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Riassunto 

Gli ftalati rappresentano un interessante gruppo di distruttori endocrini ampiamente utilizzati per la 

plastificazione del PVC. Il dibutilftalato (DBP) ed il di-2-etilexilftalato (DEHP) sono gli ftalati più 

commercialmente utilizzati e studi tossicologici presenti in letteratura hanno dimostrato un effetto 

tossico di tali sostanze per la riproduzione.  

Per tale motivo, in questo progetto di ricerca sono stati valutati gli effetti del DBP e del DEHP 

sull’apparato riproduttivo maschile mediante studi in vitro ed in vivo. 

Mediante studi in vitro sono stati valutati gli effetti del DBP sulla linea cellulare umana di 

adenocarcinoma prostatico LNCaP e, parallelamente, si è indagato sulle azioni determinate 

dall’estrogeno endogeno 17β-estradiolo (E2), al fine di valutare possibili effetti sovrapponibili tra le 

due sostanze su questo modello sperimentale. 

In primo luogo, è stato valutato il loro effetto sulla vitalità cellulare delle LNCaP dopo 24 h di 

esposizione. Il DBP induce una riduzione della vitalità cellulare alla concentrazione di 10
-8

 M, al 

contrario E2 induce un aumento della vitalità alla concentrazione di 10
-9

 M.  

Mediante esperimenti di RT-qPCR e western blot è stata valutata l’espressione di geni e proteine 

chiave coinvolte nella regolazione del ciclo cellulare come MCT4, Ciclina D1, Ki-67. Per 

comprendere attraverso quale pathway il DBP induce una riduzione della vitalità cellulare, 

mediante western blot è stata valutata l’espressione di Bax e Bak, due proteine pro-apoptotiche 

coinvolte nella via intrinseca dell’apoptosi. Il trattamento con DBP determina un significativo 

aumento di espressione sia di Bax che di Bak suggerendo un coinvolgimento del DBP nel processo 

di morte cellulare programmata. Inoltre, per studiare il possibile coinvolgimento dei recettori degli 

estrogeni (ERs) e degli androgeni (AR) è stata valutata la loro espressione proteica mediante 

western blot dopo 24h di trattamento e la loro localizzazione mediante immunofluorescenza 

indiretta dopo diversi tempi di esposizione (30’, 2h, 4h). Il DBP è in grado di indurre una minore 

espressione di ERα e la sua traslocazione dal citoplasma al nucleo solo dopo 4h di trattamento e non 

determina alcuna variazione né di espressione né di localizzazione di ERβ ed AR.  

I risultati indicano che il DBP riduce la proliferazione cellulare delle LNCaP probabilmente 

andando ad alterare i meccanismi coinvolti nella regolazione del ciclo cellulare attraverso 

l’interazione con il pathway recettoriale degli estrogeni. 

Mediante studi in vivo sono stati studiati gli effetti di differenti dosi di DEHP sull’istopatologia del 

testicolo di ratto durante il periodo neonatale, dopo esposizione in utero e durante la lattazione. 

Ratte gravide Wistar  sono state trattate oralmente dal giorno di gestazione (GD) 7 al GD 21 e dal 

primo giorno dopo la nascita (PND) 1 al PND 6 con 0, 30, 300 e 900 mg/kg bw/day DEHP. 
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La presenza di gonociti grandi e multinucleati è stata osservata solo dopo esposizione ad alte dosi di 

DEHP ed il trattamento a nessuna delle dosi considerate ha determinato effetto sulle cellule 

neonatali del Sertoli. Mediante immunofluorescenza con 3βHSD, è stato possibile evidenziare che 

le cellule del Leydig in seguito al trattamento tendono ad aggregarsi in clusters già dopo 

esposizione alla bassa dose di 30mg/kg-d di DEHP. Nei ratti trattati con DEHP 900 mg/kg/bw-d, si 

è notato anche la presenza di cellule del Leydig positive alla 3βHSD all’interno di tubuli 

malformati. Si è inoltre osservata una riduzione del diametro dei tubuli dopo esposizione a tutte le  

dosi considerate di DEHP.  Il trattamento con DEHP non induce iperproliferazione dei gonociti o 

iperplasia delle cellule Leydig e non determina l’innescarsi del fenomeno apoptotico. Per 

comprendere il meccanismo attraverso il quale il DEHP determina i suoi effetti antiandrogenici è 

stata eseguita una IHC per AR e PPARγ. Il trattamento non determina alcuna variazione di 

espressione di AR. Nelle cellule del Leydig del gruppo di ratti trattati con DEHP 900mg/kg/bw-d si 

è osservato una riduzione di espressione di PPARγ.  

I risultati ottenuti ci permettono di concludere che il DEHP influenza lo sviluppo del testicolo. 

Durante il periodo neonatale, gli effetti sulle cellule del Leydig sono marcati ed evidenti già dopo 

esposizione a basse dosi della sostanza e le azioni del DEHP sono probabilmente modulate da 

PPARγ. 
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Abstract 

Phthalates are an interesting group of endocrine disruptors widely used in the manufacture of PVC. 

Dibutylphthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) are the two most commonly used 

phthalates and toxicological studies showed their toxic effect for the reproduction.  

Thus, in the present research project, the effects of DBP and DEHP on male reproductive system 

have been evaluated using in vitro and in vivo studies.  

In vitro studies were used to evaluate DBP and 17-β-estradiol (E2) effects on human prostate 

adenocarcinoma epithelial cells (LNCaP). First we assessed the effects of DBP and E2 on the cell 

viability after 24h of exposure. DBP induced a cell proliferation decrease at 10
-8

M, instead E2 at 10
-

9
M stimulated cell viability. RT-qPCR and western blot analysis were used to evaluate the 

expression of genes and proteins involved in the regulation of cell cycle such as MCT4, Cyclin D1, 

Ki-67. Then, to evaluate through which pathway DBP induced a decreased cell viability, we 

performed western blot for Bax an Bak, two pro-apoptotic proteins involved in intrinsic apoptosis 

pathway. DBP treatment strongly enhanced both Bax and Bak expression, suggesting its 

involvement in programmed cell death processes. Moreover, in order to study estrogen (ER) and 

androgen (AR) receptors involvement, we evaluated their expression with western blot after 24 h of 

exposure and their cellular localization with immunofluorescence after three different times of 

exposure (30’, 2h, 4h). DBP induced a minor expression of ERα and its cytoplasm-nucleus 

translocation after 4h of treatment; whereas DBP had no effects on ERβ and AR expression and cell 

localization. Results confirm that DBP may be involved in the deregulation of prostate cell cycle 

and it may interfere with estrogen hormonal receptor pathway.  

In vivo studies were used to evaluate the effects of different doses of DEHP on testis histopathology 

in neonatal rats after in utero and lactation exposure. Pregnant Wistar rats were gavaged from 

gestation day (GD) 7 to GD 21 and from postnatal day (PND) 1 to 6 with vehicle, 30, 300, 900 

mg/kg bw/day DEHP. Gonocytes appeared to be enlarged and multinucleated only after treatment 

with high DEHP doses and the treatment did not affect neonatal Sertoli cells. Immunofluorescence 

for 3β hydroxysteroid dehydrogenase (3β-HSD) revealed that Leydig cells tended to group together 

in clusters dose dependently from DEHP 30 mg/kg/bw-d. Moreover, in rats treated with DEHP 900 

mg/kg/bw-d, it was possible to note malformed cords with positive 3βHSD Leydig cells inside the 

tubules. Furthermore, DEHP treatment reduced cord diameters after exposure to all DEHP doses. 

DEHP did not induce gonocytes proliferation or Leydig cells hyperplasia and did not cause 

apoptosis. To highlight a mechanism for DEHP antiandrogenic effects, immunohistochemistry for 

AR and PPARγ has been performed. Treatment did not interfere with AR expression, instead it 

induced a reduced expression of PPARγ in Leydig cells of rats treated with DEHP 900 mg/kg/bw-d. 
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In conclusion, DEHP impairs testis development during neonatal period; in particular, the most 

evident effects are  registered on Leydig cells through PPARγ involvement. 
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1. Background 

1.1 Endocrine Disruptor Chemicals (EDCs) 

In recent years, a growing number of studies associate the worrisome trends in the incidence of 

reduced fertility rate observed in industrialized countries, to human exposure to specific chemicals 

identified as endocrine disruptors (EDCs). 

EDCs are described as “exogenous chemicals or mixtures of chemicals that alter function(s) of the 

endocrine system and consequently cause adverse health effects in an intact organism, or its 

progeny, or (sub)populations” (World Health Organization, 2012).  

EDCs are an heterogeneous group of compounds and they may be divided into anthropogenic and 

natural chemicals or classified based on your chemical properties, origin and applications. 

According to document from WHO and UNEP 2012, in Table 1 EDCs classification is reported: 

the chemicals are grouped in 4 groups and divided into eleven broad classes based on their physical-

chemical characteristics or origin/application areas.  

 

Table 1: Endocrine Disruptor Classification 

 

 

Persistent and bioaccumulative halogenated chemicals 

 

Persistent Organic Pollutants (POPs) (Stockholm Convention)  
[PCDDs/PCDFs, PCBs, HCB, PFOS, PBDEs, PBBs, Chlordane, Mirex, Toxaphene, DDT/DDE, 

Lindane, Endosulfan]  
 

Other Persistent and Bioaccumulative Chemicals  

[HBCDD, SCCP, PFCAs (e.g. PFOA), Octachlorostyrene, PCB methyl sulfones]  

 

 

Less persistent and less bioaccumulative chemicals  

 

Plasticizers and Other Additives in Materials and Goods  

[Phthalate esters (DEHP, BBP, DBP, DiNP), Triphenyl phosphate, Bis(2-ethylhexyl) adipate, n-

Butylbenzene, Triclocarban, Butylated hydroxyanisole] 

 

Polycyclic Aromatic Chemicals (PACs) including PAHs  

[Benzo(a)pyrene, AnthraceneBenzo(a)anthracene, Pyrene]  

 

HalogenatedPhenolicChemicals (HPCs)  
[2,4-Dichlorophenol ,Pentachlorophenol, Hydroxy-PCBs, Hydroxy-PBDEs, Tetrabromobisphenol 

A, 2,4,6-Tribromophenol, Triclosan]  

 

Non-halogenatedPhenolicChemicals (Non-HPCs)  

[Bisphenol A, Bisphenol F, Bisphenol S, Nonylphenol, Octylphenol, Resorcinol]  
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Pesticides, pharmaceuticals and personal care product ingredients 

 

Current-use Pesticides  
[2,4-D, Atrazine, Carbaryl, Malathion, Mancozeb, Vinclozolin, Procloraz, Procymidone, 

Chlorpyrifos, Fenitrothion, Linuron]  

 

Pharmaceuticals, Growth Promoters, and Personal Care Product Ingredients  
[Endocrine active (Diethylstilbestrol, Ethinylestradiol, Tamoxifen, Levonorgestrel), Selective 

serotonin reuptake inhibitors (SSRIs; e.g. Fluoxetine), Flutamide, Octylmethoxycinnamate, 

Parabens, Cyclic methyl siloxanes (D4, D5,D6), Galaxolide, 3-Benzylidene camphor] 

 

Other chemicals 

Metals and Organometallic Chemicals  
[Arsenic, Cadmium, Lead, Mercury, Methylmercury Tributyltin, Triphenyltin]  

 

Natural Hormones  
[17β-Estradiol, Estrone, Testosterone]  

 

Phytoestrogens  
[Isoflavones (e.g. Genistein, Daidzein), Coumestans (e.g. Coumestrol), Mycotoxins (e.g. 

Zearalenone), Prenylflavonoids (e.g. 8-prenylnaringenin)]  

 

 

 

1.2 EDC molecular mechanisms 

 

EDCs can interfere with the endocrine system at multiple levels, by agonizing or antagonizing the 

target receptors or by disrupting the synthesis of the hormones or hormonal release, transport, 

metabolism and excretion (Gore et al., 2015; Giulivo et al., 2016). The more frequent EDC targets 

are nuclear receptors such as thyroid receptors (TR), progesterone receptors (PR), estrogen 

receptors (ER), androgen receptors (AR) but they can also interact with membrane receptors, non 

steroidal receptors and orphan receptors (Diamanti-Kandarakis et al., 2009; Wuttke et al., 2010; 

Yang et al., 2015). Moreover, several studies demonstrate the ability of these substances to act on 

hormone metabolizing enzymes including aromatase, 5-reductase, 3-β-hydroxysteroid 

dehydrogenase (3βHSD), 11-β-hydroxysteroid dehydrogenase (11βHSD) (Kalfa et al., 2009; Ye et 

al., 2011; Guo et al., 2012). Furthermore, EDCs can also act through epigenetic mechanisms which 

are particularly useful to understand how EDC exposure during the development can cause adverse 

effects in adulthood (Prusinski et al., 2016).  

It is important to note that EDC responses, do not follow the classical monotonic dose responses 

typically used in toxicological risk assessments. Experimental studies investigating EDC effects 
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frequently detect non monotonic dose-response (NMDR) relationships (Lagarde et al., 2015), 

indicating that Paracelsus principle of “the dose makes the poison” is not valid to assess their 

toxicity. NMDR relationship can result from multiple mechanisms and presents a bell-shaped 

profile. U-shaped profiles are characterized by the highest response at low and high exposure levels; 

instead, inverted U-shape is characterized by response at intermediate dose(s) and a decrease 

response or no response at low and high exposure levels (Vandenberg et al., 2013; Vandenberg, 

2014).  

Risk assessment of toxicological effects is currently focused on thresholds for effects of single 

compounds such as the lowest observed adverse effect levels (LOAEL) and the no observed adverse 

effect levels (NOAEL) which are not easy to establish, according to their dose-response 

relationships. However, mixture effects have been investigated in several studies showing that 

exposure to several endocrine disrupting chemicals, with similar or different modes of action, leads 

to “cocktail” effects and combined exposure may lead to additive, synergistic or antagonistic effects 

(Kortenkamp et al., 2007). 

 

1.3 Human and wildlife exposures to EDCs 

 

EDCs are lipophilic compounds and thus they are persistent in the environment. EDCs may 

biomagnificate and bioaccumulate during their production, their use and disposal. The main source 

of human exposure to EDCs is estimated to be the diet, particularly ingestion of contaminated food 

and water (Rudel et al., 2011). Dietary habits are influenced by different factors such as 

socioeconomic status, culture and religion as well as individual choices and these factors have a 

major impact on human daily consumption of nutrients, bioactive constituents, residues and 

contaminants.  

Considering human exposure patterns through oral intake, these xenobiotics can be divided in four 

major classes:  

 EDCs with bioaccumulation ability (e.g., polychlorinated biphenyls -PCBs-, polybrominated 

flame retardants, perfluorinated chemicals);  

 Compounds utilized in food production (e.g., pesticides);  

 Chemicals present in food due to contact materials, processing aids, etc. (e.g., alkylphenols, 

phthalates);   

 Endocrine-active substances naturally present in food (e.g., phytoestrogens). 

Besides ingestion, another important source of human exposure to EDCs is the indoor environment. 

Indoor air contamination in buildings and houses may induce airborne exposure noticeably above 
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background levels. One group of the relevant compounds associated with indoor exposures are 

PCBs (Bräuner et al., 2016).  

It has also been shown that exposure may occur also through skin contact (Jeng, 2014) or medical 

devices such as blood bags, catheters, breathing and respiratory equipments containing different 

mixtures of EDCs (Ponzo, Carbone, 2013). 

Humans are daily exposed to EDCs during all stages of life, from conception and fetal development 

through adulthood and senescence. EDC exposures health risks are closely associated to particular 

stages of life with concomitant critical windows of exposure (Mantovani, 2016). Considering EDC 

mechanisms of action, embryonic development and early life stages are certainly critical windows 

of human exposure to these compounds. In fact, during early development is required accurate 

timing of hormone action to endorse organogenesis and tissue differentiation. EDCs can affect the 

endogenous functioning of these hormones and also enzymes implicated in xenobiotic 

biotransformation. Additionally, it must be consider that, at these stages, elimination processes are 

not fully developed (Choudhary, D. et al., 2003). Thus, exposure during this “window of 

susceptibility” through maternal blood and/or milk may reprogram physiologic processes prompting 

health dysfunctions later in life (Prusinski et al., 2016).   

 

1.4 EDC effects on male reproductive tract 

The epidemic increase of male reproductive disorders, which cannot be explained by genetic 

changes, has occurred contemporaneously with cumulative exposures to various environmental 

factors through modern lifestyle. Increasing evidences demonstrate that males appear to be 

particularly vulnerable to exposure of certain compounds (Hauser et al., 2015). Androgens are the 

most important hormones involved in the normal development and homeostasis of the male 

reproductive tract (Knez, 2013) but recently it has been proposed a role for estrogens involvement 

in testicular function (Zhang et al., 2014). Thus, the balance between androgens and estrogens is 

really important in maintaining normal spermatogenesis. Therefore, exposure to xenoestrogens and 

anti-androgens during early life development, has been linked to male reproductive disorders 

(Zhang et al., 2014; De Falco et al., 2015). Many epidemiological data support the hypothesis that 

in utero exposure to dioxins, phthalates and PCBs may induce hypospadia and crtptorchidism (Jeng, 

2014; Svechnikov et al., 2014). 

Bisphenol A (BPA) has been positively correlated with male infertility, in fact BPA-exposed male 

workers had consistently higher risk of sexual dysfunctions than unexposed workers (Li et al., 

2010). It has been demonstrated that BPA mainly induces germ cell apoptosis and reduces total 

sperm count, vitality and motility (Li et al., 2011). Moreover, it can also affects prolactin, estradiol 
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and sex hormone-binding globulin (SHBG) serum levels (Liu et al., 2015). PCB exposure has been 

associated with increased anogenital distance and prostate size and reduced sperm count (Faroon et 

al., 2015). Several studies have demonstrated that alkylphenols (AP) are able to influence the 

correct development and physiology of male reproductive system specifically target organs 

important for the quality of spermatozoa and reproductive fitness. NP and octylphenol (OP) have 

been shown to induce testicular damage with decreased testis weight and size in rodents (Knez et 

al., 2013; Ponzo and Carbone, 2013). Furthermore, neonatal exposure to NP, during early stage of 

sexual maturation and in adulthood, led to histological disorganization of testis, reduction in testis, 

epididymis and seminal vesicle size and it also may induce and increased incidence of 

cryptorchidism (Fan et al., 2010; Ponzo and Carbone, 2013). BPA and NP are also involved in 

increased prostatic cells proliferation (Forte et al., 2016; Prins et al., 2014). Organohalogen 

pollutants and phthalates may affect testicular descent in humans and spermatogenesis by affecting 

spermatogonia or damaging Sertoli or Leydig cells number and function or changing the 

morphology and motility of spermatozoa (Svechnikov et al., 2014). 

 

1.5 Phthalates 

 

Phthalate esters (PAEs), derived from phthalic acid are ubiquitous industrial chemicals in our 

surrounding environment. PAEs are widely used as plasticizers to add softness, flexibility, 

transparency and longevity to polyvinyl chloride-based (PVC) products (Giulivo et al., 2016).  

They are divided into two groups based on their molecular weight: high molecular weight 

compounds (with alkyl chain length from 8 to 13 carbons), such as di-2-ethilhexyl-phthalate 

(DEHP) and diisononyl phthalate (DiNP), and low molecular weight compounds (with alkyl chain 

length from 1 to 4 carbons) such as diisobutyl phthalate (DiBP) and dibutyl phthalate (DBP). High 

molecular weight phthalates are primarily used as plasticizers in the manufacture of flexible vinyl 

plastic present in consumer products, flooring and wall covering and medical devices. PAEs with 

low molecular weight are mainly used in personal care products as solvents, perfumes, nail varnish, 

hair sprays and plasticizers for cellulose acetate (ATSDR, 2002; Chen et al., 2011, Jeng, 2014). 

PAEs group also includes three DEHP metabolites: mono-(2-ethyexyl) phthalate (MEHP), mono-

(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) 

(Jeng, 2014). 

Phthalates do not accumulate appreciably in the body and show a relatively short half life, in fact 

they are rapidly metabolized to their respective monoesters which in turn undergo to oxidation 

reactions and form conjugates with glucuronic acid (Latini et al., 2003; Calafat et al., 2011). 
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Moreover, they are volatile compounds and do not covalently bound to the polymer so with age, use 

and ultraviolet exposure, they can easily migrate from plastics to food, beverages and body fluids 

(Cheng et al., 2013; Ponzo and Carbone, 2013). Different studies confirm PAEs metabolite 

presence in human urine, breast milk and serum (Wittasek et al., 2011; Moody et al., 2013). 

The major source of exposure for humans is diet. Nevertheless, different studies have suggested that 

depending on their properties, the routes of human exposure can differ. For example, diet is thought 

to be the main source of exposure to DEHP (Clark et al., 2011; Guo et al., 2012). DEHP exposures 

were reduced when individuals’ diets were restricted to those that have limited contact with 

packaging materials. Further, foodstuffs can be contaminated also during production or food chain 

transfer of these compounds (Rudel et al., 2011). Inhalation is the predominant source of human 

exposure to dimethyl phthalate (DMP) and inhalation and dermal contact are important sources of 

exposure to DBP (Guo and Kannan, 2011; Wormuth et al., 2006). Maternal exposure is the first 

source of fetal exposure to phthalates through amniotic fluid and umbilical cord blood (Latini et al., 

2003, 2006). 

Every year it has been calculated that around 6 million tons of phthalates are produced worldwide 

(Knez et al., 2013) and individuals, especially children exposure is 2 to 4-fold higher than adults 

(Moody et al., 2013). 

 

1.6 Phthalate effects on male reproductive system 

PAEs are considered to be one of the major groups of antiandrogenic substances and among these, 

DEHP and DBP are the most commonly found in the environment (Chen et al., 2011; Knez, 2013). 

There is a large body of evidence about association between phthalates exposure and congenital 

male reproductive disorders such as reduced anogenital distance (AGD) and hypospadia (Jeng, 

2014), smaller testis and penis size, adult pathologies such as Leydig cell aggregation (Hu et al., 

2009), tubules only containing Sertoli cells, poor spermatogenesis (Nistal et al., 2006), reduced 

semen quality and testicular germ cell tumors (Yao et al., 2012). 

It has been shown that DEHP impaired steroidogenesis and can cause birth defects (Jeng, 2014; 

Ponzo and Carbone 2013) producing the “phthalate syndrome” which comprises non descent testis, 

poor semen quality, malformation of external genitalia (Johnson et al., 2012). DEHP has been 

shown to disrupt the androgen-regulated development of the male reproductive system reducing 

prostate weight and altering spermatogenesis processes; moreover, it strongly affects Leydig cells 

hormonal influence by decreasing testosterone biosynthesis and increasing LH and estradiol (Ponzo 

and Carbone, 2013). DBP exposure produces marked changes in the growth and development of 

male reproductive tract and decreased sperm count by altering testosterone levels (Chen et al., 
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2011). Both DEHP and DBP, such as other PAEs, may interfere with normal steroidogenesis, 

suppressing the expression of steroidogenic enzymes (Gao et al., 2017) or disrupting the regulation 

of cholesterol and lipid homeostasis (Knez, 2013). A relation between urinary and environmental 

levels of phthalates (DEHP, DBP, DEP) has been related with reduced sperm motility and 

concentration and DNA damage (Pant et al., 2014). However, compared to other anti-androgen 

products, both DEHP and DBP affect male reproductive tract by disrupting testosterone 

biosynthesis instead of directly contacting with androgen receptors (Kabir et al., 2015). 
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2. Aim of the studies 

The purpose of these studies was to improve the knowledge about phthalates impact on male 

fertility by examining the following topics: 

o Interference of dibutylphthalate (DBP) on human prostate cell viability. 

o Diethylhexyl phthalate (DEHP) affects testicular histopathology in neonatal rats. 

 

o Interference of dibutylphthalate on human prostate cell viability. 

 

Prostate gland plays a key role in determining a good quality of seminal fluid and therefore of male 

fertility, thus it may represent one of the targets through which EDCs cause infertility. In this view 

we examined the effects of DBP and 17-β-estradiol (E2) on human prostate adenocarcinoma cells 

(LNCaP) in order to investigate a possible mimetical behaviour. 

 

o Diethylhexyl phthalate affects testicular histopathology in neonatal rats. 

 

Phthalate effects on testis are thought to be dependent on age and dose of exposure. Thus, the goal 

of this study is to evaluate the effect of different doses of DEHP on testicular histopathology in 

neonatal rats after prenatal and lactation exposure. We wished to examine how exposure during 

window of susceptibility would affect male rats at a different stage of life.  

This project was carried out at the National Food Institute of the Technical University of Denmark 

(DTU Food) in Copenhagen, under the supervision of Senior Scientist Julie Boberg. 
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3. Experimental setup 

 

3.1 In vitro study 

 

3.1.1 Published paper: 

 

Interference of dibutylphthalate on human prostate cell viability. 

 

LNCaP cells were treated for 24h with DBP and E2 from 10
-5 

M to 10
-13

 M and effects on cellular 

viability were evaluated using MTT assay.  

RT-qPCR and western blot analysis were used to evaluate the expression of genes and proteins 

involved in the regulation of cell cycle after 24h of exposure. 

Androgen and estrogen receptors involvement has been studied through western blot and 

immunofluorescence analysis. 

 

3.2 In vivo study 

 

3.2.1 Manuscript in preparation: 

 

Diethylhexyl phthalate affects testicular histopathology in neonatal rats. 

 

Pregnant Wistar rats were orally gavaged from gestation day (GD) 7 to GD 21 and from postnatal 

day (PND) 1 to 6 with vehicle, 30, 300, 900 mg/kg bw/day DEHP. At PND 6 rats were 

anesthetized, decapitated and testes were removed and used for histological analysis. 

Testis morphology was studied using hematoxylin and eosin staining and Leydig cells distribution 

was evaluated using immunohistochemistry. 

Proliferation and apoptosis were studied using immunohistochemistry and TUNEL assay. 

Moreover, immunohistochemistry was also used to assess androgen receptor and peroxisome 

proliferator-activated receptors involvement. 

 

Detailed descriptions of in vitro and in vivo studies can be found in the subsequent manuscripts. 
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A B S T R A C T

Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial ap-
plications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food
products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP
belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were
demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate
adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate.
Moreover, we have compared DBP effects with 17β-estradiol action in order to investigate possible mimetical
behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated
the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the ex-
pression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have de-
monstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the
normal gland physiology and it is involved in the deregulation of prostate cell cycle.

1. Introduction

Phthalates are heterogeneous group of xenobiotics widely used to
enhance products flexibility, durability and transparency (Alam et al.,
2010; Howdeshell et al., 2007). Phthalate plasticizers are esters of
phthalic acid and based on their alcohol chain length, they may be
divided into two groups: low and high molecular-weight (Barlow et al.,
2004; Barlow, Foster, 2003; Blount et al., 2000). Both of them are not
chemically bound to products and with age, use and ultraviolet light
they can easily end up into the environment (Johnson et al., 2012;
Thomas, Thomas, 1984), therefore, human exposure can occur through
diet, inhalation and dermal absorption (Schettler, 2006; Wormuth
et al., 2006). Many studies corroborate phthalate metabolite presence
in human serum, urine and breast milk (Frederiksen et al., 2011; Göen
et al., 2011; Moody et al., 2013; Wittasek et al., 2011). These com-
pounds are endocrine disruptors: they can affect thyroid signaling and
metabolic homeostasis (Borch et al., 2006; Gray et al., 2000; Lyche
et al., 2009; Zhai et al., 2014) and they are also reprotoxic; their ne-
gative effects for reproductive system depend on their alkyl chain (Fujii
et al., 2005).

Phthalates exposure during sensitive window of perinatal develop-
ment may result in developmental effects in human babies

(Christiansen et al., 2010). The presence of different phthalate
monoesters in breast milk seems to be correlated with increased levels
of luteinizing hormone (LH), sex hormone-binding globulin (SHBG) and
with an increased ratio of LH/free testosterone in 3 months age boys
(Main et al., 2005). Furthermore, infant boys, whose mothers presented
elevated levels of phthalate metabolites in urine, have reported shor-
tened anogenital distance (AGD) (Swan et al., 2005).

Men's phthalate exposure has been associated with hypospadias,
gynecomastia, cryptorchidism, abnormal spermiogram and sperm DNA
damage and with abnormal sexual hormones levels; instead, women's
exposure can cause infertility, endometriosis, breast cancer, early me-
narche and breast development and pregnancy complications (De Falco
et al., 2015; Hannon, Flaws, 2015; Heudorf et al., 2007; Kay et al.,
2013; Zhang et al., 2015). Experimental studies on early gestation ex-
posure to phthalates in rats, show that they may display phthalate
syndrome. This syndrome symptoms look like the effects of phthalate
exposure in human male and it is characterized by the presence of
seminiferous tubules with reduced diameter, hypospadias, cryptorch-
idism, reduced anogenital distance and malformation of vas deferens,
epididymis, seminal vesicles and prostate gland (Christiansen et al.,
2010; Kay et al., 2013; Lioy et al., 2015).

Dibutylphthalate (DBP) is short-chain phthalate prepared from
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butanol (Shirai et al., 2013; Wakui et al., 2014, 2013). It is commonly
used in paints, inks, adhesive, insecticides, solvents, cosmetics, per-
fumes and medications (Guo and Kannan, 2013; Hubinger, 2010;
Schettler, 2006; Xu et al., 2014); so human population appears to be
predominantly exposed to it (Barlow, Foster, 2003; Blount et al., 2000).

DBP belongs to the subclass of endocrine disrupting chemicals
(EDCs) that mimic the endogenous estrogens. DBP mainly damages
male reproductive system inducing negative effects on testicular func-
tion and steroidogenesis (Dobrzynska et al., 2011; Kay et al., 2013; Li
et al., 2016). It rapidly crosses the placenta barrier and embryos from
rats in utero exposed show several reproductive abnormalities: hypos-
padias, nipple retention, reduced AGD and retarded testis descent and
spermatogenesis dysfunction (Liu et al., 2012; Silva et al., 2007). DBP in
utero exposure may also causes age-related morphological changes of
Leydig cells smooth endoplasmic reticulum (LCs-ER) corresponding to
reduced testicular testosterone biosynthesis (Motohashi et al., 2016).

The mechanism by which phthalates, including DBP, exert their
actions on reproductive functions are not yet fully cleared. Phthalates
and their metabolites, have been suggested to interfere with normal
steroidogenesis, dropping the expression of steroidogenic enzymes and
disrupting the regulation of cholesterol and lipid homeostasis or insulin
signaling (Barlow et al., 2003; Knez, 2013; Liu et al., 2005; Moody
et al., 2013).

Prostate is an accessory gland of the male reproductive tract. Both
androgens and estrogens hormones play a pivotal role in its differ-
entiation, development and maintenance of adult homeostasis. In vivo
and epidemiological studies suggest a positive relationship between
EDC men exposure and prostate diseases (Alavanja et al., 2003).

In this study, we evaluated the effects of DBP on human adeno-
carcinoma prostate cells (LNCaP). LNCaP cells are a useful prostate
model in vitro because they are hormone responsive and express all
prostate specific markers (Horoszewicz et al., 1983). We analyzed the
effects of DBP on the expression of genes and proteins that can be al-
tered after exposure to endocrine disruptor chemicals (EDCs). Particu-
larly, we have observed the DBP action on cell viability, the expression
of key genes (MCT4, Ki-67 and cyclin D1) involved in the regulation of
cell proliferation and proteins (mct4, cyclin D1, Bax, Bak) involved in
cell cycle and apoptosis, and the expression and cellular localization of
estrogen ERs (ERα and ERβ) and androgen AR receptors. Cells were
also treated with the endogenous hormone 17 β-estradiol to better
understand exogenous and endogenous compounds involvement in
prostate gland and to investigate possible mimetical behaviour by DBP.

2. Materials and methods

2.1. Cell culture

LNCaP cells (CRL-1740™ American Type Culture Collection,
Manassan, VA) were grown in RPMI 1640 (Sigma-Aldrich), supple-
mented with 10% FBS, 2 mM glutamine, 1X non essential amminoacid,
1X penicillin/streptomycin, 10 µg/mL gentamycin (Euroclone) at 37 °C,
5% CO2 in an humidified incubator. When 70% confluent, cells were
enzymatically detached with trypsin-edta (Sigma-Aldrich) and seeded
in a new cell culture flasks. The medium was changed every 2 days.
Cells were used from passage 9–20.

Table 1
a) Details of primers used for RT-qPCR, b) Details of primary antibodies used for western blot and immunofluorescence
assays.

a)

Gene Forward Reverse

MCT4 5′-

ACCCACAAGTTCTCCAGTGC-3′
5′-AGCAAAATCAGGGAGGAGGT-3′
Cyclin D1

5′-CGTGGCCTCTAAGATGAAGGA-3′
5′-CGGTGTAGATGCACAAGCTTCTC-3′
Ki-67

5′-CCCGTGGGAGACGTGGTA-3′
5′-TTCCCGTGACGCTTCCA-3′
HPTR1

5′-GACTTTGCTTTCCTTGGTCAGGCA-3′
5′- ACAATCCGCCCAAAGGGAACTGA-3′

b)

Antibody Source Species Dilution

MCT4 sc-50329, Santa
Cruz, CA, USA

Rabbit 1:200

Cyclin D1 ab-74646, Abcam,
Cambridge

Rabbit 1:200

Bak sc-832, Santa Cruz,
CA, USA

Rabbit 1:200

Bax sc52b, Santa Cruz,
CA, USA

Rabbit 1:200

ERα sc544, Santa Cruz,
CA, USA

Rabbit 1:200

ERβ sc-8974, Santa Cruz,
CA, USA

Rabbit 1:200

AR ab-74272, Abcam,
Cambridge

Rabbit 1:300

β-actin sc-7210, Santa Cruz,
CA, USA

Rabbit 1:200
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2.2. Chemicals

Dibutylphthalate (DBP) and 17 β-estradiol (E2) were purchased
from Sigma-Aldrich and dissolved in DMSO. Then, DBP and E2 were
diluted in RPMI 1640 red-phenol free at the concentrations used for the
experiments. Control cells were treated with vehicle (DMSO 0,01%).

2.3. Treatment

LNCaP cells were treated with DBP and E2 from 10−5 M to 10–13 M
for 24 h in order to perform the MTT assay. MTT assay allowed us to
establish DBP and E2 concentration to use for the further experiments.
RT-pPCR and western blot analysis were performed after 24 h of ex-
posure with DBP 10−8 M and E2 10−9 M. Immunofluorescence was
carried out after three different times (30 min, 2 h, 4 h) of exposure to
10−8 M DBP and 10−9 M E2.

2.4. MTT assay

MTT assay was performed to evaluate the effects of DBP and E2 on
cell viability. LNCaP cells were cultured at a density of 1,5×104/ well
in 96 multiwell, starved (FBS 1%) for 24 h and treated with DBP and E2
from 10−5 M to 10–13 M for 24 h. Then, 10 µL of MTT were added to
each well for 4 h at 37 °C, 5% CO2. In order to dissolve the formazan
crystals produced in each well, the medium was aspirated and was
added a solution of isopropanol and DMSO (1:1). Then, the assorbance
of the solution was read at 570 nm using a microplate reader. Each MTT
assay was performed in triplicate.

2.5. RNA extraction and RT-qPCR

mRNA expression levels of genes were analyzed using real-time
PCR. Total RNA was extracted from control and treated cells for 24 h

with DBP 10−8 M and E2 10−9 M using PureLink™ RNA Mini Kit (Life
Technologies). TURBO DNA-free™ Kit (Life Technologies) was used for
purification from genomic DNA. After purification total RNA was
quantified with a NanoDrop spectrophotometer. cDNAs were synthe-
sized from 1 µg RNA using the High Capacity cDNA Reverse
Transcriptase (Life Technologies) and quantitative PCR (RT-PCR) was
performed using the 7500 Real-Time PCR System and SYBR®Select
Master Mix 2X assay (Applied Biosystem). All primers used, are listed in
the Table 1 and were designed according to the sequences published on
GenBank using Primer Express software version 3.0. The amount of
target cDNA was calculated by comparative threshold (Ct) method and
expressed by means of the 2-ΔΔCt method (Livak and Schmittgen, 2001)
using the housekeeping gene hypoxanthine phosphoribosyltransferase 1
(HPRT1). Three different experiments were performed for RT-qPCR and
each sample was tested in triplicate.

2.6. Protein extraction

Proteins were extracted from LNCaP cells after 24 h of treatment
with DBP 10−8 M and E2 10−9 M. Control cells were treated only with
vehicle (DMSO 0.01%). 10 cm cell dishes with confluent LNCaP cells
were placed on ice for 10 min and washed twice with ice cold PBS. Then
PBS-EDTA was added and cells were scraped and transferred to mi-
crocentrifuge tubes. The collected cells were centrifuged at 3000 rpm
for 5 min at 4 °C and pellets were resuspended wit RIPA lysis buffer
containing protease and phosphatase inhibitors cocktail (Santa Cruz)
for 30 min. Homogenates were centrifuged at 12,000g for 20 min at
4 °C. Total protein amounts of samples were determined by the BCA
protein assay reagent kit (PIERCE).

2.7. Western blot

50 µg of proteins for each samples were boiled for 5 min in SDS
buffer [50 mM Tris-HCl (pH 6.8), 2 g 100 mL−1SDS, 10% (v/v) gly-
cerol, 0.1 g 100 mL−1Bromophenolblue], separated on 10% SDS-PAGE
and transferred to a PVDF membrane for blotting (Trans-Blot® Semi-Dry
Transfer Cell, Biorad). Membranes were incubated for 1 h at room
temperature with blocking buffer (TBS, 0.05% Tween-20% and 5%
milk). After blocking, membranes were incubated overnight at 4 °C
with primary antibodies diluted in TBS-T containing 2% milk. Primary
antibodies used were listed in the Table 1. The membranes were wa-
shed four times for 10 min in TBS, 0.05% Tween-20 before a 1 h in-
cubation with secondary antibody diluited in TBS-T containing 2%
milk. Secondary antibody used was goat anti-rabbit IgG (HRP) (1:3000;
Abcam ab-6721). Then, the membranes were washed four times for
10 min and specific protein bands were detected with chemilumines-
cence using the C-DiGit Chemiluminescent Western Blot Scanner (LI-
COR). Western blot were analyzed using Image Studio Software to de-
termine optical density (OD) of the bands. The OD reading was nor-
malized to β-actin to account for variations in loading. All experiments
were performed in triplicates. Western blots were performed as re-
ported in Zizza et al. (2017).

2.8. Immunofluorescence

LNCaP cells were seeded overnight at a density of 5×104/well in 4-
well chamber slides (Sarstedt, Nürnbrecht, Germany) and after 24 h 1%
FBS, cells were treated with DBP 10−8 M and E2 10−9 M for three
different times: 30 min, 2 h and 4 h, instead control cells were treated
only with vehicle (DMSO 0.01%). Then, control and treated groups
were fixed with ice cold methanol for 10 min at RT, permeabilized with
0.4% Triton X-100 in PBS for 10 min at RT, washed in PBS and blocked
in 5% Normal Goat Serum (NGS) for 30 min. Subsequently, cells were
incubated overnight at 4 °C with the primary antibodies: rabbit poly-
clonal anti-human ERα, rabbit polyclonal anti-human ERβ, and rabbit
polyclonal anti-human androgen receptor, diluited in 1% NGS. The day

Fig. 1. MTT assay after 24 h of exposure to dibutylphthalate (DBP) and 17β-estra-
diol (E2) from 10−5 M to 10–13 M. In graphs are reported the absorbencies measured at
570 nm which correlates with number of living cells. (a) DBP induce a decrease of cell
viability at 10−8 M; (b) E2 stimulates prostate cell viability, reaching the most notable
effect at 10−9 M. (**p<0,01; ***p< 0,001).
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after cells were incubated with goat anti-rabbit Alexa Fluor 488 (ab
150077), diluited 1:300 in 1% NGS. Cell nuclei were stained with
0,1 µg/mL Höechst and negative controls were performed by avoiding
incubation with primary antibodies. Fluorescent images were captured
with Axioshop (Carl Zeiss, Milano, Italy) epifluorescence microscope
using a 40x objective. Axiocam MRc5 and the acquisition software
Axiovision 4.7 (Carl Zeiss) were used to take the images in different
channels (Alexa Fluor 488, Höechst 33258). Each immunofluorescence
was performed in triplicate and for data analysis different fields were
randomly chosen.

The immunofluorescence was performed as reported in Forte et al.
(2016).

2.9. Statistical analysis

Data showed in graphs are expressed as means± SEM for the in-
dicated number of independent determinations. The statistical sig-
nificance was calculated by the one way ANOVA with Bonferroni's
multiple comparison test and differences were considered statistically
significant when the P values was at least p<0.05. All experiments
were repeated at least three times and performed in triplicate.

3. Results

3.1. MTT Assay

MTT assay was performed to evaluate the effects of DBP and E2 on
cellular viability. We exposed LNCaP cells to DBP and E2 range from
10−5 M to 10–13 M. After 24 h of exposure, DBP induced a decreased
cells viability with the greatest effect at 10−8 M (Fig. 1a). Instead, E2
increased LNCaP viability with the higher effect showed at 10−9 M
(Fig. 1b).

3.2. RT-qPCR analysis

After 24 h of exposure with DBP 10−8 M and E2 10−9M, RT-qPCR
was performed to evaluate expression of genes involved in cell cycle
regulation such as MCT4, Ki67 and Cyclin D1. DBP didn’t interfere on
mRNA levels of MCT4 (Fig. 2a); on the contrary DBP strongly decreased
expression of Ki67 (Fig. 2b) and Cyclin D1 (Fig. 2c) of 50% and 40%
respectively. Conversely, E2 enhanced MCT4 expression of 30%
(Fig. 2a), and it didn’t significantly interfere on Ki67 (Fig. 2b) and
Cyclin D1 expression (Fig. 2c).

3.3. Western blot analysis

Western blot analysis was performed after 24 h of exposure with
DBP 10−8 M and E2 10−9 M in order to evaluate the expression of
MCT4 and Cyclin D1 involved in cell cycle regulation, the expression of
pro-apoptotic proteins such as Bax and Bak and protein expression of
estrogen and androgen receptors. Densitometric analysis were nor-
malized with β-actin (42 kDa).

Western blot results showed MCT4 (43 kDa), Cyclin D1 (33 kDa),
Bax (23 kDa), Bak (30 kDa), ERα (66 kDa), ERβ (56 kDa) and AR
(99 kDa) both in control and treated cells (Fig. 3a).

The densitometric analysis revealed higher levels of MCT4 and
Cyclin D1 proteins in E2 treated cells (Figs. 3b, c) compared to DBP
treated and control cells. Treatment with DBP significantly enhanced
both Bax (Fig. 3d) and Bak (Fig. 3e) protein expressions, instead
treatment with E2 significantly decreased Bax expression (Fig. 3d) and
didn’t interfere with Bak expression (Fig. 3e).

ERα protein expression was drastically reduced by DBP treatment
(Fig. 3f), in contrast E2 strongly increased its expression (Fig. 3f). Re-
garding to ERβ and AR only the treatment with E2 induced a significant
increase of their expressions (Figs. 3g, h).

Fig. 2. qPCR analysis after 24 h of exposure to dibutylphthalate (DBP) 10−8 M and 17β- estradiol (E2) 10−9 M. RT-qPCR was performed to evaluate expression of genes involved in
cell cycle regulation such as MCT4, Ki67 and Cyclin D1. To note the different actions on gene expression of DBP and E2 (a, b,c). (*p< 0,05; ** p<0,01; ***p< 0,001).
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3.4. Immunofluorescence

In order to investigate a possible interaction among DBP with es-
trogen and androgen receptors in the cells, we performed immuno-
fluorescence after 30 min, 2 h and 4 h of exposure to DBP 10−8 M and
E2 10−9M.

3.4.1. Localization of ERα
After 30 min of treatment, control cells and treated with DBP and E2

showed ERα in the cytoplasm. After 2 h DBP did not affect ERα loca-
lization, that was localized in the cytoplasm as in control cells. ERα
shifted from cytoplasm to nucleus after 4 h of treatment with DBP. On
the contrary, both after 2 h and 4 h, E2 induced ERα translocation from
the cytoplasm to the nucleus that appeared to be strongly positive
(Fig. 4).

3.4.2. Localization of ERβ
DBP did not affect ERβ localization at any time of exposure: ERβ

was localized in the cytoplasm of LNCaP cells with no fluorescent signal
in cell nuclei as in control cells. Instead E2 translocated ERβ from the
cytoplasm to the nucleus after 4 h (Fig. 5).

3.4.3. Localization of AR
AR localization was also investigated and data showed that DBP did

not interfere with AR localization which was perinuclear in both control
and treated cells after 30′, 2 h and 4 h of exposure. Only after 4 h of

treatment E2, AR translocated from the cytoplasm to the nucleus
(Fig. 6).

4. Discussion

Prostate gland plays a key role in male fertility. Its main function is
to produce secretion (20–30% of the total ejaculation) that provides
essential components for sperm quality and survival. Androgens have a
significant function in prostate development and differentiation. Also
estrogens have been demonstrated to have direct effects on prostate
gland development and adult homeostasis but small changes in their
levels might play a role in the etiology of prostatic diseases (McPherson
et al., 2008; Prins, Korach, 2008). Many epidemiological studies reveal
that chronic or intermittent exposure to different classes of EDCs may
affect the development and progression of prostate disorders (Van
Maele-Fabry et al., 2006).

Hence, the aim of this study is to investigate the effects of dibu-
tylphthalate (DBP) on adenocarcinoma prostate cells (LNCaP); to
highlight a possible xenoestrogenic effects on this cell line. The same
experiments have been performed also with the estrogen endogenous
17 β-estradiol (E2) in order to compare the effects of these compounds.
First of all, we studied the effects of DBP and E2 on cellular viability
and data obtained showed a reduced cellular viability with DBP
10−8 M; on the contrary E2 at 10−9 M stimulated cellular viability of
prostate cell line. Particularly interesting is the reduction of cellular
viability obtained at a low concentration of DBP, according to Hrubá

Fig. 3. Western blot analysis after 24 h of exposure to dibutylphthalate (DBP) 10−8 M and 17β- estradiol (E2) 10−9 M. The graphs represented the optical density (O.D.) ratio of
MCT4 (b), cyclin D1 (c), Bax (d), Bak (e), ERα (f), ERβ (g), AR (h) normalized on β actin. Look at the text for more details. (*p< 0,05; ** p<0,01; ***p< 0,001).
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Fig. 5. ERβ localization after 30´, 2 h and 4 h of
exposure to dibutylphthalate (DBP) 10−8 M and
17β-estradiol (E2) 10−9 M. ERβ appears to be lo-
calized in the cytoplasm in control cells. DBP did not
affects ERβ localization. E2 induced a cytoplasm-
nucleus translocation only after 4 h. (Alexa Fluor
488) and nuclear staining (Hӧechst) were analyzed
by immunofluorescence. Scale bar 10 µm.

Fig. 4. ERα localization after 30´, 2 h and 4 h of
exposure to dibutylphthalate (DBP) 10−8 M and
17β-estradiol (E2) 10−9 M. ERα appears to be lo-
calized in the cytoplasm in control cells. DBP in-
duced a cytoplasm-nuclear translocation after 4 h of
exposure. E2 switch cytoplasm-nucleus after 2 h and
4 h. (Alexa Fluor 488) and nuclear staining (Hӧechst)
were analyzed by immunofluorescence. Scale bar
10 µm.
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et al. (2014) that showed DBP inhibition of LNCaP cell proliferation
(Hrubá et al., 2014). These data are in agreement with two common
EDC features: the biological effect at low doses and the non monotonic
trend of the dose-response curve (Vandenberg et al., 2012). In this view,
Lee et al. (2014) have reported a positive influence of DBP on LNCaP
proliferation, but the authors have tested high concentrations (10−5

and 10−6 M) and more prolonged exposure times (Lee et al., 2014).
This apparent discrepancy is not surprising since EDCs such DBP may
exert opposite effects at different concentrations and exposure times.

Then, in order to evaluate expression of genes and proteins involved
in cellular proliferation and in cell cycle regulation, after 24 h of
treatment with DBP 10−8 M and E2 10−9 M, we performed two dif-
ferent approaches: qPCR and western blot analysis. DBP treatment did
not interfere with MCT4 gene and protein expression, instead E2 en-
hanced both of them. MCT4 belongs to the family of the mono-
carboxylate transporter and it is thought to be involved in the cellular
efflux of lactic acid/H+ (Dimmer et al., 2000); highly MCT4 expression
has been associated in cancer progression by promoting several onco-
genic processes (Sanità et al., 2014). Gene expression of Ki67, a well
known marker of cell proliferation, is decreased after treatment with
DBP but not after E2 treatment. Some studies have shown that estro-
gens might play a decisive role in some processes such as the devel-
opment of prostate cancer (Bosland, 2000; Griffiths, 2000; Henderson,
Feigelson, 2000; Lee et al., 2014; Susa et al., 2015). DBP was able to
decrease gene and protein expression of cyclin D1, on the contrary E2
induced a strongly increase of cyclin D1 protein expression. Cyclin D1 is
an estrogen response target and it promotes G1/S phase transition of
cell cycle (Kastan, Bartek, 2004). These results are all in agreement with
the showed reduced proliferation caused by DBP and promoted by E2.

To better understand trough which pathway DBP induced a de-
creased cell viability, we evaluated protein expression of two different
pro-apoptotic proteins involved in intrinsic apoptosis pathway: Bax and
Bak. DBP, contrarily to E2, strongly enhanced their expression,

suggesting a DBP involvement in programmed cell death processes.
Moreover, to assess estrogen (ER) and androgen (AR) receptors

participation, we evaluated the expression of ERs and AR with western
blot technique. We showed a reduced expression of ERα after treatment
with DBP and a significant increase of its expression after E2 treatment.
It has been demonstrated that ERα appears to be involved in cellular
proliferation and carcinogenesis of prostate (Prins, Korach, 2008),
hence our results suggest that the anti-proliferative effects of DBP.
Furthermore, DBP did not interfere with ERβ and AR expression, in-
stead E2 increased the expression of both of them. The E2 action on
both ERs and AR expression is in agreement with Susa et al. (2015) that
showed E2 involvement in the activation of AR pathway (Susa et al.,
2015).

Finally, we studied ERα, ERβ and AR localization after, 30 min, 2 h
and 4 h of treatment. DBP induced ERα cytoplasm-nucleus transloca-
tion only after 4 h of treatment; conversely E2 affected ERα localization
after 2 h and 4 h. ERα nuclear translocation is linked to its activation
and it was not surprising that E2 had highest effects than DBP because
of its best binding affinity with ERs (Laws, 2000).

DBP did not interfere with ERβ and AR localization indicating that
its effects on LNCaP cells are not linked with AR interaction as also
reported by Hrubá et al. (2014). On the contrary E2 was able to induce
ERβ and surprisingly also AR cytoplasm-nucleus translocation after 4 h.
It has been demonstrated that AR might be activated by other steroid
hormones and E2 shows affinity for its LBD domain so it can be able to
activate transcription of AR target genes (Taplin et al., 1995; Yeah et.
al., 1998; Susa et al., 2015).

5. Conclusions

In conclusion, we demonstrated that DBP acts on LNCaP cells
through the activation of ERα pathway. Moreover, DBP exerts different
effects than E2. We showed that DBP reduced cell viability probably

Fig. 6. AR localization after 30′, 2 h and 4 h of
exposure to dibutylphthalate (DBP) 10−8 M and
17β-estradiol (E2) 10−9 M. DBP did not affects AR
localization. E2 induced AR cytoplasm-nucleus
translocation only after 4 h. (Alexa Fluor 488) and
nuclear staining (Hӧechst) were analyzed by im-
munofluorescence. Scale bar 10 µm.
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activating molecular pathway involved in the programmed cell death
processes as suggested by the obtained strong increase of both Bax and
Bak protein expression. Phthalates are only one of the component of the
mixture of EDCs which human population is non-stop exposed. Thus, it
is very important to compare the effects of environmental compounds
with anti androgenic and anti estrogenic properties in order to explore
the crosstalk between different hormonal signaling pathways.
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DIETHYLHEXYL PHTHALATE AFFECTS TESTICULAR HISTOPATHOLOGY IN 

NEONATAL RATS. 

 

Abstract 

 

Phthalates are synthetic chemicals widely used as plasticizers since they provide flexibility in 

plastics. Diethylhexyl phthalate (DEHP) is commonly used in a wide range of consumer products. 

Several studies have shown that DEHP exposure can lead to serious anomalies for male 

reproductive tract like cryptorchidism, hypospadias, impaired spermatogenesis and reduced fertility.  

In this study we examined the effects of DEHP on neonatal testicular histopathology at PND 6. 

Pregnant Wistar rats were gavaged from gestation day (GD) 7 to GD 21 and from postnatal day 

(PND) 1 to 6 with vehicle, 30, 300, or 900 mg/kg bw/day DEHP. Histopathological investigations 

revealed alterations in testis morphology at all doses tested.  At the highest DEHP doses, gonocytes 

appeared to be enlarged and multinucleated, diameter of cords were reduced and it was possible to 

find malformed cords. Interestingly, effects on Leydig cells were seen at lower doses than effects on 

gonocytes, and Sertoli cells were not affected by the treatment at this stage. DEHP treatment did not 

interfere with proliferation/apoptosis, but changes in PPARγ expression indicated possible 

involvement in the observed effects. 

 

 

Key words: phthalate, rat, testis, histopathology 

 

 

1. Introduction 

 

Human population is steadily exposed  through general environmental contamination or direct 

contact to several different compounds with endocrine disrupting properties. 

An endocrine disrupting chemical (EDC) has been described as “an exogenous substance or mixture 

that alters function(s) of the endocrine system and consequently causes adverse health effects in an 

intact organism, or its progeny, or (sub) populations”[1,2]. More than 200 compounds are 

considered to be EDCs, such as pesticides, herbicides, metals, lubricants and solvents, natural plant 

metabolites, and plasticizers [3-9] and exposure to most of them during development is suggested to 

contribute to different reproductive tract disorders [10]. 

Among EDCs, phthalates are an important group of multifunctional and environmental chemicals 

widely used as plasticizers and solvents in many different applications [11,12]. Phthalate esters are 

ubiquitous in our surrounding environment and because they are not covalently bound to the 

polymer, they can easily be available for biological exposure [13-15]. Human exposure can occur 

by absorption, inhalation, dermal exposure and ingestion which is the major source of exposure [16-

18]; moreover, maternal exposure represents the first source of fetal exposure to phthalates [19,20]. 

Di-(2-ethylhexyl)phthalate (DEHP) is one of the most found phthalate in the environment [21] and 

it is commonly used to convey flexibility and transparency to numerous consumer products [22]. 

DEHP is well known for being toxicant for the male reproductive system [23,24] and it exerts 

antiandrogenic effects by suppressing fetal testosterone biosynthesis which in turn led to male 

reproductive tract anomalies [25-27]. The wide range of DEHP effects is characterized by disrupted 
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androgen dependent development and increased incidence of reduced anogenital distance (AGD) 

cryptorchidism, hypospadias, impaired spermatogenesis and testicular cancer, which jointly 

comprise the testicular dysgenesis syndrome (TDS) [22,28]. The TDS hypothesis proposes that an 

in utero insult to testicular development may result in failure to develop normal Leydig and Sertoli 

cell function during male sexual differentiation with adverse consequences for male reproductive 

health [29]. 

DEHP effects depend on developmental stage of organism at the time of exposure [30]. Recent 

published studies reveal that at low dose of 10mg/kg-d DEHP caused adverse anti-androgenic 

effects on male rat development such as reduced anogenital distance, increased nipple retention, 

reduced weight of levator ani and bulbocavernosus muscles (LABC) and mild dysgenesis of 

external genitalia; instead with higher doses it was possible to note histopathological effects on 

juvenile testis, reduced testicular and prostate weight with associated reduction in the expression of 

androgen-regulated genes [31]. Hence in this study we evaluated the effects of different doses of 

DEHP on testicular histopathology during neonatal period after gestation and lactation exposure. 

These periods of exposure are more sensitive than adulthood and young animals have been found to 

be more sensitive to DEHP than adult rats [32].  

 

 

 

2. Materials and methods 

2.1 Chemicals 

DEHP (di(2-ethylhexyl)phthalate), CAS No. 117-81-7, purity 99% was obtained from Sigma- 

Aldrich 20, 115-4. DEHP was dissolved in corn oil, used as vehicle and obtained from the Royal 

Veterinary Agriculture Pharmacy, Copenhagen, Denmark. 

2.2 Animals and treatment 

Sixty-four time-mated, young adult Wistar rats, with a body weight approximately around 200g 

(Han-Tac: WH, Taconic M&B, Denmark), were supplied at day 3 of pregnancy. The day following 

mating was designated gestational day (GD) 1, and postnatal (PND) 1 was the day of birth. Upon 

arrival, the dams were randomly distributed in pairs and housed under standard conditions: 

semitransparent plastic cages (15 cm x 27 cmx 43 cm) with Aspen bedding (Tapvei), situated in an 

animal room with controlled environmental conditions (12 h light- dark cycles with light starting at 

9 p.m., light intensity 500 lux, temperature 21±2°C, humidity 50±5 %, ventilation 8 air changes/h). 

All dams were provided with a complete rodent diet for growing animals (Altromin Standard Diet 

1314) and acidified tap water ad libitum. Before starting the treatment, an acclimatization period of 

4 days was allowed and the animals were weighted every day to calculate the dosing volume of 

2ml/kg bw;  then from GD 7 to GD 21 (day before expected birth) and from PND 1 until PND 6 

they were gavaged with vehicle (corn oil) or 30, 300, 900 mg DEHP/ kg bw/day. Animals were 

inspected for general toxicity twice daily. On PND 6, pups were anesthetized in CO2/O2 and 

decapitated and testes were removed for histopathological investigation.  

 



25 
 

2.3 Haematoxylin and eosin staining 

One or two testes per litter were placed in Bouin’s fixative, and one testis per litter was placed in 

neutral buffered formaldehyde for histopathology and immunohistochemistry. Sections from testes 

fixed in Bouin’s fixative were paraffin embedded and stained with haematoxylin and eosin 

(alternately right and left testis). In all dose groups, Bouin’s fixed testes were evaluated for presence 

or absence of multinucleated gonocytes, small or large Leydig cell clusters and malformation of 

cords. In testes from all dose groups, cord diameters were investigated by measuring the diameter of 

tubular cross sections perpendicular to the tubular length direction. In each tissue section of testes of 

optimal quality, all cords were measured as previously described [33] using a computer assisted 

microscope (Leica DMR). 

2.4 Immunohistochemistry 

In all dose groups immunofluorescence for 3-β-hydroxysteroid dehydrogenase (3-β-HSD) was 

performed. Before starting, slides with paraffin sections were incubated for 30 min at 60°C and then 

deparaffinized. After microwave treatment in appropriate buffer, slides were washed in PBS 3x5 

min and blocked with 5% BSA in PBS for 30 min at room temperature. Then slides were incubated 

with primary antibody overnight at 4° C. Primary antibody used was 3-β-HSD (sc-30820, Santa 

Cruz Biotechnology), diluted 1:200 in 1% BSA in PBS. After washing in PBS, slides were 

incubated with donkey anti-goat GFP 488 (A11055, Molecular Probes) diluted 1:500 in 1% BSA in 

PBS for 1h at room temperature. This was followed by 30 min of incubation with Sudan black 0,1% 

and after washing in PBS, slides were counterstained with DAPI diluted 1:1000 in PBS for 3 min. 

Slides were then washed in PBS and mounted with ProLong Gold AntifadeMountant (P10144, 

ThermoFisher Scientific). 

In all dose groups double immunostaining for α-smooth muscle actin (SMA) and 3-β-HSD was 

performed as previously described [34]. Immunostaining for ki-67, androgen receptor (AR) and 

PPARγ were performed only in 0 and 900 mg DEHP/kg/bw/day groups. Immunohistochemistry 

was performed on one section per testis and except for microwave pre-treatment and secondary 

antibodies, the staining was performed using comparable protocols for all antibodies. Following 

pre-treatment, sections were blocked for endogenous peroxidase activity in 3% H2O2 in PBS for 10 

min and blocked for 30 min in 1% BSA in PBS. Then sections were incubated overnight at 4°C 

with the following antibodies: α-smooth muscle actin (SMA) 1:100 (clone 1A4, DAKO) ki-67 

1:100 (NCL MM1, Leica), androgen receptor (AR) 1:200 (N20SC816P, Santa Cruz 

Biotechnology), and PPARγ 1:100 (Cell Signaling, Beverly, MA). Sections were then incubated for 

30 min with secondary antibody anti-mouse Envision+ (DAKO) for SMA and ki-67 and anti-rabbit 

Envision+ (DAKO) for 3-β-HSD, AR and PPARγ. Finally, sections were stained in 

diaminobenzidine (DAB+Substrate Chromogen System, DAKO) and counterstained in Meyer’s 

haematoxylin. 

2.6 TUNEL 

In order to study the apoptosis, TUNEL was carried out in 0 and 900  mg DEHP/kg/bw/day groups 

using ApoTag-peroxidase kit (Cat.No. S7100, Intergen Co, NY) following the supplier’s guidelines. 

Deparaffinized sections were microwaved in Citrate Buffer (pH 6) 2x5min at 99°C. Sections were 
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rinsed in PBS and then blocked for endogenous peroxidase activity in 3% H2O2 in PBS for 10 min 

at room temperature. After a second rinse, equilibration buffer was added for 30 min at room 

temperature, removed and TdT enzyme diluted in reaction buffer was added and incubated for 1h at 

37°C. Sections were then washed in Stop Wash Buffer for 10 min at room temperature, rinsed, 

dried and incubated with Anti Digoxigenin Peroxidase for 30 min at room temperature. Sections 

were stained in diaminobenzidine (DAB+Substrate Chromogen System, DAKO) and counterstained 

in Meyer’s haematoxylin. 

2.7 Image capture 

Nonfluorescent images were examined and photographed using a LEICA DMR microscope fitted 

with Leica DFC295 Digital Camera. 

Fluorescent images were captured using Axioshop (Carl Zeiss) epifluorescente microscope fitted 

with Axiocam MRc5. 

Images were compiled using Photoshop 7.0 (Adobe System Inc., Mountain View, CA, USA). 

 

2.8 Statistical Analysis 

 

Data showed in graphs are expressed as means ± SD for the indicated number of independent 

determinations. The statistical significance was calculated by the one way ANOVA with Dunnett’s 

multiple comparison test and differences were considered statistically significant when the P values 

was at least p< 0.05. 

 

 

3. Results 

3.1 Testicular histopathology 

Testicular histopathology was examined in one or two testis per litter from PND 6 rats exposed to 

DEHP 0, 30, 300, 900mg/kg bw/d from GD 7 to GD 21 and from PND 1 to PND 6. After DEHP 

treatment, especially with the higher dose, gonocytes appear to be enlarged and multinucleated 

(Table 1). Changes in the distribution of Leydig cells were clearly visible in all treated groups when 

compared to control group. After exposure to ≥ 30 mg/kg of DEHP Leydig cells tended to group 

together abnormally. Sertoli cells are not significant affected by the treatment (Fig.1,Table 1).Cord 

diameters were also investigated and results showed that cords had a reduced diameter in all the 

exposed rats at all doses tested (Fig.2). 

3.2 Immunohistochemistry 

Immunofluorescence for 3β-HSD revealed that Leydig cells tended to group together in clusters 

dose dependently from DEHP 30 mg/kg and with DEHP 900 mg/kg Leydig cell clusters were 

particularly large and tendend to be centrally located in the testes with corresponding decrease in 

the number of small Leydig clusters (Fig.1). 

Immunohistological double staining for 3β-HSD and SMA revealed that SMA staining was stronger 

in peritubular cells of control group. Treated groups showed a lower SMA staining especially in the 

area neighboring Leydig cell clusters. After high dose DEHP treatment it was also possible to see 
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malformed cords with 3β HSD positive Leydig cells inside the tubules (Fig.1 and Table 1). Only 

few positive ki-67 gonocytes were found both in control and treated groups (Fig.3). AR staining 

was similar among groups and was strongly detected in peritubular myiod cells and Leydig cells 

and also a weak presence was detected in Sertoli cells nuclei (Fig.3). PPARγ immunostaining was 

seen in Leydig cells cytoplasm and nuclei of control cells. Testes from the high dose DEHP 

exposed group showed much weaker PPARγ staining and it was mainly located in Leydig cells 

cytoplasm and almost absent in the nuclei especially in Leydig cell clusters (Fig.3).  

3.4 Tunel 

No positive TUNEL cells were seen in control or DEHP exposed groups (Fig.3). 

4.Discussion 

In recent decades, higher incidences of male reproductive disorders such as cryptorchidism, 

hypospadias, poor semen quality and impaired fertility have been associated with exposure to EDCs 

during perinatal life [22,35].  

Our first interesting finding regard Leydig cells which are not uniformly distributed in the 

interstitial space but are found in clusters. Leydig cell clusters become notable after low dose DEHP 

(30mg/kg-d) and become enlarged after high dose treatment. It has already been demonstrated that 

DEHP 300mg/kg/bw/d promotes fetal Leydig cells aggregation [36]. Moreover, this phenomenon 

has not been observed in adult Leydig cells after postnatal exposure [26, 37-39]. Phthalates mode of 

action on Leydig cells is thought to be dose and age dependent and results from affected 

testosterone production and signals from other testicular cells, including myoid cells and Sertoli 

cells [40,41]. In high doses exposed rats, Leydig cells positively stained for 3βHSD were also found 

inside the cords and the presence of dysgenetic areas characterized as malformed tubules was also 

detected in DEHP exposed rats at PND 22 and 190 [42] but not at GD21 [34]. The dysgenetic cords 

develop in late gestation and may indicated malfunction of androgen dependent peritubular cells 

and in the current study testis treated with high DEHP showed weaker SMA staining than normal.  

Gonocytes were enlarged and multinucleated only after high dose DEHP treatment and these results 

are in agreement with data about DEHP effects in fetal rat testis [36]. Moreover, neonatal Sertoli 

cells were not affected from DEHP treatment, and it is proposed that Sertoli cells changes are 

mainly seen after exposure during adulthood [43].The diameter of the cords was decreased dose-

dependently from 30mg/kg/d and this reduction in testis size was also seen in previous studies at 

PND 16 [31] and PND 22 [25]. Testis size is associated with Sertoli cells number and function so in 

the reported studies serum inhibin B levels were investigated. Inhibin B is a well-known marker of 

Sertoli cells function and number and results showed that levels were reduced after higher DEHP 

doses at PND 22 [25] but not at PND 16 [31] indicating that effects on Sertoli cells are seen at later 

time of development. 

To better understand if DEHP induces gonocytes proliferation and if Leydig cell clusters are due to 

hyperplasia we performed immunohistochemistry analysis for ki-67, a specific marker of 

proliferation and very low incidences of positive cells were seen. DEHP treatment did not induce 

proliferation indicating that at this stage proliferation is not a significant consequence of DEHP 

treatment. Leydig cells aggregation in clusters but not their increase in number was also found in 
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fetal testis of DBP exposed rats [44]. Apoptosis was not induced by treatment either at this stage, as 

only few TUNEL positive cells were seen. However, DEHP may induce apoptosis at later stage of 

testis development as supported by several studies [40,45,46] and may be related with observed 

poor Sertoli cells number and function [47]. 

Some of the antiandrogenic effects seen after pre or perinatal exposure of rats to phthalates are 

likely caused by a reduction in testosterone production seen in late gestation [25]. Normally 

testosterone levels in male rats increase from GD 17 to GD 20 [26] and DEHP and many other 

phthalates have been found to reduces testosterone levels between GD 17 and PND 2 [25-27]. The 

mechanisms by which phthalates exert their effects are not yet fully elucidated and to understand a 

potential mechanism for their impairing testis development, we performed AR and PPARγ 

immunostaining. Treatment with DEHP did not  cause AR mislocalization indicating that DEHP is 

not AR antagonist [26]. One possible mechanism of phthalate-mediated toxicity is binding to 

peroxisome proliferator-activated receptors (PPARs). The PPAR family contains three subtypes 

PPARα, PPARβ, PPARγ encoded by different genes [38, 48]. PPARγ regulates genes involved in 

cholesterol uptake and transport which is essential for testosterone production. In our study, DEHP 

at the high dose reduces PPARγ staining in Leydig cells and it is predominatly located only in 

Leydig cells cytoplasm. Similar results were observed in fetal rat testis after in utero exposure to 

DEHP [36] and may support the idea of PPARs-mediated effects of phthalates impairing testis 

development [49-51]. Interference with the aryl hydrocarbon receptor is another signalling pathway 

that might be affected by phthalates [52], and these findings warrant further studies. 

5. Conclusions 

In summary, DEHP impairs testis development in a way dependent on age and dosing. During 

neonatal period profound effects on Leydig cells were seen at lower doses of DEHP than effects 

seen on gonocytes. DEHP effects may be modulated by PPARγ. Phthalate effects on developing 

testes causes concern that human testis may also be affected, thus leading to TDS postnatally.  
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Fig. 1 

 

 

 

CTRL Dehp
30mg/kg

Dehp
300mg/kg

Dehp
900mg/kg

Multinucleated
gonocytes

12,5% 83,3% 83,3% 100%

Small Leydig cell
clusters

12,5% 83,3% 25% 25%

Large Leydig cell
clusters

0% 16,6% 75% 75%

Malformed
chords

0% 0% 0% 50% 

Table 1
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Fig. 2

 

C
o
n
tr

o
l

D
E

H
P
 9

0
0
 m

g
/
k
g
/
b
w

Fig. 3

Ki67 PPARγARTUNEL

40 µm 20 µm 40 µm 20 µm

 

 

 

 

 



31 
 

Figure capitations 

Fig.1: Haematoxylin and eosin staining, immunofluorescence analysis for 3βHSD (specific 

Leydig cells marker)  and double-immunohistochemical staining for SMA (specific marker 

for peritubular and perivascular cells) and 3βHSD (specific Leydig cells marker) in male rats 

exposed to 0, 30, 300 or 900 mg DEHP/kg bw/day from GD 7 to GD 21 and from PND 1 to 

PND 6. Testis of DEHP exposed animals present large Leydig cell clusters and in high dose 

exposed group note malformed cords.  

Table 1: Testicular histopathology at PND 6 in male rat exposed to 0, 30, 300 or 900 mg 

DEHP/kg bw/day from GD 7 to GD 21 and from PND 1 to PND 6. Percentage of affected males 

of the total number of males when evaluating one section for testis. 

Fig.2: Cord diameters at PND 6 in male rat exposed to 0, 30, 300 or 900 mg DEHP/kg bw/day 

from GD 7 to GD 21 and from PND 1 to PND 6. DEHP treatment reduces cords diameter in a 

dose dependent manner. Values are means ± SD. (* p<0,05; ** p<0,01) 

Fig.3: Immunoistochemical staining for ki67 (specific marker of proliferation), TUNEL, 

immunoistochemical staining for AR (androgen receptor) and PPARγ in male rats exposed to 

0 or 900 mg DEHP/kg bw/day from GD 7 to GD 21 and from PND 1 to PND 6. Only few 

positive ki-67 cells  and no apoptotic cells are detected in control or exposed rat group. AR staining 

detected in peritubular myiod cells and Leydig cells and a weak presence was also detected in 

Sertoli cells nuclei but no differences between controls and treated groups. PPARγ staining in 

Leydig cells reduce after DEHP treatment. 
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A B S T R A C T

Nonylphenol (NP) is an industrial chemical with estrogenic activity both in vivo and in vitro; estrogens
play a critical role in the development of prostate and may be the cause of some pathological states,
including cancer. In this study we examined the effects of NP on human prostate non tumorigenic
epithelial cells (PNT1A) investigating on cell proliferation, interaction with estrogen receptors (ERs) and
gene expression of genes involved in prostate diseases. We found that NP affects cell proliferation at
10�6M, promoting a cytoplasm-nucleus translocation of ERa and not ERb, like the natural estrogen 17b-
estradiol (E2). Moreover, we showed that NP enhances gene expression of key regulators of cell cycle.
Estrogen selective antagonist ICI182780 in part reverted the observed effects of NP. These results confirm
the estrogenic activity of NP and suggest that other transduction pathways may be involved in NP action
on prostate.

ã 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Nonylphenol (NP) is generated by the degradation of non-
ylphenol ethoxilates (NPEs). NPEs are chemicals widely used as
non ionic surfactants in the manufacture of rubber and plastic for
domestic, industrial and agricultural products (Fiege et al., 2000;
Langford, 2002; Vazquez-Duhalt et al., 2005). Due to its high
hydrophobicity and low solubility NP accumulates in several
environmental matrices, such as seas, rivers, soils, groundwaters
and sediments, in a range between 10�13 to 10�6M (Berryman
et al., 2004; Careghini et al., 2015; Vazquez-Duhalt et al., 2005). It
was also found as a contaminant of food and drinking water
(Gyllenhammar et al., 2012; Maggioni et al., 2013; Soares et al.,
2008). Human exposure to NP may occur by inhalation, cutaneous
absorption and ingestion of contaminated food or water (Guenther
et al., 2002; Soto et al.,1991). In this regard, NP was found in human
amniotic fluid, urine and plasma samples, breast milk, fetal cord
serum, placenta and maternal blood, with levels in these tissues
generally varying from 10�10 to 10�9M (Calafat et al., 2005; Huang
et al., 2014). Hovewer, in some cases, concentrations of NP have
* Corresponding author at: Department of Biology, University of Naples,
“Federico II” Via Mezzocannone 8, Naples, 80134, Italy.

E-mail address: madefalco@unina.it (M. De Falco).
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been reported to be much higher in human samples. In this regards
in breast milk of healthy Italian women, Ademollo et al. (Ademollo
et al., 2008) detected about 10�7M of NP as well as in urine and in
plasma of textile and housekeeping workers were found the same
NP levels (Chen et al., 2005). Instead, in maternal cord blood, Chen
et al. (Chen et al., 2008) found a concentration of NP of about
10�6M.

NP belongs to the subclass of endocrine disrupting chemicals
(EDCs) that mimic the endogenous estrogens, called xenoestro-
gens (Falconer et al., 2006; Wozniak et al., 2005), that also
includes dioxins, polychlorinated biphenyls, hexachlorocyclohex-
ane, octylphenol and bisphenol A (Kuo et al., 2012; Forte et al.,
2016). Estrogenic activity of NP has been reported both in vitro (de
Weert et al., 2008; Soto et al., 1991; White et al., 1994) and in vivo,
in reproductive and in non reproductive tissues, such as brain
(Blom et al., 1998; Laws et al., 2000; Nagel et al., 1999; ter Veld
et al., 2008; Xia et al., 2008; De Falco et al., 2014, 2015) and it has
been shown that NP interacts with estrogen receptors (ERs),
competing with the natural estrogen 17b-estradiol (E2) (Bechi
et al., 2006; Kwack et al., 2002; White et al., 1994), although with
less specificity (Bechi et al., 2010; Blom et al., 1998; Nagel et al.,
1999).

Estrogens predominantly bind two nuclear receptors: the
estrogen receptor alpha (ERa) and the estrogen receptor beta

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tox.2016.05.024&domain=pdf
mailto:madefalco@unina.
http://dx.doi.org/10.1016/j.tox.2016.05.024
http://dx.doi.org/10.1016/j.tox.2016.05.024
http://www.sciencedirect.com/science/journal/0300483X
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(ERb). Both ERa and ERb bind to the active form of estrogen E2,
with similar affinities (Siewit et al., 2010). ERs mediated estrogen
signaling in reproductive tissues but also in non-reproductive
tissues as the brain, lungs, colon, prostate and cardiovascular
system (Shanle and Xu, 2011). In the cell, E2 is able to activate both
genomic and non-genomic responses. In the genomic pathway, E2
mediates target gene regulation through binding directly DNA at
estrogen response elements (EREs) or indirectly through tran-
scription factors like Sp1 or AP-1 (Kushner et al., 2000; Saville et al.,
2000); the non-genomic pathway is not mediated by ERa or ERb
but through the G-protein coupled receptor, GPR30, that localizes
in the plasma membrane activating rapid responses such as
increased levels of c-AMP (Filardo et al., 2007; Lin et al., 2009;
Wang et al., 2010).

Several studies have suggested the role of estrogens in normal
and aberrant growth of prostate, alone or in synergy with
androgens (Ho et al., 2011) and epidemiological and experimental
studies underline a relationship between estrogens/xenoestrogens
and pathogenesis of prostate cancer (PCa) (Bostwick et al., 2004;
Ho et al., 2006). Neonatal treatment with Bisphenol A (BPA), a well-
known xenoestrogen, was reported to induce high-grade prostatic
intraepithelial neoplasia in Sprague-Dawley rats (Ho et al., 2006)
and to increase cell proliferation of urogenital sinus epithelium
(UGE) in the primary prostatic ducts of CD1 mice (Timms et al.,
2005). BPA was also found to increase the number of basal
epithelial cells in the adult prostate of BALB/c mice (Ogura et al.,
2007). Recently, Tarapore et al. (2014) found in prostate cancer
patients high BPA urinary levels compared to non prostate cancer
patients.

Despite the relationship between estrogen and prostate, the
precise functions of the two ER subtypes in this gland remain
unclear; several authors have reported differential expression
patterns of the two receptors between the epithelial and stromal
compartment of the prostate, with ERa localized predominantly
in the stroma and ERb in the epithelium (Fixemer et al., 2003;
Leav et al., 2001; Tsurusaki et al., 2003; Weihua and Warner,
2002).

Considered this background and given the human exposure to
EDCs, the estrogen-like action of NP is conceivable to influence the
normal growth of prostate and to be the cause of some pathological
states of this gland, affecting the male reproductive functions.
Thus, in this study we evaluated the effects of NP on the
proliferation of human non tumorigenic prostate cells (PNT1A),
which is responsive to sex hormones (Stephen et al., 2004), the
cellular localization of ERa and ERb after exposure to NP and gene
expression of genes involved in pathological states of the prostate
such as cyclin D, Ki67, p53 and IL1-b. We performed the same
experiments treating cells with the natural estrogen E2 and with
the selective antagonist of estrogen receptors ICI 182,780 (Osborne
et al., 2004). This study aims to facilitate the understanding of the
mechanisms by which xenoestrogens and estrogens may exert
their activity on prostate.

2. Material and methods

2.1. Cell culture

PNT1A cells (a human prostate cell line established by
immortalization of adult prostate epithelial cells) were obtained
from the European Collection of Cell Culture (ECACC Salisbury, UK).
PNT1A cells were grown in red phenol free RPMI-1640 medium
(LONZA, Basel, Switzerland), supplemented with 10% dextran-
coated charcoal fetal bovine serum (FBS) (GIBCO, Grand Island,
NY), 2 mM L-glutamine and antibiotics (100 U/mL penicillin/
streptomycin, 10 mg/mL gentamicin) in a humidified incubator at
37 �C and 5% CO2. When confluent, the cells were detached
enzymatically with trypsin-ethylenediamine tetra-acetic acid and
subcultured into a new cell culture flasks. The medium was
replaced every 2 days. Cells were used for experiments between
passages 5–20.

2.2. Chemicals

Nonylphenol (NP), 17b-Estradiol (E2) and selective estrogen
antagonist ICI 182,780 (ICI) were purchased from Sigma-Aldrich
(Sigma Aldrich, St. Louis, MO) and were dissolved in DMSO
(Invitrogen Carlsbad, CA). NP, E2 and ICI were diluted with culture
medium at final concentrations from 10�12 to 10�6M for NP and E2
and 10�5M for ICI. In all the experiments with the inhibitor, ICI was
added 1 h prior to start treatments. Final concentration of DMSO in
the medium did not exceed 0.01%.

2.3. MTT assay

The effects of NP or E2 on PNT1A cells proliferation was
evaluated using the 3-[4,5-dimethylthiazol-2-yl]-3,5 diphenyl
tetrazolium bromide (MTT) test (Sigma Aldrich, St. Louis, MO).
Cells were seeded in 200 mL of growth medium (5 �104 cells/
well) in 96-well plates and hormone deprived (1% FBS) for 24 h.
Then, NP or E2 was added after dilution to an appropriate
concentration (from 10�12M to 10�6M), with or without 10�5M
ICI. Control cells were treated with vehicle (DMSO 0.01%). The test
was performed for 24 h of incubation. After the incubation period,
10 mL of a MTT solution was added to each well. After 4 h of 37 �C
incubation, the culture medium was gently aspirated and
replaced by 100 mL of DMSO/isopropanol (1:1) in order to
dissolve the formazan crystals. The absorbance of the solubilized
dye, which correlates with the number of living cells, was
measured with a microplate reader at 570 nm. The test was
performed in triplicate.

2.4. Fluorescence microscopy

PNT1A cells were seeded in 4-well chamber slide (Sarstedt,
Nürnbrecht, Germany) overnight at a density of 5 �104/well. After
24 h serum starvation (1% FBS), cells were incubated with 10�6M
NP or 10�6M E2, with or without 10�5M ICI for four different
times: 15 min, 1 h, 2 h and 6 h. Control group was treated only
with vehicle (DMSO 0.01%). Control and treated cells were fixed
with methanol for 10 min at RT, permeabilized with 0.25% Triton
X-100 for 10 min, washed in PBS, and blocked in 5% normal goat
serum (NGS) for 1 h at RT. Then cells were subjected to
immunofluorescence protocol using a mouse monoclonal anti-
human ERa (Santa Cruz Biotechnology, Santa Cruz, CA, Cat. sc-
8005) and a mouse monoclonal anti- human ERb antibodies
(Santa Cruz, Cat. sc-373853), diluted 1:100 in 1% NGS for 24 h at
4 �C. For detection of ERa and ERb, secondary goat anti-mouse
Alex Fluor 488 (Cat. A11001, Invitrogen, Carlsbad, CA), dilution
1:200 in 1% NGS was used. Cell nuclei were counterstained with
0.1 mg/mL Höechst (Invitrogen, Carlsbad, CA, Cat. H3570).
Negative control for ERa and ERb was performed by avoiding
incubation with the primary antibodies (Supplementary data
Fig. S1). Fluorescent images were taken on an Axioskop (Carl
Zeiss, Milano, Italy) epifluorescence microscope using a 40�
objective. Axiocam MRc5 and the acquisition software Axiovision
4.7 (Carl Zeiss) were used to capture the images in different
channels (Alexa Fluor 488, Höechst 33258). Three independent
immunofluorescence experiments were performed for each
experimental conditions and different fields were randomly
chosen for data analysis. Then, images were processed with the
Image J software (developed by Wayne Rasband, National
Institutes of Health, USA).



Table 1
Primers used in qPCR.

Gene 50-Forward-30 50-Reverse-30

Cyclin D CGTGGCCTCTAAGATGAAGGA CGGTGTAGATGCACAGCTTCTC
Cyclin E GATGACCGGGTTTACCCAAA CCTCTGGATGGTGCAATAATCC
Ki67 CCCGTGGGAGACGTGGTA TTCCCGTGACGCTTCCA
p53 TCTGTCCCTTCCCAGAAAACC CAAGAAGCCCAGACGGAAAC
IL1-b ACGATGCACCTGTACGATCACT CACCAAGCTTTTTTGCTGTGAGT
GAPDH CAAGGCTGTGGGCAAGGT GGAAGGCCATGCCAGTGA
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2.5. Protein extraction and separation

Nuclear and cytoplasmatic proteins were extracted from
PNT1A cells after two and six hours of treatment with 10�6M
NP, 10�6M E2, with or without 10�5M ICI. Control cells were
treated with 0.01% of DMSO and western blot was performed for
detection of ERa and ERb. Different buffers were prepared to
isolate cytoplasmic/membrane and nuclear proteins: harvest
buffer (10 mM HEPES pH 7.9, 50 mM NaCl, 0.5 M sucurose, 0.1 mM
EDTA, 0.5% Triton X-100 and freshly added 1 mM DTT, 10 mM
tetrasodium pyrophosphate, 100 mM NaF, 1 mM PMSF, 4 mg/mL
Aprotinin and 2 mg/mL Pepstatin A), buffer A (10 mM HEPES pH
7–9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA and freshly added
1 mM DTT, 1 mM PMSF, 4 mg/mL Aprotinin and 2 mg/mL Pepstatin
A) and buffer B (10 mM HEPES pH 7.9, 500 mM NaCl, 0.1 mM EDTA,
0.1 mM EGTA 0.1% NP-40 and freshly added 1 mM DTT, 1 mM
PMSF, 4 mg/mL Aprotinin and 2 mg/mL Pepstatin A). 10 cm cell
dishes with confluent PNT1A cells were placed on ice for 10 min
and washed twice with ice cold PBS. Then 100 mL of PBS-EDTA
1 mM was added and cells were scraped and transferred to a
microcetrifuge tube. The collected cells were then centrifuged at
3000 rpm for 5 min at 4 �C and then resuspended in cold harvest
buffer, incubated on ice for 5 min and subsequently centrifuged at
1000 rpm for 10 min to pellet nuclei. Then the supernatant was
transferred into a new tube and centrifuged at 14000 rpm for
15 min, in order to clear the supernatant. This latter contains the
cytoplasmic and membrane proteins. Nuclear pellet was then
resuspended in buffer A, centrifuged at 1000 rpm, the superna-
tant was discarded. Then 4 vol of buffer B were added and the
tubes were vortex for 15 min at 4 �C to loosen pellet. Finally, a
centrifugation for 10 min at 14,000 rpm at 4 �C was performed and
the supernatant that contain nuclear extract was transferred into
a new tube. Protein concentration was determined with Bradford
assay (Biorad).

2.6. Western blot

50 mg of protein extracts for each sample was separated by 10%
SDS-PAGE and transferred onto a nitrocellulose membrane.
Membranes were blocked with 5% milk in TBS-Tween for 2 h at
room temperature and then incubated with primary antibodies in
TBS-Tween and 5% milk overnight. Blocked membranes were then
incubated with anti-ERa (1:500) or anti-ERb (1:500) and with
mouse anti-human b-tubulin (1:2000) (Santa Cruz, Cat. sc-5274)
or mouse anti-human HDAC2 (1:2000) (Santa Cruz, Cat. sc-55542)
overnight and then detected using appropriate horseradish
peroxidase-coupled secondary antibody (Santa Cru, Cat. sc-
2005) and visualized with enhanced chemiluminescence (Amer-
sham, Thermo Fisher Scientific, Milano, Italy). The purity of nuclear
and cytoplasmic fractions was confirmed using anti-HDAC-2 and
anti-b-tubulin, respectively. All antibodies have been used to
probe the same experimental membrane. In detail, before
incubation with another primary antibody, the membranes have
been stripped with the stripping solution: 100 mM 2-Mercaptoe-
thanol, 1% SDS, 62.5 mM Tris-HCl pH 6.7 and incubated at 50 �C for
30 min with agitation and, subsequently, the membrane have been
re-equilibrated in TBS and then blocked with 5% milk in TBS-Tween
for 2 h at room temperature. The rendering of stripping has been
tested by evaluating the ECL- signal after treatment with the
stripping solution. Only when the signal of the previous antibody
was absent, the membrane was incubated with a new antibody.
Immunoblotting data were analyzed using ImageJ software to
determine optical density (OD) of the bands. The OD reading was
normalized on anti-b-tubulin and anti-HDAC2 to account for
variations in loading. For each time of treatment (i.e. 2 h, 6 h, 2 h
with ICI) were analyzed data of three independent western
blotting.

2.7. RNA extraction and RT-qPCR

mRNA expression levels of estrogen target genes were analyzed
using real-time PCR. Total RNA from PNT1A control cells and
treated for 24 h with 10�6M E2 or 10�6M NP, with or without
10�5M ICI was extracted using Trizol (Life Technologies, Carlsbad,
CA). After purification from genomic DNA with TURBO DNA-freeTM

Kit (Ambion, Life Technologies), the total amount of RNA was
quantified with a NanoDrop spectrophotometer. cDNAs were
synthesized from 1 mg RNA using the High Capacity cDNA Reverse
Transcriptase (Life Technologies) and quantitative PCR (RT- qPCR)
was performed by using the 7500 Real-Time PCR System and
SYBR1 Select Master Mix 2X assay (Applied Biosystem, Foster City,
CA, USA). All primers used (Table 1) were designed according to the
sequences published on GenBank using Primer Express software
version 3.0 and primer efficiencies were tested prior to perform
qPCR. The amount of target cDNA was calculated by comparative
threshold (Ct) method and expressed by means of the 2�DDCt

method (Livak and Schmittgen, 2001) using the glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) as housekeeping gene, which
expression was not affected by the treatment. Three separate
experiments (n = 3) were performed for RT-qPCR and each sample
was tested in triplicate.

2.8. Statistical analysis

Data reported in graphs are expressed as mean values �SEM for
the indicated number of independent determinations. The
statistical significance was calculated by the one way ANOVA
with Bonferroni’s multiple comparison test, and differences were
considered statistically significant when the P value was at least
<0.05.

3. Results

3.1. Cell proliferation assay

To determine if NP affects cellular proliferation, PNT1A cells
were treated with increasing concentration of NP (from 10�12M to
10�6M) for 24 h of exposure; to assess any similarities, treatment
was performed also exposing cells with E2; the same experiments
were also carried out in presence of 10�5M ICI. NP stimulated
PNT1A cells proliferation at the highest concentration we used
(10�6M) (Fig. 1a). At lower concentrations, we did not observe any
significant effects when compared to control group. 10�5M ICI
inhibited the proliferation induced by 10�6M NP. Similarly,
treatment with E2 stimulated PNT1A cells proliferation from
10�9M to 10�6M, with the greatest effect showed at 10�6M
(Fig. 1b). E2 induced proliferation is strongly inhibited by adding
ICI. Fig. 1c shows as E2 has a greater effect compared to NP on
PNT1A cells proliferation.



Fig. 1. MTT assay after 24 h of exposure to nonylphenol (NP) and 17b- estradiol (E2) alone or in combination with ICI 182, 780 (+I). NP stimulates PNT1A cells proliferation at
10�6M (a) while E2 at 10�9M, 10�8M, 10�7M and 10�6M (b). 10�5M ICI (I) reverts this effect. E2 shows the greatest effect on proliferation if compared to nonylphenol (c). In
graph is reported the absorbance measured at 570 nm which correlates with the number of living cells. a, response significantly different than the vehicle control (P < 0.05); a’,
response significantly different than the vehicle control (P < 0.01); b, response significantly different than cells without ICI (P < 0.05).
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3.2. Fluorescence microscopy

3.2.1. Localization of ERa
We investigated on estrogen receptors ERa localization after

10�6M NP and 10�6M E2 treatment, in order to evaluate the
interaction between NP and ERs. After 15 min and 1 h ERa
remained localized in the cytoplasm after both NP and E2
treatments (data not shown). After 2 h of treatment, NP did not
affect ERa cellular localization, that was localized in the cytoplasm,
as in control. On the contrary, in E2 treated cells for 2 h, ERa
localized predominantly in the nucleus (Fig. 2).

After 6 h of exposure, both in PNT1A cells treated with NP and
E2, ERa shifted from the cytoplasm to the nucleus that appeared to
be strongly positive, with a weak cytoplasmic fluorescence if
compared to control (Fig. 2).

In PNT1A cells pre-treated with ICI ERa was found in the
cytoplasm both after 2 and 6 h of treatment with nuclei completely
negatives (Fig. 3).

3.2.2. Localization of ERb
ERb localization after treatment with 10�6M NP and 10�6M E2

was also investigated; data after 15 min and 1 h (data not shown) as
well as after 2 h and 6 h of exposure did not reveal any differences
between control and exposed cells. ERb was localized in the
cytoplasm of PNT1A cells and cell nuclei appeared with a weak
signal (Fig. 4).

3.3. Western blot analysis

After separation of cytoplasmic and nuclear proteins we
performed a translocation study of ERa and ERb with a western
blot analysis, in order to confirm microscopy results after 10�6M
NP and E2 exposure. Densitometric analyses were normalized for
cytoplasmic and nuclear extracts with b-tubulin (55 Kda) and
HDAC2 (55 KDa), respectively. After 2 h of exposure (Fig. 5) we
found ERa protein (molecular weight 66 KDa) in the cytoplasm of
NP treated and non treated PNT1A cells whereas optical density
values were significantly lower in E2 treated cells (Fig. 5a,b).
Moreover, after 2 h nuclear proteins revealed a signal only in E2
treated cells (Fig. 5a). ERb (56 KDa) after 2 h of treatment was
found only in cytoplasmic fractions (Fig. 5a,c). No signal for HDAC2
and b-tubulin in the cytoplasm and nucleus proteins, respectively,
suggest that protein separation was performed correctly.

After 6 h of exposure (Fig. 6) we observed a nuclear transloca-
tion of ERa both in NP and E2 treated cells (Fig. 6a,b). However,
densitometry did not reveal significant differences in nuclear
extracts between NP and E2 treated cells (Fig. 6b). In contrast,
values were significantly lower in the cytoplasm in treated cells
compared to control (Fig. 6b). ERb was found only in cytoplasmatic
fractions (Fig. 6a,c) and there were not significant differences in
optic density between treated and non treated cells (Fig. 6c).

Western blot for ERa localization performed in presence of
10�5M ICI after two (Fig. 7a,b) and 6 h of treatment (Fig. 7c,d)
revealed ERa exclusively in cytoplasm proteins, with a weak signal
in the nuclear extracts after 6 h of exposure (Fig. 7c). No
statistically significant differences were showed comparing non
treated and treated cells (Fig. 7b,d).

3.4. RT- qPCR analysis

In order to investigate if NP is able to affect gene expression, RT-
qPCR analysis of genes involved in cell cycle regulation and in
pathological states of prostate were investigated after 24 h of
exposure. NP enhanced mRNA levels of Cyclin D (Fig. 8a), Cyclin E
(Fig. 8b), Ki67 (Fig. 8c) and IL1-b (Fig. 8e) while it did not affect p53
expression (Fig. 8d). Interestingly, ICI reduced gene expression of
Cyclin D (Fig. 8a) and Ki67 (Fig. 8c) in PNT1A cells treated with NP,
while it did not inhibit gene expression of Cyclin E (Fig. 8b) or IL1-b
(Fig. 8e). E2 significantly affected gene expression up-regulating
Cyclin D (Fig. 8a) and Ki67 (Fig. 8c). This induction was strongly
inhibited by ICI (Fig. 8a,c).

4. Discussion

EDCs are receiving more and more attention by scientific
community, due to their ability to mimic endogenous hormones
and altering the metabolism of organisms (De Falco et al., 2014). NP
belongs to the family of xenoestrogens and its estrogenic activity is
well documented both with in vitro (de Weert et al., 2008; Soto
et al.,1991; White et al.,1994) and in vivo studies (Laws et al., 2000;
ter Veld et al., 2008). In this work we seek to investigate the effects
of NP on human prostate cells PNT1A, precisely evaluating its
estrogenic action in terms of proliferation, interaction with ERs and
gene analysis of genes involved in cell cycle regulation and
aberrant physiology of prostate. Few studies investigated the
effects of NP on prostate, both on cellular and animal models. These
findings did not characterize any molecular mechanisms and
results often appear to be in conflict. For example, Lee et al. showed
that NP is able to reduce the weight of the prostate in rats, in a dose
dependent manner (Lee, 1998). In the same study, authors
demonstrated that ICI reverted this effect. Similarly, Who et al.
obtained the same result but with higher concentration of NP (Woo
et al., 2007). Moreover, gestational exposure to NP was reported to
affect prostate morphology in F1 rats (Jie et al., 2010). In contrast,
other authors failed to demonstrate any adverse effects on rat
prostate caused by NP (Inaguma et al., 2004; Odum and Ashby,
2000). These contrasting data may be explained by the time and
the way of NP dosage, as well as by the duration of treatment. We
conducted our experiments also testing the effects of E2 and ICI.



Fig. 2. Localization of ERa after 2 and 6 h of exposure to NP and E2. E2 promotes translocation of ERa to the nucleus at both time of treatment, while NP at 6 h. PNT1A cells
were plated in chamber slide under hormone deprived conditions. 24 h later, cells were treated with 10�6M NP or 10�6M E2. ERa (Alexa Fluor 488) and nuclear staining
(Höechst) were analyzed by immunofluorescence. Scale bar 10 mm.
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Fig. 3. Localization of ERa after 2 and 6 h of exposure to NP and E2 combined with ICI (+I). ICI inhibits ERa nucleus translocation at both time considered. Cells were pre-
treated for 1 h with 10�5M ICI and then treated with 10�6M NP or 10�6M E2. ERa (Alexa Fluor 488) and nuclear staining (Höechst) were analyzed by immunofluorescence.
Scale bar 10 mm.
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We showed that NP stimulated PNT1A cells proliferation after 24 h
of exposure at 10�6M as well as E2 did. However, E2 affected
PNT1A cells proliferation also at lower concentrations. Interest-
ingly, ICI reverted NP and E2 proliferative stimuli. These results
suggest that NP may interfere with normal cell cycle of PNT1A cells
as reported by other authors in different cell lines (Choi et al., 2011;
Manente et al., 2011). Recently, Gan et al. (Gan et al., 2015) in
human prostate epithelial cell line RPWE-1 showed a reduction in
cell viability after 24 h exposure to NP. The incongruity between
our results and those of Gan et al. can be explained by the different
concentrations used. In this study, no effects were reported at 10�6
NP and the decrease in cell proliferation appeared to be evident
only at high concentration (10�5–10�4M).

With two different approaches, we studied the localization of
ERa and ERb in a time course analysis testing the concentrations
(10�6M) that showed the greatest effect on cell proliferation. We
demonstrated that E2 induced cytoplasm-nucleus translocation of
ERa at both time tested, while NP only after six hour of exposure.
Surprisingly, both E2 and NP did not affect ERb localization. ICI
inhibited the ERa translocation observed with NP and E2 alone.

Both proliferation and localization data confirm the estrogenic
activity of NP. However, the greatest biological responses showed



Fig. 4. Localization of ERb after 2 and 6 h of exposure to NP and E2. In all the images ERb is localized in cellular cytoplasm. PNT1A cells were plated in chamber slide under
hormone deprived conditions. 24 h later, cells were treated with 10�6M NP or 10�6M E2. ERb (Alexa Fluor 488) and nuclear staining (Höechst) were analyzed by
immunofluorescence. Scale bar 10 mm.
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Fig. 5. Western blot analysis and nuclear and cytoplasmic quantification of ERa and ERb after 2 h of exposure to 10�6M NP and E2. E2 induces nucleus translocation of ERa
while ERb was found only in the cytoplasmatic proteins (a). The graphs represented the Optical density (OD) ratio of ERa and ERb normalized to the OD of Tubulin b for
cytoplasmatic proteins and to the OD of HDAC2 for nuclear proteins (b). (N = 3 separate experiments) a, response significantly different than the cytoplasmatic control
(P < 0.05); b’, response significantly different than the nuclear control (P < 0.01)
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by E2 can be explained by its best binding affinity with ERs
compared to NP (Laws, 2000). Notwithstanding the lowest
responses to NP, we can speculate that its proliferative effects,
as for E2, is mediated by the interaction with ERa. On this issue, it
is well known the role of ERa in cellular proliferation process and
carcinogenesis of prostate, while some authors suggested that
ERb seems to be involved in apoptosis of prostate cells (Hartman
et al., 2012). For example, it has been reported in knockout ERb
mice prostatic hyperplasia and cancer (Weihua et al., 2001).
Moreover, in mice and rats prostate, like in human, it has been
shown that ligands that interact with ERb may reduce prolifera-
tion (Ellem and Risbridger, 2009; Omoto et al., 2005; Prins and
Korach, 2008).

To assess if the presence of ERa in the nucleus led to the
activation of transcription, we analyzed gene expression of E2 gene
targets also known to be deregulated in pathological state of the
prostate. We demonstrated that NP was able to upregulate Cyclin D,
Cyclin E, Ki67 and IL1-b gene expression whereas E2 induced
upregulation only of Cyclin D and Ki-67. Moreover, we showed that
up-regulation of Cyclin D and Ki67 is mediated by estrogen
signaling pathways, while the induction of Cyclin E and IL1-b
involved an estrogen independent pathways, since ICI did not
revert this induction. These results of gene expression are in
agreement with the showed induced proliferation caused by NP
and E2. In this regard, it is well known that Cyclin D and Cyclin E
promoting G1/S phase transition of cell cycle (Kastan and Bartek,
2004) and are often used to screening the carcinogenic potential of
EDCs (Diamanti-Kandarakis et al., 2009). Moreover, it has been
reported that overexpression of Cyclin D, Ki67, Cyclin E and IL1b are
a prognostic factors prostate cancer (Aaltomaa et al., 2006; Dey
et al., 2013; Sfanos and De Marzo, 2012). In particular, down-
regulation of Cyclin D and Cyclin E has been shown to inhibit tumor
progression in different prostate cell lines (Alagbala et al., 2006;
Chinni et al., 2001; Lin et al., 2015). In addition, the null effect
showed for p53, the hallmark of apoptosis, reinforce the idea that
NP has a role in promoting prostate cells survival (Gan et al., 2011;
Gumulec et al., 2014).

This data, together with the less estrogenic activity of NP in
terms of proliferation and interaction with ERa strongly suggest
that NP may activate also other transduction pathways, such as the
G-protein coupled estrogen receptor GPR30 (Filardo et al., 2007) or
the androgen receptor (ARs) (Wang et al., 2010). In this regard, in a
recent study, Kim et al. showed that NP induced human
tumorigenic prostate cells (LNCaP) proliferation in a pathway
mediated by ARs (Kim et al., 2016). In addition to ARs mediate
pathways, in epithelial non tumorigenic cells DU145, Gan et al.
(Gan et al., 2014) provided evidences about the involvement of
GPR30 in NP induced proliferation, when used at concentration
from 10�8 to 10�6M. Interestingly, according with our data and
despite the different prostate model used, in both studies, the
concentration that showed the best effects was 10�6M in both the
studies.

Considering the exposure level of NP, 10�6M represents an high
dose of NP, found rarely in human samples, such as in breast milk
and in umbilical cord blood (Chen et al., 2005). Furthermore, it is
far from the tolerable daily intake limit values for NP (Woo et al.,
2007). Despite these considerations, it should not be under-
estimated the adverse effects that NP may exert when combined
with circulating estrogens or with other EDCs which we are
simultaneously exposed. This phenomena, commonly known as



Fig. 6. Western blot analysis and nuclear and cytoplasmic quantification of ERa and ERb after 6 h of exposure to 10�6M NP and E2. ERa was found in nuclear proteins after E2
and NP treatment while ERb was found only in the cytoplasmatic proteins (a). The graphs represented the Optical density (OD) ratio of ERa and ERb normalized to the OD of
Tubulin b for cytoplasmic proteins and to the OD of HDAC2 for nuclear proteins (b). (N = 3 separate experiments) a, response significantly different than the cytoplasmatic
control (P < 0.05); b’, response significantly different than the nuclear control (P < 0.01).

Fig. 7. Western blot analysis and nuclear and cytoplasmic quantification of ERa after pre-treatment with 10�5M ICI 182,780 (+I). ICI inhibits cytoplasm-nucleus translocation
of ERa after 2 h of exposure to 10�6M E2 (a–b) and after 6 h of exposure to 10�6M E2 and NP (c–d). The graphs represented the Optical density (OD) ratio of ERa normalized to
the OD of Tubulin b for cytoplasmic proteins and to the OD of HDAC2 for nuclear proteins (b, d). (N = 3 separate experiments) no significantly differences.
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Fig. 8. RT-qPCR analysis after 24 h of exposure to 10�6M NP and E2, alone or in combination with 10�5M ICI (+I). Cyclin D (a), Cyclin E (b), Ki67 (c), p53 (d) and IL1b (e) relative
mRNA levels were normalized using GAPDH as housekeeping gene. (N = 3 separate experiments) a, response significantly different than the vehicle control (P< 0.05); a’,
response significantly different than the vehicle control (P < 0.01); a”, response significantly different than the vehicle control (P < 0.001) b, response significantly different
than cells without ICI (P < 0.05); b’, response significantly different than cells without ICI (P < 0.01).
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“cocktail effect” is a feature widely accepted for EDCs risk
management (Bergman et al., 2012).

In conclusion, we demonstrated that NP acts on PNT1A cells
with similar effects if compared to E2, probably mediated by ERa
and it may be involved in a deregulation of cell cycle, leading to
aberrant proliferation of prostate epithelial cells, which in turn
may contribute to pathological states, including cancer. We are
also providing data on the dual role of ERs in prostate cells.

Notwithstanding the findings of this study, further evidences
remain to be investigated in order to best characterize the risk of
NP exposure for prostate diseases. In addition, more cellular and in
vivo models will be needed. However, our data may help
epidemiologists to consider and monitoring the association
between NP and prostate pathologies.
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The pesticidemancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the
production of reactive oxygen species plus inhibitingmitochondrial respiration thus becoming an environmental
risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mam-
mals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of
ornate wrasses (Thalassoma pavo) exposed to 0.2 mg/l of mz after a preliminary screening test (0.07–0.3 mg/l).
Treated fish exhibited an evident (p b 0.001) latency to reach T-maze arms (N1000%)while exploratory attitudes
(total arm entries) diminished (−50%; p b 0.05) versus controls during spontaneous exploration tests.Moreover,
they showed evident enhancements (+111%) of immobility in the cylinder test. Contextually, strong
(−88%; p b 0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished
crossings (−65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk
assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a
notable activation (p b 0.005) of the brain transcription factor pCREB occurred during mz-exposure.
Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral
part of the dorsal telencephalon (Dl; +68%) and valvula of the cerebellum (VCe; +35%) that also revealed
evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early
biomarkers pCREB and HSP90 against fish toxicity.

© 2017 Elsevier Inc. All rights reserved.
Keywords:
Manganese/zinc-ethylene-bis-dithiocarbamate
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Neuronal damages
Phosphorylated CREB factor
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1. Introduction

Water pollution represents a serious threat to aquatic organisms and
especially fish. Pesticide runoff from agricultural lands are one of the
main sources of water contamination, which induces dangerous distur-
bances to the different physiological facets of fish such as swimming
and feeding behaviors (Ullah et al., 2014). Pesticides may easily enter
in the fish body through gills, skin and via the food-chain thereby
orpus of the cerebellum; DIG,
phalon; Dm, medial part of the
mz, mancozeb; NDLI, diffuse
IV, trochlear nerve nucleus; OT,
protein; RS, superior reticular
rebellum; Vl, lateral part of the
v, ventral part of the ventral

y Laboratory, Biology Ecology
Calabria, Arcavacata of Rende,
reaching target organs like the brain (Atamaniuk et al., 2014). At this re-
gard, deleterious effects of pesticides are often related to neuronal dys-
functions in both mammals (Lee et al., 2015) and fish (Renick et al.,
2016). Consequently the dithiocarbamate fungicides, widely used for
preserving different agricultural yields, are considered hazardous toxi-
cants (Rath et al., 2011) due to the alteration of key enzymes such as
α-carbonic anhydrase thus accounting for the failure of pH homeostasis,
respiration and electrolyte secretion (Kolayli et al., 2011). Among di-
thiocarbamates, mancozeb (manganese (Mn)/zinc (Zn)-ethylene-bis-
dithiocarbamate; mz) is composed of different sub-compounds (Mn,
Zn plus ethylene thiourea) that together account for multiple toxic
mechanisms operating simultaneously during exposure to this fungi-
cide (Geissen et al., 2010). For this reason, we purposely decided to
focus on the effects of the integral compound,which causeswide neuro-
nal damages (Harrison Brody et al., 2013). Indeed, the presence of this
molecular complex permits it to catalyze the production of reactive ox-
ygen species (ROS) aswell as inhibitingmitochondrial respiration at the
brain level (Todt et al., 2016) thus proposing it as an environmental risk
for neurodegenerative diseases such as Parkinson's (Pezzoli and Cereda,
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2013). At present, indications are beginning to considermz as an impor-
tant endocrine disruptor (Thienpont et al., 2011), an oxidative stressor
of gills and blood (Kubrak et al., 2012), plus being an inductor of oxida-
tive damage to lipids and proteins in brain, liver and kidney of fish
(Atamaniuk et al., 2014).

Based on the above considerations, together with the lack of toxico-
logical studies on marine fish contaminated by mz, the present study
aimed to investigate neuronal and behavioral effects of this fungicide
on the marine teleost ornate wrasse (Thalassoma pavo) exposed to
0.2 mg/l of mz. This concentration was chosen on the basis of a prelim-
inary screening test of sublethal concentrations (0.07, 0.14, 0.2,
0.3 mg/l) handled in our laboratory. These doses are in line with those
used in other studies (Jarrard et al., 2004) along with environmentally
relevant concentrations detected in waterbodies near agricultural fields
(Shenoy et al., 2009) and in view of the recommended mz concentra-
tions being a thousand times higher for crop treatment (Atamaniuk et
al., 2014). Despite the frequent application of mz throughout the
world, indications regarding its environmentally relevant concentra-
tions in seawater are still lacking, perhaps because this fungicide is
often considered a compound with a low toxicity even if recent evi-
dences are beginning to indicate a high risk imposed to fish due to
water contamination (Marques et al., 2016). In any case, it is considered
a marine pollutant as reported by the Pesticide Properties Database of
the University of Hertfordshire (http://sitem.herts.ac.uk/aeru/ppdb/
en/Reports/424.htm) and it is known that the runoff of mz from the
river or soil near coasts can easily reach the sea especially since Italy is
geographically surrounded by the Mediterranean sea.

Hence, the different behavioral parameters (Light/Dark Test, Sponta-
neous Exploration Test in a T-maze andCylinder Test) alongwith specif-
ic molecular markers were investigated during cellular impairments
following exposure to this fungicide. For the present work, the phos-
phorylated and active form of CREB (cAMP response element-binding
protein, pCREB) was preferred since it is an important transcription
linker between a number of neurotransmitters and downstream gene
expression thus favoring neuronal survival and proliferation (Dworkin
et al., 2007) together with antianxiety-like conditions (Chakravarty et
al., 2013). At the same time, HSP90 was also evaluated due to its well-
known role on environmental stress (Wang et al., 2016; Zizza et al.,
2016) in which they mitigate deleterious effects of protein misfolding
in a similar manner to neurodegenerative diseases (Marino
Gammazza et al., 2016). Indications deriving from the present study
may provide novel bearings concerning the activation of protective
mechanisms against mz-dependent toxicity on fish neurobiological
activities.

2. Materials and methods

Before treating fish, it was necessary to determine the solubility pa-
rameter of mz due to the lack of indications in seawater. For this part,
experiments were conducted according to previous procedures (Furia
et al., 2011; Naccarato et al., 2016).

2.1. Analytical procedure

Mz was not quantified directly but the samples were treated to
quantify Mn as previously reported (Pariseau et al., 2009). With this
aim, mz (1.5 mg) was dissolved in 1.5 l of seawater; the mixture was
vortexed at least for 2 h and then filtered with an highly retentive filter
paper (Whatman 42). The filtrate was diluted (1:100)with filtered sea-
water. This solution was then analyzed by adding the reagent HNO3

(65%; Suprapur; Merck, Darmstadt, Germany) via Elan DRC-e ICP-MS
instrument (Perkin-Elmer SCIEX, Canada) using 55Mn isotope and sea-
water as a blank. Quantitative analysis was performed designing an
eight-point calibration curve (calibration range: 0.1–1000 μg/l) in
which the calibration solutions were prepared by diluting Merck XXI
and Perkin Elmer 2 multi-element standards solutions to 10 mg/l
(Ultrapure water; Milli-Q plus system, Millipore, Bedford, MA). Total
Mn concentration (519 μg/l) corresponds to the highest solubility of
mz in seawater. The quantification limit of the analyte is 0.03 μg/l. We
had a satisfactory quantitative recovery for Mn and thus we avoided
using isotope dilution (Mn does not have stable isotopes to use for iso-
tope dilution).

2.2. Animals and treatments

Adult female specimens of Thalassoma pavo (7–13 g bodyweight; 8–
11 cm body length: n= 30), which was already used for the evaluation
of neurotoxic effects (Zizza et al., 2013, 2014), were obtained from a
local supplier. They were acclimated in our laboratory for at least
1 week in 80 l tanks under a natural photoperiod in aerated and filtered
seawater. During acclimation,fishwere fed once a daywith small pieces
of frozen prawns corresponding to 2% of the biomass in the tank
(Facciolo et al., 2010). Water quality parameters i.e. salinity (35%), den-
sity (1.027–1.028 g/cm3), hardness (100mg CaCO3/l) and dissolved ox-
ygen (8–8.6 mg/l) as well as temperature (20–22 °C) plus pH (7.5–8.0)
were daily checked to assure that they remained within these ranges.
Animal maintenance and experimental procedures complied with the
legislative law n°116 (27-01-1992) and with European Directive
(2010/63/EU) for the correct use of laboratory animals. Efforts were
made to minimize animal suffering and reduce number of fish used.

After acclimation, fish were exposed for 96 h to mz (Sigma, Milan-
Italy) dissolved in seawater to reach the nominal sub-lethal concentra-
tion of 0.2 mg/l (n = 15) and compared to controls (n = 15), which
were not exposed to the pesticide. This concentration fell within the sol-
ubility parameters of mz in seawater according to indications obtained
by a ICP-MS analytical procedure. It resulted to be the most effective
non-lethal dose capable of inducing behavioral effects (data not
shown) among the different mz concentrations (0.07, 0.14, 0.2,
0.3 mg/l) as well as falling within the same range used by others
(Jarrard et al., 2004). A static renewal exposure system was applied,
with the pesticide concentration being renewed in seawater every
24 h, according to standard procedure guidelines (American Society
for Testing Material, 2014). This type of exposure system, together
with a basic pHand a relatively high temperature, guarantees a constant
pesticide concentrationwithin 24h since degradation ofmz occurs after
a much later time, i.e. 39 h (López-Fernández et al., 2017). Tanks were
only equipped with an aerator without any chemical filters to avoid
modifications of the pesticide concentration. Water parameters were
constantly checked to ensure that they remained within the ranges re-
ported above. During exposure, fish were fed as above according to
our previous toxicological studies (Giusi et al., 2008; Zizza et al., 2014).

2.3. Behavioral assessment

2.3.1. Spontaneous exploration test in a T-maze. A T-shaped glass tank
consisting of a start compartment of 40 × 40 cm, a passage lane (40
× 20 cm) and two arms of the same length (20 × 20 cm)was used to as-
sess the effects of mz on spontaneous exploration. In the present study,
this type ofmaze represents annovel arena to assessfish exploration ac-
cording to a previous study (Grossmanet al., 2010). Following a 96 h ex-
posure to the fungicide, all fish were individually tested. Each fish was
placed in the start compartment and observed for 6 min using a digital
camera positioned at the top. The following parameterswere evaluated:

- latency time to reach arms: the time (s) to reach arms from the start
compartment;

- total arm entries: the total number of entries in the maze arms;
- time spent in arms: the total time (s) spent in the maze arms.

2.3.2. Cylinder test. Each animal was introduced alone in a cylinder
apparatus, which consisted of a 6 l glass cylinder (16 cm diameter and
20 cm height) maximally filled with seawater and divided in two

http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/424.htm
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Fig. 1. The effects of mz on spontaneous exploration of Thalassoma pavo in a T-shaped
apparatus. Latency time to reach arms (s ± SEM; A), total arm entries (number ± SEM;
B) and time spent in arms (s ± SEM; C) were tested during a 6 min behavioral session.
The above behavioral activities were evaluated in fish exposed to mz (0.2 mg/l) for 96 h
(n = 15) and compared to controls (ctrl; n = 15) by using unpaired Student's t-test. *p
b 0.05, ***p b 0.001.
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equal virtual portions as reported by Grossman et al. (2010). Tests
(6 min) were recorded by two digital cameras, one at the top and the
second one opposite to the cylinder. Such an apparatus was used as a
novel tank to examine effects of mz on the following end-points: time
(s) spent at the bottom of the tank, time (s) spent along the cylinder
walls, time (s) spent in a immobile state and time (s) spent in different
movements (motor activity).

2.3.3. Light/dark preference test. Light/Dark preference test was car-
ried out at the end of the exposure session, in order to assess anxiety-
like behaviors (Maximino et al., 2011). The Light/Dark apparatus used
for the test consisted of a rectangular glass tank (25 × 20 × 40 cm h
× d × l) subdivided in two equal compartments without any physical
barrier between them, as previously reported (Zizza et al., 2016). The
light part of the apparatus consisted of the transparent walls of the
aquarium with a diffused light located above. The dark compartment
was shielded from the light source with an opaque black lid along
with opaque black walls and bottom. Also in this case, all animals
were individually introduced into the Light/Dark apparatus. Each be-
havioral test, which lasted 6 min, was filmed and the following end-
points were evaluated:

- light permanence: the total time (s) spent in the light compartment;
- crossings: the number of transitions between the two compart-
ments;

- risk assessment: the number of fast entries in the dark side of the ap-
paratus or a partial entry within thewhite compartment (Maximino
et al., 2011).

All behavioral data were analyzed using the software EthoLog 2.2.5
(Visual Basic; Brazil) and valueswere reported as mean activity± stan-
dard error of mean (SEM).

At the end of the behavioral session and before molecular proce-
dures, fish were checked for sexual identification by morphological ob-
servations of the ovary that did not show any sign of ovarian atresia that
could have indicated an initial transition to the testicular growth (Liu et
al., 2017).

2.4. Neurodegenerative analysis

A neurodegenerative analysis was carried out by applying Amino
Cupric Silver (ACS) technique to verify neuronal damages caused by
mz. This technique has been widely used for the detection of both ne-
crotic and apoptotic events in fish via the formation of silver precipitat-
ed granules (argyrophilic reaction) in neuronal fields where
neurodegeneration occurred (Zizza et al., 2016). With this purpose,
fish (n = 5) exposed to the fungicide for 96 h plus controls (n = 5)
were first anesthetized in ice water and then sacrificed by spinal tran-
section. Brains were removed, frozen on dried ice and stored at −20
°C. Subsequently, they were mounted on a freezing stage of a sliding
cryostat (Microm-HM505E; Zeiss,Wallford, Germany) to obtain a series
of representative sections (30 μm) for ACS protocol as previously de-
scribed (Zizza et al., 2014). Afterwards, sections were kept in a rapid
fixer solution for 5 min and counterstained with 0.5% neutral red solu-
tion (Carlo Erba, Milan-Italy) for 25 min, dehydrated in ethanol (50–
100%) plus xylene, and mounted with DPX (p-xylene-bis[N-pyridinium
bromide]; Sigma) for observations at a bright-field Dialux EB 20 micro-
scope (Leitz, Stuttgart, Germany).

2.5. Western blot

Brain tissues of exposed-fish (n= 5) plus controls (n= 5)were ho-
mogenized and lysed on ice with RIPA lysis buffer containing protease
and a mixture of phosphatase inhibitors (Santa Cruz, Biotechnology,
Milan-Italy) for 30 min. Homogenates were centrifuged at 12000 rpm
for 20 min at 4 °C. Total protein quantities were determined by using
BCA protein assay kit (PIERCE, Milan-Italy). 50 μg of proteins of each
sample were boiled for 5 min in SDS buffer [50 mM Tris-HCl (pH 6.8),
2 g/100 ml SDS, 10% (v/v) glycerol, 0.1 g/100 ml Bromophenolblue],
separated on 10% SDS-PAGE and transferred to a PVDF membrane for
blotting (Trans-Blot® Semi-Dry Transfer Cell, Biorad). Membranes
were incubated for 1 h at room temperature with a blocking buffer
(TBS, 0.05% Tween-20 and 5% BSA). After blocking,membraneswere in-
cubated overnight at 4 °C with Rabbit anti-pCREB antibody or rabbit
anti-β-actin antibody (Santa Cruz Biotechnology) diluted 1:200 in
TBS-T containing 2% BSA. The membranes were washed four times for
5 min in TBS, 0.05% Tween-20 before a 1 h incubation in a buffer (TBS,
0.05% Tween-20 and 2% BSA) containing horseradish peroxidase-linked
anti-rabbit IgG (Santa Cruz Biotechnology) at 1:4000 dilution. The
membranes were washed four times and specific protein bands were
detected with chemiluminescence (ECL, Santa Cruz, Milan-Italy) using
C-DiGit Chemiluminescent Western Blot Scanner (LI-COR). Western
blots were analyzed using Image Studio Software to determine optical
densities (OD) of the bands. OD readings were normalized to β-actin
values to account for variations in loading.
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2.6. Transcriptional analysis

To evaluate the influence of mz on brain HSP90 transcription, an in
situ hybridization analysis was performed by using a specific antisense
oligonucleotide DNA probe. Such a probe of 43 nucleotides was 5′-
CACAAAGAGGGTGATGGGGTATCCGATGAACTGAGAGTGCTTT-3′ previ-
ously designed (Giusi et al., 2008) on the basis of HSP90 partial nucleo-
tide sequence of Thalassoma pavo (GenBank cod. EF392848) labeled at
the 3′-tailing with digoxigenin-11-dUTP (DIG, Roche Diagnostics,
Monza-Italy) and compared to a sense oligonucleotide probe. With this
intention, fish exposed for 96 h with mz (n = 5) and controls (n = 5)
were sacrificed as described above. Subsequently, brains were rapidly re-
moved, stored at −40 °C and mounted on a cryostat freezing stage
(Microm-HM505E; Zeiss) to obtain a series of coronal sections (14 μm)
that were incubated with a 100 ng of HSP90 antisense probe overnight
at 50 °C in a humidified chamber as described in another study
(Facciolo et al., 2012). Immunological detection using an anti-digoxigenin
antibody (1:100)was obtained as previously reported (Zizza et al., 2014).
Hybridization signals (expressed asOD±SEM), observed at a bright-field
Dialux EB 20 microscope (Leitz) were determined in duplicates on each
brain antimere of 6 brain sections for anterior plus posterior brain slides.
Expression levels of HSP90mRNAwere obtained by using an Image Soft-
ware of theNational Institutes ofHealth (Scion Image 2.0), inwhich an in-
ternal standard was used for OD calibration. Background level was
estimated and included in all final calculations. The different encephalic
nuclei were identified using perciformes atlases (Cerdá-Reverter et al.,
2001a,b, 2008).

2.7. Statistical analysis

Statistical differences betweenmz-exposed fishwith respect to con-
trols were evaluated for all experimental data by using an unpaired Stu-
dent t-test with a significant level of p b 0.05. The determination of
number of animals of the present study was carried out using a free
Fig. 2. The effects ofmz during a cylinder test in the ornatewrasses. Datawere expressed as tota
(C) and duringmotor activity (D) by fish exposed to 0.2 mg/l of mz (n= 15) with respect to co
were evaluated by using unpaired Student's t-test. *p b 0.05, **p b 0.01, ***p b 0.001.
online statistical program (http://stat.ubc.ca/~rollin/stats/ssize/n2.
html; Department of Statistics of the University of British Columbia-
Canada) in which a 95% power corresponded to a sample size of at
least 5 and 15 individuals for molecular/neurodegenerative and behav-
ioral analyses, respectively, when a 2-sided 5% level of significance was
used.

3. Results

3.1. Effects of mancozeb on behavior

3.1.1. Spontaneous exploration test. Fish treatedwithmzexhibited sig-
nificantly differentiated exploration activities as indicated by their very
strong (p b 0.001) increased latency to reach arms (N1000%) with re-
spect to controls that instead demonstrated immediate and rapidmove-
ments from the start compartment (Fig. 1A). Contextually, exploratory
attitudes in mz-exposed fish diminished as pointed out by a moderate
reduction of total arm entries (−50%; p b 0.05)while controls displayed
a more consistent number of arm entries (Fig. 1B). Conversely, the total
time spent in arms did not significantly changewith respect to un-treat-
ed animals (Fig. 1C).

3.1.2. Cylinder test. During the cylinder test, neither mz-exposed fish
nor controls exhibited any type of transition toward the upper portion
of the apparatus (Fig. 2A). Indeed, the two experimental groups spent
the entire time at the bottom of the tank without reaching the upper
zone. However, it was worthy to note that fish exposed to mz spent a
conspicuous part of the test along the walls of the cylinder as demon-
strated by the strong increase (p b 0.01; +76%) of such an endpoint
with respect to controls (Fig. 2B). Accordingly, an evident enhancement
(+111%) of immobilitywas observed aftermz exposurewith respect to
controls (Fig. 2C). At the same time, the fungicide induced a moderate
reduction (−56%) of motor activity compared to untreated fish (Fig.
2D).
l time spent (s± SEM) at the bottom (A), along the cylinderwall (B), in an immobility state
ntrols (ctrl; n= 15) for a 6 min behavioral session in a cylinder tank. Statistical differences

http://stat.ubc.ca/~rollin/stats/ssize/n2.html
http://stat.ubc.ca/~rollin/stats/ssize/n2.html


Fig. 3. The effects of mz on anxiety-like behaviors of Thalassoma pavo. Light
permanence (s ± SEM; A), the number of crossings (number ± SEM; B) and of risk
assessment events (number ± SEM; C) were tested during a 6 min behavioral session
in a Light/Dark apparatus. The above behavioral activities were evaluated in fish
exposed to mz (0.2 mg/l) for 96 h (n = 15) and compared to controls (ctrl; n = 15) by
using unpaired Student's t-test. **p b 0.01, ***p b 0.001.
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3.1.3. Light/dark preference test. Light/dark test highlighted an anxi-
ety-like behavior in fish exposed to the pesticide. Indeed, treated fish
displayed a strong (−88%) reduction of permanence in the light zone
of the apparatus compared to controls (Fig. 3A). Moreover, the number
of crossings strongly diminished (−65%) in fish exposed tomz thus in-
dicating reduced explorative attitudes with respect to controls (Fig. 3B).
Conversely, a very strong enhancement (160%) of the number of risk as-
sessment events occurred in the pesticide-treated group versus controls
(Fig. 3C).
3.2. Neurodegenerative effects of mancozeb

The behavioral impairments observed in treated fish coincided with
several damaged cells displaying heavily stained granules within the
numerous neuronal fields following exposure to mz as revealed by
ACS analysis of the anterior andmedio-posterior areas (check schemes).
The argyrophilic reactionwas evident in the lateral part of thedorsal tel-
encephalon (Dl; Fig. 4A), in the medial part of the dorsal telencephalon
(Dm; Fig. 4B) and in the ventral telencephalon (VTel; Fig. 4C) of mz-ex-
posed specimens with respect to few rare dark granules of controls as
shown in the respective brain areas (Fig. 4A′–C′). As far as diencephalon
was concerned, the diffuse nucleus of the inferior lobe (NDLI; Fig. 5A)
also resulted to be heavily damaged. Similarly, an evident argyrophilic
signal was reported in the different cellular layers of the optic tectum
(OT; Fig. 5B), in the valvula of the cerebellum (VCe; Fig. 5C) and in the
superior reticular nucleus (RS Fig. 5D) compared with the respective
brain areas (Fig. 5A′–D′) of controls.

3.3. Neuromolecular effects of mancozeb

From amolecular point of view, a notable activation of the transcrip-
tion factor pCREB occurred during mz-exposure. Indeed, OD levels of
pCREB band (Fig. 6A), which were normalized by using values deriving
from densitometric evaluation of β-actin bands (Fig. 6B), were very sig-
nificantly (p b 0.005) enhanced in treatedfish rather than the respective
pCREB band of controls. At the same time, in situ hybridization revealed
an activation of HSP90 transcriptional responses as displayed by very
dense antisense signals in the representative brain section of exposed-
fish (Fig. 7A) and controls (Fig. 7B) compared with sense signals (Fig.
7C). In particular, a notable increase of mRNA levels was found in Dl
(+68%), whereas in other telencephalic fields such as Dm (+30%),
the ventral part of the ventral telencephalon (Vv;+33%) and the lateral
part of ventral telencephalon (Vl; +41%), only moderate transcript en-
hancements were observed (Fig. 7D). Similarly, moderate HSP90 up-
regulation events occurred in some extra-telencephalic sites such as
NG (+30%), OT (+30%), VCe (+35%), the trochlear nerve nucleus
(nIV; + 31%) and RS (+30%).

4. Discussion

This work provided first evidences about behavioral and neuronal
effects of the dithiocarbamate mz in a marine fish, in which the molec-
ular elements pCREB and HSP90 constitute crucial factors for the activa-
tion of neuroprotective measures against pesticides. At the behavioral
level, motor performances were notably impaired by mz since sponta-
neous exploration activity revealed significant alterations of almost all
parameters and namely the latency to reach arms or total arm entries.
Such explorative alterations occurred together with other motor defi-
cits, which included increase of fish immobility and reduction of time
spent moving when fish were tested in the cylinder apparatus. Similar-
ly, these behavioral disturbances were also detected in Caenorhabditis
elegans after exposure to mz as suggested by this fungicide disrupting
its swim to crawl locomotor transition (Harrison Brody et al., 2013),
which may very likely be linked to mitochondrial dysfunctions and in-
creased production of ROS (Todt et al., 2016). In addition,motor impair-
ments related to an altered synaptic transmission in the developing
cerebellar cortex were also observed in mice prenatally exposed to mz
(Miranda-Contreras et al., 2005). In line with the above findings, recent
works have reported the ability ofManeb to account for failure of motor
activity andmotor coordination in rats (Tinakoua et al., 2015) thus sug-
gesting such behaviors as a major target of Mn-containing dithiocarba-
mates. Among the behavioral difficulties reported in the present study,
it was interesting to note the onset of anxiety-like behaviors in mz-
treatedwrasses. Indeed, the Light/Dark test revealed not only a great re-
duction of the permanence in the light compartment of the apparatus
but also an evident enhancement of risk assessments, which corrobo-
rate an additional element of anxiogenic performances as previously in-
dicated in fish exposed to copper and mercury (Maximino et al., 2011;
Zizza et al., 2016).

It is known that exposure of fish to pesticides is often related to se-
vere behavioral deficits (Bonansea et al., 2016) deriving in many cases
from damages of specific brain areas (Pereira and de Campos Júnior,
2015). Even for this fungicide, its elevated toxic potentiality seems to
be directed at the neuronal level especially since Mn and Zn, which
are part of the molecular complex, are neurotoxic themselves
(Apaydin et al., 2016; Eom et al., 2016). Indeed, the behavioral



Fig. 4.Neurodegeneration in the telencephalic areas of Thalassoma pavo followingmz exposure. ACS photomicrographs (and the relative scheme) of some brain sections offish exposed to
0.2mg/l ofmz (n=5) displayed argyrophilic signals (arrows) consisting of dark granules inDl (A), Dm (B), VTel (C)with respect to only fewgranules observed in the respective areas (A′,
B′ C′) of controls (n = 5). Scale bar: 100 μm.
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alterations of our wrasses tend to preferentially point to encephalic
damages in motor-related regions such as telencephalon, OT, cerebel-
lum and RS as shown by their intense argyrophilic reaction after mz ex-
posure. In particular, the latter nucleus belonging to the reticular
formation is the largest source of descending signals to the spinal cord
that are involved in initiation and directional control over the fast es-
cape behavior in teleosts (Babin et al., 2014). Following this line, it has
been also demonstrated that motor disturbances may be due to
Fig. 5. Neurodegeneration in the medio-posterior brain areas of Thalassoma pavo following mz
exposed to 0.2mg/l ofmz (n=5) displayed argyrophilic signals (arrows) consisting of dark gra
the respective areas (A′, B′, C′, D′) of controls (n = 5). Scale bar: 100 μm.
degeneration of certain categories of cells such as the astrocytes of the
nigro-striatal circuit known to actively control motor functions
(Tatsumi et al., 2016). In this context, it may verywell be that astrocytes
play a major role during toxic reactions especially if we consider their
protective role against neurotoxicants via a notable release of ATP in
age-related neurodegeneration (Kubik and Philbert, 2015). Further-
more, it appears that mz and other Mn-containing dithiocarbamates
(Maneb) may induce additive toxic effects on enhanced nuclear factor
exposure. ACS photomicrographs (and the relative scheme) of some brain sections of fish
nules inNDLI (A), OT (B), VCe (C) and RS (D)with respect to only few granules observed in
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Fig. 6.The effects ofmzon pCREB expression in Thalassoma pavobrain. Datawere reported
as optical densities of pCREB bands that were normalized by using β-actin values (A) in
fish exposed to 0.2 mg/l of mz (n = 5) and compared to controls (ctrl; n = 5; B).
Statistical differences were evaluated by using unpaired Student t-test. ap b 0.005.
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(NF-κB)-dependent dopaminergic cell damages triggered by sub-toxic
doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPP(+), an ac-
tivemetabolite of the ParkinsonianmimeticMPTP (Williams et al., 2013).
Fig. 7. HSP90 transcriptional changes in some encephalic nuclei of Thalassoma pavo
following exposure to mz. Representative medio-posterior brain sections labeled with
100 ng of HSP90 antisense probes of treated (A) and control (B) fish were compared to
the sense probe (C). Scale bar: 1.25 mm. Data were reported as expression ratio (% ±
SEM) of HSP90 mRNAs in some brain sites of fish exposed to 0.2 mg/l of mz for 96 h (n
= 5) with respect to controls (ctrl; n = 5). Statistical differences were evaluated by
using unpaired Student t-test. *p b 0.05; **p b 0.01. Abbreviations: CCe, corpus of the
cerebellum; Dl, lateral part of the dorsal telencephalon; Dm, medial part of the dorsal
telencephalon; NDLI, diffuse nucleus of the inferior lobe; NG, nucleus glomerulosus; nIV,
trochlear nerve nucleus; OT, optic tectum; RS, superior reticular nucleus; TLo, torus
longitudinalis; VCe, valvula of the cerebellum; Vl, lateral part of the ventral
telencephalon; Vv, ventral part of the ventral telencephalon.
It was noteworthy that a marked activation of pCREB was reported
during exposure to this fungicide, whichmay underlie a neuroprotective
role in the fish brain exposed to contaminants. Such a feature tends to go
in a similar direction of the abundant expression of this transcription fac-
tor being responsible for the activation of synaptic plasticity together
with neuronal survival (Kitagawa et al., 2012). Moreover, and of greater
importance is that its activation following the phosphorylation of serine
133 induces gene expression of survival factors thus yielding neurons re-
sistant to subsequent severe ischemia. Recently, increased expression
levels of such a protein have been associated with enhanced hippocam-
pal neurogenesis induced by environmental enrichment in adult rats
(Zhang et al., 2016). In the case of fish, the abundance of pCREB in all
known neurogenic regions seems to be responsible for the triggering of
cell proliferation andmodulation of embryonic brain development as re-
ported for zebrafish (Dworkin et al., 2007). It is thus tempting to specu-
late that a conspicuous presence of pCREB in mz-exposed wrasses, by
stimulating neurogenesis, assures tolerance against toxic conditions
along with neuroprotective ability toward the repairing of brain
damages.

In a same manner, it is plausible that the up-regulation of HSP90
mRNA, detected inmany encephalic nuclei aftermz-exposure,may con-
stitute a part of the pro-survival program activated by pCREB. Such a
feature is strongly supported on the one hand byHSP90/Akt/CREB path-
ways upregulating the glial cell line-derived neurotrophic factor, a pro-
tein used for the treatment of neurodegenerative disorders such as
Parkinson's disease (Cen et al., 2006) and on the other hand by CREB-
dependent transactivation of HSP70.3 above all during heat-shock/is-
chemia-like conditions (Sasi et al., 2014). This should not be so surpris-
ing since studies confirm that high levels of HSPs are involved with
protective mechanisms against different stressful conditions (Mahanty
et al., 2017), including hypoxia (Giusi et al., 2012). In addition, our re-
cent findings demonstrated that high HSP90 mRNAs are precocious el-
ements activating protective events in the brain of both marine and
freshwater fish especially after a recovery period from exposure to
some heavy metals like copper (Zizza et al., 2014, 2016). At the same
time, it has been reported that pesticides are also responsible for the ac-
tivation of HSP90 in other teleosts (Peng et al., 2015; Xing et al., 2015)
thus proposing this chaperone as a crucial biomarker of environmental
contamination.

Taken together, these first results on mz-dependent motor deficits
and anxiety-like states of a marine fish point to interesting molecular
and behavioral responses adopted by wrasses during toxic conditions.
In particular, the contemporary activation of pCREB and HSP90 during
behavioral alterations strengthen them as early indicators of aquatic
contamination that may assure cellular tolerance with eventual
repairing of brain damages following exposure to mz. Hence, the pres-
ent study would surely benefit from evidences on cross-talking ability
of the above molecular factors with some neuropeptidergic systems,
which will be considered in a future work (MS in preparation). This
type of conditionmay be achieved by their interactionswith key neuro-
peptides like orexin (ORX) as previously demonstrated (Sokołowska et
al., 2014), very likely in concert with other neuroreceptor circuits
(Facciolo et al., 2011; Crudo et al., 2013). The fact that the ORXergic sys-
temmay exert a key role on encephalic neurogenic events in fish during
pesticide toxicity is turning out to be of major concern given that ORXs
play a determinant role during stressful responses against metal con-
tamination (Zizza et al., 2011, 2014, 2017).We are still at the beginning
but our results plus recent findings on a genetic hazard to fish contam-
inated by mz may encourage biomonitoring programs of aquatic eco-
systems and regulatory policies regarding the utilization of this
agrochemical (Marques et al., 2016).
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Abstract 39 
 40 

Food intake ensures energy resources sufficient for basic metabolism, immune system and 41 

reproductive investment. It is already known that food-seeking performances, which are crucially 42 

controlled by orexins (ORXs), may be under the influence of environmental factors including 43 

pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative 44 

diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding 45 

latency, food intake and feeding duration to potential neurodegenerative processes in key 46 

hypothalamic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate 47 

wrasses (Thalassoma pavo). Hence, fish exposed for 96h to 0.2 mg/l of mz (deriving from a 0.07, 48 

0.14, 0.2, 0.3 mg/l screening test) displayed a moderate reduction (p<0.05) of food intake compared 49 

to controls as early as 24h, which became more evident (p<0.01) at 72h. After 96h food intake was 50 

only moderately reduced. Moreover, significant enhancements of feeding latency were reported at 51 

24h up to 72h (p<0.001) and even feeding duration was enhanced up to 72h (p<0.001) by then 52 

becoming moderately increased at 96h. Additionally, a reduction (-80%; p<0.01) of body weight 53 

was also detected at the end of exposure. Likewise, a notable (p<0.001) activation of ORXR protein 54 

occurred together with mRNA upregulations in hypothalamic areas such as the diffuse nucleus of 55 

the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these 56 

results highlight an ORX role as a vital component of the neuroprotective program under 57 

environmental conditions that can interfere with feeding behaviors. 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

Keywords 68 
manganese/zinc-ethylene-bis-dithiocarbamate; feeding latency; food intake; orexin receptor; 69 

hypothalamic degeneration. 70 

 71 
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1. Introduction  72 

Food intake and energy metabolism result to be vital for the survival of an organism since these 73 

processes ensure optimal allocation of energy resources to cover the basic maintenance of 74 

metabolism and immune system, somatic growth and reproductive investment (Rønnestad et al., 75 

2017). External factors, such as temperature and photoperiod, stress, predators, and food 76 

availability, as well as internal factors, such as genetics, life stage, gut filling, and stored energy 77 

tend to play a major role on the success of feeding habits. In this context the regulation of food 78 

intake is mainly elicited by the hypothalamus, a key brain hub containing neurons that express 79 

neuropeptides involved in the regulation of feeding and energy homeostasis via the integration of 80 

peripheral signals (Volkoff, 2014). Among orexigenic neuropeptides, great attention has been 81 

recently directed to orexins (ORXs) for their crucial role in appetite stimulation (Facciolo et al., 82 

2011; Gao and Hermes, 2015) but even for the ability to influence reward-based feeding behaviors 83 

from fish to mammals (Facciolo et al., 2012; Sakurai, 2014). As reported above food-seeking 84 

performances may be influenced by a plethora of environmental factors including dangerous 85 

pollutants that represent a serious threat for the various behaviors (Giusi et al., 2010). This is 86 

particularly true for fish that are continuously exposed to hazardous toxins, such as agricultural 87 

chemicals that may produce consequences on different fish organs (Atamaniuk et al., 2014; Ren et 88 

al., 2016) and indirect effects to entire fish communities (Giaquinto et al., 2017).  89 

Contextually, studies have shown that carbamates may induce different toxic effects on 90 

aquatic vertebrates such as reduction of swimming speed together with the inhibition of 91 

biochemical parameters during both adulthood (Shuman-Goodier and Propper, 2016) and early-life 92 

stages (Andrade et al., 2016). Among carbamates, mancozeb (manganese (Mn)/zinc (Zn) -ethylene-93 

bis-dithiocarbamate; mz), a fungicide belonging to ethylene-bis-dithiocarbamate compounds 94 

(EBCD), is composed of different sub-compounds (Mn, Zn plus ethylene thiourea) that together 95 

account for multiple toxic mechanisms operating simultaneously during its exposure (Geissen et al., 96 

2010). Indeed, it is known to be a potent endocrine disruptor (Thienpont et al., 2011), as well as an 97 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Shuman-Goodier%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=27261557
https://www.ncbi.nlm.nih.gov/pubmed/?term=Propper%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=27261557
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inductor of oxidative damage to lipids/proteins in different organs of fish (Atamaniuk et al., 2014) 98 

and a neurotoxicant by inducing both behavioral deficits and neuronal vulnerability (Harrison 99 

Brody et al., 2013). Such a pesticide is particularly dangerous for aquatic life since it may reach the 100 

sea from the nearby agricultural lands or by means of contaminated rivers. For this reason, mz is 101 

recognized as a marine pollutant by the Pesticide Properties Database of the University of 102 

Hertfordshire (http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/424.htm). In this context, our recent 103 

study highlighted it as an inductor of anxiety-like states and motor disturbances linked to neuronal 104 

alterations of the marine fish Thalassoma pavo (Zizza et al., 2017a). At date, no toxicological 105 

studies are conducted on any other marine fish contaminated by mz especially regarding neuronal 106 

effects associated to a vital physiological activity such as feeding.  107 

On this basis, it was our intention to examine effects of a 96h exposure of mz (0.2 mg/l) on feeding-108 

related performances (i.e. feeding latency, food intake and feeding duration) of the ornate wrasses 109 

(Thalassoma pavo). This concentration was chosen on the basis of a preliminary screening test of 110 

sub-lethal concentrations (0.07, 0.14, 0.2, 0.3 mg/l) handled in our laboratory. These doses are in 111 

line with those used in other studies (Jarrard et al., 2004) along with environmentally relevant 112 

concentrations detected in waterbodies near agricultural fields (Shenoy et al., 2009). At the same 113 

time, potential neurodegenerative processes in key hypothalamic sites and expression changes of 114 

the ORX neuroreceptor (ORXR) of such a fish species were also investigated by applying both in 115 

situ hybridization and western blotting methods. Results deriving from behavioral and 116 

neuromolecular evaluations may provide first evidences about the ability of such a fungicide to 117 

influence fish feeding behaviors and contextually highlighting neuronal responses of the ORXergic 118 

neuroreceptor system that studies have indicated as a key biomarker of stressful conditions (Pavlidis 119 

et al., 2015) including neurotoxic pollutants (Zizza et al., 2013, 2014). 120 

 121 

2. Materials and Methods 122 

2.1 Animal Housing 123 
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Before starting treatments, adult female specimens of Thalassoma pavo (body weight 7-13 g, body 124 

length 8-11 cm), obtained from a local supplier, were acclimated for at least 1 week in 80 l aquaria 125 

under a natural photoperiod in aerated and filtered seawater. During acclimation fish were fed once 126 

a day with small pieces of frozen prawns corresponding to 2% of the biomass in the tank. Water 127 

quality parameters i.e. salinity (35%) density (1.027-1.028 g/cm
3
) hardness (100 mg CaCO3/l) and 128 

dissolved oxygen (8-8.6 mg/l) as well as temperature (20-22 °C) plus pH (7.5-8.0) were daily 129 

monitored to verify that they remained within the appropriate ranges. Animal maintenance and 130 

experimental procedures complied with the legislative law n°116 (27-01-1992) and with European 131 

Directive (2010/63/EU) for the correct use of laboratory animals. Efforts were made to minimize 132 

animal suffering and reduce number of fish used.  133 

 134 

2.2 Mancozeb exposure 135 

The determination of the most effective sub-lethal concentration was based on a screening of 136 

different mz (Sigma, Milan-Italy) concentrations (0.07, 0.14, 0.2, 0.3 mg/l) within an 96h period in 137 

which food intake was used as a behavioral endpoint. From this screening, fish were exposed for 138 

96h to the nominal non-lethal concentration of 0.2 mg/l dissolved in seawater (n=15) and compared 139 

to untreated controls (n=15). Such a concentration derived from solubility indications of mz in 140 

seawater obtained by an ICP-MS analytical procedure in the same fish species that displayed 141 

evident motor alterations (Zizza et al., 2017a) as well as falling within the same range used by 142 

others (Jarrard et al., 2004). 143 

A static renewal exposure procedure was chosen, in which daily renewal of the fungicide 144 

concentration in seawater, was conducted according to standard procedure guidelines (American 145 

Society for Testing Material, 2014). This type of exposure system, together with a basic pH and a 146 

relatively high temperature, guarantees a constant pesticide concentration within 24h since 147 

degradation of mz occurs at a later time, i.e. 39h (López-Fernández et al., 2017). Chemical filters 148 

were not used to prevent reduction of mz concentration and aquaria were only equipped with 149 



6 

 

aerator to ensure an optimal oxygen concentration. Water parameters were monitored even during 150 

treatment to ensure that they remained within adequate ranges. During exposure animals were fed 151 

as above according to our previous toxicological studies (Giusi et al., 2008; Zizza et al., 2014) 152 

 153 

2.3 Feeding performances  154 

The following parameters were observed 1h, 24h, 48h, 72h and 96h after a mz exposure: 155 

- Food intake: daily, residual food was recovered, dried, weighed and compared to the initial 156 

quantities supplied to fish in order to evaluate the quantity of food consumed as previously 157 

reported (Facciolo et al., 2011). 158 

- Feeding latency: time needed for fish to approach food (Kuz'mina, 2011) within a 15 min 159 

interval observation session after having  assured that all fish reached food sources. 160 

- Feeding duration: total time spent executing feeding maneuvers including both complete 161 

and incomplete feeding acts during 1h observation (Abbott and Volkoff, 2011).  162 

In addition, fish body weights were measured at the begin and at the end of mz exposure (96h) and 163 

compared with those of controls. The feeding parameters were obtained using a digital camera 164 

(SONY, DSC-W310) and video were analyzed by the behavioral Software Etholog 2.2.5 (Visual 165 

basic; Brazil). Values were expressed as mean activity ± standard error of mean (SEM) versus their 166 

controls. At the end of the behavioral session and before molecular procedures, fish were checked 167 

for sexual identification by morphological observations of the ovaries that did not show any sign of 168 

atresia that could have indicated an initial transition to the testicular growth (Liu et al., 2016). 169 

 170 

2.4 Neurodegenerative analysis 171 

A neurodegenerative analysis was applied, using Amino Cupric Silver (ACS) technique, to assess if 172 

mz-mediated feeding disturbances coincided with neuronal damages in critical hypothalamic areas 173 

that control feeding-related functions. Teleosts receiving mz for 96h (n=5) plus untreated fish (n=5) 174 
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were sacrificed at the end of the behavioral session and brains removed, frozen on dried ice and 175 

stored at -20°C. Subsequently, brains were mounted on a freezing stage of a sliding cryostat 176 

(Microm-HM505E; Zeiss, Wallford, Germany) to obtain a series of 30 μm sections for ACS 177 

protocol. Briefly, washed brain sections underwent the different ACS phases as previously 178 

described (Zizza et al., 2014). The sections were then transferred to a rapid fixer solution (5 min) 179 

and counterstained with 0.5% neutral red (Carlo Erba, Milan, Italy) for 25 min, dehydrated in 180 

ethanol (50-100%) plus in xylene, and mounted with DPX (p-xylene-bis[N-pyridinium bromide]; 181 

Sigma) for microscope (Leitz, Stuttgart, Germany) observation along with acquisition of the 182 

photomicrographs. 183 

 184 

2.5 In situ hybridization method 185 

In situ hybridization was performed to check transcriptional variation of ORXR due to mz 186 

exposure. For this aim a specific oligonucleotidic antisense DNA probe, previously designed 187 

(Facciolo et al., 2009) on the basis of ORXR partial nucleotide sequence of Thalassoma pavo 188 

(GenBank cod. EF547365.1) was used. Such a probe was labeled at the 3’-tailing with digoxigenin-189 

11-dUTP (DIG, Roche Diagnostics, Monza - Italy). At the end of the behavioral session fish 190 

exposed for 96h to mz (n=5) plus controls (n=5) were sacrificed as described above. Subsequently, 191 

brains were rapidly removed, stored at −20°C and mounted on a cryostat freezing stage (Microm-192 

HM505E; Zeiss) to obtain a series of coronal sections of 14 μm appropriate for the in situ 193 

hybridization protocol. Sections were incubated with a 100-ng of ORXR antisense probe overnight 194 

at 50 °C in a humidified chamber. Immunological detection using an anti-digoxigenin antibody 195 

(1:100) was obtained as previously reported (Zizza et al., 2014). Hybridization signals, measured as 196 

optical densitities (OD ± SEM), observed in a bright-field Dialux EB 20 microscope (Leitz) were 197 

determined in duplicates on each brain antimere of 6 brain sections for anterior plus posterior brain 198 

slides for at least three different experiments as previously described (Zizza et al., 2016). 199 

Expression levels of ORXR mRNA were obtained by using an Image software of the National 200 
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Institutes of Health (Scion Image 2.0), in which an internal standard was used for OD calibration. 201 

Background level was estimated and included in all final calculations. The different encephalic 202 

nuclei were identified using perciformes atlases (Cerdà-Reverter et al., 2001a,b; 2008). 203 

 204 

2.6 Protein extraction and western blot analysis 205 

Brain tissues of exposed (n=5) fish as well as controls (n=5) were homogenizated and lysed for 30 206 

min on ice using RIPA lysis buffer containing a mixture of phosphatase and protease inhibitors 207 

(Santa Cruz Biotechnology, Milan-Italy). Homogenates were centrifuged at 12000 g for 20 min at 4 208 

°C and total protein amounts of samples were measured by the BCA protein assay reagent kit 209 

(PIERCE, Milan- Italy). 210 

50 µg of proteins of each sample were boiled for 5 min in SDS buffer [50 mM Tris-HCl (pH 211 

6.8), 2 g 100 ml
-1 

SDS, 10% (v/v) glycerol, 0.1 g 100 ml
-1 

Bromophenolblue], separated on 10% 212 

SDS-PAGE and transferred to a PVDF membrane for blotting (Trans-Blot® Semi-Dry Transfer 213 

Cell, Biorad) as previously reported (Forte et al., 2016; Zizza et al., 2017a). Subsequently, 214 

membranes were incubated for 1 h at room temperature with a blocking buffer (TBS, 0.05% 215 

Tween-20 and 5% milk). After blocking, followed an overnight incubation of membranes with 216 

rabbit anti-ORX1R (Abcam, ab68718) or rabbit anti-β-actin (Santa Cruz Biotechnology, Milan -217 

Italy)  antibodies diluted 1:200 in TBS-T containing 2% milk at 4° C. The membranes were washed 218 

four times for 10 min in TBS, 0.05% Tween-20 before a 1h incubation with goat anti-rabbit IgG 219 

(HRP) (1:3000; Abcam ab-6721) secondary antibody diluited in TBS-T containing 2% milk. The 220 

membranes were washed four times and specific protein bands were detected with 221 

chemiluminescence (ECL, Santa Cruz, Milan - Italy) using C-DiGit Chemiluminescent Western 222 

Blot Scanner (LI-COR). Western blots were analyzed using Image Studio Software to determine 223 

OD of the bands. OD reading was normalized to β-actin to account for variations in loading. All 224 

experiments were performed in biological and technical triplicates. 225 

 226 
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2.7 Statistical analysis 227 

Statistical differences between mz-exposed fish with respect to controls were evaluated, in the case 228 

of the screening for food intake, by using a two-way repeated measures for ANOVA with 229 

differences being established by Scheffe’s post hoc comparison test when there was a significant p 230 

value <0.05. Moreover, a one-way repeated measures for ANOVA with differences being 231 

established by Scheffe’s post hoc comparison test when there was a significant p value <0.05 was 232 

carried out for both feeding latency and duration. For all other experimental data, an unpaired 233 

Student’s t-test with a significant level of p<0.05 was handled. The determination of the number of 234 

animals for the present study was conducted using a free online statistical program 235 

(http://stat.ubc.ca/~rollin/stats/ssize/n2.html; Department of Statistics of the University of British 236 

Columbia-Canada) in which a 95% power corresponded to a sample size of at least 5 and 15 237 

individuals for molecular/neurodegenerative and behavioral analyses, respectively, when a 2-sided 238 

5% level of significance was used. 239 

 240 

3. Results 241 

3.1 Effects on feeding behavior 242 

In order to determine the most effective sub-lethal mz exposure, a food intake screening of different 243 

concentrations (0.07, 0.14, 0.2, 0.3 mg/l) within an 96h period was handled. From the time course 244 

graph (Fig. 1), it appeared that only 0.2 and 0.3 mg/l significantly influenced food consumption 245 

(F(4,21) = 2.85; p<0.05). Taking into consideration that the latter concentration led to death in some 246 

treated fish, even though in an order of <10%, we decided to use 0.2 mg/l since it was able to 247 

induce evident behavioral effects without causing death. With this concentration, no significant 248 

variation was detected after 1h of exposure in mz-treated fish with respect to controls. Indeed, a 249 

moderate reduction (p<0.05) of food intake occurred after 24h and remained constant after 48h of 250 

treatment. Such an effect resulted notably significant (p<0.01) at 72h, when a strong decrease of the 251 

percentage of ingested food was observed in treated fish compared to controls that instead 252 

http://stat.ubc.ca/~rollin/stats/ssize/n2.html
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consumed almost all their food. Conversely, after 96h of mz exposure food intake was only 253 

moderately reduced. During the entire feeding observations no cannibalism was registered. 254 

- please insert figure 1 here- 255 

Moreover, exposure to 0.2 mg/l of mz determined significant enhancements of feeding latency 256 

during the entire period of exposure (F(1,24) = 4.27; p<0.05). Indeed, such an effect appeared at 24h 257 

by causing a very strong increase (p<0.001) of time spent to reach food with respect to controls that 258 

instead went immediately toward food sources (Fig. 2). Interestingly enough, after 48 and 72h of 259 

exposure this alteration was maintained within the same significant extent (p<0.001), despite a 260 

numerically lower variation with respect to 24h. Only after 96h, it seemed as though the latency 261 

time would be reduced, even if maintaining a notable enhancement (p<0.01) of time spent to reach 262 

food. 263 

- please insert figure 2 here- 264 

Contextually, it was also interesting to note that treated fish spent more time in feeding maneuvers 265 

with respect to controls (F(1,24) = 4.31; p<0.05). Indeed, feeding maneuvers resulted to be notably 266 

enhanced (p<0.01) at 24 and 48h, which very strongly further increased (p<0.001) at 72h (Fig. 3). 267 

On the other hand, such a trend was inverted thus achieving only a moderate increase (p<0.05) 268 

when compared with controls at 96h. Additionally, a significant reduction (-80%; p<0.01) of body 269 

weight was detected in treated fish after 96h of mz exposure with respect to controls that instead 270 

gained weight during the same experimental period (Fig. 4). 271 

- please insert figure 3 and 4 here- 272 

 273 

3.2 Neurodegenerative phenomena 274 

Following the application of ACS methods it was possible to observe notable degenerative 275 

phenomena induced by the fungicide in some diencephalic neuronal fields of treated fish after 96h 276 

of exposure. Indeed, a marked argyrophilic reaction was reported in the periventricular nuclei of the 277 

hypothalamus. In particular, the anterior tuberal nucleus (NAT) displayed a conspicuous number of 278 



11 

 

degenerated elements (Fig. 5A). At the same time, even more degenerative neuronal fields were 279 

observed in the lateral part of the diffuse nucleus of the inferior lobe (NDLIl) and nucleus of the 280 

lateral recess (NRL) (Fig. 5B, C) along with in the nucleus glomerulosus (NG) and in the 281 

commissural preglomerular nucleus (NPGc; Fig. 5D, E) rather than controls that displayed no sign 282 

of neurodegeneration since only a few, if any, damaged cells were visible (Fig. 5F).  283 

- please insert figure 5 here- 284 
 285 

3.3 Effects on ORXR expression 286 

Interestingly, feeding alterations were linked to an evident increase of ORXR expression at both 287 

transcriptional and protein levels. In particular, from in situ hybridization analysis an overall up-288 

regulation of ORXR mRNA was reported in mz-treated fish compared to controls as shown by 289 

antisense signals in the brain section of control (Fig. 6A) and treated fish (Fig. 6B). More 290 

specifically, increased transcriptional levels (p<0.01) were detected in the medial part of the dorsal 291 

telencephalon (Dm, +60%) and in the optic tectum (OT; +81%; Fig. 6C). On the other hand, only 292 

moderate up-regulations (p<0.05) were observed in the lateral part of the dorsal telencephalon (Dl, 293 

+48%), in the ventral part of the ventral telencephalon (Vv, +32%), in NDLI (+48%), NRL (+30%) 294 

NAT (+38%), NG (+38%), NPGc (+31%) as well as in the corpus (Cce, +40%) and valvula (Vce, 295 

+31%) of the cerebellum.  296 

The increased expression of the above mRNA appeared to tightly coincide with an evident neuronal 297 

increase of ORXR protein after mz exposure. Indeed, from the densitometric evaluation (OD) of 298 

western blot bands (Fig. 7A), a very strong (p<0.001; Fig. 7B) enhancement of such a receptor was 299 

reported in mz-treated fish when compared with controls after normalization with β-actin bands. 300 

- please insert figures 6 and 7 here- 301 

 302 

 303 

4. Discussion 304 

 305 
The present work examined, for the first time, feeding alterations evoked by EBCD mz in the 306 

marine fish Thalassoma pavo, which contextually highlighted an involvement of the ORXergic 307 
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system in the adaptive measures against neuronal damages in feeding-related encephalic sites. In 308 

particular, during an exposure of 96h, this pesticide exerted potent inhibitory effects on feeding 309 

activities thereby heavily disturbing all of the considered behavioral parameters. Such effects are in 310 

line with feeding impairments reported in this same fish following treatments with other toxic 311 

agents (Zizza et al., 2014) including pesticides (Giusi et al., 2010). In the present study notable 312 

enhancements of feeding latency, accompanied by significant reductions of food intake, were 313 

observed. One explanation for such effects may be due to toxic actions of mz at the olfactory level 314 

thus causing a delay in food perception and a consequent reduction of the amount of food 315 

consumption. In particular, it seems that exposure to mz accounts for a concentration-dependent 316 

reduction of the electro-olfactogram amplitude in response to the odorant L-serine in the Coho 317 

salmon (Jarrard et al., 2004). This hypothesis finds further support in numerous evidences 318 

suggesting that damages of the olfactory epithelium are one of the main cause of feeding alterations 319 

induced by pesticides (Lal et al., 2013). Analogous effects were also reported after treatment with 320 

the herbicide atrazine affecting chemosensory responses to odors and thus ability of crayfish to 321 

localize food sources (Belanger et al., 2016). Similarly, even exposure to copper tends to impair the 322 

ability of fish to respond to amino acids (Baldwin et al., 2011) with an altered latency period for 323 

eating and food consumption  (Kuz’mina, 2011). 324 

Interestingly enough, search for food (expressed in terms of feeding duration) was notably 325 

increased in mz-exposed fish. Even in this case, such a result may be attributed to olfactory toxicity 326 

conditions that promote a fasting state, despite their incapacity to efficiently recognize and locate 327 

food sources. Aside these effects, fish exhibited difficulties in executing food-seeking maneuvers 328 

together with clear signs of loss of equilibrium during swimming gait that is in good agreement 329 

with disturbed locomotor activity (spontaneous exploration and evident immobility states) not only 330 

after 96h of mz exposure (Zizza et al., 2017a) but also after a shorter period (Harrison Brody et al., 331 

2013). Motor dysfunctions constituting the basis of altered feeding capabilities should not be so 332 

surprising since exposure to environmental pollutants has been frequently linked to impaired 333 
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predator-prey interactions (Monde et al., 2016). Indeed, predator avoidance is very often altered by 334 

sub-lethal exposure to toxicants as pointed out by reduced prey survival and increased susceptibility 335 

behaviors toward predation (Scott and Sloman, 2004). In this context, feeding alterations due to 336 

motor deficits may represent an additional convincing condition since the Vce and medial nucleus 337 

of reticular formation, which control motor functions, were severely damaged by mz (Zizza et al., 338 

2017a). Accordingly, a marked degeneration in different diencephalic nuclei, such as NDLIl, NG 339 

and NPGc, strengthened the harmful neurotoxic effects of this fungicide as also reported by others 340 

(Harrison Brody et al., 2013). In particular, damages of the multisensory system NDLI, which is 341 

noted for receiving gustatory and visual inputs (also via NG) plus showing a reciprocal connection 342 

with the reticular formation (Ahrens and Wullimans, 2002), together with the feeding-related 343 

preglomerular complex (Kato et al., 2012) did not allow our fish to correctly orient toward food 344 

items. Moreover, even degeneration of NRL and NAT neuronal fields tends to interfere with normal 345 

neuropeptide and neurotransmitter activity, considered pivotal for the regulation of feeding and 346 

locomotor performances (Canosa et al., 2011).  347 

The fungicide showed to be highly responsible for the enhancement of both ORXR mRNA 348 

and protein that in our opinion may be viewed as a compensation against mz inhibition of food-349 

intake. It is already known that during brief periods of fasting an elevated production of prepro-350 

ORX mRNA occurs in the hypothalamus of fish (Chen et al., 2011). At the same time, brain mRNA 351 

expression of ORX was also reported to be higher in fasted dourado at both feeding time and one-352 

hour post feeding (Volkoff et al., 2016), which is in line with that observed in other fish species 353 

(Rønnestad et al., 2017; Volkoff, 2014). To our knowledge, this is a first study highlighting fasting 354 

as an inductor of ORXR up-regulation in fish, since perhaps an activation of the receptor, sequential 355 

to an increase of the neuropeptide, may result in initiating food intake as a consequence of food 356 

anticipatory activity, which is predicted by the endogenous clock of our fish (López-Olmeda et al., 357 

2012). Interestingly, the fact that increased expression of ORXR also occurs in neuron-ablated 358 

larvae of zebrafish tends to underlie a compensatory reaction suggesting not only that ORXRs are 359 
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intact but also more sensitive to ORXergic signals (Elbaz et al., 2012). Moreover, the up-regulation 360 

of the receptor transcript plus neurodegenerative phenomena following CuCl2 (Zizza et al., 2014) 361 

and lead (Zizza et al., 2013) exposure were previously reported in the same fish species displaying a 362 

reduction of feeding episodes. It may be also plausible that an enhanced production of ORXR is 363 

part of a neuroprotective program activated against chemical toxicity for both metals and mz. Such 364 

a neuroprotective role of the ORXergic system is in good agreement with other studies 365 

demonstrating the ability of ORX-A to diminish palmitic acid-induced cell death like that in 366 

hypothalamic cells of mice via reduced caspase 3/7 apoptosis, stabilization of Bcl-2 gene expression 367 

and a diminished Bax/Bcl-2 gene expression ratio (Duffy et al., 2016). Furthermore, ORX-A 368 

treatment attenuated MPP(+)-induced cell injury in a cellular model of Parkinson’s disease (Feng et 369 

al., 2014), along with inducing significant reductions of infarct size and macrophage/microglial 370 

infiltration in mice subjected to transient middle cerebral artery occlusion (Xiong et al., 2013). 371 

According to these results, a recent study also demonstrated that ORX-A elicits, via type 1 receptor, 372 

significant neuroprotective effects against 6-hydroxydopamine-induced SH-SY5Y cell damage as 373 

an in vitro model of Parkinson’s disease (Pasban-Aliabadi et al., 2017). On the other hand, even 374 

ORX-B is able to exert protective effects for dopamine neurons through the activation of ORXR2 375 

(Guerreiro et al., 2015). 376 

At this regard, we have recently demonstrated that ORX-A administration is able to rescue 377 

some neurobehavioral alterations caused by both short-term and chronic exposure to heavy metals 378 

in ornate wrasses (Zizza et al., 2013, 2017b). Following this line, it has been observed that a 379 

neuronal response of the ORXergic system overlaps activation of the neuroprotective factor CREB, 380 

after mz exposure of the same fish species (Zizza et al., 2017a). In this context, other studies 381 

contributed to demonstrate the tight relationship between the above neuropeptidergic system and 382 

CREB phosphorylation (Fukushima et al., 2015; Zhang et al., 2015). Indeed, it has been shown that 383 

activation of ORX2R by ORXs administration coincided with long-term phosphorylation of CREB 384 

in CHO cells over-expressing such a receptor subtype (Guo and Feng, 2012). Accordingly, long-385 
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lasting synaptic plasticity in ORX-producing neurons of the lateral hypothalamus occurred together 386 

with CREB activation suggesting that CREB-mediated pathways may supply a significant 387 

contribution to synaptic potentiation in these cells (Rao et al., 2013). In addition, under chemical 388 

hypoxia ORXs are able to potentially increase neuronal viability and preserve cortical neurons 389 

against oxidative stress via Akt signaling that also involves CREB activation (Sokołowska et al., 390 

2014). Given these evidences plus oxidative stress being one of the main causes of mz-induced 391 

neuronal damages (Domico et al., 2007), protective measures in our teleost exposed to mz may be 392 

very likely promoted by the ORXergic system via CREB activation. Similarly, the concomitant up-393 

regulation of HSP90 mRNA, after mz-exposure (Zizza et al., 2017a), may be viewed as a part of the 394 

pro-survival program activated by pCREB. This should not be so surprising since high levels of 395 

HSPs have been included within protective mechanisms against stressful conditions (Mahanty et al., 396 

2017), including hypoxia (Giusi et al., 2012). In addition, it has been widely shown that pesticides 397 

are responsible for the activation of HSP90 in other teleosts (Peng et al., 2015; Xing et al., 2015) 398 

thus attributing a protective role to such a chaperone that together with ORX-A (Zizza et al., 2017b) 399 

may determine a greater resistance of brain cells against oxidative stress (Sokołowska et al., 2014). 400 

Taken together these findings underlie mz-dependent feeding impairments in Thalassoma 401 

pavo, which may begin to expand our considerations regarding the deleterious effects of this 402 

neurotoxin on fish plus highlighting an ORX response against mz neurotoxicity. The latter aspect 403 

constitutes an important step from both molecular and toxicological point of view thereby adding 404 

novel indications on the ORXergic neurophysiological role, especially during fasting state. 405 

Moreover, ORX system plus CREB and HSPs, together with other major neuroreceptor circuits 406 

(Crudo et al., 2013; Facciolo et al., 2011), may be considered a vital component of the 407 

neuroprotective program operating against chemical toxicity by promoting adaptive and protective 408 

processes under such environmental conditions that pose a serious risk for fish.  409 

 410 

 411 
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Figure legends 613 

Fig. 1  614 
 615 

Effects of different mz sub-lethal concentrations on food intake of the ornate wrasses. Food intake 616 

was daily measured during 96h of exposure to different mz concentrations (0.07-0.3 mg/l) and 617 

reported as percentage (%) ± SEM of food ingested by treated fish (n=15) compared to controls 618 

(n=15). Statistical differences were evaluated by using two-way repeated measures ANOVA 619 

followed by Scheffe’s post hoc test when p < 0.05. *p < 0.05; **p < 0.01. 620 

 621 

Fig. 2 622 

Mz effects on feeding latency of the ornate wrasses. This parameter was daily measured during 96h 623 

of mz exposure (0.2 mg/l) and reported as time (s ± SEM) spent by treated fish (n=15) to reach food 624 

with respect to controls (n=15) as described in the Materials and Methods section. Statistical 625 

differences were evaluated by using one-way repeated measures ANOVA followed by Scheffe’s 626 

post hoc test when p < 0.05. **p< 0.01; ***p<0.001. 627 

 628 

Fig. 3  629 

Mz effects on feeding duration in Thalassoma pavo. This parameter was daily evaluated during 96 h 630 

of mz exposure (0.2 mg/l) and reported as time (s ± SEM) spent by both treated (n=15) and controls 631 

(n=15) fish executing typical food-seeking maneuvers as described in the Materials and Methods 632 

section. Statistical differences were evaluated by using one-way repeated measures ANOVA 633 

followed by Scheffe’s post hoc test when p<0.05. *p< 0.05; **p<0.01; ***p<0.001. 634 

 635 

Fig. 4 636 

Mz effects on fish body weight of the ornate wrasses. Data were expressed as body weight variation 637 

(g ± SEM) from the beginning of mz exposure up to 96h in treated fish (n=15) compared to controls 638 

(n=15). Statistical differences were evaluated by using unpaired Student’s t-test: ** p<0.01. 639 
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Fig. 5 640 

Neurodegeneration induced by mz exposure in some diencephalic nuclei of Thalassoma pavo. 641 

Representative photomicrographs of brain sections stained with ACS displaying argyrophilic dark 642 

granules (arrows) in NAT (A), NDLIl (B), NRL (C), NG (D), NPGc (E) of treated fish (n=5) 643 

compared to NDLIl (F) as representative area of untreated fish (n=5). Scale bar 100 μm. 644 

 645 

Fig. 6 646 

Mz effects on ORXR mRNA transcription in some brain nuclei of Thalassoma pavo. 647 

Representative medio-posterior brain sections labeled with 100 ng of antisense probes of control 648 

(A) and (B) treated fish. Scale bar: 2 mm. Data were reported as expression ratio (% ± SEM) of 649 

ORXR mRNA in some encephalic nuclei of treated fish (n=5) with respect to controls (n=5; C). 650 

Statistical differences were evaluated by using unpaired Student’s t-test. *p<0.05; **p<0.01. 651 

Abbreviations: Cce, corpus of the cerebellum; Dl, lateral part of the dorsal telencephalon; Dm, 652 

medial part of the dorsal telencephalon; NAT, anterior tuberal nucleus; NDLI, diffuse nucleus of the 653 

inferior lobe; NG, nucleus glomerulosus; NPGc, commissural preglomerular nucleus; NRL, nucleus 654 

of the lateral recess; OT, optic tectum; TLo, torus longitudinalis; Vce, valvula of the cerebellum; 655 

Vl, lateral part of the ventral telencephalon; Vv, ventral part of the ventral telencephalon. 656 

 657 

Fig. 7 658 

Mz effects on ORXR protein expression in Thalassoma pavo brain. Data were reported as optical 659 

densities ratio of ORXR western blotting bands normalized by using β-actin values (A) in treated 660 

fish (n=5) compared to controls (ctrl; n=5; B). Statistical differences were evaluated by using 661 

unpaired Student’s t-test: 
***

p<0.001. 662 

 663 
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feature makes them able to interact with different cellular and 
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organisms. Many EDCs have a structural similarity with several 

endogenous hormones and this allows them to interact physically 

with specific receptors even though with different binding 

affinities each time. In this review we have collected some of the 

various and manifold molecular mechanisms activated by EDCs. 

Of these, the receptor-mediated pathway prevails; it is based on 

the interaction with estrogen receptors (ERs). However, this is not 

the only way they can use to determine endocrine interference. 
Several in vitro and in vivo studies have shown the existence of 

non-receptor and non-genomic pathways that are much faster and 

trigger a number of signal transduction pathways that control 

multiple cellular functions such as proliferation, differentiation  
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and motility. Finally, several EDCs affect the hypothalamus-pituitary axis and the 

hormonal systems involved in the thyroid and the adrenal glands. Their wide 

presence in the environment and the multiple exposure paths to which we are 

constantly subjected, make EDCs a very wide health problem. Determining the 

specific molecular mechanisms that they are able to activate is an important step in 

trying to reduce the risk associated with their presence in our daily lives. 

 

Introduction 
 

 The endocrine system is formed by different glands producing several 

hormones which are able to regulate metabolism, growth, development and 

reproduction in humans and animals (Witorsch, 2002). Endocrine Disruptor 

Chemicals (EDCs) are exogenous compounds, of natural or synthetic origin, 

that are able to interfere with different hormonal pathways such as 

production, transport, metabolism and action of natural hormones. EDCs can 

act as agonists and/or antagonists of natural hormones. EDCs are 

characterized by multiple mechanisms: they can function in genomic, 

epigenomic or non-genomic manner. In this way, EDCs negatively influence 

homeostasis, reproduction and developmental processes (Sun et al. 2016). 

EDCs are ubiquitously present in the environment because they are used in 

different industrial (industrial chemicals, plastic packaging components) and 

agricultural (pesticides, fungicides, insecticides, herbicides) purposes  

(Nappi et al. 2016). Other than, EDCs are used for the preparation of 

detergents, cosmetics, sun lotion for personal care and in the manufacturing 

of toys. Moreover, they can be presents in the environment as natural 

compounds like phytoestrogens. EDC classification is complicated but in 

general they can be divided in short-lived pollutants and persistent organic 

pollutants (POPs) (Giulivo et al. 2016). The first category includes phtalates 

and bisphenol A, whereas POPs include the organochorine pesticides 

dichlorodiphenyltrichloroethane (DDT) and other industrial products as 

dioxins, flame retardants (Giulivo et al. 2016). Due to their whole diffusion 

in each matrix (sediments, soils, water, atmosphere), human exposure to 

EDCs is unavoidable and can mainly occur through the food chain, by the 

consumption of contaminated tap water and food, by dermal exposure and/or 

by inhalation of volatile compounds and airborne fine and ultrafine 

particulate matter (Nappi et al. 2016). Another important EDC peculiarity is 

their lipophilic nature that allows their persistence in the environment other 

than biomagnification and bioaccumulation processes. Morevoer, it is 

important to consider that animals and humans are exposed to complex 
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mixtures of EDCs. These compounds can have a great complexity of 

mechanism of action, because their can contemporary act on multiple 

signaling pathways and targets (Nappi et al. 2016).  

 Other the way of exposure, particularly important is the consideration of 

the time of in order to evaluate the next impact of EDCs on biological 

systems. Specifically, the fetal life represents a period of special attention, 

since important processes such as organogenesis and tissue differentiation 

must occur through a series of well-regulated molecular, biochemical and 

cellular events (Prusinski et al. 2016). Any perturbation of only one of 

developmental key point can cause adverse effect in the ―tomorrow‖ person. 

It has been demonstrated that environmental exposures during specific 

―window of susceptibility‖ can permanently reprogram normal physiology 

of polluted organisms. In this view, prenatal and early postnatal 

developmental processes are more susceptible to EDC action since each 

minimum change of timing and/or activation/inhibition pathways can alter 

all the other cellular events. However, humans are continously exposed to 

EDCs daily during all the life, hence all stages of body physiology are 

potential targets of endocrine disruption. Moreover, EDCs differ from other 

environmental pollutants since they are able to function at small doses but 

inducing subtle changes at cellular and tissue levels that finally evoke 

pathophysiological effects (Prusinski et al. 2016). At today, all human body 

systems are negatively influenced by EDCs: cardiovascular system 

(Roseboom 2012), nervous system (Nesan and Kurrasch 2016), reproductive 

system (Crews and McLachlan 2006, Maqbool et al. 2016), digestive system 

(Janesick and Blumberg 2016; Nappi et al. 2016) and obviusly endocrine 

system. Moreover, EDCs are linked to carcinogenes, teratogenesis and 

transgenerational inheritance of phenotype (Bernal and Jirtle 2010;    

Prusinski et al. 2016). In the last twenty years, the study of EDCs have 

completely revolutionized the concept of teratological compounds, in fact 

from substances inducing structural abnormalities at birth they have been 

transformed in molecules and/or mixtures of chemicals involved in the 

developmental origin of adult diseases (McLachlan 2016). Among all the 

well known substances acting as teratological compounds, a pioneer of 

EDCs that has contributed to the modification of endocrine disruption view 

in the teratology, was diethylstilbestrol (DES) that for the first time had been 

demonstrated as the cause of trasnplacental carcinogenesis: DES took by the 

mother during pregnancy was able to induce cancer later in the life of the 

daughters (McLachlan 2016).  
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Multiple compounds for multiple molecular mechanisms 
 

 As written above, EDCs can have many differents molecular behaviour 

and they can act on multiple cellular targets. However, the more important 

EDC targets are the nuclear receptors such as estrogen (ER), progesterone 

(PR) and androgen (AR) receptors, steroid (mineralcorticoid, glucocorticoid) 

receptors, thyroid receptors (TR) and peroxisome proliferator-activated 

receptors (PPAR) (Wuttke et al. 2010; Yang et al. 2015; Giulivo et al. 

2016;). Due to the broad involvement of these receptors in many different 

cell and tissue functions, it is evident the attention needed to EDC role in 

biological interference at several points. Recent studies have demonstrated 

that EDCs can also act with membrane receptors like estrogen receptor 

GPER or other ER splice variants. Moreover, EDCs interfere with enzyme 

activity such as hormone metabolizing enzymes like aromatase (Sanderson, 

2006), 5-reductase (Kalfa et al. 2009), 3-hydroxysteroid dehydrogenase (Ye 

et al. 2011) and 11-hydroxysteroid dehydrogenases (Odermatt et al. 2006; 

Guo et al. 2012; Giulivo et al. 2016).  

 Among EDCs there are numerous compounds that exert an estrogenic 

effects. It is well known that estrogen is a female hormone but its role is not 

only to regulate female reproductive cycle but also to influence non 

reproductive organs regulating lipid metabolism, protein synthesis and 

behaviour (Kiyama and Wada-Kiyama 2015). So, estrogenic chemicals that 

mimick this endogenous female hormone are able to interfere with normal 

body homeostasis through different mechanisms. In fact, estrogenic 

signaling can be divided in intracellular and extracellular mechanism. The 

intracellular pathway involves genomic activation such as transcription of 

specific target genes, and non-genomic pathway through the activation of 

transduction signals mediated by membrane receptors (Kiyama and Wada-

Kiyama 2015). The extracellular pathway, on the contrary, involves other 

hormones, growth factors and cytokines (Kiyama and Wada-Kiyama 2015). 

It is very difficult to identify all chemicals that act as estrogenic compounds 

since other EDCs can have multiple effects including estrogenic actions (For 

a list of several estrogenic chemicals, see Kiyama and Wada-Kiyama 2015 

review). Considering the estrogenic compounds, it is important to specify 

that they have contradictory effects since they can behave as estrogen or 

anti-estrogen, agonist or antagonist of ERs. Often, it has been pointed out a 

biphasic activity, better depending of the dose they show an estrogenic or 

antiestrogenic activity. Anyway, they can show different cellular pathways 

(Kiyama and Wada-Kiyama 2015). This mechanism of action is often shared 

among different EDCs.  
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 In order to describe a view of different molecular mechanisms, we have 

subdivided their targets in genomic, non genomic and non-receptorial 

pathways. 

 

Genomic pathway 
 

 The genomic pathway is the main target of EDCs. This pathway starts 

with the binding of chemicals with the nuclear estrogen receptors (ERs). 

There are two different ERs: ERα and ERβ, both involved as transducer. 

They are encoded by different genes, respectively ESR1 located at 6q25.1 

and ESR2 located at 14q23.2-q23.3 on human chromosomes. Even so, the 

receptor proteins share a common structural organization based on the 

presence of three functional domains: the A/B domain at the N-terminal 

region, involved in the transcriptional activation of ER target genes; the C 

domain responsible for the receptor dimerization and DNA binding; the E/F 

domain at the C-terminal region involved in the ligand binding, nuclear 

translocation and transactivation of target gene expression (Nilsson et al. 

2001; Kiyama and Wada-Kiyama 2015). Both ESR1 and ESR2 show splice 

variants that are responsible of differences in the expression at cell or tissue 

level, in the specificity and/or affinity for a ligand, in the localization and 

function in the cells (Taylor et al. 2010; Kiyama and Wada-Kiyama 2015). 

Co-regulators and other transcriptional factors, such as Sp1 and AP1, are 

often needed for the transactivation of target genes (Kiyama and Wada-

Kiyama 2015). The complex (endogenous or not) ligand - ER binds the 

DNA at specific site acting as transcription factor in order to up-regulate or 

down-regulate the transcription of target genes (generally bringing the 

Estrogen-Responsive-Elements) (Kiyama and Wada-Kiyama 2015). The 

change in ER conformation depending on the ligand bound, renders ERs 

more or less prone to the transcriptional coactivators or corepressors 

recognition (Acconcia et al. 2015). Very large amount of estrogenic 

chemicals (fungicides, herbicides, insecticides, several pharmaceutical 

estrogens, plasticizer, pollutants) use ERs as dealer to induce endocrine 

interference (Kiyama and Wada-Kiyama 2015). Among these, BPA has 

structural features that confer it the ability to bind to the both ERα and ERβ 

(Bolli et al. 2008; Bolli et al. 2010; Acconcia et al. 2015). BPA binding to 

ERs produces a displacement of α-helices of LBD of ERα due to a not 

proper accommodation in the hormone-binding site; so BPA can function as 

ERα agonist. On the contrary BPA is not able to bind the LBD of ERβ, 

acting as antagonist (Ascenzi et al. 2006; Acconcia et al. 2015). These 
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differences in the binding of the two ERs induce a varied regulatory activity 

on gene expression (Acconcia et al. 2015). Many other EDCs are able to 

bind ERs. It has been demonstrated that nonylphenol (NP) is able to induce 

cytoplasm to nucleus translocation of ERα but not ERβ in human epithelial 

prostate cells (Forte et al. 2016). This translocation induced ERα activation 

of transcription of specific genes such as cyclin D1 and ki67 that allow cell 

proliferation (Forte et al. 2016). Recently, another nuclear receptor family 

has been identified as part of estrogen signaling. This family includes some 

nuclear estrogen-related receptor such as ERRα, ERRβ and ERRγ. These 

―alternative‖ receptors act as ligand-dependent transcription factors but their 

natural ligand is still unknown. Several compounds prefer ERR pathways 

such as genistein and resveratrol, as well as chlordane, diethylstilbestrol and 

toxaphene that are ERR antagonists. In some case it is possible a crosstalk 

between ER and ERRs as demonstrated for resveratrol (Kiyama and Wada-

Kiyama 2015). That’s why nuclear receptor pathway is more complex and 

interlaced. 

 

Non-genomic pathway 
 

 Estrogen or xenoestrogens can also bind to the membrane receptors 

stimulating signaling cascade through different protein involvement. 

Generally, the non-genomic pathway is very fast and rapidly occurs. 

Canonical ERα and ERβ can translocate to the membrane after the 

modification. Here, they bind to caveolin-1 after palmitoylation, after that 

they are translocated to the membrane and anchored as a dimer (Soltysik and 

Czekaj 2013; Kiyama and Wada-Kiyama 2015). It has been shown that this 

pathway is used by the cells to rapidly respond to hypothalamic stimulation 

(Micevych and Kelly 2012; Kiyama and Wada-Kiyama 2015). Endogenous 

estradiol (E2) activates ERα-mediated extracellular regulated 

kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidyl-

inositol-3-kinase/AKT (PI3K/AKT) pathways, as well as the ERβ-mediated 

p38/MAPK signaling (Acconcia and Marino 2011; Acconcia et al. 2015). It 

has been demonstrated that xenoestrogenic compounds such as BPA can 

activate ERK/MAPK and AKT phosphorylation (Bolli et al. 2008; Marino et 

al. 2012; Acconcia et al. 2015). Another EDC such as Arsenic (As) is able to 

interfere with estrogen signaling pathways (Watson and Yager 2007;              

Bae-Jump et al. 2008; Chatterjee and Chatterji 2010; Sun et al. 2016). 

Particularly, it has been shown that As interacts with the MAPK pathway 

(mitogen-activated protein kinase), which plays a crucial role in different 

cell functions such as cell growth, differentiation, survival, and death 
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(Chatterjee and Chetterji 2010; Sun et al. 2016). Moreover, it has been 

demonstrated that As suppresses the interaction of ERs with some 

transcription factors like Sp-1, AP-1 and NF-κB (Watson and Yager 2007; 

Sun et al. 2016).  

 Different membrane ERs (mERs) have already been identified such as 

G-protein coupled estrogen receptor (GPER). The mERs GPER, previously 

known as G-protein-coupled receptor 30 (GPR30), is encoded by the GPER 

gene located at chromosome 7p22.3. GPER is a 7-membran-spanning 

protein highly expressed in the hypothalamus, pituitary gland, adrenal 

medulla, renal pelvis and ovary (Hazell et al. 2009; Soltysik and Czekaj 

2013; Kiyama and Wada-Kiyama 2015). GPER shows a high affinity for the 

endogenous estrogens and other hormones such as aldosterone (Kiyama and 

Wada-Kiyama 2015). GPER can be located at the membrane of endoplasmic 

reticulum, Golgi apparatus and can be also present in the nucleus (Soltysik 

and Czekaj 2013; Kiyama and Wada-Kiyama 2015). GPER activation 

induces rapid non-genomic signaling (Kiyama and Wada-Kiyama 2015). 

Different xenoestrogenic compounds have been demonstrated bind to the 

GPER such as BPA, diethylstilbestrol, genistein, NP and many others 

(Kiyama and Wada-Kiyama 2015). These compunds act as agonists to the 

GPER. Moreover, it has been demonstrated that GPER in involved in the 

signaling pathways mediated by other receptors like serotonin 1A receptor 

(Li et al. 2013c; Kiyama and Wada-Kiyama 2015). Particularly, it acts 

inhibiting serotonin 1A receptor (Xu et al. 2009; McAllister et al. 2012; 

Akama et al. 2013; Kiyama and Wada-Kiyama 2015). Moreover, GPER 

crosstalks with other signaling pathways involved in different cell functions 

such as proliferation (Ma et al. 2014), migration (Li et al. 2014a), collagen 

expression (Li et al. 2013a), NO synthesis (Rowlands et al. 2011), and 

inflammatory response (Luo et al. 2012; Santolla et al. 2014; Kiyama and 

Wada-Kiyama 2015). It seems evident that due to involvement of GPER in 

many different cell pathways involved in any stage of proliferation, 

differentiation and migration, that all the chemicals able to bind this receptor 

can deeply interfere with many cell and tissue important processes. 

 Other receptors, such as estrogen-related receptors (ERRs) that are 

variants of ERα and ERβ (for example ER-X and ER-α36) have been 

recently identified showing the broad complexity of estrogen responsive 

signaling (Kiyama and Wada-Kiyama 2015). Specifically, ER-X is a ERα 

splice variant; it is a 62-63 kDa membrane protein (Soltysik and Czekaj 

2013; Kiyama and Wada-Kiyama 2015). Binding of estrogen to ER-X is 

associated in particular to the brain, uterus and heart functions. It has been 
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demonstrated that after binding, ER-X activate MAPK and ERK signaling 

(Toran-Allerand et al. 2002; Toran-Allerand et al. 2005; Ullrich et al. 2008; 

Kiyama and Wada-Kiyama 2015). Another ERα splice variant is ER-α36 is 

located at the membrane. This receptor lacks both AF-1 and AF-2 domais 

but present DNA-binding domain and partial ligand domain. It has been 

shown that ER-α36 is able to inibit both ERα and ERβ in a dominant-

negative manner. This ability allows it to be involved in different 

carcinogenesis pathways such as testosterone carcinogenesis (Lin et al. 

2009) and breast cancer (Rao et al. 2011; Kiyama and Wada-Kiyama 2015). 

Different cascade proteins can activated by ER-α36 such as MAPK/ERK, 

Akt, and c-SRC (Kang et al. 2011; Zhang et al. 2014c; Wang et al. 2013b; 

Kiyama and Wada-Kiyama 2015). 

 Both genomic and non-genomic pathways can be considered as direct 

signaling mechanisms that differently can induce many functional outcomes 

such as apoptosis, cell growth, differentiation, inflammation and 

carcinogenesis (Kiyama and Wada-Kiyama 2015). However, each pathway 

can influence other cellular outcomes by crosstalk and/or bypassing. 

Moreover, the direct signaling mechanisms also induce the secretion of 

autocrine/paracrine or endocrine factors enlarging the range of targets 

involved.  

 

Epigenetic pathways 
 

 EDCs can also act through epigenetic mechanisms. Epigenetic 

mechanisms are particularly important to address the potential health effects 

of lower-level exposures within the general population; moreover it is useful 

to explain how EDC exposure during the development can cause adverse 

effects in the adult (Prusinski et al. 2016). It has been shown, for example, 

that genistein is able to induce epigenetic changes of non-genomic estrogen 

receptor (ER) signaling through the activation of the PI3K/AKT pathway 

(Prusinski et al. 2016). This phosphorylates histone methyltransferase 

Enhancer of Zeste Homolog 2 (EZH2), a potent epigenetic regulator of gene 

expression (Sandovici et al. 2013). Finally, this epigenetic pathway increases 

the overall expression of estrogen-responsive genes (Cook et al. 2005; 

Prusinski et al. 2016). Likewise, also BPA increases EZH2 that in turn 

increases histone H3 trimethylation at lysine 27 (Doherty et al. 2010; 

Santangeli et al. 2017). Furthermore, BPA was demonstrated to alter 

methyltransferase 1 and 3A which are epigenetic regulators of expression of 

genes encoding estrogen receptors (Kundakovic et al. 2013; Santangeli et al. 

2017). BPA induces hypermethylation of estrogen promoter region in rat 
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testis (Doshi et al. 2011; Santangeli et al. 2017). Other studies have shown 

that BPA strongly increases the expression of the secretaglobin gene, 

Scgb2a1, by way of the increased enrichment of acetylated H3K9 and 

hypomethylation of DNA for a CpG island upstream of the transcription start 

site of Scgb2a1 (Wong et al. 2015; Prusinski et al. 2016). SCGB2A1 is being 

an interesting marker of carcinogenesis, since its gene and protein 

overexpression is linked to endometrial, breast and lung cancers (Li and 

Richardson 2009; Prusinski et al. 2016). 

 

Non receptorial pathways 
 

 Recently, different studies highlight other non nuclear receptor mediated 

pathways involved in estrogenic and xenoestrogenic actions. In fact, it is 

well known that natural hormones and xenoestrogens can also act by 

enzymatic and binding protein pathways (Mueller and Korach 2001; Sheikh 

et al. 2017). Particularly, sex steroids interact with plasma sex hormone-

binding globulin (SHBG) that is a circulatory protein secreted by liver 

important in maintaining the balance between bioavalable and not avalaible 

hormones (Anderson 1974; Sheikh et al. 2017). Particularly, it has been 

demonstrated that the free portion of steroid hormones represents a small 

percentage, about 1-3% of the total steroids. Despite this low amount 

represents the bioactive portion for the target tissues (Hammond, 2011; 

Laurent and Vanderschueren 2014; Sheikh et al. 2017). The SHBG binds 

both androgens and estrogens with nanomolar affinity. SHBG has two 

subunits each containing two laminin G-like domains: the N-terminal 

domain presents the steroid-binding pocket and calcium and zinc binding 

sites; the C-terminal domain shows residues for glycosylation (Hammond 

2011; Sheikh et al. 2017). It regulates hormonal free portion able to bind 

receptors that is important in clinical practice. Moreover, SHBG influences 

hormonal metabolic clearance (Hammond 2011; Sheikh et al. 2017). 

Alteration of SHBG function and/or amount has been associated with 

various human diseases such as ovarian dysfunctions, male and female 

infertility, endometrial cancer, diabetes, cardiovascular diseases                   

(Cherkasov et al. 2005; Sheikh et al. 2017). Many different EDCs can bind 

SHBG, among these some alkylphenols such as BPA, NP, octylphenol (OP) 

have been shown binding ability (Dechaud et al., 1999; Jury et al., 2000; 

Cherkasov et al., 2008; Hong et al., 2015; Sheikh et al. 2017). Recently, it 

has been demonstrated that BPA, NP and OP have high structural similarity 

with endogenous hormones and for this they can strongly bind SHBG 

(Sheikh et al. 2017). Among three alkylphenols Sheikh et colleagues (2017) 

have seen that NP is the more potent endocrine disruptor of androgen and 
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estrogen signaling since it shows the most high binding affinity with SHBG 

(Sheikh et al. 2017). Binding of xenoestrogens to SGBG displaces 

endogenous testosterone and estradiol from SHBG steroid pocket in native 

plasma from men and women (Dechaud et al. 1999; Sheikh et al. 2017). In 

an other study, 125 structurally diverse compounds have been tested in 

competitive binding assay for SHBG and it has been shown that BPA, OP, 

and NP have a potential competing function (Hong et al. 2015; Sheikh et al. 

2017). Xenoestrogenic binding to SHBG induce a lower clearance rate that 

allows a major accumulation of EDCs in the body. Moreover, in children 

during the prepubertal period (Apter et al., 1984; Belgorosky and Rivarola, 

1986) and in women during pregnancy (Anderson 1974), SHBG levels are 

higher whereas testosterone and estradiol concentrations remain lower. 

Under such conditions, BPA, NP and OP ability to bing SHBG may affect 

the metabolism and tissue availability of natural steroids (Sheikh et al. 

2017). This ―new‖ EDC molecular target of endocrine disruption open a 

broad scenario of interference with steroid homeostasis in the human body. 

 

EDCs and hypothalamus-pituitary axis 
 

Thyroid gland 
 

 Another important field to consider in EDC pollution is the 

involvement and activation of other hormonal pathways, such as thyroid 

and adrenal glands. EDCs can impair thyroid system through different 

mechanisms: disruption of TH serum transporters such as transthyretin 

(TTR) and thyroxine-binding globulin (TBG), aberrant binding to TH 

nuclear receptors, or disruption of TH-metabolizing enzymes such as 

deiodinases (DIO) and sulfotransferase (SULT) (Aufmkolk et al. 1986; 

Meerts et al. 2000; Schmutzler et al. 2004; Kitamura et al. 2008; Kojima et 

al. 2009; Szabo et al. 2009; Butt et al. 2011; Butt and Stapleton 2013; 

Leonetti et al. 2016). Particularly, it has been demonstrated that different 

EDCs are able to negatively influence thyroid hormone levels (Zhou et al. 

2002; Sciarrillo et al. 2010; Noyes et al. 2013; de Coch et al. 2014; 

Eisenreich and Rowe 2014; Yost et al. 2016). Several studies have 

demonstrated that prenatal exposure to thyroid hormone endocrine 

disruptors affect birth weight, can cause preterm births, other than affect 

the glucose and lipid metabolism (Molehin et al. 2016; Shah-Kulkarni et 

al. 2016). Infact, THs are known to be particularly important for fetal 

growth and development (Costa et al. 2014; Leonetti et al. 2016). Different 

interference pathways can be activated in alteration of thyroid functions. 



Short title ? 11 

For example, it has been hypothesized that perfluorinated compounds 

(PFCs) may increase the hepatic production of TBG (Knox et al. 2011). 

Other PFCs like perfluorooctane sulfonate (PFOS) may increase the 

thyroidal conversion of T4 to T3 via type 1 deiodinase (Yu et al. 2009; 

Shah-Kulkarni et al. 2016). Polybrominated diphenylethers (PBDEs) and 

other halogenated compounds (Butt et al. 2011; Butt and Stapleton 2013; 

Leonetti et al. 2016) are able to inhibit the activities of TH-metabolizing 

enzymes so impacting the placental TH concentrations and fetal TH 

delivery (Leonetti et al. 2016). Other compounds such as As alters thyroid 

hormone production. Particularly, it has been shown that after consuming 

diet containing As for 15 weeks, plasma levels of T3 and T4 are decreased 

while the ratios of T4/T3 are increased (Meltzer et al. 2002; Sun et al. 

2016). Moreover, Ciarrocca et al. (2012) have shown an increase of the 

levels of thyroid stimulating hormone (TSH) and thyroglobulin and a 

decrease of free T4 and T3 contents (Ciarrocca et al. 2012; Sun et al. 

2016). Opposite effects were seen in rats where feeding food containing As 

increases T3 levels and decreases T4/T3 ratios (Glattre et al. 1995). As 

thyreotoxicity is related to alteration of TR-related gene expression. 

Particularly, AsIII inhibites the activity of thyroid peroxidase, a major 

enzyme involved in the synthesis of T4 and T3 (Palazzolo and Jansen 

2008; Sun et al. 2016). Thyroid disruption has been demonstrated also in 

different animal models. It has been shown that PBDEs are able to disrupt 

thyroid hormone signaling in Xenopus laevis tadpole (Yost et al. 2016). 

Specifically, Yost and colleagues have demonstrated that 2,2’,4,4’-

tetrabomodiphenyl ether (BDE-47) specifically alterate transcriptomic 

expression of thyroid hormone-related genes (Yost et al. 2016). BDE-47 

reduces expression of trα, trβ and tshβ and decreases thyroid hormone 

plasma levels (Yost et al. 2016). Moreover, BDE-47 influences also 

thyroid hormone transport; in fact it suppresses expression of two thyroid 

hormone transporters mct8 and oatp1c1 (Yost et al. 2016). In fish, AsIII 

significantly increases the levels of T4 (Sun et al. 2015; Sun et al. 2016). 

On the contrary, in Podarcis sicula lizards, NP induced a significant 

decrease of TSH, T4 and T3 plasma levels and affected histological 

features of lizard thyroid (Sciarrillo et al. 2010). 

 

Adrenal gland 
 

 Another important organ in the control of endocrine homeostasis is the 

adrenal gland. Adrenal gland plays a role in the body response mechanisms 
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to stress, maintaining the homeostasis of the organism (De Falco et al. 2014). 

Despite its relevance in the body physiology, relatively few studies have 

investigated the possible/existing links between endocrine disruptors and the 

HPA axis (De Falco et al. 2007; De Falco et al. 2010). Recently, it has been 

demonstrated that As significantly increases ACTH and corticosterone levels 

in rodents (Jana et al. 2006; Sun et al. 2016). Particularly, it has been shown 

that As is able to reduce levels of corticotropin-releasing factor receptor 1 

and to potentiate binding between serotonin and serotonin 5-

hydroxytriptamine receptor (Martinez et al. 2008). Moreover, As acts on 

glucocorticoid receptors (GRs). Specifically, it has been demonstrated that 

AsIII can modify GR activity blocking steroid binding to GRs (Lopez et al. 

1990; Kaltreider et al. 2001; Sun et al. 2016). Recently, Ahir et al. (2013) 

have demonstrated that AsIII has a biphasic effect on GR function depending 

of its dose. At low dose, AsIII enhances glucocorticoid induction of GR-

regulated genes, whereas at high dose it disrupts GR gene transcption 

interfering with hormone receptor binding (Ahir et al. 2013; Sun et al. 2016). 

Other EDCs are able to interact with GR system. For example, it has been 

demonstrated that polychlorinated biphenyls (PCBs) downregulate brain GR 

expression in fish (Aluru et al. 2004; Nesan and Kurrasch 2016). Other 

compounds have seen to act on HPA axis. Among EDCs, NP was shown to 

strongly stimulate the whole HPA axis inducing a time-dependent 

stimulation of CRF, ACTH and corticosterone release in reptile bioindicator 

Podarcis sicula lizards (De Falco et al. 2014). Moreover, NP was able to 

induce histological changes of adrenal glands with the presence of totally 

degranulated chromaffin cells (De Falco et al. 2014). Another class of potent 

environmental pollutant are dioxins that comprises 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD). This compound has shown to reduce 

CRH mRNA in hypothalamus of monkeys (Shridhar et al. 2001; Nesan and 

Kurrasch 2016).  

 

Conclusion 
 

 EDCs are compounds of different chemical nature and are widely 

disseminated in the environment in which we live. This causes the exposure 

of human and animal populations to occur at any time of life and at different 

doses. One characteristic of EDCs is their ability to act at very low 

concentrations, interacting with hormone systems and altering the 

homeostasis of different organs and systems. It is also evident that a precise 

and unambiguous classification is practically impossible since many of them 
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have biphasic behaviors and are capable of activating different molecular 

pathways depending on the cellular system considered. This particular 

feature focuses on the behavior of EDCs that we are constantly exposed to in 

which individual compounds may be present, each with different activity, 

which in combination can trigger synergies that lead to complete and 

profound endocrine destruction and all systems connected to it. For this 

reason, the understanding of the molecular mechanisms that EDCs can 

activate is of paramount importance to orient themselves in the endocrine 

interference they have determined and to try to stem the large amount of 

related pathologies. 
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Nonylphenol acts on prostate cells via estrogen molecular pathways 

 

Abstract 

A large body of evidence supports the idea that estrogens play a prominent role in the patho-physiology of the prostate. 

Epidemiological data, as well as results deriving from in vitro and in vivo studies suggest a relation between 

xenoestrogens exposure and prostate diseases. Thus, in this work we studied the effects of nonylphenol (NP), a well 

known xenoestrogen on human adenocarcinoma prostate cells (LNCaP), investigating on cellular proliferation, cell 

cycle, cellular localization  and expression of estrogen receptors and expression of genes involved in prostate diseases. 

Moreover, we performed the same experiments with 17β- estradiol (E2), the most estrogen circulating in humans. We 

demonstrated the ability of low concentration of NP (1x10
-10

 M) to induce proliferation of LNCaP, S-phase progression, 

and cytoplasm-nucleus translocation of ERα with its major expression. Moreover, we observed an up-regulation of key 

target genes involved in cell cycle and inflammation process. These data suggest the harmful effects of xenoestrogens 

on prostate cells and highlight some aspects of molecular pathways involved in prostate responses to xenoestrogens.      

Keywords: EDCs, estrogens, xenoestrogens, prostate cells, nonylphenol 

 

1. INTRODUCTION 

Prostate development is influenced by the levels of circulating androgens and estrogens (Prins and Korach, 2008). In 

recent years, there are several data, both from in vitro and in vivo studies which demonstrate the pivotal role of 

estrogens in prostate physiology, exerting both protective and deleterious effects (Ho et al., 2011). When estrogen levels 

increase and conversely androgen levels decrease, prostate cells reprogram their cell cycle, resulting in an increased 

proliferation, which in turn lead to an aberrant growth of the gland As final results, the prostate undergoeses in 

pathological states, such as benign prostatic hyperplasia and prostate cancer. The increase in the number of cases of 

prostate diseases, especially in industrialized countries suggest a strictly association with the exposure to environmental 

pollutants (Sweeney et al., 2015). The endocrine disrupting chemicals (EDCs) are ubiquitous chemicals, found in many 

parts of the world, that act as  endogenous hormones, mimicking and evoking their same molecular pathways (Giulivo 

et al., 2016). Humans are exposed to EDCs through skin absorption, inhalation and ingestion of contaminated food and 

water (Nappi et al., 2016). Several different studies have already reported the harmful effects of EDCs on reproductive 

and non-reproductive systems (De Falco et al., 2015; Nappi et al., 2016; Nesan and Kurrasch, 2016; Roseboom, 2012). 

EDCs can act on different molecular targets and EDCs with estrogens mimicking actions are called xenoestrogens. The 

most studied xenoestrogens are Bisphenol A (BPA) and alkylphenols (AP), which include Octylphenol (OP) and 

Nonylphenol (NP). These compounds  are widely used in plastics formulation  as non ionic surfactants, in agricultural 

products, in personal care products and they have been found as contaminants in rivers, lakes, seas, groundwater and 

sediments (Asimakopolous et al., 2012; Careghini et al., 2015). Xenoestrogens have been reported to bind both estrogen 

receptor α (ERα) and β (ERβ) and to induce proliferation of many cell lines (Forte et al., 2016; In et al., 2015). In 

particular, NP is able to stimulate breast cancer cells proliferation and to cause reproductive abnormalities (Bechi et al., 

2010; Choi et al., 2012; In et al., 2015). Regarding the prostate, epidemiological studies suggest the relation between 

EDCs and prostate diseases and the expression of estrogen receptors (ERs) in prostate has been demonstrated. 
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Moreover, in vitro studies as well as animal data suggest a positive association between prostate diseases and EDCs 

exposure (Alvanja et al., 2003). An increased risk of prostate cancer was found in agricultures exposed to pesticides 

belong to the class of EDCs (Alvanja et al., 2003; Koutros et al., 2013). In rats, neonatal treatment with BPA was 

reported to induce prostatic intraepithelial neoplasia (Ho et al., 2006; Prins et al., 2011) and to increase cell proliferation 

in the primary prostatic ducts of  mice (Timms et al., 2005). Similarly, neonatal and developmental exposure to 

estradiol and BPA was shown to induce prostate carcinogenesis in rats and to target human progenitor prostate stem 

cells (Ho et al., 2006; Prins et al., 2011; Prins et al., 2014). Recently, Tarapore et al. (2014) found in prostate cancer 

patients significant urinary levels of BPA compared to non prostate cancer patients. In the same study, they 

demonstrated that BPA is able to induce centrosome abnomarmalities and neoplastic transformation in several prostate 

cell lines. Moreover, BPA was found to induce prostate cells migration in LNCaP cells (Derouiche et al., 2013). We 

recently demonstrated tha NP induces cell proliferation of human non tumorigenic prostate cells, affecting estrogen 

related gene expression and ERα cellular localization (Forte et al., 2016). Given this background, in this work we 

evaluated the effects of  NP, comparing to the endogenous hormone 17β- estradiol (E2) on human adenocarcinoma 

prostate cells (LNCaP). These cells represent a useful in vitro model of prostate, since they are hormone responsive and 

express all the prostate specific markers (Horoszewicz et al., 1983). Furthermore, they are often used for the study of 

the actions of esogenous and endogenous compounds on prostate. We analyzed the effects on proliferation, cell cycle, 

migration ability, localization of ERs and genetic expression of key target genes involved in the normal growth and 

pathological states of prostate. The aim of this work is to best characterize the involvement of estrogen and 

xenoestrogen in prostate phato-physiology, also giving data for the risk management of human exposure to EDCs.   

 

 

2. MATERIALS AND METHODS 

2.1 Cell culture 

LNCaP cells (CRL-1740™ American Type Culture Collection, Manassan, VA) were grown in RPMI 1640 (Gibco, 

Invitrogen), supplemented with 10% FBS, 2mM glutamine, 1X non essential amminoacid, 1X penicillin/streptomycin, 

10µg/mL gentamycin (Euroclone) at 37°C, 5% CO2 in an humidified incubator. When 70% confluent, cells were 

enzymatically detached with trypsin-edta (Euroclone) and seeded in a new cell culture flask. Medium was changed 

twice a week. Cells were used from passage 9 to 20.    

2.2 Chemicals 

Nonylphenol (NP) and 17β- estradiol (E2) were purchased from Sigma Aldrich and dissolved in DMSO. Then, NP and 

E2 were diluted in RPMI 1640 red- phenol free at the concentrations used for the experiments. Control cells were 

treated with vehicle (DMSO 0,01%).  

2.3 Treatment 

LNCaP were treated with NP and E2 from 1x10
-6

 M to 1x10
-12

 M for 48h in order to perform the MTT assay. MTT 

assay allowed us to set compounds concentration to use for the subsequent experiments. Immunofluorescence was 
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performed after 2h and 6h of exposure with NP 1x10
-10

 M and E2 1x 10
-9

 M. FACS, western blot and RT-qPCR were 

carried out after 48h of exposure to  NP 1x10
-10

 M and E2 1x 10
-9

 M. 

2.4 MTT assay 

NP and E2 effects on cell viability were evaluated through MTT assay. LNCaP were seeded at a density of 1x10
4
/ well 

in 96 multiwell and starvated (FBS 1%) for 24h and exposed for 48h to NP and E2 (1x10
-6

 M to 1x10
-12

 M) .Briefly, 

10µL of MTT were added to each well. After 4h 37°C 5% CO2 of incubation, a solution of  isopropanol and DMSO 

(1:1) was added in order to dissolve the crystal of formazan produced in each well. Then, the solution was read at 570 

nm using a microplate reader. The value of absorbance  is proportional with the number of living cells. Each MTT assay 

was performed in triplicate.     

2.5 FACS analysis 

FACS analysis was used to evaluate the distribution of LNCaP cells in cell cycle phases, analyzing the content of DNA 

after 48h of treatment with NP 1x10
-10 

M and E2 1x10
-9

 M. In order to synchronize cells in G0/G1 phase, after 1% FBS 

starvation, LNCaP were washed with PBS, centrifugate at 800 g for 5min and fixed in 70% ethanol. Then, pellet was 

resuspended in 100 µg/ml RNAse for 30 min at 37°C. After, 20 µg/ml propidium iodide was added to each sample at 

4°C for 30 min in the dark. FACScan™ flow cytometry system (Becton Dickinson, San Jose, CA) was used for analyze 

cells distribution. For each sample, 5x10
4
 events were analyzed  and  percentage distribution in each phase of cell cycle 

was calculated. Each experiment was performed in triplicate.    

2.6 Immunofluorescence 

LNCaP cells were cultured in 4-well chamber slides  (Sarstedt, Nürnbrecht, Germany) at a density of 5x10
4
 cells 

overnight. After 24 h 1% FBS starvation, cells were treated with NP 1x10
-10 

M and E2 1x10
-9

 M for 2h and 6h. Then, 

cells were fixed with ice cold methanol for 10 min, washed with PBS, permeabilized with 0,4% Triton in PBS for 

10min and blocked with 5% Normal goat serum (NGS) for 30min. Then, cells were incubated overnight at 4°C with  

anti-human ERα antibody (Santa Cruz SC-544) or anti-human ERβ antibody (Santa Cruz SC-8974), diluted 1:100 in 

1% NGS. For detection of ERα and ERβ, Alexa Fluor 488 (diluted 1:200 in 1% NGS) was used for 1h at 37°C in the 

dark. Cell nuclei were stained for 3min with 1µg/ml Höechst and the images were taken on an Axioskop (Carl Zeiss) 

epifluorescence microscope using a 40x objective. Axiocam MRc5 and the acquisition software Axiovision 4.7 (Carl 

Zeiss) were used to capture the images in different channels  (Alexa Fluor 488, Höechst 33258). Three experiments 

were performed for each experimental conditions and the fields were randomly chosen.       

2.7 Protein extraction and western blot analysis 

For protein extraction LNCaP cells were seeded in 10 cm cell dishes. After 48h of treatment with  NP 1x10
-10

 M and E2 

1x10
-9

M, the dishes with confluent control and treated cells were putted on ice for 10 min and washed with ice cold 

PBS. Then, PBS-EDTA was added, cells were scraped, collected and centrifugated for 5 min at 3000 rpm at 4°C. 

Pellets obtained were resuspended for 30 min with RIPA lysis buffer containing protease and phosphatase inhibitors 

cocktail (Santa Cruz). Homogenates were centrifugated at 12,000 g for 20 min and total protein amounts were defined 

using BCA protein assay reagent kit (PIERCE). For each sample, 50 µg of proteins were boiled for 5 min in SDS buffer 

[50 mMTris-HCl (pH 6.8), 2 g 100 mL
-1

SDS, 10% (v/v) glycerol, 0.1 g 100 mL
-1

Bromophenolblue], separated on 10% 
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SDS-PAGE and transferred to a PVDF membrane for blotting (Trans-Blot® Semi-Dry Transfer Cell, Biorad). The 

membranes were incubated for 1 h with blocking buffer (TBS, 0.05% Tween-20 and 5% milk) at room temperature and 

after blocking were incubated overnight at 4° C with primary antibodies diluted in TBS-T containing 2% milk. Primary 

antibodies used were: rabbit polyclonal anti-human ERα (1:200, Santa Cruz – sc544) , rabbit polyclonal anti-human 

ERβ (1:200, Santa Cruz sc-8974) and rabbit polyclonal anti-human β-actina (1:200, Santa Cruz sc-7210). The day after, 

the membranes were washed four times for 10 minutes in TBS, 0.05% Tween-20 before a 1h incubation with secondary 

antibody. Secondary antibody used was goat anti-rabbit IgG (HRP) (1:3000; Abcam ab-6721) and it was diluited in 

TBS-T containing 2% milk. After incubation, the membranes were washed again four times for 10 minutes and specific 

protein bands were detected with chemiluminescence using the C-DiGit Chemiluminescent Western Blot Scanner (LI-

COR).Western blots were analyzed using Image Studio Software to determine optical density (OD) of the bands. The 

OD reading was normalized to β-actin to account for variations in loading.  Western blots were performed as previously 

reported in Di Lorenzo et al. (2017) and all experiments were performed in triplicates. 

2.8 RNA extraction and RT-qPCR 

Expression levels mRNA of estrogen target, proliferation, and inflammation genes were analyzed using real-time PCR. 

Total RNA from control and  treated LNCaP with  NP 1x10
-10

 M and E2 1x10
-9 

M for 48h, was extracted using Trizol   

(Life Technologies). After purification of genomic DNA with TURBO DNA-free
™

 Kit (Ambion, Life Technologies),  

the total amount of RNA was quantified with a NanoDrop spectrophotometer. cDNAs were synthesized from 1 µg RNA 

using the High Capacity cDNA Reverse Transcriptase (Life Technologies) and quantitative PCR was performed by 

using the 7500 Real-Time PCR System and SYBR
®
 Select Master Mix 2X assay (Applied Biosystem). All primers used 

were designed according to the sequences published on GenBank using Primer Express software version 3.0. The 

amount of target cDNA was calculated by comparative threshold (Ct) method and expressed by means of the 2
-ΔΔCt

 

method (Livak and Schmittgen, 2001) using hypoxanthine phosphoribosyltransferase 1 (HPTR1) as housekeeping gene.  

Primers used:  

Cyclin D1: FOR 5’-CGTGGCCTCTAAGATGAAGGA-3’; REV 5’-CGGTGTAGATGCACAAGCTTCTC-3’;  

Ki67: FOR 5’-CCCGTGGGAGACGTGGTA-3’; REV 5’-TTCCCGTGACGCTTCCA-3’;  

p53: FOR5’- TCTGTCCCTTCCCAGAAAACC-3’; REV5’-CAAGAAGCCCAGAAACGGAAA 3’;  

c-myc: FOR 5’-AGGGTCAAGTTGGACAGTGTCA-3’: REV 5’- TGGTGCATTTTCGGTTGTTG-3’;   

IL-8: FOR 5’-CTGGCCGTGGCTCTCTTG-3’; REV 5’-CTTGGCAAAACTGCACCTTCA-3’;  

IL-1β: FOR 5’-ACGATGCACCTGTACGATCACT-3’; REV 5’-CACCAAGCTTTTTTGCTGTGAGT-3’;  

 HPTR1: FOR5’-GACTTTGCTTTCCTTGGTCAGGCA-3’; REV 5’- ACAATCCGCCCAAAGGGAACTGA-3’. 

 

 

2.9 Statistical analysis 

Statistic analysis was performed by Graph Pad Prism 5 software. Data are expressed as mean values ±SEM for the 

indicated number of independent determinations. The statistical significance was calculated by the Student’s t-test for 

FACS analysis. For the MTT assay, migration assay, western blot and qPCR analyses the one way ANOVA with 

Bonferroni’s multiple comparison test was performed and differences were considered statistically significant when the 

P values was at least <0.05. All of the experiments were performed in triplicate and repeated at least three times. 
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3. RESULTS 

3.1 Mtt assay 

We assessed the effects of NP and E2 on LNCaP proliferation after 48 h of exposure. NP had a significant effect on 

LNCaP cell proliferation at 10
-10 

M (Fig. 1a). E2 stimulated LNCaP proliferation at 10
-9 

M (Fig. 1b). No effects were 

observed neither at the highest concentrations (from 10
-6

 M to 10
-8 

M) used neither at the lowest (from 10
-10 

M to 10
-12

 

M).  

3.2 FACS analysis 

Cell cycle cells distribution was performed with FACS analysis using propidium iodide staining after 48h of treatment.   

As shown in Fig. 2 both   NP 1x10
-10

 M (Fig. 2c)  and E2  1x10
-9 

M (Fig. 2b) increased cell distribution in S phase and 

decreased G0/G1 phase compared to control cells. Comparing both treatments (Fig. 2d), we didn’t observe differences 

in cell distribution between E2 and NP treated cells. 

3.3 Immunofluorescence 

ERα and ERβ cellular localizazion were studied with fluorescence microscopy after two different time of treatment: 2h 

and 6h. In LNCaP, ERα appears to be prevalently localized in the cytoplasm, with no evident fluorescent signal in cell 

nuclei (Fig. 3). E2 induced a nuclear localization of ERα at both time considered, without any localization in the 

cytoplasm. In contrast, NP act on ERα translocation after 6h of treatment, with a cytoplasmic localization after 2h. ERβ 

is prevalently located in the cytoplasm of LNCaP (Fig. 4); not E2 neither NP acted on ERβ translocation which 

remained cytoplasmatic at both times of treatment.  

3.4 Western blot analysis 

Western blot analysis was performed in order to evaluate estrogen receptors expression.  Results showed ERα (66 

KDa), ERβ (56 KDa) both in control and treated LNCaP cells (Fig. 5a).  The densitometric analysis revealed higher 

levels of ERα both with NP and E2 treatment (Fig. 5b). NP treatment did not interfere with ERβ protein expression ( 

Fig. 5c), instead E2 significantly enhanced its expression (Fig. 5c).  

3.5 RT-qPCR 

We studied the expression of genes involved in cell cycle regulation as well as  in inflammation (Fig. 6 a-f) signaling 

pathways after the treatment with  NP 1x10
-10

 M and E2 1x10
-9 

M. NP increased mRNA levels of Ki67 (a) and CICD1 

(b) while decreased p53 gene expression (c). E2 LNCaP treated cells shown an up-regulation of  CICD1 (b) and c-Myc 

(d), and a down-regulation of p53 (c). Regarding inflammation genes, only NP showed a significant effect, increasing 

mRNA levels of IL8 (e) and IL1β (f).   
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4. DISCUSSION 

In recent years, emerging evidence suggest a relation between prostate diseases and human exposure to environmental 

pollutants, such as EDCs (Soto and Sonnenschein, 2010). Notably, cases of prostate cancer and prostate linked 

pathologies are increased in parallel to industrialization and Europe and US present the highest incidence. However, 

most of the data supporting this hypothesis prevalently derived from epidemiological studies. One of the explanations of 

the association between EDCs and prostate disease is the estrogen like action of a class of EDCs, called xenoestrogens. 

In this regard, it is well known the role of estrogens as the main responsible for the normal and aberrant growth of the 

prostate (Hu et al., 2011; Leung et al., 2010; Nelles et al., 2011). Thus, we decide to investigate the molecular pathways 

involved in the action of nonylphenol (NP) on LNCaP prostate cells. In parallel, we performed the same experiments 

with the estrogen 17β- estradiol (E2). The first data obtained regard  the effects on the cellular proliferation. After 48h 

of exposure, NP and E2 at 1x10
-10

 M and 1x10
-9

 M, respectively, enhanced the cellular proliferation and at the same 

concentration they also induced the cell progression in S phase of cell cycle. Then, to highlight a possible estrogen 

receptors involvement, we studied their cellular localization and expression. Interestingly, both NP and E2 act only on 

ERα cytoplasm- nucleus translocation, although with different times, 2h for E2 and 6h for NP. Differently from E2, NP 

induced a strong  increase only in ERα expression and it did not interfere with ERβ expression Some data reported the 

role of  ERα in the proliferation and carcinogenesis of prostate cells, while ERβ seems to play a protective role for the 

gland, inducing apoptosis (Hartman et al., 2012). Thus, our data suggest the estrogen like action of NP, probably 

mediated via ERα. Finally, through qPCR analysis, we studied changing in gene expression of genes involved in 

proliferation and inflammation pathways. To note that most of these genes are well known estrogen downstream targets, 

as well as marker of prostate pathologies. Not all the genes investigated showed significant change after the treatment. 

The most effects on gene  were the up- regulation of Ki67, CICD1, IL-8 and IL1β. All of the four genes resulted up- 

regulated in prostate diseases (Dey et al., 2013; Sfanos and De Marzo 2012). In particular, IL-8 is considered as 

prognostic markers of prostate diseases (Araki et al., 2007). In our case, our results suggest that the up-regulation of 

Ki67, CICD1, IL-8 and IL1β after NP treatment, turn into increase cell proliferation and S phase cell distribution. 

Interestingly, gene expression after E2 treatment not completely overlap with NP treatment: c-Myc and Ki67 resulted 

up- regulated only after E2 and c-Myc treatment, respectively. Moreover, E2 didn’t affect gene expression of IL8 and 

IL1β, compared to LNCaP NP treated cells. Probably, NP, plus than E2, evokes an inflammation process in LNCaP 

cells. In addition, ERα is not the only pathway that mediate the effect of NP. In conclusion, we can summarize our 

results in some points: 1) estrogens and xenoestrogens stimulate proliferation, phase S progression of LNCaP, that may 

be a risk factors for prostate cancer 2) ERα switch in the nucleus after NP and E2 exposure, increasing gene expression 

of target genes 3) NP probably act with a mechanism not dependent from estrogen signaling pathways.         
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Figure captions 

Fig. 1 MTT assay of 48 h exposure to 17β- estradiol (E2) and nonylphenol (NP). NP stimulates LNCaP proliferation 

with a significant effect at 1x10
-10

 M (a). E2 increases LNCaP proliferation at 1x10
-9

 M (b). Control cells were treated 

with vehicle (0,01% DMSO). Data represent the mean ± SE of three independent experiments  (**P<0,01) 

Fig. 2 Cell cycle analysis of 48 h exposure to 17β- estradiol (E2) and nonylphenol (NP). Rappresentative histograms 

(a, b, c) and relative data summary of the cell cycle distribution (d). 1x10
-9

 M E2 (b) and 1x10
-10

 M NP (c) increase 

cells in phase S, consequently decreasing G0/G1 cell accumulation. Control cells were treated with vehicle (0,01% 

DMSO). Data represent the mean ± SE of three independent experiments (**P<0,01)  

Fig. 3 ERα localization in LNCaP cells treated with 17β- estradiol (E2) and nonylphenol (NP). ERα appears to be 

localized in the cytoplasm in control cells. E2 induced ERα translocation at both time considered (2h, 6h). NP induced a 

switch cytoplasm- nucleus after 6h. LNCaP were plated in chamber slide under hormone deprived conditions. ERα 

(Alexa Fluor 488) and nuclear staining (Höechst) were analyzed by immunofluorescence. Scale bar 10µm 

Fig. 4 ERβ localization in LNCaP cells treated with 17β- estradiol (E2) and nonylphenol (NP). Treatment didn’t 

affect cellular localization of ERβ, that was localized in the cytoplasm. LNCaP were plated in chamber slide under 

hormone deprived conditions. ERβ (Alexa Fluor 488) and nuclear staining (Höechst) were analyzed by 

immunofluorescence. Scale bar 10µm 

Fig.5 Western blot analysis. The graphs represented the  optical density (O.D.) ratio of ERα (b), ERβ (c), 

normalized on β actin. Look at the text for more details. (* p < 0,005; ** p < 0,01; *** p < 0,001). 

Fig. 6 qPCR analysis of genes involved in cell cycle regulation and inflammation processes (a-f). To note the 

different actions on gene expression of nonylphenol (NP) and 17β- estradiol (E2). Look the test for details. (*P<0,05; 

**P<0,01; ***P<0,001)    
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FIG.5:  

Act

ERβ

ERα 66 KDa

56 KDa

42 KDa

a)

b) c)

 

 

FIG.6: 

 

a) b) c)

d) e) f)

 

 



126 
 

 

5. References 

Alavanja M.C., Samanic C., Dosemeci M., Lubin J., Tarone R., Lynch C.F., Knott C., Thomas K., Hoppin J.A.,  Barker 

J., Coble J., Sandler D.P., Blair A., 2003. Use of agricultural pesticides and prostate cancer risk in the Agricultural 

Health Study cohort.  Am J Epidemiol, 157(9):800-814. 

Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB, Lokeshwar BL. Interleukin-8 is a 

molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 2007;67:6854–62. 

Asimakopoulos, A.G., Thomaidis, N.S., Koupparis, M.A., 2012. Recent trends in biomonitoring of bisphenol A, 4-t-

octylphenol, and 4-nonylphenol. Toxicol. Lett. 210, 141–154 

Bechi, N., Ietta, F., Romagnoli, R., Jantra, S., Cencini, M., Galassi, G., Serchi, T., Corsi, I., Focardi, S., Paulesu, L., 

2010. Environmental levels of para-nonylphenol are able to affect cytokine secretion in human placenta. Environ. 

Health Perspect. 118, 427–431. 

Careghini A., Mastorgio A.F., Saponaro S., Sezenna E., 2015. Bisphenol A, nonylphenols, benzophenones and 

benzotriazoles in soils, groundwater, surface, water, sediments, and food: a review. Environ. Sci. Pollut. Res. Int., 22, 

5711-5741. 

Choi, H., Kim, J., Im, Y., Lee, S., Kim, Y., 2012. The association between some endocrine disruptors and hypospadias 

in biological samples. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 47, 2173–2179. 

De Falco, M., Forte, M., Laforgia V., 2015. Estrogenic and anti-androgenic disrupting chemicals and their impact on 

the male reproductive system. Frontiers in Environmental Science, 3 

Derouiche S., Warnier M., Mariot P., Gosset P., Mauroy B., Bonnal J.L., Slomianny C., Delcourt P.,  Prevarskaya 

N.,  Roudbaraki M., 2013. Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium 

signalling. Springerplus, 2, 54. 

Dey P., Barros R.P., Warner M., Ström A., Gustafsson J.Å., 2013. Insight into the mechanisms of action of estrogen 

receptor β in the breast, prostate, colon, and CNS. J.Mol.Endocrinol., 51, T61-74. 

Di Lorenzo M., Forte M., Valiante S., Laforgia V., De Falco M., 2017. Interference of dibutylphthalate on human 

prostate cell viability. Ecotoxicology and Environmental Safety, 147, 565-573. 

Forte M., Di Lorenzo M., Carrizzo A., Valiante S., Vecchione C., Laforgia V., De Falco M., 2016. Nonylphenol effects 

on human prostate non tumorigenic cells. Toxicology, 357-358:21-32. 

Giulivo M., Lopez de Alda M., Capri E., Barceló  D., 2016. Human exposure to endocrine disrupting compounds: their 

role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 151, 251-264. 

Hartman J., Ström A., Gustafsson J.Å2012. Current concepts and significance of estrogen receptor β in prostate cancer. 

Steroids 77(12), 1262-1266. 



127 
 

Ho S.M., Lee M.T., Lam H.M., Leung Y.K., 2011. Estrogens and prostate cancer: etiology, mediators, prevention, and 

management. Endocrinol. Metab. Clin. North Am. 40(3):591-614, 

Ho S.M., Tang W.Y., Belmonte de Frausto J., Prins G.S., 2006. Developmental exposure to estradiol and bisphenol a 

increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. 

Cancer Res., 5624-5632 

Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.U., Mirand E.A., Murphy G.P., 1983. 

LNCaP model of human prostatic carcinoma. Cancer Res. 43 (4), 1809-1818.. 

Hu W.Y., Shi G.B., Lam H.M., Hu D.P., Ho S.M., Madueke I.C., Kajdacsy-Balla A., Prins G.S., 2011. Estrogen-

initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. 

Endocrinology 152, 2150-2163. 

In S.J., Kim S.H., Go R.E., Hwang K.A., Choi K.C., 2015. Benzophenone-1 and nonylphenol stimulated MCF-7 breast 

cancer growth by regulating cell cycle and metastasis-related genes via an estrogen receptor α-dependent pathway. J. 

Toxicol. Environ. Health A., 78, 492-505. 

Kastan M.B., Bartek, J., 2004. Cell-cycle checkpoints and cancer. Nature 432, 316-323. 

Koutros S., Beane Freeman L.E., Lubin J.H., Heltshe L.E., Andreotti G., Barry K.H., DellaValle C.T., Hoppin J.A., 

Sandler D.P., Lynch C.F., Blair A., Alavanja M.C., 2013. Risk of total aggressive prostate cancer and pesticide use in 

the agricultural health study. Am.J.Epidemiol., 177, 59-74. 

Leung D.R., Lam H.M., Wu S., Song D., Levin L., Cheng L., Wu C.L., Ho S.M., 2010. Estrogen receptor beta2 and 

beta5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr. 

Relat. Cancer 17, 675-689. 

Nappi F., Barrea L., Di Somma C., Savanelli M.C., Muscogiuri G., Orio F., Savastano S., 2016. Endocrine aspects of 

environmental “obesogen” pollutants. Int.J.Environ.Res.Public Health 13: 765-781. 

Nelles J.L., Hu W.Y., Prins G.S., 2011. Estrogen action and and prostate cancer. Expert Rev.Endocrinol. Metab., 6, 

437-451. 

Nesan D, Kurrasch DM., 2016. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of 

their disruption by environmental factors. Mol. Cell. Endocrinol., 438: 3-17. 

Prins G.S., Hu W.Y., Shi G.B., Hu D.P., Majumdar S., Li G., Huang K., Nelles J.L., Ho S.M., Walker C.L., Kajdacsy-

Balla A., van Breemen R.B., 2014. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and 

increases in vivo carcinogenesis in human prostate epithelium. Endocrinology, 155, 805-817. 

Prins G.S., Korach K.S., 2008. The role of estrogen receptors in normal growth and disease. Steroids, 73, 233-244 

Prins G.S., Ye S.H., Birch L., Ho S.M., Kannan K., 2011. Serum bisphenol A pharmacokinetics and prostate neoplastic 

responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod. Toxicol., 31, 1-9. 



128 
 

Roseboom TJ., 2012. Undernutrition during fetal life and the risk of cardiovascular disease in adulthood. Future 

cardiol., 8: 5–7. 

Sfanos K.S., De Marzo A.M., 2012. Prostate cancer and inflammation: the evidence. Histopathology 60, 199-215. 

Soto A.M., Sonnenschein C., 2010. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat. Rev. 

Endocrinol., 6, 363-370. 

Sweeney M.F., Hasan N., Soto A.M., Sonneschein C., 2015. Environmental endocrine disruptors: effects on the human  

male reproductive system. Rev. Endocr. Metabo. Disord. 16(4)341-357. 

Tarapore P., Ying J., Ouyang B., Burke B., Bracken B., Ho S.M., 2014. Exposure to bisphenol A correlates with early-

onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. Plos One, 9, 

e90332. 

Timms B.G., Howdeshell K.L., Barton L., Bradley S., Richter C.A., vom Saal F.S., 2005. Estrogenic chemicals in 

plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc. Natl. Acad. Sci., 102, 

7014-7019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

5. Conclusions 

 

There is growing evidence to suspect that lifestyle factors and environmental exposure to endocrine 

disrupting chemicals (EDCs) can potentially contribute to the trends in the occurrence of 

reproductive health problems. 

Endocrine disrupting chemicals comprise a class of different chemical origin compounds used in 

several different applications such as pesticides, herbicides, food packaging or in the formulation of 

personal care products. Their extensively diffusion in sediment, soil, water and atmosphere make 

them routinely available for human exposure which can occur at any time of life and at different 

doses.  

Data showed reinforce the link between EDCs exposure and male reproductive tract disorders. 

In particular, data confirm the ability of EDCs to act at very low dose following the typical non 

monotonic dose-response.  

The effects of EDCs on the male reproductive system are notable attributed to the interactions of 

these chemicals with the normal production of steroid hormone but it is really interesting to note 

that the interaction with estrogen receptors may be an additional mode of action of EDCs on male 

reproductive system. 

Moreover, it is very important to highlight the ability of the different substances tested to interfere 

with the same hormonal pathway inducing different effects on the same target. 

Furthermore, results from in vivo study suggest that fetal life need special attention because 

exposure during this window of susceptibility may induce adverse effects later in life. 

Additional studies are mandatory to determine the relevance of some hot points in the link between 

EDCs and infertility, including critical windows of susceptibility for various target tissues, dose-

response curves, and potential synergistic effects of mixtures of EDCs which human are daily no-

stop exposed. 
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