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1.1.1 LOW TEMPERATURE STRESS IN PLANTS: A BRIEF OVERVIEW 

Abiotic factors such as heat, cold, drought, salinity and nutrient deficiency have a huge impact on 

world agriculture. It has been suggested that they reduce average yields by >50% for most major 

crop plants (Viswanathan	   and	   Zhu,	   2002;	   Puyaubert	   and	   Baudouin,	   2014) (Tab. 1). Current 

climate prediction models indicate that surface temperatures will rise by 3–5 °C in the next 50–100 

years, drastically affecting global agricultural systems (IPCC, 2007). This will be concurrent with 

an increased frequency of drought, flood and heat waves (Mittler and Blumwald, 2010). In 

particular, warmer and drier summers in mid-continental regions such as central Europe and central 

Africa are predicted, along with a reduction in the growing season of many regions, extensive 

salinization as sea levels rise and a decrease in land suitable for agriculture (Morison et al. 2008). A 

change in the variability of rainfall and temperature may itself affect yields as well as adversely 

impact the nutritional quality of products (Porter and Semenov, 2005). Crop plants are therefore 

likely to encounter a greater range and number of environmental stresses which, when occurring 

simultaneously, can have severe consequences.  

Tab 1. Estimated losses in percentage of six major crops (wheat, barley, 
soybean, maize, potato, sugar beet) due to abiotic and biotic stresses. Record and 
average yield are also reported. 

 

 

 

 

 

 

Freezing or extremely low temperature constitutes a key factor influencing plant growth, 

development and crop productivity. Generally, plants greatly differ in their abilities to cope with 

this stress. When they are exposed to gradually decreasing temperatures below a certain threshold, 

they acclimatize (low-temperature acclimation) to the stress, a process called cold hardening. In 

spite of various adaptations to cold, plants may be injured through exposure to cold temperatures in 

a variety of ways, depending on the temperature range. One type of injury, called chilling injury, 

occurs below the freezing point of water. Sometimes ice crystals form in the protoplasm of cells, 

resulting in cell and, possibly, plant death. Crops may be classified into three groups according to 

Type of crop Record (max) yield 
(kg/ha-1) 

Average yield  
(kg/ha-1) 

Average loss 
due to abiotic 

stress (%) 

Average loss 
due to biotic 

stress (%) 

Wheat 14.500 1.880 82% 5% 
Barley 11.400 2.050 75% 7% 

Soybean 7.390 1.610 69% 9% 
Maize 19.300 4.600 66% 10% 
Potato 91.400 28.300 54% 20% 

Sugar beet 121.000 43.600 50% 14% 
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their tolerance to low temperatures. Frost-sensitive crops are intolerant of ice in their tissues and are 

hence sensitive to chilling injury. Among them, beans, corn, tomato plants can be killed when 

temperatures fall just below 0°C. Frost-resistant plants can tolerate some ice in their cells and can 

survive cold temperatures of up to − 40°C. Cold-hardy plants are predominantly temperate woody 

species. They can survive temperatures of up to − 196°C. Thus, some species have evolved 

extraordinary mechanisms to resist and enhance their tolerance during exposure to periods of low 

temperatures. Understanding the molecular basis of the response to freezing temperatures is 

therefore a fundamental goal of plant researchers. It has been established that some cold-regulated 

genes could contribute to freezing tolerance. Whereas it is agreed that low-temperature tolerance is 

a complex trait, neither the mode of gene action governing the expression of the trait nor its 

pathway have been established yet. It is known that plants may sense low temperatures through 

changes in the physical properties of membranes, because their fluidity is reduced during cold stress 

(Medina et al. 2011). This induces the expression of many genes (COR, cold-responsive genes), 

which led to the accumulation of compatible osmolytes such as proline, betaine, polyols and soluble 

sugars. Thanks to the advent of molecular biology, today some of the events comprised between 

membrane rigidification and the expression of CORs are defined (for reviews, see Sakuma et al. 

2002; Thomashow 2010; Park et al. 2015). For example, it is known that membrane rigidification 

induces an increase of cytosolic Ca2+ that implies the activation of Ca2+ sensors. Plants possess 

many groups of Ca2+ sensors, including CaM (calmodulin) and CMLs (CaM-like), CDPKs (Ca2+-

dependent protein kinases), CCaMK (Ca2+-and Ca2+/CaM-dependent protein kinase), CAMTA 

(CaM-binding transcription activator), CBLs (calcineurin B-like proteins) and CIPKs (CBL-

interacting protein kinases) (Fig. 1).  
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Fig 1. Cold-sensing and signalling pathway. 
Interactions between different transcription 
factorsare also shown by red and blue arrows. 

 

Genetic analysis demonstrated that CDPKs work as positive regulators (Luan et al. 2002), while 

calmodulin3 is a negative regulator of gene expression and cold tolerance (Townley et al. 2002). 

CAMTA3 also has been identified as a positive regulator of CBF expression through binding to a 

regulatory element (CG-1 element, vCGCGb) in their promoter (Doherty et al. 2009). The 

expression of these proteins led the activation of transcription factors (TFs), especially those 

belonging the AP2/ERF family, called CBFs. Indeed, the CBF-dependent cold signaling pathway is 

the best characterized and the key regulatory pathway involved in cold stress (Thomashow, 2010; 

Knight and Knight, 2012). In Arabidopsis, three duplicated CBFs are involved in the regulation 

of COR gene expression (Maruyama et al. 2004; Vogel et al. 2005). These genes are also duplicated 

in other species such as wheat and barley, and they are located in tandem with highly conserved 

coding sequence. (Stockinger et al. 2007; Knox et al. 2010). Various studies demonstrated that 

winter varieties of barley and wheat underwent to an expansion of CBF genes compared with their 

spring counterpart, leading to the idea that freezing tolerance in these species is associated with 
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higher CBF gene copy number (Skinner et al. 2005; Badawi et al. 2007; Zhu et al. 2014). CBF gene 

deletion and mutation are characteristic only of spring varieties (Fig. 2).  

 

 

 

 

 

 

 

Fig 2. Cold tolerance in wheat and barley at FR2/CBF locus. Freezing 
tolerance of winter wheat and barley is associated with high CBF copy 
number. CBF gene duplications are peculiar of winter tolerant 
varieties, whereas deletion and mutation are characteristic of spring 
varieties. The thickness of the right-angled arrows represents 
transcriptional activity, and dashed arrows indicate low levels of 
inducible expression. The striped rectangles represent different 
regulatory sequences (Michael et al. 2015).  
 

 

The CBF (mainly CBF3) pathway is controlled by a MYC-type transcription factor ICE1 (inducer 

of CBF expression1) (Chinnusamy et al. 2007; Zhu et al. 2007; Liu	   et	  al.	   2010; Lissarre et al. 

2010). ICE1 can bind the MYC recognition cis-elements (CANNTG) in the promoter of CBF3 and 

induce its regulon during cold acclimation. Approximately 40% of COR genes are regulated 

by ICE1, suggesting that it is the master regulator that controls the expression of these genes (Lee et 

al. 2005). In turn, ICE1 is regulated by ubiquitylation (Dong et al. 2006) and sumoylation (Miura et 

al. 2007). However, the precise mechanisms for its activation and inactivation remain still 

unknown. The final expression of COR genes regulated by ICE1 has been shown to be critical in 

plants for both chilling tolerance and cold acclimation. Among the COR genes, COR78/RD29A, 

COR47, COR15A and COR6.6 encode dehydrins, which are known as group 2 LEA (LEA II) 

proteins (Ingram et al. 1996). They are important for membrane stabilization and prevent protein 

aggregation (Hundertmark et al. 2008). Other dehydrins such as ERD10 (early response to 

dehydration10) and ERD14 function as chaperones and interact with phospholipid vesicles through 
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electrostatic forces (Kiyosue et al. 1994; Kovacs et al. 2008). In addition to LEA proteins, HSPs 

(heat shock proteins) expression is also induced by cold (Kaur et al. 2011). They function in 

membrane protection, in the refolding of denatured proteins and in preventing protein aggregation. 

In Arabidopsis it has been shown that also pathogen-related proteins (PR) such as PR1, PR2 (β-1,3-

glucanase) and PR5 (thaumatin-like proteins) are induced by cold treatment, acting as COR genes 

(Seo et al. 2008). The antifreeze activity of β-1,3-glucanase, chitinases and thaumatin-like proteins 

inhibits the recrystallization of intercellular ice in the apoplastic space and prevents intracellular ice 

formation (Janska et al. 2010). In addition to all these proteins, many other enzymes are involved in 

the cold response machinery, such as those involved in detoxification and antioxidation, 

photosynthesis, lignin metabolism, secondary metabolism, cell wall polysaccharide remodeling, 

starch metabolism, sterol biosynthesis and oligosaccharide synthesis (reviewed in (Janska et al. 

2010).  

The mechanisms described above are not the unique determinant involved in cold tolerance. 

Indeed, although some molecular mechanisms on how different species respond to cold stress 

remain to be elucidated, recent studies have shown that cold also induces aberrant expression of 

many small non-coding RNA (sncRNA) in several plant species (Sunkar et al. 2007; Khraiwesh et 

al. 2012). Two main classes of small regulatory RNAs are distinguished: microRNAs (miRNAs) 

and small interfering RNAs (siRNAs). Zhou et al. (2008) found that 19 miRNA genes of 11 

miRNA families in A. thaliana are up-regulated by cold stress. Six of them were induced, while the 

remaining 5 showed either transient or mild regulation. Cold stress also changed the expression of 

siRNAs in wheat (Yao et al. 2010) and Populus trichocarpa (Lu et al. 2008). Both miRNAs and 

siRNAs are synthetized and processed by several proteins including DCL, RDR and AGO (Fig. 3).  
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Fig. 3 Biogenesis of miRNAs and siRNAs. (Upper left) Pol IV–
RDR2–dependent small interfering RNA (siRNA) biogenesis. 
The dsRNAs are processed into 24-nucleotide (nt) siRNAs by 
DCL3, and the guide strand is incorporated into AGO4 or 
AGO6, which then enters the Pol V–mediated pathway of de 
novo DNA methylation. (Upper right) Pol II–RDR6–dependent 
siRNA biogenesis. Pol II transcribes TAS noncoding RNAs, 
which undergo microRNA-guided slicing by either AGO1 or 
AGO7. An RNA cleavage product is copied by RDR6 into 
dsRNA, which is processed into 21–24-nt siRNAs by various 
DCL activities (Matzke et al. 2015). 

 

All of them guide target degradation at the post-transcriptional level or at the transcriptional 

level through a pathway termed RNA-directed DNA methylation (RdDM). This latter mechanism 

seems to be particularly significant, as trans-generational effects in plants are associated with 

alterations in methylation of genomic DNA. Epigenetic mechanisms may also be involved in the 

response to stress. Boyko et al. (2010) found that stress-induced trans-generational responses in 

Arabidopsis depended on altered DNA methylation and small RNA-silencing pathways. One of the 

factors contributing to these changes involves mobile genetic elements. Different stress factors may 

decrease the methylation level of these sequences (Kalinka et al. 2009), leading to their activation 

and transposition. Cold was found to down-regulate MET1, resulting in demethylation of mobile 

genetic elements in Zea mays (Steward et al. 2002) and Antirrhinum majus (Hashida et al. 2006). 

Ito et al. (2011) showed that some retrotransposons become active in Arabidopsis seedlings 

subjected to cold stress. The siRNA pathway plays a crucial role in restricting retrotransposition 

triggered by environmental stress. As changes in methylation at mobile genetic element insertions 

affect nearby genes, mobility bursts may generate novel, stress-responsive regulatory gene 

networks. However, it is the miRNA pathway that seems more involved in stress adaptation 

responses. Although a large number of siRNAs and miRNAs have been identified, only a few dozen 

small RNAs have been annotated with specific functions.  

 

1.1.2 BREEDING FOR COLD TOLERANCE IN THE GENOMIC ERA  

Plant breeding is based on the production of genetic variability followed by efficient selection of 

newly produced genotypes suited to the needs of farmers and consumers and industries. Plant 

breeding purposes have been enormously successful on a global scale, with examples in the 

development of F1 hybrids in maize, the introduction of wheat and rice varieties that spawned the 
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Green Revolution, and the commercialization of transgenic crops. Genetic variability can be 

produced in several ways, e.g. through crossing parental cultivated genotypes or exploring wild 

germplasm. Similarly, the recent integration of advances in biotechnology, genomic research, and 

molecular marker applications with conventional plant breeding practices has created the 

foundation for molecular plant breeding, an interdisciplinary science that is revolutionizing crop 

improvement.  

To cope with abiotic stressors such as low temperatures, classical plant breeding alone can 

hardly achieve the expected results. It is now widely accepted that genes, transcripts, proteins, and 

metabolites that control the architecture and/or the stress tolerance of a crop need to be identified to 

facilitate breeding efforts. Furthermore, several questions must be elucidated regarding, e.g.: genes 

and proteins that are up- or down-regulated, the functions of responsive genes, proteins, and 

metabolites, the characteristics of stress perception, signal transduction, gene activation, protein 

expression, metabolite production and whole plant response. Many studies demonstrated the 

success of transgenic approaches in increasing tolerance to low temperatures. For example, the 

chloroplast GPAT (glycerol-3-phosphate acyltransferase) of squash, Cucurbita maxima, 

and Arabidopsis is involved in phosphatidyl glycerol fatty acid desaturation and increases the ratio 

of unsaturated fatty acids in plant cell membranes, leading to enhancement of cold tolerance 

(Murata et al. 2002). In addition, the citrus LEA gene, CuCOR19 and wheat dehydrin WCO410 

enhanced cold tolerance of transgenic tobacco and strawberry (Hara et al. 2003; Houde et al. 2004). 

Nowadays, the identification of genes, transcripts, proteins and metabolites useful for breeding 

involves the use of new advanced tools. Among them, high-throughput genome sequencing efforts 

have dramatically increased knowledge of and ability to characterize genetic diversity in the 

germplasm pool. Next Generation Sequencing (NGS) technologies are allowing the mass 

sequencing of genomes and transcriptomes, which is producing a vast array of information. The 

analysis of NGS data by bioinformatics allows discovering new genes and regulatory sequences and 

their positions, and makes large collections of molecular markers available. These advances, 

coupled with detailed characterization of genes involved in the tolerance and studies on the 

molecular, cellular and physiological processes underlying plant environmental adaptation, will 

accelerate the recognition of key loci and will facilitate future breeding efforts for cold tolerance.  

 

1.2 THE CULTIVATED POTATO AND ITS WILD GERMPLASM 

The cultivated potato, Solanum tuberosum L., originated in the Andean region of South America. 

Since its introduction in Europe, it has been spread globally and nowadays it is the third most 

important crop in the world, following maize and wheat (Liu et al. 2016). Potato is a rich source of 
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energy, with a starch content that accounts for 80% of the tuber dry weight and with a high content 

of quality protein and vitamin C (Scott et al. 2000). In addition, it yields on average more food, 

energy and protein per unit of land than cereals (Horton, 1988). Potato is a crop of temperate 

climate and it is sensitive to frost. The young plants grow well at 24 °C, and late growth is favoured 

at 18 °C. Tuber production is maximum at 20 °C and decreases with rise in temperature. At about 

30 °C tuber production is heavily compromised. After tomato, in Italy potato is the most 

widespread crop, with a production of about 1.3 million tons and an area down by about 72,000 

hectares (data FAOSTA 2013). The average yield of potatoes around the world is far below its 

physiological potential of 120 tons/ha (Papademetriou et al. 2008). Advances in potato breeding 

have been constrained by its complex biological system including vegetative propagation, 

autotetraploidy, and high levels of heterozygosity (Mendiburu et al. 1997). However, the potato 

genome (The Potato Genome Sequencing Consortium et al. 2011) and accompanying gene 

complement are powerful resources for understanding this complex system and advancing 

molecular breeding. The potato genome is roughly 844 Mb with 39,031 protein-coding genes and 

present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. 

As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this 

large angiosperm clade. Gene family expansion, tissue-specific expression and recruitment of genes 

to new pathways contributed to the evolution of tuber development.  

S. tuberosum has an extremely large secondary and tertiary gene pools consisting of related 

tuber-bearing species. They have useful genes lacking in cultivated varieties and represent a 

reservoir of allelic variability to increase heterosis for polygenic traits. Among traits possessed are 

the high dry matter content, the low content of reducing sugars, resistance to biotic (fungi, insects, 

nematodes, bacteria and viruses) and abiotic (e.g. cold and drought) stressors, and many others 

related to quality and productivity. Sources of resistance to the Leptinotarsa decemlineata were 

found in S. pinnatisectum and S. tarijense. Resistance to Verticillium spp. and Clavibacter spp. has 

been reported in S. lesteri, S. polyadenium and S. jemesii. Particularly interesting are the wild 

species S. bulbocastanum, S. polyadenium, S. pinnatisectum, resistant to Phytophthora infestans, 

the main adversity of the potato in terms of economic losses. About 200 species and many 

intraspecific taxa have been described. These taxa have been classified in series, with different 

authors recognizing different numbers of series, often with different circumscriptions. Hawkes 

(1989) suggested a division of the series into two super series, Stellata and Rotata, emphasizing the 

outline of the corolla as a major distinctive character. Some of the series contain only one or just a 

few species, indicating that their relationship to the other species is not clear. Series such as 

Piurana and, especially, Tuberosa, are large groups of species that may not be closely related to 
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each other. Hijmans and Spooner (2001) documented the geographic distribution of wild potato 

species, with the majority occurring in Argentina, Bolivia, Mexico and Peru, many with only 

restricted distribution areas (Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4 Distribution of wild potatoes (grey shade) 
(Spooner and	  Hijmans 2001). 

 

Potato species largely differ in ploidy level, with 12 being the basic (x) chromosome 

number. Most wild potatoes are diploids (2n=2x=24) and six of these diploid have additional 

triploid populations with 36 chromosomes (3x). Seven species are exclusively triploid, 22 

exclusively tetraploid (48 chromosomes, 4x), one exclusively pentaploid (60 chromosomes, 5x), 

and 12 exclusively hexaploid (72 chromosomes, 6x). Three species have populations with more 

than one even ploidy level (S. acaule 4x, 6x; S. leptophyes 2x, 4x; S. oplocense 2x, 4x, 6x). The 

triploid and pentaploid populations are generally highly sterile. They are less likely to be discovered 

as most germplasm collecting expeditions collected seeds rather than tubers. It is likely, therefore, 

that the number of species with additional triploid or pentaploid populations is greater than 

currently known.  

Among wild potato species, S. commersonii is particularly attractive for its freezing 

tolerance and capacity to cold acclimate (i.e., ability to increase cold tolerance after exposure to 

low, non-freezing temperatures) (Fig. 5).  
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Fig 5. Phenotype of cold treated S. tuberosum and S. 
commersonii plants following a cold stress treatment (-2°C 
for one hour). The picture has been taken after recovery (24 
hours at 24°C). 

 

It also possesses several other noteworthy traits, mainly related to resistance to biotic 

stresses, such as PVX and common scab. Since this species is the object of our research, the next 

paragraph is aimed at giving an exhaustive overview of its biological and genetics characteristics.  
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1.2.1 SOLANUM COMMERSONII: A USEFUL SOURCE OF TOLERANCE TO COLD 

S. commersonii is a tuber-bearing wild diploid species native to Central and South America (Fig. 6). 

The French taxonomist Michel-Felix Dunal named this species in honor of Philibert Commerson 

(1727-73), who collected the type specimen (No. 47) in 1767 at Montevideo, Uruguay. This was 

probably the first wild potato to be collected on a scientific expedition (Hawkes, 1889).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Plant, flower and tuber phenotype of 
wild Solanum commersonii (Dun.). 

 
Analyses of chloroplast genome restriction sites confirmed that S. commersonii is phylogenetically 

distinct from the cultivated potato (Rodríguez and Spooner, 2009; Aversano et al. 2015) and 

phylogenetic analyses indicated that they diverged ∼2.3 million years ago. Consistently, S. 

commersonii and S. tuberosum are sexually incompatible (Jackson and Hanneman, 1999). Despite 

being genetically isolated from the cultivated potato, S. commersonii has garnered significant 

research interest. It possesses several resistance traits not found in the cultivated potato. Among 

them resistance to root knot nematodes, soft rot and blackleg, Verticillium wilt, Potato Virus X 

(PVX), Tobacco Etch Virus (TEV), common scab, late blight and Ralstonia solanacearum ( 

Hawkes, 1889; Micheletto et al. 2000; González et al. 2013). Importantly, the genome sequence of 

this species has been deciphered (Aversano et al. 2015). Its genome is roughly 830 Mb with an N50 

of 44,303 bp. Compared with potato, S. commersonii shows a striking reduction in heterozygosity 
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and differences in genome sizes were mainly due to variations in intergenic sequence length. 

Genome annotation revealed a catalog of 39,290 protein-coding genes, 126 cold-related genes that 

are lacking in S. tuberosum, and 1.703 predicted microRNAs.  

As already mentioned above, particularly interesting are its cold tolerance and ability to cold 

acclimate. Equally important for research purposes is the presence of intra-species variability in 

terms of cold tolerance. Indeed, available at the Department of Agricultural Sciences are two S. 

commersonii clones with contrasting phenotype: one is tolerant and able to acclimate, the other is 

susceptible but able to acclimate (Carputo et al. 2013; Fig. 7).  

 

 

 
Fig.7 Killing temperatures (-°C) in non-acclimated (NACC) and acclimated 
(ACC) conditions of clones cmm1T and cmm6-6 of S. commersonii and cv. 
Spunta of S. tuberosum (data from Carputo et al. 2013) 

 

One of the first study regarding its cold tolerance was reported by Chen and Li (1980), who 

compared the biochemical changes involved in the cold acclimation process in S. commersonii vs. 

S. tuberosum. Their research showed that there were similar increases in sugar and starch content 

during cold acclimation. However, the net synthesis of soluble proteins and the level of total lipids 

and phospholipids were higher in our wild species. Chen et al. (1992) have also observed changes 

in endogenous ABA levels to increase transiently in S. commersonii after four days of cold 

acclimation and also detected two separate peaks of free ABA on the second and sixth days of cold 

acclimation. Evidence for the role of ABA as a signaling molecule was revealed when exogenously 

applied ABA was observed to improve its freezing tolerance. In S. commersonii, freezing tolerance 

is defined in genetic terms as a complex quantitative trait controlled by several, as yet unknown, 

combinations of genes and gene families (Stone et al. 1993). In spite of the lack of information on 

target traits and its sexual isolation, breeders have successfully introgressed genes from S. 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   17	  

commersonii into the cultivated potato either sexually or through somatic fusion (Cardi et al. 1993; 

Carputo et al. 1997; González et al. 2013; Zuluaga Cruz et al. 2014). Despite such efforts, very little 

progress has been made in the release of new varieties. This is at least partially due to the lack of 

genomics resources available for S. commersonii. With the help of its genome sequence, advances 

in the identification of genes involved in cold stress and the presence of interesting paralogs has 

been elucidated. For example, Aversano et al. (2015) identified genes involved in freezing and cold 

acclimation responses comparing the transcript expression profiles of frost stress non-acclimated 

(NACC) and acclimated (ACC) plants. Among the transcriptomic changes, proteins involved in the 

cold response machinery, such as antioxidant, secondary metabolism, cell wall remodeling, starch 

metabolism, and heat shock protein were found differentially expressed. As regard as the cold 

response machinery, in light of their prominent role in plant cold acclimation, the authors revealed 

the structural organization of CBF genes and they analyzed their gene expression patterns under 

NACC and ACC conditions. The cross-species comparisons indicated that the CBFs underwent to 

rapid expansion via duplication processes in S. commersonii. In total, four S. commersonii CBFs 

(CBF1, CBF2, CBF3, and CBF4) and two pseudo-genes of CBF2 (cCBF2) and CBF3 (cCBF3) 

were identified. The authors hypothesize that the duplication event occurred after the S. tuberosum-

S. commersonii divergence and may have led to a different functionalization of the ScCBF3 

pseudogene, resulting in enhanced cold response capability in S. commersonii. Prior that the S. 

commersonii genome sequence was released, to shed further light on wild potato freezing tolerance, 

studies on CBFs genes were carried out using transgenic plants. For example, Pino et al. (2008) 

demonstrated that the over-expression of AtCBF1 in transgenic lines of S. tuberosum and S. 

commersonii did not result in a further increase in freezing tolerance of cultivated potato, indicating 

that probably no additional cold-regulated gene beyond those regulated by CBF could increase 

freezing tolerance. Later, Carvallo et al. (2011) reported that both species have CBF regulons 

(genes regulated by CBFs) composed of hundreds of genes and both plants altered gene expression 

in response to low temperature with similar kinetics. However, there were considerable differences 

in the sets of genes that comprised the low temperature transcriptomes and CBF regulons. The 

results reported by Carvallo et al. (2011) indicated that the overexpression of AtCBF3 up-regulated 

160 cold-induced genes in S. commersonii, and only 54 in S. tuberosum. These results suggest that 

this difference in freezing tolerance is not due to ‘macro-scale’ differences in gene regulation in 

response to low temperatures or the size of their CBF regulons, but reveal rapid evolution of the 

CBF pathways in the two plant species that may contribute to their differences in freezing tolerance. 

Hence, to further investigate the genomic differences between the two species some genomic 

improvement are needed to discover new polymorphisms useful for plant breeding.  
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In line with this need, to further exploit S. commersonii sequence we have just performed a 

simple sequence repeat (SSR) recognition and analysis to identify genomic structural 

polymorphisms between S. commersonii and S. tuberosum. Using MISA (MIcroSAtellite) software 

and perl scripts, a total of 242,923 and 168,375 SSR loci were identified in S. commersonii and S. 

tuberosum, respectively (Esposito et al. 2017). A large proportion of mono-, di-, tri-, tetra-, penta- 

and hexa-nucleotides repeat motifs were identified in both species (Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

Fig 8. SSR loci identified in S. commersonii and S. tuberosum genomes. 
mono- = mononucleotides; di- = dinucleotides; tri- = trinucleotides; tetra- = 
tetranucleotides; penta- = pentanucleotides; hesa- = esanucleotides. 
 
The mononucleotide repeats exhibited a strong bias towards A/T motif (62%) compared 

with C/G (5%). The AT/AT was the most common motif in both species, whereas the CG/CG was 

present at very low level, showing a consistent trend with those of many other plants species, such 

as apple (Guang L et al. 2012) and grape (Cai B et al. 2009). The comparison of SSR distribution 

and patterns in S. commersonii and S. tuberosum genomes showed that the former is significantly 

enriched in terms of SSR loci towards the latter. Comparative transcript profiling also suggested 

that in S. tuberosum post-transcriptional modifications (i.e. alternative splicing) were potentially 

more abundant. Indeed, more predicted proteins per gene were found in S. tuberosum (23,000) than 

in S. commersonii (4,900). The number of their genes, proteins and the specific annotation are 

represented in Fig. 8.  
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Fig 9. Number of predicted genes in S. commersonii and S. 
tuberosum. Genes with GO and KEGG pathways are also 
shown. 

 
To understand also the type and number of RNA molecules in S. commersonii, 

transcriptomic analysis were carried out in five different tissues, namely flowers, leaves, roots, 

stolons and tubers. Only those genes with an FPKM value > 1 in at least one tissue were designated 

as expressed. Based on this criterion, 26.408 (71%) of the annotated genes were expressed in at 

least one tissue, indicating substantially higher representation of the transcriptome. Only a small 

quantity of genes was not expressed in the analyzed tissues. Diversity of transcriptional activity was 

highly variable across tissues, with flowers expressing the largest number of genes (≈ 24.000 of all 

genes), and the tubers expressing the smallest number of genes (less than 20.000) (Fig. 9). This 

diversity is enhanced also from the number of genes that were tissue-specific. Indeed, a total of 

1.090 genes were unique in flowers while 736, 726 and 90 were expressed only in leaves, roots and 

stolons, respectively. Expansion of the atlas to include stressed tissues may provide a broader 

representation of the full S. commersonii transcriptome. This will help to identify the dynamic 

transcriptional profiles representing different cell types and developmental processes, provide new 

regulatory targets and allow the manipulation of specific pathways involved in the control of traits 

important for breeding.  
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Fig 10. Venn diagram of genes expressed 
in different S. commersonii tissues. 
 

Thanks to the availability of S. commersonii and S. tuberosum genome sequence, the 

characterization of their repetitive complements was also possible. Therefore, in S. tuberosum and 

S. commersonii we performed a de-novo retrotransposon (LTR-RTs) annotation. Of all structurally 

intact elements (SIE) identified, 2,976 and 4,010 showed the RT–INT order of the Retro-

Transcriptase and Integrase domains typical for retroelements of the Gypsy superfamily in S. 

commersonii and S. tuberosum, whereas in 1,296 and 2,161 candidates, INT–RT domain hit order 

was observed, indicating the possible presence of retrotransposons of the Copia superfamily. 
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1.3 OBJECTIVES OF THE THESIS  

It has been estimated that, with climate changes, the potato as well as all crop plants will be 

exposed to more unexpected events, ranging from abiotic to biotic stress conditions. These will 

reduce plant survival, production and geographic distribution (Beerling et al. 2000). Among abiotic 

stresses, cold is one of the suboptimal conditions that is more harmful to the cultivated potato, 

classified as frost-sensitive. Luckily, some wild potato species are frost hardy and capable of cold 

acclimation. Thus, they are a potential genetic resource for introgressing freezing tolerance into 

cultivated varieties. Among the wild potatoes, S. commersonii is the one displaying the highest 

tolerance to low temperatures and whose genome sequence has been deciphered (Aversano et al. 

2015). Although the cold response machinery is widely studied in plant, the capacity of a genotype 

to tolerate low temperatures has not been fully understood yet and relatively little progress has been 

made in terms of breeding. This is partly due to the fact that the genetic control of cold tolerance is 

a quantitative and complex trait, with low heritability, presenting additive, dominance and epistatic 

gene actions. A combination of new and efficient approaches is necessary to accelerate the 

identification, characterization and effective exploitation of loci affecting tolerance to low 

temperatures not only in potato but in all crops. These strategies should include the use of genome 

sequences of target crops and related germplasm, genome-wide association studies, mutation 

detection, gene discovery and regulation, and –omics databases (Michelbart et al. 2015). With these 

thoughts in mind, this thesis is aimed at investigating the molecular mechanisms contributing to 

cold tolerance in the potato species possessing the highest capacity to withstand low temperatures, 

S. commersonii. The treatment is organized in five chapters. The first one is a general introduction 

underlying the importance of cold tolerance in plants, how they adapt to stress conditions, and some 

important genomic characteristics of S. commersonii vs. S. tuberosum. Some new original data have 

been also included, such as those related to SSR mining and transposable elements structure, 

distribution and evolution (paragraph 1.2.1). These new data have been recently published in a book 

chapter (Esposito et al. 2017). The other three chapters are organized in three original papers. Two 

of them (chapter II and chapter III) will be submitted, the other (chapter IV) has already been sent 

to Planta. The final chapter is dedicated to a general conclusion. In the next paragraph a few details 

on the specific objectives of chapter II, III and IV are given.  

Chapter II deals with RNAseq analysis of 24 libraries from cold stressed and control plants of S. 

commersonii. They were sequenced using an Illumina technology. Two different clones of S. 

commersonii, contrasting in their cold response, were used. To better understand the genetic control 

of cold tolerance and considering the small amount of RNA-seq information available for this trait, 

our objectives were:  
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1. To generate a landscape of genes differentially expressed during cold stress, with particular 

attention to those uniquely expressed in the tolerant clone and to those in common between 

the tolerant and the sensitive clone but displaying opposite expression pattern.. 

2. To shed new lights on cold signaling and perception, in order to identify the candidates 

involved in signal transduction. 

 

Chapter III concerns the identification of riboregulators involved in cold stress response. Indeed, 

recent studies have shown that abiotic stress induces aberrant expression of many small non-coding 

RNA (sncRNA) in several plant species. Among them, microRNAs (miRNAs) have been already 

demonstrated to play an essential role during cold stress in tomato. Although miRNAs and their 

targets have been identified in S. tuberosum, their role during cold accumulation in potato remains 

unknown. Further, no studies on miRNA as well as on secondary siRNA in S. commersonii have 

been reported to date. Therefore, in chapter III the following objectives were settled:  

 

1. Predict and annotate miRNA and siRNA in S. commersonii genome. We developed 24 

single-end smRNAseq libraries and homemade bioinformatics tools were experimented for 

the annotation. Towards this goal, the availability of the S. commersonii genomic sequence 

allowed us to identify putative miRNA involved in plant environment-interaction and 

development.  

2. Once annotated, new miRNAs and siRNAs were analyzed to study their involvement in 

freezing tolerance and cold acclimation. To reach this objective, bioinformatics analyses 

were performed to report, for the first time, the identification of cold-inducible miRNAs and 

siRNAs in S. commersonii. 

 

Chapter IV approaches the regulation of gene expression through RNA silencing. As known, it 

predominantly relies on the accurate functioning of Dicer-like (DCL), Argonaute (AGO) and RNA-

dependent RNA polymerases (RDR) proteins, whose genes are present in multiple copies in 

eukaryotic genomes (Margis et al. 2006). DCL, AGO and RDR comprise the core components of 

RNA-induced silencing complexes, which trigger RNA silencing. These proteins are prominent 

players in the post-transcriptional control of gene expression, as they control small RNA-mediated 

gene silencing pathways and function in the epigenetic regulation of the genome under various 

environmental stresses (Yadav et al. 2015). here we pursued the following objectives: 
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1. To perform a genome wide analysis of DCL and RDR genes involved in miRNA and 

siRNA production in S. tuberosum and S. commersonii. This is felt important given that 

the diversity between wild and cultivated species in terms of candidate orthologous gene 

pairs with important role in RNAi has not received much attention. 

2. To determine whether DCL and RDR genes possess a diverse regulation in different 

tissues and after cold stress. This object is in line with the fact that there is little 

information on proteins controlling DCL and RDR biogenesis in non-model wild 

species, which are known to often tolerate environmental stresses better than their 

closely related cultivated species.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   24	  

REFERENCES 

 
Aversano R, Contaldi F, Ercolano MR, et al (2015) The Solanum commersonii genome sequence 
provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. 
Plant Cell 27:954-968.  

Beerling DJ (2000) Global terrestrial productivity in the Mesozoic. Present and Future Climates. 
Geological Society of London Special Publication 181:17–32.  

Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, 
Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA 
methylation and the function of Dicer-like proteins. PLoS ONE 5:9514 
 
Cardi T, D'Ambrosio E, Consoli D, Puite KJ, and Ramulu KS (1993). Production of somatic 
hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid 
plants. TAG Theor Appl Genet 87:193-200. 
 
Carputo D, Barone A, Cardi T, Sebastiano A, Frusciante L, and Peloquin SJ (1997) Endosperm 
balance number manipulation for direct in vivo germplasm introgression to potato from a sexually 
isolated relative (Solanum commersonii Dun.). Proc. Natl. Acad. Sci. U.S.A. 94:12013–12017. 
 
Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen THH, and Thomashow M 
(2011). A comparison of the low temperature transcriptomes and CBF regulons of three plant 
species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and 
Arabidopsis thaliana. J Exp Bot 62:3807–3819. 
 
Chen HH and PH Li 1980 Biochemical changes in tuber-bearing Solanum species in relation to 
frost hardiness during cold acclimation. Plant Physio l66:414-421  
 
Chen HH and PH Li 1980 Characteristics of cold acclimation and deacclimation in tuber-bearing 
Solanum species. Plant Physiol 65: 1146-1148  
 
Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA 
transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–
984. 
 
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold 
responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of 
ICE1. Proc. Natl. Acad. Sci. USA 103:8281–8286.  
 
Esposito S, D’Amelia V, Villano C, Contaldi F, Carputo D, Aversano R (2017) The Wild Side of 
Potato: Insights into the Genome Sequence of the Stress-Tolerant S. commersonii Dun. In The 
Potato Genome. Eds. Chakrabarti SK, Conghua X and Tiwari JK. Springer. In press. ISBN 978-3-
319-66133-9 
 
González M, Galván G, Siri, M. I., Borges, A., and Vilaró, F. (2013) Resistencia a la marchitez 
bacteriana de la papa en Solanum commersonii. Agrociencia Urug 7;45–54. 
 
Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-
responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339. 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   25	  

 
Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-
dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity 
of its transposase. Plant Cell 18:104–118 
 
Hawkes, JG (1989) Nomenclatural and taxonomic notes on the infrageneric taxa of the tuber-
bearing Solanums (Solanaceae). Taxon 38:489-492. 
 
Houde M., Dallaire S., N’Dong D., Sarhan F. Overexpression of the acidic dehydrin (2004) 
WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–
387. 
 
Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant 
Physiol Plant Mol Biol 47:377−403  
 
Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. (2011) An siRNA pathway 
prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119. 
 
Jackson SA and Hanneman RE (1999) Crossability between cultivated and wild tuber-and non-
tuber-bearing Solanum. Euphytica 109:51-67. 
 
Janskà, Marsik P, Zelenkov´ a S, Ovesn´ a J (2010) Cold stress and acclimation – what is important 
for metabolic adjustment? Plant Biol 12:395–405 

Kalinka A, Achrem M, and Rogalska S. (2009) Application of BSP method in methylation pattern 
comparison of reverse transcriptase (rt) gene in wheat-rye hybrids and their parental species. In: 
Naganowska B, Kachlicki P, Krajewski P [ed.], Genetyka i Genomika w Doskonaleniu Roślin 
Uprawnych, 53–61. Instytut Genetyki Roślin PAN. Poznań.  
 
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 
and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis 
thaliana. Plant Cell Physiol 35:225−231  
 
Knight MR and Knight H. (2012) Low-temperature perception leading to gene expression and cold 
tolerance in higher plants. New Phytol 195:737–751. 
 
Knox AK, Dhillon T, Cheng HM, Tondelli A, Pecchioni N, Stockinger EJ. (2010). CBF gene copy 
number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-
climate cereals. Theoretical and Applied Genetics 121:21–35. 
 
Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two 
disordered stress-related plant proteins. Plant Physiol 147:381−390  
 
Lee BH, Henderson DA, and Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its 
regulation by ICE1. Plant Cell. 17: 3155–3175. 
 
Lu SF, Sun YH, Chiang VL (2008). Stress-responsive microRNAs in Populus. Plant J 55:131–151.  
 
Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calcium sensors for 
specific signal response coupling in plants. Plant Cell.;14:S389–400.  
 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   26	  

Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K 
and Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the 
Arabidopsis DREB1A/ CBF3 transcriptional factor using two microarray systems. Plant J 38:982–
993. 
 
Mendiburu AO and Peloquin SJ. (1997) The significance of 2N gametes in potato 
breeding. Theoretical and Applied Genetics 49:53–61 
 
Micheletto S, Boland R, and Huarte M (2000) Argentinian wild diploid Solanum species as sources 
of quantitative late blight resistance - Springer. Theoretical and Applied Genetics. 
 
Mittler R, Blumwald E. (2010) Genetic engineering for modern agriculture: challenges and 
perspectives. Annual Review of Plant Biology 61:443-462) 
 
Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin 
JB, Bressan RA, et al. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency 
responses. Proc. Natl. Acad. Sci. USA 102:7760–7765.  
 
Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. (1992) Genetically 
engineered alteration in the chilling sensitivity of plants. Nature 356:710–713. 
 
Papademetriou MK (2008) In: RAP Publication (FAO), no. 2008/07; Workshop to commemorate 
the international year of potato, Bangkok (Thailand), 6 May 2008/FAO, Bangkok (Thailand). 
Regional Office for Asia and the Pacific, p 84 
 
Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the 
Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82: 193–207 
Philosophical Transactions of the Royal Society B: Biological Sciences, 2008  363:639-658 
 
Pino MT, Skinner JS, Park EJ, Jeknić Z, Hayes PM, Thomashow MF, et al. (2008) Use of a stress 
inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while 
minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604. 
 
Porter JR, Semenov MA (2005) Crop responses to climatic variation, Philosophical Transactions of 
the Royal Society B: Biological Sciences 360:2021-2035 
 
Rodríguez F and Spooner DM (2009) Nitrate Reductase Phylogeny of Potato (Solatium sect. Petota) 
Genomes with Emphasis on the Origins of the Polyploid Species. Systematic botany. Systematic 
Botany.34:207-219. 
 
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, and Yamaguchi-Shinozaki K (2002) DNA-
binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved 
in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290998–
1009. 
 
Scott GJ, Rosegrant MW and Ringler C (2000) Roots and tubers for the 21st century – trends, 
projections, and policy options. International Food Policy Research Institute. http://www.ifpri.org. 
 
Seo PJ M,m ,  Lee AK,  Xiang F, Park CM (2008). Molecular and functional profiling 
of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed 
germination. Plant and Cell Physiology  49:334-344 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   27	  

 
Steward et al. (2002) Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA 
methylation in maize nucleosomes and demethylation by environmental stress. Journal of 
Biological Chemistry 277:37741–37746 
 
Stockinger EJ, Mao, Y, Regier MK, Triezenberg SJ, and Thomashow MF (2001) Transcriptional 
adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a 
transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–
1533. 
 
Stone JM, Palta JP, Bamberg JB, Weiss LS, and Harbage JF (1993) Inheritance of freezing 
resistance in tuber-bearing Solanum species: evidence for independent genetic control of 
nonacclimated freezing tolerance and cold acclimation capacity. Proc Natl Acad Sci USA 90: 
7869–7873. 
 
Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying 
the CBF cold response pathway. Plant Physiol 154:571–577. 
 
Townley HE, Knight MR (2002) Calmodulin as a potential negative regulator of 
Arabidopsis COR gene expression. Plant Physiol 128:1169–1172 
 
Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG and Thomashow MF (2005) Roles of the CBF2 
and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. 
Plant J 41:195–211. 
 
Yadav CB, Muthamilarasan M, Pandey G, Prasad M (2015) Identification, characterization and 
expression profiling of Dicer-Like, Argonaute and RNA-dependent RNA polymerase gene families 
in foxtail millet. Plant Mol Biol Rep 33:43–55. 
 
Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, et al. (2010) Non-coding small RNAs responsive to 
abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190 
 
Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs 
in plants by transcriptome analysis. Biochim Biophys Acta 1779:780−788.  
 
Zuluaga Cruz AP, Ferreira V, Julia Pianzzola M, Ines Siri M, Coll NS, Valls M, et al. (2014) A 
novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a 
luminescent Ralstonia solanacearum reporter strain. Mol Plant Microbe Interact 27:277–285.  

 

 

 

 

 

 

 

 

 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   28	  

 

 

s 

 

 

 

 

 

Chapter II. Transcriptomic profiling of 

cold tolerant Solanum commersonii 

reveals new insights in the response to 

low temperatures  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



S. Esposito, PhD dissertation: Cold tolerance in S. commersonii 

	   29	  

Transcriptomic profiling of cold tolerant Solanum commersonii reveals new insights in the 

response to low temperatures  

 

Abstract 

Low temperatures lead to major crop losses every year. Although several studies have been 

conducted focusing on the molecular mechanisms involved in cold tolerance in several crops, 

including wild and cultivated potatoes, transcriptome-scale molecular understanding is still lacking. 

Taking advantage from Solanum commersonii genome sequence, we carried out RNAseq analysis 

of two different clones of S. commersonii. One is cold tolerant and able to cold acclimate, the other 

is cold sensitive but able to acclimate. We developed 24 RNAseq libraries from leaf tissues 

subjected to non-acclimated and acclimated conditions, and produced one billion reads using 

Illumina high-throughput RNA sequencing. Results showed that more than 450 million reads could 

be mapped uniquely to S. commersonii genome, whereas other 300 million reads mapped to 

multiple loci. Data indicated that in not acclimated stress condition, a lower number of differentially 

expressed genes is present in the tolerant clone vs. the sensitive one. By contrast, when acclimated, 

both clones showed a similar behavior in terms of differentially expressed genes. New lights 

regarding CBF expression and their regulation have been also given. Among them, CBF3, CBF4 

and ZAT12 genes are the major candidate, which might play an important role in conferring cold 

tolerance in S. commersonii. Indeed, under non-acclimated conditions, they were induced in the 

cold tolerant clone, whereas they showed an opposite trend in the cold sensitive. By contrast, 

following cold acclimation, both clones induced these genes. The mechanisms described in the 

present work will be useful for future investigations and for the detailed validation in marker 

assisted selection projects for cold tolerance in potato. 

 

2.1. Introduction 

How plants respond to abiotic stresses has been an important goal for plant scientist and breeders 

since many decades. Indeed, crop yield reduction as a consequence of climatic events is threatening 

global food security (Bailey-Serres et al. 2012; Boyer et al. 2013). Among abiotic stresses, low 

temperature is a major factor affecting crop productivity. Nowadays, what is known from the 

literature is that plants use either stress tolerance or stress avoidance through acclimation and 

adaptation mechanisms to withstand low temperatures. Several studies showed that biochemical and 

physiological changes occur under cold stress, resulting in modifications of the plant cell structural, 

biochemical and photosynthetic proprieties (Stitt et al. 2002; Goulas et al. 2006). Changes in gene 

expression and protein accumulation also occur, including up-regulation of antioxidant proteins 
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(e.g. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), synthesis and 

accumulation of osmoprotectants (polyamines and prolin) and sugars (sucrose, maltose, glucose and 

fructose) (Lissarre et al. 2010; Janskà et al. 2010). In most of cases, the function of these proteins 

under low temperatures is yet to be conclusively shown. However, it is generally assumed that there 

is a strong correlation between their accumulation and the development of freezing tolerance and 

(Dahal et al. 2012). Despite an exponential increase in the understanding of the molecular dynamics 

of cold tolerance and acclimation, their comprehension in a manner that allow breeders to improve 

this trait in economically important crops has provided to be an elusive goal. This is partially due to 

the complexity of cold tolerance as already shown for rice (da Maia et al. 2017). One of the major 

advances in recent years has been the discovery of numerous cold-responsive (COR) genes, which 

enable the plant to tolerate the dehydration stress associated with freezing temperatures and the 

presence of extracellular ice (Thomashow et al. 2001; Shinozaki et al. 2003; Chinnusamy et al. 

2007). In turn, these are influenced by the expression of regulatory factors, namely CBFs (C-repeat 

binding factors) (van Buskirk and Thomashow, 2006; Chinnusamy et al. 2007). They have been 

identified as tandem duplicated in the model species Arabidopsis thaliana as well as in other plants 

species. For example, the Frost Resistance2 (FR2) in cereals define a region containing numerous 

duplicated CBF genes, most of them present as tandem repeats with highly conserved coding 

sequence (Skinner et al. 2005; Badawi et al. 2007). It has been shown that CBF overexpression 

increased the freezing tolerance of A. thaliana (Liu et al. 1998), Brassica napus (Jaglo et al. 2001), 

poplar (Benedict et al. 2006) and potato (Pino et al. 2007), but did not result in increased freezing 

tolerance in tomato (Zhang et al. 2004) and rice (Dubouzet et al. 2003). The reason for this 

difference is not clear, but it might be due to differences in the composition of the CBF regulons 

(genes regulated by specific CBF). Some additional studies revealed that differential expression of a 

cold-responsive gene is caused by differences in cold tolerance in plants (Liu et al. 2012; Dong et 

al. 2014). For example, specific modifications such as differences in physiology and global gene 

expression occur in cold tolerant Solanum habrochaites but not in not in the susceptible S. 

lycopersicum (Liu et al. 2012). These findings were also observed in Brassica rapa, where many 

genes involved in cold stress response were specifically expressed in the tolerant genotype (Dong et 

al. 2014). Therefore, given the demonstrated role of cold-regulated genes in plant cold tolerance, it 

is reasonable to think that differences in gene expression are likely to contribute to differences in 

the ability of plants to withstand cold. This could explain why some plants within species may be 

killed at low temperatures while others are not. Nowadays, recent advances in the availability of 

sequenced plants genomes and the ability to sequence entire transcriptomes using next generation 

sequencing (NGS) has added a valuable interest to study the dynamics of cold stress. Hence, these 
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thinking motivate comparative transcriptome studies using contrasting genotypes to identify genes 

with critical roles in freezing tolerance, and to better understand the molecular basis of cold 

tolerance, as already reported in tomato (Chen et al. 2015) and rice (da Maia et al. 2017).  

Potato (S. tuberosum) is one of the most important cultivated species for food production, being 

consumed by over half of the world’s population (Fao 2012). Due to a large increase in the world 

population forecasted for the next decades, an increase in potato yield and production is needed. 

However, low temperature is one of the suboptimal conditions that are more harmful to potato. In 

fact, similar to several other plants species, S. tuberosum is classified as frost-sensitive species 

(Chen & Li 1980). It is also unable to acclimate. By contrast, some wild potato species are much 

frost hardy and capable of cold acclimation. Thus, they are a potential powerful genetic resource for 

introgressing freezing tolerance traits into cultivated varieties. Among the wild potato species, S. 

commersonii is the one possessing genotypes with the highest tolerance to low temperatures. It can 

survive to about -5 °C pre-acclimation, and to as low as -11 °C after becoming fully cold acclimated 

(Chen & Li 1980). Importantly, it is also the first potato relative whose genome sequence has been 

deciphered (Aversano et al. 2015). In light of the reasons described above, and to better understand 

the genetic control and the molecular dynamics of S. commersonii capacity to face low 

temperatures, we carried out a comparative transcriptome study (RNA-seq) using two different 

clones of S. commersonii contrasting in their cold response. This allowed us to evaluate 

differentially expressed genes underlying why one clone can survive freezing temperatures and 

acclimate, whereas the other is susceptible but can acclimate.  

  

2.2. Materials and Methods 

2.2.1 Plant material, growth conditions and treatments. 

We used two clones of S. commersonii belonging to two different accessions: cmm1T (clone of 

PI243503) and cmm6-6 (clone of PI590886). The former is freezing tolerant and able to cold 

acclimate. The latter is susceptible but has the capacity to cold acclimate (Fig.7 chapter I). They 

also display phenotypic differences as shown in Fig 1 and Fig 2. Four-weeks old vitroplants were 

transplanted into 14-mm pots filled with sterile soil and grown for two weeks at 24°C in growth 

chamber prior submitting them to non-acclimated (NACC) and acclimated (ACC) stress conditions. 

In particular, in NACC experiment three plants of each genotype were challenged for 30min at -

2°C, while three plants were chosen as control and kept at 24°C. In the ACC experiment, 6 

plants/genotype were acclimated at 4°C for 2 weeks. Then, three of them were transferred for 

30min at -2°C, while the others were used as control and kept at 4°C. In both experiments, an 

environmentally controlled cold room was used. Young leaf samples were collected from all 
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replicates at the end of each stress and from control plants. Samples were individually stored at -

80°C before RNA extraction.  

 

 

 

 

 

 

 

 

Fig. 1 Phenotypic variation between cmm1T and cmm6-6 in leaves (A) 
flowers (B) and tubers (C). Cmm1T displayed anthocyanin accumulation 
under leaf and in the flower.  
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Details of cmm1t and cmm6-6 leaves observed by 
stereomicroscope (A). Main differences observed were 
attribuited to the presence of trichomes on the edges of 
cmm6-6 abaxial face (60X magnification). Light 
micrographs of cross sections of leaves of cmm1T and 
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cmm6-6 (B). E; epidermal cells; P, palisade parenchyma 
cells; S, spongy parenchima cells. Differences in the 
thickness of cmm1T and cmm6-6 epidermal cell layers 
(indicated by black arrows) is particularly evident. 
Samples were fixed in FAA (40% formaldehyde  :  glacial 
acetic acid  :  50% ethanol—5  :  5  :  90 by volume), stained 
with 0.5% toluidine blue and mounted in 10 % glycerol. 
Scale bar length is shown in the figure. 

 

2.2.2 RNA extraction and sequencing  

For each sample total RNA was isolated from leaf tissues using Spectrum Plant Total RNA kit 

(Sigma-‐Aldrich,	  St.	  Louis,	  MO,	  USA) according to the manufacturer’s protocol. RNA concentrations 

were determined using NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, 

USA) and its integrity was verified was checked using bioanalyzer (Agilent Technologies, Santa 

Clara, California, USA). Three µg of total RNA of each sample was sent to UMN Genomic Center 

(University of Minnesota, USA) for libraries preparations. Twenty-four cDNA libraries (three 

biological replicates from leaves in control and stress conditions) were subsequently prepared for 

RNA-seq experiments with the Illumina HiSeq 2500 sequencing platform providing 125bp paired 

end reads, for a total of 30M reads/samples (Tab. 1). Trimming and clipping were performed with 

Trimmomatic-0.3330 using default parameters. The quality assessment was based on the remaining 

reads using the FASTQC quality control tool version 0.10.0 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).  

 

Tab. 1 List of samples used to prepare cDNA libraries in 

RNAseq experiments. The number of biological replicates in 

each condition is shown. NACC= non-acclimated conditions, 

ACC= acclimated conditions 

 

Sample Species Condition Tolerance/susceptibility 

1 cmm1T control NACC plant 1 cold tolerant 

2 cmm1T control NACC plant 2 cold tolerant 

3 cmm1T control NACC plant 3 cold tolerant 

4 cmm1T NACC 30 min plant 1 cold tolerant 

5 cmm1T NACC 30 min plant 2 cold tolerant 

6 cmm1T NACC 30 min plant 3 cold tolerant 

7 cmm1T control ACC plant 1 cold tolerant 
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2.2.3 Reads mapping to the reference genome and differential expression analysis 

In order to map each cleaned library to the wild potato genome, all libraries were loaded in A.I.R. 

on line program (https://transcriptomics.cloud) and a new RNA-seq experiment was chosen. Gene 

expression levels were calculated using geometric normalization and per-condition dispersion 

method by quantifying the Illumina reads according to the FPKM (fragments per kilobase per 

million mapped fragments). These values were used to perform a principal component analysis 

(PCA) and to check experimental and control biological replicates. Fold-changes were reported as 

the log (base 2) of normalized read count abundance for the cold-stressed samples divided by the 

read count abundance of the control samples. To study the impact of cold stress on gene expression 

four different statistical approaches were used: DEseq2 (Love et al. 2014), EBseq (Leng et al. 

2013), EdgeR (Robinson et al. 2010) and NOIseq (Tarazona et al. 2013). These programs were 

chosen because they use different ways to model the negative binomial dispersion parameter and 

are also the most used in literature (Cumbie et al. 2011; Rapaport et al. 2013; Soneson et al. 2013). 

All genes that were in common in all four tests were used for further analysis. Each dataset obtained 

from each considered condition was filtered according to fold change values ≥ 1.5 and ≤ −1.5.  

 

8 cmm1T control ACC plant 2 cold tolerant 

9 cmm1T control ACC plant 3 cold tolerant 

10 cmm1T ACC 30 min plant 1 cold tolerant 

11 cmm1T ACC 30 min plant 2 cold tolerant 

12 cmm1T ACC 30 min plant 3 cold tolerant 

13 cmm6-6 control NACC plant 1 cold susceptible 

14 cmm6-6 control NACC plant 2 cold susceptible 

15 cmm6-6 control NACC plant 3 cold susceptible 

16 cmm6-6 NACC 30 min plant 1 cold susceptible 

17 cmm6-6 NACC 30 min plant 2 cold susceptible 

18 cmm6-6 NACC 30 min plant 3 cold susceptible 

19 cmm6-6 control ACC plant 1 cold tolerant 

20 cmm6-6 control ACC plant 2 cold tolerant 

21 cmm6-6 control ACC plant 3 cold tolerant 

22 cmm6-6 ACC 30 min plant 1 cold tolerant 

23 cmm6-6 ACC 30 min plant 2 cold tolerant 

24 cmm6-6 ACC 30 min plant 3 cold tolerant 
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2.2.4 Functional annotation 

Gene ontology terms were examined with agriGO (http://bioinfo.cau.edu.cn/agriGO/) for GO 

enrichment with custom annotation. For this analysis, the following parameters were chosen: 

hypergeometric statistical test method, multi-test adjustment hockberg FDR, significance level: 

<0.05 and 3 minimum number of mapping entries. Significant values were sorted by enrichment 

score (Query_item/Query_total)/(Background_item/Background_total) and GO redundancy was 

removed with REVIGO tool (http://revigo.irb.hr). MAPMAN software was used to further 

understand the biological role of differentially genes. The S. tuberosum MAPMAN ontologies were 

retrieved from the GOMAPMAN web resource (Ramsak et al. 2014), and imported in the 

MAPMAN tool (v.3.6.0) (Thimm et al. 2004). The list of orthologous differentially expressed genes 

(DEGs) identified in S. tuberosum was then mapped to bins for data visualization and pathway 

analysis. 

 

 

 

2.2.5 RNAseq data validation  

To validate the reliability of the expression profiles observed in the RNA-seq data, 10 genes 

randomly chosen were used for quantitative real-time PCR (qPCR) analyses using iTaq SYBR 

Green supermix (Bio-Rad, Munich, Germany). The elongation factor gene EF was used as an 

internal control (Nicot et al. 2005). RNA material from the same samples employed for RNA-seq 

experiment was used for this validation. A 2µl aliquot of 1/10 cDNA was used in a qRT-PCR, with 

the addition of 0.3µM of each specific primer and FAST SYBR Green master mix (Applied 

Biosystems, Foster City, CA) to a final reaction volume of 20µl. The qRT-PCRs were performed 

using an ABI 7900HT Real Time PCR System (Applied Biosystems) and the relative expression 

value was calculated through the ΔΔCt method (Livak and Schmittgen 2001). 

 

 

2.3. Results  

2.3.1 RNA-seq statistics and DEGs 

More than one billion reads were produced, with in average 33M reads from each sample. High-

throughput sequencing and subsequent read trimming/clipping delivered a total of 850 million reads 

in control and stressed conditions. These were sub sequentially mapped against the S. commersonii 

scaffolds. Using default criteria, from 73% to 90% of the reads mapped to a genomic location. On 
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average, the uniquely mapped reads percentage was ≅50%, while that of multiple mapped reads 

was ≅40%.  

NACC experiment 

A total of 19.322 and 20.203 transcripts was obtained from cmm1T and cmm6-6, respectively (Fig. 

3).  

 

 

 

 

 

 

 

 

 

 

Fig. 3 Total amount of expressed transcripts under non-
acclimated (NACC) and acclimated (ACC) cold stress conditions 
in cmm1T and cmm6-6. 

 
Venn diagrams were constructed to highlight uniquely and common genes identified by each 

statistical approach. In NACC conditions, cmm1T showed a lower number of DEGs than cmm6-6. 

Indeed, 193 (0.99 % of total transcripts), 206 (1.1%), 430 (2.2%) and 1.001 (5.1%) DEGs were 

found in cmm1T using EdgeR, DEseq2, EBseq and NOIseq, respectively. By contrast, 1.441 

(7.1%), 1.135 (5.6%), 1.213 (5.9%) and 8.054 (39.8%) DEGs were found in cmm6-6 with the same 

statistical approaches. Only those DEGs that were consistently identified with all methods were 

kept for further analysis. Therefore, 71 and 883 genes were further analyzed in cmm1T and cmm6-

6, respectively. All these common DEGs were annotated according to S. commersonii available 

annotations and to A. thaliana for those lacking annotation. The two sets were compared to reveal 

genes that were commonly or uniquely expressed. Of all DEGs identified, only two were in 

common between cmm1T and cmm6-6. The others (69 in cmm1T and 881 in cmm6-6) were unique 

(Fig 4).  
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Fig. 4 Number of total differentially expressed genes (DEGs) in cmm1T and cmm6-6 
under NACC conditions and those that were in common or uniquely expressed.  

 
An additional difference between our clones was relative to the behavior of DEGs. Indeed, out of 

71 DEGs identified in cmm1T, 61 (86 %) were down-regulated while only 10 (14 %) were up-

regulated (Fig 4). Further, most of the suppressed genes (33/61) showed a fold change < -1.5 (FDR 

value ≤ 0.05), whereas none of the induced genes had a fold change > 1.5. By contrast, in cmm6-6 

the up-regulation was prevalent. Out of 883 DEGs identified, 588 (67 %) were up-regulated and 

29% of them showed a fold change grater than 1.5. Two hundred and ninety five (33%) were down-

regulated, with 30% of them showing a fold change grater than -1.5. MapMan software was 

employed to better understand the biological role of DEGs in both clones. Since a physical map for 

S. commersonii is not available yet, we used the equivalent orthologs in S. tuberosum to map our 

DEGs in MapMan bins. We found that 58 (out of 71) and 714 (out of 883) DEGs in cmm1T and 

cmm6-6 respectively, had at least one ortholog in S. tuberosum. For cmm1T, MapMan analysis 

showed that most of genes were involved in processes such as RNA regulation (9/58; bin27), cell 

wall synthesis (6/58; bin10), transport (4/58; bin34), hormone metabolism (3/58; bin17), stress 

(3/58) and others (Tab. 2A).  
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Tab. 2 MapMan overview in NACC experiments. The number of 
differentially expressed genes (DEGs) in cmm1T and cmm6-6 
corresponding to each MapMan bins is shown. –a  mean not 
present. 
A 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Among DEGs involved in RNA regulation (bin27), 9 were transcription factors belonging to 

AP2/ERF, bHLH, MYB, HB families. DEGs belonging to bin10 were near identical to AtIRX1, 

AtIRX3, AtIRX5 and AtIRX6, also called CESA genes (cellulose synthase). One gene was involved 

in lipid metabolism (acyl-carrier protein 4, similar to AT4G25050), confirming that changes in lipid 

composition in membrane might occur following cold stress. Genes with functions associated to 

signal perception and transduction were also found in the gene sets. For instance, two NBS-LRR 

were found to be differentially expressed in cmm1T and they might be considered as major 

  Number of DEGs 
Bin Name cmm1T cmm6-6 

1 PS -
a
 46 

2 major CHO metabolism 1 10 
3 minor CHO metabolism 1 8 
4 glycolysis - 4 
7 OPP - 1 
8 TCA / org. transformation - 4 
9 mitochondrial electron transport / ATP synthesis - 3 

10 cell wall 6 21 
11 lipid metabolism 2 17 
12 N-metabolism - 3 
13 amino acid metabolism - 13 
15 metal handling 1 1 
16 secondary metabolism 3 22 
17 hormone metabolism 3 29 
18 Co-factor and vitamine metabolism - 1 
19 tetrapyrrole synthesis - 7 
20 stress 3 41 
21 redox - 12 
22 polyamine metabolism - 2 
23 nucleotide metabolism - 2 
24 Biodegradation of Xenobiotics 1 1 
25 C1-metabolism - 1 
26 misc 4 62 
27 RNA regulation 9 91 
28 DNA 1 7 
29 protein 3 72 
30 signalling 3 41 
31 cell 4 17 
33 development - 13 
34 transport 4 46 
35 not assigned 9 129 
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candidates for cold signal perception. Our data also indicated that two genes involved in signaling 

mechanisms, annotated as calcium binding and phosphatydilinositol-4-phosphate, were up-

regulated in cmm1T. As far as MapMan analysis in cmm6-6 is concerned, in general a higher 

number of DEGs (129/714; bin35) did not show an annotated function (Tab. 2A), suggesting that a 

large amount of cold responsive genes is not yet fully characterized. The second most abundant bins 

were relative to RNA process (91/714DEGs; bin27). Among them, several genes were annotated as 

transcription factors: 12 Zn-finger (C2C2-CO like), 8 bHLH, 7 AP2/ERF, 6 HSF and 5 HB, WRKY 

and GARP were found. The other bins were relative to proteins (72/714; bin29), misc (62/714; 

bin26), transport (46/714; bin34) and signaling (41/714; bin30). Further, some bins such as PS 

(46/714; bin1), glycolisil mechanisms (4/714; bin4), OPP (1/714; bin7), TCA metabolism (4/714; 

bin8), mitochondrial electron transport (3/714; bin9), N-metabolisms (3/714; bin12), amminoacid 

transport (13/714; bin13), Co-factor and vitamin metabolism (1/714; bin18), tetrapyrrol synthesis 

(7/714; bin19), redox (12/714; bin21), polyamine metabolism (2/714; bin22), nucleotide 

metabolism (2/714; bin23), C1-metabolism (1/714; bin25) and development (13/714; bin33) were 

enriched only in cmm6-6 and not in cmm1T (Tab. 2A).  

 

 

ACC experiment 

A total of 18.471 and 16.947 transcripts were obtained from cmm1T and cmm6-6 following cold 

stress in acclimated conditions (Fig. 3). As in NACC, cmm1T confirmed a lower number of DEGs 

than cmm6-6. Indeed, a total of 101, 53, 194 and 5.651 DEGs were found in cmm1T using EdgeR, 

DEseq2, EBseq and NOIseq, respectively, whereas 277, 195, 115 and 8.936 DEGs were found in 

cmm6-6. Of all DEGs identified, 29 and 47 genes were in common to all statistical approaches in 

cmm1T and cmm6-6, respectively, and kept for further analysis. Most of DEGs (28 and 46 in 

cmm1T and cmm6-6, respectively) were unique in one or the other clone (Fig 5).  
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Fig. 5 Number of total differentially expressed genes (DEGs) in cmm1T and cmm6-6 
under ACC conditions and those that were in common or uniquely expressed.  

 

 

 

Out of 29 DEGs in cmm1T, 12 (41 %) were up-regulated and 17 (59 %) were down-regulated (Fig 

5). By contrast, as already found following NACC stress, in cmm6-6 most of DEGs (42/47, 89 %) 

were up-regulated, while only 5 (11 %) were down-regulated (Fig 5B). Orthology analysis showed 

that, out of 29 DEGs founded in cmm1T, 24 had an ortholog in S. tuberosum (Tab. 2B). Among the 

DEGs found in cmm1T, four were involved in secondary metabolism (bin 16). Two of them were 

involved in phenypropanoid and lignin pathways (PGSC0003DMP400047121 and 

PGSC0003DMP400037349, PAL1) and two in flavonoid synthesis (PGSC0003DMP400051588, 

N-idroxycinnamoil/benzoil transferase). Regarding the other DEGs, four are transcription factors 

(bin 27): two belong to ap2/ERF (CBF3 and CBF4), one to bHLH and one to HB; three are 

involved in ethylene synthesis (bin 17) and two play a role in the ion transports (bin 34). As far as 

cmm6-6 is concerned, out of 47 DEGs, 42 had an ortholog in S. tuberosum. Most of them (38%) 

were assigned to unknown function (bin35) (Tab. 3). The other DEGs were: seven transcription 

factors (bin 27), six genes involved in post-translational modifications (bin 29), three involved in 

signaling (bin 30) and one relative to stress response (bin 20). Results from qPCR analyses 

evidenced that expression trends of genes analyzed were comparable to the ones obtained by 

RNAseq analysis, thus validating the sequencing experiment.  
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Tab. 3 MapMan overview in ACC experiments. The 
number of differentially expressed genes (DEGs) in 
cmm1T and cmm6-6 corresponding to each 
MapMan bins is shown. –a  mean not present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 GO classification and enrichment analysis of DEGs  

Enrichment GO analysis was performed separately in cmm1T and cmm6-6. Following NACC 

stress, 179 and 1162 unique GO terms were found by AGRIGO analysis and associated to the 

significantly up-regulated or down-regulated genes in cmm1T and cmm6-6, respectively. When the 

FDR filter was applied to the list of GO term after REVIGO analysis to remove GO redundancy, a 

total of 45 (cmm1T) and 560 (cmm6-6) terms for biological process, 18 (cmm1T) and 100 (cmm6-

6) for cellular component and 15 (cmm1T) and 147 (cmm6-6) for molecular functions were 

  
Number of 

DEGs 

Bin Name cmm1T cmm6-6 

2 major CHO metabolism 1 1 

3 minor CHO metabolism 1 1 

10 cell wall 1 2 

11 lipid metabolism 2 - 

16 secondary metabolism 4 - 

17 hormone metabolism 3 1 

20 stress 1 1 

21 redox - 1 

26 misc 2 2 

27 RNA regulation 4 7 

29 protein 1 6 

30 signalling 1 3 

33 development 1 1 

34 transport 2 - 

35 not assigned 1 16 
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identified (data not shown). For biological process, the majority of genes belong to GO:0008152-

biosynthetic process (75% and 76% in cmm1T and cmm6-6, respectively), GO:0009987-cellular 

process (63% in both), and GO:0065007-biological regulation (7% and 6%), GO:0051179-

localisation (17% in both) (Tab. 4). For cellular component, GO functions found were: 

GO:0031224-intrinsic component of membrane (56% and 55%), GO:0005623-cell (53% and 54%), 

GO:0016020-membrane (61,5% in both). For molecular function, GO functions found were 

GO:0003824-catalytic activity (65% and 66%), GO:0005488-binding (55% in both) GO:0001071-

ion binding (4.26% and 1.92%) and GO:0005215-transporter activity (1.42% and 2.66%) for 

cmm1T and cmm6-6, respectively.  

 

Tab. 4 GO enrichment analysis in clones cmm1T and cmm6-6 of S. commersonii under non-
acclimated (NACC) and acclimated (ACC) conditions. The percentage of genes belonging to the 
most represented GO categories in the two clones is reported. 
 

   
% of genes 

 
GO term description cmm1T cmm6-6 

NACC GO:0008152 biosynthetic process  75 76 

 
GO:0009987 cellular process 63 63 

 
GO:0065007 biological regulation 7 6 

 
GO:0051179 localization 17 17 

 
GO:0031224 intrinsic component of membrane  56 55 

 
GO:0005623 cell 53 54 

 
GO:0016020 membrane 61.5 61.5 

 
GO:0003824 catalytic activity  65 66 

 
GO:0005488 binding  55 55 

 
GO:0001071 ion binding 4.26 1.92 

 
GO:0005215 transporter  1.42 2.66 

ACC GO:0008152 metabolic process 76 76 

 
GO:0009987 cellular process 66 65 

 
GO:0044238 primary metabolic process 4 3 

 
GO:0006950 response to stress 17 17 

 
GO:0009059 response to stimulus 50 52 

 
GO:0044262 transport 53 54 

 
GO:0005623 cell 60 61.5 
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GO results indicated that cmm1T was less affected by cold than cmm6-6 after 30 min of cold stress 

in NACC conditions (not shown). In particular, the expression of genes that were enriched in GO 

categories corresponding to “phenylpropanoid metabolic process” and “protein metabolic process” 

were detected in cmm1T, whereas the categories “alcohol metabolic process”, “cell death ”, “ion 

transport”, “DNA binding”, “DNA replication”, “regulation of photosynthesis”, “microtubule” and 

“cell growth”, were significantly enriched only in cmm6-6. Nine additional GO terms (e.g. 

biological regulation and cellular process) were enriched in both clones. 

GO results from ACC experiments provided evidence that GO terms enriched in each clone 

were comparable and were generally related to “metabolic process”. For instance, out of all GO 

terms, a total of 16 (in cmm1T) and 10 (in cmm6-6) for biological process, 5 (in cmm1T) and 10 (in 

cmm6-6) terms for cellular component and 6 (in cmm1T) and 7 (in cmm6-6) for molecular 

functions were identified (data not shown). The analysis of GO terms for cold-regulated genes 

suggested that the categories “cellular process” (66% and 65% in cmm1T and cmm6-6, 

respectively), “biosynthetic process” (4% and 2%), “primary metabolic process” (4% and 3%), 

“response to stress” (17% in both) and “response to stimuli” (50% and 52%), transport (53% and 

54%) were enriched in both cmm1T and cmm6-6 (Tab 4). In the case of the GO category 

“phenylpropanoid metabolic process”, “aromatic compound biosynthetic process” and “cellular 

amino acid metabolic process”, significant enrichment was observed only in cmm1T (not shown), 

whereas the GO category “membrane-bounded organelle”, “transition metal ion binding”, 

“hydrolase activity” and “organelle” were significant enriched in cmm6-6. Twelve additional GO 

categories were enriched in both cmm1T and cmm6-6. 

 

 

2.4. Discussion 

Here we described for the first time the transcriptomic response of two clones of S. commersonii 

contrasting in their cold tolerance but able to cold acclimate. Studies by Stone et al. (1993) provided 

evidence that cold tolerance and acclimation capacity are indipendent traits with a polygenic 

control. Therefore, here we treated the two traits separately. As for non-acclimated cold tolerance, a 

 
GO:0005622 intracellular 60 60 

 
GO:0005737 cytoplasm 52 53 

 
GO:0005488 binding 4 2 

 
GO:0003824 catalytic activity 30 29 

 
GO:0009058 biosynthetic process 4 2 
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strategy focusing on differential expressed genes that were unique in tolerant cmm1T was used, 

whereas those that were unique in susceptible cmm6-6 were not fully discussed. Data showed that 

waves of changes in the composition of the transcriptome occurred within 30 min of NACC stress 

in both clones. However, tolerant clone cmm1T was less affected by cold treatment than susceptible 

cmm6-6. A similar finding was also reported in rice by da Maia et al. (2017) following RNAseq 

analysis, where the authors found 259 and 5579 DEGs after cold exposure of a cold tolerant and 

susceptible genotype, respectively. Similar to Liu et al. (2012) and Chen et al. (2015), who revealed 

that the cold susceptible S. lycopersicum showed more severe inhibition of photosynthesis than the 

cold tolerant S. habrochaites, we found that some photosynthesis-related GO terms were 

significantly enriched among the down-regulated genes in the susceptible clone cmm6-6 under 

NACC conditions. As far as cold tolerance in acclimated conditions is concerned, both genotypes 

showed a similar behavior, consistent with their ability to acclimate. Indeed, only few genes were 

differentially expressed. As already reported in NACC conditions, most of DEGs following ACC 

stress were genotype-specific, suggesting that different clones of one plant species might vary in 

their ability to respond to low temperatures stress, although their ability to cold acclimate is similar. 

In other words, the response of genes to cold stress may be genotype specific within the same plant 

species, as already shown in tomato and rice (da Maia et al. 2017; Chen et al. 2015). Although most 

of DEGs were different in cmm1T and cmm6-6 under ACC conditions, their GO terms were 

similar. Indeed, twelve GO categories comprising “response to stress”, “response to stimuli” and 

“transport” were enriched in both cmm1T and cmm6-6, respectively.  

 

2.4.1 Cold perception and membrane modifications   

It is still unknown how plants sense cold stress. However, some evidences on the role of receptor-

like protein kinases (RLKs) in the perception and transmission of an external stimulus through 

signaling cascades are coming out (Chae et al. 2009; Hwang et al. 2011; Marshall et al. 2012). 

Elucidation of the functions of these kinases in abiotic stress response will provide a better 

understanding of stress-sensing mechanisms in plants and help to identify potential candidate genes 

for breeding. In our study LRR receptors were the unique type of membrane receptors showing 

different expression following 30 min of exposure to NACC and ACC conditions, suggesting that 

they might be actively involved in signal perception and signal transduction in both cmm1T and 

cmm6-6. Similar findings were also shown by da Maia et al. (2017), who described the role of LRR 

receptor (Os02g0647300) in cold stress tolerance of rice. Likewise, Yang et al. (2014) in Glycine 

soya demonstrated that the overexpression of a specific GsLRR in yeast and Arabidopsis enhances 

the resistance to cold stress and increases the expression of a number of cold responsive gene 
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markers. Interesting features associated with cell wall and plasmatic membrane and their                                                                                                                          

modifications were identified to be specific in tolerant cmm1T under NACC conditions. For 

example, a laccase (similar to AtLAC4, AT2G38080), which is involved in lignin biosynthesis, was 

suppressed in cmm1T. Ji et al. (2015) reported that reduction in lignin deposition in cell walls not 

only increases its permeability but also enhances its elasticity. These features may allow cell wall to 

withstand growing ice crystals, thus reducing damages. Consistent with the theory that lignin 

deposition is reduced under cold stress, we found also a peroxidase (similar to AtPRX72), which 

was recently identified by Herrero et al. (2013) as player in lignin biosynthesis, suppressed in 

cmm1T. By contrast, an Aspartic protease located in endomembrane system was induced in 

cmm1T. Yao et al. (2012) showed that in A. thaliana mutant lines, ectopically overexpressing the 

Aspartic protease (ASPG1-OE), water loss was dramatically reduced. This probably leads a minor 

content of free water that might be transformed in ice, which in turn might break the plasmatic 

membrane. Similar to the Aspartic protease, the acyl carrier protein (ACP), an essential cofactor 

carrying acyl chains of different lengths, participating in the cycles of condensation, reduction, and 

dehydration steps, was induced only in tolerant cmm1T. Evidence from in vitro and in vivo studies 

indicated that ACP isoforms are specific for enzymes involved in fatty acid biosynthesis, suggesting 

that they act changing the fatty acid composition of membrane and leaf (Guerra et al. 1986, Schu ̈tt 

et al. 1998, Suh et al. 1999, Branen et al. 2001, 2003). The link between ACP and cold tolerance 

was given by Tang and colleagues in 2012. For instance, the authors revealed that transgenic 

tobacco lines (OE-AhACP1 or AT-AhACP1) overexpressing ACP gene, showed enhanced cold 

tolerance, concluding that this gene play an important role under low temperatures. Hence, 

molecular mechanisms involved in membrane and cell wall modification, lipid composition and 

lignin deposition might be essential for the cold tolerance of cmm1T.  Although these modifications 

might be crucial for cmm1T surveillance, they may not be the unique mechanisms affected under 

NACC conditions in this clone. For example, a basic chitinase 

(maker_scaffold23738_augustus_gene_0_36) involved in resistance processes, was induced. Plant 

chitinases are the members of PR (Pathogenesis related) proteins family that protect plants from 

environmental stresses. It is known that following cold stress, plants secrete proteins in the 

extracellular space, mainly anti	  freezing	  and PR proteins, which represent the first line of defense 

(Nakamura et al. 2008). A recent work by Kashyap et al. (2017) also identified a novel chitinase 

(HrCHI1) harboring bHLH proteins and DRE elements in the promoter. The authors demonstrated 

its role as cold responsive gene, acting via CBF/ERF dependent cold signaling pathway. 

 

2.4.1.1 Into the nucleus: CBF-pathway 
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To understand the molecular basis underlying why cmm1T can survive freezing temperatures and 

acclimate, whereas cmm6-6 can only acclimate, the CBFs pathway was analyzed. Genes associated 

to this molecular processes were found in the gene sets in both clones and under both NACC and 

ACC conditions. Our data showed that CBF3, CBF4 and ZAT12 were up-regulated compared to 

controls under NACC in tolerant cmm1T, but they were down-regulated in sensitive cmm6-6. By 

contrast, all the three genes were up-regulated under ACC in both clones. Our findings are in 

contrast with previous reports that revealed how CBF1, but not related CBFs, were responsive to 

low temperatures in both S. commersonii and S. tuberosum (Pennycooke et al. 2008; Carvallo et al. 

2011). However, they are consistent to the results shown by Aversano et al. (2015), who found an 

induction of all CBF genes under non-acclimated and acclimated conditions following a microarray 

experiment. Our data are also consistent to those observed in tomato species, where three CBF 

genes were cold responsive in the wild cold tolerant S. peruvianum (Mboup et al. 2012). The 

different expression of CBF genes in our plant material may be directly responsible for enhanced 

cold tolerance and acclimation ability in S. commersonii. Therefore, probably CBF3 and CBF4 are 

the first members that play an important role in the early cold response before CBF1 and CBF2. 

ZAT12 is less specific, as it responds to a large number of biotic and abiotic stresses (Davletova et 

al. 2005). However, it has been shown that constitutive expression of ZAT12 in Arabidopsis caused 

a small, but reproducible, increase in freezing tolerance (Vogel et al. 2005). Hence, it is another 

good candidate for further molecular characterization together with CBF3 and CBF4. 

 

2.4.1.2 Others potential candidates  

Cold tolerance and cold acclimation in potato, as well as in other species such as rice, cabbage, 

wheat, and tea is based on quantitative inheritance. There are many genes and interactions, possibly 

epistatic mechanisms, involved in defining the different tolerance levels among genotypes. Thus, 

one could expect that different metabolic routes and different genes are modulated in response to 

cold. Transcription factors including HB, bZIP, MYB, MYC, WRKY and bHLH also play 

important roles in cold as well as under other abiotic stresses. For instance, previous studies showed 

that the overexpression of MlNAC5 (Miscanthus lutarioriparius) and SlNAC1 (Suaeda 

liaotungensis) enhanced drought and cold stress tolerance of Arabidopsis, respectively (Li et al. 

2013; Zong et al. 2016). In our study, more than 20 different TF families were identified to respond 

to both NACC and ACC stress conditions in both clones of S. commersonii. Among them, 

AP2/ERF, bHLH and Zn-finger TFs genes were the most abundant. These TF families interact to 

regulate target genes, and several R2R3-type MYB and bHLH TFs have been reported to be 

involved in plant stress responses. For example, D’Amelia et al. (2017) showed how the expression 
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of AN2 (a MYB transcription factor) is induced by low temperatures in wild, cold-tolerant S. 

commersonii but not in susceptible S. tuberosum varieties. The authors found that AN2 is a paralog 

of the potato anthocyanin regulator AN1, showing similar interaction ability with bHLH co-

partners. It is notable that some previously uncharacterized TFs are also significantly up- or down- 

regulated in response to cold in both cmm1T and cmm6-6, suggesting that more studies on the 

interactions between different TFs families under cold stresses are needed the better understand the 

molecular dynamics under this harmful stress. 

 

 

2.5. Conclusions 

S. commersonii is, among wild potatoes, the one displaying the highest tolerance to low 

temperatures. Our RNAseq data revealed that in NACC conditions cold induced more changes in 

the sensitive clone than in the tolerant one, where we identified genes mainly involved in cell wall 

and membrane modifications. Genes encoding proteins with a role in lignin biosynthesis, lipid 

composition and production of anti freezing molecules such as PR proteins might be used for 

further elucidation through genome editing approaches and, in the end, they might be used in 

breeding programs to improve the non acclimated cold tolerance of the cultivated potato. RNAseq 

data from ACC experiments revealed that a reduced number of genes were affected. Interestingly, 

we found that the function of these genes was in common between cmm1T and cmm6-6. Our study 

also showed that some cold responsive transcription factors genes such as CBF3, CBF4 and ZAT12 

had an opposite trend (increased and decreased expression levels in the tolerant cmm1T and 

sensitive cmm6-6 under NACC conditions; by contrast, they were induced in both clones when 

acclimated). These findings demonstrate the important role of CBF-dependent pathway under both 

not acclimated and acclimated conditions. Further studies at promoter level of CBF3, CBF4 and 

ZAT12 of cmm1T and cmm6-6 might elucidate the differences between the two clones in term of 

cold tolerance. All these findings increase our understanding on the molecular basis of cold 

response under non- and acclimated conditions and provide a list of gene targets for marker assisted 

selection approaches aiming at introgressing cold tolerance in S. tuberosum. 
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Deep-sequencing of Solanum commersonii smallRNA libraries reveals riboregulators involved 

in cold stress response 

 

Abstract 

Low temperatures represent one of the most important harmful factors that limit crop production. 

Although the molecular mechanisms on how different plant species respond to cold stress remains 

to be elucidated, recent studies have shown that abiotic stresses induce aberrant expression of many 

small non-coding RNA (sncRNA). However, riboregulators dynamics under low temperatures 

remain largely unknown. Among the wild species used in potato breeding, Solanum commersonii is 

the one displaying the highest tolerance to low temperatures. It is also the first potato relative whose 

genome sequence has been deciphered. With the aim to understand how its sncRNAs are affected 

by cold stress, two clones of S. commersonii contrasting in their cold response were used in this 

study, and their sncRNAome has been analyzed through RNAseq strategy. A prevalence of 21- and 

24-nt sncRNAs divided in three classes of mature miRNAs (273), tasiRNA (5.737) and other 

smallRNA (134.868) were annotated in the genome of S. commersonii. Among the miRNAs, 44 

were conserved with high similarity with other plant species, and 229 were new or S. commersonii-

specific (not reported in any database). Targets were determined by in silico prediction and several 

genes encoding transcription factors were identified as putative players in cold stress response. 

Among them, WRKY, MYB and GRAS were the most abundant. Differential analysis provided 

evidence that several miRNAs change during stress conditions, and that they are negatively 

correlated with their targets. We also showed that tasiRNA as well as secondary siRNA changed 

their expression under both stresses, leading to the idea that they play an active role under cold 

stress. Our results reveal possible roles of sncRNA in the regulatory networks associated with 

tolerance to low temperatures and provide useful information for a more strategic use of genomic 

resources in potato breeding efforts. 

 

3.1. Introduction 

The discovery of small non-coding RNAs (sncRNAs) and their widespread roles in both 

transcriptional and post-transcriptional gene regulation has changed our basic understanding of how 

genes are regulated. Importantly, there is increasing evidence indicating that sncRNAs play vital 

roles in stress response and during various developmental processes, including shoot apical 

meristem formation, leaf morphogenesis and polarity, floral organ identity, root development, 

vegetative phase change and vascular development (Kamthan et al. 2015; Nova-Franco et al. 2015; 

Damodharan et al. 2016; Li and Zhang 2016). Generally, sncRNAs are distinguished in hairpin 
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RNAs (hpRNAs), derived from single-stranded hairpins and small interfering RNAs (siRNAs) 

derived from double-stranded RNA (dsRNA). Although they are functionally similar, differences in 

structure and mode of biogenesis have been documented (Carthew et al. 2009). HpRNAs include 

microRNAs (miRNAs), a class of riboregulators that is very well known in plants. They are short 

(21–24nt) in length, single stranded, non-coding and produced from an RNA Polymerase II 

transcript with a strong secondary stem-loop structure (Bologna and Voinnet 2014). In plants, 

Dicer-like proteins (DCL1 and DCL3) cleave this secondary structure and produce an hairpin RNA 

molecule (pre-miRNA), that is successively handled by DCL1, resulting in a double stranded 

intermediate RNA. One strand of this RNA (guide strand) is incorporated into the effector complex 

(RISC, RNA Induced Silencing Complex), while the other strand is known as the ‘star’ sequence 

(miRNA*) or passenger strand and is usually degradated. Several miRNAs are evolutionary 

conserved among diverse plant species, while others that have recently evolved show species-

specificity and are often expressed at lower levels compared to conserved miRNAs (Fahlgren et al. 

2007, Ren et al. 2012). Due to their low expression levels, most of species-specific miRNAs 

remained unidentified. In recent years, with the advent of high-throughput sequencing technologies, 

both species-specific and conserved miRNAs have been identified in diverse plant species 

(miRBase, v. 21; Kozomara & Griffiths-Jones 2014, Megha et al. 2017). The other group of 

sncRNAs includes endogenous siRNA, arising from long dsRNA precursors. These come from the 

hybridization of sense and antisense transcripts, from the folding back of an inverted‐repeat 

sequence or from the hybridization of unrelated RNA molecules with strong sequence 

complementarity. Endogenous siRNA includes heterochromatic (het)siRNAs and secondary 

siRNAs (Borges et al. 2015). The former are the most abundant in plants and mediate 

transcriptional silencing of transposons and pericentromeric repeats. They require transcription by 

polymerase IV, followed by dsRNA synthesis through RNA-dependent-RNA polymerase-II 

(RDR2) and processed by DCL3. Secondary siRNAs, such as trans-acting RNA (tasiRNAs), 

phasedRNA (phasiRNAs) and epigenetically activated RNA (easiRNAs) are produced by DCL4 

and DCL2, respectively, following Polymerase II transcription and dsRNA synthesis by RDR6.   

Among the principal crops, the cultivated potato (Solanum tuberosum) is third in terms of 

production after rice and wheat. The main reasons for its increasing popularity are related to the 

high nutritional value of tubers combined with the simplicity of its reproduction by vegetative 

propagation. Unfortunately, it is susceptible to a wide range of abiotic and biotic stresses. For this 

reason, breeders are continuously seeking sources of genetic resistance to main stressors. A 

provider of allelic/gene diversity is represented by wild tuber-bearing Solanums. There are about 

200 potato species distributed from the southern part of United States of America up to southern 
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Chile. They make the potato unrivalled within cultivated crops in terms of related species. Among 

them, S. commersonii has attracted much interest in recent years. Particularly important are its 

resistance to low temperatures and capacity to cold acclimate (i.e. to increase its resistance upon 

exposure to low but non-killing temperatures). Therefore, S. commersonii is a candidate species to 

study and clarify in details the genetic dynamics underlying these noteworthy traits. It is reported in 

the literature that miRNA plays an important role during cold stress. Indeed, differential profiling of 

low temperatures-induced miRNAs using next generation sequencing platforms has been reported 

in various plant species, including Arabidopsis (Liu et al. 2008), Populus trichocarpa (Zhang et al. 

2009b; Chen et al. 2012), rice (Lv et al. 2010), Hemerocallis fulva (An et al. 2014), tomato (Cao et 

al. 2014), grapevine (Sun et al. 2015) and almond (Karimi et al. 2016). Knowledge about species-

specific miRNA and secondary siRNA population operating in consequence to cold stress in 

potatoes remains largely scant. Taking advantage of the recently published genome sequence of S. 

commersonii (Aversano et al. 2015), here we used Illumina sequencing technology and 

bioinformatics tools to identify miRNAs, tasiRNA and other siRNAs that could be involved in the 

molecular mechanisms of cold resistance of this potato species. We characterized sncRNAome and 

identified and studied in details conserved and novel miRNAs involved in cold stress tolerance. To 

gain a better understanding of miRNA functions in various processes, their targets were also 

analyzed through GO analysis. This effort provides for the first time a comprehensive analysis of 

smRNA population in wild potatoes, and gives us the opportunity for further studies correlating 

miRNA expression with RNAseq data of cold stressed plants. 

 

3.2. Material and methods 

3.2.1 Cold stress assay 

Young plants of two different clones of S. commersonii were used in our study: clone cmm1T of 

PI243503 is frost-resistant and able to cold acclimate, whereas clone cmm6-6 of PI590886 is cold-

sensitive but able to cold acclimate. Plants were micro-propagated in vitro on Murashige and Skoog 

(MS) medium (Sigma-Aldrich, http://www.sigmaaldrich.com) with 1% (w/v) sucrose and 0.8% 

(w/v) agar, incubated at 24 °C with irradiance of 200 μmol m-2 s-1, under a 16/8 h (light/dark) 

photoperiod. Four-weeks old vitroplants were transplanted into 14-mm pots filled with sterile soil 

and grown for two weeks at 24°C in growth chamber prior submitting them to non-acclimated 

(NACC) and acclimated (ACC) stress conditions. During NACC experiments, three plants of each 

clone were challenged for 30min at -2°C, while three plants were chosen as controls and kept at 

24°C. In the ACC experiment, 6 plants/clone were acclimated at 4°C for 2 weeks. Then, three of 

them were transferred for 30min at -2°C, while the others were used as control and kept at 4°C. 
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In both experiments, an environmentally controlled cold room was used. Young leaf samples were 

collected from all replicates at the end of each stress and from control plants. Samples were 

individually stored at -80°C before RNA extraction.  

 

3.2.2 MicroRNA sequencing, identification and annotation 

For each sample total RNA was isolated from leaf tissue using Spectrum Plant Total RNA kit 

(Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s protocol. RNA 

concentrations were determined using NanoDrop ND-1000 spectrophotometer (Thermo Scientific, 

Wilmington, USA) and RNA integrity was verified was checked using bioanalyzer (Agilent 

Technologies, Santa Clara, California, USA). To identify miRNAs, 24 single-end small RNA 

libraries from cold stressed and not stressed leaves were sequenced using Illumina Hi-seq2500 

(Tab. 1). A total of 10 million reads/sample were obtained. Quality, trimming and clipping were 

performed using Skewer software (Jiang et al. 2014). All reads obtained after filtering and quality 

check were pooled and mapped onto the S. commersonii genome using bowtie with default 

parameters (Langmead et al. 2009). The sequences that were mapped to multiple positions in the 

genome were discarded from the analysis, whereas those that mapped uniquely were further 

analyzed using miR-prefer. To identify the potential miRNA families, we used Cd-hit (Li et al. 

2006) to cluster the predicted potato miRNA candidates. A word length of 7 and a sequence identity 

threshold of 0.9 were selected to cluster the predicted miRNA sequences. Finally, to identify 

conserved miRNAs, short-Blastn was used to match the predicted potato miRNA candidates to all 

the 5940 plant mature miRNAs from mirBase Release 19 (Kozomara et al. 2011). Default 

parameters were used, except the e.value that was lower than 10e-3. When blast search indicated 

more than one miRNA family hit, the one showing the least mismatches was selected. 
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Tab. 1 List of samples used in smRNAseq experiments. The 

number of biological replicated in each condition is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Prediction of potential miRNAs target 

psRNATarget program (http://plantgrn.noble.org/psRNATarget/) was employed to predict the 

targets of the putative miRNAs in the nucleotide sequences of all S. commersonii transcripts. The 

program predicts small RNA targets by reverse complementary matching between small RNA and 

target transcripts and evaluating the target site accessibility by calculating unpaired energy required 

Sample Species Condition Tolerance/susceptibility 

1 cmm1T control NACC plant 1 cold tolerant 

2 cmm1T control NACC plant 2 cold tolerant 

3 cmm1T control NACC plant 3 cold tolerant 

4 cmm1T NACC 30 min plant 1 cold tolerant 

5 cmm1T NACC 30 min plant 2 cold tolerant 

6 cmm1T NACC 30 min plant 3 cold tolerant 

7 cmm1T control ACC plant 1 cold tolerant 

8 cmm1T control ACC plant 2 cold tolerant 

9 cmm1T control ACC plant 3 cold tolerant 

10 cmm1T ACC 30 min plant 1 cold tolerant 

11 cmm1T ACC 30 min plant 2 cold tolerant 

12 cmm1T ACC 30 min plant 3 cold tolerant 

13 cmm6-6 control NACC plant 1 cold susceptible 

14 cmm6-6 control NACC plant 2 cold susceptible 

15 cmm6-6 control NACC plant 3 cold susceptible 

16 cmm6-6 NACC 30 min plant 1 cold susceptible 

17 cmm6-6 NACC 30 min plant 2 cold susceptible 

18 cmm6-6 NACC 30 min plant 3 cold susceptible 

19 cmm6-6 control ACC plant 1 cold tolerant 

20 cmm6-6 control ACC plant 2 cold tolerant 

21 cmm6-6 control ACC plant 3 cold tolerant 

22 cmm6-6 ACC 30 min plant 1 cold tolerant 

23 cmm6-6 ACC 30 min plant 2 cold tolerant 

24 cmm6-6 ACC 30 min plant 3 cold tolerant 
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to open secondary structure around the small RNA’s target site (Dai et al. 2011). It also reports the 

translational inhibition or cleavage degradation by presence/absence of a mismatch in the central 

complementary region of the small RNA sequence. Gene Ontology 

(http://www.Geneontology.org/) and the Kyoto Encyclopedia of Genes and Genomes 

(http://www.Genome.jp/kegg/) was also used to further investigate the function of target genes.  

 

3.2.4 miRNA annotation and differential analysis 

To find cold relative miRNA, each library was mapped onto the S. commersonii genome using 

STAR software (Dobin et al. 2013).  Subsequently, only unique reads with quality greater than 30 

were used in FeatureCounts to count the high quality mapped reads. After that, only miRNAs that 

showed at least 10 reads in at least one library were further analyzed. Differential analysis was 

performed using NOIseq package implemented in R v. 1.0.44. 

 

3.2.5 Secondary siRNA and tasiRNA identification and annotation 

To annotate the secondary siRNA we used ShortStack (Axtell et al. 2013). The program 

discriminates the regulatory small RNAs of interest from other small RNAs based on a user-set size 

range (default: 20–24 nt). Loci where the number of RNAs within the user-set size range meets a 

minimum threshold (default = 0.8) are annotated as Dicer-derived, and others are annotated as not 

Dicer-derived. ShortStack annotates and quantifies reference-aligned small RNA-seq data in 

different steps. During the first step, small RNA clusters are identified in a simple, two-step 

process. First, islands of significant alignment coverage are identified. Islands are defined as 

continuous genomic coordinates where the depth of alignment coverage exceeds a user-set 

minimum threshold. Second, the initial islands are “padded” both upstream and downstream by a 

user-set number of nucleotides. Regions that overlap after padding are then merged to form clusters.  

 

 

 

 

 

3.3. Results 

3.3.1 Identification and annotation of conserved and new smRNAs in S. commersonii 

Fig. 1 shows the overall procedure for the annotation of potential miRNAs and siRNAs. Small 

RNA sequencing yielded a total of 402.083.098 raw reads. The raw sequences were processed and 

filtered through several criteria and 240.525.509 of them represented our smallRNA population 
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with reasonable sequencing depth. They were used to annotate putative miRNAs, tasiRNAs and 

other siRNAs.  

 

NGS- raw reads!

Adaptor removal !
(skewer)!

Filter rRNA sequences!
(SILVA database) !

High quality reads! miRNA!
analysis!

smRNA !
analysis!

miRNA!
identification and 

annotation !

miRNA!
differential analysis!

smRNA !
identification and 

annotation !

smRNA !
differential analysis!

Mapping to cmm 
genome !

Clustering to 
families (CD-hit)!

Search for known 
miRNA !

Target prediction !

ta-siRNA!

smRNA !

 
Fig. 1 Flowchart used for the prediction of miRNAs, their targets, and smRNAs in S. commersonii. 
 

A total of 273 miRNAs were identified using miR-Prefer. Among them, 24nt were the most 

abundant (77%), followed by 21nt (11%) (Fig. 2).  
 

 
Fig. 2 Length distribution of miRNA sequences identified in all smRNA libraries. 
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In order to identify the conserved miRNAs, all the predicted regions were mapped against the 

known plant miRNAs database and deposited in miRBase v.2.0. Out 273 miRNAs, 44 matched to 

known plant miRNAs, whereas 229 were considered as novel and S. commersonii-specific. Using a 

family classification made by miRBase v.2.0, conserved miRNAs falling into the same known 

family were merged, giving a final number of 27 conserved miRNA families (Fig. 3). MiR166 and 

miR169 had six and five members respectively, miRNA156 had three, while the remaining had one 

or two family members.  

 

 

 

 
Fig. 3 Number of different members of conserved miRNA families found in S. 
commersonii by sequencing and bioinformatics prediction. 

 

 

The predicted miRNAs loci were explored further to find out their distribution among the intergenic 

and genic regions of the S. commersonii genome (Tab. 1). Two hundred and sixty six (97%) of the 

pre-miRNAs were located in intergenic regions, indicating that a high proportion of miRNAs were 

encoded by non-annotated genes or non-coding RNAs sequences. Only seven (3%) miRNA were 

located in introns. As far as the secondary siRNA is concerned, out of 5.737 annotated tasiRNA, 

624 (11%) were located in intergenic regions, 743 (13%) in introns and 4.380 (76%) overlapped 

with transponsable element (TE) regions. Finally, for those smRNA different from miRNAs and 

tasiRNA, 44.340 were located in intergenic region (32%), 6.747 in introns (5%) and 75.600 (57%) 

overlapped with TEs (Tab. 2). The remaining 8.181 (6%) were located within genic regions.  
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Tab. 2 Number and genomic distribution of predicted miRNAs,tasiRNAs 

and siRNA. 

  

Localization 

 

annotated 
intergenic 

region 

genic 

region 
overlapped with TEs 

miRNA 273 266 7 - 

tasiRNA 5.737 624 743 4.380 

siRNA 134.868 44.340 6.747 75.600 

 

 

3.3.2 Target predictions and functional annotation for expressed miRNAs 

To explore the functional role of our miRNAs in diverse biological processes, their putative target 

genes were predicted using the open source web server psRNATarget (Dai et al. 2011). Most of 

miRNAs were found to target more than one transcript. Indeed, for the 273 miRNAs annotated, 

2.316 targets were identified, of which 1.237 (53 %) had a known annotation. The functions of the 

target genes were different, including transcription factors, involvement in metabolism, resistance 

and cell differentiation. A large group of targets (91) contained the term resistance in the gene 

annotation (e.g. resistance to late-blight, verticillium wilt and root-knot nematodes) and 58 of them 

were resistance protein membrane receptors (LRR). Another group of predicted miRNA targets 

included transcripts encoding for transcription factors, such as R2-R3 MYB-related (four transcripts 

regulated by the conserved miR319 and miR159), GRAS (seven transcripts regulated by the 

conserved miR477 and miR171 and the novel miR9078, miR7478, miR6244 and miR1383), 

APETALA2 (one transcripts targeted by the conserved miR172 and novel miR1507) and SBP (six 

transcripts regulated by three members belonging to the conserved miRNA156 family and the novel 

miRNA5806). Besides resistance genes and transcription factors, 432 targets were annotated as cold 

responsive genes in S. commersonii genome (data not shown). Among them, we found five different 

S. commersonii-specific miRNA that might potentially regulate four different CBL-interacting 

serine threonine-proteins (CIPKs) known to be cold responsive. CIPKs proteins are the major 

candidates for cold signal transduction. For instance, different members of the CIPK gene family 

have been found to respond to different stimuli in specific plant tissues and at particular 

developmental stages in Arabidopsis and rice (Kolukisaoglu et al. 2004). However, studies on this 

gene family and its role under low temperatures in wild S. commersonii are still lacking. Using 
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pylomeDB (http://phylomedb.org/), we found that genemark_scaffold12273_abinit_gene_0_9 and 

maker_scaffold35102_snap_gene_0_78 clustered with two paralogs of CIPK16.  

(PGSC0003DMP400049575 and PGSC0003DMP400046460) in S. tuberosum (Fig. 4), whereas 

augustus_masked_scaffold8144_abinit_gene_0_0 and 

augustus_masked_scaffold11835_abinit_gene_0_3 were not present in any tree of the database. 

Through our goal to better elucidate the dynamics of cold stress signal, our next step will be the 

genome wide identification and characterization of CIKPs involved in the molecular mechanisms of 

cold tolerance in S. commersonii. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Screenshot representing the two S. commersonii cbl-interacting serine 

threonine-protein (CIPK) annotated as CIPK16 in S. tubersoum 

 

miRNAs involved in their own biogenesis have been also found. Indeed, two different miRNAs 

(miR6567/6568) have as target the two isoforms of DCL2d 

(maker_scaffold2147_snap_gene_0_30), one of the members of DCL’s gene family described in 

chapter IV. 

 

 

 

3.3.3 miRNAs, tasiRNA and other smallRNA involved in cold stress 

In non acclimated conditions (NACC), seven miRNAs were significantly down-regulated after 

30min in cmm1T (Tab. 3A).  
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Tab. 3 Total number (up-regulated; down-regulated) of differentially expressed 
(DE) miRNAs, siRNAs and tasiRNAs in cmm1T and cmm6-6 following non 
acclimated (NACC) and acclimated (ACC) cold stress. Only those that 
significantly (P < 0.05) changed their expression were considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three of them (all novel) showed a log2FC  < -1.5, whereas the others (conserved miR6027, 

miR408a, miR408b and the novel miRNA_5621) were weakly differentially expressed (Fig. 5).  

 

 
Fig. 5 MA plots of the differentially expressed miRNAs under NACC and ACC conditions. The 
y-axis corresponds to the mean expression value of −log10 (q-value), and the x- axis displays the 

A) NACC 

B) ACC 

miRNAs DE  tasiRNA DE siRNAs DE 
cmm1T 7 (0; 7) 102 (74; 28) 5.758 (3.947; 1.811) 
cmm6-6 8 (4; 4) 425 (277; 148) 15.369 (8.476; 6.893) 
common 0 56 1.393 

miRNAs DE  tasiRNA DE siRNAs DE 
cmm1T 36 (21; 15) 797 (151; 646) 27.132 (5.065; 22.067) 
cmm6-6 4 (0; 4) 425 (78; 347) 20.277 (5.166; 15.111) 
common% 1 138% 6.189 
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log2 fold change value. The blue dots represent significant differentially miRNAs, the red dots 
denote those that are not differentially expressed. 

 

 

The seven differentially expressed miRNA could regulate a total of 63 putative targets, of which 38 

had known GO term. Among them, we found 7 S. commersonii genes annotated as cold responsive: 

2 Dead box ATP-binding proteins, 2 ATP-binding proteins, 1 K+ channel, 1 1,3-beta glucanase and 

1 alpha-L-fucosidase. By contrast, in the cold susceptible cmm6-6, eight miRNA were differentially 

expressed following NACC stress, of which 4 cold-induced and 4 cold-suppressed (Tab 3A). None 

of them was in common with cmm1T. Within miRNAs that were cold-induced, miRNA_12069, 

miRNA_13631 and miRNA_14664 (all S. commersonii-specific) showed a log2FC  > 1.5, whereas 

the other (miRNA_12366) was weakly differentially expressed. Within the down-regulated, 

conserved miRNAs (miR482b and miR5300) and novel miRNA_9288 had a log2FC value lower 

than -1, whereas the novel miRNA_11851 showed a down-regulation of two-fold compared with 

the control. The eight differentially expressed miRNA could potentially regulate 61 miRNA targets, 

of which 37 had known GO term. Sixteen were cold responsive and were all involved in different 

biological processes. Following NACC experiments, the differential analysis of tasiRNAs and 

siRNAs was also performed (Fig. 6). A total of 102 tasiRNA (74 up-regulated and 28 down-

regulated) were found in cmm1T after 30min of stress, whereas a higher number was found in 

cmm6-6 (425, of which 277 up-regulated and 148 down-regulated) (Tab 3A). 

 

NACC ACC 

cmm1T cmm1T cmm6-6 cmm6-6 

lo
g2
FC
'

 
Fig. 6 MA plots of the differentially expressed tasiRNAs and siRNAs under NACC and ACC 
conditions. The y-axis corresponds to the mean expression value of −log10 (q-value), and the 
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x- axis displays the log2 fold change value. The blue dots represent significant differentially 
tasiRNAs and siRNAs, the red dots denote those that are not differentially expressed. 

 

The largest difference between the two clones was found in the expression of the secondary siRNA 

(different from miRNAs and tasiRNA). Indeed, 5.758 siRNAs (3.947 up-regulated and 1.811 down-

regulated) were differentially expressed in cmm1T following NACC stress, whereas a higher 

number was found in cmm6-6 (15.369, of which 8.476 up-regulated and 6.893 down-regulated) 

(Tab 3A). 

After acclimation (ACC), 36 miRNAs (15 cold-suppressed and 21 cold-induced) significantly 

changed their expression in cmm1T (Tab 3B). Among them, eight different miRNA (three cold-

induced and five cold-suppressed) showed log2FC value > than |1.5|. All miRNA were annotated as 

S. commersonii-specific. As regards the down-regulated miRNA, two of them (miRNA_11331 and 

miRNA_2736) target two transcription factors belonging to WRKY (WRKY27) and zinc-finger 

families, whereas the others might potentially regulate more than one target (from two to seven). As 

regards cmm6-6, four miRNA (all cold-suppressed) were differentially regulated. The conserved 

miR6027 had ten different targets, including the same DEAD box ATP-binding protein that we 

have already described in cmm1T during NACC stress. MiRNA_6896 targets a l-aspartate oxidase, 

an enzyme involved in cellular metabolism. Following acclimation, the differential analysis of 

tasiRNA and siRNAs was also performed (Fig. 6). Compared to NACC experiment, cmm1T 

increased the number of tasiRNA differentially expressed (797, of which 151 up-regulated and 646 

down-regulated) (Tab 3B). In cmm6-6 we found the same number of tasiRNA (425) detected in 

NACC experiments. However, compared to NACC stress, the down-regulation was more prevalent 

than the up-regulation. Indeed, 347 tasiRNA were down-regulated, whereas 78 were up-regulated. 

Finally, a strong siRNA down-regulation was observed in both clones (Tab 3B). Indeed, 22.067 of 

27.132 and 15.111 of 20.277 secondary siRNA were down-regulated in cmm1T and cmm6-6, 

respectively. 
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3.3.4 Pearson correlations between miRNAs and RNAseq data 

To determine the variation of the differentially expressed miRNAs in NACC and ACC conditions, 

miRNA data were analyzed by Pearson's correlation coefficient (R) with RNAseq data previously 

reported in chapter II (Fig. 7). Transcripts or miRNA, which were not detected as differentially 

expressed in any condition, were removed from downstream analyses. In detail, in cmm1T under 

NACC stress there was a strong negative correlation between the novel miRNA_1794 (R = - 0.8) 

and the conserved miR408a (R = - 0.99) and their targets (cop_1 homolog and geranial-10-

hydroxilase, respectively). As far as cmm6-6 is concerned, under the same conditions three 

different miRNAs (novel miRNA_14664 and conserved miR482b and miR5300) showed an R-

value greater than -0.9, resulting in the up-regulation of their targets. Under ACC stress conditions, 

among the 36 miRNAs differentially expressed, only one (novel miRNA_4540) was negatively 

correlated with its target (fatty acid hyperoxide lyase), whereas two miRNAs (novel miRNA_6896 

and conserved miR6027) were anti-correlated. The down-regulation of the novel miRNA_6896 

induced the up-regulation of two genes with unknown annotation (R = -0.92 and R = -0.83), while 

the conserved miR6027 regulated five different transcripts, all with R-value ranging between -0.83 

and -0.99. 
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Fig. 7 Pearson correlation between miRNAs and their targets. Only those miRNA negatively 
correlated with their targets (P value < 0.05 ) under both NACC and ACC conditions are shown. 
The expression of miRNA and their target in control condition (CNT) and 30 min following NACC 
and ACC stresses is shown. 
 

 

 

3.4. Discussion 

Increasing evidence shows that small RNA plays an important role in developmental stages as well 

as in gene regulation processes upon biotic and abiotic stresses (Sunkar et al. 2007; Chen et al. 

2009; Ruiz-Ferrer et al. 2009). MiRNAs involved in cold stress were investigated in details only in 

few major plants species such as Populus trichocarpa (Lu et al. 2008), B. distachyon (Zhang et al. 

2009), Vitis vinifera (Sun et al. 2015), Medicago sativa (Shu et al. 2016) and Triticum aestivum 

(Song et al. 2017). MiRNAs were also described in S. tuberosum (Guo et al. 2007; Yang et al. 2010; 

Hwang et al. 2011; Kitazumi et al. 2011; Zhang et al. 2013; Lackotia et al. 2014). However, they 

were identified comparing various tissues but not following cold stress. In addition, they were 

predicted using either previously available sequence data or large-scale data but focusing only on 

miRNA Target 
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conserved miRNAs. By contrast, secondary siRNAs such as tasiRNAs have never been investigated 

and, further, no miRNA/siRNA studies in wild potato species have been reported so far. Hence, this 

represents the first comprehensive analysis of sncRNAs in a wild potato with noteworthy traits for 

breeding efforts.  

 

 3.4.1 miRNAs  

Our analysis showed that the 24nt length class dominates in the dataset, strongly suggesting that 

small RNA-directed heterochromatin-silencing plays an important role in this species, as also 

reported in Arabidopsis, tomato, pepper, cucumber, maize, peanut, pepper, citrus and rice (Fahlgren 

et al. 2007; Morin et al. 2008; Moxon et al. 2008; Song et al. 2011; Chi et al. 2011; Martinez et al. 

2011; Li et al. 2012; Hwang et al. 2013). Our research allowed us to annotate 273 distinct miRNAs 

in the genome of S. commersonii. The majority appeared to mature from transcripts of intergenic 

regions or from introns of annotated genes, which is in line with previous findings (Voinnet et al. 

2009). We were able to identify 44 conserved miRNA (belonging to 27 families) and 229 S. 

commersonii-specific miRNA, which are consistent with the number of miRNA identified in 

cultivated S. tuberosum (Guo et al. 2007; Yang et al. 2010; Hwang et al. 2011; Zhang et al. 2013). 

A recent study by Lackotia et al. (2014) led to the identification of 89 conserved miRNAs 

(belonging to 33 families) and 147 potato-specific miRNAs. Such disagreement could be due to the 

fact that we limited our analysis to only leaves, whereas Lackotia et al. (2014) analyzed different 

tissues. Therefore, in the dataset produced here many other miRNAs with different spatio-temporal 

expression might be undetected. Out of 27 conserved miRNA families identified in S. commersonii, 

8 were the same described by the previously mentioned authors. The most abundant conserved 

miRNA families in S. commersonii were miR166, miR169 and miR156. The first family was 

already described (Zhang et al. 2009; Zhang et al. 2013; Lakhotia et al. 2014) and our results 

confirm that it is highly expressed in potato species. Our analysis showed that the members of 

miR166 were highly similar to those of other species such as Arabidopsis and tomato. Hence, the 

evolutionary conservation of miR166 strongly supports its important role in plant growth, 

development, and adaptation (Sunkar and Jagadeeswaran 2008). The ability of miR166 to down-

regulate HD-ZIP-type transcription factors including Phabulosa (PHB) has been established in 

Arabidopsis and maize (Juarez et al. 2004; Chuck and O’Connor 2010) and the molecular dynamics 

and function of miR166/HD-ZIP-type engagement have been recently provided by Kitazumi 

(2016). These authors reported a model where its activity could provide a means to control growth 

when cellular resources and intermediates are being prioritized for defense and repair-related 

processes.  Hence, this family might have a prominent role under stress conditions in S. 
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commersonii. MiR156 (three members identified) and miR169 (five members) families have been 

already reported in S. tuberosum. Three members of miR156 were described by Yang and 

colleagues (2010), 12 by Zhang et al. (2013) and 6 by Lackotia et al. (2014). MiR169 was also 

described by Zhang et al. (2013) and Lackotia et al. (2014) and their results yielded the same results 

as ours. 

Generally, the targets of plant miRNAs have perfect or near-perfect complementary sites, allowing 

their identification using bioinformatic prediction methods. Here, we identified potential targets 

with a wide variety of predicted functions, such as transcription factors, genes with a role in defense 

mechanisms, kinases and ion homeostasis genes. Most of the conserved miRNA that targeted plant 

transcription factors (SBP, GRAS, AP2) were found to be highly similar to the conserved miRNA 

targets predicted in Arabidopsis and other plants (Chen et al. 2009; Song et al. 2010; Zuo et al. 

2012). This further underlies the role of conserved miRNAs in essential biological processes. 

Interestingly, among the miRNA targets, a large group was relative to NBS-LRR receptors, 

suggesting a link between miRNA and defense gene expression. It is known that high expression of 

plant NBS-LRR defense genes is often lethal to plant cells (Collier et al. 2011). Our results 

strengthen the hypothesis that miRNAs might be considered as master regulators of the plant NB-

LRR defense genes, as already descrbed by Zhai and colleagues (2011), and thus might be involved 

in the regulation of plant immunity (Fei et al. 2006). Clues regarding these interactions are also 

given by Zhang (2016), and consistent with their results and those reported by Gonzalez (2015), we 

found that different members of miR482 target NB-LRR genes, suggesting a conserved role of this 

family in plant evolution. 

 

3.4.2 miRNA involved in cold stress 

Our results suggested that miRNAs are important regulatory nodes for the cold response of S. 

commersonii, as already described for other plant species (Sunkar et al. 2004; Liu et al. 2008; Lu et 

al. 2008; Zhang et al. 2009). Although different plant species possess different set of miRNAs 

responding to cold, it seems that there is a core of miRNAs that are shared by most of them. For 

instance, among miRNA that showed differences in their expression under cold stress in S. 

commersonii, 10 were in common with those described by others authors. Great emphasis was 

given on the cold-induced miRNAs, whereas the cold-suppressed miRNAs have received little 

attention. Our study indicated that down-regulation of miRNAs, following NACC stress conditions, 

is more prevalent than up-regulation in this kind of stresses. These results are consistent with Zhang 

(2009), who showed that most of the miRNA involved in cold stress in Brachipodium were down-

regulated. Particularly interesting is miR408 family. It has been annotated in more than 20 plant 
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species, making it among the most conserved miRNA families in plants. miR408 has been found to 

be significantly induced in senescing, accompanied by increased levels of the cleavage products 

generated from its validated targets in A. thaliana (Abdel-Ghany and Pilon, 2008; Zhang and Li, 

2013; Thatcher et al. 2015). Various studies showed that it was differentially expressed in response 

to different abiotic stresses including cold, drought, osmotic and oxidative burdens (Sunkar and 

Zhu, 2004; Liu et al. 2008; Shen et al. 2010; Trindade et al. 2010; Zhou et al. 2010a,b; Mutum et al. 

2013; Jovanovic et al. 2014; Zhang et al. 2014a,b). Ma et al. (2015) measured its expression in 

Arabidopsis under six different abiotic stresses, in order to obtain an overall view of its possible 

involvement. The authors showed that miR408 was clearly induced under cold, salinity and 

oxidative stresses, whereas there was no drastic changes under osmotic and drought stresses. In 

contrast with Ma et al. (2015), Trindade et al. (2010) reported that miR408 was induced in response 

to water deficit in Medicago truncatula. During NACC, we found that two members of miR408 

family were down-regulated in tolerant cmm1T but not in susceptible cmm6-6, leading the 

induction of its targets (belonging to the family of laccase). These act on phenols and similar 

molecules, performing one-electron oxidations. It is proposed that these genes play a role in the 

formation of lignin by promoting the oxidative coupling of monolignols, a family of naturally 

occurring phenols that might confer cold tolerance (Sunkar and Zhu, 2004; Sunkar et al. 2012; 

Rajwanshi et al. 2014). Hence, as noted for the results showed here, miR408 could be important for 

the fine-tuning expression of a set of genes encoding copper-containing proteins, which are 

involved in different metabolic processes, as already formulated by Ma and colleagues (2015). Our 

results shed also a new light on the regulation of cold responsive genes under NACC stress. For 

instance, miRNAs that have as target the CIPK16 and other cold relative genes were identified 

under NACC stress in tolerant cmm1T. In light of our results, further analysis will be carried out to 

better clarify the interactions between CIPK16 and its targets under cold stress conditions. In our 

scenario, as already described for the NBS-LRR receptors, in normal conditions miRNA might 

suppress the expression of stress relative genes to induce them when they are needed, enhancing 

plant tolerance.  If on one hand it is interesting to deep analyze the miRNAs differentially expressed 

in the tolerant clone cmm1T, on the other it is intriguing to analyze the behavior of those miRNAs 

that were cold regulated in the cold susceptible clone cmm6-6. Particularly interesting is the down 

regulation of the conserved miR482 under NACC stress. This miRNA has been reported to regulate 

several NBS-LRR defense genes during fungal pathogen infection in cotton (Zhu et al. 2013). 

MiR482-mediated target cleavage is expected to cause not only decay of their target mRNAs but 

also production of phaseRNAs as already described in tomato and M. truncatula (Zhai et al. 2011; 

Li et al. 2012; Shivaprasad et al. 2012). In our experiments, the down regulation of miR408 might 
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led the induction of several NBS-LRR genes that in turn might be lethal in cmm6-6 after 30 min of 

NACC stress (Collier et al. 2011).  

Cmm1T and cmm6-6 are both able to acclimate, and as such offer an interesting model to unreveal 

the dynamics of cold acclimation. In this context, particularly interesting is miR4376. This miRNA 

was down regulated in both cmm1T and cmm6-6 under ACC conditions. Wang et al. (2011) 

showed that miR4376 regulates the expression of an auto inhibited Ca2+-ATPase in S. lycopersicum 

ACA10 gene, which plays a critical role in tomato reproductive growth. This likely has broad 

implications in light of the role of Ca2+ signaling under stress conditions in plants and other 

organisms (Sanders et al. 1999, 2002; Sze et al. 2000; Carafoli, 2002; Hepler, 2005; Boursiac and 

Harper, 2007; McAinsh and Pittman, 2009; Dodd et al. 2010; Kudla et al. 2010). Hence, this 

miRNA is a good candidate for further molecular studies. Another interesting feature that we found 

in our experiment was relative to the regulation of DEAD box proteins. It is known that these 

proteins may be directly involved in temperature sensing. A DEAD box RNA helicase (LOS4) has 

been found to activate the expression of DREB1/CBF during cold acclimation in Arabidopsis (Gong 

et al. 2005). Our results showed that miRNAs are involved in the regulation of these proteins. Their 

expression is induced in cmm6-6 under ACC stress, and probably it leads to an increase of the 

transport of cold responsive proteins into the nucleus. Since cold tolerance genes such as CBF, FR2, 

COR, and LEA do not seem to be the target of any miRNAs, such an observation is interesting and 

may be the result of cold stress. The same hypothesis has been formulated by Song et al. (2017) to 

explain the dynamics of cold tolerance in wheat. It seems that the drastic changes in miRNA 

expression levels in S. commersonii leaves will cause sensitive reaction of their targets which will 

regulate the expression of transcription factors, membrane receptors, genes involved in lignin 

biosynthesis and other correlate pathways. These mechanisms may be explored in breeding to 

enhance cold tolerance in potato.  

 

3.4.3 Other secondary siRNAs 

In the last few years, as a result of extensive genome sequencing in plants coupled with small RNA 

analysis, many new small RNAs, which are not miRNA, have been described. However, compared 

to miRNAs, the loci producing these endogenous regulatory siRNAs have had little systematic 

curation. Recent work has demonstrated an abundance of loci producing phasiRNAs in monocots, 

with examples in rice, maize, and Brachypodium (Johnson et al. 2009; International Brachypodium 

Initiative, 2010; Song et al. 2017), but nothing is known regarding their role in potato. Consistent 

with these authors, we found that S. commersonii harbors thousands of endogenous siRNAs loci. 

The vast majority of the clusters identified here are of the 24-nt variety, confirming the data 
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reported by Axtell et al. (2013). Indeed, the authors, who developed ShortStack software for 

comprehensive analysis of small RNA-seq data, described that 24-nt siRNAs were the most 

frequent type in all four plants data sets analyzed (Arabidopsis, tomato, rice and maize). Similar to 

Johnson et al. (2009), who showed that nearly half of siRNA in rice overlap with genome repeats, 

the siRNAs loci in S. commersonii matched with transposable elements, confirming that they are 

implicated in transcriptional silencing of repeated regions of the genome. The majority of them 

were expressed in our samples, suggesting that these small RNAs perform housekeeping functions 

in the silencing of many repeats in all tissues. Our strategy allowed us to identified and distinguish 

tasiRNA from other endogenous siRNAs, in order to understand and study their role under low 

temperatures. Our data demonstrated that both not-acclimated and acclimated conditions alter the 

expression of both tasiRNAs and secondary siRNAs, confirming that they might be involved in the 

response to abiotic stresses in plants. Clues regarding the role of tasiRNAs under abiotic stress were 

given by Li et al. (2014). The authors reported that two genes (HTT1 and HTT2), which are targets 

of TAS1 (trans-acting siRNA precursor-1), were highly expressed under high temperatures, 

whereas TAS1a was strongly suppressed. At the same time, the overexpression of HTT1 and HTT2 

induced the expression of several heat shock proteins, leading plants to stronger thermo tolerance. 

Recently, Dutta et al. (2017) also demonstrated a role of tasiRNAs under biotic stress. They profiled 

the expression of TAS with the ability to generate four tasiRNAs, following pathogen inoculation of 

susceptible and resistant wheat. The authors revealed that the targets of these tasiRNAs included a-

gliadin proteins, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty 

acid desaturase among others, which are either stress responsive genes or essential for normal 

growth and plants development, and they were induced under pathogenesis. Our findings are also in 

line with previous works by Sunkar and Zhu (2004) and Yao et al. (2010). The former gave the first 

evidence that siRNAs are involved in abiotic stress responses in Arabidopsis, whereas the latter 

demonstrated the role of four siRNAs in wheat seedlings under cold, heat, salt, or drought stresses. 

However, at present, we do not know yet the role of siRNA target genes. Allen et al. (2005) 

demonstrated a model in which miRNA-guided synthesis of pre-tasiRNA transcripts, followed by 

the formation of dsRNA that is in turn processed by DCL, yielding phased tasiRNAs biosynthesis, 

which negatively regulate other genes. Interestingly, we found that two well-described miRNAs 

(miR408 and miR4376) might induce the formation of endogenous siRNAs, which might be 

differentially expressed in our conditions. Overexpression or knockdown of some of these genes 

can be performed in the future to answer this question.  

 

3.5. Conclusions  
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S. commersonii is potentially the best model species to study the molecular mechanisms involved in 

cold tolerance as well as the ability to cold acclimate in potato. Hence, we decided to carry out for 

the first time an extensive smRNA analysis to identify conserved and novel cold-responding 

miRNAs in its genome. This work provides the first small RNA expression profile of S. 

commersonii under cold conditions. Our small RNA sequencing data revealed regulatory roles of 

miRNAs, tasiRNAs and siRNAs during cold response. Our results allowed us also to identify 

miRNAs-target directly involved in stress response, suggesting that their differential expression in 

our clones might contribute to their different ability to face cold stress. It is clear from our study 

that S. commersonii has evolved sophisticated miRNA/siRNA-mediated pathways to cope with 

changing environments. Further study to clarify the role of these mechanisms and to identify 

smRNAs targets will improve our understanding on the response of plants to cold stress and will 

offer further approaches to breed for cold tolerance. 
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Dicer-like and RNA-dependent RNA polymerase gene families identification and annotation in 

the cultivated Solanum tuberosum and its wild relative S. commersonii  

 

Main conclusion 

We provide advances in understanding RNA silencing in cultivated Solanum tuberosum and 

wild S. commersonii. We shed new lights on DCL and RDR gene evolution, localization and 

expression.  

 

Abstract 

Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) genes form the core components to 

trigger RNA silencing in plant and their concerted activities are required in mediating plant 

tolerance. Little information is available on the DCLs and RDRs in non-model species. The 

cultivated potato (Solanum tuberosum) and its cold-tolerant wild relative S. commersonii offer a 

valuable opportunity to advance our understanding on these genes, as their genome sequences are 

available. To determine the extent of diversification and evolution of DCLs and RDRs in these 

species, we performed a comparative analysis among their orthologs. Seven DCLs were identified 

in the two species, whereas seven and six RDR genes were found in S. tuberosum and S. 

commersonii, respectively. Based on phylogenetic analysis, an increase in the number of DCL and 

RDR paralogs in both species occurred, highlighting a possible diversification of their functions 

through duplication events. DCL and RDR expressions were investigated in different tissues and 

under cold and virus stresses. Divergent expression profiles of the tandem duplicated genes in 

different tissues were found. DCL paralogs showed a contrasting expression in S. tuberosum and S. 

commersonii following cold stress and virus infection. By contrast, no change in the RDR transcript 

activity was detected following both stresses. Overall, this study provides the first comparative 

genomic analysis of the core components of the RNAi machinery in Solanaceae. 

 

Keywords 

gene-silencing, comparative genomics, microRNA biogenesis, cold stress, PVY 

 

4.1. Introduction 

RNA interference (RNAi) has the potential to control gene expression either through the repression 

of transcription initiation (transcriptional gene silencing, TGS) or through mRNA degradation 

(post-transcriptional gene silencing, PTGS) (Matzke et al. 2015). TGS and PTGS depend on small 

non-coding RNA (ncRNA), especially small interfering RNAs (siRNA) or microRNAs (miRNA). 
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Once produced from double-stranded RNA (dsRNA) precursors, they are loaded into RNA-induced 

silencing complexes (RISCs) to act in gene silencing mechanisms. The biogenesis and function of 

plant small ncRNAs involve various protein families, such as DICER-like (DCLs), HYPONASTIC 

LEAVES1 (HYL1), C2H2 Zn-finger protein SERRATE (SE), HEN1, HASTY, RNA-dependent 

RNA polymerases (RDRs) and ARGONAUTES (AGOs). Among them, DCLs and RDRs represent 

the core components for small ncRNA biogenesis and recently their structure and functions have 

been clarified (Matzke et al. 2015). In particular, DCLs are endoribonucleases consisting of six 

domains, namely DExD-helicase (DExDc), helicase-C (HelC), Dicer dimer, PAZ, RNaseIII C 

(RIBO III) and double stranded RNA-binding (dsRB) (Margis et al. 2006). Multiple copies of DCL 

genes exist in eukaryotes and produce siRNAs with different length (Shabalina et al. 2008). They 

can play distinct roles in plant development and environmental interactions (Qi et al. 2005; Kapoor 

et al. 2008; Bai et al. 2012). The action of DCLs is complement by RDRs, which use single-

stranded RNAs as templates to generate dsRNA intermediates, which are later processed by DCLs. 

RDRs are defined by the presence of a conserved RDR catalytic domain and exist in multiple 

copies. The combination of different copies of DCL and RDR genes underpins distinct and 

overlapping processes. For example, the most abundant small ncRNA class (24 nucleotides) arises 

through RDR2/DCL3/DNA-dependent RNA polymerase IV (PolIV) activities (Pontier et al. 2005; 

Tran et al. 2005), whereas the RDR6/DCL4 activity catalyzes the formation of trans-acting siRNAs 

(tasiRNAs), which are endogenous regulators of several mRNAs (Xie et al. 2005; Yoshikawa et al. 

2005).  

TGS and PTGS regulatory networks have been reported to mediate plant tolerance to different 

stresses. For instance, recent studies have shed some lights on the contribution of RNAi against 

virus attacks (Palaez and Sanchez 2013). Likewise, mechanisms of PTGS mediate mRNA 

translation of numerous genes involved in abiotic stresses such as drought, salinity, cold, heat, light, 

and oxidation (Kraiwesh et al. 2012; Crisp et al. 2016). Despite the pivotal role played by small 

ncRNAs in plant response to environmental constraints, there is little information available on 

proteins controlling their biogenesis in non-model wild species, which are known to often tolerate 

biotic and abiotic stresses better than their closely related cultivated species (Carputo et al. 2013; 

Yoo et al. 2014; Chen et al. 2015). In particular, the diversity between wild and cultivated species in 

terms of candidate orthologous gene pairs with important role in RNAi has not received much 

attention, although several studies have shown that differences between wild and cultivated plants 

in adapting to stress conditions lies on their different gene expression regulation (Besser et al. 2009; 

Ghorecha et al. 2014; Yoo et al. 2014). Nowadays, the availability of the genome sequence of 

several species provides an unprecedented opportunity for exploring gene family evolution by 
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comparative analyses. In this regard, a valuable example is given by the potato. Indeed, the 

genomes of cultivated Solanum tuberosum and wild tuber-bearing S. commersonii are available 

(Potato Genome Sequencing Consortium 2012; Aversano et al. 2015). Here we report the 

identification and the characterization of DCL and RDR genes in these two species. To determine 

whether they possess a diverse regulation of these genes, the expression profiles of DCLs and RDRs 

in different tissues and after both cold stress and Potato Virus Y (PVY) infection were investigated. 

S. commersonii is tolerant to cold and susceptible to PVY, whereas S. tuberosum is susceptible to 

both stresses. Overall, this study provides the first comparative genomic analysis of the core 

components of the RNAi machinery in Solanaceae.   

 

4.2. Materials and methods 

4.2.1. Identification of candidate DCL and RDR genes and their respective regulatory 

elements 

We used the known protein sequences of four Arabidopsis thaliana and seven S. lycopersicum DCL 

genes as queries to search for the amino acid orthologs in S. commersonii (PI243503) and S. 

tuberosum Group Phureja (clone DM1-3 516 R44) through the Blastp tool of SpudDB (Hirsch et 

al.2013). In particular, amino acid sequences of DCL genes of A. thaliana were downloaded from 

the National Center for Biotechnology Information (NCBI) database, while the proteins of S. 

lycopersicum were those identified by Bai et al. (2012). Conserved domains were searched using 

the Pfam protein family database (Pfam 24.0) (Finn, 2011). The newly identified genes were named 

based on the nomenclature used for the previously identified genes and on their phylogenetic 

relatedness to other members of the same family. A similar strategy was used to identify RDR genes 

in S. commersonii. Amino acid sequences of StRDR genes identified by Hunter et al. (2016) and 

those of S. lycopersicum were used. The exon-intron organization of DCL and RDR genes was 

determined using the online Spidey program (Wheelan et al. 2001) 

(https://www.ncbi.nlm.nih.gov/spidey/) by comparing their full-length coding sequences (CDS) 

with the corresponding genomic sequences downloaded from each database. For each DCL and 

RDR gene, 1,500 nucleotides upstream the translation initiation codon were extracted using a 

custom PERL script. They were further used for the transcription factor binding sites (TFBSs) 

analysis, using the PlantCARE tool (Lescot et al. 2002).  

 

4.2.2. Sequence alignments and phylogenetic analysis  

S. tuberosum, S. commersonii, S. lycopersicum and A. thaliana candidate protein sequences were 

retrieved from the dedicate databases. Phylogenetic analyses were conducted using MEGA7 
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(Tamura et al. 2007). Multiple sequence alignments were carried out using CLUSTALW (Larkin et 

al. 2007). The evolutionary history was inferred by using the Neighbor-Joining (NJ) model. The 

bootstrap consensus tree was built using 1000 replicates. Branches corresponding to partitions 

reproduced in less than 30% of bootstrap replicates were collapsed. Initial trees for the heuristic 

search were obtained automatically to a matrix of pairwise distances estimated using a Jones–

Thornton–Taylor (JTT) model, and then selecting the topology with superior log likelihood value. 

 

4.2.3 Public RNAseq-based expression analysis 

The transcriptional activity of DCL and RDR genes in the cultivated potato was estimated using the 

publically available RNAseq dataset deposited in SpudDB. Briefly, raw single-end fastq files 

(ERR029909, ERR029910, ERR029911, ERR029914, ERR029916 and ERR029917) were 

downloaded from the study named “Transcriptome Analysis of the potato” retrieved in NCBI SRA 

database (https://trace.ncbi.nlm.nih.gov/Traces/sra/). To remove unwanted sequences originating 

from organelles, reads were mapped against the mitochondrial 

(S_tuberosum_Group_Phureja_mitochondrion_DM1-3-516-R44) and chloroplast 

(S_tuberosum_Group_Phureja_chloroplast_DM1-3-516-R44) genomes using BOWTIE2 2.2.2 

(Langmead and Salzberg, 2012) with sensitive local mapping. Unmapped reads were considered for 

the next analysis and were mapped against the S. tuberosum genome (ITAG annotation v1). The 

BAMs files were then analyzed using Cufflinks-Cuffquant software (version 2.2.1) to assemble the 

aligned reads and to access the transcriptome complexity. Expression values for each gene were 

estimated based on RPKM (Reads Per Kilobase of transcript per Million mapped reads) using the 

default options. For S. commersonii we used fastq data related to four tissues (flower, leaf, tuber 

and stolon) and deposited under study SRP050412.  

 

4.2.4 Cold stress assay 

Young plants of S. commersonii (clone cmm1T of PI243503) and S. tuberosum (variety Blondy), 

respectively tolerant and susceptible to cold (Carputo et al. 2007), were micro-propagated in vitro 

as described by D’Amelia et al. (2017). Four-weeks old vitroplants were transplanted into 14-mm 

pots filled with sterile soil and grown for two weeks at 24°C prior submitting them to non-

acclimated (NACC) and acclimated (ACC) stress conditions. In particular, in NACC experiment 

three plants of each genotype were challenged for 30min at -2°C, while three plants were chosen as 

controls and kept at 24°C. In the ACC experiment, 6 plants/genotype were acclimated at 4°C for 2 

weeks. Then, three of them were transferred for 30min at -2°C, while the others were used as 

control and kept at 4°C. In both experiments, an environmentally controlled cold room was used. 
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Young leaf samples were collected from all replicates at the end of each stress and from control 

plants. Samples were stored at -80°C before RNA extraction.  

 

4.2.5 Potato Virus Y inoculation 

Young plants of clone cmm1T and cv. Blondy were mechanically inoculated with Potato Virus Y 

tuber necrotic strain (PVYNTN). The virus, isolated in Italy from S. tuberosum (Barone et al. 2009), 

was reactivated from dehydrated infected tissues grinding them in extraction buffer (10 mM 

phosphate, 1% carborundum, pH 7-7.2). The virus was maintained on Nicotiana glutinosa, under 

greenhouse conditions (20–24°C). Extract was prepared by grinding N. glutinosa symptomatic 

leaves (1g) in 10 ml of extraction buffer. Inoculum was applied on ten plantlets of each species at 

the 2–3 leaf stage rubbing sap with a latex-gloved finger. Ten plants of each species were inoculated 

with buffer (mock control). Young leaf samples were collected from virus infected and mock 

control plants after 8 hours and stored at -80°C before RNA extraction.  

 

4.2.6 RNA isolation and quantitative Real-Time PCR 

Total RNA was isolated from leaves using Spectrum™ Plant Total RNA kit (Sigma-Aldrich, St. 

Louis, MO, USA) following the manufacturer’s instructions. For quantitative real-time PCR (qRT-

PCR) experiments, samples were treated with RNase-free DNase and one microgram of RNA was 

reverse transcribed using the Superscript III (Life Technologies, Carlsbad, California, USA) 

following the manufacturer’s protocol. The 20µl final reaction was diluted in 200µl using sterile 

water. A 1µl aliquot of cDNA was used in a qRT-PCR, with the addition of 0.3µM of each specific 

primers and FAST SYBR Green master mix (Applied Biosystems, Foster City, CA) to a final 

reaction volume of 20µl. The qRT-PCRs were performed using an ABI 7900HT Real Time PCR 

System (Applied Biosystems). Primer sequences are reported in the Table S1. Relative expression 

was calculated using the adenine phosphoribosyl transferase (aprt) and the elongation factor (EF) 

genes (Nicot et al. 2005) through the ΔΔCt method (Livak and Schmittgen 2001). To find 

differentially expressed genes (DEGs) between S. commersonii and S. tuberosum, a Student’s t-test 

with 100 permutations and a critical P-value < 0.05 was performed. 

 

4.3. Results 

4.3.1. Comparative analysis highlights structural differences among DCL and RDR orthologs 

in Solanum 

We carried out a comparative analysis to unearth possible specificities and functional differences 

between DCL and RDR orthologs in S. commersonii and S. tuberosum. Based on Arabidopsis and 
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tomato sequence similarity, six and seven DCL genes with a functional structure were identified in 

S. tuberosum and S. commersonii, respectively (Table 1a). In addition, through the exploitation of 

ITAG annotation v1 we found a genomic region of 10 kb on chromosome 11 of potato (present in 

the PGSC data), downstream to Sotub11g010160.1.1 and Sotub11g010170.1.1, where three short 

sequences (Sotub11g010180.1.1, Sotub11g010190.1.1, Sotub11g010200.1.1) were separately 

annotated as Dicer-like (data not shown). No orthologs of these three sequences could be found in 

other sequenced species. Specifically, Sotub11g010180.1.1 encodeS for PAZ and Dicer 

dimerization domains, whereas Sotub11g010190.1.1 and Sotub11g010200.1.1 encode partial 

Helicase domains. To solve this ambiguity, we analyzed in depth the genomic region harboring the 

three annotated genes. We re-annotated these genes as one single gene containing 23 exons. Based 

on the distance homology with A. thaliana and S. lycopersium genes, we named it StDCL2c. Hence, 

we found a seventh DCL gene in S. tuberosum. On average, our DCLs showed putative protein 

lengths ranging from 707 (augustus_masked_scaffold13333_abinit_gene_0_0, ScDCL4) to 2208 

amino acids (maker_scaffold2147_snap_gene_0_30, ScDCL2d) (Table 1a).  
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Table 1 Identification of DCL and RDR genes in Solanum 
tuberosum, S. commersonii, S. lycopersicum and S. pennellii. The 
accession number corresponds to the annotation provided by 
ITAG2.3.2 for S. lycopersicum and ITAG1.0 for S. tuberosum. 
    Species Annotation Length (aa) 

Dicer-like genes 
DCL1 S. tuberosum Sotub10g006390.1.1 1889 

S. commersonii maker_scaffold5659_augustus_gene_1_36 1918 
S. lycopersicum Solyc10g005130.2.1  1888 
S. pennellii Sopen10g001150 1914 

DCL2a S. tuberosum Sotub06g012900.1.1 1401 
S. commersonii maker_scaffold17562_snap_gene_1_46 1288 
S. lycopersicum Solyc06g048960.2.1 1399 
S. pennellii Sopen06g015290 1354 

DCL2b S. tuberosum Sotub11g010160.1.1 1400 
S. commersonii maker_scaffold2147_snap_gene_0_28 1359 
S. lycopersicum Solyc11g008540.1.1  1352 
S. pennellii Sopen11g004330 1405 

DCL2c S. tuberosum This study 861 
S. commersonii maker_scaffold1113_snap_gene_0_59 1054 
S. lycopersicum Solyc11g008520.1.1 1428 
S. pennellii Sopen11g004310 1499 

DCL2d S. tuberosum Sotub11g010170.1.1 1372 
S. commersonii maker_scaffold2147_snap_gene_0_30_1 2208 
S. lycopersicum Solyc11g008530.1.1 1317 
S. pennellii Sopen11g004320 1499 

DCL3 S. tuberosum Sotub08g016690.1.1 1368 
S. commersonii maker_scaffold6660_snap_gene_2_27 1678 
S. lycopersicum Solyc08g067210.2.1 1431 
S. pennellii Sopen08g021150 1658 

DCL4 S. tuberosum Sotub07g007080.1.1 1538 
S. commersonii augustus_masked_scaffold13333_abinit_gene_0_0 707 
S. lycopersicum Solyc07g005030.2.1 1536 
S. pennellii Sopen07g001140 1690 

RNA-dependent RNA polymerase genes 
RDR1a S. tuberosum Sotub05g010490.1.1 1116 

S. tuberosum Sotub05g010500 1116 
S. commersonii maker_scaffold34693_augustus_gene_0_18 754 
S. lycopersicum Solyc05g007510.2.1  1115 
S. pennellii Sopen05g003390 1114 

RDR1b S. tuberosum NA NA 
S. commersonii maker_scaffold9269_augustus_gene_0_64 1115 
S. lycopersicum NA NA 
S. pennellii NA NA 

RDR2 S. tuberosum NA NA 
S. commersonii maker_scaffold14992_augustus_gene_0_25 1119 
S. lycopersicum Solyc03g114140.2.1  1120 
S. pennellii Sopen03g033200 1123 

RDR3f S. tuberosum Sotub06g014160.1.1 554 
S. commersonii maker_scaffold20276_snap_gene_0_42 971 
S. lycopersicum Solyc06g051170.2.1 831 
S. lycopersicum Solyc06g051190.2.1 1014 
S. pennellii Sopen06g017040 728 

RDR3e S. tuberosum Sotub12g009540.1.1 335 
S. commersonii NA NA 
S. lycopersicum NA NA 
S. pennellii Sopen12g003370 246 

RDR3d S. tuberosum Sotub12g009540.1.1 554 
S. commersonii  augustus_masked_scaffold6297_abinit_gene_0_1 529 
S. lycopersicum Solyc12g008410.1.1 831 
S. lycopersicum Solyc04g014870.2.1 1198 
S. pennellii NA NA 

RDR6a S. tuberosum Sotub04g012000.1.1 1199 
S. commersonii maker_scaffold1433_augustus_gene_0_57 1198 
S. pennellii Sopen04g007000 1197 

RDR6b S. tuberosum Sotub08g020870.1.1 732 
S. commersonii maker_scaffold9967_snap_gene_0_63 1068 
S. lycopersicum Solyc08g075820.2.1 1180 
S. lycopersicum Solyc08g075825.1.1 748 

  S. pennellii Sopen08g024460  1162 
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Comparing S. tuberosum and S. commersonii DCL proteins, we found high similarities in sequence 

length and composition of DCL1, DCL3 and DCL4. Their similarity percentage was comprised 

between 96.8% (DCL3) and 97.8% (DCL1). By contrast, higher variability was found in the 

proteins belonging to the DCL2 group, resulting in similarity percentage ranging from 79.1% 

(DCL2a) to 80% (DCL2d). The protein sequence of S. commersonii DCL2d 

(maker_scaffold2147_snap_gene_0_30, ScDCL2d) was much longer compared with its orthologs 

in S. tuberosum. However, our data revealed that except for DCL2d, DCL loci have been 

substantially conserved between the two species. To investigate the evolution of multiple DCLs in 

potato, we analyzed their genomic distribution by localizing genes on potato chromosomes (data 

not shown). A total of seven S. tuberosum DCL genes were distributed on five chromosomes. Three 

of them (StDCL2b, StDCL2c and StDCL2d) were on chromosome 11, while the remaining were 

located on chromosomes 6, 7, 8 and 10 and they represented single copy StDCL genes. To localize 

DCL genes in S. commersonii (for which a physical map is not available yet), we blasted the 

respective scaffolds versus S. tuberosum chromosomes, confirming that DCL genes remain in 

corresponding chromosomes (syntheny) and orders (collinearity) in both species (data not shown). 

To broaden our understanding into possible trans-species polymorphisms between wild and 

cultivated contexts, we extended our analysis also to the cultivated tomato (S. lycopersicum) and its 

wild relative S. pennellii. They are members of the Solanaceae family, closely related to potato 

species, and their genomes have been recently sequenced (The Tomato Genome Consortium 2012, 

Bolger et al. 2014). Common features shared by the two cultivated species compared to their 

respective wild relatives were also found. Interestingly, within the DCL1 subfamily, both S. 

commersonii and S. pennellii harbored a 26 amino acids insertion in RiboIII functional domain (Fig. 

S1). This insertion makes the domain longer in wild species compared to the cultivated 

counterparts. Similar differences were also found in DCL3, where the typical DExD domain was 

lacking in the two cultivated species compared with their respective wild orthologs. To gain more 

insights into DCL structural evolution, their exon-intron structure was examined (Fig. 1a). Intron 

and exon number was generally conserved within members of the same group in all four genomes 

analyzed, varying from 16 (DCL2a) to 25 (DCL3 and DCL4). However, differences in exon 

number and gene length were identified between the two potatoes. S. commersonii had the lowest 

(11) number of exons in ScDCL4 and the highest (39) in ScDCL2d compared with the respective 

orthologs of S. tubersoum and the other two species. This confirmed our previous observation on 

predicted amino acid sequences.  
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Fig. 1 Domain distribution of Solanum commersonii, S. tuberosum, S. lycopersicum 
and S. pennellii Dicer-like (a) and RDR (b) proteins. The following conserved 
domains are present: DExD (DEAD/DEAH box helicase), HelC (Helicase conserved 
C-terminal domain), Dd (Dicer dimer), PAZ, RiboIII (Ribonuclease III domain), and 
dsRB (double-strand RNA-binding) in StDCL, ScDCL and SlDCL proteins; RdRP 
(RNA-dependent RNA polymerase) in StRDR, ScRDR and SlRDR proteins and 
SpRDR. 
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We performed the same comparative analysis on RDR genes. We started from the previously 

identified RDRs in S. tuberosum and A. thaliana. Using them as baits, we found eight RDR putative 

genes in S. commersonii and S. lycopersicum, seven in S. tuberosum and six in S. pennellii (Table 

1b). The classification of the orthologous sequences was difficult due to the ambiguity of 

nomenclature in literature. Indeed, the naming of tomato RDRs reflected that of Arabidopsis (Bai et 

al. 2012), but no direct orthology was found with the nomenclature available for potato RDRs 

(Hunter et al. 2016). Therefore, a new unique nomenclature for RDR gene classes in the genus 

Solanum was established based on phylogenetic relationships and leveraging on the most recent 

annotations of wild and cultivated genomes (Potato Genome Sequencing Consortium 2011; The 

Tomato Consortium 2012; Bolger et al. 2014; Aversano et al. 2015) (Table 1). In particular, the 

SlRDR3a (Solyc12g008410) and SlRDR3b (Solyc06g051170) described by Bai (2012) were 

renamed SlRDR3d and SlRDR3f, respectively (Table 1; Fig. 1). RDR genes were distributed on six 

chromosomes (chr3, chr4, chr5, chr6, chr8 and chr12) in S. tuberosum. Blast analysis of S. 

commersonii scaffolds versus S. tuberosum chromosomes confirmed that also RDR loci have been 

substantially conserved among the two species. Moreover, our alignment in tomato allowed us to 

identify two additional RDR genes (Solyc06g051190.2.1 and Solyc08g075825.1.1, belonging to 

SlRDR3f and SlRDR6b clade, respectively) never described before. The full protein sequence of 

these genes ranged from 246 amino acids in S. pennellii (Sopen12g003370, SpRDR3e) to 1180 in S. 

lycopersicum (Solyco8g075820.2.1, SlRDR6b) (Table 1b, Fig. S1). As observed for DCL genes, 

differences at gene level between S. tuberosum and S. commersonii were also found for RDRs. For 

example, the latter had higher number of exons in ScRDR6a and ScRDR6b compared with the 

cultivated potato. Furthermore, common features shared by two cultivated S. tuberosum and S. 

lycopersicum compared with their respective orthologs in S. commersonii and S. pennellii were also 

found. For example, the proteins encoded by Sopen08g024460 in S. pennellii and 

maker_scaffold9967_snap_gene_0_63_mRNA_1 in S. commersonii were roughly 1100 amino 

acids, whereas the orthologs in the two cultivated species were shorter (732 and 748 amino acids in 

S. tuberosum and S. lycopersicum, respectively). In each RDR type, the intron-exon number was 

generally conserved within members of the same group in all genomes analyzed, varying from one 

(SlRDR6b) to 21 (ScRDR3f).  

 

4.3.2. Phylogenetic analysis reveals evolutive differentiation within DCL and RDR clades  

A phylogenetic analysis was conducted to define evolutionary relationships of S. tuberosum and S. 

commersonii DCLs with those of S. lycopersicum and S. pennellii (Figure 1a). The 26 DCL protein 

sequences formed 7 clades; four groups were identified in the neighbor-joining tree generated. 
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DCL2a, DCL2b, DCL2c and DCL2d candidate proteins were respectively assigned to clades 1-4 

and, altogether, included in group I; DCL3, DCL1 and DCL4 subfamilies occupied distinct clades 

(5, 6 and 7, respectively) and comprised groups II, III and IV. The clusterization validated the gene 

exon structure and the protein domain analysis we previously reported. Differences were observed 

in all groups and within wild and cultivated species. As regard Group I (in particular DCL2a 

relatives), the PAZ domain was lacking in S. commersonii and S. pennellii, but it was present in 

their respective cultivated forms. By contrast, the DExD domain was present only in the two wild 

species. In addition, the number or the presence of DCL domains varied among the subfamilies. For 

example, the ResIII domain was found only within the DCL1 clade. Likewise, the dsRB domain 

was absent in DCL2 and DCL3 proteins, but it was present twice in DCL1 (Fig. 1). 

 Regarding RDRs, the neighbor-joining tree derived from protein sequences was resolved 

into nine clades; four groups were identified (RDR1, RDR2, RDR3 and RDR6) (Fig. 1b). RDR6a 

and RDR6b (clades 7, 8 and 9, respectively) were comprised in group I. RDR2 and RDR1 occupied 

distinct clades (6 and 5 respectively) and formed group II and III, while RDR3e, RDR3f and 

RDR3d candidate genes were assigned to clades 1, 2, 3 and 4, respectively, and were included in 

group IV. We found that they all shared a common and unique RNA-dependent RNA Polymerase 

(RdRP) domain. Two new loci in S. lycopersicum, namely SlRDR6b1 (Solyc08g075825.1.1) and 

SlRDR3f2 (Solyc06g051190.2.1), were identified. The former is located close to 

Solyc08g075820.2.1 (RDR1), the latter upstream RDR3f1 (Solyc06g051190.2.1). Further 

differences among species were observed. For example, duplication of RDR1 occurred in S. 

tuberosum and S. commersonii but not in cultivated and wild tomatoes (Fig. 1b). 

 

4.3.3 Cis-acting elements are abundant in DCL and RDR promoters 

Numerous cis-acting regulatory elements were identified in the upstream region of DCLs (Fig. 2a). 

We classified them in five classes based on their biological function. The most redundant motifs 

were the light-responsive elements, widely present in the upstream regions of most DCL genes. 

However, we sought annotated regulatory motifs involved also in stress response. Among them TC-

rich repeats, HSE (heat stress element), WUN (responsive to wounding), as-2, LTR (low 

temperature responsive) and Box-W1. TC-rich repeats were present in the promoter regions of all 

DCL genes except forDCL2b and DCL2c in both S. commersonii and S. tuberosum. The HSE motif 

was found in the upstream regions of DCL1 and DCL2b in both potato species, whereas the as-2-

box was found in DCL2a and DCL2c. The promoter regions of ScDCL1 and StDCL1 contained the 

GCCGAC motif of the LTR elements, that forms the core of DRE sequence. This element was 

found also in the up-stream region of StDCL3, but not in S. commersonii due to the lack of the 
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ScDCL3 upstream region. In general, S. commersonii had a higher number of cis-acting elements 

compared with the cultivated potato, ranging from 19 (ScDCL2b) to 31 (ScDCL2a). Overall, the 

wild potato harbored 166 regulatory elements whereas S. tuberosum 147 (Fig. 2a). 

Regarding RDR genes, we found fewer motifs compared to those identified in DCLs (Fig. 

2b). As in DCLs, the most abundant ones were the light-responsive motifs, whereas the stress-

responsive elements were the least frequent. Among them, the LTR motif was identified in RDR6a 

of both species and in ScRDR3d and StRDR3f, whereas the Box-W1 (TTGAC), known to 

participate in disease response, in RDR6a and RDR6b of both potato species and in StRDR1a, 

StRDR3d, ScRDR3e and ScRDR3f. The second most abundant class of motifs identified in RDRs 

was that related to plant hormone response. Indeed, motifs involved in gibberellin (GARE), ABA 

(ABRE and MBSI) as well as ethylene (ERE) pathways were widely present. Some unknown cis-

elements were found, with the Unnamed_4 elements being the most redundant in all the RDR 

promoters. Comparing the two species, we found that they shared the same number of elements in 

each paralog promoter, except for RDR1a. Indeed, only four motifs were identified in ScRDR1a 

promoter, whereas 22 were found in StRDR1a. In total, 114 cis-element motifs were identified in 

both potato species. 
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Fig. 2 List of cis-elements in DCL (a) and RDR 
(b) promoters of Solanum tuberosum and S. 
commersonii. The presence of the elements is 
reported in blue 



S.	  Esposito,	  PhD	  dissertation:	  cold	  tolerance	  in	  S.	  commersonii	  

4.3.4 Expression profiles of DCL and RDR genes change in different tissues and after stress 

Two types of expression analyses were carried out. In the first one the objective was to get a gene 

expression overview of DCLs and RDRs in different tissues using both publicly accessible RNAseq 

data and those available in our laboratory. These data allowed us to curate and validate gene models 

and to further investigate the role of these genes in different tissues. Gene structure previously 

described was confirmed for all DCL genes, except for the putative StDCL2c. Its expression was not 

supported by RNAseq data, suggesting that StDCL2c might be a pseudogene. Indeed, using 

RepeatMasker we found that the genomic region of StDCL2c was interrupted by several transposon 

insertions (data not shown). All the other S. commersonii and S. tuberosum DCLs were expressed in 

flower, leaf, stolon, root and tuber tissues (Fig. 3). The expression patterns of ScDCL1 and ScDCL4 

matched with those of S. tuberosum in all tissues, whereas ScDCL2b and StDCL2b showed similar 

patterns in all samples except leaves, where they were expressed at high level in S. commersonii but 

not in S. tuberosum. As far as RDR genes are concerned, transcript abundance analysis showed a 

general expression of RDR genes in the tissues taken into consideration (Fig. 3), with only 

exception of ScRDR6b, which was not expressed at all. However, RDR genes differ in their 

expression patterns between S. tuberosum and S. commersonii. For example, RDR1a, RDR1b, 

RDR3d and RDR6a were expressed at high level only in S. commersonii roots and tubers. 

Furthermore, the expression level of ScRDR3d was higher in all tissues compared with its ortholog 

in S. tuberosum. 
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Fig. 3 Heatmap showing the expression pattern of DCL and RDR genes in five tissues 
of cultivated Solanum tuberosum and wild S. commersonii. The color scales fold 
change values are shown at the bottom right of the figure 

 

In a second analysis, we performed a RT-qPCR analysis to monitor the expression DCL and  

RDR genes after cold stress and PVY infection (Fig. 4). As far as cold stress is concerned, in NACC 

experiment all DCL genes were differentially expressed, with log2FC varying from -0.3 to -2 in 

stressed plants. The only exception was DCL2c. In detail, DCL1 and DCL4 were down-regulated in 

both S. commersonii and S. tuberosum. DCL2b was up-regulated in S. commersonii but it did not 

change its expression in S. tuberosum. DCL3, instead, was up-regulated in S. tuberosum but down-

regulated in S. commersonii. DCL2a/d were activated in S. commersonii but repressed in S. 

tuberosum. Following ACC experiment, five of seven DCLs were down-regulated in S. 

commersonii, while only ScDCL2d was activated (log2FC = 4.3). On the other hand, in S. 

tuberosum DCL1 and DCL3 were weakly up-regulated while DCL2a/b/d and DCL4 were down-

regulated. As for virus infection experiments, qRT-PCR showed significant differences in the 

expression of DCL genes between control and stressed plants in both species (Fig. 4). For 

example, DCL2a and DCL4 were up-regulated in both S. commersonii and S. tuberosum in 

comparison with control plants, whereas DCL1 and DCL2b were up-regulated in S. commersonii 

and DCL3 and DCL2d were up-regulated only in S. tuberosum. Regarding RDRs expression under 

cold and virus stresses, the preliminary survey through semi-quantitative RT-PCR revealed no 
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significant changes (data not shown). Therefore, further analyses through RT-qPCR were not 

carried out. 
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Fig. 4 Differential analysis of DCL and RDR expression during cold stress in not acclimated (NACC) and acclimated (ACC) conditions and 
following virus infection in Solanum tuberosum (blue) and S. commersonii (grey). The values are reported as log2FC. EF was used as 
endogenous gene. * Different at P < 0.05 (Student’s t-test). 
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4.4. Discussion 

Plants require elaborate mechanisms to produce specific regulators of gene expression, namely 

miRNA and siRNA. The molecular process leading to their formation is regulated by several 

proteins. Among them, DCLs and RDRs are key components trigging the gene silencing pathway. 

We have carried out an exhaustive analysis of DCL and RDR genes of S. tuberosum and S. 

commersonii genomes to add a contribution into understanding their molecular diversification. 

 

4.4.1 Dicer-like genes in S. tuberosum and S. commersonii 

Data obtained highlighted that the S. tuberosum and S. commersonii genomes do not differ in the 

degree to which DCL genes remain on corresponding chromosomes (synteny) and in corresponding 

orders (collinearity). Indeed, we identified seven DCLs both in S. tuberosum and S. commersonii, 

implying that the DCL loci have been substantially conserved between the two species after their 

evolutionary divergence. Conservation of DCL number and localization was observed also in 

respect to S. lycopersicum and S. pennellii, suggesting that the seven DCL genes come from events 

involving a single common ancestor. With respect to Solanums studied here, the number of DCL 

paralogs described in Arabidopsis, cucumber, maize and grapevine (Wassenegger et al. 2006; Qian 

et al. 2011; Zhao et al. 2015; Gan et al. 2017) is lower. By contrast, in rapeseed, rice, and foxtail 

millet a higher number of orthologs was identified (Kapoor et al. 2008; Yadav et al. 2015; Cao et al. 

2016). In as much reciprocal homolog loss/gain in different lineages can affect a species’ biology, 

degree of evolvability, and adaptability to changing environments (Zong et al. 2009), it would be 

interesting to study whether the DCL paralogs retained or lost in the Solanaceae can be adaptive 

and thus relevant for the evolution of this family. We have also found that the DCL2 clade 

underwent an expansion in S. commersonii and S. tuberosum, since four paralogous copies were 

identified. Such duplication may suggest that this clade could provide specific and indispensable 

functions (Deleris et al. 2006). Since in potato the role of DCL2 is still unclear, it is difficult to infer 

such specific function. However, in Arabidopsis, secondary DCL2-dependent 22-nt siRNAs are 

involved in viral targeting activities as well as to promote in cell-to-cell spread of VIGS (Garcia-

Ruiz et al. 2010; Qin et al.2017). Given that, it is possible that the peculiar duplications of DCL2 

clade within the Solanaceae served to expand DCL2 functions in mediating systemic silencing 

effects, perhaps through mechanisms of neo-functionalization and sub-functionalization (Panchy et 

al. 2016). In support of this hypothesis, we observed differences in gene and protein structures 

among DCL2 homologs, including important regulatory sequences. Rearrangement of paralogs at 

protein level leading to functional divergences has been observed also for Receptor-Like protein 

Kinases (RLK) and genes involved in secondary metabolism such as TPS4 and TPS5 (Feuilletet al. 
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2001; Ober 2005), possibly as consequence of adaptation to environment. Comparative-functional 

studies might further illuminate the details on how evolution has shaped DCL2 function in 

Solanaceae. Therefore, we explored whether DCL paralogs show differences in their expression 

patterns both in various tissues and under stress. Our transcriptional analyses revealed that out of 

seven genes identified, six were expressed at different levels in one or more tissues analyzed. In 

particularDCL2a, DCL2d and DCL3 had different patterns in S. tuberosum vs. S. commersonii. Also 

in respect to stress response, DCL2 genes showed a different regulation between the cultivated and 

the wild species. Specifically, at low temperatures, DCL2 genes were generally up-regulated in 

cold-tolerant S. commersonii, but almost unresponsive in cold-susceptible S. tuberosum. In addition, 

we showed that depending on the cold stress imposed (with or without acclimation) different DLC2 

copies were activated. A contrasting expression of the two DCL2 paralogs was also observed in S. 

commersonii vs. S. tuberosum under PVY infection. Since both species are susceptible to this virus 

(Carputo et al. 2013), this may suggest a different evolutive diversification in virus-mediating 

response. To explain the divergent dynamic of DCL2s gene expression at least two hypotheses can 

be made. First, S. tuberosum and S. commersonii may have a different ability to program cellular 

transcriptional responses following stresses. Such different ability has been reported by D’Amelia et 

al. (2017), who found a divergent paralog expression after cold stress for AN2, a R2R3 MYB 

transcription factor which is induced by low temperatures in S. commersonii but not in S. 

tuberosum. Second, the polyploid nature of the cultivated potato might explain the diversification in 

gene expression between the two species. Indeed, it is becoming increasingly clear that the rewiring 

of the regulatory network following whole genome duplications is more important than functional 

divergence of the coding regions of individual genes (Aversano et al. 2012; De Smet and Van de 

Peer 2012; Chen et al. 2011; Osborn et al. 2003,). 

 

4.4.2 RDR like-genes in S. tuberosum and S. commersonii 

RDRs complement has been previously analyzed in cultivated tomato and potato (Hunter et al. 

2016; Bai et al. 2012), but no information is available on non-model Solanum species. For this 

reason, we explored the extent of the potato RDR gene family also in S. commersonii. Our results 

provided evidence that this wild species harbors a total of eight RDR genes, including RDR2, which 

has never been described in S. tuberosum. However, the number of S. tuberosum and S. 

commersonii RDRs can be considered equal since expression data by Hunter et al. (2016) hinted the 

presence of RDR2 also in the cultivated potato. We expect that future improvements of the current 

PGSC DM v4.03 pseudomolecule annotation will lead to its identification also in S. tuberosum. To 

our surprise, we discovered two new RDRs (SlRDR3f and SlRDR6b) homologs in the cultivated 
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tomato, leading to increase the number of this gene family from six to eight in S. lycopersicum. The 

identification of new genes can be explained by the different version of the tomato genome 

annotation we used (ITAG v3.2), which allowed us to identify RDR loci more accurately than Bai 

and colleagues (2012), who used the v2.3. It can be hypothesized that, along with cucumber (Gan et 

al. 2017) and foxtail millet (Yadav et al. 2015), the complement of RDR genes in Solanaceae is one 

of the most represented in plants. Indeed, six RDRs were identified in Arabidopsis (Wassenegger et 

al. 2006), five in rice and maize (Kapoor et al. 2008; Qian et al. 2011), seven in sorghum and 

soybean (Liu et al. 2014). Two copies of RDR1 were found in both potato species. By contrast, only 

one copy in S. lycopersicum and S. pennellii. This potato-specific duplication may have derived 

after the divergence of potato and tomato from the common ancestors occurred 7,3 Mya (Tomato 

Sequence Consortium, 2012). The variable number of RDR1 genes in different Solanum species is 

intriguing, in particular because this variability has not been found for the other RDRs. It is known 

that RDR1 is involved not only in basal defense responses, but more in general in induced resistance 

mechanisms, such as the systemic acquired resistance (Yu et al. 2003; Muangsan et al. 2004). Since 

potato and tomato had different life histories after their divergence (TGSC 2012), the nature of 

selection pressure imposed by their environmental conditions might explain the RDR1 clade 

variability, as already proposed for gene families involved in plant stresses (Hanada et al. 2008).  

Our transcriptional study provided evidence that no differences in RDR gene expression 

after cold stress occurred in either species. This is comparable to findings by Kapoor and colleagues 

(2008), who reported no RDR transcript accumulation in rice after 4°C treatment. In contrast to our 

observations, the induction of five RDR genes has been recently reported in Cucumber (Gan et al. 

2017) following cold stress. To data, the role of RDRs under low temperatures stress has received 

scant attention and the contrasting data available are puzzling. Hence, further investigations on 

various species under different experimental conditions (e.g. temperatures, time points) may lead to 

a better understanding of RDR’s role under cold stress. No changes in transcript activity of S. 

tuberosum and S. commersonii RDR loci has been detected also following virus infection. This 

contrasts with a number of studies concerning the induction of RDR genes to prevent virus invasion 

in different species (Yu et al.2003; Donaire et al. 2008; Qi et al.2009; Bai et al. 2012). Recently, 

Hunter et al. (2016) reported that suppression of StRDR1 gene expression did not increase the 

susceptibility of PVY-infected potatoes, suggesting that the two RDR1 paralogs may have lost their 

roles in antiviral resistance. However, functional analyses on the other members of RDR clades 

need to be carried out to shed lights on the lack of expression changes we observed.  
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4. 5. Conclusions  

The importance of DCL and RDR genes in potato is not well understood, and differences among 

wild and cultivated species have not been described yet. Here, we reported that both S. tuberosum 

and S. commersonii harbor seven DCL, whereas seven RDRs were found in the former and six in 

the latter. Phylogenetic analysis revealed that duplication events have contributed to increase the 

number of DCL and RDR paralogs in both species. However, their genomes do not differ in the 

degree to which DCL and RDR genes remain on corresponding chromosomes, suggesting that their 

loci have been substantially conserved after their evolutionary divergence. This work has also 

pointed out new insights into the evolution of these gene families in tomato and potato species. For 

instance, lineage-specific duplications and retentions in RDR and DCL families were present in 

potatoes and tomatoes. To clarify whether the DCL and RDR paralogs retained or lost in 

Solanaceae can be adaptive and thus relevant for the evolution of these gene families, further 

studies will be carried out. For this purpose, transgenic plants defective in different members of 

DCL and RDR will be produced. 
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Conclusions 

It has been estimated that, with climate changes, plants will be exposed to more unexpected events, 

ranging from abiotic to biotic stress conditions. These will impact crop production, quality and 

geographical distribution. Among the abiotic stresses, cold is one of the suboptimal conditions that 

are more harmful to the crop that is being the subject of several studies at the Department of 

Agricultural Sciences: the potato. Indeed, S. tuberosum is classified as frost-sensitive and incapable 

of cold acclimate. By contrast, some wild potato species are much more frost hardy than S. 

tuberosum and capable of cold acclimation. Thus, they are a potential genetic resource for 

introgressing freezing tolerance into cultivated varieties. It has been estimated that only 10% of 

these species has been used to develop new improved potato varieties (Gavrilenko, 2011). This is 

due to the fact that there are many difficulties in their introduction and use in breeding programs, 

which often require long and laborious methods for obtaining new superior interspecific hybrids. A 

particularly negative aspect is related to linkage drag, often resulting from the lack of both effective 

selection criteria and genomic tools to assist breeders. For this reason traditional breeding methods 

for improvement of freezing resistance in potato plants have achieved only limited success. With all 

these thoughts in mind, to broaden the genetic base of the cultivated potato and to transfer 

interesting genes from wild species, in the scientific community it is increasingly felt the need to 

develop new data based on structural and functional genomics, allowing a more efficient 

exploitation of the wide genetic background of wild potatoes, and therefore, to improve the current 

strategies of potato breeding and selection.  

Among the wild potato species, S. commersonii is the one displaying the highest tolerance to low 

temperatures. It can survive to about -5 °C and to as low as -11 °C after acclimation (Costa & Li 

1993). It also represents the first potato relative whose genome sequence has been deciphered 

(Aversano et al. 2015). Hence, S. commersonii is potentially the best model species to study the 

molecular mechanisms involved in cold tolerance and, consequently, to deploy for breeding 

pouropses. Until today most studies were focused on specific metabolic pathways involved in 

freezing tolerance. One example of this study is that reported by Palta et al. (1993), where the 

authors determined differentiation of plasma membrane lipid changes associated with increased 

freezing tolerance following acclimation. The molecular basis of tolerance per se is also poorly 

understood, although it has been reported that it may be genetically determined by loci independent 

of acclimated tolerance not only in potato but also in other crops. 
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Today, with the availability of genome sequence of S. commersonii, further studies have been 

carried out. In fact, Aversano et al. (2015) reported a comparison of cold-responsive gene 

expression profiles between not acclimated and acclimated stressed plants and highlighted 

remarkable features of cold-responsive genes known to be critical in cold sensing and signaling 

pathways. For example, their results shed new lights on the role of CBF genes, showing that all 

ScCBFs were up regulated under all tested conditions relative to controls. These findings were in 

contrast with previous reports that CBF1, but not related CBFs, were responsive to low 

temperatures in both S. commersonii and S. tuberosum (Pennycooke et al. 2008; Carvallo et al. 

2011). In our work we obtained new and interestingly result that extend the knowledge on the 

genetic regulation of the cold stress signaling and tolerance mechanisms. Thanks to the annotation 

of S. commersonii genes it was possible, for the first time, to identify a complete set of putative cold 

responsive genes in this species using a RNA-seq approach. Particularly useful has been the 

availability of two different clones of S. commersonii contrasting in their cold tolerance. Overall, 

the whole-transcriptomic expression data highlighted an extensive reorganization of the 

transcriptome under cold stress, with enhanced expression of genes involved in signal perception, 

transduction and genes involved in cell repair (such as heat-shock proteins, HSPs and dehydrins, 

DHNs). One notable observation was that several genes were responsive to cold when compared to 

control conditions, but with contrasting kinetics under different conditions. Our data showed that 

CBF3, CBF4 and ZAT12 were up-regulated under not acclimated conditions in the cold tolerant 

clone, but they were down-regulated in the cold susceptible. By contrast, they were all up-regulated 

under acclimated conditions in both clones. Our findings are in contrast with previous reports that 

revealed how CBF1, but not related CBFs, were responsive to low temperatures in both S. 

commersonii and S. tuberosum (Pennycooke et al. 2008; Carvallo et al. 2011) but our observations 

were similar to the results showed by Aversano et al. (2015), that highlighted the induction of all 

CBF genes under not-acclimated and acclimated conditions. Our data are also consistent to those 

observed in tomato species, where three CBF genes were cold responsive in the cold-tolerant S. 

peruvianum (Mboup et al. 2012). The different expression of CBF genes in our plant material may 

be directly responsible for enhanced cold tolerance and acclimation ability in this species. 

Therefore, probably CBF3 and CBF4 are the first members that play an important role in the early 

cold response before CBF1 and CBF2. Cold tolerance and cold acclimation in potato, as well as in 

other species such as rice, cabbage, wheat, and tea is based on quantitative inheritance, since there 

are many genes and interactions (possibly epistatic mechanisms) involved in defining the different 

tolerance levels among genotypes. Thus, one could expect that different metabolic routes and 

different genes are modulated in response to cold. Our data demonstrated also that transcription 
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factors including HB, bZIP, MYB, MYC, WRKY and bHLH play important roles in cold stress. 

Previous studies showed that the overexpression of MlNAC5 (Miscanthus lutarioriparius) and 

SlNAC1 (Suaeda liaotungensis) enhanced drought and cold stress tolerance of Arabidopsis, 

respectively (Li et al. 2013; Zong et al. 2016). In our study, more than 20 different TF families were 

identified to respond to cold in S. commersonii. Among them AP2/ERF, bHLH and Zn-finger TFs 

genes were the most abundant. These TF families interact to regulate target genes during plant 

stress responses (D’Amelia et al. 2017). 

Although the molecular mechanisms on how different species respond to cold stress remains to be 

elucidated, recent studies have shown that abiotic stress induces aberrant expression of many small 

non-coding RNA (sncRNA) in several plant species. For this reason, in the third chapter of the 

thesis we provide, for the first time, a comprehensive analysis of smRNA population in S. 

commersonii. This analysis gave us the opportunity to correlate miRNA expression with RNAseq 

data of cold stressed plants. Although miRNAs and their targets have already been identified in S. 

tuberosum, their participation during cold stress in potato remains unknown. We believe that this 

work will contribute to extend the information available on the genomic structure of S. commersonii 

and all the data obtained will provide additional genomic tools for an efficient exploitation of the 

cold resistance traits in this species. Overall, our research allowed to annotate in S. commersonii 

genome 273 distinct miRNAs. The majority appeared to mature from transcripts of intergenic 

regions or from introns of annotated genes, which is in line with previous findings. Most of them 

were S. commersonii-specific, underlying the need to improve the genomic data of S. commersonii 

in order to provide as much as possible information on the gene and miRNA specificity of this wild 

potato. Small RNA sequencing data revealed also regulatory roles of miRNAs during cold stress. 

Our results are consistent with Zhang (2009), who provided evidence that most of the miRNA 

involved in cold stress in Brachipodium were down-regulated. In other words, the dramatic change 

in miRNA expression levels in S. commersonii leaves causes a sensitive reaction of their targets, 

which regulate the expression of transcriptions factors, membrane receptors, genes involved in 

lignin biosynthesis and other correlated pathways.  Further, the cross-response of miRNAs to multi-

biotic and abiotic stresses indicated that S. commersonii has evolved sophisticated miRNA-

mediated pathways to cope with changing environments. Such mechanisms may be explored in the 

future to efficiently breed for cold tolerance in potato. 

The production of miRNA and their expression relies on the accurate functioning of Dicer-

like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerases (RDR) proteins, whose 

genes are present in multiple copies in eukaryotic genomes. DCL and RDR comprise the core 

components of RNA-induced silencing complexes, which trigger RNA silencing. These proteins are 
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prominent players in the post-transcriptional control of gene expression, as they control small RNA-

mediated gene silencing pathways and function in the epigenetic regulation of the genome under 

various environmental stresses (Yadav et al. 2015). Since no molecular information was available 

on these gene families, we performed a genome-wide identification of DCL and RDR genes in S. 

tuberosum and S. commersonii. These results have been submitted to Planta. Our findings 

demonstrated that duplication events have contributed to increase the number of DCL and RDR 

paralogs in both species. However, S. tuberosum and S. commersonii genomes do not differ in the 

degree to which DCL genes remain on corresponding chromosomes and in corresponding orders, 

suggesting that their loci have been substantially conserved after their evolutionary divergence. To 

clarify whether the DCL and RDR paralogs retained or lost in Solanaceae can be adaptive and thus 

relevant for the evolution of these gene families, we also explored whether DCL paralogs showed 

differences in their expression patterns both in various tissues and under stress. Our transcriptional 

analyses revealed that out of seven genes identified, six were expressed at different levels in one or 

more tissues analyzed. Also in respect to stress response, DCL2 genes showed a different regulation 

between the cultivated and the wild species. Specifically, at low temperatures, DCL2 genes were 

generally up-regulated in cold-tolerant S. commersonii, but almost unresponsive in cold-susceptible 

S. tuberosum. In addition, we showed that depending on the cold stress imposed (with or without 

acclimation) different DLC2 copies were activated. 

We strongly believe that, combined with strategies including the efficient use of genome sequences, 

genome-wide association studies, mutation detection, gene discovery and regulation, and –omics 

databases, results reported here may represent a starting point for additional investigations and 

future breeding applications not only in potato but in several other crops.  
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