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Abstract 

 

The correct design of evaporators and heat-spreader systems continuously requests flow 

boiling heat transfer and pressure drop data, especially for new low-GWP fluids that are 

about to replace HFC substances in different fields. More data are also required in operating 

conditions that promote flow asymmetry, for which the classical heat transfer prediction 

methods are not completely accurate. In addition, the progressive miniaturization of 

electronic devices and their performance evolution made the two-phase cooling an interesting 

option. For these systems, the determination of the critical heat flux (CHF) is extremely 

important to avoid possible overheating and physical burn-out. 

In this context, the first part of the thesis provides new CHF data for five different 

refrigerants (R134a, R32, R1234yf, R1234ze and R1233zd) in an aluminum multi-

minichannel heat sink in which seven rectangular minichannels are carved. A new operative 

definition of critical heat flux is firstly given. Then, the effect of geometry (represented by 

the Lh/D ratio, equal to 19, 27 and 44), mass flux (from 145 to 3000 kg/m2 s) and saturation 

temperature (from 24.7 to 75.5 °C) is investigated and discussed. Finally, the experimental 

data are compared to the predicted values obtained from some of the most quoted CHF 

correlations available in scientific literature. 

New flow boiling heat transfer and pressure drop data in a single, circular, horizontal smooth 

stainless steel channel of 6.0 mm internal diameter are instead provided in the second part of 

the thesis. Specifically, the heat transfer coefficients are measured at the top, bottom, left and 

right sides of the tube in order to have a more accurate estimation of the peripheral average 

heat transfer coefficient. Different operative conditions are chosen to promote stratification 

and to better understand the relative importance of the convective and nucleate boiling 

contributions on the two-phase heat transfer process. Propane (R290) and R134a are 

employed as working fluids. Mass flux goes from 150 to 500 kg/m2 s, heat flux from 2.5 to 

40 kW/m2 and saturation temperature is set from 20 to 35 °C. The effect of all the operative 

parameters and also that of the working fluids on local heat transfer coefficients and pressure 

drop are discussed and the experimental data are compared with some of the available 

correlations taken from scientific literature. 
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1 Introduction 

 

1.1 Motivations and background 

he research on flow boiling of refrigerants is of primary importance in several 

fields, such as air conditioning, refrigeration, nuclear systems and Organic Rankine 

Cycles (ORC). For these applications, the capability to determine the two-phase 

heat transfer and pressure drop within a wide range of saturation temperatures and other 

operative parameters is extremely important for the correct design of evaporators and heat 

spreaders systems. Indeed, the current predictive methods are not completely satisfactory, 

since most of them have been conceived for symmetric flow conditions with predominant 

convective contribution, which may not necessarily occur in some particular operating 

conditions. Furthermore, an accurate determination of the pressure drop in heat exchangers is 

fundamental for the environmental impact of systems, since it allows to minimize the energy 

losses connected to the fluid handling and, therefore, the indirect contribution to the 

emissions of pollutants in the atmosphere.  

In other applications, as the cooling of electronic systems, the research on flow boiling is also 

of great interest, since air-cooling has reached its limit and phase change heat transfer in 

compact heat sinks is already a viable solution. In fact, the size of electronic devices has 

significantly decreased in recent years, leading to more compact and faster chips but at the 

same time to great chip power densities and dissipation of much higher heat fluxes than ever 

before. According to the International Technology Roadmap for Semiconductors [1], the heat 

flux from microchips is likely to keep on rising, especially for high power defense 

electronics, in which the dissipation of 1000 W/cm2 is already a fact [2]. Also in case of new 

generation of photovoltaic cells, it is possible to concentrate the solar illumination in small 

operating spots (>500 suns), thus obtaining a substantial enhancement of the panel 

performance [3], but also the need of an active cell cooling in order to prevent undesired 

overheating and thermal failures. In this context, minichannel and multi-minichannel two-

T 
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phase cooling technology has attracted considerable attention in the last decades, thanks to 

several advantages such as light weight, reduced fluid charge and less material consumption 

[4]. Flow boiling refrigerants inside multi-minichannel heat sinks is a good option if 

compared to a single-phase flow, thanks to the enhanced heat transfer and a uniformity of the 

wall temperature, which is highly recommended in case of cooling of microchips or other 

electronic devices. Moreover, two-phase flows are preferable when high heat fluxes have to 

be dissipated, in order to avoid significant pressure drops related to water at high mass flow 

rates. With boiling refrigerants, instead, low fluid mass flow rates are possible by exploiting 

the latent heat, thus leading to a substantial reduction of the pumping power. 

In designing a two-phase multi-minichannel heat sink working with an imposed heat flux to 

be dissipated, it is important to know the critical heat flux (CHF) value for any operating 

condition and working fluid adopted. The CHF, in fact, represents the cooling upper limit 

and the maximum heat flux that can be handled. Beyond this condition, the system is 

subjected to a steep reduction of the heat transfer efficiency with a consequent sudden rise of 

the temperatures and the possible physical burn-out of the device that has to be cooled. In 

this context, the collection of CHF data for multi-minichannel heat sinks with different fluids 

and operating conditions is of significant importance. 

For all the mentioned applications, the choice of a suitable fluid is not of secondary concern. 

According to the Montreal Protocol, CFC refrigerants have been banned from the market in 

most developed countries of the world, due to the harmful effect of chlorine on the ozone 

layer. Nowadays, synthetic HFCs are widely used thanks to their lack of chlorine; their 

drawback, however, is a high global warming potential (GWP) that increases the greenhouse 

effect once they are released in atmosphere. According to the 2014 F-Gas European 

Regulation [5], a gradual removal of high-GWP substances is already planned for the next 

years. Interesting alternatives are represented by other synthetic refrigerants like R32 or 

hydro-fluoro-olefin fluids (HFO), such as R1234yf, R1234ze, R1233zd, or hydrocarbons 

(HC), as propane (R290).  

Particularly, HFO refrigerants have the advantages of very low GWP values (<5), but their 

drawback may be a reduced cooling capacity which leads to higher mass flow rates for 

cooling systems and lower performances. As regards propane, it represents a valuable 



3 

 

alternative thanks to its very low GWP (<3), good material compatibility and excellent 

thermodynamic properties, that can even improve the system efficiency, thus reducing the 

indirect effect on global warming [6]. Despite its high flammability, with size reduction and a 

correct design of the heat exchangers, the fluid inventory can be conveniently reduced 

without affecting the system performance, with particular benefits on safety issues. 

1.2 Objectives of the study 

The present work aims to provide flow boiling heat transfer coefficients and two-phase 

pressure drops data in a circular, horizontal channel and critical heat flux (CHF) new data for 

a multi-minichannel heat sink. Working fluids, geometries and operating conditions are 

varied for the experiments and their effect is recorded and shown. Thus, the main objectives 

of this these may be summarized as follows:  

• Set-up of the experimental apparatus for the CHF measurements in an aluminum 

multi-minichannel heat sink. 

• Conceive a new operative CHF detection method. 

• Collection of saturated CHF data using R134a, R1234yf, R1234ze, R1233zd and R32 

over different ranges of mass fluxes and saturation temperature, and for three 

different geometries according to the heated length-on-equivalent diameter ratio 

(Lh/D) of the minichannels. 

• Study the effect of mass velocity, saturation temperature, working fluid and Lh/D ratio 

on the recorded experimental CHF. 

• Find out the applicability range of existing CHF correlations for conventional, single 

minichannels and multi-minichannel geometries using the present experimental data. 

• Set-up of the same experimental apparatus by changing part of the measurement 

instrumentation and the test section, using a single horizontal channel of 6.0 mm 

internal diameter for the flow boiling experiments. 

• Collect flow boiling heat transfer coefficient data in order to understand the effect of 

stratification at low mass velocities and the relative importance of the nucleative and 

convective contributions intervening in the heat transfer mechanism, so that more 

accurate heat transfer predictive methods may be realized.  
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• Compare the experimental two-phase heat transfer coefficient data to the prediction 

of some available correlations. 

• Collect two-phase frictional pressure drops for refrigerants R134a and propane 

(R290) over different ranges of mass velocities and saturation temperature. 

• Study the effect of operating parameters and working fluids on the experimental two-

phase frictional pressure drop. 

• Compare the experimental two-phase frictional pressure drop data to the values 

obtained by using some available prediction methods. 

1.3 Layout of the thesis 

The present thesis is divided in eight chapters, organized as follows: 

- Chapter 1 provides a background to the study, by motivating the work and stating the 

research objectives. 

- Chapter 2 provides the basic definitions of main parameters and non-dimensional 

numbers that intervene when describing the boiling phenomena. Also the 

fundamentals of boiling process are exposed in this section. 

- In Chapter 3, an overview of the state of the art related to the existing studies in open 

literature on saturated CHF for different geometries and operating conditions is 

provided. The most quoted CHF prediction methods will also be shown in this 

section. The second part of the chapter deals with a literature review on flow boiling 

heat transfer and pressure drop in conventional and minichannels, illustrating the 

typical trends observed in the literature and some of the most quoted predictive 

methods developed by several authors.  

- Chapter 4 describes the experimental facility as well as the measurement 

instrumentation and the two test section arrangements used for the CHF 

measurements. In addition, the experimental methodology, data reduction process and 

evaluation of the experimental uncertainty of all the parameters of interest are also 

shown. The new CHF operative definition for all the experiments of this thesis is 

described in this section. 

- The first part of Chapter 5 presents the experimental conditions used for the saturated 

CHF experiments and the effect of an orifice insert at the inlet manifold of the multi-
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minichannel test section on the stability of the main parameters controlled during the 

experiments. The second part of the chapter presents the results of the CHF 

experimental campaign in terms of boiling curves and CHF values, exposing also the 

effect of all the operative parameters on the experimental data. Finally, a critical 

assessment of some of the saturated CHF prediction methods available is performed 

at the end of the chapter. 

- Chapter 6 describes the new parts of the experimental facility used for the flow 

boiling experiments, paying particular attention to the stainless steel tube used as test 

section. The in-situ calibration procedure of the differential pressure transducer and 

the thermocouples for the wall temperature measurement is explained in this section. 

Data reduction, uncertainty analysis and the validation of both test section and 

measurement instrumentation for the flow boiling experiments are also shown. 

- The first part of Chapter 7 provides the experimental procedure adopted for the flow 

boiling experiments and the range of operative parameters investigated. In the second 

part, the heat transfer and pressure drop results are shown and the effect of working 

fluids and thermodynamic conditions as well as the comparisons with predictive 

methods are also discussed. 

- Finally, Chapter 8 summarizes the main outcomes of this work. 
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2 Fundamental definitions 

This chapter presents the fundamentals of boiling and two-phase fluid mechanics and 

provides information on the primary parameters used throughout this thesis. The critical heat 

flux phenomenon occurring in two-phase boiling flows will also be briefly presented. For all 

the equations displayed, the subscripts “L” and “V” will be used to distinguish between vapor 

and liquid phase.  

 

 

2.1 Basic definitions and dimensionless numbers 

Dimensional and non-dimensional parameters generally employed for the description of two-

phase flows are discussed here.  

2.1.1 Vapor quality 

The vapor quality x is defined as the vapor mass flow rate 𝑚̇𝑉 divided by total mass flow rate 

of liquid and vapor phase  

 V

V L

m
x

m m



  (2.1) 

When phase change does not take place in the tube, the vapor quality remains unchanged and 

it can be obtained by measuring the mass flow rate of each phase. In case the tube is heated 

and boiling takes place, instead, one should take into account the phase change and the 

increase of vapor quality along the tube with the following equation, being Δ𝑖𝐿𝑉 the latent 

heat, 𝑚̇ the total mass flow rate and 𝛿𝑄̇ the heat applied over an infinitesimal length. 

 
LV

Q
dx

m i





  (2.2) 

2.1.2 Cross sectional void fraction 

In two-phase flow, the cross-sectional void fraction is one of the most important parameters 

to be determined, since it provides the mean velocities of the liquid and the vapor phases. It 
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defines the cross-sectional area occupied by each phase (see Figure 2.1) and it represents a 

fundamental parameter in the calculation of pressure drop, flow pattern transitions and heat 

transfer coefficients. The void fraction 𝛼 is defined as: 

 V

V L

A

A A
 


  (2.3) 

where AV is the cross sectional area occupied by the vapor phase and AL that occupied by the 

liquid phase. The void fraction may be rewritten by substituting the vapor and liquid mass 

flow rates obtaining a function of vapor quality, liquid and vapor velocities and densities. 

 
1

1
1 V V

L L

u x

u x







 

   
 

  (2.4) 

In the above equation, the velocities ratio 𝑢𝑉/𝑢𝐿 is often referred as slip ratio S, and may be 

calculated with dedicated models that either conceive the same velocity for liquid and vapor 

phase (S = 1, homogeneous model), or having S > 1 (separated flow models). 

 

 

Figure 2.1 Cross sectional void fraction representation 

 

2.1.3 Mass velocity (mass flux) 

The mass velocity, also referred as mass flux, is defined as the mass flow rate divided by the 

cross sectional area: 

 
m

G
A

   (2.5) 
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The principal unit of measurement for the mass velocity is [kg/m2 s]. Considering the 

continuity law, the mass velocity is also the expression of the mean flow velocity multiplied 

by the mean density. 

2.1.4 Reynolds number 

The Reynolds number is conventionally defined as the ratio of the inertial forces over the 

viscous forces. For a single-phase flow inside a duct having an hydraulic diameter dh, it can 

be expressed as: 

 hG d
Re




   (2.6) 

where dh is calculated with the ratio of the cross sectional area to over the wetted perimeter. 

For circular tubes, 𝑑ℎ = 𝑑. 

In case of two-phase flows, the Reynolds number for the vapor and liquid phase is generally 

expressed, respectively, as: 

 h
V

V

G x d
Re



 
   (2.7) 

 
 1 h

L

L

G x d
Re



  
   (2.8) 

In some correlations, the authors refer to the Reynolds number evaluated by considering each 

phase flowing alone in the whole cross section of the tube at the total mass velocity. In this 

case, the vapor-only and liquid-only Reynolds numbers are defined as: 

 h
VO

V

G d
Re




   (2.9) 

 h
LO

L

G d
Re




   (2.10) 
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2.1.5 Prandtl number 

The Prandtl number refers to the ratio of the molecular diffusivity of momentum over the 

molecular diffusivity of heat. It can be expressed as a function of the fluid properties for both 

the vapor and the liquid phase. 

 
c

Pr

c




 



 



  (2.11) 

 
,V p V

V

V

c
Pr






   (2.12) 

 L L
L

L

c
Pr






   (2.13) 

2.1.6 Bond number 

The Bond number is related to the ratio of the gravitational forces to the surface tension 

forces. In case of flow inside pipes, its characteristic length is the tube hydraulic diameter: 

 
2( )L V hg d

Bd
 



  
   (2.14) 

2.1.7 Boiling number 

The Boiling number is a dimensionless parameter that represents the stirring effect of the 

bubbles upon the flow. This number is often used in correlations for flow boiling heat 

transfer coefficient and critical heat flux and it is expressed as the ratio of the heat flux q over 

the mass flux G and the latent heat: 

 
LV

q
Bo

G i



  (2.15) 

2.1.8 Froude number 

The Froude number represents the ratio of the inertia forces over the gravitational forces. It is 

often used to correlate the stratification phenomena for two-phase flow inside tubes. It can be 

expressed as: 
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2

2

h

G
Fr

g d 


 
  (2.16) 

The separated vapor and liquid Froude numbers inside a tube may be written as: 

 

2

2V

h V

G
Fr

g d 


 
  (2.17) 

 

2

2L

h L

G
Fr

g d 


 
  (2.18) 

2.1.9 Weber number 

The Weber number expresses the ratio of inertia forced over surface tension forces. Its 

characteristic length for flows confined into tubes is the inner diameter. However most of the 

times, for CHF prediction methods, it can be referred to the heated length of the channel. For 

the liquid phase it is evaluable as: 

 

2

h
L

L

G d
We

 





  (2.19) 

2.1.10 Nusselt number 

The Nusselt number is defined as the ratio of convection over conduction heat transfer. It can 

be seen as the dimensionless heat transfer coefficient h. In case of flows inside pipes, its 

characteristic length is the inner tube diameter: 

 hh d
Nu




   (2.20) 

2.1.11 Lockart-Martinelli parameter 

This parameter X was introduced by Lockart and Martinelli [7] and it is defined as the ratio 

between the theoretical pressure gradients which would occur if each phase would flow alone 

in the pipe with the original flow rate of each phase. It is expressed as: 

 
2 LO

VO

dP

dz
X

dP

dz

 
 
 


 
 
 

  (2.21) 
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This parameter is a measure of how much the two-phase mixture is close to be a liquid 

(X>>1) or to a vapor (X<<1). Modeling the pressure drop of each phase with the classical 

form: 

 
n

V Vf C Re    (2.22) 

 
m

L Lf C Re    (2.23) 

and assuming the same friction model for both phases (e.g. both turbulent or both laminar), 

the exponents m=n and CL=CV. Equation (2.21) therefore becomes: 

 

2 0.5
22

2 1
nn

V L
tt

L V

x
X

x

 

 



   
     
     

  (2.24) 

The original authors and then Taitel and Dukler [8] used n = 2 as exponent: 
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The subscript tt means that both phases are considered turbulent. Anyway, several methods 

are employed in scientific literature to calculate the Lockart-Martinelli parameter for one of 

both fluids flowing in laminar regime (Xtl, Xlt, Xll). 

2.2 Brief outlines on boiling process 

Boiling can be defined as a process in which a liquid substance turns into vapor; this is 

caused by heating that substance past its boiling point. As a matter of fact, boiling is 

identified as the heat transfer mechanism that leads to evaporation. Many researchers are 

intensely working on boiling heat transfer phenomena, because it is really hard to find a 

common single model which is able to describe the boiling process. Boiling can be divided 

into several categories, according to the geometric situation and also to the heat transfer 

contributions that occur. Thus, three different mechanisms of boiling are described:  

a) Nucleate boiling. Heat transfer causes vapor bubble nucleation, usually at a solid surface. 

Bubbles then grow and finally detach from the surface.  
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b) Convective boiling. The heat is conducted through a film of liquid. There is no bubble 

nucleation, but the liquid evaporates at the vapor-liquid interface.  

c) Film Boiling. Again there is no bubble nucleation and the liquid evaporates at the vapor-

liquid interface, but this time there is a film of vapor between the solid heated surface and the 

liquid. The heat is then conducted through the vapor.  

As regard the geometric situation, it is possible to have:  

a) Pool boiling. The boiling in this case occurs at a heated surface in a pool of liquid which, 

without taking into account any convection (and therefore any motion) induced by the 

boiling phenomenon itself, is stagnant. That's to say that there is no flow imposed from the 

outside.  

b) Flow boiling. The liquid does not form a pool. It has an imposed velocity relative to the 

heated surface. Typically, this boiling process shows up when the fluid flows inside a tube, 

thus pumped through a heated channel. 

Another classification is needed: a standard boiling process, in which the fluid temperature is 

maintained at the saturation point, is so called saturated boiling. However, the bubble 

nucleation might appear even when the bulk fluid temperature is below the saturation point. 

In this case, the overall boiling mechanism is defined sub-cooled boiling.  

It is fair to say that in pool boiling only nucleate boiling and film boiling might occur, 

whereas in flow boiling it is possible to observe all the boiling mechanisms above mentioned. 

2.3 Pool boiling 

A comprehensive discussion of pool boiling should start with Nukiyama’s experiment [9], 

illustrated in Figure 2.2. 
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Figure 2.2 Pool boiling experiment with imposed heat flux 

 

A platinum wire is immersed in water and it is electrically heated. The current and the 

voltage applied at the end of the wire enable the electrical power and therefore the heat flux, 

which is computable. Moreover, from the electrical resistance of the wire, it is possible to 

obtain its temperature. Results of this experiment are shown in the form of the pool boiling 

curve, displayed in Figure 2.3, as well as the types of vapor formation and the heat transfer 

mechanisms. The horizontal axis is made up of wall superheat ΔTsat values (which is the wall 

temperature minus the liquid saturation temperature), whereas the heat flux q is represented 

on the vertical axis. 
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Figure 2.3 Boiling curve and heat transfer mechanisms in pool boiling. Imagine taken from Kandlikar 

and Chung [10] 

 

It is clear that the pool boiling curve is divided into several regions. At the beginning (O-A) 

there is no bubble formation, the heat transfer mechanism is merely natural convection with 

single-phase liquid. At a certain value (A) of ΔTsat, bubbles start to form from the cavities of 

the heated surface, due to its roughness. This point is known as onset of nucleate boiling 

(ONB). Initiation of boiling goes usually together with a wall superheat excursion (A’), 

caused by the delay in the first nucleation of bubble, which is much more significant for 

fluids with great wettability. For these liquids a sudden activation of a large number of 

cavities at an increased wall superheat leads to a reduction in the solid surface temperature, 

whereas the heat flux remains constant (A’-A’’). After the onset of nucleate boiling, the slope 

in the boiling curve increases tremendously and the same happens to the heat transfer 

coefficient. It is still a nucleate boiling mechanism, but at the beginning there are discrete 

bubbles released from some active sites (A-B), while at higher heat fluxes the nucleating 

sites become more and more, leading to a strong augment of bubble releasing, with vapor 

columns rising up from the hot surface (B-C). This type of trend defines the transition from 

isolated bubbles to fully developed nucleate boiling. In this situation, the evaporation near 
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the bubbles becomes more and more intense, with dry spots on the hot surface which are 

normally replaced by “fresh” liquid. However, with increasing heat flux, liquid becomes 

more and more unable to rewet the heated surface and this behavior leads to a strong 

reduction in the slope of the curve (C-D). At a certain point there is no more macroscopic 

contact between liquid and heated surface, because the strong nucleation and growth of the 

bubbles forms a barrier to the incoming liquid; the heat flux corresponding to this condition 

(D) is so called critical heat flux (CHF) or burnout point and represents the upper limit of 

nucleate boiling. When the heat flux is higher than the CHF, there is no longer contact 

between solid surface and liquid; depending on the magnitude of the heat flux imposed, it 

might occur a partial or a complete drying of the heated surface. With the equipment shown 

in Figure 2.2, the boiling curve displays a hysteresis loop (A’’-B-C-D-F-E-A’’): for 

increasing heat flux, the process would follow the clockwise-oriented arrows, completely 

bypassing the dotted line (D-E), which was guessed by Nukiyama. To obtain the complete 

boiling curve, it is necessary to control the temperature rather than the heat flux and this 

procedure can be done, for instance, heating the surface with external hot liquid. In this other 

case, the boiling curve would show no hysteresis. Line E-F represents the stable film boiling, 

with the surface totally covered with vapor film. The vapor surface is unstable, and bubbles 

are released from it into the liquid. The E-F line has to be obtained by reducing the heat flux 

once point F has been reached. Condition E represents the situation when the vapor film can 

no longer be sustained and collapses; the heat flux associated with that is called minimum 

heat flux (MHF). The region between nucleate and film boiling, represented by the dotted 

line D-E, is known as the transition boiling region. It is a complex region where parts of the 

surface are in film boiling regime and parts in fully developed nucleate boiling regime (with 

slugs and columns). 

As a summary, the pool boiling curve suggests three different boiling regimes, along with 

additional sub-regions: nucleate boiling, transition boiling and film boiling. 

To better understand the pool boiling phenomenon, Figure 2.4 taken from [11] displays the 

various stages in the pool boiling curve. 
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Figure 2.4 Various patterns in the pool boiling process at increasing heat flux [11] 

 

Some parameters are important in a pool boiling process, since they are able to modify the 

pool boiling curve. First of all surface wettability, which shifts the nucleate boiling line 

toward the right; thus, for the same wall superheat Tw – Tsat, the heat flux is less than before 

and it leads to minor nucleate boiling heat transfer coefficients. The surface roughness is also 

an important parameter: it tends to move the nucleate and transition lines to the left, implying 

improvement in the nucleate boiling heat transfer characteristics [12]. Cracks and crevices do 

not, of themselves, constitute nucleation sites for the bubbles: they must also contain pockets 

of gas, probably air trapped when the vessel is filled with the liquid; it is from these pockets 

of trapped air that vapor bubbles begin to grow during nucleate boiling. Surface 

contamination (as depositions or dirt particles) has an effect similar to surface roughness. 
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The heat transfer coefficient in nucleate boiling is very high (typically above 10 kW/m2K). 

As explained by Hsu and Graham [13], at least three heat transfer mechanisms controlling 

the nucleate pool boiling process can be identified: 

Bubble agitation mechanism. During their growth, bubbles move from their original position, 

giving motion to surrounding liquid. This situation determines a sort of liquid forced flow 

which augments the heat transfer coefficient. 

Vapor-liquid exchange mechanism. After the bubbles departure from the surface, some 

“fresh” liquid from on high comes to cool down the heated surface, taking away sensible 

heat. 

Microlayer evaporation mechanism. While conventional evaporation takes place around the 

sides and top of the bubble, micro-evaporation is happening in the thin layer of liquid 

underneath the bubble which is trapped between a rapidly growing bubble and the hot 

surface. 

The microlayer evaporation is an important phenomenon which deserves particular attention, 

since it is possible that the same mechanism happens in the thin film between the elongated 

bubbles and the heated wall in narrow tubes. This could explain the similarity in behavior 

between pool boiling and boiling in micro-channels. 

In conclusion, pool boiling is an interesting type of heat transfer for many thermal cooling 

systems, since it can sustain large heat fluxes with low heated surface temperatures. One of 

its direct applications is in flooded evaporators, where the fluid that needs to be cooled is 

flowing into pipes, which are completely flooded by saturated liquid refrigerant.  

2.4 Flow boiling 

In flow boiling, the evaporating liquid has a certain velocity relative to the heated surface 

(the inside wall of a tube), and this leads to an increasing vapor quality along the channel. 

Unlike pool boiling, there is not a precise pattern once wall superheat and heat flux are 

determined: two-phase flow regimes in a boiling channel are “developing” along the heated 

channel itself. Thus, it is useful to introduce the various types of patterns which can occur in 

a flow boiling process, before dealing with heat transfer mechanisms.  
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2.4.1 Two-phase flow patterns in flow boiling  

The two phases in a heated channel can adopt various geometric configurations, known as 

flow patterns, according to the special distribution of the vapor and liquid phases in the 

channel. To determine and predict a flow pattern, it is necessary to analyze at least three 

physical parameters:  

a) Surface tension, which tends to maintain the channel wall always wet and to form 

small liquid drops and small spherical gas bubbles;  

b) Gravity, which tends to pull the liquid to the bottom of the channel;  

c) Deformability of the gas-liquid interface that often results in continuous coalescence 

and breakup processes.  

Some common flow patterns for vertical upflow are shown in Figure 2.5: 

 

 

Figure 2.5 Some flow patterns occurring in vertical upflow in a tube 

 

In bubbly flow, the vapor phase is present in form of bubbles dispersed in the continuous 

liquid phase. These bubbles may vary in size and shape, depending on the substance 
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properties and other parameters, but they are nearly spherical and smaller than the size of the 

tube. Bubbly flow ends when discrete little bubbles coalesce and produce very large bubbles, 

which reach the tube diameter size and eventually become elongated.  

In plug flow (sometimes known as slug flow) the gas phase is present as large bullet-shaped 

bubbles, with hemispherical nose and irregular tail; there are also some small gas spots 

distributed throughout the liquid phase. The main bubbles are known as Taylor bubbles and 

they are surrounded by a thin liquid film between them and the tube wall and also separated 

one each other by plugs of liquid. 

At higher vapor qualities, the disruption of the large Taylor bubbles leads to churn flow, 

where chaotic motion of the irregular-shaped gas pockets takes place. This flow pattern is 

highly unstable, due to its oscillatory nature: large waves are moving forth in the flow 

direction and the liquid near the tube wall continuously pulses up and down.  

With increasing vapor quality, annular flow replaces churn flow. The liquid travels partly as 

an annular film on the walls of the tube and partly as small drops (entrainment) distributed in 

the gas, which flows in the center of the tube. Usually the interface is disturbed by high 

frequency waves. Eventually, the liquid film thickness at the wall completely evaporates or is 

torn due to the instabilities and the annular flow is replaced by mist flow, in which the 

remaining liquid remains dispersed in the vapor core. 

The common flow patterns for horizontal tubes are illustrated in Figure 2.6. They are similar 

to those in vertical flows, but the distribution of the liquid is influenced by gravity that tends 

to stratify the liquid to the bottom of the tube and the gas to the top. Moreover, unlike vertical 

tubes, some patterns may occur or not, depending on the flow rate value and its effect on the 

gravity force.  
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Figure 2.6 Flow patterns in horizontal flow in a tube occurring at low and high flow rates 

 

Bubbly flow and plug flow are almost the same already seen in vertical upflows, except from 

the gas phase position, which is now considerably closer to the upper wall of the channel. 

The stratified smooth flow regime occurs at very low flow rates and it is characterized by a 

complete separation between the liquid and the gas phase, which occupies the upper part of 

the tube. Moreover the liquid-gas interface is smooth. Most frequently the interface is wavy, 

leading to the stratified wavy flow. For higher flow rates, instead, a complete stratified flow 

never shows up and the inner walls are wetted up to the top of the channel. At higher vapor 

qualities, the wave amplitude is so large that it is able to wet the entire channel cross section. 

This regime, known as slug flow, is thus different from the slug flow already defined for 

vertical pipes, since the gas phase is no longer contiguous: the liquid can contain entrained 

small droplets and the gas phase may contain entrain liquid droplets.  

With increasing vapor quality, annular flow appears. This regime is very similar to vertical 

annular flow, except that the liquid film is ticker at the bottom of the tube than at the top, 

because of the gravity effect.  

Different writers have defined other flow patterns, creating almost 100 different names. 

Many of these are merely alternative names, while others delineate minor differences in the 
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main flow patterns already presented. These ones probably represent the minimum number 

which can sensibly be defined.  

2.4.2 Heat transfer in flow boiling  

Figure 2.7 displays a picture of forced flow boiling process for a circular vertical tube with 

uniform heat flux imposed and a qualitative temperature profile. In this case liquid enters the 

tube in sub-cooled conditions.  

 

 

Figure 2.7 Flow boiling in a vertical tube, with wall and fluid temperature. Image taken from Collier 

and Thome [11] 
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The overall boiling process can be seen as the composition of three different contributions: 

nucleate boiling, with the formation of bubbles occurring at the solid surface; convective 

evaporation, which takes place at the interface between liquid and gas phases; film boiling, 

which may appear in case of flow instabilities, with internal walls not completely covered by 

the liquid phase. Particularly, referring to Figure 2.7, several distinct areas can be observed:  

Zone A: The fluid enters the tube in sub-cooled conditions. Heat transfer mechanism is 

merely convective heat transfer to liquid. Both wall temperature and fluid temperature are 

increasing, thus the heat transfer coefficient is almost constant.  

Zone B: Wall temperature might exceed the saturation temperature, but the bulk fluid 

temperature is still below this limit. This situation leads to an overall vapor quality less than 

0, but bubble nucleation may appear close to the channel walls. Bubbly flow is the actual 

flow pattern. The bubbles just formed grow and reach out into the relative cool liquid, thus 

the vapor begins to condense and in doing so causes the liquid temperature to rise slightly, 

therefore approaching the saturation temperature. For this reason, the heat transfer coefficient 

increases rapidly. This primary formation of bubbles is known as onset of nucleate boiling, 

ONB.  

Zone C: Bulk fluid has approached the saturation temperature, thus the average vapor quality 

is greater than 0 and saturated nucleate boiling can start. Fluid and wall temperatures remain 

the same, thus the heat transfer coefficient is almost constant. In this region more nucleation 

sites are activated, then the contribution to heat transfer from convective single-phase 

mechanism becomes negligible.  

Zone D: Individual gas small bubbles coalesce, forming bullet-shape vapor bubbles. Nothing 

has changed for the heat transfer region, since the leading mechanism is saturated nucleate 

boiling, and still the heat transfer coefficient is almost constant.  

Zone E: Further downstream, the heat transfer mechanism changes, because of the addition 

of vapor in the flow. Liquid plugs tear and a thin film of liquid is attached to the channel 

walls, forming the annular flow. While nucleate boiling is predominant in the bubbly and 

slug flow regimes, the annular flow pattern brings to a convective boiling mechanism. The 

thickness of the thin liquid film in annular flow is such that the thermal conductivity is able 
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to prevent the liquid from being superheated enough to sustain bubble nucleation. Heat is 

therefore transferred from the wall by forced convection to the liquid-vapor interface, where 

evaporation occurs.  

Zone F: As the flow rate ought to be constant, the liquid evaporation makes the vapor 

velocity increase, and this leads to two consequences. First of all, the liquid-vapor interface is 

no longer smooth, but it becomes wavy, with some liquid droplets torn from the liquid 

(annular flow with entrainment). The most important consequence, however, is that the rapid 

vapor pushes the liquid film against the wall, dragging it towards the end of the channel and 

improving the convective heat transfer mechanism. The difference between the wall and the 

fluid temperature gets smaller, thus the heat transfer coefficient increases slowly.  

Zone G: In the annular flow the liquid film gets thinner and thinner, until it dries out. This 

phenomenon is then known as dry-out (or burnout, even if this last definition implies that the 

physical solid surface is destroyed, which does not always occur). From this point on, the 

wall is completely dry, but some liquid droplets may occupy the central part of the channel 

(entailing a drop flow). Because of the lack of liquid film in the channel, the wall temperature 

suddenly rises, while the fluid temperature remains almost constant (equal to saturation 

temperature), at least until the vapor quality is lower than 1. In fact, vapor temperature slowly 

rises, but it is cooled down thanks to the evaporation of the droplets present in the middle of 

the channel. This situation leads to a tremendous decrease of the heat transfer coefficient, and 

the heat transfer regime might be defined as “liquid deficient region”.  

Zone H: Further downstream, eventually the entrained droplets will completely evaporate, 

leading to a pure vapor single-phase flow and to a single-phase vapor forced convection heat 

transfer regime. The fluid temperature rises together with the wall temperature, and the heat 

transfer coefficient remains low.  

From this description, it could be noticed that bubble nucleation begins when the 

thermodynamic quality x is lower than 0 and liquid drops persist when the vapor quality is 

greater than 1. This leads to the assumption that there is no thermodynamic equilibrium in 

these areas: both liquid and vapor are not saturated and so not in equilibrium with each other.  

The evolution of flow boiling inside a horizontal circular tube is shown in Figure 2.8. 
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Figure 2.8 Flow boiling in a horizontal circular tube. Image taken from Collier and Thome [11] 

 

Although there are no great differences between what happens in horizontal and vertical 

pipes, gravity force tends to push the liquid phase to the bottom of the channel. The annular 

flow is therefore slightly asymmetric and eventually the top part of the channel might be 

intermittently dry. This means that the dry-out tends to begin at the top and progressively to 

increase around the perimeter of the tube in the direction of the flow. Actually the annular 

flow pattern is typical for high flow rates (when the vapor phase, with its velocity, is able to 

sustain the liquid phase on the top, prevailing over the gravity force), whereas for low flow 

rates the two phases might be completely separated in a wavy flow. In this case the top of the 

tube may be intermittently dry if the waves wash the top of the tube or completely dry 

otherwise. 

2.4.3 Critical heat flux 

Finally, the study of flow boiling cannot overlook the critical heat flux (CHF) phenomenon, 

that refers to the value of heat flux at which the local heat transfer coefficient decreases 

sharply due to the replacement of liquid by vapor phase adjacent to the heat transfer surface 

[11] [14]. There exist other terminologies for this condition in the literature such as DNB 

(departure from nucleate boiling), dry-out, boiling crisis and burn-out, with the last one used 

to point out the consequent sharp rise of the wall temperature and the physical irreversible 

damage caused to the device that has to be cooled. However, none of these terms are fully 

satisfactory and due to the complexity of the phenomenon itself, most of researchers have 
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their own CHF definition and detecting method used for their experiments. A summary of the 

CHF operative definitions encountered in scientific literature will be given in the next 

chapter. Generally, the CHF condition can be of different nature: 

Sub-cooled CHF 

In this case, the phenomenon is also known as DNB (departure from nucleate boiling) the 

bulk fluid temperature is below the saturation temperature when CHF occurs. This condition 

may be reached in case of large mass velocities, high inlet sub-cooling and channels with a 

small heated length-to-diameter ratio [14]. At the channel outlet, the bulk fluid remains 

mostly in the liquid state and a large number of small vapor bubbles cover the heated wall 

behaving as a vapor film layer. Some theories for the sub-cooled CHF are: 

• Intense boiling, bubble-liquid boundary separates from the heated wall, resulting in a 

stagnant liquid to evaporate. 

• Bubble crowding, that prevents liquid flow rewetting the surface and therefore 

causing vapor layer. 

• Dry-out of liquid sub-layer beneath large vapor bubbles that causes the rise of local 

wall temperature. 

Saturated CHF 

This type of CHF is instead caused by a gradual depletion of the liquid film on the heated 

wall and it is more related to a dry-out phenomenon [14]. In this case, the flow pattern is 

mostly annular. As shown in Figure 2.9, the crisis occurs when the flow rate of the liquid 

film reduces and eventually goes to zero. Saturated CHF may be generally encountered in 

case of small mass velocities, a low inlet sub-cooling degree and geometries with high values 

for the heated length-to-diameter ratio. 
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Figure 2.9 Schematic representation of saturated CHF in a vertical heated tube. Image taken from 

Katto [15] 
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3 Literature review 

This chapter presents a state of the art review of in-tube flow boiling and critical heat flux in 

minichannels and multi-minichannels heat sink. Following the same order of the following 

experimental chapters, the literature review will be firstly focused on the critical heat flux 

topic and then to the flow boiling heat transfer and pressure drop studies.  

 

 

3.1 Critical heat flux review 

The CHF detection methods used by different researchers will be discussed in the first sub-

section. Then, recent studies on saturated CHF conducted with minichannels or multi-

minichannel systems are reviewed. Finally, empirical correlations and CHF predictive 

methods are summarized in the last section. 

3.1.1 Critical heat flux definition in literature 

Despite the differences between sub-cooled CHF and saturated CHF phenomena explained in 

the previous chapter, critical heat flux is usually referred in literature as the condition in 

which the cooling mechanism cannot be sustained any longer due to a sudden deterioration of 

the wall heat transfer coefficient. 

Actually, the terms critical heat flux (CHF) and dry-out are often indifferently used in 

scientific papers to describe the situation where the heated surface lacks its contact with the 

liquid phase, leading to a sharp rise of the wall temperature. Some researchers [16] [17] [11] 

state that the difference between the two terms are due to the way in which the mentioned 

situation occurs. Kim and Mudawar [16], for instance, link the term CHF to an abrupt 

phenomenon, more similar to the departure of nucleate boiling (DNB) occurring in case of 

high sub-cooling and when the amount of liquid in the channel is still considerable. The 

authors also stated that CHF is mainly a function of the inlet sub-cooling and the working 

fluid, identifying also several triggering mechanisms. On the other hand, they define dry-out 

as a gentler phenomenon occurring in case of saturated conditions and only when the flow 
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regime is annular. Maqbool et al. [18], instead, define differently CHF and dry-out as two 

different mechanisms occurring in saturated conditions. They stated that that critical heat flux 

might appear at any vapor quality, representing the upper limit of the wall heat flux at which 

the liquid is intensely torn from the heated surface. Dry-out, instead, should appear always at 

a higher vapor quality, independently on the wall heat flux imposed, when the liquid film 

thickness is no longer sufficient to wet the channel wall. Moreover, they distinguish the dry-

out incipience (also known in other works as intermittent dry-out, onset of dry-out), that is 

the case in which the liquid film is still present but vanishingly, having intermittent dry 

patches caused by an uneven evaporation and/or a lack of symmetry in the liquid film. Dry-

out completion, instead, was described to occur at higher vapor qualities, when the liquid 

film is completely evaporated. The approach of Maqbool et al. [18] is further shown in 

Figure 3.1, in which both the dry-out incipience and dry-out completion are highlighted in 

the boiling curve of propane flowing at a mass flux of 100 kg/m2 s and a saturation 

temperature of 23 °C. 

 

 

Figure 3.1 Boiling curve of propane with highlighted dry-out incipience and completion according to 

the definition of Maqbool et al. [18] 

 

Callizo et al. [19] and Ali and Palm [20] identify in the dry-out incipience the situation in 

which the heat transfer coefficient decreases appreciably, leading to an evident shift in the 
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slope of the boiling curve and therefore to sharp increases in the wall superheat with small 

increments of the wall heat flux. 

A considerable amount of parameters, together with the working fluid itself, may influence 

the CHF mechanism. The boiling curve is in fact highly dependent on the working fluid, 

mass velocity, heat sink geometry, heated surface material, roughness and so on. For the 

CHF experiments of Qu and Mudawar [21] with water in rectangular microchannels, a 

sudden rise of the wall superheat was detected, with a narrow dry-out region and almost no 

difference between the dry-out incipience and completion. Thus, the phenomenon could be 

closely linked to critical heat flux. Other experiments carried out by Lee and Mudawar [22] 

with refrigerant R134a show instead a wider dry-out region, with a boiling curve that gently 

changes its slope. Figure 3.2 shows the mentioned experiments taken from different studies 

and the difference in the extent of the dry-out regions. Kim and Mudawar [16] suggest that 

the sharp change in the boiling curve slope is typical of fluids carrying a high latent heat (as 

water and ammonia), whereas the broader dry-out region might be linked to refrigerants and 

other dielectric fluids having a relatively low latent heat and lower CHF values. 

 

 

Figure 3.2 Differences in dry-out regions extent observable in boiling curves of different refrigerants 

at similar operating conditions and geometry [16]. (a) Boiling curve of water (high latent heat). (b) 

Boiling curve of R134a (low latent heat) 
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However, sudden excursion of the wall temperature are also found in literature for 

refrigerants, especially in case of single ducts [23] [24]. Other authors have instead found a 

different behavior with flow boiling of refrigerants inside multi-minichannel systems [25] 

[26] [27]. The presence of the solid heat sink substrate and its non-negligible thickness may 

in fact lead to heat redistribution aided by conduction phenomena, causing therefore a 

mitigating effect on the critical condition and a gentler boiling curve nature. This effect was 

found to be more evident when increasing the thickness of the metal substrate and/or the 

number of minichannels in the work of Saenen and Thome [28]. Finally, the mass velocity is 

also recognized as a key factor to determine the boiling curve shape [25] [29]. 

As shown, for saturated flow boiling the distinction between dry-out incipience and dry-out 

completion and CHF is often indistinct in open literature and some works use different terms 

and detection methods to refer to the same phenomenon. 

Different authors opted for different CHF detection methods, according to their experimental 

results. For instance, Lazarek and Black [30], Katto and Ohno [31], Qu and Mudawar [21], 

Wojtan et al. [23] identified CHF as a sudden excursion of the wall temperature by almost 

keeping constant the imposed heat flux. Other studies pointed out instabilities when 

approaching critical heat flux: Lezzi et al. [32], Kim et al. [33] and Kuan [34] identified CHF 

when the wall temperature was exposed to a sharp temperature excursion in a short span of 

time. Mauro et al. [26] and Mastrullo et al. [29] located CHF when the slope of the boiling 

curve was found to be inferior to a chosen threshold of 1.0 W/cm2 K. Finally, among other 

researchers, Ong and Thome [24], Ali and Palm [20], Tibiriçá et al. [35], Anwar et al. [36], 

Agostini et al. [37] identified CHF as the wall heat flux corresponding to a chosen threshold 

for the wall superheat, regardless the boiling curve shape. From a practical point of view, this 

last method succeeds to preserve the device that has to be cooled from overheating and burn-

out in real applications, without looking at the stability of the boiling process. 

It is important to highlight that different CHF detection methods lead to different CHF values 

for the same experiments. For this reason, large discrepancies are found in literature for 

critical heat flux tests taken in similar conditions and prediction methods may be 

substantially different from one another. In this thesis, a new different method [38] to detect 

the thermal crisis is employed. Further details will be given in section 4.3.3.  
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3.1.2 Critical heat flux studies for minichannels and multi-minichannel heat sinks 

Recent studies on saturated CHF performed with mini or microchannels are here briefly 

reviewed. 

Bowers and Mudawar [39] performed saturated CHF experiments for flow in an array of 

circular tubes inserted in a test block. Refrigerant R113 was used as working fluid with mass 

velocities from 31 to 150 kg/m2 s for minichannels of 2.54 mm diameter and from 120 to 480 

kg/m2 s for microchannels of 0.51 mm diameter. The system pressure was 1.38 bar, with inlet 

sub-cooling ranging from 10 to 32 K. The authors observed a lack of inlet sub-cooling effect 

on CHF. 

Yun and Kim [40] investigated the dry-out of carbon dioxide for flow boiling in tubes of 2.0 

and 0.98 mm internal diameter. The authors noted that the critical vapor quality (i.e. the 

vapor quality at the critical condition) was lower for larger heat flux but increased slightly 

with increasing mass flux. 

Qu and Mudawar [21] studied saturated CHF for water in a microchannel copper heat sink 

made up of an array of 21 rectangular channels (215 μm wide and 821 μm high). 

Experiments were conducted for 18 different operative conditions over a mass flux range of 

86-368 kg/m2 s and a pressure close to the ambient, with inlet sub-cooling of 40 and 70 °C. 

They observed that the CHF was independent on the inlet temperature but it increased 

slightly with increasing mass flux. 

Kuan and Kandlikar [41] experimentally investigated the critical heat flux of water in six 

parallel microchannels in different operative conditions. Their results showed that the CHF 

increased with mass flux but decreased with increasing exit vapor fraction. 

Roday et al. [42] performed critical heat flux experiments in a single tube with internal 

diameter of 0.427 mm, showing that CHF increased with an increase in mass flux and exit 

pressure. In case of saturated conditions, the CHF was also found to have an increasing trend 

with quality. 

Agostini et al. [37] obtained CHF values for refrigerant R236fa in a silicon multi-

microchannel heat sink made up of 67 parallel channels, each of them 223 μm wide and 680 

μm high, with a length of 20 mm. The wall CHF was seen to increase with increasing mass 
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velocity (from 276 to 992 kg/m2 s), whereas the inlet saturation temperature (from 20.31 to 

34.27 °C) and the inlet sub-cooling (from 0.4 to 15.3 K) were found to have a negligible 

influence on the saturated CHF. 

Park and Thome [25] measured CHF of R134a, R236fa, R245fa in two different multi-

microchannels copper heat sinks, made up of 20 and 29 channels, respectively. With 

increasing mass velocity (from 100 to 4000 kg/m2 s) the CHF was observed to be higher, but 

the increase rate was slower for higher mass fluxes. CHF was instead seen to decrease with 

increasing inlet saturation temperature (a range of 10-50 °C was investigated). These trends 

were found to be dependent both on the flow condition and the channel size. 

Mauro et al. [26] studied saturated CHF of R134a, R236fa and R245fa in a multi-

microchannel heat sink, made up of 29 copper parallel channels that were 199 μm wide and 

756 μm high. The different effects regarding mass velocity, saturation temperature and inlet 

sub-cooling were investigated. It was found that CHF enhancement was possible with a split 

flow system (that is one inlet and two outlets), providing also a much lower pressure drop. 

Ali and Palm [20] obtained saturated CHF measurements with refrigerant R134a in vertical 

single tubes with two different internal diameters (1.224 mm and 1.70 mm) and a heated 

length of 220 mm. The saturation temperatures investigated were of 27 and 32 °C, whilst the 

mass flux was kept within the range 50-600 kg/m2 s. The authors found that the CHF was 

almost not affected by a change in the saturation temperature, whereas it increased with 

increasing mass flux and decreased with reducing the tube diameter. 

Ong and Thome [24] published CHF results with refrigerants R134a, R236fa and R245fa in 

1.03 mm, 2.2 mm and 3.04 mm diameter horizontal circular tubes. The authors observed no 

influence of the sub-cooling degree, while CHF increased with increasing mass flux and 

decreased at higher saturation temperatures. Finally, CHF was seen to rise with decreasing 

the tube diameter until a threshold value of 0.79 mm, in which the trend was reversed. 

Maqbool et al. [18] performed dry-out tests of propane in a single vertical round minichannel 

with internal diameters of 1.22 mm and 1.70 mm, using the same experimental facility of 

[20]. They found a higher CHF with reducing the inlet vapor quality, whereas the thermal 

crisis was significantly delayed by increasing the mass velocity from 200 to 400 kg/m2 s. 
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Finally, the authors observed that the influence of the saturation temperature (23 °C to 43 °C) 

was negligible. 

Tibiriçá et al. [35] obtained CHF data in circular tubes using R134a and R245fa and 

compared the results with experimental data obtained with flattened tubes having the same 

equivalent internal diameter of 2.2 mm, but different aspect ratios of 1/4, 1/2, 2 and 4. The 

saturation temperature was fixed to 31 °C. The CHF data were found to be independent on 

the tube aspect ratio when the same heated length was kept. 

Mikielewicz et al. [43] presented CHF results for four fluids (SES 36, R134a, ethanol and 

R123) in two small diameter silver tubes with inner diameter of 1.15 mm and 2.3 mm, at a 

wide range of saturation temperatures and mass fluxes. Similarly to other authors [10, 11, 

12], they found the CHF being enhanced (more than 200 %) when increasing the inner 

diameter tube from 1.15 mm to 2.30 mm.  

Diani et al. [44] investigated on flow boiling of R1234yf and R1234ze inside a 3.4 mm 

internal diameter microfin tube. The authors obtained CHF values by keeping constant the 

saturation temperature to 30 °C. The inlet vapor quality was instead varied from 0.10 up to 

0.99. For both fluids, they found that the vapor quality in critical condition was increasing 

from 0.85 to 1.0 when the mass flux ranged from 200 to 900 kg/m2 s. 

Anwar et al. [45] performed several tests with R1234yf in a vertical stainless steel test 

section (1.60 mm inside diameter and 245 mm heated length) under upward flow conditions. 

They found that signs of dry-out first appeared at vapor qualities of 85%, with the values 

generally increasing with increasing mass flux. 

Different authors also tried to examine the effect of the heated length-on-diameter ratio on 

the saturated CHF. Lezzi et al. [32] studied critical heat flux of water in a single circular 

channel with a fixed internal diameter of 1.0 mm. By changing the heated length from 502 to 

975 mm, they found that CHF changed from 1.6 to 0.9 MW/m2, with a reduction of 44%. 

Wojtan et al. [23] used different heated length (from 20 to 70 mm) for their single circular 

channel of 0.50 and 0.80 mm ID, finding out that the CHF dropped more than 65% when 

increasing the Lh/D ratio from 25 to 87.5. 
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Del Col et al. [46] investigated the dry-out during flow boiling of R134a and R22 inside a 

0.96 mm single circular microchannel heated with a secondary fluid. The authors reported 

that the average critical heat flux increased with mass velocity and decreased with increasing 

the heated length. At critical condition, the vapor quality ranged from 0.65 to 0.85 in case of 

R134a and from 0.4 and 0.7 in case of R22. 

Roday and Jensen [47] obtained experimental CHF data for water and R123 in a single 

horizontal channel, by changing the heated length and the inner diameter. In case of water 

with the tube of 0.286 mm, the authors found a significant CHF drop (approximately -52%) 

when increasing the heated length from 21.66 to 57.62 mm, both for low (315 kg/(m2 s)) and 

high (1570 kg/(m2 s)) mass fluxes. 

Tanaka et al. [48], by collecting different CHF data from existing study, stated that critical 

heat flux was greatly affected by the Lh/D ratio, especially at low mass velocities, where 

CHF dropped more than 100% by augmenting Lh/D from 50 to 179. 

Wu and Li [49] examined the effect of the Lh/D ratio on the critical Boiling number Bo, 

obtaining that at a threshold of Lh/D = 150, its influence on the critical phenomenon was 

negligible. For lower values, the Boiling number was seen to steeply decrease with the heated 

length. 

3.1.3 Existing correlations for critical heat flux 

Most of CHF prediction correlations rely on empirical models since the physics behind the 

controlling mechanism is not fully understood yet. Here, some well-known existing 

correlations that could be used to predict saturated flow boiling CHF are presented. 

The correlation of Lazarek and Black [30] was developed to predict critical conditions under 

low reduced pressures, taking also into account the effects of the sub-cooling: 
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Being an empirical correlation, the tube diameter has to be expressed in [cm] and the CHF in 

[W/cm2]. 
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Katto and Ohno [31] improved their original generalized CHF correlation of forced 

convective boiling in uniformly heated tube, developed for large tubes and a wide range of 

experimental conditions and working fluids. Their correlation considered the critical boiling 

number as a function of the sub-cooling as well as the densities ratio, the liquid Weber 

number and the heated length-to-internal diameter ratio: 
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Due to the correlation complexity and length, the reader may find more details and the whole 

prediction method in the reference mentioned. 

Qu and Mudawar [21] developed the following correlation based on their CHF data for water 

in a microchannel heat sink. The authors found no influence of the sub-cooling, which was 

not included in their prediction method. 
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Zhang et al. [50] developed a correlation based on the Weber number evaluated with the 

channel diameter and the heated length-to-diameter ratio. This predictive method was 

obtained with a large database concerning flow boiling of water in tubes with different 

diameters and heated lengths. The investigated system pressures varied from 1.01 up to 190 

bar and the mass fluxes ranged from 5.33 up to 134000 kg/m2 s. Also the inlet vapor quality 

was taken into account: 
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Wojtan et al. [23] proposed the following correlation that well fitted their data for saturated 

CHF of R134a and R245fa in their minichannel: 
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Kuan [34] developed a correlation for saturated CHF of water and R123 flowing into a multi-

minichannel heat sink, with mass fluxes ranging from 50.4 to 533.8 kg/m2 s and inlet vapor 

qualities from 0.39 to 0.93. The empirical formula considers a linear dependence of the CHF 

on the mass velocity and does not take into account the sub-cooling effect: 
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Callizo [51] modified Katto and Ohno correlation based on his experimental data with 

R134a, R22 and R245fa in a 0.640 mm tube and a uniformly heated length of 213 mm. As 

claimed by the author, since the channel diameter and heated length remained unchanged in 

the experimental investigation, their effect on the CHF represented by the Weber number and 

length-to-diameter ratio may not have been captured in the following correlation. 
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Kosar and Peles [27] suggested a new CHF correlation for multichannel saturated CHF based 

on their R123 tests. Since no existing correlation followed their CHF trend with the system 

pressure, they developed a new CHF correlation as a function of the outlet pressure. 
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Ong and Thome [24] experimentally investigated the effect of heat flux, flow pattern, 

saturation temperature, sub-cooling and working fluid properties on saturated CHF in 

minichannels. The authors proposed a new CHF correlation effective for circular channels 
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and rectangular multi-minichannels, involving the confinement number Co and a diameter 

based non-dimensional group related to the macro-to micro scale transition. 
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Mikielewicz et al. [43] studied dry-out for four fluids in two small diameter silver tubes, 

varying mass flux and heat flux. Based on their data, the authors proposed their own CHF 

prediction method, in which the Weber number was constructed by using the diameter as 

characteristic length. 
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Tanaka et al. [48] collected CHF data for thin rectangular channels from previous studies and 

examined the effect of the heated length in detail. The authors also proposed a new saturated 

CHF correlation applicable for a wide range of operative conditions and heated lengths. 
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Anwar et al. [36] found that a very simple correlation was able to fit all their CHF data 

obtained with seven refrigerants in a vertical minitube. The prediction method does not take 

into account the effect of the Weber number and the densities and viscosities ratio. 
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3.2 Flow boiling heat transfer review 

Hundreds of works on flow boiling heat transfer of different refrigerants, geometries and 

operative conditions. The objective of this section is therefore not to describe all the papers 

published on this topic, but to illustrate only those sufficient to illustrate typical trends 

observed in the literature. In the second part, the main correlations available in literature will 

be shown. 

3.2.1 Experimental studies on flow boiling heat transfer  

Starting from conventional channels, Hambraeus [52] reported a heat transfer investigation of 

flow boiling of R134a in a 12 mm inner diameter tube. The heat transfer coefficient was seen 

to be dependent on mass velocity and heat flux, suggesting that both nucleate boiling and 

convective boiling were present. 

Wang et al. [53] studied two-phase heat transfer coefficient for R22 and R410A inside a 

smooth tube with 6.54 mm inner diameter. The authors noticed that for both fluids, at low 

mass velocity, the heat transfer coefficient was only dependent on heat flux, but not on vapor 

quality. In case of G = 400 kg/m2 s, the heat transfer performance increased with increasing 

vapor quality. 

Kattan et al. [54] presented an experimental study on flow boiling heat transfer for five 

refrigerants (R134a, R123, R402A, R404A and R502) evaporating inside two horizontal 

smooth tubes of 12.0 mm and 10.92 mm internal diameter. The authors defined three 

different trends according to the vapor quality: up to x = 0.15, they observed a maximum in 

heat transfer coefficient which could be related to a change in the flow pattern. Then, for 

intermediate vapor qualities, the heat transfer coefficient decreased monotonically with 

increasing vapor quality, at least in case of low mass velocities. Finally, at higher vapor 
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qualities, the authors observed a decrease of the heat transfer coefficient that was explained 

as a transition from annular to annular with partial dry-out flow regime. 

Park and Hrnjak [55] obtained experimental data of heat transfer coefficient for carbon 

dioxide and R410A in a 6.1 mm inner diameter horizontal tube. In case of R410A, the 

authors found the influence of all the operative parameters (heat flux, mass flux and vapor 

quality), while only heat flux determined a significant heat transfer coefficient enhancement 

in case of carbon dioxide, revealing the predominance of nucleate boiling for this refrigerant. 

Lazarek and Black [30] found in their experiments with R113 in a vertical channel of 3.1 mm 

inner diameter that the flow boiling heat transfer coefficient was not dependent on vapor 

quality but strongly influenced by heat flux, concluding that the nucleate boiling mechanism 

was dominant during their tests. 

Bortolin et al. [56] studied flow boiling of R245fa in a 0.96 mm minichannel at 31 °C. Also 

in this case, the heat transfer coefficient increased only with heat flux, while mass velocity 

and vapor quality had no significant influence. 

Kew and Cornwell [57] conducted experiments in two sets of parallel minichannels. The 

authors found that nucleate boiling was dominant in the isolated bubble region at lower 

qualities, whereas for annular flow region, convective effects were accentuated. 

Ong and Thome [58] performed flow boiling heat transfer experiments with R134a, R236fa 

and R245fa in a 1.03 mm inner diameter circular channel. The local heat transfer coefficients 

displayed a heat flux and mass flux dependency. The same authors [24] completed their 

study with two other diameters of 2.20 mm and 3.04 mm and the same refrigerants and 

observed that the heat transfer coefficient was monotonically increasing with vapor quality, 

suggesting that convective boiling was the dominant heat transfer mechanism. 

Mastrullo et al. [59] provided experimental data for flow boiling of carbon dioxide in a 6.0 

mm inner diameter smooth tube at different operative conditions. The authors found that the 

heat transfer coefficient was almost independent on mass flux and, for low evaporating 

temperatures, also on vapor quality. The influence of saturation temperature was remarkable 

only for at low vapor qualities, whereas a high influence of heat flux was always observed. 

The authors measured local heat transfer coefficient at the top, bottom, left and right side of 
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the tube and found that at low vapor qualities the top of the tube showed the highest local 

heat transfer coefficient, probably due to the occurrence of slug flow regime and a larger 

contribution of nucleate boiling. At higher vapor qualities, they found no significant 

variations of circumferential heat transfer coefficients in case of high mass fluxes, indicating 

a symmetric annular flow regime. For low mass velocities, instead, the difference in the local 

heat transfer coefficients was explained as the occurrence of a stratified-wavy flow pattern. 

Del Col [60] examined the effect of saturation temperature (from 25 to 45 °C) on flow 

boiling of halogenated refrigerants. The heat transfer coefficient was seen to increase with 

vapor quality in case of R134a, it was instead roughly constant for R22 and R125 and even 

decreased with vapor quality in case of R410A. Moreover, at low vapor quality, the heat 

transfer coefficient increased with saturation temperature, whereas this effect was not 

observed at higher vapor qualities. 

Tibiriçá and Ribatski [61] provided experimental data on flow boiling of R134a and R245fa 

in a 2.30 mm tube, with a saturation temperature of 22, 31 and 41 °C. They found that the 

heat transfer coefficient was a strong function of heat flux, mass velocity and vapor quality. 

The effect of saturation temperature was restricted to low vapor qualities. 

Grauso et al. [62] presented experimental heat transfer coefficients of refrigerant R1234ze 

and R134a in a 6.0 mm inner diameter tube. The authors found the same trend with vapor 

quality for both fluids, with the only difference for the earlier dry-out inception in case of 

R1234ze and the heat transfer coefficient of R134a being about 15% higher than those of 

R1234ze at low vapor qualities. For both refrigerants, the effect of the saturation temperature 

was found negligible, whereas a strong effect of mass flux and a slight influence of heat flux 

(mostly at medium-low vapor qualities) was recorded. 

The same authors [63] [64] performed experiments with R410A, carbon dioxide and propane 

blends in a 6.0 mm inner diameter horizontal smooth tube. The authors observed that the heat 

transfer coefficient measured at the top and bottom side of the tube preserved the same trend 

with vapor quality also varying considerably the reduced pressure. In case of slug, 

intermittent and annular flow regimes at low reduced pressure, low heat fluxes and high mass 

fluxes, the top heat transfer coefficient was generally higher than the bottom heat transfer 

coefficient. With increasing heat flux, they observed that the bottom heat transfer coefficient 
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became higher than the top one in the intermittent region; whereas increasing the reduced 

pressure or reducing the mass velocity, the bottom heat transfer coefficient could overcome 

the top heat transfer coefficient in the annular flow regime. 

3.2.2 Flow boiling heat transfer prediction methods 

The boiling heat transfer coefficient may be written as prescribed in the Newton formula, 

being q the heat flux, Twall the tube wall temperature and Tf the fluid temperature, which 

corresponds also to its saturation temperature. 
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As explained in the previous chapter, two mechanisms are assumed to govern flow boiling 

heat transfer in tubes: nucleate boiling, related to the formation of bubbles at the tube wall, 

and convective boiling, related to the conduction and convection through a thin liquid film 

with evaporation at the liquid-vapor interface. Although, for simplicity purposes, these 

mechanisms were often assumed to be independent one from the other, it is well documented 

[11] that these phenomena can coexist and also interfere during a boiling process. As the 

quality increases, convective boiling gradually replaces nucleate boiling. Cooper [65] and 

Jung et al. [66] stated that in conventional channels nucleate boiling could be considered 

suppressed at vapor qualities x > 0.20, letting the flow boiling process be dominated by the 

convective mechanism. Generally, when flow boiling is controlled by nucleate boiling 

mechanism, the heat transfer coefficient is expected to increase with increasing heat flux and 

saturation temperature, while the effect of mass velocity and vapor quality should be 

negligible. The increase of heat transfer coefficient with saturation temperature can be 

explained by the decrease in surface tension which may result in the reduction of bubble 

departure diameter and hence may enhance the nucleate boiling contribution. On the other 

hand, when convective boiling dominates the flow boiling process, the heat transfer 

coefficient seems to be independent on heat flux and system pressure, while increases with 

increasing mass flux and vapor quality.  

Several correlations have been developed to calculate the heat transfer coefficient during 

flow boiling, trying to match the contributions of these two mechanisms, but their combined 
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effects are not fully understood yet. In forced boiling in tubes, models for heat transfer 

coefficient can be divided into three different groups [67]:  

Enhancement approach 

In this kind of models, the two-phase heat transfer coefficient is evaluated as a liquid single-

phase heat transfer coefficient, multiplied by an enhancement factor E 

 Lh E h    (3.19) 

Superposition approach 

In this case, the two-phase heat transfer coefficient is a sum of the nucleate boiling term and 

a convective boiling term. S is the nucleate boiling suppression factor, reflecting that in flow 

boiling the average superheat is lower than that in pool boiling, due to the thinner thermal 

boundary layer. E is the enhancement factor or multiplier (E > 1), introduced because the 

velocities are much higher due to the presence of the vapor phase which pushes the liquid 

downstream. Hence forced convection heat transfer is higher in a two-phase flow, compared 

to the liquid single-phase situation. 

 pb Lh S h E h      (3.20) 

Asymptotic approach 

In this case, the models are very similar to the superposition approach, but a power function 

is added, in which the exponent n is always n > 1. 
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Chen [68] proposed the first superposition model for evaporation in vertical tubes. The 

nucleate pool boiling correlation of Forster and Zuber [69] was proposed to evaluate the hpb, 

whereas the single-phase heat transfer hL was evaluated with the correlation of Dittus and 

Boelter [70]. The parameters ΔTsat and ΔPsat are referred to the wall superheat and to the 

corresponding difference in saturation pressure. 

 Chen pb Lh S h E h      (3.22) 
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The author developed graphical functions for the evaluation of the suppression factor S and 

the enhancement factor E, but did not suggest any parametric equation for the best-fit curves 

[71], even if many parametric equations were instead proposed by others. The expressions of 

the enhancement  and suppression factor that best fit Chen graphical function are: 
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A modified form of the Chen method was introduced by Gungor and Winterton [72] from a 

large database of 3693 experimental points taken from literature and including R11, R12, 

R22, R113, R114 and water. The authors used the correlation of Cooper [73] for the nucleate 

pool boiling term and a different function for the suppression and enhancement parameters, 

with the last one expressed as a function of the boiling number. 
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In case the tube is horizontal and the Froude number is less than 0.05, the parameters E and S 

should be multiplied by E2 and S2, respectively: 
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 2S Fr   (3.32) 

From the previous model, Del Col [60] proposed a simple modification to match his database 

obtained for flow boiling of halogenated refrigerants at high saturation temperatures in a 

horizontal smooth tube: 

 1.2DelCol Gung Winth h     (3.33) 

Kandlikar [74] expressed the two-phase flow boiling heat transfer coefficient as the larger 

value of the convective and the nucleate boiling contributions, which are evaluable as 

follows, where Ff is a fluid-dependent parameter and FrLO is the Froude number considering 

the liquid phase flowing alone in the whole cross section of the tube. Finally, Cv is the 

convective number and the liquid single-phase heat transfer coefficient hLO is computable 

from the Gnielinski [75] correlation: 
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Bertsch et al. [76] proposed a heat transfer model for saturated flow boiling in small 

channels, fitted to a database of 3899 experimental points from 14 independent studies. The 
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two-phase heat transfer coefficient was obtained as a function of the vapor quality and the 

confinement number.: 

 2 6 0.6

,(1 ) 1 80 ( ) Co

Bertsch pb cb tph h x h x x e              (3.38) 

The pool boiling heat transfer coefficient was taken from Cooper [73] equation, while the 

two-phase convective heat transfer coefficient was expressed as a function of the vapor 

quality and the vapor and liquid single-phase heat transfer coefficients computed with the 

correlation of Hausen [77]. 
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Liu and Winterton [78] developed an asymptotic model adopting n = 2 as empowering 

coefficient (see Equation (3.21)). The nucleate pool boiling correlation was taken from 

Cooper [73] (see Equation (3.28)) and the liquid heat transfer coefficient from Dittus and 

Boelter [70] (see Equation (3.24)), by using the only-liquid Reynolds number ReLO. The 

enhancement E and suppression S factors were instead expressed as: 
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Lazarek and Black [30] developed an empirical correlation for the heat transfer coefficient 

during flow boiling inside minichannels. The prediction method was a Nusselt-type 

correlation, having only a dependency on the Reynolds number and the boiling number. The 

authors correlated their 728 measurements to the following formula: 
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The same approach was used also by Tran et al. [79], who replaced the Reynolds number 

with the Weber number to eliminate viscous effects in favor of surface tension as: 
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Similarly, Yu et al. [80] obtained a new equation by changing the constants. 
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Kew and Cornwell [57] also modified the Lazarek and Black correlation [30] to fit their 

database where convective boiling was the dominant heat transfer mechanism. The authors 

therefore introduced the effect of the vapor quality: 
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Sun and Mishima [81] found that their data were not dependent on the effect of vapor 

quality. Their correlation was based on the effect of Reynolds number, boiling number and 

Weber number: 
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Other researchers developed phenomenological models based on the two-phase flow 

structure occurring during evaporation. Kattan et al. [54] proposed a series of correlations to 

be used according to the flow pattern, which had to be determined using their own two-phase 

flow pattern map [82]. The model covers fully stratified flows, intermittent flows, annular 

flows and annular flows with partial dry-out, whereas slug and plug flows are identified as 

intermittent flow regimes and mist flow and bubbly flow are instead not considered. The heat 

transfer coefficients are obtained from the evaluation of the wet and dry perimeters, which 

are geometrically related to the flow structure. Particularly, the heat transfer coefficient is 

seen as a weighted average of two heat transfer coefficients: one for the dry area of the tube 

and one for the wetted area, as shown in Figure 3.3: 
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Figure 3.3 Schematic diagram of the liquid distribution. Image taken from Thome-El Hajal [83] 

 

In this prediction method, the dry angle ϑdry assumes different values according to the flow 

pattern. In case of annular and intermittent flows, the tube perimeter is always wet and the 

dry angle is 0. Dedicated equations are instead proposed for the stratified flow before and 

after the dry-out inception. The vapor heat transfer coefficient hV is calculated with the Dittus 

and Boelter correlation [70], whereas hwet is obtained with an asymptotic expression which 

combines nucleate and convective boiling contributions. 
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Cooper correlation [73] was used for the nucleate boiling contribution, whereas the 

convective boiling contribution was assumed to be a function of the liquid film Reynolds 

number: 

 
 

 

0.69 0.4
4 1

0.0133
1

L L L
cb

L L

G x c
h

  

   

      
      

     
  (3.50) 

In the above equation, α is the cross sectional void fraction predicted by the drift flux model 

of Rouhani and Axelsson [84] and modified by Steiner [85] for horizontal tubes, whereas δ 

represents the liquid film thickness. 
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Thome and El Hajal [83] proposed a modification to this method according to their data of 

flow boiling of carbon dioxide in horizontal tubes. Wojtan et al. [86], instead, extended the 

model of Kattan et al. [54] to their database and their flow pattern map. They divided the 

stratified wavy region into three different sub-zones: slug, slug/stratified-wavy and stratified-

wavy, proposing dedicated equations to calculate the dry angle for these three sub-regions. 

Thome et al. [87] proposed a three-zones model for the flow boiling heat transfer coefficient, 

suggesting that in the intermittent region the evaporation proceeds as follows: 

a) A liquid slug flows; 

b) An elongated bubble passes in evaporation; 

c) A vapor slug passes in case the thin evaporating liquid film dries out before a new 

liquid slug arrives. 

The model and the three zones described above are schematized in Figure 3.4. 

 

 

Figure 3.4 Three-zone model of Thome et al. [87] for intermittent flows in minichannels. 

 

The heat transfer coefficient is evaluated as a time-average of the successive heat transfer 

coefficients for the three zones 
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The heat transfer coefficient of the liquid and vapor phases are taken from the asymptotic 

method (with n = 4) of Churchill and Usagi [88]. Three adjustable parameters (the minimum 

thickness of the liquid film at dry-out δmin, a correction factor for the prediction of the initial 

film thickness δ0 and the pair frequency 1/τ) are conceived and difficult to predict 

theoretically. 

Mauro et al. [89] presented the modeling of the liquid film distribution and heat transfer 

during convective boiling in horizontal tubes in the annular flow region. The authors used the 

existing symmetrical annular flow models [90] [91] [92] [93] and a tool to predict the 

threshold between symmetric and asymmetric annular flow [94] to develop a series of 

correlations able to evaluate the annular film thickness and the heat transfer coefficients 

around the perimeter of horizontal tubes. Particularly, the mean, top and bottom heat transfer 

coefficients were obtained as a function of the same Nusselt number and using the 

corresponding film thickness as characteristic lengths: 
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The construction of the Nusselt number is based on the non-dimensional film thickness 

which can be in turn evaluated as a function of the liquid film Reynolds number. Further 

details on the complete prediction method can be found in the reference mentioned [89]. 

3.3 Two-phase pressure drop review 

The total pressure drop occurring in a two-phase flow inside a tube can be considered as a 

sum of three different contributions: the variation of the fluid gravitational potential energy 

Δ𝑃𝑔𝑟𝑎𝑣, the acceleration term Δ𝑃𝑎𝑐𝑐, which considers the variation of the fluid kinetic energy, 
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and the frictional pressure drop Δ𝑃𝑓𝑟 that considers the energy dissipation due to friction on 

the channel walls or between the two phases.  

 tot grav acc frP P P P       (3.56) 

The static pressure drop is a function of the tube height and the acceleration of gravity. In 

case of horizontal tubes, there is no change in the static head and therefore Δ𝑃𝑔𝑟𝑎𝑣 = 0. The 

acceleration term corresponds to the change in the kinetic energy of the flow due to the 

change in the vapor and liquid velocities in the tube. This term reflects a pressure drop in 

case of evaporating flow and a pressure gain in case of condensing flow, and it is a function 

of the inlet and outlet vapor qualities and cross sectional void fractions. In case of adiabatic 

flows, there is no acceleration or deceleration of the fluid (Δ𝑃𝑎𝑐𝑐 = 0). 
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The shear stress between the flowing fluid and the channel wall is represented by the 

frictional pressure drop. During experiments, this term is evaluated by subtracting the 

acceleration and (in case of vertical tubes) the gravitational terms. 

3.3.1 Experimental studies on two-phase frictional pressure drop 

Frictional two-phase pressure drops in tubes has been largely studied over the last four 

decades for different fluids, geometries and operating conditions. A concise summary of the 

recent studies on this topic is presented here. 

Zhang and Webb [95] obtained two-phase pressure drop data for refrigerants R134a, R22 and 

R404A in a multiport extruded aluminum tube with an hydraulic diameter of 2.13 mm and in 

two copper tubes of 6.25 and 3.25 mm internal diameter, respectively. The authors observed 

that the pressure drop increased significantly with increasing mass velocity and vapor 

quality. Particularly, regarding the vapor quality dependence, the pressure drop reached a 

maximum and then it decreased. These trends were also observed in all the studies quoted in 

this section. According to the scientific literature, the maximum of the frictional pressure 

gradient may occur at the inception of dry-out or mist flow regime, or even before the dry-
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out occurrence [96]. The disappearance of the liquid film may be an explanation of the peak 

location at the inception of dry-out or mist flow regime, due to two different phenomena: 

• The decrease of the tube surface apparent roughness seen by the vapor phase, as 

suggested by Ducoulombier [97]. 

• The decrease of the friction factor due to the vapor phase in contact with the wall, 

whose viscosity is considerably lower to that of the liquid.  

Kuo and Wang [98] performed diabatic and adiabatic experiments of pressure drop with 

refrigerants R22 and R407C in a microfin tube of 9.52 mm internal diameter. The authors 

found that the pressure gradients of R407C were approximately 50-80% lower than those of 

R22 obtained with the same operative conditions. They attributed this reduction to the 

difference in flow pattern for the pure refrigerants and the mixture. 

Quiben and Thome [96] provided experimental data on two-phase flow pressure drop of 

R134a, R22 and R410A in horizontal channels with two different diameters of 8.0 mm and 

13.8 mm. The authors observed that a smaller diameter tube led to higher frictional pressure 

gradients and that the pressure drops of R134a were higher than those of R22 and R410A. 

They also observed that the effect of evaporation heat flux was only of minor importance at 

vapor qualities before the peak value. However, the location of the peak changed by shifting 

to lower vapor qualities when increasing the heat flux, representing the most important 

influence of heat flux during observations. They also observed two distinct configurations: in 

the first one, the pressure drop peak was located near or before the onset of dry-out occurring 

at the top of the tube. In the second configuration, they associated the appearance of this peak 

with the damping out of the interfacial waves to explain the phenomenon. Finally, they 

compared their database to the correlations of Müller-Steinhagen and Heck [99] and 

Grönnerud [100], where 50% and 40% of the data, respectively, were included in an error 

band of ±20%. 

Grauso et al. [62] presented experimental pressure drop data for refrigerants R134a and 

R1234ze in a smooth horizontal tube of 6.0 mm inner diameter. The authors found that the 

adiabatic pressure gradient increased strongly with vapor quality reaching a maximum and 

then decreasing for both refrigerants at the same operative conditions. Experimental data for 

R1234ze resulted slightly higher than those of R134a obtained at the same conditions, 
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whereas similar variations were found with each operative parameter: slight decrease with 

increasing saturation temperature and strong increase with mass flux. 

The same authors [101] studied adiabatic frictional pressure gradients for refrigerants R410A 

and carbon dioxide analyzing the effect of the reduced pressure (from 0.19 to 0.52 for R410A 

and from 0.57 to 0.64 for carbon dioxide) and mass flux. They found that at similar operative 

conditions (reduced pressure higher than 0.50) the experimental data of both fluids resulted 

very similar, whereas the frictional pressure gradient started to increase significantly when 

reducing the saturation temperature in case of R410A. Finally, they compared their database 

to the correlations of Müller-Steinhagen and Heck [99] and Friedel [102], with the first 

prediction method giving a very good agreement (75.4% of the experimental data in an error 

bandwidth of ±30%). 

Mauro et al. [103] compared their database obtained for a 6.00 mm inner diameter horizontal 

smooth tube and for different refrigerants (R22, R507, R404A, R407C, R410A, R417A and 

R507A) and different experimental conditions (saturation temperature ranging from -18.4 °C 

to 46.2 °C) to different correlations. They showed that the prediction methods of Grönnerud 

[100] and Quiben and Thome [104] were equally accurate for their experimental data. 

Del Col et al. [105] measured adiabatic pressure drop of refrigerant R1234yf in a single 

circular channel of 0.96 mm internal diameter at different mass fluxes, at a saturation 

temperature of 40 °C and compared the data to those obtained by Cavallini et al. [106] with 

the same channel and refrigerant R134a. The total pressure drop measured with R1234yf was 

slightly lower (10-12%) as compared to R134a at the same operating conditions. The authors 

explained that this was due to the reduced pressure of R1234yf, which is greater by 20% than 

that of R134a at 40 °C saturation temperature. 

Park and Hrnjak [55] measured two-phase flow pressure drop in a 6.1 mm internal diameter 

horizontal smooth tube for carbon dioxide, R410A and R22. Two different saturation 

temperature of -15 and -30 °C were chosen. The authors found that the measured pressure 

drop of carbon dioxide was much lower than that of R22 and R410A at identical conditions. 

Among different correlations, they found that the prediction method of Müller-Steinhagen 

and Heck [99] was the best at fitting their data. 
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Padilla et al. [107] measured two-phase pressure drop for refrigerants R134a, R410A and 

R1234yf in horizontal straight tubes of different diameters (from 7.90 to 10.85 mm), with 

several mass fluxes (from 187 to 1702 kg/m2 s) and saturation temperatures (from 4.8 to 20.7 

°C). They found that the pressure drop of R134a was higher than that of R1234yf and that of 

R410A, suggesting a significant influence of the physical properties of refrigerants. 

Furthermore, the peak in the pressure drop occurred at vapor qualities from 0.77 to 0.92. The 

authors stated that even if the prediction methods of Müller-Steinhagen and Heck [99] and 

Revellin and Haberschill [108] were able to fairly predict the data within a ±10% error band, 

the trend of the vapor quality corresponding to the maximum pressure gradient was not well 

captured by both correlations. 

Cavallini et al. [109] provided two-phase pressure drop data for three refrigerants (R236ea, 

R134a and R410A) in a multi-port minichannel tube having an hydraulic diameter of 1.4 

mm, by setting the saturation temperature to 40 °C. They found that R236ea, carrying the 

lowest reduced pressure, showed the highest pressure drop, whereas the lowest pressure 

gradient was obtained with refrigerant R410A, which had the highest reduced pressure. The 

authors compared their database to several prediction methods, observing that none of them 

was able to fairly fit the R410A data. On the other hand, pressure drops of R134a and 

R236ea were fairly predicted by the correlation of Müller-Steinhagen and Heck [99]. 

Revellin and Thome [110] measured two-phase pressure drop in microchannels of two 

different diameters (0.509 and 0.790 mm) in a wide range of experimental conditions for 

refrigerants R134a and R245fa. They found for both refrigerants that with higher saturation 

temperatures (from 26 to 35 °C) the pressure drop was lower. As regards the effect of vapor 

quality, they observed a change in the increasing trend (i.e. a sudden reduction of pressure 

drop at x = 0.35) in case of high mass fluxes (1000 and 1200 kg/m2 s). This behavior was 

explained as a change in the flow patterns with the transition from wavy annular to smooth 

annular. 

Tibiriçá et al. [111] and Tibiriçá and Ribatski [112] presented experimental flow boiling 

pressure drop data for refrigerant R134a and R245fa in a horizontal smooth tube with an 

internal diameter of 2.32 mm at saturation temperatures of 31°c and 41 °C. The experimental 

trends with vapor quality, mass flux and saturation temperature already shown were also 
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confirmed with these studies. The authors also compared their data to several prediction 

methods, obtaining that Cioncolini et al. [90] model worked the best to fit their experiments. 

3.3.2 Two-phase frictional pressure drop prediction methods 

When modeling two-phase pressure drop, empirical correlations are often used, because they 

provide a good accuracy in the range of operating conditions in which they were developed 

and also because they are particularly easy to implement. Homogeneous flow and separated 

flow models are the two main approaches for the construction of the empirical models. 

Homogeneous flow models 

This technique is probably the simplest way to analyze two-phase flow behavior. For these 

models, the two-phase mixture is treated as a single-phase fluid with average properties of 

the liquid and the vapor phases, which are assumed to flow at the same velocity. The 

frictional pressure drop is estimated as if the flow is only liquid or vapor single-phase 

flowing alone, by suitably averaging the thermodynamic properties (density and viscosity): 
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The two-phase mixture density 𝜌𝑡𝑝 is obtained as: 
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The two-phase friction factor 𝑓𝑡𝑝 is instead differently defined according to the two-phase 
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Different definitions of the two-phase mixture viscosity 𝜇𝑡𝑝 have been proposed by several 

authors. Among these, the expressions of Cicchitti et al. [113], McAdams et al. [114] and 

Dukler et al. [115] are shown in the equations below: 
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Separated flow models 

With this different approach, the phases are assumed to be separated into two streams, liquid 

and vapor, each flowing at its own constant velocity, thus leading to independent laminar or 

turbulent flows. In this regard, Lockhart and Martinelli [7] assessed four flow regimes during 

two-phase flows: liquid and vapor both turbulent (tt), liquid laminar and vapor turbulent (lt), 

liquid turbulent and vapor laminar (tl) and liquid and vapor both laminar (ll). For this 

technique, the total volume occupied by the liquid and the vapor phase should remain 

constant at any time and equal to the volume of the pipe. This implies that the flow pattern 

cannot change along the tube, thus eliminating the plug/slug flows (where the flow pattern is 

intermittent) from the analysis. 

The two-phase frictional pressure gradient is in this case obtained with a two-phase 

multiplier for the liquid (or the vapor) phase pressure drops: 
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where: 
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and the single-phase friction factors of the liquid and the vapor phases, together with their 

Reynolds numbers, are evaluated using the classical definitions (see Equations (3.60)-(3.62)). 

The multipliers are instead related to the Martinelli parameter (see Equation (2.25)): 
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The parameter C was firstly estimated by Chisholm [116] to best fit the empirical curves 

given by Lockhart and Martinelli in their original paper [7]. Particularly, C=20 in case of 

turbulent-turbulent flows (tt), C=12 for laminar-turbulent flows (lt), C=10 for turbulent-

laminar flows (tl) and C=5 for laminar-laminar flows (ll). 

Other authors tried to modify the parameter C to best fit their own database. For instance, 

Mishima and Hibiki [117] measured frictional pressure gradients for air and water flowing in 

minichannels of 1-4 mm, obtaining C as an empirical function of the tube diameter, 

expressed in [m]: 

  0.31921 1 dC e      (3.72) 

Pamitran et al. [118] obtained frictional pressure drop data for five refrigerants (R22, R134a, 

R290, R744 and R410A) in horizontal tubes up to 3.0 mm internal diameter and within a 

range of mass fluxes from 50 to 600 kg/m2 s. The authors developed a correlation for the C 

factor depending on the two-phase Weber number, in which the two-phase mixture density is 

a function of the void fraction, and the two-phase Reynolds number (see Equation (3.62)), in 

which the two-phase mixture viscosity is a obtained with the model of Beattie and Whalley 

[119]: 

 
0.433 1.230.003 Retp tpC We     (3.73) 
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With a different approach the frictional pressure drop is calculated using a two-phase 

multiplier with the frictional pressure gradient of the single phases, by considering the liquid 

and the vapor flowing alone in the channel with the total mass flow rate. Martinelli and 

Nelson [120] proposed the following expression: 
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where the liquid-only friction factor is evaluated as usual: 
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The authors correlated the liquid-only two-phase multiplier to the original liquid two-phase 

multiplier defined in Equation (3.71): 

 
2 2 1.8(1 )LO L x      (3.80) 

Other researchers extended the model of Martinelli and Nelson [120] for different 

experimental conditions and fluids, by implementing a dedicated function for the liquid-only 

two-phase multiplier Φ𝐿𝑂. Friedel [102] proposed the following correlation: 

 2
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  (3.81) 

In the above equation, the factors H, F and E are a function of the thermophysical properties 

and the liquid-only and vapor-only friction factors, evaluated with the corresponding 
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properties. The Froude and Weber number are instead defined with the help of the 

homogenous two-phase density (see Equation (3.59)): 
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Zhang and Webb [95] modified the correlation of Friedel [102] to predict two-phase pressure 

drop of 134a, R22 and R404A in a multi-port aluminum tube with an hydraulic diameter of 

2.13 mm and two copper tubes with internal diameters of 6.25 and 3.25 mm. The authors 

used the reduced pressure to take into account the effect of the fluid properties, without using 

the Weber and Froude numbers: 

    
2 0.252 2 1 0.8 1.641 2.87 1.68 1LO red redx x P x x P              (3.87) 

Grönnerud [100] developed its own liquid-only two-phase multiplier using around 1000 data 

points for R12 and ammonia in a horizontal macrotube of 26.2 mm internal diameter: 
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The frictional pressure gradient was imposed as a function of the Froude number and the 

friction factor 𝑓𝐹𝑟 should be fixed at 1.0 in case 𝐹𝑟𝐿 ≥ 1. 
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Finally, Müller-Steinhagen and Heck [99] proposed a method developed from 7851 frictional 

pressure drop data points obtained for two-phase flow in horizontal pipes of several mixtures 

(air-water, steam-water, hydrocarbons-air, oils-air, R11, R12, R22, neon and nitrogen) and 

from 1462 data points in vertical channels including air-water, steam-water, R12 and Argon. 

Their database included internal diameters from 4 to 392 mm. This method was seen to work 

surprisingly well for different independent database and it is also particularly easy to 

implement, since it considers the two-phase pressure drop as a sort geometrical average on 

the vapor quality of the all-liquid and all-vapor frictional pressure drops: 
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4 CHF experimental facility and method 

The CHF experiments were performed in a test facility conceived and built in the 

Refrigeration Laboratory at the Università di Napoli “Federico II”. This chapter begins with a 

detailed description of the experimental apparatus, giving particular attention to the test 

sections employed and the measurement equipment. The experimental procedure and the data 

reduction processes are then described and the uncertainty of measured and derived 

parameters are also discussed and computed. Finally, the energy balance between the electric 

heater and the single-phase sub-cooled liquid flow is shown to determine the amount of heat 

losses to the surrounding environment. 

 

 

4.1 Test facility description 

The experimental test rig consists in a closed main loop in which the refrigerant conditions in 

terms of mass flow rate, pressure and temperature were independently set and controlled. A 

secondary loop for the cooling medium (demineralized water) was also provided. A 

photograph and a schematic of the whole experimental set-up are shown in Figure 4.1 and 

Figure 4.2, respectively. 

4.1.1 Main and secondary loops 

The refrigerant flow path is portrayed in Figure 4.2 with a black line. The working fluid in 

sub-cooled liquid condition is driven into the Coriolis mass flow meter and then into the test 

section for the CHF measurements by means of a two-gear magnetic pump (GC–M23 JF5S6, 

series 220, from Techma gpm s.r.l). It was designed to elaborate from 1.3 up to 2.5 dm3/min 

by changing its rotating speed from 1650 to 3400 rpm thanks to a 0.34 kW electric motor 

(Cantoni Sh-71-2a) and a 0.40 kW inverter (ABB ACS310). At the inlet of the test section a 

ceramic PT100 RTD and an absolute pressure transducer placed on the stainless steel tube 

were able to define the thermodynamic properties of the working fluid, whereas a differential 

pressure transducer provided the pressure drop across the multi-minichannel heat sink. 
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Another Pt100 RTD was finally placed to read the refrigerant test section outlet temperature. 

The fluid in saturated condition passes through a manually controlled throttling valve, which 

allows a fine regulation of both mass flow rate and system pressure, and then into a plate heat 

exchanger, in which the working fluid condenses thanks to the cold water in the secondary 

loop. A liquid receiver (Italest of 1.1 dm3 capacity) was then placed in order to compensate 

for the changes of required fluid charge during the experiments with a varying thermal load. 

The loop is finally closed with a double pipe heat exchanger that provides a slight sub-

cooling to the refrigerant before entering the pump. In this heat exchanger, the demineralized 

water flows in the inside tube and the liquid refrigerant in the annulus between the two tubes. 

For tests requiring very low mass fluxes, a manually-controlled by-pass valve is able to 

recirculate a portion of the liquid refrigerant from the pump outlet to the liquid receiver, 

avoiding the test section. The main loop is also equipped with a filter-dryer (Castel 4308-

M12S) placed after the Coriolis flow meter, preventing the presence of small solid particles 

flowing through the plant. Finally a liquid indicator between the liquid receiver and the sub-

cooler warns the users about potential lack of fluid charge into the experimental plant. 

Demineralized water flows into the secondary loop, which is portrayed as a blue line in 

Figure 4.2, feeding both the sub-cooler and the plate condenser in order to manage the 

thermal load applied to the test section, thus guaranteeing a desired system pressure. The 

water temperature is remotely set and controlled by means of a thermostatic bath (Lauda RP 

855), carrying a 8 dm3 pool that can be brought from -55 to 200 °C, thanks to a dedicated 

R134a chiller and a electric resistance working with Joule effect. The water pump (Wilo 

TOP-S 25-10) draws the demineralized water directly from the thermostatic bath into the 

double pipe sub-cooler and then into the plate condenser. Two ball cock valves allow for 

excluding, when needed, each heat exchanger, thanks to two separate by-pass circuits. A 

stainless steel expansion vessel (Elbi HX-2F) with a capacity of 2 dm3 restricts the variation 

of the liquid water specific volume with the varying temperature.  

Different transducers (ceramic Pt100 RTDs and an absolute pressure transducer) are placed 

throughout the main and secondary loops in order to monitor and control the correct 

functioning of the experimental facility. The overall specifics of each transducer and their 

accuracy will be given in the measurement instrumentation section.  
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Figure 4.1 Photograph of the experimental set-up 

 

 

Figure 4.2 Schematic representation of the CHF test rig 
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4.1.2 Test section 

The CHF experimental campaign was carried out by employing an aluminum multi-

minichannel heat exchanger as test section, placed horizontally in the test facility. A 

photograph of the heat sink is shown in Figure 4.3. Six fins provide seven rectangular 

minichannels, each of them 2 mm wide and 35 mm long. The channels height could be set to 

1 mm and 0.5 mm giving equivalent diameters of 1.3 mm and 0.8 mm, respectively. The 

height was regulated by using two different aluminum cogged covers (see Figure 4.4) placed 

above the main aluminum block and sealed with a rubber gasket. Two manifolds at the 

extremities of the test section, with the inlet and the outlet sections perpendicular to the 

minichannels stream, were designed to guarantee a better balance of the flow distribution.  

The inlet manifold was free from orifices and flow stabilizers. Such devices are able to soften 

the flow instabilities approaching the thermal crisis and prevent possible back-flows, which 

could be responsible for a partial rewetting of the heated surface and therefore a delayed 

critical heat flux. The choice of avoiding inlet restrictions and orifices for this experimental 

campaign entails the drawback of an unstable mass flow rate when close to the thermal crisis 

and also the need to operatively define the CHF. However, in this way the effective operative 

conditions encountered in real applications are preserved. 
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Figure 4.3 Aluminum multi-minichannel heat sink used as test section for the CHF experiments 

 

 

Figure 4.4 Aluminum cogged cover used for a channel height of 0.5 mm 

 

Two different test section arrangements were used in the experimental campaign for this PhD 

thesis. In both cases, the heat dissipated by the boiling fluid was supplied from the bottom 
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thanks to a dedicated slot carved underneath the aluminum main block. In the first set of 

experiments, the heated length was 25 mm and the heat was provided by means of a ceramic 

square element (25 x 25 mm2 and 2 mm thick, see Figure 4.5), which was able to supply up 

to 697 W (at 25 °C and 240 V). In this case the minichannels height was fixed to 1 mm, 

having an equivalent diameter of 1.3 mm and a heated length-on-equivalent diameter ratio 

(Lh/D) equal to 19. The thermal contact between the ceramic square heater and the aluminum 

test section was ensured with a special nano-aluminum thermal compound, presenting a 

thermal conductivity of 11.2 W/m K, as declared by the manufacturer.  

 

Figure 4.5 Watlow Ultramic ceramic square heater used for the first set of experiments with a Lh/D 

ratio of 19 

 

The second set of experiments was carried out by lengthening the slot underneath the test 

section and thus having a heated section of 35 mm, equal to the minichannel length. The heat 

was provided thanks to a silicon nitride ceramic cartridge heater (Bach HPT100072, see 

Figure 4.6) accommodated in a copper block, whose pyramidal edge was put in the slot 

underneath the aluminum test section. According to the manufacturer, the cartridge heater is 

able to provide up to 3000 W (at 600 °C and 400 V). In this case, both minichannels heights 

of 1 mm and 0.5 mm were used, thus having two different equivalent diameters of 1.3 mm 

and 0.8 mm and therefore two heated-length-on-equivalent diameter ratios of 27 and 44, 

respectively. The peculiar copper pyramidal geometry was chosen to preserve the 

perpendicular direction of the heat flux referring to the minichannel cross section. Different 

simulations were also run to appreciate the heat flux direction and to estimate the maximum 

temperatures reached in the solid structure at different operating conditions and thermal 
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loads. The thermal contacts between the cartridge heater and the copper block and between 

the copper structure and the aluminum test section were ensured with a high temperature 

thermal compound (Timtronics RedIce 611HT), able to work up to a maximum operating 

temperature of 360 °C with a thermal conductivity of 3.2 W/m K. The compound was 

carefully placed avoiding possible air sacks and ensuring the uniformity of heat flux. A 3D 

drawing and a picture of the second test section arrangement are shown in Figure 4.7, while 

the main geometrical features are summarized in Figure 4.8.  

For both the test section arrangements, the heat was provided thanks to Joule effect by using 

AC power supply and a solid state relay (Gavazzi RM-1E-40-AA-25), able to vary the 

electrical load up to 400 V and 25 A. The relay desired output was set using 4-20 mA current 

provided by Arduino One controller. The channels wall temperature was estimated thanks to 

four cylindrical Pt100 RTDs placed alongside the test section (two for each side) at a 

distance of 2.5 mm from the channels wall.  

In order to minimize the heat losses, the whole test facility was covered with an appropriate 

layer of synthetic rubber, provided by Armacell. According to the manufacturer, its thermal 

conductivity is 0.042 W/m K. The same insulating material was also used to cover the 

aluminum heat sink in the first test section arrangement. For the second test section 

arrangement, instead, the presence of the bulky copper structure and the higher temperatures 

reached during the experiments led to the use of a first layer of mineral wool (carrying a 

thermal conductivity of 0.07 W/m K) and then a second layer of synthetic rubber. 

 

 

Figure 4.6 Bach silicon nitride cartridge heater used for the experiments with a Lh/D ratio of 27 and 

44 
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Figure 4.7 3D drawing and a picture of the aluminum heat sink in its second arrangement 

 

 

 

 

Figure 4.8 Aluminum heat sink cross and longitudinal section, with the main geometrical information 

 

Feature Value Symbol 

Number of channels 7 N 

Channels width 2 mm Wch 

Channels height 1/0.5 mm Hch 

Channels length 35 mm L 

Equivalent diameter: 

𝟒∙𝑾𝒄𝒉𝑯𝒄𝒉

𝟐∙(𝑾𝒄𝒉+𝑯𝒄𝒉)
 

1.3/0.8 

mm 
D 

Heated width 25 mm Wh 

Heated lengths 25/35 mm Lh, 

Lh/D ratio 19/27/44  Lh/D 

Distance RTD-wall 2.5 mm s 

Distance between 

RTDs 
10 mm WRTD 
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4.2 Measurement instrumentation 

The main features of the measuring instruments and the user interface used for the CHF 

experiments are given in this section. All the instrument specifications in terms of 

measurement range, output range and their accuracy is discussed here, while the related 

uncertainty analysis of the measured and derived parameters will be shown in detail in 

section 4.4. 

4.2.1 Absolute pressure measurements 

Two absolute pressure transducers (CTE8-050-AY4N, provided by Tersid) measured the 

refrigerant absolute pressure at the inlet of the test section and at the inlet of the liquid 

receiver (i.e. plate condenser outlet), respectively. Their range of effectiveness is 0-50 bar, 

with a current output signal of 4-20 mA. The accuracy of ±0.3%, according to the 

manufacturer, includes the non-linearity, repeatability and hysteresis effects. 

4.2.2 Differential pressure measurements 

The pressure drop across the multi-minichannel heat sink was measured thanks to a 

differential pressure transducer (1151 Smart, provided by Rosemount) connected to the inlet 

and outlet parts of the test section. The high and low sides of the transducers are connected to 

the experimental facility by a 2 mm internal diameter copper tubes. The operating range is 0-

60 kPa with an output current signal of 4-20 mA and the overall instrument accuracy, 

including the non- linearity, hysteresis and repeatability effects, is ±0.45 kPa. 

4.2.3 Mass flow rate measurement 

The mass flow rate in the test section was monitored thanks to a Coriolis mass flow meter 

(MicroMotion S12S, provided by Emerson) placed after the pump, powered with AC current 

and 230V with an output signal of 4-20 mA, having an operative range of 0-115.7 g/s. The 

instrument was calibrated up to 2% of the full scale (at 2.3 g/s), giving a maximum 

uncertainty of ±1% of the reading. For precautionary purposes, this value was used for the 

whole experimental campaign. 

4.2.4 Temperature measurements 

Different ceramic RTDs were placed throughout the experimental plant in order to monitor 

the refrigerant and demineralized water conditions during the experiments. The sensors were 
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all fastened at the external part of the stainless steel tubes, with the thermal contact ensured 

by the use of a nano-aluminum thermal compound. The Pt100 RTDs were calibrated by the 

manufacturer using three points of measurements (-25 °C, 0 °C and +25 °C) with an overall 

declared uncertainty of ±0.18 °C. The provided calibration curve was then used in the whole 

sensor range of -80 - +250 °C. The four cylindrical Pt100 RTDs placed inside the aluminum 

heat sink were also calibrated by the manufacturer exposing an overall declared uncertainty 

of ±0.154°C. 

4.2.5 Electrical heat input measurements 

As explained in the previous sections, the heat was provided thanks to Joule effect by using 

AC power supply and a solid state relay able to modulate the voltage applied to the ceramic 

heater in a range 0–230 V for the square ceramic element and 0–380 V for the cartridge 

silicon nitride ceramic heater. The imposed heat rate was then measured by means of a digital 

wattmeter (HM8115-2, provided by Rohde & Schwarz), which uses true rms (root mean 

square value) converters for measuring voltage and current separately, within a range of 0.1–

500 V and 0.001–16 A, respectively. The real-time power was then measured using an 

analog multiplier, while the active power is derived by integrating the instantaneous power 

for the period of the sinusoidal wave. The declared uncertainty of the instrument is ±1% of 

the reading. All values were remotely read and controlled via serial interface RS232. 

4.2.6 Data acquisition system and user interface 

The different output signals coming from the transducers were read by a series of FieldPoint 

modules, provided by National Instrument, and all the data were finally transferred to a pc 

desktop and monitored in Labview [121] environment. Specifically, the FP-RTD-124 

modules collected data from all the Pt100 RTDs placed in the experimental plant, then 

translating the electrical resistance into a temperature using the calibration lines provided by 

the manufacturer. The 4-20 mA current output signals coming from the absolute and 

differential pressure transducers and from the Coriolis mass flow meter were instead 

recorded by two FP-AI-110 modules and translated into the desired parameters using the 

linear calibration curve of each transducer. The bath temperature and the imposed heat power 

were instead recorded with their own dedicated hardware and then transferred to the pc 

desktop and monitored in Labview [121] environment. The remote controls for the variation 
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of the pump frequency and the imposed heat load were given in Labview [121] software with 

two dedicated 4-20 mA circuits commanded by Arduino One controller. 

The user interface in Labview [121] is shown in Figure 4.9. All the parameters of interests 

were read in real-time and their overall uncertainty in the recording time was estimated, to let 

the user be aware of the goodness and stability of each experiment. The thermodynamic 

conditions at the test section inlet and outlet were visible with a green and an orange dot on a 

p-h diagram, whereas the expected critical value was computed with one of the correlations 

available in literature and placed as a red dot on the p-h diagram. In this way, the user was 

warned when the estimated critical condition was about to be approached. Automatic 

controls were also able to shut-off the electric load applied to the test section in case of the 

occurrence of dangerous situations (either system pressure and temperature over a chosen 

limit or undesired low refrigerant mass flow rates).. 

 

 

Figure 4.9 Labview [121] interface for the CHF experiments 
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4.3 Method 

The description of the experimental procedure, together with the data reduction process and 

the operative definition of critical heat flux used for the experiments shown in this thesis are 

discussed in this section. 

4.3.1 Experimental procedure 

The purpose of each test was to describe a complete boiling curve from the onset of boiling 

region up to the critical condition. For each boiling curve, the desired parameters in terms of 

mass flux, inlet sub-cooling and inlet saturation temperature (i.e. system pressure) were 

imposed and monitored throughout the experiment. Specifically, the refrigerant mass flow 

rate was obtained by setting a specific inverter frequency of the circulation pump. The 

saturation temperature was instead fixed by imposing the desired temperature of the 

thermostatic bath. Further adjustments of both mass flow rate and system pressure were 

possible thanks to the manually-controlled by-pass valve and the micrometric throttling 

valve. Small variations of the inlet sub-cooling were obtained by manipulating the ball cock 

valve controlling the secondary fluid mass flow rate inside the double pipe sub-cooler. 

However, the limited working fluid charge in the experimental facility (2.0 kg for all the 

fluids tested) allowed only reduced sub-coolings (0-20 °C) for all the operating conditions.  

Once all the desired parameters were fixed, for both the test sections the heat was supplied in 

steps (roughly 20-40 W) for the first part of the boiling curve and in smaller increments when 

the critical condition was approached, in order to be more accurate in the CHF detection. K-

type thermocouples were able to monitor the heaters temperature. For safety reason and to 

avoid the test section burnout, the power supply was shut-off at the threshold of 150 °C for 

the square ceramic heater and at 350 °C for the silicon cartridge heater in the second test 

section arrangement. During the tests, the operating parameters were subjected to small 

deviations from the set values caused by the increasing heat power applied. These 

divergences were accordingly corrected by manipulating the throttling and by-pass valves at 

disposal. 

The system was considered stabilized when the relative uncertainties of heat imposed, 

saturation temperature and mass flux were inferior to 3%, 2% and 10%, respectively in the 



75 

 

recording time of 2 minutes with a recording frequency of 1 Hz. For each point of the boiling 

curve, the nominal value was assigned to the sample average value. 

4.3.2 Data reduction 

The data reduction process was implemented with Matlab [122] software and the calculation 

of all thermodynamic properties was carried out with the software REFPROP 9.0, developed 

by NIST [123]. 

For a given test point, the mass flux inside the test section was evaluated as follows: 

 
ch ch

m
G

N W H


 
  (4.1) 

where 𝑚̇ is the measured mass flow rate, whereas N represents the number of minichannels 

(always equal to 7 for this experimental campaign), Wch is the minichannels width (equal to 2 

mm) and Hch is the minichannels height (which was set to 1.0 and 0.5 mm). 

The inlet saturation temperature was instead directly evaluated thanks to the measured inlet 

absolute pressure by means of the software REFPROP 9.0 [123]. The same approach was 

used to evaluate the inlet saturated liquid and vapor enthalpies and also the effective inlet 

enthalpy: 

 ( , )in in ini f T P   (4.2) 

The inlet sub-cooling was computed by subtracting the inlet measured temperature to the 

inlet saturation temperature: 

 ,sub in sat inT T T     (4.3) 

For the evaluation of the wall temperature, four cylindrical Pt100 resistance thermometers 

were positioned below the channels wall at a distance of 2.0 mm from the ceramic heater (or 

the copper block in the second test section arrangement) and at 2.5 mm from the 

minichannels inferior wall (see Figure 4.8 for further details). The real wall temperature was 

evaluated by assuming 1-D heat conduction in the perpendicular direction with respect to the 

channel cross section and fluid flow. A preliminary numerical analysis with dedicated 
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software confirmed that the axial conduction in the aluminum block was negligible when 

compared to the main flux in the vertical direction. 
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   (4.4) 

In the above equation, the subscript i refers to the ith resistance thermometer. TRTD is the 

measured temperature and Tw is the estimated wall temperature. The aluminum thermal 

conductivity is λal (considered constant and equal to 240 W/m K), the distance wall-RTD is 

indicated as s. The parameter 𝑞̇𝑏 is the base heat flux, obtained with the ratio of the heat 

power divided by the base heated surfaces beneath the aluminum test section (which are 25 x 

25 mm2 and 25 x 35 mm2 for the first and second test section arrangements, respectively). 
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The actual wall heat flux qw, used for the CHF detection and for the boiling curves exposed 

in the results section, takes into account the effective heat transfer surface provided by the 

multi-minichannel heat sink. Specifically, the heated perimeter (also shown in the 

enlargement in Figure 4.8) is the sum of the channels bottom walls and the two lateral fin 

surfaces, multiplied by a fin efficiency. The top side was instead ignored and considered 

adiabatic. The same approach was also used by Park and Thome [25] for their copper multi-

minichannel test section. 
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In the above equation 𝜂 is the fin efficiency, whereas the heated length is indicated as Lh 

(equal to 25 and 35 mm for the first and second test section arrangements). The fin efficiency 

and therefore the wall heat flux were found with an iterative calculation explained with the 

following algorithm:  

a) A first value of 0.90 for the fin efficiency was guessed. 

b) The wall heat flux was evaluated with Equation (4.6) 

c) The heat transfer coefficient HTC was then evaluated with the following equation: 
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Where Tw,max is the maximum wall temperature estimated among the four cylindrical 

RTDs with Equation (4.4). 

d) Using 1-D conduction theory, the fin efficiency could be recalculated as suggested by 

Baher and Stephan [124]: 
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e) The calculation was then repeated from point b) up to the variation of the fin 

efficiency between two consecutive iterations was inferior to 0.001. 

The outlet fluid enthalpy was estimated with an energy balance applied to the test section, by 

assuming the aluminum block adiabatic through the surroundings: 

 out in

Q
ii

m
    (4.10) 

Finally, the test section outlet vapor quality was computed as a function of the outlet enthalpy 

and of the outlet refrigerant pressure, which was in turn deduced from the measured inlet 

fluid pressure and total pressure drop Δ𝑃𝑑𝑟𝑜𝑝: 

 ( , )out out outx f P i   (4.11) 

 out in dropP P P    (4.12) 

4.3.3 CHF operative definition 

As known, the boiling curves exhibit a high slope during evaporation due to the very high 

heat transfer coefficient reached in case of stable boiling. As soon as the critical region is 

approached, the slope becomes lesser and lesser with a moderate or sharp increase of the wall 
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superheat with small heat flux increments. Rigorously, the CHF should be identified when 

the boiling curve becomes almost horizontal, exposing a nearly 0 value for its slope. 

However, the experimental results presented in this thesis have shown that the boiling curves, 

especially when increasing the mass velocity, did not provide an abrupt decrease in their 

slope, but only a gentle drop was detected. Yet, this behavior is not unique and other similar 

cases were published by different researchers in scientific literature [25] [26] [27], especially 

when working with multi-minichannels test sections without inlet restrictions and orifices. 

As an example, Figure 4.10 shows two boiling curves of refrigerant R1234yf at a saturation 

temperature of 45 °C and with two different mass velocities of 148 and 348 kg/m2 s. It is 

evident that, for the highest mass flux, the thermal crisis is not marked as a sudden flat 

deviation from the boiling curve’s trend. This behavior is instead seen for the curve obtained 

with the lowest mass velocity. The reason to these discrepancies has to be probably found in 

the mal-distribution problems occurring in multi-channels systems. 

 

 

Figure 4.10 Difference in experimental boiling curves slope when approaching the critical condition 

with two different mass velocities of: (a) 148 kg/m2 s and (b) 348 kg/m2 s. In both cases the working 

fluid is R1234yf at a saturation temperature of 45 °C. 

 

This behavior made necessary the use of an objective method to identify the thermal crisis. 

Additionally, as explained in the literature review section, the definition of critical heat flux 

(a) (b) 
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is often unclear and different authors use different terminology and detection methods to 

refer to the same phenomenon. 

Figure 4.11 shows some experimental CHF values defined with different methods as a 

function of the mass velocity G for the refrigerant R134a, a heated length-on-equivalent 

diameter ratio Lh/D = 27 at a saturation temperature of 45 °C. The blue and red curves are 

constructed by using as CHF definition the wall heat flux corresponding to a chosen 

threshold for the wall superheat of 25 and 45 °C, respectively. The green line is instead 

constructed by defining the CHF as the wall heat flux in which the slope of the boiling curve 

is inferior to the limit value of 1.0 W/cm2 K. In case of mass velocities of G > 700 kg/m2 s, 

the boiling curve never reached the threshold slope and the CHF could not be defined with 

this method. Finally, the black dashed line refers to the CHF values evaluated with the 

predictive method of Callizo [51]. 

 

 

Figure 4.11 Effect of a different CHF detection method on the experimental results [38] 

 

Even if referring to the same experiment, Figure 4.11 shows that the CHF values are strongly 

dependent on the detection method used, especially for high mass fluxes. In case of G < 500 

kg/m2 s, all the mentioned criteria give approximately the same results, thus indicating that 

the boiling curve is subjected to a steep wall superheat when approaching the thermal crisis 
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only for low mass velocities. The slope threshold criterion seems to be in good agreement 

with the correlation used at any mass flux, but the CHF is found at very high wall superheats, 

which cannot be realistically sustained in real cooling applications. 

In this thesis, a new method [38] to detect the critical heat flux during experiments was 

implemented, by considering both the boiling curve minimum slope threshold and the 

maximum wall superheat that might be tolerated during realistic cooling applications. 

Specifically, when the wall superheat (defined with the inlet saturation temperature and the 

maximum wall temperature among the four RTDs) was inferior to 25 °C, the critical heat 

flux was defined as the wall heat flux occurring when the boiling curve slope decreased 

below a chosen limit of 1.0 W/cm2 K, the same value used also in [26] and [29]. Practically, 

the analytical slope of the boiling curve was found with a cubic spline interpolation from the 

experimental data and the search of CHF only began when the slope was always below a 

threshold value of 1.5 W/cm2 K. As an example, Figure 4.12 shows the slope of the boiling 

curve found with refrigerant R134a at a saturation temperature of 65 °C and an average mass 

flux of 300 kg/m2 s. From the green line, the slope will be always inferior to 1.5 W/cm2 K 

and the research of CHF may start. The actual CHF (plotted as a red star in Figure 4.12) is 

then found when the curve first reach the imposed limit of 1.0 W/cm2 K,  
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Figure 4.12 CHF detection method in case of refrigerant R134a at Lh/D = 27, G=301 kg/m2 s and 

Tsat=65 °C [38]. The red dashed line provides the search threshold of 1.5 W/cm2 K and the real CHF 

value is found at a slope of 1.0 W/cm2 K, displayed as a red star. 

 

Either in case the abovementioned method was not able to detect the CHF or the wall 

superheat at the critical condition was higher than 25 °C, the CHF values was defined as the 

wall heat flux corresponding to a wall superheat of 25 °C. For a better comprehension of the 

method, the complete algorithm for the CHF detection is shown in Figure 4.13. 

As a summary, since at high mass fluxes it was not possible to reach an almost horizontal 

line in the boiling curve, the wall superheat detection method was implemented in order to 

look at the practical point of view, so that excessive wall temperature and overheating were 

prevented in the device that has to be cooled. For low mass velocities, instead, in which the 

boiling curves did expose a sudden change of slope up to very low values, it was preferred to 

keep the slope threshold method for the CHF detection.  

The effect of a different threshold for the boiling curve slope when detecting the critical heat 

flux was also studied for this thesis. Figure 4.14 shows the CHF obtained with the only slope 

method as a function of the chosen threshold, for refrigerant R1234ze at different mass 

velocities and saturation temperatures. It was seen that at low mass velocities, the thermal 

crisis corresponded to a sharp change of the boiling curve slope and thus the choice of a 

specific threshold (from 1.0 to 2.5 W/cm2 K) was non-influential. Anyway, the CHF values 
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would be also similar to those obtained employing the wall superheat detection method. For 

higher mass velocities (from 300-350 kg/m2s up to 1500 kg/m2 s), the CHF was always 

detected with the 25 °C wall superheat limit and the choice of a different slope limit was not 

significant any longer.  
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Figure 4.13 Algorithm for the CHF detection method [38] 
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Figure 4.14 Effect of a different slope threshold value on the CHF if detected only with the slope 

method 

 

4.4 Uncertainty analysis 

Unfortunately, when treating experimental data, the true values of measured quantities are 

always unknown. The best practice is to estimate the uncertainty of a measured or derived 

quantity, which defines a band or a range where the actual or correct value is most likely to 

lie. The experimental results must therefore be expressed together with an uncertainty limit, 

otherwise they will not be meaningful as one will not know how far a measured or derived 

parameter is from the correct value.  

Many references on uncertainty treatment have been available through the decades, such as 

Moffat [125] [126], Kline and McClintock [127], Coleman and Steele [128] and Taylor [129] 
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[130]. In this thesis, the uncertainty of measurements and their propagation in the results are 

discussed according to the ISO [131] standard. 

First of all, the uncertainty of the result of a measurement is due to several error sources, that 

can be categorized as random or precision (Type A uncertainty) and systematic or bias (Type 

B uncertainty), whether the error changes during the experimental time or it remains steady.  

Type A uncertainty is statistical in nature and can be estimated by the standard deviation of 

the mean value for a quantity which has been measured for a sufficiently large number of 

times (typically more than 10-20 times). The standard deviation of a mean value is defined 

as: 

 
 

 
2

1

1

1

n
x

x i

i

s
s x x

n nn 

   
 

   (4.13) 

where 𝑠𝑥 is the standard deviation computed from a sample of the population, 𝑛 is the 

number of measurements, 𝑥𝑖 (i=1, 2, …, n) are the sample measurements and 𝑥̅ the mean 

value given by: 
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Type B uncertainty 𝑤𝑥̅ is not statistical in nature and most of the times is constant and must 

be estimated from the previous available measurement data, documents and calibration 

certificates provided by the manufacturers and personal knowledge of the operator regarding 

the behavior of the instruments. The several mentioned sources of type B error are often 

independent and can be combined using the root-sum-square (RSS) method to evaluate the 

total uncertainty of type B. 

According to BIPM/ISO standards [131], components of uncertainties of type A and type B 

may be considered to be independent and the combined uncertainty 𝑢𝑥̅ can be evaluated with 

the root-sum-square (RSS) of the standard deviations: 

 2 2

x x xu s w    (4.15) 
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The combined uncertainty obtained with the relation above mentioned lies within 68% (σ) 

confidence level for a normal distribution of variables. To be more confident of the interval 

within which the measured value is believed to lie, an expanded uncertainty is usually used 

and it can be obtained by multiplying the combined uncertainty with the coverage factor z as: 

 
x xU z u    (4.16) 

Typically, z is chosen in the range from 2 to 3 [132]. When the normal distribution is applied, 

z=2 defines an interval with a level of confidence of 95,45%, whereas z=3 leads to an 

interval with a level of confidence higher than 99%. Finally, the result of a measurement 

should be expressed in this form: 

  xX x U     (4.17) 

where 𝜗 is the measure unity of the measured value. 

Unfortunately, in many cases a value y is not measured directly, but it is a function of m 

several variables (for instance the heat flux seen in data reduction equations, whose value is 

dependent on the measured voltage and current): 

  1 2; ; ; my f x x x    (4.18) 

where x1 up to xm are the input variables. The combined uncertainty of the function y is 

therefore influenced by a change in each variable and it can be estimated from this relation: 
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The Equation (4.19) is based on a first order Taylor series approximation and it is 

conveniently referred to as the law of propagation of uncertainty. The partial derivatives 
𝜕𝑓

𝜕𝑥̅𝑖
 

are the sensitivity coefficients, 𝑢𝑥̅𝑖
 is the standard uncertainty associated with the input 

estimate 𝑥𝑖 and 𝑢𝑥̅𝑖,𝑥̅𝑗
 is the estimated covariance associated with 𝑥𝑖 and 𝑥𝑗. It is possible to 

state that the combined uncertainty is the root-sum-square (RSS) of the standard deviations: 

 2 2

y y yu s w    (4.20) 
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With the uncertainties in y function for type A and type B errors are, respectively: 
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With the hypothesis of 𝑥𝑖 all independent variables, the covariance associated with 𝑥𝑖 and 𝑥𝑗 

is not anymore computable and it is permitted to state: 
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And to gain higher confidence level, the combined uncertainty for the function y, 𝑢𝑦, is 

multiplied by the coverage factor z, with its value chosen from the same range already 

discussed: 

 y yU z u    (4.25) 

4.4.1 Uncertainty of measured parameters 

Most of the instrument specification has already been discussed in section 4.2. Table 4.1 

provides a summary of the measurement range and the systematic uncertainty for each 

sensor. The combined uncertainty of each measured parameters was then evaluated with the 

law of propagation of error (see Equation (4.15)) adding the standard deviation of each 

sample 𝑠𝑥 to the systematic uncertainty. Finally, the expanded uncertainty of the measured 

quantities was calculated (see Equation (4.16)) by using a coverage factor z=2, thus ensuring 

a confidence level of 95.45%. 
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Table 4.1 Summary of the instrument specification  

Measurement Range 
B-type uncertainty 

(systematic) 𝒘𝒙  

Temperature (4-wire 

Pt100 RTD) 
-80/250 °C ±0.180 °C 

Temperature (4-wire 

Pt100 cylindrical 

RTD) 

-80/250 °C 

 

±0.154 °C 

 

Absolute pressure 0/50 bar ±0.3 % measurement 

Differential pressure 0/60 kPa ±0.45 kPa 

Flow meter 0.00/115.7 g/s ±1 % measurement 

Electrical power 0/8 kW ±1 % measurement 

 

4.4.2 Uncertainty of derived parameters 

The evaluation of the expanded uncertainty of all the derived parameters of interest is shown 

here in detail.  

Mass flux 

Since the uncertainty of the geometrical characteristics of the channels were not available, 

the uncertainty of the mass flux is only a function of that of the mass flow rate. 
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Due to the fluctuations of the mass flow rate in the test section when approaching the thermal 

crisis, the expanded uncertainty recorded during the tests could reach 15-25% in some cases. 

However, 90% of the experiments were obtained with a mass flux error band of ±10% and 

80% of the experimental campaign carried out mass flux uncertainty inferior to ±5%. 

Wall temperature 
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The channels inner wall temperature was estimated with the RTDs measurements in the 

aluminum block and the base wall heat flux, according to the hypothesis of 1-D heat 

conduction. The wall temperature expanded uncertainty was therefore evaluated by deriving 

the Equation (4.6): 
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In the above equation, the expanded equation of the base heat flux was instead computed as: 
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Inlet saturation temperature 

The uncertainty of the inlet saturation temperature evaluated with the software REFPROP 9.0 

[123] is dependent on the uncertainty of the measured inlet pressure. Thus, it could be written 

as: 
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By assuming a linear variation of the saturation temperature with pressure in the range of the 

inlet pressure uncertainty, the above expression may be re-expressed as: 
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and therefore: 
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For this experimental campaign, 90% of the database was obtained with an expanded 

uncertainty of the inlet saturation temperature at the critical condition inferior to ±0.5 °C. The 

maximum recorded uncertainty was instead roughly ±3.0 °C, occurred when testing 

refrigerant R1233zd. As a matter of fact, this fluid presents a very low slope of the p-T 
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saturation curve, meaning that even with low inlet pressure uncertainty, the related saturation 

temperature uncertainty is rather substantial. 

Saturated and inlet enthalpies 

Following the same approach used for the inlet saturation temperature, the uncertainty of the 

saturated liquid and vapor enthalpies were evaluated as: 
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The inlet enthalpy refers to a sub-cooled liquid and therefore it is a function of both inlet 

pressure and inlet temperature: 
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Also in this case, the variation of the liquid enthalpy with temperature and pressure was 

considered linear in the range of the measured parameters uncertainty. 

Inlet sub-cooling 

The inlet sub-cooling uncertainty is a function of the uncertainty of the inlet saturation 

temperature and of the measured inlet temperature: 

 2 2( ) ( ) ( )c sub c sat c inu T u T u T     (4.36) 

Most of the experimental results (about 90%) were taken with an uncertainty of the inlet sub-

cooling inferior to ±0.6 °C, whereas the maximum recorded uncertainty in the experimental 

database is ±3.0 °C, obtained with refrigerant R1233zd. 

Wall superheat 
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Once the wall temperature uncertainty was evaluated, the wall superheat uncertainty could be 

calculated as: 

 2 2( ) ( ( ) ( )c wall c wall c satu T u T u T     (4.37) 

Outlet enthalpy 

The outlet enthalpy was computed with an energy balance performed on the test section (see 

Equation (4.10). The related uncertainty took therefore into account the uncertainty of the 

inlet enthalpy, the mass flow rate and the imposed heat: 
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Wall heat flux (CHF) 

Neglecting the uncertainty of the geometrical parameters, the overall expanded uncertainty of 

the wall heat flux and therefore of the detected critical heat flux was computed as: 
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The overall wall CHF uncertainty should consider the uncertainty related to the boiling curve 

slope, which is affected by the wall superheat excursion. However, since the CHF 

phenomenon is obtained with sharp increases of the wall temperature for small heat flux 

variations, the uncertainty of the measured temperature is not of primary importance and the 

CHF expanded uncertainty was calculated by only taking into account the electrical 

measurement. For these reasons, the uncertainty of CHF in any test performed was always 

inferior to ±10%, and most of the experimental database (90% of the tests) falls into a CHF 

expanded error band of ±2.5% 

Outlet vapor quality 

Following the definition of vapor quality, its uncertainty was calculated as a function of the 

saturated outlet enthalpies and the outlet enthalpy: 
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  (4.40) 

Most of the experimental database (about 90%) provided outlet vapor quality at the critical 

condition with an expanded uncertainty of ±0.10. Few points carried higher uncertainty, 

reaching a maximum of ±0.27. 

Table 4.2 provides a summary of the expanded uncertainty of both experimental CHF and 

operating parameters set for the tests. 

 

Table 4.2 Summary of CHF and operating parameters typical and maximum recorded uncertainties 

found during the experiments 

Parameter 
Maximum uncertainty 

for 90% of the database 

Maximum recorded 

uncertainty  

Saturation temperature Tsat ±0.5 °C ±3.0 °C 

Mass flux G ±10% ±27% 

Inlet sub-cooling ΔTsub ±0.6 °C ±3.0 °C 

Outlet vapor quality ±0.10 ±0.27 

CHF ±2.5% ±6.0% 

 

4.5 Test section validation 

Before the CHF experiments, the test facility was checked for potential heat losses needed to 

be taken into account in the data reduction process. This paragraph therefore shows the liquid 

single-phase experiments performed with refrigerant R134a for both the test section 

arrangements, that also helped to check the correct functioning of the whole measurement 

instrumentation. In order to get a satisfactory inlet sub-cooling and thus to maintain 
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compressed liquid across the test section, the fluid inventory was temporarily increased up to 

4.0 kg. 

4.5.1 Single-phase tests for the first test section arrangement  

More than 40 single-phase tests with R134a were performed for the first test section 

arrangement. The mass flow rate was varied from 14 to 27 g/s, the inlet temperature was set 

from 27 to 37 °C, having a maximum temperature difference with the surrounding 

environment of 18 °C. The electrical heat rate imposed to the square ceramic element was 

varied from 0 to 420 W and compared to the heat absorbed by the liquid refrigerant flowing 

into the test section, which was calculated by neglecting the pressure drop contribution in the 

enthalpy variation: 

 ( )eff out inQ m c T T      (4.41) 

The liquid specific heat capacity was evaluated with the software REFPROP 9.0 [123] as a 

function of the arithmetical average of the inlet and outlet fluid temperatures. The results of 

the adiabaticity tests are shown in Figure 4.15: at any heat rate imposed, all the data are very 

close to the bisector. Quantitatively, the heat loss was significant (>4%) for heat powers 

applied inferior to 100 W, whereas they could be neglected (<4%) at higher heat rates, which 

were the real operating conditions for the CHF recorded for this thesis. For this reason, the 

useful heat was considered equal to the electrical measurement. 
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Figure 4.15 Absorbed versus injected heat for the first test section arrangement [29] 

 

4.5.2 Single phase tests for the second test section arrangement 

The energy balance was also performed for the second test section arrangement and 83 

experiments in liquid single phase were carried out. The heat rate applied ranged from 0 to 

720 W and the points in which the test section outlet sub-cooling were inferior to their own 

uncertainty were excluded from this analysis in order to avoid an undesired boiling process 

inside the test section. The wall temperatures obtained with the cylindrical RTDs and the 

heater temperature monitored with a K-type thermocouple, representing high potential for 

heat transfer towards the ambient, were similar to those reached during the CHF experiments. 

Particularly, the wall temperatures reached in some cases 90 °C and the copper block in 

which the cartridge heater was located reached up to 250 °C. The temperature of the 

environment, evaluated with a ceramic RTD, varied from 20 to 26 °C. 

The energy balance performed with the second test section arrangement is shown in Figure 

4.16. The absorbed heat is quite similar to the imposed electrical power, with heat losses 

always below 10% for an applied heat greater than 400 W, even if the presence of the bulky 

copper structure inevitably led to higher heat losses, when compared to the first test section 

arrangement. It was also found that the heat losses in this case could be set as a simple 

function of the difference between the copper temperature and the ambient temperature: 
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0.6820.815 ( )loss copper ambQ T T     (4.42) 

The above equation was implemented in the data reduction process to obtain the effective 

heat rate. 

 

Figure 4.16 Absorbed versus injected heat for the second test section arrangement [38] 

 

For a deeper validation, the liquid single phase heat transfer coefficient was also estimated 

and compared to the well-known predictive methods of Gnielinski [75] and Dittus-Boelter 

[70]. Specifically, the single phase heat transfer coefficient hsp and the related Nusselt 

number were evaluated as: 

 sp

wall f

q
h

T T



  (4.43) 

 
sp sp

f

D
Nu h


    (4.44) 

The wall temperature Twall was calculated with the same expression used in two-phase 

experiments (see Equation (4.4)). D refers to the minichannels equivalent diameter and the 

fluid thermal conductivity λf was evaluated at the fluid temperature Tf., which was computed 

for each RTD position as: 
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where LRTD,i is the ith RTD distance from the beginning of the heated section and the specific 

heat c was evaluated at the average temperature between the inlet and outlet sections. The 

comparison between experimental and expected liquid phase heat transfer coefficient is 

shown in Figure 4.17. Most of the experimental points fall into the area defined by the two 

correlations prediction lines. 

 

Figure 4.17 Experimental versus predicted values for the liquid single phase heat transfer coefficient 

for the second test section arrangement [38] 
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5 CHF results 

This chapter presents experimental data concerning critical heat flux in the aluminum multi-

minichannel heat sink illustrated in the previous chapter. The entire database is composed of 

288 tests carried out with different working fluids, geometrical test section characteristics 

and operating parameters. The whole chapter is organized in five different sections: the first 

paragraph shows the chosen operating parameters set and monitored during the experiments, 

while the second section discusses about the instability analysis performed on the operating 

parameters. Then, the effect of mass flux, saturation temperature, working fluid and heated 

length-on-diameter ratio (Lh/D) on the boiling curves behavior is presented. In the third 

paragraph, the experimental CHF values are shown and the effect of the different operating 

conditions is discussed. Finally, the CHF results are compared against some of the 

correlations conceived for both single tubes and multi-minichannel geometries. 

 

 

5.1 Experimental conditions 

In this thesis, the main objective was to investigate on the effect of multiple parameters on 

the CHF detected with the procedure shown in 4.3.3. As regards the working fluids, R134a 

and low-GWP refrigerants R32, R1234yf, R1234ze and R1233zd were employed in the 

experimental facility. The minichannels geometry was changed by varying their height, using 

1.0 and 0.5 mm, whereas their width of 2.0 mm remained unchanged. The resulting 

equivalent diameters were 1.3 and 0.8 mm, evaluated as: 

 
 

4

2

c h c h
e q

c h c h

W H
D

W H

 


 
  (5.1) 

The heated length was also varied, by using 25 mm and 35 mm (equal to the total length of 

any channel). With the heated length of 25 mm, only the equivalent diameter of 1.3 mm was 

used, whereas with Lh = 35 mm, both channels heights of 1.0 and 0.5 mm were employed. 

The resulting heated length-on-equivalent diameter ratios used in this thesis are 19, 27 and 
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44. Mass velocity G was also one of the main operating parameters and was subjected to a 

wide span of variation, being set from approximately 145 kg/m2 s up to 3000 kg/m2 s. The 

saturation temperature was changed from 24.7 °C up to 75.5 °C for any fluid except R32 

(since it entailed system pressures higher than 30 bar, the safety operating limit for the plate 

heat exchanger). The resulting reduced pressure was within the range 0.036-0.677. The 

regulation of the ball cock valve in the double pipe heat exchanger allowed only a weak 

control of the inlet sub-cooling and the experiments were performed within the range 0.2-

18.4 °C. Anyway, in the present thesis, its effect on boiling curves and CHF values was not 

taken into consideration for the parametric analysis, since other researchers [25] [26] 

observed that within low values (<20 °C) it had a negligible influence on the CHF 

mechanism. A summary of the range of all the operating conditions and CHF values is shown 

in Table 5.1. 

 

Table 5.1 Summary of the operating conditions range and CHF results  

Parameter Range 

Fluid R134a, R1234ze, R1234yf, R1233zd, R32 

Lh/D ratio 19; 27; 44 

Saturation temperature Tsat [°C] 24.7-75.5 

Mass flux G [kg/m2 s] 145-3000 

Inlet sub-cooling ΔTsub [°C] 0.2-18.4 

Critical heat flux CHF [W/cm2] 19.8-223.7 

 

It is important to declare that all the operating parameters shown in the following diagrams 

and tables such as the mass flux G, the inlet saturation temperature Tsat and the inlet sub-

cooling ΔTsub are meant to be evaluated at the critical condition (with a linear interpolation in 

the interval of experimental points in which the actual CHF was recorded) and not averaged 

over the points that compose the boiling curves.  
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As regards the wall superheat shown in the boiling curves and used for the critical heat flux 

detection, the choice for its evaluation could be made among the wall temperature measured 

by the four cylindrical RTDs placed along the test section, at a distance (WRTD, see Figure 4.7 

and Figure 4.8 for further details) of 10 mm one another. The temperature recorded from the 

four resistance thermometers during the tests was not the same, with greater differences 

approaching the thermal crisis. Figure 5.1 shows the RTDs measurement versus the outlet 

vapor quality in a complete boiling curve. The diagram refers to the fluid R134a at a 

saturation temperature of 75 °C and a mass flux of 700 kg/m2 s, with the second test section 

arrangement (Lh/D = 27). It can be noted that at low vapor quality (i.e. during stable boiling), 

all the RTDs measured approximately the same temperature, and little variations were 

probably due to an increasing vapor quality along the minichannels and thus a possible 

different heat transfer coefficient. By approaching the critical heat flux, instead, the last 

thermocouple (RTD 4, placed closely to the outlet manifold) diverged from the other 

measurements, implying that the thermal crisis first appeared at the end of the channels and 

then spread upwards. In this thesis, this RTD measuring the maximum wall temperature was 

used for the construction of the boiling curves and for the CHF detection process, being 

interested to catch the onset of the thermal crisis. This choice, by a practical point of view, 

gives the chance to control the highest temperature reached by the cooling system, avoiding 

possible non-isothermal operations. 
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Figure 5.1 Typical trend of the cylindrical RTD measurement for the wall temperature. RTD 4 was 

chosen for the boiling curves construction and for the CHF detection process 

 

5.2 Instability analysis 

As already stated in the previous chapter, all the CHF results shown in this thesis were 

obtained without the use of flow stabilizers, preserving a design that may easily constructed 

in the industrial sector. However, being one objective of this research the development of a 

configuration that did not suffer of mal distribution, an aluminum slit-orifice was conceived 

to be placed in the inlet manifold to check for possible instabilities before the real CHF tests. 

The orifices dimensions were approximately 0.5 x 0.5 mm2, and used with an equivalent 

diameter of 0.8 mm, thus reducing the channels inlet to a 25% of their original size. Some 

pictures of the slit-orifice insert and its positioning inside the test section are provided in 

Figure 5.2.  
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Figure 5.2 Photograph of the slit orifice used for the instability analysis and its positioning in the inlet 

manifold of the aluminum heat sink 

 

Firstly, the boiling curves obtained with and without the slit orifice were compared. Figure 

5.3 shows two experiments with refrigerant R1234yf, at a mass flux of 300 kg/m2 s and a 

saturation temperature of 65 °C, with an Lh/D equal to 44. Apart from small differences in 

the first part of the evaporation process, the boiling curves almost overlapped, verifying that 

their behavior was almost identical with and without the slit-orifices insert. The same could 

be stated for the CHF experimental values. 
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Figure 5.3 Boiling curves of R1234yf at G = 300 kg/m2 s, Tsat = 65 °C and Lh/D = 44. Effect of the slit 

orifice insertion on the boiling curve behavior 

 

Secondly, the fluctuation of operating parameters were analyzed in the same operating 

conditions as Figure 5.3, with and without the slit orifice. Three points have been chosen 

from the boiling curve at different locations (stable boiling, in the middle and during thermal 

crisis) and the fluctuations of the inlet pressure, inlet temperature and mass flow rate were 

plotted as a function of the recording time. Table 5.2 shows the graphical results of this 

analysis. 
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Table 5.2 Analysis of the operating parameters fluctuation with and without slit orifice. Experiments 

performed with refrigerant R1234yf at G = 300 kg/m2 s, Tsat = 65 °C and Lh/D = 44. 

WITHOUT SLIT-ORIFICE INSERT WITH SLIT-ORIFICE INSERT 

Boiling curve with the analyzed tests exposed 

  

Fluctuation of the inlet pressure 

  

Fluctuation of the inlet temperature 

  

Fluctuation of the mass flow rate 
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In both case, the inlet pressure fluctuations were plotted with the y-axis ranging in a ±5% 

band of the average value, the inlet temperature fluctuations ranging in a ±1 °C band of the 

average value and the mass flow rate fluctuations were plotted with the y-axis ranging in a 

±15% band of the average value. It can be observed that no particular fluctuations were 

recorded for the inlet pressure, temperature and mass flow rate in both cases throughout the 

boiling curve (inlet pressure fluctuations within ±1%, inlet temperature fluctuations 

negligible and mass flow rate fluctuations within ±4.5%). Similar results were also obtained 

for different operating conditions and different fluids. 

As a final check, the instability analysis for other two independent tests without the inlet slit 

orifice at low and high mass velocities was performed. Specifically, the fluctuations of the 

inlet pressure, inlet temperature and RTD measured wall temperatures at different locations 

of the boiling curve were analyzed for refrigerant R134a at G = 300 kg/m2 s, Tsat = 65 °C and 

for refrigerant R1234ze at G = 1000 kg/m2 s and Tsat = 45 °C (see Figure 5.4 and Figure 5.5 

from (a) to (d)). It can be noticed that for both inlet pressure and inlet temperature, no 

significant fluctuations were detected, even for the last test approaching the thermal crisis, in 

which the oscillations of inlet pressure were more intense but always limited in a ±2% 

uncertainty band. The RTDs plotted for the 12th test at occurring CHF showed that the 

maximum temperature fluctuation was not severe and included in a ±0.5 °C range. 
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Figure 5.4 Instability analysis performed without inlet orifices for refrigerant R134a at G = 301 kg/m2 

s, Tsat = 65 °C and Lh/D = 27. (a) Boiling curve; (b) inlet pressure fluctuations for tests 3, 6 and 12; (c) 

inlet temperature fluctuations for tests 3, 6 and 12; (d) RTD wall temperature measurements for test 

12 [38]. 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.5 Instability analysis performed without inlet orifices for refrigerant R1234ze at G = 1000 

kg/m2 s, Tsat = 45 °C and Lh/D = 27. (a) Boiling curve; (b) inlet pressure fluctuations for tests 3, 11 

and 16; (c) inlet temperature fluctuations for tests 3, 11 and 16; (d) RTD wall temperature 

measurements for test 16 [38]. 

 

Based on these preliminary checks, it was possible to state that in the investigated range of 

mass velocities, the recorded CHF did not occur due to severe flow instabilities or back-

flows, but more likely to dry-out incipience and its related “mild” instabilities, as also 

explained in [133]. 

5.3 Boiling curves 

The effect of the main operative parameters on the experimental boiling curves is shown in 

this section. 

(a) 

(b) 

(c) 

(d) 
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5.3.1 Effect of the saturation temperature on the boiling curves 

Figure 5.6 (a), (b) and (c) show boiling curves of refrigerants R134a, R1234yf and R1234ze, 

respectively. The tests were obtained with saturation temperatures from 25 °C up to 75 °C, 

with a fixed Lh/D equal to 18. The mass flux of 250 kg/m2 s is an average of all the critical 

mass velocities of the boiling curves depicted. The first part of the boiling curves tends to 

slightly shift towards left with increasing saturation temperature, at any mass velocity and 

fluid tested. This particular trend suggests that the average flow boiling heat transfer 

coefficient (evaluated as the ratio of the wall heat flux over the wall superheat) is enhanced 

when increasing the saturation temperature. As an example, for refrigerant R134a (Figure 5.6 

(a)), the heat transfer coefficient passing from 25 °C to 75 °C increases of almost 100% 

(from 99 kW/m2 K to 198 kW/m2 K). In case of refrigerant R1234yf (Figure 5.6 (b)), this 

effect is even more noticeable, with a heat transfer coefficient that goes from 83 to 218 

kW/m2 K. Finally, with refrigerant R1234ze (Figure 5.6 (c)), the increase of the heat transfer 

coefficient with saturation temperature in stable boiling is less emphasized (from 71 to 142 

kW/m2 K). Other independent studies [20] [45] [134] [44] with different geometries and 

fluids are consistent with these observed trends. As regards the second part of the boiling 

curve, the thermal crisis seems not to be strongly influenced by saturation temperature, for 

any fluid investigated, anticipating a weak effect of Tsat on the experimental CHF. 
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Figure 5.6 Experimental boiling curves obtained with an average mass flux at critical condition of 

250 kg/m2 s, Lh/D=19 and saturation temperatures from 25 to 75 °C. (a) R134a, (b) R1234yf, (c) 

R1234ze. 

 

Similar results were obtained with a different heat sink geometry (Lh/D=27) and higher mass 

fluxes. Figure 5.7 shows the boiling curves of refrigerants R134a at G = 500 kg/m2 s (a) and 

R1234ze at G = 1000 kg/m2 s (b), with saturation temperatures ranging from 25 to 75 °C. 

Also in this case, the thermal crisis appears at approximately the same wall heat flux with 

increasing saturation temperature by having fixed the other operating parameters. Again, the 

system pressure shifts the first part of the boiling curves towards lesser wall superheats, 

(a) (b) 

(c) 
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indicating a substantial increase of the average heat transfer coefficient with higher saturation 

temperatures. 

 

 

Figure 5.7 Experimental boiling curves obtained at saturation temperatures from 25 to 75 °C, with 

Lh/D=19 and (a) R134a at 500 kg/m2 s, (b) R1234ze at 1000 kg/m2 s, (c) R1234ze. 

 

5.3.2 Effect of mass velocity on the boiling curves 

The effect of mass flux on the experimental boiling curve is explained in Figure 5.8, for 

different working fluids and heat sink geometries. Figure 5.8 (a), (b) and (c) refer to 

refrigerants R134a, R1234yf and R1234ze, respectively, for a saturation temperature of 65 

°C and Lh/D = 19. As illustrated in the CHF operative definition, the change of the boiling 

curves slope at approaching the thermal crisis becomes gentler at increasing mass velocity. 

The first part of the boiling curves (during stable boiling) are merging together with 

increasing mass flux, suggesting that its effect on the average heat transfer coefficient is 

almost negligible. On the other hand, the critical region seems to be delayed at higher mass 

fluxes, forewarning a substantial effect of the mass velocity on the experimental CHF.  

 

(a) (b) 
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Figure 5.8 Experimental boiling curves with different mass velocities, at a saturation temperature of 

65 °C and Lh/D = 19. Refrigerants: (a) R134a, (b) R1234yf, (c) R1234ze. 

 

The same considerations are effective for refrigerant R32, at a lower saturation temperature 

of 25 °C, a different multi-minichannel heat sink geometry (Lh/D = 44) and a wider span of 

mass velocities investigated (152 up to 1504 kg/m2 s, see Figure 5.9). 

 

(a) (b) 

(c) 
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Figure 5.9 Experimental boiling curves of refrigerant R32 at a saturation temperature of 25 °C and 

Lh/D = 44, with increasing mass velocity. 

 

5.3.3 Effect of the working fluids on the boiling curves 

The different boiling curve behavior of refrigerants R134a, R1234yf and R1234ze is shown 

in Figure 5.10, in which Lh/D = 19, and the saturation temperature and mass velocity are 

fixed to 75 °C and 149 kg/m2 s (a) and 25 °C and 300 kg/m2 s (b), respectively. In the stable 

boiling region, for a fixed heat flux, R134a and R1234yf exhibit lower values for the wall 

superheat, suggesting a better heat transfer performance if compared to that of refrigerant 

R1234ze. In case of a higher mass velocity (see Figure 5.10 (a)), the average deduced heat 

transfer coefficients of R1234yf even overcomes those of R134a. The boiling curve slope 

begins to decrease at similar heat fluxes for all the three fluids shown when working at the 

same thermodynamic conditions, with a CHF only expected to be slightly lower for 

refrigerant R1234yf. 
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Figure 5.10 Experimental boiling curves with refrigerants R134a, R1234yf and R1234ze obtained at 

Lh/D = 19, with: (a) G = 149 kg/m2 s and Tsat = 75 °C; (b) G = 300 kg/m2 s and Tsat = 25 °C. 

 

5.4 CHF values and parametric analysis 

The experimental CHF values and the influence of all the operating conditions is shown in 

this section. 

(a) 

(b) 
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5.4.1 Effect of saturation temperature and mass velocity on CHF 

The combined effect of the mass flux and saturation temperature on the experimental values 

of CHF is exposed in Figure 5.11, for different refrigerants and Lh/D ratios. The expanded 

CHF uncertainties are also displayed with an error band on the y-axis, whereas the critical 

mass velocities in legend are calculated by averaging all the critical mass fluxes of the 

corresponding curves. Figure 5.11 (a), (b) and (c) refer to refrigerants R1234yf, R134a and 

R1233zd, respectively, and to Lh/D ratios equal to 19, 27 and 44, respectively.  

 

 

(a) 
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Figure 5.11 Experimental CHF values with their expanded uncertainty as a function of the saturation 

temperature and the average critical mass velocity. Tests performed with: (a) R1234yf and Lh/D = 19; 

(b) R134a and Lh/D = 27; (c) R1233zd and Lh/D = 44. 

 

The CHF values are not greatly influenced by the saturation temperature, and the general 

trends for most of refrigerants suggest that a weak decrease of CHF is expected for an 

increasing saturation temperature. In case of R134a and Lh/D = 27 (see Figure 5.11 (b)), the 

(b) 

(c) 
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greatest fall of CHF is recorded at an average mass flux of 300 kg/m2 s, where it passes from 

72.0 to 56.2 W/cm2, with a variation of -21.1%. For R1234yf, at G = 200 kg/m2 s and Lh/D = 

19 (see Figure 5.11 (a)), the reduction with saturation temperature is about -25%, passing 

from 64 W/cm2 to a CHF of 48 W/cm2. A similar behavior is also recorded at low mass 

velocities for refrigerant R1233zd and Lh/D = 44 (see Figure 5.11 (c)). When the mass flux is 

higher than 500 kg/m2 s, instead, the effect of the saturation temperature changes, leading to 

an enhancement of CHF values, which is higher at higher mass velocities. For instance, at G 

=2002 kg/m2 s, the CHF increase is +19%, passing from 139 to 164 W/cm2, when the 

saturation temperature is increased from 55 to 65 °C. The effect of the saturation temperature 

on thermodynamic properties that influence the boiling process and the CHF phenomenon 

has already been discussed by different authors [135] [51] [29]. With ongoing evaporation 

and annular flow, the instability of the liquid film thickness at the wall is a key element for 

the occurrence of critical heat flux. When flow instabilities are promoted, the liquid-vapor 

interfacial shear waves’ amplitude may become large enough to overcome the liquid film 

thickness itself, leaving the heated wall in contact with the vapor phase, with the occurrence 

of a local intermittent dry-out. With a change of the saturation temperature, two different 

parameters intervene in the shape and amplitude of interfacial shear waves. First, the vapor-

to-liquid density ratio increases with increased reduced pressure and leads to a lesser velocity 

difference between the two phases. The size of interfacial waves is then reduced, with a 

lower production of liquid entrained droplets in the vapor core, thus augmenting the flow 

stability and the expected thermal crisis. On the other hand, the surface tension of the fluid is 

in general substantially decreased when increasing the saturation temperature, leading to a 

more breakable contact between the liquid film and the heated wall, then promoting the CHF 

phenomenon. Moreover, also the latent heat is reduced with the increase of the reduced 

pressure, thus having a lower cooling capacity. 

Table 5.3 shows the variation of the three abovementioned properties when changing the 

saturation temperature from 25 up to 75 °C for the refrigerants shown in Figure 5.11. The fall 

in the surface tension and latent heat is substantially inferior in case of R1233zd, so that the 

increase of the densities ratio. R1234yf presents instead the lowest values of the surface 

tension and the highest relative fall (83%) in its value when passing from 25 °C to 75 °C. The 

vapor-to-liquid density ratio is instead comparable to that of R134a and R1234ze, being 
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significantly higher than that of R1233zd, which present the lowest reduced pressure for the 

rage of saturation temperatures investigated. Finally, the latent heat decreases similarly for 

each fluid (with the exception of R1233zd), with a relative reduction of 35%, 39% and 30% 

for R134a, R1234yf and R1234ze, respectively. 

The effect of mass flux on CHF is also evident in Figure 5.11. For any working fluid, the 

experimental critical heat flux substantially increases when increasing the mass velocity. For 

instance, with refrigerant R134a at a saturation temperature of 45 °C and Lh/D = 27, the CHF 

passes from 31.8 up to 127.9 W/cm2, with a variation of +302%. The gap is higher for 

refrigerant R1233zd and Lh/D = 44 when changing mass velocity from 149 to 2002 kg/m2 s. 

In this case, the CHF values for a saturation temperature of 65 °C go from 20.6 up to 165.5 

W/cm2, having an increment of +704%.  

The experimental trends shown are in line with those reported using different fluids and 

geometries in the researches of Ali and Palm [20], Tibiriçá et al. [35], Anwar et al. [45] and 

Callizo et al. [19]. 

 

Table 5.3 Variation of the vapor-to-liquid density ratio, liquid surface tension and latent heat for 

refrigerants R134a, R1234yf, R1234ze and R1233zd evaluated in the whole range of saturation 

temperatures tested. 

Properties modification 

from 25 °C to 75 °C 

𝝆𝑽/𝝆𝑳 [−] 𝝈 [𝒎𝑵/𝒎] 𝚫𝒊𝑳𝑽 [𝒌𝑱/𝒌𝒈] 

25 °C 75 °C Δ% 25 °C 75 °C Δ% 25 °C 75 °C Δ% 

R134a 0.027 0.138 411% 8.03 2.13 -73% 178 116 -35% 

R1234yf 0.035 0.181 420% 6.17 1.06 -83% 145 88 -39% 

R1234ze 0.022 0.109 390% 8.85 2.93 -67% 167 117 -30% 

R1233zd 0.006 0.027 350% 14.5 8.30 -43% 192 161 -16% 

 

5.4.2 Effect of working fluid and Lh/D ratio on CHF 

The effect of the working fluid on CHF is shown in Figure 5.12 for two different saturation 

temperatures and Lh/D ratios. Specifically, Figure 5.12 (a) presents the critical heat flux 

values with their expanded uncertainty as a function of the mass flux for refrigerants R134a, 

R1234ze, R1234yf and R32, with an average saturation temperature of 25.6 °C and a Lh/D 

ratio of 27. Figure 5.12 (b) shows instead the experimental CHF values for R134a, R1234yf 
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and R1233zd at an average saturation temperature of 45 °C and a Lh/D ratio of 44. By having 

fixed the geometry and the operating conditions, the lower CHF values are found for 

refrigerants R1234yf and R1234ze, probably due to their lower surface tension and latent 

heat at disposal. The highest recorded CHFs are instead found with R32, which presents the 

greatest latent heat (271 kJ/kg at 25 °C) and a similar surface tension to that of other 

refrigerants. As regards R1233zd, its very high surface tension bestows a stable liquid film 

thickness with gentler interfacial instabilities and therefore delayed thermal crises, 

overcoming the effect of a small densities ratio, at least in case of low mass fluxes (see 

Figure 5.12 (b)). However, for G > 700 kg/m2 s, the CHF values become smaller than those 

of R134a and R1234yf. It is likely that at higher mass velocities, the inertia effects come to 

be significant and the contribution of a low densities ratio on the film thickness instability 

may overcome the surface tension stabilizing effect.  

 

 

(a) 
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Figure 5.12 Experimental CHF values with their expanded uncertainty as a function of the mass flux, 

for different tested fluids. (a) Tsat = 25.6 °C and Lh/D = 27; (b) Tsat = 45.2 °C and Lh/D = 44. 

 

As regards the effect of a different geometry, Figure 5.13 (a) shows experimental R134a 

CHF values obtained at low mass fluxes (up to 351 kg/m2 s) as a function of the different 

Lh/D ratios of 19, 27 and 44 employed in this experimental campaign. As also recorded in 

other works published on this issue [48] [49], it is evident a general reduction of CHF with 

increasing Lh/D ratios, which is more accentuated for lower mass velocities. For instance, 

CHF drops from 65.4 to 28.0 W/cm2 (-57%) at an average critical mass flux of 201 kg/m2 s. 

The quadratic polynomial curves that fit the experimental data are indicating that the CHF 

reduction with Lh/D will probably be less significant at higher Lh/D ratios.  

However, in case of higher mass velocities (G > 500 kg/m2 s) the experimental trend is 

reversed. The CHF values for refrigerant R134a at 25 °C for all the mass fluxes tested are 

displayed in Figure 5.13 (b). For a mass velocity of 1500 kg/m2 s, the CHF is higher when 

increasing Lh/D from 27 to 44, passing from 122 to 175 W/cm2. The same considerations are 

effective for refrigerant R32 at 25 °C, for which the CHF increase with Lh/D is also recorded 

beginning from G = 498 kg/m2 s. 

 

(b) 
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(a) 

(b) 
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Figure 5.13 Experimental CHF values as a function of the Lh/D ratio and mass flux, obtained with: (a) 

R134a and Tsat = 45 °C; (b) R134a and Tsat = 25 °C; (c) R32 and Tsat = 25 °C. 

 

Finally, the combined effect of mass flux, fluid and Lh/D ratio is shown in Figure 5.14, where 

the evolution of the experimental CHF as a function of the mass velocity for refrigerants 

R134a and R32 with two different Lh/D ratios of 27 and 44, and at a saturation temperature of 

25 °C is displayed. Full lines refer to Lh/D = 27 and dashed lines to Lh/D ratio of 44. For both 

refrigerants, two zones can be observed: at low mass velocities (G < 500 kg/m2 s), CHF is 

higher for the greatest value of the Lh/D ratio, whereas for higher mass fluxes, the critical 

values of Lh/D = 44 overcome those obtained at the same conditions with Lh/D = 27. As 

observed before, CHF is always higher for refrigerant R32. The same trends were also found 

at different saturation temperatures. 

 

(c) 
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Figure 5.14 Experimental CHF at a saturation temperature of 25 °C as a function of the mass flux, for 

R134a and R32, with Lh/D ratios of 27 and 44. 

 

5.5 Assessment of existing correlations 

The experimental CHF are compared in this section against some of the most quoted 

correlations taken from scientific literature. Particularly, the correlations of Lazarek and 

Black [30], Qu and Mudawar [21], Zhang et al. [50], Wojtan et al. [23], Kuan [34], Ong and 

Thome [24], Mikielewicz et al. [43], Callizo [51], Anwar et al. [36], Tanaka et al. [48] and 

Katto and Ohno [31] were tested on the CHF experimental database. 

5.5.1 A brief note on the use of CHF correlations 

As shown in the literature review, the CHF empirical or semi-empirical correlations rely on 

the use of Lh/D ratio and the Weber number, which also contains the channel length or 

diameter as characteristic dimension. The difference between heated length and channel 

length and between heated diameter and channel diameter is omitted or not always clear, 

since most of the studies are related to circular channels, uniformly electrically heated on 

their perimeter for all their length. 

In this thesis, when not expressly indicated by the authors, the Lh/D ratio is computed by 

using the heated length Lh (25 and 35 mm for the two test section arrangements) and the 

Low G (< 500 kg/m2 s) 

High G (> 500 kg/m2 s) 
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heated equivalent diameter Dh, as already defined by Ong and Thome [24] in their CHF 

prediction methods for rectangular channels: 

 
4

2

ch ch
h

ch ch

W H
D

W H


   (5.2) 

Being the Weber number related to hydrodynamic phenomena, instead, it was evaluated by 

using the channels length L or the equivalent diameter D, unless different dispositions given 

by the authors. 

5.5.2 Statistical analysis 

The statistical parameters MAE, MRE and SD were used for this analysis. The Mean 

Absolute Error (MAE) and Mean Relative Error (MRE) are defined as follows: 
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In the equations, ERi is the percentage variance of the experimental CHFi value from the 

predicted one and n is the number of data points: 
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Finally, the standard deviation SD is evaluated as: 

  
2

1

1 n

i

i

SD ER MRE
n 

     (5.6) 

For a fair comparison, the experimental data in which the expanded uncertainty in the 

saturation temperature exceeded ±1 °C, or that of the mass flux or CHF exceeded ±6%, were 

excluded from this analysis. 

The assessment summary is presented in Table 5.4 and some results of the statistical analysis 

are graphically shown in Figure 5.15. The experimental points have different markers and 

colors, in order to investigate on the validity of the correlations for high values of the mass 
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velocities and for different values of the Lh/D ratio. In particular, circular and square markers 

refers to G < 500 kg/m2 s and G > 500 kg/m2 s data, respectively, while the blue, red and 

green colors are related to Lh/D ratios of 19, 27 and 44, respectively. 
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Figure 5.15 Experimental versus predicted CHF values obtained with different correlations [38]. 

Colors and markers refer to different Lh/D ratios and mass flux ranges, respectively. a) Kuan [34]; b) 

Mikielewicz et al. [43]; c) Callizo [51]; d) Anwar et al. [36]; e) Lazarek and Black [30]; f) Wojtan et 

al. [23].  

(a) (b) 

(c) (d) 

(e) 

(f) 
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Table 5.4 Summary of comparisons with the chosen correlations [38]. Each parameter has been 

evaluated for the whole database and also separately for the experimental points with mass velocities 

lower and higher than 500 kg/m2 s. The best statistical results related to each parameter are 

highlighted in bold. 

 

The comparison results of the correlations of Kuan [34], Mikielewicz et al. [43], Callizo [51] 

and Anwar et al. [36] are presented Figure 5.15 (a)-(d). The predictive methods of Kuan and 

Mikielewicz et al. show a good agreement for low mass velocities at any Lh/D ratio, slightly 

overpredicting the experimental points, while they largely fail for G > 500 kg/m2 s. The same 

considerations are effective for the predictive methods of Callizo and Anwar et al., that work 

even better when G < 500 kg/m2 s. It is important to state that almost all the previous 

correlations, with the exception of that of Mikielewicz et al., are conceived and developed for 

low mass velocities.  

Lazarek and Black [30] and Wojtan et al. [23] correlations agreement is instead shown in 

Figure 5.15 (e)-(f). Lazarek and Black predictive method slightly underpredicts the 

experimental CHFs at low mass velocities, while it worsens for G > 500 kg/m2 s. Also in this 

Authors 
MAE MRE SD 

G < 500 

kg/(m2 s) 

G > 500 

kg/(m2 s) 
whole 

G < 500 

kg/(m2 s) 

G > 500 

kg/(m2 s) 
whole 

G < 500 

kg/(m2 s) 

G > 500 

kg/(m2 s) 
whole 

Wojtan et al. 

(2006) 
27.9 30.8 28.5 -23.5 -30.3 -25.0 472.4 333.7 450.3 

Zhang et al. 

(2006) 
52.3 56.3 53.2 -52.2 -56.3 -53.1 225.7 90.5 199.4 

Lazarek-Black 

(1982) 
32.5 37.5 33.6 -24.3 24.2 -13.8 771.0 1503.6 

1327.

8 

Ong-Thome 

(2011) 
42.4 36.8 39.0 -41.6 -31.5 -37.3 335.9 499.5 440.3 

Kuan (2006) 24.5 116.2 44.3 23.1 116.2 43.3 506.7 4758.3 
2894.

2 

Qu-Mudawar 

(2004) 
961.7 1040.0 978.7 961.7 1040.0 978.7 272094 196328 

2567

42 

Callizo (2010) 11.1 58.7 21.4 -0.2 58.1 12.4 243.7 2118.3 
1225.

2 

Katto-Ohno 

(1984) 
39.9 55.5 43.3 -38.6 -55.5 -42.2 389.7 141.0 384.8 

Anwar et al. 

(2015) 
15.6 92.5 32.2 11.5 92.5 29.1 373.4 3858.9 

2237.

9 

Mikielewicz et 

al. (2013) 
46.0 112.7 60.4 45.7 112.7 60.2 715.3 4612.8 

2321.

3 

Tanaka et al. 

(2009) 
85.7 76.5 83.7 -85.7 -76.5 -83.7 14.3 43.6 35.0 
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case, the correlation was conceived with low G data (< 750 kg/m2 s). The predictive methods 

of Wojtan et al. works instead relatively better at low and high mass fluxes. Most of the 

experimental CHFs are underestimated, but the method does not fail completely when 

increasing the mass velocities and this is probably due to the fact that the authors database 

contains experimental points up to G = 1600 kg/m2 s. Different values of Lh/D are also fairly 

fit with this correlation. Similar results and considerations can be made with the correlation 

of Ong and Thome [24], which is not included in Figure 5.15.  

The remaining predictive methods of Tanaka et al. [48], Zhang et al. [50] and Qu and 

Mudawar [21] largely fail to predict the present experimental database: they were then 

excluded from the graphical analysis but left in Table 5.4. The parameters MAE, MRE and 

SD were calculated both for the entire database and then separated for low and high mass 

velocities. The correlation of Callizo [51] works best in the whole database (MAE = 21.4%), 

followed by the predictive methods of Wojtan et al. [23]and Anwar et al. [36], with a MAE of 

28.5% and 32.2%, respectively. Particularly, the best agreement is found for low mass 

velocities (MAElow G of 11.1% and 15.6%, respectively) for Callizo and Anwar et al. These 

two correlations, however, largely fail when G > 500 kg/m2 s. 

Katto-Ohno [31] prediction method underestimates most of the experimental database, with a 

MAE equal to 43.3% and a MRE of -42.2%. A better agreement is instead found at low mass 

fluxes, in which the calculated MAElow G is 39.9%. 

The correlation of Ong and Thome [24] better works with the experimental CHF for higher 

mass velocities with a MAEhigh G of 26.8%. It is followed by the predictive methods of 

Wojtan et al. [23] and Lazarek and Black [30] (MAEhigh G = 30.8% and 37.5%, respectively). 

These equations are actually more balanced, since the absolute deviations are relatively low 

also for mass fluxes inferior to 500 kg/m2 s.  

5.5.3 Considerations on the CHF correlations structure 

The comparison between predicted and experimental CHF values has shown that a 

considerable amount of correlations works quite well for all the Lh/D ratios and as far as the 

mass velocity is kept below 500 kg/m2 s. In most cases, this is due to the authors’ original 

database, which lacked of high G experimental data.  
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By considering a typical CHF correlation structure (see Equation (5.7)), the effects of Lh/D 

and that of the mass flux G are included in the exponents δ and γ of the Weber number, 

respectively. 

 Δ v h
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By including the thermodynamic properties influence in the saturation temperature (i.e. 

reduced pressure), and observing that the mass flux is contained with the power of two in the 

definition of the Weber number, the general CHF dependences may be summarized as: 
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  (5.8) 

Figure 5.16 (a) compares the experimental CHF trend of R134a at 25 °C with the mass 

velocity against that obtained with some of the mentioned correlations. As expected, the 

Lazarek and Black [30] correlation produces a linear increase of CHF with the mass flux, 

since the Weber number is not considered (γ = 0). Similar curves are also found with the 

correlations of Callizo [51] and Mikielewicz et al. [43], which have a very low exponent of 

the Weber number (γ = 0.034 and 0.05, respectively). Only the predictive method of Wojtan 

et al. [23], having a γ exponent not negligible and equal to 0.24, escapes from the linear 

trend, thus fairly representing the experimental data in all their range of mass velocities. 

Figure 5.16 (b) shows the CHF values for R134a at Tsat = 25 °C as a function of the Lh/D 

ratio for different mass fluxes. The experimental points are compared to the correlation of 

Callizo [51], which is represented by the colored full lines. The decreasing trend with Lh/D is 

well caught in case of low mass velocities, suggesting that the exponent δ = 0.942 is a good 

option of the experimental data. At higher mass fluxes, instead, the correlation keeps on 

exposing the same behavior, failing to represent the experimental CHF values for G = 1000 

and 1500 kg/m2 s  
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Figure 5.16 Experimental and predicted CHF evolution with mass velocity G and the Lh/D ratio [38]. 

(a) CHF as a function of the mass flux, for R134a at Tsat = 25 °C and Lh/D = 27. The full lines refer to 

the expected trend provided by the mentioned correlations; the dashed line refers to the present 

experimental database. (b) CHF for R134a at Tsat = 25 °C as a function of the Lh/D ratio for different 

mass fluxes. The dashed lines refer to the present experimental database, the full lines refer to values 

obtained with the prediction method of Callizo [51]. 

  

(a) 

(b) 
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6 Flow boiling experimental facility and method 

This chapter presents the results from the experimental investigation on saturated flow 

boiling heat transfer of refrigerants R134a and R32 in a stainless steel horizontal tube of 6.0 

mm internal diameter. Tests were performed by measuring the heat transfer coefficient in 

four different positions along the tube perimeter in order to focus the attention on the flow 

symmetry and in particular on the influence of the operative parameters on the asymmetric 

annular flow structure. 

The test facility used for the flow boiling tests is the same employed for the CHF 

experiments. Some necessary changes were made on the apparatus itself and on the 

measurement instrumentation in order to match with the new experimental campaign. All the 

specifications that remained unchanged are not described in this chapter and the reader is 

instead referenced to Chapter 4. 

 

 

6.1 Flow boiling test facility  

6.1.1 Apparatus description 

Figure 6.1 is a schematic representation of the test facility used for the flow boiling 

experiments. The main fluid loop portrayed as a black line consisted of a throttling valve, a 

preheater section and a diabatic test section. The magnetic gear pump, the brazed plate 

condenser, Coriolis flow meter, double-pipe sub-cooler, liquid receiver and other accessories 

were the same used for the CHF experiments.  

The sub-cooled refrigerant passed through the magnetic gear pump, where a throttling valve 

on the liquid line was employed during the experiments to adjust the system pressure and the 

mass flow rate to the desired values. The liquid then went into the preheater section, in which 

the heat was supplied by four fiberglass heating tapes (each of them with a nominal heat 

power of approximately 900 W at 230 V and 25 °C, as indicated by the manufacturer). The 

same solid state relay used to vary the applied voltage in the CHF experiments was here 
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employed to impose a desired preheater electrical load. The fluid then passed through an 

adiabatic, smooth, horizontal part, whose length of 40 cm (>60 tube internal diameter) was 

able to obtain a fully developed flow at the inlet of the tube section. A diabatic test section of 

193.7 ±0.79 mm allowed the heat transfer coefficient and pressure drop measurements. 

Another micrometric throttling valve at the test section outlet was used for the single-phase 

tests to adjust the system pressure and mass flow rate. The liquid/vapor refrigerant mixture 

was condensed with the plate heat exchanger and then flowed into the liquid receiver. The 

working fluid was then sub-cooled thanks to the double pipe heat exchanger before the pump 

suction head that closed the loop. When very low mass fluxes were needed, the by-pass 

circuit was also activated with a manually controlled by-pass valve. The demineralized water 

flowing in the light blue line in Figure 6.1and feeding the condenser and the sub-cooler was 

controlled in temperature by setting a thermostatic bath, whose specifics are given in section 

4.1.1.  

Pressure transducers and resistance Pt100 thermometers placed throughout the apparatus 

were the same used for the CHF experiments. Details of the new sensors and transducers 

employed will be given in the measurement instrumentation section. 
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Figure 6.1 Schematic representation of the flow boiling experimental apparatus 

 

6.1.2 Flow boiling test section 

The test section employed in this work is a smooth, horizontal, circular stainless steel (type 

316) tube with an internal diameter of 6.00 ±0.05 mm and an outer diameter of 8.00 ±0.05 

mm. Figure 6.2 displays a picture and a schematic view of the test section with its 

geometrical characteristics. The heat is applied to the fluid by Joule effect, by means of a DC 

power supply unit (TDK-Lambda GEN 8-300, able to give up to 8 V and 300 A) and two 

copper electrodes welded on the external tube surface (see points A and E in Figure 6.2), 

placed at a distance of 193.7 ±0.79 mm one another. The electric connection between the DC 

power supply unit and the copper electrodes on the test tube was made with two short (<1.0 

m) copper wires having a cross section of 70 mm2. Two pressure taps for the pressure drop 

measurements were placed at a distance of 237.5 ±0.91 mm and included the diabatic test 

section.  
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The heat transfer coefficient measurements were taken at a distance of 146.7 ±0.64 mm far 

from the diabatic inlet section (see point C in Figure 6.2). In this position, four T-type 

thermocouples were placed on the top, bottom, left and right sides of the tube surface for the 

measurement of the outer wall temperature. A high temperature epoxy resin and a Kapton 

adhesive layer guaranteed the sensors fastening and their electrical insulation from the heated 

tube. The measurement points for the DC voltage was not located on the copper electrodes, 

since they could suffer of locally concentrated tension drop. Two measurement wires were 

instead clamped at a certain distance (see points B and D in Figure 6.2) to guarantee the heat 

flux uniformity. The SS316 test tube was supplied with DC current, and its electrical 

resistance is estimated to be 5.1 ±0.084 mΩ. A suitable amount of synthetic rubber (𝜆 = 

0.040 W/m K at 40 °C) covered the test section and the whole experimental facility in order 

to minimize the heat losses. The preheater section, due its higher temperatures reached 

during operation, was firstly covered by a high-temperature insulation wool (𝜆 = 0.050 W/m 

K at 200 °C, as indicated by the manufacturer) and then covered by another layer of synthetic 

rubber. 

 

 

 

Geometrical features 
A, E copper electrodes 

B, D 
voltage measurement 

points 

C 
temperature 

measurement point 

AE 193.7 ±0.79 mm 

BD 101.6 ±0.41 mm 

AC 146.7 ±0.64 mm 

d 
6.00 ±0.05 mm (internal 

diameter) 

do 
8.00 ±0.05 mm (outer 

diameter) 

PR 
237.5 ±0.91 mm 

(pressure taps distance) 

PC 166.9 ±0.91 mm 

 

Figure 6.2 Photograph of the stainless steel tube and its main geometrical characteristics 
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6.2 Measurement instrumentation for flow boiling experiments 

Some transducers already employed for the CHF experimental campaign were also used for 

the flow boiling experiments. Specifically, the same Pt100 thermometers shown in 4.1.1 were 

used in these tests to monitor the correct functioning of the apparatus. Moreover, the 

refrigerant mass flow rate and the preheater electrical loads were measured with the Coriolis 

flow meter and the digital wattmeter already described in 4.2.3 and 4.2.5, respectively. The 

inlet pressure, wall temperatures and heat power to the test tube were instead obtained with 

new transducers, described in detail in this section. The pressure drop was still measured with 

the same differential pressure transducer (1151 Smart, provided by Rosemount), but it was 

calibrated in-situ and the calibration procedure is described in the following section. 

6.2.1 Absolute pressure measurements 

The absolute pressure at the tube test section inlet was measured with a high accuracy 

absolute pressure transducer (Wika PE8154), with a range of measurement 0-25 bar, giving a 

current output signal of 4-20 mA. The transducer was calibrated by the manufacturer, 

providing an overall accuracy of ±0.1%. The refrigerant absolute pressure was also measured 

at the preheater inlet and at the liquid receiver inlet, with the same transducers used for the 

CHF experiments (see section 4.2.1), having a range of 0-50 bar and an accuracy of ±0.3%. 

6.2.2 Pressure drop measurements and calibration procedure 

The pressure drop across the test section was measured with the 1151 Smart differential 

pressure transducer provided by Rosemount. Before being assembled into the test facility, it 

was calibrated in-situ by measuring the height of a liquid column used to impose the physical 

pressure drop to the transducer.  

The calibration procedure followed the following steps: 

a) The low pressure tap of the transducer was left open and unconnected, in contact with 

the surrounding ambient atmospheric pressure. The high pressure tap was instead 

connected to a U-shape glass tube, which was vertically fixed on the wall beside a 

yardstick used for the height measurement. 
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b) Demineralized water was poured into the glass tube from the top, flooding the U-

shape glass tube up to the same level of the pressure taps. In this case, the physical 

zero level was imposed and then electrically set on the transducer. 

c) More water was poured in the glass tube up to a total height difference from the zero 

level of 1.485 ±0.004 m. The distance was measured by looking 20 times at the same 

level by different operators and the standard deviation of the measurement was taken 

as uncertainty. The span level was then electrically set on the transducer. The 

corresponding full scale of 14.513 ±0.005 kPa was calculated by using an 

acceleration of gravity of 9.806 m/s2 and a liquid water density of 996.66 kg/m3, 

related to a measured temperature of 26.5 °C taken during the calibration procedure. 

d) Other liquid level measurements were taken at different heights (12.5%, 25% and 

50% of the full scale) to verify the linear trend of the measured pressure drop with the 

output signal of 4-20 mA. 

e) The calibration curve was finally obtained fitting the five measurements with a line. 

The corresponding equation, with the output current I expressed in [mA] and the 

resulting pressure drop ΔP in [kPa] is displayed below. The graphical results of the 

calibration procedure are shown in Figure 6.3, in which both the calibration points 

and the residual errors of the linear equation are displayed. The overall accuracy, 

obtained by taking into account both the uncertainty in the measured pressure drop 

and the residuals of the calibration curve was estimated to be ±0.06 kPa 

 0.9054 3.5827P I      (6.1) 
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Figure 6.3 Calibration of the differential pressure transducer. (a) Calibration points and curve. 

Equation (6.1) reflects the linear trend. (b) Residual errors from the linear trend 

 

6.2.3 Wall temperature measurements and thermocouples calibration procedure 

Four T-type thermocouples were chosen for the estimation of the outer wall tube 

temperature. A good accuracy of these measurements was necessary for the goodness of the 

heat transfer coefficient results. For this reason, the four sensors were calibrated in-situ 

before being positioned on the tube surface. 

(a) 

(b) 
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The calibration procedure was carried out with the thermostatic bath by using two calibrated 

RTDs having an overall uncertainty of ±0.10 °C. The schematic set-up facility for the 

calibration process in shown in Figure 6.4. Specifically, each thermocouple to be calibrated 

was laid down in the thermostatic bath in close contact with one of the RTDs. Another 

thermocouple with the second calibrated RTD was instead placed in the environment. Two 

copper blocks (approximately 2x2x5 cm3) were used to keep RTDs and thermocouples 

together and to provide a higher heat capacity during the calibration process, avoiding small 

possible temperature fluctuations. The thermocouple terminal wires were connected to the 

same module (NI 9212 provided by National Instruments), which could measure the 

thermocouples output voltage with a resolution of 0.85∙10-9 V.  

 

 

Figure 6.4 Schematic of the thermocouple calibration arrangement 

 

Being Δ𝑉0 the voltage measured from the thermocouple in the environment and Δ𝑉𝑏𝑎𝑡ℎ the 

voltage of the thermocouple in the bath, the functional relations may be written as: 

 
'( )bath module bathT T f V     (6.2) 

 
''

0 0( )moduleT T f V     (6.3) 

Subtracting (6.3) from (6.2), it is possible to eliminate the influence of the unknown module 

temperature 𝑇𝑚𝑜𝑑𝑢𝑙𝑒: 

 
'''

0 0( )bath bathT T f V V      (6.4) 
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With the use of the RTDs in the thermostatic bath and in the environment, the calibration 

function 𝑓′′′ could be easily found. The four thermocouples (for the top, bottom, left and 

right sides of the tube) were calibrated using this procedure, using bath temperature from 5 to 

85 °C. thus covering the whole range of possible operative conditions during the 

experiments. The maximum tolerated fluctuations for the RTDs temperature and for the 

recorded voltages during the calibration process was comparable to the measurement 

resolutions (0.032 °C and 7∙10-7 V, respectively). The accuracy for each thermocouple 

measurement was then set to ±0.10 °C, equal to that of the RTDs. As an example, the 

equation below represents the calibration function 𝑓′′′ of one of the four thermocouples 

positioned on the test tube (on the top) and Figure 6.5 shows its calibration curve obtained 

with the abovementioned procedure, together with the residual errors of the cubic equation. 

 
3 2

0 0.042991 0.77924 24.358 0.0038764thT T X X X          (6.5) 

where 𝑋 = Δ𝑉𝑡ℎ − Δ𝑉0. 

 

 

(a) 
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Figure 6.5 Calibration of the thermocouple positioned at the top side of the tube. (a) Calibration 

points and curve. Equation (6.5) reflects the cubic trend. (b) Residual errors from the linear trend 

 

6.2.4 Electrical input to the test section 

The heat power applied to the test tube by Joule effect for the wall heat flux estimation was 

calculated by independently measuring the DC voltage and current applied. Specifically, the 

voltage applied was obtained by using an analogic input module (FieldPoint FP AI-110, 

provided by National Instruments) and two wires fixed on the tube outer surface (see points 

BD in Figure 6.2). The FP module had a range of 0-5 V, carrying an uncertainty of ±0.03% 

of the reading. The DC current was instead directly measured with the DC power supply unit 

(0-300 A). The manufacturer guaranteed an overall accuracy of ±1.0% of the reading.  

6.2.5 Data acquisition system and user interface 

Similarly to the CHF experiments, the different output signals coming from the transducers 

were read by the FieldPoint modules and transferred to a pc Ddesktop and monitored in 

Labview [121] environment. Further specifications can be found in section 4.2.6.  

The user interface in Labview [121] for the flow boiling experiments is shown in Figure 6.6. 

All the parameters of interests were read in real-time and their overall uncertainty in the 

(b) 
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recording time was estimated, to let the user be aware of the goodness and stability of each 

experiment. The thermodynamic conditions at the preheater inlet, test section inlet and test 

section outlet were visible with a green, orange and red dots on a p-h diagram, respectively. 

Automatic controls were also able to shut-off the electric load applied both to the test section 

and the preheater in case of the following dangerous situations: 

a) Preheater fiberglass heating tapes temperatures (monitored with two T-type 

thermocouples placed between tube and tapes) over 150 °C. 

b) System pressure above 25 bar 

c) Mass flux when heat load is applied below 50 kg/m2 s 

 

 

Figure 6.6 Labview [121] interface for the flow boiling experiments 

 

6.3 Method for flow boiling experiments 

The data reduction process for the flow boiling experiments is explained in this section. 
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6.3.1 Data reduction for the flow boiling experiments 

At each thermocouple position (top, bottom, left and right side of the tube surface), the local 

heat transfer coefficient was evaluated by using the Newton equation: 

 
wall fluid

q
h

T T



  (6.6) 

The mean heat flux presented in the result section was instead calculated by considering the 

arithmetical average of the four heat transfer coefficients obtained around the tube perimeter: 
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The heat flux on the test tube, as explained in the previous paragraph (see section 6.1.2), was 

calculated with the measured voltage 𝑉𝐵𝐷 between the positions B and D and the current 

𝐼𝑡𝑢𝑏𝑒 flowing in the stainless steel tube: 
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The inner wall temperature 𝑇𝑤𝑎𝑙𝑙 was evaluated by the measured outer wall temperature 𝑇𝑡ℎ 

and considering 1-D heat transfer and uniform generation in the metal tube: 
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In the above equation, d and d0 represent the inner and outer diameter of the tube, 

respectively. 𝜆𝑡𝑢𝑏𝑒 is the tube thermal conductivity, considered equal to 16.26 W/m K for all 

the experiments performed. The fluid saturation temperature 𝑇𝑓𝑙𝑢𝑖𝑑 at the measurement point 

C (see Figure 6.2) is evaluated by considering a linear pressure drop from the tube inlet: 

 C in

PC
P P P

PR
     (6.10) 

 , ( )fluid sat C sat CT T T P    (6.11) 
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The local vapor quality at the measurement point C is: 
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in which 𝑖𝐿,𝐶 and Δ𝑖𝐿𝑉,𝐶 refer to the local liquid saturation enthalpy and latent heat and 𝑖𝐶 is 

the local enthalpy at the measurement point, that was calculated using an energy balance on 

the preheater section: 
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The test section inlet enthalpy 𝑖𝑖𝑛 was computed with an energy balance applied to the 

preheater section: 
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m
    (6.14) 

 , , ,( , )in preh in preh in prehi f T P   (6.15) 

In the above equations, 𝑄̇𝑝𝑟𝑒ℎ is the preheater load directly measured by the digital wattmeter 

and 𝑖𝑖𝑛,𝑝𝑟𝑒ℎ is the preheater inlet enthalpy (in sub-cooled liquid condition, obtained with 

measured temperature and pressure). 

As regards the two-phase pressure drop across the test section, the frictional contribution was 

evaluated by subtracting the momentum contribution to the total measured pressure drop Δ𝑃. 

The gravitational contribution was neglected due to the horizontal disposition of the tube: 

 fr accP P P      (6.16) 

The momentum pressure drop due to the ongoing evaporation inside the test section was 

calculated as follows: 
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The void fraction 𝛼 was obtained with the Steiner [85] version of the drift flux model of 

Rouhani and Axelsson [136]: 
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  (6.18) 

The vapor quality x and all the saturated thermodynamic properties in the void fraction 

expression were computed as an arithmetical average of the inlet and outlet vapor refrigerant 

properties. Finally, the frictional pressure gradient presented in the results section could be 

found as: 
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  (6.19) 

All refrigerant thermodynamic properties are evaluated with the software REFPROP 9.0 

[123], developed by NIST. The whole data reduction is instead carried out with MATLAB 

software [122]. 

 

6.4 Uncertainty analysis in flow boiling experiments 

In this section, the uncertainty analysis of measured and derived quantities for the two-phase 

heat transfer and pressure drop experiments is shown. The uncertainty theory and calculation 

method is already discussed in section 0 and it is omitted in this part. 

6.4.1 Uncertainty of measured quantities 

Table 6.1 provides a summary of the measurement range and the systematic uncertainty for 

all the measurement instrumentation. Some sensors and transducers were already presented 

in Table 4.1 for the CHF experiments. The law of propagation of error was then used to 

evaluate the combined uncertainty of the measured parameters, by adding the standard 

deviation of each sample. The expanded uncertainty was finally calculated using a coverage 

factor z = 2, guaranteeing a confidence level of 95.45%.  
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Table 6.1 Summary of the measurement instrumentation for the flow boiling experiments with their 

operative range and accuracy 

Measurement Range 
B-type uncertainty 

𝒘𝒙  

Temperature (4-wire 

Pt100 RTD) 
-80/250 °C ±0.180 °C 

Wall temperature (4 T-

type thermocouples) 
5/85 °C 

 

±0.10 °C  

(calibrated in-situ) 

 

Inlet absolute pressure 0/25 bar ±0.1 % reading 

Absolute pressure 0/50 bar ±0.3 % reading 

Differential pressure 0/14.51 kPa ±0.06 kPa 

Flow meter 0.00/115.7 g/s ±1 % measurement 

Electrical power 

(preheater) 
0/8 kW ±1 % measurement 

Voltage (test section) 0/5 V 
±0.03 % 

measurement 

Current (test section) 0/300 A ±1 % measurement 

 

6.4.2 Uncertainty of derived quantities 

The evaluation of the expanded uncertainty of all the derived parameters of interest is shown 

here in detail. The law of propagation of error was implemented for all the calculated 

quantities.  

Mass flux 

The uncertainty of the mass velocity takes into account that of the measured mass flow rate 

and of the internal diameter: 
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  (6.20) 
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Excluding the experiments performed during dry-out, in which the fluctuation of the mass 

flow rate was substantial, all the tests were recorded with an expanded uncertainty of the 

mass flow rate included in a ±3%.  

Heat flux 

The expanded uncertainty of the heat flux is dependent on the current and voltage applied to 

the test section and to the measured inner tube diameter and the distance BD where the 

voltage was taken (see Figure 6.2): 
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  (6.21) 

The heat flux was kept stable during the experiments and its maximum expanded uncertainty 

was found to be ±1.8%. 

Saturation temperature 

The uncertainty of the saturation temperature at the test section inlet was evaluated by 

considering the influence of the measured inlet pressure, according to Equation (4.29) 

already used for the CHF experiments. The uncertainty of the saturation temperature at the 

measurement point C was instead also dependent on the uncertainty of the measured lengths 

and pressure drop (see Figure 6.2): 
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  (6.23) 

In the flow boiling experimental campaign, the maximum uncertainty in the saturation 

temperature in the experimental points far from the occurrence of dry-out was found to be 

±0.07 °C. 

Preheater inlet, test section inlet and saturated enthalpies 
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The enthalpy at the test section inlet was computed with an energy balance performed on the 

preheater. Its related uncertainty is: 
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  (6.24) 

In the above equation, the preheater inlet enthalpy was calculated with the measured 

preheater inlet temperature and pressure. Its uncertainty 𝑢𝑐(𝑖𝑖𝑛,𝑝𝑟𝑒ℎ) then followed the same 

expression as Equation (4.34). The uncertainty of the enthalpy at the measurement point C 

was instead obtained by deriving Equation (6.13): 
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   (6.25) 

Vapor quality 

The uncertainty of the vapor quality at the measurement point C is a function of the 

uncertainty of the inlet enthalpy and the measurement point enthalpy, respectively, and of the 

saturated liquid and vapor enthalpies. Its expression is written below: 
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  (6.26) 

The uncertainty of the saturated enthalpies was found by using the same expressions 

indicated in Equation (4.32) and Equation (4.33), by using the uncertainty of the pressure in 

the measurement point (see Equation (6.23)). 

During experiments, the uncertainty of the vapor quality at the measurement point was 

always inferior to ±0.12 for the tests far from the dry-out occurrence. 

Wall temperature 

The uncertainty of the inner wall temperature was estimated by deriving Equation (6.9): 
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(6.27) 

In the above equation, the parameter γ and its uncertainty are defined as: 
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The uncertainty of the outer wall temperatures 𝑢𝑐(𝑇𝑡ℎ) measured by the thermocouples was 

instead computed by taking into account the calibration process uncertainty (±0.10 °C) and 

the fluctuations in the measured voltages during operation. 

Heat transfer coefficient 

The heat transfer coefficient uncertainty at any measurement point was: 
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  (6.32) 

The uncertainty of the mean heat transfer coefficient, averaged along the tube perimeter, was: 

 2 2 2 2( ) 0.25 ( ) ( ) ( ) ( )c mean c top c bot c left c rightu h u h u h u h u h       (6.33) 

Most of the database provided heat transfer coefficient values with an overall uncertainty 

below ±20%. Exceptions (>40%) were found at the occurrence of dry-out, due to the more 
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significant fluctuations of the wall temperatures, mass flow rate and system pressure in such 

condition. 

Pressure gradient 

The pressure gradient uncertainty was calculated by taking into account both the measured 

pressure drop uncertainty and the uncertainty of the measured length 𝑃𝑅̅̅ ̅̅ : 
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In most of the experiments, the frictional pressure gradient uncertainty was kept below ±2.0 

kPa. Significant higher values were instead reached in case of dry-out occurrence. 

The maximum expanded uncertainties found for the mean heat transfer coefficient, pressure 

drop and main operative parameters is shown in Table 6.2.  

 

Table 6.2 Summary of heat transfer coefficient, pressure gradient and operating parameters typical 

and maximum recorded uncertainties found during the experiments 

Parameter 
Maximum uncertainty 

for 90% of the database 

Maximum recorded 

uncertainty (dry-out 

conditions)  

Saturation temperature Tsat ±0.07 °C ±0.15 °C 

Mass flux G ±3% ±5% 

Heat flux q ±0.70% ±1.8% 

Vapor quality x ±0.12 ±0.55 

Heat transfer coefficient h ±20% ±45% 

Pressure gradient 
𝚫𝑷

𝚫𝒛
 ±2.0 kPa ±2.9 kPa 
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6.5 Test section and preheater validation 

Before the two-phase flow boiling experiments, the correct insulation of the preheater and the 

test section were verified with the help of liquid single-phase tests performed with refrigerant 

R134a. These tests were also able to check the correct functioning of the measurement 

instrumentation. The fluid charge in the apparatus, generally equal to 2.8 kg, was temporarily 

increased to 4.5 kg in order to get sufficient sub-cooling at the inlet of preheater and test 

sections, thus maintaining the compressed liquid condition. 

 

6.5.1 Preheater adiabaticity tests 

The correct insulation of the preheater section was verified with 16 dedicated liquid single 

phase tests. The mass flow rate was varied from 18 to 53 g/s, the preheater inlet temperature 

was set from 26 to 28 °C and the sub-cooling at the preheater outlet was always kept high 

(from 5 to 25 °C) in order to avoid possible two-phase flow. The electrical heat power 

imposed to the fiberglass heating tapes was varied from 220 up to 1460 W and compared to 

the heat absorbed by the liquid refrigerant flowing into the preheater section, which was 

calculated by neglecting the pressure drop contribution to the enthalpy variation: 

 , ,( )preh out preh in prehQ m c T T      (6.35) 

The liquid specific heat capacity was evaluated with the software REFPROP 9.0 [123] as a 

function of the arithmetical average of the preheater inlet and outlet fluid temperatures. The 

results of the adiabaticity tests (see Figure 6.7) showed that the heat losses were 

approximately 10% of the imposed heat rate, at any condition. In a further analysis, it was 

found that the heat losses at the preheater could be fairly fitted with a linear equation 

depending on the temperature difference between the fiberglass heating tapes and the 

surrounding environment, which ranged from 5 to 60 °C: 

 , ,2.025 ( ) 2.376loss preh preh tape ambQ T T      (6.36) 
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Figure 6.7 Adiabaticity tests performed for the preheater section 

 

6.5.2 Test section adiabaticity tests 

The correct insulation of the test section was instead verified with 34 tests performed in 

liquid single-phase. For these experiments, the mass flow rate was varied from 16 to 44 g/s, 

the test section inlet temperature from 28 to 31 °C and a considerable inlet sub-cooling (from 

10 to 21 °C) was provided to ensure single-phase flow. The DC electrical power applied to 

the test section was varied from 40 to 175 W, covering the whole range of heat fluxes 

imposed during the flow boiling experiments. By neglecting the pressure drop contribution, 

the energy balance was performed as indicated in Equation (6.35) and the absorbed heat was 

compared to the electrical power.  

The heat dispersed was found to be around 10%. Actually, the highest losses were obtained 

only in case of very high heat fluxes (more than 50 kW/m2) and high tube temperatures 

(more than 40 °C), which were not operative conditions encountered in the present 

experimental campaign. The remaining points show heat losses below 4%, that were 

neglected in the data reduction process. 
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Figure 6.8 Adiabaticity tests performed for the flow boiling test section 

 

The liquid single phase heat transfer coefficient was also estimated for the four thermocouple 

measurement and compared to the predictive methods of Dittus-Boelter [70]. Specifically, 

the single phase heat transfer coefficient hsp was evaluated according to the equation below, 

already used for the CHF validation tests.  

 sp

wall f

q
h

T T



  (6.37) 

The wall temperature Twall was calculated with the same expression used in two-phase 

experiments (see Equation (6.9)). The fluid temperature Tf  at the thermocouple position was 

obtained from:  

 f in

AD Q
T T

m cAE
  


  (6.38) 

where the specific heat c was evaluated at the average temperature between the inlet and 

outlet sections. The comparison between experimental and expected liquid phase heat 

transfer coefficient is shown in Figure 6.9. Most of the experimental points fall into the an 

error band of ±20% from the Dittus-Boelter correlation, 
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Figure 6.9 Experimental and predicted single-phase heat transfer coefficient against Reynolds number 

 

6.5.3 Comparison with previous studies 

Fur a further validation, some two-phase heat transfer coefficient tests were compared to 

other data taken from scientific literature and obtained in similar working conditions. Figure 

6.10 shows the R134a two-phase heat transfer coefficient as a function of the vapor quality 

for an average mass flux of 200 kg/m2 s, an imposed heat flux of 5.0 kW/m2, and a saturation 

temperature of 20 °C. Values from this study were compared to those of Grauso et al. [62], 

obtained for a single circular tube of the same inner diameter of 6.0 mm and at similar 

operating conditions. The agreement between the two independent studies was satisfactory, 

with points that blend one another especially in case of vapor qualities higher than 0.40. For 

lower vapor qualities the heat transfer coefficient of Grauso et al. [62] was lower, probably 

due to the lower saturation temperature (7 °C) used by the authors. 

Another comparison was performed in Figure 6.11, in which the experimental heat transfer 

coefficient as a function of the vapor quality was compared to other two independent studies 

of da Silva Lima et al. [137] and Dorao et al. [138] with the same refrigerant and similar 

operative conditions, but with a higher (13.84 mm) and lower (5.0 mm) internal diameter, 

respectively. Specifically, all the experiments in Figure 6.11 represent flow boiling of R134a 

at an average mass flux of 300 kg/m2 s and an average saturation temperature of 20 °C. As 
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expected, the experimental heat transfer coefficient from this study was higher when 

compared to the results of da Silva Lima et al. [137], whereas similar values were obtained 

with the work of Dorao et al. [138].  

 

Figure 6.10 Heat transfer coefficient comparison: present data against work of Grauso et al. [62] 

obtained at similar operative condition and same inner diameter 

 

 

Figure 6.11 Heat transfer coefficient comparison with higher (13.84 mm) and lower (5.0 mm) internal 

diameters, at similar operative conditions (R134a, G = 300 kg/m2 s, Tsat = 20 °C, q = 7.5-15.7 

kW/m2).  
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7 Flow boiling results 

This chapter presents experimental data concerning two-phase flow boiling heat transfer 

coefficient and pressure drop in the stainless steel test tube of 6.0 mm inner diameter shown 

in the previous chapter. The experimental campaign consisted of more than 500 points 

carried out with refrigerants R134a and propane (R290), at different operative conditions in 

terms of mass velocity, heat flux, saturation temperature, vapor quality and working fluid. 

The description of the experimental procedure and a digression of the fluctuations of the 

main parameters during experiments is shown in the first paragraph. Then, the chosen 

operating parameters set and monitored during the experiments are presented. The effect of 

mass flux, heat flux, saturation temperature and working fluid on the heat transfer coefficient 

are shown in the third paragraph, together with the assessment of some chosen correlations. 

The effect of operating parameters and the comparisons between experimental and predicted 

data for frictional pressure drop is finally performed in the fourth and last paragraph.  

 

 

7.1 Description of the experiments 

For each flow boiling test, the purpose was to record the heat transfer coefficients at the top, 

bottom, left and right sides of the tube as a function of the local vapor quality, starting from 

the onset of boiling (x = 0) up to the dry-out condition (x ≈ 1.0). The saturation temperature 

Tsat, mass flux G and heat flux q were set and kept constant for each experiment.  

Specifically, the desired saturation temperature was obtained by setting the demineralized 

water temperature in the thermostatic bath. The mass flux was instead controlled by changing 

the inverter frequency of the electric motor matched with the magnetic gear pump. The mass 

flow rate and the system pressure (i.e. saturation temperature) could be adjusted during the 

experiments by manipulating the micrometric throttling valve and the main circuit by-pass 

valve. A small sub-cooling after the pump was always desired to avoid saturated flow at the 

preheater inlet and therefore a poor estimation of the vapor quality in the test section. 
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Preheater inlet sub-cooling degrees of approximately 2.0 °C were obtained by using the ball 

cock valves in the by-pass circuits present in the secondary loop. The heat flux applied to the 

test section was set by remotely changing the voltage from the DC power supply unit, 

covering a range of voltages of 0-1.0 V and high currents (0-190 A). Finally, the desired 

vapor quality at the inlet of the test section was obtained by varying the applied AC voltage 

to the four fiberglass heating tapes using a TRIAC electronic unit (up to 230 V) remotely 

commanded by Arduino One controller (4-20 mA).  

Particular attention was given to the uncertainty of each operating parameter during the 

experiments. As an example, Figure 7.1 shows the time variation of the different 

temperatures that intervene for the evaluation of the heat transfer coefficient. The diagram 

refers to the experimental test of propane, at a mass velocity of 297 kg/m2 s, an imposed heat 

flux of 40 kW/m2 and a saturation temperature of 35 °C. The test displayed corresponds to a 

vapor quality of 0.27. In this case, the boiling process was very stable, with the A-type 

uncertainty of the different temperatures (calculated as a standard deviation of the sample of 

90 points) very low and comparable to the resolution of the data acquisition system. The B-

type uncertainty related to the absolute pressure transducer and the calibrated thermocouples 

accuracy was relatively higher. Thus, the overall uncertainty of the heat transfer coefficients 

for this type of points that are far from the occurrence of dry-out is mostly due to the 

systematic uncertainty of the measurement instrumentation. 

A different situation is depicted in Figure 7.2, in which the operating conditions remained the 

same, but the vapor quality was fixed to 0.86, after the dry-out incipience point. In this case, 

larger fluctuations were obtained for both the saturation and the wall temperatures. 

Specifically, the A-type uncertainty of the saturation temperature was 5 times the one 

obtained during stable boiling, whereas the wall temperature fluctuations caused by the 

intermittent rewetting of the heated surface led to standard deviations of almost two order of 

magnitude higher than those calculated in case of lower vapor quality. These severe 

fluctuations are therefore the main responsible for the high heat transfer coefficient 

uncertainties calculated after the dry-out occurrence. 
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Figure 7.1 Stability analysis performed on the saturation and wall temperatures during stable boiling, 

at a vapor quality of 0.27. The experiment refers to propane at G = 297 kg/m2 s, q = 40 kW/m2 and 

Tsat = 35 °C. Instruments accuracy (B-type uncertainty) and observed fluctuations during the 

experiments (A-type uncertainty) are provided on the right. 

 

 

Figure 7.2 Stability analysis performed on the saturation and wall temperatures at a vapor quality of 

0.86. The experiment refers to propane at G = 297 kg/m2 s, q = 40 kW/m2 and Tsat = 35 °C. 

Instruments accuracy (B-type uncertainty) and observed fluctuations during the experiments (A-type 

uncertainty) are provided on the right. 
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Similarly, the time variation of the measured pressure drops is shown in Figure 7.3. The 

diagram refers to an adiabatic experimental test of propane, at a mass velocity of 298 kg/m2 s 

and at a saturation temperature of 25 °C. The blue line corresponds to a vapor quality of 0.08 

and the red line to a vapor quality of 0.82 (close to the dry-out occurrence). In case of stable 

boiling (i.e. low vapor quality), the small fluctuations lead to a A-type uncertainty 

comparable to the accuracy of the calibrated differential pressure transducer. For a higher 

vapor quality and close to the dry-out occurrence, instead, the A-type uncertainty is 

approximately ten time higher (being the 16% of the measured value) and represents the 

main responsible for the relatively high expanded uncertainty shown in the results diagrams 

exposed in the following paragraphs. 

 

 

Figure 7.3 Stability analysis performed on the measured pressure drop in case of stable boiling (x = 

0.08) and close to the occurrence of dry-out (x = 0.82). The experiments refers to propane at G = 298 

kg/m2 s and Tsat = 25 °C. Instrument accuracy (B-type uncertainty) and observed fluctuations during 

the experiments (A-type uncertainty) are provided on the right. 

 

 

In order to improve the quality of the experimental database, the system was considered 

stabilized and the data could be recorded only when the expanded uncertainty calculated in 

real time (including therefore the measurement accuracy and the fluctuations observed during 
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experiments) of each parameter of interest was inferior to a chosen threshold. The upper 

limits for acquisition were set to: ±3% for the mass velocity, ±0.2 °C for the wall outer 

temperature obtained by the T-type thermocouples, ±0.1 °C for the saturation temperature. 

As shown, for points approaching and beyond the occurrence of dry-out, some fluctuations 

could be not controlled and therefore tests were taken with higher uncertainties. Data from 

sensors were recorded with an acquisition frequency of 1.0 Hz and the arithmetic average 

over 2 minutes was taken as the nominal value of each sample. 

7.2 Experimental conditions for flow boiling experiments 

The purpose of this experimental campaign was to investigate on the effect of the operative 

parameters on the pressure drop and mean heat transfer coefficient, which is the heat transfer 

coefficient averaged over four measurement points on the top, bottom, left and right side of 

the tube surface. The inner diameter of 6.0 mm was the sole used in this experimental 

campaign. The imposed mass flux ranged from 150 to 300 kg/m2 s in case of refrigerant 

R290 and from 150 to 500 kg/m2 s in case of refrigerant R134a. With such low mass 

velocities, the effect of flow stratification could be substantial in some cases and therefore a 

different heat transfer coefficient on the top and bottom side of the tube were recorded. The 

saturation temperature ranged from 25 °C to 35 °C in case of refrigerant R290 (thus having 

reduced pressures from 0.292 to 0.388) and was fixed to 20 °C and 30 °C in case of R134a 

(thus having reduced pressures of 0.141 and 0.190, respectively). Finally, the heat flux was 

imposed from 5.0 to 40 kW/m2 in case of R290 and from 2.5 to 20 kW/m2 in case of R134a. 

For each operative condition, the vapor quality was set from the onset of boiling (x ≈ 0.0) up 

to the occurrence of dry-out (x ≈ 1.0). 

As a summary, Table 7.1provides all the operative conditions investigated for both R134a 

and R290. 
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Table 7.1 Experimental conditions used for the flow boiling heat transfer and pressure drop 

experiments. 

 Range 

Parameter R290 R134a 

Saturation temperature 

Tsat [°C] 
25 - 35 20; 30 

Reduced pressure Pred 0.292 - 0.388 0.141; 0.190 

Mass flux G [kg/m2 s] 150 - 300 150 - 500 

Heat flux q [kW/m2] 2.5 - 40 2.5; 10; 20 

Tube diameter d [mm] 6.0 

Vapor quality x 0.0 – 1.0 

 

7.3 Heat transfer coefficient results 

The heat transfer coefficient values and the influence of all the operative parameters is shown 

in this section. The values of the operative parameters and their uncertainty shown in legends 

and titles are intended to be an average over the represented data. The experimental results 

will be finally compared with some correlations taken from scientific literature. 

7.3.1 Effect of mass flux on heat transfer coefficient 

The effect of mass flux on the top, bottom and mean heat transfer coefficient of R134a is 

shown in Figure 7.4 (a), (b) and (c), respectively. The inlet saturation temperature was fixed 

to 30 °C, the heat flux was imposed to 10 kW/m2.and the mass velocity was varied from 152 

to 299 kg/m2 s. The expanded uncertainty of all the operative parameters and of the heat 

transfer coefficients are also shown. The bottom heat transfer coefficient seems not to be 

greatly affected by the mass velocity, suggesting that in this case the heat transfer is 

controlled by nucleate boiling mechanism. The mass flux instead substantially increases the 

heat transfer coefficient measured at the top. Greater variations are recorded for higher vapor 

qualities, in which the convective contribution is more accentuated. The resulting average 

heat transfer coefficient variation with mass velocity is displayed in Figure 7.4 (c). For the 
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highest mass fluxes of 218 and 299 kg/m2 s, the mean heat transfer coefficient remains 

almost the same for the whole range of vapor qualities, whereas at G = 152 kg/m2 s, a drop at 

a vapor quality of approximately 0.40 is recorded, suggesting the occurrence of stratification 

for these operative conditions. 

 

 

 

Figure 7.4 Local R134a heat transfer coefficient at different mass velocities, for a saturation 

temperature of 30 °C and a heat flux of 10 kW/m2. (a) Top heat transfer coefficient. (b) Bottom heat 

transfer coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

The effect of a different mass velocity is also shown in Figure 7.5 at a higher imposed heat 

flux (40 kW/m2) with propane having an average saturation temperature of 35 °C. For such a 

(a) (b) 

(c) 
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high heat flux, the convective contribution seems not to be important, since both top and 

bottom heat transfer coefficients are almost the same when changing the mass flux from 150 

to 296 kg/m2 s. This assumption is also corroborated by the trends of the local heat transfer 

coefficients, which are not affected by the increase of vapor quality. Finally, dry-out appears 

quite early, at a vapor quality approximately equal to 0.75. 

 

 

 

Figure 7.5 Local heat transfer coefficient for propane for different mass velocities, at a saturation 

temperature of 35 °C and an imposed heat flux of 40 kW/m2. (a) Top heat transfer coefficient. (b) 

Bottom heat transfer coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

 

(c) 

(b) (a) 
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7.3.2 Effect of heat flux on heat transfer coefficient 

The effect of heat flux on top, bottom and average heat transfer coefficient of R134a is 

shown in Figure 7.6 (a), (b) and (c), respectively. The average mass velocity of all the curves 

is 150 kg/m2 s, while the inlet saturation temperature is 20 °C. Different heat fluxes of 2.5, 10 

and 20 kW/m2 were imposed. In this case, the heat transfer coefficient at the top (Figure 7.6 

(a)) is not greatly influenced by the heat flux at any vapor quality, suggesting that the 

convective evaporation contribution is the leading heat transfer mechanism. On the contrary, 

the bottom heat transfer coefficient (Figure 7.6 (b)) is strongly enhanced when with 

increasing heat flux, indicating a significant nucleative boiling contribution. Specifically, the 

bottom heat transfer coefficient at a vapor quality of 0.40 passes from approximately 2 

kW/m2 K up to 6 kW/m2 K when the heat flux is changed from 2.5 to 20 kW/m2. Finally, the 

heat transfer coefficient averaged over the whole tube perimeter is displayed in Figure 7.6 

(c). The importance of nucleative boiling contribution is evident for heat fluxes of 10 and 20 

kW/m2, in which the mean heat transfer coefficient presents a monotonic drop up to the dry-

out condition. For the lowest heat flux of 2.5 kW/m2, the convective contribution is somehow 

preserved, observable as a weak heat transfer coefficient increase in the annular flow region 

up to the occurrence of dry-out. 

 

 

(a) (b) 
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Figure 7.6 Local R134a heat transfer coefficient at different heat fluxes, for a saturation temperature 

of 20 °C and a mass flux of 150 kg/m2 s. (a) Top heat transfer coefficient. (b) Bottom heat transfer 

coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

The effect of heat flux on the top, bottom and mean heat transfer coefficient is also shown for 

propane in Figure 7.7 (a), (b) and (c), respectively. The saturation temperature was fixed to 

25 °C and the average mass flux for all the experiments was 150 kg/m2 s. The imposed heat 

flux was varied from 10 to 40 kW/m2. As it can be seen from Figure 7.7 (a) and (b), the 

bottom heat transfer coefficient is in any case at least 15% higher than that measured on the 

top surface of the tube. Moreover, differently from R134a, both top and bottom heat transfer 

coefficients are greatly affected by an increase of heat flux and for all curves there is almost 

no dependency from the vapor quality, suggesting that nucleate boiling is the controlling heat 

transfer mechanism. The heat transfer coefficient averaged over the tube perimeter is shown 

in Figure 7.7 (c): its values passes from approximately 6.0 kW/m2 K up to 14 kW/m2 K when 

increasing the imposed heat flux from 10 to 40 kW/m2. Finally, the dry-out occurs earlier in 

case for higher heat fluxes, passing from a vapor quality of 0.85 at q = 10 kW/m2 to a vapor 

quality of approximately 0.70 at q = 40 kW/m2. 

 

(c) 
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Figure 7.7 Local heat transfer coefficients for propane at different heat fluxes, for a saturation 

temperature of 25 °C and a mass flux of 150 kg/m2 s. (a) Top heat transfer coefficient. (b) Bottom 

heat transfer coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

7.3.3 Effect of saturation temperature on heat transfer coefficient 

The effect of saturation temperature on top, bottom and average heat transfer coefficient of 

R134a is shown in Figure 7.8 (a), (b) and (c), respectively. The average mass and heat fluxes 

for all curves are 150 kg/m2 s and 2.5 kW/m2, respectively, whereas the saturation 

temperature was set to 20 °C and 29.8 °C. In this case, both top and bottom heat transfer 

coefficient seems not to be greatly influenced by the saturation temperature. In particular, 

Figure 7.8 (a) and (b) show that the variations are included in the heat transfer coefficients 

expanded uncertainty. For both the saturation temperatures, the average heat transfer 

(a) (b) 

(c) 
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coefficients present an increasing trend with vapor quality and the values are a bit higher 

(approximately +15%) at 30 °C. In all cases, the dry-out occurrence is anticipated when 

increasing the saturation temperature. 

 

 

 

Figure 7.8 Local R134a heat transfer coefficient at different saturation temperature, for a heat flux of 

2.5 kW/m2 and a mass flux of 150 kg/m2 s. (a) Top heat transfer coefficient. (b) Bottom heat transfer 

coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

The effect of the saturation temperature is also shown for top, bottom and average heat 

transfer coefficients of propane, in Figure 7.9 (a), (b) and (c), respectively. The average mass 

flux of all experiments was equal to 150 kg/m2 s and the heat flux was imposed to 10 kW/m2. 

(c) 

(b) (a) 
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The saturation temperature was instead varied from 25 to 35 °C. Differently from R134a, the 

heat transfer coefficient constant trend with vapor quality suggests the dominance of nucleate 

boiling contribution. Both top and bottom heat transfer coefficients are affected by an 

increase of the saturation temperature and this behavior reflects on the average heat transfer 

coefficient which is shown in Figure 7.9 (c), passing from 6 kW/m2 K up to approximately 

7.5 kW/m2 K. The vapor quality at the occurrence of dry-out, instead, is not greatly affected 

by saturation temperature and it is approximately equal to 0.85 for these operative conditions.  

 

 

 

Figure 7.9 Local heat transfer coefficients of propane at different saturation temperature, for a heat 

flux of 10 kW/m2 and a mass flux of 150 kg/m2 s. (a) Top heat transfer coefficient. (b) Bottom heat 

transfer coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

(a) (b) 

(c) 
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The effect of saturation temperature can be also seen by using the reduced pressure, 

including therefore both fluids studied. Figure 7.10 shows the mean heat transfer coefficients 

obtained at an average mass velocity of 150 kg/m2 s, an imposed heat flux of 20 kW/m2 and 

at different reduced pressures. The lowest values of 0.141 and 0.190 represents data of R134a 

(at 20 and 30 °C saturation temperature) and the last two reduced pressures of 0.292 and 

0.388 are instead related to propane (at 25 and 35 °C saturation temperature). All curves 

display a nucleate boiling dominance, with the vapor quality having almost a negligible 

effect on the heat transfer coefficient. In these conditions, the reduced pressure has a 

significant importance in case of R134a, whereas smaller variations of the heat transfer 

coefficient are found in case of propane. The vapor quality at the occurrence of dry-out goes 

from 0.75 to 0.90 and it seems to be lower with increasing reduced pressure. 

 

 

Figure 7.10 Local heat transfer coefficients averaged over the tube perimeter at different reduced 

pressures, for a mass velocity of 150 kg/m2 s and a heat flux of 20 kW/m2. 

 

7.3.4 Effect of the working fluid on heat transfer coefficient 

Finally, Figure 7.11 (a), (b) and (c) show the top, bottom and average heat transfer 

coefficients, respectively, obtained at the same operative conditions in term of mass flux (299 
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kg/m2 s), heat flux (10 kW/m2) and saturation temperature (30 °C). The top heat transfer 

coefficient, in both cases, carries a convective boiling contribution, since the effect of vapor 

quality is not negligible. This is less highlighted for the bottom heat transfer coefficient, in 

which only propane shows a weak increase of the heat transfer performance with ongoing 

evaporation. Both top and bottom heat transfer coefficient of propane are higher than the 

corresponding values obtained for refrigerant R134a, and this reflects to the average heat 

transfer coefficients (see Figure 7.11 (c)), in which the difference may reach 30% for high 

vapor qualities. This behavior can be probably explained by looking at the effect of the 

reduced pressure shown in the previous subsection. As a matter of fact, propane has a higher 

reduced pressure when working at the same saturation temperature of 30 °C (0.254 against 

0.190 of R134a). 

 

 

(a) (b) 
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Figure 7.11 Local heat transfer coefficients for R134a and propane, for a heat flux of 10 kW/m2, a 

mass flux of 299 kg/m2 s and a saturation temperature of 30 °C. (a) Top heat transfer coefficient. (b) 

Bottom heat transfer coefficient. (c) Average heat transfer coefficient over the tube perimeter. 

 

7.3.5 Comparisons with correlations – Heat transfer coefficient 

The experimental data are compared in this section with some of the two-phase heat transfer 

coefficient correlations exposed in the literature review (see section 3.2.2). Particularly, the 

correlations of Chen [68], Gungor and Winterton [72], Del Col [60], Bertsch et al. [76] and 

Wojtan et al. [86] have been used in this thesis.  

Figure 7.12 shows the comparison performed with the whole database with the correlations 

of Bertsch et al. [76] and Wojtan et al. [86], which better fit the experimental data. The 

prediction method of Bertsch et al. [76] provides a Mean Absolute Error of 55% and a Mean 

Relative Error of 34%, whereas the correlation of Wojtan et al. [86] provides a lower MAE 

of 27% and a negative MRE of -19%. For a closer look, Figure 7.13 shows the same 

comparison by separating three different vapor quality ranges (x<0.3, 0.3<x<0.6, and x>0.6). 

While the correlation of Bertsch et al. [76] works reasonably well at low vapor quality, it 

strongly overestimates the experimental data approaching the dry-out condition. The 

prediction method of Wojtan et al. [86], instead, is more balanced for all the ranges of vapor 

qualities, exposing approximately the same deviations. As a matter of fact, the authors payed 

particular attention to the identification of the dry-out and mist flow patterns, providing the 

corresponding heat transfer coefficient equations. 

(c) 
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Figure 7.12 Experimental versus predicted heat transfer coefficient for the whole database. Prediction 

method of (a) Bertsch et al. [76] and (b) Wojtan et al. [86]. 

 

(a) 

(b) 
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Figure 7.13 Experimental versus predicted heat transfer coefficients. Comparison performed by 

separating three different vapor quality ranges. Prediction method of (a) Bertsch et al. [76] and (b) 

Wojtan et al. [86]. 

 

The assessment summary is available in Table 7.2. Wojtan et al.[86] better fits the entire 

database and also the experimental points close to the occurrence of dry-out (MAEx>0.6 = 

51%), exposing also the lowest standard deviation of 25%. The best relative agreement is 

found with the modification of the Gungor-Winterton [72] prediction method of Del Col [60] 

(MRE = 3%). This correlation works also best at low vapor qualities (MAEx<0.6 = 20%) and 

69% of the experimental data are predicted within a range of ±30%. 

(a) 

(b) 
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Table 7.2 Summary of the assessment performed for the chosen two-phase heat transfer prediction 

methods. The parameter δ refers to the percentage of data points falling in an error range of ±30%. 

The MAE has been evaluated for the whole database and also separately for the experimental points 

with vapor qualities lower and higher than 0.6. The best statistical results related to each parameter 

are highlighted in bold. 

 

 

 

 

 

 

 

7.4 Pressure drop results 

The influence of all the operative parameters on the adiabatic frictional pressure gradient is 

shown in this section. The values of the operative parameters and their uncertainty shown in 

legends and titles are intended to be an average over the represented data. The experimental 

results will be finally compared with some correlations taken from scientific literature. 

7.4.1 Effect of mass velocity and saturation temperature on frictional pressure gradient 

The influence of the mass velocity on the frictional pressure drop of R134 and propane is 

shown in Figure 7.14 (a) and (b), respectively. For R134a, the average saturation temperature 

is 30 °C and the mass flux was instead set to 152, 218 and 299 kg/m2 s. In case of propane, 

the average saturation temperature is 25 °C and the mass flux was fixed to 149 and 298 

kg/m2 s. The expanded uncertainties of the experimental points are also provided: larger error 

bands are referred to points close to the occurrence of dry-out, in which the fluctuations of 

the measured pressure drop was significant. The general trend is a pressure drop rise with 

vapor quality due to the higher velocity, until a peak is reached. Then, a further increase of 

vapor quality leads to a partial decrease of the pressure drop. As regards the effect of mass 

velocity, it leads to a considerable increase of the frictional pressure gradient. This was 

Authors 
MAE 

MRE SD δ 
x < 0.6  x > 0.6 whole 

Wojtan et al. 

(2005) 
34 51 27 -19 25 38 

Bertsch et al. 

(2009) 
29 90 55 34 79 42 

Gungor-

Winterton 

(1986) 

28 55 39 -14 62 47 

Del Col (2010) 20 56 35 3 74 69 

Chen (1966) 41 181 101 40 415 38 
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expected due to the higher flow velocity and inertia. As explained in the literature review 

(see section 3.3), these trends are corroborated by all the studies presented.  

One point worth noting is the slight change of trend with vapor quality occurring in some 

operative conditions. As it can be seen from Figure 7.14 (a), for mass velocities of 218 and 

299 kg/m2 s, the pressure drop has a sudden decrease at a vapor quality of approximately 

0.55, before going on with the usual trend. The same phenomenon was also observed in case 

of propane (see Figure 7.14 (b)) at different vapor qualities. As suggested by Revellin and 

Thome [110], this behavior may correspond to a change in the flow patterns with the 

transition from wavy annular to smooth annular. 

  

 

Figure 7.14 Frictional pressure gradient of R134a (a) and propane (b) as a function of the local vapor 

quality. Effect of mass velocity, with a saturation temperature of: (a) 30 °C and (b) 25 °C. 

 

The effect of the saturation temperature on frictional pressure drop of R134a and propane is 

instead shown in Figure 7.15 (a) and (b), respectively, in which the R134a mass velocity was 

fixed to 300 kg/m2 s and the propane mass flux was 150 kg/m2 s. When increasing the 

reduced pressure, the vapor density increases leading to an inferior vapor phase velocity. As 

a direct consequence, the frictional pressure gradient is reduced. This effect is however not so 

pointed out in Figure 7.15, since the variation in the reduced pressure is weak (passing from 

0.14 to 0.19).  

(a) (b) 
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Figure 7.15 Frictional pressure gradient of R134a (a) and propane (b) as a function of the local vapor 

quality. Effect of saturation temperature, with a mass velocity of: (a) 300 kg/m2 s and (b) 150 kg/m2 s. 

 

7.4.2 Effect of working fluid on frictional pressure gradient 

The frictional pressure gradient for R134a and propane at the same operative conditions is 

shown in Figure 7.16 including the expanded uncertainties. The average mass flux for all the 

experimental points is 299 kg/m2 s and the saturation temperature was fixed to 30 °C. As it 

can be seen, the measured pressure drop was found to be higher in case of propane, even if, 

at the same saturation temperature, it exposes a higher reduced pressure (0.254 against 0.190 

of R134a). As a matter of fact, at a saturation temperature of 30 °C, propane has a liquid 

density of 484 kg/m3, whereas that of R134a is significantly higher (1188 kg/m3). This 

difference leads to much higher velocities during the evaporation inside the tube in case of 

propane and therefore to higher frictional pressure drops.  

 

(a) (b) 
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Figure 7.16 Frictional pressure gradient as a function of the local vapor quality, for a mass flux of 299 

kg/m2 s and a saturation temperature of 30 °C. Effect of the working fluid. 

 

7.4.3 Comparisons with correlations – Pressure drop 

The experimental data are compared in this section with some of the two-phase frictional 

pressure drop correlations exposed in the literature review (see section 3.3.2). Particularly, 

the separated flow methods of Müller-Steinhagen and Heck [99], Friedel [102] and Zhang 

and Webb [95] have been used in this thesis.  

Figure 7.17 shows the comparison results for the abovementioned correlations. All of them 

work reasonably well for the entire experimental database. The correlation of Müller-

Steinhagen and Heck [99] exposes the lowest standard deviation of 19%, whereas the 

prediction method of Friedel [102] is the best in terms of mean absolute and relative errors, 

17% and -7%, respectively, and manages to capture up to 87% of the experimental data 

within an error band of ±30%. The correlation of Zhang and Webb [95] is situated in the 

middle, tending to slightly underestimate the experimental trend, with MAE = 22%, MRE = -

15%, SD = 21% and 70% of the data falling into a ±30% error band. 



175 

 

 

 

Figure 7.17 Experimental versus predicted frictional pressure drop data. Correlations of:(a) Müller-

Steinhagen and Heck [99], (b) Friedel [102] and (c) Zhang and Webb [95]. 

 

  

(a) (b) 

(c) 
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8 Conclusions 

Saturated CHF in an aluminum multi-minichannel heat sink and flow boiling heat transfer 

and two-phase pressure drop in a single horizontal channel of 6.0 mm internal diameter were 

studied in this thesis. The main outcomes of this study are summarized here. 

8.1 Summary of CHF experimental campaign 

A comprehensive literature review on saturated CHF in single channels, minichannels and 

multi-minichannel heat sink geometries has been performed, showing that: 

- The operative definition of critical heat flux during the experiment is not universal: 

different authors use different criteria to detect the onset of the thermal crisis during 

their tests. 

- The general trends show that CHF is enhanced with increasing mass flux and 

decreasing the heated length-on-equivalent diameter ratio Lh/D. The effect of 

saturation temperature is not univocal for all the studies presented, but most of the 

researchers have detected a CHF decrease when increasing the system pressure. 

- Some correlations for saturated CHF are available in literature applicable for different 

geometries and working conditions. Most of them take into account only the effects 

of mass velocity, saturation temperature and Lh/D ratio, whereas other prediction 

methods conceive the influence of the inlet vapor quality and/or the inlet sub-cooling. 

A new operative definition of critical heat flux has been provided in this thesis, by 

considering both the boiling curve minimum slope threshold and the maximum wall 

superheat that might be tolerated during realistic cooling applications. 

A multi-purpose test facility has been set-up for the CHF, using an aluminum multi-

minichannel heat sink with rectangular minichannels as test section. No flow stabilizers and 

orifice inserts were used for this campaign, preserving a design that may easily constructed in 

the industrial sector. However, as a preliminary analysis, an aluminum slit-orifice was placed 

in the inlet manifold to check for possible instabilities before the real CHF tests. The boiling 
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curves behavior, as well as the fluctuations of the mass flow rate and inlet pressure were not 

significantly affected by the use of the slit orifice insert. 

Saturated CHF tests (288 in total) were then obtained by using R134a, R1234yf, R1234ze, 

R1233zd and R32 as working fluids, with three different Lh/D ratios of 19, 27 and 44, mass 

fluxes ranging from 145 to 3000 kg/m2 s and saturation temperatures from 24.7 to 75.5 °C. 

The experimental results showed that: 

- The mass velocity has not a great influence on the first part of the boiling curve, 

suggesting that the average heat transfer coefficient inside the multi-minichannel heat 

sink is not affected by a change in the mass flux. On the other hand, CHF increases 

with mass velocity, but its effect becomes less important for G > 500 kg/m2 s. 

- The saturation temperature shifts the first part of the boiling curve towards left, 

suggesting that the average heat transfer coefficient inside the multi-minichannel heat 

sink is enhanced with system pressure. In most cases, saturation temperature has 

instead a weak effect on the experimental CHF, that may be reduced up to a 20% 

when passing from 25 to 75 °C. However, when the mass flux is higher than 500 

kg/m2 s, instead, the effect of the saturation temperature changes, leading to an 

enhancement of CHF values, which is higher at higher mass velocities. For refrigerant 

R1233zd at a mass flux of 2002 kg/m2 s, for instance, CHF increases of 19% passing 

from 55 to 65 °C. 

- R32 displays the highest CHF experimental values, due to its relatively high latent 

heat, whereas R1234yf and R1234ze exhibits the lowest CHF values, probably due to 

their low surface tension and low latent heat at disposal. 

- A general reduction of CHF is recorded when increasing the Lh/D ratio, accentuated 

for low mass velocities. However, in case of higher mass velocities (G > 500 kg/m2 s) 

the experimental trend is reversed. In case of R134a, for instance, for a mass velocity 

of 1500 kg/m2 s, the CHF is higher when increasing Lh/D from 27 to 44, passing from 

122 to 175 W/cm2. 

The assessment of existing correlations in open literature has shown that the experimental 

data are in good agreement with prediction methods that use the Weber number with a non-

negligible negative exponent. In this way, the non-linear effect of mass velocity 
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experimentally observed for G > 500 kg/m2 s can be caught. Particularly, Wojtan et al. [23] 

correlation is able to fit quite well the data obtained at high mass fluxes, with a calculated 

MAE of 30.8%, whereas the correlation that best fit the experiments performed at low mass 

velocity is that of Callizo [51], with a calculated MAE of 11.1%. 

8.2 Summary of the flow boiling experimental campaign 

A state-of-the-art review on flow boiling heat transfer and pressure drop for conventional 

tubes and minichannels has shown that: 

- There is not a universal trend of the heat transfer coefficient for all fluids, geometries 

and operative conditions investigated. Generally, in cases where convective boiling is 

the dominant mechanism, the heat transfer coefficient is affected by a change of mass 

velocity and vapor quality, whereas in case the nucleate boiling contribution controls 

the phenomenon, heat flux and saturation temperature are the most influencing 

parameters. 

- Adiabatic frictional pressure drops increase with increasing mass velocities and also 

with vapor quality up to a peak value which may occur at the inception of dry-out or 

mist flow regime, or even before the dry-out occurrence. An increase of saturation 

temperature, instead, leads to lower values of the measured pressure drop. 

The same test facility used for the CHF experiments has been modified by using different 

sensors and transducers and by changing the test section to a single horizontal stainless steel 

circular tube, directly heated with Joule effect and with four thermocouples for the 

measurement of the heat transfer coefficient on the top, bottom, left and right side of the tube 

surface.  

A dedicated in-situ calibration of the differential pressure transducer and of the 

thermocouples for the wall temperature measurement was performed. In this way, the 

systematic uncertainty was kept reasonably low (±0.06 kPa and ±0.10 °C for the differential 

pressure transducer and the thermocouples, respectively). To improve the quality of the 

experimental database, the data could be recorded only when the expanded uncertainty 

calculated in real time (including therefore the measurement accuracy and the fluctuations 
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observed during experiments) of each parameter of interest was inferior to a chosen 

threshold. 

Different flow boiling tests (524 in total) were performed with refrigerants R134a and 

propane (R290) and compared to some available prediction methods, by using mass 

velocities from 150 to 500 kg/m2 s, saturation temperature from 20 to 35 °C and heat fluxes 

from 2.5 to 40 kW/m2. The experimental results showed that: 

- In case of R134a at low heat flux of 10 kW/m2, the bottom heat transfer coefficient 

seems not to be greatly affected by the mass velocity, suggesting that in this case the 

heat transfer is controlled by nucleate boiling mechanism. The mass flux instead 

substantially increases the heat transfer coefficient measured at the top. Greater 

variations are recorded for higher vapor qualities, in which the convective 

contribution is more accentuated. For propane at an imposed heat flux of 40 kW/m2, 

the mass velocity has substantially a negligible influence on both top and bottom heat 

transfer coefficient, suggesting that in this case nucleate boiling is the controlling heat 

transfer mechanism. 

- The heat flux has a strong influence on the average heat transfer coefficient, at least in 

case of low mass velocities. Specifically, for R134a, the heat flux effect is significant 

only at the bottom, whereas both top and bottom heat transfer coefficients of propane 

are greatly affected by an increase of the imposed heat flux. 

- Saturation temperature has a significant positive effect on heat transfer coefficient, 

especially in case of propane. A further analysis has shown that, regardless the fluid 

used, the increase of the reduced pressure leads to higher heat transfer coefficients. 

- Most of the correlations chosen to fit the experimental data fail to capture heat 

transfer coefficients taken at high vapor qualities (x>0.6). Only the prediction method 

of Wojtan et al. [86], explicitly developed to identify the dry-out and mist flow 

patterns, exposes a Mean Absolute Error inferior to 55%. 

- Pressure drop results confirm the trends shown in literature: the frictional pressure 

gradient is higher for higher mass velocities and has an increasing trend with vapor 

quality up to a peak value close to the dry-out occurrence. By increasing saturation 
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temperature (i.e. the reduced pressure) for both refrigerants, instead, the pressure drop 

decreases accordingly. 

- At the same operative conditions in terms of mass flux and saturation temperature, 

measured pressure drop of propane are higher than those of R134a, as a direct 

consequence of the lower propane liquid density, which determines a higher velocity 

of the flow. 

- Good agreements with the experimental pressure drop data are found with the 

separated flow methods of Müller-Steinhagen and Heck [99], Friedel [102] and 

Zhang and Webb [95]. The best results are obtained with the prediction method of 

Friedel [102], which exposes Mean Absolute and Relative Errors of 17% and -7%, 

respectively. 
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Nomenclature 

Roman   

𝑄̇  heat power  [W] 

𝑈𝑥  expanded uncertainty of 

x 

[same of x] 

𝑋𝑡𝑡
2   Martinelli parameter [-] 

𝑑𝑃

𝑑𝑧
  pressure gradient [Pa/m] 

𝑚̇  mass flow rate [kg/s] 

𝑠𝑥  standard deviation of x [same of x] 

𝑢𝑥  combined uncertainty of 

x 

[same of x] 

𝑤𝑥  type-B uncertainty of x [same of x] 

A cross section [m2] 

c specific heat capacity [J/kg K] 

D (equivalent) diameter [m] 

d diameter [m] 

dh hydraulic diameter [m] 

E enhancement factor [-] 

ERx error of x [same of x] 

f friction factor [-] 

G mass flux [kg/m2 s] 

g acceleration of gravity [m/s2] 

h heat transfer coefficient [W/m2 K] 

H height [m] 

i specific enthalpy [J/kg] 

I current [A] 

L length [m] 

M molecular mass [kg/kmol] 

N number of channels 

(CHF experiments) 

[-] 

n number of samples [-] 

P pressure [Pa] 

q heat flux [W/m2] 

S suppression factor [-] 

s Distance RTD-wall 

(CHF experiments) 

[m] 
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T temperature [K] 

u velocity [m/s] 

V voltage [V] 

W width [m] 

x vapor quality [-] 

z coverage factor [-] 

   

Greek   

Δ  variation  

Φ  two-phase multiplier [-] 

𝛼  void fraction [-] 

𝛿  liquid film thickness / 

percentage of data 

points falling into a 

±30% error band 

[m] / % 

𝜂  fin efficiency [-] 

𝜃  flow angle [rad] 

𝜆  thermal conductivity [W/m K] 

𝜇  viscosity [Pa s] 

𝜌  density [kg/m3] 

𝜎  surface tension [N/m] 

   

Subscripts   

A related to the A-type  

acc acceleration  

amb ambient  

ave, mean averaged  

b base  

B related to the B-type  

bot related to the bottom 

side 

 

C measurement point for 

the flow boiling 

experiments 

 

cb convective boiling  

ch channel  

cr critical  

D related to the diameter  

dry dry  
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eff effective  

eq equivalent  

f fluid  

fin fin  

fr friction  

grav gravitational  

h heated  

in inlet  

L liquid/related to a length  

left related to the left side  

lim limit, threshold  

LO liquid only  

loss loss  

LV liquid-to-vapor  

max maximum  

o outer  

out outlet  

pb pool boiling  

preh preheater  

red reduced  

right related to the right side  

RTD related to the RTD 

measurement 

 

sat saturation  

sp single-phase  

sub sub-cooling  

th related to the 

thermocouple 

measurement 

 

top related to the top side  

tp two-phase  

V vapor  

VO vapor only  

w, wall related to wall  

wet wet  

   

Abbreviations   

CHF critical heat flux  

DNB departure from nucleate  
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boiling 

GWP global warming 

potential 

 

HTC heat transfer coefficient  

MAE mean absolute error  

MRE mean relative error  

RSS root sum square  

RTD resistance temperature 

detector 

 

SD standard deviation  

   

Dimensionless 

numbers 

  

Bd Bond  

Bo Boiling  

Co Confinement  

Fr Froude  

Nu Nusselt  

Pr Prandtl  

Re Reynolds  

We Weber  
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