
"FEDERICO II" UNIVERSITY OF NAPLES  
 
 

 
 
 

 

Doctorate Program in Neuroscience 
Coordinator: Prof Lucio Annunziato 

XXX Cycle 
 
 

 
“Characterization of the Role Played by 
NCX Isoform 3 in a Transgenic Model of 

Alzheimer’s Disease by 
Electrophysiological  

and Biochemical Studies” 
 

 

 

TUTOR:                                                   PhD STUDENT: 
 
Prof Anna Pannaccione                        Dr Ilaria Piccialli  

 

 

 

ACADEMIC YEAR 2016-2017 

 



TABLE OF CONTENT 

List of abbreviations        Pag. 1 

Summary         Pag. 4 

Introduction         Pag. 7 

Chapter 1: Alzheimer’s disease      Pag. 8 

1.1 Overview        Pag. 8 

1.1.1  Neuritic plaques       Pag. 10 

1.1.2  ‘Diffuse’ plaques      Pag. 11 

1.1.3  Neurofibrillary tangles      Pag. 12 

1.1.4  AD clinico-pathological features and diagnostic criteria Pag. 13 

1.2 Genetics of Alzheimer’s disease     Pag. 15 

1.2.1  Mutations of APP      Pag. 16 

1.2.2  Mutations of presenilins     Pag. 20 

1.2.3  Apolipoprotein E4 allele     Pag. 21 

1.3 Animal models of AD       Pag. 22 

1.4 Amyloid cascade hypothesis     Pag. 24 

1.4.1 Intracellular Aβ       Pag. 27 

1.4.1.1 Accumulation of intracellular Aβ   Pag. 27 

1.4.1.2 Pathogenic role of intracellular Aβ   Pag. 28 

1.4.2 Dysregulation of ionic homeostasis    Pag. 29 

1.4.2.1 Potassium dysregulation in AD   Pag. 29 

1.4.2.2 Sodium dysregulation in AD    Pag. 31 

1.4.2.3 Calcium dysregulation in AD: the ‘Calcium  

hypothesis’      Pag. 32 

1.5 Neuronal hyperexcitability and epilepsy in AD   Pag. 35 

1.5.1 Role of NaV currents in neuronal hyperexcitability  Pag. 37 

Chapter 2: The Na+/Ca2+ exchanger     Pag. 39 

2.1 Overview        Pag. 39 

2.2 Molecular biology of NCX      Pag. 41 

2.2.1 NCX topology       Pag. 41 

2.2.2 NCX genes and splice variants    Pag. 43 

2.3 NCX regulation        Pag. 45 

2.3.1 Ca2+ regulation       Pag. 45 

2.3.2 Na+ regulation       Pag. 46 



2.4 Pharmacological modulation of NCX    Pag. 47 

2.4.1 Inhibitors        Pag. 47 

2.4.1.1 Bivalent cations      Pag. 47 

2.4.1.2 Endogenous Exchanger Inhibitory peptide  Pag. 48 

2.4.1.3 Amiloride derivatives     Pag. 49 

2.4.1.4 Isothiourea derivatives     Pag. 50 

2.4.2 Activators       Pag. 51 

2.4.2.1 Inorganic cations     Pag. 51 

2.4.2.2 Redox agents      Pag. 51 

2.4.2.3 Organic compounds     Pag. 52 

2.5 Brain distribution of NCX      Pag. 53 

2.5.1 Hippocampus       Pag. 53 

2.5.2 Cerebral cortex       Pag. 54 

2.5.3 Cerebellum       Pag. 54 

2.6 NCX function in healthy brain      Pag. 55 

2.7 NCX involvement in CNS diseases     Pag. 57 

2.7.1 Stroke        Pag. 57 

2.7.2 Multiple sclerosis      Pag. 58 

2.7.3 Alzheimer’s disease      Pag. 60 

Aims of the study        Pag. 63 

Materials and methods       Pag. 66 

3.1 Drugs and chemicals       Pag. 67 

3.2 Mice         Pag. 67 

3.2.1 Genotyping: PCR analysis     Pag. 68 

3.3 Mouse hippocampal neurons      Pag. 69 

3.4 Electrophysiological recordings     Pag. 70 

3.4.1 NCX currents       Pag. 70 

3.4.2 Na+ currents       Pag. 71 

3.5 [Ca2+]I and [Na+]I measurements     Pag. 72 

3.5.1 [Ca2+]I measurement      Pag. 72 

3.5.2 [Na+]I measurement      Pag. 73 

3.6 Western blotting       Pag. 74 

3.7 Immunohistochemistry       Pag. 75 

3.8 RNA silencing        Pag. 76 



3.9 Statistical analysis       Pag. 76 

Results          Pag. 77 

4.1 Aβ accumulation and oligomerization in hippocampal  

neurons from Tg2576 mice      Pag. 78 

4.2 NCX activity in Tg2576 hippocampal neurons   Pag. 80 

4.3 Effect of NCX3 silencing on INCX up-regulation  

in Tg2576 hippocampal neurons     Pag. 82 

4.4 SBFI-Na+ detection and NaV recording 

 in Tg2576 hippocampal neurons     Pag. 84 

4.5 Assessment of [Ca2+]i and ER Ca2+ content  

in Tg2576 hippocampal neurons     Pag. 86 

4.6 NCX3 protein expression in the hippocampus  

of 3 and 8-month-old Tg2576 mice     Pag. 89 

4.7 NCX3 protein expression in the hippocampus  

of 3 and 8-month-old Tg2576 mice     Pag. 92 

Discussion         Pag. 94 

References         Pag. 101



1 

 

LIST OF ABBREVIATIONS  
 
 
[Ca2+]i  Intracellular calcium concentration 

[Na+]i  Intracellular sodium concentrations 

AAO  Age at onset 

AD  Alzheimer’s disease  

APOE  Apolipoprotein E 

APOE-ε4  Apolipoprotein E type 4 allele 

APP  Amyloid- β precursor protein 

Aβ  Amyloid β protein 

Aβ1-40  Amyloid β peptide 1-40 

Aβ1-42  Amyloid β peptide 1-42 

CNS  Central nervous system 

CTF  Carboxy-terminal fragment 

EAE  Experimental autoimmune encephalitis 

Em  Membrane potential 

EOAD  Early-onset Alzheimer’s disease 

EOFAD  Early-onset familial Alzheimer’s disease 

ER  Endoplasmic reticulum 

FAD  Familial Alzheimer’s disease 

IA   Fast inactivating K+ currents 

IC50  Half maximal inhibitory concentration 

INaP  Persistent sodium current 

INCX  NCX currents 

IP3  Inositole triphosphate 

IP3R  Inositole triphosphate receptor 
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Kd   Dissociation constant 

Ki   Inhibitory constant 

KV   Voltage-gated potassium channel 

LOAD  Late-onset Alzheimer’s disease 

LTD  Long term depression 

LTP  Long term potentiation 

MAPs  Microtubule-associated proteins 

MOG  Myelin oligodendrocyte glycoprotein 

MS  Multiple sclerosis 

NaV  Voltage-gated sodium channel 

NCX  Na+/Ca2+ exchanger 

NFTs  Neurofibrillary tangles 

NGF  Nerve growth factor 

NMDA  N-methyl D-aspartate 

OPC  Olygodendrocyte precursor cells 

PC12  Rat pheochromocytoma 

PHF  Paired helical filaments 

PIP2  Phosphatidylinositol 4,5-biphosphate 

PM  Plasma membrane 

PMCA  Plasma membrane Ca2+-ATPase 

pMCAO  Permanent middle cerebral artery occlusion 

pNCX3  Proteolytic fragment of NCX3 

PS1  Presenilin 1 

PS2  Presenilin 2 

ROS  Reactive oxygen species 

RyR  Ryanodine receptor 
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SDS  Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate-PolyAcrylamide gel electrophoresis 

SERCA  Sarco-endoplasmic reticulum Ca2+ pumps 

SLC8A  Solute carrier family 8A or NCX gene family 

Tg  Thapsigargin  

TMS  Trans membrane domain 

TTX  Tetrodotoxin 

VGCC  Voltage-gated calcium channel 

WT  Wild Type 

XIP  Exchanger Inhibitory Peptide 
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SUMMARY 

 

Alzheimer’s disease (AD), the most common neurodegenerative disorder is 

characterized by progressive memory loss and impairment of cognitive ability. 

Aβ1-42 deposition, the principal hallmark of AD, triggers several mechanisms, 

including dysregulation of ionic homeostasis, contributing to neuronal dysfunction 

and death. In particular, the dysregulation of intracellular calcium concentrations 

([Ca2+]i) triggers a series of events including oxidative damage and activation of 

apoptotic machinery. Furthermore, the dysregulation of intracellular sodium 

concentrations ([Na+]i) affects neuronal excitability and contributes to 

epileptogenesis in AD. The Na+/Ca2+ exchanger (NCX) couples in a bidirectional 

manner the exchange of 3Na+ for 1Ca2+, thereby playing a relevant role in 

maintaining intracellular Na+ and Ca2+ homeostasis. For this reason, we 

investigated the role of NCX3 in Aβ1-42-induced ionic dysregulation in primary 

hippocampal neurons from Tg2576 mice, a transgenic animal model of AD. First, 

we validated primary hippocampal neurons from Tg2576 mice, here set up for the 

first time, as an in vitro model of AD by confirming the presence of Aβ1-42 

oligomers through western blot experiments. In particular, we observed Aβ1-42 

trimers, detectable as a ~ 12 kDa band, in Tg2576 primary hippocampal neurons, 

whereas they were absent in Wild Type (WT) neurons. Importantly, the same 

band has been detected in the hippocampus of 3-month-old Tg2576 mice. Patch 

clamp experiments revealed that NCX activity was progressively up-regulated in 

the reverse mode of operation in Tg2576 hippocampal neurons compared to WT, 

at 8 and 12 DIV, whereas no modulation occurred in the forward mode. 

Furthermore, silencing experiments with a specific siRNA directed against NCX3, 
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revealed that this increase of NCX currents was mediated by only NCX isoform 3. 

However, as revealed by western blot analyses, the up-regulation of NCX3 

activity was not accompanied by a significant increase of NCX3 protein 

expression. Interestingly, [Na+] detection with SBFI probe showed a significant 

increase of [Na+]i in Tg2576 hippocampal neurons at 12 DIV compared to WT, 

thus indicating that the up-regulation of NCX activity was Na+-dependent. 

Moreover, electrophysiological experiments revealed that NaV currents were 

progressively up-regulated in Tg2576 hippocampal neurons compared to WT at 8 

and 12 DIV. To determine whether the up-regulation of NCX activity results in 

increased [Ca2+]i or rather in Ca2+ refilling into ER, we performed Fura-2 AM 

measurements to determine both [Ca2+]i and ER Ca2+ content. In particular, we 

found a significant reduction of [Ca2+]i in Tg2576 hippocampal neurons at 8 DIV 

compared to WT and a significant increase in ER Ca2+ content at 12 DIV. 

Western blot on Tg2576 mouse brain, revealed that NCX3 protein expression 

was significantly increased in the hippocampus of 3-month-old Tg2576 mice 

compared to WT. Importantly, immunohistochemical analyses confirmed western 

blot results. In fact, in both CA1 and CA3 hippocampal regions as well as within 

the corpus callosum of 3-month-old Tg2576 mice, the anti-NCX3 antibody 

revealed an increased NCX3 immunoreactivity signal, which was mainly confined 

along the processes of cells and dendrites of pyramidal cells. By contrast, we 

observed a significant reduction of NCX3 protein expression in the hippocampus 

of 8-month-old Tg2576 compared to WT, although an increase in the 

hippocampus of 8-month-old WT mice has been observed in comparison with 3-

month-old WT mice. Importantly, immunohistochemical analyses confirmed 

western blot results. In fact, in both CA1 and CA3 hippocampal regions as well as 

within the corpus callosum of 8-month-old Tg2576 mice, NCX3 immunostaining 
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appeared robustly decreased. Moreover, western blot experiments did not detect 

any modulation of NCX3 protein expression in the cerebral cortex of both 3 and 

8-month-old Tg2576 mice compared to WT. On the other hand, a clear loss of 

intensity of immunoreactivity signal has been observed in cortical sections from 

both 3 and 8-month-old Tg2576 mice. All together, these results suggest that 

NCX3 up-regulation could represent a protective mechanism against Na+ 

disruption occurring in Tg2576 hippocampal neurons. Notably, this evidence 

points to a possible role of NCX3 in neuronal survival against hyperexcitability 

and subsequent epileptiform activity observed in AD. Moreover, the role of NCX3 

in Ca2+ refilling into ER further supports its positive implication.   
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CHAPTER 1: ALZHEIMER’S DISEASE 

 

1.1 Overview  

Alzheimer’s disease (AD) is one of the most common neurodegenerative 

diseases and the most prevalent form of late-life mental disorder. With the 

increasing longevity of our population, AD is reaching epidemic proportions with 

no cure or preventative therapy yet available (Tanzi and Bertram, 2005). The 

clinical symptomatology results from the failure of selective cognitive domains, in 

particular those related to memory (LaFerla et al., 2007)  

The first to describe this clinicopathological syndrome was a Bavarian 

psychiatrist, Alois Alzheimer, who named the disease. Alzheimer’s original 

patient presented several salient features of the disorder observed in most 

patients nowadays: progressive memory impairment; cognitive dysfunctions; 

altered behaviour; and a progressive decline in language function. With the 

progression of the disease, other symptoms may arise, including a tendency to 

slow motor functions and other disorders culminating in some forms of 

Parkinsonism. After Alzheimer’s original description, the progress in defining the 

pathogenesis of AD has been slow, until two researchers, Michael Kidd in 

England and Robert Terry in the United States, described with electron 

microscopy the ultrastructural changes underlying the two typical lesions linked to 

AD: senile (neuritic) plaques and neurofibrillary tangles. In the mid 1970s, the 

identification of cholinergic neurons as the outbreak of neurodegeneration 

contributed to the knowledge of neurochemical features of AD. Indeed, a 

decrease in the activities of the synthetic and degradative enzymes choline 

acetyltransferase and acetylcholinesterase was observed in the limbic and 
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cerebral cortices, along with the loss of cholinergic cell bodies in the subcortical 

nuclei that project to these regions. A little later in the years, it became clear that 

AD also involved the degeneration of other neurotransmitter systems, and this 

explained the failure to produce benefits in patients treated with cholinergic drugs. 

Despite since 1980s increasing progresses toward approaching and 

understanding molecular pathogenesis of AD have occurred, the study of the 

disease showed many controversies. Furthermore, given the cytological and 

biochemical complicacy of AD, it has been difficult to reach certain conclusions 

about the temporal sequence of events that lead to dementia. However, in recent 

years, a consensus has developed that some molecular events occur several 

years before the onset of symptoms.  

For many years, the researchers tried to identify the composition and molecular 

origin of the amyloid plaques and neurofibrillary tangles (Fig. 1) by isolating the 

subunit proteins of these lesions, and to understand which of the two lesions 

might precede the other. Despite this, it seemed clear that these two lesions 

observed in the post mortem brain occur late in the disease, so providing little 

useful information about the etiology and early pathogenesis of AD. Afterwards, 

thanks to the use of immunocytochemistry and compositional analyses, the 

subunit composition of the plaques and tangles has been defined, while the 

progress in molecular genetics of AD provided further information about the role 

of these subunit proteins in the pathogenesis of AD. In particular, the 

understanding of the relationships between each genetic alteration and the 

familial forms of AD helped to reveal the progression of the pathogenetic events 

(Selkoe et al., 2001; Selkoe, 2011). 
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Fig. 1 

 

 

 

1.1.1 Neuritic plaques 

 Neuritic plaques, one of the two lesions observed in post mortem brain of 

Alzheimer’s original patient, consist of microscopic foci of extracellular amyloid 

deposition associated with dystrophic neurites and altered microglia and 

astrocytes. This type of lesion, which evolves as neuritic plaques very gradually 

over many months or years, is generally found most in the limbic and association 

cortices (Dodel et al., 2000). The extracellular deposits of amyloid β-protein (Aβ) 

contain skeins of insoluble amyloid fibrils, intermixed with non-fibrillar 

(“amorphous”) forms of the peptide (Master et al., 1985). Dystrophic neurites are 

located within this amyloid deposit but also around it. Such plaques are also 

associated with activated microglia, adjacent to the central amyloid core, and 

surrounded by reactive astrocytes that often ring the outside of the plaque. Much 

of the fibrillar Aβ which constitutes the neuritic plaques is the peptide ending at 
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amino acid 42, (Aβ1-42), the longer, more hydrophobic form of Aβ that has a 

strong tendency to aggregate (Jarrett et al., 1993). However, the Aβ peptide 

ending at amino acid 40 (Aβ1-40), which is generally more abundant in cells than 

Aβ1-42, is often co-localized with Aβ1-42 in the plaques.  

 

1.1.2 “Diffuse” plaques 

 Such lesions, generally called “diffuse” or “pre-amyloid” plaques, are 

constituted by Aβ deposits that are mostly in a non-fibrillar, granular form 

(Tagliavini et al., 1988). Many of the plaques found in those regions of 

Alzheimer’s brain that are not strongly implicated in the typical symptomatology 

of AD, are of the diffuse type, without a fibrillar core of Aβ, and  accompanied by 

very little or not detectable dystrophic neurites. Unlike the Aβ deposits generally 

found in the fibril-rich neuritic plaques, that have a mixed composition of Aβ1-42 

plus Aβ1-40, the material comprising the diffuse plaques has only the peptide Aβ1-

42 as subunit, with little or no Aβ1-40 (Iwatsubo et al., 1995; Lemere et al., 1996). 

However, Aβ deposits do not occur simply in these two distinct forms (diffuse and 

neuritic) but rather as a mixture of fibrillar, granular, and even soluble forms of 

the peptide, that are variously associated with surrounding glial and neuritic 

alteration. The fact that diffuse plaques are the sole form found in those brain 

regions lacking neuritic dystrophy, glial alterations, and neurofibrillary tangles, 

leads to the hypothesis that diffuse plaques represent the precursors of neuritic 

plaques and are not clearly implicated in the typical symptomatology of AD. 

Furthermore, healthy aged brains free of AD, but also other dementing processes, 

often showed only diffuse plaques in the same regions where Alzheimer patients 

share both diffuse and neuritic plaques: this evidence supports the hypothesis 
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that diffuse plaques could be earlier lesions that precede further alterations 

(Selkoe et al., 2001). 

 

1.1.3 Neurofibrillary tangles 

 Neurofibrillary tangles (NFTs) are the second lesion detectable in AD post 

mortem brains, particularly in entorhinal cortex, hippocampal formation, 

amygdala, association cortices, and certain subcortical nuclei that project to 

these regions. Many neurons in these regions contain large bundles of abnormal 

fibers, identified by electron microscopy as paired helical filaments (PHF) located 

in the perinuclear cytoplasm. Immunocytochemical and biochemical analyses 

begun in 1985 suggested that NFTs were composed of the microtubule-

associated protein tau (Kosik et al., 1986; Wood et al., 1986). This was confirmed 

by the isolation of a subset of PHF that, solubilized in strong solvents such as 

sodium dodecyl sulphate (SDS) or digested with proteases (Kondo et al., 1988; 

Wischik et al., 1988), released tau proteins that had a higher molecular weight 

than the normal tau prepared from tangle-free human brains. This higher 

molecular weight was shown to result from increased phosphorylation of tau, in 

fact in vitro dephosphorylation with alkaline phosphatases restored the normal 

weight to this PHF-derived tau. However, although some PHF can be solubilized 

by boiling in SDS (Lee et al., 1991), much of the tau filaments present in tangles 

are insoluble and resistant to detergents such as SDS and to chaotrophic 

solvents such as guanidine hydrochloride (Selkoe et al., 1982).  

It has been shown that tau can be phosphorilated in vitro by a variety of kinases 

at various sites. Nevertheless, it is not clear whether one or more kinases are 

responsible for initiating the hyperphosphorylation of tau in vivo that leads to its 

dissociation from microtubules and aggregation into insoluble PHF. PHF are not 
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limited to the tangles found in neuronal cell bodies but also occur in dystrophic 

neurites that are present within and outside of the amyloid plaques.  

However, the two classical lesions of AD, neuritic plaques and NFTs, can occur 

independently of each other in humans. Tau aggregates similar to or 

indistinguishable from the tangles observed in AD have been described also in 

other, less common, neurodegenerative diseases in which no Aβ deposits and 

neuritic plaques are observed. Conversely, Aβ deposits can be found in 

cognitively normal-aged brains without the presence of tangles (Selkoe et al., 

2001; Selkoe, 2011). 

 

1.1.4 AD clinico-pathological features and diagnostic criteria 

 NFTs and Aβ plaques are accompanied by additional changes in the brain of 

AD patients that may contribute to cognitive impairment, such as amyloid 

angiopathy, age-related brain atrophy, synaptic pathology, white matter 

rarefaction, neuronal loss, neuroinflammation and others (Hirano et al., 1968; 

Masliah et al., 1995; Nunomura et al., 2006; Thal et al., 2011). However, these 

are not considered pathognomic features of AD (Montine et al., 2012). 

NFTs are not specific for AD (Buée et al., 2000, Goedert, 2004), in fact they are 

found in every class of brain diseases such as focal cortical dysplasia, prion 

diseases, some brain tumors, viral encephalitis and others (Bancher et al., 1996; 

Cairns et al. 2007). Furthermore, NFTs are universal in normal aging subjects. In 

fact, a modest number of NFTs present in the medial temporal lobe occur in 

subjects older than 70 years (Bouras et al., 1994). This evidence suggests that 

NFTs are, at least in some circumstances, a secondary response to injury. 

Nevertheless, NFTs may be directly linked to primary neurodegenerative 

changes, since tau gene mutations can produce clinical dementia with NFTs 
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(Cairns et al., 2007). However, the density and neuroanatomic localization of 

NFTs are determining parameters in AD neuropathology. Indeed, NFTs are found 

in both healthy and demented subjects in the hippocampus, but elsewhere in the 

cortex they are observed only in dements.  

Unlike the NFTs, Aβ plaques are extracellular (Selkoe, 2008). They are found in 

a large percentage of elderly persons, despite they are not universal (Braak et al., 

2011; Jicha et al., 2012).  

The “neuritic plaques” are more likely to correlate with cognitive impairment than 

“diffuse plaque” (Terry et al., 1991). Moreover, many of the degenerating axons 

and dendrites surrounding Aβ deposits in neuritic plaques often contain 

hyperphosphorilated tau aggregates. This subset of Aβ plaques represents a 

current diagnostic criterion for AD, even if the extension and density of dystrophic 

neurites that contain altered forms of tau varie among AD cases, depending on 

the evolution of the neuritic plaques in AD pathological process (Thal et al., 2000; 

Thal et al., 2006). 

Aβ plaques alone are not considered a sufficient substrate for severe dementia. 

However, unlike to NFTs pathology, Aβ plaques formation seems to strongly 

correlate with AD genetics. In fact, all high-penetrance AD risk alleles, such as 

Amyloid-β precursor protein (APP), Presenilin 1 (PS1), Presenilin 2 (PS2) 

mutations, Apolipoprotein (APOE) ε4 allele and Down syndrome, have been 

linked in several experimental systems to increased Aβ deposition and increased 

production of toxic Aβ peptide species (Hardy, 2006; Selkoe, 2008; Reitz et al., 

2009). 

Now it is well established that both Aβ plaques and NFTs are hallmark features 

of AD but they develop independently of each other in the human brains, 

showing different temporal patterns of progression (Braak et al., 1991; Ohm et al., 
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1995). This evidence would provide the answer to some controversies that have 

evolved over the past decades. However, some debates persist in the field of 

clinico-pathological correlation research, which aims to assess how and how 

much AD neuropathologic changes (Aβ plaques and NFTs) correlate with 

dementia. Indeed, it is possible to observe subjects without dementia with 

advanced AD pathologic changes at autopsy and, vice versa, dementing subjects 

with clinical AD symptoms without AD pathologic changes at autopsy. For these 

reasons, it is crucial to define the so-called “advanced AD pathologic changes” 

(Nelson et al., 2012). In this regard, it must be emphasized that Aβ plaques 

without other neuropathologic lesions are not sufficient for the development of a 

severe dementia, thus they cannot be considered “advanced AD pathologic 

changes”. By contrast, high levels of neocortical neurofibrillary tangles are 

strongly associated with dementia and thus, according to new diagnostic criteria, 

are part of the “advanced AD pathologic changes” (Montine et al., 2012). It is 

clear that dementia, though in a form clinically similar to AD, may occur without 

AD pathologic changes; in this case, it cannot be diagnosed as AD but 

presumably as one among many other diseases that cause symptoms of 

dementia.  

 

 

1.2 Genetics of Alzheimer’s Disease  

 It is known for several decades that AD may occur in a sporadic form, also 

described as late-onset Alzheimer’s disease (LOAD), or be specifically inherited 

in an autosomal dominant fashion as a familial form, also known as early onset 

Alzheimer’s disease (EOAD). What is not yet clear is how frequently genetic 

factors underlie the disease in the late-onset forms. However, the certainty that 
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polymorphic alleles of APOE can strongly predispose to AD in the 60s and 70s 

(Strittmatter et al., 1993) suggests that also other polymorphic genes may 

constitute predisposing factors for the disorder. However, since these genetic 

factors do variably cause the disease, they would be difficult to detect in genetic 

epidemiological studies. Despite this, it has become clear that familial AD and 

apparently non-familial (“sporadic”) forms are phenotypically similar and 

indistinguishable in certain cases, save for the earlier age of onset of the 

autosomal dominant forms. In fact, when the age of the patient at the onset of 

disease is not known, it is very difficult to discriminate between the phenotype of 

early onset cases and that of common LOAD. Although also clinical 

manifestations of familial AD are very similar to those of sporadic cases, some 

families may show peculiar clinical signs such as extrapyramidal signs, seizures, 

etc. However, this phenotypical similarity suggests that information about the 

mechanism of autosomal dominant AD caused by APP, PS1 and PS2 gene 

mutation, may be helpful to better understand the pathogenesis of sporadic, non-

familial forms (Selkoe et al., 2001). 

 

1.2.1 Mutations of APP 

 The first specific genetic factor predisposing for AD to be identified have been 

missense mutations in APP gene (Goate et al., 1991). Missense mutations in 

APP account for about 0,01% of all Alzheimer’s cases but the identification of 

their genotype-to-phenotype relationships has provided important information 

about the mechanisms underlying AD pathology. In particular, these mutations 

cause AD by altering proteolytic processing of APP in different ways.  

The 37-43 amino acid Aβ peptide is generated in a physiologic pathway by the 

proteolytic processing of its precursor, the APP (Haass et al., 1992; Seubert et al., 
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1992; Haass and Selkoe, 1993). The APP is a transmembrane protein with its 

amino terminus within the extracellular space and its carboxyl terminus within the 

cytosol (Kang et al., 1987). Although APP is trafficked through the secretory 

pathway, in which it is transported from endoplasmic reticulum (ER) to the 

plasma membrane (PM), it is posttranslationally modified at different subcellular 

sites (Weidemann et al., 1989). In fact, it can undergo several proteolytic 

cleavages, whose secreted products are released into vesicle lumen and 

extracellular space, thus only a small fraction of nascent APP molecules reach 

the PM (Lai et al., 1995).  

Two principal processing pathways have been identified: the amyloidogenic 

pathway, which leads to Aβ generation; and the anti-amyloidogenic pathway, in 

which Aβ generation is prevented. The three proteases involved in these 

processing pathways are called α-, β-, and γ-secretase. The Aβ is produced in 

the amyloidogenic pathway by the consecutive action of β- and γ-secretase 

(Haass, 2004). The β-secretase initiates Aβ generation by cleaving APP within 

the extracellular domain, thus shedding a large part of APP ectodomain (APPsβ) 

in the lumen (Seubert et al., 1993) and generating a 99-residue APP-carboxy-

terminal fragment (CTF) called βCTF or C99, which is then cleaved by γ-

secretase. On γ-secretase cleavage, Aβ is generated and released into vesicle 

lumen and extracellular fluids such as plasma or cerebrospinal fluid. In the anti-

amyloidogenic pathway, α-secretase cleaves APP in the Aβ region (Esch et al., 

1990; Sisodia et al., 1990), thus generating a truncated 83-residue APP CTF 

(αCTF or C83), lacking the amino-terminal portion of the Aβ domain. The 

subsequent intramembrane cleavage by γ-secretase generates a truncated Aβ 

peptide called p3 (Haass et al., 1993), which has no evident pathological 

relevance. Even if the amyloidogenic and the anti-amyloidogenic processing 
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pathways compete with each other, in most cells a much bigger portion of total 

APP undergoes cleavage by α-secretase rather than by β-secretase.  

The nine known missense mutations of APP have been found within and around 

Aβ domain. These mutations are responsible of a number of familial Alzheimer’s 

disease (FAD) cases (Chartier-Harlin et al., 1991; Schenk et al., 2011), by 

affecting Aβ generation and aggregation. The Swedish mutation (so called 

because of the ethnic origin of the family in which it occurs) is a double mutation, 

which falls at amino terminus of the Aβ region (Mullan et al., 1992), more 

specifically in the two amino acids just before the β-secretase cleavage site, and 

results in a significant increase of Aβ1-40 and Aβ1-42 production, since it provides a 

better substrate for the β-secretase activity (Citron et al., 1992; Cai et al., 1993). 

The five mutations located just beyond the carboxyl terminus of Aβ, near to the γ-

secretase (the so-called Austrian, French, London, Iranian and Florida mutations) 

selectively increase the production of Aβ1-42, which has a higher tendency to 

aggregate and is considered to have the greatest neurotoxicity among all Aβ 

species (Suzuki et al., 1994). The mutations falling in the mid region of Aβ, such 

as Arctic (Nilsberth et al., 2001) and Dutch mutations (Levy et al., 1990) change 

the structure of Aβ, by affecting its primary sequence, and enhance its 

aggregational propencity. Some of these intra-Aβ mutations can lead to mixed 

amyloid pathologies, with marked cerebral angiopathy with abundant amyloid 

plaques. In particular, the Dutch mutation causes hereditary cerebral hemorraghe 

with amyloidosis (Levy et al., 1990). The Flemish mutation results in a particular 

pathologic mechanism, leading to AD type plaques and tangles associated with 

dementia, and microvascular β-amyloidosis with sporadic cerebral hemorraghe 

(Hendriks et al., 1992). This mutation is located in a substrate inhibitory domain 

that negatively regulates γ-secretase activity by binding to an allosteric site within 
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the γ-secretase complex. As consequence, the Flemish mutation reduces the 

inhibitory potency of APP substrate inhibitory domain thus promoting γ-secretase 

activity (De Jonghe et al., 1998).  

Another alteration in the APP gene that can predispose to AD is the 

overexpression of structurally normal APP, which occurs in trisomy 21 (Down’s 

syndrome), leading usually to premature AD neuropathology (neuritic plaques 

and neurofibrillary tangles) during middle adult years (Tokuda et al., 1997). 

Down’s subjects display early appearance of many Aβ1-42 diffuse plaques, which 

can occur as soon as age of 12 years (Lee et al., 1991), whereas the 

appearance of NFTs can be delayed until the late 20s, 30s or beyond in most 

Down’s patients. However because the entire chromosome 21 is duplicated in 

most cases of Down’s syndrome, it is difficult to assess if Alzheimer syndrome 

that they develop is correlated directly to APP gene dosage.  

 

Fig. 2 

 

Christopher Patterson et  al., cmaj (2008) 
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1.2.2 Mutations of presenilins  

 The mechanism by which mutations in presenilins produce an AD phenotype, 

leading to several forms of early onset familial Alzheimer’s disease (EOFAD), has 

always been intensely debated. While the functional role of presenilins was 

unknown when they have been discovered, it was nevertheless found that 

presenilin mutations enhanced the production of Aβ1-42, thus rendering it the 

predominant Aβ specie at the expense of Aβ1-40. In fact, direct assays of Aβ1-42 

and Aβ1-40 levels in the plasma and cultured skin fibroblasts media of subject 

harboring these mutations, revealed a selective and approximately twofold 

elevation of Aβ1-42.  

Presenilin is an aspartyl protease, identified as the catalytic subunit of γ-

secretase. In mammals there are two presenilin isoforms, PS1 and PS2, 

characterized by nine transmembrane domains, a cytosolic loop domain, and two 

aspartate residues, critical for γ-secretase catalytic function. Although presenilin 

has been intensely studied because of its role in APP proteolytic cleavage, it is 

involved in a wide variety of cellular processes also independently of γ-secretase 

activity, such as protein trafficking (Naruse et al., 1998), calcium homeostasis (Yu, 

2009) and lysosomal function (Lee et al., 2010; Zhang et al., 2012).  

Mutations in PS1 are the most common cause of EOFAD, accounting for 18-50% 

of autosomal dominant EOAD cases (Cruts et al., 1996). Patients with mutations 

in this gene display progressive dementia and Parkinsonism and, in some cases, 

other atypical AD symptoms like ataxia or epilepsy may appear (Langheinrich et 

al., 2011; Borroni et al., 2012). More than 180 mutations in PS1 have been 

reported (Cruts et al., 2012); the majority are missense mutations that cause 

amino acid substitutions throughout PS1 protein, so leading to PS1 “gain” or “loss 

of function”.  
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Missense mutations in the PS2 gene are a rare cause of EOAD and what makes 

them different from PS1 mutations is the age of onset, that is generally more 

advanced and highly variable (45-88 years), even among patients of the same 

family (Bekris et al., 2010). Although both PS1 and PS2 increase the ratio of Aβ1-

42 to Aβ1-40, presenilin mutations affect APP processing by γ-secretase in a 

differential manner (De Strooper et al., 1998; Baulac et al., 2003).  

 

1.2.3 Apolipoprotein E4 Allele 

 The APOE type 4 allele (APOE-ε4) is the major genetic factor predisposing to 

the common late onset familial and sporadic forms of AD. APOE has three 

alleles: APOE-ε2, APOE-ε3, and APOE-ε4. APOE-ε4 is overrepresented in 80% 

of familial and 64% of sporadic AD late onset cases compared with the general 

population. Furthermore, inheritance of one or two APOE-ε4 alleles determinates 

an age at onset earlier than that observed in subjects harboring ε2 and/or 

ε3alleles (Corder et al., 1993; Saunders et al., 1993).  

The mechanism by which APOE4 protein leads to increased Aβ deposition has 

been difficult to identify. However, APOE4 seems to enhance the steady-state 

level of Aβ peptides, in particular of Aβ1-40 (Gearing et al., 1996), probably by 

affecting its clearance from the brain tissue.  
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1.3 Animal model of AD  

The progresses reached in the last two decades in elucidating AD susceptibility 

and causative genes as well as other proteins involved in AD pathogenesis, have 

facilitated the development of genetically modified mouse models. Moreover, 

animal models have played an important role in identify mechanisms underlying 

AD pathology and in evaluating novel therapeutic approaches.  

Importantly, neuropathology and clinical phenotype are generally identical in the 

EOFAD versus the sporadic form of AD (SAD), except for the age at onset (AAO) 

(Selkoe, 2002). However, unlike the FAD, the etiology of SAD is unknown. For 

this reason, animal models harboring genetic mutations associated with FAD are 

used with the rationale that the events underlying AD pathology are quite similar 

in the two forms, although the initial trigger is not the same. In fact, despite a 

single mouse model does not recapitulate the wide spectrum of pathogenic 

mechanisms, each model can contribute to analyse one or more components of 

the disease, which is not possible with human patients.  

Transgenic mice overproducing mutant APP develop a pathology similar to that 

found in humans. In particular, plaque formation occurs in mid to late adulthood 

in the majority of these mice. Notably, the accumulation of Aβ into extracellular 

plaques is accelerated when Aβ1-42 is more abundant than Aβ1-40, as in the case 

of mice carrying APP mutations. Working with transgenic mic highlighted the 

nature of Aβ plaques and contributed to clarify the factors determining 

aggregation of Aβ into plaques.  

However, most AD transgenic mice exhibit memory impairments and cognitive 

deficits long before the appearance of extracellular plaques. For this reason, the 

researchers tried to identify the precursors to plaque formation and, especially, 

they focused on soluble oligomeric species of Aβ. In fact, it is well known that 
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cognitive decline in humans, as well as in mice, correlates with the presence of 

soluble Aβ, rather than with Aβ plaques. In humans, but not in AD transgenic 

mice, a large quantity of Aβ accumulation is needed for cognitive decline 

beginning.  However, mouse models still provided much of the information about 

the toxicity of Aβ oligomers.  Many APP transgenic mice exhibit intraneuronal 

accumulation of Aβ, similarly as human AD and Down syndrome patients. 

Importantly, the accumulation of intracellular Aβ has been shown to precede 

extracellular deposition in both mice and human patients, to correlate with early 

memory deficits, and to be more toxic than extracellular Aβ.  

 

 

1.4 Amyloid cascade hypothesis  

 The amyloid β-protein hypothesis (Hardy and Allsop, 1991; Selkoe, 1991; 

Hardy and Higgins, 1992) is one of the dominant models of AD pathogenesis and 

the most influential concept guiding the development of potential AD therapies.  

Since brain tissues from AD patients are only studied post mortem, it has been 

difficult to identify the sequence of pathogenic events occurring in the disorder. 

However, important results have come from analysing the very similar, almost 

indistinguishable neuropathological processes that occur in Down’s syndrome. 

Other information about the disease cascade have come from the study of mice 

transgenic for mutant human APP, either with or without presenilin mutations. In 

particular, although lesion formation occurs in a shorter period in these mice than 

in human (Hsiao et al., 1996), they are a useful model to deduce some features 

of the cellular and protein changes that often precede neuronal/neuritic alteration.  

The amyloid cascade hypothesis (Fig. 2) postulates that an abnormal 

accumulation of Aβ peptide in various brain areas is responsible for AD 
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neurodegeneration (Hardy and Higgins, 1992; Evin and Weidemann, 2002). 

According to this hypothesis, the accumulation of Aβ peptide triggers a cascade 

of events that include neuritic injury and formation of neurofibrillary tangles, 

culminating in neuronal dysfunction and cell death (Hardy and Higgins, 1992; 

Selkoe, 1999).  

Aβ peptides, the main component of Aβ plaques (Masters et al., 1985), are 39-43 

amino acid residue peptides proteolitically derived from the secretase-mediated 

processing of APP (Coulson et al., 2000). The length of Aβ peptide varies at C-

terminal depending on the cleavage pattern of APP. The Aβ1-40 isoform is the 

most prevalent, followed by Aβ1-42, which is the more hydrophobic isoform and 

more prone to aggregation than Aβ1-40. Within the plaques, Aβ peptide has a β-

sheet conformation and aggregates into several distinct forms including fibrillar, 

protofibers and polymorphic oligomers (Glenner et al., 1984; Selkoe, 1994). The 

Aβ deposition and diffuse plaque formation lead to microglial activation, reactive 

astrocytosis, cytokine release, inflammatory response and altered neuronal ionic 

homeostasis accompanied by oxidative stress. Aβ aggregation also results in 

various biochemical and structural changes in surrounding dendrites, axons and 

neuronal cell bodies, which eventually lead to synapse loss and neuronal death 

(Braak and Braak, 1994).  

Although the amyloid cascade hypothesis is the most important model proposed 

to explain AD pathogenesis nowadays, it has been difficult to demonstrate the 

direct correlation between Aβ accumulation and neurodegeneration leading to 

cognitive deficits (Serrano-Pozo et al., 2014). However, genetic studies suggest 

that neurodegeneration in AD is the consequence of an imbalance between Aβ 

peptide production and clearance, thus providing important evidence for amyloid 

cascade hypothesis. In particular, autosomal dominant mutations in APP, PS1 
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and PS2 genes lead to an abnormal Aβ peptide production in the familial forms of 

AD (Selkoe, 1994; Bertram et al., 2010). In addition, the APOEε4, which 

predisposes to AD in more than 40% of cases as a dose-dipendent risk factor for 

late-onset FAD (Saunders, 2000), increases Aβ peptide aggregation and impairs 

its clearance in the brain (Castano et al., 1995).  
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Fig. 3 

 

   Selkoe and Hardy, EMBO Mol Med (2016) 
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1.4.1 Intracellular Aβ 

The Aβ peptide was first identified as a component of extracellular amyloid 

plaques in the mid-1980s. Then, a large number of studies on post mortem AD, 

Down syndrome and transgenic mouse brains provided evidence for the 

presence of intraneuronal Aβ. Furthermore, several results suggested that the 

accumulation of intraneuronal Aβ is an early event in AD progression, which 

occurrs before the formation of extracellular Aβ deposits (Gyure et al., 2001; 

Gouras et al., 2000). Moreover, a comprehensive study, in which 99 brains from 

controls and from AD and Down syndrome patients were analyzed, found that 

most of the intraneuronal Aβ is the Aβ1-42 peptide. 

 

1.4.1.1 Accumulation of intracellular Aβ 

Despite the Aβ generation from APP is known to take place at the extracellular 

side of plasma membrane, it may occur also in several cellular compartments, 

where APP and β- and γ- secretases are localized. Moreover, it is conceivable 

that secreted Aβ is taken back up by the cell to form Aβ intracellular pools.  

Wertkin et al. in 1993 provided the first evidence that Aβ may be generated 

intracellularly under certain conditions. In particular, they demonstrated that cells 

harbouring WT APP and APPSwe process APP differently: cells expressing 

APPSwe display Aβ formation, whereas WT APP do not (Wertkin et al., 1993). 

Importantly, Aβ may be produced intracellularly in the endosome compartments 

following the internalization of APP by endocitosis (Koo and Squazzo, 1994). In 

fact, it has been demonstrated that reducing APP internalization by site-directed 

mutagenesis correlates with a reduction of Aβ1-42 levels (Perez et al., 1999). In 

addition, strong evidence suggests that Aβ is generated along the secretory 

pathway (Busciglio et al., 1993). Moreover, it has been shown that retention of 
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APP in the ER blocks the production of Aβ1-40 but not of Aβ1-42, thus suggesting 

that Aβ1-42 can be also produced in the ER (Wild-Bode et al., 1997).  

As said previously, the generation of intracellular pools of Aβ can result from a 

re-uptake of previously secreted Aβ. Aβ can be internalized into the cell by 

binding to several biomolecules, including various receptors and transporters, 

such as to the α7 nicotinic acetylcholine receptor (Nagele et al., 2002), low 

density lipoprotein receptor and NMDA receptor (Snyder et al., 2005). In fact, 

blocking this internalization mechanism prevents the pathogenecity, as confirmed 

by the protective effect of memantine against Aβ-mediated cognitive decline 

(Reisberg et al., 2003; Minkeviciene et al., 2004).  

 

1.4.1.2 Pathogenic role of intracellular Aβ 

It is widely accepted that the oligomeric species of Aβ, from dimer and trimers to 

dodecamers, are more pathological than protofibrils and fibrils. The intracellular 

oligomerization of Aβ is a crucial event and, importantly, it initiates before than 

the oligomerization in the extracellular space (Walsh et al., 2000). A number of 

data suggest that increased levels of Aβ within the neurites and synapses lead to 

their dysfunction and subsequent destruction. The remnant amorphous neurites 

are shaped as plaques by activated microglia (Meyer-Luehmann et al., 2008), a 

crucial player in Aβ plaques formation and other AD processes. The 

accumulation and the oligomerization of Aβ1-42 peptides in neurons are 

associated with subcellular pathology, such as reduction or loss of microtubule-

associated proteins (MAPs) (Takahashi et al., 2002; Capetillo-Zarate et al., 2011). 

In particular, Takahashi et al. in 2013 provided evidence that localized 

accumulation of Aβ1-42 peptides is associated with early alterations of MAP2, an 

important MAP in dendrites, thus confirming the significant role of intracellular Aβ 



29 

 

in synaptic loss (Takahashi et al., 2013). Moreover, their anatomical studies on 

Tg2576 mouse brain revealed that the increase in Aβ1-42 peptides levels was 

concomitant with the reduction of MAP2 in the stratum lacunosum moleculare, 

the region containing distal dendrites from the CA1 pyramidal cells and their 

synaptic compartments (Takahashi et al., 2013). This result was consistent with 

several evidence demonstrating the reduction of dendritic architecture in APP 

mutant transgenic mice.  

 

1.4.2 Dysregulation of ionic homeostasis   

 According to the amyloid cascade hypothesis, altered ionic homeostasis is one 

of the metabolic consequences of progressive Aβ accumulation and aggregation, 

contributing to neuronal dysfunction and death. 

Although the study of ionic homeostasis in AD is somewhat recent and more 

limited in the field of calcium homeostasis, also potassium and sodium channels 

are interesting objects of study given their implication in memory and learning 

processes and neuron excitability, respectively.  

Very recently, it has been speculated that an imbalance of Na+ and K+, that are 

critical for nerve signal transduction, electrophysiological activity, membrane 

transport and other processes, occurs in AD brains after Aβ accumulation 

(Vitvitsky et al., 2012).  

 

1.4.2.1 Potassium dysregulation in AD  

 The first to study potassium channels dysfunction in AD has been Renè 

Etcheberrigaray in 1993. Starting from the assumption that K+ has a central role 

in memory acquisition in both molluscs and mammals (Alkon, 1984; Alkon, 1989; 

Collin et al., 1988; Etcheberrigaray et al., 1992; Sanchez-Andres and Alkon, 
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1991), he investigated K+ channel dysfunction as a possible downstream event of 

Aβ metabolism disruption contributing to memory impairment. In particular, he 

found that a 113-pS tetraethylammonium (TEA)-sensitive K+ channel was 

dysregulated in AD patients fibroblasts compared to non-AD fibroblasts, together 

with altered intracellular Ca2+ release (Etcheberrigaray, 1993). Moreover, he 

revealed that soluble Aβ was responsible for K+ channel dysfunction, thus 

suggesting that Aβ could affect memory mechanisms in early phases of AD, 

before plaque formation and cell death. Subsequently, accumulating evidence 

supported the systemic K+-dysregulation hypothesis for AD postulated by 

Etcheberrigaray and Bhagavan in 1999 (Etcheberrigaray and Bhagavan, 1999). 

More recently, a crucial role for intracellular K+ in the regulation of cell cycle 

progression and apoptosis has been observed in several neurodegenerative 

disease, including AD (Yu, 2003). Furthermore, treatment with Aβ peptide has 

been found to enhance voltage-gated potassium channel (KV) activity in rat 

cerebellar granule cells (Ramsden et al., 2001), as well as in rat cortical 

astrocytes (Jalonen et al., 1997) and microglial cells (Chung et al., 2001). 

Interestigly, in most of these neurotoxicity models, the inhibition of elevated K+ 

efflux exerted a neuroprotective effect by preventing cell death (Pike et al., 1996; 

Colom et al., 1998; Yu, 2003). Interestingly, Pannaccione et al. in 2005 

demonstrated that Aβ peptides cause a dose-dependent and time-dependent 

enhancement of KV currents, in nerve growth factor (NGF)-differentiated rat 

phaeochromocytoma (PC-12) cells and in hippocampal neurons. In particular, 

this up-regulation of both inactivating and non-inactivating component of KV 

currents is triggered by reactive oxygen species (ROS) production caused by the 

Aβ-induced Ca2+ increase. In fact, Ca2+-dependent ROS production activates NF-

kB transcription factors so leading to enhanced expression of KV channels in the 
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neuronal membrane. More specifically, it has been shown that the KV3.4 channel 

subunit, a component of KV3 family underlying the fast-inactivating K+ currents 

(IA), and its accessory subunit MIRP2 are involved in Aβ-induced IA modulation 

(Pannaccione et al., 2007). In fact, both NGF-differentiated PC12 cells and 

hippocampal neurons treated with Aβ1-42 peptide display a selective up-regulation 

of KV3.4 channel subunits and an altered subcellular distribution of this protein.  

In addition, the involvement of  KV3.4 in AD pathogenesis (Angulo et al., 2004; 

Boda et al., 2012; Pannaccione et al., 2005, 2007) is further supported by data 

provided by Diochot et al. in 1998, as well as by results from our laboratory, that 

BDS-I, a KV3.4 blocker, exerts a potent neuroprotective action in hippocampal 

neurons and NGF-differentiated PC12 cells exposed to Aβ1-42 peptide.  

Furthermore, Boscia et al. recently demonstrated that the expression and activity 

of KV3.4 are intensely up-regulated in primary astrocytes exposed to Aβ 

oligomers and in Tg2576 primary astrocytes, thus suggesting the involvement of 

KV3.4 channel dysregulation in astrocyte dysfunction occurring in AD (Boscia et 

al., 2017). 

 

1.4.2.2 Sodium dysregulation in AD  

 Interestingly, several evidence suggest a dysregulation of intracellular sodium 

concentrations in AD brain. In particular, [Na+] was found 26% higher in brain 

tissue from patients with severe AD than controls, thus suggesting that disruption 

of Na+ homeostasis may be a late-stage event, with a significant positive 

correlation with Braak stage (Graham et al., 2015). Nevertheless, the increase of 

intracellular sodium concentrations ([Na+]i) seems not simply to be a 

consequence of late-stage neurodegeneration. Aberrant increases in network 

excitability and compensatory inhibitory mechanisms in the hippocampus, due to 



32 

 

an Aβ1-42-induced NaV up-regulation, may contribute to cognitive deficits in AD 

and, more importantly, they may explain the high incidence of epileptic seizures 

in patients with EOAD who overexpress human APP (Palop and Mucke, 2010).  

In addition, it has been well documented that AD is associated with depressed 

ATPase activity in the brain (Hattori et al., 1998) and increased Na+ dependent 

Ca2+ uptake has been reported in AD brain tissue (Colvin et al., 1991). Indeed, 

membrane lipid peroxidation due to the generation of ROS during  Aβ formation, 

impairs the function of membrane proteins involved in ion transport, such as the 

Na+/Ca2+-ATPase and Ca2+-ATPase, and glutamate and glucose transporters 

(Mark et al., 1995; 1997). In addition, the impairment of glucose energy 

metabolism caused by mitochondrial dysfunction and reduced glucose uptake, 

deprives the pumps from ATP, thus affecting their functioning (Mark et al., 1997). 

The impairment of ion-motive ATPases, observed in both primary cultures and 

synaptosomes from adult post-mortem hippocampus (Mark et al. 1995), results in 

membrane depolarization and in the opening of N-methyl D-aspartate (NMDA) 

receptor-channels and voltage-gated Ca2+ channels. Collectively, these 

processes may alter Na+ and Ca2+ homeostasis.  

 

1.4.2.3 Calcium dysregulation in AD: the “calcium hypothesis”  

 Khachaturian first proposed the “calcium hypothesis” of AD in which he 

postulated that calcium dysregulation had a central role in the pathophysiology of 

AD (Khachaturian et al., 1989). Although this hypothesis was initially proposed 

without any supporting experimental evidence, such evidence has since emerged 

(Mattson et al., 2000), including the fact that every gene that is known to be a 

predisposing factor for AD also modulates some aspects of calcium signalling.  
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According to this hypothesis, calcium dyshomeostasis is an early event that can 

influence Aβ accumulation and hyperphosphorylation of tau. Results obtained 

from both human subjects and experimental models support this aspect, showing 

that alterations in calcium signalling occur during the early phases of AD, even 

before the development of overt symptoms (Etcheberrigaray et al., 1998). 

Moreover, animal models of AD revealed how the calcium hypothesis can explain 

both the early cognitive decline and later cell death. The concept is that the 

activation of amyloidogenic pathway leads to a remodelling of the neuronal Ca2+ 

signalling, in particular to an up-regulation of Ca2+ signalling, despite a down-

regulation is also described.  

Intracellular Ca2+ concentrations ([Ca2+]i) are normally maintained at nanomolar 

levels. Nonetheless, they can be specifically increased to micromolar level within 

distinct microdomains (Yuste et al., 2000). Calcium entry in the cytosol is 

predominantly mediated by ligand-gated channels, such as the NMDA receptors, 

or voltage-gated calcium channels (VGCC) located on the plasma membrane. 

Calcium release from intracellular ER stores occurs via inositole triphosphate 

receptors (IP3R) and ryanodine receptors (RyR), located on ER membrane. The 

activation of both IP3R and RyR by inositole triphosphate (IP3) and cytosolic 

calcium, respectively, is enhanced by the mechanism known as calcium-induced 

calcium release (Verkhratsky, 2002).  

The first mechanism by which Aβ can disrupt calcium homeostasis is the 

formation of cation-selective ion channel (Kagan et al., 2002). In particular, it has 

been demonstrated that nanomolar levels of Aβ1-42 form calcium-permeable 

pores (Bhatia et al., 2000) able to mediate simple calcium signals at low 

concentrations and calcium waves at higher concentrations of Aβ1-42.  
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Furthermore, Aβ oligomers are able to increase non-selectively Ca2+ permeability 

of cellular membranes, thus increasing Ca2+ influx from the extracellular space 

but also Ca2+ leakage from intracellular Ca2+ stores (Demuro et al., 2005). 

Moreover, Aβ can increase NMDA receptor-dependent Ca2+ influx (De Felice et 

al., 2007) and promote Ca2+ entry through voltage-gated Ca2+ channels.  

Another mechanism by which Aβ affects calcium signalling is the generation of 

oxidative damage. In fact, aggregated Aβ induces the formation of ROS that can 

lead to membrane-lipid peroxidation (Hensley et al., 1994). This process in turn 

can affect the function of membrane ATP-ases and other transporters, so leading 

to an increase of basal intracellular calcium levels (Mattson et al., 1992; Mark et 

al., 1995). Indeed, the Aβ-mediated impairment of ion ATPases has been 

observed in both neuronal primary cultures and synaptosomes from adult post-

mortem hippocampus (Mark et al., 1995).  

However, Aβ peptide is not the only link between APP metabolism and calcium 

dynamics. Indeed, also other metabolic derivatives of APP influence calcium 

homeostasis and vice versa calcium modulates APP processing, in particular Aβ 

production. In fact, every important derivative of APP, including Aβ, the β-CTFs, 

and the secreted ectodomain, has been demonstrated to affect calcium signalling 

in a different way (LaFerla, 2002). Secreted APP molecules normalize cytosolic 

calcium levels, particularly by attenuating the elevated intracellular calcium levels 

evoked by Aβ, thus sharing a neuroprotective role (Goodman and Mattson, 1994). 

Unlike APPs, Aβ-containing fragments increase [Ca2+]i, as said previously, thus 

triggering several neurotoxic processes culminating with cell death (Mattson, 

1994). In fact, altered calcium dynamics have a number of consequences: 

dysregulated activation of cellular enzymatic systems (such as proteases, 

phospholipases, kinases and phosphatases), including calpain system (Nixon et 
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al., 1994; Bano et al., 2005; Atherton et al., 2009) cytoskeleton modifications; 

generation of free radicals (Mattson, 1995); triggering of apoptotic machinery 

(Mattson, 1994).  

However, unlike for presenilin mutations, few studies have focused on the 

consequences of FAD-causing mutations in APP gene for calcium signalling. 

Indeed, it is deeply investigated the role of mutated presenilins, since they may 

affect calcium signalling by interacting with three different key components of 

Ca2+ signalling: the IP3R (Stutzmann, 2005; Cheung et al., 2008), RyR 

(Stutzmann et al., 2006; Hayrapetyan et al., 2008), and the sarco/endoplasmic 

reticulum Ca2+ pumps (SERCA) (Green et al., 2008). In fact, potentiation of IP3R-

mediated Ca2+ signals by presenilin mutations has been demonstrated in several 

experimental systems.  

 

 

1.5 Neuronal hyperexcitability and epilepsy in AD  

 As the main cause of dementia (Reitz et al., 2011), AD is still intensely 

investigated, also as regards its complex relationship with seizures and epilepsy. 

Indeed, since dementia is a major cause of seizures in elderly population and, 

conversely, seizures have a deleterious impact on cognitive performances in 

demented patients, it has become crucial to establish a correct diagnosis of 

epileptic activity in AD patients and, consequently, to treat them with suitable 

antiepileptic drugs. In fact, it is established that AD patients have a greater risk of 

having seizures than non-AD patients of similar age. Myoclonus, that is generally 

considered a consequence of cortical hyperexcitability, is also common in AD 

patients, with a prevalence of 7-10%. Moreover, seizures and myoclonus show to 

have a greater incidence in younger AD patients (Vossel et al., 2013; Sherzai et 
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al., 2014) and, more interestingly, to be associated with reduced survival 

(Samson et al., 1996).  

Although initial studies focused on seizures in patients with advanced AD, 

transgenic mouse models of AD showed that seizures and epileptiform activity 

can occur early in the disease (Sanchez et al., 2012), before Aβ plaques 

deposition. This finding induced the researchers to pay closer attention to 

seizures occurring in the early stages of dementia (Vossel et al., 2013; Sanchez 

et al., 2016). Animal model of AD overexpressing human APP and/or PS1 or 

expressing genetic mutations linked to FAD can exhibit a variety of seizures 

types (Palop and Mucke, 2010; Minkeviciene et al., 2009; Vogt et al., 2011). 

Evidence from these animal models show that the mechanisms that lead to 

epileptogenesis in AD are distinct from those derived from epilepsy models. In 

fact, the trigger for many of these mechanisms seem to be the oligomeric species 

of Aβ, even if the relative implication of Aβ, APP and other APP derivatives to 

network hyperexcitability is not fully clear (Minkeviciene et al., 2009; Vogt et al., 

2011).  Palop et al. in 2007 showed that Aβ accumulation in the brain could 

cause epileptiform activity, thus correlating epileptic seizures with an excitatory 

effect of Aβ on brain networks rather than with a neurodegenerative mechanism 

(Palop et al., 2007). In fact, AD mouse models with epileptic seizures exhibit little 

neuronal loss, further suggesting that seizures are not related to end-stage 

degeneration (Chin, 2011). Furthermore, Palop and Mucke in 2009 suggested 

that Aβ-induced aberrant networks are associated with sprouting of inhibitory 

neurons in the dentate gyrus of the hippocampus (Palop and Mucke, 2010). In 

addition, exposure to soluble Aβ peptides in hippocampal CA1 cells in mice has 

been demonstrated to alter intrinsic excitability towards hyperexcitability patterns 

(Tamagnini et al., 2015). Moreover, in vitro experiments with mouse models 
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showed that the increase of L-type calcium channel currents depends on APP 

expression but not on Aβ production, suggesting a prominent role of APP in 

neuronal network imbalance (Santos et al., 2009).  

 

1.5.1 Role of NaV currents in hyperexcitability  

 As said previously, neuronal network dysfunction may play a critical role in AD 

pathogenesis, since it has been demonstrated to be altered in transgenic mice 

overexpressing human APP. In particular, it has been shown that alterations in 

neuronal network activity contributing to cognitive impairment associated with AD, 

may result from an Aβ-induced aberrant increase in neuronal activity and 

resulting compensatory responses. In fact, mouse models of AD that have 

elevated levels of Aβ exhibit altered neuronal activity, spontaneous seizures and 

epileptiform discharges (Palop et al., 2006; 2007), which further contribute to 

cognitive deficits. Accumulating evidence suggests that soluble Aβ, rather than 

Aβ plaques, correlates with neuronal hyperactivation. In fact, it has been found 

that extracellular application of Aβ1-42 induces hyperactivity on hippocampal CA1 

neurons in WT mice (Busche et al., 2012). Furthermore, Busche et al. in 2015 

demonstrated that Aβ1-42-induced hyperexcitation was due to an increase in the 

amplitude of persistent sodium current (INaP), a slow inactivating component of 

Tetrodotoxin (TTX)-sensitive sodium current, important for regulating neuronal 

excitability (Busche et al. 2015; Crill et al., 1996; Driscoll et al., 2013).  In fact, 

INaP depolarizes membrane potential toward the threshold for action potential 

initiation, thus regulating several neuronal functions, generating subthreshold 

oscillatory activity, amplifying synaptic potentials, and facilitating repetitive firing 

patterns (Yue et al., 2005). For these reasons, INaP represents a crucial player 

involved in both acquired and genetically determined epilepsy (Stafstrom, 2007).  
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CHAPTER 2: Na+/Ca2+ EXCHANGER 

 

2.1 The Na+/Ca2+ exchanger: a brief background  

 The regulation of intracellular concentrations of Na+ and Ca2+ ions is a crucial 

physiological phenomenon that maintains cellular homeostasis in excitable cells. 

In fact, Ca2+ represents a second messenger in cytosolic and nuclear signaling 

(Choi, 1988), whereas Na+ plays a key role in regulating cellular osmolarity, in 

inducing action potential (Lipton, 1999), and in transduction signaling (Yu et al., 

1997).  

The Na+/Ca2+ exchanger (NCX) (Fig. 4), together with selective ion channels and 

ATP-dependent pumps, contributes to the regulation of Na+ and Ca2+ 

physiological concentrations. (Blaustein and Lederer, 1999). In particular, the 

NCX catalyzes the countertransport of Na+ for Ca2+ ions across the plasma 

membrane in a bidirectional way (Blaustein and Lederer, 1999; Philipson and 

Nicoll, 2000). In vertebrate species, NCX is present in most tissues, where its 

abundance depends on the importance of Na+/Ca2+ exchange in that cell type. In 

particular, its expression is high in excitable tissues (heart, brain) and in those 

involved in osmoregulation (kidney), but is low in other tissues (Quednau et al., 

1997; Kofuji et al., 1992). 

Na+/Ca2+ exchange is electrogenic, thus the net direction in which the NCX 

transports Ca2+ is dependent on the membrane potential (Em) in addition to 

intracellular and extracellular concentrations of Na+ and Ca2+. The stoichiometry 

of this exchange is generally accepted to be 3Na+ ions/1Ca2+ (Philipson and 

Nicoll, 2000; Blaustein and Lederer, 1999); however a stoichiometry of 4:1 may 
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be also possible (Lytton and Dong, 2002; Fujioka et al., 2000; Kang and 

Hilgemann, 2004).  

In excitable cells, after an increase of [Ca2+]i, the NCX provides the return of 

[Ca2+]i at resting levels (Carafoli, 1985), by coupling Ca2+ extrusion to Na+ influx 

into the cells, following their electrochemical gradient. This mode of operation is 

defined as the forward mode (Blaustein and Santiago, 1977). By contrast, when 

an increase in intracellular sodium concentrations ([Na+]i) or membrane 

depolarization occurs, the NCX mediates Na+ extrusion and Ca2+ influx, following 

the reduced Na+ electrochemical gradient across the plasma membrane, thus 

operating in the so-called reverse mode (Baker and McNaughton, 1976; DiPolo, 

1979).  

 

 

Fig. 4 

 

Emery et al., Front in plant science (2012) 
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2.2 Molecular biology of NCX 

 The NCX is a member of the superfamily of membrane proteins comprising: 1) 

the NCX family (Reeves and Hale, 1984; Fujioka et al., 2000; Kang and 

Hilgemann, 2004); 2) the K+-dependent Na+/Ca2+ exchanger family (Schnetkamp 

et al., 1989; Lytton et al., 2002); 3) the bacterial family which probably promotes 

H+/Ca2+ exchange (Cunningham and Fink, 1996); 4) the nonbacterial H+/Ca2+ 

exchange family, which is also the Ca2+ exchanger of yeast vacuoles (Pozos et 

al., 1996); and 5) a group previsionally named cation/Ca2+ exchanger, an 

electrogenic exchanger of protons with Mg2+ and Zn2+ ions (Shaul et al., 1999).   

 

2.2.1 NCX Topology  

 The most current NCX topology refers to the data provided by Nicoll et al. 

1990 and Iwamoto et al. in 1999.  

The NCX protein varies in size anywhere from 880 to 970 residues, depending 

on the isoform, with a molecular weight of ~108 kDa. Initial purification of native 

NCX from cardiac sarcolemma and subsequent SDS-PolyAcrylamide Gel 

Electrophoresis (SDS-PAGE) allowed identifying proteins of 70, 120, and 160 

kDa; the smallest of them is thought to be a proteolytic fragment (Philipson et al., 

1988; Bano et al., 2005; Pannaccione et al., 2012). NCX undergoes several post-

translational modifications, which may explain the difference between the 

expected and the actual molecular weight of the protein.  

Initial analyses of NCX structure identified a mature protein with 12 trans 

membrane domains (TMS) (Nicoll et al., 1990), whereas later studies indicated 9 

putative TMS organized in N and C- terminal hydrophobic domains of 5 and 4 

TMS, respectively (Iwamoto et al., 1999; Nicoll et al., 1999; Doering et al., 1998). 
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However, to better understand structure/function correlation, Ren and Philipson 

in 2013 re-examinated the membrane topology of NCX1. According to their 

results, NCX1 is modelled to have 10 TMS (Fig.5) (Ren and Philipson, 2013).  

Within the hydrophobic domains are the α-1 and α-2 repeats, which are crucial 

for ion translocation across the plasma membrane (Nicoll et al., 1996). These two 

repeats are located on opposite sides of the membrane with α-1 spanning the 

TMS2 and 3 and α-2 spanning the TMS 8 and 9. The large idrophilic intracellular 

loop, named the f loop, contains sites important for NCX activity regulation 

elicited by several cytoplasmic messengers, including Na+ and Ca2+ ions, and for 

alternative splicing. Some groups have provided evidence about an exchange 

activity in truncated NCX lacking the C-terminal portion of the protein (Gabellini et 

al., 1996; Li and Lytton, 1999; Van Eylen et al., 2001). In fact, these researchers 

showed that dimerization of the N-terminus TMS region can form a functional 

exchanger. However, other investigator, such as Ottolia et al. in 2001 and Kasir 

et al. in 1999 refuted this possibility.  
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Fig. 5 

 

Ren and Philipson, J Mol Cell Cardiol (2013) 

 

 

2.2.2 NCX genes and splice variants 

 The NCX family, also named Solute carrier family 8A (SLC8A), includes three 

separate gene products, NCX1 (Nicoll et al., 1990), NCX2 (Li et al., 1994), and 

NCX3 (Nicoll et al., 1996). Apparently, two sequential gene replication events 

generate the three NCX genes, even if the evolutionary timeframe of these 

replications has not been identified.  

The three NCX isoforms display differential expression patterns in mammalian 

tissues. NCX1 is the most well characterized, since it has been found in virtually 

all tissues, including heart, brain, skeletal muscle, smooth muscle, kidney, spleen, 

liver, intestine and pancreas (Quednau et al., 1997). The location of all three 

NCX genes on human chromosomes has been determined: NCX1, NCX2 and 

NCX3 have 2p23-p22, 19q13.3, 14q24.1 as gene loci, respectively. The protein 

products of all three genes display ~70% identity, which become greater than 

80% in the TMS (Nicoll et al., 1996). 

NCX1 gene has a differential expression, which is directed by three 5’ 

untranslated exons under the control of tissue specific promoters (Barnes et al., 
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1997; Lee et al., 1994; Nicholas et al., 1998). Less is known about the regulation 

of NCX2 and NCX3 gene expression, which are found exclusively in brain and 

skeletal muscle (Quednau et al., 1997; Nicoll et al., 1996; Lee et al., 1994). In 

addition, tissue specific expression of NCX is further diversified through 

alternative splicing (Quednau et al., 1997; Lee et al., 1994; Kofuji et al., 1994). 

NCX splice variants originate from different combinations of exons 3-8, also 

known as exons A-F, which encode a region of C-terminal portion of f loop 

commonly known as alternative splice region. Exons A and B are mutually 

exclusive and, to give rise to tissue specific splice variants, they are used in 

combination with exons C-F (Kofuji et al., 1994). In general, excitable tissues 

express exon A, whereas splicing variants with exon B are predominant in other 

tissues (Quednau et al., 1997). In addition, all NCX1 splice variants contain the 6-

mer, exon D, which seems to have no functional role.  

Alternative splicing in NCX2 and NCX3 is less extensive. NCX2 expresses only 

exons A and C since no alternative splicing has been identified to date (Quednau 

et al., 1997). In contrast, four splice variants of NCX3 have been detected in 

brain and skeletal muscle (Quednau et al., 1997; Gabellini et al., 2002).  

The physiological significance of NCX alternative splicing is not clear, despite 

potential roles of the region in Protein Kinase A (PKA) sensitivity and Ca2+ and 

Na+-dependent activity regulation have been proposed (Ruknudin et al., 2000; 

Schulze et al., 2002; Dyck et al., 1999; Maack et al., 2005). What is very 

interesting is that there are more functional differences among splice variants of 

the same NCX gene than between NCX genes. Therefore, it has been 

hypothesized that the structural complexity of NCX genes allows them to respond 

independently to specific ionic environments and exchange requests in a tissue 

specific or cell specific manner (Lee et al., 1994). 
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2.3 NCX regulation 

 NCX function is dynamically regulated by several factors including the 

intracellular pH (Philipson et al., 1982), ATP (Hilgemann, 1990; DiPolo and 

Beauge, 1998), Phosphatidylinositol 4,5-bisphosphate (PIP2) (Hilgemann and 

Ball, 1996; He et al., 2000), proteinase treatment (Philipson and Nishimoto, 1984), 

phospholipases (Philipson and Nishimoto, 1984) and eXchanger Inhibitory 

peptide (XIP) (Li et al., 1991).  In addition, Na+ and Ca2+ have their own 

autoregolatory effects on NCX currents. This regulation arises from the f loop, 

since its deletion abolishes allosteric regulation of NCX activity by intracellular 

Na+ and Ca2+ (Matsuoka et al., 1993).  

 

2.3.1 Ca2+ Regulation  

 Early studies showed stimulation of NCX currents by intracellular Ca2+ (DiPolo, 

1979; Reeves and Poronnik, 1987; Miura and Kimura, 1989), suggesting the 

regulatory role of this ion in exchange activity. In fact, submicromolar 

concentrations (0,1-0,3 µM) of intracellular Ca2+ are needed to activate NCX 

(Hilgemann et al., 1992). This regulatory function of low micromolar Ca2+ is 

especially evident when NCX is working in the reverse mode, whereas it is not 

fully clear how it can regulate NCX when it operates in the forward mode 

(Matsuoka et al., 1995).  

Levitsky et al. in 1994 identified in the centre of f loop a high affinity Ca2+ binding 

region of 130 residues, which display high identity among NCX isoforms (Levitsky 

et al., 1994). Mutations in this region do not affect ion translocation but do alter 

Ca2+ binding and regulatory properties (Matsuoka et al., 1995).  

 

https://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
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2.3.2 Na+ Regulation  

 In addition to intracellular Ca2+, an increase in [Na+]I  can also regulate the 

NCX (Hilgemann, 1990). In particular, when intracellular Na+ increases, it binds 

to the transport site of NCX molecule at the intracellular surface, and after an 

initial fast outward current, it induces a state of inactivation (Hilgemann et al., 

1992). The physiological significance of this phenomenon, named Na+-

dependent inactivation, is unclear since it predominates only at [Na+]I  (i.e. >30 

mM) that are unlikely to be reached during normal conditions (Bers, 2002). The 

region responsible for Na+-dependent inactivation has been identified as a 20-

amino acid site of the N-terminal portion of f loop, usually named XIP site 

(Matsuoka et al., 1997) because it shares the same sequence of a small peptide, 

XIP, which is able to inhibit NCX (Li et al., 1991) probably binding this site (Hale 

et al., 1997). The inhibitory action of the peptide is non-competitive with Na+ and 

Ca2+ binding. In addition, mutational analysis of the XIP region confirmed that this 

site does not affect ion translocation per se, but rather modulates Na+-dependent 

inactivation (Matsuoka et al., 1993; He et al., 1997). However, the XIP site shows 

relatively low evolutionary conservation compared to other regions of NCX 

molecule, which could involve potentially be due to a Na+-dependent inactivation 

involving a different binding site. Interestingly, Ca2+, at low micromolar 

concentrations, binding its regulatory site, can decrease the extent of this Na+-

dependent inactivation. In fact, mutations in the Ca2+ regulatory site alter the 

activation and inactivation kinetics of NCX currents by modulating Na+-dependent 

inactivation (Matsuoka et al., 1995).  
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2.4 Pharmacological modulation of NCX  

 After the discovery of NCX activity in 1969, several studies have reported that 

some compounds can affect the activity of this antiporter (Kaczorowsky et al., 

1989). In fact, in the last 35 years, many inorganic and organic compounds have 

been found to be able to activate or block NCX activity.   

 

2.4.1 Inhibitors 

2.4.1.1 Bivalent cations 

 Among the NCX inhibitors, many inorganic cations have been reported to 

block NCX (Iwamoto and Shigekawa, 1998). In particular, the inhibitory effect of 

divalent cations can be due either to a direct action on NCX molecule or to the 

replacement of  Ca2+ ions as a substrate for the exchanger. Cd2+, Mn2+ and Ni2+, 

for instance, may function as substrates for the antiporter (Iwamoto and 

Shigekawa, 1998). Notably, Ni2+ is the element most commonly used for blocking 

NCX activity during electrophysiological recordings (Fujioka et al., 1998; Main et 

al., 1997). However, the use of Ni2+ as NCX inhibitor is limited because it has an 

inhibitory effect at concentrations in order of 2 to 5 mM, a range in which it is able 

to inhibit also other membrane currents (Iwamoto and Shigekawa, 1998). 

Furthermore, the half maximal inhibitory concentration (IC50) value of Ni2+ for 

NCX inhibition is enhanced 2- to 3-fold by membrane depolarization, thus 

suggesting that its affinity for the inhibitory site is affected by membrane potential 

(Iwamoto and Shigekawa, 1998). In addition, Ni2+ affinity for NCX differs among 

the three isoforms; in fact, NCX3 is 10-fold less sensitive to Ni2+ inhibition than 

NCX1 and NCX2 (Iwamoto and Shigekawa, 1998).  
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2.4.1.2 Endogenous Exchange Inhibitory peptides 

 As mentioned above, the first 20 amino acids of the f loop, named XIP, 

represents an autoinhibitory region involved in the Na+-dependent inactivation of 

NCX (Nicoll et al., 1990, Matsuoka et al., 1997). Several studies have shown that 

a synthetic peptide having the same amino acid sequence as the XIP region 

exerts an inhibitory effect on NCX activity (Li et al., 1991; DiPolo and Beaugè, 

1994), so the researchers made a great effort to synthesize and to characterize 

the molecular pharmacology of different XIP analogs. XIP, an amphipathic 

molecule, potently inhibits both modes of operation of NCX activity in a 

noncompetitive manner with an inhibitory constant (Ki) of 0,1 to 1,0 µM (Li et al., 

1991). NCX1, NCX2 and NCX3 have homologous XIP regions. The three 

corresponding inhibitory peptides, XIP1, XIP2, and XIP3 have some residue 

variations, despite having well conserved sequences. Concerning the mechanism 

by which XIP inhibits NCX activity, some authors have suggested that XIP is able 

to induce a conformational change in the C-terminal portion of f loop, by 

occupying its binding site, thus inhibiting the ion transport (Li et al., 1991).  

Since XIP hardly penetrates the cell membrane because of its prevalent 

hidrophilia, a XIP bearing a molecule of glucose attached to the Tyr-6 residue 

has recently been synthesized. In fact, the peptide more easily penetrates into 

the cell, since the molecule of glucose is actively transported into the cell through 

glucose transporters (1 and 3), thus carrying the attached peptide (Namane et al., 

1992). Interestingly, Pignataro et al. in 2004 exploited this strategy in in vivo 

experiments. In particular, the administration of this Tyr-6-glycosilated form of 

XIP intracerebroventricularly in male rats bearing permanent middle cerebral 

artery occlusion (pMCAO) caused a dramatic increase in infarct volume 
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(Pignataro et al., 2004), thus suggesting that NCX plays a pivotal role in the 

mechanisms leading to neuronal death under ischemic conditions.  

Interestingly, starting from this evidence, Molinaro et al. in 2015 tested the 

hypothesis that it was possible to increase NCX1 activity by blocking the 

regulatory cytosolic f loop of NCX1 (XIPNCX1), thereby preventing its binding to 

the inhibitory site, that has been hypothesized to correspond to the N-terminal 

portion of the f loop (P1 domain, 562-688aa). In particular, they demonstrated 

that a synthetic P1 peptide is able to up-regulate NCX1 activity, by directly 

binding XIPNCX1 domain, thus counteracting its autoinhibitory action (Molinaro et 

al., 2015).  

 

2.4.1.3 Amiloride derivatives 

 Amiloride and its analogues were synthesized as K+-sparing diuretics capable 

to inhibiting kidney epithelia Na+ channels (Cragoe et al., 1967). Subsequently, 

these compounds have been found to have an inhibitory effect on other ion 

transport processes such as NCX, Na+/H+ exchanger, and voltage-gated Ca2+ 

channels (Murata et al., 1995). Despite amiloride has been used for some time 

as an NCX blocker to assess NCX activity (Sharikabad et al., 1997), its 

employment has two major limits. Firstly, its inhibitory activity requires millimolar 

concentrations; secondly, it lacks specificity. For these reasons two classes of 

amiloride analogues were developed. First class derivatives, such as 5-[N-

methyl-N-(guanidinocarbonylmethyl)] amiloride, bear substituent on the 5-amino 

nitrogen atom of the pyrazine ring (Taglialatela et al., 1988). They are not able to 

inhibit Na+ channels and NCX, but they display great effectiveness in inhibiting 

the Na+/H+ exchange in a range of 1 to 10 µM (Taglialatela et al., 1988, 1990; 

Amoroso et al., 1990). On the contrary, second class compounds, bearing 
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substituents on the terminal guanidino nitrogen, behave as specific inhibitors (Ki 

= 1–10 µM) of the epithelial Na+ channels and NCX, having no inhibitory effect on 

the Na+/H+ exchanger. Among these compounds, dimethylbenzamylamiloride 

(DMB), 3’,4’-dichlorobenzamyl, and α-phenylbenzamyl have been shown to be 

selective inhibitors of NCX in excitable cells, such as neurons, in which the 

kidney epithelial Na+ channels are not expressed (Taglialatela et al., 1988, 1990). 

By contrast, [N-(4-chlorobenzyl)]2,4-dimethylbenzamyl (CB-DMB) appears to be 

the most specific inhibitor of NCX activity (Ki  = 7.3 M), for it has no inhibitory 

properties against the Na+/H+ antiporter (Ki > 500 µM) and the epithelial Na+ 

channels (Ki > 400 µM) (Sharikabad et al., 1997). Notably, the amiloride 

derivatives are able to inhibit both the forward (Taglialatela et al., 1990) and the 

reverse mode of NCX activity (Amoroso et al., 1997). Furthermore, they share a 

reversible inhibition of NCX activity, and this inhibition is competitive with respect 

to Na+ ion. In fact, it has been hypothesized that these derivatives function as 

Na+ analogues and interact at a Na+ binding site of NCX molecule thereby binding 

the transporter in an inactive complex (Kaczorowski et al., 1985).  

 

2.4.1.4 Isothiourea derivatives 

  A 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate 

derivative, named KB-R7943 was identified by Shigekawa’s group (Iwamoto and 

Shigekawa, 1998) because they screened a compound library for the inhibition of 

Na+-dependent Ca2+ uptake. This compound has the particular feature to inhibit 

NCX with a different potency depending on its mode of operation. In particular it 

has an IC50 value of 1.1 to 2.4 µM when NCX operates in the reverse mode and 

an IC50 value > 30 µM, when NCX operates in the forward mode (Iwamoto et al., 

1996). Furthermore, this compound seems to have a different ability to block the 
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three NCX isoforms. In fact, NCX3 inhibition requires concentrations 3-fold lower 

than those necessary to inhibit NCX1 and NCX2 (Iwamoto and Shigekawa, 1998). 

Regarding the inhibitory mechanism, KB-R7943 interacts with NCX molecule at 

the extracellular side, at the α-2 repeat, between the TMS7 and TMS8 of the 

exchanger (Iwamoto et al., 2001; Shigekawa et al., 2002).  

 

2.4.2 Activators 

 Pharmacological agents able to stimulate NCX activity, either in the reverse or 

in the forward mode of operation, may represent a helpful strategy in some 

pathophysiological conditions, such as cardiac or brain ischemia by re-

establishing intracellular Na+ and Ca2+ homeostasis.  

 

2.4.2.1 Inorganic cations 

 Li+, the lightest of alkaline cations, is able to stimulate Na+-dependent Ca2+ 

uptake of all three NCX isoforms with low affinity, even if its extent of stimulation 

is somewhat smaller in NCX1 than in NCX2 and NCX3  (Iwamoto and Shigekawa, 

1998). In particular, the α-2 repeat seems to be responsible for the Li+-induced 

NCX stimulation in NCX1 and NCX3.  

 

2.4.2.2 Redox agents  

 As mentioned above, changes in the redox state may stimulate NCX activity. 

Therefore, the simultaneous presence of reducing compounds, such as, Fe2+, 

and O2
- superoxide, and of oxidizing agents, such as Fe3+, H2O2, GSSG, and O2, 

is able to stimulate NCX activity (Reeves et al., 1986).  

At first, when the researchers identified the property of redox agents to stimulate 

NCX activity, it was proposed that these agents could activate the exchange 
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activity by promoting thiol-disulfide interchange in the protein carrier (Reeves et 

al., 1986). In particular, it was hypothesized that the stimulation of NCX came 

from the reduction of a disulfide bond and from the formation of a new disulfide 

bond (Reeves et al., 1986). More recently, the cysteine residues involved in this 

disulfide bond have been identified as Cys-14, Cys-20, and Cys-780. They are 

located on the extracellular side, where Cys-780 is connected either to Cys-14 or 

to Cys-20 (Santacruz-Toloza et al., 2000). However, the analysis of mutated 

exchangers indicated that the stimulation of WT exchanger induced by a mixture 

of redox agents (Fe-DTT) is not to be attributed to cysteines but rather is mainly 

due to the removal of the Na+-dependent inactivation process (Santacruz-Toloza 

et al., 2000). Since redox changes in NCX activity have been implicated in many 

aspects of cell physiology and pathophysiology, it is possible to speculate that 

NCX activators might constitute a possible therapeutic strategy in those 

pathological conditions in which oxidative stress is involved. In this regard, 

evidence that the stimulation of NCX activity by the oxidant agent Fe3+ may exert 

a neuroprotective effect has been provided both in in vitro and in vivo models of 

hypoxia and ischemia. Thus, in C6 glioma cells, it has been demonstrated that 

SNP, by stimulating NCX activity through its K3Fe(CN)6 portion-containing iron, is 

able to significantly reduce cellular injury elicited by chemical hypoxia (Amoroso 

et al., 2000). This protective effect is certainly due to NCX activation as a Na+ 

efflux-Ca2+ influx pathway, since it is abolished by NCX inhibitors (Amoroso et al., 

2000).  

 

2.4.2.3 Organic compounds 

It has been reported that the agonists of G-protein-coupled receptors, such as α- 

and β-receptors, histamine, 5HT2c, and endothelin-1 and angiotensin-II receptors, 



53 

 

are able to stimulate NCX activity by a pathway involving either PKA and/or 

protein kinase C (Ballard and Schaffer, 1996; Smith and Armstrong, 1996; Stengl 

et al., 1998; Eriksson et al., 2001a,b; Woo and Morad, 2001). 

Among the peptides capable of stimulating NCX activity, only insulin and 

concanavalin A have been proven to exert such effect. In fact, both peptides 

stimulate Na+-dependent Ca2+ uptake (Gupta et al., 1986; Makino et al., 1988). 

 

 

2.5 Brain distribution of NCX  

 The three NCX isoform appear to be differentially expressed in several regions 

of central nervous system (CNS), suggesting that each NCX subtype play a 

different functional role in distinct CNS region.  

 

2.5.1 Cerebral cortex 

 In the cerebral cortex, the expression of the mRNA encoding for all three NCX 

isoforms has different patterns. In particular, the upper neurons of the motors 

system and the terminal neurons of the sensory system display a differential 

expression of NCX isoforms. In fact, pyramidal neurons of layers III and V of 

motor cortex appear to be most intensively stained with NCX1 specific ribo-probe, 

whereas neurons within the somatosensory cortical area express mainly NCX2 

transcripts. More specifically, the molecular layer of motor cortex, which contains 

the terminal dendritic field of the pyramidal cells, displays a more intense NCX1 

immunoreactivity than that of NCX2, a result consistent with the preferential 

expression of NCX1 transcripts in neurons that have their cell bodies in layers III 

and V of this cortical area. In contrast, NCX2 isoform is preferentially expressed 
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in neurons of layer V and VI of the sensory cortex (Canitano et al., 2002; Papa et 

al., 2003)  

 

2.5.2 Hippocampus 

 Within the hippocampus, ribo-probes for all three NCX isoforms showed an 

intense labeling of most neuronal populations, whereas in immunohistochemistry 

experiments the hippocampal circuitry components exhibited differential 

expression of selective NCX isoforms. NCX1 protein expression is particularly 

intense in the granule cell layer and hilus of dentate gyrus, which represent the 

terminal field of the perforant pathway, the major excitatory input of the 

hippocampus, originating from the entorhinal cortex. In addition, neurons within 

this cortical area display an intense positivity for NCX1 transcripts. Furthermore, 

both NCX1 and NCX3 antibody intensively label the mossy fiber projections to 

the CA3 region, whereas CA1 field show mainly NCX3 protein expression. This 

particular distribution suggests that distinct NCX isoforms may play a crucial role 

in regulating the intracellular Na+ and Ca2+ homeostasis of the major afferent, 

intrinsic and efferent hippocampal projections. These circuits are crucial for 

synaptic plasticity phenomena, such as long-term potentiation (LTP) and long-

term depression (LTD) (Madison et al., 1991).  

 

2.5.3 Cerebellum 

 The cerebellum shows the more intense protein expression of all NCX 

isoforms. In particular, the analysis of the expression of NCX transcripts and 

proteins in the cerebellum reveals their presence in the afferent projections and 

in the intrinsic neurons of this crucial brain region (Canitano et al., 2002; Papa et 

al., 2003). More specifically, NCX1 protein is expressed in the excitatory mossy 
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fibers that originate in the extracerebellar structures and that branch off to the 

granule cell layer, a site where the glomerular structure is formed by the mossy 

fiber terminals, the granule cell dendrites, and the Golgi cell axons (Canitano et 

al., 2002; Papa et al., 2003). This distribution is consistent with functional studies 

performed on cerebellar granule cells, suggesting that [Ca2+]i increase induced 

by glutamate may occur through the NCX operating in the reverse mode 

(Kiedrowski et al., 1994). 

 

 

2.6 NCX functions in healthy brain 

NCX protein plays important functions in different neurophysiological conditions. 

In particular, the level of NCX expression in neurons is particularly high in the 

sites where a large movement of Ca2+ ions occurs across the plasma membrane. 

This is what happens at synaptic level (Juhaszova et al., 1996; Canitano et al., 

2002) where, during an action potential or after a glutamate-activated channel 

activity, Ca2+ ions massively enter the plasma membrane. This phenomenon 

leads to the fusion of synaptic vesicles with the plasma membrane thus 

promoting neurotransmitter exocytosis. After this event, outward K+ currents 

provide plasma membrane repolarization, thus triggering voltage-gated Ca2+ 

channels closure. According to the principle of diffusion, Ca2+ ions are distributed 

in the cytosolic compartments, reversibly interacting with Ca2+ -binding proteins. 

Residual Ca2+ ions are rapidly extruded by the plasma membrane Ca2+ ATPase 

(PMCA) (Tolosa de Talamoni et al., 1995) and by NCX (Sanchez.Armass and 

Blaustein, 1987; Reuter and Porzig, 1995).  

These two pathway have complementary characteristics. In fact, while NCX has 

a relatively low affinity for cytosolic calcium (dissociation constant Kd ~ 0,6-2 mM) 
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and a relatively high transport (‘turnover’) (>> 1000-5000 Hz), the PMCA has a 

higher affinity for calcium (Kd ~ 0,1 mM) but lower turnover (~ 150Hz) (Reeves 

and Hale, 1984; Niggli and Lederer, 1993). For these reasons, NCX is well suited 

for rapid recovery from high levels of [Ca2+]i , while PMCA is of crucial importance 

in the establishment of submicromolar resting [Ca2+]i (Penniston et al., 1997; 

Yamoah et al., 1998).  

In particular, NCX becomes the dominant Ca2+ extrusion mechanism when a 

train of action potentials reaches the nerve terminals and the [Ca2+]i exceeds the 

value of 500 nM. In fact, it has been calculated that for these [Ca2+]i values, more 

than 60% of Ca2+ extrusion is mediated by NCX families. This experimental 

evidence agrees with localization studies showing that NCX and PMCA have a 

differential localization in nerve terminal. In particular, Juhaszova et al. in 2000 

suggested that, while the PMCA may be located near the active zones, at the 

sites of neurotransmitter vesicles release, NCX does not. Moreover, it has been 

suggested that a particularly favourable location for NCX would be in the 

domains of PM that are closely associated with the specialized PM-ER junctions, 

as appears to be in neuronal cell bodies (Juhaszova et al., 1996). Indeed, 

Blaustein in 1993 first proposed that the most important role for NCX may be in 

regulating ER Ca2+ content, more specifically, in mediating Ca2+ sequestration in 

the ER in order to counteract excessive [Ca2+]i increases (Blaustein, 1993). 

Notably, Reuter and Porzig in 1995 provided evidence that NCX contributes to 

reduction of [Ca2+]i after excitation in dendritic boutons of hippocampal neurons. 

In addition, Bouron and Reuter in 1996 hypothesized NCX involvement in Na+-

mediated increase in neurotransmitter release from nerve terminal. In fact, after a 

Na+ load, they observed increased [Ca2+]i and accelerated turnover rate of the 

vesicular pools in presynaptic boutons, and that both the effects were prevented 
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by TTX and enhanced by ouabain (Bouron and Reuter, 1996). These results 

suggested that NCX could be involved in Na+-induced Ca2+ increase by operating 

in the reverse mode.  

 

 

2.7 NCX involvement in CNS diseases 

As a pivotal player in the maintaining Na+ and Ca2+ homeostasis in excitable cells, 

NCX is involved in many pathophysiological conditions and diseases in which an 

imbalance of [Ca2+]i and/or [Na+]I occurs. Since NCX plays a central role in 

muscle cells, particularly in regulating Ca2+ balance during excitation-contraction 

coupling, it is involved in cardio-vascular diseases, including heart failure, 

arrhythmias and hypertension, but also in skeletal muscle diseases. Moreover, 

several lines of studies highlight the involvement of NCX in CNS disorders, such 

as stroke and many neurodegenerative diseases.  

 

2.7.1 Stroke  

Stroke may be a very traumatic event for healthy brain, since it induces a rapid 

cell death in the core of the injured region and triggers several mechanisms in 

surrounding penumbra area, including dysregulation of intracellular ionic 

homeostasis and ROS production (Donnan et al., 2008). In particular, a 

progressive increase in [Na+]i is a critical factor in determining neuronal death 

during cerebral ischemia, because it leads to cell swelling and microtubular 

disorganization, thereby leading to cell necrosis. In addition, also dysregulation of 

Ca2+, K+, and H+ ions may trigger several death pathways, including oxidative 

stress, mitochondrial dysfunction and apoptosis (Annunziato et al., 2007a; 
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2007b). Additionally, a large amount of papers showed that the increase of 

extracellular glutamate concentrations during acute brain injury triggers an influx 

of Ca2+ and Na+ ions into neurons (Olney, 1973), thus leading, according to the 

glutamate excitotoxicity paradigm, to neuronal cell death.  

Several in vitro and in vivo models of hypoxia-anoxia highlighted the involvement 

of NCX in neuronal and glial injury after stroke. In particular, it has been 

demonstrated that, after pMCAO, all three NCX transcripts are down-regulated 

by 90% in the ischemic core, although NCX2 reduction occurs earlier (Boscia et 

al., 2006). By contrast, in other brain regions belonging to the peri-infarct zone, 

NCX1 and NCX3 mRNAs display an up-regulation, whereas NCX2 mRNA is 

decreased (Boscia et al., 2006).  

Moreover, in vitro models of hypoxia showed that NCX3 more significantly 

contributes to the maintainance of [Ca2+]i homeostasis than NCX1 and NCX2. In 

fact, unlike NCX1 and NCX2, NCX3 is capable of preventing Ca2+ overload 

induced by hypoxia plus reoxygenation, thanks to its ability to work in the forward 

mode in presence of reduced ATP levels (Secondo et al., 2007; Condrescu et al., 

1995). 

 

2.7.2 Multiple sclerosis  

Multiple sclerosis (MP) is an inflammatory demyelinating disease of the CNS. MS 

clinical manifestations result from an aberrant immune response induced by both 

environmental factors and predisposing genetic factors. In MS, blood-circulating 

effectors T cells infiltrate into the CNS and attack the myelin-forming cells, or 

oligodendrocytes. This aberrant immune attack leads to demyelination, thus 

compromising the saltatory conduction along the axon, and, ultimately, causing 

neurodegeneration. For these reasons, MS patients exhibit a number of 
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debilitating symptoms, including motor, sensory, and cognitive deficits (Compston 

and Coles, 2008; Milo and Kahana, 2010; Zozulya and Wiendl, 2008). Currently, 

an important therapeutic goal is to promote remyelination by boosting 

endogenous oligodendrocytes precursor cells (OPC), before axons are 

irreversibly damaged.  

It has been recently demonstrated that axonal pathology underlies the 

development of non-remitting deficits in MS (Davie et al., 1995; Ganter et al., 

1999; Bjartmar et al., 2000; Lovas et al., 2000; Wujek et al., 2002), although the 

mechanisms leading to axonal degeneration are not completely known. Imaizumi 

et al. in 1998 provided evidence that sodium channels and NCX are involved in 

axonal degeneration of spinal cord dorsal columns exposed to anoxia (Imaizumi 

et al., 1998). In addition, Craner and colleagues in 2003 provided evidence that 

the number of axons displaying a diffuse expression of NaV channels increases in 

the spinal cord of mice with autoimmnune encephalomyelitis (EAE) and that here 

they are co-localized with NCX, suggesting that this co-incident distribution of 

NaV channels and NCX along demyelinated axons may contribute to the 

development of axonal degeneration in EAE (Craner et al., 2003). Furthermore, it 

has been speculated that increased sodium influx into injured axons induces 

NCX to work in the reverse mode thus leading to the accumulation of intra-axonal 

calcium (Stys et al., 1991, 1992; Stys and Lopachin, 1998).  

The involvement of NCX in pathophysiology of EAE has been confirmed by 

Casamassa et al. in 2016 in myelin oligodendrocyte glycoprotein (MOG)-induced 

EAE, an animal model of MS. In fact , they showed that mice lacking ncx3 gene 

displayed increased susceptibility and more sever symptomatology after MOG-

induced EAE. Moreover, ablation of ncx3 gene in these mice not only induced 

and exacerbated development of EAE, but was also accompanied by a 
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significant reduction in OPCs and premyelinating cells in the spinal cord during 

the chronic stage. This finding is in accordance with several studies indicating 

that NCX3 is a protein component of the myelin membrane (Gopalakrishnan et 

al., 2013) and that NCX-mediated calcium signaling plays an important role 

during oligodendrocyte development (Boscia et al., 2012; 2013). Altogether, 

these obervations suggest that NCX3 play a role in oligodendrocyte response 

after MOG-induced demyelination.  

 

2.7.3 Alzheimer’s disease  

According to the amyloid cascade hypothesis, the neurotoxicity exerted by Aβ 

protein is intimately correlated with a dysregulation of ionic homeostasis. In 

particular, the ‘calcium hypothesis’ of AD proposes that the amyloidogenic 

pathway contributes to the remodeling of Ca2+ signaling responsible for cognitive 

dysfunction. In fact, several studies showed that alterations in Ca2+ signaling, 

often detected as changes in intraneuronal calcium concentrations, occur early in 

the disease and correlate with synaptic degeneration and subsequent cognitive 

deficits (DeKosky et al., 1996). In addition, together with Ca2+ disruption, Aβ is 

also able to induce a dysregulation of sodium homeostasis by triggering an 

aberrant increase of inward currents through NaV channels. Despite the 

mechanisms underling the Aβ-induced Ca2+ alteration are not completely known, 

it is clear that some of these mechanisms involve complex interaction between 

Ca2+ binding proteins, Ca2+ sequestering organelles and Ca2+ transport proteins.  

Since NCX play a fundamental role in buffering intracellular Ca2+ and Na+ 

overload occurring under physiological and pathophysiological conditions 

(Condrescu et al., 1995; Secondo et al., 2007), some researchers decided to 

investigate the involvement of NCX in AD pathogenesis.  
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Colvin et al. in 1991 first assessed NCX activity in cerebral plasma membrane 

vesicles purified from human post mortem AD brains. In particular, they reported 

an increased NCX activity of surviving neurons in brain areas affected by 

neurodegeneration. According to their observations, neuronal cells with 

increased NCX activity were more likely to survive Ca2+ disruption and 

subsequent neurodegenerative processes occurring in AD. Moreover, they 

suggested that the increase in NCX activity could result from the modulation of 

specific NCX isoforms (Colvin et al., 1991). However, they were unable to further 

investigate their hypothesis because of the lack of NCX isotype-specific 

antibodies. Since then, NCX1, NCX2 and NCX3 have been identified and the 

generation of isoform-specific antibodies has allowed later investigators to study 

their specific expression in several AD experimental models. Among these, 

Sokolow et al. in 2011 demonstrated that selective changes in the pattern of 

NCX1-3 protein expression occur in synaptosomes from AD patients. Indeed, 

since several studies of synapses in AD patients and animal models suggest that 

synapses are the primary sites of Ca2+ dysregulation in AD (Mattson and Chan, 

2003; Kuchibhotla et al., 2008), Ca2+ transport systems, such as NCX, become of 

crucial importance at synaptic level where elevated [Ca2+]i lead to cell demise. In 

particular, the results provided by Sokolow et al. demonstrated that a selective 

regulation of NCX1, NCX2 and NCX3 isoforms occurs in AD cortex. More 

specifically, they observed a reduction of NCX3 protein expression in the parietal 

cortex of AD patients and, interestingly, an up-regulation of NCX2 levels, maybe 

as result of a compensatory mechanism to balance the loss of NCX3 expression. 

Additionally, they demonstrated the co-localization of NCX1, NCX2 and NCX3 

with Aβ protein. Recently, important evidence about NCX role IN AD 

pathogenesis has been provided by Pannaccione et al. in 2012, who investigated 
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the mechanisms underlying the effects of Aβ1-42 on NCX activity in NGF-

differentiated PC12 cells and primary hippocampal neurons. In particular, they 

observed a significant up-regulation of NCX activity in the reverse mode of 

operation after Aβ1-42 exposure in both the experimental models. Interestingly, 

NCX3 was the only NCX isoform displaying an increased activity. Moreover, 

according to the authors, this up-regulation of NCX currents was due to the over-

expression of a hyperfunctional proteolytic fragment of NCX3 (pNCX3), 

generated by calpain, a Ca2+-activated proteolytic enzyme. In fact, the selective 

calpain inhibitor calpeptin completely prevented both the generation of pNCX3 

and the up-regulation of NCX currents in the reverse mode. Importantly, the 

increased activity of pNCX3 during the early phases of Aβ1-42 insult resulted in 

Ca2+ accumulation into the ER, a particular mechanism aimed to prevent ER 

stress and caspase-12 activation. Indeed, alterations in ER Ca2+ homeostasis 

play an important role in Aβ1-42 –induced neurodegenerative processes and may 

represent a trigger for apoptotic neuronal death.  

Although further investigation is needed, it can be said that NCX could be a 

relevant player in Aβ1-42 -induced neurodegeneration. In fact, albeit few, these 

observations highlight the crucial role of NCX in responding to the abnormal Ca2+ 

signaling occurring in AD.  
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Aims of the study 

Starting on these promises, the present study has been aimed to investigate the 

involvement of NCX in a mouse model of AD, the Tg2576 mice. In fact, this 

animal model is characterized by a progressive accumulation of Aβ thus allowing 

to deeply study the effects of amyloid protein aggregation and deposition in both 

early and late stages of AD pathology. In particular, we wanted to study the 

mechanisms underlying the Aβ-induced dysregulation of neuronal ionic 

homeostasis in AD and to assess the NCX behavior profile in Aβ pathology, as 

NCX is a crucial player in regulating intraneuronal Ca2+ and Na+ concentrations. 

Furthermore, a recent genetic study (Saad et al., 2015) corroborated the 

hypothesis suggested by Pannaccione et al. in 2012 that the NCX isoform 3 is 

specifically involved in ionic dysregulation induced by the neurotoxic peptide Aβ1-

42. Indeed, Saad et al. identified several genes in which variations may affect the 

age at onset (AAO) of FAD. Among them, multiple rare variants in SLC8A3 have 

been found to be associated with the AAO of AD. Since this evidence suggests 

that NCX3 may play a functional role in modifying the AAO of AD, we first 

evaluated the possible involvement of NCX isoform 3 in Tg2576 AD pathology. 

However, it has been widely accepted that intraneuronal accumulation of Aβ is 

involved in synaptic dysfunction and cognitive deficits even before plaques 

formation, and specially, that soluble intraneuronal Aβ oligomers, rather than Aβ 

plaques, are the critical neurotoxic entity in AD pathogenesis. Starting from this 

assumption, we focused our attention on the early and more advanced, but ‘pre-

plaque’ stages of AD in Tg2576 mice, as they display very early neuronal 

hyperexcitability and cognitive dysfunction. We both conducted anatomical 

studies in Tg2576 brains and performed in vitro experiments in Tg2576 

hippocampal neurons. Importantly, Takahashi et al. in 2004 demonstrated that 
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primary neurons from Tg2576 mice recapitulate the in vivo localization and 

accumulation of Aβ1-42 with time in culture and, moreover, that intraneuronal 

accumulation and oligomerization of Aβ1-42 are associated with synaptic 

destruction. In conclusion, the present study has been aimed to: 

1. measure NCX currents in primary hippocampal neurons from Tg2576 mice 

at different time in culture  

2. assess NCX3 protein expression in Tg2576 primary hippocampal neurons 

at different time in culture 

3. measure intracellular [Ca2+] and [Na+] in Tg2576 primary hippocampal 

neurons at different time in culture 

4. investigate the role of NCX3 in ER Ca2+ refilling 

5. determine the protein expression profile of NCX3 in the hippocampus, 

cerebral cortex and cerebellum of 3-month-old and 8-month-old Tg2576 mice 
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3.1 Drugs and chemicals  

Poly(D)-lysine Hydrobromide Mol Wt 30,000-70,000 (P7280), Poly(D)-lysine 

Hydrobromide Mol Wt >300,000 (P7405), Poly-L-lysine hydrochloride (P2658), 

Cytosine β-D-arabinofuranoside (Ara-C), Nimodipine, Bovine Serum Albumin 

(BSA), Proteinase K from Tritirachium album, TRI Reagent Solution,  mouse 

monoclonal anti-α-Tubulin as well as all other materials for solution preparation, 

were from Sigma Aldrich (Milan, Italy). Tetrodotoxin (TTX), rabbit polyclonal anti-

NCX3, rabbit polyclonal anti-NCX1 antibodies were from Alomone Labs 

(Jerusalem, Israel). Hanks' Balanced Salt Solution (HBSS), Minimum Essential 

Medium (MEM), Opti-MEM I Reduced Serum Medium, Horse Serum (HS), Fetal 

Bovine Serum (FBS), L-glutamine, Penicillin-Streptomycin, Trypsin-EDTA 

(0.05%), Phosphate-Buffered Saline (PBS), Lipofectamine 2000, Lipofectamine 

3000 were purchased from Thermo Fischer (Massachusetts, USA), Invitrogen 

(California, USA). Rabbit polyclonal anti-caspase 12, rabbit polyclonal anti-

GRP78, and rabbit monoclonal anti-Aβ (17-42) antibodies were purchased from 

Cell Signaling (Massachusetts, USA). Rabbit monoclonal anti-Calpain 1 was 

purchased from abcam (Cambridge, UK). Polyclonal anti-NCX3 was provided by 

Dr. KD Philipson and Dr. DA Nicoll (Los Angeles, CA). 

 

3.2   Mice 

Animals were kept under standard conditions of temperature, humidity and light, 

and were supplied with standard food and water ad libitum. Animals were 

handled in accordance with the recommendations of International Guidelines for 

Animal Research and the experimental protocol was approved by the Animal 

Care and Use Committee of “Federico II” University of Naples. All efforts were 
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made to minimize animal suffering and to reduce the number of animal used. 

Heterozygous male Tg2576 mice and WT littermates, obtained backcrossing 

male Tg2576 mice with F1 WT female, were used for all experiments. Tg2576 

mice, purchased from commercial source [B6;SJL-Tg(APPSWE)2576Kha, model 

1349, Taconic, Hudson, NY], are well-established AD-related mouse model 

carrying the human APP Swedish 670/671 mutation (K670N e M671L; Hsiao et 

al., 1996). F1 WT female (B6;SJL) littermates were obtained crossing female 

C57BL/6 with male SJL; C57BL/6 and SJL mice were purchased from Charles 

River. 

 

3.2.1 Genotyping: PCR analysis  

Genomic DNA from mouse tails was isolated with salt precipitation method. Tails 

after the cut were incubated with tail digestion buffer (50 mM Tris-HCl pH 8.0, 

100 mM EDTA pH 8.0, 100 mM NaCl, 1% SDS) supplemented with Proteinase K 

(Sigma Aldrich, Milan, Italy) at a final concentration of 0.5 mg/ml and placed in 

water bath at 55-60°C overnight with mixing. This step should result in the 

complete solubilization of the tail fragment. Embryonic brain tissue was kept 

during cerebral dissection and frozen immediately upon collection. After thawing, 

we added TRI Reagent to each sample in order to homogenize the tissue. 

Subsequently one volume of phenol:chloroform:isoamyl alcohol (25:24:1) was 

added to each sample. After centrifugation, the mixture separated into 3 phases: 

an aqueous phase containing the RNA, the interphase containing DNA, and an 

organic phase containing proteins. We discarded and collected the interphase in 

a new centrifuge tube for each sample. After we proceeded to DNA precipitation 

with 100% ethanol; we centrifuged the sample at 4°C for 30 minutes at 16,000 × 

g to pellet the DNA. Carefully we remove the supernatant without disturbing the 
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DNA pellet; after we added 70% ethanol and centrifuged each sample at 4°C for 

2 minutes at 16,000 × g. We removed as much of the remaining ethanol as 

possible and we dried the DNA pellet at room temperature for 5–10 minutes. 

Finally, we resuspended the DNA pellet in TE buffer (Tris-EDTA) by pipetting up 

and down 30–40 times. DNA concentration and purity of each sample was 

quantified using Nanodrop Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE ,US). We used following primers to amplify the DNA region with 

human APP Swedish mutation on both types of genomic DNA: 5′-

CTGACCACTCGACCAGGTTCTGGGT-3′ and 5′GTGGATAACCCCTCCCCC 

AGCCTAGACCA-3′ (Primm, Milan, Italy). 50 ng/µL of DNA were used for PCR 

reaction. The amplification protocol (30 cycles) was the following: 95°C for 45 s, 

55°C for 60 s, 72°C for 60 s. Each 25-µL reaction contained: 1U of AmpliTaq 

DNA Polymerase (Lucigen, US) and 0.5 µM of each primer. The amplification 

products were visualized on agarose (2%) gel by loading approximately half (10 

µL) of each reaction per lane. The band of 466bp indicated the transgenic 

genotype, whereas its absence indicated the wild type genotype. 

 

3.3  Mouse hippocampal neurons 

Primary neuronal cultures were prepared from Tg2576 and WT hippocampi of 

embryonic day (E). Embryonic age (E) was calculated by considering E0.5 the 

day when a vaginal plug was detected. Briefly, pregnant animals were 

anesthetized and sacrificed by cervical dislocation. Hippocampal tissues from 

embryos were dissected in ice-cold dissecting medium (HBSS supplemented 

with 27 mM glucose, 20 mM sucrose, 4 mM sodium bicarbonate), centrifuged, 

and the resulting pellet was mechanically dissociated with a fire polished glass 

pipette. Cells were resuspended in plating medium consisting in Eagle’s MEM 
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(MEM, Earle’s salts, supplied bicarbonate-free) supplemented with 5% FBS, 5% 

HS, 2 mM L-glutamine, 20 mM glucose, 26 mM bicarbonate, and plated on 

35mm culture dishes or onto 25 mm glass coverslips (Glaswarenfabrik Karl 

Hecht KG, Sondheim, Germany) coated with 100 μg/ml poly(D)-lysine at a 

density of one embryo hippocampi/1 ml. Three days after plating, non-neuronal 

cell growth was inhibited by adding 10μM of cytosine AraC. 24 hours after this 

treatment, the planting medium was replaced by growth medium (Eagle’s Minimal 

Essential Medium with 20 mM glucose, 26 mM NaHCO3 supplemented with 

2mM L-glutamine and 10% HS. Neurons were cultured at 37°C in a humidified 

5% CO2 atmosphere. All the experiments were performed between 8-18 days in 

vitro (DIV).  

 

3.4   Electrophysiological recordings  

3.4.1 NCX currents  

INCX in hippocampal mouse neurons were recorded by the patch-clamp technique 

in whole-cell configuration using the commercially available amplifier 

Axopatch200B and Digidata1322A interface (Molecular Devices), as previously 

described by Secondo (2009) and Molinaro (2008). INCX were recorded starting 

from a holding potential of -60 mV up to a short-step depolarization at -60 mV (60 

ms). A descending voltage ramp from -60 mV to -120 mV was applied. INCX 

recorded in the descending portion of the ramp (from -60 mV to -120 mV) were 

used to plot the current–voltage (I–V) relation curve. The INCX magnitude was 

measured at the end of -60 mV (reverse mode) and at the end of -120 mV 

(forward mode), respectively. The Ni2+- insensitive component was subtracted 

from total currents to isolate INCX. The neurons were perfused with external 
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Ringer’s solution containing the following (in mM): 126 NaCl, 1.2 NaHPO4, 2.4 

KCl, 2.4 CaCl2, 1.2 MgCl2, 10 glucose, and 18 NaHCO3, pH7.4. Twenty millimolar 

tetraethylammonium (TEA), 50 nM TTX, and 10 µM nimodipine were added to 

Ringer’s solution to abolish potassium, sodium, and calcium currents. The 

dialyzing pipette solution contained the following (in mM): 100 K-gluconate, 10 

TEA, 20 NaCl, 1 Mg-ATP, 0.1 CaCl2, 2 MgCl2, 0.75 EGTA, and 10 HEPES.  

Possible changes in cell size were taken into account by measuring, in each cell, 

the membrane capacitance, which is directly related to membrane surface area, 

and by expressing the current amplitude data as current densities 

[picoamperes/picofarads (pA/pF)]. Capacitive currents were elicited by 5-mV 

depolarizing pulses from -80 mV and acquired at a sampling rate of 50 kHz. The 

capacitance of the membrane was calculated according to the following equation: 

Cm= Cm∞ where Cm is membrane capacitance, C is the time 

constant of the membrane capacitance, Io is the maximum capacitance current 

value, m is the amplitude of the voltage step, and ∞ is the amplitude of the 

steady-state current.  

 

3.4.2 Na+ currents 

Na+ currents in hippocampal neurons were recorded with the patch-clamp 

technique in whole-cell configuration using the commercially available amplifier 

Axopatch 200B and Digidata 1322A interface (Molecular Devices). Currents were 

filtered at 5 kHz and digitized using a Digidata 1322A interface (Molecular 

Devices). Data were acquired and analyzed using the pClamp software (version 

9.0, Molecular Devices). The pipette solution contained the following (in mM): 

140 CsF, 10NaCl, 1 EGTA, and 10 HEPES, pH7.30 (with CsOH), and osmolarity 

was adjusted to 316 mOsmol/L with dextrose. The extracellular solution 
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contained the following (in mM): 140 NaCl, 3 KCl, 20 TEA_Cl 

(tetraethylammonium chloride), 1 MgCl2, 1 CaCl2, 10 HEPES, 5 CsCl, 0.1 

CdCl2, pH 7.32 (with NaOH), and the osmolarity was 330 mOsmol/L (Gasser et 

al., 2012). Current recordings were taken using low-resistance electrodes (1.4–

2.3 MΩ), sampled at a rate of 100 kHz and filtered at 5 kHz.  The cells were held 

at −120 mV and stepped to a range of potentials (-100 to +30mV in 5mV 

increments) for 100 ms each (Gasser et al., 2012). Possible changes in cell size 

occurring after specific treatments were calculated by monitoring the capacitance 

of each cell membrane, which is directly related to membrane surface area, and 

by expressing the current amplitude data as current densities (pA/pF). The 

capacitance of the membrane was calculated according to the following equation: 

Cm=c·Io/Em(1-I/Io), where Cm is the membrane capacitance, c is the time 

constant of the membrane capacitance, Io is the maximum capacitance current 

value, Em is the amplitude of the voltage step, and Iis the amplitude of the 

steady-state current. 

 

3.5 [Ca2+]i and [Na+]i measurement  

3.5.1 [Ca2+]i measurement  

[Ca2+]i was measured by single cell computer-assisted videoimaging (Secondo et 

al. 2007). Briefly, primary hippocampal neurons, grown on glass coverslips, were 

loaded with 10µM Fura-2 acetoxymethyl ester (Fura-2AM) (Calbiochem, San 

Diego, CA, USA) for 30 minutes at 37°C. At the end of the Fura-2AM loading 

period, the coverslips were placed into a perfusion chamber (Medical System, Co. 

Greenvale, NY, USA) mounted onto a Zeiss Axiovert 200 microscope (Carl Zeiss, 

Germany) equipped with a FLUAR 40X oil objective lens. The experiments were 
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carried out with a digital imaging system composed of MicroMax 512BFT cooled 

CCD camera (Princeton Instruments, Trenton, NJ, USA), LAMBDA 10-2 filter 

wheeler (Sutter Instruments, Novato, CA, USA), and Meta-Morph/MetaFluor 

Imaging System software (Universal Imaging, West Chester, PA, USA). After 

loading, cells were alternatively illuminated at wavelengths of 340 nm and 380 

nm by a Xenon lamp. The emitted light was passed through a 512 nm barrier 

filter. Fura-2AM fluorescence intensity was measured every 3 seconds. 

Ratiometric values were automatically converted by the software into [Ca2+]i 

using a preloaded calibration curve obtained in preliminary experiments as 

previously reported (Grynkiewicz et al. 1985). ER Ca2+ content was measured by 

inducing Ca2+ release from the organelle with the rapid administration of ATP 

(100 µM) + thapsigargin, a selective inhibitor of the sarco(endo)plasmic reticulum 

Ca2+ ATPase (Tg, 1 µM). The amount of Ca2+ extruded in the cytoplasm upon 

ATP+ Tg measured as [Ca2+]i increase, is widely considered as indexes of ER or 

Ca2+ efflux.  

 

3.5.2 [Na+]I measurement  

[Na+]i was measured by single-cell computer-assisted video-imaging in primary 

hippocampal neurons from WT and Tg2576 mice loaded with  

1,3-benzenedicarboxylic acid,4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-

7,13-diylbis(5-methoxy-6,12-benzofurandiyl)] bis-, tetrakis [(acetyloxy) methyl] 

ester (SBFI) at 10 μM in the presence of pluronic acid (0.02%) for 1 h at 37°C 

(Pannaccione et al., 2012). At the end of the SBFI loading period, the coverslips 

were placed into a perfusion chamber (Medical System) mounted onto a Zeiss 

Axiovert200 microscope (Carl Zeiss) equipped with a FLUAR 40X oil objective 

lens. The experiments were carried out with a digital imaging system composed 
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of MicroMax 512BFT cooled CCD-camera (Princeton Instruments), LAMBDA10-2 

filter wheeler (Sutter Instruments), and Meta-Morph/MetaFluor Imaging System 

software (Universal Imaging). After loading, neurons were alternatively 

illuminated at wavelengths of 340 and 380 nm by a Xenon lamp. The emitted 

light was passed through a 512-nm barrier filter. SBFI-fluorescence intensity was 

measured every 3 seconds. 

 

3.6 Western blotting 

To obtain total lysates for immunoblotting analysis, neurons were washed in PBS 

and collected by gentle scraping in ice-cold RIPA buffer containing in mM: 50 Tris 

pH 7.4, 100 NaCl, 1 EGTA, 1 PMSF, 1 sodium orthovanadate, 1 NaF , 0.5% NP-

40, and 0.2% SDS supplemented with Protease Inhibitor Cocktail II (Roche 

Diagnostic, Monza, Italy). After sonication and incubation for 1 hour on ice, we 

centrifuged at 12,000 rpm at 4°C for 30 minutes and collected the supernatants. 

Mice brain tissues from Tg2576 and WT were homogenized in a glass teflon 

grinder (10 strokes at 500 rpm in about 1 min) using a lysis buffer containing (in 

mM): 250 sucrose, 10 KCl, 1.5 MgCl2, 1 EDTA, 1 EGTA, 1 dithiothreitol, 20 

HEPES, pH 7.5, (Angulo et al. 2004) and completed with Protease Inhibitor 

Cocktail II (Roche Diagnostic, Monza, Italy). Tissue suspensions were then 

sonicated and incubated for 1 hour on ice. After centrifugation at 12,000 rpm at 

4 C for 5 min, the supernatants were collected. The protein content of resulting 

supernatant was determined using the Bradford reagent. 70 µg of proteins were 

mixed with a Laemmli sample buffer; then, they are applied and resolved on 

SDS-PAGE polyacrylamide gels. Following transfer onto nitrocellulose 

membranes (Hybond-ECL, Amersham Bioscience, UK), non-specific binding 

sites were blocked by incubation for 2 hrs at 4°C  with 5% non-fat dry milk (Bio-
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Rad Laboratories, Milan, Italy) in TBS-T buffer; subsequently,  incubated with 

primary antibodies overnight at 4°C. After three 10-min washes with TBS-T, the 

membranes were incubated 1h with the appropriate secondary antibody. 

Excessive antibodies were then washed away three times (10 min) with TBS-T. 

Immunoblots were visualized by enhanced chemiluminescence (ECL) 

(Amersham-Pharmacia-Biosciences, UK). Films were developed using a 

standard photographic procedure and the relative levels of immunoreactivity were 

determined by densitometry using ImageJ Software (NIH, Bethesda, MA, USA). 

Primary antibodies used were: rabbit polyclonal anti-NCX3 (1:1000, Alomone 

Labs), polyclonal anti-NCX3 (1:4000, provided by Dr. KD Philipson and Dr. DA 

Nicoll, Los Angeles, CA), polyclonal anti β-Amyloid (D54D2) XP rabbit mAb 

(1:1000 Cell Signaling), rabbit polyclonal anti-caspase-12 (1:1000, Cell Signaling), 

rabbit polyclonal anti-GRP78 (1:1000, Cell Signaling), rabbit monoclonal anti-

calpain 1 (1:1000, abcam), mouse monoclonal anti-α-Tubulin (1:3000; Sigma 

Aldrich). Immunoreactive bands were detected using the chemiluminescence 

system (Amersham-Pharmacia-Biosciences, UK). Proteins were visualized with 

peroxidase-conjugated secondary antibodies, using the enhanced 

chemiluminescence system (Amersham-Pharmacia Biosciences LTD, Uppsala, 

Sweden). The software Image J (NIH) was used for densitometric analysis. 

 

 

3.7 Immunohistochemistry  

Immunostaining and confocal immunofluorescence procedures in tissue sections 

were performed as previously described (Boscia et al., 2013). In brief, WT and 

Tg2576 mice were euthanized at 3 and 8 months. Anesthesia was induced with 

4% sevofluorane in a mixture of 60% N2O and 36% O2 and maintained during 
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intracardiac perfusion with 2% sevofluorane in a mixture of 60% N2O and 38% O2. 

Transcardial perfusion was carried out with 4% paraformaldehyde in PBS. The 

brains were sectioned coronally and sagittally (60 µm) on a vibratome. After 

blocking with Rodent M block (Biocare Medical, Concord, USA), sections were 

incubated with the following primary antibodies: polyclonal anti-NCX3 (1:500, 

provided by Dr. KD Philipson and Dr. DA Nicoll, Los Angeles, CA); fluorescent 

DNA-binding dye Hoechst-33258 (1µg/ml, Sigma, Milan, Italy) for nuclear staining. 

 

3.8 RNA silencing  

The mammalian expression vector pSUPER.retro.puro (OligoEngine) was used 

to express siRNA against NCX3 and its mismatch sequence in neurons. This 

vectors was prepared as previously reported (Secondo et al., 2007). After 15 h 

plating, neurons were transfected with pSUPER-NCX3, pSUPER-mismatch 

sequence by Lipofectamine 2000 (Invitrogen) standard protocol. 

 

3.9 Statistical analysis 

Statistical analysis was performed with GraphPad Prism 5.0 (Graphpad software, 

Inc., San Diego, CA), using ANOVA followed by Newman-Keuls or Bonferroni, to 

compare more than two groups, and Student’s t test to compare two groups. 

Data were analysed and presented as mean ± SEM, and P values of 

<0,05 were accepted as statistically significant.  
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4.1 Aβ accumulation and oligomerization in 

hippocampal neurons from Tg2576 mice 

Several evidence demonstrated that Tg2576 primary neurons in vitro display 

intracellular Aβ1-42 accumulation. In particular, Takahashi et al. in 2004 provided 

evidence that Aβ1-42 accumulating within processes aggregates as oligomeric 

Aβ1-42 in Tg2576 cortical neurons with time in culture as well as in aging Tg2576 

mouse brain. Furthermore, they highlighted the critical role of soluble, low weight, 

Aβ1-42 intracellular aggregates in synaptic disruption. For this reason, we first 

assessed the presence of Aβ1-42 oligomers in our primary cultures of Tg2576 

hippocampal neurons by western blot experiments. In particular, we detected 

Aβ1-42 trimers in Tg2576 hippocampal neurons after 12 DIV (Fig. 6, Panel A), 

whereas no Aβ1-42 oligomers have been found, as expected, in WT neurons. 

Moreover, soluble Aβ1-42 monomers have been detected in culture medium of the 

same Tg2576 neurons (Fig. 6, Panel B), thus confirming that Aβ1-42 is secreted 

from these neurons. These results demonstrated that hippocampal neurons from 

Tg2576 mice, like Tg2576 cortical neurons, are a useful in vitro model since they 

can provide evidence about the effects of endogenous Aβ1-42 oligomers and 

recapitulate the in vivo Aβ pathology better than in vitro models of Aβ treatment.  
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Figure 6. Aβ accumulation and oligomerization in hippocampal neurons from Tg2576 mice. (A) 

Representative Western blot of Aβ1-42 intracellular deposition in primary Tg2576 hippocampal neurons at 12 

DIV compared to WT.  Neurons were lysed in 6% SDS containing 10 μl/ml of β-mercaptoethanol, sonicated, 

and then heated at 95°C for 6 min to extract insoluble intraneuronal Aβ1-42. (B) Representative Western blot 

of soluble Aβ1-42  detected in the culture medium of Tg2576 hippocampal neurons at 12 DIV compared to WT.  
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4.2 NCX activity in Tg2576 hippocampal neurons  

Several evidence showed that NCX activity is modulated during AD pathology. In 

particular, Pannaccione et al. in 2012 demonstrated that NCX currents (INCX) in 

the reverse mode of operation were up-regulated in hippocampal neurons 

exposed to 5µM of Aβ1-42 oligomers for 24 hours. For this reason, we decided to 

record INCX in hippocampal neurons from Tg2576 mice, as they display a 

progressive deposition of Aβ1-42 oligomers with time in culture.  

INCX were assessed in the reverse and forward modes of operation by patch-

clamp in whole-cell configuration in both WT and Tg2576 hippocampal neurons. 

We observed a significant increase of INCX only in the reverse mode in Tg2576 

hippocampal neurons compared to WT, whereas no modulation was observed in 

the forward mode (Fig. 7, Panel A and B). In particular, INCX up-regulation in 

Tg2576 hippocampal neurons seemed to be correlated with time in culture. In 

fact, Tg2576 hippocampal neurons at 12 DIV displayed a more pronounced 

increase of INCX compared to 8 DIV, whereas no differences were observed in 

WT neurons between 8 and 12 DIV. However, as revealed by western blot 

analyses, the up-regulation of INCX was not accompanied by a significant increase 

of NCX3 protein expression in both 8 and 12 DIV Tg2576 hippocampal neurons 

(Fig. 7, Panel C). 

Interestingly, after 12 DIV, WT neurons also displayed a progressive increase of 

INCX. Nevertheless, also in these “old” neurons, we observed a persistent up-

regulation of INCX in Tg2576 hippocampal neurons compared to WT, up to 18 DIV 

(Fig. 7, Panel D and E).  
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Figure 7. NCX activity in Tg2576 hippocampal neurons. (A) Representative INCX current traces recorded 

from primary WT hippocampal neurons (black trace) and from primary Tg2576 hippocampal neurons at 8 

and 12 DIV (grey traces). (B) Quantification of INCX  in the reverse mode of operation (left panel) and in the 

forward mode of operation (right panel). Values are expressed as mean±SEM of current densities of 3 

independent experimental sessions (n=10 for each group). (C) Representative Western blot and 

densitometric quantification of NCX3 protein expression normalized to α-tubulin levels evaluated in primary 

WT and Tg2576 hippocampal neurons at 8 and 12 DIV. (D) Representative INCX current traces recorded from 

primary WT hippocampal neurons (black trace) and from primary Tg2576 hippocampal neurons at 15 and 18 

DIV (grey traces).  (E) Quantification of INCX  in the reverse mode of operation (left panel) and in the forward 

mode of operation (right panel) recorded from primary WT and Tg2576 hippocampal neurons at 15 and 18 

DIV. Values are expressed as mean±SEM of current densities of 3 independent experimental sessions 

(n=10 for each group).  *p≤ 0.05 versus their respective WT, # p≤ 0.05 versus Tg2576 at 8 DIV (Student’s t 

test and ANOVA followed by Bonferroni). 
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4.3 Effect of NCX3 silencing on INCX up-regulation in 

Tg2576 hippocampal neurons  

Patch-clamp experiments revealed that the silencing of NCX3 completely 

prevented the up-regulation of INCX in the reverse mode of operation in Tg2576 

hippocampal neurons. In fact, Tg2576 hippocampal neurons transfected with a 

specific siRNA against NCX3 at 8 DIV, displayed a marked reduction of INCX in 

the reverse mode compared to those observed in non-transfected Tg2576 

hippocampal neurons (Fig. 8, Panel A and B). Moreover, the siRNA caused a 

significant reduction of INCX in both the reverse and forward modes of operation in 

Tg2576 hippocampal neurons compared to WT. The reduction of NCX3 protein 

expression assessed through western blot confirmed siNCX3 effiacy (Fig. 8, 

Panel A). 
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Figure 8. Effect of NCX3 silencing on INCX up-regulation in Tg2576 hippocampal neurons. (A) 

Representative Western blot of NCX3 silencing in primary Tg2576 hippocampal neurons at 8 DIV (top) and 

representative current traces of INCX recorded from primary WT hippocampal neurons (black trace) and from 

primary Tg2576 hippocampal neurons at 8 DIV in control condition and plus siNCX3 (grey traces). (B) 

Quantification of INCX  in the reverse mode of operation (left panel) and in the forward mode of operation 

(right panel). Values are expressed as mean±SEM of current densities of 3 independent experimental 

sessions (n=10 for each group). *p≤ 0.05 versus their respective WT, **p≤ 0.05 versus their respective 

Tg2576 (Student’s t test). 
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4.4 SBFI-Na+ detection and NaV recording in Tg2576 

hippocampal neurons  

Since NCX activity is strictly dependent on Na+ and Ca2+ concentrations on the 

two sides of plasma membrane, we assessed [Na+]i in Tg2576 hippocampal 

neurons at 12 DIV, when the first peak of INCX was observed. Na+ detection with 

SBFI probe revealed a significant increase of [Na+]i in Tg2576 hippocampal 

neurons compared to WT (Fig. 9, Panel A), thus showing that the up-regulation 

of INCX in the reverse mode of operation was driven by a marked accumulation of 

Na+ into the neurons. To further investigate the dysregulation of intracellular Na+, 

we also recorded NaV currents in Tg2576 hippocampal neurons at 8 and 12 DIV 

by patch-clamp in whole cell configuration. In particular, we observed a 

significant increase of NaV currents in Tg2576 neurons compared to WT at 8 DIV 

and, notably, a more pronounced increase at 12 DIV (Fig. 9, Panel C and D). 

Moreover, we observed an over-expression of Na+ channel α subunits in Tg2576 

hippocampal neurons at 12 DIV (Fig. 9, Panel B). Importantly, the progressive 

up-regulation of NaV currents temporally correlates with the increases of INCX 

observed in Tg2576 hippocampal neurons (Fig. 9, Panel E), thus suggesting that 

inward currents through NaV channels could drive reverse Na+/Ca2+ exchange.  
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Figure 9. SBFI-Na+ detection and NaV recording in Tg2576 hippocampal neurons.  (A) Quantification of [Na+]i 

in primary WT and Tg2576 hippocampal neurons at 12 DIV. Values are expressed as percentage mean±SEM of 3 

independent experimental sessions (n=50 for each experimental group). *p<0.05 versus WT group (Student’ t-

test). (B) Representative Western blot (top) and densitometric quantification (bottom) of Na channel α-subunits 

protein expression normalized to α-tubulin levels in primary WT and Tg2576 hippocampal neurons at 12 DIV (top) 

and representative current traces of Na+ evoked by the indicated voltage protocol in primary WT and Tg2576 

hippocampal neurons at 8 and 12 DIV. (C) Quantification of Na+ currents (INa) at -20mV. Values are expressed as 

percentage mean±SEM of 3 independent experimental sessions (n=10 for each group). (D) Quantification of INCX  

in the reverse mode of operation represented in Fig. 7 panel E. Values are expressed as mean±SEM of current 

densities of 3 independent experimental sessions (n=10 for each group). *p≤ 0.05 versus their respective WT, # 

p≤ 0.05 versus Tg2576 at 8 DIV (Student’s t test and ANOVA followed by Bonferroni). 
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4.5 Assessment of [Ca2+]i and ER Ca2+ content in 

Tg2576 hippocampal neurons 

To investigate the implications of INCX up-regulation, we assessed both [Ca2+]i 

and ER Ca2+ content in Tg2576 hippocampal neurons. In fact, several lines of 

evidence showed that NCX activity in the reverse mode of operation is 

associated with increased [Ca2+]i and subsequent calpain activation. 

Nevertheless, in some experimental conditions reverse Na+/Ca2+ exchange has 

been correlated to Ca2+ refilling into ER. Interestingly, Ca2+ detection with FURA-

2 AM did not reveal any significant increase of [Ca2+]i in Tg2576 hippocampal 

neurons at 8 and 12 DIV compared to WT, but rather a significant decrease of 

[Ca2+]i in Tg2576 hippocampal neurons at 8 DIV (Fig. 10, Panel A). Moreover, 

western blot experiments showed that no increase in calpain activation occurs in 

Tg2576 hippocampal neurons compared to WT. In fact, neither 

autolysed/activated calpain nor the calpain-cleaved spectrin fragment, detectable 

as a 145 kDa band, were modulated in Tg2576 hippocampal neurons compared 

to WT (Fig. 10, Panel B and C, respectively).  

On the other hand, in Tg2576 hippocampal neurons at 8 and 12 DIV, the ER 

Ca2+ content, determined by using the SERCA inhibitor Tg was significantly 

higher than that observed in WT neurons (Fig. 10, Panel D). This demonstrated 

that a larger accumulation of Ca2+ in the ER occurs in Tg2576 hippocampal 

neurons in comparison with WT neurons, thus confirming that the up-regulation 

of INCX in Tg2576 hippocampal neurons is correlated with the Ca2+ refilling into 

ER, rather than with a cytosolic Ca2+ increase.  

In addition, to further investigate the effects of Aβ1-42 oligomers on ER 

homeostasis in Tg2576 hippocampal neurons, we assessed the activation of ER 

stress markers by western blot experiments. In particular, we did not detect any 
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modulation of caspase 12 and GRP78 protein expression (Fig. 10, Panel E and 

F), thus confirming that ER stress does not occur in Tg2576 hippocampal 

neurons.  
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Figure 10. Assessment of [Ca2+]i and ER Ca2+ content in Tg2576 hippocampal neurons. (A) 

Quantification of [Ca2+]I in primary WT and Tg2576 hippocampal neurons at 8 DIV and 12 DIV. Values are 

expressed as mean±SEM of 3 independent experimental sessions (n=50 for each experimental group). (B) 

Representative Western blot (top) and densitometric quantification (bottom) of autolysed μ-calpain protein 

expression normalized to α-tubulin levels in primary WT and Tg2576 hippocampal neurons at 8 DIV and 12 

DIV. Values of autolysed μ-calpain are expressed as % of total µ-calpain. (C) Representative Western blot 

(top) and densitometric quantification (bottom) of calpain-cleaved spectrin protein expression normalized to 

α-tubulin levels in primary WT and Tg2576 hippocampal neurons at 8 DIV and 12 DIV. Values of calpain-

cleaved spectrin are expressed as % of total spectrin. (D) Quantification of ER Ca2+ content in primary WT 

and Tg2576 hippocampal neurons at 8 DIV and 12 DIV. Values are expressed as percentage mean±SEM of 

3 independent experimental sessions (n=50 for each group). (E) Representative Western blot of caspase 12 

protein expression in primary WT and Tg2576 hippocampal neurons at 12 DIV. (F) Representative Western 

blot (left) and densitometric quantification (right) of GRP78 protein expression normalized to α-tubulin levels 

in primary WT and Tg2576 hippocampal neurons at 12 DIV. *p≤ 0.05 versus their respective WT. (Student’s 

t test). 
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4.6 NCX3 protein expression in the hippocampus of 3 

and 8-month-old Tg2576 mice 

In order to obtain preliminary information about NCX involvement in AD in vivo 

pathology, we decided to determine the NCX3 protein expression profile in brain 

areas of 3 and 8-month-old Tg2576 mice. We first assessed Aβ1-42 deposition in 

the hippocampus of Tg2576 mice by western blot experiments. Notably, with a 

specific Aβ antibody, we observed trimers deposition in the hippocampus of 3-

month-old Tg2576 mice, whereas no Aβ1-42 deposition has been detected in the 

hippocampus of WT mice, as expected (Fig. 11, Panel A). 

Western blot analyses revealed that NCX3 protein expression is significantly 

increased in the hippocampus of 3-month-old Tg2576 mice compared to WT (Fig. 

11; Panel B). By contrast, we observed a significant reduction of NCX3 protein 

expression in the hippocampus of 8-month-old Tg2576 mice compared to WT, 

although an increase in the hippocampus of 8-month-old WT mice has been 

observed in comparison with 3 month-old WT mice (Fig. 11, Panel C) 

To improve western blot results, Immunohistochemical analyses have been 

performed in the hippocampus of Tg2576 mice. In particular, we observed that, 

although NCX3 immunoreactivity was scarcely detected in the soma of pyramidal 

cells of both 3 and 8-month-old WT mice, several scattered cells including 

perycytes along vessels- and glia-shaped cells appeared very intensely stained 

(Fig. 11, Panel D). Similarly, NCX3 was moderately expressed in the corpus 

callosum of both 3 and 8 months old WT mice (Fig. 11, Panel D, c and m, 

respectively). Moreover, NCX3 immunosignal seems to be increased in the 

hippocampus of 8-month-old WT mice (Fig. 11, Panel D, i-n) compared to 3-

month-old WT mice (Fig. 11, Panel D, a-d) 
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Interestingly, a divergent modulation of NCX3 expression was observed in the 

hippocampal region and corpus callosum at 3 or 8-month-old Tg2576 mice. 

Indeed, in both CA1 and CA3 hippocampal regions as well as within the corpus 

callosum of 3-month-old Tg2576 mice, the anti-NCX3 antibody revealed an 

increased NCX3 immunoreactivity signal, which was mainly confined along the 

processes of cells and dendrites of pyramidal cells (Fig. 11, Panel D, e-h). By 

contrast, in both CA1 and CA3 hippocampal regions as well as within the corpus 

callosum of 8-month-old Tg2576 mice, NCX3 immunostaining appeared robustly 

decreased (Fig. 11, Panel D, o-r).  
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Figure 11. NCX3 protein expression in the hippocampus of 3 and 8-month-old Tg2576 mice. (A) 

Representative Western blot of A1-42 protein levels in the hippocampus of 3-months old WT and Tg2576 

mice. (B) Representative Western blot (top) and densitometric quantification (bottom) of NCX3 protein 

expression normalized to α-tubulin levels in the hippocampus of 3-months old WT and Tg2576 mice. (C) 

Representative Western blot (top) and densitometric quantification (bottom) of NCX3 protein expression 

normalized to α-tubulin levels in the hippocampus of 8-months old WT and Tg2576 mice. (D) Confocal 

immunofluorescence images displaying the expression of NCX3 (green) within the CA1 and CA3 

hippocampal region of 3-months old WT mice (a-d), 3-months old Tg2576 mice (e-h), 8-months old WT mice 

(i-n), 8-months old Tg2576 mice (o-r). Scale bars, a, c, e, g, i, m, o, q: 100 m; b, f, l, p: 50m; d, h, n, r: 

20m. Abbreviations: s.p., stratum pyramidale; s.r, stratum radiatum; cc, corpus callosum. *p≤ 0.05 versus 

their respective WT. (Student’s t test). 
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4.7 NCX3 protein expression in the cerebral cortex of 3 

and 8-month-old Tg2576 mice 

Western blot experiments revealed Aβ1-42 trimers deposition also in the cerebral 

cortex of Tg2576 mice (Fig. 12, Panel A). However, we did not detect any 

modulation of NCX3 protein expression in the cerebral cortex of both 3 and 8-

month-old Tg2576 mice compared to WT (Fig. 12, Panel B and C). On the other 

hand, a clear loss of intensity of immunoreactivity signal has been observed in 

cortical sections from both 3 and 8 month’s old Tg2576 mice (Fig. 12, Panel D, 

c-d and g-h, respectively) compared to WT mice (Fig. 12, Panel a-b and e-f). 

However, similarly to what has been observed in the hippocampus, a significant 

increase of NCX3 protein expression has been found in the cerebral cortex of 8-

month-old WT mice compared to 3-month-old mice.  
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Fig.12  (A) Representative Western blot of A1-42 protein levels in the cerebral cortex of 3-months old WT 

and Tg2576 mice. (B) Representative Western blot (top) and densitometric quantification (bottom) of NCX3 

protein expression normalized to α-tubulin levels in the cerebral cortex of 3-months old WT and Tg2576 

mice. (C) Representative Western blot (top) and densitometric quantification (bottom) of NCX3 protein 

expression normalized to α-tubulin levels in the cerebral cortex of 8-months old WT and Tg2576 mice. (D) 

Confocal immunofluorescence images displaying the expression of NCX3 (green) in the cerebral cortex of 3-

months old WT mice (a-b), 3-months old Tg2576 mice (c-d), 8-months old WT mice (e-f), 8-months old 

Tg2576 mice (g-h). Scale bars, a, c, e, g: 100 m; b, d, f, h: 50m. 
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The present study demonstrated that the activity of NCX3, a specific isoform of 

NCX, is progressively up-regulated in the reverse mode of operation in primary 

hippocampal neurons from Tg2576 mice. Previous studies provided evidence 

that NCX is involved in AD pathogenesis. In particular, Pannaccione et al. in 

2012 reported that the selective up-regulation of NCX3 in hippocampal neurons 

treated with synthetic Aβ1-42 oligomers was associated with delayed ER stress 

and neuronal death. For this reason, we decided to investigate the NCX3 

behaviour profile in Tg2576 hippocampal neurons, as they represent an in vitro 

model that better recapitulates AD pathology rather than the commonly used 

treatment with Aβ oligomers. 

First, the presence of intracellular Aβ1-42 detected in the Tg2576 neuronal lysates 

allowed as to validate Tg2576 hippocampal neurons, here set up for the first time, 

as a useful in vitro model of AD to investigate the effect of intracellular Aβ on 

disease progression. Indeed, it is widely accepted that intraneuronal Aβ 

accumulation is responsible for synaptic dysfunction and cognitive deficits even 

before plaque formation. In particular, western blot analyses revealed the 

intracellular accumulation of Aβ1-42 trimers, detectable as a ~ 12 kDa band, thus 

showing Tg2576 hippocampal neurons as an in vitro model particularly suitable 

to exploring the role of these small Aβ aggregates in AD pathogenesis. In fact, it 

is well known that low weight, soluble Aβ1-42 oligomers are the critical neurotoxic 

entity of AD pathogenesis, since they correlate more than Aβ plaques with 

memory deficits and cognitive dysfunction.  

Ionic dysregulation is one of the metabolic consequences of Aβ accumulation 

contributing to neuronal dysfunction and death. In particular, the dysregulation of 

[Ca2+]i triggers a series of events including oxidative damage and activation of 

apoptotic machinery. Furthermore, the dysregulation of [Na+]i affects neuronal 
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excitability, thus contributing to epileptogenesis in AD. NCX, coupling in a 

bidirectional manner the exchange of 3Na+ for 1Ca2+ across the plasma 

membrane, plays a relevant role in maintaining intracellular Na+ and Ca2+ 

homeostasis, especially in pathological condition in which other mechanisms 

regulating Na+ and Ca2+ fluxes across the plasma membrane are compromised. 

Interestingly, we did find a significant up-regulation of INCX in Tg2576 

hippocampal neurons and provided evidence that this up-regulation is specifically 

mediated by NCX isoform 3, also in our experimental conditions. Since NCX 

activity and its mode of operation depend on both [Ca2+]i and [Na+]i, we 

hypothesized that the up-regulation of INCX observed in Tg2576 hippocampal 

neurons from 8 DIV up to 18 DIV could be related to an imbalance of Ca2+ or Na+ 

homeostasis. Na+ detection with SBFI probe revealed a significant increase of 

[Na+]i in Tg2576 hippocampal neurons, thus showing that the up-regulation of 

reverse Na+/Ca2+ exchange is driven by an abnormal electrochemical gradient 

caused by the increase of intracellular Na+ content. Aβ1-42-induced membrane 

depolarization has been previously reported in several experimental models of 

AD (Mukhamedyarov et al., 2009). Furthermore, the impairment of the Na+/K+ 

ATPase activity, the main mechanism responsible for Na+ extrusion, has been 

demonstrated in AD (Hattori et al., 1998; Mark et al., 1995; 1997). Importantly, 

we here report that the abnormal increase of [Na+]i observed in Tg2576 

hippocampal neurons is mediated by a significant up-regulation of NaV currents, 

in line with previous studies that showed an intimate correlation between reverse 

NCX activity and Na+ influx through specific NaV channel subunits (Estacion et al., 

2015; Pappalardo et al., 2014; Craner et al., 2004a; 2004b). Interestingly, we 

also found a significant over-expression of Na+ Channel α subunits in Tg2576 

hippocampal neurons at 12 DIV, when the maximal up-regulation of NaV currents 
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has been observed. By contrast, any modulation of NCX3 protein expression has 

been found in our experimental conditions, thus suggesting that the up-regulation 

of NCX activity in the reverse mode is subsequent to the up-regulation of NaV 

channels without being correlated with an increased amount of exchanger on the 

plasma membrane. However, further experiments such as the assessment of 

NCX3 mRNA levels and immunocytochemical analyses are needed to confirm 

this aspect. NCX activity in the reverse mode has been associated to increased 

[Ca2+]i (Atherton et al., 2009; Kortus et al., 2016) but also, in other experimental 

conditions, to enhanced Ca2+ refilling into ER (Sirabella et al., 2009; Pannaccione 

et al., 2012; Sisalli et al., 2014; Di Giuro et al., 2017). So, we test both these 

hypotheses by determining [Ca2+]i and ER Ca2+ content of Tg2576 hippocampal 

neurons. Notably, we did not find any increase of [Ca2+]i but rather a significant 

reduction of basal Ca2+ content in Tg2576 hippocampal neurons at 8 DIV, 

whereas no significant modulations occurred with time in culture. Importantly, this 

result demonstrates not only that INCX up-regulation in the reverse mode does not 

cause an increase of [Ca2+]i, but also that Aβ1-42 trimers accumulating in Tg2576 

neurons are not correlated with Ca2+ disruption. On the other hand, the up-

regulation of Ca2+ signalling occurring in the early phases of AD pathology has 

been mainly associated to extracellular Aβ1-42 oligomers, since they may trigger 

Ca2+ influx through several mechanisms, including the formation of Ca2+ 

permeable pores, and, even more, to mutated presenilins, which can interact with 

Ca2+ transport proteins present on ER membranes. Few studies, however, have 

been focused on the consequences of APP mutations on Ca2+ signalling nor on 

the role of intracellular Aβ. Therefore, this result is consistent with the above-

mentioned concept, according to which Tg2576 hippocampal neurons are quite 

different from in vitro models of Aβ-treatment. To emphasize this data, we also 
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reported that increased calpain activation does not occur in these neurons, nor 

we observed the activation of apoptotic cell death (data not shown). However, it 

is necessary to highlight  that Aβ-treatment is an acute stimulus, able to trigger 

several neurotoxic mechanisms, such as [Ca2+]i increase, ER stress and 

activation of the apoptotic machinery (Pannaccione et al., 2012). On the other 

hand, primary neurons from Tg2576 are characterized by progressive and 

ceaseless Aβ1-42 oligomers secretion and accumulation. Importantly, Aβ1-42 

oligomers naturally generated by these cultured cells are present intraneuronally 

and in the conditioned medium at low to sub-nanomolar concentrations, a 

considerably lower amount than that reached with exogenous Aβ treatment 

(~µM). Therefore, it is not surprisingly that naturally secreted Aβ1-42 oligomers 

may have different effects on cell viability than synthetic preparations.  

Despite ER has emerged as an important player in AD pathogenesis, few 

evidence has been provided about its involvement in AD pathology induced by 

APP mutations. Significantly, we found that ER content was significantly 

increased in Tg2576 hippocampal neurons in comparison with WT neurons, at 12 

DIV when the first peak of INCX up-regulation has been observed. Previous 

evidence suggested that Ca2+ refilling into ER constitutes a neuroprotective 

mechanism aimed to delay ER stress and caspase 12 activation. Moreover, ER 

Ca2+ content can provide an important Ca2+ source available for many 

physiological mechanisms occurring in neuronal cells. In fact, it is well known that, 

at dendritic level, Ca2+ release from ER stores is involved in modulating 

postsynaptic responses and synaptic plasticity (Emptage et al., 1999; Fitzjohn 

and Collingridge, 2002; Holbro et al., 2009), whereas in axon terminals it is 

involved in vesicle fusion and neurotransmitter release (Emptage et al., 2001; 

Bouchard et al., 2003). Furthermore, in the soma, it is coupled to the activation of 
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Ca2+-sensitive signaling pathways, such as kinase and phosphatise activities 

(Berridge, 1998). However, in association with the increased Ca2+ refilling into ER, 

we did not observe any activation of ER stress marker, such as caspase 12 and 

GRP78, in Tg2576 hippocampal neurons at various experimental time points. For 

this reason, we assumed that ER stress does not occur in our model. On the 

other hand, the significant increase of ER Ca2+ content seems to be correlated 

with the up-regulation of NCX3 in the reverse mode of operation. Remarkably, 

this observation is supported by several evidence demonstrating the correlation 

between the reverse mode of NCX and the direct Ca2+ entry into ER through 

SERCA pumps (Fameli et al., 2007) and suggesting that it could represent a 

neuroprotective mechanism in several pathological conditions (Sirabella et al., 

2009; Pannaccione et al., 2012; Sisalli et al., 2014).  

Importantly, we here provide for the first time preliminary evidence about NCX3 

modulation in an animal model of FAD, the Tg2576 mouse. In particular, we 

focused our attention on the early and more advanced, but ‘pre-plaques’ stages 

of the disease, since Tg2576 mice display very early cognitive dysfunction and 

hyperexcitability. Importantly, western blot experiments revealed the presence of 

low-weight Aβ1-42 aggregates in the hippocampus and cerebral cortex of these 

mice, thereby supporting the role of soluble Aβ1-42 in early AD symptoms. 

Importantly, the significant NCX3 over-expression in the hippocampus of 3-

month-old Tg2576 mice suggests the involvement of NCX3 in the early phases of 

AD pathogenesis. In addition, its increase in the hippocampus of 8-month-old WT 

mice compared to 3 month-old WT mice supports previous evidence that 

suggested a role for NCX in impaired calcium homeostasis during aging of the 

brain. Indeed, studies performed on cortical nerve endings of aged rats have 

demonstrated that NCX activity is significantly decreased in comparison with 
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young rats (Michaelis et al., 1984; Canzoniero et al., 1998). The situation can get 

worse in aged brain showing accumulation of Aβ1-42 aggregates. In fact, it is well 

known that ageing processes occur precociously in AD brains. Importantly, 

Tg2576 display early selective vulnerability of synaptic functions and structures 

(Balietti et al., 2013). Remarkably, a recent genetic study identified several genes 

in which variations may affect the age at onset (AAO) of FAD (Saad et al., 2015). 

Among them, multiple rare variants in SLC8A3 have been found to be 

significantly associated with the AAO of AD. This finding confirms that NCX3 is 

implicated in AD pathogenesis and that its activity could affect the outcome of AD 

symptoms. In particular, based on our results, we hypothesised that the increase 

of reverse NCX activity reduces Na+ loads mediated by the up-regulation of NaV 

channels activity and expression. Thereby, targeting NCX3 could represent a 

promising strategy to repair aberrant Na+ influx and subsequent hippocampal 

neuronal excitability in AD. 
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