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Riassunto 

I microrganismi termofili/ipertermofili, che vivono a temperature comprese tra 40°C - 120°C, sono 

stati isolati da una moltitudine di ambienti diversi come aree vulcaniche, fumarole, geyser e sorgenti 

termali (1). L’interesse biotecnologico per questi microrganismi è focalizzato principalmente sui 

loro enzimi che esplicano l’attività catalitica ad elevate temperature, mostrano una notevole 

termoresistenza e sono generalmente in grado di resistere a condizioni estreme di pH, denaturanti e 

solventi organici; caratteristiche che li rendono particolarmente interessanti rispetto alle controparti 

mesofile. Nell’era del bioprospecting, (ricerca di nuove fonti biologiche per scopi applicativi e 

commerciali) (2), gli enzimi termofili rappresentano dunque, una fonte interessante per future 

applicazioni in diversi settori come quello alimentare, farmaceutico, della carta, dei pellami, della 

detergenza, ma soprattutto nella “green energy” e quindi nelle bioraffinerie (3).  

Alla luce di queste considerazioni, il mio studio si è focalizzato sulla caratterizzazione di enzimi da 

microrganismi ipertermofili, che potrebbero essere utilizzati in due diversi campi: quello della 

green energy mediante degradazione della biomassa e quello farmacologico, mediante l’utilizzo di 

nuovi sistemi di drug delivery. Nel 1° caso sono stati selezionati, dopo analisi bioinformatica, 

enzimi appartenenti alla classe delle glicosil idrolasi (GHs), dal microrganismo ipertermofilo 

Dictyoglomus turgidum, che potrebbero essere utilizzati nella degradazione della biomassa; nel 2° 

caso si è studiato un nuovo un sistema di drug delivery “proteina-spora” in cui l’enzima adsorbito è 

una perossiredossina di Sulfolobus solfataricus, un enzima antiossidante, che potrebbe trovare 

applicazione nelle patologie infiammatorie gastro-intestinali.  

 

1. Identificazione e caratterizzazione di glicosil idrolasi termofile per la degradazione della 

biomassa 

La biomassa lignocellulosica è costituita principalmente da cellulosa, emicellulosa, lignina e 

pectina, i cui rapporti possono variare in funzione della tipologia o natura della biomassa. La 

cellulosa è un polimero lineare costituito da unità di D-glucosio legate tra loro da legami β-1,4 

glicosidici; l’emicellulosa è un gruppo di polisaccaridi ramificati di varia struttura, i monomeri della 

catena principale sono rappresentati da esosi (glucosio, mannosio e galattosio) e pentosi (arabinosio 

e xilosio) policondensati mediante legami β-1,4. L’emicellulosa predominante in molte pareti 

cellulari è lo xiloglucano; altre emicellulose sono il glucuronoxilano, l’arabinoxilano, il 

glucomannano e il galattomannano. La lignina è una molecola complessa, formata da molte unità 

fenoliche differenti come l’alcool coniferilico, l'alcol cumarinico e l'alcol sinapilico. La pectina è un 

polisaccaride che contribuisce largamente alla formazione dei tessuti, specialmente dei frutti e delle 

parti vegetali eduli; esso è costituito da residui di acido D-galatturonico legati mediante legami α-

1,4-glicosidici, intervallato da residui di L-ramnosio. La degradazione della biomassa 
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lignocellulosica è soggetta ad idrolisi enzimatica da parte di differenti classi di enzimi quali: 

cellulasi (endoglucanasi [EC 3.2.1.4], esoglucanasi [EC 3.2.1.91] e -1,4 glucosidasi [EC 

3.2.1.21]), emicellulasi (xilanasi [EC 3.2.1.8.], mannanasi [EC 3.2.1.78], arabinasi [EC 3.2.1.99] e 

galatturonasi [EC 3.2.1.15]), perossidasi [EC 1.11.1], laccasi [EC 1.10.3.2], pectinasi 

(polimetilgalatturonasi e poligalatturonasi [EC 3.2.1.15]), pectinesterasi [EC 3.1.1.11] e pectin 

liasi [EC 4.2.2.10]. 

L’utilizzo di glicosil idrolasi che siano in grado di lavorare in condizioni estreme di pH, temperatura 

e solventi organici tipici delle bioraffinerie è un punto chiave nella conversione della biomassa, 

pertanto l’identificazione di nuovi biocatalizzatori ad elevate performance è un campo in continua 

esplorazione.  

La metagenomica o l’analisi bioinformatica possono essere due strategie da utilizzare per 

l’identificazione di nuovi enzimi. In questo progetto di dottorato l’approccio bioinformatico è stato 

utilizzato per l’identificazione di nuove putative GHs; in particolare è stata consultata la banca dati 

CAZy (www.cazy.org) che raccoglie famiglie di enzimi che degradano, modificano o formano 

legami glicosidici. Sono quindi stati selezionati dal genoma di Dictyoglomus turgidum, 

microrganismo anaerobio ipertermofilo, due geni Dtur_0671 (DturCelB) e Dtur_0462 (DturGlu) 

che codificano putative GHs appartenenti alle famiglie GH5 e GH1 rispettivamente.  

Attraverso produzione dei rispettivi geni sintetici e successivo clonaggio in vettori di espressione 

pET-30b(+) i due enzimi sono stati prodotti in maniera ricombinante in E.coli e successivamente 

biochimicamente caratterizzati. DturCelB, analizzata mediante cromatografia ad esclusione 

molecolare accoppiata al light scattering, è risultata essere una proteina monomerica dal peso 

molecolare di circa 43 kDa. L’attività idrolitica di DturCelB, verso differenti polimeri quali 

mannani, carbossimetilcellulosa (CMC) e lichenano, è stata determinata mediante saggio su piastra 

(Congo red plate assay) e successivamente mediante saggio degli zuccheri riducenti (Nelson-

Somogyi (NS) method). I risultati mostrano che DturCelB ha più alta attività specifica verso il 

glucomannano seguita da galattomannani, dalla CMC e dal lichenano. L’ulteriore caratterizzazione 

di DturCelB ha mostrato che l’enzima ha valori ottimali di pH e temperatura di 5.4 e 70°C 

rispettivamente, e possiede una buona resistenza alla temperatura (50% di attività dopo 2 h a 70°C) 

e al pH (70% di attività a pH 4 e 90% nel range di pH 5-8 dopo 1 ora di incubazione). Saggi 

condotti in presenza di diversi agenti chimici hanno mostrato che l’attività enzimatica di DturCelB è 

moderatamente ridotta in presenza di metalli (~60%) e dei detergenti non ionici Tween-20 e Triton 

X- 100, mentre è quasi del tutto inibita dall’SDS e all’aumentare della concentrazione salina, infine 

l’attività enzimatica resta invariata in presenza di EDTA indicando che la proteina non è un metallo 

enzima. 
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DturGlu, espressa e purificata mediante His-trap, è stata analizzata mediante cromatografia ad 

esclusione molecolare e risulta essere un tetramero di circa 200 kDa. Saggi condotti su diversi 

substrati hanno evidenziato che l’enzima ha attività β-glucosidasica, (mostrando la maggiore attività 

specifica vero il il p-Nitrophenyl β-D-glucopyranoside (pNPGlu)), ma presenta anche un’ottima 

attività galattosidasica e xilosidasica ed è inoltre in grado di idrolizzare substrati naturali come la 

salicina. DturGlu presenta un optimum di attività enzimatica a pH 5.4 ed a 80°C, ed ha una buona 

stabilità a diversi valori di pH (90% di attività nel range di pH 5-8 dopo 1 ora di incubazione), di 

temperatura (90% di attività dopo 90 min a 70°C) ed in presenza di diversi agenti chimici; infatti i 

risultati hanno mostrato che l’attività enzimatica resta invariata in presenza di EDTA e LiCl mentre 

è moderatamente ridotta in presenza di altri metalli analizzati come CaCl2 e MgCl2; contrariamente 

in presenza dei detergenti non ionici Tween-20 e Triton X-100 l’attività relativa risulta essere 

addirittura aumentata (~150%), mentre è di circa il 60% in presenza di DMSO e del tutto inibita in 

presenza di SDS. 

  

1.2 Studi di sinergia tra DturCelB ed un’-galattosidasi (TtGalA) di Thermus thermophilus su 

substrati di emicellulosa 

Al fine di mettere a punto un cocktail di enzimi da poter utilizzare nella conversione della biomassa, 

è stato studiato l’effetto sinergico dell’endomannanasi DturCelB di Dictyoglomus turgidum e di 

un’-galattosidasi, TtGalA, di Thermus thermophilus (4), su diversi galattomannani (Carob, Guar e 

Locust bean gum) che differiscono tra loro per la frequenza dei residui di galattosio legati alla 

catena principale di unità di mannosio. 

Per valutare l’effetto sinergico, i due enzimi sono stati saggiati (mediante saggio degli zuccheri 

riducenti) contemporaneamente (saggio simultaneo) o in successione (saggio sequenziale) ad 80°C, 

che rappresenta la media delle temperature ottimali dei due enzimi (70°C per DturCelB e 90°C 

TtGalA). I risultati hanno mostrato che i due enzimi operano in maniera sinergica in entrambe le 

condizioni su tutti i substrati testati; in particolare il più alto grado di sinergia (1.8) è stato ottenuto 

su Locust bean gum con un rapporto DturCelB:TtGalA di 25:75. Inoltre l’analisi sequenziale ha 

evidenziato che il maggior grado di sinergia si ottiene quando l’attività -galattosidasica precede 

quella endo-mannanasica suggerendo che la rimozione preliminare dei residui di galattosio dal 

polimero determina una maggiore esposizione dei siti di idrolisi per la successiva azione di 

DturCelB. 
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2. Nuovi sistemi di drug delivery costituiti dall’associazione “proteine -spora” 

L’uso di spore batteriche come sistema di somministrazione di molecole attive è diventata una 

strategia sempre più utilizzata in ambito biotecnologico, grazie alla documentata resistenza e 

sicurezza delle spore. Recentemente, alcuni studi hanno proposto un approccio non ricombinante, 

basato sull’adsorbimento spontaneo tra spore e proteine eterologhe. Le spore maggiormente 

utilizzate per questo scopo appartengono alla specie di Bacillus subtilis (5), ma studi recenti 

mostrano un possibile utilizzo anche delle spore di B. megaterium (6). 

Questi presupposti hanno guidato la seconda parte del progetto di dottorato che è stata focalizzata 

sullo studio di un possibile sistema di drug delivery nella mucosa intestinale umana, costituito da 

una perossiredossina (Prx) termofila di Sulfolobus solfataricus, la Bacterioferritin Comigratory 

Protein (Bcp1), in associazione con spore di B. megaterium. 

Le Prxs, sono enzimi ubiquitari identificati in ogni dominio degli organismi viventi che esplicano il 

loro ruolo antiossidante nelle cellule attraverso la riduzione di perossidi organici ed inorganici (7). 

Mentre il ruolo di tali enzimi nei procarioti è confinato a quello di antiossidanti, negli organismi 

eucarioti, le Prxs svolgono anche altri ruoli come quello di chaperon molecolari e nel signaling 

cellulare (8). Le Prxs procariotiche rispetto a quelle eucariotiche mancano di due motivi strutturali 

(motivo GGLG e motivo YF) (9) che le rendono meno sensibili all’iperossidazione dei residui 

catalitici di cisteina coinvolti nella riduzione dei perossidi. Tale caratteristica di maggiore resistenza 

all’iperossidazione può quindi dimostrarsi vantaggiosa in ambito biotecnologico; per tale motivo è 

stato deciso di utilizzare come proteina da adsorbire su spore di B. megaterium, Bcp1 di S. 

solfataricus, che in recenti studi è risultata essere in grado di proteggere i cardiomioblasti dallo 

stress ossidativo e quindi di poter agire anche in condizioni fisiologiche ben diverse da quelle 

endogene (10).  

Bcp1 ricombinante è stata espressa in E. coli, purificata e successivamente adsorbita, mediante un 

protocollo di binding, a spore del ceppo QM B155 di B. megaterium. Esperimenti di western 

blotting hanno confermato la capacità di Bcp1 di legare le spore (soprattutto a livello 

dell’esosporio) mentre saggi di attività perossidasica mostrano che Bcp1 conserva la sua attività 

antiossidante una volta adsorbita. Avendo come obiettivo quello di mettere a punto un sistema di 

drug delivery per la cura di malattie della mucosa intestinale umana (es. Morbo di Chron, colite 

ulcerosa), causate anche da un’eccessiva produzione di ROS, è stata verificata l’attività di Bcp1 

libera e legata a spore di B. megaterium in condizioni simulanti il tratto gastro intestinale. 

L’enzima libero e adsorbito alle spore è stato testato sia dopo 1 h di incubazione a differenti pH 

(tipici del tratto gastro-intestinale) che dopo incubazione in presenza di simulated gastric fluid 

(SGF) o simulated intestinal fluid (SIF). I risultati hanno mostrato che in tutte le condizioni di pH 

analizzate, l’attività di Bcp1 adsorbita alle spore è superiore a quella di Bcp1 libera; analogamente 
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dopo incubazione con SGF e SIF, Bcp1 adsorbita alle spore mostra una maggiore attività rispetto 

alla Bcp1 libera (40% e 60 % di inibizione in SGF e SIF rispettivamente) confermando quindi, il 

ruolo protettivo della spora nei confronti di Bcp1. 
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1.1 (Hyper)Thermophiles  

Extremely hot terrestrial and marine environments are hostile for most living organisms on earth, 

but these niches represent excellent settings to be inhabited by specialized microorganisms. 

Thermophiles and hyperthermophiles are defined as microorganisms that not only survive but thrive 

at high temperatures (1). The first can be found in environments with temperatures over 40°C and 

the second in environments over 80°C. The first thermophilic microorganisms were isolated in the 

1960s by Thomas Brock in the hydrothermal springs of the Yellowstone National Park (2). To date, 

the highest temperatures known to sustain thermophilic microbial life are 113°C for the 

chemolithoautotrophic archaeon Pyrolobus fumarii (3) and 122°C for the methanogenic 

hyperthermophile Methanopyrus kandleri (4). The ubiquitous nature of the thermophiles is attested 

by the great variety of sources from which they have been isolated like volcanic area, hot springs, 

mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They 

are also found in man-made environments, such as heated compost facilities, reactors, and spray 

dryers. Most thermophilic prokaryotes are classified in the archaeal domain, but several 

microorganisms, are identified in the bacterial domain (5,6).  

Several mechanisms are thought to underlie the adaptation of the thermophiles to their 

extraordinary growth temperature. There is no simple correlation between the optimal growth 

temperature (OGT) and genomic features because thermophilicity results from a combination of 

factors. For example, the high GC genome content is not a good indicator of thermophilicity (7) e.g 

Aquifex aeolicus has a low GC content of 43.4% (8), despite its high OGT of 95 °C.  

Actually, several genomic footprints of thermophilic adaptation have been highlighted, in particular 

the G + C content of helical regions in rRNA secondary structures and small genome size seem to 

be correlated with the adaptation to higher temperature (9); in fact, thermophiles show less 

intergenic DNA and slightly shorter genes respect to mesophilic bacteria. Based on comparisons of 

1553 prokaryotes, cells that grow below 45 °C have genomes larger than 6 Mbp, while the average 

genome length is less than 4 Mbp for thermophiles (9).  

The second main strategy that thermophiles have adopted for life at high temperatures is about their 

proteins (10,11), for example the shorter amino acid lengths may reflect the importance of a 

reduced number of flexible regions in the native protein structures and the frequency of specific 

aminoacids and nucleotides can be correlate with OTG. In fact, based on 204 complete proteomes 

of bacteria and archaea, the amino acids Ile, Val, Tyr, Trp, Arg, Glu, and Leu have been found to be 

correlated with OGT (12). In this genomic era, most scientists search for insights into 

thermophilicity using the complete annotated genome. It is well established the importance of ORFs 

encode heat shock proteins (HSPs) (13), chaperones, chaperonins that assist the folding of 

macromolecules; such as the main role of agmatine (thought to stabilize DNA and RNA), 
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spermidines (polyamines from ribosomes that maintain membrane potentials), polyamines (needed 

for growth, possibly as membrane stabilizers), α- and β-subunit prefoldins (protein folding 

chaperons), SOS regulons (DNA damage responses) and reverse gyrase (a heat-protective DNA 

chaperone) that is believed to play an important role in genome thermostability (14).  

Furthermore, thermophiles also use compatible solutes to stabilize cell components (15-17); 

negatively charged compatible solutes like mannosylglycerate, di-myo-inositol-phosphate and 

diglycerol phosphate are identified in hyperthermophilic bacteria and archaea and almost 

exclusively restricted to them (18). 

Previous works suggested that horizontal gene transfer (HGT) is an important process for 

adaptation of thermophiles. For example, the complete set of genes encoding the flagellar system of 

Thermomicrobium roseum found unusually in the megaplasmid could be the result of HGT. 

Furthermore, HGT could occur between domains (i.e. hyperthermophilic Bacteria and 

hyperthermophilic Archaea) or between close genera (i.e. Thermotoga and Aquifex; Anoxybacillus 

and Geobacillus (19)), as part of survival mechanism under harsh conditions (20).  

Finally, complex lipid arrangement and/or type in the cell membrane are known to affect 

thermostability of microorganisms. Archaeal membranes are heat resistant because of their 

composition in ether lipids that do not require a regulatory mechanism to adapt lipids to changes in 

the environmental temperature; on the other side the bacteria have elaborate mechanisms by which 

they regulate the fatty acid composition at temperatures just above the phase transition temperature 

(21). 

In conclusion these microorganisms are a good source of thermozymes, unique biocatalysts, that 

work under harsh conditions compared to mesophilic counterparts and represent a great promise in 

terms of their applications in modern biotechnology.  

 

1.2 Biotechnological application of thermozymes 

A great deal of attention is focused on enzymes from hyperthermophiles that have gained always 

more importance in biotechnological processes. In 1914, the first enzymatic preparation for a 

commercial application was developed by Otto Rohm. He purified trypsin from animal pancreas 

and added it to washing detergents to degrade proteins. But only in 1960, enzyme catalysis became 

an industrial choice with the mass production of proteases from Bacillus spp. for use in washing 

powders and now industrial enzymes have since evolved into a multibillion dollar global market 

(22). Currently there is a great demand for suitable enzymatic biocatalysts that have high process 

performances and are ‘greener’ alternatives to chemical synthesis (23-25). It was expected that up 

to 40% of bulk chemical synthesis processes, that now require environmentally damaging bulk 

organic solvents and elevated energy inputs, could use enzymatic catalysis by 2030 (26,27). 
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However, because we have already surpassed the maximum rate of oil extraction (‘peak oil’), we 

should look for sustainable sources of non-fossil fuel, in the same time we should seek alternative 

‘greener’ building blocks for synthesis of biopolymers and biomaterials (28). 

Nowadays, the turnover of about USD 5 billion is produced by the application of enzymes in 

different markets (27), and the World Enzymes to 2017 Report in 

http://www.rnrmarketresearch.com/world-enzymes-to-2017-market-report.html), and the world 

enzyme demand is forecasted to rise from USD 6.4 to 6.9 billion p.a. in the future. Accordingly, the 

demand for biocatalysts in the form of free or immobilized enzymes, whole cell catalysts or cell-

free systems, with a high applicability potential in industry is increasing (29, 30). 

From an industrial viewpoint, as the vast majority of current processes are performed under harsh 

conditions, (hyper)thermophilic enzymes possess several advantages: (i) once expressed in 

mesophilic hosts, thermophilic and hyperthermophilic enzymes are easier to purify by heat 

treatment, (ii) their thermostability is associated with a higher resistance to chemical denaturants 

(such as a solvent or guanidinium hydrochloride), and (iii) performing enzymatic reactions at high 

temperatures allows higher substrate concentrations, lower viscosity, fewer risks of microbial 

contaminations, and often higher reaction rates. In this context, thermostable enzymes represent the 

cornerstone for the development of environmentally friendly, efficient, cost-effective and 

sustainable industrial technologies, and nowadays they are applied in different industrial areas, such 

as food and beverage, medicine, animal feed, detergents, pulp and paper, leather, textile markets, 

drugs and in particular in the biorefinery (31). In Fig. 1 are summarized some applications of 

thermophilic enzymes in different fields. 

  

                                         Fig. 1 Applications of enzymes from thermophiles 
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This PhD-thesis was focused mainly on the study of some thermophilic enzymes for two different 

types of biotechnological applications. The first concerns the utilization of different Glycoside 

Hydrolases to convert biomass into sugars for e.g. biofuel production and the second regards the 

application of antioxidant enzyme, peroxiredoxin, for possible therapeutic uses. 

 

1.2.1 Degradation of lignocellulosic biomass 

1.2.1.1 Biomass composition 

Lignocellulosic materials are the most promising feedstock as natural and renewable resource 

essential to the functioning of modern industrial societies. A considerable amount of such materials 

as waste byproducts are being generated through agricultural practices mainly from various agro 

based industries (32). Lignocelluloses of plant cell walls are composed of cellulose, hemicellulose, 

pectine and lignin. Cellulose forms a skeleton that is surrounded by hemicellulose and lignin 

functioning as matrix and encrusting materials, respectively (Fig. 2). 

 

Fig. 2 Lignocellulosic biomass composition 

Cellulose is the major structural component in the plant cell wall, is a linear homo-polysaccharide 

consisting of anhydrous glucose units (500–15000) that are linked by β-1,4-glycosidic bonds, with 

cellobiose as the smallest repetitive unit. The β-1,4 orientation of the glucosidic bonds results in the 

potential formation of intramolecular and intermolecular hydrogen bonds, which make native 
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cellulose highly crystalline, insoluble, and resistant to enzyme attack. The highly crystalline regions 

of cellulose in the plant cell wall are separated by less ordered amorphous regions (33). 

Hemicellulose is a short, highly branched polymer of pentoses (e.g. D-xylose and L-arabinose) and 

hexoses (e.g.D-manose, D-galactose, and D-glucose) with 50-200 units. Its acetate groups were 

randomly attached with ester linkages to the hydroxyl groups of the sugar rings. The role of 

hemicellulose is to provide a linkage between lignin and cellulose (34). 

Pectin is a structural heteropolysaccharide that rapresents about 35 % of the primary cell walls; the 

main backbone is composed by galactouronic acid residues α-(1-4)-linked. Other sugars are 

rhamnose, arabinose, and galactose. Pectic substances are hydrophillic and therefore have certain 

adhesive properties (35,36). 

Lignin is a heterogeneous, amorphous, and cross-linked aromatic polymer where the main aromatic 

components are trans-coniferyl, trans-sinapyl and trans-p- coumaryl alcohols. Lignin is covalently 

bound to side groups on different hemicelluloses, forming a complex matrix that surrounds the 

cellulose micro-fibrils. In plant cell wall it varies from 2 to 40 %. The carbon–carbon (C–C) and 

ether (C–O–C) linkages in the lignin gives the plant cell wall strength and protection from attack by 

cellulolytic microorganisms (37). Other polyphenolic compounds are: tannins with high molecular 

weight (500–3000) composed of either hydroxyflavans, leucoanthocyanidin (flavan-3,4-diol) and 

catechin (flavan-3-ol) or glucose and phenolic acids that are structural components of the lignin 

core in plant cell wall. The presence of carboxyl and phenolic groups in phenolic acids enable such 

compounds to link to lignin and carbohydrates by ether or ester bonds.  

All kind of biomass can be used in a biorefinery, a concept today, used in the strategies and visions 

of many industrial countries, being driven by a combination of environmental (encouraging 

renewable chemicals and fuels, and discouraging net greenhouse gas), political and economical 

concerns (38,39). A biorefinery is defined as a system combining necessary technologies between 

renewable raw materials, industrial intermediates and final products (40). The goal is to produce 

fuels, power, heat, and value-added chemicals from biomass (Fig. 3). The feedstocks (or their rest 

products) can be used directly as raw materials for bioprocessing, or be used as cheap substrates for 

fermentation processes from which products can be extracted (41). Depending on the feedstock 

available in different countries, biomass of different origins has been suggested as raw materials, 

and include for example corn (42), wheat (43), sugar cane (44), rape, cotton, sorgo, cassava and 

lignocellulose (45). The simplest biorefinery systems have in principal fixed processing of one type 

of feedstock (e.g. grains) to one main product, while the most flexible ones use a mix of biomass 

feedstock to produce an array of products.  

https://en.wikipedia.org/wiki/Biomass
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Fig. 3 Schematic overview of the basic principle of a biorefinery 

Fuels produced from harvested biomass can be either solid, gas, or liquid. Biosolids, such as wood 

pellets or forestry waste, and biogas, produced by anaerobic digestion of biomass, are used 

primarily for electricity generation and heating, whereas liquid biofuels provide drop-in fuels that 

can be used directly in the transport sector, without a change in infrastructure. In theory, it is 

possible to convert any biomass feedstock into a liquid or gas fuel using appropriate chemical 

engineering techniques, but the efficiency of conversion, cost, and scale of demand/supply have led 

to preferred practices. Generally, liquid biofuels can be classified into "first-generation" and 

"second generation", where the main distinction is the characteristic of the feedstock used. First-

generation bioethanol is made from sugars or starch. The sugar-based ethanol plants are 

predominantly produced in Brazil from sugarcanes. The starch-based ethanol is generally from corn 

but also from grains, and is dominated by the US followed by other major ethanol producing 

countries such as China, Canada, France, Germany, and Sweden. In the global market, ca. 21 

million m3 ethanol is produced from sugarcane, while ca. 60 million m3 ethanol is produced from 

corn and grains (46). However, many concerns are still associated to first generation bioethanol 

such as feedstock insufficiency related to the increased demand; food versus fuel conflict, due to the 

use of edible material for fermentable sugars recovery; greenhouse gas emissions not low as 

required. Thus, it is needed pushing towards alternative systems, such as second-generation liquid 

biofuels based on non-food lignocellulosic biomass. Various life cycle analyses (LCAs) have shown 
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that lignocellulosic ethanol, produced through biochemical conversion, performs significantly better 

than first-generation, sugarcane/corn-based ethanol, following various environmental and energy 

security criteria. For instance, second generation ethanol offers a more attractive greenhouse gas 

emissions profile than other biofuels, with 86 % reduction in comparison to gasoline (47). 

The biological process commonly used for the bioconversion of lignocellulose biomass in to 

bioethanol involves: (i) pre-treatment, (ii) hydrolysis to sugars, (iii) fermentation, (iv) products/co-

products recovery. Conventional process currently adopted foresees a chemical/physical pre-

treatment of lignocellulose in order to disrupt the fibrous matrix and remove lignin which can be 

recovered and used as a fuel for heat and electricity. Several techniques have been explored for 

removing lignin, steam explosion, dilute acid hydrolysis and ammonia fiber expansion (AFEX) 

being the most studied (48). Once lignin has been removed, saccharification of the free accessible 

(hemi)cellulose portions of the biomass is carried out. A variety of thermal, chemical and 

biochemical methods are being developed to carry out it in an efficient and low-cost manner. 

However, enzymatic hydrolysis has been so far demonstrated to be the best way to achieve 

(hemi)cellulose depolymerization. The final step is the fermentation of sugars obtained from 

previous step, which is typically performed by the yeast Saccharomyces cerevisiae.  

 

1.2.1.2 Enzyme involved in biomass degradation 

The enzymes degrading or modifying plant polysaccharides are classified as carbohydrate-active 

enzymes (CAZymes) and are divided into families according to their amino acid sequence and 

structural similarity (49). The CAZy database (http://www.cazy.org/) is organized into families of 

glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), 

glycosyltransferases (GTs), and auxiliary activities (AA) Focusing the attention on the GHs, 

cellulases and hemicellulases are the two major groups involved in the degradation of biomass. 

Cellulases are enzymes which able to break down cellulose by hydrolyse β -1-4 glycosidic bonds of 

cellulose polymer. They are predominantly produced by microorganisms, such as molds, fungi 

bacteria and archaea (50,51). Three principle cellulases synergistically confer the complete 

hydrolysis of cellulose: endoglucanases [EC 3.2.1.4], cellobiohydrolases (or exoglucanases) 

[3.2.1.91], and β-glucosidases [EC 3.2.1.21] (52,53). The endoglucanases (found in the GH families 

5–8, 12, 16, 44, 45, 48, 51, 64, 71, 74, 81, 87, 124 and 128) catalyse random cleavage of internal 

bonds in the cellulose chain, cellobiohydrolases (GH 5-7, 9 and 48) act at the end of cellulose 

chains and releasing glucose as well as cellobiose as product and β-glucosidases (GH1, 3, 4, 9, 17, 

30 and 116) that are only active on cello-oligosaccharides and cellobiose, releasing glucose (53). 

The action of β-glucosidases is extremely important for industrial purposes because cellobiose is a 

http://www.cazy.org/
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strong inhibitor of cellobiohydrolases, so the presence of β-glucosidases that remove cellobiose by 

hydrolyzing it, improves the hydrolysis performance of cellulases treatments (54). 

Generally, in anaerobic bacteria (e.g Clostridium thermocellum) cellulases are present as aggregated 

structures attached to the cells (55). These extracellular and large enzyme aggregates are known as 

“cellulosome” that has a scaffolding protein on which enzyme subunits are positioned periodically. 

The scaffolding protein contains cohesins and dockerins. Each dockerin at one side binds to the 

enzyme subunit and another side to the cohesin. Cellulosome structure is not uniform in all bacterial 

species, its heterogeneous nature is due to species specific variation in scaffoldin properties and in 

the enzyme subunit compositions (56,57). In another way in fungi and in aerobic bacteria, a non-

complexed cellulase systems are more common, in fact they usually secrete a set of individual 

cellulases (six to ten), each of which contains a catalytic domain (CD) that is often linked to other 

modular accessory domains, including carbohydrate-binding modules (CBMs) (58). CBMs are 

thought to potentiate the activity of the catalytic modules and they can be N-terminal or C-terminal 

to the CD (59). Free cellulases are currently most exploited for industrial applications (50); a 

significant industrial importance for cellulases was reached during the 1990's (60) mainly within 

textile, food, detergent, paper and pulp industry (e.g. in deinking of recycled paper) and biorefinery. 

Several thermostable enzymes have been characterized and there have been many trials in these 

areas as thermostability is highly relevant for the performance of the enzymes.  

Hemicellulases are key components in the degradation of plant biomass and carbon flow in nature. 

The variable structure and organization of hemicellulose require the concerted action of many 

enzymes for its complete degradation. As a large part of the polymers are either insoluble or closely 

associated with the insoluble cellulose matrix, many of the hemicellulases are also modular 

proteins, cointaining the CD and the CBM (61). The catalytic modules of hemicellulases are either 

glycoside hydrolases (GHs) that hydrolyze glycosidic bonds, or carbohydrate esterases (CEs), 

which hydrolyze ester linkages of acetate or ferulic acid side groups. Hemicellulases belonging to 

GH families are divided into five major groups:  

• Xylanases (EC 3.2.1.8): hydrolyze the β-1,4 bond in the xylan backbone, yielding short 

xylooligomers. Most known xylanases belong to GH families 10 and 11 and about 20 more 

xylanase genes are distributed between families 5, 8 and 43 (62). 

• β-Mannanases (EC 3.2.1.78): hydrolyze mannan-based hemicelluloses and liberate short β-

1,4-manno-oligomers, which can be further hydrolyzed to mannose by β-mannosidases (EC 

3.2.1.25). There are currently about 50 β-mannanase gene sequences in GH families 5 and 

26, and about 15 β-mannosidase gene sequences in families 1, 2 and 5 (63). 

• α-L-Arabinofuranosidases (EC 3.2.1.55) and α-L-arabinanases (EC 3.2.1.99): hydrolyze 

arabinofuranosyl-containing hemicelluloses and are found in GH families 3, 43, 51, 54 and 
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62. Some of these enzymes exhibit broad substrate specificity, acting on arabinofuranoside 

moieties at O-5, O-2 and/or O-3 as a single substituent, as well as from O-2 and O-3 doubly 

substituted xylans, xylooligomers and arabinans (64). 

• α-D-Glucuronidases: cleave the α-1,2-glycosidic bond of the 4-O-methyl-D-glucuronic acid 

sidechain of xylans, and are found exclusively in family 67(65). 

• β-Xylosidases (EC 3.2.1.37): are exo-type glycosidases that hydrolyze short xylooligomers 

into single xylose units, and are found in families 3, 39, 43, 52 and 54. The spatial similarity 

between D-xylopyranose and L-arabinofuranose leads to bifunctional xylosidase–

arabinosidase enzymes, found mainly in families 3, 43 and 54 (66,67). 

The enzymatic mechanism of the GHs takes place via general acid catalysis that requires two 

critical residues: a proton donor and a nucleophile/base (68,69) (Fig. 4). This hydrolysis occurs via 

two major mechanisms giving rise to either an overall retention, or an inversion, of anomeric 

configuration (68). In both the retaining (Fig. 4a) and the inverting mechanisms (Fig. 4b), the 

position of the proton donor is identical, in other words it is within hydrogen-bonding distance of 

the glycosidic oxygen. In retaining enzymes, the nucleophilic catalytic base is in the proximity of 

the sugar anomeric carbon. This base, however, is more distant in inverting enzymes which must 

accommodate a water molecule between the base and the sugar. This difference results in an 

average distance between the two catalytic residues of ∼5.5 å in retaining enzymes as opposed to 

∼10 å in inverting enzymes (70). 

  
Fig. 4 Mechanisms of enzymatic glycosidic bond hydrolysis. (a) Retaining mechanism (b) Inverting mechanism 
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1.2.1.3 Dictyoglomus turgidum as source of thermophilic Carbohydrate-Active Enzymes 

D. turgidum is a hyperthermophilic, anaerobic, Gram-negative bacterium that grow up to 80 °C. It 

was isolated from a hot spring in the Uzon Caldera, in eastern Kamchatka, Russia (71). D. 

turgidum was reported to grow on a wide range of substrates including starch, cellulose, pectin, 

carboxymethylcellulose (CMC), lignin, and humic acids, but not on pentose sugars such as xylose 

and arabinose. Analysis of the D. turgidum genome reveals a wide range of genes coding putative 

enzymes degrading extracellular and intracellular polysaccharide. The CAZy database (49) 

identifies 57 GHs, 3 PLs and 6 CEs in the D. turgidum genome. In particular, based on signal 

sequence predictions (72), have been identified: 20 extracellular polysaccharide degrading enzymes 

that can reduce polysaccharides into oligosaccharides and monosaccharide, 18 annotated three-

component ABC carbohydrate transporters that bring monosaccharides and oligosaccharides into 

the cell and about 46 exo-acting and endo-acting enzymes to degrade oligosaccharide into 

monosaccharides in the cytoplasm (73). Therefore, the information obtained from genomic analysis, 

make this bacterium a good source to obtain GHs to utilize on biomass for different 

biotechnological applications.  

 

1.2.2 Antioxidant enzymes and oxidative stress  

Reactive oxygen species (ROS), notably, superoxide (O2∙−), the hydroxyl radical (HO∙), and 

hydrogen peroxide (H2O2), are potent oxidants that are generated during aerobic metabolism and in 

response to external factors (74). At high concentrations ROS can damage all essential 

biomolecules such as DNA, proteins, and lipids, thereby causing cause cell death (75). They can be 

classified into oxygen centered radicals (superoxide anion, hydroxyl radicals, alkoxyl radicals, and 

peroxyl radicals) and oxygen centered non-radicals (hydrogen peroxide and singlet oxygen) (76). 

The hydrogen peroxide, (H2O2) is not only a ROS because in eukaryotic cells plays a key role in 

cellular metabolism because it functions as a signalling molecule that regulates cell growth, cell 

adhesion, cell differentiation, and apoptosis (77). Living organisms have evolved different 

antioxidant defence systems to protect themselves against ROS toxicity. Among the antioxidant 

enzymes, superoxide dismutase (SOD) convert O2∙− into H2O2 that is then converted to H2O by an 

array of enzymes, such as catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). 

Recently, much attention has been focused on Prxs, which are ubiquitous thiol peroxidases 

identified in prokaryotes, including Archaea and Eukaryotes, including humans; they catalyze the 

reduction of H2O2, peroxynitrite, and alkyl hydroperoxides (78-80). Prxs are typically classified as 

either 1-Cys Prxs or 2-Cys Prxs, depending upon the cysteine residues involved in catalysis. In 2-

Cys Prxs, the first cysteine, known as peroxidatic cysteine (CP), is located at the N-terminus 

whereas the second cysteine, situated at the C-terminus or in different central positions, is called the 



17 

 

resolving cysteine (CR) (81,82). CP is oxidized to sulfenic acid (CP-SOH) by H2O2 and condenses 

with CR to form a disulfide bond. A disulfide reducing system, generally composed of thioredoxin 

reductase (TrxR)/thioredoxin (Trx), is coupled to Prx for recycling (83) (Fig. 5). 

 

 

                               Fig. 5 Disulfide reducing system coupled to Prx rigeneration 

In some Prxs, called sensitive Prxs, CP-SOH can be further oxidized to its inactive forms, (the 

sulfinic (CP-SO2H) or sulfonic (CP-SO3H) acids) by H2O2, thereby preventing disulfide bond 

formation and inactivating the enzyme. The reason for this sensitivity is due to specific structural 

motifs. Specifically, a “GGLG” sequence and a YF C-terminal extension stiffen and stabilize the 

fully folded (FF) active site, making the enzyme more susceptible to overoxidation (84-86). These 

structural motifs are mainly present in the eukaryotic Prxs that are therefore more sensitive to the 

prokaryotic Prxs that in most cases lack these motifs. This structural feature acquired during the 

evolution endows sensitive Prxs with additional functionality beyond basic antioxidant activity, 

including the ability to regulate peroxide signalling in eukaryotic cells (87). This difference has 

inspired the search for new antioxidants from prokaryotic sources that can be used as possible 

therapeutic biodrugs.  

 

1.2.2.1 Sulfolobus solfataricus as source of robust peroxiredoxins 

Prxs have also been characterized in the Archaea, particularly in S. solfataricus P2, a 

hyperthermophilic aerobic microorganism that grows at 80 °C. In particular four Prxs called: 

Bacterioferritin comigratory proteins (Bcps) were identified in this microorganism and 

characterized: Bcp1 (SSO2071), Bcp2 (SSO2121), Bcp3 (SSO2255) and Bcp4 (SSO2613). Bcp1 

and Bcp4 are classified as Prx 2-Cys (82, 88), while Bcp2 and Bcp3 are classified as Prx 1-Cys 

(88,89). 

Archaeal Bcp1 was expressed in E. coli and structurally and functionally characterized (82). Bcp1 is 

regenerated not only by unusual endogenous redox couple formed by TrxR (Sso2416) and Protein 

Disulfide Oxidoreductase (SsPDO) (90,91) that replaces the standard Trx, but it works also with 

yeast redox system TrxR/Trx at 37°C (92). Furthermore, Bcp1 can protect cardiomyoblasts from 

oxidative stress in vitro and this study is the first report of an archaeal enzyme delivered into 

mammalian cultured cells that is able to protect cells from oxidative stress by reducing both the 
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peroxide levels inside the cells and the resulting apoptosis (92). In the light of these results, the 

second part of this PhD-thesis was focused on the study system Bcp1-spore to be used as a non-

recombinant platform to deliver antioxidant enzyme to the human intestinal mucosa. 

The use of bacterial spores as a drug/antigen delivery system has been fostered by the remarkable 

and well-documented resistance of spores (93) that ensures high stability to the delivery system and 

by the safety record of several species of spore formers (94). Initially, spores of the model organism 

Bacillus subtilis have been used (95), but then also other Bacillus species have been tested for the 

display and mucosal delivery of antigens and enzymes (96). More recently, spores of Bacillus 

megaterium have been used to display a model heterologous protein (97). This species is 

particularly promising as a delivery vehicle for at least two reasons: the large dimensions of its 

spore (length up to 3 mm and diameter of 1 mm) (98) and the presence of an exosporium, a 

protective layer surrounding the spore found only in some spore-forming species (99). The 

exosporium is essential to allow a high efficiency of display and has been proposed to protect the 

displayed molecules from degradation (97).   

 

1.3 Aim of the work 

The aim of this thesis has been focused on two main objectives: 

1. Studies and biochemical characterization of thermophilic GHs for biotechnological 

applications. 

A) Biochemical characterization of a thermostable endomannanase/endoglucanase 

(DturCelB) from Dictyoglomus turgidum. 

B) Biochemical characterization of a thermostable -glucosidase (DturGlu) from D. 

turgidum. 

C) A synergistic action of a thermophilic α-galactosidase and β-mannanase on 

galactomannan substrates. 

2. Study of the system protein-spore to be used as a non-recombinant platform to deliver 

biological drugs to the human intestinal mucosa.  

A) Display of the peroxiredoxin Bcp1 of Sulfolobus solfataricus on probiotic spores of 

Bacillus megaterium. 
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Chapter 2 

 

Glycoside hydrolases from thermophilic microorganisms 

 

2.1 Biochemical characterization of a thermostable endomannanase/endoglucanase from 

Dictyoglomus turgidum. 

2.2 Biochemical characterization of a thermostable -glucosidase from Dictyoglomus 

turgidum. 

2.3 A synergistic action of a thermophilic α-galactosidase and β-mannanase on galactomannan 

substrates. 
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Summary 

Today, alternative energy is an interesting concept to meet global energy demand that no longer 

counts on the use of fossil fuels and in this contest the lignocellulosic biomass plays a key role for 

this purpose. From an industrial point of view, the biomass conversion requires a cocktail of highly 

efficient enzymes; for this reason, enzymes from thermophiles have received more attention 

because they are in general very stable to harsh conditions and can be recycled with preserving their 

performance. In the section 2.1 the paper “Biochemical characterization of a thermostable 

endomannanase/endoglucanase from Dictyoglomus turgidum” is focused on the recombinant 

DturCelB, a thermophilic enzyme that showed both endomannanase and endoglucanase activity. 

Until now there are only few enzymes displaying both activities and this feature, together with 

optimal temperature at 70 °C and a good thermostability, make DturCelB very interesting for future 

applications. In the section 2.2 the manuscript “Biochemical characterization of a thermostable -

glucosidase from Dictyoglomus turgidum” (manuscript in preparation) is dedicated to the 

recombinant DturGlu, a -glucosidase belonging to GH 1 family that showed a good activity on 

various synthetic and natural substrates and in presence of different chemicals. Also in this case the 

robustness of this enzyme makes it particularly interesting for biotechnological application such as 

biomass conversion. In the section 2.3 the paper “A synergistic action of a thermophilic α-

galactosidase and β-mannanase on galactomannan substrates” (submitted to Enzyme and Microbial 

Technology) is focused on the study of the synergy between DturCelB, from D. turgidum and 

TtGalA, an α galactosidase from Thermus thermophilus. In this study these two enzymes have been 

tested on different galactomannans both simultaneously and sequentially conditions and it was 

demonstrated that there is an heterosynergystic association of these two recombinant thermophilic 

enzymes. 

The results highlighted the possibility of these two enzymes to be used in an enzymatic cocktail to 

pre-hydrolyze the biomass right after the pretreatment and before to the saccharification step. 
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Abstract 

Dtur_0462 gene of the hypertermophilic bacterium Dictyoglomus turgidum, encoding a -

glucosidase, was synthetically produced and expressed in Escherichia coli BL21(DE3)-RIL strain. 

DturGlu was purified to homogeneity by affinity chromatography and its homoterameric structure 

was estabilished by gel filtration. The monomer is composed by 418 amino acidic residues and 

showed high sequence similarity with Glycoside hydrolases (GHs) belonging to GH1 family. The 

maximum activity of DturGlu was observed at 80°C and at pH 5.4. The enzyme is active on p-

nitrophenyl-β-D-glucopyranoside (pNPGlu) and p-nitrophenyl- β-D-galactopyranoside (pNPGal) 

with KM values of 0.82 mM and 1.36 mM respectively. It also exhibits appreciable hydrolytic 

activity towards salicin and measurable activity towards cellobiose. DturGlu was stable in the 

range of pH 5-8 and after 2 h of incubation at 70°C it retained 70% of its activity. Metal ions and 

chemical reagents had different influences on the activity of β-glucosidase; metal ions generally 

affected ~ 50% the DturβGlu activity; while the supplementation of several monosaccharides 

reduced the activity by only 10%. Conversely, in presence of non-ionic detergent such as Tween-20 

and Triton X-100 the activity of DturβGlu is increased by 180% and 120% respectively.  

The capacity to hydrolyze different substrates, the good thermal resistance, and the ability to be 

activated in the presence of surfactants make this enzyme a potential candidate for industrial 

application. 

 

Introduction 

β-glucosidases (EC 3.2.1.21) are a heterogeneous group of enzymes that catalyze the hydrolysis of 

β-D-glycosidic bonds in di- and oligo-glucosaccharides and several other glycoconjugates (1) and 

often they are also involved in transglycosylation reactions. These enzymes have been classified 

into six glycoside hydrolase (GH) families (GH1, GH3, GH5, GH9, GH30 and GH116) based on 

their amino acid sequences (2). β-Glucosidases are widely distributed and have important roles in 

many biological pathways, such as degradation of structural and storage polysaccharides, cellular 

signaling, oncogenesis, host-pathogen interactions, as well as in several biotechnological 

applications (3). In this regard, β-glucosidases are widely used in the biorefinery for biomass 

conversion, in particular in the final step of cellulose breakdown that produces glucose (4) and in 

the hydrolysis of different compounds such as aryl-beta-glucosides, flavanoids and isoflavanoid-

glucosides. These compounds are commonly found in fruits, vegetables, soy, tea and the release of 

the aglycone group by β-glucosidases has a powerful biological activity, with different uses in the 

field of medicine (as antitumor agents or for the treatment and prevention of cardiovascular disease 

and osteoporosis) (5), in general in biomedical research and in the food industry to enhance the 
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quality of the beverages and foods (6). In addition to hydrolytic activity, many β-glucosidases can 

catalyze the formation of glycosidic bonds by or thermodynamically controlled reverse hydrolysis 

or kinetically controlled transglycosylation. This feature, makes β-glucosidases promising 

biocatalysts for the synthesis of stereo- and regiospecific glycosides or oligosaccharides which are 

potentially useful as functional materials, nutraceuticals, or pharmaceuticals because of their 

various biological properties (7). Currently, the transglycosilation activity by β-glucosidases is the 

method employed by industry for production of galacto-oligosaccharides (GOS) from lactose (8). 

Thermostable β-glucosidases are adapted to work in harsh condition, so they offer several 

advantages, in industrial applications, promoting faster reactions, high solubility of the substrate, a 

lower risk of contamination, and also lowering the solution viscosity and increasing the miscibility 

of the solvent (9). Dictyoglomus turgidum is an hyperthemophilic and anaerobic microorganism 

isolated in 1985 from hot springs of the Kamchatka peninsula in Russia (10); it is able to grow on a 

wide range of substrates including starch, cellulose, pectin, carboxymethylcellulose and lignin. Its 

genome was sequenced for carbohydrases and contains six annotated β-glucosidases (Dtur_0219; 

Dtur_0289; Dtur_0321; Dtur_0462; Dtur_1723, and Dtur_1799) (11). With the aim to investigate 

on new thermostable β-glucosidase we have choosen Dtur_0462 (11) belonging to GH 1 family 

encoding the enzyme here named DturβGlu. The gene was synthetically produced and codon-

adapted to Escherichia coli. The recombinant protein was biochemically characterized also 

regarding different substrates hydrolysis and physical-chemical parameters. 

 

Materials and methods 

Expression of DturGlu in E. coli  

DturGlu (Dtur_0462) from D. turgidum genome (GenBank: NC_011661.1) was synthesized by 

Genewiz (GENEWIZ LLC 115 Corporate Blvd.South Plainfield, NJ USA) with following changes: 

1) the codon usage of the gene was optimized for the expression in E. coli 2) at 5’ and 3’ends of the 

gene the NdeI and XhoI restriction sites respectively was inserted to allow the cloning in pET-

30b(+) vector (Novagen).  The recombinant vector pET30/DturGlu was used to transform E. coli 

strain BL21(DE3)-RIL. The transformants were selected on LB plates containing ampicillin 50 

µg/ml and chloramphenicol 33 µg/ml at 37 °C and grown in same condition in LB until 0.5 OD 

monitoring absorbance at 600nm. Gene expression was then induced by the addition of 0.25 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) and cells were harvested by centrifugation 2 hours 

later. 

Enzyme purification 

Pellets from 1 liter cultures were re-suspended in 50 mM Tris-HCl pH 8.0 supplemented with an 

inhibitor cocktail protease EDTA-FREE (Roche) and disrupted by sonication with 20 min pulses at 
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20 Hz (Sonicator Ultrasonic liquid processor; HeatSystem Ultrasonics). The suspension was 

clarified by ultracentrifugation at 16,000xg for 30 min. The soluble fractions of the cell extracts 

were heated at 70°C for 15 min, and then centrifuged at 16,000xg at 4°C. 

Protein was purified almost to homogeneity in a one stage process using affinity chromatography on 

HisTrapHP column (GE Healthcare) (12). Proteins concentration was determined using BSA as the 

standard (13) and protein homogeneity was estimated by SDS-PAGE (12%). 

 

β-glucosidase Assay 

-glucosidase assay was performed using p-nitrophenyl-β-Dglucopyranoside (pNPGlu) as substrate. 

The reaction mixture (100 µl) containing 4 mM pNPGlu, 50 mM citrate phosphate buffer pH 5.4, 

0.068 g of enzyme was incubated at 80ºC for 10 min. The reaction was stopped by addition of 100 

µl of cold 0.2 M Na2CO3. The concentration of the released p-nitrophenol (molar extinction 

coefficient, 18.5 mM-1cm-1) was determined by measuring A
405nm

, using microplate reader 

(Synergy H4 Biotek). One unit of β-glucosidase activity was defined as the amount of enzyme 

required to release 1 µmole of p-nitrophenol (pNP) in a minute under the assay conditions. All 

assays were performed in triplicate. 

 

Biochemical characterization 

Size-exclusion chromatography 

Purified DturGlu protein was analyzed by size exclusion chromatography. 100 µg of sample was 

loaded on BIOsep-SEC-S4000 column (Phenomenex) (300 x 7.8 mm) equilibrated in 50 mM 

Sodium Phosphate pH 7.2. A constant flow rate of 0.5 ml/min was applied. The column was 

calibrated with conalbumin (75 kD), aldolase (158 kD), ferritin (440 kD), and thyroglobulin (669 

kD). 

 

Effect of pH and temperature on enzyme activity 

The optimal pH value was determined at 80°C performing the -glucosidase assay in the following 

buffers: 50 mM glycine-HCl for range pH 2.0–3.0, 50 mM citrate phosphate buffer for pH 3.0–6.0, 

50 mM phosphate buffer for pH 7–8, and 50 mM glycine-NaOH for pH 9.0. 

The pH stability was determined performing the assay after pre-incubation of the enzyme in buffers 

ranging from pH 3.0 to 9.0 at 37°C for 1 h. The residual enzymatic activity was determined under 

the standard conditions (pH 5.4, 80°C, 10 min). 

The optimal temperature was examined by measuring the enzyme activity ranging from 30°C to 

100°C at optimal pH. The thermostability assay was carried out by incubating the enzyme at 
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temperatures ranging from 70°C to 100°C for different times (30-240 min), in optimal pH 

conditions. The residual activity was determined under assay conditions reported previously. 

 

Effect of chemicals on enzyme activity 

The effects of different chemicals were tested on DturGlu activity. Metal ions (Li+, Cu2+, Ca2+, 

Mn2+, Mg2+ Co2+, Zn2+,) were added in the reaction mix as LiCl, CuCl2, CaCl2, MnCl2, MgCl2, 

CoSO4, ZnSO4 at final concentration of 1mM; the EDTA, chelating agent, was added at the same 

concentration. Non-ionic detergents, (Triton X-100 and Tween-20) ionic detergent (SDS), and 

Dimethyl sulfoxide (DMSO) were supplemented in the assay mixture at 0.5% concentration. The 

monosaccharides (glucose, galactose, xylose and arabinose) were added at final concentration of 2,5 

5, 10, 50 or 100 mM. The residual activity was determined in the standard conditions. 

 

Substrate specificity and kinetic parameters 

The hydrolytic activity of DturGlu was determined on several substrates as: oNP-β-D-

glucopyranoside (oNPGlu), pNP-β-D-xylopyranoside (pNPXyl), pNP-β-D-galactopyranoside 

(pNPGal), pNP--galactopyrqnoside (pNPGal), oNP-β-D-galactopyranoside (oNPGal), cellobiose 

and salicin. Aliquots of DturGlu were incubated with saturating concentrations of substrate in 50 

mM citrate/phosphate buffer (pH 5.4) for 10 min at 80 °C (standard assay conditions) and the 

activity was measured by release of pNP and o-nitrophenol (oNp). The concentration of the released 

oNP (molar extinction coefficient, 21.3.mM-1cm-1) was determined by measuring A
420nm

. When 

cellobiose and salicin were used as substrate, the amount of glucose was determinated with D-

Glucose Assay Kit (GOPOD Format) (Megazyme) according to the manufactere’s protocol and 1 

unit (U) of acivity is defined as the amount of enzyme which is required to release 1 μmol of 

glucose per minute under the assay conditions. 

Different range of concentrations of various substrate were used to determine kinetic parameters of 

DturβGlu: 0.1 - 5 mM for pNPGlu and pNPGal, 0.1 - 6.5 mM for oNPGlu and oNPGal, 0.5 - 12 

mM for pNPXyl and 0.5 - 40 mM for salicin. The enzymatic activity was determined as reported 

above. The enzyme kinetic parameters, 𝐾𝑚, 𝑉max, 𝑘cat and 𝑘cat/𝐾𝑚, were calculated by non-

linear regression analysis (GraphPad 6.0 Prism software).  

 

Results and discussion 

Bioinformatic analysis of DturGlu  

The genome of D. turgidum was recently sequenced (11) and a depth analysis of the carbohydrate-

active enzymes (CAZy) database (http://www.cazy.org/) has revealed a great number of potentially 
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Fig. 1 Multiple alignment of DturGlu with other GH1 protein from D. thermophilus, T. hugenholtzii, and T. 

onikobensis. The two conserved glutamate residues, catalytic nucleophile (E324) and the general acid/base (E159), 

involved in the catalysis are highlighted in bold. 

 

interesting enzymes. We have chosen to study a new β-glucosidase classified as GH1 encoded by 

Dtur_0462. 

Multiple sequence alignment (ClustalW) and Blast analyses revealed high sequence identity with 

different glycoside hydrolase family 1 protein from thermophilic bacteria. In details, the putative 

protein shows 88% identity with WP_012547332.1 from Dictyoglomus thermophilus (DtGH), 49% 

with WP_088571012.1 from Thermoflexus hugenholtzii, and 46% with WP_012547332.1 from 

Thermogemmatispora onikobensis (Fig. 1). Further bioinformatic analyses performed with Phyre 2 

(http://www.sbg.bio.ic.ac.uk/phyre2) showed that the conserved glutamate residue in NEP and ENG 

(E159 and E324) motifs has been identified as potential active site acid/base catalyst and 

nucleophile respectively for the GH1 (14). 

WP_088571012.1      -MVEFAFHFPSGFLWGTATSSHQVEGDNTNNDWWRWEQEPGRIRDGSRSGRACDWWRNAE 

WP_069803632.1      MARERTLQFPEGFLWGTASSAHQCEGGNLNNQWYRWEQQ-GRTLTGERSGVAANWWQQAE 

WP_012582847.1      ---MVKYKFPEGFLWGTATASHQIEGDNFYNDWWEFEKQ-GKVKNGQVSGKACDSWNRYE 

WP_012547332.1      ---MLKYRFPEGFLWGTATASHQIEGDNFYNDWWEFEQK-GKVKNGQISGKACDSWNRYE 

                           :**.*******:::** **.*  *:*:.:*:: *:   *. ** *.: *.. * 

 

WP_088571012.1      ADFDRAAAMGQNAHRLSIEWSRIEPREGVFDDAALDRYREMLRGLRERGIEPMVTLHHFT 

WP_069803632.1      RDFELAEQMENNALRLSLEWSRIEPEEGRWDESALERYRSLLADLRRRHMTPLVTLHHFT 

WP_012582847.1      EDFDLIEKLNNNAYRFSIEWSRIEPEEGRFDESALERYRSMLISLRRRNIEPFVTLHHFT 

WP_012547332.1      EDFDLIEKLNNNAYRFSIEWSRVEPEEGRFDQSAIERYRAMLLSLRRRNIEPFVTLHHFT 

                     **:    : :** *:*:****:**.** :*::*::*** :* .**.* : *:******* 

 

WP_088571012.1      NPLWLAEQGGWENPLTVERFERYVRHAVGALKDFCRLWCTINEPNVLAYMGWNEGKWPPG 

WP_069803632.1      DPLWFADRGGFELEENIRYFVRFVRFVVGQLRDLCSFWLTINEPNVYAFLGYLTGEFPPG 

WP_012582847.1      NPLWMAKRGGWLNPDIIDYYLRYVKKIVSEFKDLVNYWMTINEPNAYAFMAYLYGQFPPQ 

WP_012547332.1      NPLWIAKKGGWLNSEIIDYYLRYVERIVSEFKDLVNYWMTINEPNAYAFMAYLYGQFPPQ 

                     :***:*.:**:     :  : *:*.  *. ::*:   * ******. *::.:  *::** 

 

WP_088571012.1      KRDFGLSMQVLRHLMQAHARAYHAIHEIQPEAQVGIAHNMVVFEPAHPASPLDRMIARLH 

WP_069803632.1      ERSALRALRVLRNLMAAHVQAFYAIREWQPEGQIGYCLNYRLLDPFLTYSPLDRVVANLQ 

WP_012582847.1      GKSLIKMLRVLNNMAKAHAKAYEVIHQISPDAKVSIAYNVIYFEPKNPNSFIDRKFANFG 

WP_012547332.1      KRSLMKMLRVLNNMVKAHAKAYQVIHKISPNSKVGIAYNVIYFEPKNPKSFIDRKLTNFA 

                    :.    ::**.::  **.:*: .*:: .*:.::. . *   ::*  . * :** .:.: 

 

WP_088571012.1      DRMFNRLVLDAMAAG--REPGLAAFRTLAALRGTYDFIGLNYYTRRLSAFDRRSPATLFG 

WP_069803632.1      DTFFNWLALKLAEGKPVVFPLQVALPALPRAAGARDYHGVNYYTRDLVAFDPRRAGELFG 

WP_012582847.1      DRIYNRVFIETLLTG--KFSSPFIKEEIPYAKNTLDYLGINYYTR-----------ILMG 

WP_012547332.1      DRIYNRVFIETLTTG--RFSSPFIKEEIPYAKDTLDYLGVNYYTR-----------ILMG 

                    * ::* : :.         .       :.   .: *: *:*****            *:* 

 

WP_088571012.1      RTFLNPHGELSD----GEYGEVFPEGLYLLLKRLARYG---KPIYVTENGIPDADDDQRP 

WP_069803632.1      RRFPSPGAPMQDPGRAGYFGEIYPEGLYRVLQLVYRRTRGNKPLYVTEHGLNDLEDRLRP 

WP_012582847.1      LKMGSPEGETSD-----FGWEIYPEGIYKVVKRFYGLTK--KPIYITENGISDAKDEKRP 

WP_012547332.1      LRMTPPSGEKSD-----FGWEIYPEGIYKVVKRFYKLTG--KPIYITENGISDAKDEKRP 

                      :  * .  .*        *::***:* ::: .       **:*:**:*: * .*  ** 

 

WP_088571012.1      RFLVRHLHAMWRAIQQNVPVRGYFHWSLVDNFEWAEGWTLRFGLIEVDPETQARRPRRSA 

WP_069803632.1      RAILEHLAMLHRAIREGLPVRGYFHWTLVDNFEWNEGWGAHFGLVELNPQTQERRPRPSA 

WP_012582847.1      KYLISHLIQLHRAIEEGVDVRGYFHWSLMDNFEWAEGFLQRFGLFETDFNTFERKWRESA 

WP_012547332.1      KYLISHLIQLHKAIEDGVDIKGYFHWSLVDNFEWAEGFLQRFGLFETDFNNFERKWRKSA 

                   : :: **  : :**.:.: ::*****:*:***** **:  :***.* : :.  *: * ** 

 

     WP_088571012.1      DLYAEVCRANALTSETIIRHTPELLEEMFGISIG--------- 

     WP_069803632.1      SMFGEICRANAITESIVERYAPEAAATIFGSAAATRLGARVLT (88%) 

     WP_012582847.1      RIYSEIAKNNGITEAMEEKFLK--------------------- (49%) 

     WP_012547332.1      RIYSEIAKNNGITEEMEKEFLK--------------------- (46%) 

 

 

http://www.sbg.bio.ic.ac.uk/phyre2
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Expression and biochemical characterizationof DturGlu 

Dtur_0462 was synthetically produced and codon-adapted to E. coli. The gene was cloned in the 

expression vector pET30b(+) and the recombinant protein, with His tagged at C-terminal, named 

DturβGlu, was expressed in E. coli BL21(DE3)-RIL strain. The protein was purified by heat-

treatment and His-trap affinity chromatography. The results of these purification steps are 

summarized in Table 1. 

 

As revealed by SDS-PAGE analysis (Fig. 2), DturβGlu showed a single band with a molecular 

mass of ~ 50 kDa, according with the predicted molecular weight of 50615 Da corresponding to the 

theoretical value. The yield of the purified protein was about 1 mg/L. 

 

  

 

 

To gain insight into the quaternary structure of DturGlu, the enzyme was analysed by a size 

exclusion chromatography. The results showed a molecular weight of about 200 kD, thus indicating 

that DturβGlu has a tetrameric structure. This oligomeric structure agrees with the homology-based 

model (performed with SWISS-MODEL) of DturβGlu with BGLPf (15), TnBgl1A (16) and Ssβ-

Glc1 (17) as templates (Fig. 3). 

Purification step Total proteins 

(mg) 

Total 

activity (U) 

Specific activity 

(U/mg) 

Purification 

factor 

Yield 

Cellular extract 152.8 3702.6 24.2 1 100% 

Heat treatment 54.94 1502.23 40.7 1.68 40.5% 

Affinity 

chromatography 

1 160 160 6.61 4.32% 

63 kDa 

 

48 kDa 

 

35 kDa 

50 kDa  

DturβGlu 

 

 

Fig. 2 SDS-PAGE analysis of the recombinant DturβGlu. M) Protein 

Marker; 1) Cellular extract from not induced cells; 2) Cellular extract 

from IPTG-induced cells; 3) Heat-treated sample; 4) Affinity 

chromatography by His-trap. 

 

 

 M      1        2         3       4         

Table 1 Purification of DturβGlu of D. turgidum expressed in E. coli 
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Effect of pH and temperature on enzyme activity 

The pH optimum for DturGlu activity was 5.4 (Fig. 4A) differently by homologous DtGH of D. 

thermophilus that showed pH 7.0 as optimal value, furthermore while DturGlu exhibited 90% and 

72% activities at pH 5.0 and 7.0 respectively, DtGH activity dropped at pH 5 (18). 

Similar pH optima of β-glucosidases have been reported from several thermophilic bacteria such as 

Thermus Thermophilus (19) Caldicellulosiruptor saccharolyticus (20) and Thermoanaerobacter 

brockii (21). Moreover, DturGlu was fairly stable in the pH range of 5-8, retaining over 90% 

activity after 1 h of incubation (Fig. 4B). The enzyme displayed maximal activity at 80°C (Fig. 5A), 

This temperature optimum is slightly higher than that of other thermophilic microorganisms such as 

Halothermothrix orenii (22), Scytalidium thermophilum (23), Talaromyces thermophilus (24) and 

Myceliophthora thermophile (25). 

Thermostability of the enzyme at various temperatures was monitored by measuring its activity 

after incubation at different time. After 90 min at 80°C the relative activity was about 80% while 

after 2 h of incubation at 70 or 80°C the residual activity of DturGlu was still 70% and 50% 

respectively (Fig. 5B). This high stability together with an enzymatic activity in a pH range of 5.0-

8.0 of about 80%, suggest that the enzyme may have utility in various industrial fields.  

 

Fig. 3 Homology model of DturβGlu 
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Effect of chemicals on enzyme activity 

The effect of various metal ions, chemicals and detergents on DturGlu activity were studied and 

the results are reported in Table 2. Cu2+, Co2+, Mn2+, and Zn2+ inhibited ~ 50% the DturGlu 

activity, Ca2+ and Mg2+ ~ 30%, while Li+ didn’t affect the enzyme activity. It is probable that the 

inhibition of the enzymatic activity by salts is caused by an alteration of protein’s secondary and 

tertiary structure. In the presence of EDTA, the enzymatic activity was unchanged, indicating that 

DturGlu is not a metal enzyme. 

The influence of various surfactants such as SDS, Tween20 and Triton X-100 was also determined. 

In presence of Tween-20, Triton X-100, the enzymatic activity was increased (180% and 120% 

respectively), while SDS affected totally DturGlu activity. Other β-glucosidases are reported to be 

improved by detergents such as the β-glucosidase of Fervidobacterium islandicum (26). The 

addition of non-ionic detergents can play a role in the stability of the enzyme. In several studies, it 

Fig. 4 Effect of pH on enzymatic activity of DturβGlu. A) pH optimum was measured in buffers ranging 

from pH 2.00 to pH 8.00. B) The enzyme was incubated in various buffers (pH 3 – 9) for 1 h and assayed for 

residual activity at the optimal conditions. 

 

Fig. 5 Effect of temperature on enzymatic activity of DturβGlu. A) Temperature optimum 

was determined in the range 30 - 100 °C. B) The enzyme was incubated at 70, 80, 90 and 100°C 

for different times and then assayed for residual activity at the optimal conditions. 
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has been reported that the addition of surfactant in a catalytic process increased conversion yelds 

(27, 28). DMSO had only a moderate effect on DturGlu activity.  

 

Metal ion or chemical agent Concentration Relative activity 

None 1 mM 100% 

CuCl2 1 mM 44.23% 

ZnSO4 1 mM 46% 

LiCl 1 mM 98.5% 

MgCl2 1 mM 53.90% 

CaCl2 1 mM 56.79% 

MnCl2 1 mM 38.23% 

CoSO4 1 mM 47.66% 

EDTA 1 mM 100% 

SDS 0.5% 0.66% 

Triton X-100 0.5% 130% 

Tween 20 0.5% 173% 

DMSO 0.5% 66% 

 

Finally, the influence of four monosaccharides on -glucosidase activity was investigated. The 

results showed that supplementation of different concentrations of glucose, galactose, xylose and 

arabinose in pNPGlu hydrolysis did not highlight a strong inhibition, in fact DturGlu retained 80% 

of its activity in presence of 100 mM of glucose, galactose and xylose and the 60% in presence of 

100 mM arabinose (Fig. 6). 
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Fig. 6 Effect of monosaccharides on enzymatic activity of DturβGlu. The 

purified enzyme was assayed in the presence of different concentration of varoius 

monosaccharides and under the standard condition 

Table 2 Effect of metal ions and reagents on DturGlu activity 
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Hydrolytic activity and kinetic parameters of DturGlu on different substrates 

The hydrolitic activity of DturGlu was tested on different substrates. The results (Table 3) showed 

that the enzyme displays the highest specific activity towards pNPGlu (160 U/mg) followed by 

pNPGal (155 U/mg) and salicin (67 U/mg). It was less active on oNPGal (23 U/mg), oNPGlu (21 

U/mg), pNPXyl (10 U/mg) and cellobiose (2 U/mg), while no activity was detected on pNPGal.  

 

Substrate Specific activity 

(U/mg) 

Relative activity (%) 

pNP--D-glucopyranoside 160 100 

oNP--D-glucopyranoside 21 13 

pNP--D-galattopyranoside 155 96.87 

oNP--D-galattopyranoside 23 14 

pNP--D-xylopyranoside 10 6.2 

Salicin 67 42 

Cellobiose 2 1.25 

 

The kinetic parameters of DturGlu were determined for each substrate (Table 4): the KM values of 

DturGlu, determined toward pNPGlu and salicine, were comparable with Tm-BglA from T. 

maritima, Te-BglA from T. ethanolicus (30) and DtGH from D. thermophilum (18). On the other 

hand, Kcat value vs pNPGlu is about 14 fold higher than Tm-BglA and DtGH and 67 fold higher 

than Te-BglA, while Kcat value vs salicine is about 6 fold and 3,5 fold greater than Te-BglA and 

TmBglA respectively. In conclusion Dturglu shows a better catalytic efficiency respect to above 

reported thermophilic -glucosidases belonging to GH1.   

 

 

Substrate KM (mM) Kcat (s-1) Kcat /KM (mM-1s-1) 

pNPDGlu 0,82 3968 4839 

oNPGlu 12,08 3417 282 

pNPGal 1,36 9924 7297 

oNPGal 1,63 1394 855 

pNPXyl 2,79 651 233 

Salicin 8,12 659 81 

 

Table 3 Substrate specificity of DturβGlu 

Table 4 Kinetic parameters of DturβGlu 
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Conclusions 

In this study, we have biochemically characterized a novel recombinant thermostable β-glucosidase, 

DturGlu, from the anerobic bacterium D. turgidum. DturβGlu was expressed in E.coli and purified 

to homogeneity. Gel filtration analysis showed a tetrameric structure of the protein with a molecular 

mass of about 200 KDa. The enzyme exhibited a good β-glucosidase and β-galactosidase activities 

on synthetic substrates and it is also able to hydrolize natural substrates as salicin, with a higher 

catalytic efficiency respect to other thermophilic β-glucosidase. Moreover, DturβGlu was stable and 

active at high temperature and in a wide range of pH. The addition of surfactants enhanced the 

activity of DturβGlu, while the metal ions did not significantly hinder it. Finally, the enzyme 

showed a good tolerance to monosaccharides. All these features make this enzyme a good candidate 

for biotechnological applications, especially in the conversion of biomass to produce fermentable 

sugars. 
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Abstract 

The lack of full utilization of hemicellulose sugars (pentose and hexose) present in lignocellulosic 

material, hinders the development of bio-based fuels and chemicals production. Two recombinant 

thermophilic enzymes, an endo 1,4-mannanase from Dictyoglomus turgidum (DturCelB) and an 

-galactosidase from Thermus thermophilus (TtGalA) were assayed at 80°C, to assess their 

heterosynergystic association on galactomannans degradation, particularly abundant in 

hemicellulose. The enzymes were tested under various combinations simultaneously and 

sequentially, in order to estimate the optimal conditions for the release of reducing sugars. The 

results showed that the most efficient degree of sinergy was obtained in simultaneous assay with a 

protein ratio of 25% of DturCelB and 75% of TtGalA, using locust bean gum as substrate. On the 

other hand, the mechanism of action was demonstrated through the sequential assays, i.e. when 

TtGalA acting as first to enhance the subsequent hydrolysis performed by DturCelB. The 

synergistic association between the thermophilic enzymes herein described has an high potential 

application to pre-hydrolyse the biomass right after the pretreatment, prior to the conventional 

saccharification step. 

 

1. Background 

Lignocellulose is the most abundant available feedstock produced every-day on the Earth. The 

major portion in polymers is represented by cellulose (35-50%), hemicellulose (26-35%) and lignin 

(14-21%), as well as by other minor components (1). Lignin provides the structural integrity of the 

plant, encapsulating the microfibrils of hemicellulose and cellulose, to withstand the herbivores and 

pathogens attacks (2). During the detrital food webs, the natural process for the deconstruction of 

lignocellulose, the polysaccarides hydrolysis is carried out by saprophytes and detritivores (3). 

Since lignocellulose-feedstock available in large amount, the biomass is currently used to produce 

value added-products such as bio-fuels and -chemicals (1, 4). In the industrial processes, the 

deconstruction is performed using chemical and physical pretreatments (5). During this first step, 

the lignin is disarrayed and the resulting polysaccharides (i.e. cellulose and hemicellulose) are 

subsequently hydrolyzed by enzymatic mixture to produce fermentable sugars. This process, also 

named saccharification, involves (hemi)cellulases and auxiliary enzymes needed to obtain an 

effective hydrolysis (6). Hemicellulose is the second most abundant biopolymer present in 

lignocellulosic-feedstocks (2). Unlike cellulose, hemicellulose is a branched heteropolymer 

composed by pentoses (i.e. xylose and arabinose), hexoses (i.e. glucose, galactose, mannose) and 

also by sugars in acidified form (glucuronic acid and galacturonic acid) (7).  

Mannans are the major source of secondary cell wall found in conifers (softwood) and leguminosae. 

They are classified on the basis of their sugars components in: mannans, glucomannans, 
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galactomannans and galactoglucomannans (8). To achieve an efficient hydrolysis of 

galactoglucomannans, the presence of multiple hydrolases such as β-glucosidases (EC 3.2.1.21), 

endo-mannanases (EC 3.2.1.78), mannosidases (EC 3.2.1.25) and α-galactosidases (EC 3.2.1.22), is 

needed (9). Therefore, studies of synergistic association among these enzymes pave the way to 

establish an efficient enzymatic cocktail to achieve the complete hydrolysis of 

galactoglucomannans.  

Since the pretreatment step is performed at high temperature (90°-120°C), the development of 

thermophilic enzymatic mixture which could operate at high temperature is needed to reduce the 

whole process cost (10). Therefore, the main objective of this work has been to study the synergistic 

effect of the thermophilic endo -1,4-mannanase (DturCelB) from Dictyoglomus turgidum and the 

-1,6-galactosidase (TtGalA) from Thermus thermophilus on galactomannan substrates from locust 

bean, carob tree and guar gum. 

 

2.Methods 

2.1 Substrates 

Locust bean gum was purchased from Sigma-Aldrich. Carob galactomannan (Low viscosity) and 

Guar galactomannan (Medium viscosity) were purchased from Megazyme.  

 

2.2 Expression and purification of recombinant enzymes 

DturCelB was expressed in Escherichia coli BL21 (DE3), transformed with the recombinant 

plasmid pET30b-DturCelB and purified by nickel affinity chromatography (18). Thermus 

thermophilus HB27::nar strain transformed with the recombinant plasmid pMKE2-TtGalA was used 

for the homologous expression of the α-galactosidase (TtGalA) (11). 

 

2.3 Substrate specificity determination 

The DturCelB and TtGalA activities were determined using as polymeric substrates locust bean 

gum, carob galactomannan and guar galactomannan. The reaction mixture (1 ml) containing one of 

the purified enzymes (1 µg) was assayed using 1.0 % galactomannan substrate dissolved in 50 mM 

citrate-phosphate buffer pH 6.0. The reaction was carried out at 80 °C for 30 min and the 

concentration of reducing ends was determined following the Nelson-Somogyi (NS) method, using 

mannose as standard (12). All assays were performed in triplicate. One unit of enzyme activity was 

defined as the amount of enzyme required to release 1 µmol of product per minute, under the the 

above assay conditions.  
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2.4 DturCelB and TtGalA synergistic action 

To evaluate the synergy degree between DturCelB and TtGalA, the enzymes were tested 

simultaneously and sequentially using 1% of galactomannans substrates (Locust bean gum, Carob 

and Guar gum) dissolved in 50 mM citrate-phosphate buffer pH 6.0. For the simultaneous assay, 

various ratios of DturCelB and TtGalA were tested for a total amount of 2 μg. The assays were 

carried out at 80°C for 30 min and the amount of released sugars were quantified by NS (12). 

For the sequential assay 1 μg of DturCelB or TtGalA was incubated in the reaction mix, described 

above, at 80°C for 30 min , and thenthe enzyme was boiled for 10 min to be inactivate. After ice-

cooling, the second enzyme (1 μg) was added to the reaction mixture under the same condition. 

Reactions containing only one of the heat-inactivated enzyme were used as a negative control. All 

the samples were analyzed for the concentration of reducing ends by NS method using mannose as 

standard (12). All enzyme assays were carried out in triplicate. 

 

2.5 Degree of synergy (DS) 

To investigate the interaction between two or more enzymes, synergism is calculated as ratio 

between the observed activity of the enzyme mixture and the theoretical sum of individual specific 

activity of the same enzymes on a substrate. The calculation of degree of synergy (DS), between 

DturCelB and TtGalA, was determined by the following equation: 

𝐷𝑆 =  
𝑌1+2

(𝑌1 + 𝑌2)
      

where Y1+2, indicates the yield of reducing sugar achieved by the two enzymes working 

simultaneously, Y1 and Y2 indicate the yields (μg) of reducing sugars, achieved by each enzyme 

when working separately. 

 

3. Results and discussion 

In nature, plant biomass degradation is accomplished by the complex action of various Glycoside 

hydrolases (GHs). Therefore, the optimization of enzymatic mixtures to improve the conversion of 

biomasses into fermentable sugars, is needed for biorefinery purposes. Nevertheless, a major issue 

in this context is to set up the right reaction conditions to achieve a synergistic interaction among 

enzymes. The synergic association produces a total effect greater than the sum of individual 

enzymes and it is present when the degree of synergy (DS) is greater than 1. In particular synergy 

among different enzymes involved in degradation of galactomanannas can be classified in two 

types: i) homosynergy between two enzymes cleaving main-chain (i.e -mannosidase and-

mannanase) or side chain ii) heterosynergy between a side-chain cleaving enzyme and a main-chain 

cleaving enzymes (i.e ,1-6 galactosidase and -4 mannanase). On the contrary the antisynergic 
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effect is established when one enzyme inhibits the action of the another because of competition for 

the same substrate (8).  

Nowadays, the knowledge about cocktails of thermophilic enzymes is still limited and it is 

interesting to study the synergic action of enzymes derived from different hot source that hydrolize 

the biomass in the same harsh industrial conditions.   

 

Determination of specific activity of DturCelB and TtGalA on different galactomannans.  

The endo -1,4 mannanase, DturCelB (18) from D. turgidum and the -1,6 galactosidase from T. 

thermophilus (11) were previously characterized for their biochemical features. 

We assayed both enzymes on different galactomannans as Locust bean gum, Carob and Guar gum 

that differ for the frequency of galactose residues (Guar gum > Carob> Locust bean gum) on the 

mannan backbone (Fig. 1). 

 

 

 

 

 

DturCelB showed hydrolytic endo-mannanase activity at 80°C and pH 6.0 towards locust bean gum 

(44.0 U·mg-1), Carob (40.3 U·mg-1) and Guar gum (2.8 U·mg-1) (Tab.1). The different catalytic 

efficiency can be explained by the the increasing number of galactose residues branching out from 

the linear mannan backbones causing steric hindrance to the enzyme. A similar behaviour was also 

demonstrated for Clostridium thermocellum Man5A (13). 

 TtGalA was chosen as potential partner of DturCelB for debranching activity to ameliorate the 

galactomannans hydrolysis. TtGalA showed its highest catalytic activity at 90°C and pH 6.0 on the 

synthetic substrate, pNP-α-D-galattopyranoside (pNPgal) (338 U·mg-1) (11) but it retained 98% of 

its activity at assay condition above reported for DturCelB. Consequently, in order to test TtGalA in 

association with DturCelB, it was assayed at 80°C and pH6, on Locust bean gum (4.4 U·mg-1), 

Fig. 1 Graphical representation of different galactomannas (Locust bean gum, Carob 

galactomanna and Guar galactomannan).  1,4-endomannanase randomly cleaves mannose 

backbone.; 1,6-galactosidase hydrolizes non-reducing terminal galactose units. 

Locust bean gum 

Carob galactomannan 

Guar galactomannan 
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Carob (1.4 U·mg-1) and Guar gum (0.33 U·mg-1) (Table 1). TtGalA catalytic activity on polymeric 

substrates is not negligible, indeed it is higher if compared to the -galactosidase AglC from 

Aspergillus niger (1.0 U·mg-1) belonging at the same family GH36 and very similar to a GH27 

Aga27A from Cyamopsis tetragonolobus (3.7 U·mg-1) (14). Moreover, the different values of 

specific activity of TtGalA towards pNPgal respect to galactose-polysaccaharides are in agreement 

also with other GH36 members (14).  

Therefore the synergistic association between TtGalA and DturCelB might be functional to improve 

the hydrolysis of hemicellulose as already demonstrated in other systems (8, 14). 

 

Substrate TtGalA 

Specific activity (U·mg
-1

) 

DturCelB 

Specific activity (U·mg
-1

) 

Locust bean gum  

(G/M: 1/4) 

4.4  44.0 

Carob galactomannan 

(G/M: 1/3.5) 

1.4 40.3 

Guar Galactomannan 

(G/M: 1/2) 

0.33 2.8 

 

 

Synergistic studies of TtGalA and DturCelB toward three galactomannans 

The aim of this study was centred on the setting up of reaction conditions suitable to achieve 

heterosynergy between TtGalA and DturCelB to ameliorate the galactomannans hydrolysis. The 

synergistic interaction between the recombinant enzymes was assessed through the quantification of 

the reducing sugars released during the degradation of the three galactomannan substrates that 

contained a different ratio of galactose- versus mannose- residues (Fig. 1). To evaluate how the 

activity and interactions of TtGalA and DturCelB, were influenced by the extent of galactose 

substitution on the mannan backbone, simultaneous and sequenzial assays were performed. In 

simultaneous assays the enzymes were added to the reaction mixture at the same time varying their 

relative ratio (50%DturCelB-50%TtGalA; 75%DturCelB-25%TtGalA and 25%DturCelB-

75%TtGalA), while in sequential assays the enzymes, used in same ratio (50% DturCelB-

50%TtGalA), were added first one and then the other as described in Materials and methods. 

Locust bean gum is the most important galactomannan used as stabilizing agent in food and non-

food industries (15), purified from endosperm of seeds of carob tree (16) and it is the lowest 

galactose containing polymer among the substrates tested (Fig. 1). Using this substrate, in the 

simultaneous assay, the enzymes exhibited synergism under all combinations with a DS of 1.8, 1.3 

and 1.1 using a ratio of 25%DturCelB-75%TtGalA, 75%DturCelB-25%TtGalA and 50%DturCelB-

50%TtGalA, respectively (Fig. 2A). To get further insight into the observed synergistic interaction, 

Table 1 Specificity activity of TtGalA and DturCelB vs different galactomannanes. Galactose 

(G)/ mannose (M) ratio  
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we performed sequential assays. When DturCelB was added as first, the DS (1.1) turned out to be 

identical to that obtained with simultaneous assays (Fig. 2). Conversely, the DS raised up to 1.4 

when TtGalA acted as first (Fig. 2B). These results demonstrate that TtGalA significantly supported 

DturCelB activity by removing galactose branches on the polymer that would have sterically 

hindered DturCelB.  

 

Fig. 2 Simultaneous (A) and sequential (B) assays of TtGalA and DturCelB on Locust bean gum. Various 

combinations of recombinant enzymes were tested, and protein ratio was expressed in percentage form. The synergy 

degree was highlighted with asterisk. Values were presented as mean values ± S.D. (n = 3). 

 

Locust bean gum and Carob galactomannan are both isolated from carob seeds. Nevertheless these 

galactomannan polymers display different chemical and rheological properties depending on their 

geographic origin (17).  The reported G/M ratio of Carob galactomannan is slightly lower (1/3.5) 

than Locust bean gum (1:4) and our data indicate that the specific activity of TtGalA on Carob is 

30% of that on Locust bean gum thus pointing to a complex nature of this substrate (Table 1). 

Therefore, we resolved to perform a comparative synergy study of the two thermophilic enzymes 

also using this second substrate. In fact, when DturCelB and TtGalA were assayed simultaneously, 

in combination of 50%-50% no synergy was exhibited (DS =0.8) (Figure 3A). It might be 

explainable with a complex nature of the Carob substrate (purity degree, extent of galactose 

ramifications) that renders the binding of TtGalA not completely productive, thus in turn inhibiting 

the DturCelB hydrolysis when they are present in the enzymatic mixture in a similar amount. 

However, a similar degree of synergy (DS=1.4 on Carob vs 1.3 on Locust bean gum) was achieved 

when the enzymes were assayed simultaneously with a protein ratio of DturCelB to TtGalA 75%-

25% and the total amount of reducing sugars released was also comparable (467 g vs 454g) 
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(Figure 3A and 2A). However, the highest DS obtained on Carob (DS=1.4) was indeed lower than 

that measured on Locust bean gum (Figure 2A, DS=1.8), indicating that the two enzymes 

performed their synergistic catalytic activity, less efficiently on this substrate (Figure 3A). This 

result can be only explained by the low specific activity of TtGalA on Carob, while the affinity of 

DturCelB on Carob and Locust bean gum is almost the same (Table 1). Our data highlighted the 

role of TtGalA, that plays a major function in enhancing of DturCelB hydrolysis, improving the 

linear mannan chain accessibility. Accordingly, results from the sequential assay show clearly that 

also on Carob the synergistic association, between the two enzymes, greatly benefits (DS=1.5) by 

the previous action of the debranching enzyme (Fig. 3B). 

 

 

Fig. 3 Simultaneous (A) and sequential (B) assays of TtGalA and DturCelB on Carob galactomannan. Various 

combinations of recombinant enzymes were tested, and protein ratio was expressed in percentage form. The degree of 

synergy was highlighted with asterisk. Values were presented as mean values ± S.D. (n = 3). 

The Guar galactomannan backbone is composed of a linear chain of mannose residues, where the 

galactose side-branches is present at every second mannose residues (Fig.1). The specific activity of 

DturCelB and TtGalA on Guar galactomannan was lower than that obtained on Locust bean gum, 

due to the higher extent of galactose substitutions (Table 1). Accordingly, the total yield of reducing 

sugars obtained on this substrate was much lower than that on Locust bean gum and Carob 

galactomannan (Fig. 2, 3 and 4). Nevertheless, in the simultaneous assay our data clearly indicate 

that the synergistic interaction between the two enzymes occurred also using Guar galactomannan 

as substrate (i.e DS≥1.0) under all the conditions tested (Fig. 4A). The sequential assays further 

confirmed that the prior action of TtGalA by removing galactose substituents, increases the 

DturCelB reducing sugar release (Fig. 4B). 
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Fig. 4. Simultaneous (A) and sequential (B) assays of TtGalA and DturCelB on Guar gum. Various combinations 

of recombinant enzymes were tested, and protein ratio was expressed in percentage form. The degree of synergy was 

highlighted with asterisk. Values were presented as mean values ± S.D. (n = 3). 

 

Conclusions 

One of the major factor contributing to increase the yield of the efficient lignocellulose biomass 

conversion yield, resides in understanding how different enzymes may cooperate to degrade 

complex polymeric substrates. Both the new isolated thermophilic DturCelB and TtGalA enzymes 

performed a better catalytic activity working in synergy rather than alone, preferring the low 

galactose-polysaccharides than the highly galactose decorated polymers used in this study. In fact, a 

good degree of heterosynergy relationship with each other on galactomannan degradation was 

clearly demonstrated on all the substrate tested at high temperature (80°C) and in a relatively short 

time (30 min) compared to other studies (14). Based on the sequential assays, the synergy was a 

result of TtGalA activity, which removes galactose branches from the galactomannan polymers, 

then improving the accessibility of the linear mannan backbone to DturCelB. Our finding also 

revealed that the 75%-25% ratio of DturCelB and TtGalA is the best combination to attain a 

compromise between a good degree of synergy and the highest yield of reducing sugar release. The 

strength point of this enzymatic cocktails resides in the thermophilicity and thermostability of both 

the enzymes TtGalA (11, 18) that allows to foresee its employment during the gradual cooling right 

after the pretreatment of lignocellulosic material. The addition of thermophilic enzymes earlier in 

this step would result in time savings and improved conversion efficiency of the whole process, 

compared to the use of mesophilic/moderate thermophlic enzyme cocktails. 
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Chapter 3 

 

Protein-spore system to deliver biological drugs to the human intestinal mucosa 

 

3.1 Display of the peroxiredoxin bcp1 of Sulfolobus solfataricus on probiotic spores of  

Bacillus megaterium 
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Summary 

Hyperthermophilic microorganisms are a good source of new robust enzymes for various 

biotechnological applications. Peroxiredoxins (Prxs), are ubiquitous thiol peroxidases involved in 

reduction of peroxides. Recently an array of Prxs named Bacterioferritin comigratory proteins 

(Bcps), were characterized from the hyperthermophilc archaeon Sulfolobus solfataricus (Bcp1-

Bcp4) . They show not only a high thermostabilty, but also a greater structural robustness: in fact as 

the majority of Prokaryotic Prx, they are less prone to inactivation by over-oxidation. For this 

reasons in the paper entitled “Display of the peroxiredoxin Bcp1 of sulfolobus solfataricus on 

probiotic spores of Bacillus megaterium”, submitted to Microbial Cell Factories, we chose Bcp1 to 

test its antioxidant activity in association with bacterial spores of Bacillus megaterium for possible 

treatment in inflammatory bowel disease (IBD). For this purpose, the conditions to bind the enzyme 

to the spore surface were set up and then the perossidase activity and stability of system Bcp1-spore 

in the presence of simulated gastric and intestinal fluids were evaluated. The results showed that 

Bcp1 can be efficiently adsorbed to spores of B. megaterium; in particular the exosporium is 

essential for the binding of the enzyme. Bcp1 showed peroxidase activity also when it is adsorbed 

to the spores. In addition, the association protein-spores makes Bcp1 more resistant to degradation 

in presence of low pH values and proteases typical of gastrointestinal tract. These results represent a 

potentially useful property for a display platform to be used for the delivery of molecules to animal 

mucosal surfaces. 
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Abstract 

Background: Bacterial spores displaying heterologous proteins have been proposed as a safe and 

efficient system to deliver antigens and enzymes to animal mucosal surfaces. Initial studies have 

been performed using Bacillus subtilis spores, but then other spore formers have been also 

considered. B. megaterium spores have been shown able to display large amounts of a model 

heterologous protein that in part crossed the exosporium localizing in the space between the outer 

coat layer and the exosporium. We used B. megaterium spores to adsorb Bcp1, a peroxiredoxin of 

the hyperthermophilic archaeon Sulfolobus solfataricus, known to have a antioxidant activity. 

Results: We report that purified Bcp1 was adsorbed by spores of B. megaterium QM B1551, that 

the exosporium had an important role in the adsorption and that Bcp1 was more efficiently adsorbed 

to B. megaterium than to B. subtilis spores. Adsorbed Bcp1 localized underneath the exosporium, 

filling the space between the outer coat and the exosporium. This peculiar localization contributed 

to the protection of the adsorbed enzyme from degradation in simulated intestinal or gastric 

conditions. In addition, we observed that B. megaterium spores had an endogenous antioxidant 

activity and that such activity was increased by Bcp1 adsorption, indicating that the adsorbed 

enzyme retained at least part of its enzymatic activity. 

Conclusion: The spore of B. megaterium is highly efficient in adsorbing large amounts of the 

heterologous enzyme Bcp1 that, once adsorbed, retains its activity. In addition, as a delivery 

platform the spore has an endogenous antioxidant activity and, therefore, has its own potential 

health beneficial effects. These properties, together with the well-documented safety of B. 

megaterium, propose the spore of this species as a valid system for the mucosal delivery of health 

beneficial molecules. 

 

Background 

 

The delivery of drugs and antigens by the oral or nasal route offers several advantages over 

injectable methods and is gaining increasing relevance for the treatment of human and animal 

diseases. Mucosal routes are promising alternatives to the parenteral delivery also because of the 

high vascularisation of the mucosal surfaces that allows the direct transfer of molecules to the 

systemic circulation (1). However, the number of drugs and antigens that can be effectively 

administered by the oral or nasal route is severely limited by the rapid loss of activity encountered 

by many of these molecules at mucosal sites. Therefore, the successful development of mucosal 

therapeutic molecules relies on efficient delivery systems, able to stabilize and protect the 

molecules from degradation and to reduce or totally avoid the loss of biological activity (2). A 
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variety of drug delivery systems has been proposed, including live microorganisms, virus particles, 

synthetic nanoparticles, liposomes, microspheres, gels and cyclodextrins (2, 3) Bacterial spores 

displaying heterologous proteins have also been proposed as a tool for the delivery of molecules to 

mucosal surfaces (4, 5). Spores are extremely stable cells and are potentially able to conjugate some 

advantages of live microrganisms with those of synthetic nanoparticles (4, 5). Bacterial spores are 

mainly formed by Gram-positives belonging to different genera and including more than 1,000 

species (6). The common feature of these organisms is the ability to form a quiescent cell type (the 

spore) in response to harsh environments. This peculiar cell survives in a dormant state for long 

periods, resisting to a vast range of stresses such as high temperature, dehydration, absence of 

nutrients, and presence of toxic chemicals. When the environmental conditions ameliorate, the 

spore germinates originating a vegetative cell able to grow and sporulate (6). The use of bacterial 

spores as a drug/antigen delivery system has been fostered by the remarkable and well-documented 

resistance of spores (7) that ensures high stability to the delivery system and by the safety record of 

several species of spore formers (8). Initially, spores of the model organism Bacillus subtilis have 

been used (9), but then also other Bacillus species have been tested for the display and mucosal 

delivery of antigens and enzymes (4, 10). More recently, spores of B. megaterium have been used to 

display a model heterologous protein (11). This species is particularly promising as a delivery 

vehicle for 54 at least two reasons: the large dimensions of its spore (length up to 3 mm and 

diameter of 1 mm) (12) and the presence of an exosporium, a protective layer surrounding the spore 

found only in some spore-forming species (13). Also because of their large dimensions, spores of B. 

megaterium were extremely efficient in displaying heterologous proteins and 5.0x108 spores of the 

QM B1551 strain adsorbed up to 100 μg of the red fluorescence protein of coral Discosoma sp 

(mRFP) that was shown to cross the exosporium of QM B1551 and localize in the inter-coat space 

(11). The exosporium is essential to allow a high efficiency of display and has been proposed to 

protect the displayed molecules from degradation (11). The QM B1551 strain of B. megaterium is 

the best-characterized strain of this species, it carries seven indigenous plasmids (14, 15), two of 

which, pBM500 and pBM600, are strictly required for the formation of the exosporium (16). The 

protein composition of the exosporium of QM B1551 is poorly characterized and only a few genes 

encoding orthologues of recognized exosporium proteins in spores of other species have been so far 

identified by genomic analyses (16). We used a well-characterized archaeal enzyme, the 

bacterioferritin comigratory protein 1 (Bcp1) of Sulfolobus solfataricus, belonging to peroxiredoxin 

family (17-20), as a model to study enzyme display and delivery by B. megaterium spores. 

Peroxiredoxins are thiol peroxidases commonly found in archaea and eukaryotes, including 

humans, and known to contribute to the cell protection against reactive oxygen species (ROS) (21). 

These potent oxidants are normally produced by oxygen metabolism but, when present at elevated 
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concentrations can cause protein oxidation, lipid peroxidation and DNA damages. ROS 

accumulation has been associated to neurodegenerative diseases, (22), progression of 

arteriosclerosis (23), inflammatory bowel diseases and Crohn’s disease (24). Therefore, the delivery 

of enzymes with antioxidant activity can be a strategy to prevent inflammation caused by oxidative 

stress. Indeed, the high thermostable Bcp1 of S. solfataricus, used here as a model enzyme, has 

been recently found to protect cardiomyoblast cells from oxidative stress in vitro and proposed as a 

potentially health beneficial molecule with anti-oxidant activity (25). 

 

Results and Discussion 

Display of active Bcp1 of S. solfataricus on B. megaterium spores 

To verify whether spores of B. megaterium QM B1551 were able to adsorb Bcp1, various amounts 

of the purified enzyme (Methods) were incubated with 5.0 x 108 purified spores. The adsorption 

reaction was performed in 50 mM sodium citrate at pH 4.0, as previously described (26). After the 

reaction, spores were extensively washed with 1xPBS pH 4.0, collected by centrifugation and spore 

surface proteins extracted as described in the Methods section. Extracted proteins were analyzed by 

western blotting with anti-polyHis-Peroxidase monoclonal antibody (Sigma), which recognizes the 

his-tagged N terminus of recombinant Bcp1. As shown in Fig. 1A, specific signals of increasing 

intensity were observed with extracts of spores reacted, respectively, with 20, 50 and 70 g of 

purified Bcp1, therefore indicating that Bcp1 was absorbed during the reaction and then released by 

the extraction treatment.  

To evaluate the efficiency of adsorption, we followed a well-established procedure (27, 28, 11) and 

analyzed the amount of Bcp1 left unbound, i.e., post-adsorbed spores were collected by 

centrifugation and the supernatant serially diluted and analyzed by dot blotting (Additional Fig. 1). 

The results of the densitometric analysis of the dot blotting (Additional Table1) are reported in Fig. 

1B and showed that when 20 or 50 g of purified Bcp1 were used in the adsorption reaction almost 

all molecules were adsorbed to the spore while when 70 µg of enzyme were used about 51 % of 

Bcp1 was adsorbed. In order to assess whether spore-adsorbed Bcp1 molecules retained their 

enzymatic activity we assayed the efficiency of H2O2 removal by the free and spore-bound enzyme. 

As a control we also assayed B. megaterium QM B1551 spores alone that showed a strong 

antioxidant activity (grey bar in Fig. 1C). However, spores-adsorbed with 20 or 50 g of Bcp1 

showed antioxidant activity higher than spores alone indicating that the enzyme was, at least in part, 

active (black bars in Fig. 1C). Although we cannot distinguish between the enzymatic activity due 

to the adsorbed Bcp1 or to the spore, we noted that spores adsorbed with 20 or 50 g of Bcp1 (black 

bars in Fig. 1C) showed an antioxidant activity higher than that of similar amounts of free Bcp1 



68 

 

(white bars in Fig. 1C). Therefore, the activity observed with Bcp1 adsorbed to spores is most likely 

due to the combination of the activities of the adsorbed enzyme and of spores. 

 

Fig. 1 Adsorption of Bcp1 to B. megaterium spores.5 x108 spores were incubated 

with with 20, 50 or 70 μg of Bcp1 and then the samples subject to centrifugation. 

(A) Spore surface proteins were extracted from the pellet fractions by SDS-DTT 

treatment and analyzed by Western blot with a Bcp1-recognizing antibody. Free 

Bcp1 was used as a marker. (B) The percentage of spore-adsorbed Bcp1 was 

calculated from dot blotting (Additional Fig. 1) of the supernatants fractions 

containing unbound Bcp1, and relative densitometric analysis (Additional Table 1). 

(C) Peroxidase activity of QM B1551 spores (grey bars), of 20 and 50 g of free 

Bcp1 (white bars) or of the same amounts of enzyme adsorbed to spores (black 

bars). Error bars show the standard errors of the mean from the three different 

experiments. 

 

The exosporium of B. megaterium is essential for Bcp1 adsorption 

Strain QM B1551 of B. megaterium contains seven indigenous plasmids (14, 15), two of which are 

essential for the formation of the exosporium (16), the outermost spore layer. We used PV361, a 

QM B1551-cured strain totally lacking the exosporium (16), to analyze the role of the exosporium 

in Bcp1 adsorption. In parallel, we also used spores of B. subtilis PY79 the model organism for 

spore formers previously used to display a variety of heterologous proteins (5). To compare the 

adsorption efficiency of spores of B. megaterium QM B1551, PV361 and of B. subtilis PY79, we 

adsorbed 50 g of purified Bcp1 with 5.0x108 spores of each of the three strains. After the 

adsorption reactions spores were collected by centrifugation, proteins extracted by SDS-DTT 

treatment and analyzed by western blotting with Bcp1-recognizing anti-His antibody. As shown in 
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Fig. 2A, Bcp1 was apparently extracted in larger amounts from spores of QM B1551 than from 

spores of the PV361 strain while B. subtilis spores adsorbed only minimal amounts of the enzyme. 

To quantify these apparent differences, unbound Bcp1 from the adsorption reactions was serially 

diluted and analyzed by dot blotting (Additional Fig. 2). The results of the densitometric analysis of 

the dot blotting (Additional Table 2) are reported in Fig. 2B and show that QM B1551 spores 

adsorbed more than 90% of the initial 50 g of Bcp1 used in the reaction while PV361 and B. 

subtilis spores were less efficient and adsorbed about 70% and less than 50% of the original amount 

of the enzyme, respectively. Based on the results of Fig. 2 and of Additional Fig 2 and Table 2, we 

concluded that the exosporium, present in QM B1551 has a relevant role in the adsorption of Bcp1. 

This conclusion is also supported by a previous analysis in which the exosporium of QM B1551 

spores resulted essential for the efficient adsorption of the red fluorescent protein (RFP) of the coral 

Discosoma (11). Spores of both strains of B. megaterium, QM B1551 and PV361, appeared more 

efficient than B. subtilis PY79 spores in adsorbing Bcp1. However, spores of B. megaterium are 

about three times larger than B. subtilis spores (12) and this raised the possibility that the different 

efficiency of adsorption was simply due to the different adsorption volume. Therefore, we repeated 

the adsorption experiment by using three times more B. subtilis spores with the same amount of 

Bcp1 (50 g) and analyzed by dot blotting the unbound enzyme (Additional Fig 3). A densitometric 

analysis of the dot blotting showed that about 65% of the enzyme was adsorbed by 1.5x109 B. 

subtilis spores (Additional Table 3). Therefore, 5.0x108 spores of B. megaterium adsorbed at least 

25% more Bcp1 than 1.5x109 spores of B. subtilis, indicating a higher efficiency of Bcp1 adsorption 

of B. megaterium spores with respect to B. subtilis spores. 

 

 

 

. 
 

Fig. 2 Adsorption of Bcp1 to B. megaterium and B. subtilis spores. (A) Western blotting performed with Bcp1-

recognizing antibody of free Bcp1 and of proteins extracted from spores of B. subtilis (PY79) or of B. megaterium with 

I (QM B1551) or PV361 alone (-) or adsorbed (+) with 50 g of purified Bcp1. (B) Percentage of adsorbed Bcp1 was 

calculated from dot blotting (Additional Fig. 2) of the supernatants fractions containing unbound Bcp1, and relative 

densitometric analysis (Additional Table 2) 
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Bcp1 localizes in the inter-coat space 

A previous study has indicated that the heterologous protein mRFP adsorbed to B. megaterium 

spores crossed the exosporium and localized in the space between the exosporium and the outer 

coat (11). In order to assess whether also Bcp1 was able to cross the exosporium we used an 

immunofluorescence approach. Bcp1 adsorbed spores were reacted with Bcp1-recognizing antibody 

and then with a fluorescent secondary antibody. As shown in Fig. 3, when spores were adsorbed 

with 20 g of Bcp1 only a weak fluorescence signal was observed. This signal was not all around 

the spore but localized in a spot. Increasing the amount of Bcp1 used in the adsorption reaction a 

strong fluorescence signal was observed all around the spore (Fig. 3). Based on previous findings 

with B. megaterium spores and mRFP (11) and on results of Fig. 1 showing that up to 50 g of 

Bcp1 can be adsorbed by B. megaterium spores, to explain results of Fig. 3 we hypothesized that 

when 20 g of Bcp1 were used for the adsorption reaction all molecules of the enzyme crossed the 

exosporium, localized in the inter coat space and were mainly not available to the Bcp1-recognizing 

antibody. When the space between outer coat and exosporium was completely filled up by Bcp1 

molecules (adsorption with 50 g of Bcp1), some of them were exposed on the spore surface and 

available to the Bcp1-recognizing antibody. No differences were observed when 50 or 70 g of 

Bcp1 were used. To verify this hypothesis, we used the red fluorescent protein of the coral 

Discosoma, already shown to adsorb to B. megaterium QM B1551 spores and to cross the 

exosporium (11). Spores were reacted either with 5 g of mRFP or with 50 g of Bcp1 first and 

then with 5 g of mRFP. 
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Fig. 3. Immunofluorescence microscopy of B. megaterium QM B1551 spores 

adsorbed with increasing amounts of purified Bcp1. After adsorption reaction, Bcp1-

adsorbed spores were reacted with Bcp1-recognizing primary antibody and fluorescein 

isothiocyanate conjugated secondary antibody. The same microscopy field for phase 

contrast and immunofluorescence is reported together with the merge panel. The exposure 

time was 500ms for all images. Scalebar,1 m. 

 

 

Spores were then analyzed by fluorescence microscopy and as shown in Fig. 4, the red fluorescence 

signal was stronger when spores were adsorbed only with mRFP (Fig. 4A) than when were pre-

adsorbed with Bcp1 (Fig. 4B), suggesting that Bcp1 filled up the inter-coat space reducing the 

number of mRFP molecules able to cross the exosporium. In a parallel experiment spores were 

reacted with 50 g of Bcp1 or pre-adsorbed with 100 g of mRFP and then with 50 g of Bcp1. 

Spores were then analyzed for their antioxidant activity, and as shown in Fig. 5, the activity of spore 

pre-adsorbed with mRFP and then adsorbed with Bcp1 (dark grey bar) was significantly lower than 

that of spores adsorbed only with Bcp1 (black bar) and similar to that of QM B1551 spores alone 

(light grey bar). Altogether results of Fig. 3, 4 and 5 support the conclusion that, like mRFP (11), 

also Bcp1 molecules crossed the exosporium of the B. megaterium spore, localizing in the inter-coat 

space and filling the space between outer coat and exosporium.  
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Fig. 4. Fluorescence microscopy of B. megaterium QM B1551 spores 

adsorbed with 

mRFP and/or Bcp1. B. megaterium QM B1551 spores were adsorbed with 5 

g of mRFP (A) or with 50 g of Bcp1 and then with 5 g of mRFP (B), 

washed and analyzed by fluorescence microscopy. The same microscopy field 

was observed by phase contrast and fluorescence microscopy. The merge panel 

is reported. The exposure time was 200ms. Scalebar,1 m. 

 

 

 

Fig. 5. Antioxidant activity of B. megaterium QM B1551 spores adsorbed with 

Bcp1 and/or mRFP. Peroxidase activity of 5.0x108 spores of QM B1551 alone 

(light grey bar) or adsorbed with 50 g of Bcp1 (black symbols) or with 100 g of 

mRFP and then with 50 g of Bcp1 (dark grey bars). 

 

Effects of simulated gastric or intestinal conditions on Bcp1-adsorbed spores  

To analyze the effects of intestinal conditions on Bcp1 adsorbed to spores, we treated the free and 

the spore-adsorbed enzyme with simulated gastric fluid (SGF) or simulated intestinal fluid (SIF) 

(Methods). 5.0x108 spores adsorbed with 50 g of Bcp1 were treated with SGF or SIF, washed, 

used to extract surface proteins and these analyzed by western blotting as above. In parallel, the 

same amount of free Bcp1 was also treated with SGF or SIF and analyzed by western blotting. As 
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shown in Fig. 6A, free Bcp1 was totally degraded by SGF treatment and only a minimal amount of 

the enzyme was still detected after the SIF treatment. Spore-adsorbed Bcp1 molecules were, 

instead, still extracted and detected after either treatment, indicating that they were only partially 

affected by SGF or SIF (Fig. 6A). To verify whether the detected enzyme was still active, we 

analyzed the antioxidant activity of spores, free enzyme and spore-adsorbed enzyme after the 

treatment with SGF or SIF. As reported in Fig. 6B, the activity of 5.0x108 QM B1551 spores was 

not affected by either treatment (grey bars), while the activity of the free enzyme (50 g) was 

strongly affected by both treatments with a reduction of activity of about 50% with SIF and about 

85% with SGF (white bars). The activity of 5.0x108 spores adsorbed with 50 g of Bcp1was also 

affected by the treatments but the reduction of activity was about 20 and 30% with SIF and SGF, 

respectively (Fig. 6B). Both SGF and SIF affected free and spore-bound Bcp1, however the 

antioxidant activity of spore-bound Bcp1 was slightly higher than the sum of the activities of spores 

and free enzyme (Fig. 6B), suggesting that part of the adsorbed enzyme was still active after the 

treatments. It has been previously reported that an enzyme adsorbed to B. subtilis spores was 

somehow protected against acidic conditions (26). Based on this the partial protection of Bcp1 

observed in the experiments of Fig. 6 could be explained by a stabilization of the adsorbed enzyme 

at low pH conditions used at least SGF treatments. To verify this possibility we treated spores, free 

Bcp1 and spore-adsorbed Bcp1 to various acidic conditions. As shown in Fig. 7A, the activity of 

Bcp1- spores (black symbols) was higher than that of free Bcp1 (white symbols) at all pHs tested, 

most likely because of the activity of the spore (grey symbols). However, free and spore-bound 

Bcp1similarly decreased from pH 7.0 to pH 2.0, suggesting that the interaction with the spore did 

not protect the enzyme at low pH conditions. Based on this we concluded that: i) the decrease of 

antioxidant activity of spore-Bcp1 treated with SGF (Fig. 6B) was mostly due to the acidic 

condition; and ii) the slightly higher activity of spore-bound Bcp1 with respect to free Bcp1 was due 

to a protection against the proteases present in the SGF. An explanation for the partial protection of 

adsorbed Bcp1 is that the enzyme is covered by the exosporium (Fig. 3, 4, 5), and not accessible to 

the degradative enzymes present in SIF or SGF. We hypothesize that these proteases would not be 

able to cross the exosporium and degrade Bcp1 because, as shown for mRFP (Fig. 4), when QM 

B1551 spores were adsorbed with 50 g of Bcp1 the space between outer coat and exosporium was 

almost completely full. To verify this hypothesis, we repeated the experiment of Fig. 6B, but 

adsorbing QM B1551 spores with 20 g of Bcp1. As shown in Fig. 7B, the activity of spores 

adsorbed with 20 g of Bcp1 was strongly reduced by SIF and almost completely eliminated by the 

SGF. The antioxidant activity of spore bound Bcp1 was slightly higher than or identical to that of 

spores alone after the SIF or SGF treatment, respectively (Fig. 7B), indicating that the enzyme was 
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almost completely degraded. We infer that in these conditions, some of the protease molecules 

contained in SGF and SIF crossed the exosporium and degraded Bcp1. Therefore, results of Fig. 7B 

supported the idea that the proteases of SIF and SGF could not enter the inter-coat space when it 

was already filled up with other molecules. 

 

Fig. 6. Effect of SIF and SGF on spore adsorption. (A) Western blotting 

performed with Bcp1-recognizing antibody of free Bcp1 and of proteins 

extracted from spores of B. megaterium QM B1551 adsorbed with 50g of 

purified Bcp1. Free and spore-adsorbed enzyme was not treated (UnT) or 

treated with SIF or SGF as described in Methods section. (B) Peroxidase 

activity of 5.0x108 spores of QM B1551 (grey bars), of 50 g of free Bcp1 

(white bars) or of the same amount of enzyme adsorbed to spores (black 

bars) without (UnT) or with SIF or SGF treatment. Error bars show the 

standard errors of the mean from three independent experiments (P < 0.05). 

 

 

 

Fig. 7 Effect of pH or protease on spore adsorption (A) Effect of low pH conditions on the Peroxidase activity of 

free Bcp1 (white symbols), spores (grey symbols) and spore-adsorbed Bcp1 (black symbols). (B) Antioxidant activity 

of 5.0x108 spores of QM B1551 (grey bars), of 20 g of free Bcp1 (white bars) or of the same amount of enzyme 

adsorbed to spores (black bars) without (UnT) or with SIF or SGF treatment. 
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Conclusions 

Main conclusion of this report is that the thermoacidophylic enzyme Bcp1 of S. solfataricus can be 

efficiently adsorbed to spores of B. megaterium, with about 50 g of enzyme adsorbed by 5.0x108 

spores. The adsorption is more efficient than with B. subtilis spores and is in part due to the 

presence of the exosporium. Adsorbed Bcp1 localized the space between the outer coat and the 

exosporium and this peculiar localization contributes to the protection of the enzymes from 

degradation by treatments with SIF or SGF. An additional interesting observation highlighted by 

this report is that B. megaterium spores have an endogenous antioxidant activity. This endogenous 

antioxidant activity of B. megaterium spores is also stable at low pH conditions and represents a 

potentially useful property for a display platform to be used for the delivery of molecules to animal 

mucosal surfaces.  

 

Methods  

Bacterial strains and spore purification 

B. megaterium strains QM B1551 and PV361 (14) and B. subtilis strain PY79 (27) were used in this 

study. Sporulation was induced by the exhaustion method. After 30 h of growth in Difco 

Sporulation medium (DSM) at 37 °C with vigorous shaking, spores were collected, washed three 

times with distilled water and incubated overnight in distilled water in H2O at 4°C to lyse residual 

sporangial cells as described before (11). Spore counts were determined by direct counting with a 

Bürker chamber under an optical microscope (Olympus BH-2 with 40× lens) 

 

Expression and purification of Bcp1 

BL21 DE3 RIL/ pET30Bcp1 strain was grown up to 0.8 OD600nm in Luria-Bertani (LB) medium 

supplemented with kanamycin (10 μg mL-1) and chloramphenicol (34 μg mL-1) at 37 °C. The 

expression of the recombinant enzyme was induced by 1 mM isopropyl--D-thiogalactoside (IPTG) 

for 6 h at 37 °C (28). The cells were harvested by centrifugation, resuspended in 20mM Tris-HCl 

pH 8.0 containing complete EDTA-free protease inhibitors cocktail and disrupted by sonication. 

Purification of protein was carried out by two steps: heat treated cell extract at 80°C for 15 min and 

affinity chromatography by His Trap HP (21). 

 

Adsorption reaction 

Different amounts of Purified Bcp1 were incubated with 5x108 spores in 200 μl of 50 mM Sodium 

Citrate pH 4.0 at 25°C (26). After 1 h of incubation, the binding mixture was centrifuged (10 min at 

13,000xg) to fractionate Bcp1 adsorbed-spores in the pellet from free Bcp1 in the supernatant (29). 
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Western and Dot-Blotting Analysis 

Extraction of proteins from spores and Bcp1-adsorbed spores was performed with treatment at 65°C 

in 40 μl of SDS-DTT extraction buffer (10mM tris pH 8.0, 1%SDS, 50 mM DTT, 10 mM EDTA, 

mM Tris–HCl, pH 8.0). 20 μl of extracted proteins were then electrotransferred to nitrocellulose 

filters (Amersham Pharmacia Biotech) and analysed by Western blot using monoclonal Bcp1-

recognizing anti-His antibody (Sigma), as previously reported (29). A quantitative determination of 

the amount of Bcp1 was obtained by dot blot experiments comparing serial dilutions of purified 

Bcp1 and binding assay supernatant. Filters were then visualized by the ECL-substrates method 

(Clarity, Bio-rad) and subjected to densitometric analysis by Quantity One 1-D Analysis Software 

(Bio-Rad) (29). Dot blot and relative densitometric analyses were performed three times to verify 

the significance of the results. 

 

Fluorescence and immunofluorescence microscopy 

Samples for Immunofluorescence microscopy were prepared as described by Lanzilli et al. (2016) 

and observed with an Olympus BX51 fluorescence microscope (11). mRFP-adsorbed spores were 

resuspended in 50 μl of 1xPBS pH 4.0 and 5 μl of the suspension observed at fluorescence 

microscope. Exposure times were in the range between 200 and 5000ms. Images were captured 

using an Olympus DP70 digital camera and processed with Image Analysis Software (Olympus) for 

minor adjustments of brightness, contrast and color balance (30). 

 

Assays of peroxidase activity 

The ability to remove peroxide of the spores and of free or spore-adsorbed Bcp1 was tested by an in 

vitro non-enzymatic assay (28). The reaction was started adding H2O2 at a final concentration of 0.2 

mM to the reaction mixture containing 50 mM Hepes (pH 7.0) and 10 mM DTT in presence of 

different concentration of Bcp1, spores or Bcp1-adsorbed spores in a final volume of 0.1 mL. The 

reaction was incubated at 37 °C for 5 min and stopped by adding 0.9 mL of trichloroacetic acid 

solution (10%, w⁄v), as previously described (25). Peroxidase activity was determined from the 

amount of H2O2 remaining, which was detected by measurement at A490nm of the purple-colored 

ferrithiocyanate complex developed after the addition of 0.2 mL of 10 mm Fe(NH4)2(SO4)2 and 0.1 

mL of 2.5 M KSCN, using H2O2 as a standard. 

 

Treatments with simulated gastric and intestinal fluids 

Free Bcp1, spores and Bcp1-adsorbed spores were incubated for 1 h at 37°C in 100 μl of simulated 

gastric juice (SGF) (1 mg of pepsin (porcine stomach mucosa; Sigma) per ml of 10 mM HCl; pH 

2.0) or small intestine fluid (SIF) (1 mg of pancreatin (porcine pancreas; Sigma) per ml and 0.2% 
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bile salts (50% sodium cholate-50% sodium deoxycholate; Sigma); pH 6.8). To remove the 

proteases contained in SIF and SGF After incubation, the samples containing free Bcp1 were 

treated at 90°C for 15 min while samples containing spores were centrifuged 10 min at 13000xg. 

For the pH-stability assay, free Bcp1, spores and Bcp1-adsorbed spores were incubated at 37°C for 

1h in following buffers: 0.1 M Glycine-HCl pH 2.0; 0.1 M citrate-phosphate pH 4.0 and pH 6.0, or 

0.1 M HEPES pH 7.0. After incubation, the peroxidase activity of the samples was measured 

following the protocol described above. 

 

Statistical Analysis 

Results of peroxidase activity analysis are the averages from three independent experiments. The 

error bars reported in the figures show the standard errors of the mean from the three experiments. 

Statistical significance was determined by the Student t-test, and the significance level was set at P 

< 0.05. 
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Supplementary material 

Additional Figure 1 

 

 

Additional Figure 1. Dot blot of serial dilutions of unbound Bcp1 after adsorption reactions with 

5.0 x 108 B. megaterium QM B1551 spores and different amounts of Bcp1 (20, 50 or 70 g). The 

amount of purified Bcp1 (μg) and the volume of supernatant (μl) loaded are indicated. Immuno 

reactions were performed with with Bcp1-recognizing antibody conjugated with the horseradish 

peroxidase (“Methods” section). 
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Additional Table 1. Densitometric analysis of dot blot experiments reported in Add. Fig 1. 

 

 a Density measured by optical density (OD) per square millimeter and obtained by ChemiDocXRS apparatus with 

Quantity-One software (Bio-Rad).  
b Calculated from signals (density OD/mm2) obtained with purified Bcp1. NA, not applicable 

 

 

 
Additional Figure 2 

 

Additional Figure 2. Dot blot analysis of serial dilutions of unbound Bcp1 

after adsorption reactions with 5.0 x 108 B. subtilis PY79 or with B. 

megaterium QM B1551 or PV361 spores and 50 μg of Bcp1. The amount of 

purified Bcp1 (μg) and the volume of supernatant (μl) loaded are indicated. 

Immuno reactions were performed with with Bcp1-recognizing antibody 

conjugated with the horseradish peroxidase (“Methods” section). 
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Additional Table 2. Densitometric analysis of dot blot experiments reported in Add. Fig 2. 

 

a
 Density measured by optical density (OD) per square millimeter and obtained by ChemiDocXRS apparatus with Quantity-One 

software (Bio-Rad).  
b
 Calculated from signals (density OD/mm2) obtained with purified Bcp1.  

NA, not applicable 

 

Additional Figure 3 

 

Additional Figure 3. Dot blot analysis of the supernatants of 

adsorption reactions of 1.5 x 109B. subtilis spores (PY79) and 5.0 x 

108 or of B. megaterium spores (QM B1551) with 50 μg of Bcp1. 

The amount of purified Bcp1 (μg) and the volume of supernatant 

(μl) loaded are indicated. 
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Additional Table 3. Densitometric analysis of dot blot experiments reported in Add. Fig 3. 

 

a Density measured by optical density (OD) per square millimeter and obtained by ChemiDocXRS apparatus with 

Quantity-One software (Bio-Rad).  
b Calculated from signals (density OD/mm2) obtained with purified Bcp1.  

NA, not applicable 
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Chapter 4 

 

General conclusions 
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Industrial biotechnology aims to replace the current chemical synthesis processes of useful 

compounds with low environmental impact methods based on (micro)organisms, plants and 

enzymes, for a "Green Chemistry". Thermophilic biocatalysts for their robustness and ability to 

work in extreme conditions make them particularly advantageous in various biotechnology 

sectors (1). This PhD project has been focused on the study of thermophilic biocatalysts to be 

used in two different applications: one concerning the “green energy” by degradation of 

biomass and the other one regarding possible pharmacological application by the use of new 

drug delivery systems (2). In the first part of this project, two glycosyde hydrolases (GH), from 

the hyperthermophilic bacterium Dictyoglomus turgidum, were identified: Dtur_0671 

(DturCelB) belonging to the GH5 family and Dtur_0462 (DturβGlu) belonging to the GH1 

family (3). Through the production of the respective synthetic genes and subsequent cloning 

into pET vectors, they were recombinantly produced in E. coli and subsequently biochemically 

characterized.  

DturCelB can be classified as endoglucanase/ endomannanase because showed high hydrolytic 

activity on glucomannan and different galactomannans and slight but appreciable activity on 

carboxymethylcellulose; moreover, DturCelB showed optimal activity values at pH and 

temperature of 5.4 and 70 °C respectively and a good stability to temperature (50% activity 

after 2 h at 70), to pH (70% activity at pH 4 and 90% in range of pH 5-8 after 1 hour of 

incubation), to metals and non-ionic detergents. 

DturβGlu is a β-glucosidase with a tetrameric structure; the enzyme showed optimal activity 

values at 80°C and at pH 5.4, a good stability at high temperature and in a wide range of pH, 

moreover it was enhanced by the addition of non-ionic detergents such as triton X-100 and 

Tween-20. DturβGlu displayed also an optimal β-galactosidase activity and the ability to 

hydrolyse aromatic β-glucosides, such as salicin with a higher catalytic efficiency respect to 

others thermophilic β-glucosidases.  

The features of these two enzymes take them good candidate for biotechnological applications, 

especially in the conversion of biomass to produce fermentable sugars (4). 

In order to create a cocktail of hemicellulases to be tested on biomass, the synergistic effect of 

DturCelB from D. turgidum and TtGalA, an α galactosidase from Thermus thermophilus (5) 

has been studied. These two enzymes have been assayed on different galactomannans both 

simultaneously and sequentially conditions and it was demonstrated that there is an 

heterosynergystic association of these two recombinant thermophilic enzymes on all the 

substrate tested at high temperature (80°C) and in a relatively short time (30 min). In particular, 

results highlighted that TtGalA, removing galactose branches from the galactomannan 

polymers improve the accessibility of the linear mannan backbone to DturCelB.  
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In the second part of this project a protein-spore antioxidant system has been studied for a 

possible treatment in inflammatory bowel disease. The recombinant bacterioferritin 

comigratory protein 1 (Bcp1) from Sulfolobus solfataricus (6) was efficiently adsorbed on 

spores of Bacillus megaterium and this system was tested in different condition simulating the 

intestinal gastric tract. Results showed that the system retain a higher antioxidant activity 

respect to Bcp1 alone in this harsh condition, highlighting the protective role of the spore 

towards the protein and the ability to use this system as a display platform for the delivery of 

molecules to animal mucosal surfaces. 
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