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ABBREVIATIONS 

ACA Apparent contact angle 

AFM   Atomic force microscopy 

APTES   Aminopropyltriethoxysilane 

ATR  Attenuated total reflectance 

CA Contact angle 

cmc Critical micellar concentration 

CPB Cetylpiridinium Bromide 

CTAB Cetyltrimethylammonium bromide 

DCDMS Dichlorodimethylsilane 

DLS  Dynamic light scattering 

IR Infrared 

JWSP Janus Wrinkled Silica-gel Particle 

Mn  number average molecular weight 

Mw weight average molecular weight 

O/W  oil in water 

PDMS Polydimethylsiloxane 

PPgMA Maleic anhydride-graft-polypropylene 

PS Polystyrene 
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�̅� 

rpm 

Average radius 

Revolutions per minute 

SEM  Scanning electron microscopy 

TEM  Transmission electron microscopy 

TEOS Tetraethoxysilane 

XPS X-ray photoelectron spectroscopy 

Z-pot Zeta potential 
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1. SUPERHYDROPHOBIC SURFACES 

 

1.2 SUPERHYDROPHOBICITY 

In this Section, definition and properties of superhydrophobic surfaces are briefly defined. For 

further details about describing models, that correlate the surfaces parameters (surface tension 

and morphology) with liquid wettability parameters (contact angle, contact angle hysteresis and 

roll-off angle), see Section 2.2. 

1.2.1 DEFINITIONS AND PARAMETERS DEFINING WETTABILITY 

When a droplets of liquid is laid on a surface, the profile of the droplets forms with the surface 

plane an angle between the liquid-surface interface plane and the tangent plane of the droplets 

at the solid-liquid-gas point, called contact angle (Figure 1.1). 

 

Fig. 1.1. Picture of a liquid droplet on a solid surface. In red, contact angle is underlined. 

 

When water has a good affinity with the surface, the contact angle value is less than 90°. In this 

case, the surface is considered hydrophilic. If the wettability or the affinity of the liquid with 

the surface lows, the liquid dislikes the surface and the contact area reduces and consequently 

the contact angle increases. When water forms contact angle more than 90° the surface is 
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considered hydrophobic. At first glance, contact angle can be used as a directly measurable 

parameter for evaluating the wettability or the affinity of liquids to the surfaces. 

 

 

Fig. 1.2. Picture of a droplet moving onto an inclined surface (left) and the same picture 

showing the advancing and receding contact angles in red (right). 

 

Achieving high slippery behaviour is possible only realizing surfaces that exhibit with liquid 

high contact angle values. An example of high repellence against water is showed by 

superhydrophobic surfaces. Superhydrophobicity is a surface related behaviour that manifests 

particular effects on water droplets in contact with the surface. Indeed, the droplets very easily 

roll-off from the superhydrophobic surfaces even at small inclination of the surface and very 

unlikely stick on such surfaces.  

This behaviour depends both on the contact angle, that is usually more than 150°, and on the 

hysteresis of the contact angle. The latter parameter depends on the surface-liquid adhesion 

energy, and is defined as the difference of the contact angle measured during sliding or rolling 

off from the surface, or rather, the difference between downhill or advancing contact angle and 

the uphill or receding contact angle (figure 1.2). Superhydrophobic surfaces exhibit with water 

low hysteresis contact angle value, usually less than 5°, that together with high contact angle 

values cause an easy rolling off from the surface. 

1.2.2 SUPERHYDROPHOBICITY IN NATURE 
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In nature, surfaces possessing high repellence to the water have something in common: 

hierarchical roughness; i.e. a surface with more than one length scale of texture, consisting of a 

finer length scale texture on an underlying coarser length scale of texture. 

In figure 1.3 is reported some pictures of lotus leafs with microscopic details of the surface. 

The leaves are covered by ten microns bumps (convex cell papilla) completely covered by 

hundreds nanometers pillars (epicuticular wax crystals). The bumps at microns scale and the 

finer roughness made of the pillars, together with the low surface tension of the wax covering 

the surface, achieve superhydrophobicity. The outcome of the hierarchical texture enables the 

leaf to obtain self-cleaning properties. Or rather, dust particles on the surface are entrapped in 

the droplets of water during rolling off, carrying away the dust and perfectly cleaning the 

surface. The cleaning mechanism is illustrated in figure 1.4. 

 

 

Fig. 1.3. Lotus leaf picture (a), and self-cleaning behaviour shown during raining (b) that 

completely clean the leaf surface (c). Micrographs of surface morphological details at 
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different magnifications are depicted (d,e,f), showing the cell papilla (e) and epicuticular 

wax crystal (f). [1]. 

 

 

Fig. 1.4. Liquid droplet passing onto dust particles (green cross, blue circle and red 

triangle) on a normal surface (left) and a superhydrophobic surface (right). In the latter, 

Particles adhere at the droplet surface during rolling off and carrying them away. 

 

Nature takes advantage of hierarchical low surface texture achieving superhydrophobicity in 

many situation: anti-bacterial properties of the bug’s wings [2], slide abilities of some insects 

on water (water strider etc.) [3,4], water-repellent of feathers [5], anti-adhesion properties of 

some skin-breathing arthropods [6,7]. 

Researches about bio-inspired superhydrophobic surfaces are spread in the past decades, to 

mimic the interesting properties that nature achieved in hundreds of years.  

1.2.3 PROCESSESS: SURFACE PATTERNING AND MODIFICATION 

Herewith, the common processes involving formation of superhydrophobic and superolephobic 

surfaces (high slippery behaviour of apolar liquids) are discussed. 

In past few decades, an increasing interest in the hierarchical surfaces manufacturing to achieve 

superhydrophobic and superomniphobic surface is raised. The possible processes can be 

divided in different categories. 
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If the formation of hierarchical texture is realized by adding material on the surface the 

processes involve techniques that spread materials that organize themselves in a hierarchical 

textured layer. Usually these techniques are: spraying [8,9], dip-coating [10–12], spin-coating 

[13,14], plasma spraying [15], gas aggregation cluster technique [16], thermal oxidation [17], 

electrohydrodynamics [18–22], etc. Usually such materials added on top of the substrate are 

not sufficient to achieve superhydrophobicity because sometimes the surface tension is not low 

enough. Therefore, a further step as a chemical modification is needed. 

A different approach is removing material from the surface. During the removing process the 

technique creates the hierarchical demanded structures, i.e., lithography [23–25], solvent 

extraction [26], chemical etching [27]; in other cases, like plasma etching [28–30], material 

removing and surface chemistry modification happen simultaneously to build the hierarchical 

texture and reduce the solid-gas surface tension. 

Usually formation of superhydrophobic surfaces is a multi-step procedure that involves more 

than one approach listed above. For instance, lithography and etching can be used together to 

produce masks for creating template for feature replication of omniphobic polymer membranes 

[31]. Xu et al. produced a transparent superhydrophobic coating by spreading polystyrene and 

silica sol onto a glass substrate by sol-gel dip-coating, then, after annealing of the polymer part 

a volcano-like structure is formed on top of the glass substrate[32]. 

1.2.4 MECHANICAL RESISTENT AND SELF-HEALING SURFACES 

The main concern about superhydrophobic is the lack of mechanical resistance of the rough 

structure. Indeed, because of the structure full of pores and re-entrants, superhydrophobic 

surfaces are usually fragile. Therefore, in the past years an important objective during 

production of high slippery surfaces is the durability in term of mechanical resistance. The 

difficulty in achieving this goal depends on the performance of the slippery surface: the higher 
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the amount of pores and re-entrants the higher the contact angle but the weaker is the surface 

resistance to mechanical stresses. 

Recently, many researchers tried to obtain surfaces with higher mechanical resistance. Zhang 

et al. obtained superhydrophobic behaviour on an elastic polydimethylsiloxane support, that 

can tolerate continuous impact of water droplets and knife scratches without modifying its 

superhydrophobicity [33]. Chen et al. produced a mechanical resistant superhydrophobic 

surface on paper, glass, metallic and polymeric supports by spraying an adhesive layer and then 

a nanoparticles dispersion on the substrates. Mechanical abrasion cycles and knife scratches 

tests on the supports do not change the superhydrophobic properties [34]. Golovin et al. 

produced an abrasion resistant (1 km of cycle) coating made of a polymer binder and 

1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (F-POSS) as 

hydrophobic filler by spraying blends of the two compounds [9]. Sheng et al produced a 

electrospun waterproof membrane made of polyacrylonitrile and hydrophobic nanoparticles 

that resist to abrasion tests [22]. 

Another approach to improve durability of superhydrophobic surfaces is to introduce within the 

surface material low surface tension molecules in order to impart self-healing properties. In 

fact, any surface, no matter how durable, is susceptible to physical (and chemical) damages. 

During the damage, the low surface energy molecules preferentially migrate to the solid-air 

interface, restoring superhydrophobic behaviour. 

Wu et al prepared an abrasion durable and self-healable superhydrophobic cotton fabric. The 

slippery behaviour can survive after thousands of abrasion cycles, and superhydrophobicity can 

be restored by simply stream ironing [35]. Liu et al used polydopamine nanocapsules containing 

octadecylamine molecules to impart superhydrophobicity to fabrics. When the surface fabric is 

destroyed by physical damages and lose its liquid repellency, octadecylamine migrates to the 

surface and restore superhydrophobicity [36]. 
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1.2.5 APPLICATIONS 

Anti-sticking, water slippery behaviour and self-cleaning property are features that nature 

exploited in different situations, as we saw in the subsection 1.2.2. Researchers all around the 

world are finding a way to exploit the interesting features of superhydrophobic surfaces for 

different applications.  

A straightforward application for superhydrophobic surfaces is the production of self-cleaning 

glass [10] (automobile and aircrafts windshields, camera lenses, touch screens, solar panels, 

etc.) [37] and fabrics [36].  

Very interesting is the application of superhydrophobic coatings in the infrastructures field, 

such as building material, marbles and sandstone: they can provide protection from 

environmental pollution and acid rain [38]. The coatings can be used for anti-icing purpose for 

roads and power lines in cold countries, providing economic and safety benefits [39]. 

As these surfaces are water resistant, hence they also resist the anchoring and growth of 

microorganisms on them. Thus their anti-fouling and anti-bacterial properties [40] are also 

expected to be remarkable. For instance, if applied to medical devices they can reduce infections 

and contaminations risks[41]. They can be applied as protective coatings on surfaces exposed 

to sea water, because otherwise they get easily covered by algae and other marine organisms 

[42]. Superhydrophobic surfaces can be used in microreactors and microfluidic devices [43] 

and for drag reduction [44], and in many other fields: high-density integrated circuit production 

[45], oil water separation [34], water collection[46], waterproof-breathable membranes [22], 

and so on. 
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2. THEORETICAL BACKGROUND 

 

2.1 INTRODUCTION 

Synthetic procedure for Janus wrinkled silica-gel particles (JWSP) is a multi-step process. The 

whole project can be considered multi-disciplinary. Indeed, from the beginning (synthesis of 

wrinkled particles) until the end (application of the JWSPs onto the substrate) different 

technologies and chemical fields are involved. 

In this chapter, different theoretical backgrounds related to the steps of the project are discussed 

(sol-gel chemistry and Pickering emulsion), together with the theoretical background of 

superhydrophobic surfaces. 

 

2.2 SUPERHYDROPHOBICITY – THEORETICAL BACKGROUND 

In this Section, first, surface wettability and related parameters (contact angle, hysteresis etc.) 

are defined. 

How liquids can interact with surfaces is explained through models (Young, Wenzel and 

Cassie-Baxter) describing the type of surface wetting, underlining the correlation between 

liquids parameters and surface properties. 

2.2.1 MODELS AND PARAMETERS DEFINING SURFACE WETTABILITY 

Surface wettability is an interface related property that depends on the liquid and the type of 

interface. There are different equations and models that describe the behaviour of liquids on 

surfaces. In accordance with the surfaces structure types (smooth, rough, hierarchical) we can 

experiment different liquids behaviours. 
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Young equation 

The most used parameter defining surface wettability is the contact angle (CA). Young first 

defined this parameter in the followed equation [1]: 

𝛾𝑙𝑔 𝑐𝑜𝑠𝜃 + 𝛾𝑠𝑙 = 𝛾𝑠𝑔      (2.1) 

Where 𝛾𝑙𝑔 , 𝛾𝑠𝑙 and 𝛾𝑠𝑔 are the liquid-gas, solid-liquid and solid-gas interfacial tensions 

respectively. 𝜃 is the angle between the solid-liquid and liquid-gas interfaces, the so-called 

contact angle (figure 2.1). 

 

 

Fig. 2.1. Droplet of liquid on a surface with highlighted surface tension vectors and contact 

angle. 

 

If water or an apolar solvent exhibit a CA lower than 90° the surface is hydrophilic or oleophilic 

respectively. Instead, if CA is higher than 90°, the surface possesses a hydrophobic or 

oleophobic behaviour.  

Young equation (equation 2.1) is valid for flat surfaces. Indeed, deviation from the ideal 

behaviour is higher the rougher the surface. In the case of non-flat surfaces, Wenzel and Cassie-

Baxter models are used to correlate morphological properties and the surface tensions involved 

with the angle formed between the droplets of liquid with the solid surface, called in this case 
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apparent contact angle (ACA) to distinguish from the ideal CA, that is the angle calculated from 

Young equation (equation 2.1).  

Wenzel model 

Wenzel model [2] or “fully wetted” model (figure 2.2), takes in account the roughness of a solid 

surface. Wenzel considers that liquids touch the solid surface covering all the asperities. 

Therefore, the liquid-solid contact area (actual interface) is higher than the ideal case in where 

the surface is smooth (geometric interface) enhancing the wetting properties. The model is 

described in the equation 2.2. 

𝑐𝑜𝑠𝜃∗ = 𝑟 𝑐𝑜𝑠𝜃      (2.2) 

𝜃∗ is the ACA. 𝑟 is the roughness factor defined as the actual and geometric interface ratio.  

 

 

Fig. 2.2. Liquid on rough surface realizing “fully wetted” state. 

 

The equation shows the enhancing effect of the roughness factor. Indeed, two surfaces made of 

the same material but one smooth and the other rough, the liquid exhibit different contact 

angles. If the liquid on the smooth surface exhibits a CA less than 90°, the liquid on the rough 

one will have an ACA value less than CA value. Instead, If the liquid on the smooth surface 

exhibits a CA more than 90°, the liquid on the rough one will have an ACA value higher than 

CA value. Therefore, in the case liquid is water, if the surface is hydrophilic or hydrophobic, 

the rough surface will be more hydrophilic or more hydrophobic than the smooth surface 

respectively. 
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Cassie-Baxter model 

Cassie-Baxter model or fakir model, considers the liquid not touching completely the solid 

underneath. The liquid lay on a composite interface made of liquid-gas and solid-gas interfaces 

(figure 2.3). Therefore, the ACA value depends on the liquid-gas and liquid-solid interfaces 

extents, each part contributes to the final value. The Cassie-Baxter equation:  

𝑐𝑜𝑠𝜃∗ = 𝑟ɸɸ𝑠 𝑐𝑜𝑠𝜃 + (1 − ɸ𝑠)𝑐𝑜𝑠𝜃𝑔      (2.3) 

 

 

Fig. 2.3. Liquid, on a surface realizing “Fakir” state, lay on a composite interface made of 

liquid-gas and liquid-solid interfaces. 

 

 

Figure 2.3. Schematic representation of the Cassie-Baxter equation parameters. 

 

Where the 𝑟ɸ is the roughness factor of the wetted surface and ɸ𝑠  is the fraction of geometric 

interface occupied by solid protrusions. For the reason, 1 − ɸ𝑠 represents the fraction of 
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geometric interface constituted by the liquid-gas interface, and 𝑟ɸɸ𝑠 is the wetted surface area. 

These parameters are illustrated in figure 2.4. 𝜃 and 𝜃𝑔 are the ideal CA of the solid-liquid and 

gas-liquid interfaces respectively, the latter value is 180° [3]. 

2.2.2 THE HYSTERESIS OF CONTACT ANGLE 

If liquids exhibit high apparent contact angle and a low energy of adhesion  droplets can roll-

off from the surfaces very easily without sticking on them. 

 

 

Fig. 2.4. Picture of a droplet moving onto an inclined surface (left) and the same picture 

showing the advancing and receding contact angles in red (right). 

 

A droplet on a horizontal surface has a characteristic shape that depends on the contact angle. 

If the surface is tilted slowly, we can observe a change in the droplet shape until the droplet 

start to roll or slide onto the surface. During the tilting of the droplet the shape change from a 

sphere to a complex shape with different contact angles around the entire perimeter of the 

droplet [4]. When the droplet starts to move, the maximum contact angle value is on the 

downhill side and it is called advancing, while the minimum on the uphill side of the droplet 

perimeter is called receding contact angle (figure 2.4). The difference of these two angles is 

called hysteresis of the contact angle Δ𝜃 (CAH). 
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The energy of adhesion is usually related (equation 2.4) [5] to the receding and advancing 

contact angles: 

𝐸 = 𝛾𝑙𝑔 (cos 𝜃𝑅 − cos 𝜃𝐴)      (2.4) 

𝜃𝑅 and 𝜃𝐴 are the receding and advancing contact angles respectively, that droplets during 

rolling or sliding form with surfaces. An experimental parameter linked to the adhesion energy 

is the hysteresis of the contact angle Δ𝜃 (CAH) that is the difference between the advancing 

and the receding angles (figure 2.4). 

 

 

Fig. 2.5. 2-D representation of the droplet movement. The open circles represent the 

molecules that move during the process, instead, the shaded circles do not move. 

 

In 1945, Pease was the first to suggest that hysteresis is a one-dimension issue, or rather, 

affected only by the droplet perimeter, the liquid-solid-gas contact line [6]. His work was taken 

into consideration by very few researchers compared with Wenzel and Cassie-Baxter models . 

Recently, different research groups [7–9] have commented on the importance of events that 

occur at the contact line during advancing and receding. Indeed, during the motion of the 

droplet, the only interfacial molecules of liquid that move are those on the three-phase contact 

line (the droplet perimeter). In figure 2.5 is reported a 2-D representation of this event: a droplet, 
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moving on a horizontal surface from one to another equivalent contact area, advances from 6 

to 7 and recedes from 2 to 3. The shaded circles in Figure 2.5 between 3 and 6 represent 

interfacial water molecules that do not move as the droplet does. Consistent with the no-slip 

boundary condition of fluid mechanics, the only interfacial water molecules that move during 

this movement (open circles in figure 2.5) are those that wet new surfaces and dewet previously 

wet surfaces [4].  

The above hypothesis was confirmed by different experiments. For instance, Choi et al 

demonstrated that a droplet of liquid moving onto an anisotropic textured surface has different 

values of advancing and receding contact angle depending on the direction of movement of the 

droplet, even though the parameters 𝑟ɸ and ɸ𝑠 (equation 2.3) remain unchanged. This behaviour 

can be explained through the hypothesis that the droplet during its movement onto the surface 

forms a contact line that depends on the direction of the droplet [3]. In figure 2.6 is reported an 

image the anisotropic textured surface with the side views of droplets along the two axis. 

 

 

Fig. 2.6. top view of a drop on a texture surface. Charge accumulation on the large drop 

from the electron beam results in the local lensing and distortion of the hoodoo stripes 

surface at the top of the image. In the insets, side view of droplets along the two axis. 
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In conclusion, we can say CAH is a parameter that depends on the contact line between the 

three phases (solid, liquid and gas). Therefore, the models describing the CA (subsection 2.2.1) 

cannot estimate the CAH value. Recently a modified Cassie-Baxter relation was proposed that 

more accurately predicts the apparent advancing and receding contact angles, based on the 

details of the local surface texture in the proximity of the contact line between the three phases 

(solid, liquid and gas) [3]. This takes into account the model for the movement of a droplet 

emerging from the above reported discussion [4]. Events that occur at any point on the contact 

line can contribute to hysteresis. No events occur over the area between the liquid and the solid 

away from the contact line. It is assumed that on surfaces with non-uniform roughness, the 

solid-liquid interface fraction (𝑟ɸɸ𝑠) and the liquid-gas interface fraction (1-ɸ𝑠) of Cassie 

Baxter equation represent the local area fractions of the solid–liquid interface and the liquid–

air interface, respectively, in the vicinity of the three-phase (solid–liquid–air) contact line 

[3,10].The lower solid-liquid area fraction fSL leads to a lower contact angle hysteresis (CAH). 

Consequently, the Cassie-Baxter state is preferred in designing  superomniphobic surfaces with 

high apparent contact angles (𝜃*) and low contact angle hysteresis [10]. Hierarchically 

structured surfaces that can support a contacting liquid droplet in the Cassie-Baxter state display 

even lower contact angle hysteresis compared with surfaces with a single scale of texture [10]. 

Hierarchical textured surfaces, i.e. surfaces with more than one length scale of texture, 

consisting of a finer length scale texture on an underlying coarser length scale of texture 

surfaces, are typical structure nature has been using to achieve superhydrophobic properties 

[11–16]. The reason for such a choice can be understood in the view of the above models. 

In conclusion  contact angle hysteresis is related [10] to energy barriers that a liquid droplet 

must overcome during its movement along a solid surface and thus characterizes the resistance 

to the droplet movement. Lower solid–liquid contact area leads to lesser contact line pinning 

(that is, lower resistance to droplet movement) and consequently lower contact angle hysteresis. 

Typically, hierarchically structured surfaces have significantly lower solid–liquid contact area 
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compared with surfaces that possess a single scale of texture. This results in significantly lower 

contact angle hysteresis 

2.2.3 CASSIE-WENZEL TRANSITION 

Superhydrophobicity can be achieved only if liquids stay on the surface in the fakir state (figure 

2.3), in which the droplet lay on the protrusions of solid, leaving underneath a gas cushion that 

permits to the liquids to roll off from the surface without wetting it. Unfortunately, fakir state 

is metastable and the fully-wetted state is stable, because of the gas-liquid interface 

characterized by higher interfacial energy than the solid-liquid interfacial energy. For such a 

reason, the system would like to substitute gas-liquid interface area with solid-liquid one, then, 

the liquid penetrates into the roughness fully wetting the solid, and the so-called Cassie-Baxter 

transition occurs [17]. Once the transition happens the droplet is pinned irreversibly to the 

surface. 

A possible strategy to avoid the Cassie-Baxter transition is to increase the energy barrier 

between these states (fakir and fully-wetted) by increasing the liquid-gas interface area (1 −

ɸ𝑠) in the equation 2.4), and reducing the ideal contact angle (𝜃 in the equation 2.1 and 2.3) by 

reducing the solid-gas surface tension 𝛾𝑠𝑔 (equation 2.1). Nevertheless, reducing the surface 

tension has some limitations, indeed the lowest surface tension solids are the fluorinated 

materials [18] so we cannot use materials with a lower surface tension than the fluorinated ones. 

Instead, theoretically, there is no limit for the expansion of the liquid-gas interface. 

Experimentally and confirmed by nature, the best way to increase the liquid-gas interface and 

reducing the solid-liquid contact area is to have at the surface a hierarchical structure [11–16] 

(i.e. surfaces with more than one length scale of texture, consisting of a finer length scale texture 

on an underlying coarser length scale of texture surfaces)  
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2.2.4 CONCLUSION 

According to the type of surface we can estimate the CA value by using three different models: 

Young, Wenzel and Cassie-Baxter. The wettability properties depend on the CA and 

particularly on the CAH. Indeed the CAH value is linked to the energy of the adhesion of the 

liquid in contact with the surface. Low CAH values permit a high slippery behaviour, and 

together with a high contact angle value (>150°) the surface can be considered 

superhydrophobic or superoleophobic. Liquid manifesting low CAH and high CA values can 

roll off from the surface without pinning phenomena. Typically, surfaces with such behaviour 

are characterized by low surface tension solid-gas and an hierarchical texture. 

 

2.3 SILICA-GEL PARTICLES – THEORETICAL BACKGROUNG 

Stöber in the 1968, discovered a process that from organosilane compounds (called precursors) 

can form silica-gel particles from tens of nanometers until microns, in alcoholic solution with 

acid or base catalysts at mild condition. The method, which from molecules bring to the 

formation of a gel matrix, is called sol-gel process. 

During the decades, sol-gel chemistry is spread for realizing different kind of materials. Indeed, 

mesoporous (pores from 2 until 50 nm) silica-gel particles was discovered by combining sol-

gel chemistry and the surfactants and polymer self-assembly properties. 

In this chapter is discussed , first, sol-gel chemistry related to the Stöber method, then 

mesoporous silica-gel particles process used in this work. 

2.3.1 STOBER METHOD 

Organosilanes, molecules possessing a silicon atom, linked to one or more groups that are 

organic, can react with water forming hydroxylated species according to the reaction: 

𝑆𝑖𝑋4  + 𝑛 𝐻2𝑂  −>   𝑆𝑖𝑋4−𝑛(𝑂𝐻)𝑛  +  𝑛 𝐻𝑋       (2.5) 
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𝑋 is an organic group, for instance –𝑂𝐶𝐻3 –𝑂𝐶𝐻2𝐶𝐻3  or other alcohoxide groups, that can 

be involved in hydrolysis reaction. The reaction is faster if the steric hindrance of the alcohoxide 

groups is smaller. Once the silanes react with water, the hydroxylated products can react in a 

condensation reaction (equation 2.6) that brings to the formation of dimers, and for further 

condensation, oligomers that turn in chains or particles in dependence to the reaction condition. 

The condensation reaction is stated here: 

2 ≡ 𝑆𝑖(𝑂𝐻)   −>   ≡ 𝑆𝑖 𝑂 𝑆𝑖 ≡  + 𝐻2𝑂       (2.6) 

During the proceeding of the siloxanes condensation a gel of silica is formed. 

Stöber was the first that found a way to control the formation of monodisperse silica-gel 

particles by using sol-gel method [19]. The reaction involves an organosilane, usually 

tetraethoxysilane (TEOS), reacting with water in an ethanol solution. Ammonia is used as 

catalyser that speeds up the hydrolysis and condensation reactions and for increasing the pH. 

Indeed, according to “aggregation” Bogush mechanism [20], at high pH, siloxanes monomers 

react forming small clusters few nanometers in diameter (that Bogush calls “nuclei”). Nuclei 

continuously form during aggregation process. The new nuclei aggregate preferentially with 

the particles already formed, making their size to increase, until nanometer nuclei are present 

in the reaction mixture. Such preference of the small nuclei to aggregate with the bigger 

particles, explains the monodispersity of sol-gel particles obtained by Stöber method. 

With a series of experimental results Bogush et al developed a tool to predict the average 

diameter of particles by using experimental equations that correlate the concentration of the 

species within the reaction mixture [21]. 

𝑑 = 𝐴 [𝐻2𝑂]2𝑒𝑥𝑝(−𝐵[𝐻2𝑂]
1

2)     (2.7) 

𝐴 =  [𝑇𝐸𝑂𝑆]
1
2 (82 + 51[𝑁𝐻3] + 1200[𝑁𝐻3]

2 − 366[𝑁𝐻3]
3) 

𝐵 = 1.05 + 0.523[𝑁𝐻3] − 0.128[𝑁𝐻3]
2 

https://it.wikipedia.org/wiki/Uguale#Il_simbolo_.E2.89.A1
https://it.wikipedia.org/wiki/Uguale#Il_simbolo_.E2.89.A1
https://it.wikipedia.org/wiki/Uguale#Il_simbolo_.E2.89.A1
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Where 𝑑 is the average diameter in nanometers and the species in brackets are given in mol/L. 

The equation 2.7 takes in account the correction made by Razink et al [22]. In fact, in the 

Bogush paper the equation of the 𝐴 parameter contains a typographical error, causing the 

presence of a minus sign before 51[𝑁𝐻3]. 

The equation 2.7 is valid at 25°C and for a concentration range of 0.1-0.5 for TEOS, 0.5-17.0 

M for water and 0.5-3.0 M for ammonia. Outside these ranges, the monodispersity is not 

guaranteed and/or the average diameter cannot be estimated with high accuracy. 

2.3.2 WRINKLED SILICA-GEL PARTICLES 

Since Mobil oil company synthesised the first mesoporous silica particles, several researchers 

have focused on the synthesis of new type of porous particles [23–31]  and on the application. 

Indeed, for the very large surface area per volume, mesoporous silica particles are used for 

many purposes and in many fields: solar cells [23], biological nanocarrier [32], drug delivery 

[33–35], catalysis [29,36],  

 

 

Fig. 2.8. SEM and TEM micrographs of the wrinkled particles following Moon et al 

procedure at different reaction time. 



28 

 

 

Recently, spherical silica with nanometer size and radial interconnected wrinkle structure have 

been synthesised (figure 2.8). The pores structure enhances the accessibility of functional 

materials and molecules, making the particles an optimum candidate as support materials for 

drug delivery and catalysis.  

 

 
Fig. 2.9. Schematic representation of the Winsor III system (upper picture) and 

macroemulsion with formation of wrinkled silica-gel particles (lower picture), with 

related samples. 

 

Formation of wrinkled structure is possible by combining sol-gel chemistry with the behaviour 

of the emulsion phases. Moon and Lee [37] demonstrated that wrinkle structure is produced in 

a bicontinuous microemulsion phase dispersed in water as macroemulsion. In their procedure, 

cyclohexane representing the oil phase, water, Cetylpiridinium bromide (CPB) and isopropyl 

alcohol with the role of stabilizers and urea as catalyst were mixed together. So as illustrated in 

figure 2.9, the ratio between the components permits the formation of the so called Winsor III 

system [38] characterized by a microemulsion phase in equilibrium with oil and water phases. 

Under stirring the microemulsion breaks up in small droplets forming a macroemulsion, in 
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where water is the dispersant. At this stage, TEOS is added into the system, and goes into the 

oil phase because of its hydrophobic behaviour. Water, thanks to the effect of urea, gradually 

hydrolyses TEOS according to the reaction 2.5. The pH of the water phase is higher then 7, this 

means all the hydrolysed products (silicate monomers) are negatively charged, therefore, they 

electrostatically interact with the positively charged surfactants (CPB) that cover the oil-water 

interface stabilizing microemulsion phase. At the interface the silicates react according to the 

reaction 2.6 forming the sol-gel skeleton of the particles. 

2.3.3 SUPERHYDROPHOBIC SURFACE BASED ON SILICA PARTICLES 

After the discussion regards the common processes involving formation of superhydrophobic 

and superolephobic surfaces shown in the subsection 1.2.3, in this subsection, we focus the 

attention on silica particles as patterning agent to build up superhydrophobic surfaces. 

As we know from the section 1.2, the way particles are applied onto substrate is important for 

realizing hierarchical structures achieving superhydrophobicity.  

If the substrate already possess micrometric roughness (such as fabric, sponge and foam) 

applying hydrophobic silica particles reduce the surface tensions of the interface and adds a 

roughness at nanometre level that guarantees the formation of the hierarchical structure. For 

instance, Salehabadi et al decorated sponges with hydrophobic fumed silica particles realizing 

superhydrophobic sponges [39]. Khan et al deposited silica particles onto papers and 

polyurethane foam [40]. Guo et al synthetized silica-gel particles on PET fabric in situ and then 

they rendered the fabric superomniphobic and superhydrophobic by surface reaction with 

perfluorodecyltrichlorosilane and dodecyltrimethoxysilane respectively [41].  

For flat substrate, the procedure for applying silica particles is crucial, since the material added 

onto the substrate need to form hierarchical structure. For instance, a way to improve the 

roughness is using a mixture of different silica particles with different average diameter in order 

to avoid particles close-packing on the surface. Song et al used a mixture of three different silica 
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particles with average diameter of 5 µm, 600 nm and 200 nm applied on the substrate by spin-

coating. Zhi et al formed a superhydrophobic surface building two layer of particles: the first 

possess bigger particles made of 50-100 µm in diameter and the upper layer contains particles 

of 7-40 nm in diameter [42]. Zhang et al used a mixture of Polyvinylpyrrolidone and aggregates 

of 1 µm of particles of 50 nm in diameter [43]. Bravo et al built up a surface applying polyamine 

and a mixture of 50 – 20 nm in diameter silica particles using layer by layer technique [44]. 

Wang used 50-150 nm fluorinated silica particles on fabrics, paper and glass realizing in all 

cases superhydrophobic surfaces [45]. 

Then, raspberry, mesoporous particles and aggregates of smaller particles can build up 

hierarchical structure once applied on the surface thanks to their nano roughness. Sun et al 

formed superhydrophobic surfaces by deposition of clusters (100 µm in diameter) of silica 

particles (450 nm) on glass [46]. Anitha et al synthetized mesoporous silica particles from rice 

husk and after silane treatment enhanced the wetting nature of the particles resulted in 

superhydrophobicity [47]. Bai et al synthesised hollow mesoporous silica particles and used 

loaded with dodecyltrimethoxysilane. Superhydrophobic surfaces were fabricated by spray 

coating of the loaded particles that stack structure and polydimethylsiloxane (PDMS) as 

hydrophobic interconnection [48]. Yildirim et al prepared superhydrophobic coatings by spin-

coating of sol containing hydrophobic particles and mesoporous fluorinated particles [49]. 

Pereira et al realized superomniphobic surfaces by in situ incorporation of fluorinated 

mesoporous silica nanoparticles of ~45 nm [50]. 

An other way for hierarchical structure formation is using spray-coating technique of mixtures 

of polymers and particles. Hejazi et al spray-coated a surface with a mixture of polyurethane 

tetrahydrofuran and ethanol with hydrophobic silica particles. During the solvent evaporation, 

the polyurethane formed a rough layer decorated of hydrophobic particles[51].  

Brassard et al studied the effect of varying diameter of fluorinated silica particles applied on 

flat substrate by spin-coating. They used particles from 40 up to 300 nm and found that 
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superhydrophobicity is achieved from ~120 nm on thanks to surface roughness with size up to 

~0.7 µm [52]. 

 

2.3.4 CONCLUSION 

In this paragraph, the chemistry of the sol-gel process, for formation of Stöber particles and 

Moon and Lee wrinkled silica-gel particles [37], were briefly described. The high porosity of 

the wrinkled particles explain the choice to use this system for building a hierarchical texture 

by applying such particles on surfaces. Then, we outlined the possibilities of using silica 

particles to build up superhydrophobic surfaces. 

 

2.4 PICKERING EMULSION – THEORETICAL BACKGROUND 

The past decade has witnessed tremendous progress in diversifying synthetic strategies for the 

preparation of Janus particles (particles with two sides possessing different physical-chemical 

properties, so as reminded in subsection 1.3.3) with the aim to include diverse functionalities, 

as well as finding ways toward a scale-up [53]. In this PhD project, we choose one of this 

approach: the reaction of particles at an oil in water (O/W) Pickering emulsion of a molten wax.  

In this Section, the emulsification process is explained by reviewing on the forces involved in 

the formation of the dispersed droplets in the continuous phase, and the type of emulsion 

stabilizers. 

2.4.1 EMULSION 

An emulsion is constituted by a liquid phase dispersed in a non-miscible liquid. The fine 

dispersion of one phase within the other, usually, is a thermodynamically unfavourable process. 

Indeed, to fine disperse a phase in the other, the total energy of the system should increase, 

because of the formation of new interface among the liquids. 
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𝛥𝐺 = 𝐴 𝛾      (2.8) 

In the equation 2.8 is reported the variation of the total free energy of Gibbs 𝛥𝐺 when the 

system, constituted by two macroscopically separated phases, undergoes to a fine dispersion of 

one phase into the other. 𝛥𝐺 is directely proportional to the variation of the liquid-liquid 

interface area 𝐴 after the mixing and to the liquid-liquid interfacial tension 𝛾. Once the system 

is mixed, coalescence events bring back the system to the initial state characterized by the 

minimum energy. Forming a stable emulsion is still possible by adding into the mixture a 

stabilizer, usually molecules (surfactants or polymers) or colloidal particles that reduce the 

interfacial energy among the liquids and create a barrier to coalescence.  

Along with the stabilizer, the energy input is an important parameter to break up the emulsion 

in fine droplets. 

2.4.2 FORCES INVOLVED IN THE EMULSIFICATION PROCESS 

To break apart the droplets in the continuous phase, a force should be applied by mixing systems 

(ultrasounds, magnetic stirring, rotor-stator systems, etc.). Nevertheless, the forces applied 

should be higher then the forces that keep the droplets together, otherwise, the droplet will not 

be disrupted. 

Laplace pressure 

The pressure inside the droplets is higher than the pressure in the surrounding continuous phase. 

This pressure difference (inside and outside the droplet) is called Laplace pressure, which 

depends on the droplet shape and curvature and the interfacial tension (equation 2.9). 

∆𝑃 =
2𝛾

𝑅𝑑
      (2.9) 

The above equation is valid for spherical droplets with radius 𝑅𝑑 and interfacial tension 𝛾. 

Therefore the smaller the droplet the higher its internal pressure. 
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Weber number 

The external force, opposing the force that keeps the droplet together, is complex to estimate 

because of the fluidic dynamic complexity of the phenomenon and the uncertainty of the 

external flow regime. For this reason, Weber number, a dimensionless parameter is used for 

quantifying and simplifying the breaking up process.  

Weber number is the ratio between the external disruptive forces (shear stress) and the forces 

that keep the droplets together, that in many situation corresponds only to the Laplace pressure. 

Instead, for very short time mixing, the viscosity of the dispersed phase needs to be taken into 

account together with Laplace pressure, because the viscosity causes a slow reaction to the 

external stress.  

The common expression for Weber number, considering spherical droplets and long mixing 

time is reported in the following equation: 

𝑊𝑒 =
𝜏 𝑅𝑑

2𝛾
      (2.10) 

 

 

Fig. 2.10. Critical Weber number for laminar flow versus the viscosity ratio of the 

dispersed and continuous phases [54]. 

 

𝑊𝑒 is the Weber number,  𝜏 rappresents the external stress that depends on the type of regime: 

laminar, turbolent, high tubolent, and 𝑅𝑑 is the drop radius. If the Weber number excedes a 
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critical value, called critical Weber number 𝑊𝑒𝑐𝑟, the breaking up of the droplets occurs. 𝑊𝑒𝑐𝑟 

is usually a number around one, but more precisely, is a function of the viscosity ratio of the 

dispersed and continuous phases, and the flow regime too. For instance, Grace et al estimated 

the critical Weber number for laminar flow [54], the graph is reported in figure 2.10. 

Disruptive forces 

The mixing system imposes a shear flow that exerts a stress on the droplet that cause the 

breaking apart of the dispersed phase (if the critical Weber number is exceeded). In the case of 

a laminar flow, the disruptive stress is estimated according the following equation: 

𝜏 = 𝜂 (
𝑑𝑣

𝑑𝑧
) = 𝜂�̇�      (2.11) 

Where 𝜂 is the viscosity of the continous phase and �̇�  is the shear rate. 

In the case of a turbulent flow regime the disruptive stress can be estimated through the 

Kolmogorov theory (equation 2.12). 

𝜏 =  √𝜀𝜂      (2.12) 

Where 𝜀 is the power density (W/m3) or rather the amount of energy per volume.  

When the droplet radius is larger than the value in the equation 2.13,  

𝑅𝑑 > 
𝜂2

𝜌𝛾
      (2.13) 

turbulent regime becomes very intense, and the shear stress can be estimated with Bernouilli 

equation: 

𝜏 = √𝜀2 𝑅𝑑
5 𝜌

3
      (2.14) 

Where 𝜌 is the density of the continuous phase. 

According to the type of flow regime, it is possible to estimate if the parameters are well set to 

finely break up and disperse one phase into the other. Nevertheless, once the droplets are 

dispersed in the continuous phase they try to coalesce into larger droplets, the driving force for 
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the coalescence process is the reduction of the total free energy due to the interface area 

reduction (see equation 2.8). For stabilizing the droplets and avoiding coalescence the system 

needs stabilizers.  

2.4.3 STABILIZERS 

The stabilizers can be amphiphilic molecules, polymers and crystals, and colloidal particles. 

Amphiphilic molecules have a side manifesting more affinity with a phase and the other side 

more affinity for the other phase. They reduce the interfacial tension among the phases and 

stabilize the emulsion, avoiding the coalescence by steric hindrance and by electrostatic 

repulsion if the stabilizer contains charged moieties. 

Polymers and crystals stabilize the emulsion by forming a network that entraps droplets of the 

dispersed phase, in this way the droplets cannot encounter each other and coalesce, because of 

the high viscosity of the continuous phase. 

Even colloidal particles could be used as stabilizer, but only if the particles has a partial affinity 

with both phases. In this case, the particles adsorb onto the interface working as an amphiphilic 

molecules: one part is within the dispersed phase and the other part stick out into the continuous 

phase. This type of emulsion, called Pickering emulsion, is characterized for better emulsion 

stability if compared to classical surfactants as emulsifiers. 

2.4.4 PICKERING EMULSION 

The high stability given from colloidal particles is due to two main reasons: 

1. Particles reduce liquid-liquid interface (characterized by high surface tension). 

2. Formation of a shield of particles obstructs the coalescence of the dispersed droplets in the 

continuous phase. 

In this subsection, we evaluate the stability of a Pickering emulsion by a thermodynamic type 

of experiment. Imaging a system constituted of two phases (phase 1 and 2) and spherical smooth 
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particles, we calculate the free energy of the system versus the immersion depth of the particle 

into these two phases [55]. Figure 2.11 can help to visualize the system. 

 

 

Fig. 2.11. Schematic representation of a spherical smooth particle at two non-miscible 

liquids interface [56]. 

 

In this calculation, all dynamics (kinetics) and external force fields, such as gravitational, 

electrical, optical and magnetic are ignored. We also do not consider electrostatic (Coulombic) 

interactions, dielectric effects and van der Waals interactions. We simply consider the energy 

related to the three type of interfaces within the system. Then each term is multiplied by the 

corresponding contact area and sum all together, varying the height of the particles 𝑧 [56].  

𝑧0 =
𝑧

𝑅
      (2.15) 

𝑧0 is the ratio between 𝑧 and the particle radius 𝑅.  

𝑆𝑃 = 4𝜋𝑅2 ; 𝐴𝑐 = 𝜋𝑅2      (2.16) 

𝑆𝑃 is the particles surface area and 𝐴𝑐 is the area of the circle with radius 𝑅. 

𝐸𝑃1 = 𝜎𝑃1𝑆𝑃
(1+𝑧0)

2
      (2.17) 

𝐸𝑃2 = 𝜎𝑃2𝑆𝑃
(1−𝑧0)

2
      (2.18) 

𝐸12 = −𝜎12 𝐴𝑐(1 − 𝑧0
2)      (2.19) 
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𝐸𝑃1, 𝐸𝑃2 and 𝐸12 are the free energy of the particle-phase 1, particles-phase 2 and phase 1-phase 

2 interfaces respectively, and 𝜎𝑃1, 𝜎𝑃2 and 𝜎12  are the related surface tensions. 

When the particle is in both two phases (-1<𝑧0<1), we need to count the interfacial free energy 

from the particle-phase 1 and particles-phase 2, while the interfaces between phase 1 and phase 

2 is occupied by the particle. For the reason, the 𝐸12 negatively contribute to the total energy of 

the system 𝐸0 (equation 2.20). 

𝐸0 = 
𝐸𝑃1+𝐸𝑃2+𝐸12

𝑘𝐵𝑇
      (2.20) 

When the particles is half in the phase 1 and phase 2 𝑧 = 0. 

 

 

Fig. 2.12. Schematic representation of quadratic energy for a polystyrene spherical 

smooth particle with radius of 100 nm at water-hexadecane interface [55]. 

 

In figure 2.12 shows the energy of polystyrene spherical particle 𝐸0 with radius of 100 nm at a 

water-hexadecane interface. According to the graph, the equilibrium state (minimum energy) 

correspond to a position where the particles is partially immersed in both phases (𝑧0  ̴0). 

The energy barrier for particles to escape at the interface drops considerably in the case of rough 

particles. Ballard and Bon [57] showed this effect experimentally by using Lycopodium spores 

that were decorated in a mesh of interpenetrating polymer nanoparticles. They theoretically 

supported the results by showing the energy of four systems: oil-water interfaces stabilized by 
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smooth polystyrene and polyHEMA particles, buckyball type mesh polystyrene and 

polyHEMA particles reported in figure 2.13. In the graph is clear that in the case of rough 

particles there is no high energy barrier for the particles to escape from interface, for the reason, 

rough particles are weaker stabilizer than smooth particles in Pickering emulsion. 

 

 

Fig. 2.13. Position of a smooth sphere of polystyrene (–––)  and of polyHEMA (‧ ‧ ‧) and a 

buckyball type structure of polystyrene (– – –) and polyHEMA (– ‧ –) at the oil–water 

interface and illustration of predicted contact angles for (from left to right) a buckyball 

type structure of polyHEMA, a polyHEMA sphere, a polystyrene sphere and a 

polystyrene buckyball structure [57].  

 

2.4.5 CONCLUSION 

In this Section  the disruptive forces and different type of stabilizers, necessary elements for the 

production of an emulsion are described.  

Among the stabilizer agents, the attention was focused on the Pickering emulsion obtained by 

using colloidal particles. The high stability effect coming from colloidal particles was explained 

with thermodynamic estimations of the energy barrier that obstructs the removing of particle 
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from the oil-water interface, drawing a comparison between smooth and rough particles. Such 

a comparison is important in our project for the interest in the Pickering emulsion preparation 

by using wrinkled silica-gel particles as stabilizer. 
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3. EXPERIMENTAL PART 

 

3.1 INTRODUCTION 

In this chapter the experimental procedure for the Janus wrinkled silica-gel particles (JWSP) is 

described. First the synthesis of smooth and wrinkled silica-gel particles is described, followed 

by Pickering emulsion preparation by using liquid wax, water and silica-gel particles as 

stabilizers. Then surface functionalization of one face to make wrinkled particles hydrophilic-

hydrophobic Janus particles and finally, the second surface functionalization for grafting 

polymer chains (compatible with polypropylene) to JWSPs is described. 

 

3.2 MATERIALS 

Acetone (>99.9% purity), aminopropyltriethoxysilane APTES (99% purity), ammonium 

hydroxide solution ( ̴25 % wt), cetylpiridinium bromide CPB (>97% purity), 

cetyltrimethylammonium bromide CTAB (>90% purity), chloroform (>99% purity), 

cyclohexane (99.5% purity), dichlorodimethylsilane DCDMS (>99.5% purity), ethanol 

(>99.9% purity), hydrochloride acid (37 % wt), iso-propanol (99.5% purity), maleic anhydride-

graft-polypropylene PPgMA (Mw ~ 9,100, Mn ~3,900 by GPC, maleic anhydride 8-10 % wt), 

n-hexane (85%), paraffin wax (53-57 °C melting range) , tetraethoxysilane TEOS (99.999% 

purity), anhydrous toluene (99,8% purity) were purchased from Sigma-Aldrich and used 

without further purification. Double distilled water was purchased from Microtech Srl. 

 

 

http://www.sigmaaldrich.com/catalog/product/aldrich/427845
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3.3 SILICA-GEL PARTICLES 

The synthetic procedure of smooth Stöber and wrinkled silica-gel particles is described in this 

Section (for theoretical details see Section 2.3).  

3.3.1 STOBER PARTICLE SYNTHESIS 

Stöber silica-gel particles were synthesised by using the experimental equation of Bogush [1] 

taking into account the correction found by Razink [2]. In order to obtain particles of 300 nm 

diameter, the concentration of ethanol, water, ammonia and tetraethoxysilane (TEOS) are 18 

mol/L, 0.17 mol/L and 1.0 mol/L respectively. After the addition of TEOS, the mixture was 

stirred for 1 h, then the particles were rinsed and concentrated by centrifugation (at 12000 rpm 

for 3 min) where the supernatant was replaced by ethanol; finally the mixture was sonicated 

until the particles were completely dispersed. The same procedure was then repeated three times 

by replacing the supernatant with water. The final concentration of the silica-gel particles water 

dispersion, evaluated by weighting the residue of a known amount of dispersion, was 10.88% 

on the total mass solution basis. 

A small amount of dry silica particles were put on a carbon tape on an aluminium stub and 

sputter-coated with a thin gold-layer for SEM analysis. 

DLS measurements were performed for measuring the average diameter of the particles. 

Samples were prepared by diluting particles dispersions at ~1mg/mL, for avoiding double 

scattering phenomenon. Each measurement was repeated at least 3 times. 

3.3.2 WRINKLED PARTICLES SYNTHESIS 

In this PhD work, Moon and Lee procedure is followed [3]. 

First, 8.96 g of CPB and 5.38 g of urea were dissolved in 268 mL of water. Subsequently, 268 

mL of cyclohexane and 8.24 mL of iso-propanol were added to the solution. With vigorous 

stirring, 24.0 mL of TEOS was added dropwise to the mixed solution. After stirring for 30 min 

at room temperature, the reaction mixture was heated up to 70 °C, and this state was maintained 
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for 16 h. The reaction mixture was centrifuged at 12000 rpm for 6 min, dispersed in acetone by 

sonication, then centrifuged again and dispersed in acetone:water=2:1 twice. At the end of this 

step, particles were rinsed in 500 mL of ethanol and 40 mL of hydrochloride acid solution for 

24 hours at 70 °C. Subsequently, the procedure was implemented to better clean the particles 

surface. Dispersion was centrifuged at 12000 rpm for 3 min and sonicated in ethanol, each step 

for 8 times, to remove small nanoparticles and then,  they were rinsed in 500 mL of ethanol and 

40 mL of acid chloride solution for 24 hours again at 70 °C to completely remove the surfactant 

from silica-gel nanoparticles, and washed trice in ethanol. The concentration of the solution is 

evaluated by weighing the residue of a dispersion aliquot. 

A small amount of dry wrinkled particles were put on a carbon tape on an aluminium stub and 

sputter-coated with a thin gold-layer for SEM analysis.  

The particles were analyzed by TEM by immersing and removing carbon grids into diluted 

particles dispersion in ethanol (~1mg/mL) and after letting dry the solvent, the grid was 

introduced into the TEM sample holder. 

DLS measurements were performed for measuring the average diameter of the particles. 

Samples were prepared by diluting particles dispersions at ~1mg/mL, for avoiding double 

scattering phenomenon. Each measurement was repeated at least 3 times. 

Wrinkled particles coated glass substrate were analyzed by AFM technique. The coated 

substrate were prepared by applying particles layers on the glass by dip-coating technique. 

 

3.4 PICKERING EMULSION 

The procedure for preparing O/W emulsions of liquid paraffin wax and water by using smooth 

Stöber and wrinkled silica-gel particles is described in this Section.  
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3.4.1 EMULSION WITH STOBER PARTICLES 

The samples were prepared at fixed ratio of wax and water (1:10 g/g); 97.92 mg of silica-gel 

particles, instead, the optimizable parameters are: CTAB concentration, the type of mixer and 

the method of wax addition. 

First, CTAB and particles solution were prepared by slow addition of a CTAB stock solution 

(0.192 mmol/L  ̴ cmc/5) into the silica dispersion under magnetic stirring. The concentration of 

particles in the final solutions and the pH was 3.93 mg/mL and 9.0 respectively. 

Zeta potential of the particles in silica-CTAB dispersions were measured to evaluate the CTAB-

surface particles interaction at different CTAB concentration and fixed amount of particles 

(3.93 mg/mL). 

The silica-CTAB dispersions (~20 mL) were heated at 75 °C in an oven. The hot mixtures were 

placed on a heating plate and the mixing was started, when the mixer was turned on, the melted 

wax was added into the vortex. The mixer apparatus used in this work are high shear disperser 

(T25 digital ULTRA-TURRAX ®, S 25N-18G dispersing element) and an overhead stirrer 

(IKA ® RW18 basic). The heating plate was regulated for maintaining the temperature at 75 

°C for 2 minutes (zero time corresponds when all the liquid wax was poured). After this time 

the dispersions were quenched by pouring the emulsion into 100 mL of cold water ( ̴ 4 °C) for 

rapidly solidifying the wax and avoiding aggregation phenomenon. The mixtures were filtered 

and the colloidosomes were rinsed with 200 mL of distilled water.  

The supernatants from each preparation were centrifuged (12000 rpm for 4 min) to collect 

residues and particles. Afterwards, the centrifuged residues were mixed at 5000 rpm for 30 min 

in white spirit to solubilize wax residues, and then the dispersion in white spirit was centrifuged 

and dried in the oven at 100°C overnight. The difference between the initial amount of particles 

and the dried residue gave the yield of the process. 

 



48 

 

Procedure I 

This procedure is the same used for the preparation of colloidosomes by Stöber particles 

(subsection 3.3.1). Since in this procedure we used CTAB-particles dispersions, the interactions 

of wrinkled particles with CTAB had to be investigated. CTAB aqueous solution were poured 

drop by drop into particles dispersion up to reach the desired CTAB concentration (~1mg/mL 

of particles concentration). Subsequently, Zeta potential measurements of wrinkled particles 

were collected for the sample as prepared. 

Procedure II 

The adopted protocol is a modification of the Jiang et al procedure [4–6]. First,~26 g of the 

ethanol dispersion containing 2.6 g of wrinkled silica-gel particles were centrifuged and 

dispersed in acetone and then were poured in a beaker with 59 g of paraffin. The acetone was 

evaporated first under air flow and then under vacuum to remove all the acetone. The paraffin 

with dry wrinkled silica-gel particles were heated up to 75 °C and then stirred in order to 

disperse the particles into the melted paraffin. 590 g of water at 75 °C were then added to the 

system and the mixture was stirred at 1300 rpm for 15 min to produce an emulsion. 

Subsequently the system was quenched by pouring the mixture into 1.5 L of cool water (around 

4 °C) in order to obtain solidified paraffin wax spheres covered by wrinkled micro-particles 

(colloidosomes). The suspension was then filtered with a Whatman filter, and the deposit 

washed with water. The colloidosomes were dried under vacuum (1 mmHg) for 2 days. 

Procedure III 

A CTAB-particles dispersion is prepared by slow addition of a CTAB stock solution (0.9606 

mM) into a particles water dispersion, containing 0.1508 g of particles, until the final CTAB 

concentration is 0.12mM in 40g of water. The dispersion was centrifuged (12000 rpm 3min) 

and the residue was dried out at 120 °C for 1.5 h. 
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Dry particles and 16 g of melted paraffin wax was tip-sonicated for 10 minutes, then the mixture 

was added into 160 g of hot water (75 °C) and the system was emulsified by an high shear 

mixer (Ultraturrax) at 9000 rpm for 2 min. Later on, the emulsion was quenched by pouring 

into 200 mL of cold water. The suspension was then filtered with a Whatman filter, and the 

deposit washed with water. The colloidosomes were dried under vacuum (1 mmHg) for 2 days. 

3.4.3 SEM SAMPLE PREPARATION 

All the colloidosomes prepared in this project were analysed by SEM. Before scanning, dry 

colloidosomes powder were put onto aluminum stubs covered by carbon tape and sputter-coated 

with a thin gold-layer to enhance the imaging quality. 

 

3.5 SURFACE FUNCTIONALIZATION 

In this Section, the first face functionalization obtaining the hydrophobic-hydrophilic JWSPs 

and then the second functionalization for grafting the polymer part onto Janus particles are 

illustrated. 

3.5.1 HYDROPHILIC-HYDROPHOBIC JANUS PARTICLES 

Functionalization was performed through vapour deposition following a procedure reported in 

the literature [4]. The vapour deposition apparatus is shown in figure 3.1.  

Dry nitrogen was bubbled through 8.0 g of DCDMS for 30 min that carried the silane vapour 

through the support containing the colloidosomes (wax particles covered by silica-gel 

particles). In order to promote homogeneous surface chemical modification, the “reactor 

chamber” was gently rolled every 5-10 min to move colloidosomes around. The bubble speed 

was chosen as 2-3 bubbles/s. After exposure to the silane vapour for the needed time,a dry 

nitrogen flow was passed through the apparatus containing the colloidosomes for 30 min to 

blow away any residual silane vapour.  
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Fig. 3.1 Apparatus for the surface functionalization of wrinkled particles immobilized on 

the wax colloidosomes. 

 

In order to take the Janus particles out of the colloidosomes, a rinsing in n-hexane was needed. 

Therefore, the particles were rinsed and centrifuged thrice in n-hexane and thrice in ethanol and 

then stored in ethanol dispersion. 

SEM micrographs were collected to verify the unchanging of the mesoporous structure after 

the functionalization. A small amount of dry silica particles were put on a carbon tape on an 

aluminium stub and sputter-coated with a thin gold-layer for SEM analysis. 

IR spectra of the functionalized particles were collected. Dry powder samples were located onto 

the attenuated total reflectance (ATR) accessory, and by means of a metal tip, the sample was 

compressed on the reflecting crystal to enhance the adhesion and hence increasing the IR 

adsorption obtaining a spectrum with a good intensity-noise ratio. 

DLS measurements were performed for measuring the average diameter of the particles. 

Samples were prepared by diluting particles dispersions at ~1mg/mL, for avoiding double 

scattering phenomenon. Each measurement was repeated at least 3 times. 

The wettability properties of Janus particles coated substrate were evaluated. The coated 

substrate was prepared by drop-casting from an ethanol dispersion of particles, then, by a 

camera, the contact angle of different liquids and the hysteresis of contact angle and roll-off 
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angle of water droplets were collected. Each parameter was collected at least three times and in 

different position of the substrate. 

Hydrophilic-hydrophobic Janus particles coated glass substrate were analyzed by AFM 

technique. The coated substrate were prepared by applying particles layers on the glass by dip-

coating technique. 

3.5.2 POLYMER GRAFTING ON JANUS PARTICLES 

Reaction with APTES 

The grafting of the polymer part (anhydride-graft-polypropylene) can be performed by using a 

coupling compound: aminopropyltriethoxysilane (APTES) [7] APTES is expected to link to 

silica particles through condensation reaction of its alcoxy groups with JWSPs surface silanols. 

Moreover, the reaction may be promoted between the APTES amino groups and PPgMA maleic 

anhydride side groups, hence the grafting step with APTES is necessary. 

A dispersion of JWSPs in ethanol was prepared with a concentration of 5 mg/mL, then APTES 

was added to the system reaching a concentration 1.13 mmol/L of APTES. The mixture was 

stirred overnight and then cleaned by centrifugation (12000 rpm 3 min) substitution of the 

supernatant with ethanol then sonicating and sonication for three times. 

Because of the low amount of APTES at the particles surface, XPS turned to be the only 

technique can detect the presence of nitrogen, atom that belongs to the APTES molecules only. 

Dry powder sample was mounted on a conducting copper holders and the XPS was recorded 

on as presented sample. 

Reaction with PPgMA 

APTES grafted JWSPs dispersion in ethanol is centrifuged to collect the particles, then dried 

out in the oven at 120 °C for 1.5 h. The particles were dispersed into xylene and sonicated until 

complete dispersion of the particles residue. 
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A polymer solution of maleic anhydride-graft-polypropylene (PPgMA) were prepared by 

mixing PPgMA pellets into xylene at 100 °C under magnetic stirring until complete dissolution 

(~10 min). Polymer solution was poured into APTES grafted JWSPs toluene dispersion at 80°C 

under magnetic stirring. The reaction was carried out for 3 hours. The amount of the species 

are: 80 mg of APTES grafted JWSPs, 20 mg of PPgMA and 20 mL xylene. 

After the reaction, the mixture was centrifuged (12000 rpm 4 min) and the residue was sonicated 

in xylene. This cleaning step was repeated three times to remove unreacted PPgMA. 

PPgMA grafted JWSPs were analyzed by TEM by immersing and removing carbon grids into 

diluted particles dispersion in xylene (~1mg/mL) and after letting dry the solvent, the grid was 

introduced into the TEM sample holder. 

IR spectra of the PPgMA grafted JWSPs were collected. Dry powder samples were located onto 

the attenuated total reflectance (ATR) accessory, and by means of a metal tip, the sample was 

compressed on the reflecting crystal to enhance the adhesion and hence increasing the IR 

adsorption obtaining a spectrum with a good intensity-noise ratio. 

PPgMA grafted JWSPs xylene dispersion was used to coat polypropylene substrate by dip-

coating method. After sample drying, SEM micrographs of the substrate were collected before 

and after annealing at 160 °C for 1h. 
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4. CHARACTERIZATION TECHNIQUES 

 

4.1 INTRODUCTION 

Every Section of this chapter focus on a specific characterization technique used in this PhD 

project. Therefore, each Section contains: theoretical background and the type of instrument 

used in this project. 

 

4.2 X-RAY PHOTOELECTRON SPETROSCOPY 

In this project, X-ray photoelectron spectroscopy (XPS) technique was used to detect the 

relative amount of atom species at the surface of Janus particles modified with 

aminopropyltriethoxysilane. XPS, also known as ESCA (Electron Spectroscopy for Chemical 

Analysis), is the most widely used surface analysis technique because of its relative simplicity 

in use and data interpretation. 

4.2.1 XPS THEORY 

XPS is a technique based on the photoelectric effect, as enunciated by Einstein in 1905. Early 

experimental observations showed that there is a threshold in frequency below which light, 

regardless of intensity, fails to eject electrons from a metallic surface. This is a natural 

consequence of the postulate that light consists of photons of energy 𝐸 

𝐸 = ℎ𝜈      (4.1) 

where ℎ is the Planck’s constant and 𝜈 is the frequency [1]. The energy associated with the 

threshold frequency 𝜈𝑐 is a measure of the strength of the potential barrier at the surface of the 
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material that prevents conduction electrons from escaping into empty space. This is called the 

work function 𝜙 [2] so that 

𝜙 = ℎ𝜈𝑐      (4.2) 

Typical values of work function are in the range 2 to 6 eV. 

At frequencies above 𝜈𝑐, the excess energy of the photon above 𝜙 provides photoelectrons with 

a kinetic energy, whose maximum value is 

𝐸𝑘𝑖𝑛
𝑚𝑎𝑥 = ℎ𝜈 − 𝜙      (4.3) 

The maximum kinetic energy is associated with electrons emitted from the Fermi level 𝐸𝐹, i.e. 

from the highest lying occupied electronic states of the material. Electrons whose energy levels 

lie below the 𝐸𝐹 emerge with correspondingly less kinetic energy: 

𝐸𝑘𝑖𝑛 = ℎ𝜈 − 𝜙 − 𝐸𝐵      (4.4) 

where 𝐸𝐵 is the electron binding energy.  

With photon energies in the ultraviolet region of the electromagnetic spectrum only loosely 

bound valence band electrons can be ionized, but under irradiation with soft X-rays both core 

and valence levels are accessible. Laboratory based x-ray photoelectron spectroscopy (XPS) 

experiments are commonly carried out using Al Kα or Mg Kα lines, with photon energies of 

1486.6 eV and 1253.6 eV respectively. Core level binding energies are essentially characteristic 

of an element so that core XPS provides a means of chemical analysis. 

XPS sampling depth 

Soft X-rays may penetrate several hundreds of nanometres into a solid, so that photoelectrons 

are generated with a significant flux quite deep into the bulk of the solid. However, the electrons 

may be inelastically scattered as they propagate toward the surface. The electron mean free path 

𝜆 is a measure of the mean distance that an electron travels before suffering an inelastic 

scattering event inside a solid. The photoelectron flux is attenuated from a value 𝐼0 at a distance 
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𝑑 beneath the surface to a value 𝐼 at the surface according to a Beer Lambert type attenuation 

law: 

𝐼 = 𝐼0 − 𝑒−
𝑑

𝜆      (4.5) 

90% of flux comes from a region within 3𝜆 of the surface. Figure 4.1 shows the electron mean 

free path 𝜆 as a function of kinetic energy for a few selected materials [3]. It can be seen that in 

the kinetic energy range of interest in XPS measurements (5 eV to 1500 eV) the mean free path 

of electrons varies from about 5 Å to 15 Å. This means that the peaks in X-ray photoelectron 

spectra are due to those electrons generated within the first few atomic layers of the material. 

This gives rise to the characteristic surface sensitivity of XPS when applied to solids. 

 

 

Fig. 4.1. Mean-free paths in different elements as a function of kinetic energy. The general 

trend is called "universal curve" since the data shows no systematic dependence on the 

nature of the solid. 

 

Binding energy 

A rigorous theory of binding energies makes use of first principle methods to calculate the 

difference between the total energy of a final state (N-1) and its initial ground state N [3]. 
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However, a simple approach for the estimation of the changes of binding energies of core 

electrons in ionic solids referring only to macroscopic thermodynamic quantities is based on a 

Born-Haber cycle and the so-called equivalent core approximation. 

Figure 4.2 depicts this method for a crystalline insulator. If an ion of nuclear charge Z is taken 

out of the solid, its energy changes by the Madelung energy 𝐸𝑀
𝑍 . The resulting free ion is then 

photoionized, a process that requires the binding energy of the orbital under consideration in 

the free ion 𝐸𝐵 (ion). In the “equivalent core approximation”, the photoionized ion is a 

approximated by a (Z+1)-ion: the equivalent-core approximation model assumes that provided 

the spatial extension of a core electron is small compared to that of the valence electrons, the 

photoionization of a core level can be approximated by the hypothetical addition of a proton to 

the nucleus. The ion is put back into the lattice, gaining the Madelung energy for the (Z+1)-ion. 

The sum of the energies of the cycle estimates the binding energy measured by XPS for the 

chosen orbital in the solid. It is the sum of the binding energy of that orbital in the free ion and 

the Madelung term for unit charge. 

 

 

Fig. 4.2. Born-Harber cycle describing photoionization of an insulator, which includes the 

equivalent core approximation.  
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4.2.2 XPS INSTRUMENT 

XPS were taken with Thermo Scientific K-Alpha spectrometer using a 72 W monochromated 

Al K alpha source (hν = 1486.6 eV). The X-rays are microfocused at the source to give a spot 

size on the sample of 400 microns in diameter. The analyser is a double focusing 180 degree 

hemisphere with mean radius 125 mm. It is run in constant analyser energy (CAE) mode. The 

pass energy was set to 200 eV for survey scans and 50 eV for high resolution regions. All XPS 

were referenced according to the adventitious C 1s peak (285 eV). 

 

4.3 ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY 

Functional group detection was necessary to understand the excellence of functionalization 

reaction done in this work. We collected IR spectra of the samples by using Attenuated Total 

Reflectance technique (ATR). 

4.3.1 IR SPECTROSCOPY THEORY 

Infrared (IR) spectroscopy is a non-destructive technique for gaining structural information and 

identifying the chemical bonds in unknown compounds. This information is important for 

qualitative as well as quantitative determination of the chemical compounds used in various 

scientific areas of research. 

 

 

Fig. 4.3. Electromagnetic spectrum with IR zone hightlighted. 
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The infrared range of the electromagnetic spectrum covers the wavelength region from 25 µm 

to 1 mm, which conforms to the wavenumber range 40.000-100 cm-1 (figure 4.2). It is split in 

the Near-IR (NIR), the Mid-IR (MIR) and the Far-IR (FIR) region. It is neighbour to the visible 

region on one side and the microwave region on the other. All regions in the electromagnetic 

region can be described by energy 𝐸 and its relationship with frequency ν measured in hertz 

(Hz), which is the number of waves per second (equation 4.1). 

We can convert the frequency ν to wavenumber �̅�, the units employed in IR spectroscopy by 

equation 4.6 that transforms the equation 4.1 into the equation 4.7. 

ν = 𝑐�̅�      (4.6) 

𝐸 = ℎ𝑐�̅�      (4.7) 

where the wavenumber �̅�  is measured in cm-1 and 𝑐 is the speed of light (3.0x10 cm/s).  

IR spectroscopy is a spectroscopy technique based on the energy absorption due to the 

vibrational transitions of molecules and solids. The chemical bonds within the molecule has 

different type of vibrations. If the length of the bond changes, the vibration is called stretching, 

and bending if the bong angles changes. 

Usually, molecules at ambient temperature stay in the fundamental vibration state 

(characterized by the minimum energy of vibration). Adsorption of IR radiation with a 

frequency belonging within the 2.5-25 μm range (corresponding with the Medium IR with 

wavenumber between 4000 e 400 cm-1), may induce vibrational transition to an excited state. 

The simplest model for describing an harmonic oscillation of a biatomic molecule is the Hooke 

law. Where the energy levels can be derived from the equation 4.8. 

𝐸𝑣 = (𝑢 +
1

2
) ℎ𝜔      (4.8) 

Where 𝑢 is the quantic vibrational number (0, 1, 2, …), ℎ is the Planck constant and 𝜔 is the 

vibrational frequency given from the following equation: 
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𝜔 =
1

2𝜋
√

𝑘

𝜇
      (4.9) 

𝑘, strength constant of the chemical bond, 𝜇 is the reduced mass of the biatomic system 

(equation 4.10). 

𝜇 =
𝑀1+𝑀2

𝑀1𝑀2
      (4.10) 

𝑀1 and 𝑀2 are the mass of the atoms. 

Therefore, the adsorption energy (necessary for the vibrational transition) increases if the 

strength of the bond increase and if 𝜇, or rather the mass of the biatomic system, decreases. 

The general rules that have to be fulfilled, for the molecules to adsorb IR waves, are two: the 

change in the vibrational states has to cause a variation in the dipole of the molecule and the 

second is stated in the equation 4.11 

Δ𝑣 = ±1      (4.11) 

An IR spectrum report the absorbance or the transmittance versus the wavenumber. 

Functional groups can be detected, because the vibrational transition of specific functional 

groups belong to particular region of the spectrum. Moreover many molecules has characteristic 

signal defined as “finger print” in the region at lower wavenumber. Liquids, solids and gases 

can be analysed through this technique  [4,5].  

 

 

Fig. 4.4. Schematic of a FT-IR spectrophotometer. 
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An Fourier-transform IR spectrophotometer (figure 4.4) is composed of an interferometer that 

permits to scan the frequency all at once by using white light emitted from a silicon carbide 

cylinder. A semi-reflecting mirror (beamsplitter) divides the beam in two parts, one goes on a 

mirror, the other on a mobile mirror. The motion of the mirror causes a interference between 

the two reflected beams, when they unify again to go through the sample and arrive to the 

detector, obtaining the so called interferogram (intensity versus time). Then, the Fourier-

transform is applied for converting the interferogram into the IR spectrum. 

Transmission and ATR spectroscopy 

Since Stimson in 1952 [6] first applied KBr pellets in IR spectroscopy of solid samples 

transmission spectroscopy has been one of the most used IR techniques. ATR spectroscopy [7] 

is equally a much employed technique. The theory behind these techniques is quite different, 

considering that they are based on the same principles. In transmission, the light source goes 

through the sample (embedded in an inert medium) to the detector. The sample is normally 

dispersed in KBr for the MIR region and in CsI for the FIR region, as these are inert in the 

respective regions. The ATR technique is a surface examination technique. An internal 

reflecting element crystal is used to focus and direct the light beam to the surface of 

investigation. Usually the beam only penetrates about 1-5 µm into the sample. The beam is 

absorbed by the sample and is reflected back out to the crystal and the beam continues to the 

detector (figure 4.5). 

Not only the theory behind the techniques are different but also the output spectra look different. 

There are several distinct features that differentiate ATR spectra from transmission spectra 

when comparing the two techniques. The ATR spectra looks more distorted than the 

transmission spectrum, especially changes in intensity are observed and some bands, 

particularly the very strong bands, appear to shift to a lower frequency. These ATR distortion 
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are quite known from the MIR [8]. Band shift between the two methods can be anywhere from 

1-50 cm-1, where 1- 10 cm-1 is normal, and 40-50 cm-1 appears only in very extreme cases. 

 

 

Fig. 4.5. Schematic rappresentation of transmission and ATR techniques. Images from 

ThermoFisher ©. 

 

4.3.2 ATR INSTRUMENT 

In this work, we used a Fourier transform infrared (FT-IR) transmittance spectra were recorded 

with a Nikolet FT-IR spectrometer (ThermoFisher) using a single reflection attenuated total 

reflectance (ATR) accessory with a resolution of 4 cm-1 and 32 scans. 

 

4.4 ATOMIC FORCE MICROSCOPY 

Atomic Force Microscopy (AFM) permitted to obtain topography details of surfaces. In this 

project AFM was used to analyse substrates coated with wrinkled silica-gel particles and 

hydrophilic-hydrophobic Janus wrinkled silica-gel particles. 

4.4.1 AFM APPARATUS 

The AFM consists of a cantilever with a sharp tip (probe) that is used to scan the surface. The 

cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of 

nanometers. When the tip is brought into proximity of a sample surface, forces between the tip 

and the sample lead to a deflection of the cantilever according to Hooke's law. Depending on 

the situation, forces that are measured in AFM include mechanical contact force, van der Waals 
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forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces, solvation 

forces, etc.  

Typically, the deflection is measured using a laser spot reflected from the top surface of the 

cantilever into an array of photodiodes (see Figure 4.6). 

 

 

Fig. 4.6. Schematic illustration of an AFM. The tip is attached to a cantilever, and is 

raster-scanned over a surface. The cantilever deflection due to tip-surface interactions is 

monitored by a photodiode sensitive to laser light reflected at the tip backside. 

 

Other methods that are used include optical interferometry, capacitive sensing or piezoresistive 

AFM cantilevers. These cantilevers are fabricated with piezoresistive elements that act as a 

strain gauge. Using a Wheatstone bridge, strain in the AFM cantilever due to deflection can be 

measured, but this method is not as sensitive as laser deflection or interferometry. If the tip was 

scanned at a constant height, a risk would exist that the tip collides with the surface, causing 

damage. Hence, in most cases a feedback mechanism is employed to adjust the tip-to-sample 

distance to maintain a constant force between the tip and the sample. Traditionally, the sample 

is mounted on a piezoelectric tube, that can move the sample in the z direction for maintaining 

a constant force, and the x and y directions for scanning the sample. Alternatively a 'tripod' 
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configuration of three piezo crystals may be employed, with each responsible for scanning in 

the x,y and z directions. In new designs, the tip is mounted on a vertical piezo scanner while 

the sample is being scanned in x and y using another piezo block. The resulting map of the area 

z = f (x, y) represents the topography of the sample. The AFM analysis can be operated in a 

number of modes, depending on the application. In general, possible imaging modes are divided 

into static (also called contact) modes and a variety of dynamic (non-contact or "tapping") 

modes where the cantilever is vibrated.  

Non-contact mode AFM does not suffer from tip or sample degradation effects that are 

sometimes observed after taking numerous scans with contact AFM. This makes non-contact 

AFM preferable to contact AFM for measuring soft samples. 

4.4.2 AFM INSTRUMENT 

We investigated the topography of the samples by means of an Atomic Force 

Microscope (AFM – Witec Alpha 300 RAS) working in tapping mode with non-contact 

cantilevers (resonance frequency of 280 kHz and spring constants of k = 42 N/m). This 

operation mode is well suited for imaging soft samples since it reduces the tip to sample 

interaction. Therefore, it avoids the perturbation of particle-to-particle adhesion, which 

would result in the presence of artefacts in the topographic images.  

 

4.5 DINAMIC LIGHT SCATTERING 

Dynamic Light Scattering (DLS) is a scattering technique that was used to estimate the 

size distribution of wrinkled and Janus particles. In this Section, information about 

theory, type of instrument used and sample preparations are reported. 
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4.5.1 DLS THEORY 

Dynamic Light Scattering (DLS), also known with the general name of Quasi-Elastic Scattering 

(QES) is a technique aimed at  obtaining  dynamical information about the system under 

investigation [9–11]. If QES measurements are performed using visible light the Brownian 

diffusion of a dilute particle suspension can be characterized. 

QES Principles 

In the case of light scattering, the electric component of the incoming wave is responsible for 

the interaction with the electrons of the sample. In particular, the incoming electric field induces 

an oscillating dipole moment according to the particle polarizability. 

µ⃗ = 𝛼𝐸𝑖
⃗⃗  ⃗      (4.12) 

𝐸𝑖(𝑟 , 𝑡) = 𝑛𝑖𝐸0 exp 𝑖[𝑘𝑖
⃗⃗  ⃗ ‧ 𝑟 − 𝜔𝑖𝑡]      (4.13) 

 

 

Fig. 4.7. Schematic representation of a scattering experiment leading to the definition of 

the scattering vector q. 

In the general expression of the induced dipole, the polarizability is a tensor, since it depends 

on the shape and the size of the particle. However, in the special case of spherical particles, a 

highly symmetric system, the polarizability is a constant. Equation 4.12 also underlines that the 

induced dipole moment oscillates with the same frequency of the incoming electric field. If no 

other interaction occurs between the incoming wave and the sample, i.e. absorption, the induced 
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dipole moment will be the secondary source of the scattered electric field. At distance R from 

the sample, the expression of the scattered electric field can be derived considering the scheme 

reported in figure 4.7. 

𝐸𝑠(�⃗� , 𝑡) =
−𝑘𝑓

2𝐸0

4𝜋𝑅𝜀0
exp 𝑖( 𝑘𝑓R − 𝜔𝑖t)δ𝜀𝑖𝑓(𝑞 , 𝑡)      (4.14) 

In particular, the sample was considered as characterized by a mean dielectric constant 𝜀0, while 

δ𝜀𝑖𝑓 represent the fluctuation of the dielectric constant in the sample, which related to the 

particle spatial distribution. The dielectric constant fluctuation was already expressed in 

equation 4.14 as the Fourier transform in q-space of the corresponding function of 𝑟 (equation 

4.15). 

𝛿ε(𝑞 , 𝑡) = ∮ ε(𝑞 , 𝑡)𝑒𝑖(�⃗� ,𝑟 ) 𝑑𝑟       (4.15) 

A similar expression of the scattered electric field can be obtained in terms of polarizability, 

which can be easily related to structural properties of the particles. 

𝐸𝑠(�⃗� , 𝑡) =
−𝑘𝑓

2𝐸0

4𝜋𝑅𝜀0
exp 𝑖( 𝑘𝑓R − 𝜔𝑖t)δ𝛼𝑖𝑓(𝑞 , 𝑡)      (4.16) 

𝛿𝛼𝑖𝑓(𝑞 , 𝑡) = (𝑛𝑖‧ 𝑛𝑓)𝛼 ∑ 𝑒𝑖𝑞(𝑟𝑗(𝑡))𝑁
𝑗=1       (4.17) 

As the dielectric constant, the polarizability varies in space and time (equation 4.17) because of 

the spatial distribution of the particles and their motions (vibration, rotation and translation).  

The scattered intensity arising from a particle suspension, measured at fixed q value, thus at 

constant incident wavelength and fixed scattering angle, is reported in figure 4.8. Since the 

scattered intensity depends on the positions particles, which do change with time, the scattered 

intensity will look like a noise pattern, composed by fluctuations around an average value. The 

scattered intensity can be converted in the corresponding autocorrelation function to extract 

information about the particle motion. This is actually a standard approach to treat randomly 
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fluctuating quantities. Before dealing with the intensity autocorrelation function, the electric 

field autocorrelation is introduced, recalling equation (4.16). 

⟨𝐸𝑆
∗(�⃗� , 0)𝐸𝑆(�⃗� , 𝑡)⟩ =

−𝑘𝑓
4|𝐸0|2

16𝜋2𝑅2𝜀0
2 〈𝛿𝛼𝑖𝑓(𝑞 , 0)𝛿𝛼𝑖𝑓(𝑞 , 𝑡)〉𝑒

(−𝑖𝜔𝑖𝑡)      (4.18) 

 

Fig. 4.8. Scattered intensity as function of time. Data shown in the picture refers to a 

suspension of inorganic nanoparticles. 

 

The autocorrelation function, reported in equation 4.18, gives information about how the 

scattered electric field changes at time t with respect to its initial value at time 0. The bracket 

indicates that the product between the two scattered electric field values is averaged over the 

measurement time, which has to be large with respect to the typical fluctuation time. The 

electric field autocorrelation function can be converted into the electric field spectral density by 

means of Fourier transformation.  

𝐼𝐸(𝜔) =
1

2𝜋
∫ 〈𝐸∗(0)𝐸(𝑡)〉

+∞

−∞
𝑒𝑖𝜔𝑡𝑑𝑡      (4.19) 

Fourier transform connect a function of time (the electric field autocorrelation function) with a 

function of frequency, 𝜔, (the electric field spectral density). The shape of the 𝐼𝐸 in the 

frequency domain is governed by the difference between f and i, respectively the scattered 
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and incident frequency. Equation 4.20 is obtained by substituting equation 4.18 into equation 

4.19.  

𝐼𝐸(𝑞 , 𝜔𝑓 , 𝑅) =
1

2𝜋

−𝑘𝑓
4|𝐸0|2

16𝜋2𝑅2𝜀0
2 ∫ 〈𝛿𝛼𝑖𝑓(𝑞 , 0)𝛿𝛼𝑖𝑓(𝑞 , 𝑡)〉𝑒

(𝑖𝜔𝑓−𝜔𝑖𝑡)
+∞

−∞
𝑑𝑡      (4.20)       

Where ni and nf define the direction of the incoming and the scattered wave. 

In the case of an elastic scattering event, 𝜔𝑓 and 𝜔𝑖 are the same, and the spectral density is a 

line. However, owing to the Uncertainty Principle, it is impossible to detect a line spectrum. 

Indeed, there is always a finite probability for the incoming wave to exchange energy with the 

sample. All these considerations explain the broadening of the line in the spectral density to 

give a peak. This peak is also known as elastic peak. Besides the Uncertainty Principle, the 

elastic peak is additionally broadened because of the motions of the scatterers. The techniques 

that aim to characterization of the broadening of the purely elastic peak are named Quasi-Elastic 

Scattering (QES) techniques. 

Whatever is the probe used for the experiment, the motions of the scatterers within the sample 

produce fluctuations of the scattered intensity. The temporal correlation function of these 

fluctuations provides information about the diffusion coefficient of the scatterers. 

DLS Principles 

In DLS field it is possible to identify two different kind of approach for determining the electric 

field autocorrelation function, also known as 𝑔1(𝑡). The first one is the filter method, which 

consists on analyzing the scattered intensity in terms of frequency, and thus measuring the 

spectral density. As reported in equation 4.20, once the spectral density is measured, the electric 

field autocorrelation function can be calculated. On the other hand, the optical mixing methods 

directly measure the autocorrelation functions. Among the optical mixing method, the 

homodyne and heterodyne methods can be distinguished. The homodyne method, which will 

be discussed in this section, measures the scattered intensity from the sample and calculates its 
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autocorrelation function, also known as 𝑔2(𝑡). The heterodyne method combines the intensity 

scattered from the sample with a fraction of the intensity coming from the laser source. By using 

this approach, it can be demonstrated that even if more complex instrumental setup and data 

analysis with respect to the homodyne method are involved, 𝑔1(𝑡) can be directly determined. 

Typical samples analyzed by means of DLS are dilute suspensions of particles, where the 

scattered intensity from each particle can be considered independent. Under this condition, g2(t) 

is related to 𝑔1(𝑡) according to equation 4.21. 

𝑔2(𝑡) = 𝐼𝑆
2(1 + 𝛽|𝑔1(𝑡)|2)      (4.21) 

Where 𝐼𝑆
2 represent the square of the average intensity scattered by the sample and 𝛽 is an 

efficiency factor, related to the instrumental setup. In particular, if the illuminated area is small 

compared to the coherence area 𝛽 ~1. Hence, equation C.10 demonstrates that by measuring 

the scattered intensity autocorrelation function, the scattered electric field autocorrelation 

function can be calculated. The time fluctuations of the scattered electric field are produced by 

the polarizability fluctuations, which are related to the motion of the particles. From the 

evaluation of 𝑔1(𝑡), characteristic parameters of the dynamics of the particles within the 

suspension can be derived upon identifying a suitable model to describe the particle motion. In 

the case of Brownian motion, for an ensemble of equal particles, the particle displacement is 

related to its translational diffusion coefficient (D) by equation 4.22.  

𝛥𝑟𝑗 = 6𝐷𝛥𝑡      (4.22) 

If the equation 4.22 is substituted in the expression of the scattered electric field (equation 4.16) 

and 𝑔1(𝑡) is calculated according to equation 4.18, equation 4.23 is obtained. 

𝑔1(𝑡) = 𝑒−𝐷𝑞2𝑡     (4.23) 

In particular, the above reported simple expression of 𝑔1(𝑡) takes into account of the electric 

field autocorrelation function normalization for the incoming intensity. Equation 4.23 holds for 
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a system composed by particle, showing all the same size and shape. However, in a real sample 

𝑔1(𝑡) depends on a the distribution of diffusion coefficients reflecting the sizes and shapes of 

the particles. In other words, equation 4.23 has to be reformulated in order to take into account 

of the polydispersity of the system under investigation.  

𝑔1(𝑡) = ∫𝐺(Г)𝑒−Г𝑡𝑑Г    (4.24) 

Where Г = 𝐷𝑞2 and is the inverse of the characteristic diffusion time of the particles, which 

also represent the time at which the correlation between the scattered electric field values is 

lost. 

In conclusion, the scattered electric field autocorrelation function can be calculated from DLS 

measurement of the intensity autocorrelation function. The collected data can be analyzed 

according to equation 4.24 and the mean diffusion coefficient as well as its distribution function 

can be estimated. Suitably developed algorithms are available in order to perform data analysis 

even in the case of complex systems composed by different populations of diffusing particles. 

Under the specific condition of spherical non-interacting particles that diffuse in a continuum 

medium, the Stokes-Einstein relation (equation 4.25) can be used to calculate the hydrodynamic 

radius (Rh)of the particles from their diffusion coefficient. 

𝐷 =
𝐾𝐵𝑇

6𝜋𝜂𝑅ℎ
      (4.25) 

Where 𝜂 is the viscosity of the medium. Thus, DLS can also be used to determine the 

hydrodynamic radius of the particles in the suspension, which is the effective radius of the 

particle plus the solvation shells that are diffusing with it. 

4.5.2 DLS INSTRUMENT 

Size distribution was measured by Zetasizer (Nanoseries, Malvern) using laser dynamic 

scattering (λ = 632.8 nm) technique.  
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4.6 SCANNING ELECRON MICROSCOPY 

Scanning Electron Microscopy was used for taking 3-D images of the surfaces and particles 

analysed in this work. 

4.6.1 MICROSCOPE STRUCTURE 

A scanning electron microscope (SEM) is a type of electron microscope that provides images 

by scanning over it with a focused beam of electrons. The electrons of the beam interact with 

electrons of the sample, producing various signals that can be detected and that contain 

information about the topography and composition of the surface of the sample. The electron 

beam is generally scanned in a raster scan pattern. The position of the beam is combined with 

the detected signal to produce an image. Specimens can be observed in high vacuum, low 

vacuum and in wet condition. The types of signals produced by a SEM include secondary 

electrons, back-scattered electrons (BSE), characteristic X-rays, light (cathodoluminescence), 

specimen current and transmitted electrons. Due to the very narrow electron beam, SEM 

micrographs have a large depth of field yielding a characteristic three-dimensional appearance 

useful for understanding the surface structure of a sample. A wide range of magnifications is 

possible, from about 10 times (about equivalent to that of a powerful hand-lens) to more than 

500,000 times, about 250 times the magnification limit of the best light microscopes. Back-

scattered electrons (BSE) are beam electrons that are reflected from the sample by elastic 

scattering. BSE are often used in analytical SEM along with the spectra made from the 

characteristic X-rays, because the intensity of the BSE signal is strongly related to the atomic 

number (Z) of the specimen. BSE images can provide information about the distribution of 

different elements in the sample. Characteristic X-rays are emitted when the electron beam 

removes an inner shell electron from the sample, causing a higher-energy electron to fill the 

shell and release energy. These characteristic X-rays are used to identify the composition and 

measure the abundance of elements in the sample. In a typical SEM, an electron beam is 
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thermionically emitted from an electron gun fitted with a tungsten filament cathode. Tungsten 

is normally used in thermionic electron guns because it has the highest melting point and lowest 

vapor pressure of all metals, thereby allowing it to be heated for electron emission, and because 

of its low cost. Other types of electron emitters include lanthanum hexaboride (LaB6) cathodes, 

which can be used in a standard tungsten filament. 

The electron beam, which typically has an energy ranging from 0.2 keV to 40 keV, is focused 

by one or two condenser lenses to a spot about 0.4 nm to 5 nm in diameter. The beam passes 

through pairs of scanning coils or pairs of deflector plates in the electron column, typically in 

the final lens, which deflect the beam in the x and y axes so that it scans in a raster fashion over 

a rectangular area of the sample surface. 

When the primary electron beam interacts with the sample, the electrons lose energy by 

repeated random scattering and absorption within a teardrop-shaped volume of the specimen 

known as the interaction volume, which extends from less than 100 nm to around 5 µm into the 

surface. The size of the interaction volume depends on the landing energy of the electron, the 

atomic number of the specimen and the density of the specimen. The energy exchange between 

the electron beam and the sample results in the reflection of high-energy electrons by elastic 

scattering, emission of secondary electrons by inelastic scattering and the emission of 

electromagnetic radiation, each of which can be detected by specialized detectors. The beam 

current absorbed by the specimen can also be detected and used to create images of the 

distribution of specimen current. Electronic amplifiers of various types are used to amplify the 

signals, which are displayed as variations in brightness on a computer monitor (or, for vintage 

models, on a cathode ray tube). Each pixel of computer video-memory is synchronized with the 

position of the beam on the specimen in the microscope, and the resulting image is therefore a 

distribution map of the intensity of the signal being emitted from the scanned area of the 

specimen. In older microscopes image may be captured by photography from a high resolution 

cathode ray tube, but in modern machines image is saved to a computer data storage. All 
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samples must also be of an appropriate size to fit in the specimen chamber and are generally 

mounted rigidly on a specimen holder called a specimen stub. For conventional imaging in the 

SEM, specimens must be electrically conductive, at least at the surface, and electrically 

grounded to prevent the accumulation of electrostatic charge at the surface.  

4.6.2 INSTRUMENT 

Scanning electron microscopy (SEM) analysis was performed by means of a FEI Quanta 200 

FEG (Eindhoven, The Nederlands) equipped with a secondary electron detector. 

 

4.7 TRANSMISSION ELECTRON MICROSCOPY 

Images of particles that permit to differentiate the electric density of the material was collected 

by means of Transmission Electron Microscopy (TEM) technique. Below the structure of the 

microscope the type of instrument used and sample preparation are discussed. 

4.7.1 MICROSCOPE STRUCTURE 

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of 

electrons is transmitted through a specimen to form an image. The sample is most often an 

ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the 

interaction of the electrons with the sample. The image is then magnified and focused onto an 

imaging device, such as a fluorescent screen or a sensor such as a charge-coupled device. 

From the top down, the TEM consists of an emission source, made of a tungsten filament or 

needle, or a lanthanum hexaboride (LaB6) single crystal source [12]. Gun is connected to a high 

voltage source (typically ~100–300 kV) and, given sufficient current, the gun will begin to emit 

electrons into the vacuum. The electron source typically is mounted in a Wehnelt cylinder to 

provide preliminary focus of the emitted beam. The upper lenses of the TEM then further focus 

the electron beam to the desired size and location [13]. The lenses of a TEM allow for beam 

https://en.wikipedia.org/wiki/Microscopy
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Focus_(optics)
https://en.wikipedia.org/wiki/Fluorescent
https://en.wikipedia.org/wiki/Charge-coupled_device
https://en.wikipedia.org/wiki/Tungsten
https://en.wikipedia.org/wiki/Lanthanum_Hexaboride
https://en.wikipedia.org/wiki/Single_crystal
https://en.wikipedia.org/wiki/Wehnelt_cylinder
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convergence, giving the TEM the ability to change magnification by modifying the amount of 

current that flows through the coil, quadrupole or hexapole lenses. The quadrupole lens is an 

electromagnetic coils at the vertices of the square, enabling the generation of a lensing magnetic 

fields, the hexapole configuration enhances the lens symmetry by using six, rather than four 

coils. In figure 4.9 a schematic of the instrument is reported. 

 

 

Fig. 4.9. Schematic of a TEM instrument 

  

4.7.2 INSTRUMENT 

Bright field transmission electron microscopy (TEM) analysis was performed on a FEI 

TECNAI G12 Spirit-Twin (LaB6 source) equipped with a FEI Eagle-4k CCD camera, operating 

with an acceleration voltage of 120 kV. 

 

https://en.wikipedia.org/wiki/Sextupole_magnet
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4.8 ZETA POTENTIAL MEASURMENTS 

Zeta potential was used to evaluate the interaction and stability of particles-surfactant 

dispersions. Herewith, theory, type of instrument used and samples preparation are reported. 

4.8.1 THEORY BEHIND ZETA POTENTIAL 

Zeta potential is a scientific term for [14] in dispersions. From a theoretical viewpoint, the zeta 

potential is the in the interfacial double layer at the location of the. Slipping plane is located in 

the bulk fluid away from the interface of the colloid. In other words, zeta potential is the 

potential difference between the dispersion medium and the stationary layer of fluid attached 

to the (figure 4.10). 

The zeta potential is an indicator of the of colloidal dispersions. The magnitude of the zeta 

potential indicates the degree of electrostatic repulsion between adjacent, similarly charged 

particles in a dispersion. If the potential is small, attractive forces may exceed this repulsion 

and the dispersion may flocculate. Therefore, colloids with high zeta potential (negative or 

positive) are electrically stabilized while colloids with low zeta potentials tend to coagulate or 

flocculate. 

Zeta potential is not measurable directly but it can be calculated using theoretical models and 

an electrophoretic mobility or dynamic electrophoretic mobility experiments. 

Electrophoresis is used for estimating zeta potential of particulates. In practice, the Zeta 

potential of dispersion is measured by applying an electric field across the dispersion. Particles 

within the dispersion with a zeta potential will migrate toward the electrode of opposite charge 

with a velocity proportional to the magnitude of the zeta potential. This velocity is measured 

using the technique of the laser Doppler anemometer. The frequency shift or phase shift of an 

incident laser beam caused by these moving particles is measured as the particle mobility, and 

this mobility is converted to the zeta potential. Electrophoretic mobility is proportional to 

electrophoretic velocity, which is the measurable parameter. There are several theories that link 

https://en.wikipedia.org/wiki/Dispersion_(chemistry)
https://en.wikipedia.org/wiki/Double_layer_(interfacial)
https://en.wikipedia.org/wiki/Dispersion_medium
https://en.wikipedia.org/wiki/Electrophoretic_mobility
https://en.wikipedia.org/wiki/Dynamic_electrophoretic_mobility
https://en.wikipedia.org/wiki/Electrophoresis
https://en.wikipedia.org/wiki/Aerosol
https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Anemometer
https://en.wikipedia.org/wiki/Electrophoretic_mobility
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electrophoretic mobility with zeta potential. They are described in the article on electrophoresis 

and in details in books on colloid and interface science [15,16]. 

 

 

Fig. 4.10. Schematic of a colloidal particle surrounded by Stern and Gouy layers. 

 

There are two different experimental techniques that can measure electrophoretic velocity: 

microelectrophoresis and electrophoretic light scattering. In this work we use electrophoretic 

light scattering method. It allows measurement in an open cell or a capillary cell. Moreover, it 

can be used to characterize very small particles. 

4.8.2 ZETA POTENTIAL APPARATUS 

The instrument used for the measurement of the Zeta potential was performed by Dynamic 

Light Scattering (DLS) with a Zetasizer Nano ZS particle size analyzer (Malvern Instruments 

Ltd). 

 

https://en.wikipedia.org/wiki/Electrophoresis
https://en.wikipedia.org/wiki/Microelectrophoresis
https://en.wikipedia.org/wiki/Electrophoretic_light_scattering
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4.9 WETTABILITY PARAMETERS MEASUREMENTS 

The contact angles and roll-off angles of distilled water were measured using a Dataphysics 

OCA 30 instrument at room temperature (~21 ºC). Apparent contact angles are evaluated 

through the pictures of droplets on liquids on top of the surface by means of the camera and an 

image software (the volume of the droplet is ~10µL). Contact Angle hysteresis (CAH) was 

evaluated by the tilted plane method where a droplet of distilled water is placed on an inclined 

plane and its contact angles are measured when it starts sliding down [17]. Indeed, when the 

solid surface is tilted the droplet at first deforms; the contact angle hysteresis was calculated as 

the difference between the advancing (which is the maximum) and the receding (which is the 

minimum) contact angles on a tilted solid surface when the droplet begins to roll. 
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5. RESULTS AND DISCUSSION 

 

5.2 SILICA-GEL PARTICLES 

In this Section, besides talking about wrinkled silica-gel particles data, smooth Stöber particles 

data are shown. 

5.2.1 MORPHOLOGY AND SIZE 

In figure 5.1 are shown TEM and SEM micrographs of the rinsed wrinkled silica-gel particles. 

Colloidal particles with an inter-winkled distance in the nano-size range were obtained. SEM 

micrographs show nanometer roughness detail of particles surface, in agreement with Moon 

and Lee results [5]. 

 

 

Fig. 5.1. TEM (left) and SEM (right) micrographs of wrinkled silica-gel particles. 
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Fig. 5.2. Radius distribution of wrinkled silica-gel particles determined by DLS. 

 

The results of Dynamic Light Scattering (DLS) measurement, reported in Figure 5.2, indicates 

that the particle radius is in the sub-micrometer range, about 150 nm. The size distribution of 

wrinkled particles, radius distribution function [6] versus radius, resulted to be rather narrow. 

In figure 5.3 are reported SEM images of Stöber silica-gel particles. The average size and 

standard deviation, 148 nm and 13 nm respectively, were calculated by measuring over 100 

radii of particles on SEM micrographs using the ImageJ software. 

 

 

Fig. 5.3. SEM micrograph of Stöber silica-gel particles. 

 

5.2.2 PARTICLES STABILITY IN SURFACTANT SOLUTION 
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It is well known that silica colloidal particles directly obtained by sol-gel processes are rather 

hydrophilic and therefore not suitable to be used as Pickering agents on the stabilization of oil 

phases, such as molten paraffin wax, in aqueous solutions at high pH [7]. Zhu et al has clearly 

shown this effect for dodecane-water emulsions stabilized by silica particles [8]. It is, however, 

possible to stabilize oil-water emulsions when reaching the zero-charge surface point of the 

silica particles, by decreasing pH [9], or by using cationic surfactants as additional stabilizers.  

In our work, we use sol-gel silica particles negatively charged (pH>3) and so highly 

hydrophilic, hence in some preparation procedures, cetyltrimethylammonium bromide (CTAB) 

was added as co-surfactant to reduce the silica surface hydrophilicity. The adsorption of 

positively charged surfactants on negatively charged surfaces can be followed by zeta potential 

measurements, which reflect the adsorption of charged species in the Stern plane [10,11]. 

Hence, the affinity of the chosen surfactant (CTAB) towards the silica surface was evaluated 

by measuring the zeta potential of silica-CTAB water dispersions at different surfactant 

concentrations.  

 

 

Fig. 5.4. Zeta potential of smooth particles in water dispersion at different CTAB 

concentrations. 
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In figure 5.4 the zeta potential (Z-pot) of the aqueous dispersions of smooth Stöber silica-gel 

particles are plotted against the CTAB concentration. Initially, upon increasing the surfactant 

concentration the Z-pot of smooth particles remains constant (up to the measured value of 0.020 

mmol/L), which indicates no significant adsorption of CTAB. As the CTAB concentration rises 

(beyond 0.040 mmol/L) the zeta potential value rapidly increases indicating an adsorption of 

CTAB on the smooth silica-gel surface, and therefore an increase of the silica particles  

hydrophobicity can be expected. A similar trend was observed by Binks et al [10]. In detail, 

they measured the Z-pot of commercial silica particles (Ludox HS-30) in 2 % wt particles water 

dispersion from 0 up to 100 mmol/L CTAB concetration. Z-pot of Ludox particles varied from 

~-36 mV at low CTAB up to 0.1 mmol/L concentration, then increase to ~-12 mV at 10 

mmol/L. In our case, we reach ~-12 mV at ~0.7 mmol/L, Hence at a lower concentration than 

Binks samples. The differences among the two series may be ascribed to the different 

concentration of the particles within the dispersion: we used ~0.5 % wt of particles within the 

aqueous dispersion, against 2 % wt of Binks’sample. Therefore the higher amount of silica 

surface need a bigger amount of CTAB to significantly change the Z-pot. 

Beyond 0.074 mmol/L CTAB, the smooth particles started to flocculate at the last drops 

addition, after which precipitation occurs within a few seconds. This can be explained by the 

weak electrostatic repulsion between the silica particles, i.e., at this concentration the 

dispersions Z-pot is less than -20 mV, and the additional hydrophobic effect of the surfactant 

alkylic chains extensively adsorbed on the smooth particles, which render them unstable in 

water [12]. 
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Fig. 5.5. Zeta potential of wrinkled (red) and smooth (blue) silica-gel particles in water 

dispersion at different CTAB concentrations, with the corresponding trend lines. 

 

Wrinkled particles manifested a completely different behaviour. In figure 5.5 is reported the Z-

pot graph versus CTAB concentration (red points) and, for comparison, the Z-pot values of 

smooth particles (blue points) with corresponding trend lines. For wrinkled particles even at 

very low CTAB concentration Z-pot increases almost constantly for all the monitored range. 

Moreover, there is no sign of particles flocculation at every CTAB concentration, even at low 

surface charge conditions (0.10 mmol/L). The different behaviour of wrinkled particles is due 

to the different structure of the particles. Likely, the linear-trend of the Z-pot is due to the 

diffusion of the CTAB into the core of the particles may slow down the Z-pot increase at higher 

concentration (>0.7mM). While at lower concentration (<0.7mM) the Z-pot is higher than the 

smooth particles Z-pot, likely because the surfactant molecules does not diffuse so much at this 

low concentration, hence accumulating at the external surface of the mesoporous particles that 

possesses smaller external area than the smooth particles surface. The same amount of CTAB 

molecules on the smooth and mesoporous particles increase the Z-pot the smaller is the external 

surface of the particles. 
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5.3 PICKERING EMULSIONS AND COLLOIDOSOMES STRUCTURE 

The asymmetrical functionalization for Janus particles production, is carried out in this work 

by reaction between a silane agent and colloidosomes, that are formed by quenching an O/W 

Pickering emulsion of melted wax, water and silica-gel particles. 

The characteristics of the produced Janus particles directly depend how parent colloidal 

particles arrange on the wax surface. For instance, penetration depth and cluster formation of 

the parent colloidal particles has some influence in the final Janus particles properties. The 

penetration level on the wax droplets will determine the parent particles unprotected area 

available for the asymmetrical reaction, which ultimately will define the physical-chemical 

properties of the Janus particles [4,13]; clusters formation at the interface causes the non-

homogenous functionalization of the particles within the cluster. The concept is depicted in 

figure 5.6. Hence, understanding the parameters influencing the yield and how parent colloidal 

particles arrange at wax-droplet interface is extremely important to fine-tune the chemical and 

physical characteristics of the resulting Janus particles. 
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Fig. 5.6. Different arrangement of parent colloidal particles at wax interface. The 

penetration depth into the particles cause a different extent of functionalized area (A, B). 

While clusters formation cause heterogeneity in the final properties of Janus particles (C). 

 

Moreover, an important parameter is the amount of particles retained at the wax interface, the 

yield of the process, defined as the ratio between the particles retained at the interface and the 

initial amount of particles used.  

For this reason a preliminary study was conducted for better understand the emulsification 

process by using smooth silica-gel particles as Pickering emulsion stabilizer. 

5.3.1 EMULSION WITH SMOOTH PARTICLES 

Herewith, the preparation procedure is briefly described (for details see subsection 3.3.1). A 

mixture made of CTAB-particles dispersion in water and melted wax was mixed for 2 minutes, 

then the emulsion was quenched for solidifying the paraffin and fixing the particles at the wax 

interface. 

We prepared two series of samples: one obtained with high shear mixer that is called “U” series 

and the other with an overhead stirrer called “O” series. Each sample of the series is 

characterized by a specific CTAB concentration (0.0044, 0.020, 0.042, 0.054, 0.062 and 0.74 

mmol/L). The nomenclature of the samples contains a letter that refers to the type of mixing 

apparatus, and a number referring to the CTAB concentration used. 

 



86 

 

 

Fig. 5.7. SEM images (magnification 500X) of the solidified colloidosomes obtained with 

smooth particles dispersions containing 0.020, 0.054 and 0.740 mmol/L CTAB 

concentration, by using (A) overhead stirrer (the O samples) and (B) high shear dispersers 

(the U samples). 

 

SEM micrographs of three samples for each series are shown in figure 5.7 and 5.9. Such samples 

came from CTAB-particles dispersion with 0.020, 0.054 and 0.74 mmol/L surfactant 

concentrations. These concentrations represent the three important dispersion states of the silica 

particles. First, at the regime where Z-pot is not affected by the surfactant (-52 mV), hence no 

CTAB adsorption is taking place; second, when a strong influence of CTAB adsorption is 

observed and Z-pot increases up to -35 mV and third, when the silica particles start to be 

unstable in the dispersion and Z-pot value raises above -12 mV (subsection 5.2.2).  

In the figure 5.7 the magnification permits to focus on the shape and size of the wax 

colloidosomes. For the colloidosomes prepared with the overhead stirrer (O series, figure 5.7.A) 

the shape and size of the colloidosomes remains nearly the same (�̅� =51±7 µm, estimated from 
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statistical analyses of SEM images), except for the highest CTAB concentration (O074), where 

the majority of the colloidosomes showed non-spherical shape. For the colloidosomes prepared 

with the high shear disperser (U series, figure 5.7.B) a much smaller size of the colloidosomes 

was found for all the CTAB concentrations. Figure 5.8 shows also that there was a large 

variation of the average size (and respective standard deviation) of the colloidosomes prepared 

with the high shear disperser, as a function of CTAB concentration. 

 

 

Fig. 5.8. Average radius against CTAB concentration for U series. Bars represent the 

standard deviation of each sample. The average size and standard deviation were 

calculated by measuring over 100 radii of colloidosomes on SEM micrographs using the 

ImageJ software. 

 

The differences among the average size and shape of colloidosomes prepared with the two 

dispersers can be explained by the different energy level generated by the dispersion system 

used. As expected the high shear disperser applies high yield stress into the system resulting in 

much smaller wax droplets, as also observed for other oil-water systems [14] (for theoretical 

background see subsection 2.4.2).  

Another important feature of the colloidosomes is the state of agglomeration of the wax spheres. 

For the O series no significant aggregation was observed (figure 5.7.A). However, in the U 
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series, flocculation of the wax particles and formation of aggregates can be observed at CTAB 

concentration of 0.042mM. These aggregates grow further with the increase of CTAB 

concentration. Indeed, at the highest CTAB concentrations (0.062, 0.074 mmol/L) the wax 

sticks at the glass walls of the reaction vessel during the emulsification process. 

The surface coverage of the wax by the silica particles in the colloidosomes is a rather important 

aspect, in the sense that it relates to the efficiency of “protection” of the parent particles to be 

used for the Janus preparation. Figure 5.9 shows high magnification SEM images with details 

of the surface coverage of the colloidosomes (already shown in figure 5.9) prepared with the 

two dispersing methods described above. Regardless of the shape and size of the wax particles, 

both series showed a monolayer coverage of the wax by the silica particles, except for the O074 

for which the surface is covered by clusters and multilayers. The presence of aggregates and 

multilayers of silica particles is in principle favourable for the stability of the oil (wax) phase, 

as suggested by many researchers, e.g. Binks et al stated that the most stable emulsions are 

formed from the most unstable particles dispersions [10]. However, from the point of view of 

using colloidosomes for the preparation of Janus particles a monolayer coverage is preferred, 

because in this case any exposed area of the particles will undergo a surface functionalization 

reaction. Hence, having multilayers will result in heterogeneous functionalization of the silica 

surface available from the different layers. Only a monolayer and uniform embedding of the 

silica particles on the wax surface will guarantee the production of uniformly one-side 

functionalized parent particles. From this point of view, using a CTAB concentration below the 

aggregation point of the silica dispersions seems to be the best choice. 
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Fig. 5.9. SEM images of the smooth particles coverage on the wax surface for the O series 

(A) and U series (B), at 0.020, 0.054 and 0.740 mmol/L CTAB concentration (magnification 

10,000 X). 

 

Finally, the disperser used also had a big influence on the yield of silica particles embedded in 

the wax. For the O series the yield was less than 60% for all the CTAB concentrations, except 

for 0.074 mmol/L, where nearly 80% was reached (see figure 5.10). Instead, for the U series 

the yields were the highest among all, and nearly 100% was reached for a 0.020 mM CTAB 

concentration. The yield was evaluated by weighing the residue of particles within the water 

phase of the emulsion, the difference between this value and the initial amount of particles 

corresponds to the particles at the wax interface. 

In conclusion, the high shear disperser is more suited to the preparation of the silica-wax system 

thanks to the higher yields of silica particles embedded on the wax. Among the U samples the 

best coverage of the wax with silica particles (monolayer type) was shown to occur between 
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the 0.020 and 0.042 mmol/L CTAB, even if at 0.042 mmol/L flocculation of the wax particles 

is already observed. 

 

 

Fig. 5.10. Yield of the silica particles on the wax surface (%) for colloidosomes prepared 

from smooth particles dispersions with different CTAB concentration, and by using 

different preparation procedures: U series (red) O series (blue). 

 

Procedure I 

 

 

Fig. 5.11. SEM micrographs of the sample prepared with wrinkled particles-CTAB 

dispersion at 0.17 mmol/L CTAB by high shear mixer. Sample at different magnification 

(500 X, 2,500 X and 6,503 X) shows: colloidosomes shapes and sizes (left), surfaces of wax 

covered and not (center), detail of the particles coverage (right). 
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A mixture of wrinkled particles-CTAB dispersion in water and melted wax was mixed with the 

high shear for 2 minutes. The mixture was quenched and the solid wax droplets was collected 

and analysed. In figure 5.11 the SEM micrographs of a sample prepared in a 0.17 mmol/L of 

CTAB dispersion are shown. At lower surfactant concentration wrinkled particles did not cover 

the wax interface (subsection 2.4.4). Moreover, even though we can see particles at wax 

interface in the sample in figure 5.11, only few colloidosomes are completely covered, and the 

coverage is a multilayer or a thick aggregates layer of particles, not realizing the best condition 

for further functionalization. 

Procedure II 

Because of the bad surface coverage obtained from the previous procedure, we decided to use 

a different approach.  

First, dry wrinkled particles were dispersed into melted wax and then water was added and the 

system mixed with a magnetic stirrer (for details see Procedure II subsection 3.3.2). Then the 

system was quenched and colloidosomes collected and analysed with SEM. We thought that 

the addition of particles into the melted wax can improve the yield of the process. Indeed, this 

approach gave good results (almost 100 % yield) in the works of Jiang et al [2,3,15] using 

smooth particles. 

In figure 5.12, micrographs of the sample thus prepared are shown. In this case, the coverage is 

more similar to a mono-layer type rather than multilayer or clusters coverage and so better than 

the previous procedure. Nevertheless, the yield of the process is quite low (<5%). Then, from 

an industrial point of view, even this procedure is not suitable for Janus particles production. 
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Fig. 5.12. Colloidosomes (left 400X) with surface details (right 24000X) obtained from 

dispersing wrinkled particles into melted wax and then adding water. 

 

Procedure III 

We decided to combine some aspects of the “Procedure I”, such as the high shear mixer use, 

which forms high wax-water interface area, and the surfactant use, for reducing the 

hydrophilicity of particles, with one aspect from “Procedure II”: dispersing dry particles into 

melted wax. 

 

 

Fig. 5.13. Samples prepared with “Procedure III”, (on the left, 200X) are shown the 

colloidosomes and (on the center and right, 6,000 X and 12,000 X respectively) surface 

details of the particles coverage. 
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In this new procedure particles and CTAB were mixed realizing a water solution with a 

surfactant concentration of 0.12 mmol/L. At this concentration (see Fig.5.5) the Zeta potential 

is almost 0 mV. Particles may be supposed to be completely covered by CTAB; the hydrophobic 

interaction may be so maximised so as the adhesion to the wax interface. Subsequently, 

particles-surfactant dispersion was centrifuged for drying the particles and then dispersed into 

melted wax by tip-sonication, to completely disperse the particles aggregates. In the end, 

particles-wax dispersion was poured into water and the emulsification was conducted with high 

shear mixer. In figure 5.13 are shown the micrographs of such sample where the coverage of 

the wax is more similar to a monolayer type. The yield of the process was estimated ~100%, 

because the supernatant of the O/W emulsion did not contain particles. 

 

5.5 POLYMER GRAFTED JANUS PARTICLES  

The properties that hydrophilic-hydrophobic Janus particles imparted to substrates are 

astonishing, but unfortunately the layer of particles just lay on the substrates without any 

“strong” bond with it or with the particles themselves. For the reason, is it necessary to improve 

the mechanical resistance of the particles layer. Therefore, so prepared JWSPs are 

functionalized further by grafting a polymer chains (maleic anhydride-graft-polypropylene 

PPgMA) to the hydrophilic part of the Janus particles. In the end, such grafted particles were 

characterized to test the excellence of the reaction and then the wettability properties of plastic 

substrate covered by these Janus particles. PPgMA was chosen because of its high compatibility 

with polypropylene (component of the plastic dispensers). Therefore, this functionalization 

would be useful to anchor JWSPs to polypropylene surfaces. 

In order to graft PPgMA, the JWSOs particles were functionalised with 

aminopropyltriethoxysilane (APTES). [26] APTES is expected to link to silica particles through 

condensation reactions of its alkoxy groups with JWSOs particles surface silanols. Moreover a 
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reaction may be promoted between the APTES amino group and PPgMA maleic anhydride side 

groups. (for further detail see subsection 3.4.2). 

 

 

Fig. 5.23. XPS spectrum of Janus particles functionalized with APTES. The weak signal 

of nitrogen at 400 eV demonstrates reaction  between APTES and surface occurred. 

In figure 5.23 X-ray Photoelectron Spectroscopy (XPS) spectrum of the Janus-APTES powder 

is reported along with the percentage of the atoms at the surface. XPS can detect the low amount 

of nitrogen within APTES molecules bonded to the particles surface, proving the occurrence of 

the reaction between APTES and silanols groups. 

After grafting reaction between PPgMA and APTES-Janus particles, ATR spectrum on powder 

of the product reaction was carried out. In figure 5.24 the spectra of particles and PPgMA were 

compared. Almost all the bands of PPgMA were found within the spectrum of the polymer 

grafted particles, except for the peaks of the carbonyl group ( ̴1700 cm-1), so indicating that 

some reaction has occurred involving the PPgMA side groups (anhydride groups). All the peaks 

at wavelengths lower than 1200 cm-1 cannot be seen, because they are hidden by the strong 

signal of the Si-O-Si stretching of the silica-gel particles structure ( ̴1100 cm-1). 
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Fig. 5.24. ATR spectra of PPgMA (blue) and PPgMA grafted JWSPs (red). 

 

TEM and SEM micrographs of the PPgMA grafted JWSPs (after all the cleaning procedure, 

see chapter 3) are reported in figure 5.25. From images A and B we can see the two faces of 

Janus: the one functionalized with dimethyidichlorisilane, characterized by the clear wrinkled 

structure, and the polymer grafted part characterized by the greyish ring. In figure C and D, 

TEM and SEM images shows particles clusters, where the polymer parts (irregular shape 

objects in figure 5.25.D) linked the silica particles to each other, likely for the insolubility of 

the PPgMA in xylene at ambient temperature causing a phase separation and formation of such 

aggregates. Indeed, the characterized samples were prepared from particles dispersion in 

xylene. 
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Fig. 5.25. TEM micrographs showing the Janus character of PPgMA grafted wrinkled 

particles (A, B) and TEM and SEM images showing clusters formation (C, D). 

 

Coating of PPgMA grafted JWSPs on polypropylene were made through dip-coating from 

particles dispersion in xylene. The coating was analysed by SEM, before and after annealing at 

120 °C for 1 h (figure 5.26). From the micrographs of the coating, we can see the particles 

clusters as shown in figure 5.25.D. Instead, the sample after annealing shows that polymer parts 

were melted to partially link the polymer parts of adjacent particles and with the polymer 

substrate. 
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Fig. 5.26. SEM micrographs of the PPgMA grafted JWSPs coating on polypropylene 

substrate before (left) and after (right) annealing at 120 °C for 1 h. 

 

5.6 RACCOMANDATIONS FOR FUTURE WORK 

The wettability properties of the PPgMA grafted JWSPs coating before and after the annealing 

was qualitatively addressed by using a water droplet. The droplet rolls-off from the surface very 

easily at inclination < 10° without wetting the coating. 

The robustness of the coating was qualitatively evaluated by touching the surface with a finger: 

the as prepared coating was damaged with the naked eye, the annealed coating does not seem 

damaged. Indeed, the slippery behaviour of the annealed coating was maintained. 

These qualitatively tests must to be followed by quantitatively tests. Wettability properties of 

such coatings will be analysed by the sessile drop method through different type of solvents, 

before and after abrasion tests. The abrasion will be made by using cellulose-polystyrene wipe 

that will erode the coating by rubbing at a constant pressure (~3.5 KPa). Wettability properties 

were checked after different rubbing length to estimate the robustness of the annealed coating.  
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