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CHAPTER 1

Introduction

1.1 Motivation

“In the face of the crisis, we felt abandoned by conventional tools... we

need to develop complementary tools to improve robustness of our overall

framework... I would very much welcome inspiration from other disci-

plines: physics, engineering, biology. Bringing experts form these fields

together with economist and central bankers is potentially very creative

and valuable. Scientists have developed sophisticated tools for analyzing

complex dynamic systems in rigorous way.”

Jean-Claude Trichet,

European Central Bank Governor from 2003 to 2011,

in his speech at the ECBs flagship annual Central Banking Conference,

2010.

Neoclassical economics plays a fundamental role in the study of price

and income distributions in markets [8]. However, being focused on the

analysis of equilibrium configurations, it may fail into predicting sud-

den changes in the markets dynamics. Indeed, as pointed out by Lord



� 14 1 Introduction

Trichet, the recent economic crisis has highlighted the limitations of the

existing economic and financial models, which had been incapable of

predicting and explaining its driving factors [51]. These considerations

led to a tremendous interest in the scientific literature on the devel-

opment of tools and approaches that might complement neoclassical

economics, removing some of its main assumptions, such as rationality

and homogeneity of the financial agents [30]. In particular, one of the

crucial issues of traditional economics is the complete disregarding of

the interactions among the agents. Actually, recent develops in behav-

ioral economics had shown the natural tendency oh human beings of

imitate other people, learning from the behavior of others [100]. This

tendency is generally known as “herding behavior” and is a very com-

mon phenomenon characterizing human life. Since in early childhood,

for instance, babies try to imitate the adults around them. They mimic

the actions and the facial expressions of adults. This is how they learn

about what certain actions signify. In financial markets, this predispo-

sition to imitate is deeply rooted. Investors may abandon what they

believe to be their own available information on the market and follow

the behavior of other investors instead, although their own information

indicates that they should have an entirely different behavior. If all the

traders behave in the same way, the possible result might be that all,

or most of them, take the same investment decision, triggering what

is called “informational cascade”. This could lead to substantial price

fluctuations in the market, and eventually to a financial crisis. Informa-

tional cascades are the evidence that individual rationality may lead to

group irrationality.

Herding in financial markets, therefore, may arise when payoffs are sim-

ilar even if personal information on the market is not. In this case

people communicate with each other or observe the actions of others,
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or the consequences of these actions. The key issue is how individu-

als determine which alternative is better. Each individual could decide

by direct analysis of the alternatives. However, this can be costly and

time-consuming, so a plausible alternative is to rely on the information

of others. Such influence may take the form of direct communication

and discussion with, or simply observation of others. In any case, it

requires a kind of interaction. Thus, interactions among the agents, dis-

regarded by neoclassical economy, are crucial to understand the market

dynamics.

In order to overcome the limitations of traditional models, a special in-

terest emerged for a complex system approach, which involves the use

of agent-based models [84, 25, 30, 50, 5, 26, 74, 75, 83]. In particular,

the European Union is supporting the research in this area under the

7th framework program, see for instance the project CRISIS [1]. Agent-

based models take advantage of the increased computational capabilities

to model financial markets at a microscopical level: they allow to sim-

ulate the behavior of a (possibly high) number of decision-makers and

institutions, interacting through prescribed rules; the agents may be het-

erogeneous and have the capability of adapting their actions according

to their current situation, the inputs from the environment [80], and the

rules governing their behaviour [9].

Complex networks paradigm represents a fundamental tool in this per-

spective: exploiting the link between multi-agent systems and graph

theory [13], each agent can be seen as a node of a dynamical network,

and the topology of interconnections well model the reciprocal influence

among the agents. This allows to take into account lots of scenarios

of interactions and different kinds of agents’ behavior, differently from

neoclassical models, and eventually to investigate the macro features of

the market emerging from the local interactions among the agents.
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In this perspective, the purpose of this thesis is to make a further step

toward the understanding and the modeling of financial dynamics. We

are confident that our scientific community could give its contribution

in this direction. In particular, we will focus on the phenomenon of

informational cascades occurring in financial markets. Our aim is to

provide new tools from nonlinear dynamical systems and control theory,

which, matched with complex networks and agent-based modeling, allow

to model, analyze and eventually predict such phenomena.

Mixing tools from agent-based modeling and complex networks, we first

propose a reference scenario of artificial financial market, in which each

agent is modeled as a nonlinear dynamical system. Different environ-

mental features and agents’ behaviors are implemented, with a partic-

ular focus on the agents’ interactions, in order to observe the possible

tendency of the agents of converging towards a general consensus.

The next step is that of analyzing the effects of herd behavior in such

scenarios. In the existing models of informational cascades, the presence

of an exogenous information available to all or a subset of agents is

assumed. In line with this choice, we test the response of our market to

exogenous factors, such as a new available information.

Our aim is to treat herding from a new perspective, that is, with a

control theory approach. We start by noting that herding is actually

a diffusive process, as it generates the spreading of a certain opinion

across the financial traders which leads them toward the same trading

action. Consequently, we propose a new model of opinion dynamics in

which the agents influence each other through a diffusive coupling, in

order to capture the tendency of the agents of following the trading

actions of some other agents they consider better informed. In this

model, the exogenous information becomes an external signal exerted

on a subset of traders. In the view of this, we can treat herding as a
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pinning control problem, so to leverage the contributions in the field

of pinning control to predict the emergence of informational cascades.

Moreover, differently from the models already present in the literature

which only generate total informational cascades [7, 11, 15, 137], we

exploit the recent contributions in the field of partial pinning control [37]

to take into account the more realistic case of partial cascades, which

do not involve all the financial traders, as shown by empirical evidence

[70, 127]. We show our ability of modeling and predicting the intensity

of such phenomena in artificial markets exploiting tools from control

theory and nonlinear dynamical systems, providing a little contribution

in the hard task of understanding and explaining financial dynamics.

Eventually, we propose an alternative method, based on the generating

functions approach [96, 95], to analytically predict information about

partial pinning controllability of a given network.

1.2 Thesis Outline

The thesis is organized as follows. In Chapter 2, we will introduce the

problem of synchronization of complex networks, with a particular focus

on pinning control methods. In Chapter 3, we will build an agent-based

model of artificial financial market. In Chapter 4, we define the concepts

of herding behavior and informational cascades, focusing on the classical

models of informational cascades already present in the literature. In

Chapter 5, we will first review the existing models of opinion dynamics.

Then, we will introduce a novel opinion dynamics model which accounts

for the phenomenon of partial informational cascades. The actual ca-

pability of the proposed model of triggering informational cascades of

different intensities will be extensively exposed in Chapter 6. Here, we

will explain how informational cascades can be seen as a pinning control

problem. This will allow to leverage tools prof pinning control theory to
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predict such phenomena. We will test our model in the artificial financial

market proposed in Chapter 3, showing by numerical simulations that

the intensities of the triggered informational cascades confirm our pre-

dictions made through the tools of pinning control theory. Eventually,

in Chapter 7, we will explain how the concept of phase transitions may

be related to the analysis of partial pinning controllability of complex

networks. Moreover, we will propose an analytic method, based on the

generating functions, to predict the partial pinning controllability of a

generic network, and will highlight how this approach allows to answer

some related questions of the topic, while other questions are still open,

and could be object of future research.

We highlight that the content of Chapter 3 has been proposed in [38],

while the results of Chapters 5 and 6 are included in [57].



CHAPTER 2

Selected Topics on Pinning

Control of Complex

Networks

Complex networks are currently being studied across many fields of sci-

ence, as many systems in nature can be described by models of complex

networks. Examples are numerous. The World Wide Web is a network

of websites. The brain is a network of neurons. An organization is a net-

work of people. The global economy is a network of national economies,

which are themselves networks of markets, and markets are themselves

networks of interacting producers and consumers.

The complex networks paradigm allows to model such real world com-

plex systems as ensembles of dynamical systems, the nodes, interacting

with each other according to an underlying topology [116, 124].

One of the main features of complex network paradigm is that it does

not necessarily requires a purely mathematical study of the dynamical

system which describes the nodes’ dynamics in order to understand the

network behavior. Namely, under appropriate assumptions on the nodes’
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intrinsic dynamics and on the coupling mechanism, it allows to analyze

the nodes’ behavior just taking into account the network topology. In

the view of this, in the following we summarize some graph theoretical

tools necessary to cope with networked systems.

2.1 Elements of Graph Theory

A network of agents is commonly represented by a graph.

Definition 2.1.1. A weighted graph G is a triplet {V, E , A}, where

V = {1, ..., N} is the set of nodes, or vertices, E ⊆ V × V is the set of

edges connecting the nodes, and A = {aij}i,j∈V ∈ RN×N is the weighted

adjacency matrix, whose generic element is defined as

aij

{
> 0, if (i, j) ∈ E
= 0, otherwise.

(2-1)

Definition 2.1.2. A graph is undirected if A is symmetric and its di-

agonal elements are equal to 0.

Definition 2.1.3. A graph is directed if A is not symmetric. A directed

graph is also called digraph.

In this thesis, we will mainly focus on digraphs and weighted digraphs,

which include the particular cases of undirected and non weighted

graphs. An undirected and non weighted graph, indeed, can be regarded

as a weighted digraph with all weights equal to 1, and A = A>. In other

words, the associated adjacency matrix is a binary and symmetric ma-

trix. Notice that an unweighted graph is generally defined as the pair

{V, E}.

Definition 2.1.4. The set of in- and out- neighbors of a node i are

defined as Nin(i) = {j ∈ V : (j, i) ∈ E}, and Nout(i) = {j ∈ V : (i, j) ∈
E}, respectively.
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Definition 2.1.5. the weighted in- and out- degree of a node i are de-

fined as

din(i) =

N∑
j=1

aji, dout(i) =

N∑
j=1

aij , (2-2)

respectively.

Definition 2.1.6. The weighted in- and out- degree matrices are defined

as

Din = diag(A>1N ) =

din(1) 0 0

0 . . . 0

0 0 din(N)

 ;

Dout = diag(A1N ) =

dout(1) 0 0

0 . . . 0

0 0 dout(N)

 .
Definition 2.1.7. A self-loop is an edge from a node to itself. Consis-

tently with a customary convention, self-loops are not allowed in graphs.

Definition 2.1.8. A source is a vertex with 0 in-degree; while a sink is

a vertex with 0 out-degree.

2.1.1 Paths and Connectivity in Digraphs

Definition 2.1.9. A directed path is an ordered sequence of vertices

such that any pair of consecutive vertices in the sequence is a directed

edge of the digraph. A directed path is simple if no vertex appears more

than once in it, except possibly for the initial and final vertex.

Definition 2.1.10. A digraph is connected if there exists a path between

any two vertices. If a digraph is not connected, it is composed by multiple

connected components.

Definition 2.1.11. A digraph H = {V ′, E ′} is a subgraph of G = {V, E}
if V ′ ⊆ V, and E ′ ⊆ E. H is a spanning subgraph if it is a subgraph and

V ′ = V.
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Definition 2.1.12. A cycle is a simple directed path which starts and

ends in the same vertex. It is customary to accept as feasible cycles in

digraphs also self-loops, and cycles of length 2.

Definition 2.1.13. A directed acyclic graph (DAG) is a graph which

does not encompass cycles.

Every DAG has at least one source and one sink.

Definition 2.1.14. A directed tree is a DAG with the following property:

there exist a vertex, called the root, such that any other vertex can be

reached by one and only one directed path starting by the root.

2.1.2 Connectivity Properties in Digraphs

Here, we summarize some basic properties of digraphs.

Property 2.1.1. A digraph G

(i) is strongly connected if there exists a directed path from any node

to any other node;

(ii) is weakly connected if the undirected version of the graph is con-

nected;

(iii) possesses a globally reachable node if one of its nodes can be reached

from any other node through a directed path;

(iv) possesses a directed spanning tree if one of its node is the root of

directed paths to every other node.

2.1.3 Condensation Digraphs

Definition 2.1.15. A subgraph H is a strongly connected component

(SCC) of G if H is strongly connected and any other subgraph of G
strictly containing H is not strongly connected.
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Definition 2.1.16. A root strongly connected component (RSCC) of a

graph G is a SCC of G such that there are no edges entering a node of

the SCC that exit from a node that is not encompassed in the SCC.

Definition 2.1.17. The DAG condensation of a digraph G, denoted as

GD, is defined as follows: the nodes of GD are the strongly connected

components of G, and there exists a directed edge in GD from node H1

to node H2 if and only if there exists a directed edge in G from a node

of H1 to a node of H2.

An example of condensation digraph is reported in Fig. 2-1.

Figure 2-1: A digraph, its strongly connected components and

its condensation [20].

Lemma 2.1.1. For a digraph G and its condensation digraph GD,

(i) GD is acyclic;

(ii) G is weakly connected if and only if GD is weakly connected, and

(iii) the following statements are equivalent:

a) G contains a globally reachable node,

b) GD contains a globally reachable node, and

c) GD contains a unique sink.

Proof. See [20], Sec. 3.3.
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2.1.3.1 Structure of a Digraph

The structure of a digraph is best summarized in the bow-tie diagram

introduced in [19, 42] (see Fig. 2.1.3.1). Namely, a general digraph is

composed by:

Figure 2-2: The bow-tie diagram od a digraph.

� a Giant Strongly Connected Component (GSCC), in which there

exists a direct path between any two nodes;

� a Giant In-Component (GIN), composed by all the nodes that can

reach the GSCC by a direct path, but not vice versa;

� a Giant Out-Component (GOUT), each node of which is accessible

starting from the GSCC;

� tendrils, that is, vertices which do not have direct access to the

GSCC and are not reachable from it (among them, there are the

tubes, going from the GIN to GOUT without passing through the

GSCC);

� some Disconnected Domponents (DC).
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Notice that the undirected version of th bow-tie diagram consists of a

Giant Weakly Connected Component (GWCC), in which there exists a

path between any two nodes, and disconnected components.

2.1.4 Algebraic Graph Theory

Here, we summarize some basic results which involve the correspondence

between digraphs and adjacency matrices.

Property 2.1.2. (Properties of weighted digraphs.)

(i) A weighted digraph G is weight-balanced if and only if A1N =

A>1N , i.e., Din = Dout. This means that each vertex has the

same weighted in- and out-degree, even if distinct vertices have

distinct weighted degrees.

(ii) In a digraph without self-loops, node i is a source if and only if∑N
j=1 aji = 0.

(iii) In a digraph without self-loops, node i is a sink if and only if∑N
j=1 aij = 0.

(iv) A is row-stochastic if and only if each node of G has weighted out-

degree equal to 1, that is, Dout = IN .

(v) A is doubly-stochastic if and only if each node of G has weighted

in- and out- degree equal to 1, that is, Din = Dout = IN . In this

case, G is weight-balanced.

2.1.4.1 Elements of Spectral Graph Theory

In this section, we provide some results on the spectral radius of a non-

negative matrix A.
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Theorem 2.1.1. (Bounds on the spectral radius of a non-negative ma-

trix.) For a non-negative matrix A with associated digraph G, the fol-

lowing statements hold:

(i) ρ(A) ≤ max(A1N ), where ρ(A) is the spectral radius of A;

(ii) if min(A1N ) = max(A1N ), then ρ(A) = max(A1N );

(iii) if min(A1N ) < max(A1N ), the following statements are equiva-

lent:

a) for each node i with e
>
i A = max(A1N ), there exists a di-

rected path in G from node i to a node j with e
>
j A < max(A1N ),

b) ρ(A) < max(A1N ).

Proof. See [20].

2.1.4.2 The Laplacian Matrix

Definition 2.1.18. The Laplacian matrix of a weighted digraph G is

L = {lij}i,j∈V = Dout −A, (2-3)

where the generic element is

lij =

{
−aij , if i 6= j,∑N

j=1,j 6=i aij if i = j.
(2-4)

In what follows, we remark some properties of the Laplacian matrix and

its associated digraph.

Property 2.1.3. (Properties of the Laplacian matrix.)

(i) L does not depend on the existence and weight of self-loops in G;

(ii) G is undirected if and only if L is symmetric;

(iii) lii = 0 if and only if node i has zero out-degree;

(iv) L is irreducible [14] if G is strongly connected.
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2.2 Synchronization of Discrete-Time Net-

worked Systems

One of the most interesting and significant phenomena in complex

dynamical networks is the synchronization of all dynamical nodes

[123, 122, 6]. Namely, it has been demonstrated that many real-world

problems have close relationships with network synchronization, such as

the lighting of fireflies, and the spread of an epidemic or computer virus.

Over the past years, the synchronization of networks had been deeply

researched by many scientists from various fields, for instance, sociology,

biology, mathematics and physics.

In the following, we review the main results for synchronization of

discrete-time systems. Notice that, typically, consensus involves net-

work of linear systems, while synchronization refers to networked non-

linear systems.

2.2.1 Consensus of Linear Dynamical Systems

In networks of agents, consensus means to reach an agreement regarding

a certain quantity of interest that depends on the state of all agents. A

consensus algorithm (or protocol) is an interaction rule that specifies the

information exchange between an agent and all of its neighbors on the

network.

Let us consider a network of decision-making agents with linear dynam-

ics

xi(k + 1) = xi(k) + εui(k), (2-5)

where ε > 0, and ui(k) is the consensus protocol to be defined.
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Definition 2.2.1. We say that a consensus protocol guarantees asymp-

totic consensus of system (2-9) if the following holds: for every x(0),

there exists some c such that limk→∞ xi(k) = c, ∀i.

Definition 2.2.2. We say that a consensus protocol guarantees asymp-

totic average-consensus of system (2-9) if the following holds: for every

x(0), there exists c =
(∑

i xi(0)
)
/N such that limk→∞ xi(k) = c, ∀i.

For a fixed weighted topology G, the following consensus protocol is used

[98]:

ui(k) =
∑
j∈Ni

aij(xj(k)− xi(k)), (2-6)

which means that each node updates its current state xi(k) to some

weighted linear combination of its neighbors values. In the view of this,

the dynamics of agent i becomes

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij
(
xj(k)− xi(k)

)
, (2-7)

while the collective dynamics of the network under this algorithm can

be written as

x(k + 1) = Px(k), (2-8)

where P = IN − εL is the Perron matrix of the graph G with parameter

ε.

Theorem 2.2.1. Consider the networked system in (2-7), where 0 <

ε < 1/∆, and ∆ is the maximum degree of the network G, which is

supposed to be strongly connected. Then

(i) a consensus is asymptotically reached for all initial states;
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(ii) the group decision value is α =
∑

i αixi(0), with
∑

i αi = 1;

(iii) if G is weight-balanced (or P is doubly-stochastic), an average con-

sensus is asymptotically reached, and α =
(∑

i xi(0)
)
/N .

Proof. See the proof of Theorem 2 in [97].

Thus, consensus protocol (2-6) guarantees convergence to a collective

decision via local interactions for a system of linear dynamical systems

coupled through a fixed topology.

2.2.2 Synchronization of Nonlinear Dynamical Systems

Let us consider the general nonlinear system

xi(k + 1) = fi
(
xi(k)

)
+ σ

∑
j

aij(k)hij
(
xi(k), xj(k)

)
, (2-9)

where xi(k) is the state of the i-th node of the network, fi
(
xi(k)

)
is

the vector field describing its intrinsic dynamics, hij
(
xi(k), xj(k)

)
is the

function that defines the interaction between nodes i and j, the coeffi-

cient aij(k) indicates whether the current dynamics of node i depends on

that of node j, and σ > 0 is the coupling strength. We emphasize that,

in this thesis, we will mainly focus on discrete-time dynamical systems

with diffusive coupling.

Definition 2.2.3. System (2-9) is said to be asymptotically synchro-

nized if limk→∞ ||xi(k) − xj(k)|| = 0, or, equivalently, x1(k) = x2(k) =

... = xN (k) as k →∞.

In the field of nonlinear dynamical systems, different approaches have

been proposed to study the synchronization of systems as in (2-9), that

is, Lyapunov−Krasovskii direct method, the Master Stability Function

approach [104], contraction theory [110].
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Although analytic conditions for making all nodes converge towards a

synchronous asymptotic solution have been obtained, a major problem

still remains from a control viewpoint. Indeed, such common solution,

if it exists, cannot be determined a priori to be some desired trajectory.

A possible strategy to achieve this goal would be to directly add some

feedback control input on each of the systems in the network so to steer

the dynamics of each individual agent towards the desired trajectory.

In practice, when more than a handful of agents are considered, this

approach is not viable. A feasible alternative is represented by the so-

called Pinning Control Strategy [123, 78], where the control action is

exerted through an additional node which is connected to a subset of

the network nodes, the pinned nodes, and thus triggers the propagation

of the control signals to the uncontrolled nodes through the network

edges.

In the rapidly growing literature on pinning control, considerable re-

search efforts have been focused on the analysis of coupled continuous

dynamical systems [106, 52, 138, 36, 35, 32, 135]. However, pinning

controllability of discrete dynamical systems is a relatively untapped re-

search area with our ability to effectively control the evolution of such

systems being currently limited to few scenarios, which will be discussed

in the next section.

2.3 Pinning Control

Pinning control is a control strategy which allows to achieve synchro-

nization of a network of dynamical systems towards a desired trajectory.

This strategy assumes the existence of an external node, the pinner,

which generates a reference trajectory used to exert a control action only

to a small fraction of the networked nodes, also called pinned nodes. In

this scenario, the problem consists not only in designing the strength
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and form of the control action to be exerted by the pinner, but also

in determining how many, and what type of pinned nodes need to be

selected to achieve the control objective [113].

Let us consider the nonlinear system

xi(k + 1) = f
(
xi(k)

)
+ σ

N∑
j=1

lij(k)h
(
xj(k)

)
, (2-10)

where f and h are nonlinear functions, lij(k) is the generic element of the

time-varying laplacian matrix, and the pinner’s trajectory x̄ satisfying

x̄ = f(x̄). (2-11)

Definition 2.3.1. Network (2-10) is said to be fully pinning controlled

to the pinner’s trajectory (2-11) when limk→∞ ||xi(k)− x̄|| = 0 ∀i.

To achieve synchronization, feedback pinning controllers are applied to

a subset P of the network nodes, where |P| = p. In the view of this, the

controlled network can be described as

xi(k + 1) = f
(
xi(k)

)
+ σ

N∑
j=1

lij(k)h
(
xj(k)

)
+ ui(k), (2-12)

with the local feedback controllers given by

ui(k) = −κδi
(
h(xi(k))− h(x̄)

)
, (2-13)

where κ is the control gain, and

δi =

{
δ, ∀i ∈ P,
0, otherwise.

(2-14)

Then, network (2-10) becomes

xi(k+1) = f
(
xi(k)

)
+σ

N∑
j=1

lij(k)h
(
xj(k)

)
−κδi

(
h(xi(k))−h(x̄)

)
. (2-15)
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Unfortunately, while the literature on pinning control of continuous-time

systems is extremely vast, see e.g. [65, 79, 114, 134] and the references

therein, only few contributions are available in the literature which study

the pinning controllability of system (2-15). Among these, in [132], the

authors generalize the classical master stability function introduced in

[103] to provide a necessary and sufficient condition for local pinning

controllability of discrete-time systems. The results are extended to the

case of uniform constant communication delays in [82]. In the recent

work [131], instead, sufficient conditions based on Lyapunov function

for achieving synchronization of discrete-time networks via impulsive

pinning control are provided, while [94] investigates the controllability

of discrete-time networks of coupled chaotic maps through stochastic

pinning. Eventually, [136] shows through extensive simulations that pin-

ning control of discrete-time dynamical networks is a challenging task,

whereby direct control of a large fraction of the network nodes is gener-

ally required. Notice that all the aforementioned studies account for the

hypothesis of static topologies. To the best of our knowledge, no contri-

butions have been made in the field of pinning control of discrete-time

systems with time-varying networks of interaction.

2.4 Partial Pinning Control

Often, in applications, achieving complete controllability is a chimera as

both economical and physical constraints typically affect the selection

of the pinned nodes. For instance, previous works [81, 93] has pointed

out that for gene regulatory networks, a considerable amount of pinned

nodes are needed to achieve complete controllability, which can turn

out unfeasible. Moreover, it is often the case that the selection of the

pinned nodes is restricted to a well-defined subset of the nodes of the
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network. For instance, in designing curative interventions, only some

easily accessible proteins are designated as targets for drugs [71].

In this perspective, the problem becomes that of selecting the nodes to

be pinned so as to drag the greatest number of nodes under control of

the pinner under physical or economic constraints. This is what we call

the partial pinning control problem.

Definition 2.4.1. Network (2-10) is said to be q-partially pinning con-

trolled to the pinner’s trajectory (2-11) when limk→∞ ||xi(k) − x̄|| =

0 ∀i ∈ Q, where Q ⊆ V, and q = |Q|.

In [37], the partial pinning control problem is defined as

q∗ = maxP |Q|
|P| = p.

(2-16)

The problem is solved for a class of continuous nonlinear systems, and

for any limited numbers of pinned nodes. Namely, under appropriate as-

sumptions on the nodes’ dynamics, structural conditions which ensure

the partial pinning controllability of the system are provided. The prob-

lem is translated into an integer linear program (ILP), and an optimiza-

tion problem is formulated and solved for the selection of the pinning

and coupling gains.

Unfortunately, no analytic results in the literature accounts for the prob-

lem of partial pinning controllability of discrete dynamical systems.

That’s why, in this thesis, we approach to partial pinning control fo-

cusing on the structural conditions available in [37], assuming that the

conditions on the nodes’ dynamics are satisfied.
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2.4.1 Structural Conditions for Partial Pinning Control-

lability

In order to find the topological conditions to maximize the number of

nodes which synchronize to the pinner’s trajectory, the pinned node se-

lection algorithm is proposed in [37]. It translates problem (2-16) of

maximizing the number of pinning controlled nodes q into an optimiza-

tion problem on a graph. To do so, it relies on the following structural

condition: a node is pinning controllable if all of the RSCC in its up-

stream encompass at least a pinned node. This condition is based on

the following property of the RSCC:

Property 2.4.1. A RSCC is pinning controllable if at least one node

benolging to the RSCC is pinning controllable.

Hence, the algorithm selects the set of p RSCCs to be pinned that max-

imize the number of nodes fulfilling such structural condition.

In what follows, we remark the main steps of the partial pinning control

algorithm.

Let us denote:

� GD the DAG condensation of a generic digraph G;

� C the set of pinnable nodes, with P ⊆ C;

� γi the generic SCC of GD;

� ri the generic RSCC of GD;

� Γ(ri) the set of nodes in the downstream of ri;

� Φ the set of pinned RSCCs.
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In the view of this, problem (2-16) becomes

Φ∗ = max
|Φ|=p

|Γ(Φ)|. (2-17)

Case p = 1

By pinning an arbitrary node of ri, all the nodes in Γ(ri) are pinning

controlled. Hence, if p = 1, the solution of problem (2-17) consists in

selecting as the only pinned node an arbitrary node of RSCC ri∗ , with

i∗ = arg maxi |Γ(ri)|.

Case p > 1

The procedure is the following:

1) build a new graph G′ through the following steps:

(a) define RC as the set of roots of GD that include at least a

node belonging to C;

(b) add to G′ all the roots in RC ;

(c) add to G′ all the non-roots γi of GD that are in the down-

stream of no more than p roots of GD (all encompassed in RC);

(d) for all pairs γi, rj ∈ G′, add an edge yij connecting γi to rj

if, in GD, γi is in the downstream of rj ;

(e) add an additional node π, representing the pinner, and

connect it to all the roots rj ∈ G′ through a set of edges yjπ;

2) associate to all edges of the graph G′ the following weights:

(a) wij = |γi| ∀i, i.e., all edges entering the i-th node γi have

a weight equal to the number of nodes in the SCC γi;
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(b) wjπ = |rj | ∀j, i.e., all edges entering the j-th root rj have

a weight equal to the number of nodes in the RSCC rj ;

3) solve the following ILP:

max
y

∑
i

∑
j

wijyij +
∑
j

wijyij (2-18)

s.t. ∑
j

yjπ = p (2-19)

∑
j

yij ≤
1

degin(i)

∑
j|∃yij

yjπ ∀i (2-20)

yij , yjπ ∈ {0, 1} ∀i, j (2-21)

This procedure first creates a new graph G′, whose nodes are RSCCs

encompassing at least a node of C or SCCs in the downstream of such

RSCCs. Each node representing a RSCC is connected to the SCCs

in its downstream. Notice that the procedure does not include any

node representing an SCC having either (i) more than p RSCCs in its

upstream or (ii) an RSCC in its upstream that does not encompass any

node of C, as it cannot guarantee that these SCCs are pinning controlled

with a selection of p pinned nodes. Then, the pinner π is added to G′

and is connected to all nodes ri representing the RSCCs. Finally, it

associates to each edge in G′ a weight equal to the number of nodes in

the (R)SCC it points to. The solution of the ILP in (2-18)-(2-21) is

then equivalent to determine the RSCCs in which a pinned node must

fall and the corresponding SCCs that can be pinning controlled. Namely,

SCC γi can be pinning controlled if there exists a j such that yij = 1,

and RSCC rj will include a pinned node if yij = 1. Accordingly, the

objective function to be maximized in (2-18) represents the total number

of pinning controlled nodes. The constraint (2-19) guarantees that the



2.4 Partial Pinning Control � 37

pinned nodes are p, while Eq. (2-20) imposes that the nodes of an SCC

are pinning controlled only if a node is pinned in each of the RSCCs in

their upstream.
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CHAPTER 3

The Artificial Financial

Market

In this chapter, we build an artificial financial market, which will be

used for testing different models of agents’ behavior in order to analyze

and predict the possible emergence of informational cascades.

Our interest focus on agent-based modeling (ABM), as it succeeds in

complementing neoclassical economics models, removing some of their

main assumptions, such as homogeneity of the financial agents [2, 30]. As

evidence of their effectiveness, in the last decades several contributions

in the field of financial ABM have been proposed, see for instance [4, 21,

102, 26, 50, 59, 74, 75, 87, 120, 128, 111, 129, 40, 24, 99, 61, 23].

Agent-based approaches have also been used to test the effects of poli-

cies, regulations and taxation systems on the market dynamics, see for

instance [129, 40]. Inspired by the seminal work of Tobin [119], for in-

stance, several taxes on financial transactions were proposed to regulate

the markets, whose effects have been controversial [62, 77].

To the best of our knowledge, none of the existing models of artificial

markets accounts for herding phenomena and different taxation schemes
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at the same time. In the view of this, we build a novel artificial financial

market that is capable of testing the delicate interplay between agents’

interactions, the inequality in wealth distribution, and the balancing of

two common alternative taxation schemes.

The concepts of learning and adaptation are generally applied to utility

functions, that may not be fixed, as observed in [29, 31, 33]. In the view

of this, in our market the agents behave according to utility theory,

and, at a first instance, are grouped in three classes with different risk

attitudes and subsequent trading strategies.

We consider two kinds of agents’ intraction. In the first case, the agents

do not interact with each other. They are stubborn agents [105], who

keep their own risk attitude regardless of the effectiveness of the conse-

quent trading strategy. In the second case, we consider an interaction

dynamics which accounts for the presence of leaders.

In order to test the likelihood of our artificial market with empirical

evidence, we study the emerging features of the market in terms of

trading volumes and wealth distribution, characterized through the Gini

coefficient [60], in presence of a Tobin-like tax and a flat tax, respectively.

Even though the validation of agent-based models is a hard task [74],

we show that our results are qualitative consistent with some empirical

evidences. Thus, this scenario is useful to test the emergence of herding

behavior, which we will manage from a new perspective, that of control

theory. The details of our choice will be extensively discussed in the

following chapters.

3.1 Market Structure

We introduce an agent-based financial market populated by a set of N

agents, who can choose among alternative financial assets. The state of
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each agent i is defined as his current wealth ri and risk attitude yi. The

agents behave according to the Von Neumann and Morgenstern utility

theory [121], and alternative taxation schemes and interaction rules are

considered.

3.1.1 Financial Assets

At each time step k = 1, 2, ..., a simulated trading session is performed.

Each agent, in a sequential random order, evaluates the convenience of

investing a given fraction ε of his current wealth ri(k) in one of the fi-

nancial assets from the set L = {1, . . . , L}. The return of the j-th asset

is modeled as a stochastic process βj with equiprobable realizations āj

and b̄j . In other words, āj and b̄j are the win and loss rates associated

to the j-th asset1. The assets in L are characterized by a limited avail-

ability Aj , j = 1, ..., L, where AL = +∞ is associated to a virtual asset,

corresponding to no-investment. In view of this, each agent is allowed

to invest in one of the available assets, that is, in any element of L such

that Aj ≥ εri(k). Agents’ access to trading is randomly permuted at

each time step k, so that, on average, no agent is favored. After each

trading, the availability of the selected asset is updated before the next

agent is allowed to trade.

3.1.2 Trading Strategy

According to the Von Neumann and Morgenstern utility theory [121], a

rational agent who acts in an uncertain environment takes his choices

maximizing the expected value of some function defined as utility func-

tion. In the view of this, we associates to each agent the following

1Notice that x̄j = E[βj ] = 0.5
(
āj + b̄j

)
is the expected return of asset j, which is

assumed to be constant for the sake of simplicity.
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power-law utility function:

E
[
Ui(k)

]
= 0.5

[(
ai(k)εri(k)

)yi(k)
+
(
bi(k)εri(k)

)yi(k)
]
, (3-1)

where E
[
Ui(k)

]
=
[
E
[
U1
i (k)

]
, ..., E

[
ULi (k)

]]
is a vector which includes

the current expected utilities that agent i associates to each asset j =

1, ..., L, yi(k) is the state variable which determines the risk attitude of

the i -th agent, ai(k) =
[
a1
i (k), ..., aLi (k)

]
and bi(k) =

[
b1i (k), ..., bLi (k)

]
are the current win and loss rates associated by agent i to all the assets.

Equation (3-1) is a flexible function that allows us to model heteroge-

neous agents which differ each other in some crucial features, such as

risk attitude and information on the assets.

For the sake of simplicity, at a first instance we assume that all the

agents share the correct information on the assets. This means that all

the agents know the correct probability distribution of the assets’ return.

Thus, we select ai(k) = ā =
[
ā1, ..., āL

]
, and bi(k) = b̄ =

[
b̄1, ..., b̄L

]
∀i, k

(in Chapter 6, this constraint will be relaxed).

In the view of this, Eq. (3-1) becomes

E
[
Ui(k)

]
= 0.5

[(
āεri(k)

)yi(k)
+
(
b̄εri(k)

)yi(k)
]
. (3-2)

At each time instant k, agent i evaluates the possibility of investing the

fraction ε of his current wealth based on his expected utilities of the

assets. Hence, the trading decision

si(k) = g
(
E
[
Ui(k)

])
, (3-3)

is a function g which returns a vector si(k) = [s1
i (k), ..., sLi (k)] defining

the ranking of the assets corresponding to agent’s i preferences:

sji (k) := m : ∃m−1 E
[
U li (k)

]
> E

[
U ji (k)

]
, ∃ L−mE

[
U li (k)

]
< E

[
U ji (k)

]
.

(3-4)



3.1 Market Structure � 43

The j-th element sji (k) of si(k) is the integer m defining the position

of asset j in the ranking of the assets made by agent i. Due to the

limited availability of the assets, the actual trading action made by agent

i corresponds to trade in the first available asset l∗ according to his

preferences si(k).

The outcome of the trade made by agent i is a realization of βl
∗
. There-

fore, the dynamic equation describing the evolution of the wealth r−i (k)

of agent i before the taxation is given by:

r−i (k) = ri(k−1)+γεri(k−1)(āl
∗−1)−(1−γ)εrj(k−1)(1− b̄l∗), (3-5)

where γ is a binary variable (γ = 1 if the trading made by agent i is

successful, and 0 otherwise). When the trading session is over, a tax is

applied and the wealth of agent i at time k is updated as

ri(k) = τ
(
r−i (k)

)
, (3-6)

where τ is a nonlinear function describing the selected taxation scheme.

In what follows, we characterize this function for two different taxation

schemes.

3.1.3 Taxation Schemes

We consider two alternative taxation systems, which affect the current

wealth of the agents r−i (k), i = 1, ..., N in different ways: a) taxation

on financial transactions, and b) taxation on wealth.

3.1.3.1 Tobin-like Tax

Taxes on financial transactions have been adopted in several countries

in the last century: a well-known example is the so-called Tobin Tax

[119], named after the Nobel prize James Tobin, whose original scope
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was to put a penalty on short-term financial round-trip excursions into

another currency.

The financial transaction tax a) is actually a Tobin-like tax (TT), which

reduces the current wealth of the winning agents by a profit fraction

u(k) given by

u(k) =

{
p(k)∑N

i=1 hi(k)
, p(k) > 0,

0, p(k) ≤ 0,
(3-7)

where hi(k) = r−i (k) − ri(k − 1), and p(k) =
∑N

i=1

(
r−i (k) − ri(0)

)
.

Accordingly, (3-6) becomes

ri(k) = r−i (k)−H
(
hi(k)

)
hi(k)u(k), (3-8)

where H is the Heaviside step function.

3.1.3.2 Flat Tax

The alternative taxation scheme b) is a flat tax (FT), in which the

amount of the tax is proportional to the total wealth of the individual.

Accordingly, (3-6) becomes

ri(k) = v(k)r−i (k), (3-9)

where v(k) =
∑N

j=1 ri(0)∑N
i=1 r

−
i (k)

.

Notice that, to allow for a proper comparison between the two taxation

schemes, the coefficients u(k) and v(k) in (3-7) and (3-9), respectively,

are selected so as to keep the average wealth constant over time, that is,

1
N

∑N
i=1 ri(k) = r̄.

3.2 Agents’ Behavior

We populate the artificial market with heterogeneous agents. Based

on their current risk attitude, we group the agents in three classes. In
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the first one, there are the agents characterized by a low risk attitude,

denoted in what follows as prudent agents. The agents that are more

prone to take risks are denoted audacious and grouped in the third

class. Finally, the intermediate class groups the ordinary agents. We

emphasize here that an agent may decide not to invest (formally, to

invest in the L-th asset), if E
[
ULi (k)

]
≥ E

[
U ji (k)

]
for all j = 1, . . . , L−1.

We test our scenario by considering two different kinds of agents’ be-

havior:

Case I

the agents do not interact with each other. Thus, the market is composed

of stubborn agents, who do not modify their utility function even if

they observe that their investing strategy is not successful. Accordingly,

their risk attitude is considered as a parameter rather than an evolving

state, and coincides with the initial risk attitude yi(0) for all k ∈ N,

i = 1, . . . , N .

Case II

The agents are adaptive, as they are prone to directly interact with each

other and update their trading strategy. In particular, we model the

strategy modification as a variation of the risk attitude yi(k) in (3-2).

The reciprocal influence among the agents diffuses through a connection

topology described by a directed graph G = {V, E}, where V is the set

of nodes, corresponding to the agents, and E is the set of directed edges

connecting the nodes (see Sec. 2.1). The existence of an edge (i, j)

implies that the risk attitude of node j is influenced by that of node i.

The dynamics of yi(k) in (3-2) is described by

yi(k) = (1− λ)yi(0) +
λ

|Ni|
∑
h∈Ni

yh(k − 1), (3-10)
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where λ is the interaction weight, yi(0) is the inner risk attitude, and Ni
is the set of in-neighbors of agent i (see Def. 2.1.4)2. We remark that

the bigger the coefficient λ is, the more the agents are prone to modify

their utility function: λ = 0 models the case of stubborn agents, while

λ = 1 the case in which the agents completely disregard their innate risk

attitudes and emulate the neighbor behaviors.

3.2.1 Leaders and Communities

The interaction topology is modelled as a disjoint directed scale-free

network, and the graph G is decomposed in up to three disconnected

components, the communities, each of which is guided by leaders be-

longing to the same risk attitude class. Namely, inside each community,

we consider emulating the rich dynamics, where the richest agents are

stubborn, but they influence the other agents, so playing the role of

leaders [44]. We choose to consider separated communities so that each

follower cannot be influenced by leaders with significantly different risk

attitudes. Accordingly, each follower elects to emulate the strategy he

considers most profitable. The size of the communities is proportional to

the total wealth of their leaders and, inside each community, the richest

agents are more likely to activate links.

The interaction is triggered at a given time instant kt. Henceforth,

the dynamics of yi(k), i = 1, ..., N , described in (3-10), are strongly

influenced by the structure of the graph G describing the diffusion flow.

In turn, the structure of G is established at time kt, based on the current

wealth ri(kt), for i = 1, ..., N .

2More details on the interpretation of the risk attitude dynamics will be further

explained in 5.1.2
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3.3 Emerging Features

The proposed artificial financial market can take into account differ-

ent scenarios, in terms of both taxation schemes and interaction rules.

In order to test our market, we focus our attention on the effects of

agents’ interaction on the emerging features of the market. We aim at

identifying the possible interplay between taxation and interaction in

determining the trading volumes and the wealth distribution among the

agents, in order to check if the results are consistent with empirical evi-

dence. To do so, we compare the results of extensive simulations of Case

II against that of Case I. The effect of the alternative taxation schemes

are firstly pointed out in the case with no interactions. Then, we fo-

cus on adaptive agents and study the effects induced by the emulating

dynamics on both the wealth distribution and the trading volumes for

both taxation schemes.

To highlight the overall wealth dispersion induced by the two taxation

schemes, we use the Gini coefficient G(k), proposed by Corrado Gini in

[60] as a measure of inequality of income or wealth, which can be defined

as

G(k) = 1− 2

N − 1

(
N −

∑N
i=1 iri(k)∑N
i=1 ri(k)

)
, (3-11)

where the wealths ri(k), i = 1, . . . , N , are indexed in non-decreasing

order, that is, ri(k) ≤ ri+1(k). The Gini coefficient varies between 0,

which reflects complete equality, and 1, which indicates complete in-

equality (one person holds the all wealth, all others have none).

3.4 Simulation Results

To achieve statistical relevance, we run 1000 simulations for each sce-

nario and consider a number of time steps sufficient to reach steady-state
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wealth distribution.

We consider N = 1000 agents that share the same initial capital ri(0) =

100$, i = 1, . . . , N , and, at each trading session k, can decide to invest

a fraction ε = 0.2 of their current wealth. The cardinality of the set of

assets is L = |L| = 4, that is, the agents can trade in three categories

of actual assets, while the fourth one corresponds to no-investment and,

therefore, has an unlimited availability. On the other hand, at every

time instant, each of the three actual assets has an availability equal

to 1/15th of the total wealth of the system. The win and loss rates

associated to the actual assets are selected so that the prudent agents(
0.5 ≤ yi(k) < 0.67

)
only consider investing in the first and less risky

asset, the ordinary agents
(
0.67 ≤ yi(k) < 0.83

)
also consider the second,

while the audacious agents
(
0.83 ≤ yi(k) ≤ 1

)
also find convenient

investing in the third and most risky one. Namely, the won rates are

ā = [1.53, 1.60, 1.67, 1], while the loss rates are b̄ = [0.60, 0.50, 0.40, 1].

The initial risk attitudes yi(0), i = 1, ..., N , are uniformly distributed in

the interval [0.5, 1].

Case I

In our numerical analysis, we monitor the effects of the alternative tax-

ation schemes on both the wealth distribution and the trading volumes

in the artificial market. Specifically, we observe that the TT scheme

hinders the audacious agents, favoring the prudent ones. This is clearly

depicted in Figure 3-1(a), which shows the sum of the average final

wealth in the three classes of agents, respectively. The opposite is ob-

served when a flat tax is adopted, in which the wealth distribution is

biased towards the ordinary and audacious agents, see Figure 3-1(b).

In other words, the TT scheme does not reward the risk, penalizing the

audacious agents, in opposition to the FT scheme, which encourages the
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Figure 3-1: Case I. Final wealth distribution when TT (a) and

FT (b) schemes are introduced, respectively.

agents to trade. As depicted in Figure 3-2(a), while the TT scheme

induces a wealth redistribution among the population, the FT scheme

increases inequalities. On the other hand, the TT scheme leads to lower

trading volumes at the steady-state, see Figure 3-2(b). The latter effect

is in line with the criticisms commonly made to financial transaction

taxes, which are blamed for possible market depression [10, 62, 86].

Case II

We assume that, after kt time steps in which the agents invest based

on their own risk attitude, the emulation dynamics described in (3-

10) are triggered. The triggering instant of the emulation behaviour is

indifferent to our purpose, as alternative values of kt only affect the size

of the communities, see Figure 3-3. The ten richest agents (the leaders)

are assumed to have only outgoing edges; the followers, instead, have

bidirectional edges with their neighbouring peers, and may have ingoing

edges from the leaders. To model this interaction mechanism, we build a

directed Barabási-Albert (BA) scale-free network [12], in which the hubs

coincide with the leaders. The network is split into three communities,
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Figure 3-2: Case I. Gini coefficient (a) and trading volumes (b)

when TT (blue line) and FT (red line) schemes are introduced,

respectively.
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Figure 3-3: Case II. Average number of leaders of belonging

to the communities 1 (red line), 2 (blue line) and 3 (green line)

for different interaction triggering time kt when TT (a) and FT

(b) schemes are introduced, respectively.
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Figure 3-4: Final wealth distribution when TT scheme is in-

troduced: Case I (a) and Case II (b), respectively. The width of

the bars is proportional to the numerosity of the classes.

led by the prudent, ordinary, and audacious leaders, respectively. The

size of each community is proportional to the sum of the leaders’ wealth,

which is an indirect measure of their influence.

The results are compared against a twin set of simulations in Case I,

sharing the same set of realizations of the stochastic processes βj , j ∈ L,

for each trader, and at each time instant. For the sake of clarity, we ana-

lyze the two taxation schemes separately, starting with the TT scheme.

From Figure 3-4, we observe that this taxation system, regardless of

the interactions among the agents, recompenses the prudent strategies

in the long run. The emulating the rich interaction, instead, skews the

distribution among the communities, see Figure 3-5.

In absence of leaders, the interaction with the neighbors would tend

to average the agents’ attitudes towards risk. However, the presence

of leaders differentiates the communities. In particular, the community

guided by the prudent leaders preserves a significant number of prudent

agents (the 14% of the total population of the community, see Table 3.4).

Consequently, the average wealth of the agents in the first community
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Figure 3-5: Case II, TT scheme. Screenshots of the three com-

munities before (left panel) and after (right panel) the agents’ in-

teraction in a sample simulation. The red, blue, and green nodes

correspond to prudent, ordinary, and audacious agents, respec-

tively. Notice that the averaging of the attitudes increases the

overall density of ordinary agents. However, the leaders’ influence

skews the distribution across the communities, with prudent and

audacious agents still populating the first and third community,

respectively.
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Figure 3-6: Average final wealth of the agents belonging to

communities 1, 2 and 3, when TT scheme is introduced: Case I

(a) and Case II (b), respectively.
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Figure 3-7: Trading volumes when TT scheme is introduced:

Case I (blue line) and Case II (red line), respectively.

is considerably higher compared with the other two communities (see

Figure 3-6(b)), whose leaders pursue risky strategies which turn to be

unprofitable in the long term (their steady-state capital is lower then

the average agents’ wealth r̄ = 100, see Table 3.4).

Moreover, Figure 3-7 shows that the emulation mechanism has the fur-

ther effect of mitigating the decrease in trading volumes typical of the

TT case. This is due to the reduction of the total number of prudent

agents illustrated in Figure 3-4.

Differently from the TT Case, in which the prudent agents slowly but

relentlessly take the leadership of the market, see Figure 3-3(a), when

the flat tax is introduced, a prudent strategy is disadvantageous both

in the short and in the long term, see Figure 3-3(b). Consequently,

no agent is encouraged to emulate the prudent agents, and the market

splits into only two communities, guided by the ordinary and audacious

leaders, respectively. Accordingly, there are no notable differences in the

average wealth of the two communities, see Table 3.4. We emphasize

that, while the emulating dynamics can strongly influence the distribu-

tion of the wealth across the communities, the overall wealth distribution

is only dictated by the taxation scheme. In particular, the variation of

the Gini coefficient induced by the emulation dynamics is an order of
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magnitude lower than that induced by a change of taxation scheme, for

any possible value of the interaction weight λ and of the average degree

of the connection topology.

We remark that considering disconnected communities is an idealization

of real-world aggregations, where few weak links may still connect the

communities. However, all the presented results are robust to the addi-

tion of links connecting the communities. This is confirmed by a twin

set of simulations in which a small fraction (less than 5%) of the net-

work edges are rewired following a degree-preserving procedure inspired

by the work in [73]. Considering 95% confidence intervals, we find that

the variations of the results are not statistically significant.

Summing up, the numerical analysis replicates the well known benefits

and drawbacks of the two taxation schemes, and the analyzed emerg-

ing features are in line with empirical evidence. Namely, we observe

a trade-off between wealth redistribution and trading volumes: while

the Tobin-like tax has the effect of redistributing the wealth among the

agents, but reduces the trading volumes, the opposite happens with a

flat tax, which encourages to invest, but dramatically increases the dis-

parity among the agents. Moreover, while the TT scheme favores the

prudent agents investing only in the less risky assets, the FT scheme

rewards the audacious agents, that also consider investing in the riskiest

assets. In the other case, where the adaptive agents consider adjusting

their risk attitude and the consequent trading strategy, we observe a

significant impact of the agents interactions on the emerging features of

the market. Indeed, the richest agents, recognized as the market lead-

ers, form separate communities. Notably, the communities benefit from

the presence of leaders with successful trading strategies, and are more

likely to increase their average wealth. Moreover, this imitation behav-

ior mitigates the reduction of the trading volumes typical of Tobin-like
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Tobin Tax

Community 1 2 3

r̄I(T )/r̄ 1.01 0.97 0.98
[0.99, 1.02] [0.96, 0.99] [0.97, 1.00]

r̄II(T )/r̄ 1.40 0.74 0.71
[1.38, 1.42] [0.73, 0.75] [0.70, 0.73]

νci 380.76 347.63 271.61
[369.89, 391.01] [336.54, 357.92] [260.91, 281.71]

f1(%) 20.29 0.60 0.01
[19.78, 20.80] [0.53, 0.66] [0.01, 0.02]

f2(%) 79.71 99.40 93.04
[79.20, 80.21] [99.32, 99.45] [92.67, 93.41]

f3(%) 0 0 6.95
[6.58, 7.32]

Flat Tax

Community 1 2 3

r̄I(T )/r̄ 0 1.07 0.97
[1.01, 1.13] [0.94, 1.01]

r̄II(T )/r̄ 0 1.05 0.98
[0.99, 1.11] [0.95, 1.01]

νci 0 246.24 753.76
[235.76, 256.19] [742.78, 763.20]

f1(%) 0 0.80 0
[0.69, 0.92]

f2(%) 0 99.16 93.13
[99.04, 99.27] [92.95, 93.32]

f3(%) 0 0.04 6.87
[0.03, 0.06] [6.68, 7.05]

Table 3-1: r̄I(T ) and r̄II(T ) are the average final wealth in Case

I and Case II, respectively; νci is the average numerosity of the

i-th community, i = 1, 2, 3; fj is the final percentage of agents

belonging to the j-th class, j = 1, 2, 3. Confidence intervals with

significance level 0.05 are also reported.
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Leaders L1 L2 L3

r̄l(T )/r̄ 7.69 0.66 0.64
Tobin Tax [7.18,8.19] [0.59,0.72] [0.37,0.90]

νli 4.30 3.20 2.50
[4.20,4.40] [3.10,3.29] [2.41,2.59]

r̄l(T )/r̄ 0 14.29 14.48
Flat Tax [12.60,15.98] [13.24,15.71]

νli 0 3.03 6.97
[2.94,3.12] [6.88, 7.06]

Table 3-2: r̄l(T ) is the average final wealth of the leaders in the

focal scenario; νli is the average numerosity of the leaders of the

i-th community, i = 1, 2, 3. Confidence intervals with significance

level 0.05 are also reported.

taxes, while preserving its redistributive effect.



CHAPTER 4

Informational Cascades: an

Overview

We are influenced by others in almost every activity, and this includes

investments and financial transactions. Such influence may be entirely

rational, but investors are often accused of irrationally converging their

actions and beliefs.

The word “herding” is defined to include any behavior similarity brought

by the interaction of individuals. People’s thoughts, feelings, and actions

can be influenced by others by several means, as observations of actions,

observations of the consequences of actions, such as individual’s payoffs,

direct communications, reputations, and so on.

Payoff externalities, indeed, may drive the decisions of agents for which

stocks they acquire information. Under certain circumstances, agents

find it worthwhile to acquire further information only if other agents do.

Agents thus herd on information acquisition (or lack thereof). Herding

can also be caused by principal-agent concerns. Managerial performance

evaluation is often based on relative not absolute performance. Typi-

cally, this behavior show that each agent prefers to mimic the actions of
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other traders, completely ignoring private information, to avoid being

revealed to be of low-ability [39]. This process of imitation and social

learning may lead the agents in a blind replication of the same actions.

This phenomenon is generally known as “informational cascade”. They

describes a condition in which imitation will occur with certainty. An

individual is said to be in an informational cascade if, based upon his

observation of others (e.g., their actions, outcomes, or words), his se-

lected action does not depend on his private information signal [15]. In

such a situation, his action choice is uninformative to later observers.

Thus, cascades tend to be associated with information blockages. Even

a simple form of social interaction as imitation offers a crucial benefit:

it allows an individual to exploit information possessed by others about

the environment. Indeed, the idea is that people gain useful information

from observing previous agents’ decisions, to the point where they opti-

mally and rationally completely ignore their own private information.

In the literature, the notions of informational cascades and herd be-

havior are often considered equivalent, but this two concepts are quite

distinct. Banerjee, for instance, uses the term “herd” for what we refer

as a cascade [11]. However, Avery and Zemsky [7] pointed out this dif-

ference. They defined an informational cascade as a situation where all

the traders act ignoring their private information, whereas an agent is

said to herd if, as a result of observing the actions of others, he makes

a different choice from the one that he would make initially.

Starting from the nineties, several models of informational cascades have

been proposed [7, 11, 126, 137, 28]. In most of these works, the basic

principle which illustrates the occurring of an informational cascade is

the following: consider a sequence of ex ante identical individuals who

face similar choices, observe conditionally independent and identically

distributed private information signals, and who observe the actions but
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not the payoffs of predecessors. Suppose that individual i is in a cascade,

and that later individuals understand this. Then individual i+1, having

gained no information by observing the choice of i, is, informationally, in

a position identical to that of i. So i+ 1 will also make the same choice

regardless of his private signal. By induction, this reasoning extends

to all later individuals, and the accumulation of information comes to

a screeching halt once a cascade begins. Thus, the occurrence of an

informational cascade translates into a sudden transition toward the

same behavior.

In the following, we choose to present the details of the BHW model

[15], which is considered the masterpiece among the models of informa-

tional cascades. Namely, most of the subsequent models are based on

its mechanism. Then, some considerations on the limits of the existing

models follows.

4.1 The BHW Model

The following are the main assumptions in BHW model for analyzing

the onset of informational cascades.

� A number n of agents is considered. Each agent has to make

a trading decision in a sequential order, which is an exogenous

factor.

� All investors decide whether to invest or not to invest in an asset.

The purpose for investment is to achieve the profit maximization.

� Each agent can observe the decisions of all those ahead of him, and

make his own decision. There is a sequence of investment decisions

by all the investor and the ordering is exogenous and is known to
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all. There is no other form of information exchange among the

traders.

� The agents obtain information by observing the investment deci-

sion ahead of them. This information is known as public informa-

tion.

� The agents make their decisions in an uncertain situation, which

means the investment profit V is uncertain when they decide to

invest. Investment profit depends on the actual value of invest-

ment property, which is not known to investors when they make

decisions.

� The two possible realizations of the investment properties are good

situation G and bad situation B. Return on investment by the real

value of investment properties as a good situation G is formulated

as V = 1. When the investment property is in bad situation B,

the investment return is formulated as V = 0.

� If the trader chooses to invest, it will result in some costs C. In

the model C = 0.5, the costs are the same for all the investors. If

the agent chooses not to invest, there will be no such costs.

� There is a prior probability of each situation (good situation and

bad situation). The probability of the selection of investment in

good situation and the probability of non-investment in bad situ-

ation is equal to 0.5.

� Each investor has his private signal (private information) about

the actual value of investment, which is not observable by other

investors. If the agents make investment decisions according to

their own private signal, then this signal will be feedback into his
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investment decisions. In good situation investors may invest, while

in bad situation they may not invest. The amount of private sig-

nal has the characteristics of duality. Each agent’s private signal

X contains two values: H for the high precision (the possibility

p is greater than 0.5), L for the low-precision (the probability is

1−p ≤ 0.5 ). Private signal can be transmitted through the invest-

ment behavior of investors. Namely, subsequent agents can infer

the private signal of their predecessors by observing the trading ac-

tions of the latter. This means that, although transmittable, the

information cannot be 100% transmitted. Therefore, the charac-

teristics of information transmission meets with the conditions of

0.5 ≤ p ≤ 1, which means that is very difficult for investors to rely

only on their own private information to make accurate decisions.

The limitations of information’s transmission require the investors to

make a decision, based not only on private signal but also on the deci-

sions of other investors. By using Bayesian theorem [115], the traders can

make prior probability of real value of investment properties to posterior

probability, and use the posterior probability to calculate the expected

return on investment in order to make investment decision. Assume that

γ is the posterior probability if the return of investment is V = 1. The

expected investment income E[V ] is then

E[V ] = γ × 1 + (1− γ)× 0 = γ. (4-1)

Expected return minus the investment cost C is the expected net profit P

of the investment. Investment behavior can be divided into the following

three types:

1) when P > 0, investor chooses to invest;

2) when P = 0, investor can choose to invest, or not to invest;
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3) when P > 0, then investor chooses not to invest.

Through the analysis of the BHW model we can see that, when investors

ignore their own signals and follow the decisions of the other investors,

the informational cascade occurs. Also in Banerjee [11], which differs

from the BHW model for the type of choice (the agents have to choose

a number from an interval rather than having a binary choice), if two

agents choose the same action, every subsequent agent will make the

same choice, regardless of the signal he received. Imitation dominates

private information.

To see how likely it is that a cascade occurs, consider the situation in

which private signals are very noisy; specifically, the probability that the

signal is correct is p = 0.51. A cascade occurs with slightly more than

75% after the first two players. After eight players, the probability that

individuals are in a cascade increases up to 0.996. More generally, even

when individuals have more accurate signals, the information contained

in a cascade is not substantially better than a single individual’s signal.

4.2 Considerations

The BHW and Banerjee models are, in their simplicity, very useful in

the general understanding of some kinds of phenomena which can be

observed in real world, such as fads, preference effects as in the choice

of technologies, research topics, and eventually financial bubbles and

crushes. In other words, they represent a useful stylized description of

the process of social learning. However, the simplifying assumptions

made in these models share some criticisms that need to be analyzed

and revised.

First of all, these models are static models, thus they do not capture the

dynamic adaptation and learning process of the agents.
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Another aspect to point out is that, in a real investment context, the

assumption that the timing and order of moves is exogenously given is

unrealistic. Actually, when individuals have a choice of whether to delay,

there can be long periods with no investment, followed by sudden spasms

in which the action on one agent triggers the exercise of the investment

option by many others. Moreover, the assumption of exogenous sequence

generates what is called as “path dependence” [16]: the outcome of the

cascade (good or bad cascade) strongly depends upon the sequence of

movies.

Another implication of these models is the so-called “idiosyncrasy”: be-

havior resulting from signals of just the first few individuals drastically

affects the behavior of all the subsequent followers. Of course, the idea

that a few people are able to successfully influence the whole population

is almost extreme (even the most influential dictators in history did not

succeed to achieve this goal).

Of course, in reality we do not expect a cascade to last forever. Several

possible kinds of shocks could dislodge a cascade: for example, the arrival

of better informed individuals, the release of new public information,

and shifts in the underlying value of adoption versus rejection. Indeed,

when participants know that they are in a cascade, they also know that

the cascade is based on little information relative to the information of

private individuals. Hence, even after an informational cascade have

persisted for a long time, it can be overturned with comparatively little

effort. The alternation of fads is a clear example of how fragile a cascade

could be.

Another fact to point out is the possible influence of the price dynam-

ics on the onset of informational cascades. This aspect is not taken into

account in [11, 15]. Conversely, in [7] the authors highlight that an infor-

mational cascade never takes place when prices adjust to reflect avail-
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able information. Also Cipriani and Guarino [27] test experimentally

herd behavior in asset markets with flexible prices, pointing out that

the competitive price mechanism significantly reduced the occurrence

of informational cascades. However, other experimental results seem to

contradict this theory. In [43], for instance, the authors find that agents

frequently acts against the market and their private information. Our

suggestion is that the implications of such factor on informational cas-

cades should be better analyzed. However, we have to point out that

there exists a huge literature on the modeling of price dynamics, see [76]

for a review, which shows that modeling price mechanism is not a simple

task.

There is some doubt, eventually, as to whether these models have prop-

erly identified the usual source of difference in behavior across groups.

Hence, they only consider the quite unrealistic case case of a total in-

formational cascade, completely disregarding the possible differences in

mass behavior across groups, or clusters, of agents. Actually, different

groups may have different tendencies, different conversation patterns;

the information may spread among the agents with different intensities,

depending on the type and strength of interactions among the agents.

In financial context, for instance, empirical evidence that herding phe-

nomena do not involve all agents at the same time abounds [70, 127].

Summing up, the classical models of informational cascades share some

unrealistic assumptions that need to be complemented in such way. Our

aim is that of approaching to this phenomenon from a different perspec-

tive: we will focus on informational cascades from a control viewpoint.

We will propose a dynamic model which allows to generate informational

cascades of different intensities. This approach will allow us to exploit

our background in the field of control theory in order to overcome some
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of the limitations of the aforementioned models, such as path depen-

dence, or the unrealistic case of total informational cascades. In the

next chapters, we extensively explain the details and the advantages of

our approach.
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CHAPTER 5

A New Model of Opinion

Dynamics

Models of social networks are structures made up of individuals that

are tied based on their interdependency. Such models explain the confi-

dence or influence flow in populations without relying on detailed social

psychological findings. The process of opinion dynamics evolves along

the networks of social influence and affects the structure of the network

itself. In the field of social networks, opinion dynamics is of high in-

terest in many areas including politics, as in voting prediction; physics,

as in spinning particles; sociology, as in the diffusion of innovation, the

electronic exchange of personal information, and language change; and

finally economics. That’s why the study of opinion dynamics has re-

cently started to attract also the attention of the control community,

whose main challenge is represented by the analysis of the stability prop-

erties of the proposed models, in particular, convergence of the agents’

opinions, as shown in some of the most recent contributions in this field

[56, 63, 101, 107].
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5.1 A Brief Survey on Opinion Dynamics

In the literature, two general lines of research have been proposed in or-

der to explain the dynamics of opinion consensus or disagreement. The

first one includes many models of opinion dynamics based on “bounded

confidence”, which means that an individual only interacts with those

whose opinions are close enough to its own. This idea reflects the psycho-

logical concept called selective exposure. Broadly defined, “selective ex-

posure refers to behaviors that bring the communication content within

reach of one’s sensory apparatus” [139]. The other line of research fo-

cuses on the “obstinacy” of agents: in general, an agent neither simply

shares nor strictly disregards the opinion of any other agent, but takes

into account the opinions of others to a certain extent in forming his

own opinion.

In what follows, we briefly overview these two lines of research, starting

from the respective pioneer works.

5.1.1 Bounded Confidence Models

Recently, bounded confidence (BC) models of opinion dynamics, a la-

bel coined by Krause in 1998 [69], have received significant attention.

BC models are models of continuous opinion dynamics in which agents

have bounded confidence in others opinions. The first version of BC

models was formulated by Hegselmann and Krause [63], called the HK

model, where agents synchronously update their opinions by averaging

all opinions in their confidence bound:

ẋi(t) =
∑

j:|xj(t)−xi(t)|<d

(
xj(t)− xi(t)

)
, (5-1)

with d > 0.
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The other popular version of BC models was developed and investigated

by Deffuant and Weisbuch [125], called the DW model. The HK and

DW models are very similar, but they differ in their update rule: in the

DW model a pairwise-sequential updating procedure is employed instead

of the synchronized one. In the HK model, the set of neighbors of an

agent is defined as those agents whose opinions differ from his opinion

by less than a confidence bound. Hence, this model is dealing with

endogenously changing topologies, that is, state dependent or changing

from inside, in contrast to the exogenously changing topologies. The HK

models are classified based on various factors: a model is called agent- or

density-based if its number of agents is finite or infinite, respectively, and

a model is called homogeneous or heterogeneous if its confidence bounds

are uniform or agent-dependent, respectively. The convergence of both

agent- and density-based homogeneous HK models are discussed in [17],

while the agent-based homogeneous HK system is proved to reach a fixed

state in finite time [41], Based on this model of opinion dynamics, which

main feature is that of considering a state-dependent topology, several

interesting works followed, see for instance [89, 22, 133, 117].

5.1.2 Models of Opinion Pooling

One of the first who analyzed consensus of individuals’ opinion was De-

Groot [34], who proposed Eq. (2-8) as a model of opinion dynamics. It

is actually an iterative scheme of opinion pooling in which each agent

updates his opinion based on his own and neighbors’ current opinion.

This model was extended by Friedkin and Johnsen (FJ) [55], who in-

troduced the concept of agents’ susceptibility to interpersonal influence,

and also provided an estimation of the agents’ opinion at equilibrium.

FJ model in matrix form is described as

x(k + 1) = ΛWx(k) + (IN − Λ)x(0), (5-2)
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where W is a row stochastic matrix of interpersonal influences, and

0 ≤ Λ ≤ IN is a diagonal matrix of agents’ susceptibilities to the social

influence.

The natural and intensively investigated special case of this model as-

sumes the coupling condition λii = 1−wii ∀ i, that is, Λ = IN−diag(W ).

Under this assumption, the selfweight wii plays a special role, considered

to be a measure of stubborness or closure of the i-th agent to interper-

sonal influence. If wii = 1, and thus wij = 0 ∀ j 6= i, then he is

maximally stubborn and completely ignores opinions of his neighbors.

Conversely, if wii = 0, and thus his susceptibility is maximal (λii = 1),

the agent is completely open to interpersonal influence, attaching no

weight to his own opinion. Thus, the susceptibility of the i-th agent

λii varies between 0 and 1, where the extremal values correspond to

maximally stubborn and open-minded agents, respectively.

Starting from this simple model of opinion dynamics, several models fol-

lowed. Some of them investigates the presence of leaders in the popula-

tion, and their effects on opinion consensus [68, 85, 90, 118, 58]. Another

interesting framework concentrates on a class of randomized dynamics

[108, 54, 49, 109, 112]. In [54], for instance, the authors propose a model

inspired to the FJ model where nodes interact in randomly chosen pairs,

following the so called gossip protocol [18]. At each time step, a ran-

domly chosen agent updates its opinion to a convex combination of its

own opinion, the opinion of one of its neighbors, and its own initial opin-

ion or “prejudice”. They show that the dynamics persistently oscillates;

however, the result is a stable opinion profile on average. This stability

property guarantees that the dynamics, although affected by persistent

random oscillations, possesses an ergodic behavior. For an overview on

randomized algorithms for opinion formation, see [53] and the references

therein. Another interesting concept in models of opinion dynamics as in
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(2-8) is that of democratic consensus, which is introduced and discussed

in [48].

One of the limitations of most of the models of opinion dynamics are

the strong assumptions on the graph of interactions required to reach

consensus. Just as an example, in [88] the authors study consensus

of a multi-agent system with cooperative-antagonistic interactions and

switching topologies in a discrete-time setting. Both unidirectional and

bidirectional topologies are considered. It was proven that the limits

of all agent states exist and reach a consensus only if the topology is

uniformly jointly strongly connected or infinitely jointly connected. Of

course, in real applications these assumptions are quite unrealistic.

However, an interesting benefit of the FJ model is that, despite being a

simple model, it is actually a very flexible model which may be adopted

in various contexts. In our artificial market, we have translated the

agents’ interaction as a variation of the risk attitude due to the neigh-

bors’ influence. This interaction mechanism has been described by Eq.

(3-10), which is actually equivalent to the FJ model of opinion dynam-

ics (5-2). Indeed, the risk attitude in its general meaning can be seen

as a human dynamical feature which may be affected by different fac-

tors. Undoubtedly, there is a innate predisposition which characterize

each person, and which depends on the character, education, life expe-

rience, and so on. Moreover, people’s attitude toward risk is inevitably

influenced by exogenous and environmental factors, and overall by the

interaction with other people. That’s why we leverage the FJ model

to capture the evolution of the agents’ risk attitude, which is updated

taking into account both their innate predisposition, described by y(0),

and the interaction with other people, described in the matrix of inter-

personal influences W .
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5.2 The Model

From now on, we introduce the main contributions of this thesis. In or-

der to study informational cascades from a control viewpoint, we see this

phenomenon as a result of a diffusion of a certain opinion in an ensem-

ble of agents. To do this, we propose a new model of opinion dynamics

which allows us to see informational cascades as a consensus problem.

In this model, we will try to embed some of the main features of herding

and of the consequent informational cascades, and, at the same time,

to overcome some limitations of the models of informational cascades

already present in the literature. As already pointed out in Section 4.2,

one of the limitations of these models lies in the fact that eventually

all the agents are involved in the triggered informational cascade. Un-

doubtedly, this perspective is almost unrealistic, as shown by empirical

evidence. These observations lead us to consider the more realistic case

of “partial informational cascade” as the partial diffusion of a common

opinion in an ensemble of agents.

Differently from the classical models of informational cascades, which are

static models based on bayesian rules, we propose a dynamic networked

model in which each agent interact with some other agents, and this

interaction biases his opinion.

Exploiting the well established link between multi-agent systems and

graph theory [13], and to be compliant with the models of opinion dy-

namics, we see each trader as a node of a dynamical network and use

the network edges to model the influence among the agents.

In our model, the state of each node i is described by two variables,

xi(k) and ri(k). The former captures the opinion of agent i, while the

latter his reputation. We model the interaction and the mutual influence

among the agents as a directed graph G
(
V, E , {αij(k)}i,j∈V

)
, where each
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node i of the set V represents an agent, and the generic edge eij is

encompassed in the edge set E if the opinion of node i depends on that

of node j. Moreover, the influence of the opinion of the other agents on

the opinion of agent i is weighted through the coefficient

αij
(
r(k)

)
=

rj(k)∑
h∈Ni

rh(k)
, (5-3)

where Ni defines the set of in-neighbors of i (see Def. 2.1.4).

We consider the following dynamics for the state variables xi(k) and

ri(k):{
xi(k + 1) = xi(k) +

∑
j∈Ni

αij
(
r(k)

)(
xj(k)− xi(k)

)
,

ri(k + 1) = f
(
ri(k), ui(k), vi(k)

)
.

(5-4)

We model through f
(
ri(k), ui(k), vi(k)

)
the dependence of an agent’s

reputation from his actions ui(k) and exogenous factors vi(k), constrain-

ing the vector field f to describe a positive system to ensure the repu-

tation of an agent be positive.

By doing so, the dynamics of xi(k) becomes that of a directed network

of diffusively coupled integrators with state dependent gains. We can

leverage the topology of this network to represent people with different

opinion formation schemes. Namely, we model the agents who are not

willing to let their opinion be influenced by that of the other agents as

the set R := {i : Ni = ∅} of nodes with zero indegree. The nodes of

R, having outgoing edges, play the role of leaders, as they are capable

of influencing the opinion of other people. On the contrary, nodes with

high indegree may represent the influencees, that is, individuals who are

subject to the influence of the mass, thus uniforming their ideas and

opinions with those of the majority of the population. Finally, nodes

with low, but nonzero indegree model agents who, conscious of their lack

of experience and information, follow the opinion of a small set of peers
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which they consider experts and clever. Consistently, the outdegree

measures the potential of an individual of influencing the population,

while his actual ability of influencing his peers is related to his reputation

ri(k) through the coefficient αij
(
r(k)

)
in Eq. (5-3). The larger ri(k), the

stronger the influence that i exerts on the nodes connected to him. In

this way, the agents’ reputation becomes a measure of the influence that

the agents exert on their peers, and thus we capture from a dynamical

viewpoint the tendency of people to follow the actions of individuals with

high reputation, which is considered one of the main causes of herding

behavior [39].

We emphasize that this model is a general model of opinion dynamics

which can be embed in different contexts and situations where an en-

semble of individuals have to reach a consensus on a certain opinion

(e.g. voting). In the next chapter, we will use this model in a financial

context, showing its ability in reproducing herding phenomena.



CHAPTER 6

Informational Cascade as a

Pinning Control Problem

In what follows, we show how the proposed model of opinion dynamics

succeeds in reproducing informational cascades of different intensities.

First, we show how the model allows to view informational cascades

as a pinning control problem. Then, exploiting tools from partial pin-

ning control (Sec. 2.4), we predict the magnitude of the triggered in-

formational cascades. We propose a numerical application to test the

effectiveness of our predictions.

To reproduce partial informational cascades, we populate network (5-4)

with two categories of agents: informed and followers. These qualita-

tively correspond to the extreme types of actors in the FJ model (5-2).

Informed agents are stubborn and thus their opinion dynamics is not

influenced by other people; conversely, the followers completely disre-

gard their opinion and only take into account that of their neighbors.

To be compliant with the classical models of informational cascades, we

assume the presence of an external information injected on a subset of

the network nodes. We model the exogenous information as an exter-
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nal signal x̄ fed by an additional node only to a subset of the agents,

say I ⊆ R, which then play the role of informed agents. From these

influencers, the information diffuses through the network, affecting the

agents’ decision making. This choice allows us to see herding dynamics

as a pinning control problem, with the additional node playing the role

of the pinner, and the informed nodes being in the role of pinned nodes.

Consistently, Eq. (5-4) may be rewritten as
xi(k + 1) = xi(k) +

∑
j∈Ni

αij
(
r(k)

)(
xj(k)− xi(k)

)
+δi(x̄− xi(k)),

ri(k + 1) = f
(
ri(k), ui(k), vi(k)

)
,

(6-1)

where δi = 1 for all i ∈ I, and δi = 0 for all i /∈ I.

By constraining I to be a subset of R, the informed agents will only be

influenced by the exogenous signal x̄, thus disregarding their own beliefs

and the opinion of the other investors.

To model the effect of each agent’s opinion on his behavior, we define

the agent decision as a generic outpout si(k) of system (6-1):

si(k) = g
(
xi(k)

)
. (6-2)

The function g, of course, may be explicated depending on the context.

For the informed influencers, we will have that si(k) = g(x̄) = s̄, ∀i ∈ I,

and ∀k > 0. As Eq. (6-1) is that of a diffusive process over a directed

network of discrete integrators, it may well be the case that the opinion of

an additional set of nodes converges to that of the informed agents, thus

ensuring that also the decisions si(k) of the former replicate that of the

latter, that is, s̄. The larger the set of nodes C which reaches consensus

to the opinion of the informed agents, the larger the magnitude of the

herding phenomenon that is generated. Hence, to understand the ability

of the model in eqs. (6-1)-(6-2) of generating informational cascades of
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different magnitudes, we shall study the variation of the number of nodes

whose opinion converges to that of the informed agents, in dependence

of the selection of the set I. Note that, as I ⊆ C, then C 6= ∅.

Unfortunately, as already pointed out in Sec. 2.3, while the literature

on pinning control is extremely vast, no results hold for dynamics like

that in Eq. (6-1), where xi(k) evolves according to a discrete-time and

state dependent law. Hence, no results in the literature provide tools to

accurately predict our diffusion process. Still, given the set of pinned

nodes I, we can rely on the topological conditions available in the litera-

ture to predict the number of nodes which should reach consensus to the

pinner’s opinion. In particular, we use the pinned node selection algo-

rithm proposed in [37] (see Section 2.4.1), which translates the problem

of maximizing the number of pinning controlled nodes into an optimiza-

tion problem on a graph. To do so, it relies on the following structural

condition: a node is pinning controllable if all of the RSCCs (see Def.

2.1.16) in its upstream encompass at least a pinned node. Hence, the

algorithm selects the set of p RSCCs to be pinned that maximize the

number of nodes fulfilling such condition. To allow numerical solvabil-

ity, this graph optimization is translated into an integer linear program.

Then, we numerically verify if, considering the dynamics in Eq. (6-1)

which does not fulfill the hypothesis of partial pinning control, yields re-

sults that are consistent with these structural conditions. To do this, we

test our model of opinion dynamics in the artificial market proposed in

Chapter 3. We show that, by selecting the nodes of the set I according

to the partial pinning control algorithm, our opinion dynamics model

succeeds in generating herding phenomena of different and predictable

intensities in our artificial financial market.

In what follows, we propose the financial application of our model of

opinion dynamics.
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6.1 An Application to our Artificial Financial

Market

The artificial market proposed in Section 3.1 is populated by N agents,

and we select a directed weighted graph G
(
V, E , {αij(k)}i,j∈V

)
to model

the mutual influence among them. Notice that, while the network struc-

ture is fixed, (G and E are time-invariant), the interaction weights are

time-varying. This assumption is reasonable if we think that we are

dealing with informational cascades, which are phenomena occurring on

a short time scale. Thus, we can assume that in a brief period of time

the pattern of relationships of each agent is keeping fixed, even though

the intensity of such relations may change.

At each time step k = 1, ..., T , the agents, in a sequential random order,

can trade in a set of financial assets L, with |L| = L. Notice that T

is selected high enough so that, on average, no one is favored by the

trading sequence. The assets are characterized by stochastic returns

β = [β1, ..., βL] and by a limited availability. We denote with x̄ = E[β]

the expected return of the assets, which is assumed to be constant1, and

relabel the assets in L such that x̄1 > x̄2 > ... > x̄L.

In line with the proposed model of opinion dynamics (Eq. (6-1)), the

state of each trader i is described by two state variables. As we are in

a financial context, we assume that the vector xi(k) = [x1
i (k), ..., xLi (k)]

represents the current evaluation of the asset returns made by agent

i, while the scalar ri(k) quantifies his reputation. it is reasonable to

assume that the latter coincides with the agent’s current wealth, whose

1As already pointed out in Section 4.2, we are aware that price dynamics is an

important market feature which may influence the onset of cascades. However, much

effort should be spent in order to build a model of price mechanism. That’s why in

this study we will not take into account this issue. However, this could be object of

further research.
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dynamics is described in Eqs. (3-5) - (3-6): the richer the agent, the

more prone his neighbors are to take into account his opinion.

As to the first state variable, notice that, at a first instance, we had

assumed that all the agents have the correct information on the assets’

return. From now on, we remove this hypothesis, assuming that each

agent has a personal evaluation on the assets, and thus associates dif-

ferent probability distributions to the assets’ return. This more realistic

behavior allows to be compliant with the classical models of informa-

tional cascades, in which the opinion of an investor is affected by ex-

ogeneous information. Actually, in this context, this information may

represent the correct evaluation of the expected asset returns x̄ fed by

a virtual trader, the pinner, only to the subset I of influencers, the so

called informed traders.

As in Section 3.1.2, the agents determine their trading strategy maximiz-

ing their expected utility. Without loss of generality, we now populate

our market of risk neutral investors [64, 66]. From a mathematical point

of view, this means setting the risk attitude of each agent yi(k) = 1,∀i, k
in Eq. (3-1). In the view of this, the expected utility that agent i asso-

ciates to the assets becomes:

E
[
Ui(k)

]
= εri(k)xi(k), (6-3)

with xi(k) = 0.5
(
ai(k) + bi(k)

)
being the current evaluation of the asset

returns made by agent i, and ε being the fraction of current wealth that

each agent is prone to invest. Accordingly, the trading preferences si(k)

of agent i in (3-3) become an output of xi(k), in line with Eq. (6-2).

Namely, the opinion of each agent on the expected returns of the assets

reflects in his trading strategy. Consistently, (3-4) becomes

sji (k) := m : ∃ m− 1 xli(k) > xji (k), ∃ L−m xli(k) < xji (k). (6-4)
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Due to the limited availability of the assets, the actual trading action

made by agent i corresponds to trade in the first available asset l∗ ac-

cording to his preferences si(k), and thus the outcome of the trade is a

realization of βl
∗
.

In the view of these considerations, Eq. (6-1) can be rewritten as
xi(k + 1) = xi(k) +

∑
j∈Ni

αij
(
r(k)

)(
xj(k)− xi(k)

)
+δi
(
x̄− xi(k)

)
,

ri(k + 1) = f
(
ri(k), βl

∗
, τ(k)

)
,

(6-5)

where τ(k) is the exogenous factor representing the selected taxation

scheme which affects the current wealth (see Eq. (3-6)).

6.1.1 Herding Intensity

To test the ability of the proposed model of triggering herding phenom-

ena of different magnitudes, we perform a set of numerical simulations

in which we vary the number of pinned nodes p = |I|. We vary p be-

tween one and the minimal value of influencers required to generate an

informational cascade that involves all the agents. In each simulation,

say the p-th, the set I(p) is selected according to the pinned node selec-

tion algorithm proposed in [37]. On the basis of topological conditions,

this algorithm maximizes the cardinality |C(p)| of the set C(p) of nodes

which should reach consensus to the pinner’s value. We stress that, as

the dynamics of xi(k) in Eq. (6-5) do not fulfill the assumptions made

in [37], the set Co(p) of nodes that will actually achieve consensus on the

state of the pinner in the p-th simulation could be different from the set

C(p).
We recall that, for the informed traders, xi(k) = x̄, and thus si(k) =

s̄ = [1, ..., L] ∀i ∈ I, and ∀k > 0. On the other hand, the opinion,

and consequently the trading action, of the influencees depends on that
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of their peers. We say that an influencee herds when he uniforms his

trading strategy to that of the informed agents. For each simulation

p, the set of the agents involved in the triggered informational cascade

from a certain time step k∗ is then defined as

H(p) := {i ∈ V : si(k) = s̄, ∀k > k∗}. (6-6)

Thus, H(p) is the observed set of nodes the trading strategy of which

coincides with that of the pinner in the last T − k∗ iterations.

For each simulation, we measure the magnitude of the triggered informa-

tional cascade through the LSV index [72], a well-established measure

of the strength of herding phenomena. It is defined as

LSV (p) =

∣∣∣∣ |H(p)|
N

− b
∣∣∣∣ , (6-7)

where b refers to the fraction of agents who have correct preferences of

the assets in the no-herding case, that is, when p = 0.

6.2 Simulations’ Setting

In order to select an appropriate topology of interactions for this context,

one could try to reconstruct the network starting from epirical data.

However, this is a well known hard task, and for the moment is out of

our scope. That’s why we performed numerical simulations on several

real network topologies, as we want to highlight the robustness of our

model to any topology of interactions. In what follows, we extensively

illustrate the case of a selected real network topology. However, later on

we will briefly show some evidence of other topologies, in order to prove

that in every case we have obtained the same qualitative results. In line

with the selected network, we consider a market populated by N = 1057

agents endowed with the same initial wealth ri(0) = 100$, ∀i = 1, ..., N .
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At each iteration k = 1, ..., T = 5000, each agent is prone to trade the

fraction ε = 0.2 of his current wealth ri(k) in one of the L = 4 categories

of financial assets. Each category is characterized by an availability equal

to 1/15th of the total wealth of the system, except for the fourth asset,

which is a virtual asset and correspond to no-investment, and thus has

an unlimited availability. In line with our scenario, the expected returns

of the assets are x̄1 = 1.065, x̄2 = 1.050, x̄3 = 1.035, and x̄4 = 1.

All the agents have a distorted initial perception of the expected returns

(except for the virtual asset), that is, xli(0) = x̄L−l ∀i = 1, ..., N and ∀l =

1, 2, 3. For the sake of simplicity, we consider only a taxation scheme

in our simulations, that is, the Tobin-like tax (see Section 3.1.3.1). We

evaluate the onset of the herding phenomenon in the last 1000 iterations

(k∗ = 4000).

6.3 Main Results

Given these premises, we can now go through our numerical results. We

start by noting that, although the dynamics of xi(k) in Eq. (6-5) do not

fulfill the assumptions made in [37], we observe that |C(p)| = |Co(p)| ∀p.
As the opinion of all agents in the set Co(p) converges to that of the

pinner, i.e. xi(k) = x̄ ∀i ∈ Co(p), and ∀k = T − 1000, . . . , T , we also

have that si(k) = s̄ ∀i ∈ Co(p) and ∀k = 1, . . . , T . In other words, all

agents achieving consensus on the state of the pinner also imitate the

latter’s trading strategy. Hence, the set C(p) represents a prediction of

the set H(p) of agents who herd in the p-th simulation. As, when p = 0,

that is, in the no-herding case, xli(k) = x̄L−l ∀l = 1, 2, 3, and ∀i, k, we

have that b = 0, and thus Eq. (6-7) becomes

LSV (p) =
|H(p)|
N

. (6-8)
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Figure 6-1: Intensity of the predicted (red bars) and observed

(blue bars) informational cascade for each value of p.

This allows to predict the herding intensity as

L̂SV (p) =
|C(p)|
N

. (6-9)

As shown in Fig. 6-1, we find that LSV (p) ≥ L̂SV (p) ∀p, as we observe

that the set of herding agents is often larger than the set C(p), that is,

C(p) ⊆ H(p).

By inspecting the opinion dynamics of the agents in the simulations for

which LSV (p) > L̂SV (p), we notice that the agents in the set H(p) −
C(p) perform the correct ranking of the assets although they do not reach

consensus on the state of the pinner, i.e., ∀i ∈ H(p)− C(p), we have{
xi(k) 6= x̄(k);

x1
i (k) > x2

i (k) > x3
i (k) ∀k = T − 1000, . . . , T,

(6-10)

yielding si(k) = s̄ ∀i ∈ H(p)−C(p). This because, as shown in Fig. 6-2,

the expected returns perceived by the agents in the set H(p)− C(p) are

close enough to those of the pinner to determine the same output, that is,
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the same trading strategy. These influencees, being in the downstream of

several influencers but also of some non informed leaders, feel the opinion

of the latter as a disturbance on their opinion, thus compromising their

ability of converging to the correct expectations.

4000 4200 4400 4600 4800 5000

1.035

1.050

1.065

k

r

(a)

4000 4200 4400 4600 4800 5000

1.035

1.050

1.065

k

r

(b)

4000 4200 4400 4600 4800 5000

1.035

1.050

1.065

k

r

(c)

Figure 6-2: Expected returns of the asset 1 (blue lines), 2 (red

lines), and 3 (green lines) perceived by the agents included in the

set C(p) (Fig. 6.4(a)), H(p) − C(p) (Fig. 6.4(b)), and V − H(p)

(Fig. 6.4(c)), respectively, for the simulation p = 31.

6.4 Further Results

In the following, we will show some further results, in order to highlight

the robustness of the proposed model to variations of initial conditions,

and of the selected topology of interaction.

6.4.1 Initial Conditions

In our simulations, we have intentionally maximized the distortion of the

initial perception of the expected returns of the agents to better highlight

the emergence of herding behavior. Namely, we show how the agents

involved in the informational cascade drastically change their opinion

even though their initial opinions are opposite to those of the pinner.

However, a random selection of the initial opinions does not qualitatively
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affect our results. Even in this case, indeed, we observe that the set C(p)

represents a prediction of the minimum number of agents that actually

herd. Namely, we have that |C(p)| = |Co(p)|, and that C(p) ⊆ H(p) ∀p,

as shown in Fig. 6-3. In the view of this, we can assess that our model

is independent from the initial conditions, thus overcoming one of the

limits of the classical models of informational cascades (see Section 4.2).
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Figure 6-3: Intensity of the predicted (red bars) and observed

(blue bars) informational cascade for each value of p, and for a

random selection of the agents’ initial opinions.

6.4.2 Topologies of Interaction

As already pointed out, in our simulations we selected a real sufficiently

large network. Actually, we performed numerical simulations with dif-

ferent networks of interaction, obtaining the same qualitative results. In-

deed, for each scenario of interaction, we have that |C(p)| = |Co(p)| ∀p,

while in Fig. 6-4 we can observe the triggered partial informational

cascades for three of these scenarios.
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These further results share the robustness of our model to variations of

initial conditions, and network interactions, thus highlighting the flexi-

bility of our model to be adapted to different contexts.
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Figure 6-4: Intensity of the predicted (red bars) and observed

(blue bars) informational cascade for each value of p, and for

three different networks of interaction.



CHAPTER 7

Phase Transitions in Partial

Pinning Control of

Complex Networks: the

Generating Functions’

Approach

7.1 About Phase Transitions

The term phase transition (or phase change) is most commonly used to

describe transitions between solid, liquid and gaseous states of matter,

and, in rare cases, plasma (physics). A phase of a thermodynamic sys-

tem and the states of matter have uniform physical properties. During

a phase transition certain properties of the system change, often dis-

continuously, as a result of the change of some external condition, such

as temperature, pressure, or others. For example, a liquid may become

gas upon heating to the boiling point, resulting in an abrupt change

in volume. The measurement of the external conditions at which the
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transformation occurs is termed phase transition. Phase transitions are

common in nature and used today in many technologies.

The condition for phase transitions generally stems from the interac-

tions of a large number of particles in a system, and does not appear in

systems that are too small. Phase transitions can occur and are defined

for non-thermodynamic systems, where temperature is not a parameter.

Examples include: quantum phase transitions, dynamic phase transi-

tions, and topological (structural) phase transitions. In these types of

systems other parameters take the place of temperature. For instance,

connection probability replaces temperature for percolating networks.

Paul Ehrenfest [67] classified phase transitions based on the behavior of

the thermodynamic free energy E as a function of other thermodynamic

variables, such as temperature T . Under this scheme, phase transitions

were labeled by the lowest derivative of the free energy that is discon-

tinuous at the transition. The transitions are classified as

� first-order phase transitions, which exhibit a discontinuity in the

first derivative of the free energy with respect to some thermo-

dynamic variables. First-order phase transitions are those that

involve a latent heat. During such a transition, a system either

absorbs or releases a fixed (and typically large) amount of energy

per volume. During this process, the temperature of the system

will stay constant as heat is added.

� second-order phase transitions, which are continuous in the first

derivative (the order parameter, which is the first derivative of the

free energy with respect to the external field, is continuous across

the transition), but exhibit discontinuity in a second derivative of

the free energy.
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Figure 7-1: An example of first order phase transition.

Figure 7-2: An example of second order phase transition.

7.1.1 Phase Transitions in Partial Pinning Control

Pinning control in complex networks is a synchronization technique

around a desired trajectory s(k). Applying partial pinning control on a

given network, we actually observe a transition from a fully incoherent

behavior to the synchronization of the whole network. This phenomenon

may be associated to a phase transition, in which the coherence param-

eter is represented by the fraction of pinning controllable nodes.

Namely, let’s give a deeper look to Fig. 6-1, focusing our attention
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Figure 7-3: Fraction of pinning controllable nodes for each

value of p.

on the intensity of informational cascade predicted through the partial

pinning control algorithm, see Fig. 7-3. As we can see, by increasing

the number of appropriately selected pinned nodes, we can notice a first

order phase transition from a fully incoherent network behavior to the

synchronization of the whole network to the pinner’s trajectory.

Abstracting from the application proposed in the previous chapter, Fig.

7-3 represents an analysis of partial pinning controllability of the se-

lected network. Namely, the analysis of the structural conditions for

partial pinning controllability of a generic network provides lots of in-

formation on the network itself, such as the minimum number of pinned

nodes required in order to control the whole network, how many nodes

can be controlled with a limited amount of resources, represented by the

pinned nodes, and how much effort must be done in order to control

almost the whole network.

By inspecting Fig. 7-3 we have realized that the emergence of a first

order phase transition depends on the existence of a Giant Strongly
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Figure 7-4: Partial pinning controllability of a network of 2400

nodes which does not include a GSCC. Notice the emergence of

a second order phase transition.

Connected Component (GSCC, see Section 2.1.3.1) in the network. The

GSCC behaves like latent heat and represents the number of nodes to

be pinning controlled to get the phase transition and p∗ is the minimum

number of Root Strongly Connected Components (RSCC, see Section

2.1.3.1) to be pinned to pinning control the GSCC. Actually, networks

without a GSCC exhibit a second order phase transition. An example

is given in Fig. 7-4. Thus, the type of the emerging phase transition in

partial pinning controllability of a complex network is strictly related to

the topological features of the latter, most of them are well explained

by the degree distribution of the network itself.

In the view of this, a question naturally arise. Are we able to analytically

predict the partial pinning controllability of a given network, without

leveraging the numerical simulations? In particular, some issues could

be addressed, such as:
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Questions 7.1.1.

1) Starting by the only knowledge of the degree distribution of a given

network, can we analytically predict which kind of phase transition

will arise?

2) As to the first order phase transition, can we estimate the width

of the discontinuity, in order to predict the number of controllable

nodes in correspondence of the transition?

3) Can we predict the minimum number of nodes which should be

pinned in order to observe the jump?

To answer this questions, a statistical mechanics approach could be con-

sidered. In particular, we will try to leverage the generating functions to

better characterize the phenomenon of phase transition in partial pin-

ning controllability of complex networks. The details of this approach

are extensively explained in the following.

7.2 Statistical Mechanics of Complex Networks

The study of network models began with Erdős and Rényi [45, 46, 47].

They proposed a model of networks with randomly distributed links.

The random graph of Erdős and Rényi is one of the most studied models

of a network, and possesses the considerable advantage of being exactly

solvable for many of its average properties. However, due to the devel-

opment of computers, allowing the analysis of large amounts of data,

such as the Internet and WWW, some analysis of real world networks

has been done in the last decade. In particular, other models of com-

plex networks were proposed in order to capture some features of real

networks, such as the well known scale-free and small-world networks.

Although these models are more appropriate than the random network
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to represent some real networks, they still differs from real-world topolo-

gies in some fundamental ways, as pointed out in [116, 3].

In the view of this, recent works on the structure of complex networks

have focused attention on graphs with arbitrary degree distributions.

Studying the properties of random graphs defined by their degree dis-

tribution is not simply an abstract problem; it has a clear practical

motivation. For instance, one may consider an empirical degree distri-

bution that is based on measured or observed data, and try to extract

information on the network itself which do not follow a specific degree

distribution.

Clearly, a degree distribution does not define a graph uniquely. That

said, an attractive alternative to the classical models is to define a ran-

dom graph by a given degree distribution assuming that apart from the

degree distribution the graph is absolutely random. This line of research

was introduced by Molloy and Reed [91] and was later developed further

by Newman, Strogatz, and Watts, see [96, 95], whose main results are

summarized in the following.

7.2.1 Generating Functions of Undirected Networks

Newman, Strogatz, and Watts developed a formalism for calculating a

variety of quantities, both local and global, on large graphs with ar-

bitrary probability distribution of the degrees of their vertices, in the

termodynamic field. In all respects other than their degree distribution,

these graphs are assumed to be entirely random. This means that the

degrees of all vertices are independent identically distributed random

integers drawn from a specified distribution. For a given choice of these

degrees, also called the “degree sequence”, the graph is chosen uniformly

at random from the set of all graphs with that degree sequence.
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Their approach is based on the generating functions [130], the most

fundamental of which is the generating functionG0(x) for the probability

distribution of vertex degrees k, which is defined as

G0(x) =
∞∑
k=0

pkx
k, (7-1)

where pk is the probability that a randomly chosen vertex has degree k,

and |x| ≤ 1. As pk is assumed to be correctly normalized, we have that

G0(1) = 1. (7-2)

The probability distribution pk is given by the kth derivative of G0(x):

pk =
1

k!

dkG0

dxk

∣∣∣∣
x=0

. (7-3)

Thus, the function G0(x) generates the probability distribution pk.

Consequently, the average degree z of a network is given by

z = 〈k〉 =
∑
k

kpk = G′0(1), (7-4)

while higher moments of the distribution can be computed from higher

derivatives:

〈kn〉 =
∑
k

knpk =

[(
x
d

dx

)n
G0(x)

]
x=1

. (7-5)

An important property of the generating functions is the so called “pow-

ers property:” if we choose m vertices at random from a large graph, then

the distribution of the sum of the degrees of those vertices is generated

by [G0(x)]m.

Another quantity of interest is the generating function of the distribution

of the degree of the vertices that we arrive at by following a randomly

chosen vertex:

G1(x) =
G′0(x)

G′0(1)
=

1

z
G′0(x). (7-6)
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Eq. (7-6) and the powers property allows to define the probability dis-

tribution of the second neighbors of a vertex as∑
k

pk[G1(x)]k = G0

(
G1(x)

)
. (7-7)

Consequently, the average number z2 of second neighbors is

z2 =

[
d

dx
G0

(
G1(x)

)]
x=1

= G′0(1)G′1(1) = G′′0(1). (7-8)

Now, let us consider the distribution of the sizes of connected com-

ponents in the graph. Let H1(x) be the generating function for the

distribution of the sizes of components which are reached by choosing a

random edge and following it to one of its ends. It can be written as

H1(x) = xG1

(
H1(x)

)
. (7-9)

If we start at a randomly chosen vertex, then we have one such compo-

nent at the end of each edge leaving that vertex, and hence the gener-

ating function for the size of the whole component is

H0(x) = xG0

(
H1(x)

)
. (7-10)

In principle, therefore, given the functions G0(x) and G1(x), we can

solve Eq. (7-9) for H1(x) and substitute into Eq. (7-10) to get H0(x).

Then we can find the probability that a randomly chosen vertex belongs

to a component of size s by taking the s-th derivative of H0. In practice,

unfortunately, this is usually impossible. However, we can find closed-

form expressions for the average properties of clusters. For example,

the average size of the component to which a randomly chosen vertex

belongs, for the case where there is no giant component in the graph,

after some manipulations, is given by

〈s〉 = 1 +
G′0(1)

1−G′1(1)
= 1 +

z2
1

z1 − z2
, (7-11)
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where z1 = z is the average number of first neighbors. We see that this

expression diverges when G′1(1) = 1. This point marks the point at

which a giant component first appears. Namely, from Eq. (7-11) we can

derive the condition for the existence of a Giant Connected Component

for undirected graphs as ∑
k

k(k − 2)pk > 0. (7-12)

This result has been derived for the first time by Molloy and Reed in

[91].

By definition, H0(x) generates the probability distribution of the sizes

of components excluding the giant component. This means that H0(1)

is no longer unity, as it is for the other generating functions considered

so far, but instead takes the value 1− S, where S is the fraction of the

graph occupied by the giant component. We can use this to calculate

the size of the giant component from Eqs. (7-10) and (7-9) as

S = 1−G0(H1(1)). (7-13)

Thus, by leveraging these functions, we can derive lots of information

starting by the only knowledge of the degree distribution. These rela-

tions have been exactly derived, for instance, for undirected random and

scale-free networks, which exhibit a Poisson and a power-law distribu-

tion, respectively. For further details, see [96].

7.2.2 Generating Functions of Directed Networks

Some results regarding the generating functions have also been proposed

for directed networks. In the following, we summarize the ones of our in-

terest, taken from [96, 42]. The results are obtained for graphs with sta-

tistically uncorrelated vertices and an arbitrary joint in and out-degree
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distribution p(ki, ko), where ki and ko correspond to the in- and out-

degree, respectively, and thus k = ki + ko is the number of total connec-

tion of a node. In the view of this, the generating function of a directed

network is

Φ(x, y) =
∑
ki,ko

p(ki, ko)x
kiyko , (7-14)

with |x| and |y| ≤ 1. When the links are all inside the network, the

average number of in- and out- degree is the same, thus being

∂xΦ(x, 1)
∣∣
x=1

= ∂yΦ(1, y)
∣∣
y=1
≡ z(d). (7-15)

Therefore, the average degree is z = 2z(d).

If one ignores the directedness of edges, then the generating function

becomes

Φ(w) = Φ(x, x), (7-16)

and

Φ
(w)
1 (x) =

Φ′(w)(x)

z
. (7-17)

The criterion of Molloy and Reed for undirected networks (see Eq.

(7-12)) can be used to check the existence in a digraph of a Giant Weakly

Connected Component (GWCC, see Section 2.1.3.1), while the size of

the GWCC can be computed as

W = 1− Φ(w)(tc), tc = Φ
(w)
1 (tc). (7-18)

In a directed network, we can also analyze the giant in- and out- com-

ponent, GIN and GOUT, respectively (see Section 2.1.3.1 for their def-

inition). Let us define the generating function of the out (in)-degree

distribution of the vertex, approachable by following a randomly chosen

edge moving along (against) the edge direction as

Φ
(o)
1 (y) =

1

z(d)
∂xΦ(x, y)

∣∣∣
x=1

; Φ
(i)
1 (x) =

1

z(d)
∂yΦ(x, y)

∣∣∣
y=1

, (7-19)
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respectively.

In the view of this, the existence of the GIN and GOUT, and conse-

quently of the GSCC, is ensured by

Φ
′(i)
1 (1) = Φ

′(o)
1 (1) =

1

z(d)
∂2
xyΦ(x, y)

∣∣∣
x=1,y=1

> 1, (7-20)

that is ∑
ki,ko

(2kiko − ki − ko)p(ki, ko) > 0, (7-21)

which corresponds to the criterion of Mollow and Reed for digraphs.

If Eq. (7-21) holds, then there are nontrivial solutions for the equations

xc = Φ
(i)
1 (xc) yc = Φ

(o)
1 (yc). (7-22)

xc < 1 and yc < 1 are the probabilities that the connected component

reached by moving against (along) the edge directions, starting from a

randomly chosen vertex, are finite. The in- and out- components of a

vertex are sets of vertices approachable from this vertex moving against

and along its edges, respectively, plus the vertex itself. Notice that any

vertex that has only a finite out-component cannot, by definition, belong

to the GIN.

Then, p(ki, ko)x
ki
c and p(ki, ko)y

ko
c are the probabilities that a random

chosen edge with ki incoming and ko outcoming edge have finite in- and

out- components. Summation of these expressions over (ki, ko) yields

the total probability that the in- and out- components of a randomly

chosen vertex are finite, that is, Φ(xc, 1) and Φ(1, yc), respectively.

From these considerations, we can derive the size of GIN and GOUT as

I = 1− Φ(xc, 1), O = 1− Φ(1, yc), (7-23)

respectively.
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Notice that a vertex belongs to the GSCC if its in- and out- components

are both infinite. Thus, the size of the GSCC in a digraph is

S = 1− Φ(xc, 1)− Φ(1, yc)− Φ(xc, yc), (7-24)

where Φ(xc, yc) is the probability that both the in- and out- component

of a vertex are finite. Eq. (7-24) can be explained in the following way.

If at least one of a vertex’s outgoing edges leads to anywhere in the GIN,

then one can reach the GSCC from that vertex. Conversely, if at least

one of a vertex’s incoming edges leads from anywhere in the GOUT,

then the vertex can be reached from the GSCC. If and only if both of

these conditions are satisfied simultaneously, then the vertex belongs to

the GSCC itself.

As for undirected networks, some results have been proposed for di-

graphs with well known degree distributions, see [92] for more details.

7.3 Generating Functions and Phase Transi-

tions: Answered and Open Questions

The generating functions are actually not easy to manage. Moreover,

they are based on some hypothesis that in general are difficult to satisfy.

However, this approach presents different benefits, as it allows to de-

scribe lots of properties of a given network. Perhaps the real advantage

of this approach is that is allows to deal with specific real-world graphs

which have known degree distributions, known because we can measure

them directly. For these graphs, one can measure the exact numbers

nk of vertices having degree k, and hence write down the exact gener-

ating function for that probability distribution in the form of a finite

polynomial:
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G0(x) =

∑
k nkx

k∑
k nk

, (7-25)

where the sum in the denominator ensures that the generating function

is properly normalized. Starting from Eq. (7-25), one can derives lots

of information on a network which does not follow a specific degree

distribution, as happens in almost all the real networks. The same, as

obvious, could be done for a directed network.

For our purpose, this approach allows to give an answer to some of Ques-

tions (7.1.1). In particular, they may be reformulated in the following

way:

Questions 7.3.1.

1) Does a condition of the existence of the GSCC exist? If so, is it

satisfied?

2) Are we able to compute the expected value of the size of the GSCC,

stated its existence?

3) Can we predict the number of roots which enters the GSCC?

Question 1) is easily to answer thanks to the aforementioned results.

Namely, a condition for the existence of the GSCC actually exists for

both undirected and directed networks. It corresponds to the criterion of

Molloy and Reed in Eqs. (7-12) and (7-21). By checking this condition

for a given network, one can predict which kind of phase transition

will arise when a partial pinning control is applied, starting from the

only knowledge of the degree distribution. Namely, if the condition

is satisfied, we will observe a first order phase transition; otherwise, a

second order phase transition will arises.
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As to question 2), we have seen that, when a giant component is present,

it is possible to estimate its size, see Eqs. (7-13) and (7-24). In this way,

we can predict the number of nodes which could be pinning controlled

if we would be able to pinning control the giant component.

Question 3) is perhaps the most interesting, but also the most difficult

to answer. Namely, if we were able to predict the minimum number of

nodes that must be pinned in order to pinning control the giant com-

ponent, we could also evaluate a priori the convenience of such effort,

in order to decide whether it’s worth to spend resources for a particu-

lar aim. Actually, in order to predict p∗, one could predict the number

of roots which enters the GSCC. Thus, we should have information on

the nature of the nodes belonging to GIN. Unfortunately, although the

generating functions’ approach provides information on the size of the

GIN (see Eq. (7-23)), up to now nothing more we can say about its

composition.

Of course, this issue could be addressed in a future research. A possible

way to answer this question could be to compute the probability that a

node belongs to the GIN, given that its in-degree is equal to zero. In

this way, we could have an estimate of the roots included in the GIN.
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CHAPTER 8

Conclusions

This thesis has been mostly motivated by the words of Jean-Claude

Trichet, the former European Central Bank Governor, who, speaking

about the recent financial crisis, highlighted the incapability of neoclas-

sical economics of analyzing and predicting this sudden event. Thus,

he encouraged the scientific community from other disciplines to pro-

vide tools that might complement traditional economics. In the view

of this, we have tried to give our little contribution by exploiting our

background in the field of control theory. Our interest focused on the

phenomenon of informational cascades, which have been used as possi-

ble explanations for financial bubbles and crashes. However, we noticed

that the classical models of informational cascades proposed in the lit-

erature are based on some restrictive assumptions which turned out to

be unrealistic. For instance, they only consider the case of a total cas-

cade, which is disconfirmed by empirical evidence. In the view of this,

we tried to exploit tools from control theory to overcome some of these

limitations. Namely, we proposed a novel model of opinion dynamics ca-

pable of triggering informational cascades of different intensities. This

model allowed us to treat informational cascades as a pinning control
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problem, and thus to leverage tools from partial pinning control to pre-

dict the emergence of such phenomena. We tested our opinion dynamic

model in an agent-based model of artificial market, that we built for this

purpose. We numerically showed how our model is capable of triggering

informational cascades of different intensities. Moreover, we showed how

these results confirmed the predictions made by leveraging tools from

partial pinning control theory.

Eventually, we proposed a different approach which could allow to ana-

lytically characterize the partial pinning corollability of a given network

with arbitrary degree distribution. Indeed, by inspecting the partial

pinning controllability of the networks we have analyzed, we have found

a close correlation with the topological features of the latter. In par-

ticular, the presence of a giant strongly connected component strongly

affects the pinning controllability of the network. To better understand

this correlation, we have tried to leverage tools from the generating func-

tions’ approach, which provides lots of information about the topological

features of a network with given degree distribution, and thus could also

allow to analytically predict information on the partial pinning control-

lability of complex networks. Indeed, thanks to this approach, we have

already provided an answer on some issues on the topic. However, some

criticisms are still unanswered, such as quantifying and predicting the

effort that should be spent in order to pinning control most of a network,

in order to evaluate the convenience of such effort. Given the novelty of

the topic, it will be undoubtedly deeper investigated in the future.



Bibliography

[1] http://www.crisis-economics.eu.

[2] Aa. Vv. Focus on statistical physics modeling in economics and

finance. New Journal of Physics, 13(2):025011, 2011. Focus issue.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex

networks. Reviews of modern physics, 74(1):47, 2002.

[4] V. Alfi, M. Cristelli, L. Pietronero, and A. Zaccaria. Minimal

agent based model for financial markets i. The European Physical

Journal B-Condensed Matter and Complex Systems, 67(3):385–

397, 2009.

[5] H. Amilon. Estimation of an adaptive stock market model with

heterogeneous agents. Journal of Empirical Finance, 15(2):342–

362, 2008.

[6] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and C. Zhou.

Synchronization in complex networks. Physics reports, 469(3):93–

153, 2008.

[7] C. Avery and P. Zemsky. Multidimensional uncertainty and herd

behavior in financial markets. American economic review, pages

724–748, 1998.



� 106 BIBLIOGRAPHY

[8] R. Backhouse. A history of modern economic analysis. Basil Black-

well, Oxford, 1985.

[9] Y. Baek, S. H. Lee, and H. Jeong. Market behavior and perfor-

mance of different strategy evaluation schemes. Physical Review

E, 82(2):026109, 2010.

[10] B. H. Baltagi, D. Li, and Q. Li. Transaction tax and stock mar-

ket behavior: evidence from an emerging market. Empirical Eco-

nomics, 31(2):393–408, 2006.

[11] A. V. Banerjee. A simple model of herd behavior. The Quarterly

Journal of Economics, pages 797–817, 1992.

[12] A.-L. Barabási and R. Albert. Emergence of scaling in random

networks. Science, 286(5439):509–512, 1999.

[13] L. Bargigli and G. Tedeschi. Interaction in agent-based economics:

A survey on the network approach. Physica A, 399(1):1–15, 2014.

[14] Dennis S Bernstein. Matrix mathematics: Theory, facts, and for-

mulas with application to linear systems theory, volume 41. Prince-

ton University Press Princeton, 2005.

[15] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads,

fashion, custom, and cultural change as informational cascades.

Journal of political Economy, pages 992–1026, 1992.

[16] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the

behavior of others: Conformity, fads, and informational cascades.

The Journal of Economic Perspectives, 12(3):151–170, 1998.

[17] V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. On krause’s

multi-agent consensus model with state-dependent connectivity.

IEEE transactions on Automatic Control, 54(11):2586–2597, 2009.



BIBLIOGRAPHY � 107

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gos-

sip algorithms. IEEE/ACM Transactions on Networking (TON),

14(SI):2508–2530, 2006.

[19] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,

R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web.

Computer networks, 33(1):309–320, 2000.

[20] F. Bullo. Lectures on network systems. Version 0.86, November,

2016.

[21] A. Cavagna, J. P. Garrahan, I. Giardina, and D. Sherrington.

Thermal model for adaptive competition in a market. Physical

Review Letters, 83(21):4429, 1999.

[22] F. Ceragioli and P. Frasca. Continuous and discontinuous opin-

ion dynamics with bounded confidence. Nonlinear Analysis: Real

World Applications, 13(3):1239–1251, 2012.

[23] A. S. Chakrabarti and B. K. Chakrabarti. Microeconomics of the

ideal gas like market models. Physica A, 388(19):4151–4158, 2009.

[24] B. K. Chakrabarti, A. Chakraborti, S. R. Chakravarty, and

A. Chatterjee. Econophysics of Income and Wealth Distributions.

Cambridge University Press, New York, 2013.

[25] S.-H. Chen. Varieties of agents in agent-based computational eco-

nomics: A historical and an interdisciplinary perspective. Journal

of Economic Dynamics and Control, 36(1):1–25, 2012.

[26] S. Cincotti, S. M. Focardi, M. Marchesi, and M. Raberto. Who

wins? study of long-run trader survival in an artificial stock mar-

ket. Physica A, 324(1):227–233, 2003.



� 108 BIBLIOGRAPHY

[27] M. Cipriani and A. Guarino. Noise trading in a laboratory financial

market: a maximum likelihood approach. Journal of the European

Economic Association, 3(2-3):315–321, 2005.

[28] M. Cipriani and A. Guarino. Herd behavior in financial markets:

an experiment with financial market professionals. Journal of the

European Economic Association, 7(1):206–233, 2009.

[29] M. D. Cohen and R. Axelrod. Coping with complexity: The adap-

tive value of changing utility. The American Economic Review,

74(74):30–42, 1984.

[30] M. Cristelli, L. Pietronero, and A. Zaccaria. Critical overview of

agent-based models for economics. In F. Mallamace and H. E.

Stanley, editors, Proceedings of the School of Physics ”E. Fermi”,

2010.

[31] R. M. Cyert and M. H. DeGroot. Adaptive utility. In Expected Util-

ity Hypotheses and the Allais Paradox, pages 223–241. Springer,

1979.

[32] R. Dariani, A. Buscarino, L. Fortuna, and M. Frasca. Pinning

control in a system of mobile chaotic oscillators. In AIP Conference

Proceedings, volume 1389, pages 1023–1026. AIP, 2011.

[33] J. P. Decamps and S. Lovo. Risk aversion and herd behavior in

financial markets. Available at SSRN 301962, 2002.

[34] M. H. DeGroot. Reaching a consensus. Journal of the American

Statistical Association, 69(345):118–121, 1974.

[35] P. DeLellis, M. Di Bernardo, and F. Garofalo. Adaptive pin-

ning control of networks of circuits and systems in lur’e form.



BIBLIOGRAPHY � 109

IEEE Transactions on Circuits and Systems I: Regular Papers,

60(11):3033–3042, 2013.

[36] P. DeLellis, M. di Bernardo, and M. Porfiri. Pinning control of

complex networks via edge snapping. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 21(3):033119, 2011.

[37] P. DeLellis, F. Garofalo, and F. Lo Iudice. Partial pinning control

of complex networks. In Decision and Control (CDC), 2016 IEEE

55th Conference on, pages 7398–7403. IEEE, 2016.

[38] P. DeLellis, F. Garofalo, F. Lo Iudice, and E. Napoletano. Wealth

distribution across communities of adaptive financial agents. New

Journal of Physics, 17(8):083003, 2015.

[39] A. Devenow and I. Welch. Rational herding in financial economics.

European Economic Review, 40(3):603–615, 1996.

[40] F. Dignum, V. Dignum, and C. M. Jonker. Towards agents for

policy making. In Multi-Agent-Based Simulation IX, pages 141–

153. Springer-Verlag, 2009.

[41] J. C. Dittmer. Consensus formation under bounded confidence.

Nonlinear Analysis: Theory, Methods & Applications, 47(7):4615–

4621, 2001.

[42] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Gi-

ant strongly connected component of directed networks. Physical

Review E, 64(2):025101, 2001.

[43] M. Drehmann, J. Oechssler, and A. Roider. Herding with and

without payoff externalities-an internet experiment. 2005.



� 110 BIBLIOGRAPHY

[44] A. Ellero, G. Fasano, and A. Sorato. Stochastic model of agent

interaction with opinion leaders. Physical Review E, 87(4):042806,

2013.
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