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Aim of the Work 

In the field of nanotechnology, one of the most operative research areas is 

nanomedicine, which applies nanotechnology to highly specific medical interventions for 

the prevention, diagnosis and treatment of diseases. Currently, the major issue that 

nanomedicine needs to face is the smart design and production of nanoparticles (NPs) 

based drug delivery systems for cancer therapy. 

Highly efficient drug delivery based on nanoparticles could potentially reduce the drug 

dose needed to achieve therapeutic benefit, thus reducing the side effects associated with 

the systemic delivery of drugs, whit great benefit to the patient. Indeed, a site-specific 

delivery of the active compound can be obtained manipulating NP surface by attaching 

ligands, such as peptides, antibodies or aptamers. Moreover, both passive and active 

targeting of the drug can be easily obtained by manipulating NP size and surface 

characteristics. NPs can also control and sustain the release of a drug during transport to, or 

at, the site of localization, altering drug distribution and subsequent clearance. 

At present, a new family of nanovectors, defined as stimuli-responsive nanocarriers 

(SRNs), is emerging. The key point in their mechanism of action lay in the fact that a 

specific cellular or extracellular endogenous stimulus of chemical, biochemical, or physical 

origin can modify NP conformation thus promoting the release of the active agent in a 

specific biological environment [1] [2]. In particular, a large variety of enzymes, such as 

proteases, glucuronidase, or carboxylesterases can be used as biochemical triggers. 

Generally the proteases, that are extracellularly expressed, such as the matrix 

metalloproteases (MMPs), are up-regulated in tumour microenvironment and are 

responsible for the proteolysis of the extracellular matrix (ECM) and of the basement 

membranes along with tissue remodelling and metastasis invasion. Since that, they are 

commonly identified as biomarkers of malignant tissues [3].  

In the light of these considerations, Chapter.1 points out a smart approach in NPs 

design that takes benefits from the MMPs over-expression at tumour site, in order to 

produce a stimuli-responsive nanocarrier that allows a site specific drug release. 

To this aim, we proposed the use of a novel nanoparticle able to carry safely 

doxorubicin (Dox) at tumour tissues, and to respond to MMP-2 enzyme. The produced 

NPs are made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) – block – 

PEG copolymer (namely PELGA), blended with a TAP (Tumour Activated Pro-drug) 
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composed by a MMP-2-sensitive peptide bound to Dox at the C-terminus and to PLGA 

molecule at the N-terminus. These NPs are named PELGA-TAP NPs. The presence of the 

MMP-2 enzyme in situ, leads to the destruction of the bond between the peptide and the 

Dox, with the consequent diffusion and accumulation of the drug in the extracellular 

environment. This mechanism allows the drug delivery only in presence of an endogenous 

stimulus that comes from the very nature of the tumour tissue itself. Furthermore, the same 

NPs were prepared without the presence of the peptide sequence, as negative control, and 

were named PELGA-Dox. Spheroids of U87 (Human Glioma cells) and HDF (Human 

Dermal Fibroblast) cells were used as in vitro models of tumour and healthy tissue, 

respectively, to demonstrate NPs ability to “sense” the differences in the expression levels 

of endogenous MMP-2 enzymes [4]. 

Since the production process and effectiveness of PELGA-TAP and PELGA-Dox NPs 

was well established and consolidate, in Chapter.2 we tested them in a new three-

dimensional microtissue (3D µTP) model, which is an in vitro tissue equivalent proposed 

by Brancato et al. [5]. They fabricate µTPs with the aim to replicate in vitro the 

composition and the functionalities of the tumour microenvironment. In this work they 

clearly show that µTPs better recapitulate the important differences existing in vivo 

between normal and cancer-activated stroma representing a more suitable system to mimic 

in vitro the tumour microenvironment. In particular, the 3D model was developed using 

normal fibroblasts (NF) and human epithelial cell lines (MCF10), or cancer-activated 

fibroblasts (CAF) and human breast adenocarcinoma cells (MCF7), to produce healthy and 

cancer microtissues, respectively. In this scenario, PELGA-TAP and PELGA-Dox NPs 

were tested in terms of Dox release on these µTPs in order to further validate their efficacy 

and selective drug release in a more realistic in vitro model, which better resemble tumour 

microenvironment, closer to the in vivo conditions [6]. 

Moreover, Chapter.3 shows an upgrade of the PELGA-TAP NP presented above. The 

approach used for the production of the nanocarrier takes advantages from the layer by 

layer polymer deposition technique developed and optimized by Vecchione et al. [7]. This 

technique allows the production of a very stable nanocarrier able to load large amounts of 

hydrophobic drugs and prevents their systemic leakage. The delivery system we proposed 

is a crosslinked polyelectrolytes nanocapsule (NC) based on an oil-core and a matrix 

metalloproteases-2-sensitive shell. MMP-2 enzymes catalyse the disassembly of the NC, 

which is stabilized by a MMP-2-cleavable peptide sequence as cross-linker. Also in this 
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case, the drug release occurs in a spatially-controlled fashion upon an endogenous stimulus 

coming from the very nature of the tumour itself. The same NC was also produced with a 

scrambled peptide sequence as negative control. These NCs were tested on a spheroidal in 

vitro model, in order to proof their selective shell destabilization and consequent stimuli-

responsive drug release in tumour microenvironment. Spheroids of U87 and HDF were 

used as models of tumour and healthy tissue, respectively. Cell viability was evaluated by 

means of Alamar Blue Assay. Moreover, the selective disassembly of the NC shell was 

followed using confocal microscopy and colocalization analyses were also performed. 

Finally, in Chapter.4 preliminary studies aimed to point out the advantages of an 

extracellular drug delivery are presented.  
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State of the Art 

Cancer: Development and Metastasis Formation 

The human body is made up of many types of cells which grow and divide in a 

controlled fashion. When cells become old or damaged, they are replaced with new ones. 

Unfortunately, sometimes this orderly process may go wrong and the genetic material 

(DNA) of a cell can become damaged or changed, producing mutations that affect cell 

growth and division. When this happens, cells do not die when they should and new cells 

duplicate in an uncontrolled way. The extra cells may form a mass of tissue called 

“tumour”. 

Tumours can be benign or malignant (State of the Art, Figure1.1). Benign tumours are 

localized and surrounded by a membrane, namely capsule, that separates them from the 

surrounding tissues. They can often be removed by surgery and, most importantly, do not 

spread to other parts of the body; since that, benign tumours are defined as non-cancerous. 

On the other hand, malignant tumours are cancerous. Indeed, in this case cells can invade 

nearby tissues spreading into other parts of the body. The spreading of cancer cells from 

one part of the body to another is called metastasis. 

 

State of the Art, Figure1.1: (A) Benign tumours; (B) Malignant tumours. 

The progression from normal cells to cancer cells involves multiple steps known as 

malignant progression. 

The stages of development of a tumour starts with an uncontrolled growth of 

proliferating cellular clones due to acquisition of self-sufficiency in growth signals, 

b a 
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insensitivity to anti-growth signals, ability to evade apoptosis, and limitless replicative 

potential. This phase is called hyperplasia. Subsequently, epithelial tissues start to lose 

their architecture and uniformity leading to a dysplasia and the consequent formation of the 

primary tumour in situ. At this stage, tumour proliferation is limited by the availability of 

oxygen and nutrients, especially in its inner parts. The tumour mass continues to grow 

spherically until the formation of a necrotic core that leads the tumour to reshape itself 

acquiring the characteristic smash form in order to maximize the surface-volume ratio and 

thus maximise the nutrient diffusion in the tumour itself. The continue tumour growth 

depends upon recruitment of new blood vessels from nearby vasculature, which is called 

“angiogenesis”. This process is also vital for tumour dissemination, in fact, at a certain 

point, the in situ tumour growth must stop and, in order to survive, it has to reach new 

sites. So we can see the formation of off-shoots and the consequent detachment of these 

from the tumour itself. After the alterations in cell–cell and cell–matrix cohesion and the 

disruption of the surrounding tissue architecture by proteases production, tumour cells 

invade the adjacent tissues through the basement membrane and spread, via blood vessels 

and lymphatic channels, to distant sites leading to the metastasis formation [8]. 

Metastasis is often described as a ‘cascade’ of events, since there are many steps, all of 

which are interconnected through a series of adhesive interactions and invasive processes, 

as well as responses to chemotactic stimuli. A tumour cell needs to successfully complete 

the entire cascade to form a secondary-site metastasis. The steps involved in the metastatic 

cascade are illustrated in State of the Art, Figure 1.2 and can be summarised as follows: 
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1.  The development of a new blood supply 

to the growing tumour (angiogenesis). 

2. The escape of tumour cells from the 

primary tumour mass. 

3. Invasion of, and migration through, the 

basement membrane (BM) and 

extracellular matrix (ECM) surrounding 

the tumour epithelium, and subsequent 

invasion of the basement membrane 

supporting the endothelium of local 

blood vessels (or lymphatics). 

4. Intravasation of the tumour cells into the 

blood vessel (or lymphatic), prior to 

hematogeneous (lymphagenous) 

dissemination to distant anatomical sites. 

5. Adhesion of the circulating tumour cells 

to the endothelial cell lining at the 

capillary bed of the target organ site.  

6. Invasion of the tumour cells through the 

endothelial cell layer and surrounding 

basement membrane (extravasation) and 

target organ tissue. 

7. Colonozation the secondary target organ 

site and growth of tumour foci.  

 

 

 

Stage 3, 4 and 6 of the metastatic cascade, i.e. intravasation, extravasation and 

secondary site extravasation of tumour cells, respectively, requires the degradation of the 

BM that composes the blood vessels along with the ECM. During the metastatic 

dissemination of tumour cells, this process is supported by the action of several hydrolytic 

enzymes, released either by the tumour cells themselves or by cells surrounding the 

tumour, such as cathepsins and several matrix- metalloproteinases (MMPs) [9]. Since that, 

State of the Art, Figure 1.2:                 

The metastatic cascade. Reprinted from [8]. 
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MMPs in tumour tissues are up-regulated leading to their over-expression at tumour site 

[8]. 

Finally, once tumour cells reach the secondary site, they may be destroyed, may lie 

dormant or may proliferate to form secondary tumours [9]. 

Cancer Therapies and their Limits 

From Hippocrates’ times to the post-genomics era, humans have undertaken a war 

against cancer. Over the past one and a half centuries, numerous questions were asked, 

countless hypotheses were formulated and tested but this war has not been completely won 

yet. Despite that, a massive scientific activity and research in this field has identified the 

current options to treat cancer [10]. 

Since the term “cancer” refers to a class of diseases, it is quite unrealistic to try to 

identify a single cure for it. Indeed, cancer can be treated by surgery, chemotherapy, 

radiation therapy and immunotherapy. The choice of treatment depends upon the location, 

the grade of expansion and the stage of the tumour, as well as the general state of the 

patient. Complete removal of the cancer without damaging healthy tissues is the final goal 

of the cure. Sometimes this goal can be accomplished by surgery, but the propensity of 

cancers to invade adjacent tissue or to spread to distant sites by microscopic metastasis 

often limits its effectiveness. Another approach to reach this goal is the treatment of cancer 

with drugs that can destroy cancer cells, namely chemotherapy. Generally, 

chemotherapeutic agents interfere with cell division in various possible ways, e.g. with the 

duplication of DNA or the separation of newly formed chromosomes. Most forms of 

chemotherapeutic agents target all rapidly dividing cells and are not specific to cancer 

cells, although some degree of specificity may come from the inability of many cancer 

cells to repair DNA damage, while normal cells generally can. Hence, chemotherapy has 

the potential to harm healthy tissue, especially those that have a high replacement rate (e.g. 

intestinal lining) [9]. 

In the light of these considerations, Paul Ehrlich, a pioneer in the concept of 

chemotherapy, in 1900 pointed out the need of a site-specific delivery of the drugs, in 

order to avoid off-site cytotoxicity. Ehrlich introduced the receptor theory, through which 

drugs were described as “magic bullets” that would go straight to their specific targets in 
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the body. This new concept paved the way for the idea of cancer targeted medicine which 

was implemented only few years later [10]. 

Nanotechnology and Nanomedicine 

“Atoms are elementary substances invisible and indivisible; they compose the 

perceptible matter and are its invisible substance or essence.” 

This is how Leucippus at the end of the VII century a.C. describes its Atomism theory. 

This is the proof that the awareness that there are small things in the word that are not 

visible to the naked eye extends back into human history. 

During the first two decades of 1900, the development of the natural science created an 

interest in the micro- and nano-world, in order to enable a better understanding of the 

nature and the processes therein. Therefore, the development of new microscopic imaging 

methods represents certain milestones in the natural science. The consequent extension of 

the resolution limit of the microscopes led to construction of instruments with the capacity 

to resolve objects below the wavelength of the light. The field ion microscopes, the 

electron microscope, and finally the family of scanning probe microscopes give the 

possibility to image individual molecules and even single atoms. 

In this context nanotechnology was born as a branch of applied science and technology 

that deals with the control of the matter at dimensions typically between 1 and 100 

nanometers and the design and production of devices in this scale. It is a new born and 

heterogeneous discipline, ranging from physics and engineering to biology, that can leads 

to new perspectives on the development of materials and devices with a wide range of 

applications such as in medicine, electronics and for the production of innovative 

biomaterials [11].  

In the area of medicine, the field of nanomedicine is defined as the monitoring, repair, 

construction, and control of human biological systems at the molecular level, using 

engineered nanodevices and nanostructures. As a parallel off-shoot of nanotechnology, 

nanomedicine controls matter and events in the nanometres scale range of often less than 

100 nm. This allows a superior way to biologically control, at the subcellular level, the 

treatment and diagnosis of disease progression, detection and intervention. Thanks to its 

interconnected domains of engineering, chemistry and biology, nanomedicine is 

continually modifying the current approaches for disease management and diagnosis [12]. 
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Particle-Based Drug Delivery for Cancer Treatment 

As previously mentioned, chemotherapy-based cancer treatment has the potential to 

harm healthy tissues [9]; since that, Richard Feynman, in his talk “There's Plenty of Room 

at the Bottom” [13], pointed out the streaking need of developing nano-drug delivery 

devices capable of interacting with the body at the cellular level in order to guide and 

modulate drug delivery. In this context NPs based drug delivery was born. Indeed, these 

“nano-devices” are the nanoparticles, which are objects with a size below 100 nm that can 

be used as drug transporters and behave as a whole unit with the drug itself. Those nano-

structured carriers may be fabricated from a practically limitless variety of organic and 

inorganic materials but the mostly used for biomedical applications are biodegradable and 

biocompatible polymers which offer almost unlimited possibilities of modifying their 

characteristics in order to achieve specific needs. These nanodevices provide a versatile 

platform onto which many functions can be added and addressed. Indeed, a well-designed 

drug delivery system can potentially combine synergistic effects into a single “magic 

bullet”, such as improving drug solubility, modulate drug release, enhance drug transport 

in the vasculature and across body barriers, deliver the drug to a specific site, allow a 

stimuli-responsive drug release and in general improve and optimize the performances of 

the free drug. 

The most commonly used nanocarrier systems are liposomes, and polymer-based 

nanoparticles such as nanospheres, nanocapsules or micelles (State of the Art, Figure 1.3) 

[14]. 

 

State of the Art, Figure 1.3: Principal types of nanocarriers for drug delivery. Reprinted from [14]. 
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When designing a nanocarrier for drug delivery applications, two basic requirements 

should be addressed. On one hand, once administrated, the drug should be able to reach the 

site of interest with minimal activity and volume loss in blood circulation. On the other 

hand, the drug should only harm tumour cells without damaging healthy tissue. These 

requirements could be meet taking advantages from two strategies: passive and active 

targeting (State of the Art, Figure 1.4) of tumour tissues [15]. 

 

State of the Art, Figure 1.4: NPs targeting strategies. (A) Passive targeting; (B) Active targeting. 

Passive targeting takes advantages from the enhanced permeability and retention (EPR) 

effect, which enables improved circulation of the nanocarrier with the accumulation 

through the characteristic leaky vasculature of the tumour. This strategy allows for an 

effective drug administration, simultaneously reducing the dose administered to the patient 

and increasing the one arrived at tumour site. A key challenge for improving the efficacy 

of passive drug delivery at tumour sites by a nanocarrier is to limit NPs interaction with the 

immune system and to maximize the EPR effect. To this aim NPs PEGylation, which is 

defined as the modification of a protein, peptide or non-peptide molecule by the linking of 

one or more polyethylene glycol (PEG) chains [16] [2], can be used. This polymer 

possesses a unique set of properties, including absence of toxicity, immunogenicity and 

antigenicity, low mass-dependent elimination via the kidney, high flexibility and high 

solubility in water and, last but not least, is FDA approved [17]. However, it is worthy to 

note that are now emerging new studies questioning the lack of immunogenicity of PEG. 

In fact, besides very positive clinical experience with PEGylated therapeutic agents, an 

increasing number of publications report that PEG can be highly immunogenic. Indeed, 

numerous works state the presence of anti-PEG antibodies in normal donors or patients and 

animals treated with PEGylated products [18]. 
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On the other and, active targeting takes advantages from the NP functionalization with 

affinity ligands, such as antibodies, peptides or small molecules that only bind to specific 

receptors on the cell surface. Nanocarriers will recognize and bind to target cells through a 

ligand–receptor interaction. In order to achieve high specificity, those receptors should be 

significantly expressed on tumour cells, but not on normal cells.  

In the light of these considerations, a smart approach to enhance drug delivery to solid 

tumours is the one that takes advantages from both passive and active targeting, combining 

their actions, as shown in figure State of the Art, Figure 1.5. 

 

State of the Art, Figure 1.5: Enhanced drug delivery to solid tumours using nanoparticles. (A) 

Passive targeted delivery. After intravenous injection, nanoparticles accumulate in tumours through 

leaky and permeable tumour vasculature and impaired lymphatic system (e.g., enhanced permeability 

and retention effect). (B) Active targeted delivery. Ligand-coated nanoparticles bind to a cancer cell 

receptor resulting in cell-specific recognition and improved drug delivery to solid tumours. 

Stimuli-responsive Drug Delivery 

The stimuli-responsive nanocarriers (SRNs) are specialized nano-sized active delivery 

vectors that can modify their structural composition or conformation in response to a 

specific cellular/extracellular stimulus of chemical, biochemical, or physical origin thus 

promoting drug release to specific biological environment (State of the Art, Figure 1.6). 

The observed changes are mainly decomposition, isomerization, polymerization and 

activation of supramolecular aggregation among many others. In contrast to conventional 

nanocarrier complexes or conjugates, SRNs can undergo relatively large and abrupt 

physical and chemical changes in sharp response to applied stimuli [2] [12]. 
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State of the Art, Figure 1.6: General scheme of a stimuli-responsive nanocarrier for the transport of active 

compounds. Reprinted from [12]. 

The general concept of triggered release can be mainly divided into two modalities 

according to the type of interaction between the drug and the nanocarrier, as shown in State 

of the Art, Figure 1.7. 

In the complexation approach the drug is encapsulated into the nanocarrier and the 

release is promoted by structural changes within the carrier scaffold (i.e. carrier 

degradation, cleavage of shell, charging of functional groups), while in the nanocarrier-

conjugate approach, the release mechanism involves the cleavage of the linker between the 

carrier and the drug [12]. 

 

State of the Art, Figure 1.7: Different mechanisms for stimuli-responsive release of active agents from 

nanocarriers: (a) supramolecular complexes core-shell particles with cleavable shell and (b) nanocarriers 

with attached solubilising/stealth groups using cleavable linkers for the drug conjugation. Reprinted from 

[12]. 
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The external stimuli that can induce these changes are numerous and cross-related and, 

thanks to these characteristics, nanocarriers thus become active participants in the 

therapeutic landscape, rather than inert carrier molecules. 

The benefits of SRN are essentially important when the stimuli to which they response 

are specific biomarkers of malignant tissues (i.e. a definite enzyme class, specific protein 

over-expression, pH, electrolyte status). Such specificity allows the nanocarriers to release 

their cargo in a temporally or spatially controlled fashion in response to a particular 

pathological trigger occurring at the diseased tissues, substantially reducing side effects 

[12].  

Numerous are the internal or external stimuli that can be exploited for triggering the 

delivery of chemotherapeutics, genes, or diagnostic agents from the nanocarriers. Though 

overlapping in many instances, these can be broadly classified with respect to the 

biological systems as either endogenous (physiological, pathological, and patho-chemical 

conditions) or exogenous (physical stimuli, i.e. heat, light, magnetic and electrical fields) 

(see State of the Art, Figure 1.8) [12]. 

 

State of the Art, Figure 1.8: General scheme of stimuli-responsive release of a drug from a 

nanocarrier. Reprinted from [12]. 

Internal stimuli of chemical and biochemical origin include cellular pH-shift, redox, 

ionic microenvironment of the specific tissues, enzymes over-expression in certain 

pathological states, host–guest recognitions, and antigen–antibody interactions.  

As an example, in the pathological state, the normal pH-gradient existing between extra 

and intracellular environment is greatly affected. A well-known fact is that in solid 

tumours, the extracellular pH can be more acidic (~ 6–7) than systemic pH (7.4) due to 

poor vasculature and consequent anaerobic conditions dominant in the malignant cells. 

Besides that, the cellular organelles also exhibit sharp pH differences in different locations, 
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for instance, in cytosolic, endosomal, and lysosomal compartments. A pH-sensitive 

polymeric nanocarrier can register such pH-gradients and, as a consequence, can facilitate 

drug release near the target compartment either by destabilization of the nanocarrier itself 

or by decomposition of the pH-sensitive linking unit that connects the drug to the carrier 

[12]. 

An array of manifold enzymes, such as proteases, glucuronidase, or carboxylesterases, 

which are expressed differentially and are either intra or extracellularly presented by 

normal and malignant cells, can be used as well as a biochemical trigger. 

Generally, the proteases that are extracellularly expressed, such as the matrix 

metalloproteases, are specific biomarkers of malignant tissues and are responsible for the 

proteolysis of the extracellular matrix and basement membranes and are required during 

tissue remodelling and angiogenesis (see “Cancer: Development and Metastasis 

Formation”). These biochemical features can act as a trigger when spatially-oriented drug 

release is needed. This can be achieved by introducing specific enzyme substrate 

sequences, either into the nanocarrier scaffold, or in the linker segment through which the 

drug is anchored on to the nanocarrier [2] [12] [19]. 

A sum up of the above mentioned strategies for the use of stimulus-sensitivity are 

reported in State of the Art, Figure 1.9 [19]. 

 

State of the Art, Figure 1.9: Stimulus-responsive delivery strategies for tumour targeting. Reprinted from [19]. 
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In the light of these considerations, compared to the conventional drug delivery 

systems, the stimuli-responsive nanocarriers may provide a spatially-oriented and time-

controlled drug release, responding to local stimuli that may come from the very nature of 

the tumour itself [19]. 

In Vitro Biological Models for Drug Screening 

Along with the development of nanoparticles-based drug delivery, a striking need of 

preclinical tools for studying tumor behaviour and drug response was born. 

In the first place, the two-dimensional (2D) cell cultures were routinely used to test 

cancer cells response to drug treatment. However, “flat biology” lacks in reproducing 

important physio- pathological features of the in vivo tissues, such as ECM expression. In 

the body, nearly all tissue cells reside in an extracellular matrix composed by a 3D fibrous 

meshwork that provides complex biochemical and physical signals. The ECM 

continuously interacts with the cells in a dynamic way and is of fundamental importance in 

guiding morphological changes and cellular organization. By contrast, cells cultured on 2D 

rigid substrates proliferate in an environment which lacks of the unique ECM of each cell 

type. These drawbacks can alter cells metabolism and reduce their functionality; for these 

reasons, drug screening conducted on 2D cell culture may lead to altered results [20]. 

In this scenario, three-dimensional (3D) culture systems have garnered much attention 

as robust research tools that can bridge the gap between the 2D culture system and the in 

vivo animal studies for both basic research and therapeutic development. Indeed, 3D 

culture systems resemble several aspects of the pathophysiological conditions in human 

tumour tissue. Among others, spheroids are one of the most commonly used 3D culture 

systems and are spherical clusters of cells formed by a self-assembling process. They may 

recapitulate avascular tumor nodules/micrometastases or intervascular sections of solid 

tumours with respect to micromilieu and volume growth kinetics. Moreover, they 

recapitulate morphological, functional and mass transport properties of the corresponding 

tissue in vivo, with tumour cells restoring an in vivo-like differentiation pattern due to the 

appropriate 3D extracellular matrix (ECM) assembly, complex cell–matrix and cell–cell 

interactions and authentic pathophysiological milieu conditions [21]. Nevertheless, 3D 

spheroids fail in reproducing tumour stromal microenviroment, which may contribute to 

tumour drug resistance by preventing the penetration of therapeutic agents. Moreover, the 



                              State of the Art 

16 

 

absence of the stromal component does not allow the recreation of the correct stroma-

tumour cross-talk, which is crucial in tumour developments [22]. In the light of these 

considerations, Brancato et al. [5] fabricated 3D microtissues with the aim to replicate in 

vitro the composition and the functionalities of the tumour microenvironment. This novel 

3D cancer model better replicate the tumour physiology in vitro taking into account of the 

phenomena related to the tumor stroma remodeling by co-culturing tumor cells and cancer-

activated fibroblast into porous gelatin microscaffolds. In this configuration, cells assemble 

an intricate network of collagen, fibronectin and hyaluronic acid. The results of their work 

clearly show that microtissues better recapitulate the important differences existing in vivo 

between normal and cancer-activated stroma representing a more valuable platform to 

mimic in vitro the stromal element of the tumour tissues. 
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 Tumour Activated Pro-drug Chapter.1

(TAP)-conjugated nanoparticles sensing the 

matrix metalloproteinase-2 for the on-

demand release of anticancer drugs in 3D 

tumour spheroids 

ABSTRACT  

The balance between dose-dependent tolerability, effectiveness and toxicity of 

systemically administered anti-tumour drugs is extremely delicate. This issue highlights 

the striking need for targeted release of chemotherapeutic drugs within tumours. In this 

work, a smart strategy of drug targeting to tumours relying upon 

biodegradable/biocompatible nanoparticles releasing cytotoxic drugs after sensing 

physiological variations intrinsic to the nature of the tumour tissues is exploited. In 

particular, the well-known over-expression of matrix metalloproteinase-2 (MMP-2) 

enzymes in tumours is chosen as a trigger for the release of a cytotoxic drug. Nanoparticles 

made up of a biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) – block – 

polyethylene glycol (PEG) copolymer (namely PELGA), blended with a tumour activated 

prodrug (TAP) composed by a MMP-2-sensitive peptide bound to doxorubicin (Dox) and 

to PLGA molecule were produced. The obtained devices are able to release Dox and to 

elicit cytotoxicity specifically upon MMP-2 cleavage of the TAP. More interestingly, they 

sense the differences in the expression levels of endogenous MMP-2 protein, thus 

modulating drug penetration within a three-dimensional (3D) tumour spheroid matrix, 

accordingly. Therefore, the proposed nanoparticles hold promise as a useful tool for in vivo 

investigations aimed at an improved therapeutic efficacy of the conjugated drug payload*. 
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1.1 Introduction 

The performance of systemic chemotherapy, accomplished with both traditional and 

innovative drugs, is restricted by a series of biological barriers hindering an effective drug 

delivery after intravenous administration. Actually, solid tumours have inherently aberrant 

features, such as a highly fibrous matrix and an abnormal blood flow in their inner regions, 

and frontier, which limit the delivery of drugs to the target tissue because of arterial-

venous shunting and a strong interstitial pressure gradient [23] [24] [25]. Furthermore, only 

a tiny fraction of chemotherapeutic agent(s) can reach the tumour site because of their non-

specific distribution and uptake by the reticuloendothelial system (RES) [26]. Therefore, 

the administered drug(s) accumulate within target tissues and healthy organs and, owing to 

their low therapeutic index, often entail severe side effects, such as irreversible 

cardiotoxicity and nephrotoxicity [27] [28] [29]. These characteristics, together with the 

susceptibility toward drug resistance, reduce the healing potential of anticancer drugs [30, 

31] [32], thus highlighting the striking need for more effective strategies to release 

chemotherapeutic drugs within tumour sites.  

In this context, drug-loaded nanoparticles (NPs) are recognized to be cardinal platforms 

[33]; indeed, their nanometric size, coupled with superficial poly(ethylene glycol) (PEG) 

segments, help to circumvent RES and, therefore, to release the drug payload preferentially 

to tumour tissues, taking advantage of the enhanced permeability and retention (EPR) 

effect, which results from the leakiness of the immature and non-organized vasculature of 

solid tumours [34]. Even though EPR effect does actually enable a preferential 

accumulation of carriers/drugs to tumour sites and some reduction of side effects, the 

actual benefit is unpredictable because of individual variations in tumour 

microenvironment [34] [35]. Actually, EPR allows only a few percent of intravenously 

administered NPs to accumulate at the target site [36] and, during their circulation in the 

bloodstream, NPs accumulate within the liver and spleen. This reduces the contact time 

between the NPs and the tumour site and, therefore, therapy effectiveness [37], thus 

resulting into a heterogeneous NP accumulation in the tumour, and an unsatisfactory 

increase in overall patient survival [38] [39] [40]. The specificity of chemotherapy action 

can be increased if NPs are endowed with functional moieties to provide an active 

targeting, which can in principle improve NP performance in terms of targetability, cellular 

penetration and sensitivity to specific internal stimuli, such as the acidic pH in tumour 
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microenvironment [41], altered redox potential [42], and up-regulation of specific proteins 

[43].  

In this context, one strategy of drug targeting to tumours relies upon NPs releasing 

cytotoxic drugs by exploiting physiological variations that are intrinsic to the very nature 

of the tumour tissues. Indeed, compared to normal tissues, tumours secrete higher amounts 

of matrix metallo-proteinases (MMPs), which are proteolytic enzymes cleaving the natural 

extracellular matrix (ECM) of tumours and push tumour progression and metastasis [44] 

[45]. In particular, MMP-2 (also known as gelatinase A) plays a key role in tumour 

invasion and angiogenesis by hydrolyzing type IV collagen, which is a major constituent of 

tumour ECM [46] [47]. Therefore, NPs delivering chemotherapeutic agents in response to 

MMP-2 action offer the chance to exert their cytotoxic action toward target tumour sites 

with a high specificity, in order to prevent, or significantly reduce, the insurgence of toxic 

side effects against non-target tissues and organs. 

In a recent study [48], we have synthesized two tumour-activated prodrugs (TAPs), 

composed by MMP-2-sensitive peptides bound to doxorubicin (Dox) and PEG, tethered to 

model polystyrene NPs. The resulting TAP-conjugated NPs could trigger Dox release only 

in the presence of MMP-2, while eliciting no cytotoxicity in the absence of enzyme pre-

treatment. Inspired by these encouraging results, here we have translated the TAP 

production technology to the fabrication of biodegradable systems based on FDA-approved 

materials. To this aim, here we produced NPs made up of a biodegradable poly(D,L-lactic-

co-glycolic acid) (PLGA) – block – PEG copolymer (namely PELGA), blended with a 

TAP composed by a MMP-2-sensitive peptide bound to doxorubicin (Dox) at the C-

terminus and to PLGA molecule at the N-terminus (Figure 1.1). The design of this NP 

system merges several major drug delivery approaches, such as self-assembly, PEGylation 

and sensitiveness to endogenous stimuli, along with the concept of prodrug. The obtained 

devices were tested for their Dox release and ability to diffuse within a three-dimensional 

(3D) tumour matrix model. To test the biological effect of NPs, spheroids of human glioma 

cell line (U87-MG) and primary human dermal fibroblasts (HDF) were used as in vitro 

models of three-dimensional tumour and healthy tissues, respectively. 
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Figure 1.1: Schematic representation of PELGA-TAP and PELGA-Dox NPs formulations. Reprinted from [4]. 
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1.2 Materials and Methods 

1.2.1 Materials 

Equimolar uncapped poly(D,L-lactide-co-glycolide) (PLGA) (Resomer RG502H, Mw 

12, 000 Da) was purchased from Boehringer Ingelheim (Ingelheim, Germany). 

Doxorubicin hydrochloride (Dox, purity>99%) was purchased from Discovery Fine 

Chemicals (UK). Polyethylene glycol (PEG, Mw 1500 Da), ethylenediamine, N,N- 

diisopropylethylamine (DIEA), O-benzotriazole - N,N,N’, N’ – tetramethyluronium – 

hexafluoro – phosphate (HBTU), anhydrous N,N – dimethyl-formamide (DMF), N,N' – 

diisopropylcarbodiimide (DIC), 4-(dimethylamino) pyridine (DMAP), dichloromethane 

(DCM), sodium dihydrogen phosphate, disodium hydrogen phosphate, 1-ethyl-3-(3-

dimethylaminopropyl)- carbodiimide hydrochloride (EDC-HCl) piperidine, trifluoroacetic 

acid (TFA), 2 – (N-morpholino) – ethanesulfonic acid (MES) sodium salt, p – 

aminophenylmercuric acetate (APMA), tris – HCl, acetonitrile (ACN), HPLC – grade 

water and all buffer solutions were purchased from Sigma-Aldrich (USA). All 9-fluorenyl 

methoxy carbonyl (Fmoc) – aminoacids were purchased from IRIS Biotech GmbH 

(Germany). Recombinant Human matrix metalloproteinase – 2 from Peprotech Inc. (USA) 

was used. Dialysis bags (MWCO 6000-8000 Da) were obtained from Spectrum 

Laboratories, Inc. (The Netherlands), while distilled and deionized water (18MΩ 

resistance) were from Millipore (USA). 

1.2.2 Synthesis of copolymers and conjugates 

PLGA-PEG copolymer (namely PELGA) was synthesized via a coupling reaction 

between PLGA and PEG according to a previously published procedure [49]. Briefly, the 

carboxyl group of PLGA was functionalized by ethylendiamine (1 eq: 1 eq) in order to 

react with carboxyl-modified PEG. 1 eq of PLGA-NH2, 4 eq of PEG-COOH and DMAP 

and 2 eq of N,N'-Dicyclohexylcarbodiimide, (DCC) were dissolved in 20 ml of anhydrous 

DCM. After the reaction, which was carried out for 2 days at room temperature (RT) under 

inert atmosphere, the residual DCC was changed into dicyclohexylcarbodiurea (DCU) by 
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adding 10 µL of bidistilled water and DCU was removed by filtration. The residue was 

then precipitated in methanol at 4 °C and dried overnight under vacuum.  

PLGA-Dox and PLGA-TAP copolymers were synthesized according to the scheme 

reported in Figure 1.2. Briefly, the MMP-2-sensitive Fmoc – Gly – Pro – Leu – Gly – Ile – 

Ala – Gly – Gln – COOH peptide was synthesized using standard solid phase Fmoc 

method [48]. Then, the peptide – Dox conjugates were synthesized by a standard coupling 

procedure using HBTU as coupling reagent. Peptides (1 eq), HBTU (1 eq), DIEA (2 eq), 

and Dox (1.5 eq.) were dissolved in anhydrous DMF. The reacting mixture was 

continuously stirred overnight and the reaction products were verified by analytical RP-

HPLC. After the coupling reaction, piperidine was added into the reactor to obtain a 40% 

v/v solution for the removal of Fmoc group from the peptide – Dox conjugates. The 

reaction mixture was precipitated from DMF solution with cold ethyl ether and the residue 

was dissolved in a 30/70 (v/v) acetonitrile (ACN)/water solution containing 0.1% v/v TFA 

and purified by RP-HPLC. Finally, the PLGA-peptide-Dox (TAP) conjugate was 

synthesized by a standard HBTU coupling procedure, as described above. Briefly, PLGA 

(1 eq), HBTU (1 eq), DIEA (2 eq), and peptide-Dox conjugates (1.5 eq.) were dissolved in 

anhydrous DMSO. Subsequently, the copolymer was purified by removing the unreacted 

reagents using dialysis bags (MWCO 6000 – 8000 Da) and lyophilized. Furthermore, as a 

negative control, to evaluate specific MMP-2 enzyme cleavage on nanoparticles, a PLGA-

Dox conjugate without the MMP-sensitive peptide was synthesized and purified as 

reported above. In particular, PLGA (1 eq), HBTU (1 eq), DIEA (2 eq) and Dox (1.5 eq) 

were used. 
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Figure 1.2: Step synthesis of PLGA-Dox and PLGA-TAP copolymers. Reprinted from [4]. 

Nuclear Magnetic Resonance (NMR) spectra were recorded using an Agilent 600MHz 

(14 T) spectrometer equipped with a DD2 console and an OneNMR HX probe. PLGA-Dox 

and PLGA-Peptide-Dox samples (1 mg) were dissolved in 600 µl of 99.9% deuterated 

DMSO (Sigma Aldrich). 
1
H 1D spectra were recorded at 300 K using 1024 scans to obtain 

a good signal to noise ratio for peptide and Dox components. A double saturation PRESAT 

pulse sequence was used to reduce residual peaks of DMSO and water at 2.5 and 3.3 ppm 

respectively. Spectra were transformed and analyzed using VNMRJ 4 software. Chemical 

shift scale was referenced on the solvent residual peak signal. 

1.2.3 NP preparation  

PELGA-TAP NPs were prepared according to the nanoprecipitation method. Briefly, 1 

mg of PELGA and 1 mg of TAP were dissolved in 500 µl of acetone and the obtained 

solutions mixed. Afterwards, the solution was added dropwise (6 ml/h) with a syringe 

pump into 12.5 ml of distilled water under magnetic stirring (600 rpm). The organic 

solvent was then evaporated for 3 h in continuous stirring and the obtained NPs dispersion 

sterilized with 0.22 µm membrane filter. Finally, the volume of the solution was reduced to 

1 ml by centrifugation using Amicon Ultra-4 10 kDa centrifuge tube (Millipore), to have a 

final NPs concentration of 2 mg/ml. The control NPs (without the MMP-sensitive linker) 

were prepared with the same technique using 1 mg of PLGA-Dox and 1 mg of PELGA.  
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1.2.4 NP size, stability and morphology  

NP mean size, size distribution and ζ-potential were determined by dynamic light 

scattering technique (ZetaSizer Nano ZS, Malvern Instruments, Malvern, UK) on a 0.1 

mg/ml suspension of NPs in water (12 runs each sample). To assess NPs stability over the 

time, mean size and size distribution measurements were carried out also 1, 7 and 14 days 

after their preparation and stored at 4 °C in the meantime. Results were averaged on at 

least five measurements.  

PELGA NPs morphology was analysed by scanning electron microscopy (SEM) and 

cryogenic transmission electron microscopy (Cryo-TEM). SEM samples were prepared 

depositing 50 μl of NPs suspension on a cover slip mounted on a standard SEM pin stub. 

The samples were gold-sputtered (3 nm thickness) with a HR208 Cressington sputter 

coater and analysed by FESEM ULTRAPLUS (Zeiss) at 20 kV with the SE2 detector and 

15.9 mm working distance. Cryo-TEM samples were vetrified with FEI Vitrobot Mk IV in 

a saturated water vapour environment. Sample volumes of 3 µl were placed on 200 mesh 

Quantifoil grids and the excess sample was blotted away with filter paper. Blot time and 

drain time were both 1 s. After blotting, the grids were plunged into liquid propane that 

was cooled with liquid nitrogen surrounding the propane vessel. Imaging was performed 

with TEM TECNAI G
2
 equipment operating at 200 kV in low dose mode and acquired by 

Eagle 2HS camera. 

1.2.5 In vitro kinetics release of Dox  

Dox release kinetics were evaluated in vitro by MMP-2 cleavage assay, performed in 

MMP-2 buffer solution according to a previously reported procedure [48]. Prior to release 

experiments, MMP-2 solution was activated with 100 µM APMA solution for 3 h at 37 °C 

to a final 20 nM enzyme concentration. For release tests, 500 µl of NPs suspension, in 

presence or absence of 20 nM activated MMP-2 enzyme, were poured in a dialysis tube 

(MWCO 6000 – 8000 Da), which was placed in 12.5 ml of buffer solution (50 mM 

HEPES, 200 mM NaCl, 10 mM CaCl2, 1 mM ZnCl2, pH 7.4) at 37 °C under stirring (100 

rpm). At scheduled time points, 120 µl of released medium were withdrawn and the 

released drug quantified by spectrofluorimetric assay interpolating the experimental data 

with a calibration curve. Dox wavelength of excitation and emission were determined 
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acquiring its adsorption and emission spectrum (Figure 1.3). Dox adsorption wavelength is 

483 nm, in the light blue, while its wavelength of emission is between 560 and 620 nm, 

emitting both in the red and in the green. Since that, the parameters chosen for our 

acquisitions were: λex = 485 nm and λem = 595 nm.  

 

Figure 1.3: Dox excitation and emission spectra. 

Finally, to evaluate the specific recognition of the MMP-2 sensitive peptide sequence, 

the same experiment was performed on PELGA-Dox NPs, without the MMP-sensitive 

linker, as negative control. 

1.2.6 Cell culture  

To test the biological effect of NPs, human glioma cell line (U87-MG) and primary 

human dermal fibroblasts (HDF) were used as models of tumour and healthy tissues, 

respectively. The latter were purchased by ECACC and cultured in Eagle's minimal 

essential medium (EMEM) supplemented with 20 % fetal bovine serum (FBS, Gibco), 100 

U/ml penicillin, 100 mg/ml streptomycin and 2X non-essential amino-acids. U87-MG 

(ATCC) cells were cultured with complete medium, composed of EMEM supplemented 

with 10 % FBS, 100 U/ml penicillin, 100 mg/ml streptomycin. Cells were incubated in a 

humidified controlled atmosphere with 95:5 volume ratio of air/CO2, at 37 °C. The 

medium was changed every 2-3 days.  
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1.2.7 Indirect immunofluorescence of MMP-2 protein  

For indirect immunofluorescence, 3 x 10
4
 cells were seeded in 1 ml of medium on 

fluorodish – 35 mm (World Precision Instruments, Inc). Briefly, the cells were rinsed twice 

with PBS and fixed with 4 % paraformaldehyde for 20 min. Then, cells were incubated 

with Triton X 100 0.1 % in PBS for 10 min and with PBS-BSA 0.5 % for 15 min at room 

temperature (RT). MMP-2 expression was detected by incubating each sample with rabbit 

anti-MMP-2 (Abcam) primary antibodies. After primary antibody incubation, Alexa Fluor 

488 goat anti-rabbit secondary antibodies (Molecular Probes, Invitrogen) were used. 

Afterwards, the samples were rinsed three times with PBS-BSA 0.5 %. The cell nuclei 

were stained with DAPI. Immunofluorescence analyses were performed by a confocal and 

multiphoton microscope system (Leica TCS SP5 MP). Images were acquired with a 

resolution of 1024 x 1024 pixels by an oil-immersion 63× objective.  

1.2.8 Gelatin zymography  

MMP-2 enzymatic activity in cellular extract of U87-MG and HDF cell types was 

determined by SDS-PAGE gelatin zymography. Gelatinases present in the extracts are able 

to degrade the gelatin matrix, leaving a clear band after staining the gel protein [50] [51]. 

Briefly, an equal amount of protein for each sample was loaded on the 10 % SDS-PAGE 

gel containing 2 % of gelatin. The gel was equilibrated in the zymogram renaturation 

buffer (Bio-rad) for 30 min at RT with gentle agitation, before being incubated in 

zymogram development buffer (Bio-rad) at 37 °C overnight. Afterwards, the gel was 

stained with Coomassie Blue dye (Invitrogen) and photographed after bleaching in 

destaining solution.  

1.2.9 Spheroids formation  

To verify the penetration of Dox within tumour matrix as a function of MMP-2 

triggered release, tumour spheroids were used as in vitro drug screening platform. Tumour 

spheroids were prepared by optimizing the procedure described by Guarnieri et al. [52]. 

Briefly, a confluent monolayer of cells was trypsinized and about 2500 U87-MG and 3000 

HDF cells per spheroid were suspended in the culture medium containing 0.25 % (w/v) 
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carboxymethylcellulose, seeded onto non-adherent round-bottomed 96-well plates 

(Greiner, Frickenhausen, Germany), and cultured at 37 °C, 5 % CO2, 100 % relative 

humidity. These spheroids were harvested within 24 h, centrifuged for 5 min at 1000 rpm, 

and suspended in cell culture media in low-attachment 6-well plates. Approximately 6-10 

spheroids were suspended in each well with cell culture medium, containing free Dox (4 

µg/ml), PELGA-Dox NPs and PELGA-TAP NPs, and incubated at 37 °C. Positive control 

samples were treated with cell culture medium only. After 24 and 48 h, spheroids were 

fixed with 4 % paraformaldehyde and observed by confocal multiphoton microscope with 

a 10× objective. Z-sectioning images were acquired with a resolution of 1024×1024 pixels 

and a z- slice thickness of about 20 µm. The fluorescence intensity profile of Dox diffused 

into the spheroid matrix was measured by LAS-AF software (Leica). Data were reported as 

the distribution of normalized pixel counts as a function of gray scale value of each pixel 

ranging from 0 to 255. 

1.2.10 Statistical analyses 

Quantitative data are reported as mean value ± standard deviation (SD). The statistical 

significance of the results was assessed by one-way analysis of variance ANOVA. A p 

value <0.05 was considered to identify statistically different groups. 

  



Chapter 1 Tumour Activated Pro-drug (TAP)-conjugated nanoparticles sensing the matrix 

metalloproteinase-2 for the on-demand release of anticancer drugs in 3D tumour 

spheroids 

29 

 

1.3 Results 

1.3.1 Synthesis of copolymers and conjugates 

PLGA-Dox and PLGA-TAP copolymer were synthesis following the scheme reported 

in Figure 1.2. MMP-2 sensitive peptide was obtained with a good yield; crude peptides 

were purified to homogeneity (> 95%) on preparative High Performance Liquid 

Chromatography (HPLC) and their presence was confirmed by ESI-LC-MS analysis 

(Figure 1.4 A and B) [48]. As for PLGA-peptide-Dox (TAP) synthesis, pure Fmoc-

peptides, with free carboxylic C-terminus, were conjugated to Dox by amide bond 

formation and purified with HPLC. The presence of the conjugate was confirmed by HPLC 

(Figure 1.4 C and D), by simultaneously measuring Fmoc and Dox spectra. Afterwards, the 

Fmoc group on N-terminus was removed by piperidine treatment and purified by HPLC 

(Figure 1.4 E and F). Peptide-Dox conjugates were linked to PLGA by amide bond 

formation and the reaction product was dialyzed against DMSO and water to remove 

excess reagents. 

 

Figure 1.4: HPLC, absorbance and mass spectroscopy analysis of the MMP-2 sensitive peptide-Dox conjugate. 

HPLC traces and absorbance spectra of: MMP-2 sensitive peptide (A and B), Fmoc-peptide-Dox conjugate (C and 

D) and de-protected peptide-Dox adduct (E and F); mass spectroscopy profile of the MMP-2 sensitive peptide (B, 

inset). Reprinted from [4]. 
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PLGA-Dox and PLGA-Peptide-Dox synthesis was verified using NMR spectroscopy. 

Comparing 
1
H 1D spectra of pure PLGA and Dox compounds in DMSO with PLGA-Dox 

spectrum we confirmed that the PLGA-Dox product was effectively formed using our 

procedure (Figure 1.5). Chemical structures of PLGA and Dox are associated to their NMR 

spectra. In the PLGA spectrum, peaks A and B at 5.18 and 1.41 ppm correspond 

respectively to CH and CH3 protons of PLGA lactic acid part where peak C at 4.85 ppm 

corresponds to CH2 protons of PLGA glycolic acid part. In the Dox spectrum, very 

important signals are peaks 1, 2 and 3 in the 8.0-7.5 ppm region corresponding to aromatic 

protons, peak 4 at 3.97 ppm corresponding to ether OCH3 protons and peak 5 at 1.14 ppm 

corresponding to aliphatic CH3 protons. In the PLGA-Dox spectrum, characteristic peaks 

of both PLGA and Dox are distinguishable confirming the formation of the PLGA-Dox 

molecule. Peak at 2.47 ppm is the DMSO residual signal. 

 

 

Figure 1.5: 1H 1D NMR spectra of PLGA (blue), Dox (pink) and PLGA-Dox molecule (green) in DMSO. 

Reprinted from [4]. 

1
H 1D NMR spectra of PELGA-Dox and PLGA-Peptide-Dox samples are shown in 

Figure 1.6. PLGA-Peptide-Dox spectrum contains several peaks not present in PLGA-Dox 

spectrum. In particular, we focus our attention on the spectral region between 9 and 7 ppm 

and in the region between 1 and 0 ppm. Peaks with chemical shift values lower than 1 ppm 

are typically associated with methyl groups of Leu, Ile or Val residues. In the regions 

between 9 and 7 ppm, furthermore, we find amide protons of backbone peptidic bounds. 

Figure 1.6 B shows a zoom of the region between 8.5 and 7 ppm where, in PLGA-Peptide-
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Dox spectrum, doublets at 7.86 and 7.82 ppm, triplet at 7.39 ppm and partially 

superimposed triplets at 7.33 and 7.32 ppm are typical signals of peptide backbone NH. 

 

Figure 1.6: 1H 1D NMR full spectra (A) and a zoom of 8.5-7.0 ppm region (B) of PLGA-Peptide-Dox (red) and 

PLGA-Dox (green) molecules in DMSO. Reprinted from [4]. 

In Figure 1.6 panel A, CH3 aliphatic region and NH amide backbone region are 

underlined in the PLGA-Peptide-Dox spectrum. In panel B, arrows show peptide backbone 

NH signals in PLGA-Peptide-Dox spectrum. 
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1.3.2 NPs mean size, ξ-potential and stability 

PLGA-TAP and PLGA-Dox were mixed with PELGA copolymer [53] in acetone for 

NPs production, according to the procedure described above. The produced NPs were 

characterized in terms of size, ζ-potential and stability and morphology. DLS 

measurements show that NPs diameter is below 100 nm with a polydispersity index (PDI) 

less than 0.2 with and without TAP. The surface charge is negative, with very slight 

differences among the NPs (Table 1.1). 

Sample Dox/NP 

[µg/ml] 

Mean size 

[nm ± SD] 

PDI ζ-potential 

[mV ± SD] 

PELGA-TAP ~ 20 75.1 ± 0.5 0.186 - 29.5±4.8 

PELGA-Dox ~ 21.5 62.0 ± 0.9 0.167 -23.6±12.8 

Table 1.1: Formulation, size, polydispersity index (PDI) and ζ-potential of PELGA-TAP and PELGA-Dox 

NPs. Data are reported as mean ± SD. p < 0.05 was considered statistically significant. Reprinted from [4]. 

In particular, PELGA-TAP NP show a slightly enhanced size probably because of the 

peptide interaction with water since DLS analysis give us indirect information concerning 

the hydrodynamic diameter, which is always higher if compared to the NP diameter shown 

in morphological analysis. These observations are in agreement with previous works. In 

fact, Danhier et al. [54] prepared PLGA nanoparticles blended with PLGA-b-PEG with and 

without the presence of the RGD peptide sequence, according to the nanoprecipitation 

method. DLS measurements performed on both kind of NP show that the presence of the 

RGD peptide, which is composed by only 3 aa, entails an increase of about 24 nm in 

nanoparticle size. Moreover, Li et al. [55] covalently conjugated a 12-aminoacid-peptide 

onto the surface of PEG-PLGA based NPs prepared according to the emulsion/solvent 

evaporation method. In particular, they prepared blank NPs without the presence of the 

peptide and two types of functionalized NPs with a peptide/maleimide-polymer ratio of 1:3 

and 1:1, namely TGN-NPs (1:3) and TGN-NPs (1:1) respectively. DLS data showed a 5 

nm difference in size between blank and TGN-NPs (1:3); this difference increased in the 

case of TGN-NPs (1:1) to 15 nm. In these articles, NPs were prepared with two different 

methods and the peptide sequences involved in the NP functionalization process were 
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different in composition and length. Nevertheless, in both cases was observed an increase 

in NP hydrodynamic radius in presence of a peptide sequence when compared to the blank 

NP.  

DLS measurements were performed also at 1, 7 and 14 in water. Data show a very slow 

increase in NPs size over time and a good colloidal stability up to 14 days, as can be seen 

in Figure 1.7.  

 

Figure 1.7: Time evolution of the hydrodynamic diameter of PELGA-TAP NPs in aqueous suspension 

obtained by DLS measurements. PDI was < 0.2 in all cases. Reprinted from [4]. 

1.3.3 NPs morphological characterization 

SEM and Cryo-TEM images of PELGA NPs are displayed in Figure 1.8, panel A and B 

respectively. Images show that NPs are spherical and with a regular shape.  

 

Figure 1.8: SEM of PELGA-TAP NPs (A) and Cryo-TEM of PELGA-Dox NPs (B). Insets A and B show 

images at higher magnification. Reprinted from [4]. 
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1.3.4 Doxorubicin in vitro release kinetics from PELGA-TAP 

nanoparticles  

The produced PELGA-TAP NPs were tested for their ability to release Dox in vitro 

upon exposure to free MMP-2 enzyme. To this aim, the cleavage assay was performed by 

incubating the particles with or without 20 nM MMP-2 at 37°C for 48 h. The in vitro 

release profiles of Dox from PELGA-TAP NPs in presence or absence of the enzyme are 

plotted in Figure 1.9 A. It can be seen that, in absence of MMP-2 enzyme, 25% of Dox was 

released within 24 h while, in presence of the enzyme, ~ 40% of Dox release was observed 

in the same time frame. For longer release times, the effect of MMP-2 is more evident and, 

after 36-48 h, Dox release percentage was roughly two-fold higher in presence of the 

enzyme. More interestingly, after 48 h, the Dox release from PELGA-Dox NPs was the 

same with and without enzyme treatment and, in particular, the percentage of released Dox 

in these conditions is comparable to the percentage of drug released from the untreated 

PELGA-TAP NP in the same time frame (Figure 1.9 B).  

 

Figure 1.9: In vitro Dox release profile from PELGA-TAP NPs at 37°C in presence (black circles) and absence 

(white circles) of 20 nM MMP-2 enzyme (A); Dox release percentage from PELGA-TAP and PELGA-Dox NPs 

after 48h incubation with and without MMP-2 enzyme treatment at 37°C (B). Data are reported as mean ± 

standard deviation (SD). p < 0.05 was considered statistically significant. Reprinted from [4]. 

1.3.5 Penetration of Dox within tumour spheroid matrix upon 

endogenous MMP-2 cleavage of PELGA-TAP NPs 

In this work, the expression and the enzymatic activity of endogenous MMP-2 secreted 

by U87-MG and HDF cells were verified. As shown by the results of indirect 

immunofluorescence analysis presented in Figure 1.10 (A and B), tumour cells express 

greater levels of MMP-2 protein than healthy cells. Moreover, zymography results 
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demonstrate that, for U87-MG cell line, a higher amount of secreted MMP-2 enzyme in its 

activated form was found in cell culture medium (Figure 1.10 C), since MMP-2 are 

extracellularly-released enzymes [56] [57] [58]. Conversely, the lowest level of secreted 

MMP-2 was found for HDF cells. In particular, MMP-2 for U87-MG was 8.4 fold higher 

than HDF cells.  

 

Figure 1.10: MMP-2 expression levels in U87-MG and HDF cells. Indirect immunofluorescence of MMP-2 

protein (green) in U87-MG (A) and HDF (B). Blue: DAPI staining of nuclei. Scale bar 10 μm. Gelatin zymography 

showing the MM2 activity of the two cell types used in this work (C) Reprinted from [4]. 

Based on these findings, in order to demonstrate the ability of PELGA-TAP NPs to 

sense the differences in expression levels of endogenous MMP-2 enzyme and, hence, 

induce Dox release upon specific enzymatic cleavage, U87-MG and HDF cell spheroids 

were used as in vitro models of a tumour and a healthy tissue, respectively. Tumour 

spheroids were incubated with PELGA-TAP for 24 and 48 h at 37 °C. To further verify the 

specificity of action of PELGA-TAP NPs, PELGA-Dox NPs (i.e., without the enzyme-

sensitive linker) were used as a negative control. At first, the diffusion of free Dox through 

the spheroid matrix was evaluated by confocal microscopy analysis.  

Z-sectioning projection images show the presence of a fluorescence signal within U87-

MG tumour spheroids after 24 h exposure to PELGA-TAP NPs (Figure 1.11 A and C). 

Moreover, spheroid fluorescence was found to be rapidly increasing over time, therefore 

indicating Dox accumulation within the spheroid bulk and, as a consequence, spheroids 

tend to disaggregate after 48h of incubation with PELGA-TAP NPs (Figure 1.11 B). On 

the other hand, a very low fluorescence signal was observed in the case of U87-MG 

spheroids treated with PELGA-Dox both for 24 and 48 h incubation. 
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Figure 1.11: Distribution of Dox within U87-MG spheroid matrix upon 24 and 48 h incubation with PELGA-

TAP NPs and PELGA-Dox NPs. Maximum projection of z-sectioning confocal images of Dox (red) in U87-MG 

spheroids (A). Transmitted light images of U87-MG spheroids (B). Fluorescence intensity distribution of Dox 

diffused into the spheroid matrix (C). The y axis represents normalized pixel counts and the x axis represents the 

pixel fluorescence intensity expressed as grey scale values (scale range 0–255). Scale bar: 200 µm. Reprinted from 

[4]. 

More interestingly, HDF spheroids show a lower fluorescence signal than U87-MG 

spheroids, with a less significant difference in fluorescence intensity between PELGA-

TAP and PELGA-Dox NPs treatment (Figure 1.12 A and C) than U87-MG spheroids. 

Finally, in this case, spheroids do not disaggregate and tend to keep their consistency and 

shape in time. 
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Figure 1.12: Distribution of Dox within HDF spheroid matrix upon 24 and 48 h incubation with PELGA-TAP 

NPs and PELGA-Dox NPs. Maximum projection of z-sectioning confocal images of Dox (red) in HDF spheroids 

(A). Transmitted light images of HDF spheroids (B). Fluorescence intensity distribution of Dox diffused into the 

spheroid matrix (C). The y axis represents normalized pixel counts and the x axis represents the pixel fluorescence 

intensity expressed as gray scale values (scale range 0 – 255). Scale bar: 200 µm. Reprinted from [4]. 
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1.4 Discussions 

In this work, we translated the TAP production technology previously published [48] to 

the fabrication of a biodegradable nanocarrier, based on PELGA copolymer, which 

consists of two FDA-approved materials, namely PLGA and PEG. The main advantage of 

this system is the integration of some major drug delivery approaches, such as self-

assembly, nanodevice PEGylation, the concept of prodrug and the sensitiveness to 

endogenous stimuli. These characteristics make the produced nanoparticles potentially 

suitable for anticancer drug delivery driven by a tumour-specific, micro-environmentally 

induced release mechanism. 

The produced PELGA-TAP NPs have a size less than 100 nm, and are basically stable 

in aqueous media up to two weeks; furthermore, the theoretical drug loading efficiency is 

of ~20 μg/mg and is significantly higher if compared to emulsion-based NPs which were 

previously produced by our group [53]. Moreover, the differences between the Dox release 

profiles in the presence or absence of MMP-2 enzyme clearly indicate the specificity of 

PELGA-TAP NPs for the enzyme. Indeed, in the absence of the MMP-2 – sensitive 

peptide linker, the release of Dox is not affected by the presence/absence of enzyme 

treatment and, furthermore, it is comparable to the released drug fraction from untreated 

PELGA-TAP NPs. In particular, in the previously mentioned work of our group [48], Dox 

was tethered to the surface of non-biodegradable polystyrene model NPs and, in that case, 

drug release was governed solely by the enzymatic cleavage of the prodrug. In another 

work of our group, the delivery of Dox from PELGA NPs was driven predominantly by the 

diffusion of the encapsulated drug through the NPs during the hydrolytic degradation of 

PELGA [53]. The NPs prepared in this study combine both these release mechanisms. 

Indeed, in the absence of MMP-2 enzyme treatment, the linker between Dox and PELGA 

is not expected to be cleaved and, therefore, drug release is controlled by the combination 

of drug diffusion/dissolution and random chain scission at the hydrolytic ester bond of the 

copolymer [59]. Therefore, it is reasonable to assume that, in the absence of MMP-2-

sensitive peptide, the released Dox is predominantly attached to soluble PELGA 

oligomers. On the contrary, in the presence of the MMP-2-sensitive peptide, the described 

mechanism is coupled to the enzymatic cleavage. In fact, it is possible to assume that all 

the Dox is initially complexed to PLGA via the MMP-2 – sensitive peptide, while the 

fraction of unbound drug can be neglected. Therefore, when MMP-2 is present in the 
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release medium, Dox release is triggered by the enzymatic cleavage of the peptide linker. 

When MMP-2 initially diffuse toward and into the NPs, it breaks the peptide drug-polymer 

bond, and contributes to the delivery of the conjugated Dox. Thus, it is possible to 

conclude that drug release from PELGA-TAP NPs is governed by the complex interplay 

among the diffusion of MMP-2 and Dox, the kinetics of peptide bond cleavage and the rate 

of hydrolytic degradation of PELGA.  

Based on these findings, in order to demonstrate the ability of PELGA-TAP NPs to 

sense the differences in expression levels of endogenous MMP-2 enzyme and, hence, to 

induce Dox release upon specific enzymatic cleavage, U87-MG and HDF cell spheroids 

were used as 3D in vitro models of a tumour and a healthy tissue, respectively. In fact, 

tumour spheroids represent a relevant in vitro model that better resembles the three-

dimensional architecture and functionality of the original tissues [60].  

Our results demonstrate the specificity of PELGA-TAP NPs action, compared to 

PELGA-Dox NPs used as a control. Such specificity is elicited by the release of Dox, 

which is in turn triggered by the enzymatic stimulus, as well as by the capability to 

promote the penetration of the drug within tumour matrix selectively. More interestingly, 

in agreement with gelatin zymography data, PELGA-TAP NPs are able to ‘sense’ the 

differences in the expression levels of endogenous MMP-2 enzyme, therefore contributing 

to modulate drug penetration within tumour spheroid matrix, accordingly. In particular, 

fluorescence intensity analysis shows a 40 % increase of Dox accumulation within U87-

MG compared to HDF spheroids upon 24 h incubation with PELGA-TAP NPs; after 48 h 

incubation, this increase is 80 %. Conversely, for PELGA-Dox NPs, the increase of Dox 

accumulation into U87-MG spheroids is only 25 % compared to HDF and remains 

constant over time. These results also indicate that PELGA-TAP NPs can promote a 

prolonged cytotoxic effect taking advantage of the presence of endogenous MMP-2, which 

is overexpressed in the tumour sites, therefore allowing the massive release of the loaded 

Dox. 
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1.5 Conclusions 

In this work, a novel formulation of biodegradable PELGA-based NPs for targeted 

delivery of cytotoxic drugs to tumour tissues, integrating the concepts of prodrug, NPs 

self–assembly/PEGylation and endogenous stimuli-responsive drug release and 

extracellular drug release was developed. The produced NPs are endowed with a tumour 

activated prodrug presenting a MMP-2-sensitive peptide sequence as a cleavable domain 

for the on-demand delivery of Dox in the extracellular environment, taking advantage of 

physiological changes naturally occurring within tumours. The results presented in this 

work suggest that the PELGA-TAP NPs can deliver Dox specifically upon enzymatic 

cleavage and promote drug penetration within 3D tumour spheroids. Moreover, since in 

vivo MMP-2 are extracellularly secreted from the cells [58], Dox release occurs 

prevalently in the extracellular environment, so drug is mostly presented to the cells in his 

free form. In this way we combined the advantages of an extracellular drug delivery in 

proximity of the tumour mass, deriving from the better diffusion properties of the drug 

itself when compared to the nanoparticles [24], with the need to carry the drug safely in the 

body and allow its release only in the site of interest, in order to avoid, or at least reduce, 

the side effects related to the systemic delivery of the drugs. 

Therefore, the proposed PELGA-TAP NPs are able to merge the 

biodegradability/biocompatibility of PELGA with active mechanisms of Dox release and 

tumour penetration. The clear comprehension of how PELGA-TAP NPs may translate into 

actual therapeutic effects is still unknown and deserves further investigation. Nevertheless, 

since the presented NPs are able to release their cargo in presence of endogenous stimuli 

that come from the very nature of the tumour microenvironment, these could be tested on 

more complex in vitro tissue equivalents that better recapitulate tumour architecture, to 

further assess their efficacy as drug delivery systems. In the light of these considerations, 

the produced NPs hold promise as a useful tool to improve therapeutic efficacy of the 

conjugated drug payload. 
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  3D tumour microtissues as in Chapter.2

vitro testing platform for MMP-2- 

responsive nanoparticles 

ABSTRACT  

Therapeutic approaches based on nanomedicine garnered great attention in cancer 

research and increased the need of in vitro biological models that better mimic the in vivo 

conditions in order to more accurately predict the therapeutic efficacy of these 

nanocarriers. In this work, a new 3D breast cancer model is presented, based on the 

microtissue approach developed by Brancato et al. [5]. This 3D model recapitulate the 

complexity of the tumour microenvironment along with tumour architecture and was used 

as drug screening platform to further validate a recent formulation of endogenous metallo-

proteinases 2 (MMP-2) responsive nanoparticles (NPs) proposed by Cantisani et al. [4]. 

The 3D cancer model was developed using human breast adenocarcinoma cells and cancer-

associated fibroblasts embedded in their own ECM, thus showing several features of an in 

vivo tumour, such as the MMP-2 overexpression. The results of cell viability test show that 

drug release only occurs in tumour microtissues, when treated with the MMP-2 responsive 

NPs*. 

KEYWORDS: MMP-2 responsive drug delivery, nanoparticles (NPs), microtissues 

(μTPs), tumour breast. 
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2.1 Introduction 

The controlled-delivery of chemotherapeutics using NPs is the most promising tools 

that nanomedicine has in the war against cancer, since drugs are activated or released 

specifically in tumour tissue, maximizing their effectiveness as well as minimizing their 

side effects [61] [62] [63]. Tumour microenvironment (TME) has a crucial role in cancer 

progression and is characterized by several abnormalities such as acidic pH, altered redox 

potential and up-regulated proteins, which can be exploited as targets to design appropriate 

stimuli-responsive nanoparticles [63] [64] [65] [66]. The stimuli-responsive nanocarriers 

(SRNs) are specialized nano-sized active delivery vehicles that evolve with an external 

signal and are equipped with “load-and-release” modalities within their constituting units 

[1]. An array of manifold enzymes, such as proteases, which are expressed differentially 

and are either intra or extracellular presented by normal and malignant cells, can be used, 

among others, as biochemical triggers. 

In the light of these considerations, a smart approach in NPs design may be the one that 

benefits from the MMPs over-expression in tumour sites, in order to produce a stimuli-

responsive nanocarrier, allowing a site specific drug release. 

To this aim, Cantisani et al. [4] proposed the use of a novel nanocarrier able to carry 

safely doxorubicin in tumour tissues, and to respond to MMP-2 enzyme. The produced 

NPs are made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) – block – 

PEG copolymer (namely PELGA), blended with a TAP composed by a MMP-2-sensitive 

peptide bound to doxorubicin (Dox) at the C-terminus and to PLGA molecule at the N-

terminus. These NPs are named PELGA-TAP NPs. The presence of the MMP-2 enzyme in 

situ, leads to the disruption of the bond between the peptide and the Dox, with the 

consequent diffusion of the drug; this mechanism allows drug delivery only in presence of 

endogenous stimuli that comes from the very nature of the tumour tissue itself. 

Furthermore, the same NPs were prepared without the presence of the peptide sequence, as 

negative control and are named PELGA-Dox (Figure 2.1). 
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Figure 2.1: Schematic representation of PELGA-TAP and PELGA-Dox NP production. Figure not in scale. 

Reprinted from [6]. 

It is well recognized that TME is populated by different kinds of cells (i.e. epithelial 

cells, normal and cancer-activated fibroblasts, endothelial cells) [67] that are embedded in 

the extracellular matrix (ECM) and nourished by the vascular network [68]. However the 

efficiency and selectivity of new drugs are often tested in 2D systems, in which cancer 

cells seeded on Petri dish do not experience the real microenvironment they find in vivo, 

where the stromal and cancer cells interact impairing the drug delivery or its functionality. 

This is extremely costly and time-consuming during preclinical studies. Since tumour 

stroma affects the sensitivity of tumour cells to drug treatment [69], it is crucial to have in 

vitro models that faithfully replicate the features of cancer microenvironment in vivo and, 

at the same time, are highly reproducible, robust, easy to use and suitable for high-

throughput screening [70] [71] [72] [73]. 3D spheroid models [74] partially resemble some 

features of in vivo tumours, such as three-dimensional architecture, cell-cell interaction and 

hypoxia; they are currently used as tumour tissue-like in vitro models for testing anticancer 

therapeutics. However, they fail in faithfully reproducing the TME mainly because of the 

lack of an organized ECM capable to replicate both structural and morphological changes 

occurring during pathologic events [5]. Recently, Brancato et al. [5] proposed a new model 

of in vitro stroma microtissue characterized by a cell instructive microenvironment able to 

recapitulate the in vivo characteristics of healthy and tumour stroma tissues [75]. Here we 

produce and characterize, for the first time, a model of breast cancer by co-culturing 

epithelial breast cancer cells (MCF7) and cancer-associated fibroblasts (CAF) on gelatin 

microscaffolds, in spinner flask bioreactors. The resulting 3D breast tumour microtissue, in 
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contrast to the spheroid models, present a heterotypic cell population embedded in its own 

ECM. We used this model to test the above mentioned nanoparticles. 

The NPs were also tested on a 3D healthy tissue composed of normal fibroblasts (NF) 

and epithelial breast cell lines (MCF10) to demonstrate their significant selectivity against 

tumour target. 

 

Figure 2.2: Graphical summary of the work. Reprinted from [6]. 
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2.2 Materials and Methods 

2.2.1 Materials 

Equimolar uncapped poly(D,L-lactide-co-glycolide) (PLGA) (Resomer RG502H, Mw 

12000 Da) was purchased from Boehringer Ingelheim (Ingelheim, Germany). Doxorubicin 

hydrochloride (Dox, purity > 99%) was purchased from Discovery Fine Chemicals (UK). 

Polyethylene Glycol (PEG, Mw 1500 Da), N,N-diisopropylethylamine (DIPEA), O-

benzotriazole-N,N,N’, N’–tetramethyluronium–hexafluoro–phosphate (HBTU), Ethyl 

cyano(hydroxyimino)acetate (Oxyma Pure), anhydrous N,N–dimethyl-formamide (DMF), 

N,N'–diisopropylcarbodiimide (DIC), N,N'-Dicyclohexylcarbodiimide (DCC), 4-

(dimethylamino) pyridine (DMAP), dichloromethane (DCM), piperidine, trifluoroacetic 

acid (TFA), acetonitrile (ACN), Diethyl ether, HPLC– grade water and all buffer solutions 

were purchased from Sigma-Aldrich (USA). All 9-fluorenyl methoxy carbonyl (Fmoc)–

aminoacids were purchased from IRIS Biotech GmbH (Germany). Dialysis bags (MWCO 

6-8 kDa) were obtained from Spectrum Laboratories, Inc. (The Netherlands), while 

distilled and deionized water (18MΩ resistance) were from Millipore (USA). 

2.2.2 Synthesis of copolymers and conjugates 

PLGA-PEG copolymer (namely PELGA) was synthesized via a coupling reaction 

between PLGA and PEG, optimizing a previously reported procedure [4]. Briefly, 1 eq of 

PLGA, 4 eq of PEG, 0.4 eq DMAP and 2 eq of DCC were dissolved in 10 mL of 

anhydrous DCM. After the reaction, the residual DCC was changed into 

dicyclohexylcarbodiurea (DCU) by adding bidistilled water. Then DCM was evaporated 

and the mixture was dissolved in 10 mL of DMSO, filtrated and dialyzed (MWCO 6-8 

kDa) for 1 day against ACN and for 2 days against water. Pure product was recovered after 

lyophilization and analyzed by Nuclear Magnetic Resonance (NMR) spectroscopy. PLGA-

Dox and PLGA-TAP copolymers were synthesized according to a previously reported 

method with slight modifications [4]. Briefly, the MMP-2-sensitive Fmoc–Gly–Pro–Leu–

Gly–Ile–Ala–Gly–Gln–COOH peptide was synthesized using standard solid phase Fmoc 

method [48] and verified by analytical LC-MS. Then, the peptide–Dox conjugates were 

synthesized by a standard coupling procedure, using HBTU as coupling reagent. Peptides 
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(1 eq), HBTU (1 eq), Oxyma Pure (1 eq), DIPEA (2 eq), and Dox (1.5 eq) were dissolved 

in anhydrous DMF. The reacting mixture was continuously stirred overnight and the 

reaction products were verified by analytical LC-MS. After the coupling reaction, the 

mixture was precipitated in cold diethyl ether to remove undesired reaction products and 

the excess of unreacted doxorubicin. In order to remove the Fmoc group, Fmoc-MMP-2-

Dox was dissolved in 1% piperidine/DMF solution for 5 min and then precipitated again in 

cold diethyl ether. The purity of the reaction product was asserted by LC-MS and the 

residue was dissolved in a 30/70 (v/v) acetonitrile (ACN)/water solution containing 0.1 % 

(v/v) TFA and purified by RP-HPLC. Finally, the PLGA-peptide-Dox (TAP) conjugate 

was synthesized using a standard HBTU coupling procedure. Briefly, PLGA (1 eq), HBTU 

(5 eq), Oxyma Pure (5 eq), DIPEA (10 eq), and peptide-Dox conjugates (1.2 eq) were 

dissolved in anhydrous DMSO and led to react overnight. The copolymer was purified 

removing the unreacted reagents using dialysis bags (MWCO 6–8 kDa) and lyophilized. 

Furthermore, as a negative control, to evaluate specific MMP-2 enzyme cleavage of the 

pro-drug, a PLGA-Dox conjugate without the MMP-sensitive peptide was synthesized and 

purified as reported above. In particular, PLGA (1 eq), HBTU (1 eq), DIPEA (2 eq) and 

Dox (1.5 eq) were used. Final products were analyzed by 
1
H-NMR spectroscopy using a 

combination of 1D PROTON and DOSY experiments. NMR spectra were recorded using 

an Agilent 600MHz (14 Tesla) spectrometer equipped with a DD2 console and an 

OneNMR HX probe. PLGA-PEG, PLGA-Dox and PLGA-Peptide-Dox samples (1 mg) 

were dissolved in 600 µl of 99.9% deuterated DMSO (Sigma–Aldrich).
1
H 1D spectra were 

recorded at 300 K using 4, 1024 and 2048 scans respectively to obtain a good signal-to-

noise ratio for each sample. A double saturation PRESAT pulse sequence was used to 

reduce residual peaks of DMSO and water at 2.5 and 3.3 ppm, respectively. Spectra were 

transformed and analyzed using VNMRJ4 software. Chemical shift scale was referenced to 

the solvent residual peak signal. 

2.2.3 NP preparation  

PELGA-TAP NP were produced starting from a well-established procedure [4]. Briefly, 

1 mg of PELGA and 1 mg of TAP were dissolved in 500 μl of acetone. Afterwards, the 

solution was added dropwise with a syringe pump into 12.5 ml of distilled water under 

magnetic stirring. The organic solvent was then evaporated for 3 h and the obtained NP 
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dispersion sterilized with a 0.22 μm membrane filter. Finally, the volume of the solution 

was reduced to 1 ml by using Amicon Ultra-4 10 kDa centrifuge tube (Millipore), to have a 

final NP concentration of 2 mg/ml. Control NP (i.e. without the MMP-sensitive linker) 

were prepared with the same technique using 1 mg of PLGA-Dox and 1 mg of PELGA.  

2.2.4 NP size and morphology  

The NP mean size, size distribution and Polydispersity Index (PDI) were determined by 

Dynamic Light Scattering (DLS) (ZetaSizer Nano ZS, Malvern Instruments, Malvern, UK) 

on a 0.1 mg/ml suspension of NP in water. Results were averaged on all NP batches used 

in this work. 

NP morphology was analysed by Cryogenic Transmission Electron Microscopy (Cryo-

TEM). Cryo-TEM samples were vitrified with FEI Vitrobot Mk IV in a saturated water 

vapour environment. Sample volumes of 3 μl were placed on 200 mesh Quantifoil grids 

and the excess sample was blotted away with filter paper. Blot time and drain time were 

both 1 s. After blotting, the grids were plunged into liquid propane that was cooled with 

liquid nitrogen surrounding the propane vessel. Imaging was performed with TEM 

TECNAI G2 equipment operating at 200 kV in low dose mode and acquired with an Eagle 

2HS camera. 

2.2.5 Cell culture 

Normal human mammary fibroblasts (NF) and cancer associated fibroblasts (CAF) 

were provided by the group of prof. Bussolino (IRCCS Institute of Candiolo, Turin, Italy) 

following the procedures previously described [76] and stable transfected with pLVX-

DsRed-express2-N1 (λex 554nm, λem 591nm) viral vector (Clontech, USA). Cells were 

sub-cultured onto 150 mm Petri dishes in DMEM-HG (Dulbecco's Modified Eagle 

Medium-High Glucose), supplemented with 10b% fetal bovine serum, 100 μg/ml L-

glutamine and 100 U/ml penicillin / streptomycin.  

Human epithelial cell lines (MCF10) from ATCC and human breast adenocarcinoma 

cells (MCF7) kindly donated by Daidone's group, were sub-cultured onto 150 mm Petri 

dishes in MEBM (Mammary Epithelial basal medium, Lonza) and RPMI-1640 (Roswell 

Park Memorial Institute) supplemented with 10b% fetal bovine serum, 100 μg/ml L-
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glutamine and 100 U/ml penicillin / streptomycin, respectively. Cells were maintained at 

37 °C in humidified atmosphere containing 5 % CO2. 

2.2.6 Microbeads production 

Gelatin porous microbeads (GPMs) were prepared according to a modified double 

emulsion protocol (O/W/O) previously developed by our group. For further detail see ref. 

[77].  

2.2.7 Microtissue dynamic culture 

Before using, dry GPMs were sterilized in absolute ethanol 24 h on a rotating plate. 

Then, GPMs were washed twice in sterile phosphate-buffered saline (PBS) without 

calcium and magnesium solution. Finally, before cell seeding, PBS was replaced by fresh 

culture medium. For all experiments 100 ml siliconized spinner flask (Integra) were used. 

The 3D healthy and tumour microtissue named NF/MCF10- and CAF/MCF7-μTP, 

respectively, were produced as follows. Firstly, we performed a homotypic culture by 

seeding fibroblast cells (NF or CAF) on GPMs and after six days epithelial cells (MCF10 

or MCF7) were added on fibroblast-seeded GPMs. In particular, homotypic cultures were 

performed by using 50 mg of GPMs and 7.5 x 105 healthy (NF) or activated fibroblasts 

(CAF), in a ratio of 30 cells for GMP. A stirring regime (30 min at 0 rpm, 5 min at 30 rpm) 

for 6 h was used, while continuous intermittent stirring at 30 rpm was used until the end of 

the culture (12 days). Then, at day 6 of fibroblast culture, healthy (MCF10) and tumour 

epithelial cells (MCF7) were added into spinner flasks with NF and CAF, respectively, at a 

ratio 1:3. The ratio was calculated considering the number of fibroblast for GMP at day 6. 

Medium was changed on the first day and every 3 days until the end of the experiments. To 

stimulate the production of collagen, 50 μg/ml of ascorbic acid were added, from day 2 of 

the dynamic culture [78]. 

2.2.8 μTPs characterization 

Cell growth on the GPMs was monitored at day 1, 6, 7 and 12 of culture, collecting 

about 1 ml of the NF/MCF10- and the CAF/MCF7-μTP suspension from the spinner flask. 
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Masson's trichrome (Sigma Aldrich) staining was performed, according to standard 

protocol, to observe the morphological features of the μTP. Images were acquired using a 

light microscope (Olympus, BX53).  

Confocal and Second Harmonic Generation (SHG) images were acquired to 

morphologically characterize the μTPs. NF/MCF10- and the CAF/MCF7-μTP were fixed 

with 4% paraformaldehyde for 20 min and washed three times with PBS. After that, cell 

nuclei were stained using DAPI, (Sigma-Aldrich λex = 700 nm and λem = 425 ± 25 nm). 

NF and CAF cells were imaged using the following parameters: λex = 543 nm and λem = 

590 ± 60 nm. A 40X water objective was used. Moreover, two-photon excited fluorescence 

was used to induce SHG and obtain high-resolution images of unstained collagen 

structures in μTP’s ECM (λex = 840 nm, λem = 420 ± 5 nm).  

To quantitatively assess the collagen-related changes in the architecture, Grey-Level 

Co-occurrence Matrix (GLCM) texture analysis was performed [5] [75].  

Further details concerning this section can be found in ref. [6]. 

2.2.9 MMP-2-expression in tumour and healthy 3D-μTP 

In order to quantitatively and qualitatively verify MMP-2 expression in tumour and 

healthy μTPs, a set of analysis were performed. 

First of all, total RNA extraction of homogenized μTP was quantitatively obtained by 

means of real time PCR. RNA was extracted using High pure RNA isolation kit (Roche 

Diagnostics; Milan, Italy). An RNA quality check, including concentration and purity, was 

performed with a Bio photometer DNA RNA UV spectrophotometer (Eppendorf). All 

experiments were performed in triplicate.  

Indirect immunofluorescence of the MMP-2 enzyme was also performed. In this case, 

formalin-fixed and paraffin embedded NF/MCF10- and CAF/MCF7-µTP were unmasked 

by heat antigen retrieval protocol; washed with PBS containing 0.2 % Triton X-100, 

blocked with FBS and 5 % BSA solution and incubated with primary antibody MMP-2 

(1:200, Abcam UK). Before closing the slices with glycerol solution, secondary antibody 

incubation and DAPI staining were performed. Fluorescent images were acquired by using 

a multichanneled Leica TCS SP5 II, and then were analysed for semi-quantitative 

evaluation with ImageJ. In more detail, the amount of signal was divided by the total 

number of cells (previously obtained by counting their nuclei) in each image [79] [80].  
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Finally, gelatin zymography was performed for both the NF/MCF10- and the 

CAF/MCF7-µTP culture surnatants as follows: gel (SDS–PAGE, 10 %) was co-

polymerized with gelatin (0.1 %) (Sigma-Aldrich). Electrophoresis was carried out using 

the minigel lab apparatus Mini Protean 3 (Biorad) at a constant voltage of 150 V until the 

dye reached the bottom of the gel. Following electrophoresis, the gel was washed in 

renaturation buffer (2.5 % Triton X-100 in 50 mm Tris–HCl, pH 7.5) for 1 h in an orbital 

shaker. Then it was incubated for 18 h at 37 °C in incubation buffer (0.15 m NaCl, 10 mm 

CaCl2, 0.02 % NaN3 in 50 mm Tris–HCl pH 7.5). The gel was then stained with 

Coomassie blue and destained with 30% methanol and 10 % acetic acid. Areas of 

enzymatic activity appeared as clear bands over the dark background. Finally, the degree 

of gelatin digestion was quantified using Image J software and the image was digitally 

inverted, so that the integration of bands was reported as positive values. We reported the 

pixel intensity of the area of each gelatin-digested band. 

Further details concerning this section can be found in ref. [6]. 

2.2.10 μTPs NPs treatment  

In order to have the same cell density, the NF/MCF10- and the CAF/MCF7-μTP were 

transferred into ultra-low attachment 96-well round-bottomed plates (Corning, USA). Both 

μTP were treated with medium only, as positive control, with PELGA-TAP and with 

PELGA-Dox NPs at a final Dox concentration of 4 and 8 μg/ml of Dox for 48 and 72 h at 

37 °C in humidified atmosphere containing 5% CO2. After treatment, NF/MCF10 and the 

CAF/MCF7-μTP were washed three times with PBS. 

2.2.11 μTPs confocal imaging 

After treatment, all types of μTP used in the experiment were fixed in 4 % 

paraformaldehyde in PBS for 20 min. Cell nuclei were stained with 1 μg/ml of DAPI 

(Sigma-Aldrich, λex = 700 nm and λem = 425 ± 25 nm). Dox fluorescence was observed 

under a confocal microscope (Leica) with excitation at 488 nm and emission 515 ± 15 nm, 

using a 40X/1.10 water objective. 
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2.2.12 Cytotoxicity assay 

After treatment, MMT assay was performed to detect cell viability according to 

manufacturer's instructions. Briefly, 20 μL of 3-(4,5-dimethylthiazol-2-yl) - 2,5 - 

diphenyltetrazolium bromide (MTT) solution (5 mg/ml) were added to each well, and the 

plates were incubated for another 4 h, allowing the viable cells to reduce the yellow MTT 

into dark-blue formazan crystals, which were dissolved into 100 μL of dimethyl sulfoxide 

(DMSO). The absorbance of individual wells was measured at 470 nm using a microplate 

reader (Enspire Multimode Plate Reader PerkinElmer). All experiments were performed in 

triplicates.  

2.2.13 Statistical analysis 

Differences between two or more groups were evaluated (p-value < 0.05) using one-

way analysis of variance (ANOVA). 
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2.3 Results  

2.3.1 Synthesis of copolymers and conjugates 

NPs precursors were prepared through ester or amide linkage to the carboxylic group of 

PLGA, optimizing a previously reported synthesis [49]. In particular, Oxima Pure® was 

used as additive instead of 1-hydroxybenzotriazole (HOBt), both in peptide synthesis and 

in conjugation coupling reactions, since Oxima Pure is reported to be superior in terms of 

suppression of racemization, coupling efficiency and safety, when compared to HOBt [81] 

[82]. 

A detailed chemical characterization of PELGA, PLGA-Dox, PLGA-TAP and its 

precursors by means of LC-MS and 
1
H-NMR spectroscopy analysis is reported below. In 

particular, 
1
H-1D NMR and DOSY spectra confirm structure of all the conjugates and 

show that it was not found a significant amount of unreacted reagents for all the samples.  

PELGA Copolymer 

1
H-1D-NMR spectrum of PELGA copolymer is reported in Figure 2.3 A. Characteristic 

peaks of PEG and PLGA can be identified: PLA peaks in the region between 5.28 and 5.14 

ppm and at 1.59 ppm; PGA peaks in the region between 4.96 and 4.84 ppm; PEG peak at 

3.49 ppm; DMSO solvent peak at 2.50 ppm and water residual peak at 3.33 ppm. 

Figure 2.3 B shows DOSY spectrum of PELGA. From this picture is possible to see that 

PLGA and PEG peaks have very similar diffusion coefficient (see red line) proofing that 

they are covalently bounded, since they diffuse as a single blocks with the same diffusion 

coefficient. 
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Figure 2.3: 1H-1D-NMR (A) and DOSY (B) spectra of PELGA in DMSO. Reprinted from [6]. 
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PLGA-conjugates 

Figure 2.4 show mass spectra of Peptide-Dox synthesis steps.  

MMP-2-sensitive peptide was obtained with a good yield. The presence of the crude 

peptides was verified by analytical LC-MS (Figure 2.4 A). 

Regarding peptide-Dox synthesis, pure Fmoc-peptides, with free carboxylic C-terminus, 

were conjugated to Dox by amide bond formation (Figure 2.4 B) and purified with HPLC 

after Fmoc deprotection (Figure 2.4 C). The presence of the conjugates was confirmed by 

analytical LC-MS.  

In more detail, Figure 2.4 A represent MS for Fmoc-Peptide and the peaks of interest 

are [M+H]
+
: 934 m/z and [M+2H]

2+
: 467 m/z;  

Figure 2.4 B show MS for Fmoc-Peptide-Dox and the peaks of interest are [M+H]
+
: 

1459 m/z, [M+Na]
+ 

: 1481 m/z and 1045 and 397 which are the first and the second 

fragmentation of the conjugate, respectively.  

Finally, Figure 2.4 C depicts MS for Peptide-Dox and the peaks of interests are 

[M+H]
+
: 1237 m/z and 823 and 397 which are the first and the second fragmentation of the 

conjugate, respectively. 

 

Figure 2.4: Mass spectra of TAP synthesis steps. Inset (A) shows Fmoc–Peptide mass spectra [M+H]+: 934.6 

Da; Inset (B) shows Fmoc-Peptide-Dox mass spectra [M+H]+: 1459.8 Da, [M+Na]+: 1481.8 Da; Inset (C) shows 

Peptide-Dox mass spectra [M+H]+: 1237.8 Da. Reprinted from [6]. 

Peptide-Dox conjugates or free Dox were linked to PLGA by amide bond formation, 

leading to the formation of PLGA-Peptide-Dox (namely PLGA-TAP) and PLGA-Dox, 

respectively. The reaction products were dialyzed against DMSO and water to remove 

excess of reagents. PLGA-Dox and PLGA-Peptide-Dox synthesis were verified using 
1
H-

NMR spectroscopy and DOSY experiments. In Figure 2.5, 
1
H-1D NMR spectra of PLGA-

Dox (A) and PLGA-Peptide-Dox (B) in DMSO are reported. Assignments of PELGA-Dox 

and PLGA-TAP peaks are summarized below.  
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PLGA-Dox 
1
H-NMR (600 MHz, DMSO): δ (ppm) 8.40-7.60 (doxorubicin aromatic 

protons); 5.28-5.14 (CH, PLGA); 4.96-4.84 (CH2, PLGA) 

PLGA-TAP 
1
H-NMR (600 MHz, DMSO): δ (ppm) 8.50-6.00 (peptide amide 

backbone); 5.28-5.14 (CH, PLGA); 4.96-4.84 (CH2, PLGA) 

 

Figure 2.5: 1H-1D-NMR spectrum of PLGA-Dox (A) and PLGA-Peptide-Dox (B) in DMSO. PLGA: δ=1.45 

ppm, s (CH3); δ=4.85 ppm, m (CH2); δ=5.17 ppm and δ=5.22 ppm, m (CH). Expansions show aromatic protons of 

doxorubicin (A) and peptide bonds signals (B), respectively. Reprinted from [6]. 
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The theoretical amount of drug loaded by the NP for mg of polymer was roughly ~20 

μg/mg. It was calculated considering the initial mass of co-polymers (PLGA-Dox or 

PLGA-TAP) used during nanoparticle preparation. This data was confirmed by the 

integration of doxorubicin aromatic proton and PLGA peaks which indicates a 

polymer/drug ratio of 1:1. Moreover, DOSY spectra of PLGA-Dox (Figure 2.6 A) and 

PLGA-TAP (Figure 2.6 B) did not show the presence of significant amounts of free TAP 

or doxorubicin. 

 

Figure 2.6: DOSY spectra of PLGA-Dox (A) and PLGA-Peptide-Dox (B) in DMSO. Diffusion axes are labeled 

in cm2 s-1. Reprinted from [6]. 
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2.3.2 Nanoparticle characterization 

PLGA-TAP and PLGA-Dox were mixed with PELGA copolymer in acetone for the 

production of NPs, according to the procedure described above.  

Any batch of the produced NPs used in this work was characterized in terms of size, ζ-

potential, stability and morphology. 

As shown in Table 2.1, DLS measurements indicate that the diameter of both NP 

formulations was below 100 nm, with a PDI ≈ 0.2, thus validating NP preparation 

procedure [4].  

Formulation NP mean diameter (nm) 
Polydispersity Index 

(PDI) 

PELGA-TAP 95.16 ± 6.53 0.23 ± 0.03 

PELGA-Dox 78.93 ± 6.76 0.17 ± 0.03 

Table 2.1: Formulation, mean size and PDI of PELGA-TAP and PELGA-Dox NP. Data are reported as mean 

± SD. Reprinted from [6]. 

Cryo-TEM images in Figure 2.7 further confirm that PELGA-TAP NP are spherical and 

monodispersed, with a regular shape.  

 

Figure 2.7: Cryo-TEM of PELGA-TAP NP. The inset shows a single NP at higher magnification, (scale bar: 

100 nm). Reprinted from [6]. 



Chapter 2 3D tumour microtissues as in vitro testing platform for MMP2- responsive 

drug delivery. 

59 

 

In Chapter.1- paragraph “Doxorubicin in vitro release kinetics from PELGA-TAP 

nanoparticles”, we demonstrated that PELGA-TAP NP were able to release doxorubicin 

upon specific cleavage of the sensitive peptide linker by free MMP-2 enzyme in vitro [4]. 

Results showed that almost 60 % of Dox was released within 48 h incubation with 20 nM 

MMP-2 enzyme at 37 °C, compared to about 20 % in absence of the enzyme. Conversely, 

control PELGA-Dox NP, that lack of the MMP-2-sensitive peptide linker, did not show 

any difference in Dox release profiles in presence or absence of the enzyme. In particular, 

the percentage of released Dox in these conditions was comparable to the percentage of 

drug released from untreated PELGA-TAP NP. 

2.3.3 3D human breast μTP characterization 

In this work, 3D tumour models composed of epithelial and stromal cells embedded in 

their own ECM were produced, characterized and then used as drug screening platform for 

MMP-2-responsive NPs. Figure 2.8 A and B illustrate CAF/MCF7-TP evolution during 

12 days of culture in terms of cell number per TP unit. At the same time, a 3D healthy 

tissues (NF/MCF10-TPs) were used as a control (Figure 2.8 B). Results show that NF and 

CAF, starting from the same number of 36 ± 5.57 cells for TP, reached after 12 days of 

culture the number of 870 ± 129 and 1635 ± 136 cells for TP, respectively. Regarding the 

epithelial cells, at day 7 the number of MCF10 was 113 ± 45 cells for TP while the 

number of MCF7 was 248 ± 20 cells for TP. At the end of the culture, we found 561 ± 

113 MCF10 for TP and 2200 ± 306 MCF7 for TP. The ability of stromal cells in TP 

configuration to produce a dense matrix structure was demonstrated by immunostaining 

and SHG analysis (Figure 2.8 C-H). Moreover, Figure 2.8 C and D reported the 

histological sections stained by Masson’s trichrome of 3D normal and tumour TP, 

respectively. From histological images it was possible to distinguish the purple signal due 

to cell staining and the blue signal of the endogenous ECM. Figure 2.8 E and F show 

confocal and multiphoton images of the CAF/MCF7- and the NF/MCF10-TP, 

respectively. In particular, the fluorescence signal of cell nuclei (both epithelial and 

stromal cells, in blue), the fluorescence of CAF and NF cells due to viral transfection (in 

red) and the SHG signal (in grey scale) were detected. As shown in Figure 2.8 G, the 

correlation curve of the NF/MCF10-TP decayed faster than the CAF/MCF7 one. This 
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phenomenon is clearer when considering the correlation length ( values (Figure 2.8 H). 

In particular, the  was greater for the CAF/MCF7-TP than the NF/MCF10-TP, 

validating the finer structure of the latter compared to the tumour TP.  

Further details concerning this section can be found in ref. [6]. 

 

Figure 2.8: Proliferation of CAF and MCF7 cells in tumour μTP (A) and NF and MCF10 cells in healthy μTP 

(B) Masson’s Trichrome staining in CAF/MCF7- (C) and NF/MCF10-μTP (D) (scale bar: 100 μm); SHG images of 

CAF/MCF7- (E) and NF/MCF10-μTP (F) (cell nuclei in blue, CAF and NF in red and SHG signal in gray; scale 

bar: 100 μm); Correlation curve (G) as a function of distance in μm in CAF/MCF7-μTP (light gray) and 

NF/MCF10-μTP (dark gray); Correlation length obtained by fitting parameters from normalized correlation 

curves. Whiskers and asterisks indicate the statistical difference with p < 0.05 (H). Reprinted from [6]. 

2.3.4 MMP-2 overexpression in 3D tumour μTP 

The expression and enzymatic activity of endogenous MMP-2 secreted by cells in the 

CAF/MCF7- and the NF/MCF10-μTP was verified by RT-PCR (Figure 2.9A), 

immunostaining (Figure 2.9 B-D) and zymography (Figure 2.9 E). As reported in Figure 

2.9 A, a slight difference in the gene expression of MMP-2 in the two μTP models was 

detected. MMP-2 was synthesized and secreted in a zymogen form and later it was 

activated by means of a cleavage before the secretion in the extracellular milieu. Indeed, as 

shown in Figure 2.9 B and C, the 3D tumour tissue expressed greater levels of the MMP-2 

protein than the normal one (Figure 2.9 C). Furthermore, zymography results demonstrated 
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that, although the inactive form of MMP-2 was greater in the 3D normal tissue (p < 0.05), 

a higher amount of MMP-2 activity was found in the CAF/MCF7-μTP compared to the 

NF/MCF10-μTP (p < 0.05, Figure 2.9 E). These findings were confirmed by quantification 

analysis of immunofluorescence images (p < 0.05, Figure 2.9 D). Here we demonstrated 

the extent and the localization of MMP-2 at extracellular level and its overexpression 

compared to the healthy tissue. 

 

Figure 2.9: MMP-2 levels in CAF/MCF7- and NF/MCF10-μTP. (A) MMP-2 gene expression and quantitative 

analysis of the MMP-2 expression obtained from RT-PCR. Immunofluorescence staining of MMP-2 protein (red) 

in CAF/MCF7- (B) and NF/MCF10-μTP (C) (cell nuclei in blue, MMP protein in red, scale bar: 75 μm); 

quantification analysis of MMP-2 obtained from immunofluorescence (D). Gelatin zymography showing the 

MMP-2 activity of CAF/MCF7- and NF/MCF10-μTPs (E). Whiskers and asterisks indicate the statistical 

difference with p < 0.05. Reprinted from [6]. 

  



Chapter 2 3D tumour microtissues as in vitro testing platform for MMP2- responsive 

drug delivery. 

62 

 

2.3.5 In vitro NP localization and their cytotoxic effect on 

μTPs 

After the accurate and systematic characterization of in vitro growth and MMP-2 

expression levels of the produced microtissues, their response to MMP-2-sensitive 

PELGA-TAP NPs and to their negative control (PLGA-Dox NPs) was assessed. 

PELGA-TAP and the PELGA-Dox NPs cytotoxicity in CAF/MCF7- and NF/MCF10-

TPs was investigated as a function of cell viability by means of MTT assay. Figure 2.10 

show cell viability percentage of the treated 3D-TP normalized to non-treated 3D-TP as 

a function of drug concentration after a contact time of 48 and 72 h. In particular, after 

PELGA-TAP NP treatment, an increase in NP cytotoxic effect was observed only in the 

3D tumour tissue, increasing the incubation time (Figure 2.10 A and C). In order to 

measure cell viability, the half-maximal inhibitory concentration (IC50 value) indicator was 

employed. The IC50 value was reached only for the CAF/MCF7-TP after the PELGA-

TAP NP exposure for 72 h at 4 g/ml of Dox concentration (Figure 2.10 C). On the 

contrary, no inhibition effect in cell proliferation was found in NF/MCF10-TP after 

PELGA-TAP NP treatment for 48 and 72 h at any Dox concentration (Figure 2.10 A-C). In 

Figure 2.10 B and D no reduction in cell viability was detected for both 3D healthy and 

tumour tissue after the PELGA-Dox NP treatment. These results clearly demonstrate the 

selective cytotoxic effect of the MMP-2-stimuli-responsive PELGA-TAP NP on tumour 

tissues (p < 0.05, Figure 2.10 A and C). 
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Figure 2.10: Cytotoxicity assay in tumour CAF/MCF7-µTP after treatment with PELGA-TAP (A) and 

PELGA-Dox (B) NP and in healthy tissue NF/MCF7-μTP after PELGA-TAP (C) and PELGA-Dox (D) NP 

treatment at 4 and 8 μg/ml for 48 and 72 h. Whiskers and asterisks indicate the statistical difference with p < 0.05. 

Reprinted from [6]. 

Further, CAF/MCF7- and the NF/MCF10-TP were exposed to PELGA-TAP and 

PELGA-Dox NPs at a final Dox concentration of 4 and 8 g/ml for 48 and 72 h for 

confocal microscopy analysis. These analyses were performed in order to demonstrate the 

difference in terms of Dox internalization between healthy and tumour microtissues, due to 

the different amount of MMPs secreted in the two microenvironments. Figure 2.11 shows 

the fluorescence images of the 3D tumour and healthy microtissues after PELGA-TAP 

(Figure 2.11 A and C) and PELGA-Dox NPs (Figure 2.11 B and D) treatment at a 

concentration of 4 g/ml for 72 h. As shown in Figure 2.11 A, a diffused fluorescence can 

be noticed around cells in the CAF/MCF7-TP incubated with the PELGA-TAP NPs, 

indicating the release of free Dox after MMP-2 cleavage. On the other hand, a very low 

spotted fluorescence was observed when the 3D tumour tissues were treated with PELGA-

Dox NP for 72 h (Figure 2.11 B). More interestingly, a low or no detectable fluorescence 

of free Dox after both NPs treatments in the 3D healthy tissue was detected (Figure 2.11 C-

D). Furthermore, brightfield images (Figure 2.11 E-J) show a reduction in CAF/MCF7-

TPs diameter treated with PELGA-TAP NPs at a final Dox concentration of 4 μg/ml for 

48 and 72h (Figure 2.11 F and G, respectively) when compared to with the untreated ones 

(Figure 2.11 E). This reduction is reasonably due to the detachment of the outer cells from 

the CAF/MCF7-TP, indicated by white arrows in Figure 2.11 F and G. On the contrary, 

NF/MCF10-TP treated with PELGA-TAP NPs at a final Dox concentration of 4 μg/ml 
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for 48 and 72 h (Figure 2.11 I and J, respectively) did not show any changes in their 

diameter, when compared with the untreated one (Figure 2.11 H), indicating lower Dox 

release from NPs in the 3D healthy tissue as a consequence of a the lower MMP-2 

expression of the latter.  

 

Figure 2.11: Fluorescence distribution of Dox within CAF/MCF7-μTP upon 72 h incubation with PELGA-

TAP (A) and PELGA-Dox (B) NP at 4 μg/ml and within NF/MCF10-μTP treated with PELGA-TAP (C) and 

PELGA-Dox (D) NP (scale bar: 50 μm). The images are the maximum projection of confocal z-sectioning of the 

whole μTP. Brightfield images of CAF/MCF7- (F-G) and NF/MCF10-μTP (I-J) after 48 and 72 h of treatment 

with 4 μg/ml of PELGA-TAP NP. Controls are not treated CAF/MCF7- and NF/MCF10-μTP (E-H). White arrows 

(F-G) indicated the detachment of the outer cells from the CAF/MCF7-μTP, due to drug action. Scale bar: 200 

μm. Reprinted from [6]. 
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2.4 Discussions 

The success of the nanomedicine-based therapeutic approach is mainly due to the 

improved accumulation of active drugs at disease sites because of the enhancement of drug 

solubility, bioavailability and prolonged circulation time [83]. In this scenario, it is 

mandatory to have an in vitro 3D tumour model mimicking the in vivo tumour features in 

order to more accurately predict nanocarrier response at the tumour site. Previous works of 

our group demonstrated that the 3D-TP model better recapitulates the ECM dynamics 

seen in vivo compared to other 3D cell culture systems (spheroids or cells embedded in 

natural or synthetic gels) [76] [77] [84]. In this work, a 3D tumour model composed of 

tumour epithelial cells (MCF7) and cancer-associated fibroblasts cells (CAF) was 

proposed. The results regarding the cell growth in normal and tumour microtissues 

highlighted the greater proliferative capability of epithelial and stromal cells in the 3D 

tumour tissue compared to their healthy counterparts. It is common knowledge that the 

tumour ECM proteins are a source of physical resistance to drug transport [83]. Among 

ECM proteins, the one that mostly contributes to drug resistance is collagen [84]. Apart 

from activation of chemical signals promoting tumour progression, tumour stroma 

physically limits the penetration of molecular drugs into the tumour site [85]. An 

innovative and very impressive method to detect the modification of ECM in normal and 

tumour tissue, also used as diagnostic tool, is the two-photon microscopy, in particular the 

detection of the SHG signal. Thanks to this technique, we were able to identify the 

presence of a strong fibrillar collagen in the 3D tumour and healthy tissue, indicating a 

massive deposition of collagen fibers with different organization. In particular, the 

correlation (Cor) of the collagen network evaluated by GLCM texture analysis detected the 

transition from a fine to a wavy or coarse architecture. In our case, the collagen assembled 

by normal fibroblasts had a finer structure than that of CAF. These data demonstrated the 

ability of stromal cells to produce a dense matrix structure in the TP configuration. 

Moreover, the correlation length values calculated in vitro in our model reflect the same 

trend of the values measured in vivo [86] [87]. Taken all together, these results show that 

TP represents a more relevant in vitro model that better resembles the 3D architecture and 

functionality of the original tissues. 

Based on these finding, breast malignant and healthy TP were used as screening 

platform to further validate the efficacy of a recently developed nanoformulation, namely 
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PELGA-TAP NP in a more complex in vitro tissue equivalent. PELGA-TAP NPs design is 

based on the presence of a tumour-activated prodrug composed by a MMP-2 sensitive 

peptide covalently bounded to Dox. Once in the tumour site, the NPs meets the MMP-2 

enzymes which cleave the peptide sequence thus allowing drug release [4]. Since drug 

release occurs as a consequence of the cleavage of the MMP-2 sensitive peptide, the 

expression levels of MMP-2 in the healthy and tumoural TP models was verified. As 

expected, the tumour microtissues expressed higher levels of MMP-2 when compared to 

the healthy counterpart. The produced NPs were characterized in terms of size and 

morphology showing a regular and spherical shape and a size below 100 nm for all batches 

used in this work. The therapeutic effectiveness of PELGA-TAP NPs was evaluated by 

imaging and cytotoxicity assay. PELGA-Dox NPs, without the peptide sequence, were also 

tested as a negative control. In particular, PELGA-TAP NPs show a significant reduction 

in cell viability in the 3D tumour tissue when compared to the control NPs (PELGA-Dox). 

In the latter case, the reduced cytotoxic effect was due to the covalent bond of Dox to NP 

that do not promote drug release. These results are in accordance with the ones reported in 

the previous chapter, where PELGA-TAP NPs were tested on tumour homotypic 

spheroids, without the stromal component [4]. In this case, the disaggregation of tumour 

spheroids was reached after 48 h of the PELGA-TAP NP treatment. Our results show that 

the same significant cytotoxic effect was reached later, after 72 h of NP treatment, 

suggesting a role of the ECM in delaying the drug effect. As expected, PELGA-TAP NP 

did not affect the healthy microtissues. These results further validate NPs production 

protocol and reproducibility along with their effectiveness in a more realistic in vitro 

model which more faithfully replicate the physiological and pathological 

microenvironmental conditions occurring in vivo, when compared to the standard 

spheroidal model. 
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2.5 Conclusions 

In this work a recently proposed formulation of endogenous stimuli-responsive 

nanoparticles was tested on a novel 3D human cancer and healthy breast tissue model. The 

latter, better recapitulate the in vivo tumour microenvironment due to the presence of high 

proliferative cells and a dense matrix structure, enabling a better pre-clinical evaluation of 

the above mentioned NPs. The cytotoxic results, obtained after PELGA-TAP NPs 

treatment of the μTPs, strongly validate the efficacy of the system based on the integration 

of the concept of pro-drug along with the possibility to have an endogenous stimuli-

responsive drug release which, in turn, leads to the accumulation of the drug in the tumour 

extracellular space, thus enhancing the anticancer drug activity and reducing undesirable 

side effects on healthy tissues. 
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  MMP-2-cleavable crosslinked oil-Chapter.3

core nanocapsules for spatially-controlled 

drug release in 3D tumour spheroids 

ABSTRACT 

In the war against cancer, nanotechnology-based systems such as nanocapsules play a 

significant role by enhancing the efficacy of conventional therapies. Here we try to address 

some major limitations plaguing anticancer drugs, namely poor water-solubility and off-

target toxicity. The proposed delivery systems are cross-linked polyelectrolytes 

nanocapsules based on an oil-core and a matrix metallo-proteases 2 (MMP-2)-sensitive 

shell. Indeed nanocapsules are stabilized by a MMP-2-cleavable peptide sequence, used as 

cross-linker. They can load hydrophobic drugs and prevent their systemic leakage. 

Moreover, thanks to a stability enhancement strategy, promoted by the presence of a cross 

linker, the system maintains its integrity in physiological conditions up to one month. 

Further, these nanocapsules are capable to release their payloads when they reach the 

tumour site, which typically up-regulates MMP-2 expression. These enzymes catalyze the 

disassembly of the nanocapsules’ shell thus allowing drug release in tumour 

microenvironment. These observations were confirmed by the in vitro testing of the 

nanocapsules on 3D tumour and healthy spheroids. Therefore, these devices hold promises 

as smart systems capable to transport drug in a safe manner thanks to their high stability, 

and at the same time deliver their cargo in a spatially-controlled fashion upon an 

endogenous stimulus coming from the very nature of the tumour itself*.  

KEYWORDS: Nanocapsules, layer by layer, cross-linked shell, MMP-2 responsive drug 

release, 3D spheroidal model. 
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3.1 Introduction 

Although pretty much insight has been gained into tumour biology and giant leaps have 

been made in diagnostic devices, cancer still remains one of the most devastating diseases 

in the world and its treatment an open challenge. Current anticancer strategies are based on 

surgery, radiation and chemotherapeutic drugs, which often also kill healthy cells causing 

severe toxicity to the patient. Typically, conventional chemotherapeutic approaches make 

use of poor water-soluble agents, which allow for very little control in terms of where they 

are distributed in the body and how fast they are cleared. This implies, in turn, a poor 

pharmacokinetics of the drug, which dramatically decreases its therapeutic index while 

increasing off-target toxicity. It is in this scenario that the concept of enhanced control and 

specificity has emerged as one of the main themes in nanomedicine [88] and a new 

generation of nanocarriers for the controlled and selective release of anticancer drugs has 

blossomed. Especially the past decade has witnessed a technological leap that deals with 

on-demand drug delivery systems allowing for spatio-temporal and dosage control 

therapeutic profiles in response to specific stimuli [89]. These nanocarriers may be 

engineered to be sensitive to either exogenous or endogenous stimuli. Several examples of 

photo- [90], thermo- [91], magnetic- [92] or ultrasound-sensitive [93] drug delivery 

systems have been proposed to achieve a remote control of drug release through 

extracorporeal physical stimuli. On the other hand, taking advantage of specific 

microenvironmental changes associated with neoplastic diseases represents an alternative 

smart strategy to stimulate spontaneously tailored release profiles. Lowered interstitial pH 

[94], altered redox potential [95] and the up-regulation of certain enzymes [96] are all 

potential endogenous stimuli associated to tumour microenvironment. In particular, MMP-

2 are a family of proteolytic enzymes playing a central role in tumour angiogenesis, 

progression and invasion by remodeling of the extracellular matrix (ECM) [97]. These 

enzymes, also known as gelatinase A, (Mw: 72 kDa) hydrolyze type IV collagen, which is 

a major constituent of tumour ECM [98]. Therefore, the use of MMP-2 as a trigger to 

promote selective drug release to tumours holds great promise for the development of new 

therapeutic platforms [99] [96, 100]. On the other hand, to improve the pharmacokinetics 

of the drug and reduce its side effects, it is also crucial to prevent systemic leakage of the 

payload from delivery systems. To this aim enhancing the stability of nanocarriers during 

blood circulation can really make the difference in the accumulation of the drug at the 
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tumour site [101] [102]. Within the vast panorama of nanoparticle-based drug delivery, oil-

core multilayer nanocapsules (NCs) are ideal systems. Based on their core/shell 

architecture, they may significantly increase the blood solubility of most anticancer drugs 

and shield them from the physiologic environment. Moreover, these systems may be 

implemented with several additional functions by finely tuning their multilayer structure. 

However, like several delivery systems, oil-core multilayer NCs often suffer from stability 

issues leading to an a-specific release of the drug. 

Here, we designed and prepared cross-linked trilayer NCs based on an oil-core and an 

MMP-2-sensitive shell. In particular, the core/shell architecture of our NCs is designed to 

safely encapsulate hydrophobic drugs and selectively release them to tumours. The liquid 

core is based on a monodisperse O/W nanoemulsion (NE), pre-loading Paclitaxel as a 

model chemotherapeutic agent. The multilayer shell protects the payload, provides a 

hydrophilic interface and allows for a tunable release. The polymers composing the NC 

shell are nature-derived polysaccharides, namely chitosan and heparin, which we have 

chemically modified and subsequently assembled around the liquid core by a facile Layer-

by-Layer (LbL) method [103]. To prevent premature disassembly and consequent systemic 

leakage of the payload, we cross-linked the polyelectrolyte layers of the NC shell via click 

chemistry [101]. In particular, we chose as cross-linker a MMP-2 cleavable peptide (Gly-

Pro-Leu-Gly-Ile-Ala-Gly-Gln) [100] [48] [4] which we designed as part of an elegant 

supramolecular structure. The modified peptide (Lys-Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-

βAla-Asp(allyl)) is rhodamine labeled and allows for conjugation with heparin at one 

terminus, and for thio-lene photoreaction with chitosan at the other terminus. In this 

context, the peptide linker plays a dual role for the system. On one side, it enhances NC 

stability in physiological media, through the covalent stabilization provided to the shell, 

which in turn limits off-site toxicity. On the other side, it promotes NC disruption in 

tumour tissues via enzymatic cleavage, hence enabling a site-specific drug release.  

The microenvironmentally-triggered and tumour-selective drug delivery features of the 

NCs were proved by testing their cytotoxic effect and drug diffusion within a three 

dimensional (3D) biological model. In particular, tumour and healthy spheroids of U87 and 

HDF cells, respectively were used since multicellular spheroids represents a robust drug 

screening platform which properly recapitulates the tissue architecture along with its 

microenvironment [21].  
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3.2 Materials and Methods 

3.2.1 Materials 

Chitosan low molecular weight (CT-LMW, 90-150 kDa), heparin sodium salt (from 

porcine intestinal mucosa), 1-hydroxybenzotriazole hydrate (HOBt), acetic acid, sodium 

acetate, sodium chloride, N-acetyl-L-cysteine (NAC), allylamine, sodium nitrite, methanol, 

ammonium hydroxide solution, sodium borohydride, hydrochloric acid, sodium hydroxide, 

deuterium oxide (D2O), dithiobis(2-nitrobenzoic acid) (DTNB), fluorescein isothiocyanate 

(FITC), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), O-

benzo-triazole-N,N,N,N’-tetramethyluroniumhexafluorophosphate (HBTU), N,N-

diisopropylethylamine (DIPEA), anhydrous N,N-dimethylformamide (DMF), piperidine, 

trifluoroacetic acid (TFA), Triisopropylsilane (TIS), dichloromethane (DCM),  2-(N-

Morpholino) ethanesulfonic acid (MES) sodium salt, HEPES, p-aminophenylmercuric 

acetate (APMA), acetonitrile (ACN) HPLC grade water, 1-

[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU reagent) and buffer solutions were obtained from Sigma–

Aldrich (Saint Louis, MO). Recombinant Human Matrix metalloproteinase-2 (MMP-2) 

was purchased from Peprotech Inc. (Rocky Hill, NJ). Soy-bean oil (density at 20 °C of 

0.922 g/ml) and Lipoid E80 lecithin (egg lecithin powder 80 85% enriched with 

phosphatidyl choline and 7-9.5% content in phosphatidyl ethanolamine) were purchased 

from Lipoid. Glycol chitosan (GC) was purchased from Wako Chemicals. Dialysis 

membranes were purchased from Spectrum Laboratories Inc. 

3.2.2 Peptide synthesis   

MMP-2 sensitive peptide (NH2-Lys-Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-βAla-Asp(allyl)-

COOH) was synthesized in a modified version, with a 4-Methyltrityl (Mtt) protected lysine 

at the N-terminal, a beta alanine spacer and an allylated aspartic acid at the C-terminal. It 

was employed the solid-phase method and standard Fmoc strategies. Rink-amide resin 

(substitution 0.7 mmol/g) was used as solid support. Amino acids were activated using 2-

(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluroniumhexafluorophosphate: 

hydroxybenzotriazole: N,N-diisopropylethylamine (HBTU/HOBt/DIEA) (1 : 1 : 2). All 
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couplings were performed for 15 minutes and deprotections for 10 minutes. Peptides were 

not removed from the resin after acetylation step to allow coupling reaction with 

rhodamine while still attached. Peptides purity and identity were confirmed by LC-MS 

(Agilent 6530 Accurate-Mass Q-TOF LC/MS spectrometer). Purified peptide was 

lyophilized and stored at 4 °C until use.  

Reagents for peptide synthesis (Fmoc-protected amino acids, resins, activation and 

deprotection reagents) were from Iris Biotech GmbH. 

3.2.3 Labeling reaction 

Before the coupling reaction of peptides with rhodamine, the Mtt group protecting the 

side chain of the lysine residue was selectively removed using 1% TFA in DCM plus 1-5% 

TIS. Pre-swelled dry resin (100 mg) was repeatedly rinsed with the as prepared 

deprotection mixture of solvents for 2 minutes and flushed. Complete deprotection of 

amines was assessed by Kaiser test and mass spectrometry.  

For labeling reaction, carboxylated rhodamine and activating agents (EDC/HOBt) were 

let reacting overnight with the pre-swelled dry resin in DCM. At the end of reaction the 

resin was washed several times with DMF. In order to check for left free amines in the side 

chain of the peptide, Kaiser test and LC/MS were performed at the end of reaction. Then, 

only before coupling reaction with heparin, the peptide was deprotected from Fmoc at the 

N-terminus and removed from the resin. Experimentally, Fmoc groups were removed with 

20% piperidine solution in DMF. Peptides were removed from the resin by treatment with 

a TFA/TIS/H2O (95 : 2.5 : 2.5, v/v/v) mixture for 90 min at room temperature, then, crude 

peptide was precipitated in cold diethyl-ether, dissolved in a water/acetonitrile (1:1, v/v) 

mixture, freeze-dried for 48h and stored at -20°C. 

All the procedures described for both the synthesis and the labeling of the peptide were 

applied also to the control sequence peptide. 
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3.2.4 Heparin - peptide coupling reaction 

The condensation of the carboxylic acids of heparin chains with the peptide N-terminus 

was carried in slightly basic conditions using a classic EDC/NHS chemistry.  

In a typical procedure, heparin (10 mg, 1 equiv) was dissolved in 1 ml of carbonate 

buffer (pH 7.8). Then, 3.4 mg (22 equiv) of EDC*HCl were added and the solution was 

stirred at room temperature for 30 min. Two milligrams (22 equiv) of NHS were then 

added, and the solution was stirred at room temperature for 3 h. Twenty-one point nine 

milligrams (1 equiv) of rhodamine-labeled peptide were added, and the mixture was stirred 

overnight. Then, the product of reaction was dialyzed using a 6-8 kDa bag against a 

mixture of ACN/water 30:70 for 48 h. The purified conjugate was finally freeze-dried and 

stored at -20°C. 

The substitution degree of heparin was assessed by measuring the fluorescence intensity 

of the rhodamine-peptide after calibration with a water solution of rhodamine-peptide at 

different concentrations using a spectrofluorimeter (EnSpire 2300 PerkinElmer).  

3.2.5 Oil-in-Water nanoemulsion  

The O/W nano-emulsions were prepared according to a well-established procedure [7]. 

First, either Paclitaxel (PXL) or FITC were pre-dissolved in the oil phase. Then, an exact 

amount of Lipoid E 80 to the soy-bean oil at 60 °C and then sonicated with an immersion 

sonicator (Ultrasonic Processor VCX500 Sonic and Materials). To obtain the pre-emulsion, 

the oil phase was added dropwise to a weighted amount of aqueous phase (Milli-Q water) 

and mixed using the immersion sonicator. The pre-emulsion was finally passed at 2000 bar 

through the high-pressure valve homogenizer (Microfluidics M110PS) to obtain the final 

nano-emulsion. The final products were named PXL-loaded and FITC-loaded 

nanoemulsion, respectively. 

3.2.6 Modification of glycol chitosan with N-Acetylcysteine  

Thiolation was performed on glycol chitosan (GC, chitosan conjugated with ethylene 

glycol) according to a procedure previously reported [104]. In the typical procedure, 0.5 

mmol of the chitosan substrate were dissolved in 10 ml of Milli-Q water. In the first place, 

the pH was adjusted to a value of 4 with HCl 1 M to allow complete dissolution. Then, 
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amounts of NAC and coupling agents were added to the solution according to the 

following molar ratio HOBt : GC : NAC : EDC = 1 : 1 : 4 : 16. Then the pH was raised and 

maintained to a value of 6.8 throughout the reaction time (6 h). The reaction proceeded at 

room temperature. The product was then purified by dialysis four times against water 

containing 1% (w/v) NaCl and acidified with HCl at pH = 3, four times against water 

acidified at pH = 3. Finally, the purified product was freeze-dried for 48 h.  

Total and free thiols were determined using a colorimetric assay, the Ellman's test. In 

particular, after reaction of thiolated chitosan with a DTNB solution at 25 °C for 2 h, 

absorbance was registered at 412 nm using a Varian Cary Scan 100 Spectrophotometer.  

3.2.7 LbL deposition of functionalized polymers on O/W 

nanoemulsion  

Monolayer, bilayer and trilayer were obtained by a customized LbL deposition 

procedure. The trilayer NCs were prepared by aid of two syringe pumps (HARVARD 

APPARATUS 11 PLUS) and an ultrasonic bath (FALC INSTRUMENTS) under specific 

flow and ultrasounds conditions. Starting from the negatively charged NEs a GC-NAC 

layer was first deposited. Then, a negatively charged second layer was deposited by mixing 

the monolayer suspension with a HEP-RHOD-PEP aqueous solution. Finally, the bilayer 

was mixed with a solution of GC-NAC to give the MMP-2 responsive trilayer with the 

following final concentrations: 0.25% wt% oil - 0.025 wt% GC-NAC - 0.0069 wt% HEP-

RHOD-PEP - 0.02 wt% GC-NAC. The produced NC was named MMP-NC. The same 

procedure for the preparation of trilayer NCs was followed also using the control peptide 

modified heparin (HEP-RHOD-ctrlPEP) and the non-functionalized heparin (HEP) the 

trilayers were prepared following but with the same final trilayer concentrations as for the 

one prepared with HEP-RHOD-PEP. The latter were named SCR-NC and NF-NC, 

respectively. 

3.2.8 Photoreaction of the multilayer  

The trilayer NCs made with both kinds of the modified heparin (rhodamine-peptide 

heparin and rhodamine-control peptide heparin) were irradiated with UV light for 2 h using 
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a UV Hand Lamp Spectroline
®
 E-Series UV lamp (output 6 W, wavelength 254 nm). The 

light source was at 3 cm distance. Photoreaction was conducted without a photoinitiator.  

3.2.9 Particle size and ξ-potential characterization  

All the suspensions were diluted to a droplet concentration of approximately 0.025 

(wt%), using Milli-Q water in the case of NE and multilayers terminating with heparin. 

Instead the NCs terminating with a chitosan layer were diluted in acidified Milli-Q water 

solution (pH 4).  

3.2.10 Stability tests on crosslinked and not crosslinked 

trilayers  

The stability test of the NCs over time was performed dispersing both the crosslinked 

and not crosslinked trilayers in different media, i.e. water at pH = 4, PBS 10 mM pH = 7.4. 

Stability was determined monitoring by DLS particle size variations over time.  

3.2.11 Confocal analysis of trilayer nanocapsules 

Trilayer on O/W nano-emulsion was diluted 1:25 to a final oil concentration of 0.01 % 

w/v in an Eppendorf with PBS 10 mM at pH 7.2 and 200 μl were put in a FD3510 dish for 

30 min to allow it to adhere to the surface of the dish. After that, several washes were 

performed replacing the sample twice with 120 μl of water. Samples were imaged with a 

Leica TCS STEDCW microscope (Leica-Microsystems, Mannheim, Germany) equipped 

with an oil immersion 100× objective. Images were acquired with a field of view of 25.6 × 

25.6 μm for a pixel size of 25 × 25 nm. The analysis of the images was carried out using 

LAS AF software.  

3.2.12 Cell culture 

To test the biological effect of the NCs, human glioma cell line (U87-MG), and primary 

human dermal fibroblasts (HDF) were used as models of tumour and healthy tissues, 

respectively [4].  
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HDF cells were cultured in Eagle’s minimal essential medium (EMEM) supplemented 

with 20 % Bovine Serum Albumine (FBS, Gibco), 1 % of glutamine, 100 U/mL penicillin, 

100 mg/mL streptomycin and 2X non-essential aminoacids. U87 cells were cultured with 

EMEM supplemented with 10 % FBS, 1 % of glutamine and antibiotics.  

Both cell lines were maintained in 100 mm diameter cell culture in a humidified 

controlled atmosphere with 5 % of CO2, at 37 °C. The medium was changed every 2–3 

days. 

3.2.13 Spheroids formation and characterization 

NCs cytotoxicity was evaluated as a function of MMP-2-mediated drug release, using 

spheroids of HDF and U87 cells as 3D models of healthy and tumour tissues, respectively 

[21]. 

Spheroids were prepared according to a standardized procedure reported in [4]. Briefly, 

a cell monolayer was trypsinized and 2500 U87 cells or 3000 HDF cells per spheroids 

were suspended in culture medium containing 0.25 % (w/v) of carboxymethylcellulose 

(MCM), then seeded onto non-adherent round-bottomed 96-well plates (Corning® 

Costar®), and cultured at 37 °C, with 5 % CO2, for 24 h to allow spheroids formation. 

Image of each well of the 96-well plate was acquired with Zeiss Axio observer.ZU 

microscope, equipped with an incubation system, using a 10X objective (ZEISS Plan-

NEOFLUAR), 24 h after seeding, to monitor and analyse spheroid integrity, sphericity and 

diameter. A motorized stage is used for this purpose. Single spheroid analysis was 

performed through image processing using Image-J software, in order to measure 

spheroids’ diameter (D), projected area (A) and perimeter (P). These data were acquired 

and analysed in order to evaluate the mean spheroids’ diameter and the shape factor (ɸ), 

describing spheroids’ sphericity, for each cell line. The coefficient of variation (CV) of 

spheroids diameter was also evaluated for each cell line [105].  

The above mentioned quantities were calculated as follows: 

ɸ =
𝜋 ∗

√4𝐴
𝜋

𝑃
 

𝐶𝑉 =
𝜎

|𝜇|
∗ 100 
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Moreover, statistical analyses were performed to evaluate the diameter homogeneity of 

the model between the two cell lines by means of one-way analysis of variance (ANOVA 

test). A p-value less than 0.05 was considered statistically significant.  

3.2.14 MMP-2 expression in tumour and healthy spheroids 

To qualitatively evaluate MMP-2 expression in both 3D models, indirect 

immunofluorescence staining was performed on HDF and U87 spheroids according to the 

method presented by Shaheen et. al. [106], with some modifications. First of all, 48 h after 

seeding, spheroids were collected and washed twice with PBS, to remove medium and 

MCM traces. Then, they were fixed with 4 % paraformaldehyde (PAF) in PBS for 20 

minutes at room temperature (RT). The fixed samples were washed twice in PBS for 5 min 

at RT. After that, spheroids were permiabilized using 0.5 % Triton x-100 in PBS for 5 min 

at RT. Subsequently, spheroids were washed twice with PBS and permiabilization was 

blocked by adding of 1 % bovine serum albumin (BSA) in PBS for 30 min at RT. 

After removing the blocking solution samples were incubated with primary antibody 

(Abcam UK), diluted 1:200 in 1 % BSA in PBS, 1 h at 37 °C. Then, spheroids were 

washed twice with 1 % BSA, 0.1 % Tween-20 in PBS, for 10 min at RT and incubated 

with the secondary antibody (Abcam UK) diluted 1:200 in 1% BSA in PBS for 1 h at RT, 

avoiding light exposure. Finally, samples were washed three times with 1 % BSA in PBS 

for at least 5 min of incubation time for each wash.  

Samples were imaged by confocal microscope (Leica Microsystems TCS SP5 II, 

Germany) with a 25x water immersion objective. Images were acquired with a resolution 

of 1024x1024 pixels.  

Moreover, a semi-quantitative analysis was also performed on at least 5 images for each 

spheroid type to obtain the corrected total spheroid fluorescence (CTSF) using the method 

reported by Mc Cloy et al. [107], with some modifications. Briefly, using ImageJ software, 

spheroids’ borders were delimited with the ROI selection tools and the area and the 

integrated density (ID) were evaluated. Then, the mean grey value of the background 

(MGVB) was also measured. Using the obtained parameters, the CTSF was calculated 

according to the equation that follows: 

𝐶𝑇𝑆𝐹 = 𝐼𝐷 − (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑 ∗ 𝑀𝐺𝑉𝐵)  
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Starting from the CTSF data, statistical analyses were performed to evaluate the 

difference in the expression levels of MMP-2 between the two cell lines by means of 

ANOVA test. A p-value less of 0.05 was considered statistically significant. 

3.2.15 Drug treatment and cytotoxicity assay 

To evaluate NCs cytotoxic effects, 24 h after seeding spheroids were treated with free 

PXL, SCR-NC and MMP-NC at a final PXL concentration of 200 nM. Spheroids were also 

treated with cell medium alone as positive control. 

Cell viability was evaluated by means of Alamar Blue Assay. Chung Tung et al. [108], 

adapted the above mentioned method for multicellular spheroids, and the experiments were 

performed according to their procedure with slight modifications. Briefly, after 48 or 72 h 

of incubation time, samples were washed twice with PBS to remove the non-internalized 

compounds and incubated for 4 h with a solution containing 10 % of Alamar Blue cell 

viability reagent (Invitrogen) in cell culture medium. After incubation, spheroids 

supernatants were collected and their fluorescence was measured at λex of 570 and 610 nm, 

according to the manufacturer’s procedure. Compounds were tested in octuplicate for both 

cell lines and data were reported as the cell viability percentage of treated cells normalized 

to non-treated cells. At least 4 complete experiments were performed to validate the data. 

To qualitatively monitor spheroids shape evolution after treatment, an image of each 

well of the 96-well plate was acquired with Zeiss Axio observer.ZU microscope, using a 

10X objective (ZEISS Plan-NEOFLUAR), as explained in the previous paragraph (see 

“Spheroids formation and characterization”).  

Statistical analyses were performed to evaluate the difference in cell viability between 

the two cell lines and between the compounds, by means of ANOVA test. A p-value less of 

0.05 was considered statistically significant. 

3.2.16 Confocal imaging and colocalization 

The disassembly of the NCs leading to drug diffusion in tumour microenvironment was 

qualitatively assessed by confocal microscopy imaging. The day after seeding, spheroids 

were treated with free FITC, FITC-loaded nanoemulsion (namely Nano), NF-NC, SCR-NC 

and MMP-NC at a final FITC concentration of 200 nM. Spheroids were also treated with 
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cell medium alone, as positive control. After a contact time of 72 h, spheroids were fixed 

according to the procedure reported in the previous paragraph (see “MMP-2 expression in 

tumour and healthy spheroids”). Finally, spheroids were incubated with DRAQ5 (Abcam) 

diluted 1:1000 in PBS for 30 min at RT, for cell nuclei staining. Samples were observed by 

confocal microscope (Leica Microsystems TCS SP5 II, Germany) with a 25x water 

immersion objective. Images were acquired with a resolution of 1024x1024 pixels. 

Semi-quantitative analyses were also performed on at least 5 images for healthy and 

tumour spheroids treated with the FITC loaded SCR-NC and MMP-NC. Colocalization 

measurements were performed to evaluate rhodamine and fluoresceine colocalization in 

the various samples, using JACOP ImageJ plugin [109]. Moreover, the mean intensity 

ration between the two fluorophores was also evaluated calculating their CTSF, using the 

method reported in the previous paragraph (see “MMP-2 expression in tumour and healthy 

spheroids”). 
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3.3 Results 

3.3.1 Solid phase peptide synthesis 

In order to achieve a stabilization/destabilization mechanism for our NCs, we carefully 

designed a double-feature peptide linker to embed within the polymer layers of NC shell. 

In the first place, we identified an amino acidic sequence (Gly-Pro-Leu-Gly-Ile-Ala-Gly-

Gln) that was sensitive to MMP-2 catalytic activity. Then, we modified it by adding an 

allylated aspartic acid to perform thiol-ene click reaction with thiolated chitosan. We also 

introduced in the sequence an Mtt-lysine which provided the functional moiety to attach 

rhodamine B to the peptide side chain. Therefore, the resulting modified sequence is Lys-

Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-βAla-Asp(allyl) (see Figure 3.1 for a schematic 

representation). 

 

Figure 3.1: MMP-2 peptide sequence modified with rhodamine and allylated aspartic acid. 

At the same time, we applied the same strategy for the preparation of a control sequence 

named RHOD-ctrlPEP (Lys-Leu-Gln-Gly-Ile-Gly-Pro-Gly-βAla-Asp(allyl)), which differs 

from RHOD-PEP only for the disposition of the amino acids of active domain. We 

monitored the peptide during all the steps of its modification by mass spectrometry. In 

Figure 3.2 we report the mass spectra of the peptide after synthesis, coupling with 

rhodamine B and Fmoc deprotection. First we confirmed the purity and quality of the 

peptide (Fmoc-PEP) that we synthesized by a solid phase approach. In Figure 3.2 a we 

report the molecular peak corresponding to the theoretic molecular weight of Fmoc-PEP. 

Then, after removing the orthogonal Mtt protecting group from lysine in mild acidic 

conditions, we labeled the peptide with rhodamine B. The effective conjugation is 

confirmed by the second and third charge mass peak of FMOC-RHOD-PEP (Figure 3.2a). 

Finally, we checked for complete Fmoc deprotection of the rhodamine labeled peptide 

(RHOD-PEP) before performing the coupling reaction with heparin. In Figure 3.2 c 
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RHOD-PEP exact mass and first and second charge are reported. Equivalent results were 

obtained also for the control scrambled peptide sequence (SCR_PEP). 

 

Figure 3.2: Mass spectra of Fmoc-protected peptide after synthesis (a), Fmoc-protected peptide after coupling 

with rhodamine B (b), rhodamine labeled peptide after Fmoc deprotection (c).  

In order to embed the MMP-2 sensitive linker within the polymer layers of the NCs we 

conjugated the modified peptide sequence with heparin. By condensation reaction between 

peptide N-terminus and heparin carboxylic acids moieties we achieved around 50 % 

substitution of the polymer chains. We estimated such value by fluorimetric assay 

measuring rhodamine signal of the heparin-peptide conjugate (λex/λem = 550/570 nm). We, 

indeed, correlated this fluorescence intensity to a rhodamine-peptide calibration curve 

acquired within a range of concentrations comprised between 0 and 0.065 mM. 

In Figure 3.3 we provide a schematic representation of the heparin peptide conjugate 

that for the sake of shortness we named HEP-RHOD-PEP. 

 

a 

b 

c 
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Figure 3.3: Heparin functionalized with the fluorescent MMP-2 peptide. 

3.3.2 Glycolated chitosan thiolation with N-acetyl-L-cysteine  

Glycolated chitosan was partially substituted at the free amine groups with N-acetyl-L-

cysteine (NAC) in order to provide the chains with thiol moieties. A typical amidation 

reaction was carried in presence of water soluble coupling agents, namely carbodiimide 

(EDC, ethyl-3-(3- dimethylaminoisopropyl)-carbodiimide) and 1-hydroxy-1,2,3-

benzotriazole (HOBt)
 
(in Figure 3.4 a schematic representation of the chemical reaction is 

provided).  

 

Figure 3.4: Thiolation of glycol chitosan with NAC by EDC/HOBt chemistry. 

Although this chemistry is widely used, it is rarely applied to polysaccharides especially 

in the case of chitosan, since it is difficult to substitute amine groups because of the poor 

solubility and reactivity of the polymer. The solubility issue was addressed using the 

glycolated chitosan in place of the LMW chitosan. In fact, the ethylene glycol moieties 

allowed for water solubility of the polymer even at neutral pH. On the contrary, LMW 

chitosan requires an acidic pH to reach complete dissolution through amines protonation. 

This constraint strongly limits the effectiveness of the coupling reaction, which in contrast 

requires a slightly basic pH in order to make the amines nucleophile. The degree of 

thiolation that was reached based on our scheme of reaction was assessed by Ellman’s test. 
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This colorimetric assay, indeed, may highlight the concentration of free thiols by reaction 

with DTNB (also known as Ellman’s reagent), which absorbs at 412 nm.  

The first step in the construction of the crosslinked polymer NCs was preparing an O/W 

NE pre-loading Paclitaxel. Following an optimized procedure [7] we obtained narrowly 

distributed NEs, as shown by the DLS and the cryo-TEM reported in Figure 3.5a and b, 

respectively. The Paclitaxel (PXL) concentration in the overall volume of the NE was 37.5 

μg/ml (44 μM). 

 

Figure 3.5: Average size of PXL loaded nanoemulsion by DLS (a) and by cryo-TEM (b). 

Starting from these oily templates we built our NCs assembling the modified polymers 

through a customized LbL procedure. First, we deposited a thiolated glycol chitosan (GC-

NAC) layer on the negatively charged NEs. The GC-NAC monolayer NCs was then coated 

with a second layer of functionalized heparin. Finally, a last layer of GC-NAC was 

deposited. This way we obtained oil-core narrowly distributed trilayer NCs coated with 

naturally derived polyelectrolytes embedding an MMP-2 sensitive substrate. We shortly 

named this trilayer as MMP NCs. We also prepared two control series of trilayers based on 

non-functionalized heparin (HEP) and heparin modified with the control sequence peptide 

(HEP-SCR_PEP), which in the following will be recall as NF NCs and SCR NCs, 

respectively. The average size and the Z-potential of the three types of trilayer NCs at each 

step of the deposition process are summarized in Figure 3.6. 
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Figure 3.6: Size distribution and z-potential of the three types of trilayer NC: NC MMP (a,b); NC ctrlMMP 

(c,d); NC NF(e,f). 

It is noteworthy, that these results were achieved following an optimized LbL 

deposition procedure [7], which preserved the small size and narrow size distribution (PDI 

≈ 0.1) of the starting NE. In fact, dealing with naturally derived polymers modified with 

sterically bulky pendant molecules, may really plague the deposition process.  

3.3.3 Stability enhancement of MMP-2 trilayer nanocapsules 

We then exposed part of the as prepared trilayer NCs to UV light (λ = 254 nm) in order 

to promote the formation of a tioether bond between the thiol moieties on GC-NAC and 

the alkene groups on the side chain of the peptide. The click reaction effectively brought to 

an enhancement of the trilayer stability through the crosslinking of the polymer layers. We 

performed the stability test by monitoring the size and the PDI of crosslinked and not-

crosslinked trilayers in media with different pH and ionic strength, namely acid water (pH 

4) and phosphate buffer (PBS 10 mM; pH 7.4). As highlighted by the size and PDI 

measurements reported in Figure 3.7 A and B respectively, when dispersed in PBS, the 

crosslinked NCs show an initial swelling (≈ 100 nm), while the PDI does not seem 

affected by the change of medium.  

 

a b 

c d 

e f 
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Figure 3.7: Size (A) and PDI (B) changes over time both in acid water and PBS of crosslinked and not 

crosslinked (HEP-PEP) NC by DLS. 

Moreover, this condition keeps constant over about one month. On the other hand the 

not-crosslinked trilayers completely lose their dimensional characteristics after only one 

week increasing both their size and PDI in an uncontrolled fashion. Our explenation to this 

behaviour is that the change of medium causes an expected weakening of the electrostatic 

interactions between the layers of the NC shell. Due to the lower attraction, the oppositely 

charged layers get more distant form each other, thus leading to a larger NC size. However, 

only in the case of crosslinked NCs, the polymer layers are still hold together by some 

chemical linkages provided by the peptide linkers. These covalent constraints prevent the 

NC size to further increase, while keeping it to a costant value. This, in turn, would also 

justify a costant value of the PDI over time since the size increase is uniformely distributed 

among all the crosslinked NCs. 

3.3.4 Spheroidal model characterization and evaluation of 

their MMP-2 expression  

Tumour and healty spheroids of U87 and HDF cell lines, respectively, were chosen as 

drug screening platform to test the system. 
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Uniform spheroid dimension and geometry are some of the major characteristics this 3D 

model should satisfy when used as platform for drug screening. Since that, spheroids were 

characterized in terms of integrity and omogenity. Brightfield images of all the spheroids 

were acquired 24 h after seeding, for both cell lines. Figure 3.8 A and B show brightfield 

images of HDF and U87 spheroids, respectively, and proof that the spheroids have a good 

integrity and a regular and spherical shape for both cell lines. These observations are 

confirmed by the data reported in Figure 3.8 C, since the spheroid shape factor is pretty 

close to 1 and their mean diameter for each cell line is of about 500 μm with a very low 

CV value (see Figure 3.8 C and D). Finally, spheroid mean diameter among the two cell 

line may be considered the same since no statistically significant differences emerged, 

according to ANOVA test results. 

 

Figure 3.8: Biological model characterization. Transmission image of HDF (A) and U87 (B) spheroids (scale 

bar:100 μm). Mean diameter, coefficient of variation and shape factor of HDF and U87 spheroids (C); mean 

diameter values are reported as mean ± standard deviation. HDF and U87 spheroids’ mean diameter (D). 

Moreover, since the presented NCs are capable to release their cargo as a consequence 

of the presence of MMP-2 proteins in situ, the expression of endogenous MMP-2 secreted 

by HDF (Figure 3.9 A) and U87 (Figure 3.9 B) were qualitatively verified by indirect 

immufluorescence. Images show that tumour cells express greater levels of MMP-2 protein 

when compared to the healthy counterpart.  

Semi-quantitative analyses were also perfomed on at least 5 images for each spheroid 

type and results show that the fluorescence intentisity of the stained protein is about 36% 

higher in the case of U87 spheroids when compared to HDF. Moreover, ANOVA test 

results further confirm that the difference between the fluorescence intensity of the stained 

protein in the two cell lines is statistically significant (Figure 3.9 C). 



Chapter 3 MMP2-cleavable crosslinked oil-core nanocapsules for spatially-controlled 

drug release in 3D tumour spheroids 

87 

 

 

Figure 3.9: Immunofluorescence staining of MMP-2 enzymes in HDF (A) and U87 (B) spheroids. Semi-

quantitative evaluation of MMP-2 expression in HDF and U87 spheroids, obtained by immunofluorescence images 

analysis (C). The Asterisk indicates the statistical difference with p < 0.05. 

3.3.5  In vitro cytotoxicity assays 

Based on the results of the indirect immunofluorescence analysis previously reported 

(see “Spheroidal model characterization and evaluation of their MMP-2 expression”), in 

order to demonstrate the ability the MMP-NC to sense the differences in the expression 

levels of endogenous MMP-2 enzyme and, hence, induce NC shell disassembly and 

cytotoxicity upon specific enzymatic cleavage, U87 and HDF spheroids were used as in 

vitro models of a tumour and a healthy tissue, respectively.  

Spheroids of both cell lines were incubated with MMP-NC at a final PXL concentration 

of 200 nM for 48 and 72 h. To further verify the specificity of action of the MMP-NC, a 

SCR-NC (i.e., with the presence of a scrambled peptide sequence) was used as negative 

control. Moreover, spheroids were treated with cell medium alone as positive control, and 

with free PXL as negative control.  

After incubation time, a quantitative evaluation of cell viability (normalized to positive 

control, which is set to 100 %.) was obtained by means of Alamar Blue Assay (Figure 3.10 

A and B). Data show a reduction in U87 spheroids viability after 48 h of treatment with 

MMP-NC which is significantly different from the viability values reported for the same 
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spheroids treated with the SCR-NC (p48< 0.05). This difference increases, increasing the 

incubation time till 72 h (p72< 0.02). 

On the other hand, a very low or absent decrease in HDF spheroids viability was 

observed when treated with MMP-NC or SCR-NC for both contact time and no significant 

difference was found among the samples. 

More interestingly, data show a significant difference between HDF and U87 treated 

with MMP-NC for both contact time (p48< 0.05; p72< 0.02) but not when treated with SCR-

NC. 

Taken all together, these results show the specificity of action of the NC upon 

enzymatic cleavage, along with its safety when in healthy tissues. 

Moreover, brightfield images of tumour and healthy spheroids were acquired after 

compounds treatment for both contact times (Figure 3.10 C and D) and the detachment of 

the outer cells is clearly visible only for U87 spheroids treated with MMP-NC and for the 

negative control of course (see red arrows), in accordance with the previously reported 

cytotoxicity data. 

 

Figure 3.10: Cytotoxicity assay in healthy and tumour spheroids after 48 (A) and 72 h (B) of exposure to 

compounds; a single asterisks indicates the statistical difference with p<0.05; double asterisks indicates the 

statistical difference with p<0.02. Transimssion images of healthy and tumour spheroids after 48 (C) and 72 h (D) 

of exposure to compounds; red arrows show cells detachment from the spheroids, due to drug action. Scale bar: 

100 µm. 
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3.3.6 Confocal imaging and colocalization analyses 

The selective disassembly of NCs leading to drug diffusion into tumour 

microenvironment was assessed by confocal microscopy HDF (Figure 3.11) and U87 

(Figure 3.12) spheroids treated with cell culture medium alone (A), free FITC (B) and 

FITC loaded- nanoemulsion (C), -NF NC (D), -SCR NC (D) and –MMP NC (E) for 72 h 

were acquired. For a correct interpetation of the following images it is helpful to remember 

that NCs’ core is loaded with FITC, which is commonly represented with a green signal, 

while the peptides used to crosslink the NC shell are tagged with rhodamine, which is 

commonly visualised using a red color. 

Said that, concerning HDF spheroids, Figure 3.11 B, C and D show the presence of a 

diffuse green signal coming from the FITC, as expected, while it is noteworthy the 

presence of a yellow color in Figure 3.11 E and F rising from the colocalization of the red 

and green channells. Since yellow hotspots proof the presence of the two molecules of 

interest in the same pixel, this indirectly suggests that the NCs’ shell integrity was not 

compromised in healthy tissue both in the case of SCR and MMP crosslinked NCs. These 

results confirm the NC stability in an environment with a low or absent presence of MMP-

2, such as the healthy tissue microenvironment and are consistent with the stability tests 

performed by DLS, as previously reported. 
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Figure 3.11: Fluorescent distribution of FITC (green) and Rhodamine (red) in HDF spheroids after 72h of 

treatment with cell culture medium (A), free FITC (B), FITC-loaded nanoemulsion (c), FITC-loaded NF NC (D), 

FITC-loaded SCR NC (E), FITC-loaded MMP NC (F). 

On the other hand, concerning U87 spheroids, Figure 3.12 B, C and D show the 

presence of diffuse green signal coming from the FITC, as expect, while more 

interestingly, Figure 3.12 E show a yellow colour rising from the colocalization of the red 

and green channels and Figure 3.12 F show only the presence of a green signal. These 

results suggest that SCR-NC architecture is not compromised in a tumour 

microenvironment, since the MMP-2 enzymatic cleavage does not occur in presence of a 

scramble peptide sequence, leading to the visualization of a yellow signal coming from the 

overlay of the green and red channel. On the contrary, tumour spheroids treated with 

MMP-sensitive NC show the presence of only a green signal since MMP-2 over-

expression in tumour microenvironment leads to shell disassembly and consequent drug 

release from the inner core of the nanocapsules. 
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Figure 3.12: Fluorescent distribution of FITC (green) and Rhodamine (red) in U87 spheroids after 72h of 

treatment with cell culture medium (A), free FITC (B), FITC-loaded nanoemulsion (c), FITC-loaded NF NC (D), 

FITC-loaded SCR NC (E), FITC-loaded MMP NC (F). 

Semi-quantitative analyses were also performed on the above mentioned images to 

further validate the observations done on the qualitative observation of the images. As can 

be seen from Figure 3.13 colocalization measurement show a Pearson’s coefficient pretty 

close to one in the case of HDF spheroids treated with both SCR-NC and MMP-NC and in 

the case of U87 spheroids treated with SCR-NC. On the other hand a lower value of the 

Pearson’s coefficient (PC) was calculated when U87 spheroids were treated with MMP-

NC, we can have indirect information concerning shell integrity. Similar considerations 

can be done on Pearson’s scatter plots reported in Figure 3.13. In case of complete 

colocalization the dots on the diagram appear as a cloud centred on a line and PC tend to 1, 

otherwise the line changes its slope and approaches the axis of the most intense channel 

[109]. In the light of these considerations, HDF spheroids treated with both SCR-NC and 

MMP-NC and U87 spheroids treated with SCR-NC fall in the first case, while U87 

spheroids treated with MMP-NC fall in the second one. 

Moreover, the mean intensity ratio between the two fluorophores was also evaluated 

calculating the ration between their CTSF. Data show that in the case of HDF spheroids 

treated with both SCR-NC and MMP-NC and U87 spheroids treated with SCR-NC, the 

ratio was roughly one. On the contrary, in the case of U87 treated with MMP-NC, the ratio 
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was about 0.25 indicating a 75 % higher green fluorescent intensity, when compared to the 

red one. 

 

Figure 3.13: Pearson’s coefficient values and Mean intensity ratio between Image A and B. Data are reported 

as mean ± st-dev (A). Pearson’s scatter plots of image A against Image B (B). 
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3.4 Discussions 

In order to be effective, nanoparticle based drug delivery systems must meet some 

major requirements such as good dimensional and morphological features, stability in 

physiological media and on demand drug release. Indeed, the nanocapsules have excelent 

dimensional characteristics such as a narrow size distribution. Moreover, the employed 

crosslinking strategiey may help avoiding uncontrolled drug release from nanoparticle 

based drug delivery systems by enhancing their stability during blood circulation and thus 

reducing off target toxicity. At the same time, the presence of a MMP-2-sensitive 

crosslinker make the nanocapsule system presented in this work an ideal candidate for an 

effective stimuli-responsive drug delivery in response to an andogenous stimulus that 

comes from the very nature of the tumour itself, since these enzyme are up-regulated in 

tumour tissues. 

Tumour and healty spheroids of U87 and HDF cell lines, respectively, were choosen as 

drug screening platform to test the described compounds and were characterized in terms 

of spheroids’ integrity and omogenity. Results concerning the spheroidal model 

characterization and evaluation of its MMP-2 expression show that the spheroids’ 

production methods leads to the formation of spherical, compact and homogeneously sized 

spheroids among and between both cell lines and that the healty and tumour models 

express different levels of endogenous MMP-2, as expected. These characteristis are 

crucial when designing spheroid-based drug screening platforms to test stimuli-responsive 

devices [21]. Based on model reliability, cytotoxicity data obtained by means of alamar 

blue assay proof the specifity of action of the designed NC against tumour cells in response 

to an endogenus stimulus that comes from the very nature of the tumour itself and, more 

interestingly, data show NC safety when presented to healty tissues. Finally, confocal 

microscopy images proof that the NCs mainted their integrity in healthy tissue 

microenvironment and in the tumour microenvironment in the absence of a specific linker 

able to sense the stimulus choosed to induce drug release. 
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3.5 Conclusions 

In this work we focused our attention on one of the major concern related to the 

administration of anticancer drugs, namely off-target toxicity. To this aim we designed and 

prepared stabilized oil-core polymer NCs allowing for a spatially-controlled release of 

their payload in response to an endogenous stimulus coming from the very nature of the 

tumour tissue. In particular, here we propose a new approach to the design of NCs for the 

delivery of anticancer drugs, combining an enhancement of their stability in physiological-

like conditions and a stimuli-responsive drug release. Both strategies rely upon the same 

key element, namely an MMP-2 cleavable peptide that we used to cross-link the NC 

polymer shell. This peptide linker is thought to prevent the systemic leakage of NC 

payload during blood circulation, based on the covalent stabilization provided to the 

system. At the same time, the peptide linker promotes a selective drug release at the 

tumour site once the NCs explore a high level of endogenous MMP-2 within a 3D tumour 

model, which catalyze the linker cleavage. 

This strategy holds promise as a viable route to address with a single elegant solution 

both the NC stability issue and the spatially controlled release requirement. These features 

may contribute to increase the efficacy of the current anticancer therapies thus encouraging 

further in vivo investigation of the system. 
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 Outlining the Advantages of an Chapter.4

Extracellular Drug Delivery 

ABSTRACT 

At present, nanoparticle-based drug delivery is recognized as the most promising 

weapon we have in the war against cancer, since it armours and guides the drug to the 

tumour site without causing, or at least reducing, healthy tissues damage. But, if on one 

hand nanoparticles may effectively protect and transport the drug throw the vasculature, on 

the other hand, when in tumour interstitium, may impair drug effectiveness by reducing its 

penetration in the dense tumour mass. In the light of these considerations, here we 

highlight some of the major advantages associated with an extracellular drug delivery since 

this approach could bridge the gap between the need of a drug carrier with the need to have 

the drug in his free form at tumour interstitium. To this aim we designed a bi-

compartmental device where the two chambers are separated by a porous membrane. This 

device is intended to mimic mass transport at tumour interstitium where the diffusive 

transport is dominant. One chamber is devoted to cell seeding and the other is a drug 

reservoir. In this way we can evaluate drug penetration and diffusion both when in his free 

form and when complexed to a nanoparticle and points out the differences among these 

instances.  

KEYWORDS Extracellular Drug Delivery, Biodegradable Nanoparticles, Nanoparticle 

distibution in 3D models, 3D Tumour Model 
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4.1 Introduction 

The systemic delivery of therapeutic agents to the tumour mass is a three-step process: 

convective transport through blood-borne vessels to different regions of the tumour, 

extravasation and transport across the vessel wall and finally, diffusive transport through 

the interstitial space to reach the tumour cells [110] [111]. 

Once NPs reach the tumour mass, the factors governing and, in most cases, limiting 

their transport at tumour interstitium are numerous.  

First of all, the viscous nature of the interstitium limits the fluid flow and diffusion of 

NPs from the blood towards the cells. Dense extracellular matrix, poses a barrier in the 

transport of NPs principally due to their large size. 

Moreover, Interstitial Fluid Pressure (IFP) in normal interstitium leads to a pressure 

gradient exerted by the exchange of oxygen, nutrients and waste products from the 

capillaries through the interstitial space into the lymph nodes. It creates a slightly negative 

pressure (-3 to 3 mm Hg) that is needed for tissue homeostasis. In tumour cells, rapid cell 

proliferation and metabolism requires increased levels of oxygen and nutrients. However, 

the rate of blood vessel formation is not as fast as the tumour growth. This result in a 

significant increase of the IFP, ranging from 5 up to 100 mm Hg causing hypoxic 

conditions in the tumour [112]. The increased IFP pressure reduces the pressure gradient 

between the intra and extravascular spaces, blocking the transport of large molecules 

across vessel walls by convection. Since the IFP is nearly uniform throughout solid 

tumours, convection does not contribute significantly to molecular transport in the 

interstitium, and molecules movements are mainly governed by diffusion [113]. Said that, 

the primary mode of drug transport in the tumour mass is by diffusion because there 

remains no opportunity for convective transport once drugs have left the vasculature [111]. 

Large nanoparticles (100-nm) are suitable for the Enhanced Permeability and Retention 

effect (EPR) but have poor diffusion in the dense collagen matrix of the interstitial space, 

resulting in restrictive nanoparticle accumulation around tumour blood vessels and little 

penetration into the tumour parenchyma [110], while small drug molecule easily penetrate 

and diffuse through it since, obviously, the smaller the molecule the better the transport 

[24]. Moreover, NPs cannot simply enter the cells via diffusion. Indeed, they are 

internalized by endocytic processes and, after internalization, are transported in vesicles 
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from early endosome to late endosomes and eventually to lysosomes, while small molecule 

drug mainly enter cell via diffusion [114] [112]. 

In the light of these considerations, transport properties governing tumour penetration 

by molecules give important guidelines that can be used for the design of nanoscale 

therapeutics [111].  

In this context, nanodevices able to deliver their cargo at the extracellular level could 

bridge the gap between the need of a drug transporter able to carry safely the drug to the 

tumour site and the advantages in terms of drug diffusion and penetration beneath tumour 

mass of the free drug itself. 

In order to verify if extracellular drug delivery may really improve drug penetration 

through tumour interstium, a comparison between the distribution of free Doxorubicin 

(Dox) molecules and Dox molecules transported by a polymeric nanocarrier, through an in 

vitro tumour interstium model was done (see Figure 4.1). 

To this aim, a device mimicking the diffusion of molecules at tumour interstitium was 

designed and a tridimensional (3D) and highly cell-dense biological model, mimicking the 

tumour mass, was settled up. Moreover, polymeric-based drug transporters were prepared. 

Finally, drug distribution through the biological model was evaluated by means of 

confocal microscopy technique. 

 

Figure 4.1: Schematic representation of the work. 
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4.2 Materials and Methods 

4.2.1. Materials 

Poly(methyl methacrylate) PMMA substrates (5 mm thickness) were purchased from 

Goodfellow Cambridge Ltd, (UK), Poly(dimethylsiloxane) (PDMS) prepolymer and a 

curing agent (Sylgard 184 elastomer kit) were purchased from Dow Corning Corporation 

(USA). Equimolar uncapped poly(D,L-lactide-co-glycolide) (PLGA) (Resomer RG502H, 

Mw 12, 000 Da) was purchased from Boehringer Ingelheim (Ingelheim, Germany). 

Doxorubicin hydrochloride (Dox, purity>99%) was purchased from Discovery Fine 

Chemicals (UK). Polyethylene glycol (PEG, Mw 1500 Da), ethylenediamine, 4-

(dimethylamino) pyridine (DMAP), N,N'-Dicyclohexylcarbodiimide (DCC), 

dichloromethane (DCM) and Phosphate buffer saline (PBS) tablets without calcium and 

magnesium were purchased from Sigma-Aldrich (USA). Dialysis bags (MWCO 6000-

8000 Da) were obtained from Spectrum Laboratories, Inc. (The Netherlands), while 

distilled and deionized water (18MΩ resistance) were from Millipore (USA).  

Minimun Essential Medium (MEM), Phosphate Buffer Saline (PBS) without calcium 

and magnesium, L-glutamine, Trypsin, Penicillin and Streptomycin were purchased from 

Microgem. Collagen solution from bovine skin and Fetal Bovine Serum (FBS) were 

purchased from Sigma-Aldrich (USA) and Collagenase A from Roche. 

4.2.2. Bi-compartmental chamber: design and implementation 

A bi-compartmental device was designed to allow the simulation of drug diffusion at 

tumour interstitium. It is composed by two chambers separated by a porous membrane 

(Membrane Filters, Millipore) with a pore size of 650 nm, and by a step (2.3×8.6×0.5 mm) 

which avoids substance diffusion beneath the membrane itself. The larger chamber is 

devoted to cell seeding in collagen (6×15×5 mm), the smaller one (3×15×5 mm) acts as a 

drug reservoir of nanoparticles (NPs) or free drug in collagen. A 3D reconstruction of the 

bi-compartmental chamber is reported in Figure 4.2. 
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Figure 4.2: 3D reconstruction of the bi-compartmental chamber. Porous membrane is reported in yellow. 

The system was implemented according to the PDMS-based soft lithography. The 

master was typically fabricated by sequentially micromachining PMMA layers by using 

micromilling machine (Minitech Machinery Corporation, USA). PDMS monomer and 

curing agent were mixed in a 10:1 (base: curing agent) ratio by weight for manual mixing. 

After that, PDMS was poured into the PMMA mould and exposed to vacuum to eliminate 

air bubbles for at least 30 min. Finally, to complete PDMS curing process, the replica was 

baked in oven at 80 °C for 45 min. Three PDMS replica were bonded to a glass coverslip 

with oxygen plasma to activate the surface, using a plasma chamber (Plasma prep II, SPI) 

and then placed in oven at 80 °C for 1 h. After membrane insertion, the system was 

sterilized by UV light.  

4.2.3. Synthesis of copolymers and conjugates 

PLGA-PEG copolymer (namely PELGA) was synthesized via a coupling reaction 

between PLGA and PEG, optimizing a previously published procedure (see Chapter.1 

Chapter.2) [4]. Briefly, the carboxyl group of PLGA reacted with the terminal hydroxyl 

group of PEG. 1 eq of PLGA-NH2, 2 eq of PEG 0.4 eq DMAP and 2 eq of DCC were 

dissolved in 20 ml of anhydrous DCM. After the reaction (2 days, RT, inert atmosphere), 

the residual DCC was changed into dicyclohexylcarbodiurea (DCU) by adding 10 µL of 

bidistilled water. The DCM was evaporated and the mixture was dissolved in 10 ml of 

DMSO, filtrated and dialyzed using dialysis bags with MWCO of 6-8 kDa for 1 day 

against DMSO, in order to remove unreacted PEG and for 2 days against milliq water. 
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Pure product was recovered after lyophilization and analyzed by 1H-Nuclear Magnetic 

Resonance (1H-NMR) spectroscopy. 

PLGA-Dox copolymer was synthesized according to a previously reported procedure 

[4]. Briefly, the conjugate was synthesized by a standard HBTU coupling procedure. 

PLGA (1 eq), HBTU (1 eq), DIEA (2 eq), and Dox (1.5 eq.) were dissolved in anhydrous 

DMSO. Subsequently, the copolymer was purified by removing the unreacted reagents 

using dialysis bags (MWCO 6000 – 8000 Da). Pure product was recovered after 

lyophilization and analyzed by 1H-Nuclear Magnetic Resonance (1H-NMR) spectroscopy. 

Nuclear Magnetic Resonance (NMR) spectra of all products were recorded using an 

Agilent 600MHz (14 T) spectrometer equipped with a DD2 console and an OneNMR HX 

probe. PLGA-PEG and PLGA-Dox samples (1 mg) were dissolved in 600 μL of 99.9 % 

deuterated DMSO (Sigma Aldrich). 
1
H 1D spectra were recorded at 300 K using 1024 

scans to obtain a good signal to noise ratio. Spectra were transformed and analyzed using 

VNMRJ 4 software. Chemical shift scale was referenced on the solvent residual peak 

signal. DOSY experiments were also performed. 

4.2.4. NP preparation and characterization 

Blended PELGA /PLGA-Dox NPs were prepared using the nanoprecipitation method, 

according to a previously published procedure (see Chapter.1and Chapter.2) [4]. Briefly, 1 

mg of PELGA and 1 mg of PLGA-Dox were dissolved in 500 µl of acetone and the 

obtained solutions mixed. Afterwards, the solution was added dropwise (6 ml/h) with a 

syringe pump into 12.5 ml of distilled water under magnetic stirring (600 rpm). The 

organic solvent was then evaporated for 3 h in continuous stirring and the obtained NPs 

dispersion sterilized by filtration using 0.22 μm polyethersulfone (PES) syringe filters 

(Millipore). Finally, NPs suspensions was ultrafiltered twice using an ultrafiltration 

concentrator (MWCO 10 kDa, Corning) (4°C, 5000 rpm) for 15 min. The produced 

nanoparticles were named PELGA-Dox. 

Mean size, size distribution and ζ-potential for all types of NPs were determined by 

laser light scattering (ZetaSizer Nano ZS, Malvern Instruments, Malvern, UK) on a 0.1 

mg/ml suspension of NPs in water (12 runs each sample). Results were averaged on at least 

three measurements.  
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NPs morphology was analysed by Cryogenic Transmission Electron Microscopy (Cryo-

TEM). Cryo-TEM samples were vetrified with FEI Vitrobot Mk IV in a saturated water 

vapour environment. Sample volumes of 3 µL were placed on 200 mesh Quantifoil grids 

and the excess sample was blotted away with filter paper. Blot time and drain time were 

both 1 s. After blotting, the grids were plunged into liquid propane that was cooled with 

liquid nitrogen surrounding the propane vessel. Imaging was performed with TEM 

TECNAI G
2
 equipment operating at 200 kV in low dose mode and acquired by Eagle 2HS 

camera. 

4.2.5 Cell culture  

The biological model was set up using, human fibrosarcoma cells (HT1080). Cells were 

purchased by ATCC and cultured with complete medium, composed of Eagle’s minimal 

essential medium (EMEM) supplemented with 10 % FBS, 1 % glutamine, and 100 U/mL 

penicillin, 100 mg/mL streptomycin. The cells were maintained in 100 mm diameter cell 

culture dishes in a humidified controlled atmosphere at 37 ºC and 5 % CO2. The medium 

was changed every 2-3 days.  

4.2.6 Dose-response curve  

To investigate cell response at different drug concentrations, 2 x 10
5
 HT1080 cells were 

seeded on 12 well plates and incubated for 24h in a humidified atmosphere at 37 °C and 5 

% CO2 to obtain a subconfluent monolayer. Cells were then treated with cell medium alone 

or free Dox at a final drug concentration of 0.5, 1, 2 and 4 µg/ml. The day after treatment, 

cell viability was evaluated by means of Alamar Blue Assay, according to manufacturer 

procedure. All experiments were performed in triplicate.  

4.2.7 Cell seeding in collagen 

Collagen gel was prepared by diluting collagen solution with PBS 10X (8:1 volume 

ratio) and adjusting the pH to 7.4 adding NaOH and HCl dropwise. 40 µl of collagen 

solution was poured into the larger chamber and incubated at 37 °C for about 20 min, 

allowing the formation of a collagen basement as thick as the PDMS step that separates the 
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two chambers. After fibrillogenesis of the collagen basement, 2 × 10
5
 HT1080 cells were 

suspended in 330 µl of 2.2 mg/ml collagen solution and poured into the chamber. The 

system was then incubated at 37 °C for 45 min to allow collagen fibrillogenesis and, 

afterwards, fresh cell culture medium was added to the gel [115] [116] [117].  

For model characterization studies, cell- embedded collagen gels were stained according 

to the procedure reported by Arytm et al [118], with slightly modifications. 

Briefly, cell culture medium was aspirated from the top of the collagen gel without 

damaging it and 4 % paraformaldehyde/5 % sucrose in PBS was added to fix the samples. 

20 min after incubation at RT, the fixing solution was removed and samples were washed 

twice with PBS for 10 minutes at RT, while shaking. Subsequently, 0.15 M glycine in PBS 

was added to the gels for 10 minutes to quench the formaldehyde. After that, other two 

long washing steps of the gels in PBS were done and a solution of 0.5 % Triton X-100 in 

PBS was added to permeabilize the cells. After 10 min of incubations at RT, Triton X-100 

solution was gently removed and two short washing steps of the sample were performed. 

At this point, actin filaments were stained using phalloidin-FITC (Merck) (λex= 488 nm, 

∆λem= [500;530] nm) incubating the sample with a 1 % solution of Phalloidin in PBS for 

30 minutes at RT. Finally cell nuclei were stained with DAPI (Merck) (λex= 700 nm, ∆λem= 

[400;450] nm) incubating the sample with a 1 % solution of DAPI in PBS for 1 h at RT.  

Confocal images were acquired with Leica TCS SP5 MP (Solms, Germany) equipped 

with a water immersion 25× objective, with a resoution of 1024x1024. Moreover, Second 

Harmonic Generation (SHG) signal was used to visualise unstained collagen gels (λex = 

840 nm, λem = 420 ± 5 nm). 

4.2.8 NPs distribution in the collagen-based tumour model 

24 h after seeding, 330 µl of 2.2 mg/ml collagen solution containing PELGA-Dox NPs 

or free Dox at a final drug concentration of 2 µg/ml were poured into the smaller chamber 

at 37 °C for about 45 min for compounds distribution analyses through the 3D collagen 

model. Moreover, 330 µl of 2.2 mg/ml collagen solution containing cell medium alone was 

poured into the smaller chamber as positive control. After 3 and 24 h, all samples were 

imaged using a confocal and multiphoton microscope system (Leica TCS SP5 MP, Solms, 

Germany) with a 20x dry objective. Images were acquired using tile scan mode, with a 

resolution of 1024x1024 pixels. All experiments were performed in triplicate.  
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4.3 Results 

4.3.1 Synthesis of copolymers and conjugates 

1
H-1D NMR and DOSY spectra of PELGA and PELGA-Dox conjugates confirm the 

structure of all the conjugates and show that it was not found a significant amount of 

unreacted reagents for all the samples. 

A detailed chemical characterization of the conjugates can be found in Chapter.3, 

paragraph “Synthesis of copolymers and conjugates”. 

4.3.2 Nanoparticles characterization 

PLGA-Dox copolymer was mixed with PELGA [53] in acetone for NPs production, 

according to the procedure described above. The produced NPs were characterized in 

terms of size, ζ-potential and morphology.  

A detailed characterization of PELGA-Dox NPs can be found in Chapter.2, paragraphs 

“NPs mean size, ξ-potential and stability” and “NPs morphological characterization”. 

4.3.3 Dose-response curve 

Cell response at different Dox concentrations was investigated setting up a dose-

response curve, reported in Figure 4.3. Cell viability data show a 50% decrease in cell 

viability 24 h after drug treatment, for a drug concentration of 2 µg/ml. At this point a 

plateau is reached, since increasing the drug concentration do not lead to an increase in cell 

death. Based on these findings, all the experiments were performed using this drug 

concentration. 
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Figure 4.3: Dose response curve of HT1080 cells to free Dox. 

4.3.4 3D Biological model characterization 

In order to characterize the biological model and validate the homogeneity of cell 

seeding in collagen, cell-embedded collagen gels were stained and imaged with a confocal 

and multiphoton microscope. Moreover, two-photon excited fluorescence was used to 

induce SHG and obtain high-resolution images of unstained collagen fibrils. 

Figure 4.4 A shows cell actin filaments in green and cell nuclei in blue. Cells appear in 

a stretched conformation which is typical when embedded in a collagen matrix. Figure 4.4 

B show the SHG signal of the collagen, which proofs the presence of fibrils and confirms 

that collagen fibrillogenesis occurred. 

 

Figure 4.4: Characterization of the 3D biological model by Confocal Microscopy. Cell nuclei are stained with 

DAPI (blue) and actin filaments are stained with phalloidin-FITC (green) (A); SHG signal (in white) confirms the 

presence of collagen fibrils (B). Scale bar: 50 µm. 
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Finally, in Figure 4.5 is reported a 3D reconstruction of the biological model which 

clearly show a homogeneous distribution of the cells in the whole gel. 

 

Figure 4.5: 3D reconstruction of the biological model by Confocal Microscopy. SHG signal (in white) confirms 

the presence of collagen fibrills. Cell nuclei are stained with DAPI (blue) and actin filaments are stained with 

phalloidin-FITC (green). 

4.3.5 Drug distribution analyses through the 3D tumour model  

In this section proof-of-principle demonstration that, when at tumour interstitium, the 

free drug can be easily delivered into the dense collagen matrix of a tumour if compared to 

a drug-nanocarrier, is given. 

All samples were treated with a final Dox concentration of 2 µg/ml for 24 h, since the 

dose-response curve showed a relevant cytotoxic action of the drug at this concentration in 

this time frame. 

Multiphoton microscopy images revealed a marked increase in Dox penetration into 

tumour model as compared with the PELGA-Dox NPs, confirming a substantial 

enhancement in interstitial transport associated with molecule dimension and diffusion 

coefficient [24]. In more detail, Figure 4.6 show Dox distribution within the 3D model 

after 3h of exposure to cell medium alone (A), PELGA-Dox NPs (B) and free Dox (C). We 

can easily notice that Dox signal in panel C is higher compared to the one reported in panel 

B which is, indeed, similar to the fluorescent signal coming from the control sample. 
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Moreover, this difference increase, increasing the incubation time till 24h, as can be seen 

in Figure 4.7. 

 

Figure 4.6: Dox distribution within the 3Dmodel after 3h of exposure to cell medium alone (A), PELGA-Dox 

NPs (B) and free Dox (C). 
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Figure 4.7: Dox distribution within the 3Dmodel after 24h of exposure to cell medium alone (A), PELGA-Dox 

NPs (B) and free Dox (C). 
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4.4 Discussions 

The above presented results, even if preliminary, clearly show that a drug, in his free 

form can easily penetrate into tumour interstitium, where mass exchanges mainly occur via 

diffusion. This is due to the very small dimensions of the drug molecules which easily 

diffuse through the collagen matrix. On the other hand, NP-based drug transport is not 

promoted in absence of convective mass transport due to the large size of the NPs [24]. In 

more detail, where drug dose is equal, these consideration results in a higher tissue 

penetration of the free drug in the tumour mass if compared to NPs.  

These data are in agreement with the work of Wong et al. [110]. They propose a 

multistage system in which 100-nm nanoparticles “shrink” to 10-nm nanoparticles after 

they extravasate from leaky regions of the tumour vasculature and are exposed to the 

tumour microenvironment. The shrunken nanoparticles can more readily diffuse 

throughout the tumour interstitial space thanks to this change in their size, triggered by 

proteases.  

Indeed, in vivo circulation half-life and intratumoural diffusion measurements indicate 

that these multistage nanoparticles exhibited both the long circulation half-life necessary 

for the EPR effect and the deep tumour penetration required for the delivery into the 

tumour dense collagen matrix. 

Furthermore, Biondi et al. [53] prepared NPs whit a size less of 100 nm and translated 

standard 2D cytotoxicity studies to 3D collagen systems in which an initial step gradient of 

the NPs was present. In their experiments, they found that these NPs elicited a cytotoxic 

effect which decreased increasing the distance from the drug source while free drug 

exerted its cytotoxic effects almost through the entire collagen volume. 
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4.5 Conclusions and Future Developments 

The above presented preliminary results are aimed to point out that a drug, when in its free 

form, can easily penetrate into tumour interstitium where convective mass transport is not 

permitted. Otherwise, it is unquestionable the need of a carrier able to transport safely the 

drug at the tumour site through the vasculature (where convective transport is promoted) in 

a selective manner. 

Since that, a point of contact between these two needs could be the extracellular drug 

release. Indeed, a well-designed nanocarrier, able to release its cargo in the extracellular 

environment, would carry safely the active agent till tumour interstitium and, only at this 

stage, would release its cargo, presenting the drug to the cells in his free form. 

By the way, further experiments need to be performed to improve data reliability and to 

deeply investigate the above presented phenomena. In particular, the observation times of 

the drug distribution through the 3D tumour model should be increased and a quantitative 

evaluation of the distance covered by the drug when in its free form or when transported by 

the NPs, along with cytotoxicity analyses, should be performed. 
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Conclusions and Future Perspectives 

The work described in this thesis intends to exploit the fascinating word of the stimuli-

responsive drug delivery for the design of nanodevices capable to sense the endogenous micro-

environmental changes in tumour tissues for cancer therapy applications. 

During the last several decades, controlled drug delivery technology has advanced 

significantly, leading to the development of various clinical formulations improving patient 

compliance and convenience. Current technologies allow the delivery of drugs with desired 

release kinetics for extended periods of time ranging from days to years. Nevertheless, 

there are still areas where substantial improvements need to be done to reach the next level 

of clinical relevance. One such area is spatially-controlled drug delivery at tumour site in 

order to minimize drug-originated systemic off-site toxicity.  

In the light of these considerations, in Chapter.1 we proposed the design of MMP-2-

responsive nanoparticles, based on the pro-drug approach. These systems are composed by 

a PLGA molecule linked to Dox through a MMP-sensitive peptide and were named 

PELGA-TAP NPs. As expected, in vitro testing of these NPs on tumour and healthy 

spheroids proved that Dox release only occurs upon MMP cleavage of the peptide in 

tumour tissues, which strongly up-regulate these enzymes. Hence, in this section the design 

and production of biodegradable, biocompatible and endogenous stimuli-responsive NPs 

was addressed. 

Inspired by these encouraging results, in Chapter.2 we tested PELGA-TAP NPs on a 

more complex in vitro model, i.e. 3D tumour and healthy microtissues, which better 

recapitulates tissues architecture along with its microenviroment due to the presence of a 

well-structured and endogenous extracellular matrix. Cytotoxicity data obtained after 

microtissue treatment with NPs further validate the tissue- and site-specific action of NPs 

and the accumulation of the drug in the extracellular space, which are crucial requirements 

to enhance anticancer drug activity at tumour site. Therefore, in this section a validation of 

NP behaviour in a more realistic tissue equivalent was addressed. 

In Chapter.3 we developed an upgrade of the stimuli-responsive NPs based on the 

layer-by-layer polymer deposition technique. The delivery system we propose are ultra-

stable cross-linked polyelectrolyte nanocapsules (MMP-NCs) with an oil-core, a high drug 

loading capacity and a MMP-sensitive shell. In vitro testing of MMP-NCs, on healthy and 

tumour spheroids proofed that this design allows for NC shell disassembly and consequent 
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release of lipophilic drugs only in presence of MMP over-expression. So, also in this case, 

drug release only occurs in a spatially-controlled fashion upon an endogenous stimulus 

coming from the very nature of the tumour itself. In this section a viable route to address 

with a single elegant solution both the NC stability issue and the spatially-controlled 

release requirements was thus proposed. 

Finally, in Chapter.4 some of the major advantages associated with an extracellular 

drug delivery are highlighted. In particular, we presented preliminary results showing that 

if a drug reaches the tumour interstitium in its free form, then an enhancement in its 

diffusion and penetration through the tumour mass can be achieved. Thereby, nanocarriers 

capable to deliver their cargo at the extracellular level could bridge the gap between two 

fundamental needs: a safe delivery of the drug to the tumour site and its diffusion and 

penetration beneath tumour mass. Although this study paves the way for a new approach to 

drug delivery, it is still at its early stage and more experiments needs to be performed to 

validate the data. 

All the approaches to the design of NPs for microenvironmentally-triggered 

extracellular drug release illustrated in this work of thesis fulfil both these needs. Indeed, 

they allow to safely carry the drug at the tumour site without harmful effects to healthy 

tissues, and to release the cargo in the extracellular space only in presence of a site-specific 

trigger signal, such as MMP-2.  

Taken all together the studies we present show promising results for the possible 

application of microenvironmentally-triggered nanocarriers in the field of nanomedicine, 

thus encouraging for further in vivo investigation. Their translation into clinics could lead, 

indeed, to great benefits to patients by reducing the amount of administrated drug and its 

side effects.  
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