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Abbreviations: 

Earthquake Early Warning (EEW); Lead Time (LT); Filter Picker (FP); Characteristic Function (CF); 
P-wave Time Window (PTW); Peak Displacement (Pd); Peak Velocity (Pv); Peak acceleration (Pa); 
Peak Ground Velocity (PGV); Ground Motion Prediction Equations (GMPEs). 

 

Glossary 
 

Earthquake Early Warning System : Real-time, modern information systems that are able to provide 

rapid notification of the potential damaging effects of an impending earthquake, through the rapid 

telemetry and processing of data. 

Earthquake location: An earthquake location specifies the spatial position and time of occurrence for 

an earthquake. The location may refer to the earthquake hypocenter and corresponding origin time, a 

mean or centroid of some spatial or temporal characteristic of the earthquake, or another property of the 

earthquake that can be spatially and temporally localized. 

Earthquake magnitude: The magnitude is a parameter used by seismologists to quantify the 

earthquake size. The Richter magnitude scale, or more correctly local magnitude ML scale, assigns a 

single number to quantify the amount of seismic energy released by an earthquake. It is a base-10 

logarithmic scale obtained by calculating the logarithm of the combined horizontal amplitude of the 

largest displacement from zero on a seismometer output. Measurements have no limits and can be 

either positive or negative. Introduced by the Japanese seismologist Aki in 1962, the seismic moment is 

the present-day physical parameter used to characterize the earthquake strength. It represents the scalar 

moment of one the couples of forces producing the dislocation at an earthquake fault and it is measured 

from the asymptotic DC level on displacement Fourier spectra of recorded seismic signals. 

Lead-time: The time available from the moment of the alert is issued to the arrival of the strongest 

shaking at each site. The lead-time is the time available to start emergency actions after the warning 
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declaration and can be a matter of few seconds or tens of seconds, depending on the source-to-receiver 

distance.  Due to the increasing travel-time difference between S- and P-waves, the greater the distance 

between the target and the source region, the longer the lead-time. In a regional Early Warning System 

the lead-time is the time available from the first P-wave detection at the network and the S-wave arrival 

at the target site. In an on-site system, the lead-time is given by the arrival time difference between P 

and S-waves. Generally, the lead time for a regional system is greater than that of an on-site 

configuration. 

Seismic Data-Logger: It is a core element of a digital seismic station, whose aim is to record the 

analogue signals from seismic sensors and convert them in a digital form with an assigned sampling 

frequency. Ground motion signal acquired by seismic sensors are pre-amplified and anti-aliasing 

filtered in a data-logger before they are digitalized through an AD (analog-to-digital) converter. The 

main technical features of a modern data-logger are the number of available channels, the allowed 

sampling frequencies, the dynamic range, the digitizer clock type, the storage capacity (PCMCIA, 

internal flash and/or hard disk, USB, ...) , network interfaces (Ethernet, wireless LAN, or point-to-

point) and power consumption. 

Seismic sensors: The instruments which are used to record the ground vibration produced by natural 

and artificial sources, are generally denoted as seismometers. Seismometer measures the relative 

motion between the frame and the suspended mass. Early seismometers used optics, or motion-

amplifying mechanical linkages. The motion was recorded as scratches on smoked glass, or exposures 

of light beams on photographic paper. In modern instruments the proof mass is held motionless by an 

electronic negative feedback loop that drives a coil. The distance moved, speed and acceleration of the 

mass are directly measured. Most of modern seismometers are broad band, working on a wide range of 

frequencies (0.01-100 Hz). Another type of seismometer is a digital strong-motion seismometer, or 
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accelerometer, since it measures soil acceleration. Due to its relatively high dynamic range, the 

accelerometers can record unsaturated strong amplitude signals at close distances from a large 

earthquakes. This data is essential to understand how an earthquake affects human structures. 

Blind Zone: The area that cannot benefit from the warning provided by the Early Warning Systems, 

since the alert for the impending earthquake is given after the arrival of the damaging S-waves. As soon 

an earthquake is detected by an Early Warning System, few seconds of P-wave need to be analyzed, in 

order to compute the expected magnitude or the expected ground motion at the target and to decide 

whether to issue the warning or not. While the P-wave signals are being analyzed, the S-wave travel 

and may reach the closest target sites, before the warning is issued. The area in which the alert is 

provided after the arrival of the S-waves is called blind zone. The blind zone might be generally 

influenced by the source depth and wave velocity, as weel as by geometry and density of the network.   
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Introduction 

At the sites of high seismic risk, earthquake hazards are a serious threat to the lives and property in 

urban areas. For the real-time seismic hazard mitigation, a useful approach is the development of 

Earthquake Early Warning Systems (EEWS) which are automatic, real-time information systems able 

to detect an ongoing earthquake and broad-casting a warning in a target area, before the arrival of the 

most destructive waves (Nakamura, 1984, 1988; Heaton, 1985; Teng et al., 1997; Wu et al., 1998; Wu 

and Teng, 2002; Allen and Kanamori, 2003).  

Many regions in the world are affected by natural hazards such as earthquakes, tsunamis, volcanoes, 

floods, storms, landslides, etc., each having devastating socio-economic impacts. Among these natural 

events, earthquakes, have been the most recurrent and damaging hazards during the last few decades, 

resulting in large numbers of casualties, and massive economical losses (Munich Re, 2006).   

The problem of earthquake risk mitigation is faced using different approaches, depending upon the 

time scale being considered. Whilst over time scales of decades it is of utmost importance that land use 

regulations and building/infrastructure codes are continuously updated and improved, for time scales of 

a few years, the main risk mitigation actions are at the level of information and education in order to 

increase the individuals and social community awareness about potential damaging hazards. Over 

shorter time scales (months to hours), it would naturally be of great benefit to society as a whole if the 

capability to accurately predict the time, location and size of a potentially catastrophic natural event 

were available. However, due to the great complexity of the natural processes of concern, such 

predictions are currently not possible.   

On the other hand, on very short time scales (seconds to minutes), new strategies for earthquake risk 

mitigation are being conceived and are under development worldwide, based on real-time information 
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about natural events that is provided by advanced monitoring infrastructures, denoted as “early warning 

systems”.    

Preliminary concept of EEW 

The origin of the term “early warning” probably goes back to the first decades of the last century. 

However, the first practical use of an “early warning” strategy was military and it was developed 

during the “cold war” years as a countermeasure to the potential threat from ballistic intercontinental 

missiles. The objective of these systems was to give an alert to target areas as soon as a missile was 

detected by the radar system or a launch was detected by the satellite system. In this context, the term 

“lead time” was defined as the time elapsing from the detection of the missile to the estimated impact 

on the target.   

In the last decades the use of the term “early warning” greatly expanded. It is used with small, but 

significant, variations in several types of risks, from epidemiological, to economical, social, and of 

course all the types of natural and environmental risks.   In fact in these contexts, including some 

natural risks such as hydro-geological and volcanic, the warning is not given at the onset of the 

catastrophic phenomenon, but after the occurrence of some precursory phenomena which can trigger a 

catastrophic event (for instance intensive rainfall for hydrological risk, earthquakes and/or ground 

deformation for volcanic risk). The main consequence of this difference is the increase of probability of 

issuing false alarms.  

The case of earthquake early warning is similar to the missile early warning. The alert is given after an 

earthquake is detected by a network of seismometers. An earthquake early warning is based on the fact 

that most of the radiated energy is contained in the slower travelling phases (S- and surface waves 

travelling at about 3.5 km/s or less) which arrive at any location with a delay with respect to small 
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amplitude higher velocity phases (P-waves, travelling at about 6-7 km/s) or to EM transmitted signals 

giving the warning. 

EEWS approaches  
 

There are two primary types of EEWS. A “regional” (or network-based) EEWS is based on a dense 

sensor network covering a portion of, or the entirety of an area that is threatened by earthquakes. In this 

configuration, the relevant source parameters, e.g. event location and magnitude, are estimated from the 

early portion of recorded signals (initial P-waves) and are used to predict, with uncertainties, 

 

FIGURE 2: EEWS approaches: The figure shows a schematic configuration of regional and on-site EEWS.  

the ground motion intensity expected at a distant site where a target structure of interest is located. 

Alternatively, a “site-specific” (or on-site) EEWS consists of a single sensor or an array of sensors 

deployed at (or in the proximity of) the target structure that is to be alerted, and whose measurements 
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of amplitude and predominant period of the initial P-wave motion are used to predict the ensuing peak 

ground motion (mainly related to the arrival of S and surface waves) at the same site.  

A significant difference among the two configurations concerns the lead-time, i.e. the time available for 

the issuance of the warning before the arrival of strong ground shaking at the target sites. The 

maximum theoretical lead-time for regional EEWS is often defined as the time difference between the 

S arrival at the target and the first P arrival at the seismic network. However, an EEW system typically  

 

FIGURE 3: EEWS lead-times: The figure shows the Lead-times for two different EEWS approaches.  

Requires a few seconds to detect the event, evaluate its severity, and decide whether to issue the alert, 

so that the effective lead-time is always smaller. It is clear that, for such systems, the lead-time 

increases with the distance of the target and with the rapidity of the detection. If the target site is close 

to the epicentral area, the regional approach may not be viable, since the lead-time may be zero, or can 

be too small for any application. For regional EEWS the extent of the “blind zone”, e.g. the area within 

which destructive Swaves may arrive before a warning can be issued, depends on the earthquake depth, 

network coverage of the source, and the speed of the telemetry and processing system. Its radius is 

typically 30km for shallow crustal earthquakes and a relatively dense network (station spacing 20-30 
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km). The onsite warning method uses the early part of the P-wave signal to predict the ensuing peak 

ground motion (mainly S and surface waves) at the same site. In this case, the theoretical lead-time can 

be defined as the time interval between the P and the S arrival at the target, though, again, some 

seconds for detection and computation must be taken into account. Similar to the case for the regional 

approach, the lead-time for the onsite methodology increases with the epicentral distance due to the 

growing travel-time difference between the slower S-phase and the faster P-phase. It is theoretically 

possible that the onsite EEWS can provide a useful lead-time where a regional EEW system cannot, 

due to a significantly smaller blind zone. However, the cost is the higher false alarm rates. Still, when a 

regional strategy is possible, it generally provides a larger lead-time [Satriano et al., 2010]. 

 

Technology improving and EEWS worldwide 
 

The latest technological innovations in seismic sensors, digitizers, communication systems, computers 

and seismological methods has greatly enhanced the capability of the seismic network. 
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FIGURE 2: EEWS worldwide: The figure shows the development of EEWS in the world.  

 

High-capacity digital communication systems, both land lines from the local telephone service 

providers and spread spectrum radios, that are capable of sending large amounts of data rapidly and 

reliably are now available. 

The modern accelerographs and 24-bit digital data loggers can record motion ranging from the very 

weak, less than 10−9 g, to very strong, for instance 2-4 g (where g is the acceleration due to gravity at 

the Earth’s surface). This allows having reliable waveforms of both micro seismicity and events that 

cause a strong soil shake, which makes it particularly suitable for use in preventive alert systems. 

Modern computers with multiple central processing units provide enough capability for processing data 

for real-time seismic systems. Overall, the introduction of modern sensors, digital data loggers, 

communication systems and computers holds promise for building rapid and reliable systems for real-
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time monitoring of the distribution of strong ground motion, the essential for emergency operations and 

early warning systems. 

Active warning systems that provide alerts to one or more users have been documented in different 

countries.  Mexico and Japan stand apart as having systems with warnings provided to the general 

public via multiple communication routes. Taiwan, Turkey, Romania and California also have warning 

systems that provide information to one or more users.  

In Switzerland , the Virtual Seismology (VS) system (Cua, 2005; Cua and Heaton, 2007; Cua et al., 

2009) is undergoing real-time testing. The system uses a Bayesian approach. VS predicts the source 

location and the earthquake’s magnitude using prior information inferred by the area seismicity history. 

VS is among the 3 EEW algorithms integrated in the CISN (California Integrated Seismic Network) 

ShakeAlert system. In Addition, the ShakeAlert system uses the ElarmS EEW methodology that is 

testing on the Californian network (Allen, Brown, Hellweg et al. 2009). Using the arrival time of the P-

wave and the frequency content measured at several stations, ElarmS estimates the location and the 

magnitude of the earthquake. Last, the third system is an on-site algorithm. This is a single-sensory 

approach to EEW (Kanamori, 2005) that will be discussed in the following section. 

In Mexico, the operational network-based warning system has been developed after the M 8.1 

earthquake on 19 September 1985. This EEWS is based on two components: the SAS system for 

Mexico City and Guerrero and the SASO system for Oaxaca (Espinosa-Aranda et al. 1995). When two 

or more stations detect a dangerous earthquake, the system sends a warning to the public; when two or 

more detect a moderate earthquake, a “preventive” warning is issued. Espinosa-Aranda & Rodriguez 

(2003) describes the details of this system and its performance. 

In Japan, the Railways began using systems of alert notification in the 1960s in order to shut off power 

to the Shinkansen bullet trains. The grandfather of onsite EEWS, UrEDAS (Nakamura 1988), started 
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operation along the Shinkansen lines in 1992 and was expanded across the system following the 1995 

Kobe earthquake. Also, the Kobe earthquake event motivated the installation of a nationwide seismic 

networks with constant station density across the country. Following the installation of these networks, 

JMA (Japan Meteorological Agency) began testing EEW methodologies in February 2004. Now the 

public warnings from JMA are communicated to the people via various means (radio, tv, smartphone  

etc…). Engineering and construction companies are also using the warning systems both to provide 

enhanced building performance during earthquakes and to protect construction workers. 

In Taiwan, after the Hualien’s earthquake M 7.8 (1986), an early warning strategy was developed. The 

first EEW system in Taiwan started operation in 2001 and used ~100 accelerometers located across the 

island and a Virtual Sub-Net (VSN) algorithm to detect and locate earthquakes and estimate 

magnitudes. In order to reduce the size of the blind zone a second system that uses an on-site approach 

is now being tested. The public does not receive the warning, because no public education campaign 

has been possible but the warnings have been issued in an experimental mode to railway and rapid 

transit companies, disaster prevention agencies, and a hospital (Hsiao et al. 2009). 

In Bucharest, the Horia Hulubei National Institute of Physics and Nuclear Engineering receives the 

warning notification by an EEWS. Where it is used to move in a safe position the nuclear source 

(Ionescu et al. 2007).   

In Italy, the most important seismic risk areas are the Southern Apennines region. Here, the latest 

strong earthquake (Mw 6.9 1980), caused extensive damage and 3000 casualties. In the 2005, the 

development of a local seismic network in the Campania-Lucania region, called ISNet (Irpinia Seismic 

Network) ( Satriano et al., 2009), has been started. The goals of the network are: a)  high-resolution 

studies of the seismogenic faults using the high-quality local data b) testing the EEWS to protect the 

strategically relevant infrastructures in the region as schools, factories  railways etc. The early warning 
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algorithms have been embedded into an EEW platform called PRESTo (PRobabilistic and Evolutionary 

early warning SysTem) (Zollo et al. 2009). PRESTo is a software platform for regional EEW that is in 

testing phase on the ISNet network  data-stream.  

Motivations and proposal 
 

The main topic of this analysis is the development and testing of possible strategies to seismic risk 

mitigation through the declaration of alert massage, ongoing of earthquake, before that the strong 

sacking occur. With this aim, a single and multi-stations approach are investigated performing 

statistical test to proof the rapidity and reliability of alert.   

The first step of this study is explained in the chapter 1, where an on-site EEWS approach, called 

SAVE system, is implemented and tested. The system is a basic on-site single-station approach able to 

quickly characterize the earthquake in term of local intensity, magnitude and distance classification. 

The estimates provided by the system are affected by rather large uncertainties but the methodology is 

rapid, so to allow for an effective activation of automatic procedures for risk mitigation, also at the 

target sites very close to the source. The low computational cost of this algorithm makes it suitable for 

embedded solutions in a standalone seismic station, and a prototype was developed and described in the 

final chapter. In chapter 2, a refined and more accurate on-site system is proposed. Unlike the SAVE 

methodology, this P-wave based approach is aimed at providing a reliable overcoming prediction of the 

critical intensity level at recording site. The use of advanced data processing techniques, jointed with a 

multi-parameter approach, provides a more reliable prediction of maximum local intensity expected at 

site. This approach is useful for the rapid and strictly constrained local intensity prediction.  

Chapter 3 finally describes an integrated methodology aimed to interpolate the information obtained 

from the individual stations and map the potential damage zone (PDZ) in real time. Further details on 
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this methodology, called Quake-up, are discussed in the same Chapter. In chapter 4, technical details 

about the project development of seismic station, called MOMA, and improvement of the spectral 

response of on-board geophone were provided.  
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Chapter 1: An on-site early warning Pd-𝝉𝝉𝝉𝝉 approach for 

Italy 

 

1.1   Introduction 

A recent feasibility study for a nationwide EEWS in Italy has been developed by Picozzi et al., [2015]. 

The Italian strong motion network (RAN), owned and managed by the Italian Department of Civil 

Protection (DPC) [Gorini et al., 2010], and the EEW software platform PRESTo have been considered, 

showing that, despite the high RAN’s station density, a regional EEW approach for Italy may not 

provide timely warnings within a distance of about 25 km to 30 km from the epicenters. This 

observation, due to the closeness in Italy of seismogenetic faults and populated cities, was the strong 

motivations to conceive, develop and propose an on-site approach to EEW. However, it is worth noting 

that many other seismic prone countries share a distribution of faults and cities similar to Italy.  

An on-site, P-wave, based EWS (denoted as SAVE, Onsite Alert Level) was validated and tested. It has 

been conceived to operate either with a single station (i.e., a single sensor located at the target site) or 

with a set of co-located seismic nodes within a small area round the target to protect.  

SAVE processes the vertical component of both accelerometers and (broad-band) velocimeters. Based 

on the real-time measurement of the initial Peak Displacement (Pd) [Wu et al., 2006; Zollo et al., 2006] 

and the average period (τc) [Kanamori, 2005] over time windows of 1, 2 and 3 seconds after the P-

phase arrival, SAVE predicts the expected ground shaking at the recording site, issues a local alert level 

and a qualitative assessment about the earthquake magnitude and the source to-site distance (Figure 1). 

As soon as a detected signal exceeds some user-configurable thresholds of the output parameters (e.g. 

predicted intensity IV or above), SAVE delivers a warning message both via internet (via UDP) and a 
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visual display, while providing a readable summary of the outputs of the system, which is also sent to 

remote users by mail. 

During the follow chapter, first introduce the software platform SAVE and describe its methodology. 

Then, we evaluate the performance of the system, by applying it retrospectively to a database of 

earthquakes that have occurred during the last 10 years in Italy and have been recorded by the RAN 

network (made freely available by the ITalian ACcelerometric Archive, ITACA 2.0, 

http://itaca.mi.ingv.it/ItacaNet;) [Luzi et al., 2008; Pacor et al., 2011]. 

1.2   Methodology 

The on-site system SAVE processes the vertical ground motion component from one or more co-

located sensors at a recording site. Both acceleration and (broad-band) velocity probes are supported. 

The waveforms can be streamed in real-time from the data loggers, or played-back from past events in 

off-line mode. In the real-time mode, SAVE supports the SeedLink protocol for data streaming, which  

FIGURE 1.1: SAVE ALGORITHM. The figure shows the block diagram of SAVE algorithm.  
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has been chosen because it is commonly implemented in data-loggers or available through the 

installation of the SeisComP server for data collection [SeisComP, 2016].  

In the off-line, simulation mode, each sensor component is read from a file in SAC format [P. Goldstein 

et al. 2003]. In off-line mode, previously recorded data (i.e., playbacks) are analyzed in 1-second 

consecutive packets, to simulate the actual SeedLink streams. Random transmission delays and data 

gaps can be configured to simulate the cases where the data-logger and SAVE are connected by a 

telecommunication network. This simulation mode is useful for batch testing and for the performance 

evaluation from a catalog of pre-recorded events, and it has been used to provide the statistics of the 

system output. 

The preliminary data processing consists of: 1/ real-time mean value and linear trend removal, 2/ 

automatic picking of the P-phase, and 3/ a quality control based on the Signal-to-Noise Ratio (SNR). 

The P-wave picking algorithm implemented in SAVE is FilterPicker [Lomax et al., 2012], which is 

optimized for earthquake early warning, as it already operates on data packets of variable lengths and it 

can declare a pick (P-wave arrival time measure) within few samples from the trigger. Five 

configuration parameters control the long and short time windows on which a characteristic function 

(CF) is evaluated. Among the configuration parameters, the most relevant are the thresholds for CF 

picking declaration and the minimum time window after a trigger where the CF must exceed these 

thresholds, which allows to ignore spikes and glitches of short duration (see Lomax et al., [2012] for 

further details). When a single sensor is used, indeed, the risk for a wrong P-wave detection due to 

spurious, transient signals (e.g. from anthropic sources) is relatively high. Therefore, in order to avoid 

the declaration of too many false alarms, the automatic picking algorithm can be configured to be less 

sensible to spurious transient signals and different criteria to filter and rule-out low quality data have 

been implemented. The proper setting of FilterPicker parameters is extremely relevant for the onsite 

early-warning system in order to avoid the issuance of false alarms. The selection of the picker 
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parameters mainly depends on the noise level at the site, but also on the magnitude and distance ranges 

of the expected events, which determine the minimum ground motion level to be detected for the 

warning declaration. 

 

FIGURE 1.2: DATA PROCESSING. Panel (a) shows an example of horizontal component of the ground motion velocity. The 

grey circle represents the PGV (Peak ground velocity) measurement. Panel (b) shows the processing of the vertical-

component of the ground displacement. From left to right, dashed lines represent the P-wave arrival time and 1 2 and 3 

seconds after the P-wave picking, while grey circles show the Pd measurements, at 1, 2 and 3 seconds, respectively.  Panel 

(c) shows the time evolution of  𝜏𝜏𝑐𝑐 [1.1] and gray circles represent the three measurement after 1,2 and 3 seconds form 

the P-wave arrival time.  

 

In case of event detection, three consecutive time window lengths are selected for the analysis: 1, 2 and 

3 seconds after the first P-wave arrival (Figure 1.2). The data processing starts with a quality control of 

the recorded waveforms, which is based on the SNR and on the computation of the 𝑃𝑃𝑑𝑑/𝑃𝑃𝑣𝑣 ratio in a pre-

determined time window. 𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑣𝑣 are the peak displacement and velocity in the selected P-wave time 
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window, respectively. In particular, the quantity 𝑆𝑆𝑆𝑆𝑆𝑆 is computed as 𝑆𝑆𝑆𝑆𝑆𝑆 = 20 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑃𝑃𝑑𝑑/𝑃𝑃𝑑𝑑𝑁𝑁), 

where 𝑃𝑃𝑑𝑑 is measured on the available signal in the selected time window and 𝑃𝑃𝑑𝑑𝑁𝑁 is the maximum 

displacement of the pre-event noise, over the same time window. As for the 𝑃𝑃𝑑𝑑/𝑃𝑃𝑣𝑣 ratio, both peak 

amplitude parameters are measured in the same time window, using the displacement and velocity 

waveforms, respectively. A predetermined threshold value on their ratio is used to reject data possibly 

contaminated by noise. In fact, accelerometer waveforms are usually integrated once and twice to 

obtain displacement time series. The trace integration may lead to unstable results and low-frequency 

drifts [Boore et al., 2002], which are generally corrected in real-time through the application of a 

proper high-pass filtering. If velocity and displacement waveforms are both correctly retrieved, the 

corresponding peak amplitude parameters (𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑣𝑣) follow a similar decay law with magnitude and 

distance, so that their ratio is expected to vary in a predetermined range. With this in mind, the real-

time measurement of anomalous 𝑃𝑃𝑑𝑑/𝑃𝑃𝑣𝑣 values can be symptomatic of a noisy data processing, with 

consequent wrong measurement of the initial parameters. Depending on the 𝑆𝑆𝑆𝑆𝑆𝑆 and on the 𝑃𝑃𝑑𝑑/𝑃𝑃𝑣𝑣 

ratio, two different filters can be applied to obtain a clean waveform (see supplementary material for 

further details), or data are eventually discharged if the quality control is failed. All of these quality 

controls and the selection of the appropriate filtering are necessary for the correct estimation of EW 

parameters and to improve the reliability of the information released by the system. Indeed, especially 

in cases of small magnitude or far distant events, both the P-peak amplitude and characteristic 

period/frequency are likely hampered by noise at low frequencies [Shieh et al., 2008], especially when 

derived by double-integrated acceleration signals.  

The methodology is based on the joint estimate of the peak displacement (𝑃𝑃𝑑𝑑) and the period parameter 

𝜏𝜏𝑐𝑐, which is defined as (Kanamori, 2005): 
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𝜏𝜏𝑐𝑐(𝑡𝑡𝑙𝑙) = 2𝜋𝜋�
∫ 𝑢𝑢2(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡

∫ 𝑣𝑣2(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡

    [1.1] 

Where 𝑢𝑢 and 𝑣𝑣 are respectively the ground motion displacement and velocity recorded at the site. The 

logarithm of this quantity is closely correlated to the moment magnitude of the source. 

The velocity and displacement are respectively estimates through a single and double integration of 

data using time windows of 1, 2 and 3 seconds after the P-wave arrival time. The predominant period 

of the signal theoretically depend only from the size of the fault. The higher length of the source due 

the low frequency content of the recorded signal and consequently a higher value of predominant 

period. 

 

FIGURE 1.3: OUTPUT OF SAVE. (a) Scaling relationship between Pd (3 seconds of PTW) and PGV for the estimation of 

Intensity. Example of Pd estimate (black arrow), for which the algorithm provides as output a moderate intensity [VI-V]. 

(b) Two sets of data with different ranges of magnitude (estimated through 𝜏𝜏𝑐𝑐  on 3 a second PTW) respectively [3.9-4.1] 

and [5.9-6.1]. The dashed lines show equation (9) at a fixed magnitude of 4 and 5.9. (c) Scaling relationship between 𝜏𝜏𝑐𝑐  (3 
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seconds of PTW) and 𝑀𝑀𝑤𝑤. Example of magnitude estimate (black arrow), for which the algorithm classifies the event as a 

medium size earthquake [𝑀𝑀𝑤𝑤3-5]. (d) The system provides an alert level using the decision table [Zollo et al., 2010].  

 

Once the preliminary check of data quality is done and the appropriate filter is selected, for each time 

window, 𝑃𝑃𝑑𝑑 and 𝜏𝜏𝑐𝑐 are measured on the vertical component of displacement waveforms and are used to 

predict the output parameters (see the scheme in Figure 1.1). However, depending on the filter adopted, 

different outputs can be computed. In particular, when a 0.075 Hz filter is used, both 𝑃𝑃𝑑𝑑 and 𝜏𝜏𝑐𝑐 are 

measured and used for the estimation of instrumental intensity, magnitude, distance and the alert level. 

When the 1 Hz, high-pass filter is used, instead, only 𝑃𝑃𝑑𝑑 is measured and used for the intensity 

prediction, being the relationship 𝜏𝜏𝑐𝑐 vs Magnitude very poorly constrained with this filtering. 

Considering the uncertainties associated to each estimated parameter, SAVE does not provide all the 

punctual output values, but it rather provides output parameters through a simplified classification 

scheme. The Instrumental Intensity (𝐼𝐼𝑀𝑀𝑀𝑀) is derived by the conversion of Peak Ground Velocity (PGV) 

using the scale proposed by Faenza and Michelini [2010] and is classified in three class of perceived 

shaking: Light (if the intensity predicted is < III), moderate (if the intensity predicted is in the range IV-

V) and strong (if the intensity predicted is upper than V) ([a] Figure 1.3). The setting of all 

classification intervals is based on the uncertainties of the empirical laws. Also for the earthquake 

magnitude and the source-to-receiver distance, both parameters may suffer for large uncertainties, 

which reflect the scattering of data of the empirical scaling relationship. Based on the standard error of 

equations (1.2-1.4) and (1.5-1.7) (next section), the on-site estimates of moment magnitude and 

distances are provided in the form a simplified classification scheme (Figure 1.3b & Figure 1.3c). In 

particular, the earthquake size is classified into small (if the predicted magnitude is < 3), medium 

(events with predicted magnitude in the range 3-5), moderate (events with predicted magnitude in the 

range 5-6.5) or large-to-very large event (if the predicted magnitude is > 6.5). Similarly, for the 

23 
 



distance, (Figure 1.3b) the system will distinguish the case of a near (N) (when the event is expected to 

be at a distance < 50 km), intermediate (I) (when the predicted distance is in the range 50-100 km) or 

far-away (F) event (with predicted distance > 100 km). Finally, the alert level is computed following 

the conceptual scheme proposed by Zollo et al. [2010] (Figure 1.3d). 

In the real-time system, the alert messages are sent via UDP to a list of IP addresses associated with 

target sites, which can be either different devices in the building to protect or different nearby 

facilities/users. In this case, the alarm is sent via TCP/IP to a server that acts as a “broker”, relaying the 

messages to any number of subscribed clients. The graphical output of the system is composed by a 

display, that is intended to provide a visual feedback of the status of SAVE to bystanders and 

administrators at the target site. In case of a seismic event, SAVE can provide a readable summary of 

the outputs of the system, which is also sent to remote users by mail.  

1.3   Application and results   

In this section, we present a statistical evaluation of the system performance using the Italian strong 

motion data. The database used consists of 128 Italian earthquakes (Figure 1.4), with moment 

magnitude ranging between 3.5 and 5.9 recorded at hypocentral distance between 10 and 200 km. We 

divided the dataset into two subsets, having approximately similar distribution in both distance and 

magnitude. We used the first group of data to estimate  𝑃𝑃𝑑𝑑 and 𝜏𝜏𝑐𝑐 over the time windows of 1, 2 and 3 

seconds, in order to calibrate the empirical scaling relationships between the EEW parameters and 

PGV, magnitude and distance. The second set of data was used instead for testing the performance of 

the EW platform SAVE.  
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Figure 1.4: DATA. (a) Epicentral locations of the 128 earthquakes (black stars) and of the stations of the RAN (gray 

triangles) used for the analysis. (b) Histograms of the magnitude and distance distributions of the analyzed records. 

 

We determined the empirical scaling relationships 𝑃𝑃𝐺𝐺𝑉𝑉 𝑣𝑣𝑠𝑠 𝑃𝑃𝑑𝑑 for each combination of cut-off filter 

(0.075Hz or 1 Hz) and P-wave time window (1, 2, 3 sec). For simplicity, we provide here only the 

scaling relationships for the 0.075 Hz filter, for both 1,2 and 3 seconds, while the corresponding 

relationships for the 1Hz filter are provided in the figure 1.5). Measuring Pd in centimeters and PGV in 

centimeters per seconds, we found: 

1 s → log(𝑃𝑃𝐺𝐺𝑉𝑉) = 0.62(±0.05) log(𝑃𝑃𝑑𝑑(1)) + 0.51(±0.14) 𝜎𝜎: 0.37;   (1.2) 

2 s → log(𝑃𝑃𝐺𝐺𝑉𝑉) = 0.69(±0.04) log(𝑃𝑃𝑑𝑑(2)) + 0.58(±0.10) 𝜎𝜎: 0.36;   (1.3) 

3 s → log(𝑃𝑃𝐺𝐺𝑉𝑉) = 0.69(±0.04) log(𝑃𝑃𝑑𝑑(3)) + 0.51(±0.10) 𝜎𝜎: 0.36;   (1.4) 

Similarly, by measuring 𝜏𝜏𝑐𝑐 in seconds and using the moment magnitude (𝑀𝑀𝑊𝑊), we found:  

 

1 s →𝑀𝑀𝑤𝑤1(𝜏𝜏𝑐𝑐) = 4.36(±3.44) log(𝜏𝜏𝑐𝑐(1)) + 5.38(±0.75) 𝜎𝜎: 0.21;     (1.5) 

2 s →𝑀𝑀𝑤𝑤2(𝜏𝜏𝑐𝑐) = 3.34(±0.83) log(𝜏𝜏𝑐𝑐(2)) + 5.12(±0.18) 𝜎𝜎: 0.15;     (1.6) 

3 s →𝑀𝑀𝑤𝑤3(𝜏𝜏𝑐𝑐) = 3.39(±0.81) log(𝜏𝜏𝑐𝑐(3)) + 5.04(±0.17) 𝜎𝜎: 0.14;    (1.7) 
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Then, with the aim to infer a rapid, but approximate, estimation of the source-to-receiver distance, we 

derived the following scaling relationships between the Pd, 𝑀𝑀𝑤𝑤(𝜏𝜏𝑐𝑐) and the hypocentral distance (R), 

measured in km:  

1 s → log(𝑆𝑆) = −0.30(±0.04) log(  𝑃𝑃𝑑𝑑) + 0.14(±0.03)𝑀𝑀𝑤𝑤1(𝜏𝜏𝑐𝑐) + 0.18(±0.17)  𝜎𝜎: 0.28;  (1.8) 

2 s → log(𝑆𝑆) = −0.32(±0.03) log(𝑃𝑃𝑑𝑑) + 0.22(±0.02)𝑀𝑀𝑤𝑤2(𝜏𝜏𝑐𝑐)− 0.17(±0.15) 𝜎𝜎: 0.28;   (1.9) 

3 s → log(𝑆𝑆) = −0.33(±0.03) log(𝑃𝑃𝑑𝑑) + 0.21(±0.02)𝑀𝑀𝑤𝑤3(𝜏𝜏𝑐𝑐)− 0.14(±0.14) 𝜎𝜎: 0.27;    (1.10) 

 

Figure 1.5: PGV VS PD CALIBRATION. The figure shows the PGV vs. 𝑷𝑷𝑷𝑷 data, estimated in three different P-wave Time 

windows (PTWs) of 1 (a), 2 (b) and 3 (c) seconds respectively after the arrival time of the P-wave, for the two different 

filters. Red points are the data filtered with a 1-20 Hz band pass filter, while black points are data filtered with the 0.075-

15 Hz band pass filter. Yellow and green lines are the best-fit regression relationships for the red and black data, 

respectively. The comparison between the two linear regression relationships shows a systematic difference on the 

estimation of 𝑷𝑷𝑷𝑷, which is due to the filtering operation. Both filters, however, preserve the scaling between the two 

parameters. 
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Figure 1.6: M VS TC CALIBATION. The figure shows the three different relationships between the Moment Magnitude and 
𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑐𝑐) estimated using a PTW of  1 (a),  2 (b) and  3 (c) seconds. Since the data are not equally distributes in all 
magnitude ranges, we binned data with a step of 0.4 in magnitude and computed the mean value of 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑐𝑐) associated to 
the central value of magnitude in each bin (green point). The red solid line is the best fit regression line, using the mean 
values of 𝑙𝑙𝑙𝑙𝑙𝑙(𝜏𝜏𝑐𝑐). 

 

Figure 1.7: M VS TC OF LOW QUALITY DATA. The figure shows the 𝐿𝐿𝑙𝑙𝑙𝑙(𝜏𝜏𝑐𝑐) vs Moment Magnitude estimate on the data 

filtered by  [1 20] Hz band pass filter after  1 (a),  2 (b) and  3 (c) seconds after the arrival time of the P wave. The scaling 

with magnitude is rather poor, as confirmed by the almost zero-slope of the resulting linear fit function.  

 

We note that the correlation laws derived for Italy are different from those estimated for other 

seismotectonic areas, (i.e., Japan, Colombelli et al., [2012]). For this reason, a local calibration is 

necessary in order to improve the reliability of the system. 
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Figure 1.8: R VS (PD; M). The figure shows the empirical scaling relationship between Pd (measured in cm), event 

magnitude M (as obtained from τc) and hypocentral distance R (in km). The figure also shows the best fit lines of Pd vs. R 

(in log-log scale), for different fixed magnitude values (3, 4, 5, 6). The regression relationships are estimated for data 

measured at 1 (a), 2 (b) and 3 (c) seconds after the arrival time of the P-wave. The plot clearly shows the overestimation of 

the Pd values recorded at distances greater than 100 km, resulting from the effect of the double integration of data with 

low signal-to-noise ratio.   

 

After calibrating the empirical scaling relationships using the first data-set, we applied the methodology 

to the remaining dataset, including only data that were not used for the calibration phase. To evaluate 

the performance of the system, we compared the output predicted by SAVE with the real parameter 

values, by using the classification scheme.  

 

 

Figure 1.9: RESULT. Histograms of the difference between the real and predicted classification of the output parameters. 
The pie-graph represents the corresponding percentage of correct, underestimated, and overestimated classifications. The 
performance is evaluated for (a) 1 second, (b) 2 seconds and (c) 3 seconds after the P arrival.  
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Figure 1.10: Lead-Times. Panel (a) shows the LT at different distances for all the data used for testing. The gray circles are 
the median values at different distances using binned data (bin of 10 km) and the solid line is the theoretical arrival time of 
the S wave. Panel (b) is the same plot as shown in panel (a) but limited to 50 km (the bin used for median values is 5 km) 
with the corresponding histogram of the LTs and the dashed line is the best fit of the median values. The gray squares are 
the negative LTs.   

Figure 1.11: ERROR DISTRIBUTION. The figure 
shows the residual distribution of the output 
provided by SAVE (i.e., logarithm of distance, 
magnitude and intensity) at 1 (a), 2 (b) and 3 (c) 
seconds after the arrival time of the P-wave. Red 
lines show the Gaussian distribution with mean 
values and standard deviation of data, while 
green lines are the log-normal distributions. On 
each plot, the “h” value shows the decision test 
for the null hypothesis of a normal distribution 
(and log-normal in green, respectively), while 
the “p” value is the probability value. A value of 
h = 0 indicates that the null hypothesis at the 1% 
significance level (p ≥ 0.01) is not rejected. 
Unlike magnitude and intensity histograms, the 
histogram of the distance classification is 
actually far from being a Gaussian distribution, 
but it rather it is consistent with a log-normal 
distribution, with a tail at the positive side of the 
distribution. This has a double origin. The first 
one is that data at large distances (> 50 km) 
generally have a low signal-to-noise ratio 
(especially within 1 and 2 seconds of P-wave 
time windows). Furthermore, the low frequency 
noise is amplified by the double integration 
process and may dominate the signal, resulting 
in an overestimation of the peak displacement 
amplitudes and dominant periods. The second 
reason for a non-Gaussian distribution is that 

data recorded near the source (distances < 20 km) within three seconds of PTW may include the S waves, so that both 𝑃𝑃𝑑𝑑 
and 𝜏𝜏𝑐𝑐 parameters might be overestimated again. 
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Figure 1.11 shows the histogram of the residual between the real and predicted intensity, magnitude 

and distance class, for a P-wave time window of one (Figure 1.9a), two (Figure 1.9b) and three (Figure 

1.9c) seconds. The histograms show the percentage of over, under and correct estimated classifications. 

For intensity, the most populated bin is around zero, with more than 80% of successful predictions and 

a small percentage of values in the adjacent classes (±1). For magnitude and distance, the residues have 

a Gaussian-like distribution, centered around zero, with more than 60-70% of successful predictions. 

 

1.4   Discussion  

In the present chapter we introduced a methodology for an onsite, single station, EEWS, denoted as 

SAVE (onSite Alert leVEl) and based on the real-time, evolutionary measurement of the P-wave peak 

amplitude and characteristic period, as acquired by one or more co-located sensors. The methodology 

we developed is able to provide a reliable, although first order, evaluation of the main source 

parameters, and this undoubtedly represents a significant improvement for standard on-site EWS 

approaches, for which the information about the earthquake source is absent or extremely unreliable.  

SAVE has been tested off-line using a dataset of moderate-to-strong Italian earthquakes (M from 3.5 to 

6) and the overall performance is shown in the histograms of Figure 1.9. In term of prediction error, the 

expected intensity is the most reliable parameter, with more than 80% of successful predictions, yet 1 

second after P-wave arrival. 

 The robustness of the ground shaking prediction undoubtedly represents the most important feature for 

the decision-making processes of the end-user audience, especially for an on-site system, where no 

further information on the earthquake source is available. 

As for magnitude and distance parameters, both quantities may suffer for large uncertainties, which 
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reflect the scattering of data, during the calibration of the empirical scaling relationships (eqs. 1.5 to 

1.10). The earthquake magnitude, indeed, is estimated through the average period, which is known to 

be largely scattered and to represent a robust magnitude proxy only when averaged over many stations 

[Zollo et al. 2006, Colombelli et al. 2012]. The source-to-receiver distance is obtained from the 

theoretical scaling between the observed P-wave amplitude with magnitude and distance and the 

empirical scaling relationship is generally affected by large data scattering. This is the reason why both 

the earthquake magnitude and the source-to-receive distance are provided in the form of simplified 

ranges, rather than with their punctual values. For both parameters, the real-time predictions are 

correctly provided in most of the cases, as confirmed by the histograms of residuals, which are 

distributed around zero and with a Gaussian-like shape.  

In a stand-alone EWS, where no information about the earthquake location is available, a possible risk 

is the inclusion of S-waves in the analyzed P-wave time window, which may lead to an overestimation 

of the predicted ground shaking level. To minimize the S-wave contamination, SAVE currently uses 

the vertical component of ground motion recordings only.  

The graphical output of SAVE is composed by a display which provides a visual feedback of the status 

of the system at the target site. The display is not intended as a means to prompt people to action. The 

decision on whether and how to initiate safety measures is still demanded to the recipients of alert 

messages sent to individual systems or broadcast by SAVE through internet. However, SAVE can be 

easily connected to an automatic interface, which is able to receive the warning and activate security 

actions. Within this context, the rapidity and robustness of the system represent ideal features for the 

immediate activation of emergency operations. 

Figure 1.10 shows the lead-time as a function of distance, for all the available data (gray dots) and for 

the highest observed intensities (black dots). The lead-time is computed as the difference between the 

arrival time of the maximum shaking amplitude (i.e., PGV) and the warning time (i.e., 1 second after 
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the P-wave detection). In order to have a statistical estimation of LT for each value of distance, the 

lead-time are  

subdivided in several a number of intervals (the bin used is 10 km for [a] and 5km for [b]) and, for each 

of they, we have calculated a statistical representative value (gray circles). Since the data do not have a 

Gaussian distribution, we have selected the median as representative value of statistical distribution. As 

expected, the lead-time increases with distance, with a value of 8-10 seconds at 50 km, 15-18 seconds 

at 100 km and more than 20 seconds at 150 km. The occurrence of PGV may not correspond to the 

occurrence of structural building collapse in more cases, for this reason the LT have a probabilistic 

sense but the effective LT can be more of less of it. The figure also shows the theoretical arrival of the 

S-waves as a function of distance (gray, solid line). For small distances (< 50km), the arrival of the 

strongest shaking coincides mostly with the expected arrival of the S-wave, but at larger distances, the 

strongest shaking arrives later in time, probably due to the arrival of later phases. 

Assuming the RAN network stations distribution over the Italian territory, the feasibility study for a 

regional EEWS performed by Picozzi et al., [2015] showed that the first alert time would be available 

around 4 and 5.5 s in the highest seismic hazard areas assuming three and six triggered stations, 

respectively. Furthermore, the blind zones in these areas have radii of about 25 and 30 km when three 

and six stations have triggered, respectively.  

As a further example, Picozzi et al., [2015] performed a scenario analysis of the 1980 Irpinia 

earthquake (Ms 6.9) [Bernard and Zollo, 1989], considering the actual RAN configuration with respect 

to the observed macroseismic field after this event [Guidoboni et al., 2007; Locati et al., 2011, data 

available from http://emidius.mi.ingv.it/DBMI11/]. Keeping into consideration only the municipalities 

to which it was assigned a macroseismic intensity IMCS equal or larger than VII (i.e., from moderate 

toward very high damage), they observed that 35 municipalities fell within the BZ; 53 had lead times 

(LT) less than 5 s; 73 had LT between 5 and 10 s; 112 had LT between 10 and 20 s; and finally, 24 had 
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more than 20 s of LT.   

For an on-site system like SAVE, the most relevant issue is the reduction of the blind zone and the 

increase of the lead times, for the effective protection of the target sites in the source area, or at a small 

distances from it. The bottom plot of Figure 1.10a shows a zoom on the lead-times for small epicentral 

distances (< 50 km). About 3 seconds of lead-time would be available at a distance of 20 km, 5-6 

seconds would be available at a distance of 30 km and 7-8 seconds at 40 km. In terms of practical 

applications, this result is extremely important, since it allows speeding up the warning declaration, 

with a consequent increase of the available lead-time at the site. Furthermore, if the station is the node 

of a network, the proposed approach would significantly reduce the radius of the BZ. 

Figure 1.11: SCENARIO OF THE IRPINIA EARTHQUAKE. The figure shows the scenario case of the 1980 Irpinia earthquake. 

Black, inverted triangles show the stations used for the analysis, while the grey dots are the municipalities. The dashed 

lines show the epicentral distances of 30 and 50 km, with the corresponding LT range. The insert panel shows the 

histogram of the number of alerted municipalities, as a function of distance.  

 

As an example, let us consider again the scenario analysis of the 1980 Irpinia earthquake (Ms 6.9) 
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[Bernard and Zollo, 1989] and the municipalities with an assigned a macroseismic intensity IMCS 

[Guidoboni et al., 2007; Locati et al., 2011, data available from http://emidius.mi.ingv.it/DBMI11/] 

equal or larger than VII. If SAVE had been operative at each station of the RAN network, assuming 

that the alert was delivered in a range of 8 km around the station and that the BZ of the regional EEWS 

had a radius of 20 km [Picozzi et al., 2015], the number of municipalities that could not benefit from 

the warning would have been reduced to 85%. At the same time 48 municipalities would have had lead 

times (LT), according to the fit in figure 6, between 2 and 6 s (hypocentral distance between 10 and 30 

km); 53 had LT between 6 and 10 s (distance between 30 and 50 km); and finally, 55 municipalities 

had LT between 10 and 20 s (distance between 50 and 100km) (Figure 1.11). 

In its current configuration, SAVE is conceived and optimized to be used as a stand-alone system for a 

specific target site (i.e., a single sensor located at the target site or a small set of co-located seismic 

nodes), where no communication and exchange of information with other monitored targets is possible.  
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Chapter 2: On-site Early warning Systems and a P-wave based 

approach 

2.1   Introduction 

In this chapter, we introduce an innovative methodology for an on-site Earthquake Early Warning 

System. In order to have a reliable alert we have perform a robust algorithm based on the correlation 

between the P-wave amplitude and maximum intensity occurred at site. The robustness is increased 

using the P-wave amplitude measured on the acceleration, velocity and displacement vertical 

component. The three parameters are correlated because are derived by the same earthquake source and 

measured in the same site but the frequency domains are completely different and the combination of 

these three parameters is able to give a more complete description of the earthquake phenomena. P-

wave amplitude parameters are estimate on a exampling time window aimed to avoid saturation of 

correlation laws.  The expanding time window causes the inclusion of other seismic phase due the 

overestimation of P-wave amplitude and consequently the false alert. To reduce this effect, in section 

2.3.2 a reliable filtering algorithm aimed to select only the P-wave phase in the signal is proposed and 

tested.  

In order to calibrate and proof this methodology, we have select a Japan and Italian data-set aimed to 

have a large number of waveform in a large range of magnitude and distance for the calibration of 

empirical laws used for the predict the local intensity. Part of database is used to testing the 

methodology estimating the lead-time of alert and the prediction outcome in term of successful, false 

and missed alert. The cumulative and Scenario test show a high rate of successful alert (more than 

80%) in the most of case.  
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2.2   Methodology 

The methodology proposed here is essentially based on two key elements. The first one is the joint use 

of three peak amplitude parameters (the initial peak of displacement, Pd, velocity, Pv, and acceleration, 

Pa), which are continuously measured along the vertical component of ground motion recordings. The 

second key element of the proposed methodology is an empirical combination of the three ground 

motion parameters and its use as a proxy for the ensuing Peak Ground Velocity (PGV) at the same site 

(Wu & Kanamori, 2005; Wu & Kanamori, 2008; Zollo et al., 2010). 

In standard approaches to EEW, limited time windows (2-3 seconds) are generally used to measure the 

ground motion parameters for the rapid characterization of the ongoing earthquake. In case of very 

large events such short PTWs are not enough wide to properly characterize the source process, 

resulting in a significantly lower estimate of the earthquake size (Colombelli et al., 2012b; Colombelli 

et al., 2014). Following the concept of the expanded P-wave Time Window (PTW), here the real-time 

measurements are progressively measured starting from the P-wave onset time and continuously 

updated as long as the ground motion is recorded. At each time along the seismogram, the observed Pd, 

Pv and Pa parameters are measure and compared to prior established threshold values. The threshold 

values have been defined through the empirical correlations between Pd (Pv and Pa) and the final PGV 

for a given instrumental intensity (IMM, based on the PGV-to-IMM conversion table of Wald et al., 

1999) and accounting for the estimated 1-σ error bounds on the PGV versus Pd (Pv and Pa) 

relationship.  

Once compared to the threshold values, each observed parameter is then converted into dimensionless 

fuzzy variables, denoted as Wd, Wv and Wa, for Pd, Pv and Pa, respectively, following the scheme:  
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Wx(t) = 0      if   Px(t) < PxL 

Wx(t) = 1/3  (Px(t) - PxL) / (PxH - PxL)            if   PxL ≤ Px(t) ≤ PxH 

Wx(t) = 1/3      if   Px(t) > PxH 

where the subscript x stands for displacement (d), velocity (v) or acceleration (a), respectively, and PxL 

and PxH indicate the lower and higher threshold values for the parameter x. Wx(t) is computed at each 

time and is locked at the corresponding value until a larger value is encountered. As a result, Wx(t) is a 

monotonically increasing step-ladder like function, as shown in Figure 2.1d. We then sum up the values 

of Wd, Wv and Wa to define a single logical variable Wt, which is now used for warning declaration 

(Figure 1a, bottom plot). Instead of using one parameter with a single preset threshold, here we are 

combining three ground motion parameters, accounting for the uncertainty of the empirical scaling 

relationships. The use of the fuzzy variable is a simplified, although arbitrary, way to convert a single-

parameter, binary, decision scheme into a multi-variable, continuous, alert system. With the proposed 

definition of Wd, Wv and Wa, the three ground motion quantities equally contribute to the final shaking 

prediction.  

To define the thresholds for warning, we converted a given instrumental intensity (IMM) to PGV [Wald 

et al., 1999] and extracted the values of Pd, Pv and Pa associated to such a PGV value, through 

empirical correlations between these three parameters and the PGV (see Figure 2.1 panels b,e and f). 

 We used two intensity levels IMM=V, (i.e, PGV = 3.4 cm/s) and IMM=VII (i.e, PGV = 16 cm/s), 

which correspond to the “light-to-moderate” and “strong-to-very strong” transitions on the perceived 

shaking and on the produced damage [Wald et al., 1999, table description]. For each intensity threshold 

value, the threshold values on the amplitude parameters are obtained from intersections of the threshold 

PGV with the empirical correlations plus/minus 1 standard deviation (Figure 2.1b, e, f). For the 

derivation of the empirical scaling relationships, we avoided the S-wave contamination by terminating 
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the time window for Pd, Pv and Pa measurement at the expected arrival of the S-waves. The expected 

S-wave arrival time at each station (Ts) is computed using the following relation: 

Ts – Tp = b* R    [3.1] 

where Tp is the observed P-wave onset time, R is the hypocentral distance and b = 0.088 sec/km. The 

coefficient b has been derived by a linear regression analysis, after manually picking the S-wave arrival 

times for a selected number of records in the data-set and reducing the Ts – Tp time by 30% to ensure 

that the probability of including the S wave is very small. 

In terms of output of the system, the definition of a threshold value on Wt identifies four different alert 

categories, whose order here intuitively reflects the increasing probability of alert failure (see PGV vs. 

Wt diagram in Figure 2.2): successful alarm (dark green zone), successful no-alarm (light green zone), 

false alarm (yellow zone) and missed alarm (red zone). The threshold value of Wt along the PGV vs. 

Wt plot controls the overall performance of the system, with an intrinsic trade-off between false and 

missed alerts (Figure 2.1d). High values of Wt generally provide a small number of false alarms but 

may frequently generate missed alarms. On the contrary, small values of Wt are expected to reduce the 

missed alerts, but consequently increase the occurrence of false alarms. After analyzing the number of 

missed, false and successful alarms as a function of Wt, for the present analysis the value of Wt was 

fixed in order to maximize the total percentage of successful alarms. 
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FIGURE 2.1: METHOD  AND EMPIRICAL CORRELATIONS: In panel (a) from top to bottom, an example of the vertical 
component of acceleration (black), velocity (blue), and displacement (orange) signals. The initial peak 
amplitude parameters Pd, Pv, and Pa are measured as the absolute maximum of displacement waveform on 
the early portion of P wave. The threshold values (for the intensity IMM = V) on each parameter are 
schematically shown as a black, dashed line on each record. Examples of Wa, Wv, and Wd as a function of time 
are also shown with a solid black, blue, and orange lines, respectively. Each step on Wa, Wv, and Wd 
corresponds to an increase of the peak amplitude parameters (as absolute value) on the ground motion 
records. Finally, the bottom plot shows the cumulative logical variable Wt as a function of time (purple curve). 
Here the gray rotated triangle shows the threshold value Wt * used for warning declaration (Wt * = 0.45, in this 
case). (b, e, f) Data distribution and empirical relationships between respectively Pd, Pv, Pa and PGV. The 
background, gray circles represent the whole data set, while the small, blue and black squares are data used for 
calibrating the scaling relationships. Solid black lines are the best-fit lines while dashed lines are the standard 
error bars.  (c) Example of Wd definition. The observed Pd parameter is compared to its threshold value and 
converted into a dimensionless variable, named Wd, which is equal to 0 in the region below the lower 
threshold to 1/3 in the region above the higher threshold and linearly increases between 0 and 1/3 in the 
intermediate region. (d) Calibration curves: the figure shows the number of MA (red line), FA (yellow line), and 
total successful alarms (including SA and SNA, green line) as a function of Wt. The solid lines are referred to the 
higher-intensity threshold (IMM = VII), while the dashed lines are associated to the lower intensity threshold 
(IMM = V). The threshold values of Wt are marked as a triangle on the successful alarm curves (light gray for 
the lower intensity and dark gray for the higher-intensity threshold). 
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FIGURE 2.2: PREDICTION OUTCOME TABLE: Predictive categories provided by the system in function of Wt and 

PGV thresholds. 
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2.3   Test and performance 

2.3.1 Application to the Japanese data-set 

The database we used consists of 76 Japanese events in the magnitude range 4.0 ≤ M ≤ 9.0. Among 

them, 73 events were used for deriving the empirical correlations and for setting the threshold values, 

and 3 earthquakes were used for validation and scenario studies. For each event, we selected the three-

component, strong-motion accelerometer records, available in the distance range R 0-500 km, for a 

total of 12,792 three-component records. 

FIGURE 2.3: DATA-SET DESCRIPTION. (a) The map shows the distribution of stations (gray dots) and the 
epicentral location of the selected events. Green stars are the earthquakes used for the calibration, while red 
stars are the scenario events. The size of the star is proportional to the magnitude. (b) Histogram of the 
number of earthquakes as a function of magnitude, for the calibration data set (green) and for the scenario 
studies (red). (c) Distribution of records as a function of distance, for the calibration (green) and for the 
scenario events (red).  
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Figure 2.1a shows the distribution of selected events and used stations. Panels (b) and (c) show the 

magnitude and distance histograms, for the calibration and the validation dataset. The correlation laws, 

obtained using the calibration data-set, are:    

log PGV(cm/s) =  1.11(±0.08) + 0.69(±0.04) log Pd(cm),        stdv = 0.57, 

log PGV(cm/s) =  0.72(±0.06) + 0.93(±0.05) log Pv(cm/s),       stdv = 0.52, 

log PGV (cm/s)= -0.55(±0.05) + 0.72(±0.05) log Pa(cm/s2),  stdv = 0.61, 

 

The performance of the proposed EWS is evaluated by counting the percentage of Successful Alerts 

(SA), Successful No-Alerts (SNA), False Alerts (FA) and Missed Alert (MA). We tested our on-site 

strategy using two intensity levels, IMM=V (i.e, PGV = 3.4 cm/s) and IMM=VII (i.e, PGV = 16 cm/s), 

which correspond to the “light-to-moderate” transition both on the perceived shaking and on the 

produced damage (Wald et al., 1999, table description).  

 

The Wt threshold used for felt and damage intensity level are 0.45 and 0.28, respectively. 

Figure 2.4 shows the overall performance of the system for the two intensity levels chosen in terms of 

alert percentages (panels a and d) and in terms of alert and lead-times (panels b,e,c,f). For both the 

intensity thresholds, the joint use of Pd, Pv and Pa significantly improves the performance of the 

system, as compared to the independent use of single amplitude parameters (see figure 3.8 and 3.9). 

With the proposed approach, was obtained a high percentage (more than 85%) of successful alerts 

(including both SA and SNA), a small number of false alarms (about 14%) and a very low percentage 
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of missed alerts (about 1%). For comparison, Figure 3.8 shows the performance of the system when the 

three amplitude parameters are independently used. In this case, the percentage of false alarms still 

remains too high (about 50%), especially for the lower intensity threshold, and therefore none of the 

three parameters can be considered a reliable candidate for the warning declaration.  

 

FIGURE 2.4: PERFORMACE EVALUATION. Overall performance of the methodology. (a, d) The histograms show 

the performance of the system in terms of SA (dark green bar), SNA (light green bar), FA (yellow bar), and MA 

(red bar) for the two intensity levels. (b, e) Alert times as a function of distance. The black line is the theoretical 

alert time for the fixed PTW on-site system (3 s). (c, f) Lead times as a function of distance. The black line is the 

theoretical lead time for the fixed PTW on-site system (S-P arrival time difference at each site), while the green 

line is the best fit regression of the observed lead time as a function of distance. In Figures 2b, 2c, 2e, and 2f 

the color scale represents the earthquake magnitude. 
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Beyond the correct alert declaration, the ability to rapidly provide the warning is also a crucial feature 

of an early warning system. In terms of timing performances, due to the use of unlimited PTWs, the 

proposed approach may require longer signal portions for the warning declaration, as compared to 

standard on-site approaches. Nevertheless, the methodology is able to provide sufficient warning times, 

as illustrated in the plot of alert times and lead-times as a function of distance (Figure 2.4 b c e f). The 

alert time is defined as the time elapsed between the arrival of the P-wave and the alert declaration (i.e., 

when Wt overcomes the threshold). The lead-time is the time available from the warning declaration to 

the instant at which the ground velocity overcomes the threshold value (see Figure 2.1). We observed 

that alert times are approximately constant for small epicentral distances (a few seconds) but increase 

with increasing distance and magnitude (Figure 2.4 b e). Similarly, lead times also increase with 

distance and magnitude (Figure 2.4 c f). On average, at a distance of 100 km, the available lead-time is 

about 8 seconds; around 15 seconds are available at a distance of 200 km and about 25 seconds at 400 

km. A deeper discussion about the timing performances is given in the Discussion section. 

As a further test, the performance of the system was evaluated when limited PTWs are used, i.e., when 

the parameter computation is stopped at the expected arrival time of S-waves (Figure 2.8). Generally, 

both when the amplitude parameters are independently used, and when their combination is adopted, 

the use of limited PTWs reduces the number of false alarms, but a little increase of the number of 

missed alarms is observed (Figure 2.9). This is generally true for the overall statistics and is even more 

relevant for the case of single scenario events (see Figure 2.7).  

We analyzed the performance of the proposed methodology for three scenario earthquake cases 

(Figures 2.5-2.7), which were not used to calibrate the empirical scaling relationship. We included a 

small-to-moderate inland earthquake (the 2004, M 6.8 Chuetsu event, Figures 2.5-2.7 a), a moderate-

to-large inland earthquake (the 2008, M 7.2. Miyagi-Iwate earthquake, Figures 2.5-2.7 b), and the 
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offshore M 9.0 2011, Tohoku-Oki event (Figures 2.5-2.7 c). For the scenario analysis two different 

analysis are provided (Figures 2.5 2.7), fixing respectively threshold at damage level (IMM = VII) and 

felt level (IMM = V). Referring to the high threshold level, scenario cases generally confirmed the 

overall statistics. For the two smallest earthquakes (M 6.8 and M 7.2) we found a relatively large 

percentage of total successful alarms (about 70-75%), an average percentage of false alarms around 

25%, and an extremely low number of missed alarms (< 2%). For the 2011, M 9.0, Tohoku-Oki  

 

FIGURE 2.5: SCENARIO TEST DAMGE LEVEL. Scenario events and relative histogram of the performance, for the 

higher-intensity threshold (IMM = VII). Map of the alert distribution for (a) the 2004 M 6.8 Chuetsu event, (b) 

the 2008 M 7.2. Miyagi-Iwate earthquake, and (c) the offshore 2011 M 9.0 Tohoku-Oki event. Small colored 

circles represent the stations used, and the black star is the earthquake epicenter. (d–f) Histograms of the alert 

levels for the three scenario events. For all panels, the color scheme is the same as used in Figure 2.4 and is 

also explained in the legend. 

earthquake, successful and false alarms are almost balanced around 49%, while the percentage of 

missed alarms is again very small (< 2%). Figure 2.7 shows the scenario test using the limited P-wave 

time window estimated using [2.1].  
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FIGURE 2.6: SCENARIO TEST FELT LEVEL. The Figure is the same analysis shows in figure 2.5 fixing the threshold at 

lower intensity level (𝐼𝐼𝑀𝑀𝑀𝑀 = 𝑉𝑉). 

 

FIGURE 2.7: SCENARIO TEST WITH LIMITED PTW. The Figure is the same analysis shows in figure 2.5 using the 

theoretical P-wave time window expressed in [2.1] and set the threshold at damage intensity level (𝐼𝐼𝑀𝑀𝑀𝑀 = 𝑉𝑉𝐼𝐼𝐼𝐼). 
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FIGURE 2.8: CUMULATIVE STATISTICS FOR THE SINGLE PARAMETERS. The histograms show the performance 

of the system, in terms of successful alarms (dark green bar), successful no alarms (light green bar), false 

alarms (yellow bar) and missed alerts (red bar) for the two intensity levels where the parameters are used in 

single mode. For the comparison with the jointly combination mode, the last column is provided.  

 

 

FIGURE 2.9: CUMULATIVE STATISTICS FOR THE SINGLE PARAMETERS WITH A P-WAVE LIMITED TIME 

WINDOW. The histograms show the performance of the system in the same way of figure 2.5. The difference is that the 

P-wave parameters are estimate on a limited P-wave time window, which is stopped at the first S-wave arrival time 

theoretical predicted by 2.1 relationship.  For the comparison with the jointly combination mode, the last column is 

provided 
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2.3.2 Application to the Italian data-set 

 

The Data-set used for this analysis consists of 229 events occurred in the Italian region during the 

period 2006-2016. Is the same data-set used in the section 1.3 with the addition of events recorded 

during the last seismic sequence of the center of italy.  

FIGURE 2.10: DATA-SET AND CALIBRATION LAWS: panel (a) shows the locations of events used for the 

analysis. (d) and (e) are magnitude histograms of data respectively used for testing and calibration phase while 

(f) and (g) are distance histograms of same data. In (b),(c) and (h) you can see Pa,Pv and Pd vs PGV plots (black 

and red stars) and the best fit lines (red, yellow and green lines) provided of 1-𝜎𝜎 standard deviations bars. In (b) 

yellow lines is the best fit of black stars data filtered with 0.075-15 Hz band pass filter while green lines is the 

best fit of red stars data filtered in a 1-25 Hz band.  
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The distribution of data in terms of magnitude and distance is provided in figure 2.10, while the 

epicentral location of all events used for the analysis is shown in Figure 2.10a. We processed a total of 

3151 vertical components; among them, 1048 records are employed for the calibration of correlation 

laws and the remaining records are used for testing the system performance.  

We preliminary calibrated the empirical scaling relationships to correlate the P-phase peak estimates in 

acceleration (Pa), velocity (Pv) and displacement (Pd) to the maximum velocity amplitude recorded on 

the horizontal components (PGV) (Figure 2.10b,c and h). For the calibration, the initial peak 

amplitudes are measured on a fixed time window, depending on the theoretical arrival of the S-wave. 

Specifically, the Ts-Tp time window is computed using equation 2.1, assuming the b factor equal to 

0.082 sec/km. The empirical scaling relationships that we found are: 

log PGV(cm/s) =  2.22(±0.15) + 0.97(±0.05) log Pd(cm),     stdv = 0.37, band-filter: [1;25]Hz 

log PGV(cm/s) =  1.60(±0.11) + 0.87(±0.04) log Pd(cm),     stdv = 0.32, band-filter:  [0.075;15]Hz 

log PGV(cm/s)  =  0.95(±0.05) + 1.02(±0.03) log Pv(cm/s),     stdv = 0.30, 

log PGV (cm/s) = -0.89(±0.03) + 0.67(±0.02) log Pa(cm/s2),  stdv = 0.36, 

For the testing phase, the early waring parameters are estimated in a simulated real-time data streaming 

environment. The preliminary signal processing for the estimation of Pd, Pv, and Pa is the same as 

already explained in Chapter 1 (section 1.2). The mean value and linear trend are first removed from 

row acceleration data. Then, a single and double integration operations are performed to retrieve the 

ground motion velocity and displacement, respectively. A high pass filter is finally applied to the 

displacement waveforms, to reduce the low-frequency noise contamination deriving from the double 

integration operation. In order to establish the proper cut-off frequency for the filter, the quality of the 

signal is evaluated by estimating the Signal to Noise Ratio (SNR) and the Pv/Pd ratio. In the previous 
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chapter more details and motivations of this filter processing is provided. After the preliminary data 

processing and quality check analysis, the P-wave parameters are estimated on the vertical component 

of the signals, using progressively expanding time windows, without any further constraint to the 

expected S-wave arrival time. A statistical analysis shows that about 30% of the S-wave amplitude is 

present on the vertical component (see Figure 2.12).  

 

FIGURE 2.12: VERTICAL VS. HORIZONTAL AMPLITUDE RATIO. Histogram of the S-wave amplitude ratio among the vertical 

component and the modulus of acceleration (a), velocity (b) and displacement (c). The amplitude is computed within a 5 

second time window around the expected S-wave arrival time.  

 

To avoid the inclusion of later phase arrivals after the P-wave, we performed a signal polarization 

analysis of the 3-component waveforms, following the formulation proposed by Rosenberger [2010].  

Specifically, as soon as the P-wave phase is automatically detected (using Filter-Picker algorithm 

[Lomax, A., C. Satriano and M. Vassallo, 2012]), the algorithm starts to continuously estimate the 

polarization of the signal in real-time and looks for its variation from a reference polarization direction 

value. The reference direction of the polarization vector is estimated as the direction closer to the 

vertical during the first 0.5 second of the signal after the P-wave arrival time (𝑢𝑢𝑝𝑝� ) and is used to 

compare the real-time estimate of the signal polarization (𝑢𝑢𝑡𝑡�). In particular, the dot product (𝑢𝑢𝑝𝑝� ∙ 𝑢𝑢𝑡𝑡� ) is 

about 1 when the polarization is consistent with that observed for the P phase and tends to 0 when the 
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polarization is on the orthogonal direction (as for the S-wave polarization). The dot product is used as a 

characteristic function (Figure 2.13b) to modulate the amplitude of signal and decrement the peak of 

the signal associated to the S-wave phase arrival (Figure 2.13). 

After modulating the signal amplitude, we estimated the early warning parameters on a P-wave 

dominant signal, where the influence of the S-wave arrival is expected to be significantly reduced. 

 

FIGURE 2.13: POLARIZATION FILTER. (a) Show an example of vertical component processed with SVD polarization 

algorithm, the black line plot is the original z-component while the blue line is the P-wave dominant waveform obtained 

using the characteristic function shows in panel (b). 

The EW system performance is evaluated using 2103 vertical component records, with magnitude 

ranging between 4 and 6.5 and hypocetral distances between 0 and 100 km (see the histograms in 

Figure 2.11d,f). 
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FIGURE 3.11: INTENSITY CONVERSIN TABLE.  L. Faenza and A. Michelini, 2010. 

The performance of the system is evaluated by counting the percentage of successful alarms (SA and 

SNA), FA and MA using two critical level of local intensity correspond at PGV equal to 0.6 cm/s 

(IMM=V) and PGV equal to 3.4 cm/s (IMM==VII)  (according to Faenza and Michelini 2010 

conversion table, Figure 2.11). In order to maximizing the number of successful prediction of the 

system, the Wt thresholds are fixed at 0.5 and 0.6 for felt and damage intensity level, respectively.  

FIGURE 2.14: CUMULATIVE STATISTICS. The figure shows the cumulative statistics for all data of testing database. (b) and 

(a) show the statistics, using a threshold level on felt intensity level (IMM==V), respectively for data processed with 

polarization filter algorithm or not. (d) and (c) are the same analysis using a threshold level on damage intensity level 

(IMM==VII). 

 

The histograms of figure 2.14 show the percentage of outcomes for all data, both using the polarization 

analysis (left panel) and using the vertical component of the recorded waveforms without any 
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amplitude modulation (right panel). The use of the polarization analysis improves the reliability of the 

prediction, with a reduction of false alerts of about 9% (as it is shown in Figure 2.14). 

Finally, we evaluated the performance of the methodology for the largest events, with magnitude 

greater or equal than 5 Mw (Figure 2.15), which undoubtedly represent the most dangerous and most 

relevant cased to be considered.  

FIGURE 2.15: CUMULATIVE STATISTICS. The figure shows the same analysis of figure 2.14 using only data with 

moment magnitude greater than 5. 

 

FIGURE 2.16: LEAD-TIME STATISTICS. The figure shows the Lead-time vs distance plots for alerts provided using all 
testing data-set. the Lead-times for damage threshold level are provided on the right, while on the left threshold is fixed 
on felt level. The red circles are the median values estimate using a bin of 10 kilometers. Negative Lead-times are 
considered missing alerts in cumulative statistics.  
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The percentage of successful predictions (SNA+SA) is larger than 80%, while the cumulative 

percentage of missed and false predictions (MA+FA) is about 20%. The available lead-times as a 

function of distance for the SA case, are shown in figure 2.16. Between 10 and 30 km from the source, 

most of the lead times vary between 1-2 s and 5-6 s, with an average value of about 3s.   

After evaluating the overall statistics, we applied the methodology to a limited number of scenario 

cases. The analyzed events are two of the largest earthquakes occurred during the recent 2016-2017, 

central-Italy earthquake sequence: the Mw 5.5, 2016 10, 26 Macerata earthquake and the Mw 6.5, 2016 

10, 30, Norcia earthquake.  

 

FIGURE 2.17: SCENARIO TEST OF MACERATA ERTHQUAKE. The figure shows the performance of system in 

scenario of Amatrice earthquake. (a), (b) and (c) panel are respectively the map of stations (circles colored 

according to predictive results) and epicenter (back star)  used for the analysis, the plot of Lead-time vs 

distance and cumulative statistics for threshold fixed on the felt level (PGVth=0.6cm). (c), (d) and (f) are the 

same analysis for threshold fixed on the damage (PGVth=3.4 cm). 
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FIGURE 2.18: SCENARIO TEST OF NORCIA ERTHQUAKE. The figure shows, in the same way of figure 2.17, the 

performance of system in scenario of Norcia earthquake. 

 

We focused our attention on data recorded in the source area, within 100 km from the epicenter.  For 

both events, the system provided a relatively high rate of successful alerts. In particular, for the 

Macerata earthquake scenario, we found about 20% of false and  about 5% of missed alerts for felt 

threshold (Figure 2.17e) and about 15% of false alters for damage threshold (Figure 2.17f). The Norcia 

case study showed no cases of false alarms and about 15 % of missed alerts in case the threshold is set 

on damage level (Figure 2.18f).  
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2.4 Discussion 

The Early Warning methodology that we proposed is based on the real-time, continuous measurement 

of three peak amplitude parameters (Pd, Pv and Pa) which are empirically combined for the prediction 

of the expected shaking at the same site. Acceleration, velocity and displacement provide a 

complementary image of the spectral content of the source, whose highest frequencies are mostly 

associated to finer details of the rupture process and wave propagation, while the low-frequency 

content is sensitive to the seismic moment.  

The S-waves are generally identified along the horizontal components of a seismogram through the 

variation in amplitude and frequency of the signal with respect to the preceding P-waves (Diehl et al., 

2009).  However, in those regions where extensional or compressional tectonics is dominant, the S-

wave amplitude along the vertical component may be not negligible. For example, in the case of Japan 

the S-wave amplitude along the vertical component at the S-arrival time represents about 30% of the 

whole seismogram amplitude (i.e., the modulus of ground motion recordings), as it can be inferred 

from the histogram of Figure 2.12. This confirms that a large portion of the S-wave amplitude may 

contaminate the vertical component of ground motion.   

 Efficient algorithms, based on the use of a characteristic function, for the S-wave arrival time 

identification have been proposed and refined techniques combining polarization analysis and lateral 

waveform coherence of earthquake recordings have been also recently proposed (Amoroso et al., 2012, 

Rosenberger, 2010 etc…). In final part of this analysis, an algorithm based on the polarization analysis 

of the 3-component recorded seismograms is proposed and applied in order to reduce the S-wave 

amplitude contamination on the vertical component of the ground motion and to provide a “P-wave 

dominant” signal to be used for the measurement of the initial P-wave peak amplitude parameters. 
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The performance of the system significantly changes when limited (to the S-wave first arrival) or 

unlimited time windows are considered. Figure 2.7 shows the performance for the scenario cases, when 

limited time windows are used for the parameter measurement. As intuitively expected, when the P-

wave time window is progressively expanded and no time limit is imposed, the incidence of false 

alarms increases, with respect to the case of limited time windows. The increase, however, is balanced 

by a substantial reduction of missed alarms, which are, indeed, the most critical issue for an EWS. This 

is especially true for the case of the 2011, Mw 9.0, Tohoku-Oki earthquake, for which the percentage 

of missed alerts decreases from about 50% to only 2%, when unlimited time windows are considered. 

One main advantage of the proposed methodology is that, in principle, depending on the desired 

application, false or missed alarms can be prioritized at the user’s discretion. Following the calibration 

curves of Figure 2.1d, for example, the percentage of false alarms can be reduced by choosing a high 

Wt value, with a consequent little increase of missed alert. On the contrary, for those applications in 

which false alarms are more tolerable, while missed alarms should be avoided, lower Wt values are to 

be preferred.  

A similar calibration can be done in any standard on-site approach, by changing the threshold value 

chosen for the warning declaration. However, when limited time windows are used, the missed alerts 

are related not only to the threshold value for the warning declaration, but are also due to an intrinsic 

limitation of the methodologies, which are not able to follow the evolution of the source process. For 

this reason, the incidence of missed alerts in standard approaches cannot be easily reduced without 

increasing false alarms too much, and this is especially true for the case of large events.  

In terms of timing performances, the proposed methodology may require shorter or longer signal 

portions for the warning declaration, as compared to the standard approaches. In a standard on-site 

EWS, 3 seconds of P-wave signal are used for the parameter estimation and thus the alert time does not 
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depend neither on the source-to-receiver distance nor on the earthquake magnitude The gray dashed 

line in Figure 2.4c shows the alert time for a common on-site EW system. In our approach, instead, 

both distance and magnitude play here a key role. We found that alert times are around 1-2 seconds for 

small-to-moderate events recorded at small epicentral distances (i.e., for magnitude between 4 and 5 

within 100 km), while longer PTWs are required in case of large events recorded at large distances (20-

to-30 seconds for magnitude 9 events, recorded at 300 km). This result is consistent with the recent 

observations of Colombelli et al., (2014), who measured the logarithm of Pd over progressively 

expanding PTWs and found that it starts with small values and then progressively increases with time, 

until a plateau value is reached. The greater the magnitude, the longer the time is needed for Pd to 

reach its final value. From a practical point of view, in the proposed approach, the warning can be 

declared within a very short time window, for small-to-moderate events, while longer P-wave time 

signals are needed to properly predict the expected shaking for large events.  

As for the lead-times, the plots show a clear dependency with both distance and magnitude, as 

confirmed by the best fit regression line (solid gray line) and by the colors scale of figure 2.4 c.f . As 

for the distance dependency, this result is not surprising, since the lead-time is essentially due to the S-

P wave travel time difference. Our observed lead-times are generally smaller that the theoretical values, 

with about 10 seconds of lead-time at a distance of 100 km and about 20 seconds at 200 km. For 

comparison, the theoretical lead-time as a function of distance is shown with a dashed gray line. The 

dependency of lead-times on magnitude can be explained in terms of source process and of propagation 

effects. For large events, indeed, the source process has a longer duration and a late peak in the moment 

rate function is expected. In addition, magnitude generally increases with distance in the Japanese 

earthquake database, since the largest events are mostly occurring offshore at the slab zone. As a 

consequence, the strongest ground shaking can be associated either to later slip episodes and to the 

arrival of later phases. 
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The application of the proposed methodology to the M 9.0 Tohoku-Oki event provided a relatively high 

percentage of false alarms (about 49%). We point out, however, that all of these false alarms are 

associated with a ground shaking amplitude and related intensity smaller than the predicted damage 

level but higher than the level of perceived shaking by population. This reduces the negative impact of 

false alarms and cry-wolf syndrome, due to the effective experience of earthquake shaking as a 

consequence of the alert.  

For the Tohoku-Oki event, the kinematic inversions have shown a complex frequency dependent 

rupture history, with asperities radiating energy with different frequency content at different locations 

(Meng et al., 2011; Maerklin et al., 2012). The evolutionary estimate of Pd showed that the initial P-

wave amplitude is largely underestimated with short P-wave time windows, while stable and consistent 

magnitude values are obtained for PTW exceeding 25-30 s. Here, indeed, we found a similar result, 

with warning times for the magnitude 9 event of about 20-25 s within 200 km and with longer PTWs of 

more than 30 seconds needed at larger distances, thus confirming that appropriate time windows are 

required to capture longer portions of the rupture process and lower frequencies radiated from the 

source. Standard EEW methodologies, which are based on the use of limited P-wave signal portions, 

would have not been able to capture the energy from the whole source process, with a consequent 

dramatic underestimation of the expected shaking (Hoshiba et al., 2011; Colombelli et al., 2012b).  

In our methodology, the alert for the higher intensity level would have been issued at coastal stations 

approximatively 36 seconds after the first P-wave detection, thus still providing around 23 seconds of 

warning, prior to the arrival time of the strongest shaking. In the region of Tokyo, instead, the alert 

would have been issued about 60 seconds after the P-wave detection, with about 38 seconds of 

warning.  
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We also evaluated the performance of the proposed methodology using a data-set of Italian earthquakes 

and applying the polarization analysis described in Section 2.3.2. This further application confirms the 

reliability of the methodology that has been strengthened with a polarization filter of vertical 

component that reduces number of false alert (Figure 2.15 2.14).   

A practical strategy for the proposed approach could be to declare the first warning as soon as the lower 

intensity threshold is overcome and then to confirm (or possibly cancel) the previous alert, if the higher 

intensity threshold is also reached.  

 

 

 

 

 

 

 

 

 

 

60 
 



Chapter 3: Rapid estimation of the earthquake potential 

damage zone 

3.1   Introduction 

In the previous chapters, we introduced two different approaches for an on-site EEWS and we 

discussed in details the methodologies and the results of their application to Japan and Italian 

earthquakes. In the present chapter, we present a methodology, called QUAKE-UP, aimed at 

integrating the network and on-site approach to have a more complete and reliable real-time 

characterization of the earthquake source and of the intensity impact of the seismic wave in the area 

affected by the event.  

The proposed strategy is based on the idea to combine the on-site strategy, discussed in Chapter 2, in a 

dense seismic network with the aim to use the on-site measurement to give a prediction of shacking 

expected around the epicentral area. At the same time, using the seismic observations at more stations, 

the system is able to locate and estimate the magnitude of the source with an evolutionary and 

probabilistic approach. 

A complete characterization of the event is given and the impact of the earthquake is predicted through 

the estimation of an early shake-map based on the interpolation algorithm of P-wave parameters 

measured at nodes of the network and the local intensity predicted by the attenuation laws using the 

location and magnitude of the earthquake.  
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FIGURE 3.1. QUAKE-UP CONCEPT: The figure shows the concept idea of Quake-up. The observed nodes (network stations 

drawn as blue triangles) are used to predict the observations on the nodes of a regular grid. The data available (red circles) 

and the values predicted by the P-wave attenuation laws using location and Magnitude are weigh in function of the 

distance from the node (black circles) in order to predict the P-wave amplitude in this point.  

 

This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity and 

Instrumental Intensity and by mapping the measured and predicted P-peak displacement at a dense 

spatial grid, which includes the nodes of the accelerometer array deployed in the earthquake source 

area. The interpolation algorithm is inspired by the concept of USGS shake-map algorithm [Worden, 

C.B et al., 2010].  

In this framework, a software platform was developed, that includes the most advanced techniques for 

a refined estimation of the main source parameters (earthquake location and magnitude) and for an 

accurate prediction of the expected ground shaking level. We apply this methodology on the main 

shock of the recent seismic sequence occurred in the central Italy and on two Japan earthquakes with 

magnitude larger than 7.  
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3.2   Methodology 

This first step of this methodology is the real-time detection and location of event using the RT-LOC 

algorithm [Satriano et al. 2008]. The real-time picker used for the P-wave arrival time detection is 

filter-picker 5 [Lomax et al., 2011].  

 

FIGURE 3.2. P-wave parameters: (a) shows an example of P-wave processing. The data used is the acceleration Z-

component recorded during the Norcia earthquake at Arquata del Tronto site. The black line represents the original 

waveform while blue line is the trace processed by SVD algorithm. Red and blu circles are the maximum of Pa respectively 

on the original and P-dominant trace. (b)shows the realtime measurement of Pa, Pv, and Pd exampling the time window 

from the P arrival time (dashed line) on the original trace (red line) and on  P-dominant trace (black line).  
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The system processes the accelerometric, vertical components of the ground motion, provided by the 

high quality sensors in real-time. The mean value and linear trend are first removed from raw 

acceleration waveforms. A quality check of the input data, based on the signal-to-noise ratio and on the 

Pd/Pv ratio is used to estimate the proper filter (the procedure is the same as performed by SAVE 

system and described in Chapter 1). The system then uses the acceleration waveform to estimate the Pa 

(P-wave pick acceleration). Subsequently, accelerometer data are integrated to obtain the velocity and 

the linear trend is removed again, prior to estimate the Pv (P-wave pick velocity). After a second 

integration, the displacement waveform is obtained. In order to remove the low frequency amplification 

effect caused by the double integration processing, the trace is filtered with the high pass filter selected 

during the quality control phase. In this way, the data-processing provides a robust estimation of the P-

wave pick amplitudes, in acceleration, velocity and displacement, which are then jointly used to predict 

the maximum PGV expected at site.  The local intensity in terms of PGV at the observation site of the 

network is estimated using the following relationships: 

 

Log(PGV)=a*Log(Pa)-b;     [3.1] 

Log(PGV)=a’*Log(Pv)+b’;     [3.2] 

Log(PGV)=a’’*Log(Pd)+b’’;   [3.3] 

𝜔𝜔𝑖𝑖 = 1
𝜎𝜎𝑖𝑖^2

;  𝑃𝑃𝐺𝐺𝑉𝑉 =∑ 𝜔𝜔𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖3
𝑖𝑖=1
∑ 𝜔𝜔𝑖𝑖
3
𝑖𝑖=1

;  𝑖𝑖 = [𝑎𝑎 𝑣𝑣 𝑑𝑑]     [3.4] 

In [3.4] 𝜎𝜎𝑖𝑖 are the standard deviations of [3.1], [3.2] and [3.3] that are retrieved using a specific 

calibration data-set. The amplitude P-wave peaks are measured on an expanded time windows. The use 

of the vertical component reduces the S-wave influence as explained in Chapter 1. Moreover, the traces 
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𝑃𝑃𝐺𝐺𝑉𝑉������ =
∑ [  1

𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠,𝑖𝑖

2
∗ 𝑃𝑃𝐺𝐺𝑉𝑉𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠,𝑖𝑖]𝑁𝑁

𝑖𝑖=1 + 1
𝜎𝜎𝑡𝑡ℎ𝑠𝑠𝑡𝑡

2
∗ 𝑃𝑃𝐺𝐺𝑉𝑉𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡

∑ 1
𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠,𝑖𝑖

2
𝑁𝑁
𝑖𝑖=1 + 1

𝜎𝜎𝑡𝑡ℎ𝑠𝑠𝑡𝑡

2       [3.7] 

are processed using a real-time polarization filter based on the SVD decomposition, described in the 

previous chapter, in order to reduce the S-wave contamination during the peak measurements. 

The expected value is estimated as a weighted average of the PGV obtained from [3.1], [3.2] and [3.3]. 

The weights are the reverse of square uncertainties as written in [3.4]. 

The values of PGV predicted in a generic point of the numeric grid are estimated using an interpolation 

algorithm that combines: 1) the expected PGV from the on-site measurement (PGV on-site) and 2) the 

expected PGV provided by the network-based algorithm given the location and magnitude estimates 

(PGV_GMPE). The algorithm combines this two pieces of information using the following 

relationships: 

𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 = 𝜎𝜎𝑃𝑃𝑀𝑀𝑃𝑃𝐺𝐺 ∙ (1 − exp (−�0.6 ∙ 𝑟𝑟∆))     𝑟𝑟∆ ≤ 𝑆𝑆𝑟𝑟𝑙𝑙𝑖𝑖      [3.5] 

𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 = (𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠|𝑟𝑟∆=𝑆𝑆𝑟𝑟𝑙𝑙𝑖𝑖) ∙ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑟𝑟𝑡𝑡𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑟𝑟∆

      𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 ≥  𝑟𝑟∆ > 𝑆𝑆𝑟𝑟𝑙𝑙𝑖𝑖    [3.6] 

𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 = ∞    𝑟𝑟∆ ≥ 𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥    [3.7] 

 

where Rroi defines the area around the observed points where the observed data influence the PGV 

interpolation more than the PGV estimate through the attenuation law and Rmax defines the limit of 

the area where the observed data influence the interpolation. The setting of these parameters depends 

on the density of the network.   
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FIGURE 3.3. MAPPING ALGORITHM EXAMPLE: The figure shows an example of the MAP interpolation algorithm. The 

black star is the epicenter of event while black squares are the three observation points with high values of P-wave 

amplitudes (Pa,Pv and Pd). The bashed circumferences are the areas of radius Rroi (10km) and Rmax (15km), where the 

observation points influence the estimation of map. Outside form these areas, the map is calculated using  [3.8] – [3.10] . 

The PGV is predicted using [3.1] – [3.4] and finally converted in the Intensity using the table shown in figure. 

 

This approach is barrowed from the generic shake-map interpolation algorithm [Worden, C.B et al., 

2010]. Also the  𝜎𝜎𝑥𝑥,𝑦𝑦,𝑡𝑡𝑜𝑜−𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 and 𝜎𝜎𝑡𝑡ℎ𝑠𝑠𝑡𝑡 are the uncertainties associated respectively to the PGV 

predicted from the on-site measurement of the P-wave peaks while the second one is the standard 

deviation of the following attenuation laws: 

 

log (𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡) = 𝑐𝑐+ 𝑑𝑑 ∗ 𝑀𝑀-e ∗ log(R);    [3.8] 
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log (𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡) = -𝑐𝑐′ + 𝑑𝑑′ ∗ 𝑀𝑀− e' ∗ log(R);  [3.9] 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡) = −𝑐𝑐′′+ 𝑑𝑑′′ ∗ 𝑀𝑀-e'' ∗ log(R);  [3.10] 

 

The 𝑃𝑃𝐺𝐺𝑉𝑉𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 is retrieved using the   𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡,𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑑𝑑 𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 in the [3.1], [3.2], [3.3] and 

the final PGV is obtained using [3.4]. 

In order to give the more reliable values of magnitude, the final value is the median of the below 

estimations: 

𝑀𝑀𝑤𝑤𝑡𝑡 = f ∗ log�𝜏𝜏𝑐𝑐,𝑥𝑥,𝑦𝑦� + 𝑙𝑙;   [3.11] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑑𝑑 = h ∗ log (𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦) + 𝑖𝑖 ∗ log(R)  + l;   [3.12] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑣𝑣 = h′ ∗ log (𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦) + 𝑖𝑖′ ∗ log(R) + l′;   [3.13] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑚𝑚 = h′′ ∗ log (𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦) + 𝑖𝑖′′ ∗ log(R)  + l′′;   [3.14] 

The 𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦,𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦,𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦𝑆𝑆 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑐𝑐,𝑥𝑥,𝑦𝑦 are respectively the P-wave peaks, the hypocentral distance and the 

signal predominant period [Kanamori et al. 2005] measured in real-time at each stations of the 

network. In this way, each triggered stations provide four estimations of Moment Magnitude and the 

real-time out-put of the system is the median value weighted with the respectively P-wave time 

window duration as  described below: 

𝜔𝜔𝑖𝑖 = 1
𝜎𝜎𝑖𝑖^2

; 𝑀𝑀𝑤𝑤𝑝𝑝 =
∑ 𝜔𝜔𝑖𝑖 𝑀𝑀𝑤𝑤𝑤𝑤𝑖𝑖 3
𝑖𝑖=1
∑ 𝜔𝜔𝑖𝑖
3
𝑖𝑖=1

;  𝑖𝑖 = [𝑎𝑎 𝑣𝑣 𝑑𝑑];   [3.16] 

𝑀𝑀𝑤𝑤����� =
∑ �𝑀𝑀𝑤𝑤𝑤𝑤𝑛𝑛+𝑀𝑀𝑤𝑤𝑤𝑤𝑛𝑛�∗𝑇𝑇𝑑𝑑𝑛𝑛
𝑁𝑁(𝑤𝑤)
𝑛𝑛=1

2∗∑ 𝑇𝑇𝑑𝑑𝑛𝑛
𝑁𝑁(𝑤𝑤)
𝑛𝑛=1

 ;   [3.17] 
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Where the 𝜎𝜎𝑖𝑖 are the standard deviations of [3.12], [3.13] and [3.14]. In the [3.17], n is referred at the 

n-th triggered station.   

 In order to have a rapid and reliable convergence to the final magnitude of the event, only the 

recordings within 100km from the epicenter are used, or alternatively the first 30 triggered stations. 

 

FIGURE 3.4. DISTANCE DEPENDENCE OF RISE-TIME: On the left, there are the P-wave parameters (Pa,Pv,Pd) measured on 

an expanded time window from P-wave arrival time (Dashed line). The slope curves are referred at record of Norcia 

earthquake (Mw 6.5) at Amatrice site, about 25 km of distance from the source. On the right, there are the same plots for 

L’Aquila site, about 50 km of distance. Blue indicators show the rise-time of slope curves, that in Amatrice case is about 2-

3 seconds while L’Aquila case is about 4-5 seconds.   

 

The early shake-map is the interpolation of 𝑃𝑃𝐺𝐺𝑉𝑉𝑥𝑥,𝑦𝑦 converted into instrumental intensity. The final out-

put of the algorithm is the map of the predicted shaking intensity produced by the ongoing earthquake. 

It is updated in real-time when the new data-measurement are available or when the estimation of 

location and magnitude change. The data provided from the stations far away from the epicentral area 

are reliable after few seconds of the P time window (PTW) (see comparison between AMT and AQF 
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stations in Figure 3.4). For the station far away from the source, the predicted shacking is 

underestimated respect to the final values because the data (Pv, Pa and Pd) are related to a partial P-

wave packet irradiated by the source. 

As show in Figure 3.4 at station AQF, the convergence at final values of P-wave amplitude parameters 

requires several seconds, for this reason, to avoid the local intensity underestimation, the measurements 

done on a short P-wave time window, where the available P-wave time window is shorter than the 

theoretical Ts-Tp time, computed using localization and a velocity model for the P and S waves (Ts and 

Tp are the theoretical arrival time respectively of S and P phases), are not included in the interpolation 

algorithm. 

3.3   Application and results  

In order to test this Early-warning system concept, we perform three different scenario tests with the 

aim to check the reliability of the strong earthquakes characterization. The events selected are: 

• The Norcia earthquake occurred on october 30, 2016. The moment magnitude of this event is 

estimated by INGV (Istituto Nazionale Geofisica Vulcanologia) as 6.5 Mw and the strong 

shaking is recorder in most part of the central Italy.  

• The 2008 Iwate earthquake with a moment Magnitude of 6.9.  

• The last scenario test is the mega earthquake occurred off the Pacific coast of Tōhoku region in 

2011. It was the most powerful earthquake ever recorded in Japan and the fault region is about 

500 km length. The earthquake and tsunami also caused extensive and severe structural damage 

in north-eastern Japan, including heavy damage to roads and railways as well as fires in many 

areas, and a dam collapse.  
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The test is performed using the accelerometric data recorded at the local network and using the 

simulate the real-time processing like SAVE analysis setting the virtual transmitted package 

duration at 0.5 second. The on-site parameters are estimate in the same way of the SAVE, the 

difference is that in this analysis are using all three parameters in order to have a more reliable 

prediction of the maximum PGV occurred. The information predicted is used at the time that is 

available with the aim to simulate e time evolution of the Location, Magnitude and Intensity map 

prediction. 

In this first preliminary analysis we have observed the evolution in time of the map prediction and 

the source parameters estimation. The speed convergence at the system final estimation depend on 

the network density around the epicentral area.  

3.3.1   Application to 2016 Norcia  6.5 Mw earthquake 

This earthquake is the main shock of the last Italian seismic sequence, started in august 2016, which is 

still affecting the center Italy areas. In order to perform this scenario test, we calibrated equations [3.1-

3.3] and [3.8-3.10] using a a-doc Italian data-set composed by records of earthquakes in the magnitude 

range between 4 and 6 and epicentral distance between 10 and 200 km (The database consists of the 

accelerometric traces provided by the national Italian network, the same used for the calibration of the 

SAVE system and explained in chapter 1). The calibration is performed by processing the data in the 

same way of the real-time processing. The relationship retrieved are the following: 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) =  0.75 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑎𝑎)− 0.74 ±  (0.01);    𝜎𝜎: 0.39  𝑆𝑆2: 0.73     [3.18] 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) =  0.88 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑣𝑣) + 0.54 ± (0.03);    𝜎𝜎: 0.35  𝑆𝑆2: 0.79     [3.19] 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) =  0.73 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑑𝑑) + 1.21 ±  (0.05);    𝜎𝜎: 0.41  𝑆𝑆2: 0.70  [3.20] 

𝑀𝑀𝑤𝑤𝑡𝑡 = 2.90 ±  (0.43) ∗ log�𝜏𝜏𝑐𝑐,𝑥𝑥,𝑦𝑦� + 4.78 ±  (0.10); 𝜎𝜎: 0.46  𝑆𝑆2: 0.39   [3.21] 

70 
 



𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = +0.72 ±  (0.35) + 0.64 ±  (0.06) ∗ 𝑴𝑴 − 2.15 ±  (0.12) ∗ log(R);     [3.22] 

𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = −2.10 ±  (0.32) ±  (0.35) + 0.80 ±  (0.05) ∗ 𝑴𝑴− 1.78 ±  (0.11) ∗ log(R);     [3.23] 

𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = −4.15 ±  (0.41) + 0.97 ±  (0.07) ∗ 𝑴𝑴 − 1.77 ±  (0.14) ∗ log(R);     [3.24] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑚𝑚 = 1.41 ±  (0.13) ∗ log (𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦) + 3.06 ±  (0.32) ∗ log(𝐑𝐑)− 0.62 ±  (0.58);   [3.25] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑣𝑣 = 2.11 ±  (0.19) ∗ log (𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦) + 1.18 ±  (0.08) ∗ log(𝐑𝐑) + 2.71 ±  ( 0.28);   [3.26] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑑𝑑 = 0.96 ±  (0.07) ∗ log (𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦) + 1.72 ±  (0.18) ∗ log(𝐑𝐑) + 4.25 ±  (0.27)  [3.27] 

in the above equations, PGV are the absolute maximum measured on the horizontal components in 

velocity. The Pa,Pv and Pd  are estimated on the P-dominant vertical-components, obtained using the 

SVD polarization filter,  M is the moment Magnitude of the event and R is the hypocentral distances 

from the event.  

 

FIGURE 3.5. NORCIA EARTHQUAKE SCENARIO: The figure shows the data used to perform the scenario test of Norcia 

earthquake (6.5 Mw). The Red star is epicenter while the black triangles are stations used for the analysis.   
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In this first scenario case, the data are provided by the Italian accelerometer network managed by the 

civil protection [Gorini et al. 2010]. The network is built from 235 high quality accelerometer stations 

in a range of distance between 10 and 300 km. The stations density is higher into the region where the 

probability of earthquake occurrence is higher, for this reason more stations are deployed along the 

Apennines ridge (FIGURE 3.5). The offline simulation is performed using a software platform written 

in MATLAB that implements the real-time processing of data and the algorithms discussed in the 

previous section. 

 

FIGURE 3.6. SOURCE PARAMETERS ESTIAMTION (NORCIA): (a) show the time evolution of epicentral location after the 

first trigger of the system. The error is the difference between bulletin INGV location and the location estimate in real-

time by Quake-up.  (b) is the same plot of (a) for the depth. (c) are the real-time estimation of Magnitude form Pd (black), 

Pa (red), Pv (green) and 𝜏𝜏𝑐𝑐 (yellow).     
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 After only three seconds from the first trigger, the RT-LOC algorithm, using the current national 

network deployment, is able to locate the earthquake with a stable position and an error in distance of 

2-3 kilometers from the INGV bulletin location (see FOGURE 3.6 a-b). Figure 3.6c shows that the 

estimation of magnitude is reliable after 10 seconds from the first detection and settle on the final value 

6.1.  

 

FIGURE 3.7. ALERT EVOLUTION AT TARGET SITE (NORCIA): The figure shows the time evolution of PGV predicted (green 

lines) at target site of NRC (Norcia) and ACC (Accumuli). The red lines are the threshold of critical intensity level (VII 

PGV=3.4cm/s) while black lines are the PGV estimate offline on the horizontal components. The time-evolution of PGV 

prediction show an alert time of 0.5 seconds in Norcia at 10 km of distance from source and 3 seconds for Accumuli at 

20km of distance.  

 

The system provides an early alert in particular at the targets near the source where just after 0.5-3 

seconds the intensity predicted is upper than a critical value equal to 7 (see Figure 3.7).  
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In order to evaluate the space and time evolution of the alert, the map of intensity is represented after 

3,5,7,10,12 and 20 seconds form the first alert in figure 3.8. 

FIGURE 3.8. PDZ MAP EVOLUTION(NORCIA): The figure shows the Intensity map time-evolution. The intensity is estimate 

from PGV using the Faenza and Michelini (2010).    
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 The comparison between the final intensity map of the system and bulletin intensity map of USGS 

shows that the principal characteristics of the earthquake  impact is retrieved and the Potential Alert  

 

FIGURE 3.9. PGV-MAP EVOLUTION (NORCIA): In this figure, the evolution of the contoured PGV-map predicted is 

presented. The red arrow show the directivity direction predicted by the contour map. 
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Zone (PDZ) matches the real area where the damage was occurred (see FIGURE 3.9). In addition, the 

contoured map of predicted PGV shows that the north-south directivity of the fault is evident just after 

few seconds of the fracture enucleation (FIGURE 3.8).  

   

 

 

 

FIGURE 3.10. MAP COMPARISON: On the left, there are the final maps of Quake-up while on the left there are the maps 

of USGS bulletin for NORCIA earthquake.  
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3.3.2   Application to Japan earthquakes 

With the aim of testing the method on giant earthquakes, where the source effects (i.e. directivity 

effect) are produced in large scale on shake maps, an application to the Japanese earthquakes was 

performed. The high Japanese seismicity and the very dense national seismic network have allowed a 

large number of seismic data to be available. In this different seismotectonic context it was necessary 

the recalibration of laws and data-set used for it are k-net and kik-net records of earthquakes in a 

moment magnitude range between 4 and 8.3. The data-set used is the same of chapter 3 for Japan 

calibration and using the same criteria adopted for the data-processing in the Italian context, the 

following laws are obtained:  

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) = 1.00 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑎𝑎)−  1.07 ±  (0.02);    𝜎𝜎: 0.32  𝑆𝑆2: 0.71     [3.28] 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) = 0.88 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑣𝑣) + 0.54 ± (0.03);    𝜎𝜎: 0.24  𝑆𝑆2: 0.84     [3.29] 

𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝐺𝐺𝑉𝑉) =  0.68 ±  (0.02) ∗ 𝐿𝐿𝑙𝑙𝑙𝑙(𝑃𝑃𝑑𝑑) + 1.25 ±  (0.03);    𝜎𝜎: 0.33  𝑆𝑆2: 0.70  [3.30] 

𝑀𝑀𝑤𝑤𝑡𝑡 = 3.10 ±  (0.43) ∗ log�𝜏𝜏𝑐𝑐,𝑥𝑥,𝑦𝑦� + 5.89 ±  (0.10); 𝜎𝜎: 0.54  𝑆𝑆2: 0.62   [3.31] 

𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = +1.58 ±  (0.23) + 0.34 ±  (0.03) ∗ 𝑴𝑴 − 1.34 ±  (0.09) ∗ log(R);     [3.32] 

𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = −1.40 ±  (0.18) ±  (0.35) + 0.50 ±  (0.02) ∗ 𝑴𝑴− 1.04 ±  (0.07) ∗ log(R);     [3.33] 

𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦,𝑡𝑡ℎ𝑠𝑠𝑡𝑡 = −3.06 ±  (0.23) + 0.71 ±  (0.03) ∗ 𝑴𝑴 − 1.47 ±  (0.14) ∗ log(R);     [3.34] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑚𝑚 = 2.65 ±  (0.22) ∗ log (𝑃𝑃𝑎𝑎𝑥𝑥,𝑦𝑦) + 3.56 ±  (0.39) ∗ log(𝐑𝐑)− 3.68 ±  (0.90);   [3.35] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑣𝑣 = 1.93 ±  (0.08) ∗ log (𝑃𝑃𝑣𝑣𝑥𝑥,𝑦𝑦) + 2.01 ±  (0.16) ∗ log(𝐑𝐑) + 2.85 ±  ( 0.28);   [3.36] 

𝑀𝑀𝑤𝑤𝑝𝑝𝑑𝑑 = 1.38 ±  (0.05) ∗ log (𝑃𝑃𝑑𝑑𝑥𝑥,𝑦𝑦) + 2.03 ±  (0.15) ∗ log(𝐑𝐑) + 4.33 ±  (0.24)  [3.37] 
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In the first japan scenario case, the testing data are used 205 records of Iwate (2008) earthquake. Figure 

3.11 shows the distribution of the stations used. 

FIGURE 3.11. STATION DISTRIBUTION (IWATE): A map of stations (black triangles) distribution was provided. The red star 

is the epicentral location of the earthquake.   

 FIGURE 3.12. SOURCE PARAMETERS ESTIAMTION (IWATE): (a) show the time evolution of epicentral location after the 

first trigger of the system. The error is the difference between bulletin location and the location estimate in real-time by 

Quake-up. (b) is the same plot of (a) for the depth. (c) is the real-time estimation of Magnitude compared with the real-

one (black-line). 
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With the new calibration, the system estimates the magnitude of the event upper than 6.0 just at first 

time of detection and upper 7.0 after 15 seconds. The achievement of the final value occurs after 20 

seconds when the system provides a magnitude 7.2 (see FIGURE 3.12).  

 

FIGURE 3.13. PDZ MAP EVOLUTION (IWATE): The figure shows the Intensity map time-evolution. The intensity is estimate 

from PGV using the Wald et al., 1999.  The maps are printed, respectively from top-left at down-right, after 

2.5,3,4,6,10,15,20 and 25 seconds from the first trigger.   
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As the previous case, the location of earthquake is reliable in particular the epicenter location (3.12b). 

The shake-map predicted matches the real-one pretty well. At south-west of epicenter in figure 3.15, 

after 15 seconds, a patch of critical intensity is shown, that indicates a fault directivity change 

compatible with the fault model valued with aftershock distribution and used in Y. Ohta et al. [2008].  

 

FIGURE 3.14. PGV MAP EVOLUTION (IWATE): The figure is the same of 3.13 but show the time evolution of the contoured 

PGV-map.    
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FIGURE 3.15. MAP COMPARISON (IWATE): The figure shows a comparison between the USGS shake-map (on left side) 

and the Quake-up make produced after 30 seconds from the event detection.  
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FIGURE 3.16. STIATIONS DISTRIBUTION (TOHOKU-OKI): The figure shows the distribution of 275 stations used for the 

Tohoku-Oki scenario test (black triangles). The red star is the epicenter of the Tohoku-Oki earthquake.  

 

The second Japan scenario test is the 2011 Tōhoku-Oki earthquake. The station distribution is provided 

in Figure 3.16. The coseismic surface displacement data observed by GEONET reveals a total major 

rupture length reaches about 380 km with a fault width of 90-130 km [S. Ozawa et al. 2011]. The 

earthquake was initially reported as 7.9 Mw by the USGS before it was quickly upgraded to 8.8 Mw, 

then to 8.9 Mw, and then finally to 9.0 Mw. One minute before the earthquake was felt in Tokyo, the 

Earthquake Early Warning system, which includes more than 1,000 seismometers in Japan, sent out 

warnings of impending strong shaking to millions. It is believed that the early warning by the Japan 

Meteorological Agency (JMA) saved many lives. However, the estimated intensities were smaller than 

the actual ones in some places in Kanto and Tōhoku regions. This was thought to be because of smaller 

estimated earthquake magnitude due to the limited P-wave time window used for the real-time analysis. 

This test is very important to prove that the use of an expanded time window can prevent saturation of 

laws [3.28]-[3.37], in fact, the final magnitude estimation is 9.0 provided 120 seconds after the first 

detection (Figure 3.17). 
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 As shows the figure 3.17c, in first time the magnitude is about 4-5 while after 30 seconds the 

magnitude rise over 7 and finally over 8 after 40 seconds.  

 

FIGURE 3.17. SOURCE PARAMETERS ESTIAMTION (TOHOKU-OKI): This is the same figure of 3.12. 
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FIGURE 3.18. PDZ MAP EVOLUTION (TOHOKU-OKI): This is the same figure of 3.13 for Tohoku-Oki earthquake. The Map 

times a FIGURE 3.19. PGV MAP EVOLUTION (TOHOKU-OKI): This is the same figure of 3.14 for Tohoku-Oki earthquake.re 

at 10,20,30,40,60,80,100 and 120 seconds after the event detection.  
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FIGURE 3.20. MAP COMPARISON (TOHOKU-OKI): This is the same figure of 3.15 for Tohoku-Oki earthquake. 

 

In the final provided map the great part of strong shaking areas are recovered. At 100 seconds from 

first detection, critical values of local intensity, due to southern fracture propagation, are correctly 

predicted in Tokyo region.  
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3.4   Discussion 

In this analysis the innovative and reliable real-time methodology for detection and characterization of 

earthquake impact was proposed. The base idea is to combine the network and on-site approaches with 

the aim of taking advantage of both methodologies. This strategy has allowed us to have a precise 

characterization of both the source parameters and the shaking intensities in the area where the seismic 

network is present. It is clear that for the optimal performance of system, a modern and dense network 

with high quality accelerometric stations and  low latency data transmission was required.  

The algorithm was implemented in a Matlab offline platform that simulates the real-time data analysis 

and was called Quake-up. In order to perform the scenario tests we have selected three events: two 

large magnitude earthquakes (Norcia 6.5 M and Iwate 7.2 M), and a mega-thrust earthquake (Tohoku-

Oki Mw 9). Using the local data, the system was calibrated for the Italian and Japan seismic-tectonic 

contexts (laws [3.18]-[3.37]). As expected, the calibration process showed the differences of law 

coefficients especially for attenuation laws ([3.21]-[3.27] & [3.31]-[3.37]) and for M vs 𝜏𝜏𝑐𝑐 

relationships ([3.20] & [3.30]).  

During the testing phase, the performance are evaluated in term of quickness and reliability of the 

information provided by Quake-up. The reliability is evaluate comparing the data predicted with the 

earthquake bulletin information while the time-evolution of estimation was provided to show the 

rapidly of the methodology. In any case, the scenario tests highlighted a great reliability for the 

intensity map provided. The comparison with the USGS maps shows that the major features of the map 

are recovered (see Figures 3.10, 3.14 and 3.20), particularly in the epicentral area, where the extensive 

source effect is evident. The time evolution of contoured PGV-maps (Figures 3.9, 3.14 and 3.19) shows 

that, the effects of directivity are already clear few seconds after the fracture enucleation. In detail, the 

southeast directivity of the Norcia earthquake is highlighted with red arrows in Figure 3.9 just after 5 
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seconds from the first trigger. The rapidity in source parameters estimation is strongly influenced by 

the density of network in the epicentral area. The fastest convergence for Magnitude and Location is 

obtained for the Norcia earthquake scenario, where the density in the epicenter is highest (about 0.9 

stations/𝑘𝑘𝑘𝑘2). In this case, the rise-time of Magnitude estimation is 8-9 seconds after the first trigger 

(Figure 3.6). In Iwate scenario case, the convergence is obtained after 20 seconds with a network 

density in epicentral area about three times lower than Norcia scenario. From point of view of the 

alerts, the use of on-site predictions benefits the quickness of alert in particular for sites very close to 

the source, as for Norcia site in the first scenario case (see Figure 3.7) where the alert is give after 0.5 

seconds form the event trigger.  

The system is able to select the P-wave part of signal using the real-time polarization filter that permits 

the expansion of the portion of signal processed indefinitely without worrying about the inclusion of 

other seismic phases. This advantage allows to avoid the saturation of correlation laws used for the 

final estimation of magnitude and intensity. This is more important for the large earthquakes (such as 

the 2011 Tohoku-Oki earthquake), where the duration of the fracture at source is upper than 50 seconds 

[H. Yue, 2013], for this reason the portion of signals useful for the reliable estimation of source 

parameters and local intensities are higher than the arrival times of other seismic phases (as S-wave). 

The polarization filter strategy is necessary to estimate the peak amplitude of the P-wave signal on the 

expanded time window avoiding the overestimation. The Tohoku-Oki scenario test shows a 

convergence of the magnitude estimation after 50 sec, compatibly with the duration of source time 

function, and the plateau is at 9 as the Bulletin value (FIGURE 3.17). The location is not reliable due to 

the low azimuthal coverage of network, distributed all over the western side of the earthquake (see 

Figure 3.16), and an unsuitable velocity model (Ueno et al. 2002) for offshore event. Contrariwise, the 

intensity map obtained is reliable and the area of critical shaking are well recovered. The southern 
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directivity of the fracture process is evident from the map of PGV, after 120 seconds after the event 

trigger (Figure 3.19) and the final intensity map is very similar to the USGS shake-map (Figure 3.20).  
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Chapter 4: Early warning system embedded into a 

seismic station  

4.1   Introduction 

In this chapter we will describe the research and development phases aimed to implement the SAVE 

algorithm in an embedded system, which is able to record the seismic waves, process the data acquired 

and provide to the end-user an alert. The project is the result of a 6-month internship period in a 

company, followed by a co-tutor, Dr. Claudio Martino, technologist at the Osservatorio Vesuviano 

(INGV institute) in Naples, to acquire technical knowledge and deal with technological development. 

The company selected for the researching cooperation is the TMEsrl (Test and Manufacturing 

Engineering), which has large experience in designing and manufacturing of software and hardware 

solutions. During this period, a synergic collaboration has been developed due to the necessity of 

performing the hardware design of the data-logger and the computational analysis unity able to run the 

SAVE algorithm discussed in the first chapter. 

The station is able to acquire the high quality seismic data from one or two 3-components seismic 

sensors with a maximum of 6 separate channels. The records are provided via TCP-IP port using a 

seedlink protocol and the local storage is done.  

The digitization is performed with six 32-bit Analogic-Digital-Converter modules, able to digitalize 

data with high amplitude resolution. The recorded data is adequate for seismic analyzes performed by a 

low power mini-pc embedded. The merger of my scientific expertise and the engineering skills of the 

TME company has resulted in the development of prototypes currently being tested at some strategic 
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sites selected in the area of Irpina, where the ISNET (Irpinia Seismic NETwork) is currently installed 

and working.  

4.2   MOMA project  

The project MOMA, acronym of MonitOring seisMic stAtion, was born in order to develop an 

advanced low-power station that consists of a data-logger able to digitalize the analogic signal, 

provided by the seismic instrumentation, storage and send the records and waveforms via internet 

network. The step forward was to integrate an on-site EEWS able to define a critical alert level and do 

preventive automated risk mitigation actions. The best strategy to provide a more reliable alert is to use 

external high-quality accelerometers and for this purpose, two versions of the MOMA prototypes were 

made, with internal and external sensors. 

4.2.1 On-board sensors 

The station was equipped with an internal sensor, consisting of two different types in order to provide 

the accelerometric and velocimetric signal. The first one is a triaxle MEMS accelerometer with a full 

scale settable to 2g or 6g. The sensor sensitivity is 50 𝜇𝜇𝑙𝑙/√𝐻𝐻𝐻𝐻  at a full scale of 2g. This sensitivity 

does not allow the sensor to record small seismic events, but only strong ground shakes (M > 3.5) with 

epicentral distance less than 10km.  

Accelerometer 

• Full scale range:  ±2g or ±6g 

• Low power consumption (≅1 mW ) 

• Acceleration noise density (±2g) : 50 μg/√Hz 
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• High shock survivability (10000 g) 

 

The velocity is recorded by a 3 channel geophone with the resonance frequency of 4.5 Hz. This type of 

sensors is usually used for monitoring and recording microsismicity (M < 3.5).  

 

Geophone 

• Frequency (Hz): 4.5 +/- 10% 

• No power consumption. 

• Distortion (%): <0.3 

• Damping: 0.6 +/- 10% 

• Coil Resistance (Ω): 375 +/- 5K 

• Sensitivity (V/m/s): 28.8 +/- 7.5% 

• Max Coil Excursion (mm): 4mm 

• Temperature Range (°C): -40 / +70 

In any case, the maximum amplitude of the analogic signal provided by the internal sensors are limited 

at 2.5 Vpp.  

4.2.2 Analog to digital conversion 
 

For the digitalization operation, the A/D conversion is based on 6 single-chip analog to digital 

converter with an integrated, low-noise programmable gain amplifier and two channel input 

multiplexer. The converter uses a fourth-order delta-sigma (∆∑) modulator that provides high-
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resolution performances with than more 132 db SNR (@100 SPS), low noise (5 𝑎𝑎𝑉𝑉/√𝐻𝐻𝐻𝐻) and high 

input impedance allowing easy interfacing to sensors over with range of gains.  

 

Data Acquisition (ADCs): 

• Input level: 5Vpp (for internal sensors)  

or 40Vpp (for external sensors). 

• Impedance: 16kΩ 

• HW Gain: 1 to 4 

• Type: Individual 32-bit Delta Sigma  

converter per channel (synchronuos) 

• 100 sps ≈132dB (RMS noise to RMS clip)  

• Sampling rates: 125, 250, 500Hz  

The data stream provided by A/C are acquired at the CPU module capable of decimate using a FIR 

causal filter and formatting data in the seedlink standard protocol and synchronize the bit-stream to 

the periodic signal produced by the integrated gps antenna with precision of ≤ 20 ns (Clear sky). 

The CPU module is developed using a low power ARM Cortex-M4 and 512kb of RAM memory 

sufficient to manage a light firmware. The data buffer is storage on internal flash-memory (for more 

than two months of data storage) and ready to processing.  

4.2.3 Timing module (GPS) 
 

The Timing module is based of the LEA-M8T module. LEA-M8T deliver high integrity, precision 

timing in demanding applications world-wide. Support for BeiDou, GLONASS and Galileo 

constellations enables compliance with national requirements. Enhanced sensitivity and concurrent 
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constellation reception extend coverage and integrity to challenging signal environments. Survey-in 

and fixed-position navigation reduce timing jitter, even at low signal levels, and enable 

synchronization to be maintained with as few as one single satellite in view. Same technical 

specifications are reported below: 

 

Features - Timing  

• Timing accuracy Clear sky:     ≤ 20 ns  

• Time-pulse frequency:             0.25 Hz – 10 MHz  

• Time-pulse jitter:                        ±11 ns  

• Time-mark resolution:                21 ns 

• Integrity reports:                         RAIM active, phase uncertainty 

time-pulse rate/duty-cycle 

• Operating temp:                    –40° C to 85° C 

• Storage temp:                        –40° C to 85° C 

 

The signal generated by GPS module (1kHZ) is deliver to A/D converter in order to synchronize it with  

this reference signal and the final digital stream data is acquired by CPU module through 6 SPI (Serial 

Peripheral Interface) ports, synchronous serial communication interfaces. 

The next step was to organize the data into a local database of daily records and provide the stream of 

data with a low latency (lower than 0.3 sec) at one or more client instances.  All these tasks are 

managed by the Linux embedded system on a single-board computer designed around the Microchip 

AT91SAMG25 (ARM9@400MHz MPU) equipped with a 256mb ram memory. The Linux system is 
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customized in order to hosts SeisComP (the SEISmological COMmunication Processor) software and 

others tools able to manage the mini-seed data. SeisComP platform acquires the data from a serial port 

of a CPU module and manages a seedlink server in charge of management of one or more client 

connections via TCP/IP port.  

4.3 End-user interface 
 

The configuration webpage is provided, built using HTTP and java-script programming language.  

Figure 4.1: MOMA WEB-PAGE. (1) Panel 1) Shows the home-page of MOMA web interface. The mains information of page 
are highlighted with red square: (a) info about the system times, Station name and geographical coordinates and GPS 
state; (b) are the channels information about name, sampling rate, Gain and status; (c) are the information about the 
Power voltage and consumption, internal temperature, date of the last system boot and last GPS fix, free disk space and 
battery charger. Pages (2) (3) (4) and (5) can be accessed through a specific button on the main page. On (2) page, the user 
can set station ip, network sub mask and gateway. In (3), channel names, sampling rate gain and stations parameters can 
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be set. In (4) the information about the software are provided and it is possible to update the digitizer firmware. At last, 
on page (5), the user can download form the station the local dataset the data in mseed format selecting channels and 
stations information.   

 

In the web page, the end-user can customize any station information as: station name, network name, 

location code, location coordinates. Furthermore, the user can change the acquisition parameters such 

as sampling rate, able or disable channels and change channel names. The webpage gives the same 

information: the connection state, CPU usage and temperature and the download section is provided in 

order to recover data from the local data-base.    

4.4 EEWS for MOMA 
 

Originally, SAVE algorithm was implemented in a C++ code, which was designed to be used on PC 

computers. A customization of the software was made in order to run the code on low power integrated 

systems. The graphic part of the platform was eliminated and the user screen was replaced with a 

webpage that provides the number of declared daily events and the respective classification of 

intensity, magnitude and expected hypocentral distances. The source code and the necessary libraries 

were then recompiled for ARM environment. The final version of software was installed and tested on 

prototype stations located in Irpinia region. The software performance and proper operation is 

monitored analyzing the log files provided in real-time and located in the flash  memory. 
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Figure 4.2: SAVE WEB-PAGE. (a) Shows the home page of the SAVE web page. The information about the last alerts is 

given. The time window of list can be selected as the last 24h, week, month and year. The user can select all event list or 

customize the research. The list provides information about the time (UTC) of alerts and the classification of events in the 

term of Magnitude, distance and intensity declared. Using the statistics button on the homepage, the (b) page is provided, 

where are the histograms of the local intensity declared in function of time of declaration and intensity level predicted. 
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4.5   Spectral straightening of the Geophone response  

The geophone at 4.5 Hz is a useful sensor to acquire the surface microsismicity (0.1<M<4) in 

particular, in particular, the possibility to improve the performance of this sensor was investigated. 

In the final part of this analysis, three seismic events recording at the MOMA station are collected. The 

signals are compared with a reference instrumentation located in the same site and the site located in 

Rocca San Felice (AV) where the station RSF3 of ISNet network is installed. RSF is equipped with a 

broadband velocimeter TRILLIUM-40S of Nanometrics and an accelerometer Guralp CMG-5T. The 

traces recorded at the same time and at same site by MOMA and TRILLIUM have been used in order 

to expand the useful spectral acquisition band of Geophone in the way described below.  

The exact spectral response of the Geophone is recovered using the spectral ratio between the 

amplitude spectrum of the record at Geophone and the same signal recorded at TRILLIUM corrected 

by its instrumental response, which is best explained by the following equation: 

𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 =
�𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 ∗ 𝑆𝑆𝑖𝑖𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙�

�
𝑇𝑇𝑟𝑟𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑢𝑢𝑘𝑘𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 ∗ 𝑆𝑆𝑖𝑖𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙

𝑇𝑇𝑟𝑟𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑢𝑢𝑘𝑘𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝
�

�    [4.1] 

 

Where the “*” and “/” are respectively product and division in the frequency domain while  𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 and 

𝑇𝑇𝑟𝑟𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑢𝑢𝑘𝑘𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 are respectively the Geophone and Trillium frequency response. Finally 𝑆𝑆𝑖𝑖𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙 is the 

spectrum of the signal without the instrumental response.   
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Figure 4.3: SINGAL COMPARISISON. The figure shows a comparison between the vertical component records by internal 

geophone of MOMA and the same signal records by trillium and corrected for the instrumental response. The example is 

an earthquake of the local magnitude 2.2 occurred in Irpinia region.   

 

Figure 4.5: Geophone spectral response. The figure shows the instrumental response of the Geophone for vertical (green 

line) east-west (red line) and north-southern (black line) components using the relation [4.1] and the logarithmic spectral 

smoothing.  

 

The 𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝 (Figure 4.5), estimated by this procedure, has been used to correct the signal recorded by the 

Geophone and the low frequency instability is corrected with a filter Butterworth 2 pole high pass with 

corner frequency of 0.5 Hz.  

98 
 



Through this processing was possible to retrieve, with good quality, the signal spectrum between 0.5 

and 4.5 Hz (see Figure 4.6.), otherwise certainly damped by the sensor.  

 

Figure 4.6: Signal comparison after the spectral straightening. The figure shows the new comparison of the same signal 

of figure 4.3 the deconvoluted signal of Trillium filtered with a Butterworth band pass filter [0.5  35] Hz and the Geophone  

signal corrected using the 𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝  and filtered with the same  Butterworth bandpass filter.   

 

4.6   Discussion  

The MOMA project is a work-in-progress task managed by RISS.srl, an university spin-off supported 

by RISSClab research group. To give my contribution to this project, a 6-month internship at TME.srl 

(partner of Riss.srl) was planned. During the internship, the hardware development phases of the 

station have been followed and the implementation of SAVE EW system in MOMA was done.  

In the present chapter, the technical details about the implementation of the data-logger and on the 

internal seniors were provided (section 4.2). In the section 4.3 and 4.4, the end-user interfaces of the 

data-logger and SAVE alert system have been described while, in section 4.5, a procedure of spectral 

straightening of internal geophone response, aimed to increase the sensor bandwidth, was described 

and tested with good result on a seismic signal (see Figure 4.6).  
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Conclusions 
 

In chapter 1 we focus on the development of a rapid, stable, but approximate methodology for an on-

site EWS. 

The work described in this chapter is the result of a collaboration with the research team (RISSClab). 

The methodological part and the data processing techniques were developed in collaboration with the 

research group while  the data-set formatting, refinement of the EW methodology and the testing phase 

was the result of my work in the first year of PhD. 

The methodology we described is robust, since it requires the fulfillment of strict  criteria for testing the 

quality of the real-time streaming data. Among them, the 𝑆𝑆𝑆𝑆𝑆𝑆 is used to distinguish spurious transient 

signals from true earthquake detections, while the 𝑃𝑃𝑑𝑑/𝑃𝑃𝑣𝑣 ratio is a powerful way to discriminate noisy 

waveforms, which are still affected by low-frequency drifts after the double integration and filtering 

operations. The correct evaluation of the initial peak displacement in real-time is the first strategy to 

minimize the percentage of over/underestimations of the expected earthquake magnitude and ground 

shaking at the target site. 

For most of the analyzed cases, SAVE is able to deliver a correct warning shortly after the P-wave 

detection. A time window of 1 second is indeed enough to provide reliable information about the main 

source parameters and the expected ground shaking at the target site. The estimates are then refined (or 

confirmed) when longer P-wave time windows are used (2, 3 seconds). The SAVE algorithm has been 

implemented in a seismic station through the development of an embedded system called MOMA. The 

technical details and project description are provided in chapter 4. 

Subsequently, in chapter 2, a refined and innovative approach for on-site early warning system is 

explained and tested. My contribution in this work has been to develop all aspects of the described 

methodology and performance evaluation in cumulative and scenario tests. The data-set formatting is 
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the result of a previous job. 

In the proposed approach to on-site EEW, the initial amplitude parameters are continuously measured 

along the ground motion recordings and the use of limited P-wave signals, used in SAVE approach, has 

been replaced by the concept of expanded P-wave Time Windows. Standard approaches to EEW, 

which are based on the use of short portion of the P-wave signal, may significantly fail when dealing 

with the very large events. The empirical regression relationships between these parameters and 

magnitude, based on few seconds of P-wave, saturate beyond a magnitude threshold that can be 

estimated into the range 7-7.5 (Kanamori, 2005; Rydeleck and Horiouchi, 2006; Rydeleck et al., 2007; 

Zollo et al., 2007; Festa et al., 2008). This saturation is due to the imaging of a small portion of the 

fault plane. When an earthquake rupture extends for hundreds of kilometers on the fault, the large 

asperities possibly encountered far away from the hypocenter may control the rupture dynamics. The 

analysis of strong motion data of the Mw 9.0, 2011 Tohoku-Oki mega-thrust earthquake confirmed that 

larger time windows are necessary to properly estimate the size of the ongoing event (Colombelli et al., 

2012b; Colombelli et al., 2014). The possibility of expanding the observation time window allows 

capturing longer portions of the rupture process and lower frequencies radiated from the source, thus 

possibly avoiding the saturation effect causing the earthquake magnitude underestimation.  

In terms of practical operations, a possible risk when expanding the P-wave time window is the 

inclusion of S-waves. The S-wave amplitude, if not properly considered, may lead to overestimations 

of the predicted ground shaking level. To avoid this effect a robust and reliable algorithm to generate a 

“P-wave dominant” signal was proposed and tested. Cumulative statistics indicate false alerts decrease 

due the application of this strategy. Another important aspect is that the single parameters approach, to 

predict the local intensity, has been replaced by a multi-parameter approach. The overall statistics 

confirmed that the performance of the system significantly improves when the combination of three 

parameters is used, with a relevant increase of successful alarms and a substantial reduction of false 
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alarms. The empirical combination of three different parameters provides a broader insight into the 

ongoing phenomena, while keeping the methodology, at the same time, reliable and as simple as 

possible. Compared with the standard on-site methodologies, this approach is likely to provide reliable 

warnings and more robust prediction of potential earthquake damaging effects.  

The proposed methodology is conceived to operate as a single-station, threshold-based, EWS and is 

expected to improve the reliability of an on-site system, for those cases where no information or 

constrain on the earthquake source is available in real-time. On-site EWS are extremely useful both 

when the target is too close to the source area and when a high level of accuracy is required in real-time 

for the warning declaration. Contrariwise, a weak point of the single station approach is the false 

alarms due by the poor information useful to define the alert. Therefore, a multi-station approach is 

necessary to improve the reliability of the alert and in this way, in chapter 3, the development of a 

network based system has been done. The idea of this approach is based on the interpolation of data 

obtained from individual stations. The methodology proposed has proven to be innovative, reliable and 

useful to provide a rapid alert message strictly constrained. In addition, a complete characterization of 

earthquake impact is provided using a consolidated algorithm of data interpolation (like USGS map) 

able to build a realistic map of predicted impact. All scenario cases confirm a good performance of the 

system in term of source parameters estimation and reliability of predicted intensity map where 

extended source effects are visible already after few seconds form the event trigger. The quickness of 

source parameters convergence significantly depends on the network density around the epicentral area 

and the duration of the source time function. In conclusion, the test performed during these analyses 

and the results obtained, show that the multi-parametric approach is useful to increase the reliability of 

the system. Also, the robust processing of data in order to increase the reliability of parameters used for 

predictions is necessary and crucial for a correct definition of alerts. In this way, the development of 

more robust criteria for bad quality data exclusion and data adaptive filtering are key objectives for 
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having a reliable and performing system, and for increasing the statistical reliability of the automated 

tools. Furthermore, the possibility to obtain a complete characterization of the ongoing earthquake in 

term of source parameters and expected shaking is possible using a dense network deploy on the area 

of interest. A future perspective is the development a software platform that implements the Quake-up 

real-time system and end-user visual display where the most relevant pieces of information will be 

displayed and updated as soon as new data are available. 

Chapter Three is the synthesis of work done in these three years of PhD and uses the methodologies 

described and developed in Chapters 1 and 2. The technique for the shake map building and all tests 

described are the product of the work done during the last year of PhD. 
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