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Background, summary of research activities and aims of the thesis

Primary Immunodeficiencies (PIDs) represent a group of rare inborn errors of immunity due 

to  defects  in  the  development  and/or  function  in  various  components  of  the  innate  and 

adaptive immune system (1). 

 PIDs are traditionally considered rare conditions, however, recent reports suggest that 

they are more common than previously believed, with an estimated prevalence of 2.3 per 

100,000 persons (2). Overall, the incidence of PIDs varies from 1 in 600 to 1 in 500,000 live 

newborn, depending upon the specific disorder.

Recently, the International Union of Immunological Society (IUIS) Expert Committee 

on Primary Immunodeficiencies have proposed a new classification of these disorders into 

eight major  categories, based on the primarily involved immune component and associated 

symptoms:

a. Immunodeficiencies affecting cellular and humoral immunity;

b. Combined immunodeficiencies with associated or syndromic features;

c. Predominantly antibody deficiencies;

d. Diseases of immune dysregulation;

e. Congenital defects of phagocyte number, function, or both;

f. Defects in intrinsic and innate immunity;

g. Autoinflammatory disorders;

h. Complement deficiency

Among all the immunodeficiencies, antibody deficiencies are the most frequent and 

comprise approximately 70–75% of all PIDs (3). 

These disorders are characterized by a wide range of clinical symptoms, including an 

increased rate and severity of infections, sometimes with accompanying autoimmune disease 

or auto-inflammatory diseases, allergy and malignancy (4). 

Early  diagnosis  of  PID is  useful  in  order  to  prevent  significant  disease-associated 

morbidity  and mortality.  However,  to  date  the  diagnosis  of  a  specific  PID based on the 

5



analysis  of the clinical  and immunological  phenotype remains difficult  and a considerable 

delay, between the onset of the symptoms and diagnosis, is often reported.

 Furthermore, expressivity and penetrance of each disorders vary widely, even among 

family members with the same specific mutation. These observations suggest that likely other 

genetic,  epigenetic,  and/or  environmental  factors  may  contribute  to  the  clinical  disease 

phenotype (4). 

In the last years,  T cell receptor excision circles (TRECs)–based newborn screening 

has been implemented in several countries for neonatal detection of some T-cells deficiencies 

such as SCIDs or profound T cell lymphopenia (5). 

Compared with patients identified by the clinical features, patients identified through 

newborn screening programs, can receive an early and accurate diagnosis by one month of life 

and then  undergo to  curative  treatments  such as  hematopoietic  stem cells  transplantation 

(HSCT) or gene therapy,  before the occurrence of severe complications.  This results  in a 

significantly improved outcome (6, 7). 

Until  2010,  the  traditional  approach  to  PIDs  has  included  Sanger  sequencing  of 

candidate genes, single nucleotide polymorphisms (SNPs), linkage analysis and an array of 

analytic and functional tests, including the proliferative response to mitogens, flow-cytometry, 

cytotoxicity assays, neutrophil function tests etc, that can provide a detailed immunological 

characterization of the patients (8). In the last years, the method for the classification of the 

immune cells by their surface protein expression patterns through flow-cytometry is rapidly 

evolving, thus permitting to better define the phenotype of each immune cells and to better 

understand their biologic role in patients with several immune disorders (9). 

Overall, the number of genetically defined PIDs has increased significantly over the 

past 20 years (3), and more than 300 disorders have been identified up to now, thanks to the 

availability  of  positional  cloning  and,  more  recently,  massively  parallel  (next-generation) 

sequencing technologies. Only in the last years, more than 30 new genes have been identified 

(3). NGS technologies are revolutionizing the discovery of genes in which variants can cause 

rare  Mendelian  diseases  (10),  replacing  the  gene  by gene strategy with  the  possibility  to 

sequence a very large panel of genes or the whole genome.  This approach is  particularly 

promising for the diagnosis of rare pediatric disorders such as PIDs characterized by a strong 

clinical and genetic heterogeneity. 
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The majority of the new described phenotypes results from complete or partial loss of 

function of the gene product, but more recently, increase number of diseases due to a gain of 

function (GOF) effect have been described (11). In some cases, CARD11 and STAT1 for 

example, there are both autosomal dominant GOF and autosomal recessive loss of function 

(LOS)  variants,  and  these  different  modes  of  inheritance  can  lead  to  different  functional 

consequences and different immunological and clinical phenotypes (3).

In  this  perspective,  the  characterization  of  patients  with  very complex  phenotypes 

using NGS technology is dramatically increasing our understanding of the genetic basis and 

of the pathogenic mechanisms of PIDs. 

Furthermore,  the  identification  of  a  link  between  newly  identified  genes  and  the 

specific functional abnormalities resulting therefrom, is opening the door to targeted therapies 

for optimal clinical management of the patients affected by immune disorders. This approach 

represents one of the central components of precision medicine (8). 

Precision medicine not only has the real opportunity to benefit patients with PIDs, but 

it might also increase understanding of the immune-pathogenesis of a variety of PIDs. As has 

been  the  case  for  a  number  of  therapeutic  advances  in  human  disease  management  that 

include HSCT and gene therapy, PIDs represent a unique group of disorders that will continue 

to be in the forefront of defining new and targeted immunomodulatory therapies and help 

define unique therapeutic approaches in the evolution of precision medicine (8). 

During my PhD program in “Clinical and Experimental Medicine” (XXX Cycle, years 

2014-2017)  I  contributed  to  the  evaluation  of  the  potential  benefit  of  betamethasone  on 

neurological symptoms and quality of life of patients affected with Ataxia-Telangiectasia. In 

particular, in a multicenter study, performed with a blind evaluation procedure, we have tried 

to define the minimal effective dosage of betamethasone in the perspective of an occasional 

usage of the drug, thus preventing the occurrence of side effects in A-T patients.

Moreover, I participated in the clinical, functional and molecular characterization of 

patients with well-known form of PIDs and in the implementation of new approaches for the 

clinical management of such patients. In particular, this thesis was focused on the following 

lines of research:
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a. Phenotypic characterization and identification of novel pathogenetic aspects related to 
PIDs, with attention to recent discovered gene;

b. Characterization of a novel  immunodeficiency whose hallmarks  are  represented by 
high IgM levels, impaired B-cell homeostasis and cancer susceptibility,

c. Phenotypic,  immunological  and  molecular  characterization  of  new  forms  of  PIDs 
identified through next generation sequencing, Sanger sequencing method and array-
CGH;

d. Better  definition  of  the malformative  spectrum,  including lung and ear-nose-throat 
disorders in children with 22q11.2 deletion syndrome and their role as risk factor for 
the pathogenesis of respiratory infections;

e. Characterization  of  skin  and  skin  annexes  abnormalities  associated  to  PIDs  and 
definition of the role of T independent and B cell immunity in the susceptability to 
infenctions  in  patients  affected  with  Hypoidrotic  Ectodermal  Dysplasia  with 
Immunodeficiency;

f. Study of the functional role of FOXN1 Transcription factor in T-cell ontogeny;

g. Rare genetic syndrome involving immune system paying particular attention to SCID, 
and 22q11.2 deletion syndrome.

8



CHAPTER I

“Minimum Effective Betamethasone Dosage on the Neurological Phenotype In 

Patients With Ataxia-Teleangiectasia: A Multicenter Observer-Blind Study”
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Introduction

Ataxia-telangiectasia (A-T) (MIM 208900) is a rare recessive neurodegenerative disease that results 

from inactivation of the A-T Mutated (ATM) gene encoding for a protein kinase (12). The disorder 

affects 1 in 40,000 to 300,000 live birth worldwide (13). Accordingly to the European Society for 

Primary Immunodeficiency (ESID), in Europe, 410 living A-T patients are currently listed.

The clinical  picture  of this  condition  is  very complex and variable.  The severity of the 

pulmonary,  immunological and neurological phenotype varies widely between patients and it  is 

related to the severity of the underlying mutations and any residual ATM kinase activity.  It has 

been recently suggested that the name A-T should be replaced by “ATM syndrome” (14). 

The ATM gene is large, spanning 150 kb of genomic DNA and encoding an ubiquitously 

expressed transcript of approximately 13 kb, consisting of 66 exons, giving a 350 kDa protein of 

3056 amino acids. ATM is predominantly a nuclear protein, but it surprisingly displays prominent 

cytoplasmic localization in mouse Purkinje cells (15) 

A-T  is  considered  the  prototype  of  the  DNA-repair  defect  syndromes.  In  fact,  ATM 

represents the central component of the signal-transduction pathway responding to DNA double-

strand breaks (DSBs) caused by ionizing radiation (IR), endogenous and exogenous DNA damage 

agents. In response to DSB formation, ATM, and further DNA-repair and cell cycle checkpoint 

proteins are activated, leading to cell cycle arrest and DNA repair (16). The activation of ATM 

kinase involves autophosphorylation of serine 1981 of the protein and subsequent dissociation of 

inactive ATM dimers into active monomers. Chromosomal DSBs are potentially one of the most 

dangerous forms of DNA damage that, if left unrepaired, can result in chromosomal aberrations, 

deletions, or translocations.  Such abnormal process could also account for the high incidence of 

chromosomal rearrangements involving primarily the chromosomes 7 and 14, corresponding to the 

sites  of  the  immune  system  genes.  Defects  in  DSBs  repair  are  linked  to  cell  death  and 

tumorigenesis .
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Figure 1. Activation of ATM as a consequence of a DSB, involves the recruitment of the MRE11–
RAD50–NBS1 (MRN) complex to the break and also the recruitment of ATM to regions that flank 
the break. ATM phosphorylates p53 and other substrates. ATM is then recruited to the site of the 
break by the MRN complex and phosphorylates members of the complex and other downstream 
substrates (Lavin MF 2008).

Evidence exists that ATM exerts additional functions in the cytoplasm independent of its 

role in the DNA damage response,  such as participation in the autophagy pathway (17).  More 

recently it has been documented that ATM is also present in the peroxisomes, cytoplasmic vesicles 

and mitochondria (18-20). Autophagy alterations have been implicated in several chronic nervous 

system disorders,  such as  proteinopathies  (Alzheimer's,  Parkinson's,  Huntington's  diseases)  and 

acute brain injuries,  whose hallmarks  are  organelle  damage,  synaptic  dysfunction  and neuronal 

degeneration. Autophagy is a constitutive lysosomal catabolic process during which, cytoplasmic 

components, damaged proteins and entire organelles are degraded and recycled to generate building 

blocks for anabolic processes. Autophagy,  known originally as an adaptive response to nutrient 

deprivation in mitotic cells, including lymphocytes, is now recognized as an arbiter of neuronal 
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survival  and homeostasis  in  that  neurons are  post-mitotic  cells,  which require  effective  protein 

degradation to prevent accumulation of toxic aggregates (21-23). 

Figure 2. ATM signaling pathway at the peroxisome in response to ROS. Activation of AMPK 
leads to the phosphorylation of ULK1 kinase, which is essential for autophagy (Choi KR, 2017)

ATM is also involved in immune cell maturation, which requires gene rearrangements and 

therefore  leads  to  DSBs.  However,  ATM  deficiency  does  not  result  in  a  profound  block  in 

lymphocyte development. Differently, VDJ recombination may be affected. In B cells, this altered 

process  leads  to  a  defect  in  class  switch  recombination  (CSR)  from  IgM  to  other  classes, 

demonstrating the central role of ATM in class switching (24).

ATM and neurodegeneration

In the nervous system, defective DNA repair leads to neurodegeneration. Several mechanisms by 

which deficient DNA repair in neurons triggers their apoptosis have been proposed (25). The post-

mitotic status of differentiated neurons may make them more vulnerable to DNA damage than cells 

in  the  active  proliferation  status. Genetic  deficiencies  in  enzymes  involved  in  the  DNA repair 

process can induce neuronal apoptosis or make neurons more sensitive to further genotoxic stresses. 

Even  though  the  progressive  neurodegeneration  is  a  common  hallmark  of  many  progressive 
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neurologic  syndromes,  all  sharing  a  defective  DSBs  responses  in  their  pathogenesis,  the 

disease-specific differences in the onset and course of neurodegeneration likely reflect selective 

DNA repair requirements in the different areas of the nervous system (25).

 There  are  two  major  DNA  repair  pathways  for  the  DSBs  damages.  Homologous 

recombination  repair  (HR)  is  an  important  process  mainly  during  early  embryogenesis,  where 

proliferation is at its maximal expression leading to the development of stem cells and progenitors. 

This  complex  machinery  requires  genomic  integrity.  Non-homologous  end-joining  (NHEJ) 

recombination  repair  is  active  mainly  in  the  brain.  In  the  mature  nervous  system,  a  different 

pathway repairs  DNA single-strand breaks (SSBs) (26). In the nervous system, ATM signaling 

appears to function predominantly in immature and post-mitotic neural cells, suggesting that ATM 

responds to DNA DSB utilizing NHEJ. In the absence of ATM, neurons survive and populate the 

Purkinje neuron layer and only later they degenerate as a result of DNA damage experienced during 

development. This would explain the reason by which ATM is an important signaling molecule 

only in a selective region of the nervous system (27). 

Neither the normal function of ATM in the nervous system nor the biological basis of the 

degeneration in A-T is known. The pathological features of A-T are predominated by the selective 

Purkinje  cell  depletion  and  granule  neurons  with  partial  thinning  of  the  granule  cell  layer. 

Progressive atrophy of the cerebellar cortex is a hallmark of A-T, characterized by the appearance 

of  abnormal  Purkinje  cells  in  the  molecular  layer  of  the  cerebellum  with  abnormal  smooth 

dendrites, reduced arborizations and finally, ectopic cells (26, 28-29). 

Although ATM is known to be neuroprotective in the tissue undergoing oxidative stress and 

apoptosis, the molecular mechanisms of its function in the nervous system are uncertain.  Since 

oxidative stress causes DNA damage it is difficult to make a clear distinction between alterations in 

cellular  signaling induced by oxidative stress and DNA repair deficiency.  So further works are 

necessary to unravel the role of ATM in response to oxidative stress (30).
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Figure 3. Network of cytoplasmic ATM signaling in cellular homeostasis (Choi KR, 2017).

Clinical phenotype of A-T

Neurological phenotype and cutaneous manifestations

A-T belongs to a group of early onset childhood ataxias, which affect children and young people, in 

whom the neurological dysfunction worsens over the time, eventually confining the patients on a 

wheelchair by the adolescence. 

Patients  with  A-T typically  present  with  signs  of  progressive  neurological  dysfunction, 

characterized by cerebellar ataxia and uncoordinated movements with onset between age one and 

four years, associated with deterioration of gross and fine motor skills occurring by approximately 

four years of age (31). A-T patients have normal mental skills and IQ tests, even though some 

deficts in nonverbal memory, verbal abstract reasoning and calculation and executive function may 

be detected.

Ocular abnormalities are an early feature of A-T and include oculomotor apraxia, which 

may be a main sign helpful in the early recognition of the patients, nystagmus, and photophobia 

(32). Oculomotor  apraxia associated to slurred speech often leads to impassive facies.  Reading 

difficulties are often observed in patients with A-T due to abnormalities of accommodation and eye 

14



movements. In addition, a peripheral axonal neuropathy may be found and leads to decreased deep 

tendon reflexes. 

Being almost invariably disabling, this illness has severe impact on the patients’ quality of 

life (QoL) and psychosocial skills, significantly limiting the ability to perform tasks of daily life, 

restricting autonomy and social participation.

The  second  major  clinical  manifestation  of  A-T  is  represented  by  oculo-cutaneous 

telangiectasias, occurring later between two and eight years of age. Other dermatological features 

include hypo/hyperpigmentation,  cutaneous atrophy,  partial  albinism, premature graying of hair, 

scleroderma-like  lesion.  Cutaneous granulomatosis  has  also been recently described in  children 

with A-T (33)

Immunodeficiency and pulmonary complications 

A variable immunodeficiency, affecting the humoral and cellular systems, is present in 60 to 80% 

of  patients  with  A-T.  The  immunodeficiency  is  variable  and  does  not  correlate  well  with  the 

frequency, severity or spectrum of infections.

The most common humoral defects are low or even absent IgA, IgE, and IgG2 serum levels,  

inconstantly associated with impaired antibody responses to vaccines.  A few patients may also 

have elevated IgM serum levels, thus suggesting an Hyper IgM syndrome. 

The most  common defects  of  the cell-mediated  branch are  lymphopenia  with  low CD4 

counts  resulting  in  reversed  CD4/CD8  ratio  and  impaired  lymphoproliferative  responses  to 

common mitogens and antigens. A defect in recombination or DNA rearrangement may explain the 

defects in both T and B cell differentiation. However, unlike most immunodeficiency disorders, 

severe infections are uncommon in A-T and the spectrum of infections in individuals with A-T does 

not comprise opportunistic infections but predisposition to sino-pulmonary infections (34, 35).

As for pulmonary complications, three major lung disease phenotypes have been recognized 

up to date:1) recurrent upper and lower respiratory tract infections (RTIs), which in turn can lead to 

bronchiectasis 2) lung disease associated with dysfunctional swallow and inefficient cough due to 

the neurodegenerative deficit; and 3) ILD/pulmonary fibrosis (36, 37).

The frequency and severity of infections correlates more with general nutritional status than 

with the immune status. 
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Morbidity  and  mortality  in  these  patients  is  significantly  related  to  pulmonary 

manifestations, as recurrent sinopulmonary disease and bronchiectasis, interstitial lung disease and 

pulmonary fibrosis (38).

Predisposition to cancer and chromosomal instability

The prevalence of cancer in A-T is 10-30%, representing the second cause of death (39). Leukemia 

and lymphoma account for about 85% of malignancies. Most leukemia are of T-cell origin, while 

lymphomas  are  usually  of  B-cell  type  (40).  Other  solid  tumors  include  ovarian  cancer,  breast 

cancer, gastric cancer, melanoma and gonadic cancer. The predisposition to develop tumors is best 

explained by genome instability due to altered repair of double-strand breaks. An increased risk of 

cancer, particularly of breast cancer, has also been described among A-T heterozygotes (41). In a 

careful analysis, heterozygote carriers (1% of the population) had an increased mortality rate from 

the second decade, with a progression with the age, mainly due to cancer, particularly breast cancer, 

or ischemic heart disease. 

Patients  with  A-T  also  show  an  increased  sensitivity  to  ionizing  radiations.  In  vitro, 

radiosensitivity  is  expressed  as  reduced  colony  forming  ability  (CFA)  following  exposure  to 

ionizing radiations or radiomimetic chemicals  (42). 

Endocrine dysfunction and other phenotypic features

The  most  common  endocrine  manifestations  are:  growth  failure,  hypogonadism  and  insulin-

resistant diabetes mellitus (43, 44) Other clinical problems may include orthopedic manifestations, 

sleep disturbance and liver abnormalities.

Expectancy  life  is  about  25  years,  even  though a  longer  lifespan  has  been  reported  in 

patients with A-T variant,  which may reach the 4th-5th decade of life.  Both the type of ATM 

mutation and residual kinase activity may contribute to the survival of A-T patients (38).

Diagnosis and treatment

Diagnosis of A-T relies on clinical phenotype, family history and is usually supported by laboratory 

findings that include: elevated serum α-phetoprotein (AFP); immunological deficiencies;  cerebellar 

atrophy at MRI; chromosome analysis (7;14 translocation) on lymphocytes of peripheral blood;  in 

vitro  radiosensitivity  assay;  absent  or  markedly  decreased  intracellular  ATM protein  levels  by 
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Western  Blotting;  deficient  phosphorylation  of  ATM substrates  through  ATM serine/threonine 

kinase activity. Finally, the diagnosis of A-T is confirmed by molecular genetic analysis of ATM 

gene (45, 46). As NGS becomes standard clinical practice for patients with atypical signs, it  is 

likely that more people with mild form of A-T will be diagnosed. Finally, several infants have been 

diagnosed as A-T thanks to SCID newborn screening test programs in combination with NGS.

Unfortunately,  there  is  currently no treatment  for  A-T except  for  supportive  therapy of 

secondary  symptoms.  The  treatment  of  A-T  remains  based  both  in  medical  management  of 

immunodeficiency,  sinopulmonary  infections,  neurologic  dysfunction  and  malignancy,  both 

neurorehabilitation (physical,  occupational,  and speech/swallowing therapy;  adaptive equipment; 

and nutritional counseling). In particular,  A-T is a multisystem disease requiring intervention to: 

halt progressive neurodegenerative changes; reduce the risk of tumours; prevent severe infections 

due to the immunodeficiency; ameliorate respiratory functionality. 

Unfortunately, no effective disease-modifying therapy is presently available for any of the 

major  problems  of  the  syndrome.  There  is  no  cure  for  the  progressive  neurodegeneration,  but 

medications directed to partially control drooling and tremors.  Attempts to relief the neurological 

symptoms of A-T have so far been made with L-DOPA derivatives or dopamine agonists to correct 

basal ganglia dysfunction

Since incorporation  of myo-inositol into phosphoinositides,  as well  as  free myo-inositol 

content,  is low in some A-T fibroblasts  and phospholipid  metabolism is  less active  in  A-T as 

compared  to  normal  cells,  as  well,  a  potential  effect  of  myo-inositol  has  been  postulated  on 

neurological and immune functions in A-T (47). However, although some promising results were 

observed in certain immune cells in a few A-T children (www.treatAT.org) in a first A-T clinical 

study, the sample size was not large enough to allow a conclusive interpretation of the data.

Antioxidant  therapies  were  expected  to  simultaneously  slow  the  progression  of  the 

neurological  deterioration  and  to  reduce  the  risk  of  cancer,  as  well.  At  a  preclinical  level, 

administration  of  the  antioxidant  5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl  (CTMIO)  to 

Atm-deficient mice reduced the rate of cell death of Purkinje cells and enhanced dendritogenesis to 

wild-type  levels,  suggesting  a  protective  role  against  neurodegeneration.  Recent  evidence  also 

indicates that CTMIO dramatically delays the onset of thymic lymphomas in ATM-/- mice (48). 

Despite these encouraging preliminary results, in humans, only a modest improvement has 

been achieved with antioxidant agents. A second group of antioxidants molecules, alpha-lipoic acid 

17

http://www.treatAT.org/


and  a  poly  ADP-ribose  polymerase  (PARP)  inhibitor,  nicotinamide,  has  been  tested  in  a 

randomized, double blind, double dummy trial. Two oxidative stress markers, levels of urine total 

alkanes and serum fast oxygen reduced adsorbance capacity (ORAC), improved in comparison with 

the baseline, in particular when a combined therapy with both the antioxidants was. It is noteworthy 

that a trend toward increased lymphocyte counts was observed when subjects took both drugs, even 

though  the  difference  did  not  reach  a  statistical  significance.  Concerning  the  study  multiple 

neurologic  parameters  evaluated  in  this  trial  (quantitative  evaluation  of  tremor,  tone,  saccadic 

latency and A-T index score) and pulmonary function through spirometry, no positive significant 

change was found in any of them evaluated parameters  (49).

Overall,  all  attempts with anti-oxidant agents failed to halt  the progressive nature of the 

disease. As for the correction of ATM gene function by read-through of premature termination 

codons,  Lai  et  al.  employed  aminoglycosides  to  achieve  read-through expression  of  functional 

ATM  protein  (50). In  principle,  these  drugs  bind  to  the  RNA  decoding  site,  inducing  a 

conformational change that compromises the integrity of the codon–anticodon proofreading and 

allowing translation through an otherwise terminating codon. Gatti’s group showed that geneticin 

and gentamycin produced detectable ‘readthrough’ ATM protein, as well (51). This methodology is 

very promising; however, it requires the use of aminoglycosides that are toxic to cells and humans 

at concentrations that would be effective for read-through. Further attempts have been made with 

antisense morpholino oligonucleotides (AMOs) to redirect and restore normal splicing in the ATM 

gene,  by targeting  aberrant  splice sites and enabling  expression of normally spliced  full-length 

ATM mRNA. However a number of issues need to be addressed before it could be employed as a 

human therapeutic. 

Symptomatic treatment can greatly improve the poor quality of life of these patients and 

prevent complications that could lead to death.  Treatment of the symptoms of cerebellar ataxia 

should  be  symptom-focused  (imbalance/incoordination/dysarthria,  cerebellar  tremor)  and 

monitored with a few simple reproducible and semiquantitative measures of performance. 

In  the  last  years  the  potential  benefits  of  glucocorticoids  (GCs)  for  A-T  have  been 

considered. Several clinical observations documented a clear cut beneficial effect of such therapy 

that was inversely correlated with the extent of cerebellar atrophy (52-54). This beneficial effect 

was also inversely correlated with the age of the patients (55). 

In addition, a beneficial effect was also documented at very low dosages of drug as 0.01 

mg/kg/day of oral betamethasone (53). Of note, this effect was strictly drug dependent, in that the 
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drug withdrawal paralleled the worsening of the neurological signs (52). Furthermore, during the 

short steroid trial,  a paradoxical effect on the proliferative response to mitogen stimulation was 

documented, differently to what expected on the basis of the drug-induced immune suppression, 

suggesting a direct effect of betamethasone on the intimate altered pathogenic mechanism in A-T 

(53).      

As for the mechanism underlying this effect of corticosteroids on neurological symptoms in 

A-T,  any  definitive  explanation  is  currently  available.  The  interaction  with  specific  receptor 

proteins in target tissues have been shown to regulate the expression of corticosteroid-responsive 

genes.  Several  lines  of  evidence  indicate  that  GCs have  remarkable  effects  through both  non-

genomic and genomic mechanisms, the latter well documented also in neural system. The classical 

genomic mechanism of GCs action is cytoplasmic glucorticoid receptor (GR) mediated.  GCs bind 

and induce GR activation, followed by the GR translocation to nucleus and subsequent binding to 

glucocorticoid responsive element (GRE), thus modulating the transcription of a variety of genes 

including  glucocorticoid-induced  leucine  zipper  (GILZ).  GILZ  is  known  as  a  marker  GCs 

transcriptional activity, rapidly induced by GCs, able to regulate T lymphocytes activity, including 

T cell survival. An alternative explanation of the beneficial effect of betamethasone in A-T could be 

a potential activity of this molecule as an antioxidant. This mechanism was addressed by in a pilot 

study  of  our  group,  where  intracellular  glutathione  levels,  reactive  oxygen  species  (ROS) 

production, and lipid peroxidation were measured in A-T patients receiving betamethasone (55). 

A marked reduction, but drug-dependent, of ROS levels in the more drug responsive patient 

was  noted.  It  is  noteworthy  that  the  neurological  improvement  was  observed  by  1  week  of 

treatment. The previous observation that older patients failed to respond suggests that a threshold 

level of Purkinje cell numbers or other cerebellar hard-wiring may be a prerequisite for successful 

steroid therapy in A-T (55, 56). 

 Thus, on the basis of very limited studies, it is mandatory that further evidence have to be 

gathered as to their potential role as disease-modifying agents.
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Aims

Aim of  this  multicenter  study,  performed  with  a  blind  evaluation  procedure,  is  to  define  the 

minimal effective dosage of betamethasone in the perspective of an occasional usage of the drug, 

thus preventing the occurrence of side effects. 

Methods

Patient selection 

Patients included in this study (9 subjects within 8 families; 4 males), 4 to 25 years of age, received 

a diagnosis of A-T  according to  the European Society for Immunodeficiencies  (ESID) criteria, 

confirmed by ATM gene sequencing (Table I). The study was approved by the Institutional Ethics 

Committee (Ethical Committee for Biomedical Activities of Federico II University), conducted in 

accordance with the ethical  principles of the Declaration of Helsinki,  and the local laws of the 

countries involved.  An informed consent was obtained from all patients (or parents/guardians for 

pediatric subjects) during the screening visit. Standard clinical assessment was performed and data 

were  collected  through  case  report  form  (CRF),  including  age,  gender,  age  at  onset  of  first 

symptom,  disease  duration,  presence  or  absence  of  the  following  findings:  cerebellar  ataxia, 

apraxia,  dysarthria,  resting  tremors,  previous  history  of  recurrent  or  severe  infections.  Patients 

enrolled were required to be ≥ 3 years old, to have a score ≥ 10 on the Scale for the Assessment and 

Rating of Ataxias (SARA) and levels of CD4+ lymphocytes ≥ 200/mm3 at the screening visit. Any 

steroid assumption and/or concomitant use of other agents  acting on the central  nervous system 

were prohibited for a period of at least 30 days prior to start of treatment with betamethasone and 

throughout  the  study.  Permitted  medications  included  any  drug  needed  to  treat  concomitant 

infectious events or any adverse effect associated with steroid administration,  if  any.  Exclusion 

criteria  from  the  study  included:  current  or  previous  neoplastic  disease,  history  of  severe 

impairment of the immune system, chronic conditions representing a contraindication to the use of 

steroid drugs,  participation in any other investigational trial within 30 days before the screening 

period.

Trial design and procedures
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This  8-month  multicenter  study  was  aimed  at  the  evaluation  of  the  efficacy  and  safety  of 

betamethasone at  progressively increasing dosages of 0.001, 0.005, and 0.01 mg/kg/day in  one 

daily dose, in patients with A-T. The enrollment was performed at 3 Centers of the Italian Network 

of Primary Immunodeficiencies (IPINET), namely Federico II University of Naples, Spedali Civili 

of Brescia and University of Milan. Visits were scheduled at the screening, baseline (T0), every 60 

days during the treatment period (T1-T3), and at the end of tapering and wash out period (T4). 

Patients started study medication at T0. At beginning of T3 patients de-escalated betamethasone of 

25% every 5 days (Figure 4). In order to have a surrogate marker of compliance to the treatment,  

serum levels of ACTH and cortisol were monitored at each time-point. Cerebellar atrophy score 

was calculated  as  follows:  a  score of  0  =no cerebellar  atrophy;  1  = no cerebellar  atrophy but 

moderate pontocerebellar angle cisterns enlargement; 2 = moderate atrophy involving mostly both 

superior and inferior portion of the vermis and, at a lesser extent, the cerebellar hemispheres with 

moderate enlargement of periliquoral spaces; 3 = severe atrophy of superior portion of vermis and 

moderate  atrophy of  inferior  part  of  vermis;  severe  atrophy  of  superior  and  lateral  portion  of 

cerebellar  hemispheres  and  moderate  atrophy  of  inferior  hemispheres;  4  =  global  and  severe 

atrophy of  the  superior  and inferior  part  of  vermis  and the whole  cerebellar  hemispheres  with 

marked fourth ventricle enlargement (Broccoletti T 2009 et al).

At  each  Center,  a  two-physicians  treating  and  assessing  model  was  used;  the  treating 

physician was responsible, in an open setting, for drug administration, recording of adverse events, 

and safety assessment. A well experienced neurologist performed the neurological evaluation. Each 

neurological evaluation, through a SARA scale  (see appendix E1 on the Neurology Web site at 

http://www.neurology.org/cgi/content/full/66/11/1717/DC1),  which  allows  to  quantify  ataxia 

severity on a scale from 0 (optimal) to the maximal score of 40, was videotaped at each Center. At 

the end of the study (T4), the videotapes of the patients, containing the 5 visits evaluation, were 

collected  at  the  Scientific  Coordinator  Center  (SCC),  where  a  stochastic  assembly  of  2  min 

sequences for each individual SARA parameter was performed. Subsequently, the sequences were 

evaluated by a Neurology Evaluators Committee (NEC), consisting of three independent paediatric 

neurologists with experience in the management of A-T patients, that scored them separately and in 

blind according to SARA guidelines. Before assessment, observers were not informed about any 

children’s characteristics.

For the evaluation of QoL, children or their parents/tutors were asked to complete  at each 

time-point  the  Italian  version  of  the  Children  Health  Assessment  Questionnaire  (CHAQ).  The 
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CHAQ assesses 8 functional areas (dressing, arising, eating, walking, hygiene, reaching, grip and 

activities) with a score ranging from 0 to 3 (0 = without any difficulty; 1 = with some difficulty; 2 = 

with much difficulty; 3 = not possible). The question with the highest score determined the score in  

that functional area. If aids or devices were used or help was needed to complete tasks in a certain  

area, a minimum score of 2 was recorded for the corresponding functional area. The scores of each 

of the 8 functional areas were averaged to calculate the CHAQ-disability index (CHAQ-DI), which 

ranges from 0 (no or minimal physical dysfunctioning) to 3 (very severe physical dysfunctioning).  

The CHAQ also allows to assess the presence of pain through a visual analogue score. However, 

the evaluation of this category was not applicable to our cohort of A-T patients.

The final evaluation of all safety and efficacy parameters  and the statistical analysis  was 

performed at the end of the study at the SCC.

Figure 4.  The flowchart illustrates the schedule of enrolment, interventions and assessment; ICF, 
informed consent form; SARA, scale for the assessment and rating of ataxia; CHAQ, childhood 
health assessment questionnaire; BUA, broadband ultrasound attenuation.

Trial outcome measures

The primary objective of this study was to determine the efficacy of the treatment with different 

doses of betamethasone in A-T, as assessed by change from baseline in SARA scale. Patients were 
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defined as responder if a drop of at least 3 points of SARA score was documented at almost one of 

the time-points, while they were defined as partial responders if the drop was ≥1.5 and < 3 points.  

The cut off of 3 points of SARA score was considered informative on the basis of the previous 

study of Broccoletti et al. Furthermore, each SARA item was considered improved (or worsened) if 

a change of at least one point was documented by two independent evaluators.

The secondary objective was to determine the safety of the drug administration by reporting 

adverse events through the collection of the medical history, including medical events and changes 

in concurrent medications, physical examination, body weight and blood pressure monitoring ,a 12-

lead electrocardiogram (ECG), the results of hematology and blood chemistry tests, including blood 

glucose  and  hemoglobin  A1C  levels,  neutrophil  counts,  serum  concentration  of  electrolytes, 

calcium and phosphorus, intra-ocular pressure measurement, at different time points. The severity 

of the adverse event was graded as mild (minimal or no treatment required and no interference with 

the  patient’s  daily  activities);  moderate  (low  level  of  inconvenience  or  concern,  might  need 

treatment  and  cause  some  interference  with  functioning);  severe  (patient’s  daily  activities 

interrupted and systemic drug therapy or other treatment needed, usually incapacitating); and life-

threatening (immediate risk of death). 

The tertiary objective was the QoL evaluation.  An improvement was considered when a 

reduction of at least 15% in the disability index or in at least two CHAQ categories was observed. 

Statistical Analysis

Efficacy analysis was performed on the intent-to-treat (ITT) and per protocol (PP) populations. The 

PP  population  was  defined  as  patients  who  completed  the  study,  and  had  no  major  protocol 

violations. Descriptive analysis of the patient population was evaluated by calculating means and 

standard  deviations  for  continuous  variables  and  frequencies  and  percentages  for  all  discrete 

variables.  To  assess  the  reliability  of  SARA  score,  the  evaluation  of  intra-class  correlation 

coefficient (ICC) was performed (Supplementary Table 1).

Results

Patients and baseline characteristics

Demographic characteristics are reported in Table 1. The median time since diagnosis of A-T and 
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range were 8.4+/-5.7 and 2.6-22 years, respectively. Median age at the disease onset and range were 

29+/-11.5  and  18-48  months.  All  the  patients  were  compound  heterozygotes  for  ATM  gene 

alteration. In all patients, ATM was not expressed. Patients 7 and 9 were siblings. All the patients 

had cerebellar ataxia. At the enrolment, 2 patients (P1 and P4) had grade 3-4 cerebellar atrophy; 3 

patients (P5, P8 and P9) grade 2; 1 patient  (P7) grade 1. In 2 further subjects  (P3 and P6) no 

atrophy could be detected (grade 0). In a further subject (P2), data on a recent brain MRI was not  

available, but a previous evaluation revealed a grade 2 score. Only P6 was receiving Ig replacement 

therapy.
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Table 1 Demographic and clinical data of the cases enrolled in the study

Neurological phenotype

Patient Sex Age at 
examination, 

years

Disease 
duration, 

years

Cerebellar 
atrophy 

score

Wheel chair 
confinement

Resting 
tremor

Dysarthria Apraxia Previous 
multiple/severe 

infections

Mutations

1 M 13 11 3-4 + + + + + 97delC/2113delT, 
heterozygous

2 F 12 8 2 + - + + - 381delA/6679C>T,
heterozygous

3 M 4 2.6 0 - - - - + c.2376G<A/792del42,
heterozygous

4 F 24 22 4 + + + + + 8629insC/8977C>T
heterozygous

5 F 9 7.6 2 + + + + - c.3526/3535del10
heterozygous

6 F 6 4.1 0 - - + + + c.2413>T/6996delT
heterozygous

7 F 6 4.4 1 - - + - - c.3894/3895insT
heterozygous

8 M 12 8 2 + + + + - c.521-541del19
/4909+1G>T

heterozygous
9 M 11 8.4 2 - + + + - c.3894/3895insT

heterozygous
+, presence of specific clinical symptom; -, absence of specific clinical symptom; NA not available. Cerebellar atrophy score according to Broccoletti T 
et al 2011.
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Efficacy

All patients were considered compliant to the treatment. An improvement in the total 

SARA score was globally evident in 5 patients during the overall treatment period. 

At  T1,  none  of  the  subjects  showed  a  clinically  relevant  effect.  At  T2  (0.005 

mg/kg/day), an improvement of the total SARA scale from baseline was observed in 

4 of the treated patients, while at T3 (0.01 mg/kg/day), an additional patient showed 

an improvement  (Fig.  5).  In  detail,  3 patients  exhibited  a  3 points  improvement, 

while 2 were partially responders. Two patients were not responder at all during the 

overall period treatment and in 2 further patients a worsening of the score was noted. 

Among these last 2 patients, P7, age 6 years, was the brother of P9, who, by contrast, 

exhibited a clear improvement even at the lowest steroid dosage. Unexpectedly, the 

baseline SARA score in this two subjects was 11 in P7 and 16 in P9. Moreover, P7 

had  a  cerebellar  atrophy  score  lower  than  the  brother  (1  versus 2  of  the  oldest 

patient).  No  difference  in  the  basal  laboratory  parameters  could  be  detected. 

However, even though compliant to the treatment,  no reduction in ACTH plasma 

levels was observed during the treatment. An additional patient, P8, also exhibited a 

worsening of 2 points at the highest dosage. However, the worsening was exclusively 

limited  to  speech  disturbance  and,  of  note,  there  was  for  this  parameter  a  high 

interrater  variability.  In  the  5  cases,  in  whom  an  improvement  was  observed 

considering the SARA score on the whole,  neurological  functions returned to the 

baseline values during the wash-out period in 2 patients, while in the remaining the 

total score remained slightly lower than T0 (P1, P3 and P4), as shown in Fig. 2.  A 

correlation between the serum ACTH levels and the clinical response was observed 

during the treatment (P = 0.003, r = 0.62).  

Since SARA scale allows to assess 4 different  domains,  in order to better 

identify  the  clinical  parameters  which  more  frequently  improved  during 

betamethasone  treatment,  the  eight  items  of  SARA  scale  were  grouped  in  the 

following categories:  category A (gait),  which includes parameters evaluating gait 

disturbance  (gait,  stance  and  heel-shine  slide  items),  category  B  (ataxia),  which 

includes the parameter that evaluates truncal ataxia (sitting), category C (speech), for 

speech  disturbance  and  dysarthria,  category  D  (limb  ataxia),  which  includes 
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parameters that evaluate upper extremities ataxia (finger chase, nose-finger test and 

fast  alternating  movement).  As  indicated  in  Fig.  6,  an  improvement  in  gait 

disturbance variables and in the truncal ataxia was observed in 7/9 and 3/9 patients, 

respectively.  Speech and limb  ataxia  improved  only in  2 subjects.  All  the  items 

which improved showed a drop of 1 point in the SARA scale. No correlation with 

atrophy cerebellar score was found with the age at onset, age at examination and 

disease duration.

Figure  5. Change  in  SARA  score  during  betamethasone  treatment.  Data  are 
represented as mean SARA score change (negative values show improvement, zero 
or positive values show no change or deterioration of cerebellar ataxia) for 9 patients. 
No correlation between the response to the treatment and ATM mutations can be 
observed. 
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Figure  6.  Symptoms  were  divided  in  4  groups.  Category  A:  gait  disturbance, 
including  gait,  stance  and heel-shine  slide  items;  category B:  pure  truncal  ataxia 
(sitting);  category  C:  speech  disturbance  (speech);  category  D:  upper  extremity 
ataxia, including finger chase, finger-nose test, and fast alternating movement. Data 
are expressed as number of subjects showing the improvement.

Table 2  Number of patients with a neurological improvement and entity of the ∆ 
SARA score at each time-point of the most informative variables

T60 Mean ∆ 
SARA

T120 Mean ∆ 
SARA

T180 Mean ∆ 
SARA

Gait 2 -1 1 -1 1 -1
Stance 1 -1 0 NA 1 -1
Hell shine slide 1 -1 3 -1 2 -1
Sitting 1 -1 2 -1 2 -1
Speech 
disturbance

1 -1 1 -1 1 -1

Finger chase 0 NA 1 -1 1 -1
Nose finger 0 NA 0 NA 0 NA
Fast alternating 
movement

0 NA 0 NA 1 -1

NA, not applicable
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Safety and tolerability

Only mild or moderate adverse events (AEs) occurred during the treatment period. 

The most common AEs were weight gain (n=8 at T3) and hypertension (n = 2 at T3) 

which were observed more frequently at the maximum dosage (T3) (Table 3). One 

patient  (P2)  discontinued  the  treatment  (+15  days  of  the  maximal  dose)  due  to 

moderate weight gain without any further adverse event. Since the patient had been 

treated with the 0.01 mg/kg dosage for almost the 25% of the scheduled phase, the 

subject  was not  excluded from the  efficacy analysis.  Hypertension  occurred  in  2 

subjects, but none of them required anti-hypertensive treatment. 

Three patients experienced infections of upper airway (pharyngitis and otitis) 

treated  with  antibiotic  therapy.  1  patients  (P4)  who  suffered  of  bronchiectasis, 

chronic P. aeruginosa colonization and recurrent lower respiratory infections before 

betamethasone treatment, needed 3 cycles of antibiotic therapy during the 8-month 

trial for bronchopneumopathy exacerbation. It must be noted that in the previous 12 

months  this  patient  experienced  3  episodes  of  pneumonia,  in  one  case  requiring 

admission. 

There was no notable change from baseline in the vital signs. None of the 

patients had neutropenia/anemia or significant worsening of lymphopenia. 

No worrying pattern in clinical chemistry was observed. As for the metabolic 

disorders,  none  of  the  subjects  had  hyperglycemia/glycosuria  or  increased 

hemoglobin  A1C  levels,  2  patients  had  a  worsening  of  pre-existing 

hypercholesterolemia and in 1 case a mild hypercholesterolemia could be detected at 

T2 and T3. In 4 and 5 patients, serum triglyceride levels increased at T2 and T3, 

respectively.  At each time-point no behavioral difficulties or psychiatric problems 

related to the long-term use of glucocorticoid were reported.
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Table 3. Adverse events, according to betamethasone dosage

Betamethasone
T1

n=9
T2

n = 9
T3

n = 9
Admission due to severe 
infections

0 0 0

Severe bacterial infections 0 0 0
Need of antibiotic therapy 2 (22%) 2 (22%) 2 (22%)
Mild hypertension 0 1 (11%) 2 (25%)
Severe hypertension 0 0 0
Weight gain 6 (66%) 6 (66%) 8 (89%)
       Mean (SD), kg 1.1 (1.9) 2.25 (2.4) 3 (2.5)
       Median, kg 1 2 2.8
Diabetes 
mellitus/hyperglicemia

0 0 0

Cataract 0 0 0
Glaucoma 0 0 0
Acne 0 0 0
Myopathy 0 0 0
Psychosis 0 0 0
Increase of cholesterol levels 0 3 (33%) 4 (44%)
Increase of triglyceride levels 1 (11%) 4 (44%) 5 (55%)

At leastone TEAE was
reported by 48% of placebo-treated and 62.8% of
rotigotine-treated patients. Drug-related TEAEs were
reported by 26.4% and 44.4% of placebo- an
Change in quality of life

CHAQ-DI was moderate-severe in 7/9 patients at T0 (mean 2.18+/-1.1, range 2.11-

2.47), while in 2 patients it was mild (P3, 0.12) or mild-moderate (P6, 0.62). 

In  detail,  the  most  affected  categories  were  those  concerning  dressing, 

hygiene, reaching and activities. During the treatment period, the CHAQ-DI on the 

whole did not change significantly in 8/9 patients, with the exception of P7, who 

despite the worsening in SARA scale, had a reduction of approximately 23 and 18% 

in CHAQ-DI at  T1 and T2, respectively.  In a further subject  (P4) the CHAQ-DI 

decreased, even though the change did not reach the cut-off of 15% (13%). 

When each of the 8 categories was analyzed individually,  an improvement 

was noted in 4/9 patients at T2 in hygiene tasks, while in 3 patients an improvement 

was noted in dressing, grip and reaching. In the analysis of the 30 items of individual 
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subjects, we noted that 4 patients (P1, P7, P8, P9) at T2 exhibited an improvement ≥ 

5 specific daily life activities (DLA). However, the improvement of individual tasks 

didn’t  affect  the overall  CHAQ-DI,  since most  of the 30 items  didn’t  change.  It 

should be noted that the overall impact on the QoL was variable in that a worsening 

was observed for  5  categories  in  P9,  who,  however,  had  an improvement  at  the 

SARA score. Three further patients had a mild worsening of the reaching category. 

Discussion

A-T remains at the moment an incurable disease with a very short life span and a 

poor  QoL.  Unlike  other  forms  of  PIDs,  definitive  therapies  based  on innovative 

approaches, as gene therapy or gene editing technologies, are still  far from being 

available. In this perspective, the possibility of using disease modifying agents, able 

to  attenuate  the  disabilities,  although  temporarily,  and  improve  QoL is  widely 

desirable. 

In the last 10 years a number of drugs has been under investigation for the 

symptomatic  treatment  of  A-T.  In  ATM  deficient  mice,  the  effect  of  some 

antioxidants,  such as N-acetyl-L-cysteine, EUK-189, tempol and 5-carboxy-1,1,3,3-

tetramethyl  isoindolin-2-yloxyl,  has  been  tested  for  their  chemo-preventive 

properties (57). Glutamine supplementation is able to rescue the decrease in brain-

derived  neurotrophic  factor  expression  and  the  nuclear  translocation  of  histone 

deacetylase  4,  resulting  in  improved  health  and  life  span  (58).  Furthermore,  the 

biological  role  of  several  molecules,  including  aminoglycoside  antibiotics  and 

antisense  morpholino-oligonucleotides,  has  been  tested  in  vitro.  These  molecules 

could  potentiality  restore  ATM  functions,  even  though  their  translation  into  the 

clinical setting is still far from being achieved due to their safety/side effect profiles 

(REF). 

Glucocorticoids  are  currently the only medication  that  has  been shown to 

benefit  neurological  A-T  phenotype.  In  particular,  in  previous  studies,  speech 

disturbance and stance, as well as the quality of motor coordination,  were the more 

sensitive neurological parameters (53, 54). More recently, in a phase 2 study, it was 

observed  that  infusions  of  autologous  erythrocytes  loaded  with  dexamethasone 
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(EryDex) were effective in improving neurologic symptoms in a few A-T patients. 

However, the procedure is quite invasive since it requires the collection of 50 ml of 

peripheral blood from the patients and the subsequent intravenous re-infusion (59). 

Increased  activation  in  relevant  cortical  areas has  also  been  documented  in  A-T 

patients,  who  exhibited  a  good  motor  response  to betamethasone  treatment,  thus 

suggesting  that  GCs  could  facilitate  cortical  compensatory  mechanisms  (60). 

However, despite these observations, up to date no data are available on the minimal 

effective dosage of the drug. This is important, since GCs treatment is associated to 

several side effects. 

In this trial, we documented that 4 out 9 patients have a benefit at the dose of 

0.005  mg/kg  per  day  of  oral  betamethasone.  Using  the  higher  dosage,  only  1 

additional patient had a positive response. Conversely, a daily dose of 0.001 mg/kg 

was ineffective. Gait disturbance and truncal ataxia variables were the most sensible 

parameters. 

The molecular basis to explain the  benefit of betamethasone on A-T is not 

well defined. On the other hand, the intimate mechanism of neurodegeneration in A-

T is still poorly defined (61).   ATM is predominantly a nuclear protein, however a 

number of studies reported that it is also present in the cytoplasm, within cytoplasmic 

vesicles,  peroxisomes  and  mitochondria,  where  it  plays  additional  functions 

independent  of its role in the DNA damage response (17). Abnormalities in cell-

clearance  processes  characterized  by  an  inappropriate  fusion  between 

autophagosome and lysosomes have been recently reported in A-T cells. It has been 

found that betamethasone can interfere in the process by exerting an in vitro positive 

effect on molecules implicated in autophagosome degradation (62). 

Furthermore, a non-canonical splicing event in the ATM mRNA precursor, 

referred as ATMdexa1, has been demonstrated in lymphoblastoid cell lines derived 

from A-T patients  in vitro cultured in the presence of dexamethasone or in some 

patients  treated  with EryDex  (63).  The expression  of  these transcripts  was drug-

dependent  and  well  correlated  with  the  patients’  responsiveness  to  the  therapy, 

suggesting the possibility to use these molecules as prognostic marker (64). Again, 

several differentially expressed genes, implicated in the biochemical involving ATM, 

are restored by dexamethasone and are currently under investigation (65). 
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 In addition to its activation by double stand breaks, ATM has been found to 

be  activated  in  the  cytoplasm by ROS.  Oxidative  stress  is  considered  to  have  a 

crucial role in the A-T physiopathology. Some evidence suggests that GCs may act 

in redox homeostasis, by potentiating antioxidant defenses through an increase of the 

antioxidants  molecules,  glutathione  (GSH)  and  NADPH.  Moreover,  GCs  also 

promote  the  nuclear  accumulation  of  the  transcription  factor  nuclear  factor 

(erythroid-derived2)-like  2  involved  in  GSH  and  NADPH  pathways.  Of  note,  a 

remarkable reduction in ROS levels was documented in response to betamethasone 

treatment (55, 66). 

Taken together these considerations led to hypothesize that the effects of GCs 

are far beyond the anti-inflammatory properties of the drug, potentially interfering in 

the intimate pathogenic mechanisms.

Thus far, all the studies conducted on GC therapies in A-T have documented 

a variability in the clinical response, in that a few patients clearly improved and a 

few do not at all. Our study confirms this variability. This response does not depend 

on the residual amount of expression of ATM itself, thus implying that interfering 

factors, biological, molecular, envinromental or drug-related, are powerful modifiers 

of the neurological phenotype. Due to this variability in the response to the treatment, 

there is a need for biomarkers to predict the response to GCs at the beginning of the 

treatment. We observed a correlation between the reduction of ACTH serum levels 

during GC treatment and the ∆SARA score, thus suggesting that this parameter may 

help clinicians in predicting the clinical response.

This study points to dosing modulation to harness the beneficial effects of 

GCs  on  neurological  phenotype,  avoiding  the  deleterious  consequences  of  high 

dosage therapy. Overall, the AEs observed in this study were moderate, being limited 

to weight gain and mild hypertension. Only 1 patient discontinued the treatment after 

two weeks at 0.01 mg/kg/day because of weight gain. The major expected risk with 

betamethasone  in  such  patients  was  a  significant  increase  of  the  infectious  risk. 

However, no severe/recurrent infections occurred during this study, and the frequent 

exacerbations of lung infections in the patient P4 were more likely due to the pre-

existent lung condition rather than to an immunosuppressive effect of GC therapy. 

No behavioral or other severe side effects were observed during the 6 month-therapy. 
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As for QoL we did not observe improvement in the CHAQ-DI, on the whole, 

in the majority of the patients. This may be due to the fact that most of the patients 

had an advanced form of the disease, which may have influenced both parents and 

patients’  perception  of  the  condition.  Furthermore,  since  the  index  is  strongly 

influenced  by  the  worst  performance  in  the  individual  items,  a  significant 

improvement in the index was not possible despite the improvement of some DLA. 

However, it is noteworthy that 5 items improved in 4 patients. This finding should be 

taken into consideration in evaluating the effect of the GC treatment on the QoL.

In conclusion, our findings would suggest that an occasional usage of short-

term betamethasone  oral  treatment,  at  a  daily  dosage  of  0.005  mg/kg,  could  be 

allowed  under the medical supervision.  Pre-existing risk factors for adverse side-

effects should be taken into account before the start of the treatment. 

Supplementary Table 1 

Intraclass inter-evaluator correlation coefficient during the trial

Item Inter-rater reliability

(ICC)(n-3)
Gait 0.95
Sitting 0.60
Hell-shine 0.66
Stance 0.91
Finger chase 0.66
Nose finger 0.85
Fast alterning movement 0.42
Speech disturbance 0.90
Total  SARA score 0.77
Total SARA score 0.89

To assess the reliability of SARA score we also evaluated intraclass inter-evaluator 
correlation  coefficient  (ICC).  Single  items  had  a  good  (between  0.60-0.74)  or 
excellent  (between  0.75-1.00)  inter-rater  reliability  with  ICCs.  Only  for  fast 
alternating movement item ICC was fair (between 0.40 and 0.59) 
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Conclusions

Differently from other forms of PIDs whose clinical phenotype is predominated by 

the  increased  susceptibility  to  infections,  A-T is  the  prototype  of  more  complex 

syndromes in which the immunodeficiency is only one of the multiple components of 

the  disease.  The  clinical  phenotype  is  mainly  characterized  by  progressive 

neurodegenerative process, especially affecting the cerebellum.  It  is to note that, 

unlike  lymphocytes,  whose turnover  is  continuous,  Purkinje cells  are  mature  and 

differentiated cells which are not subject to turnover. The QoL in A-T patients is 

dramatically  affected  by  the  neurological  impairment,  which  almost  invariably 

confines these patients to wheelchair by the age of ten years. 

Unfortunately, currently there is no effective treatment to cure or prevent the 

progress of neurological deterioration in A-T, but only supportive care. As for the 

intimate molecular mechanism by which betamethasone led to this effect it  is not 

possible  to  give  a  definitive  interpretation,  given  that  the  pathogenesis  of 

neurodegeneration itself is still far from being clear. 

Thus, the identification of the potential site of action of steroids in A-T will 

open a new window of intervention in this so far non-curable disease.  Eventually,  

the identification of a pathogenic role of abnormal autophagy-lysosomal pathway in 

A-T will be extremely useful in indentifying innovative therapeutic strategies and 

new drug targets.

The  data  herein  reported  are  under  review  to  the  European  Journal  of  

Neurology as original article.
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CHAPTER II

“Characterization of Patients With Increased IgM Levels, B-Cell 

Differentiation Blockage, Lymphoproliferation and DNA Repair 

Defect ”
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The earliest evidence that individuals with PIDs develop cancer was reported in 1963 

(67).  An  increasing  number  of  reports  subsequently  indicated  that  subjects  with 

congenital  abnormalities  of the immune system are at  a  high risk for developing 

cancer  including  lymphoma  and  stomach,  breast,  bladder,  and  cervical  epithelial 

cancers (67). 

The overall risk for children with PIDs of developing malignancy is estimated 

at 4–25% (68, 69). The type of malignancy that is seen is highly dependent on the 

precise  PID,  the  age  of  the  patient,  and  probably  viral  infection  indicating  that 

different pathogenic mechanisms may be implicated in each case (68). According to 

the Immunodeficiency Cancer Registry (ICR) database NHL and Hodgkin’s disease 

(HD) account for 48.6 and 10%, respectively, of the malignancies seen in patients 

with PIDs. Genomic  instability due to  defective  DNA repair  processes and other 

unknown mechanisms in PID patients leads to an enhanced risk of cancer. 

The findings of elevated serum IgM with low IgG, IgA, or IgE in the setting 

of immune deficiency leads most immunologists toward a diagnosis of Hyper IgM 

syndrome (HIGM), rare inherited PIDs characterized by class switch recombination 

defects (CSR) and sometimes impaired somatic hypermutation (SHM). SHM plays a 

role in the selection and proliferation of B cells expressing a B-cell receptor (BCR) 

with a high affinity for the antigen and does require the integrity of the cell DNA 

repair machinery.

The  majority  of  these  forms  are  caused  by  X-linked  (XL)  or  autosomal 

recessive (AR) defects in the CD40 ligand/CD40 signaling pathway or AR disorders 

involving  activation-induced  cytidine  deaminase  (AID),  or  in  the  uracil  DNA 

glycosylase (UNG). Other HIGM are caused by mutations or in the X-linked nuclear 

factor  k-B  essential  modulator  (NEMO) gene,  reported  in  patients  affected  with 

ectodermal dysplasia. In all these cases, both SHM and CSR processes are equally 

impaired. The unique condition, so far described, of dissociation between the CSR 

and SHM process is represented by the autosomal dominant mutation in C terminal 

end of AID in patients showing defective CSR but intact SHM. This observation 

would imply a different molecular control of the 2 processes. To date, in spite of the 

identification  of  new  genetic  defects  associated  with  HIGM  through  NGS 
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technologies, in about the 15% of the cases of HIGM patients, the molecular defect 

still remains to be defined.

The clinical phenotype of HIGM is invariably severe and  characterized by 

increased  susceptibility  to  recurrent  bacterial  and  opportunistic  infections, 

neutropenia, autoimmunity and cancer susceptibility. 

The presence of elevated levels of IgM were also reported associated with 

other  immunological  defects  like  RAG2,  ATM  and  ARTEMIS  deficiency  or  to 

acquired causes,  such as in autoimmune diseases, with IgM autoantibodies, or in 

chronic infections. In B-cell lymphoproliferative disorders, elevated monoclonal IgM 

levels may also be found.

In this paper, submitted on Frontiers in Immunology, we report on a group of 

unrelated  patients  with  very  high  polyclonal  IgM levels,  resembling  a  HIGM of 

unknown molecular defect, whose clinical course was complicated by the occurrence 

of a lymphoproliferative disorder.  In these patients an evaluation of B-cell subsets 

has also been performed, revealing a reduction of memory and switched memory B 

cells. Through the comet alkaline and micronucleus (MN) assays on peripheral blood 

lymphocyte  or  fibroblast  cultures  an  increased  genotoxicity  was  documented.  In 

order to evaluated a molecular cause of the disorder  NGS analysis was performed, 

revealing in two subjects mutations in PIK3R1 or ITPKB genes, implicated in B- and 

T-cell development..
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Figure  1.  Long-term  serum  Ig  levels  evaluation.  In  P1  and  P2  a  long-term 
longitudinal evaluation of IgM levels documented elevated IgM levels 5 years before 
the onset of the LPD in P1 (A), and more than 10 years in P2 (B).  No significant 
further  increase  in  IgM levels  was observed after  the  LPD diagnosis,  whereas  a 
significant  reduction  was  documented  in  P1  in  the  subsequent  4  years  post-
chemotherapy,  along with a  reduction  of  IgG levels,  requiring  an Ig intravenous 
(IgIV) replacement therapy. 
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Figure 2. B-cell immunophenotyping. Representative flow cytometric plot showing 
IgM memory (CD19+ CD27+IgM+) and switched memory (CD19+ CD27+IgM-) 
expression in  P1, P2,  and P3.  The B-cell  subsets  are  expressed as  percentage  of 
absolute lymphocyte count.
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Figure  3.  Spontaneous  and  chemically-induced  DNA  damage  in  patients  and 
controls. Data are recorded in 4 patients, P1 and P2 (with LPD), P4 and P5 (without 
LPD)  and  four  healthy  donors.  The  frequency  of  MN  was  reported  as  MN 
number/1000 binucleated cells (mean value ± SD) in untreated (A) or treated (B) 
cultures with MMC concentration of 50 ng/ml. 
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Figure  4.  PIK3R1 and  ITPKB variations  identified  through  whole  exome 
sequencing. (A) PIK3R1 gene structure which encodes p85α protein. The splice site 
mutation in patient 6 is indicated. (B) Pedigree of the family carrying the PIK3R1 
mutation. (C) Sequencing chromatograms in patient and her parents. (D) ITPKB gene 
structure with the frameshift  mutation identified in P4. Chromosome location and 
genomic coordinates are provided.
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CHAPTER III

“New insights in Severe Combined Immunodeficiency and other T-

cell disorders”

68



Severe combined immunodeficiencies (SCIDs) encompass a wide group of 

primary disorders due to defects in several genes involved in T- and often B-cell 

development  or  function,  which  result  in  severe  and  life-threatening  infections. 

Typically, SCID patients have absent T cells and are further grouped on the basis of 

the absence or presence of B and NK cells (70, 71).

  The phenotypic complexity and heterogeneity of SCIDs are responsible for 

the difficulty in their recognition and frequently lead to a significant delay in the 

diagnosis.  Thanks  to  the  availability  of  new  high-throughput  deep  sequencing 

analysis technology, during the last two years several (EXTL3, BCL11B, DOCK2, 

LAT) new SCID related  genes have been identified.  This technology also led to 

identify new clinical phenotypes associated with well-known genetic defects, thus 

adding to the complexity of the recognition. 

The difficulty in the recognition of these patients also relies on the fine line 

between patients with the more severe forms and those with the milder phenotypes, 

actually defined as combined immunodeficiencies (CIDs). 

In  addition,  not  infrequently,  patients  may  exhibit  extra-immunological 

manifestations, which may predominate in the presentation of the disease (72). 

In a few cases, disorders caused by hypomorphic mutations in known SCID-

causing genes may present in infancy with immuno-dysregulation features, which 

may prevail and obscure the increased susceptibility to infections. Eventually, even 

within the same family, subjects carrying the same mutation exhibit diverse clinical 

and immunological features, indicating the complexity of the pathogenesis also for 

monogenic disorders.

The real prevalence of SCID among children is unknown. The introduction of 

population-based newborn screening has revealed an incidence of ~1 per 58,000 live 

births in the United States higher than previously expected which was of 1: 100,000 

(73). This discrepancy clearly indicates that in many cases the presenting phenotypes 

are masked and that the diagnosis is hard even to be suspected.  Indeed, many infants 
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in settings without newborn screening succumb to infectious diseases without having 

been recognized as immunodeficient.

 In addition to ordinary bacterial and viral pathogens such as  Streptococcus  

pneumoniae, cytomegalovirus (CMV) and adenoviruses, infants with SCID are also 

susceptible to opportunistic organisms such as  Pneumocystis jiroveci; patients can 

also develop severe, systemic and often fatal disease when given live vaccines for 

rotavirus, poliovirus or Bacillus Calmette–Guérin vaccine (70, 71, 74).

The  first  example  of  SCID  due  to  mutations  of  gene  not  expressed  in 

hematopoietic cells is the human Nude/SCID phenotype, which is characterized by 

the  absence  of  a  functional  thymus,  which  results  in  a  severe  T-cell 

immunodeficiency, caused by alterations in the transcription factor FOXN1 gene.

Figure  7. Representation  of  blocks  in  lymphocyte  differentiation  causing 

SCIDs (Fisher A, 2015).
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Definitive  treatment  for  patients  affected  with  SCID  is  represented  by 

allogenic  HSCT,  although  gene  therapy  and  enzyme  replacement  therapy  are 

available for some specific genetic sub-type (75).

A review of the available literature, paying particular attention to the most 

recently  identified  forms  and  to  their  unusual  or  extra-immunological  clinical 

features, has  been published in Annals of  New York Academy of Sciencies.

Furthermore, a new complex T-cell disorder in a child with a DiGeorge-like 

phenotype associated to a 3p12.3 deletion involving MIR4273 gene born to a mother 

with gestational diabetes has been accepted for publication in the American Journal 

of Medical Genetics.

In a further review published in J Clinical Immunology we summarize recent 

discoveries and novel therapeutic approaches for disorders of immune system with 

athymia such as FOXN1 deficiency.
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CHAPTER IV

“New insight on 22q11.2 deletion syndrome”
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22q11.2  deletion  syndrome  (22q11.2DS)  is  the  most  common  chromosomal 

microdeletion  disorder,  estimated  to result  mainly from de novo non-homologous 

meiotic recombination events. 

The prevalence of the disorder ranges from 1:4000 to 1:6000.

The deletion (approximately 0.7–3 million base pairs in size), results in an 

heterogeneous  clinical  presentation,  that  can  be  associated  with  multi-organ 

dysfunction including cardiac and palatal  abnormalities,  immune and autoimmune 

disorders,  endocrine,  genitourinary  and  gastrointestinal  problems,  developmental 

delays,  cognitive deficits  and neuropsychiatric illnesses (such as anxiety disorders 

and schizophrenia) (76, 77). 

Palatal abnormalities have been reported in more than half of the subjects. 

The  most  common  reported  ENT  disorders  is  the velopharyngeal  incompetence 

(VPI). The pathogenesis of this condition is multi-factorial.

In the paper published in J Investigational Allergology Clinical Immunology 

we report for the first time a complex pulmonary malformation in a girl affected with 

22q11.2DS and recurrent  upper  and lower respiratory infections.  We hypothesize 

that lung malformations may act as cofactor in the recurrent lower respiratory tract 

infections in patients with 22q11.2DS

In  the  second  study,  submitted  on  Pediatric  Allergy  Immunology  we 

performed a detailed description of the otolarygological phenotype of a 22q11.2DS 

cohort, in the attempt to identify functional implications of the anatomical alterations 

and their possible role in determining susceptibility to infections.
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CHAPTER V

“Primary immunodeficiency with ectodermal disorders”
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Skin and skin annex abnormalities  may be a warning sign of immunodeficiency, 

since both epidermal and thymic epithelium have ectodermal origin. 

Recent evidence highlights that skin participates in the host defenses either 

acting as a primary boundary for germs, as the principal site of environment–host 

interactions,  or  directly  in  the  developmental  process  of  the  immune  system.  As 

matter of fact, skin and skin annex abnormalities, as skin dryness, brittleness of hair, 

nail abnormalities and abnormal dentition, can be frequently associated with distinct 

forms of PIDs (78).

FOXN1  is  a  developmentally  regulated  transcription  factor,  selectively 

expressed in epithelial cells of the skin and thymus, where it plays a necessary role 

for  T  lymphopoiesis  by  inducing  a  proper  epithelial  cell  differentiation  and 

endothelial  cell/thymic  mesenchyme  communication  network  (79). FOXN1 

deficiency  prevent  the  development  of  the  T-cell  compartment,  associated  to 

ectodermal abnormalities, such as alopecia and nail dystrophy (80-83).

 Autoimmune  polyendocrinopathy  candidiasis  ectodermal  dystrophy 

(APECED), formerly known as autoimmune polyendocrine syndrome type 1, is a 

paradigm of a monogenic autoimmune disease caused by mutations of autoimmune 

regulator  (AIRE)  gene.  AIRE  acts  as  a  transcription  regulator  that  promotes 

immunological central tolerance by inducing the ectopic thymic expression of many 

tissue-specific  antigens.  Although  the  syndrome  is  a  monogenic  disease,  it  is 

characterized  by  a  wide  variability  of  the  clinical  expression  with  no  significant 

correlation between genotype  and phenotype.  Indeed, many aspects regarding the 

exact role of AIRE and APECED pathogenesis still remain unraveled (84, 85). 

In  the  Brief  communication  published  in  Clinical  Immunology we 

investigated  the pathogenesis of humoral  alterations in patients  with Hypoidrotic 

ectodermal dysplasia due to mutations in the NK-kB essential modulator (NEMO) 

and in a patient with mutations in ectodysplasin A (EDA).
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In the following 2 reviews published in International Reviews of Immunology 

and Frontiers in Pediatrics, we described the link between ectodermal disorders and 

PIDs  and  summarized  recent  novelties  on  molecular  mechanisms  underlying  the 

development of APECED and their clinical implications.

A case report describing new phenotypic findings in a patient affected with 

Incontinentia Pigmenti has been submitted on British Journal of Dermatology.
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CHAPTER VI

“Phenotypic, Immunological and Molecular Characterization of 

New Forms of Primary Immunodeficiencies”
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Early diagnosis of PIDs is crucial to establish a proper treatment and improve the 

overall outcome. 

In the traditional approach to PIDs, the molecular diagnosis has long been 

based on the sequencing of multiple genes by the Sanger method, a time-consuming 

strategy, which often results in delayed diagnosis (86). 

In the last years, next-generation sequencing (NGS) technology has become a 

valuable first-line diagnostic tool for the diagnosis of genetic disorders, in particular 

for conditions characterized by a very complex clinical presentation, revolutionizing 

the analysis of the human genome and its impact on health and disease. 

NGS  involves  the  parallel  sequencing  of  hundreds  of  millions  of  DNA 

molecules.  Advantages  of  NGS  include  the  unbiased  sequencing  of  the  entire 

genome  or  exome  at  high  depth  of  coverage.  While  whole  genome  sequencing 

(WGS) will report on the entire human genome, including exons, introns, regulatory 

regions  and intergenic  regions,  whole exome sequencing (WES) is  limited  to the 

coding regions and splice junctions of the genome, which despite accounting for only 

~2% of the genome, contain about 85% of genetic alterations known as responsible 

for  human  diseases.  In  PIDs,  a  targeted  sequencing  approach,  restricted  only  to 

specific genes or to specific regions of interest is a reasonable possibility to identify 

putative pathogenic variants that explain a specific disorder. This can be the first-line 

alternative as it involves a smaller dataset than WES or (WGS) (87-92). 

. Despite the technical and clinical advancements made thanks to the use of 

NGS, the identification of genetic defects in PIDs is still a major challenge. These 

challenges are of a technical as well as disease-inherent nature. Furthermore, not all 

PIDs  are  monogenic  defects.  For  example,  the  most  common  form of  antibody 

deficiency,  common variable  immunodeficiency disorder  (CVID),  is  frequently  a 

heterogeneous polygenic disorder.

Most autosomal dominant (AD) PIDs are caused by loss of function (LOF) 

alleles.  Both  null  (complete  lack  of  function)  or  hypomorphic  (residual  function, 

requiring  residual  expression  of  the  gene  product),  have  been  described. 

Interestingly, since 2003, 17 AD disorders have been shown to be caused by GOF 

alleles. In theory, GOF alleles can be hypermorphic (increase in normal function) or 
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neomorphic (acquisition of a new function). Recently mutations of STAT1 gene have 

been shown to cause autosomal recessive (AR) PIDs by LOF and AD PIDs by LOF 

or GOF (11).

STAT1 GOF mutations  are  considered  responsible  for  very  complex  and 

variable phenotypes, characterized by susceptibility to herpetic and fungal infections, 

autoimmunity,  enteropathy,  cardiac  and  vascular  alterations,  bronchiectasis, 

parodontitis and failure to thrive (93-94). 

In  the  original  article  published  in  Frontiers  in  Immunology we 

retrospectively  analized  genetic  variants  identified  through  NGS  technologies  in 

patients with complex PIDs.

The description of the clinical and immunological phenotype of a patient with 

a STAT1 GOF mutation has been accepted for publication as Letter to the Editor on 

Pediatric Allergy and Immunology.
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CHAPTER VII

“Immunodeficiencies and Autoimmunity”
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Even though Immunodeficiencies and autoimmunity may be considered two opposite 

conditions,  deriving  from  different  alterations  of  the  immune  system,  several 

evidences  suggested  that  PIDs  are  often  associated  with  different  autoimmune 

manifestations (95). 

            Autoimmunity in PIDs may be caused by different mechanisms, including 

defects  of  tolerance  to  self-antigens  and  persistent  stimulation  as  a  result  of  the 

inability to eradicate antigens. 

            This general immune dysregulation leads to compensatory and exaggerated 

chronic inflammatory responses that lead to tissue damage and autoimmunity. 

             Each  PID may  be  characterized  by  distinct,  peculiar  autoimmune 

manifestations (96). 

             In the review published on Frontiers in Pediatrics, the main autoimmune 

manifestations  and  the  pathogenetic  mechanism  underlying  autoimmunity  in  a 

specific PID has are summarized. 

             A case report describing a skin vasculitis in a patient with APECED has been 

published on BMC Pediatrics.
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Chapter VIII

Conclusive Remarks

202



PIDs are  rare inborn errors of immunity whose expressivity  and penetrance  vary 

widely,  even among family members with the same specific mutation,  suggesting 

that genetic, epigenetic, and/or environmental factors may contribute to the clinical 

disease phenotype.

         Early  diagnosis  of  PID is  useful  in  order  to  prevent  disease-associated 

morbidity  and mortality  and  improve  QoL.  However,  to  date  the  diagnosis  of  a 

specific  PID  based  on  the  analysis  of  the  phenotype  remains  difficult  and  a 

considerable delay, between the onset of the symptoms and diagnosis, is not rare. In 

the last years, the availability of NGS technologies is revolutionizing the discovery 

of genes in which variants can cause rare inherited diseases characterized by strong 

clinical and genetic heterogeneity, as PIDs. 

           In this PhD thesis, I pointed my attention on the evaluation of the potential 

benefit of very low dosage of betamethasone on neurological symptoms and Qol of 

patients  affected  with  Ataxia-Telangiectasia,  in  the  perspective  of  an  occasional 

usage of the drug, thus preventing the occurrence of side effects. However, the major 

challenge of this study will be represented, in the future, by the the identification of 

the potential  site of action of steroids in A-T, which will open a new window of 

intervention in this so far non-curable disease. 

Furthermore,  a better definition of the clinical and functional phenotype of 

patients with complex forms of PIDs, with attention to recent discovered gene, has 

been performed. Through NGS technologies, we have tried to understand the link 

between newly identified genes and the specific functional abnormalities resulting 

therefrom. This approach is essential for the implementation of new approaches for 

the clinical management of such patients and the development of precision medicine. 

NGS  may  provide  a  molecular  diagnosis  where  previously  the  patient  was 

unclassified, and thus may help in the identification of definitive therapeutic options, 

such  as  hematopoietic  stem  cell  transplantation.  On  the  other  hand,  detailed 

phenotypical data need to be validated and applied to the analysis steps to correlate 

disease-causing and disease-associated variants. 

A  further  project  described  in  this  thesis  concerns  the  evaluation  of  the 

pathogenetic  mechanisms,  including  the  evaluation  of  cellular  response  to  DNA 

injury, in patients with increased IgM levels, impaired B-cell homeostasis and high 
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incidence  of  lymphoproliferation. NGS  technologies  revealed  in  two  of  them 

mutations in the PIK3R1 and ITPKB genes, implicated in T- and B-cell development 

and survival.  This  study highlights  the  possible  role  of  polyclonal  hyper  IgM as 

biomarker of immune dysregulation and cancer susceptibility.

Taken together, our findings strengthen the importance of a global approach 

to the pediatric patient with PIDs.

            Future research should hopefully extend our results, in order to verify their  

applicability and efficacy in improving health  outcomes in patients  with complex 

inherited disorders of immune system.
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