modes â and b̂ can be provided

by applying the �delity criterion introduced in subsection 1.4.6. Let us recall that according

to this criterion when mixing two squeezed not-correlated states through a bilinear exchange

Hamiltonian, the resultant state will be entangled if and only if the �delity between the two

input states is less than the threshold value of equation (1.188). In our case the modes ĉ and

d̂ full�ll the criterion hypotesis since they are uncorrelated modes exhibiting �uctuations on

the quadratures under the shot noise level. From data corresponding to single modes, CMs
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relative to these two squeezed modes have been reconstructed,

σc =

 0.89 0

0 0.38

 σd =

 0.32 0

0 0.83


By following expression (1.187) evaluation of �delity leads to the value Fidcd = 0.87. The

corresponding threshold value for τ = 0.5 in expression (1.188) leads to the valueFidcd(Th) =

0.97. So the bipartite state that is obtained by mixing the modes ĉ and d̂ in a 50-50 BS

(typical example of a process described by a bilinear exchange Hamiltonian) is, according to

the theorem, an entangled state. By remembering the de�nition of these two modes in terms

of the modes provided by OPO source it is easy to convince themselves that the state provided

by this bilinear exchange Hamiltonian is nothing but that the bipartite state constituted by

the two modes â and b̂ (see �g. 4.6). Indeed we have:

â =
ĉ+ d̂√

2
b̂ =

ĉ− d̂√
2

Figure 4.6: Mixing the modes ĉ and d̂ into a 50-50 BS gives back the modes â and b̂

Therefore this is a further criterion according to which the OAM- entangled state provided

by our setup shows non-classical correlations.



Conclusions

This dissertation concernes the designing and the experimental realization of a setup capable

of generating entanglement between CV states of the radiation �eld carrying orbital angular

momentum. The setup has been drawn up with the dual purpose to provide the entangled

state, produced by the parametric down conversion source, with OAM but also to make

possible its detection via the single homodyne detection scheme, directly acting in OAM

space.

The characterization stage allows to assess the presence of entanglement between the

two modes. A homodyne detector directly working in OAM space has been conceived by

extending the ordinary homodyne detection technique to structured beams. A homodyne

detector capable of inferring the quadrature statistics of vortex traveling modes must be

able to recon�gure the local oscillator spatial-temporal structure in order to maximize its

projection onto the state under detection. In other words the local oscillator has to span

part of OAM Hilbert space in which the states to be detected live.

The setup has been described by stressing the strategies adopted to optimize the detec-

tion. The matrix measured and reported in the thesis is a typical CM we have. Both the

entanglement criteria employed have con�rmed that the state we produce is entangled so

being a potential resource for achieving quantum communication and information tasks. An

estimation of losses have turn to be compatible with the expected value. The quantumness

of the state is not corrupted by the propagation and the interaction with the environment

whose only e�ect is that of modifying the photon distribution probabilities both in the bipar-

tite entangled state and in the single mode squeezed state. In the reported joint probability

112
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distribution it is possible to notice the population of levels such as |0, 1〉 and |1, 0〉. The pop-

ulation ot these levels is probably due to the interaction of the state with the environment

that causes a coupling of the state with the background photons.

Eventually the �delity criterion has been used in order to obtain a further evidence of

the presence of entanglement between the modes â and b̂. Non classical correlations have

been deduced by comparing the values of the experimental �delities between modes ĉ and d̂

and the threshold value that �xes an upper limit in order to assess the arising of correlations

between the modes resulting from a bilinear interaction between them.

The scheme that has been proposed not only makes possible to extend homodyne tech-

nique to structured beams but also sets the stage for arbitrary dimension multipartite en-

tanglement. It is possibile in principle to modify this setup in order to provide multipartite

entanglement among helilcal modes also opening the possibility to extend the dimensionality

of the OAM Hilbert space. De�nitely the experiment that has been carried on can be bene-

�cial for the whole �eld of continuous variable quantum information that uses OAM degree

of freedom to encode information both for what concernes the generation and the detection

of OAM carrying states.
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