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Abstract 

Azobenzene-containing materials are one of the most investigated photo-responsive 

material classes over the last decades. The main reason of such huge interest is their 

ability to develop superficial reliefs in response to the irradiation with spatially 

structured optical fields in the UV/visible optical range. This phenomenon has been 

understood as generated by a light-driven macroscopic mass transport of the host 

material (typically an amorphous polymer) driven in non-trivial way by the microscopic 

photo-isomerization dynamics of the azobenzene molecules embedded into it. Even if 

the exact physical link between the light-induced molecular dynamics and the 

macroscopic mass displacement is still debated, some of the fingerprints of the 

phenomenon are fully established. The mass migration, indeed, happens only in 

illuminated areas of the material and it is highly directional, with a very peculiar 

sensitivity to the intensity and polarization distributions of the irradiating light field. 

Since its discovery in 1995, the possibilities offered by this effect for superficial 

pattering have been largely exploited  and recent advances in this field are now oriented 

toward the realization of complex superficial textures. In the present thesis are proposed 

two main ideas to accomplish this complex light-driven structuration onto the 

azopolymer surfaces. The first idea is based on the use of complex structured intensity 

patterns to irradiate a plane azopolymer film. Such approach can have a two-fold 

relevance in the azobenzene related research fields. If, on one hand, the use of complex 

illumination patterns has already been demonstrated to be a fundamental tool in order to 

highlight new aspects of the mass migration phenomenon, on the other hand the 

possibility to achieve a precise control on the complex illumination patterns allows the 

actual employment of the azomaterials as versatile platform in photo-lithographic 

applications. In particular, the holographic illumination technique described in this 

thesis opens unprecedented possibilities in both the mentioned research areas. The 

second idea is instead based on the light-driven reconfiguration of azopolymer surfaces 

presenting a pre-patterned micro texture. In this situation the illumination pattern can be 

maintained as simple as conceivable, being constituted even only by a single polarized 

light beam. However, a great variety of three-dimensional micro-architectures can be 

obtained using this approach. In particular, azopolymer surfaces having a directional 

and reversible geometrical asymmetry are achieved by tuning few illumination 

parameters. These asymmetric microstructures, furthermore, have the ability to tailor 
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several physical macroscopic features of the surfaces, as for example the wettability 

properties of the azomaterial films. In this thesis is reported a detailed study of such 

light-controlled wettability tuning, highlighting once more the possibilities offered by 

this unique photo-responsive material framework for applications in many fields of 

science. 
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Introduction  

Azobenzene-containing materials (or briefly azomaterials) are material systems in 

which the azobenzene molecules are bonded, via covalent or supramolecular 

interactions, to another material, typically a polymer. Many of the peculiar physical 

properties of this class of materials are to be attributed to the particular kinetics that the 

azobenzene molecules undergo when illuminated with UV and visible light. Indeed, the 

absorption of a photon with suitable energy (λ= 200 – 550 nm), produces cyclic 

structural transitions of the azomolecules between the trans and cis isomerization states. 

These two isomerization molecular states differ in terms of conformational geometry, 

occupied volume and molecular dipole moment [1–4]. More specifically, in the trans 

form the molecule assumes a planar rod-like configuration, with an almost zero dipole 

moment. In the cis form, instead, a 3D molecular configuration is realized, with a non-

zero dipole moment. The interaction of the azochromophores with the irradiating light 

field can be described as a dipole interaction. The probability of the absorption of the 

photon having the proper energy depends on the reciprocal orientation of the molecular 

dipole moment and the actual direction of the radiation electric field (𝑃~|𝐸⃗ ∙ 𝑝 |
2
). This 

type of interaction causes a reorientation of the of free azomolecules illuminated with 

linearly polarized light, obtaining a final configuration in which all the molecules are 

aligned in the direction perpendicular to the light polarization direction [1]. Depending 

on the material environment, a wide variety of physical phenomena have been 

recognized as driven by the photoisomerization in azobenzene-containing materials. 

These include material anisotropy, non-linear optical response, photo-alignment of 

liquid crystal networks and even mechanical photo-actuation effects  [1,4]. 

The most attractive phenomenon related to the azobenzene photo-isomerization 

dynamics occurs with good efficiency in solid films of amorphous azomaterials 

(polymers and molecular glasses) irradiated by UV/visible light. When exposed to non-

uniform light patterns, the free surface of the azomaterial films is subject to a light-

driven structuration which depends strongly on the intensity and the polarization 

distribution of the optical field over the surface. The first studies, in 1995, related to this 

phenomenon reported about the appearance of sinusoidal surface modulations when the 

azopolymer is irradiated with the sinusoidal intensity pattern produced in the 
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interference of two coherent light beams. The peculiar dependence of the growing rate 

of the inscribed Surface Relief Gratings (SRG) on the polarization state of the 

interfering beams, together with the possibility to erase the surface reliefs by shining 

polarized (or unpolarized) light [5] and eventually rewrite them with a new interference 

pattern, have allowed to reject any hypothesis which would ascribe the surface 

modulation to some destructive phenomena (e.g. material ablation) [6,7]. Indeed, the 

phenomenon occurs at light intensity much smaller than that necessary for ablation and 

for temperatures well below the glass transition temperature Tg of the polymers. On the 

contrary, the surface structuration has been found to arise from a macroscopic light-

driven material transport, initiated by the intricate dynamics of the azomolecules 

embedded in the material matrix. Once the main aspects of the surface structuration 

have been phenomenologically understood, a huge variety of different illumination 

schemes and engineered azomaterials have been proposed over the years to achieve 

efficient surface relief inscription [8–11]. At the present, this phenomenon represents a 

valid technique for complex surface structuring and it has found applications in many 

technological areas as surface engineering [3,12], photonics [4,13] and biology [14], 

among the others. However, despite the huge diffusion of the azomaterials in 

application-oriented experiments, a complete fundamental understanding of the 

microscopic physical mechanism driving the peculiar macroscopic material motion is 

still lacking. While the mass migration is recognized to be initiated certainly by the 

photoisomerization dynamics of the azochromophores, none of the microscopic 

models [15–20] proposed over the years is able to unambiguously and quantitatively 

relate the dynamics at the micro and nanoscale to the directional motion at the 

macroscale of the azopolymers. The use of spatially structured complex illumination 

patterns has revealed to be a tool of crucial importance to elucidate some fundamental 

aspects of the phenomenon. The most clear example is represented by the spiral surface 

reliefs inscribed into the azopolymer films under irradiation of focused optical vortex 

beam [8]. Very recently, the study of these peculiar surface reliefs allowed the 

development of a phenomenological model for the mass transport which is gaining 

increasingly importance for the description of many surface topographies obtained in 

non-standard illumination conditions.  

The ability in precisely control the intensity pattern of the irradiating light can give 

new chances not only for the studies at fundamental level, but also in practical 

applications. At this aim, the use of Computer-Generated Holograms (CGH) [21] is 

certainly a very promising approach to generate almost arbitrary illumination patterns, 

opening to a more inclusive use of the complex surface reliefs inscribed onto the 

azopolymer films in the field of the photo-lithography. The access to complex 
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superficial topographies onto the azomaterial films does not necessitate always the use 

of complex illumination schemes. Even the quasi-homogeneous field of an expanded 

Gaussian beam can induce complex topographies onto the surface. Indeed, while the 

irradiation of an homogenous light field is able to inscribe periodic surface modulations 

(the Spontaneous Surface Relief Gratings, SSRG) onto the surface of flat azopolymer 

films [22], the same illumination condition produces complex superficial textures if the 

azopolymer surface is pre-structured in form of an array of micro-posts [3,10,23]. In this 

situation, the directional dependence of the azomaterial displacement can be used to 

control the degree of asymmetry that the light-reconfigured microstructures confer to 

the surface. In this way, macroscopic physical properties as the adhesion and the 

wetting properties can be finely tuned by controlling the irradiation conditions [12].  

The present thesis moves in this application-oriented field of research, where the 

complex light-induced surfaces of azomaterials are gaining more and more relevance. 

Also the potential perspectives offered by the interaction of the complex illumination 

fields with the azomaterial surfaces toward the understanding of the mass migration 

phenomenon at the fundamental level are not left out from the discussion conducted in 

the thesis. The work presented herein is the result of the efforts that I and my group 

made in the last years toward the investigation of the mass migration phenomenon and 

its possible applications, in both well-established and new experimental situations. For 

this reason, the thesis contains experimental data about new illumination approaches (as 

the use of computer-generated holographic intensity patterns), peculiar surface reliefs 

obtained in non-standard illumination conditions and specific applications (the 

wettability tailoring of the azopolymer surfaces). Furthermore, whenever it was 

possible, our own experimental data concerning also the standard illumination 

configurations (as the SRG, the SSRG and the surface reliefs arising from focused 

Gaussian beams) were included and discussed.    

The compendium of this thesis is organized as follows: Chapter 1 gives a 

description of the photochemistry and of the photo-initiated dynamics of the azobenzene 

molecules. The main aspects of the light-induced mass migration occurring in 

azobenzene-containing materials under standard illumination conditions are also 

discussed here, together with an overview on the existing theoretical models describing 

light-driven macroscopic phenomenon. The peculiar spiral-shaped surface reliefs and 

the reason why they cannot be explained by the standard mass migration models are 

presented in the last paragraph of this chapter. In Chapter 2, the description of the 

phenomenological mass migration model able to correctly predict the spirals is given. 

The agreement between the predictions of this model and the experimental peculiar 

surface reliefs obtained onto the azopolymer surface are used here to characterize two 
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light-modulating devices, namely a spin-to-orbit angular momentum converter and the 

commercial θ-cell used to produce radially and azimuthally polarized beams. In Chapter 

3, the principles of the computer-generated holography and the complex surface reliefs 

achievable in this illumination technique are extensively discussed. Chapter 4 gives an 

overview on the superficial textures achieved by the irradiation of azopolymer films 

with a single uniform light beam. In particular, the structures obtained by the light-

driven reconfiguration of superficial pre-patterned micro-architectures are 

experimentally characterized and, accordingly to the recent literature, interpreted in the 

same theoretical framework of the phenomenological model presented in chapter 2. In 

Chapter 5 the wettability properties of such light-reconfigured surfaces are presented. 

An overview on the geometry-driven wettability is given for both the situations well-

described by standard thermodynamic models and for few situations which requires new 

extended models. This is the case of the array of our azopolymer microstructures, which 

necessitates the inclusion of other parameters describing the actual geometry of the 

superficial roughness, instead of just quantifying the extent of the wetted surface area as 

needed by the thermodynamic models, to correctly interpret the values of the water 

contact angle observed experimentally. The wide range of possibilities offered by the 

mass migration phenomenon in wettability non-trivial applications is also presented. 

The Conclusions and the future outlooks are finally presented. Appendix A contains the 

description of the properties of the azopolymer used in all the experiments presented in 

the thesis.  
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1 The light-induced mass 

migration in azobenzene-containing 

materials 

The azobenzene molecule is a two-state system characterized by trans and cis 

isomerization forms differing significantly in terms of conformational structure, 

occupied volume and molecular dipole moment. The illumination of an azomolecule 

with UV/Visible light is able to trigger both the trans-cis and cis-trans transitions and 

produces cyclic trans-cis-trans photo-isomerizations which make the azomoieties a 

peculiar photo-responsive system. Following the division originally proposed by 

Natanshon and Rochon  [1], this microscopic photo-induced motion constitutes the 

base-level of a series of movements occurring at different length scales in the material 

systems incorporating the azochromophores. These movements involve the 

amplification of the processes at molecular level by the cooperative interactions of the 

azomolecules between themselves and with the environment of the host material, and 

also a very intriguing phenomenon: the light-induced macroscopic mass-migration. 

Under proper illumination conditions, the free surface of the azomaterials in form of 

thin films develops topographic modulations as consequence of this light-driven mass 

transport. The inscribed surface reliefs depend on the intensity distribution and the 

polarization state of the irradiating light. The present chapter focuses mainly on the 

description of the characteristics of this light-induced phenomenon and of the peculiar 

surface reliefs resulting from it. Even if a complete theoretical framework able to relate 

the many experiment facets of the light-induced material transport to the azobenzene 

dynamics at molecular scale is still lacking, an overview of the several mass-migration 

models, valid in some simple illumination conditions, is also given. Finally, the 

inadequacy of these models in describing complex illumination conditions is 

highlighted through the phenomenology related to recently observed spiral-shaped 

surface reliefs, which are described in the last paragraph of the chapter. 
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1.1 Azobenzene photochemistry and molecular dynamics  

1.1.1 The photo-isomerization reactions 

The term azomolecules is commonly used to identify the class of molecules comprising 

the parent azobenzene molecule and the entire set of substituted compounds obtained 

from it. The chemical architecture of the azomolecules (Figure 1.1) is characterized by 

two phenyl rings linked together through the azo bond (−N = N −) [1,2,24]. When 

excited by a photon of suitable energy (𝜆 = 200 − 550 nm), an azomolecule can be 

switched between two distinct molecular isomerization states having different optical, 

electronic and electrochemical properties. The two states are the thermodynamically 

stable trans isomer (Figure 1.1 (a)) and the meta-stable cis isomer (Figure 1.1 (b)).  

 

 

Figure 1.1| The two isomerization states of the azobenzene molecules. Conformational 

structures of the thermodynamically stable trans-isomer (a) and of the meta-sable cis-isomer (b). 

The absorption of photons in the UV/visible range can initiate both the isomerization reactions, 

giving rise to photo-isomerization cycles. 

The absorption of a photon with energy matching the trans-isomer absorption band 

switches the molecule in the cis state. This can return to the trans state either by a 

thermal relaxation or by a new photo-induced isomerization process through the 

absorption of a photon in its absorption band. The overlap in terms of wavelength 

between the absorption bands of the two isomers can be controlled by properly choosing 

the substituent groups in the azomolecules [2]. In this way, the molecule can be 
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designed to behave either as photo-switchable two-state system (if the absorption bands 

of the two isomers are sufficiently separated), or to give rise to photo-isomerization 

cycles between the trans and cis forms. In this last case, a significant overlap between 

the absorption bands is desirable so that the irradiation of a photon with a given energy 

is able to trigger simultaneously the photo-isomerization reactions [1,2,24] in both 

directions. The photo-induced isomerization cycles obtained in the last type of 

azomolecules has been found to initiate some peculiar phenomena in material systems 

containing the azomolecules, as the molecular photo-alignment, the optically driven 

mechanical actuation and the light-induced material transport. 

The photo-isomerization reaction, occurs on a time-scale of few picoseconds [2,25], 

and  involves the bending of the phenyl rings around the azo bond. This movement 

implies a significant change in the size and in the spatial conformation of the molecule. 

The isomerization conversion reduces the distance between the phenyl rings from 

approximately 10Å to 6Å (Figure 1.2(a)) and results also in a change of the molecular 

dipole from 𝑝𝑡𝑟𝑎𝑛𝑠 ≈ 0 Debye to 𝑝𝑐𝑖𝑠 = 3 Debye  [26,27]. The two isomers differ also 

in terms of occupied volume, requiring a free volume of about 30 nm
3 

 [2] in order that 

the photo-isomerization reaction takes place. This  volume variation generates a 

significant force at the nanoscale [28] which can be even transferred in a macroscopic 

actuation when the molecules are embedded in a host material matrix [29]. 

 

1.1.2 The light-induced photo-alignment 

The molecular motion of the cyclically isomerizing azomolecules can give rise to the 

photo-alignment of the molecules when they are illuminated with linearly polarized 

light. This situation is presented schematically in Figure 1.2 and is due to the enhanced 

absorption probability, and hence a more efficient photo-isomerization dynamics, for 

the molecules illuminated with light polarized in the direction parallel to the molecular 

transition dipole (which is oriented along the molecular main axis for the trans-isomer).  

More specifically, regarding the light absorption as a dipole interaction, the 

excitation probability varies as 𝑐𝑜𝑠2𝜑, where 𝜑 is the angle between the electric field of 

the polarized light and the molecular dipole direction. This implies maximum 

absorption efficiency for the molecules aligned in the light polarization direction, 

whereas the molecules oriented at 90° respect to the polarization direction will not 

absorb light efficiently. A trans azomolecule which has successfully absorbed a photon 

starts a photo-isomerization reaction which, after an isomerization cycle, brings back 

the molecule again in the trans state (Figure 1.2(a)). The orientation of its molecular 
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axis, however, changes randomly and there is a non-zero probability that after a certain 

number of isomerization cycles, it results oriented in the direction orthogonal to the 

light polarization direction. As in this case the probability to undergo a new 

isomerization cycle by the absorption of a new photon is low, this molecule remain 

oriented in the direction orthogonal to the polarization even if the light irradiation 

continues (Figure 1.2(a)). Considering the ensemble of azomolecules in a material 

system, the result of this orientational alignment is that after many isomerization cycles 

there is the depletion of the population of trans-molecules oriented parallel to the 

polarization and the concomitant enrichment of the population of molecules in the 

perpendicular direction (Figure 1.2(b)). 

 

 

Figure 1.2| Azobenzene photoinduced alignment. (a) Stochastic photo-alignment process of the 

azomolecules irradiated by linearly polarized light. (b) Enrichment of azomolecules population 

aligned in the direction perpendicular to the light polarization as the irradiation process 

proceeds.  
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The photo-orientation effect of the azomolecules under linearly polarized light 

irradiation is commonly referred as orientational hole-burning, and gives rise to strong 

birefringence and dichroism in material systems containing the azo-moieties [1,2]. 

Furthermore, this molecular photo-alignment is reversible and reconfigurable: a new 

orientational alignment can be induced in a new desired direction of the material plane 

simply by a rotation of the irradiating linear polarization direction. Eventually, even the 

initial isotropic molecular distribution can be easily restored by the irradiation of 

circularly polarized or non-polarized light.  

 

1.1.3 Cooperative motion in azomaterials 

The dynamics at the molecular scale can be greatly amplified through the collaborative 

motions of many azomolecules interacting in a material matrix. A simple example is 

constituted by the liquid-crystalline azopolymers, where the photo-alignment of the 

azomolecules can be used to orient (even in a reversible way) the entire polymer matrix, 

giving rise to liquid-crystalline to isotropic phase transitions [30,31]. The reorientation 

of the azomolecules is also the key factor in the applications related to the optical-to-

mechanical energy conversion induced in liquid crystals elastomers (LCE) by the photo-

induced molecular dynamics  [32–34]. In particular, this class of photo-responsive 

azomaterials  is currently finding many applications in the emerging field of the light-

driven bioinspired research  [35,36].  

However, the most fascinating phenomenon related to the photo-response of the 

azobenzene-containing materials is the photo-induced material mass transport, 

occurring with good efficiency especially in amorphous material systems. In these 

materials, where the azochromophores are bonded through covalent or supramolecular 

interactions to the host material matrix (azopolymers, supramolecular azopolymers, 

molecular glasses, etc.  [3,4]), the microscopic molecular dynamics actuated by the light 

irradiation discussed so far, leads to an ensemble of complex interactions of the 

azomolecules with the material environment that results in the rising of surface relief 

patterns onto the free surface of the azomaterial in the form of thin films. The main 

features of the light-induced mass migration phenomenon and the superficial 

modulations it generates onto the free surface of the azomaterial films are discussed in 

the next paragraph.  
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1.2 The directional mass migration in azomaterials 

1.2.1 The Surface Relief Gratings 

In 1995, Natanshon and Rochon [6], and independently Kim et al [7],  reported about 

the large-scale periodic modulations induced onto the free surface of an azopolymer thin 

film under irradiation with a light interference pattern. They found that in response to 

the sinusoidal spatially modulated intensity pattern, the polymer surface develops a 

texture which replicates the pattern of the incident irradiation in form of sinusoidal 

surface reliefs that now are commonly identified as Surface Relief Gratings (SRG). The 

surface modulation was found to happen at very low irradiation intensities, allowing to 

discard any explanation of the polymer structuration in terms of the ablative or 

destructive processes [37]. On the contrary, the phenomenon was understood as a real 

material movement, induced by the irradiating light at temperatures significantly lower 

than the glass transition temperature Tg of the amorphous azomaterial. The non-

destructive nature of the phenomenon was also confirmed by the possibility of erasing 

the superficial modulations either by rising the temperature above Tg or by irradiating 

the SRG with circularly polarized and non-polarized light  [5,38]. 

The typical experimental configuration used for the inscription of the surface relief 

gratings in azomaterials is schematized in Figure 1.3(a). In particular, taking advantage 

from the description of the SRG inscribed onto the azopolymer we have used for all the 

experiments reported in this thesis (see Appendix A for details about its chemical 

structure and absorption spectrum), the images presented in Figure 1.3 allow to 

highlight another very peculiar feature of the phenomenon: the dependence on the 

irradiating light polarization of the light-induced mass migration.  

In the SRG inscription experiment, two coherent coplanar laser beams, having a 

wavelength 𝜆 = 488 𝑛𝑚 in the overlapping absorption bands of the trans and cis 

azomolecules of the azopolymer, interfere in the azopolymer film plane. The 

polarization state of the two beams is chosen alternatively as p-p or s-s in order to have 

a sinusoidal spatially modulated intensity over the sample, while intensity of the two 

beams during the experiment is about 20 𝑚𝑊 𝑐𝑚2⁄ . The AFM images of the surface 

reliefs obtained onto the polymer for 1h irradiation time in these two illumination 

conditions are shown in Figure 1.3(b) and Figure 1.3(c), respectively. From the 

comparison of these images, it emerges that while the p-p polarization configuration 

gives rise to a topographical modulation in the range of several hundred of nanometers 

(Figure 1.3(b)), the illumination of the film with s-s polarized beams produces only 

small modulations of the azopolymer surface (Figure 1.3(c)).  
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Figure 1.3| Surface relief gratings induced onto the azopolymer film surface under two-beam 

interference irradiation. (a) Schematic representation of the typical experimental situation for 

SRG inscription. The illumination pattern is the spatially modulated interference pattern 

generated by two polarized (in this case) laser beams. (b) AFM image (top) and topography 

profile measured along the red line (bottom) of the superficial modulation resulting from the 

polymer irradiation with p-p polarized beams. (c) Same as in (b) but with irradiation of s-s 

polarized interference pattern. The beam intensity during the exposure is ~20 𝑚𝑊 𝑐𝑚2⁄ . 

The polarization dependence of the SRG inscription efficiency shown here resulted 

clear since the first experiments about the light-driven mass migration phenomenon [4]. 

In particular, it has suggested that the presence of both a spatially varying intensity 

pattern and the simultaneous non-vanishing component of the optical electric field in 

the direction of the intensity gradient are necessary to have an efficient material 

movement. This condition is indeed verified in the case of the interfering p-p polarized 

beams, while it does not occur for the case of s-s polarized, where the intensity gradient 

and the electric field are oriented in perpendicular directions. The differences in the 

SRG inscription efficiencies imply a directionality of the material displacement, which 

took place with good efficiency only in the direction parallel to the light polarization, 

while it is mostly inhibited in the direction perpendicular to it.   
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This type of considerations about the SRG inscription processes and its efficiency 

are also typically derived by the analysis of the measurements of diffraction 

experiments, where a light beam having a wavelength outside the azomolecule 

absorption band is used to monitor in real-time the diffraction that the periodic SRG’s 

growth produces. However, both the topographic characterization of the surface 

modulations by a-posteriori AFM measurements (as performed in the case of Figure 

1.3(b)) and the monitoring of the SRG growth with diffraction experiments do not allow 

the understanding of the phase relation existing between the positions of the maxima in 

the intensity pattern and the position of the resulting crests in the surface topography.  

1.2.2 Surface reliefs from focused light beams 

Before the development of recent AFM setups able to monitor in-situ and 

simultaneously both the intensity pattern and the superficial topography [39–42],  

crucial experiments toward the understanding of the directional properties of the light-

fueled material movement made use of spatially confined intensity patterns. An example 

of such patterns is represented by a polarized gaussian laser beam, focused onto the 

azopolymer film [17,43] through an high numerical aperture objective, as schematized 

in Figure 1.4(a).  

 

Figure 1.4| Dependence of the directional azomaterial displacement on the polarization direction 

of the irradiating light. (a) Schematic representation of the focused beam configuration used to 

inscribe the surface relief in the AFM image (b). The linear polarization direction is specified by 

the red arrows. (c) Topographic profile of the relief measured along the dashed red line. (d) 

Representation of the light-induced reconfiguration process able to turn the cylindrical micro-

volume (e) of azopolymer in an asymmetric polarization dependent structure (f).   
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Differently from the periodic intensity distribution obtained from the interfering 

beams, the polymer irradiation through the focused gaussian beam has the advantage to 

precisely reconstruct the absolute position of the maximum intensity in the illumination 

spot in the successive AFM characterization. This permits the investigation of the actual 

direction in which the material movement during surface relief inscription.  

The typical surface relief obtained onto the azopolymer film with a linearly 

polarized gaussian beam is presented in Figure 1.4(b). The relief is characterized by a 

hollow appearing in correspondence of the maximum intensity in the spot, and two 

lobes, raising above the non-exposed film quote, and oriented in the direction of the 

light polarization (indicated by the red arrow in Figure 1.4(b)). Similar observations 

permitted to conclude that the material movement takes place in the direction of the 

light polarization and proceeds from the regions at higher intensity (the center of the 

gaussian spot) toward darker sample regions. A similar phenomenology involves also a 

π-phase shift between the intensity maxima and the topographic crests of  the SRG 

reported in Figure 1.3(b), as effectively observed by many in-situ analysis [39–42].  

The dependence of the material displacement direction on the light polarization 

becomes even more evident in the experimental situations schematized in Figure 1.4(d), 

where a single light beam, assimilable to a plane wave with uniform intensity, is used to 

illuminate isolated micro-volumes of pre-patterned azopolymer surface. As will be 

discussed in detail in chapter 4, this simple illumination condition gives rise to a 

macroscopic material displacement in the direction of the light polarization, which 

transforms the initial symmetric micro-volume into asymmetric three-dimensional 

micro-structures, elongated in the light polarization direction.  

 

1.2.3 The theoretical models for the mass migration description 

While the principles of the surface relief formation described so far hold for the great 

majority of the azomaterials, including the amorphous azopolymers, several situations 

where the phenomenon behaves differently depending on the particular material 

architecture have been reported. For example, it was found that the interfering beams in 

s-s polarization configuration are able to induce appreciable surface modulations in 

some materials. In this case, moreover, the material accumulates in the areas at highest 

intensity of the illumination pattern, showing an inverted direction of the material 

movement respect to the p-p configuration. This inversion is observed also in the 

surface relief grating inscribed in certain liquid-crystalline azopolymers  [4,44]. Also 

pure-polarization interference patterns (where the intensity is constant over the sample, 
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but light polarization is spatially modulated), as those generated in the interference of 

right- circularly (RC) and left- circularly (LF) polarized beams, have been proved to 

induce efficient surface relief gratings [42]. Moreover, the recent spiral-shaped surface 

reliefs obtained in peculiar illumination conditions [8] further complicate the overall 

experimental scenario, describing also a non-trivial dependence of the phenomenon on 

the wavefront actual profile, as well as the intensity and polarization effects.  

A complete theoretical description of the light-induced mass migration phenomena 

should take into account of all these experimental observations in a coherent and 

comprehensive framework. This, however, has resulted to be a very intricate and 

complex task and, despite many theoretical efforts over the years that have been made 

in this direction, at the moment a complete understanding of the phenomenon has not 

been accomplished.  

While the photo-isomerization of the azomolecule is thought as absolutely 

necessary to observe any superficial modulation, the physical link between this 

microscopic movement and the observed macroscopic azomaterial mass displacement 

has not been unambiguously recognized yet. Several different theoretical models have 

been proposed over the years with the aim of establishing this relation. However, none 

of them is able to effectively describe all the experimental observations, while their 

validity is typically limited to the description of the phenomenon in specific materials 

systems or to specific illumination conditions. The proposed models include [3]: the 

pressure gradient force model  [15,45], the mean-field model  [16], the optical field 

gradient force model and the anisotropic diffusion or random-walk models  [18,19].  

The pressure gradient model describes the azomaterial displacement in the SRG 

inscription experiments, in particular, as arising from the variations of the azomolecules 

mean occupied volume during the photo-isomerization process. The intensity gradient 

in the illumination pattern leads to a pressure gradient inside the material which induces 

a macroscopic material displacement. While the model predicts well the SRG in the 

case of intensity modulated interference, it is not able to describe the SRG generated 

with the LC-RC polarizations, as well as the light-induced reconfiguration of the 

isolated azopolymer micro-volumes [3,12]. 

The mean-field model is instead based on the dipolar attractive forces among the 

photo-aligned azomolecules during the light exposure. This model predicts the 

accumulation of the material in the bright illuminated regions, resulting valid for the 

description of the SRG in some liquid-crystalline azopolymers. However, it is not 

suitable to describe the effects of the mass migration observed in the whole class of 

amorphous materials, where the phenomenon is found to be more efficient. 
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The model based on the optical force gradient acting onto the average medium 

polarization induced in the azopolymer during the light illumination is able to 

effectively describe the polarization dependence observed in Figure 1.4 for focused 

optical fields, and also partially the SRG formation under the interfering beams. This 

model assumes a two-step mechanism, in which the photo-isomerization is thought to 

soften the material, enhancing its mobility in response to the illumination induced 

electro-magnetic forces. However, there are studies demonstrating that the forces 

necessary for the material movement predicted by this model are too high respect to the 

actual strength of the electromagnetic interactions in the material [31]. 

In the models based on the anisotropic diffusion of the azomolecules, the directional 

material motions is described as resulting from an inchworm-like or a random-walk 

translation of the azounits along the light polarization direction. These models are able 

to predict many of the observed mass-migration phenomena in low exposure intensity 

regimes, but they do not take into account the hole-burning effects due to the 

reorientation of the azomolecules under irradiation with linearly polarized light and also 

the saturation of the mass transport observed for long or intense irradiations. 

All the mentioned models share a common feature: they require the presence of an 

optical gradient in the intensity and/or polarization of the illuminating light. These 

illumination conditions are met in typical experiments where the illumination pattern is 

kept relatively simple (as in the case of the interfering beams or the focused gaussian 

beams). In the next paragraph is given a description of the optical gradient force model, 

taken as exemplifying theoretical framework highlighting the proper description of the 

surface reliefs arising is simple illumination conditions enabled by the models 

mentioned above. 

However, all the cited models fail in the description of the light-driven spiral-

shaped surface reliefs observed under the irradiation of the azopolymer film with a 

focused light beam having an optical vortex along its propagation axis (for example a 

Laguerre-Gauss beam). These peculiar surface reliefs have led to the formulation of a 

new phenomenological microscopic model [46], based on the anisotropic diffusion 

hypothesis of the azomolecules, which assumes also an enhanced material mobility at 

the film free-surface respect to the bulk polymer. Beside the spiral-shaped surface 

reliefs, which will be introduced in the end of the next paragraph, this model has 

resulted suitable also to predict the phenomenology of the micro-volume 

reconfiguration [10] (see chapter 4), and other peculiar surface reliefs we have obtained 

in other non-trivial illumination conditions (see chapter 2). 
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1.3 The optical gradient force model 

The optical gradient force model ascribes the photo-driven mass migration of the 

azopolymers to the microscopic forces that the optical field induces onto the polarizable 

material during the exposure. This model is able to describe the polarization dependence 

of the directional light-induced mass migration observed in many standard illumination 

conditions, even if it does not take into account the actual photo-isomerization kinetics 

of the azomolecules. Indeed, the material is typically described as a dielectric medium, 

responding to the optical electric field 𝑬(𝒓, 𝑡) through a linear medium polarization 

vector (Figure 1.5(a) 

    0, ,t t P r E r , (1.1) 

where 𝜀0 is the permittivity of the vacuum and 𝜒 is the medium susceptibility. The 

photo-isomerization at the molecular level in this model is thought to be responsible of 

photo-induced plasticization of the material, which becomes free to respond to the 

action of the optical induced forces. 

In order to illustrate the main aspects of the optical gradient force models, here is 

presented its original version [17,47,48], oversimplified in both the description of the 

optical forces acting on the material, and on the description of the material movement 

resulting from these forces. However it successfully predicts, at least qualitatively, the 

SRGs and the focused SR under standard illumination conditions. The complete version 

of the model, reported in reference  [49], on the contrary takes into account the full 

description of the different aspects of the phenomenon (for example the use of actual 

solutions of Navier-Stokes equations for the  material movement description), leading to 

a very intricate and complex mathematical framework. Some of the predictions of this 

complete model are discussed in section 3.3.4 of this thesis for the interpretation of 

some our experimental results reported in that section. 

In the simplified model, the time-averaged force acting onto the azochromophores 

is a small volume is given by
1
 

          0, , , ,t t t t            f r P r E r E r E r , (1.2) 

where 〈 〉 indicates the average across the irradiance time. Equation (1.2) states that the 

material experiences a force only in directions where both the electric field and its 

                                                 
1
 The total force should include also a magnetic term [49]: 𝒇 = −(𝛁 ∙ 𝑷)𝑬 +

𝜕𝑷

𝑑𝑡
× 𝑩. 
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gradient are not vanishing, while the force is zero when the polarization is orthogonal to 

the optical field gradient.   

Let us now to specify the situation, described in Figure 1.5(b), to the case of the 

surface modulation produced by a focused 2D gaussian beam. The polymer surface 

extends in x-y plane, while the x-polarized Gaussian beam propagates along the z axis 

and irradiates normally the surface. Using the expression of a gaussian optical field 

  
 2 2

0 2
, , exp exp

2

x y z
E x y z E





   
     

   
, (1.3) 

equation (1.2) is written as: 
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 (1.4) 

where 𝛼 is the absorption coefficient of the material, 𝐼0 = 𝐸0
2 and 𝐼(𝑥, 𝑦) is the intensity 

distribution in the x-y plane and 𝜒′ is the real part of the material susceptibility. The 

growth of the surface relief is attributed to the lateral displacement of a thin layer of 

polymer that is made photo-fluidized by the repeated trans-cis-trans photo-isomerization 

of the azomolecules. The flow of this mobile layer is described as a surface velocity 

field 𝒗𝑠(𝑥, 𝑦, 𝑧), proportional (through a factor 𝜇) to the optical force 𝒇(𝑥, 𝑦, 𝑧): 

    , , , ,s x y z x y zv f . (1.5) 

The factor 𝜇 takes into account the viscous drag generated between the mobile surface 

material and the bulk material, and it is assumed to be independent on the illumination 

strength (weak irradiance regime). Assuming the incompressibility of the polymer, the 

surface deformation velocity 𝑣𝑧 is derived from the continuity equation ∇ ∙ 𝒗 −

𝜕𝜌 𝑑𝑡⁄ = 0 and gives: 

  , , 0x y z v , (1.6) 

which leads to: 

 
yz x

s

vv v

z x y

  
     

   
v . (1.7) 

Integrating equation (1.7) along polymer total thickness d yields: 
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 (1.8) 

where ∇𝑠 refers to the derivation only respect to the lateral coordinates, h is the 

thickness of the effective mobile polymer layer and the boundary condition 

𝑣𝑧(𝑥, 𝑦, 𝑑) = 0 has been used.  

 

 

Figure 1.5| The optical gradient force model for the light-induced mass migration. (a) 

Hypothesis of the average material polarization induced in the illuminated azomaterial. (b) 

Schematic representation of the geometrical configuration describing the system. (c) Simulated 

superficial topography obtained from the azopolymer illumination with a linearly polarized 

gaussian beam. (d) Simulated sinusoidal intensity profile of two interfering beams (top) and 

simulated surface relief grating predicted by the model. The red dashed line indicates the phase 

relation between the maxim in the intensity pattern and the crests in the simulated SRG.      

Using expression (1.4) for the driving force in the actual situation of linearly 

polarized beam along the x-direction in the relation (1.8), we obtain the explicit 
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expression for 𝑣𝑧(𝑥, 𝑦, 0), which can be used to calculate the surface displacement 

𝑆(𝑥, 𝑦, 𝑡) by integrating over the exposure time t: 
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


 (1.9) 

The relation (1.9), valid in the limit of weak irradiance power, states that the surface 

relief arising onto the polymer film is proportional to the second derivative of the 

intensity pattern. Furthermore, the sign of 𝜒′ determines the direction of the material 

displacement along the z axis. Using the assumption 𝜒′ < 0, a good qualitative 

agreement of the predicted surface relief (Figure 1.5(c)) with the surface relief 

experimentally observed in this situation (reported in Figure 1.4(b)) is found. 

The same calculations made for the gaussian beam can be performed easily also for the 

optical filed resulting from two p-p polarized beams. The simulated images reporting 

the sinusoidal intensity pattern and the predicted SRG by the relation (1.9) are presented 

in Figure 1.5(d), showing the correct predictions of the model also in this illumination 

configuration. However, as we will see in the next section, this model is inadequate to 

describe the surface relief appearing onto the azopolymer surface, when a focused 

Laguerre-Gauss beam, having a helical wavefront and an optical-vortex at its axis, is 

used to illuminate the azomaterial in a condition similar to the one presented in Figure 

1.4. 

1.4 The spiral surface reliefs 

The beams endowed by an optical vortex at their axis [50] are light beams characterized 

by a dependence exp[iqφ] of the optical phase on the azimuthal angle φ in the planes 

transversal to the optical propagation axis. This phase dependence confers a helical 

shape to the wavefront of these beams (Figure 1.6(a)), which accumulate a phase shift 

of a quantity 2𝜋𝑞 by circling once the beam axis. The integer number, positive or 

negative, q is called vortex topological charge, and defines the handedness of the beam 

helical wavefront. The azimuthal dependence of the phase evolution around the 

propagation axis implies a phase singularity point on this axis in each transversal plane, 

where the undefined phase results in a doughnut-like intensity profile (Figure 1.6(a)). 

Typical examples of such class of beams are the Laguerre-Gauss beams  [51,52], which, 

because of their helical-shaped wavefront (Figure 1.6(a)) are known to carry also 
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orbital-angular momentum [53,54]. More detailed description of these beams and how 

they can be generated is presented in the next chapter.  

The use of a Laguerre-Gauss beam for the illumination of an azopolymer film 

(Figure 1.6(b)) produces unexpected spiral-shaped surface relief topographies [8] 

(Figure 1.6c). Assuming a dependence of the mass migration phenomenon only on the 

intensity gradient and polarization, as described for example by the optical gradient 

force model, no information about the helicity of the beam wavefront should be visible 

in the surface reliefs because no information of such phase dependence is contained in 

the doughnut-shaped intensity profile of a Laguerre-Gauss beam. 

 

 

Figure 1.6| Inadequacy of the optical force gradient model in describing the surface reliefs 

obtained from the illumination of the azopolymer with a vortex beam. (a) Schematic 

representation of the helical wavefront and the doughnut-shaped intensity profile of a vortex 

beam. (b) Representation of the illumination condition for the surface relief inscription. Actual 

AFM topography of the surface relief obtained from the irradiation with a beam having q=10 

(c), and q=-10 (d), in the same polarization conditions of the simulated images. The inset in the 

panels (c) and (d) shows the intensity pattern of the irradiating beam on the azopolymer sample. 

Images reproduced from reference [8]. The scale bars in panels (e-f) corresponds to 1 µm. (e) 

Simplified simulated intensity profile. (f) Surface topography predicted by the optical force 

gradient model with linearly polarized beam in the direction of the red arrow.  
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In this illumination configuration, indeed, the optical gradient force model predicts 

only a spatially dependent efficiency of the surface modulation. This can be observed 

from the surface relief reported in Figure 1.6(f) simulated through the optical gradient 

force model for a doughnut-shaped beam, linearly polarized along the vertical direction 

of the image (Figure 1.6(e)). The simulated surface reliefs show the expected efficient 

mass migration along the doughnut diameter in the vertical direction and zero surface 

modulation along the doughnut diameter in the x direction (being the intensity gradient 

in this direction orthogonal to the polarization direction), while no traces of any spiral 

structures appear. 

In reference [8] has been found a direct dependence of the experimental spiral 

surface reliefs lateral shape on the absolute value and relative sign of the beam 

topological charge q. In particular, larger values of |𝑞| translate into larger spiral 

diameters, while the inversion in the topological charge sign produces an inversion of 

the handedness of the spiral arms inscribed onto the polymer. This peculiar behavior 

can be immediately observed by the comparison of the surface reliefs reported in Figure 

1.6(c) and Figure 1.6(d), obtained in the same irradiation conditions but with beams 

having opposed topological charge signs [8].   

As, the wavefront handedness, and not the intensity distribution (inset Figure 1.6(c-

d)), is the only beam quantity explicitly sensitive to the topological charge q, the natural 

hypothesis  for the interpretation of the observed spiral mass transport is that this 

originates from an unprecedented sensitivity of the light-induced mass migration 

phenomenon to the wavefront of the illuminating optical field. As we will see in the 

next chapter, the photo-induced anisotropic diffusion model proposed by A. Ambrosio 

et al. in references  [8,46] is able to take into account this peculiar response of the 

azomaterial to the illuminating optical field, attributing the observed wavefront 

sensitivity to a surface-initiated interference between the components of the higly 

focused optical field in the azopolymer plane.  
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2 The photo-induced anisotropic 

molecular diffusion model  

The peculiar spiral surface reliefs arising under the illumination of an azomaterial with 

beams having an optical vortex at their axis has brought to light, in the already rich 

scenario of the light-induced mass migration phenomenon, another ingredient in the 

complex dependence of the photo-driven material movement on the configuration of the 

irradiating light: the apparent sensitivity to the spatial wavefront structure of the 

illuminating beam. The first tentative to rationalize this observation was made through 

the formulation of a symmetry-based phenomenological model, which included an 

enhanced effect in the photo-induced material migration at the surface. Even if 

qualitatively, this model is able to fully explain all the observed findings in the spiral 

surface relief  [8]. This phenomenological model could be in principle compatible with 

different molecular mechanisms able to relate the azobenzene photo-isomerization 

dynamics to the spiral mass transport observed in the azopolymer. However, a solid 

physical picture of the microscopic underlying phenomenon can be given by a 

molecular model based on the anisotropic diffusion of the photo-isomerizing 

azochromophores under irradiation. This model includes, in a coherent way, both the 

new wavefront sensitivity and the well-known intensity/polarization dependences, 

typically observed in the formation of the surface reliefs with standard illumination 

conditions. Furthermore, its predictions can permit the use of the light-induced surface 

reliefs as a topographic recording of the actual distribution of complex optical field 

patterns. After the detailed description of the model, in this chapter two of this 

experimental situations are presented, in which surface reliefs are inscribed onto the 

azopolymer surface with the irradiation of light beams obtained from two light-

modulating devices: a meta-surface acting as a spin-to-orbital angular momentum 

converter, and the liquid-crystal θ-cell, demonstrated to generate (modified) radially and 

azimuthally polarized beams [55]. The agreement between the experimental and the 

predicted surface modulations allows the test of the hypothesized optical field 
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distributions of the beams and represents an indirect characterization of the light-

modulating devices. Furthermore, the model presented here has also the ability to 

correctly describe the light-induced reconfiguration of isolated azopolymer micro-

structures under uniform beam irradiation, as we will see in chapter 4. 

 

2.1 The molecular anisotropic diffusion model  

As already mentioned, the model uses the concept of the anisotropic diffusion of the 

azochromophores as the molecular driving mechanism of the macroscopic mass 

migration occurring in azomaterials under illumination. Respect to other models, based 

on the same microscopic driving mechanism [18,19,56], this model takes into account 

the possibility of a different efficiency for the diffusion of the azomolecules situated in 

the proximity of the free azopolymer surface respect to the diffusion occurring in the 

bulk film. The enhanced mobility at the surface produces a light-driven material 

transport which interlaces the optical field components in non-trivial way under 

particular illumination configurations, while it results negligible in most of the reported 

standard experimental illumination conditions (for example in the inscription of SRG). 

As we will see, this term is essential in order to explain the spiral mass transport 

observed in the surface reliefs induced by focused vortex-beams.  

As discussed below, the model is oversimplified in several aspects, and a 

quantitative discrepancy between the predictions and the observation is found as 

consequence of the adopted approximations. However, it catches the fundamental 

qualitative aspects of all the reported experiments related to the mass migration in 

amorphous azomaterials, resulting as a worthy candidate for eventual further theoretical 

insight. 

Let us to consider an azopolymer film of initial thickness L deposited onto a rigid 

substrate (Figure 2.1(a)). The coordinate reference system is chosen such that the film 

extends in the x-y plane, with the polymer-substrate interface situated at the 𝑧 = 0 and 

the polymer free surface at the quote 𝑧 = 𝐿. After the light irradiation, the free surface 

of the polymer manifests the appearance of the surface reliefs, which can be described 

as position-dependent height variations ∆ℎ(𝑥, 𝑦) = 𝑧(𝑥, 𝑦) − 𝐿 of the free-surface quote 

respect to the height of the unexposed film L.  

In the model, the surface modulations appearing under irradiation are assumed to be 

caused by a light-induced polymer mass transport in the x-y plane, which can be 

described by a mass-current density vector J. Assuming the incompressibility of the 
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material, the in-plane light-induced mass displacement leads to a surface modulation 

which can be described by the relation [7,44]:   

  , , ,withk k

L t
h x y J k x y




      (2.1) 

where ∆𝑡 is the irradiation time, 𝜌 is the polymer mass density, 𝜕𝑘 denotes the 

derivative respect to the transverse coordinates x-y and  𝑱̅ = (∫ 𝑱
𝐿

0
𝑑𝑧)/𝐿 is the averaged 

mass current across the film thickness L. In relation(2.1), as in the rest of the paragraph, 

the sum over repeated indices is intended. From this equation we can see that, in order 

to determine the surface relief pattern over the surface, we need to know the derivatives 

𝜕𝑥𝐽𝑥 and 𝜕𝑦𝐽𝑦 of the current in the x-y plane. 

 

 

Figure 2.1| Photoinduced anisotropic diffusion model. (a) Definition of the geometrical 

parameters. (b) Schematic representation of the anisotropic diffusion of the azomolecule as a 

result of the absorption of a light photon. The molecule translates along of the direction of the 

molecular dipole moment 𝝁̂. 

In order to relate the mass density current to the microscopic dynamics induced by 

the illuminating optical field, let us to describe the azomolecules embedded in the 

polymer matrix by their position vector r and by the unit vector 𝝁̂, defining the 

orientation of the molecular main axis which also coincides with the molecular 

transition dipole direction Figure 2.1(b).  

Assuming a dipole electric interaction, the absorption probability 𝑝(𝒓, 𝝁̂) for the 

azomolecules to absorb a photon of the irradiating light field is: 

    
2

ˆ ˆ,p  E rr μ μ , (2.2) 
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where E(r) is the complex optical electric field vector and 𝛼 is a constant proportional 

to the absorption coefficient at the considered illumination wavelength. As the 

molecules absorbing a photon are subject to the photo-isomerization process, the 

probability 𝑝(𝒓, 𝝁̂) described by the relation (2.2) determines the number density of the 

excited molecules per unit volume and solid angle 𝑛𝑒(𝒓, 𝝁̂) contributing to the 

molecular diffusion process. In order to define such number density, let us denote with 

𝑛(𝒓, 𝝁̂) the total number density (both excited and non-excited) of the azomolecules per 

unit volume and solid angle.  

At equilibrium, before the illumination starts, the position and the orientation of the 

molecules can be considered as approximately uncorrelated, and hence we can write:  

      ˆ ˆ,n N fr rμ μ , (2.3) 

where N(r) is the molecule number density per unit volume irrespective to the 

orientation, and 𝑓(𝝁̂) is the initial orientational distribution of the azomolecules. 

Assuming a uniform distribution of the azomolecules across the film sample, N(r) can 

be simply written as: 

      0N N z L z  r , (2.4) 

where 𝑁0 is the uniform bulk number density, and 𝜃(𝑧) is the Heaviside step function 

(𝜃(𝑧) = 0 for 𝑧 < 0 and 𝜃(𝑧) = 1 for 𝑧 > 0), introduced to describe the polymer 

surfaces located at 𝑧 = 0 and 𝑧 = 𝐿. The initial orientational equilibrium distribution is 

assumed to be isotropic, so that we have:  

 
1

ˆ( )
4

f


μ .  (2.5) 

 

Writing explicitly these factors in the relation (2.4), we have: 

      0ˆ,
4

N
n z L z 


 r μ . (2.6) 

Under illumination, the initial molecular distribution described by (2.6) is certainly 

altered by the molecular photo-isomerization processes which tend to reorient the 

molecules orthogonal to the electric field (the orientational hole-burning effect 

described in section 1.1). Moreover, the molecules also translate as a result of the mass 

migration phenomenon, so that also their spatial distribution can be altered during the 

irradiation. However, if the fraction of excited molecules is assumed to be small, these 
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molecular rearranged configurations can be neglected and we may retain the 

equilibrium distribution described by the relation (2.6) also during the light exposure. 

As we will see below, this approximation is equivalent to assume a first order 

interaction (linearized in the field intensity) and makes the model valid only for weak 

and/or short irradiations.  

To go further toward the approximated form of  𝑛𝑒(𝒓, 𝝁̂), we assume also that at 

each excitation event a molecule moves only a short distance respect to the 

characteristic length of the optical gradients and changes orientation only slightly. In 

these approximations, we can write the following rate equation for the number density 

of excited molecules for a given location and orientation: 

  e e
e

e

dn n
p n n

dt 
   , (2.7) 

where (𝑛 − 𝑛𝑒) is the number of non-excited molecules for the same position and 

orientation and 𝜏𝑒 is the excited-state lifetime. In the first order approximation, we can 

neglect 𝑛𝑒 respect to 𝑛 in (2.7) and, at the steady state (𝑑𝑛𝑒 𝑑𝑡⁄ = 0), we find for the 

number-density of excited molecules per unit volume and solid angle the expression:  

      ˆ ˆ ˆ, , ,e en p nr μ r μ r μ . (2.8) 

From equation (2.8) it is evident that any non-equilibrium term in 𝑛 (depending 

explicitly on the molecule-field interaction) would produce, after the multiplication with 

the factors contained in 𝑝 (equation (2.2), higher-order powers in the fields, which are 

neglected in this simplified description of the light-driven molecular dynamics. 

Substituting relations (2.2) and (2.6) in (2.8), we finally obtain: 

        
20ˆ ˆ,

4

e
e

N
n z L z


 


  E rr μ μ , (2.9) 

which defines the number of azomolecules per unit volume and solid angle contributing 

to the light-driven directional diffusion. In order to calculate the anisotropic diffusion, 

let us specify the other role that the molecular transition dipole moment  𝝁̂ plays in the 

model. 

Accordingly to other diffusion models  [18,19,56], the direction of the unit vector 𝝁̂ 

defines also the direction of the net molecular displacement arising from the light-

triggered random-walk diffusion performed by the excited azomolecules. In this 

framework, the anisotropic molecular diffusion can be visualized as equivalent to a 

wormlike motion the azocromophore performs under irradiation (Figure 2.1(b)). The 
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one-dimensional mass current resulting from this anisotropic diffusion process can be 

expressed as: 

        ˆ ˆ ˆ, ,e
e

dn
J D z D z n

dx
    r rμ μ μ , (2.10) 

where 𝐷(𝑧) is the excited-molecule diffusion constant, whose ideal z dependence is 

assumed to be:   
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In the relations (2.11), an explicit possible change in the diffusion constant is considered 

in correspondence of the free polymer surface (𝐷𝑆) respect to its value in the bulk 

polymer (𝐷𝐵).  Because of the fact that the described diffusion cannot push the molecule 

out from the polymer film, there exists a force at the surface counteracting the every 

pressure force component originated by the z component of the current vector J. 

Without the need of the explicit form of such term, we can simply include this 

consideration by imposing a net resulting vanishing current along z axis at the free 

polymer surface 𝑱𝑧(𝐿) = 0.  

Inserting equations (2.9) and (2.11) into (2.10), we obtain the following expression 

for the mass current: 
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where we have introduced the unit vector 𝒛̂ normal to the surface and the Dirac’s delta 

function 𝛿(𝑧). The total current vector 𝑱 is finally obtained by integrating equation 

(2.12) over the entire solid angle:  
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The average of this current along z across the film thickness, while assuming z-

independent optical fields, leads to the following expressions for the lateral mass 

current: 

  * *
0

S
e B i j i jk k l ij l k zij

D
J N D M E E M E E

L


 
 
 

    , (2.14) 

 where , ,k l x y ; , , ,i j x y z , and the result of the angular integrals is written as [46]: 
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𝛿𝑖𝑗 being the Kronecker symbol. Inserting equation (2.15) into equation (2.14), we 

finally obtain the explicit form of the transverse mass current as: 
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with 𝑘, 𝑙 = 𝑥, 𝑦, and  
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A close look at the form of the different terms appearing in the mass current relation 

(2.16) allows the attribution of the effects each of them produce respect to the overall 

material displacement in the x-y plane during the illumination process.  

The term proportional to C1 corresponds to a mass migration occurring along the 

gradient of the total transverse intensity. Indeed, such term is proportional to (𝐸𝑥
2 +

𝐸𝑦
2), which drives the polymer out (in) of the bright regions once C1>0 (C1<0)  is 

assumed. This is the only non-vanishing term in the mass current that can be responsible 

of the appearance of surface reliefs in the case of s-polarization.  

The term in C3 is proportional to the longitudinal field |𝐸𝑧|
2. This is typically small 

in many illumination cases, but it can be not negligible in some illumination 

configurations (for example with highly focused beams).  

The term in C2 is the term causing the polarization-sensitive mass transport 

discussed in the section 1.2. This term leads to a polymer motion along the direction of 
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the electric field, and it is the relevant term in many standard illumination 

configurations (including the interference of p-p polarized beams, or the linearly 

polarized focused gaussian beams).  

The last term, proportional to the surface diffusion constant CS, is instead sensible 

to the light wavefront via the interference of the longitudinal and the transverse field 

components. In most of the standard illumination conditions this surface-mediated 

interference term vanishes identically. However, this term has been demonstrated to 

describe the spiral transport effect [8,46], meaning that it can be significant is some 

illumination conditions, as in the case of the focused vortex beams. 

Using equation (2.1), the total lateral current 𝐽𝑘̅ defined by the relation (2.16), gives 

the explicit dependence of the surface modulation on the components of the irradiating 

optical field: 
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Making the sum over the indices, equation (2.18) can be written in the explicit form, 

where the field components are expressed in Cartesian coordinates:  
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Relation (2.20) can be used to directly calculate the surface reliefs arising onto the 

azopolymer surface under irradiation with an optical field 𝑬(𝒓) = (𝐸𝑥, 𝐸𝑦 , 𝐸𝑧)(𝒓). 

 

2.1.1 Phenomenological choice of the mass current coefficients  

The anisotropic molecular diffusion model presented here would allow to directly link 

the molecular diffusion parameters and the observed macroscopic mass movement.  

Indeed, the coefficients appearing in the constitutive relations (2.19) can be explicitly 

evaluated on the basis of the material properties. However, the use of reasonable values 

for the molecular parameters in (2.19) leads to an estimation of the multiplicative 

coefficients appearing in equation (2.20) not able to fit quantitatively the experimental 

results in simple illumination conditions [8,46]. Such discrepancy can be attributed to 

the drastic approximations made on the dynamics of the molecules under the light-

driven photo-isomerization. For example, the orientational hole-burning effect is 

completely omitted, as well as any consequent saturation of the mass migration process. 

Furthermore, the influence of the viscoelastic forces inside the material is 

oversimplified by the simple incompressibility assumption. All these simplification 

should be relaxed step-by-step in a more sophisticated model in order to achieve more 

accurate quantitative predictions.  

However, the real power of the model, even in this simplified form, emerges if the 

relation (2.20) is understood as the result of a phenomenological model, and the 

multiplicative coefficients appearing there are intended to be chosen empirically in 

order to match the experimental results. The discussion conducted in the previous 

paragraph about to the meaning of the different terms of the light-induced mass current 

in the relation (2.16), and the behavior of the mass material phenomenon in well-known 

situations (as the SRG inscription and the surface reliefs under focused gaussian beams) 

can help in this empirical choice of the parameters.  

For example, the prediction 𝐶1 = 𝐶2 = 𝐶3 in equation (2.17), leads to the relation 

𝑐2 = 2𝑐1 = 2𝑐3. Considering the case of the illumination with the pattern generated 

with two interfering beams in p-p or s-s configurations, equation (2.20) would predict 

an amplitude of the surface reliefs proportional to the term (𝑐1 + 𝑐2) in the case of p-p 

polarization, while the amplitude of s-s polarization is proportional to 𝑐1. This would 

imply that, using the same exposure time in this two illumination configurations, the 

predicted amplitude ratio in the inscribed SRG is 𝑐1 (𝑐1 + 𝑐2) = 1 3⁄⁄ , which is in 

disagreement with the most of the experiments reporting a very low efficient surface 

modulation in the case of s-s polarization (see also Figure 1.3).  
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Figure 2.2| Spiral surface reliefs simulated by the phenomenological model. (a) Simulated terms 

appearing in equation (2.21) for a Laguerre-Gauss beam having a topological charge 𝑞 = +5. 

(b) Total surface reliefs resulting from the coefficient choice 𝑐2 = 1, 𝑐𝑆 = 8(𝑐2 𝜆).⁄  (c) and (d) 

same simulation made for  𝑞 = −5. Only the terms including the interference between the 

longitudinal and transverse optical field component are changed by the opposite sign of the 

topological charge. The simulations are reproduced from reference [8]. 

From these considerations, a reasonable choice for the coefficient 𝑐1 is 𝑐1 ≪ 𝑐2, 

while relation (2.19) suggest also 𝑐3 ≪ 𝑐2. In the limiting case, one can even choose 

𝑐1 = 𝑐3 = 0. With this hypothesis, equation (2.20) can be rewritten as: 
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 (2.21) 

Now, the relative strength of the superficial coefficient 𝑐𝑆 respect to the coefficient 𝑐2 

can be phenomenologically adjusted to correctly explain the spiral surface reliefs arising 

under the vortex beam irradiation. In Figure 2.2(a) are presented the simulated 

contributions (reproduced from reference  [8]) of the optical field derivatives appearing 

in the relation (2.21), calculated for a linearly polarized (along the y direction) 

Laguerre-Gauss beam having a topological charge 𝑞 = +5. Combining them together 

and weighting the different terms by the two coefficient factors 𝑐2 and  𝑐𝑆, equation 

(2.21) reproduce correctly the spiral surface relief if the surface coefficient is set to the 

value 𝑐𝑆 = 8 (𝑐2 𝜆⁄ ). This particular value of the coefficient ratio corresponds to set a 

ratio in the diffusion constants of equation (2.11) at the value 𝐷𝑆 𝐷𝐵⁄ ≈ 10, meaning an 

enhanced diffusion of the molecules at the surface of about one order of magnitude 

respect to the bulk polymer, which is a reasonable result. 

The simulated spiral surface relief obtained in this way is presented in Figure 

2.2(b), where a clear qualitative agreement with the experimental spiral surface relief 

reported in Figure 1.6(c) is immediately recognizable. Beside the qualitative 

reproduction of the spiral surface relief, also the dependence on the beam topological 

charge is in complete agreement with the prediction of equation (2.21) and the actual 

phenomenological choice of the coefficient ratio. In Figure 1.6(d), the change in the 

handedness of the arms of the experimentally spiral surface relief under the change of 

the topological charge sign has been presented. Such inversion is observed also in the 

reliefs predicted by equation (2.21), as can be observed in Figure 2.2(d). The change in 

the sign of the topological charge affects only the surface mediated terms in equation 

(2.21) (Figure 2.2(c)), while all the other terms remain unchanged under the inversion 

from 𝑞 = +5 to 𝑞 = −5, in the specific example considered here. Furthermore, the 

model provides also the correct qualitative predictions about the dependence of the 

observed spiral surface reliefs on the absolute value of the q. 

Figure 2.3 presents five spiral surface reliefs inscribed onto our azopolymer film 

with a linearly polarized Laguerre-Gauss beam at increasing values of the topological 

charge from +1 to +20. The experimental reliefs show an increase of the transverse 

extension of the spiral and an increasing rotation angle of the spiral arms with respect to 

the y-axis (vertical direction in the images). These observations are  reconstructed also 
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in the spiral reliefs simulated through equation (2.21) (reproduced from 

references  [8,46]), highlighting once again the qualitative agreement of the model and 

the relevance of the surface enhanced mass-migration term in this particular 

experimental situation. 

   

 

Figure 2.3| Comparison between the AFM experimental images and theoretical predicted spiral 

surface reliefs induced by the irradiation of a highly-focused Laguerre-Gauss beam at increasing 

values of the topological charge q. All the experimental reliefs are inscribed in our azopolymer 

by maintaining fixed the beam power (7 µW) and exposure time (40 s).The scale bar in the 

AFM images correspond to 500 nm. The simulated surface reliefs are reproduced from the 

references [8,46]. 

2.2 Surface reliefs recording the complex field distribution 

From the discussion conducted so far, we can conclude that the spiral material transport 

observed by the irradiation of a focused beam endowed with a vortex beam can be 

univocally ascribed to the particular helical-shaped wavefront of these beams. The 

sensitivity to the wavefront of the light-driven mass migration adds another degree of 

freedom to the irradiation parameters, over the already well-known intensity and 

polarization dependences, one can use design more complex patterns onto the surface of 

this class of photo-responsive materials. The phenomenological model described here, 

even if it is approximated in some aspects and hence non able to perform quantitative 

predictions, gives moreover the possibility to directly link the spatial configuration of 

the optical field irradiating the material with the topographic modification of its surface.  
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However, in principle, one can even try to follow the theoretical model in the ideal 

inverse direction: use the encoded surface reliefs to characterize some specific 

parameter of the optical field used in the azopolymer irradiation. To give a concrete 

example, we have seen that the handedness and the lateral extension of the spiral arms 

induced during the spiral mass migration uniquely depend on the sign and the absolute 

value of the vortex beam topological charge. It becomes immediately reasonable to 

suppose that, whenever we observe a spiral mass migration having the mentioned 

phenomenology, we are in presence of an optical vortex in the illuminating beam. A 

similar study can be used to effectively characterize a device which is expected to 

generate optical vortices. Furthermore, this approach can sustain a given hypothesis on 

the actual complex distribution of the optical field in the space by comparing the 

experimental observed surface reliefs with the theoretically predicted ones. In the 

following two paragraphs, the optical fields generated by two optical modulator devices, 

namely a dielectric meta-surface able to generate optical vortices and a liquid-crystal 

device producing spatially varying polarized beams, are characterized by the 

comparison between the surface reliefs they produce onto the azopolymer and the 

topography predicted by relations (2.20) and (2.21). 

 

2.2.1 Spiral surface relief for the characterization of a spin-to-orbital 

dielectric meta-surface converter 

Until now, we have discussed about the use of the vortex beam to generate surface 

reliefs onto the azopolymer surface, but no details about how these beams can be 

generated have been given. As already mentioned, these beams are characterized by the 

dependence of the azimuthal phase evolution around the propagation axis of the type 

exp [𝑖𝑞𝜑] resulting in a singularity along the optical axis which gives rise to the optical 

vortex. There are different ways to impose such azimuthal phase dependence in the 

wavefront of a light beam. A commonly used method is the wavefront shaping operated 

by means of a spatial light modulator (SLM) programmed to visualize the so called 

pitch-fork holograms [21]. This is indeed the way all the vortex beams used in the 

experiments reported in the previous paragraphs (and in references  [8,46]) are 

generated. The principle used to design such holograms is based on the calculation of 

the interference pattern produced in a plane transverse to the optical axis by a vortex 

beam and a slanted reference optical plane wave [57,58].  

Another approach for vortex beam generation is instead based on the use of devices 

exploiting the geometrical phase (also known as Pancharatnam-Berry PB phase) to 
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create inhomogeneous gratings for the wavefront reshaping  [50,59]. The devices 

maxing use of such principle are able to transform the spin angular momentum carried 

by a circularly polarized beams into the orbital angular momentum carried by a beam 

having an helical wavefront (Figure 2.4a). The most used spin-to-orbital (SOC) angular 

momentum converters is a liquid crystal device known as q-plate [53]. However, there 

is interest in developing spin-to-orbit angular momentum converters able to circumvent 

the limitations in terms of degradation and resolution of these liquid crystal devices. 

Recently, we proposed and characterized an efficient and versatile SOC [58] constituted 

by a dielectric meta-surface (Figure 2.4(b)). This device has the enhanced performances 

in terms of complex wavefront shaping, respect to the liquid crystal devices, allowing 

the generation of vortex beams having arbitrary integer and fractional topological 

charges.  

Even if a complete characterization of the device can be made by interference 

studies between the beam modulated by the SOC with collinear and/or slanted reference 

plane waves (as is performed extensively in reference  [60]), the presence of an optical 

vortex on the axis of the beam emerging from the SOC device can be uniquely 

demonstrated through an experimental verification of the spiral mass migration that this 

beam should induce onto the azopolymer film. As discussed above, the presence of 

spiral arms in the surface reliefs, flipping and/or rotating under a change in the sign of 

the vortex topological charge and under an eventual rotation of the direction of the 

linear beam polarization [8], can be used as a fingerprint of the presence of an effective 

optical vortex. In order to understand how the SOC device in able to generate vortices 

having opposed charge signs, a brief discussion about the working principle and the 

fabrication strategy of these converters can be useful  [53,60].   

The SOC dielectric meta-surface shown in Figure 2.4(b) is constituted by sub-

wavelength TiO2 optical resonators, termed as nanofins, (Figure 2.4(c-d)), whose spatial 

dimensions (height h, width W, length  L) are properly chosen such that each of them 

induces a π-phase delay between the transverse components Ex and Ey of a propagating 

optical field. In the SOC design strategy, each of these nanofins has a variating 

orientation angle 𝛼(𝑟, 𝜑) in the device plane (Figure 2.4(d)), which induces a 

geometrical phase variation in the wavefront of a propagating beam.   

Using the Jones formalism for the description of the light polarization state, the 

Jones matrix of a nanofin in the polar position (𝑟, 𝜑) of the device plane, is: 
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where R(α) is the matrix for the rotation of an angle 𝛼(𝑟, 𝜑), and the matrix describing 

the π-phase delay has been used. If the incident field is right circularly polarized, its 

Jones vector is 𝐸𝑖𝑛𝑐 = (
1
𝑖
) and the field emerging from the device is:  
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Figure 2.4| The dielectric metasurface used for spin-to-orbit angular momentum conversion 

(SOC). (a) Schematic representation of SOC principle. (b) SEM image of the dielectric 

metasurface fabricated by electron beam lithography and atomic layer deposition of TiO2. (c) 

and (d) schematic representation of the nano-resonators, whose geometrical parameters and 

orientation angle are tuned to achieve an overall π-phase delay between the electric field 

transverse components and a geometrical phase 𝛼(𝑟, 𝜑) = 𝑞 2⁄ + 𝛼0. 
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In order to induce an optical vortex of charge q, the distribution of the nanofins 

orientation angles in the device plane should to be chosen as: 

   0,
2

q
r     . (2.24) 

Indeed, relation (2.24) would imply a geometrical phase term exp[iqφ], which is the 

helical wavefront of a vortex beam having a topological charge +q. Furthermore, from 

the relations (2.23) and (2.24), we have that an incoming right circularly polarized beam 

would be transformed in a helical mode with left circular polarization. Inverting the 

headedness of the incident circular polarization, the same device generates a vortex 

beam with the opposed topological charge sign (-q).   

 

Figure 2.5| Spiral mass transport generated by a beam emerging from the meta-SOC. (a) 

Schematic representation of the setup. The two half-waveplates contained in the dashed 

rectangles are inserted along the optical path to change the sign of the topological charge and 

the polarization of the beam illuminating the azopolymer. (b) Cross section of the beam 

intensity profile before the microscope for both the charges 𝑞 = ±2. (c) and (d) AFM images of 

the spiral surface reliefs obtained with vertical polarization and opposed vortex charges, 

respectively. (e) AFM image of the spiral relief obtained by rotating the light polarization 

direction by 90°. The laser irradiation conditions are: power 65 µW, exposure time 20s. 
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In Figure 2.5 is presented the characterization, by means of the surface reliefs a 

beam modulated through the devices, of one of these SOC metasurfaces, designed to 

produce optical vortices of charge ±2. A linearly polarized laser beam at 𝜆 = 532 𝑛𝑚 is 

transformed in a right circular polarized beam by and half-waveplate before crossing the 

meta-SOC device in order to produce the q=+2 optical vortex. The polarization of the 

modulated beam is then reconverted to linear by a second half-waveplate before the 

beam is injected into the lateral port of an inverted microscope, equipped with an oil 

immersion 100X objective (NA=1.4), and focused onto the spin-coated azopolymer film 

(Appendix A).  

The cross sections of the beam intensity profile before the microscope is presented 

in Figure 2.5(b-top). It is characterized by the expected typical doughnut-like intensity 

cross-section of a light beam endowed with an optical vortex. Furthermore, the actual 

helical-shaped wavefront of the modulated beam is clearly demonstrated by the spiral 

surface relief the beam induces onto the azopolymer surface, as presented in Figure 

2.5(c). Also the inversion of the spiral mass transport handedness under the inversion in 

the sign of the topological charge is found. In this case, a half-waveplate is inserted 

along at the beginning of the optical path in order to achieve a left circular polarization 

for the beam traversing the SOC. The doughnut-shaped intensity profile is realized also 

in this case Figure 2.5(b-bottom), and it results indistinguishable from the previous case. 

However, the spiral arms of the surface relief onto the azopolymer are clearly 

characterized by an inverted handedness (Figure 2.5(d). 

Furthermore, a rotation of 90° of the whole spiral relief is obtained by rotating by 

90° the linear polarization direction of the beam carrying the topological charge q=-2 

(Figure 2.5(e)), according to the results reported in  [8]. These observations confirms all 

the predictions of the phenomenological mass migration model described in section 2.1 

and unambiguously recognize the presence of the optical vortex on the axis of the beam 

modulated trough the dielectric metasurface, confirming, moreover, the success of all 

the device designing approaches, starting from the nano-resonator design till the actual 

inscription of the geometrical phase onto the wavefront of the modulated beam.  

 

2.2.2 Field distributions generated from the θ-cell 

Another situation where the surface reliefs induced onto the azopolymer film can be 

used as an experimental proof for the actual distribution of the optical field components 

in focal region of an high-numerical aperture microscope objective, concerns the 
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commercially avaliable liquid-cristal cell used to produce radial or azimutal polarized 

beams: the θ-cell. 

The θ-cell consists of a liquid-crystal cell characterized by two different LCs 

alignment layers at the cell interfaces [61,62]. In particular, one layer is rubbed 

unidirectionally to achieve a linear alignment of the LCs in contact with it, while the 

other layer has a circular rubbing orientation (Figure 2.6(a)). The direction of the linear 

rubbing defines also the cell axis. The schematic representation of the liquid crystal 

orientations inside the cell as viewed from the top is presented in Figure 2.6(b). The 

twist angle for the liquid crystals at different positions in the cell is always smaller than 

π/2. This characteristic produces a defect line (dashed line in Figure 2.6(b)) in 

correspondence of the inversion in the sign of the liquid crystal twist angle. In this 

region, which has a width of few tens of microns, the liquid crystal alignment is not 

defined [62].  

 

 

Figure 2.6| Working principle of the liquid crystal θ-cell. (a) Schematic representation of the 

alignment layers for the LC at the two faces of the cell. (b) Representation of the spatial 

dependent LC twist angle, producing the θ-cell defect line. Configuration producing Azimuthal 

(c) and Radial (b) polarized beams from a linearly polarized beam. Images reproduced from 

reference [62]. 
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The spatial dependence of the twist angle of the birefringent liquid crystals over the 

θ-cell plane is able to convert a linearly polarized beam, incident onto the cell from the 

side of the linear rubbing, into azimuthally or radially polarized beams. In particular, if 

the incoming polarization direction is parallel to the cell axis, an azimuthally polarized 

beam (Figure 2.6(c)) is obtained after the cell. Otherwise, if the polarization of the 

incoming beam is orthogonal to the cell axis, a radially polarized beam emerges from 

the cell (Figure 2.6(d)).  

However, besides the reorientation of the local linear polarization direction of an 

optical field travelling through the device, the θ-cell induces also a π-shift in the phase 

of the light passing through the two sides of the cell defect line [55]. While such phase-

shift does not affect the actual polarization direction of the light emerging from the cell, 

and can be neglected in many experimental situations where only the directional 

polarization state is relevant (see for example section 5.4 of the present thesis), it has a 

direct influence on the optical field distributions in the case of highly focused radial and 

azimuthal beams, as reported in reference [55].  

 

 

Figure 2.7| Effects of the π-phase shift induced by the two half of a θ-cell. schematic vectorial 

representation of the transverse electric field of a radial polarized beam (a) and the beam 

emerging from the cell (b) which is characterized by a π-shift between the two sides of the cell. 

The red dashed line in (b) indicates the cell defect line. (c) Simulated intensity distribution in 

focal plane of an objective lens with NA=1.4 in the case of actual radial and azimuthal 

polarization, and (d) for the two-halves radial and two-halves azimuthal beams.   
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Figure 2.8| Surface reliefs inscribed by the two-halves radial and azimuthal focused beams. (a) 

Schematic representation of the illumination setup and θ-cell configuration for the surface relief 

inscription experiment. AFM images of the surface relief resulting from the radial polarized 

beam (b) and from the azimuthal polarized beam (c). Simulated surface reliefs from the relation 

(2.21) of the phenomenological model for the case of two-haves radial (d) and two-halves 

azimuthal (e).  

Following the nomenclature presented in that study, the optical fields produced by 

the θ-cell are named as two-halves radial and two-halves azimuthal in order to highlight 

the phase shift in the two half sides of the cell. In Figure 2.7(a) and Figure 2.7(b) this 

situation is described visually by the comparison between the vectorial representation of 

a radial polarized field and the two-halves polarized field obtained from the θ-cell. 

Simulating [8,55] the intensity distribution of the focal region of a high numerical 

aperture objective (NA=1.4) we can observe a significant difference between the 

intensity pattern predicted for the actual radial and azimuthal polarized beams (Figure 
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2.7(c)) and the two-halves polarized beams (Figure 2.7(d)). A complete characterization 

of the different components of the optical field has been performed both theoretically 

and experimentally in reference  [55], confirming the effect of the cell defect line as 

simulated in  Figure 2.7(d), however once again we can use the surface reliefs produced 

by the actual beams modulated by the θ-cell  onto the azopolymer to further characterize 

the device and the optical field distributions it produces.  

In Figure 2.8(a) the simple experimental configuration is presented in which the 

linear polarized light of the laser beam at 𝜆 = 532 𝑛𝑚 passes through the θ-cell device, 

whose axis (and its defect line) is oriented in the vertical direction. The two-halves 

radial or the two-halves azimuthal polarization are chosen by placing at need an half-

waveplate before the device to rotate the input polarization direction. The light 

emerging from the liquid crystal device is then focused onto an azopolymer thin film by 

means of the 100X (NA=1.4) immersion oil microscope objective. The AFM images of 

the surface reliefs arising by irradiating the polymer with a light power of 7µW for 40s, 

in the two polarization conditions are shown in Figure 2.8(b) and Figure 2.8(c), 

respectively.  

The surface reliefs presented here are characterized by a very good agreement 

between the experimental surface reliefs and the reliefs simulated through the relation 

(2.21) of the phenomenological model. As discussed in reference  [55], the π-phase shift 

of the two-halves polarized beams affects mainly the longitudinal field component of 

the  two-halves radial polarized beam. Indeed, an actual focused radial beam possesses a 

significant field component along the light propagation direction, where most of the 

overall field amplitude is concentrated. For this reason these beams can be used for 

spectral high resolution imaging  [63,64]. However, the longitudinal component in the 

case of the two-halves radial polarized beam generated by the θ-cell has a different 

spatial distribution respect to the ideal radial one, limiting its use for the application 

where this aspect is of interest. The very good qualitative agreement between the 

experimental surface reliefs and the surface modulation predicted by the mass migration 

theoretical model in the hypothesis of the two-halves radial beam illumination indirectly 

confirms the actual distribution of the components of the optical fields generated by the 

θ-cell, and represent a very elegant experimental characterization of the device.  
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3 Surface Reliefs from 

holographic structured illumination  

Holography is an optical technique able to reconstruct a desired light field in a specified 

plane of the optical path by properly modulating a light beam through a light-

modulating device. Using a holographic method, a specific intensity pattern can be 

reconstructed. This is even more true for the computer-generated holograms, which use 

a digital representation of the desired intensity pattern, allowing the reproduction of 

almost arbitrary complex light distributions. In the field of the light-induced mass 

migration phenomenon this high degree of control in the illumination configuration can 

have a two-fold relevance. First, it can be used to study the phenomenon at the 

fundamental level. In particular, as the intensity distribution and the polarization state of 

the irradiated light can be controlled independently, the disentangled effects that each of 

them produces in terms of surface modulations can be investigated separately. This is 

not the case, for example, of the interference illumination patterns used for SRG 

inscription, where the polarization of each beam affects directly the intensity 

distribution of the light over the sample. Second, as the surface structuration is induced 

only in the illuminated areas of the azopolymer film, the fine tuning of the irradiating 

light intensity pattern through a holographic technique opens immediately to 

applications of the complex superficial textures produced with this method in the 

micro/nano photo-lithography. In the present chapter, the implementation of an optical 

setup able to reconstruct complex intensity distributions in the focal plane of a high 

numerical aperture objective is described.  The principles underlying the calculation of 

the computer-generated holograms in the framework of the phase-only optical 

modulation are also presented. The series of complex surface reliefs obtained here in 

different illumination conditions and the peculiar disentangled intensity/polarization 

dependence clearly highlight the possibilities offered by this holographic illumination 

configuration of enlarging the range of both fundamental studies of the phenomenon 

and the possible application in the framework of the complex textured surfaces.  
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3.1 Computer-Generated Holograms 

In 1948, Denis Gabor  [65] proposed an imaging technique able to record both the 

amplitude and the phase of an optical field emerging from  a diffracting or scattering 

object. Because of the difference existing in such an imaging process respect to the 

standard photography, able to reproduce only the amplitude of the incident optical field, 

he named the total encoded field information as a hologram, meaning “total recoding”, 

throwing the basis of the method we now call holography. In Gabor’s holography, the 

field is recorded as an interference pattern produced in the coherent superposition of a 

reference wave with the light diffracted by an object. Using such interference pattern as 

modulating mask for a light beam at the same wavelength of the one used for the 

hologram recording, an image of the object can be reconstructed resulting in an optical 

field which retrieves the original diffracted light field from the object [21]. Gabor’s 

holography has received an increased interest over the years, and it is now the base for 

many scientific and technologic applications. In particular, with the development of 

powerful digital calculators in the last decades, many studies have been devoted to the 

development of new methods able to create holograms by means of a proper digital 

calculation process. The result is that today Computer-Generated Holograms (CGH) are 

able to create images of objects that in fact never existed in the real physical world, but 

which were simply drawn in digital form on a computer.  

Analogously to Gabor’s holography, once that a computer-generated hologram is 

calculated on the basis of some proper algorithm, then it has to be transferred to some 

physical optical modulator for the image reconstruction. To accomplish this task one 

can use, for example, a photographic films or transmission masks (printed or fabricated 

by lithography)  [21]. However, the real advantage of the CGH imaging technique is 

mainly due to the possibility of direct transfer of the digitally-calculated holograms to a 

computer-controlled diffractive optical element. The most commonly used device is the 

Spatial Light Modulator (SLM). This is a liquid crystal device whose transmittance or 

reflectance is controlled by electric input signals.  

Recent SLMs are essentially assimilable to the liquid crystal displays commonly 

used in technologic devices (TVs, smartphones and so on), where the electric signal 

driving the liquid crystal reorientation in each pixel can be independently controlled in 

order to reconstruct an image. In principle, for CGH implementation, the display should 

be programmed in such a way that its transmittance (or reflectance) results proportional 

to the digitally-calculated hologram. As the transmittance is a complex function of the 

spatial coordinates, a simultaneous and independent modulation of both the amplitude 

and the phase of the hologram reconstructing light beam would be needed in general. 
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This situation cannot be accomplished with a single SLM device. Moreover, it is not 

efficient in terms of light throughput. Indeed, due the diffractive nature of the display, 

the light emerging from the SLM is divided among many diffraction orders, which 

contain each a small fraction of the total incident power. An amplitude spatial 

modulator would further lower the light power in each of the modulated diffraction 

order by the selective absorption of the light necessary for the modulation. This feature 

makes the amplitude modulation approach unusable in many practical situations where 

the light power is a control parameter for the phenomenon of interest. One example is 

represented by optical tweezes, where the majority of the advantages related to the use 

of the SLMs and CGH are typically highlighted [66,67].  

A suitable approach for many practical applications is represented by the phase-

only CGH design, where the amplitude modulation is completely excluded and the 

reconstruction of the holographic image is accomplished by modulating only the 

wavefront of the light beam. This hologram (often named as kinoform), has to be 

accurately calculated in order to approximately enclose the total hologram information 

(amplitude + phase) in a pure phase profile. Over the years, many algorithms have been 

proposed for the kinoform calculation, each having advantages related to specific 

applications [67]. In particular, the Gerchberg-Saxton (G-S) algorithm  [68], is one of 

the most used algorithm for kinoform calculation in situations where the reconstruction 

of  bidimensional structured intensity patterns is of interest. This algorithm constitutes 

the basis of the calculation design for the spatially structured holographic intensity 

patterns used here to illuminate the surfaces of the azopolymer films. The G-S 

algorithm is described in detail in the next paragraph.   

 

3.1.1 The Gerchberg-Saxton algorithm for phase-only CGH 

Many algorithm schemes used for kinoform calculation in the phase-only CGH are 

based on the relationship existing between the complex optical fields in the two focal 

planes of a lens. As established by the theory of the scalar Fourier optics [21,51,69], the 

propagation through the free space of the optical field from a given plane of the optical 

axis (source plane) to the far-field, produces an optical field which can be described as 

the Fourier transformation of the field in the considered source plane [38,42,43]. The 

same Fourier relation exists also between the optical fields in the focal planes of a lens, 

which is regarded as realizing the so-called 2f-geometry (Figure 3.1(a)). Explicitly, the 

optical field 𝑈𝐼𝐼(𝑥𝐼𝐼, 𝑦𝐼𝐼) in the second lens focal plane (plane II) is written in terms of 

the optical field 𝑈𝐼(𝑥𝐼, 𝑦𝐼) in the first lens focal plane (plan I) as: 
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    , ,II II II I I IU x y FFT U x y    . (3.1) 

Equation (3.1) represents an operative definition for the calculation process one has to 

follow to build a computer generated hologram. Once the intensity pattern to be 

reconstructed is specified as a target intensity image 𝐼𝑡(𝑥, 𝑦), the 2f-geometry permits to 

identify the plane II as the image reconstruction plane, and the plane I as the hologram 

plane, where the modulation of the optical field is achieved (for example through the 

spatial light modulator placed in that plane, as shown in Figure 3.1(b)).  

In the framework of the phase-only CGH,  the  hologram calculation problem  can 

be reduced to the calculation of a phase profile 𝜙𝐼(𝑥𝐼 , 𝑦𝐼) (kinoform), to be imposed 

onto the beam wavefront in correspondence of the first lens focal plane, such that the 

following relation is verified:  

      
2

exp ,t II II I I II x y FFT i x y    . (3.2) 

In phase-only CGH, the amplitude information of the complex optical fields is not used 

for effective light modulation, and the phase profile 𝜙𝐼(𝑥𝐼 , 𝑦𝐼), solution of equation 

(3.2), can be found only in approximated form by an iterative calculation process. The 

basic idea of the G-S algorithm, whose flow chart is shown in Figure 3.1(c), is to 

operate a series of propagations of the optical fields between the lens focal planes with 

the task of encoding the shape of the target intensity profile into a pure phase hologram. 

This is practically accomplished by a series of Fourier transformations (because of the 

2f-geometry configuration) in which, at each propagation step, only the phase 

information emerging from the Fourier transformation of the field is preserved, while 

the field complex amplitude is manipulated in order to account for the actual phase-only 

modulation scheme. 

More in detail, the algorithm is initialized (at the algorithm iteration n=1) assuming 

a randomly distributed phase profile 𝜙𝑟 and unitary amplitude for the optical field in the 

plane I:  

  ,1 expinput rU i . (3.3) 

This field is then propagated in the image reconstruction plane (plane II) by taking its 

Fourier transform. This operation is repeated at each iteration step, where the input field 

𝑈𝑖𝑛𝑝𝑢𝑡,1 is substituted, in the n-th iteration by 𝑈𝑖𝑛𝑝𝑢𝑡,𝑛 as resulting from the algorithm 

calculation at the (n-1)-th step. From equation (3.1), the field in the image plane at n-th 

iteration is given by: 
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  , , , ,expII n input n II n II nU FFT U a i    . (3.4) 

This field is manipulated in order to artificially build the field 𝑈𝐼𝐼,𝑛
∗  in the image plane 

by keeping the phase of the field 𝑈𝐼𝐼,𝑛 and substituting its original amplitude 𝑎𝐼𝐼,𝑛 with 

the amplitude of the target intensity pattern 𝐼𝑡: 

  *
, ,expII n t II nU I i . (3.5) 

The inverse Fourier transformation of (3.5) propagates the field back in the hologram 

plane: 

  1 *
, , , ,expI n II n I n I nU FFT U a i     (3.6) 

Here, a new artificial field 𝑈𝐼,𝑛
∗  is built from 𝑈𝐼,𝑛 by maintaining the original phase 

profile, but substituting the amplitude 𝑎𝐼,𝑛 with the unitary amplitude 𝑎𝐼,𝑛
∗ = 1: 

    * * *
, , , ,exp expI n I n I n I nU a i i   . (3.7) 

The operation described in equation (3.7) is where the actually phase-only modulation 

scheme is effectively taken into account. The field 𝑈𝐼,𝑛
∗  constitutes the input field for the 

(n+1)-th algorithm iteration, or alternatively, it constitutes the algorithm output at the 

final (N-th) iteration 

  *
, ,expout I N I NU U i  . (3.8) 

The searched solution for the kinoform then is the phase profile of the field 𝑈𝑜𝑢𝑡 : 

  *
,arg I NKinoform U . (3.9) 

The Gerchberg-Saxton algorithm converges after the few iterations (in the order of 

N=10 [70]. However, even if the kinoform resulting from the calculation process is able 

to reconstruct very complex light intensity patterns, it suffers (as described in the next 

paragraph) of speckle noise [71] originating from the algorithm initializing random 

phase profile described by equation (3.3). As the speckle noise affects the contrast and 

the resolution of the reconstructed holographic image, a technique suited to its reduction 

is necessary for the effective use of such digital holography technique in applications 

where the homogeneity of the illumination pattern is a demanding point [72].  

In the next paragraph, the effective implementation of the CGH setup and the 

characterization of its performances in terms of generation of structured intensity 

patterns are discussed.   
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Figure 3.1| Optical configuration for computer generated holograms. (a) Scheme of the 2f 

geometry and specification of the planes whose optical fields are related by the Fourier 

transform relation. (b) Scheme of the optical configuration for the effective implementation of 

CGH by the use of a SLM placed in the hologram plane. (c) Flow chart of the Gerchenberg-

Saxton algorithm.   

3.1.2 Optical setup 

The schematic representation of the setup used for the illumination of azopolymer films 

with the holographic computer-generated intensity patterns generated is shown in 

Figure 3.2(a). The laser beam at λ=532 nm (from Nd:YVO4 continuous-wave 

frequency-doubled laser), after a beam expander (lenses L1 and L2), is reflected onto the 

computer controlled phase-only SLM (Holoeye Pluto) programmed to visualize the 

desired kinoform, and placed in the first focal plane of the lens L3. This lens realizes the 

2f-geometry for the propagating beam with an iris placed in its second focal plane. The 

beam, diffracted and modulated by the SLM (working in reflection mode), is then 

transmitted through the lens L3, and focused in the iris plane, where a first 

reconstruction of the holographic image is obtained. The iris in this particular plane 

allows the spatial filtering of the beam, rejecting all the undesired light diffraction 

orders and the un-modulated light emerging from SLM. After the iris, the beam is re-
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collimated by the lens L4 and finally focused onto the sample located in the microscope 

(the inverted microscope Axio-Oberver from Zeiss) sample-holder by means of the 

external lens L5 and the microscope internal lens systems (including tube lens LT and 

the microscope 100X oil-immersion objective, NA=1.4). When needed, a CCD 

connected to the microscope (not shown in the scheme of Figure 3.2) is able to collect 

either the bright-field image of the sample illuminated by a halogen lamp or the image 

of the reflected/back-scattered light in the epi-illumination configuration with the laser 

beam as illuminating source.  

 

 

Figure 3.2| Optical scheme of the CGH setup and its ability in reconstructing time-averaged 

complex intensity patterns. (a) Schematic sketch of the optical setup built on the basis of the 2f 

geometry for CGH. Segments fi denote the focal lengths of the corresponding lenses Li (focal 

lengths: f3 = 400 mm, f4 = 400 mm, f5 = 200 mm). (b) Comparison between a digital target 

intensity pattern and the time-averaged intensity pattern reflected by a silver mirror placed in the 

sample plane. Scalebar of the reconstructed intensity image 2 µm. 

The ability of the described optical system in the generation of complex intensity 

patterns is shown in Figure 3.2(b). Here, the comparison between the intensity pattern 

used as target intensity for the kinoform calculation and the actual intensity profile 

reconstructed in microscope sample plane is presented. The target intensity is specified 

as a grayscale digital image, built and manipulated with generic graphic software. In the 

particular case of Figure 3.2(b), the target intensity is a simple sequence of bright text 

characters over a dark background. This image is processed for kinoform calculation 

using the Gerchberg-Saxton algorithm implemented by a custom Matlab routine, based 

on the discrete-FFT calculation. The number of algorithm iterations is set typically at 

50, but not visible differences have been found in the quality of the reconstructed 

intensity images even for 5 iterations.  
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The SLM is controlled by a LabVIEW routine which allows the sequential display 

of a fixed number of different kinoforms at given framerate (until the maximum 

framerate of 60 Hz). This feature, as discussed below, is necessary for the reduction of 

intensity fluctuations normally generated in the reconstructed holographic images, and it 

is fundamental for the effective use of the CGH for light-driven superficial structuration 

azopolymer films. 

 

3.1.3 Speckle noise reduction 

As discussed in section 3.1.1, the G-S algorithm is initialized by a random phase profile, 

necessary to guarantee the convergence [70] of the approximate solution of equation 

(3.2). This random phase profile is not completely eliminated in the algorithm steps, 

even for large numbers of iterations, and results in a granular intensity pattern (the 

speckle pattern) superimposed to the reconstructed holographic image. 

 A speckle pattern  [73] is typically observed in coherent light beams reflected  by a 

rough surface. In this case, the superficial roughness in the scale of wavelength 

produces a random modulation in the amplitude and in the phase of the incoming beam. 

Interpreted as the convolution of secondary wavelets, the coherent superposition of such 

dephased and modulated waves produces a mutual interference which results in a 

granular intensity pattern in the far-field. This pattern has bright spots in the random 

positions where the interference is constructive and dark regions where the interference 

is randomly destructive.  

In the case of CGH, the random phase profile of the G-S initialization step acts as a 

source of randomly distributed dephasing for the beam wavefront at the SLM pixel 

scale. The result of such random dephasing is that the holographic reconstructed image 

has a superimposed speckle intensity pattern. This granular pattern limits the 

homogeneity of the reconstructed holographic image and represents a source of un-

desiderated noise. As this noise depends on the random initializing phase of the 

calculation algorithm, different kinoforms calculated from the same target intensity 

profile are characterized by different speckle patterns. The random nature of this 

holographic speckle noise, however, allows a very simple approach for its reduction, 

suitable in all the applications where the light-induced physical process of interest 

occurs on a time scale relatively longer (few seconds) respect to the SLM refreshing rate 

(60 Hz). This is indeed the case of the light-driven mass transport in azomaterials. 

The speckle noise reduction strategy is simply based on time average of the random 

speckle noise. This temporal mean is practically realized by the sequential display of 
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several independent kinoforms calculated from the same target intensity 

profile [71,72,74,75].  The result is an homogenous mean holographic intensity pattern 

in which the granularity of the speckle noise affecting each reconstructed image 

individually is drastically reduced [72,75]. 

In order to characterize the speckle noise reduction achievable by the kinoform 

temporal averaging method, the reconstructed images obtained by varying the number 

of time-averaged independent kinoforms have been characterized through the 

measurement of speckle dependent quantities. The main results of this characterization 

are reported in  Figure 3.3. The parameter commonly used to characterize the 

granularity in the images affected by the speckle noise is the speckle severity S  [76,77], 

defined as: 

 S
I


 , (3.10) 

where 〈𝐼〉 is the mean intensity, and 𝜎 is the intensity standard deviation measured in the 
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From the definition in equation (3.10) it follows that the more the intensity distribution 

in the image is granular (higher values of σ), higher is the value of the parameter S.  

In order to actually measure the speckle severity of our holographic scheme, a series 

of 200 images of the holographic intensity light pattern reflected by a silver mirror, 

placed in the microscope sample plane, is collected by the CCD connected to the 

microscope. The number N of different kinoforms displayed cyclically (with a refresh 

time of 200 ms) onto the SLM is variated from N=1 to N=50. For each N, a single 

image (the summed image) is reconstructed by summing together all the 200 frames in 

the stack. In Figure 3.3(a) are presented some of the summed images of the 

reconstructed holographic patterns obtained for different values of displayed kinoforms 

N.  
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Figure 3.3|Speckle noise characterization and its reduction. (a) Summed images of the CCD 

acquired stacks (200 frames each) reconstructed for different number N of independent 

kinoforms cyclically displayed onto the SLM. The scalebar in the images (specified in the panel 

N=50) is 2µm. (b) Speckle severity measured in the images for different N. (c) Comparison of a 

zoomed feature of the holographic reconstructed images and (d) their relative intensity profiles 

(scalebar in (c) 500nm). Normalized discrepancy parameter D evaluated on the profiles of type 

(d) for different number of independent kinoforms.  

A significant reduction in the intensity granularity is evident for increasing numbers 

of averaged kinoforms. This is also confirmed by the decreasing behavior of the speckle 

severity with the increasing of N (Figure 3.3(b)).  However, even if the parameter S 

saturates at the value of about S=1 starting from N=10, the visual comparison of the 

reconstructed images for larger values of N shows a slight improvement trend in terms 

of homogeneity in the bright regions and the summed image for N=50 appears less 

noisy than the others. Indeed, the restriction of the speckle severity analysis to a small 

number of pixels corresponding to an illuminated region of the image (not shown here 

for brevity), shows a slower saturating trend for the parameter S and an appreciable 
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difference at large values of N (40-50) respect to analysis conducted on the entire 

image. 

Beside the image homogeneity, the speckle noise affects also the sharpness of the 

time-averaged intensity pattern. This effect is described in Figure 3.3(c) through the 

comparison between a zoomed view of a region of the intensity target profile and the 

reconstructed holographic image of the same region obtained for N=1. As can be seen 

from the images, the granular intensity fluctuations on the scale of the optical resolution 

limit (250 nm) induce a significant degradation of the sharpness in the intensity profile. 

However, the situation is improved significantly by the temporal average operation, as 

can be observed in the image in Figure 3.3(c) obtained for N=50 and from the 

comparison of the intensity plot profiles measured in the images (Figure 3.3(d)).  

In order to qualitatively characterize the sharpness of the reconstructed averaged 

intensity and the deviation of its profile from the target, a discrepancy parameter D can 

be used. This parameter is defined as the mean square deviation between the target and 

the measured intensity profiles and it is intended as an estimator of the intensity 

fluctuations of the holographic images around the target pattern: 
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In Figure 3.3(e), the values of the parameter D (normalized to the minimum 

observed one Dm) estimated for different number N of averaged kinoforms are 

presented. A decreasing trend in the discrepancy as N increases if found also in this 

case, confirming that the averaging kinoforms noise reduction is effective for both 

image total homogeneity and resolution of the holographic reconstructed intensity 

patterns. 

However, it should be further stressed that similar noise suppression is effective 

only if the process of interests is insensitive to the instantaneous intensity pattern. 

Indeed, dealing with a physical process depending on the total energy deposited in the 

illuminated sample, as for the light-driven mass migration in azopolymers, the average 

of light modulation over different kinoforms (affected each of independent random 

speckle noise) on the temporal scale of few seconds
2
 becomes a powerful noise-

suppression technique which allows the effective use of CGH for complex surface 

structuration of the azopolymer films.  

                                                 
2
 Using the SLM at its maximum refresh rate of 60Hz, the sequential display of N=50 different 

kinoforms implies an exposure time for each cycle of 0.84s. Even the use of a refresh rate of 5 Hz 

requires a total exposure time of 25 s, which is typically shorter than the exposure time needed to inscribe 

the surface reliefs onto the azopolymer film. 
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3.2 Holographic Surface Reliefs: Experimental configuration 

Once the ability of the CGH setup for the generation of complex and time-averaged 

homogenous intensity patterns has been established, the attention is now moved to the 

surface reliefs that these complex illumination patterns are able to induce onto the 

surface of our azopolymer films. In the experiments, the samples are prepared in form 

of thin films as described in Appendix A.   

In all the experiments, the time-average for speckle noise reduction is achieved by 

using 50 independent kinoforms, cyclically displayed onto the SLM at the refreshing 

rate of 5 Hz during the whole polymer exposure time. The polarization of the beam is 

controlled by waveplates (half-wave or quarter-wave plates) placed along the optical 

beam path. The power of the laser beam during the experiments, measured in 

correspondence of the microscope entrance port, is in the range of 10-100 µW, 

depending on the actual distribution and lateral extension of the particular holographic 

illuminating intensity pattern under consideration. However, the light intensity at the 

sample plane is estimated to not exceed 1 kW/cm
2
 in all the experiments.  

3.3 Characterization of Holographic Surface Reliefs   

The first aspect to be discussed in the framework of the present experimental situation is 

related to the dependence of the surface modulation on the polarization state of the 

spatially structured illuminating beam.  As largely discussed in the previous chapters, 

one of the well-established key features of the light-induced mass migration in 

azopolymers is the dependence of the material displacement direction on the 

polarization state of the illuminating light. The great majority of the reported studies 

emphasize the role of the light polarization as a parameter for the determination of the 

material migration direction and efficiency, concluding that an efficient mass transport 

requires a light electric field component parallel to the intensity gradient direction. In 

typical mass migration experiments, the intensity pattern is simple and has a defined 

gradient profile, maintained fixed or spatially confined over the illuminated sample 

area. This is the case, for example, of the sinusoidal interference patterns used for SRG 

inscription, or the case of focused gaussian beams inducing focused SR.  

In these situations a fixed or symmetric relation exists between the direction of the 

gradient in the illuminating intensity pattern and the light polarization state (linear or 

circular). However, if the illuminating intensity pattern is more complex than 
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sinusoidal, or extended to larger areas than the focal spot of a single gaussian beam, the 

reciprocal direction of the actual electric field and the intensity gradient direction of the 

light pattern can vary in different areas of the exposed film, with a position dependence 

of the inscribing efficiency or even of the mass migration direction  [40,41]. 

Having in mind the holographic complex surface structuring as final goal, it is 

important to investigate and characterize the surface reliefs arising onto the azopolymer 

surface under different reciprocal local orientations of the illuminating intensity gradient 

direction and the direction of the light polarization. As this two degrees of freedom are 

independently controlled in our CGH illumination setup, eventual non-trivial 

independent contributions to the mass migration of these parameters could be easily 

highlighted. This can lead to potential applications not only in the superficial photo-

lithography, but can give an unprecedented versatility in the study of the mass migration 

phenomenon at the fundamental levels [40,41]. 

3.3.1 Dependence of surface reliefs on linear polarization direction  

An appropriate experimental configuration, suitable for the study of the dependence of 

the surface relief inscription process on the local reciprocal direction of the intensity 

gradient and light polarization direction, is realized by irradiating the azopolymer film 

with a linearly polarized beam whose intensity profile has been modulated to achieve 

light patterns with circular or radial symmetry. In this situation, indeed, all the possible 

reciprocal angles between the polarization direction and the intensity gradient can be 

explored in a single step irradiation over a confined region of the sample. Two examples 

of such radial and circular light patterns are the array of radially distributed lines, and 

multiple concentric circles. These patterns can be easily constructed as grayscale images 

by any computer-graphic program (Figure 3.4(a) and Figure 3.4(d)) and can be turned in 

effective modulated intensity patterns by the CGH technique described above. 

Figure 3.4(b-c) and Figure 3.4(e-f) present the AFM images of the surface reliefs 

produced by the irradiation of the azopolymer film with the holographic intensity 

patterns presented in Figure 3.4(a) and Figure 3.4(d), respectively. The light 

polarization direction of the illuminating beam is represented by the red arrows, and is 

vertical in the images. As can be immediately noted from the topographic color-scale, 

there is an inversion in the sign, more than a simple reduction in mass migration 

efficiency, for the surface reliefs generated in different positions of the illumination 

patterns, i.e. for different relative direction of polarization-intensity gradient. In 

particular, for the lines in Figure 3.4(b) having the intensity gradient perpendicular to 

the polarization (vertically oriented lines in the image), the surface relief is an above-
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ground groove, resulting from the polymer accumulation in the regions of maximum 

intensity. On the contrary, for lines presenting the intensity gradient in the direction of 

the polarization (horizontal lines in the image), the surface relief is a valley produced by 

the material displacement far from the maximum intensity points along the line.  

 

 

Figure 3.4| Surface reliefs induced onto the azopolymer film with radial and circular intensity 

patterns. (a) Target intensity image constituted by and array of radial bright lines. (b) 

Bidimensional and (c) tridimensional AFM images obtained from the film illumination with the 

pattern (a) by a linearly polarized beam, whose direction is specified by the red arrow. (d)-(e)-

(f) same image sequence for the intensity pattern constituted by concentric bright circles. 

The lines of the array oriented in intermediate directions are characterized by 

topographies continuously going from the groove to the valley as the line direction 

changes from vertical to horizontal. Furthermore, there are also particular directions 

characterized by almost zero surface modulation occurring at about 40° respect to the 

light polarization direction. A similar behavior is observed also for surface reliefs 

obtained with the concentric intensity circles (Figure 3.4(e)), where even a continuous 

variation in the material displacement direction is observed as the angle between the 

intensity gradient and the light polarization varies over the irradiated areas. In order to 

exclude the eventuality that this particular behavior observed in the reliefs might be due 

to some aberration of the optical setup in the used specific polarization direction, the 

same experiment was repeated for the radial array of lines with a linear polarization 

rotated by 90 degrees respect to the previous experiment.  
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Figure 3.5| Comparison of the surface reliefs resulting from the illumination of the azopolymer 

film with the radial array of lines for (a) vertical and (b) horizontal linear polarization direction. 

In Figure 3.5 the AFM images of the radial array of lines obtained for the two 

orthogonal linear light polarizations are compared. From the images, a complete 

inversion of the sign of the surface reliefs is observed as consequence of rotation of the 

light polarization. This effect reasonably excludes optical aberrations as causes of the 

observed phenomenon and suggests a real inversion of the mass migration direction as 

the reciprocal orientation of the intensity-gradient and linear polarization varies along 

the sample.  

 

Figure 3.6| Schematic definition of the target intensity pattern and the intensity gradient 

direction in the experiment with a single bright light as illumination pattern. (a) target intensity, 

(b) simulated unidimensional Gaussian profile approximating the diffraction limited intensity 

pattern in objective focal plane. (c) direction of the intensity gradient. 
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Figure 3.7|Comparison of AFM images and topographic profile of the surface reliefs obtained 

for (a) linear polarization direction parallel to the intensity gradient direction; (b) for linear 

polarization orthogonal to the intensity gradient direction. 

In order to investigate more accurately the phenomenon in a simpler illumination 

condition, the surface reliefs arising from the azopolymer illumination with a single 

unidimensional intensity pattern having a fixed intensity gradient direction, are analyzed 

more in detail. In this experiment, the intensity pattern used as target for kinoform 

calculation is the single bright line shown in Figure 3.6(a). Because of the light 

diffraction, the actual light distribution at the objective focal plane can be approximated 

to a one dimensional gaussian (Figure 3.6(b)) having an intensity gradient in the x 

direction of the images (Figure 3.6(c)). Figure 3.7 reports the AFM images, and the 

relative topographic profiles, of the surface reliefs obtained from the unidimensional 

intensity pattern for the illuminating beam linearly polarized in the direction parallel 

(Figure 3.7(a)) and perpendicular (Figure 3.7(b)) to the intensity gradient. 
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In the experiments, the beam intensity is maintained fixed at the value of about 

1kW/cm
2
 and the exposure time is 150s. Accordingly to the observations of the 

previous experiments, the surface reliefs resulting from the same illumination condition 

but perpendicular polarization directions in the inscribing beam are characterized by 

inverted topographies as consequence of opposed directions of the polymer mass 

migration in the illuminated areas. 

The surface relief obtained with light polarized in the horizontal direction has a 

depth of 34 ± 2 nm (Figure 3.7), while the groove resulting from vertical polarization 

has a height of 21 ± 2 nm. The amplitude in the case of horizontal direction is about 1.4 

times larger than the amplitude of other case, meaning a more efficiency of the mass 

migration phenomenon when the light polarization direction coincides with the intensity 

gradient direction. However, a more accurate study of the efficiency of the material 

movement in the two polarization cases can be conducted by monitoring the surface 

relief growth as the fluence of the illumination light is variated. 

 

3.3.2 Surface relief growth dynamics under linear polarization 

To characterize the growing dynamics of the surface relief formation in the two 

intensity gradient-polarization conditions, the surface relief inscription with the 

unidimensional illumination patterns is repeated for different exposure times from 10s 

to 150 at the fixed intensity of 1kW/cm
2
. During these experiments, once the 

polarization state is chosen, the sample position in the objective focal plane is controlled 

by a piezoelectric scanner, programmed to translate the sample of a fixed spatial step at 

each different exposure time. The result of this sample movement is an array of parallel 

surface reliefs inscribed onto the azopolymer film, each corresponding to a particular 

value of the exposure time (Figure 3.8). The translation step (8 µm) of the piezo scanner 

is set to a value large enough to guarantee that each surface relief is not influenced by 

the successive illumination step. From the topographic profile, measured by the AFM, it 

is possible to estimate the amplitude and the width (specified as the FWHM of the 

profile) of the different surface reliefs produced onto the surface as the exposure time is 

increased. The measurement results, for the two polarization states, are shown in the 

graphs of Figure 3.8. While the FWHM
3
 does not show a particular trend as the 

exposure time increases, being fixed to values in the range of 350-400 nm, the analysis 

of the amplitude growth at low exposure times shows a linear behavior in both the 

                                                 
3
 Note that the width of the unidimensional intensity line, imposed by the laser wavelength and 

objective diffraction limit, is 𝑑 = 1.22
𝜆

2𝑁𝐴
≈ 250 𝑛𝑚. 
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cases. This is highlighted in the graph of Figure 3.9, where a direct comparison of the 

measured surface relief amplitude is presented. 

 

 

Figure 3.8| Comparison of surface relief growth dynamics for different exposure times at fixed 

laser intensity for the two investigated polarization states. Each panel shows the AFM images of 

the array of single lines inscribed with the exposure specified below each structure. The graphs 

present the plot of the amplitude and the width of the surface reliefs measured from AFM 

profiles. 

The linear fit of the data can be used to characterize the growth velocity. This 

resulted in the values of (-0.17 ± 0.01) nm/s for the parallel linear polarization direction 

and (0.16 ± 0.01) nm/s for orthogonal polarization. From this analysis, it emerges that 

the growing velocities in the two polarization states are comparable in the range of the 

investigated exposure times. However, in the case of the polarization parallel to the 

intensity gradient, the surface reliefs at the early stages of the inscription process have 

significant modulation amplitudes (depth) which translates into an intercept of (-7 ± 2) 

nm of the linear fit, differently from the case of perpendicular polarization where the 

estimated intercept is compatible with zero modulation. Such difference implies a better 
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efficiency of the mass migration process for the parallel polarization configuration in 

the early irradiation stages, which can justify the lower modulation in terms of absolute 

amplitude of the groove surface relief respect to the valley shown in Figure 3.7. 

 

 

Figure 3.9| Comparison of the growing rates of the surface reliefs for the different polarization 

states. The dashed lines are the linear best fit for the data.  

3.3.3 Characterization of surface reliefs with circular polarization 

The topographic characterization and the growth dynamics of the surface reliefs arising 

from the focused unidimensional gaussian intensity pattern under circular polarized 

light are presented in Figure 3.10. The analysis is conducted in the same experimental 

conditions as the previous study performed for linear polarizations; namely beam 

intensity of 1kW/cm
2 

 and exposure time ranging from 10s to 150s. The AFM image of 

the unidimensional surface relief at exposure time of 150s and its topographic profile 

are presented in Figure 3.10(a) and Figure 3.10(b), respectively. These describe the 

surface relief as characterized by the valley height profile, with a geometry similar to 

the one obtained with the linear polarization direction parallel to the intensity gradient 

in Figure 3.7(a). 

 The amplitude and the width of structures resulting from different exposure times 

are estimated from the AFM of the line array reported in Figure 3.10(c) and are 

presented in the graph in Figure 3.10(d). The SR amplitude shows a linear increase at 

the initial states of the process, with an estimated growth velocity of  0.04 ± 0.01 nm for 

the relief depth. Compared with the case of linear polarization described in Figure 3.9, 

the initial growing rate is slower by a factor of about 4. However, the growth behavior 

becomes non-linear for longer exposure times (more than 60s), as highlighted by the 

displacement of the measured data from the best linear fit of the initial growing phases 
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of the process (red dashed line in Figure 3.10(d)), and produces a depth of (26 ± 2) nm 

at the exposure time of 150s. The width of the structures appears slightly larger than the 

case of linear polarization, showing a fluctuation around the value FWHM=400nm.  

 

 

Figure 3.10| Characterization of the holographic unidimensional surface reliefs under circular 

light polarization. (a) and (b) AFM images and topographic profile of the typical SR obtained in 

this configuration. (c) AFM images  and (d) measured SR amplitude and width of the sequence 

of SR inscribed onto the azopolymer at different exposure time (exposure intensity 1.0 

kW/cm
2
). 

3.3.4 CGH for fundamental studies about the light-induced mass 

migration phenomenon 

On the basis of the experiments reported many times in literature, one could easily 

expect, that for illumination situations where the intensity gradient is orthogonal to the 
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polarization, the mass migration is very inefficient, analogously to the s-s polarization 

states for the interfering beams in the case of SRGs (see also Figure 1.3). 

However, in few recent works, not only SRGs are obtained with the s-s polarization 

of the interfering beams, but they are also associated to the competition of two distinct 

mass migration phenomena, driven independently by the intensity gradient and/or by 

the light polarization, producing each a mass transport in opposite directions  [40,41]. 

While the relative strength of the two proposed driving mechanisms is described to 

depend on the chemical nature of the host material and on the light intensity, all these 

studies have been performed by analyzing only the surface relief formation under 

sinusoidal interference patterns. However, such illumination configuration does not 

allow the disentanglement of eventual independent polarization/intensity contributions 

to the mass migration [40], and requires the introduction of more complex illumination 

configuration, as the use of an assisting-beam [41], in order to extract decoupled 

information. Furthermore, the possible combinations of light intensity patterns and 

polarization distributions with the interfering beams configurations are limited and 

necessarily interlaced  [42].  

On the other hand, the holographic generated intensity pattern demonstrated here 

allows a complete disentanglement of the intensity gradient direction and the light 

polarization state, the latter being tuned by usual waveplates independently from the 

holographic structured intensity. This has permitted to clearly observe two distinct 

regimes for the induced mass migration direction [Figure 3.4; Figure 3.5; Figure 3.7], 

depending on the relative orientation of the polarization and the local direction in the 

intensity gradient. Furthermore, the comparable growing rate [Figure 3.8; Figure 3.9] 

observed in the two sets of surface reliefs, inscribed in exactly the same exposure 

conditions (intensity and exposure time), suggests that the two processes in our highly 

focused illumination configuration have almost comparable efficiency.  

Regarding the circular polarization as superposition of linear combination of the 

two linear polarizations in the direction of the intensity gradient and its orthogonal 

direction, the surface reliefs arising under the circular polarized light can be interpreted 

as the result of the two competitive phenomena leading to the formation of structures 

shown in Figure 3.7. The observed valley profile obtained in polarization configuration, 

however, imply a more efficient mass migration when the polarization direction is 

mainly oriented in the direction of the intensity gradient.  

A tentative to rationalize this mass migration inversion phenomenon can be made, 

following the result obtained by Yang et al. in reference  [49], where a more accurate 

version of the optical gradient force model described in section 1.3 is given. In that 

theoretical framework, the full electromagnetic force determining the material 
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displacement is the result of two contributions: a z component (independent on the 

polarization) pushing down the material and a lateral component whose sign (but not 

strength) depends on polarization. However, in that experiment, the inversion in the 

mass migration direction was observed only in the presence of a uniform assisting 

beam, simultaneously illuminating the film during the inscription process with a 

unidimensional Gaussian intensity distribution. This assisting beam, according to the 

author’s comments, would only have the role of enhance the photoisomerization of the 

azochomophores. On the contrary, they observed only a valley surface relief without the 

presence of an assisting beam regardless the actual polarization direction.  

In our focused situation, the light power density is certainly higher respect to the 

experiments reported there, so that we can assume a more efficient photoisomerization 

is taking place, without the need of any assisting beam. However, the application of this 

full optical gradient force model for the description of our experimental situation is not 

a simple task, because of the complex three-dimensional distribution of the focused 

optical fields (and hence of the eventual optical forces acting onto the azopolymer film) 

in the focal plane of the microscope objective and of the necessity to include them in a 

complex description of the material dynamics through the solution of the Navier-Stokes 

equations. 

Also in this case, however, the phenomenological model exposed in the previous 

chapter [8,10,46] seems to be the most promising theoretical framework able to explain 

the polarization-dependent mass migration inversion. Indeed, by phenomenologically 

choosing the signs of the coefficients in the mass current in equation (2.20), two 

directions for the light-induced surface modulation are possible. Furthermore, the model 

involves also the non-trivial coupling of the optical field components with the 

azopolymer surfaces, which could play a non-negligible role in our experimental 

situation. This eventuality, is not taken into account in any other model, included the 

full optical gradient force model. It should be noted, however, that the material 

chemistry is expected to play a role in determining the inversion behavior [40,41], so 

that a more accurate investigation should involve the investigation of this behavior in 

different azomaterials. 

The considerations exposed here show the potentialities that this illumination 

approach can have in the future studies on the mass migration phenomenon at the 

fundamental level. Furthermore, in the remaining sections of the present chapter the 

ability of the CGH illumination to induce complex superficial textures is also presented. 

The results obtained make our illumination configurations suitable in micro-nano photo-

lithography applications.  
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3.4 Holographic nano-lithography in azopolymers  

In the light of the analysis conducted in the previous section about the polarization 

dependence of the focused holographic SRs, one immediately recognizes that the use of 

linearly polarized light is not suitable to inscribe uniform surface modulations from 

illumination patterns more complex than simple lines having fixed directions over the 

azopolymer surface. This can be already understood from the surface reliefs reported in 

Figure 3.4, but it becomes even more evident for the holographic intensity pattern 

reported in Figure 3.11. Despite the reconstructed holographic intensity (not shown 

here) in the polymer plane is very similar to the target intensity pattern, the resulting 

surface relief is deformed as consequence of the differences in the local mass migration 

behavior resulting from the reciprocal direction of the local intensity gradient and the 

polarization direction.  

 

 

Figure 3.11| Complex surface relief arising under linear light polarization. (a) Target intensity 

pattern constituted by the logo of University Federico II. (b) AFM image of the inscribed 

surface relief. The red arrow indicates the polarization direction of the beam during the 

experiment. 

However, the use of circular polarization allows to solve this directional 

dependence, leading surface reliefs of the type described in Figure 3.10(a), 

homogeneously inscribed in the illuminated regions of azopolymer film, regardless to 

actual intensity distribution of the holographic light pattern. This behavior is clearly 

demonstrated by the surface reliefs obtained from circular and radial symmetric 

intensity profiles under circular polarized light show in Figure 3.12.  
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Figure 3.12| AFM images (and 3D zoomed view of sample regions)  of circular and radial 

symmetric surface reliefs obtained from holographic intensity patterns and circular light 

polarization. (a) Array of radial lines. (b) Array of concentric circles. (d) Surface modulations 

reproducing the transmittance of a Fresnel lens. 



Surface Reliefs from holographic structured illumination  

 

67 

 

The array of radial lines in Figure 3.12(a) and the concentric circles in Figure 

3.12(b) can be directly compared with the surface reliefs in Figure 3.4, obtained from 

the same holographic intensity pattern but with linear light polarization. In this latter 

case, there was an alternation of the groove and the valley profiles, depending on the 

particular angular position of the line in the array of radial lines, or on the direction of 

the local tangent to the circles in the array of concentric circles. This anisotropy, 

instead, disappears completely in the case circular polarization, which is characterized 

by the valley profile independently of the angular position or the direction of the tangent 

in the intensity patterns. A closer look at the surface reliefs shows the presence of a 

particular direction where the mass migration resulted less efficient respect to the 

surrounding. This can be ascribed to a slight residual ellipticity in the polarization due 

to the not perfect conversion of the linear polarized light into the circular by means of 

the quarter-waveplate. Furthermore, this effect highlights again the very high sensitivity 

of the surface reliefs inscription efficiency in the present experimental configuration, 

suggesting the use of this phenomenon as a topographic method of recording the 

vectorial configuration in the optical field, as proposed many times in the literature over 

the years [4] 

 

 

Figure 3.13| AFM image of the surface relief figuring the University logo. The surface 

modulation is obtained in the same intensity and exposure conditions of Figure 3.11, but with 

circular polarized light. 

Besides the demonstration of the isotropic mass migration, the reliefs in Figure 

3.12, are also the first demonstration to my knowledge, of good quality circular surface 

reliefs [4], even if restricted onto a small sample area ( 50 × 50 𝜇𝑚2). For this circular 
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surface relief geometry, the holographic setup allows the inscription of even more 

complex circular surface profiles, as the one of a Fresnel lens shown as an example in 

Figure 3.12(c), which could be employed in some photonic applications. 

Even the complex intensity pattern figuring the logo of University Federico II 

(Figure 3.11(a)) is transferred in a homogenous surface relief by the use of circular 

polarized light(Figure 3.13).  

 

 

Figure 3.14| Scalability of the holographic surface reliefs.(a) Optical image of the Fresnel lens 

surface reliefs inscribed with a 40x objective (scalebar 5um). (b) Grayscale profile traced along 

the blue line in panel (a). (c) Optical image of the Fresnel pattern inscribed onto the azopolymer 

with a 10X objective (scalebar 200um). 

The superficial structures presented in this paragraph represent a clear 

demonstration of the potentialities of the holographic controlled illumination of the 

azopolymer films for the inscription of nanometric superficial features (amplitude 

modulation in the range from few nanometers to about 100 nm) with a sub-micron (400 

µm) spatial resolution onto an area delimitated by the objective lens field of view. This 

last aspect can be tuned in order to scale the inscribed structures over different lateral 
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dimensions. A qualitative example is show by the optical images of the surface reliefs in 

Figure 3.14, where the holographic Fresnel intensity profile is projected onto the 

azopolymer film at different optical magnification. In particular the surface relief in 

Figure 3.14(a) is obtained with a 40X objective (NA=0.65) and extents over an area of 

more than 170 × 170 𝑢𝑚2, while the surface relief in presented in Figure 3.14(c), 

obtained with a 10X objective (NA=0.25) is even extended in the millimeter scale.  

    

3.4.1 Surface reliefs from multistep illumination 

Another typical peculiar effect observed in the light-induced mass migration 

phenomenon in azomaterials is the material response to different sequential illumination 

steps. This phenomenon has been demonstrated to allow the cyclical inscription/erasure 

of light-induce surface reliefs (see for example section 4.2.7 and [5,11] ), and the 

inscription of complex or hierarchical superficial textures  [78].  

 

 

Figure 3.15| Sequential inscription of parallel lines oriented in perpendicular directions for a 

linear polarization state. (a) and (b) AFM images of the surface relief obtained after one step of 

illumination. (c) AFM of the composite surface relief resulting from the sequential illumination 

with the two arrays of orthogonal lines. 
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Such multistep illumination process can be used is analogous way also in the 

holographic polymer structuration presented here, adding a further degree of control of 

the resulting surface reliefs. The proof of the effectiveness in the multistep surface 

structuration is presented in Figure 3.15 and Figure 3.16, where a simple array of 

parallel lines is used as a prototype of structured illumination intensity pattern. The 

sample exposure consisted of two distinct illumination steps, in which the polarization 

direction is maintained fixed (linear in the case of Figure 3.15 and circular in the case of 

Figure 3.16), while the intensity pattern is rotated by 90° by using the same rotation for 

the holographic target intensity pattern in the CGH calculation. 

 

 

Figure 3.16| Sequential inscription of parallel lines oriented in perpendicular directions for a 

circular polarization. (a) and (b) AFM images of the surface relief obtained after one step of 

illumination. (c) AFM of the composite surface relief resulting from the sequential illumination 

with the two arrays of orthogonal lines. 

While each individual illumination step produces surface reliefs having topographic 

features already discussed above is this chapter (Figure 3.15(a-b) and Figure 3.16(c)), 

the sequential two-step produce hierarchical surface reliefs, where each of the 

illumination step contributes with its own topographic characteristics, and the results are 

a grid of valley and grooves in the case of linear polarization or an array of nano-pillars 
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in the case of circular polarization. Furthermore, in these simple experiments no 

particular dependence on the order of the actual illumination steps has been found to 

affect the final structures.   

It is worth noting that the presented illumination schemes are very simple and the 

final surface reliefs can be obtained easily in a single step illumination by a proper 

calculated hologram, however it is possible to imagine situations where this one-step 

structuration is not possible. The presented simple experiments demonstrate, however, 

the possibility to use successfully such sequential structuration method, which adds 

another dowel in the potential applications of the holographic structured azopolymer 

surfaces in micro/nano-lithography. 
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4 Large-scale single-beam photo-

patterning of azopolymer surfaces  

In the previous chapter we have exploited a novel holographic illumination approach 

able to inscribe complex nanometric modulation onto the surface of the azomaterials. 

Even if the scalability of the process to large areas has been qualitatively demonstrated 

as possible, the holographic setup reaches its best performances in terms of quality of 

inscribed structures in a focused illumination scheme. This requires in general a quite 

sophisticated and relatively expensive optical setup if compared, for example, with the 

simple interfering light beam configuration needed to inscribe the SRG on a large area.  

Many applications, especially in the field of photonics, necessitate both complexity in 

the superficial texture and large scale patterning [3,4]. In the best light-driven 

fabrication technique one can imagine, both these tasks should be achievable with a 

simple optical configuration and even in a single step illumination step. Using the 

azomaterial as lithographic platform, the simplest large-scale illumination condition 

conceivable is the irradiation of an azomaterial film with a simple single beam. On the 

basis of the discussions about the light-induced mass migration phenomenon conducted 

in the previous chapter it is difficult to imagine how this extremely simple illumination 

condition can give rise to some superficial modulation. However, surprisingly, this 

actually happens and the surfaces develops spontaneous periodic modulations, similar to 

the SRG in the case of linearly polarized light, extended over the whole illuminated 

area [22]. Despite the attractiveness of such single step large-scale photo-patterning, the 

possible superficial textures obtainable with this approach are limited to unidimensional 

or hexagonal periodic patterns. Furthermore, analogously to the standard SRG, their 

amplitude modulation is always restricted to few hundred of nanometers, which means 

that they can be considered as bidimensional in many situations.  

In the last few years, a new approach making use of the light-induced mass 

migration phenomenon in azomaterials is acquiring more and more relevance for the 

fabrication of complex three-dimensional superficial architectures. This is based on the 

light-driven reconfiguration of micro-volumes of azomaterials pre-patterned onto the 
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surface [3,23,79]. There are many advantages of using such fabrication technique, 

mainly related to the versatility of the possible obtainable textures and the dramatic 

reduction of the costs compared to standard lithographic techniques. In this chapter are 

described the both the superficial textures obtainable onto the azomaterial surfaces 

single illumination beam. In particular it is first briefly described the spontaneous self-

patterning phenomenon of a plane surface of an azomaterial film and then a more 

detailed presentation of both the fabrication steps necessary to pre-pattern the 

azopolymer surfaces and the range of possible three-dimensional architectures produced 

by the light-driven reconfiguration process is given. Furthermore, the deterministic 

nature of the resultant light-reconfigured micro-structures is highlighted by the 

agreement between the experimentally observed textures and the ones predicted by the 

phenomenological model described in chapter 2 [10]. As we will see in the next chapter, 

the three-dimensional micro-structures fabricated here can be used to tailor with great 

precision the wetting state of these pre-patterned surfaces [12]. 

 

4.1 Spontaneous Surface Relief Gratings 

In 2002 Huber et. al found a surprisingly spontaneous appearance of superficial 

modulations onto the free surface of an azomaterial illuminated by a coherent laser 

beam having a wavelength in the azomolecule absorption band at normal 

incidence [22]. In that study, the authors recognized that the light-induced superficial 

structures, constituted by a two-dimensional array of nanometric protrusions ordered in 

a hexagonal array, develops directionally following the light polarization direction, 

suggesting this superficial spontaneous patterning being related to the light induced 

mass migration phenomenon. Then, many studies have been oriented toward the 

rationalization of the phenomenon because of the great interest in the fabrication 

opportunities offered by this simple one-step illumination process  [9,20,80–85].  

In order to describe the main features of the self-structuring phenomenon and to 

give an insight in the commonly accepted optical feedback mechanism explaining the 

rising of this spontaneous structuration, the surface modulations obtained onto our 

azopolymer (see Appendix A) under irradiation with a single polarized beam are shown 

in Figure 4.1. In the experiment, the direction of the linear polarized laser beam at 

𝜆 = 488 𝑛𝑚 is chosen alternatively in two orthogonal directions by a half-waveplate, 

positioned right before a cylindrical lens of focal length 75 mm. This lens projects the 

beam onto the azopolymer film, which is positioned in its focal plane. The spot in the 

sample plane has an elliptic profile, with minimum width of 100 µm and length of about 
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2 mm (Figure 4.1(a)). The AFM images of the spontaneous surface reliefs, obtained 

upon 1h irradiation time with a laser power of 0.870 mW for the two orthogonal 

polarization directions, are shown in Figure 4.1(b) and Figure 4.1(e), respectively. A 

zoomed view of the structures is also presented in Figure 4.1(d) and Figure 4.1(g).  

 

 

Figure 4.1| Spontaneous surface relief grating induced by the illumination with a single beam. 

(a) Schematic representation of the experimental configuration for the illumination and the 

elliptic spot  generated by the cylindrical lens onto the sample. (b)-(c) AFM image and its 

Fourier transform for the structures obtained for horizontal polarization. (e)-(f) Same images for 

vertical polarization. (d) and (g) zoomed views of regions of the images (b) and (e) respectively. 

From these images it results evident that the surface develops a grating-like 

modulation with amplitude of several hundreds of nanometers. Moreover, the grating 

vector is oriented in the light polarization direction. The directionality of the structures 

is also highlighted by the wave-vector components appearing in the Fourier transform 

images calculated from the AFM images (Figure 4.1(c) and Figure 4.1(f)). Here we can 
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observe Fourier components restricted to a small unidirectional region of the Fourier 

space meaning approximate unidirectional alignment of the features present in the AFM 

images. Obviously, the direction of the Fourier wave-vectors is rotated by 90° degrees 

in the two images, following the rotation of the polarization of the irradiating beam.  

The grating-like structures manifest a great similarity with the standard surface 

relief gratings inscribed onto the azomaterial films under the two-beam interference 

irradiation. However, in the single beam experiment investigated here, no interference is 

present in the illumination pattern and the structures arise from some self-organizing 

material mechanism fueled by the light irradiation. For this reason, the superficial 

structures obtained by this spontaneous structuring process are commonly referred as 

Spontaneous Surface Relief Gratings (SSRG).  

Since the first observations, the SSRG have been paragoned to another spontaneous 

periodic structure formation process, commonly observed at the surface of most kind of 

solids illuminated by a continuous or a pulsed laser beams [86,87]. This phenomenon is 

referred as laser-induced surface structuring (LIPSS). It is observed when a material 

surface is irradiated at non-normal incidence. Over the surface, an interference pattern is 

generated during the irradiation between the incident beam and the light scattered by the 

surface roughness or defects. This interference causes a spatially varying interference 

intensity pattern and a related spatially distribution of absorbed light energy from the 

sample which leads to the surface melting in specific regions. However, many of the 

predictions of a model based onto the LIPSS mechanism are not in agreement with 

many aspects the experimentally observed SSRG  [82]. Furthermore, the high light 

power needed to induce LIPSS is incompatible with the very low intensity at which the 

SSRG inscription process occurs, ruling out this thermal process as cause of the SSRG 

formation in azopolymers.   

On the contrary, the self-structuring process seems to be ascribable to the same 

light-induced mass migration process, typically observable when the illumination light 

pattern has a spatially modulated field distribution over the azomaterial film (as in the 

case of SRG). The commonly accepted formation mechanism for the SSRG is related to 

a feedback effect induced by the interference of the primary illumination beam with 

secondary waves of scattered light coming from the surface roughness [82,83]. At the 

very beginning of the illumination process, the light scattered by some defects onto the 

surface induces a local interference with the primary beam which causes the increase of 

the superficial roughness around the defect (this effect is sometimes named as 

nucleation) [9,84,85,88]. As the illumination proceeds, a significant amount of the 

incident light can be coupled inside the polymer film, which acts as a slab waveguide. 

This coupling gives rise to two counter-propagating light modes which interfere and 
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sustain the spatially varying field distribution necessary for the SSRG growth  [83] in a 

spontaneous feedback mechanism. 

While the spontaneous feedback mechanism is able to take into account for the 

spontaneous formation of the surface modulation onto the azomaterial free surface, 

analogously to the great part of the phenomenological mass migration models, it does 

not relate the observed macroscopic phenomenon to specific mechanism at microscopic 

scale. Based on the study of the SSRG formation mechanism, an interesting new idea 

has been developed recently which could shine some light onto the microscopic 

mechanism of the SSRG formation and, in principle, onto the whole phenomenon of the 

light induced mass migration in azomaterial.  

In reference [19], the spontaneous pattern formation is ascribed entirely to a phase 

separation of two immiscible phases  in the polymer during the irradiation. These two 

phases are the two distinct molecular states represented by the cis and trans isomers, 

which tend to aggregate giving rise to a mass migration. The results predicted by this 

model are in good agreement with the experimental observations, especially in the case 

of  polymer irradiation with a coherent un-polarized light beam, which gives rise to 

isolated nanometric protrusions (instead of the grooved pattern shown in Figure 4.1 for 

the case of linear polarized light) disposed in an hexagonal arrangement. However, a 

fundamental study about the experimental verification of the phase-separation process 

supposed to be at the basis of the molecular material rearrangement under irradiation is 

needed. Such investigation could be performed, for example, using some scanning 

probe spectroscopic technique able to test, with nanometric resolution, the chemical 

composition of material in correspondence of the different positions over the sample. A 

good candidate for such study could be the recently developed Photo-induced Force 

Microscopy (PiFM) by A. Ambrosio et al [89], which is sensitive to the local 

differences in the refraction index. 

However, besides the understanding of the actual molecular formation mechanism, 

the spontaneous self-patterning of the azomaterials under the irradiation of single 

coherent light beam represents a very attractive surface structuring approach for  

applications where a large scale periodic patterning is required. Typical examples can 

be the use of this periodic structures in photonics [4] as diffraction gratings or in 

biology as scaffolds for cell network [14,90]. Even if the SSRG loose some of the 

structuring control characterizing the SRG obtained with interfering beams, they retain a 

good degree of interest also because of the very simple illumination configuration, 

constituted by a single beam configuration. This is accompanied by advantages related 

to the stability in the inscription process and the easiness of the whole structuring 

process. As we will see in the next section, the advantages related to the use of a single 
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beam illumination are retained also in the light-induced reconfiguration of arrays of 

isolated azopolymer microstructures. In that case, moreover, the range of possible 

superficial geometries and related applications are even much wider.  

 

4.2 Reconfiguration of pre-patterned azopolymer surfaces 

4.2.1 From 1D-2D textures to light-controlled 3D architectures 

Until now we have presented several experimental situations in which the light-

induced mass migration is used to modulate the surface of azomaterials in form of thin 

films. However, leaving out the complex surface reliefs produced by the CGH 

illumination approach presented in chapter 0, demonstrated in all its possibilities for the 

first time in this present thesis, all the reported superficial textures rely on periodic 1D 

(SRG and SSRG) or highly confined structures (focused SR). Over the years many 

approaches have been proposed in order to enlarge the range of superficial textures 

achievable by the photo-driven mass migration in azomaterials. Just to give some 

examples, even remaining in the framework of the mentioned simple illumination 

schemes, two-dimensional patterned surfaces having more complex textures can be 

easily obtained by multi-beam interference, multi-step illumination and sample/beam 

scanning approaches.  

An example of multi-beam superficial structuring is shown in Figure 4.2, where the 

surface reliefs obtained onto our azopolymer film by the irradiation of the intensity 

pattern produced in the interference of three coplanar beams are presented [3,91–93]. 

The representation of the optical configuration scheme used in the experiment is shown 

in Figure 4.2(a). The primary laser beam at 𝜆 = 488 nm is divided in three different 

beams (indicated with the numbers 1-2-3 in Figure 4.2(a)) by two subsequent beam 

splitters. The mirrors M1 and M3 deflect the beams 1 and 3, at the angles 𝜃1 and 𝜃2 in 

such way the rejoin the un-deflected beam 2 in the azopolymer film plane, where they 

interfere and give rise to the surface relief grating inscription (Figure 4.2(a)). In the 

specific experiment reported here, the p-polarized beams have a diameter of 

approximately 3 mm, the incident angles are 𝜃12 ≈ 9° and 𝜃23 ≈ 16°, while the light 

powers of the beams are P1=0.81 mW, P2=0.93 mW, P3=0.78 mW.  
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Figure 4.2| Three-beams interference illumination for surface relief inscription. (a) Schematic 

representation of the optical setup used for generation of the interference intensity pattern. (b) 

AFM image and topographic profile (traced along the red line) of the obtained surface reliefs. 

(c) Simulated intensity interference pattern (top) calculated for the actual experimental beam 

configuration ,;(middle) surface reliefs predicted by the optical gradient force model  with the 

simulate intensity pattern; (bottom) height profile of the simulated surface reliefs.   

The AFM image and the topographic profile of the surface reliefs obtained under 

the azopolymer exposure time of 30 min in these conditions are presented in Figure 

4.2(b). Clearly the surface reliefs produced here are still characterized by 1D periodic 

surface modulations as in the case of standard SRG, however their profile is much more 

complicated. Changing the incidence angle and the power balance between the three-

beams can also produce different periodicities, relative height variations and also 

bidimensional patterns if the three wavectors are not coplanar. Naturally, the 

interference pattern can be exactly calculated and the resulting surface reliefs can be 

qualitatively predicted also by simple mass migration models. In Figure 4.2(c) are 

shown the calculated interference pattern for the actual experimental three-beam 

configuration and the surface relief grating predicted by the simple optical force 
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gradient model (described in section 1.3) which qualitatively agrees with the observed 

structures of Figure 4.2(b).  

The same experimental configuration in the three-beams illumination can be used 

also to give a simple example of superficial structures obtained from the sequential 

illumination of the azopolymer film with different interference patterns. Indeed, by 

blocking alternatively one of the three beams, we can easily obtain three sinusoidal 

interference patterns having different periodicities. Figure 4.3(a) shows the AFM 

images and topographic profile of the surface reliefs obtained by a three step 

illumination process with the sequential irradiation produced by the interference of 

beams 1+2 (step 1), beams 2+3(step 2) and beams 1+3 (step 3). The irradiation time is 1 

h at the beam powers described above for each of the three illumination steps. The 

images in  Figure 4.3(b) are instead the results of the interference illumination sequence 

with the beams 1+3 (first step), 2+3 (second step) 1+2 (step 3), at the exposure time of 

30 min for each step. Besides a slightly different height in the surface reliefs obtained in 

the two sequences due to a different total exposure time, we can easily observe different 

profiles of the periodic structures inscribed onto the polymer. These structures cannot be 

explained easily with simple mass migration models because the successive 

illumination steps involve an already patterned surface which can induce a non-trivial 

coupling of the light in the wave-guiding film.  

  

 

Figure 4.3| Surface reliefs from sequential interference pattern irradiation. The surface reliefs 

are obtained in a three illumination steps, where only two of the three beams described in Figure 

4.2(a) interfere in the azopolymer plane. (b) Surface reliefs obtained for the interference 

sequence: beams 1+2 (step 1), beams 2+3(step 2) and beams 1+3 (step 3). (b) Surface reliefs 

obtained for the interference sequence: beams 1+3 (first step), beams 2+3 (second step) and 

beams 1+2 (step 3). 
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The experiment described here is just an exemplifying situation where the multi-

step illumination can be used to photo-induce more complex textures onto the 

azopolymer surfaces, however using this approach more complex bidimensional 

periodic texture can be easily obtained [3,91,94].  However, with this approach more 

complex is the texture one would obtain, more complex becomes the illumination 

process needed for it. This complexity affects the ability in the deterministic prediction 

on the superficial texture obtained at the end of the inscription process, which moreover 

remain restricted to a two-dimensional pattern characterized by a submicron surface 

modulation. 

A complete different approach for the induction of complex superficial textures 

onto the azomaterial surfaces is instead based onto the light-reconfiguration of 

controlled pre-structured surfaces. This method allows drastic simplification of the 

illumination configuration, with can be essentially constituted by a simple single 

homogenous beam, and the simultaneous enlargement of the range of the achievable 

surface geometries, even in three dimensions.  

The basic principle of this approach is schematized in Figure 4.4. It consists in the 

preparation of simple pre-structured micro-volumes of the azomaterial which can be 

then reconfigured by the mass migration phenomenon occurring under light irradiation. 

All the peculiar photo-responses of the mass migration observed in the azomaterials in 

form of thin films are obviously preserved also in this case, so that the material motion 

is dependent on the light intensity and polarization. Figure 4.4(a) presents schematically 

the reconfiguration process of a material micro-volume having an initial rectangular 

section induced by a light beam linearly polarized in the direction orthogonal to 

structure (red arrow in the image). As the irradiation proceeds, the material starts to 

move in the polarization direction as result of the azobenzene-driven photo-response. 

This causes a structural reconfiguration of the pre-patterned architecture as the mass 

migration gradually involves different layers of the micro-volume, which finally 

become elongated in the direction of the light polarization. Such phenomenon resembles 

the thermally induces photofluidic motion used in Self-Perfection by Liquefaction 

(SPEL) [95] lithographic techniques to smooth the edges and the imperfections of micro 

and nano structures. Because of this phenomenological similarity, the light-induced 

reconfiguration of the isolated azomaterial microstructures is also commonly referred as 

directional light-induced photo-fluidization [3]. However the directional nature of the 

mass migration in azomaterials is drastically different from SPEL, which, being a 

thermal effect, gives rise always to isotropic material motion.  

If the azomaterial pre-pattered texture is constituted by a two dimensional array of 

microstructures (as schematized in Figure 4.4(b)), then the material displacement can be 
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oriented in all the directions of the sample plane simply by rotating the polarization 

direction. This, together with the possibility of choosing the actual shape of the pre-

patterned structure, gives a very high degree of control on the shapes and orientation of 

superficial textures, where a controlled anisotropic can be induced by simply tuning the 

illumination parameters. In the very last years, many experimental situations where the 

light-induced micro-volume reconfiguration is used to produce complex three-

dimensional structures have been proposed. These include the reconfiguration of well- 

defined geometrical structures (cylindrical, cubic, parallelepiped) [10,11,23,78,79,96], 

colloidal agglomerates [97,98], or also more complex two dimensional 

patterns [99,100].  

 

 

Figure 4.4| Principle of the mass-migration and surface pre-patterning coupling. (a) Schematic 

representation of the light-driven reconfiguration of an azopolymer micro-volume pre patterned 

in one dimension. (b) Schematic representation of the dependence of the reconfiguration process 

in 2D pre-patterned volumes on the polarization state of the illuminating light. 

With the aim of producing complex anisotropic three-dimensional textures onto the 

surface of the azopolymer, we directed our studies concerning this aspect of the mass 

migration toward the characterization of the three-dimensional architectures obtained by 

the light-driven reconfiguration of an array of pristine cylindrical micro-pillars. In the 

next section of the present chapter are described  many of the aspects related to the 

surface pre-patterning processes, the typical micro-architectures obtained in different 

illumination conditions. Furthermore, the description of the reconfiguration process in 

terms of the phenomenological mass migration model diffusely discussed in chapter 2 is 

also given, highlighting the deterministic control achievable on the final superficial 

texture.     
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4.2.2 Fabrication of the micropillar array by soft imprinting 

The fabrication of the pre-patterned textures onto the polymer surfaces is typically 

accomplished by the replica molding process belonging to the soft imprinting 

lithographic techniques [3,101].  

The fabrication steps, needed for the fabrication of cylindrical pristine pillar arrays 

made of our azopolymer, are described in Figure 4.5. A single commercially available 

silicon wafer (i) is used as master template for the fabrication of several PDMS stamps. 

Once the master is treated with an anti-sticking agent, the PDMS (Sylgard 184, Dow 

Corning) mixture (precursor and the curing agent in a 10:1 weight ratio) is gently 

poured onto the silicon master (ii) and placed onto a hot-plate until the complete curing 

is achieved. Then the PDMS mold is carefully released from the silicon wafer (iii) and 

stored in a clean box. For the texture transfer onto the azopolymer surfaces, few droplets 

of the azopolymer in NMP solution (10% by weight) are casted onto a clean glass slide 

(iv) and placed onto a horizontally leveled hot plate. Then the PDMS stamp is carefully 

leant onto the substrate, tacking care that no air is trapped in the liquid solution (v). The 

mold is maintained at 45°C overnight and finally the PDMS mold is carefully released 

from the polymer surface which presents the replica of the pillar-like texture (vi).     

 

Figure 4.5| Schematic representation of the fabrication steps for the replica molding of the 

pristine azopolymer micro-posts from a silicon master. 

SEM images of the typical as-prepared textured polymer surface are presented in 

Figure 4.6. Cylindrical posts, arranged in a square array of pitch 𝑝 = 10.0 𝜇𝑚, diameter 

𝑑 = 4.6 𝜇𝑚 and height ℎ = 2.0 𝜇𝑚, are homogeneously fabricated on an 1 𝑐𝑚 × 1 𝑐𝑚 

area with good quality. 
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Figure 4.6| SEM images of the as-prepared array of cylindrical pillars fabricated by soft 

imprinting from the PDMS  stamp. 

4.2.3 Light-induced micro-pillar reconfiguration 

The schematic representation of the optical setup used for light-driven 

reconfiguration of the azopolymer micro-pillars is presented in Figure 4.7(a). The 

illumination source is a solid state diode laser (L) (Coherent OBIS 488 LS) at 

wavelength of 488 nm. The polarization state of the laser beam is properly controlled by 

introducing an half or, alternatively, a quarter waveplate along the optical path 

(Polarization Plates, PP, in the scheme of Figure 4.7). The beam is expanded by means 

of a beam expander (BE) to a diameter of about 3 cm and then adjusted via a circular 

iris or a rectangular slit (I/S) before the sample in order to minimize the effect of the 

intensity gradient of the gaussian laser beam. The sample holder (SH) is placed on a xyz 

translational stage equipped with a rotational stage (RS) in order to control the light 

incidence angle. 

As mentioned before, the light-driven reconfiguration turns the simple cylindrical or 

cubic pillars into three-dimensional geometries having more complex architectures, 

whose geometry depends on the polarization state of  the illuminating 

beam [10,11,13,78,102]. The polymer motion starts at the top surface of the structures 

and, without any external constraint, gradually involves the whole volume of the micro-

posts as the reconfiguration process goes on. However, as described in reference [10], 
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the azopolymer flow can be spatially constrained at the top surface of the structures by 

illuminating the pristine pillar array through a transparent flat PDMS capping layer 

placed in tight contact with the top surface of the posts. In this configuration, illustrated 

in Figure 4.7, the adhesion forces arising between the polymer and the capping layer 

prevent the polymer flow from heading toward the bottom surface of the film, and the 

light-driven material motion occurs mainly in contact with the flat PDMS layer, 

producing top-flat three-dimensional reconfigured architectures.  

 

 

Figure 4.7| (a) Schematization of the optical setup used for the azopolymer micro-pillars 

reconfiguration. (b) Schematic representation of pillar reconfiguration condition with the flat 

PDMS capping layer attached to the top surfaces of the structures during the light-

reconfiguration process. 

Figure 4.8 shows the SEM images of the posts obtained from the exposure of the 

pristine cylindrical pillar array (of the type described in Figure 4.6) with the laser beam 

in different illumination conditions. In particular, the laser beam illuminates the pillar 

array at normal incidence through the transparent PDMS capping layer, while the beam 

polarization state is conveniently varied in each experiment. Figure 4.8(a) and (b) report 

the structures resulting from the illumination with the beam linearly polarized in two 

orthogonal directions. As expected, the linear polarization produces a symmetric 

displacement of the material at the top surface of the posts in the preferential direction 

of the light polarization, and the reconfigured architectures can be described as having a 

flat top ‘pseudo-elliptic’ section, with the major axis oriented in the light polarization 

direction. A break of the original circular symmetry was obtained also for the posts 

reconfigured with elliptically-polarized light, which become mostly elongated in the 

direction of the long-axis of the polarization ellipse (Figure 4.8(c)). Circularly polarized 

light produces, instead, structures still having the original circular symmetry (Figure 

4.8(d)) because of the lack of a preferential direction for the polymer mass transport in 

this illumination condition. 
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Figure 4.8| Dependence of the pillar reconfigured geometry on the illuminating light 

polarization. (a) and (b) SEM images of the azopolymer micro-posts reconfigured by a laser 

beam linearly polarized in two orthogonal directions (specified by the direction of the red 

arrows). (c) and (d) SEM images of the structures resulting from the reconfiguration with 

elliptical and circular light polarization, respectively. Scale bars 5 um. 

4.2.4 Superficial asymmetry 

The degree of induced asymmetry in the reconfigured posts depends on the laser 

fluence during the illumination. In a simple experimental situation, textured surfaces 

with different directional asymmetries on the micro-scale can be obtained by tuning 

only the film exposure time at fixed illumination intensity. As far as the light-driven 

pillar reconfiguration is realized through the PDMS capping layer, the geometrical 

description of the three-dimensional architectures can be properly approximated by only 

considering the contour of the posts top-surface, while the height can be assumed 



 Reconfiguration of pre-patterned azopolymer surfaces 

 

86 

 

unchanged with respect to the pristine pillars (the shorter the exposure time, more valid 

is this approximation). Therefore, the degree of induced asymmetry of the azopolymer 

pillars after the light driven reconfiguration can be described by the asymmetry 

parameter A, defined as the ratio of the long axis l (indicated by the red arrow in Figure 

4.9(a)) to the short axis s (green arrow) of the flat-top reshaped pillar surface.  

 

Figure 4.9| Light-induced azopolymer micro-post asymmetry. (a) Top and side views of a 

typical reconfigured micro-structure, together with the definition of the post asymmetry 

parameter  A after the light-driven reconfiguration process. (b) Measured asymmetry as function 

of the exposure time at fixed illumination intensity of 75 mW/cm
2
. (c) SEM images of a 

reconfigured pillar belonging to the array of reconfigured structures at different exposure time. 

Scale bar 1 µm.  

The value of the measured asymmetry resulting from the illumination of different 

pristine arrays with increasing exposure time at fixed laser intensity of 75mW/cm
2
 is 

reported in Table 4.1 and plotted in Figure 4.9(b). The parameter A for each sample is 



Large-scale single-beam photo-patterning of azopolymer surfaces  

 

87 

 

determined from SEM images as the mean of at least 100 asymmetry measurements of 

individual pillars in the reconfigured array, while its uncertainty is calculated as the 

standard deviation of the measured asymmetry distribution in each sample. For clarity, 

Figure 4.9(c) shows the SEM images of one exemplifying reconfigured pillar for each 

illuminated sample. The asymmetry A showed a non-linear increasing trend as the 

exposure time increased. However, the asymmetry increase is mainly related to the 

elongation of the structures in the long axis direction (65% maximum elongation) rather 

than to the contraction in the short axis (15% maximum contraction) (Figure 4.9(c)). 

 

Table 4.1| Data of the micro-post structural asymmetry for azopolymer pillars reconfigured at 

increasing exposure laser fluence. The illumination intensity for all the reconfiguration 

experiment is kept fixed at 75 mW/cm
2
. The different reconfigured arrays are labeled with 

increasing roman numbers and match the SEM image sequence in Figure 4.9(c). 

Sample Exposure time Pillar asymmetry 

i 5 min 1.29 ± 0.05 

ii 10 min 1.44 ± 0.07 

iii 15 min 1.61 ± 0.08 

iv 20 min 1.8 ± 0.1 

v 25 min 1.9 ± 0.1 

vi 40 min 2.0 ± 0.1 

vii 48 min 2.2 ± 0.1 

 

 

4.2.5 Phenomenological model 

The observed light-induced reconfiguration of the azopolymer micropillars can be 

qualitatively described in the framework of the phenomenological light-induced mass 

migration model presented in chapter 2. There, we have largely commented how the 

differences in the anisotropic diffusion efficiency of the azomolecules at the free surface 

with respect to the bulk polymer give rise to an enhanced superficial mass current term 

which explains, for example, the spiral surface reliefs under vortex-beam irradiation. 

This surface current term, moreover, is also the one able to qualitatively predict the 

material displacement in the case of light-induced reconfiguration of isolated 

azomaterial micro-volumes. 

In this case, indeed, the  mass migration occurs under homogeneous irradiated light 

patterns, implying a driving effect no longer related to the intensity gradients of the 

illumination pattern, which are identically vanishing. The resulting non-vanishing mass 
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migration observed experimentally is not easily explained by most of the mass 

migration models, which otherwise always require the coupling of the flat azomaterial 

surface with a “non-flat” illumination pattern (non- vanishing intensity gradient). As we 

will see below, the superficial mass current term of the  phenomenological anisotropic 

model, on the contrary, describes the light-induced reconfiguration of the pre-patterned 

azomaterial structures as the result of a peculiar coupling of the flat illumination pattern 

with a non-flat curvature of the pristine architectures. 

The detailed description of the phenomenological mass migration model is given in 

the recent work reported in the reference [10]. Here, however, the main points of the 

calculations are described in a simplified situation with the aim to highlight the correct 

predictions of the model also in this case, with the consequent possibilities in terms of 

deterministic control on the final obtained structures which follows from such 

theoretical success. 

 

 

Figure 4.10| Phenomenological model for micro-pillars light-induced reconfiguration. (a) 

Definition of the geometry of the initial experimental situation described in the model. (b) 

Definition of the coordinate system. The blue curve represents the initial contour curve of the 

cylinder top surface.   

Let us to consider a single cylinder of photo-responsive azomaterial positioned onto 

a rigid and plane substrate (Figure 4.10). The coordinate system is chosen such that the 

x-y plane coincides with the substrate surface and the z axis is oriented along the 

cylinder axis. Under linearly polarized beam irradiation, the light-reshaped structure can 

be approximately described by the reconfiguration of the contour of the top surface of 

the micro-cylinder, which passes from a symmetric circle to an asymmetric pseudo-

elliptic curve (see Figure 4.7). It is convenient to adopt the parametric representation of 

this curve in the x-y plane, so that the pillar contour is described by two functions x(s) 
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and y(s), with s being a continuous parameter in the fixed range [0,1]. Under 

illumination, this curve is deformed by the light-induced mass migration and the 

parametric functions acquire an explicit dependence on the time: x(s,t) and y(s,t). As the 

contour is a closed curve, the parametric functions verify the relations x(0)=x(1) and 

y(0)=y(1) for any t. 

Before the illumination starts, the pillar top surface contour is a circle of radius r 

(Figure 4.10(a)) described by the parametric functions:  

 

 
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To model the reconfiguration process, it is convenient to introduce the tangential and 

the normal unit vectors to the contour curve, as described in Figure 4.10(b). 
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The optical field of the illuminating homogenous and linearly polarized beam in a 

generic direction of the x-y plane, is described by the:  
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Using the relations (4.2) and (4.3), the normal and tangential components of the electric 

field at any point of the curve are given by: 
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Following the anisotropic diffusion model for the light induced mass migration 

presented in section 2.1  [8,10,46], the optical field of the illuminating light, induces a 

azopolymer mass current described in the general form by (see relation 2.16):  
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As discussed before, as the optical electric field illuminating the cylinder is uniform in 

the considered situation, all the terms explicitly depending on the filed gradients in (4.7) 

vanish identically and the only non-zero term is the surface current which depends on 

the field and not on its gradients. For the electric field form given by (4.5) and (4.6), the 

mass current writes as:  

  * ,. .s
t n t

C
J E E c c

L
   (4.8) 

where 𝐽𝑡̅ is the tangential component of the mass current averaged along the effective 

penetration length into the azopolymer L, Cs is the surface coefficient characteristic of 

the azomaterial (see section 2.1) and c.c. stands for complex conjugated of the first term 

appearing in the bracket. By inserting relations (4.5) and (4.6) in (4.8) we can obtain the 

explicit form of this mass current term for any polarization direction of the optical field. 

Even if the calculation can be conducted easily for any polarization direction and also 

for a non-normal incidence angle of the illuminating beam (see supporting information 

of reference [10]), here, in order to maintain the calculation as simple as possible, we 

assume a specific polarization direction in the y direction and a normal incidence. With 

this assumption, equation (4.8) explicitly becomes: 
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The surface reshaping can be calculated as a displacement 𝒏̂ ∆ℎ(𝑠) of the contour curve 

along the normal direction, as resulting from tangential mass current 𝐽𝑡̅  which drives the 
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material inflow or outflow at any curve position. Assuming the polymer 

incompressibility as in the case of the surface reliefs induced onto flat azopolymer 

films, the normal material displacement 𝒏̂ ∆ℎ(𝑠) can be related to the mass current by 

the continuity relation, giving: 
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where lt is the local curve length along the tangential direction. This height variation is 

translated into the contour reshaping as described by the velocities: 
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In order to make this expression explicit, we need to evaluate the derivative of the mass 

current expressed by relation (4.9) respect to the parameter s. The direct calculation 

gives:  
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The main result of this calculation is that the relation (4.13) predicts a non-zero surface 

deformation only in the regions where the surface is not flat, as described by the direct 

dependence of the deformation on the local curvature of the contour curve through the 

second derivative of the parametric curve functions. A similar condition is clearly 

verified for the contour curve of any isolated micro-volume of azomaterial, and is the 
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fundamental reason why the model predicts correctly a non-vanishing mass current also 

for uniform illumination patterns.  

 

 

Figure 4.11| Comparison between the predictions of the model and experimental structures. (a) 

Simulated contour curves of the top pillar surface at increasing exposure times as predicted from 

the model. Reproduced from reference [9]. (b) SEM images of the experimental reconfigured 

azopolymer micro-pillars for different exposure times as described in the previous section. Scale 

bar in SEM images 1 µm. 

The simulated
4
 pillar contour deformation, reproduced from reference [10], for 

three different exposure times as predicted from relations (4.11), (4.12) and (4.13), are 

shown in Figure 4.11(a). The simulated contours are compared with the experimental 

SEM images of the reconfigured pillars described in previous section. As can be 

immediately recognized, the simulated contour shapes are fully consistent with the 

deformation observed experimentally. These theoretical and experimental complete 

                                                 
4
 In reference  [10] an additional term taking into account the surface tension has been added to the 

longitudinal mass current in order to make the equation stable respect to the appearence of surface 

roughness. 
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agreements have a two-fold importance here: first the demonstration of the ability of 

phenomenological model based on the light-induced anisotropic molecular diffusion of 

the azomoieties in describing another set of experiments where the other mass migration 

models lack, strengthen the fundamental basis of that theoretical model; second, the 

reconfiguration process is demonstrated to be fully deterministic and predictable, 

allowing in principle an a-priori control on the light-engineered micro-structures.    

 

4.2.6 Slanted pillar reconfiguration 

In the analyzed light-driven superficial reconfiguration situation, the control of another 

straightforward degree of freedom of the illumination configuration allows even a 

unidirectional deformation of the structures. Such experimental parameter is the 

incidence angle of the polarized beam used for the light-driven array 

reconfiguration [10]. Figure 4.12(b) and (c) show the SEM images of the azopolymer 

pillar array reconfigured using the illumination configuration schematized in Figure 

4.12(a). The linearly polarized laser beam (the polarization direction is indicated by the 

red arrow) illuminates the sample through the PDMS flat capping layer at the incidence 

angle φ=45°. In particular, the sample is rotated respect to the laser beam around an axis 

contained in the sample plane, passing through the center of the patterned pillar texture 

and orthogonal to the linear polarization direction of the illuminating beam. Due the 

non-uniform illumination of the pillars and shadow effects  [10], the  light-driven 

polymer mass-migration results asymmetrical in the light polarization direction and 

gives rise to tilted structural reconfigurations. More specifically, the reshaped pillars are 

more elongated in the polarization direction toward the side of the incoming 

illumination beam (Figure 4.12(a)).  

The asymmetric unidirectional structures obtained in this simple one-step 

fabrication process are of great interest for many practical applications. One of these 

will be discussed in detail in chapter 5 and relates with the control of the wettability 

properties that these kinds of light-reconfigurable surfaces permit. Typically, 

unidirectional asymmetric structures, are obtained either with expensive dedicated 

lithographic approaches [103,104], or with multi-step complex procedures  [105,106]. 

Furthermore, such structures are not reconfigurable after fabricated so that they require 

a specific fabrication process for any specific desired final geometry. On the contrary, 

the asymmetric light-driven reconfigurable structures reported here have the tremendous 

advantage, with respect to the other fabrication technique, of their very simple and cost-

effective fabrication steps. Starting from a single photo-lithographic mask necessary for 
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the fabrication of the pristine pillar array, the actual degree of unidirectional asymmetry 

is established by controlling the light incidence angle, while the overall amount of 

structural asymmetry is determined by the light irradiation time and/or intensity. 

Furthermore, the reconfiguration process is even reversible, as described in the next 

section. 

 

 

Figure 4.12| (a) Schematic presentation of the illumination configuration for slanted pillars 

reshaping. (b) SEM top-view image (scale bar 5um) and (c) side-view image of the tilted pillars. 

4.2.7 Multi-step reversible light-driven reconfiguration  

The reversibility of the azomaterial light-induced superficial structures is one of the 

distinguishing key points of the mass migration phenomenon which has attracted great 

interest since the first SRG demonstrations. The possibility of having reversible light-

reconfigurable surfaces did so that these materials became good candidates for 

applications in high density holographic data storage, real-time superficial photo-

manipulation etc. Despite the process at the basis of the light-driven reconfiguration of 

isolated micro-volumes of the azomaterial is exactly the same of the reversible process 

which gives rise to the light-erasable SRG, it is quite surprising to observe how this 
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phenomenon is able to completely restore the initial symmetric structure of the micro-

pillars illuminated in multi-step sequential process [11,23]. Indeed, if the structural 

deformation of the light-reconfigured azopolymer pillars is not so large to involve 

significantly the entire volume of the microstructures, the reconfiguration process can 

be reversible and the initial circular symmetry of the pillars can be restored by a two-

step illumination process. This can be achieved by the subsequent irradiation of the 

array in the exactly same illumination configuration but with polarization direction 

rotated by 90° degrees with respect to the first reconfiguration step [11,23].  

 

 

Figure 4.13| Reversibility of the micro-pillar light-induced reconfiguration process. (a) 

Schematic representation of the two-step illumination configuration of the experiment. The two 

steps are identical in all the irradiation parameters  (beam intensity and incidence angle) but 

have a polarization direction rotated by 90° (indicated by the red arrows). (b) and (c) SEM 

images of the top and side views, respectively, of the pillar structures resulting by the two step 

illumination process. In the experiments the illumination intensity is fixed at 20W/cm
2
, and the 

exposure time in each step is 1 hour. Scale bars correspond to 5 μm.  

This situation is schematized in Figure 4.13(a), where the two subsequent 

illumination steps are identical in terms of exposure intensity and light incident angle, 

but the linear polarization direction is rotated by 90° in the illumination step 2 respect to 

the step 1. The SEM images of the structures resulting from this two-step illumination 

process onto our azopolymer micro-pillars are presented in Figure 4.13(b) (top view) 
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and Figure 4.13(c) (side view). Even if after the illumination step 1 the structures 

acquire the typical asymmetric geometry described  above (Figure 4.8(a)-(b)), the 

subsequent illumination with a beam polarization rotated by 90° degrees produces a 

complete restoring of the original pristine geometry (Figure 4.13).   

A similar behavior can be understood only if the material displacement at the pillar 

top surface is governed by a light-surface coupling whose strength depends on the local 

curvature of the pillar contour. Even if a direct observation of the material dynamics 

during the light-reshaping process would be needed to clarify the exact dynamics, we 

can phenomenologically describe the restoring process phenomenon as follow.  The 

situation is schematically presented in Figure 4.14.  

 

 

Figure 4.14| Scheme of circular symmetry recovery of azopolymer pillar reconfigured in two 

steps illumination.  (a) First illumination step with linearly polarized in the direction of the red 

arrow, which results in structural elongation. (b) Second illumination step with light 

polarization direction with respect to the first step. The process leading to the circular shape 

restoring is supposed to involve the asymmetric structure with anisotropic efficiency, depending 

on the local curvature of the contour of the top pillar surface (schemes in the dashed rectangle).  

In order to achieve a restoring of the initial circular contour transformed in a 

pseudo-ellipse during the first illumination step Figure 4.14(a), the efficiency of the 

mass migration movement at the point A of the top-contour should be very low, while 

the movement of the point B is certainly the most efficient. The net result is that a mass 

migration in the direction of the light polarization starts only in correspondence of the 

short axis of the already asymmetric structure, instead of involving  the whole contour 

curve with the same efficiency. In this case, indeed, an overall enlargement of the 

structure should be obtained instead of the experimental observation of the initial 

configuration. Because of the visco-elastic forces inside the polymer, the points A and 

A’ are hence subjected to effective forces pointing toward the center of the pillar which 
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cause the restoring of the circular symmetry. We believe that a similar behavior should 

be predicted by the phenomenological model described in section 4.2.5, so that this 

restoring mechanism represents the next set of experiments further validating the model. 

It is worth nothing that disequilibrium in the energy transferred to the polymer 

during the two subsequent illumination steps (for example using a longer exposure time 

in one of the two steps) produces a not completely compensated irradiation dose. In this 

situation, the structures would be more elongated in the direction coincident with the  

polarization direction of the most energetic illumination step. This effect can be 

efficiently used for a sequential and reversible light-induced reconfiguration of the 

superficial azopolymer microstructures, as effectively demonstrated in the recent works 

reported in references deformation [11,96], which adds a great degree of versatility 

toward the effective use of these materials for practical applications.  
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5 Tailoring the wettability of 

azopolymer pre-patterned surfaces 

The study of wettability refers to the investigation of the behavior of a liquid deposited 

onto a solid substrate. Wetting phenomena rule many aspects in Nature and play a role 

in several peculiar natural functionalities found in the plant and animals 

kingdoms [107]. Inspired by some of these abilities, like the self-cleaning properties of 

the lotus leaves, the directional scrolling of the butterfly wings, or the force provided by 

the water strider’s leg, many efforts have been made to understand and control the 

wetting behavior of the surfaces. Now, wetting phenomena are commonly used in many 

scientific and technologic fields ( [108–110]), making this field of research one of the 

most active in the scientific world.  

Great attention is devoted in particular to the effects produced by the roughness at  

micro and nanoscale on the macroscopic wettability behavior of the solid surface. It is 

known, indeed that, together with the chemical nature of the liquid and the solid 

involved, the behavior of a liquid drop onto a solid surface mainly depends on 

superficial texture of the surface at different length scales. This dependence is what just 

determine the self-cleaning and the directional roll of abilities of the  lotus leaves and 

butterfly wings, for example. As a consequence, the control and the engineering of the 

superficial roughness represent a fundamental tool in order to tailor the wetting state of 

solids. Furthermore, a deterministic control on the final wetting behavior requires some 

theoretical model able to relate the geometrical parameters of the superficial textures to 

the shape of a liquid drop deposited on it.  

The commonly theoretical models used at this task are the Wenzel [111] and 

Cassie-Baxter models [112]. These models, indeed, are able to explain the great 

majority of the observed experimental situations. However, some roughness-induced 

wetting phenomena do not fall in the scenario of these simple thermodynamic models, 

and need a discussion beyond the standard framework. These situations include, for 

example, the wetting anisotropy induced by asymmetric textures, the pinning effect at 
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sharp superficial edges, or the omniphobicity produced by superficial architectures 

having re-entrant edges.  

Besides the proper theoretical environment necessary for the geometry-driven 

wettability, also the actual ability in the effective fabrication of controlled three-

dimensional superficial features has a remarkable importance. Textured solid surfaces 

for wettability studies and applications are typically fabricated by standard lithographic 

techniques, including photolithography, electron beam and focused ion beam 

lithography, self-assembly, and soft lithography [101,106,113–115]. However, as 

already demonstrated in the previous chapter, the directional light-induced mass 

migration phenomenon occurring in azomaterials suggests a new promising fabrication 

approach for the realization complex three-dimensional and deterministic superficial 

textures. Using the light-driven reconfiguration of pre-patterned micro-structures, a 

controlled superficial asymmetry and its directional extension over the surface have 

been largely demonstrated. These, can be transferred naturally into final directional 

wetting anisotropies, which can be further finely tuned by variating the irradiation 

conditions [11,12,116].  

In this chapter, the ability of these light-reconfigured structures in tailoring the 

anisotropic wetting behavior of the azopolymer surface is discussed in detail. Before 

this, a brief description of the standard roughness-base wettability models is given, 

together with an overview on the non-standard wetting effects, like the omniphobicity 

and the wetting anisotropy, which arise from peculiar geometries in the superficial 

textures of the substrates. Also the wetting state of our pre-patterned array of cylindrical 

azopolymer micro-pillars, is not explainable with the standard thermodynamic wetting 

models. Our case is indeed governed by the pinning of the liquid drop at the edge of the 

sharp pillar microstructures. This effect has been rationalized only very recently by a 

theoretical model, which is discussed and explicitly specified to our situation in section 

5.2.2. Finally, the tailoring in two dimensions of both the wetting anisotropy and the 

directional liquid spreading is demonstrated onto the light-reconfigured pillar array 

irradiation with spatially structured polarization and/or intensity patterns. 
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5.1 The wettability of rough surfaces 

5.1.1 Wenzel an Cassie-Baxter models 

When a drop of a certain liquid is placed in contact with a solid substrate, the drop 

shape varies until an equilibrium configuration is reached. The angle formed by the 

liquid-air interface of the drop with respect to the horizontal solid surface can be used to 

characterize the wetting state of the solid-liquid system, and takes the name of 

equilibrium contact angle (CA).  

The contact angle 𝜃0 that a drop of the considered liquid forms in contact with the 

ideally flat, homogeneous, and rigid surface is described by Young’s equation [117]: 

 0cos SV SL

LV

 





 , (5.1) 

where 𝛾𝑆𝑉,  𝛾𝑆𝐿 and 𝛾𝐿𝑉 represent the interfacial free energies per unit area of solid-

vapor, solid-liquid, and liquid-vapor interfaces, respectively. This relation derives by 

the simple balance of the forces acting on the unit length of the line of liquid contact, 

also termed Triple-phase Contact Line (TCL) with the solid substrate, as schematized in 

Figure 5.1(a). Generally, solid surfaces characterized by 𝜃0 < 90° are considered to be 

hydrophilic, while those having 𝜃0 > 90° are hydrophobic. However, the ideal situation 

described by Young’s relation is never realized in the practice, since solid surfaces are 

typically both heterogeneous and rough. In particular, the roughness has been found to 

play a crucial role in determining the wetting properties of the substrate.  

The first model describing the contact angle of a liquid drop in contact with a solid 

surface on the basis of the geometry of its texture, was proposed by Wenzel in 

1936 [111]. In this model, the liquid drop is assumed to completely wet the surface 

asperities (wetted regime, Figure 5.1(c)). The model assumes that the roughness of the 

surface, described by the roughness parameter r defined as the ratio of the actual area of 

the rough surface to the geometric projected one, is characterized by a dimension scale 

much smaller that the drop size. In this hypothesis, the apparent contact angle 𝜃∗ can be 

evaluated by considering a small displacement 𝑑𝑥 of the contact line along the parallel 

direction of the surface, as indicated in Figure 5.1(b). In this situation, the total free 

energy changes by an amount 𝑑𝐹 and can be written, for the unit length of the contact 

line, as:  

   *cosSL SV LVdF r dx dx      . (5.2) 
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The system will reach the thermodynamic equilibrium for the particular value of the 

contact angle that minimizes the system free energy, so that 𝑑𝐹 = 0. The minimum 

condition leads to Wenzel’s relation [118]: 

 0cos cosW r  , (5.3) 

where 𝜃0 is Young’s contact angle. As the roughness parameter r is always larger than 

1, in the Wenzel model the surface roughness always magnifies the intrinsic wetting 

behavior of the solid flat surface. More specifically, when 𝜃0 < 90°, 𝜃𝑊 decreases as 

the roughness parameter r increases, leading to a more hydrophilic surface. In the 

opposite case, when 𝜃0 > 90°, a more rough surface produce a more hydrophobic 

behavior. Should be noted that for high roughness (𝑟 ≫ 1), the right-hand side of 

equation (5.3) can assume a value larger than 1. In this situation the Wenzel model is no 

longer valid. 

 

 

Figure 5.1| Schematic representation of the different wetting regimes. (a) Definition  of the 

contact angle 𝜃0 of a liquid drop lying onto an ideally flat and homogenous solid surface as 

described by the Young model. (b) Scheme of the TCL placed in a rough surface. (c) 

Configuration assumed by the liquid drop onto the rough surface in the wetted Wenzel regime. 

(d) Schematic representation of the composite wetted regime described by the Cassie-Baxter 

model. 

The second thermodynamic model commonly used for the description of the 

wetting of solid rough substrates, was proposed by Cassie and Baxter in 1944 [112]. 
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The equation was derived for the description of the contact angle of a liquid lying on a 

composite heterogeneous but smooth surface constituted of two chemical species, each 

characterized by its own contact angle 𝜃1 and 𝜃2. Denoting with 𝑓1 and 𝑓2 the fractional 

surface areas occupied by each of these species ( with 𝑓1 + 𝑓2 = 1) and assuming that 

each individual area is small compared with the droplet size, the system energy 

variation associated with a small displacement 𝑑𝑥 of the contact line is written as [118]:  

     *
1 21 2

cosSL SV SL SV LVdF f dx f dx          . (5.4) 

The contact angle corresponding to the lowest system free energy, leads to: 

 1 0,1 2 0,2cos cos cosC f f    , (5.5) 

where the subscript C denotes the composite wetting regime described by this relation 

and the angles 𝜃0,1 and 𝜃0,2 are, respectively, the Young’s contact angles for the species 

1 and 2. The application of equation (5.5) to a rough homogeneous surface requires that 

the liquid drop lies suspended at the composite interface constituted by the solid texture 

and the air trapped in the surface asperities. In this situation, the liquid does not fill the 

porous structure (non-wetted regime, Figure 5.1(d)). The two species involved in the 

calculation above hence become the considered solid (characterized by the area fraction 

𝑓1 = 𝑓) and the air (considered for the fractional area 𝑓2 = 1 − 𝑓) trapped in the surface 

asperities. As the contact angle between air and water 𝜃0,2 is 180°,  relation (5.5) can be 

rewritten as:  

  0,1cos cos 1C f f    , (5.6) 

which defines the Cassie-Baxter relation for the rough surfaces in the composite 

wetting regime. 

The Cassie-Baxter model is the one typically used to describe the superhydrophobic 

wetting regime, characterized by high water contact angles (𝜃 > 150°) and low 

adhesion of the liquid drop to the solid substrate, quantified by the contact angle 

hysteresis (CAH). The contact angle hysteresis is the difference of the advancing 𝜃𝑎 and 

the receding 𝜃𝑟 contact angles, defined, respectively, as the highest contact angle the 

liquid droplet shows before collapsing when it is pressed against the solid surfaces, and 

the minimum contact angle observable before the droplet detaches from the substrate 

when it is pushed away. In the superhydrophobic regime, the CAH is typically low (< 

5°) and the droplet tends to roll away from the substrate (while keeping the spherical 

shape associated to the high CA value) in presence of even a very small tilt. This 

mechanism is at the basis of the above cited self-cleaning properties of the lotus leaves.  
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On the other side, drops lying in the Wenzel wetting regime are typically 

characterized by high values of the CAH, meaning high difficulty, or even the 

impossibility, of the water detachment from the surface. This situation is for example 

realized onto the petals of roses (from which it is named “petal effect”) and can be 

useful in situations where liquid retaining is needed [115,119]. 

Which of the two wetting regimes is effectively realized by a liquid drop wetting a 

rough substrate depends on which contact angle produces a lower minimum in the 

system energy. This gives the possibility of designing ad-hoc the  texture geometries, to 

induce, in a controlled way, one or the other wetting state. However, it was found that in 

many cases where the Wenzel’s state is the thermodynamically favored regime, a liquid 

drop gently poured onto the substrate lies in the Cassie-Baxter state, which  can be then 

forced irreversibly in the Wenzel state by providing the system with some additional 

energy in form of vibration or pressure. This implies that the Cassie-Baxter state can be 

established also if it is not the global minimum in the system energy, but constitutes a 

meta-stable state. As there is a great interest in the development of superhydrophobic 

surfaces for technological and industrial applications, many studies have been oriented 

toward the geometry-induced raising of these metastable effects. 

5.1.2 Omniphobicity  

In order to establish which of the Wenzel or Cassi-Baxter regime is energetically 

favored, we can note, by equating the relations (5.3) and (5.6), that a critical value exists 

for the intrinsic contact angle 𝜃𝑐𝑟𝑖𝑡𝑖𝑐 of the considered liquid onto the textured surface 

which defines the transition between the two wetting regimes. The critical angle is 

written as: 

 1
1

cos 
 

  
 

critic

f

r f
. (5.7) 

Because 𝑓 < 1 and 𝑟 > 1, 𝜃𝑐𝑟𝑖𝑡𝑖𝑐 > 90°. As the energy of the system decreases 

monotonically with the increase of cos 𝜃∗ [113], when the liquid contacts the rough 

surfaces with 𝜃0 < 𝜃𝑐𝑟𝑖𝑡𝑖𝑐 Wenzel state is favored, while for 𝜃0 > 𝜃𝑐𝑟𝑖𝑡𝑖𝑐 Cassie-Baxter 

is energetically preferred. From this consideration it follows that a thermodynamic 

condition for the realization of the Cassie-Baxter regime, and hence eventually of  

superhydrophobicity, is a surface-liquid system for which results 𝜃𝑐𝑟𝑖𝑡𝑖𝑐 < 𝜃0 < 90°. 

While this condition can be realized for liquids having high enough values of the liquid-

vapor interface (for example water, whose surface tension is 𝛾𝐿𝑉 = 72.1 mN/m), it is 

difficult to be satisfied by liquid having low surface tensions, as organic liquids (for 
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example octane, whose surface tension is 𝛾𝐿𝑉 = 21.6 mN/m) [120]. However, the 

design of peculiar superficial micro-textures having reentrant edges can be used to 

induce extreme resistance to the wetting for almost all liquids, including liquids with 

very low surface tension [120–122]. The necessary conditions to realize this situation 

(often named as omniphobicity) are the presence of a metastable Cassie-Baxter state, 

and the consequent presence of a geometry-established energy barrier separating this 

metastable state and the energetically favored Wenzel state. This energy barrier can be 

provided by the capillary force acting onto the liquid contact line, which can prevent the 

liquid penetration into the texture. However, the crucial parameter determining the 

direction of the net traction of the capillary force is the angle 𝜙 formed by the lateral 

side of the reentrant structure with respect to the horizontal axis, as described 

qualitatively in Figure 5.2(a). In particular, for a liquid with 𝜃0 < 90°, the situation 

𝜙 > 𝜃0 described in the left panel of Figure 5.2(a), produces a concave liquid-air 

interface and the net capillary force F is directed toward the inside of the texture, 

favoring the complete wetting of the surface. On the contrary, when 𝜙 < 𝜃0, the net 

force is directed toward the liquid volume and it contrasts the liquid imbibition (left 

panel in Figure 5.2(a)). In this case, a composite solid-liquid-air interface can be 

induced and a metastable Cassie-Baxter state rises. Taking advantage from this effect, 

several omniphobic textured surfaces have been effectively fabricated  [120–122].  

  

 

Figure 5.2| Wetting effects produced by sharp reentrant geometry in the superficial micro-

textures. (a) Schematic representation of the capillary force favoring (left) or contrasting (right) 

liquid imbibition depending on the angle  of the reentrant edge. (b) Sketch of the pinning effect 

of the sharp reentrant edges on a liquid drop. 

Discrete superficial structures characterized by sharp and reentrant edges can be 

used also to control the directional spreading of liquids. The sharp edges, indeed, are 

able to constrain the contact angle of liquid drops to values that depends on the 

geometry of the edges. Gibbs constructed a geometrical relation, named Gibbs 
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inequality [123], which describes the range of possible contact angles of the liquid 

reaching the edge of a such sharp structure (Figure 5.2(b)):  

  0 0180       , (5.8) 

where 𝜃 is the apparent equilibrium contact angle, 𝜙 is the edge angle of the 

microstructure measured respect to the horizontal axis and 𝜃0 is the Young’s contact 

angle of the liquid on the surface. From relation (5.8), it follows that the upper limit for 

the contact angle 𝜃 onto structures having reentrant sharp edges (𝜙 < 90°) can 

approach 180°, regardless the actual value of the intrinsic contact angle 𝜃0, and even for 

liquids completely wetting the surface (𝜃0 ≈ 0°). This effect suggests a strategy for 

designing spreading paths for liquids onto solid surfaces characterized by connected 

microstructures (for example parallel grooves) with an undercut height profile. Because 

of the pinning in the direction of the undercut, the liquid is free to propagate only in the 

directions of the connected structures [124]. However, the pinning strength of simple 

sharp edges is quite weak and it is easily destroyed by a small amount of vibrational 

energy provided to the system and in real applications multiple rather than a single 

parallel pinning edges are used.  

 

5.1.3 Wetting anisotropy 

The thermodynamic Wenzel and Cassie models discussed above concern the wetting 

behavior of isotropic rough surfaces, which induces an almost spherical shape for the 

liquid drop deposited over the surface and a nearly uniform contact angle observed from 

different directions of the contact line. However, if the texture of the solid surface has 

geometrical anisotropy, the shape of the contact line deviates from the circle and the 

observed contact angle varies along different directions over the surface ( [125–128]). 

Such wetting anisotropy is not contemplated into the standard wettability models, which 

would predict a single value of the contact angle dependent only on the wetted area of 

solid surface and not on the actual asymmetric shape of the superficial architectures. A 

typical example of simple asymmetric roughness able to induce wetting anisotropy is 

constituted by parallel sinusoidal microgrooves. On such structures, the contact angle 

observed along the direction parallel to the grooves is larger than that measured along 

the perpendicular direction. In this simple situation, the observed wetting anisotropy can 

be qualitatively described by a thermodynamic model that takes into account the 

changes in the surface free energy induced by the asymmetric topography as the TCL 
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moves over the substrate along different directions. Here, the anisotropic wetting model 

proposed by Zhao et al. [126] is briefly illustrated.   

 

 

Figure 5.3| Wetting anisotropy model. (a) Schematic representation of the wetting situation 

defining the geometrical parameters used for the anisotropic wettability model. (b) Adaptation 

of the plot in ref [126] of the calculated free energy variation as function of the instantaneous 

contact angle. The parameters used for calculation were 𝛾𝐿𝑉 = 72.6 mJ/m, 𝜃0 = 82°, 𝐻0 =
2 𝜇𝑚 and  Λ = 396 nm. 

  The situation describing a liquid drop wetting a rough substrate with one-

dimensional asymmetric architectures (parallel grooves) is schematized in Figure 5.3(a). 

For simplicity, in the following calculations the sinusoidal grooved profile (of 

wavelength Λ) is substituted with isosceles triangles (Figure 5.3(a)), characterized by 

the geometrical angle α, defined by: 

 
2

tan
d

 


, (5.9) 

where d is the groove depth. In this model we assume that the initial state of the wetting, 

which corresponds to the initial contact of the drop with the surface, is characterized by 

an instantaneous contact angle 𝜃𝑖,0 = 90°, observed in correspondence of the initial  

contact point of the TCL in 𝑥 = 0  (schematized by the blue droplet profile in Figure 

5.3(a)). After the contact, the TCL moves along the substrate and this motion is 

accompanied by a variation of the free energy of the system. Moving the TCL from the 

reference position at 𝑥 = 0 to the position 𝑥 (where the liquid-vapor interface is 

schematized by the gray profile in Figure 5.3(a)), the system free energy variation can 

be divided into two contributions: 
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 1 2F F F    , (5.10) 

where ∆𝐹1 is the interfacial energy change due to the variation of the solid-vapor and 

solid-liquid interfacial areas, and ∆𝐹2 is the interfacial energy variation resulting from 

the change in the liquid-vapor interfacial area. Eventual gravity effects are neglected 

here. Explicitly, the two terms in (5.10) can be written (for the unit TCL length in the y 

direction) as: 

  1
cos

SV SL

x
F  


     (5.11) 

 2 LVF H   , (5.12) 

where ∆𝐻 is the change in the  length of the liquid-vapor interface, which cannot be 

calculated exactly. However, assuming that the size of the roughness is much smaller 

than the size of the droplet, the liquid-vapor interface can be approximated with a 

straight line in proximity of the contact line. In this approximation, as the liquid front 

moves in the x direction, the contact angle changes of a small quantity (𝜃 = 𝜃𝑖,0 + 𝑑𝜃) 

while the liquid-vapor interface remains straight and ∆𝐻 is given by 

  
2 2

0 0 0H H H H z x H       . (5.13) 

𝐻0 is the length of the initial liquid front (Figure 5.3(a)) and z is the height of the 

contact point situated in 𝑥. The z coordinate can be expressed in terms of x coordinate 

from geometrical considerations leading to the relation 𝑧 = 𝑧(𝑥). Substituting into 

equation (5.10), the system free energy variation is  expressed as: 

  
2 2

0 0 0cos ( )
cos

LV LV

x
F H z x x H  



 
      

  
, (5.14) 

where 𝜃0 is the Young contact angle given by equation (5.1). The expression of the free 

energy given in equation (5.14) can be explicated in terms of the instantaneous contact 

angle 𝜃 = 𝜃(𝑥) using geometrical considerations: 

   0 ( )
tan

H z x
x

x



   . (5.15) 

Using the relations (5.9),(5.14) and (5.15), equation (5.14) can be calculated as 

function of the instantaneous contact angle and the geometrical parameters of the solid 

texture. The calculated behavior of ∆𝐹, reproduced and adapted from the results 

reported in reference [126], is shown in Figure 5.3(b). In particular the different curves 
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correspond to the different values of the groove depth, at fixed period Λ. When 𝑑 = 0, 

∆𝐹 is a smooth curve of 𝜃. However, when the groove pattern is not vanishing, a series 

of maxima and minima are observable. This implies that there are energy barriers, 

defined as the difference in the free energy between a local minimum and the adjacent 

maximum, the system encounters while the TCL moves in the direction perpendicular to 

the grooves. These energy barriers are associated to metastable states for the system, in 

which the actual observed contact angle can be forced to a particular value 

corresponding to one of the local minima in the free energy, even if this is not the global 

minimum in the system energy. As such energy barriers are not present for the TCL 

motion in the direction parallel to the grooves, a difference in the contact angle, as 

viewed from the two perpendicular directions of the substrate, arises. Such contact angle 

difference induces a deformation of the TCL and a directional wetting anisotropy onto 

asymmetric superficial roughness. As we will see in section 5.3, this framework can be 

used to interpret the wetting anisotropy observed onto the array of asymmetric micro-

structures resulting from the light-reconfiguration process of the azopolymer pillar 

array. 

 

5.2 The wetting state of the array of cylindrical azopolymer 

micro-pillars 

From the discussion elaborated in the previous sections, the great influence of the 

superficial geometry in determining the wettability of the solid surface emerges clearly. 

With the aim of technological applications, the mass migration in azomaterials, being a 

smart and cost-effective tool for large-scale superficial patterning, is an attractive 

approach for the texture-based wettability engineering. The potentialities offered by the 

light-modulated surfaces have been already recognized with the anisotropic wetting 

induced by the sinusoidal SRGs  [126], the reversible reconfiguration of superficial 

microposts [102] and the omniphobic behavior of some light-reconfigured 

structures  [116,129]. However, the range of easily accessible applications based on this 

material platform is encouraging a great amount of new wettability studies. The results 

presented in the next sections of this chapter are framed in this trend of increasing 

interest toward the wettability studies. In particular, the wettability tailoring ability of  

the light-reconfigured azopolymer micropillars presented in chapter 1 is described here. 

Non-trivial wetting effects, as tunable wetting anisotropy or unidirectional liquid 

spreading will be presented as arising from the asymmetric reconfigured 

microstructures. This clearly demonstrates the versatility of the experimental framework 
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for practical applications. However, even the wetting state of the pristine structures 

resulted in a non-conventional wetting phenomenon where the observed contact angle 

onto the textures was determined by the TCL pinning rather than by the energy 

minimization of the standard wetting states. Part of the contents presented here have 

been published  in the reference  [12]. 

5.2.1 Water contact angle measurement 

The wettability properties of the array of azopolymer micropillars are characterized by 

standard static contact angle measurements. The images of the drop profiles used  for  

contact angle (CA) measurements are collected by a homemade optical setup, while 

their analysis is performed by the open source imageJ plugin DropAnalysis  [130]. In 

the typical CA measurement, a 1,0 μL liquid droplet is carefully deposited onto the 

sample surface controlling the contact velocity with a mechanical translation stage. The 

digital image of the drop profile is collected about 5 s after the drop contact, in order to 

let the liquid relax and assume the equilibrium configuration. The temperature and the 

humidity of the room during the measurements were 23 °C and 50%, respectively. The 

contact angle values reported are the mean of at least three independent measurements 

in different regions of the samples. 

 

 

 

Figure 5.4| Water contact angle variation induced by the azopolymer pristine pillar texture. (a) 

Image of 1 μL water droplet deposited onto the flat azopolymer surface, resulting in the 

observed contact angle 𝜃0 = 87° ± 3°. (b) Image of the same volume of the water droplet cast 

onto the pristine azopolymer pillar array reported in Figure 4.6, showing the CA value 𝜃 =
115° ± 3°. 
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Figure 5.4(a) and Figure 5.4(b) show respectively the images of 1 μL water droplets 

deposited onto the flat untextured polymer surface and onto the cylindrical pillar array 

reported in Figure 4.6, with the relative measured contact angles. The micropillar 

superficial texture produced an increase of about 20° in the of the observed CA which 

passed from the value 𝜃0 = 87° ± 3° measured onto the flat un-textured surface to 

value 𝜃 = 115° ± 3° onto the patterned array, meaning a roughness-induced transition 

from the hydrophilic regime (CA < 90°) of the flat surface to the hydrophobic regime  

(CA > 90°). 

In order to explain the observed contact angle, the wetting state of the azopolymer 

textured surface are first assessed by comparing the measured water contact angle θ 

with the values predicted by the standard Wenzel and Cassie−Baxter models, specified 

for the actual pillar geometry. However, neither of them adequately describes the 

experimental observed contact angle. In particular, as discussed in section 5.1.1, the 

superficial roughness in the Wenzel model always enhance the intrinsic 

hydrophilic/hydrophobic behavior of the flat surface, and equation (5.3) does not 

contemplate the geometrically-driven transition from the hydrophilic to the hydrophobic 

regime observed in Figure 5.4. Such a transition would be, in principle, allowed in the 

Cassie-Baxter model, where the liquid droplet lies suspended on the composite solid/air 

interface formed by the solid surface and the air trapped into the roughness asperities. 

However, no evidence of such air gaps can be seen from Figure 5.4(b), which instead 

suggests a wetted regime. The discrepancy of the CA value predicted by the Cassie-

Baxter model for the actual pillar geometry (significantly higher than that observed 

one), and the experimental absence of droplet roll-off at any tilt angle, meaning high CA 

hysteresis, confirms the inadequacy of this model too. 

The experimental framework can be, instead, properly explained by assuming the 

triple-phase contact line pinning rather than the minimization of the system energy in 

the wetted superficial area as governing the actual wetting situation, as described in the 

next section. 

 

5.2.2 The pinning model 

Recently Suzuki and Ueno [131], proposed a new set of equations able to describe the 

observed static contact angle of liquid droplets lying in the wetted regime onto surfaces 

with controlled micro-textures (pillars, grooves and holes). The model assumes, 

differently from the thermodynamical standard models, that the liquid contact angle 

depends only on the forces able to pin the TCL rather than on the minimization of the 
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system energy in the wetted sample area. From this assumption, the authors established, 

for the description of the apparent static contact angle 𝜃, a relation between the contact 

angle 𝜃0 that the liquid shows on the ideally flat surface of the same material, the 

geometrical parameters of the texture, and the ability of the sharp edges of superficial 

textures in pinning the TCL. This pinning ability can be quantified by a pinning angle 

𝜃1, defined by the balance of the forces acting on the unit length of the TCL pinned at 

the edge of the top flat surface of the micron-sized three-dimensional structure.  

From Figure 5.5(a), the force balance for the unit length of the TCL in the horizontal 

axis can be written as: 

 1cosLV SL    ,  (5.16) 

from which it follows 

 1cos SL

LV





  .  (5.17) 

 

Figure 5.5| Definition of the pinning model parameters. (a) Sketch defining the pinning angle by 

the equilibrium of the interfacial tensions at the sharp edge of the structure. (b) Description of 

the of the unitary cell geometrical parameters of the square pillar array used for the derivation of 

the equation (5.19). (c) Schematic representation of the liquid pinned at pillar edges together 

with the direction of the interfacial forces acting onto the TCL in the unitary cell. 

The relation (5.17), defines the pinning angle as the ratio of the solid-liquid and 

liquid-vapor interfacial tension, and can be interpreted as the angle of a liquid film 

pinned at the edge of one ideally infinite long groove of the considered material. 

The same argument about the force equilibrium experienced by the TCL unit length 

can be used to define the static contact angle θ of al liquid droplet deposited onto the 
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pillar patterned surface. In Figure 5.5(b), the unit cell of an array of square pillars 

characterized by width a, inter-pillars gap b and pillar height h is presented. For 

simplicity it is assumed that only one lateral face of the pillar is not completely covered 

by the liquid (the gray face in Figure 5.5(c)), and that the liquid is allowed to go around 

the bottom base of the pillar, wetting this face for a small height Δh that will tend to 

zero in the following calculations (schematized with the narrow liquid film at the 

bottom base of the pillar in Figure 5.5(c)). From Figure 5.5(c), the equilibrium of forces 

acting on the TCL in the horizontal direction is written as: 

  
       cos   2LV SV SL SL SLa b a b a b a h h             

.  (5.18) 

For ∆ℎ → 0, using the Young relation and the definition of cos θ1, equation (5.18) can 

be rewritten as 

 
0 1

2
cos cos cos

a h

a b
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
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 , (5.19) 

which defines the relation between the observed contact angle 𝜃, the surface 

geometrical parameters and the pinning angle. For the application of the model to the 

cylindrical azopolymer microposts, equation (5.19) has to be specified for the actual 

experimental situation of water droplets deposited onto the pristine azopolymer 

micropillar array.  

The first parameter to be determined is the pinning angle 𝜃1. In particular, from 

equation (5.17), the determination of the angle 𝜃1 needs the evaluation of the solid-

liquid interfacial tension 𝛾𝑆𝐿 of the analyzed material. According to literature [132], a 

direct estimation of 𝛾𝑆𝑉 can be obtained by measuring the contact angles of polar and 

non-polar liquids onto the same flat solid surface. In our case, the used liquids were 

water (polar) and Diiodomethane (𝐶𝐻2𝐼2) (non-polar). The images of the 1 μL sessile 

liquid droplets together with the measured CA are presented in Figure 5.6(a) and (b), 

respectively. From the static CA measurements and the relative elaboration, the 

measured 𝛾𝑆𝑉 gave the value (estimated by the control software of the commercial 

tensiometer Dataphysics OCA 20, used in this specific measuremet) 𝛾𝑆𝑉 = (48.1 ±

0.5) 𝑚𝑁/𝑚, which permitted the estimation of the solid-liquid interfacial tension 

𝛾𝑆𝐿 = 39 ± 3  𝑚𝑁/𝑚 from the Young relation. Equation (5.19) with the measured 𝛾𝑆𝐿 

provides the value 𝜃1 = 122.5° ± 0.1° for the pinning angle. For comparison, the direct 

measurement of  𝜃1 as the CA of 1 μL of a water droplet onto parallel azopolymer 

grooves (width 50 μm, pitch 100 μm and height 10μm) presented in Figure 5.6(c), gave 



Tailoring the wettability of azopolymer pre-patterned surfaces  

 

113 

 

a value of 𝜃1,𝑚 = 124° ± 3° (Figure 5.6(d)), in accordance with the predicted value 

obtained from the interfacial tension measurements. 

 

 

Figure 5.6| Estimate of the pinning angle for our azopolymer. (a) and (b) images of 1 μL droplet 

profiles defining the CA, respectively, for water and Diiodomethane onto the flat azopolymer 

surface. (c) Optical micrograph of parallel grooves patterned onto the azopolymer surface 

(scalebar 100 μm). (d) Orthogonal water contact angle of 1 μl water droplet deposited onto the 

parallel groove of panel (c). 

The observation of the TCL of a water droplet deposited onto the pristine posts by 

means of the optical microscope shown in Figure 5.7(a) suggests that, at the 

equilibrium, the TCL pins at the diameter of the pillars. This observation permits to 

approximately relate the geometrical parameters of the cylindrical texture to the 

geometrical parameters of the pinning model. In particular, the parameter a in the 

equation (5.19) can be substituted with the pillar diameter d, while the parameter b 

became the gap between pillars, measured along the direction of the line joining two 

neighbor pillar centers (Figure 5.7(b)). Using the pitch 𝑝 = 𝑑 + 𝑏 of the array, equation  

(5.19) is then written as: 

 0 1

2
cos cos os .c

d h

p
  


   (5.20) 

Equation (5.20) describes the observed CA for the array of cylindrical microposts in 

the approximated TCL geometrical configuration described above, which provides the 

estimated CA value of 𝜃1 = 122.5° ± 0.1°, using the geometrical parameters of the 

azopolymer pillar array (𝑑 = (4.5 ± 0.1)𝜇𝑚; 𝑏 = (5.3 ± 0.1) 𝜇𝑚; ℎ = (2.0 ±

0.1)𝜇𝑚), the measured 𝜃0 = 87° ± 3° and estimated pinning angle 𝜃1 = 122.5° ± 0.1°. 

The estimated value 𝜃𝑐𝑎𝑙𝑐 has to be compared with the measured 𝜃𝑚𝑒𝑎𝑠 = 115° ± 3° of  

Figure 5.4(b). The agreement between  𝜃𝑐𝑎𝑙𝑐 and 𝜃𝑚𝑒𝑎𝑠 implies that the model fully 
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explains the observed contact angle even in this simplified application, where the actual 

shape of the TCL at pillar edges in not taken into account. A possible generalization 

could include also this contribution, considering  for example the length of the semi-

circumference of the circular pillar instead of the pillar diameter for the parameter a (d), 

however no significant variation in the estimated CA were found (operating the 

substitution 𝑑 →
𝜋

2
𝑑 in the equations; 𝜃𝑐𝑎𝑙𝑐,𝑒𝑥𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 115° ± 3°) and the agreement 

with the experimental data is verified as well.  

 

 

Figure 5.7| (a) Bright-field optical micrograph of a section of the TCL pinned at pillar edges, 

The image is collected by an inverted microscope equipped with 40X objective. Scale bar 10 

μm. (b) Geometrical description and (c) application of the model to the cylindrical pillar array 

assuming the TCL pinned along the line connecting two closest neighbor pillars. 

The quantitative agreement of the observed CA with the value obtained from the 

pinned model, together with the discrepancy between the observed and the CA values 

predicted by the thermodinamical models, unambiguously recognizes the TCL as 

governing the wetting behavior of our pristine azopolymer micro-pillars. 

 

5.3 Light-induced wetting anisotropy 

As demonstrated in the section 4.2.3, significant directional anisotropy can be inscribed 

in the tridimensional superficial roughness by illuminating the pristine azopolymer 

array with linearly polarized light. From the discussion made in section 5.1.3, it 

becomes also clear how such asymmetric textures are able to induce wetting anisotropy 

over the surface. Indeed, the three-dimensional architectures constituted by the light-
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reconfigured posts induce directional energy barriers for the pinning and the motion of 

the TCL of a liquid droplet deposited onto the texture, acting analogously to the parallel 

grooves described by the anisotropic wetting model [126]. A consequent obvious 

directional dependence of the CA observed along different directions of reconfigured 

array is also found. However, as the structural asymmetry of the light-reconfigured 

structures depends on the actual illumination conditions, and can be easily modified by 

controlling few trivial illumination parameters, also does the anisotropic wetting 

behavior of such textured surfaces. 

 

 

Figure 5.8| Wetting anisotropy on the light-reconfigured azopolymer micropillars. (a) 

Anisotropic water droplet deposited onto the asymmetric pillars presented in (b). The red and 

green arrows represent the directions of the long and short axes of the reshaped structures, 

respectively. (c and d) Side views of the droplet in the direction parallel (red) and orthogonal 

(green) to the asymmetric pillars. (e) Parallel (CA∥) and orthogonal (CA⊥) water contact angles 

measured for different values of the texture asymmetry A. (f) Images of the orthogonal and 

parallel profiles of 1μL water droplets deposited onto the azopolymer arrays presented in Figure 

4.9(c). 
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In particular, in the situation of linear polarized light irradiating the pristine array at 

normal incidence, the reconfigured structured are characterized by “pseudo-elliptic” 

geometry (Figure 4.8(a-b) and  Figure 4.9). Then, in the light of the anisotropic wetting 

model, the directions of the sample parallel to the long axis of the asymmetric micro-

structures are characterized by smaller energy barriers to the liquid propagation. The 

TCL motion in these directions is energetically favored with respect to the motion in the 

orthogonal ones. As a consequence, the TCL results mainly elongated in the direction of 

the long axis of the reconfigured structures, as reported in Figure 5.8(a). This image 

shows the photograph of a sessile water droplet (with blue dye) deposited onto the 

reconfigured asymmetric pillar array reported in Figure 5.8(b). The red and green 

arrows indicate, respectively, the directions parallel and perpendicular to the 

illuminating light polarization that correspond to elongation (red arrow)  and pinning 

(green arrow) directions of the drop TCL. 

The level of induced droplet TCL anisotropy depends on the degree of asymmetry 

in the light-reshaped superficial micro-pillars. This wetting anisotropy can be 

characterized by the differences of  the water CA measured in the long (parallel CA, 

Figure 5.8(c)) and the short (orthogonal CA, Figure 5.8(d)) axis directions of the 

reshaped pillar as function of the measured mean asymmetry A in the superficial micro-

structures. Figure 5.8(e) reports the parallel and the orthogonal contact angles of 1 𝜇𝐿 

water droplet deposited onto the sequence of light-reconfigured microstructures 

described in Figure 4.9, having different superficial degree of asymmetry as 

consequence of different light exposure time. 

 

Table 5.1| Data of the wettability anisotropy at varying light-induced superficial asymmetry. 

The contact angle measurement reported on each sample is relative to the corresponding array 

of Figure 4.9 and Table 4.1. 

Array Pillar asymmetry Orthogonal CA Parallel CA 

i 1.29 ± 0.05 116° ± 3° 107° ± 3° 

ii 1.44 ± 0.07 115° ± 3° 103° ± 3° 

iii 1.61 ± 0.08 116° ± 3° 100° ± 3°   

iv 1.8 ± 0.1 116° ± 3° 97° ± 3° 

v 1.9 ± 0.1 115° ± 3° 95° ± 3° 

vi 2.0 ± 0.1 115° ± 3° 93° ± 3° 

vii 2.2 ± 0.1 115° ± 3° 89° ± 3° 

 

 

From the contact angle measurements, no significant dependence of the orthogonal 

the orthogonal (𝐶𝐴⊥, Figure 5.8(e)) on the structure asymmetry was found, since the 



Tailoring the wettability of azopolymer pre-patterned surfaces  

 

117 

 

measured values at different degrees of structural asymmetry remain unchanged (within 

the experimental measurement errors) with respect to the pristine pillar array. These 

values are about 115° regardless of the actual value of the superficial asymmetry. This 

behavior can be explained with the small contraction of the pillars in the short axis 

direction after the post reconfiguration described (in section 4.2.4), not producing 

significant structural modifications and hence any decrease of the energetic barriers for 

the TCL motion in that direction.  

The measured parallel contact angle (𝐶𝐴//, Figure 5.8(e)) shows instead a strong 

dependence on the pillar asymmetry A. As expected from energy barrier considerations, 

higher values of A induce a decrease of the observed contact angle in the parallel 

direction. A variation of about 20° is found in parallel 𝐶𝐴// by increasing the posts 

asymmetry from 1.3 to 2.1, following an approximately linear trend. For greater clarity, 

the image sequence of the water droplet profiles data in the direction of the long and 

short axes of the reshaped pillars and the relative wetting anisotropy data are reported in 

the image sequence of Figure 5.8(f) and in Table 5.1, respectively. 

 

5.4 Unidirectional and bidimensional wetting anisotropy 

In section 4.2.6, the peculiar slanted geometry of the azopolymer pillars reconfigured 

with linear light polarization and non-zero incidence angle was presented. These 

asymmetric structures are characterized by a unidirectional superficial asymmetry 

(Figure 5.9(a)), which can be directly translated into a unidirectional wetting anisotropy. 

Also in this case indeed, because of the directional dependence of the energy barriers 

for the spreading over the substrate, a liquid droplet deposited on the reshaped 

structures assumes an asymmetric TCL along the deformation direction. However, the 

slanted reconfigured architectures introduce a further energy difference in the 

azopolymer array along the direction of the structural tilt. This non-trivial wettability 

behavior is shown in Figure 5.9(b), where the image of a 2 μL water droplet (with 0.1 

wt % Triton X-100 surfactant) deposited on the tilted structures is presented. In this 

experiment, the droplet, after the contact with the asymmetric substrate, becomes 

elongated toward the reconfigured pillar slant direction ,with a measured contact angle 

difference of about 25°. Such unidirectional wetting anisotropy is one of the situations 

where the use of the light-reconfigurable shows all its potentiality in the wetting related 

experiments. Similar effects, which actually mimics the wetting behavior of butterfly 

wings  [133], is achieved with complex approaches, which typically requires also 

multiple fabrication steps [103–106,134].  
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Figure 5.9| Left−right contact angle asymmetry induced by the reconfigured tilted pillars. (a) 

SEM side-view image of the tilted light-reconfigured pillars. (b) Image of 2 μL water droplet 

with surfactant Triton X-100, 0.1 wt %,  deposited onto the slanted pillar array. The measured 

contact angles are CALeft = 40° and CARight = 65°. 

 

The dependence of the induced asymmetry direction in the light-reconfigured 

microposts on the polarization direction of the illuminating beam can be used to design 

a 2D asymmetry pattern on the same pristine pillar array. This can be achieved, in 

principle, by illuminating the sample with a pure 2D spatially varying polarization 

pattern or with sequential spatially structured illumination intensity distributions, 

coupled with a controlled polarization state. Such a bidimensional asymmetry translates 

into the bidimensional modification of the wetting behavior of the reconfigured 

azopolymer substrate, giving the possibility of designing different liquid drop shapes 

and orientations in the illuminated areas of the same pristine array. An example of a 

pure polarization bidimensional pattern is given by a configuration based on radial (R) 

or azimuthal (A) polarization states, in which the optical electric field of the light beam 

oscillates in a direction that is radial or azimuthal respect to the center of the 

spot [55,62]. R and A polarizations can be obtained through the θ-cell which, as 

discussed in detail in section 2.2.2, is able to transform the linear polarization of the 

light beam in both R and A polarization states, depending on the direction of the 

original linear polarization with respect to the θ-cell axis. 

 Radial and azimuthal reconfigurations of azopolymer pillars are realized by 

illumination of the prepatterned area (1 cm × 1 cm wide) with the properly modulated 

laser beam emerging from the θ-cell. The experimental setup is schematized in Figure 

5.10(a), which differs from the setup used for the reconfiguration experiments reported 
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until now (Figure 4.7) only for the insertion of the polarization modulator along the 

beam path. The representations of the optical field configurations for R and A 

polarizations in the two experiments are shown in Figure 5.10(a) and (b), while the 

optical bright-field microscope images of the reconfigured pillars in different regions of 

the illuminated sample are shown in Figure 5.10(c) and Figure 5.10(e), respectively.  

 

 

Figure 5.10| Radial and Azimuthal wettability patterns. (b) and (c) schematic representation of 

the illumination configuration for R and A polarization, respectively. (d) micrographs of 

different regions of the array, reshaped with the radially polarized beam (scalebare 10 μm). The 

red dotted lines schematize the light polarization direction during the one-step reconfiguration 

process. (e) Photograph of the liquid droplet placed in different regions of the radially 

reconfigured array (Scale bar 1 mm). The droplets are elongated toward the center of the 

illuminated region in radial directions. (f) Micrographs and (g) photograph of the same 

experimental situation for azimuthal polarization of the illuminating beam. 

As far as the oscillation direction of the electric field can be locally approximated as 

linear for both R and A polarizations, neighboring pillars are deformed approximately in 

the same direction (this is more true as the distance from the beam center increases) as 
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shown in each subpanel of Figure 4(d) and Figure 4(f). However, the deformation 

direction significantly changes in the millimeter-scale, and the long axis of the 

reconfigured pillars properly orients in order to reproduce the radial or the azimuthal 

pattern of the illuminating beam polarizations.  

The induced two-dimensional wetting anisotropy of the reconfigured arrays is 

clearly observed from the photographs in Figure 5.10(d) and Figure 5.10(f), where the 

droplets of an ionic liquid (1-butyl-3-methylimidazolium iodide) deposited onto the 

reconfigured samples at fixed distance from the center are shown. The liquid droplets 

become anisotropically elongated in the direction of the local long axis of the reshaped 

posts, which varies angularly across the sample and globally reconstructs the two-

dimensional radial and azimuthal patterns.  

Since the light-driven reconfiguration is induced only in the illuminated regions of 

the pristine cylindrical azopolymer pillars, a spatially modulated intensity of the 

illuminating beam can be used to induce surface asymmetries with spatial selectivity. 

As a consequence, a two-dimensional wetting anisotropy path can be in principle 

arbitrarily designed onto the pillar array using a proper combination of incidence angle, 

polarization state, and spatial distribution of the light intensity. The proof of concept of 

the droplet TCL deformation path design is demonstrated in the simple experimental 

situation illustrated in Figure 5.11. Here, a single pristine pillar array is illuminated in 

three different regions by a laser beam which is spatially cut by a rectangular slit in a 

stripe of light about 2 mm wide. This constitutes the prototype of a simple structured 

intensity pattern. The polarization and the incidence angle of the illuminating beam are 

tuned to achieve different reconfigured pillar geometries in each illuminated rectangular 

sample area (marked by the blue rectangle and labeled with progressive numbers). 

Figure 5.11(a) and Figure 5.11(b) show, respectively, the illumination scheme and the 

optical micrographs of the reshaped pillars in each area. The laser polarization direction 

is indicated by the red arrows in the relative numbered box. In particular, areas 1 and 2 

are illuminated at normal incidence angle, while area 3 is illuminated at an incidence 

angle of 45° and the slanted pillar elongation direction is schematized by the one-

directional arrow pointing toward the left in the light polarization direction. Each of the 

illuminated  regions has a defined directional asymmetry (Figure 5.11(c)) due to the 

different reconfiguration conditions which directly translates in position dependent 

liquid droplet anisotropy over the pillar array. Despite the very simple illumination 

condition shown here, more complex intensity/polarization combinations can be easily 

conceived and experimentally realized, giving the possibility of exploiting the light-

driven mass migration phenomenon in azobenzene-containing  materials to effectively 
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draw complex anisotropic bidimensional wetting distributions on single prepatterned 

macroscopic regions.  

 

 

Figure 5.11| Two-dimensional wettability path induced by polarization/intensity light patterns. 

(a) Schematic representation of the illumination configuration in each reconfigured area  of the 

azopolymer array. (b) Optical micrographs of the different reconfigured pillar areas. (c) 

Photograph of the water droplets deposited in the relative numbered regions. The red double 

arrows of regions 1 and 2 represent the direction of the linear light polarization at normal 

incidence, while the single arrow in region 3 indicates a nonzero incidence angle producing 

pillars elongated in the direction of the arrow. 

5.5 Anisotropic liquid spreading  

The anisotropic wetting effects induced by the asymmetric geometries of the light-

reconfigured posts can be even enhanced by a chemical modification of the azopolymer 

surface. For example, a superficial hydrophilization treatment of the reshaped posts is 

able to turn the directional wetting anisotropy in a directional spreading of water 

droplets. Oxygen plasma treatment is a commonly used technique for modification of 

organic polymer surfaces to induce or enhance hydrophilicity [135–137]. By means of 

this treatment, aliphatic and/or aromatic carbon on the surface can be readily oxidized to 

functional groups with C-O and/or C=O bonds such as alcohol, ketone, and carboxylic 

acid derivatives. These groups are responsible for the induced polarity of the exposed 
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polymer surface and increased hydrophilicity. As a proof, Figure 5.12 shows the 

photographs of the spreading of water droplets resulting from the O2-plasma 

hydrophilization treatment of the pillar array after the light-reconfiguration process.  

 

 

Figure 5.12| Directional liquid spreading on O2-plasma treated surfaces (15 W, 5 sccm, 1 min). 

(a) Symmetrically spreading droplet onto the symmetric reshaped pillars (optical micrographs in 

the inset). (b) Unidirectional droplet spreading in the direction of the slanted reconfigured pillars 

presented in the inset. The red spot represent the initial position of the droplets which then 

propagate mainly in the directions marked by the arrows. 

In particular, the posts in Figure 5.12(a) are reshaped with linear polarization at 

normal incidence angle, which results in the symmetrically elongated structures shown 

in the inset. The liquid volume, initially dispensed in the position indicated by the red 

spot, flows symmetrically in the direction of the red arrows, which corresponds to the 

direction of the long axis of the reconfigured microposts. Despite the fact that the 

surface is made homogeneously superhydrophilic by the plasma treatment, the stronger 

energy barrier arising in the direction of the short axis is able to pin the spreading TCL 

along an approximately straight line parallel to the long pillar axis. As a consequence, a 

symmetric directional spreading is observed in the pillar long axis direction and hence 

in the illuminating light polarization direction. Unidirectional liquid spreading (Figure 

5.12(b)) is instead achieved onto the tilted pillar structures, reconfigured at the laser 

incidence angle φ = 45° (inset). Also in this case the water droplet spreads in the 

direction of the pillar deformation axis (which corresponds to the light polarization 

direction), but the liquid flows mainly toward the tilted side of the reconfigured pillars 
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and gives rise to a unidirectional liquid spreading. This asymmetric spreading behavior 

is even more highlighted by the thin liquid film propagating ahead to the droplet 

volume, which spreads on the left side of the droplet until it reaches the edges of the 

textured array, while it soon results in being pinned on the right side. Moreover, these 

results, coupled with the capability of the wetting path design demonstrated in Figure 

5.11, suggest that the light reconfigured azopolymer microtextures can be used also to 

delineate bidimensional spreading pathways.  

 

 

Figure 5.13| Two-dimensional liquid spreading pathways. (a) Photograph of three spreading 

water droplets placed in different reshaped regions (b) of the 𝑂2-plasma treated azopolymer 

micro-pillar array. The liquid spreading direction follows the asymmetric geometries of the 

underlying micro-structures, while the deformation discontinuities at the boundaries of the 

illuminated regions are able to pin the liquid in the specific directions. 

Figure 5.13 presents the photograph of three water droplet, showing different 

spreading behavior in different reconfigured areas of an oxygen plasma treated pillar 

array. The reconfiguration geometry is the same as described in Figure 5.11, while the 

anisotropy produced by the light-induced directional roughness of the texture is 

enhanced by the superficial hydrophylization treatment. In particular, the droplet in the 

region 1 spreads in the vertical direction and becomes pinned at the boundaries of the 

illuminated sample area. As a result only a small distance is covered in the vertical 

direction by the spreading liquid in region 1. The droplet in region 2 follows the pillar 
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deformation in the horizontal direction which produces a pronounced liquid spreading 

in the same direction. In this case, the liquid spreading is hampered along the vertical 

direction by the energy barriers arising in the short axis direction of the reshaped pillars, 

while the liquid propagation is favored along the horizontal direction. The same 

situation is realized in region 3, where the further left-right asymmetry in the slanted 

pillar geometry results in the uni-directional liquid spreading toward the left side of the 

illuminated region. 

These results, together with all the results discussed in previous sections of the  

present chapter, prove that the light-induced superficial reconfiguration of azomaterials 

represents a valid strategy to tailor the wetting properties of the solid surfaces. The use 

of these materials, and the versatility that the light induced mass migration offers in 

deterministically determining the final surface architecture, has enormous advantages 

with respect to the standard lithographic techniques typically used for the fabrication of 

surfaces in wettability studies. These advantages are related to the very simple 

fabrication process of the pristine structures and to the possibility to tailor at need the 

superficial geometry by controlling few illumination parameters. Furthermore, the 

possibility to further tuning the solid surfaces once fabricated, the dramatic reduction of 

the fabrication costs and the possibility to transfer the light-reconfigured texture onto 

other materials having specific chemical nature suitable for specific applications, make 

the azomaterials a fundamental platform for the next step toward both applications and 

fundamental studies in the field of geometry-based wettability of solid surfaces. 
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Conclusions  

The results presented in this thesis demonstrate that the light-induced mass migration 

phenomenon occurring in azomaterial films under the irradiation of Uv/visible light 

patterns can be effectively used to induce complex superficial topographies. 

In Chapter 2 has been described the mass migration phenomenological model 

introduced few years ago to rationalize the spiral-shaped surface reliefs inscribed onto 

the surface of an azopolymer. These surface reliefs emerge whenever the azopolymer 

film is irradiated by a focused Laguerre-Gauss beam, which has an optical vortex along 

its propagation axis. The model ascribes the sensitivity to the beam wavefront, 

necessary for the correct description of the spiral mass migration, to a surface mediated 

interference between the complex distributions of the optical field components 

generated in the focal region of high NA microscope objective. In Chapter 2, two 

situations have been presented where the agreement between the superficial 

modulations, predicted by the model for a given hypothesized optical field distribution, 

and the experimentally observed surface reliefs are used for an indirect characterization 

of two light modulating devices. The first device is a dielectric metasurface, able to 

covert spin angular momentum into orbital angular momentum of light. This device is 

expected to produce a beam with an optical vortex. Hence, the spiral surface reliefs are 

predicted to arise by the phenomenological model onto the surface the azopolymer film. 

The actual observation of these spirals has allowed providing an alternative and elegant 

characterization of the device, attesting successful design and fabrication strategies. The 

second device is the liquid crystal θ-cell polarization converter, which is able to produce 

radially and azimuthally polarized beams. However, because of the fabrication process, 

the device introduces also a phase-shift in the modulated beam, which affects the field 

distribution of this beam in the focal plane of high NA microscope objective. The 

agreement observed also in this case between the surface reliefs predicted by the model 

in this irradiation configuration and the experimental surface reliefs inscribed (and 

reported for the first time in this thesis), onto the azopolymer film, allows to further 

confirm the actual distribution of the field components generated in the modulation of a 

light beam with a θ-cell converter. 
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In the thesis, moreover, two different main strategies have been exploited to enlarge 

the range of possible textures obtainable onto the surface of azopolymer films in 

different irradiation conditions. 

The first approach, described in Chapter 3, deals with the illumination of the flat 

surface of the azopolymer film with holographic spatially structured intensity patterns. 

These are realized through the use of phase-only computer-generated holograms, able to 

achieve almost any arbitrary light distributions in the azopolymer surface plane. The 

calculation of such holograms is based on the Fourier relations existing between the 

focal planes of a lens realizing the 2f-geometry configuration. In this configuration, 

once that the desired complex intensity pattern is specified by a digital grayscale image, 

a calculation algorithm provides an hologram which is directly related to the phase 

profile of the Fourier transform of the target intensity distribution. The effective power 

of such optical scheme is fully accomplished by the use of a computer controlled spatial 

light modulator to realize the actual beam modulation. This device is the core of the 

optical setup we used for the reconstruction of complex intensity light patterns. Beside 

the precise and arbitrary control of the light distribution over the azopolymer film, the 

illumination scheme based on the computer-generated holograms has also another 

fundamental advantage with respect to the standard interference scheme typically used 

for the surface relief inscription onto the azomaterials. This is the possibility to control, 

in a completely independent way, the intensity pattern and the polarization state of the 

light field illuminating the azopolymer. A similar feature can also play a crucial role in 

the study of the intricate fundamental aspects of the light-induced mass migration 

phenomenon. In the results reported in chapter 3 of the thesis, many of the potentialities 

offered by our powerful holographic setup emerge clearly. The complex holographic 

intensity patterns are directly replicated into spatially structured surface reliefs onto the 

azopolymer film using circularly polarized light. In the typical illumination 

configuration, the highly focused illumination pattern (obtained through a 100X 

microscope objective) allows to reach a spatial resolution of few-hundreds of 

nanometers for the inscribed surface reliefs, opening to the possibility of employing this 

illumination configuration in photo-nanolithography. However, scalable surface reliefs 

can be simply achieved by using lens at lower magnification factors. The independent 

control of the polarization state and the intensity distribution of the holographic light 

patterns allowed underlining a non-trivial polarization dependent behavior of the mass 

migration phenomenon in our azopolymer. Depending on the actual relative directions 

between the local intensity gradient and the light polarization direction, an inversion in 

the mass migration direction has been found. In particular, in the case of polarization 

direction parallel the intensity gradient, the material moves from the regions at highest 
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intensity toward the regions at lower intensity. O the contrary, the material motion is 

completely inversed in the case of polarization direction orthogonal to the intensity 

gradient. The study of the growth dynamics of the surface reliefs in these two 

illumination configurations has shown a comparable growing rate. This is quite 

unexpected because the two illumination configurations can be assimilated to the p-p 

and s-s polarization configurations, which typically show very different mass migration 

efficiency it the SRG inscription experiments. Despite a similar inversion in the 

direction of the material movement has been described few times in literature, the 

holographic illumination setup used here has allowed for the first time its highlight in a 

very clear way. While every attempt toward its rationalization must necessary pass 

through the investigation of different azomaterials, the situation described, shows the 

potentialities that this illumination approach can have in the future studies on the mass 

migration phenomenon as a whole.  

The second strategy presented in the thesis to achieve complex superficial textures 

is the light-driven reconfiguration of pre-patterned micro-volumes of the azopolymer 

under uniform light beam irradiation. In Chapter 4 has been demonstrated that the 

intensity/polarization dependence of the light-driven mass migration phenomenon 

occurring in this material can be used for finely tuning the three-dimensional geometry 

of soft-lithographic imprinted micro-cylinders. Both symmetric and asymmetric 

structures are achieved by using circular or linear polarized irradiating light. The 

deterministic control on the final structures has also demonstrated by the predictions of 

the phenomenological mass migration model described before. Its theoretical 

framework has resulted to be valid also in this uniform illumination conditions, where 

many other models would predict, instead, inefficient material movement. By tuning the 

laser fluence, controllable and directional superficial asymmetry can be induced onto 

the array of a single pristine micro-pillar array, even in a reversible way. The versatility 

offered by this light controlled surface structuring has been demonstrated, in Chapter 5, 

to be a tool of crucial relevance in order to control the wettability properties of the 

surfaces. In particular, a non-standard wetting phenomenon has been recognized as 

governing the wetting state of the pristine cylindrical pillars, while the structures 

obtained by tuning simple illumination parameters such as the light polarization state 

and the beam incidence angle had been demonstrated to induce a directional controlled 

wettability anisotropy. Despite the relatively simple experimental fabrication 

framework, phenomena such as unidirectional anisotropy and spreading were achieved 

onto the reconfigured microstructures. Furthermore, spatially structured intensity and 

polarization patterns allowed the design of tailored bidimensional anisotropic wetting 

paths. These nontrivial wetting applications usually require expensive and multistep 
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fabrication processes for tailoring the superficial geometry, and typically the obtained 

structures cannot be further tuned once fabricated. The soft imprinting technique used 

for azopolymer pristine texturing is based on the replica-molding from a single silicon 

master and permits the fabrication of hundreds of light-customizable samples, with a 

dramatic reduction of fabrication time and costs with respect to the standard 

lithographic methods. Besides the potential applications in many fields of research such 

as photonics, electronics, and biology, such reversible light-configurable surfaces can be 

used as a powerful tool for both experimental and theoretical studies relying on the 

topography-based superficial wetting design. Furthermore, the light-reconfigured 

azopolymer surfaces can be used as molding templates for soft-lithographic transfer of 

the texture on other materials, which can have improved mechanical and chemical 

properties required in specific applications. 
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Appendix A 

Azopolymer used in the experiments 

 

The polymer used all the mass-migration experiments reported in the thesis is an acrylic 

polymer bearing the photoresponsive azobenzene moieties as side chains of the 

polymeric backbone [8,12]. The chemical structure of the polymer is presented in Fig. 

A1(a). The azopolymer presents the typical azomaterial absorption spectrum (Fig. A1 

(b)), with a maximum absorbance occurring at the wavelength around 𝜆𝑚𝑎𝑥 ≈ 370  nm. 

All the samples having flat polymer surface are prepared in form of thin film (typical 

thickness <1 µm) by spin coating the polymer from a 1,1,2,2-tetrachloroethane solution 

onto a microscope coverslip.  For the fabrication of the surfaces pre-patterned with the 

array of cylindrical micro-pillars reported in chapters 4 and 5, the polymer is dissolved 

(with a concentration of 10% by weight) in N-methyl-pirrolidone.  

 

 

Fig. A1| Description of the azopolymer used in this thesis. (a) Chemical structure. (b) Uv/visible 

absorption spectrum. 

Topographic characterization of the light-induced surface reliefs 

 

The topography of the structured azopolymer surfaces is characterized by atomic-

force microscopes (Alpha 300-RAS by WITec or XE-100 by Park Systems Corp.)  

equipped with a silicon cantilever operating in non-contact mode. The image analysis is 

performed by the SPM open-source software “Gwyddion”.  
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