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1. INTRO 

1.1. MOTIVATION OF THE THESIS WORK 

Seismic isolation is today a mature design strategy, thoroughly studied by 
the international scientific community since the ‘80s, consolidated by 
more than thirty years of design practice, and characterized by a diffusion 
of applications with a high gradient. Thanks to the growing confidence in 
the seismic performance achievable by isolated buildings, as observed at 
the occurrence of severe earthquakes [Nakashima et al. 2004, Miyazaki 
2008, Kani et al. 2006, Nakamura et al. 2011, Saito et al. 2011, Takayama 
et al. 2012], new fields of application of the isolation principle have 
recently emerged, somehow pushing the boundaries of the well 
established original concept and posing new challenging design issues (Fig 
1.1). Among these recent trends, the use of intermediate story isolation 
systems (IIS, also appointed as mid-story isolation), is currently spreading 
and gaining significant popularity, mainly in Japan, both for the seismic 
design of new buildings [Murakami et al. 2000, Suoeka et al. 2004, Tsuneki 
et al. 2008 - 2009, Okada et al. 2014, Nakagawa et al. 2015, Tamari et al. 
2017], and for vertical addition in and /or retrofit of existing buildings 
[Dutta et al. 2009]. A recent study by [Kobayashi & Sasaki 2009] refers to 
more than 60 buildings equipped with IIS, realized starting from the late 
90s. 
Shifting the position of the isolation system from the base of the building 
to a certain level along elevation, strongly enhances the feasibility of the 
isolation strategy in several situations, like in the case of densely populated 
areas [Wang et al. 2012], when the planning and urban restraints at the 
base of a building do not allow for the introduction of the gap in the case 
of classical base isolation systems; further IIS is an advantageous solution 
for mixed-use buildings, where the different occupancies along elevation 
give rise to different architectural plans, structural systems, and grid 
layouts, thus identifying a level of structural discontinuity, or even of 
transfer structure, that can be ideally utilized for placing the isolation 
system [Murakami et al. 2000, Tsuneki et al. 2008-2009, Okada & Yoshida 
2014, Zhou et al. 2016]; also tall buildings can become good candidates 
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for seismic isolation thanks to the introduction of an optimally placed IIS 
[Zhou et al. 2016], that can remarkably improve the response of both 
structural parts above and below the isolation system. Finally, the vertical 
addition of new floors, isolated on the top of existing buildings, is a retrofit 
strategy that allows the increase of usable area and real estate value without 
increasing the seismic demand, thanks to the so-called “mass damper 
effect” exerted by the upper part on the existing substructure. [Chey et al. 
2013, Dutta et al. 2009, Ryan & Earl 2010, Tsuneki et al. 2008-2009].  
 

 
Fig. 1.1. Expansion of the scope of application of seismic isolated buildings 
[Moriizumi & Kobayashi 2012] 

 

However, while the design concept of base isolation is today highly mature 
and several thousands of applications have been realized, for the IIS not a 
single, fully shared design approach is defined but multiple approaches. 
It is worth noticing that the concept itself of base isolation, and the 
dynamics of the base isolated buildings, are by far more straightforward 
and simpler than in the case of IIS. It is quite intuitive that the building 
substructure, with its own flexibility, may affect the response of the 
isolated superstructure; furthermore, the choice of the location of the 
isolation system along the building elevation, determines the ratio of upper 
to lower mass, which, as well, strongly affects the resulting vibration 
characteristics and dynamic response of the single upper and lower 
portions, and of the structural complex. 
Considering that, in general terms, isolation is “a means to change dynamic 
characteristics of a vibrating system”, while the base isolation practically 
reduces a multi-degree of freedom (MDOF) structure to a single-degree 
of freedom (SDOF) system, the mid-story isolation changes one MDOF 
system into another MDOF with different vibration characteristics 
[Ziyaeifar & Noguchi 1998]. An additional important difference between 
BIS and IIS is related to the need and importance of energy dissipation in 
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the two isolation systems: while the first vibration mode of BI buildings is 
characterized by large mass participation and period falling in the less 
intensive zone of the earthquake spectra, in a IIS the first mode only 
activates a smaller mass fraction, and the higher modes, with considerable 
amount of mass, can be close to the high-energy zone of the spectra, thus 
the total input energy can be comparable to, or even higher than 
conventional buildings [Ziyaeifar & Noguchi 1998]. Therefore, while BIS 
deflects earthquake energy through the dynamics of the system [Naeim & 
Kelly 1999] and does not need significant energy dissipation, in the IIS the 
component of energy dissipation is an important attribute required to the 
isolation system. 
The overview of the main scientific contributions on this topic provided 
in the inherent literature reflects the variety of approaches, both in the 
formulation of the problem and in the definition of the design objectives 
and parameters. Basically, three major conceptual approaches can be 
clearly identified, each mainly focusing on one single aspect of the three 
ones related to IIS, namely: energy dissipation, isolation, mass damping. 
Some papers, coming from the Japanese research community, also 
including the designers of important buildings with IIS [Murakami et al. 
2000, Sueoka et al. 2004, Tsuneki et al. 2008-2009], mainly deal with the 
IIS as a “concentrated energy dissipation” design problem, and assume 
the dampers yielding force as the major design parameters for achieving 
the performance objective of the structural complex.  
Other studies [Wang et al. 2011, Moriizumi & Kobayashi 2012, Ryan & 
Earl 2010], on the contrary, pay more attention to the isolation aspect. In 
particular [Wang et al. 2011] adopt the frequency and mass ratios as the 
major design parameters and analyze how these parameters affect the 
dynamic behavior, modes coupling effect and seismic performance, 
explicitly excluding the cases of ‘mass absorber’ and ‘building mass 
damper’, which are regarded as irrelevant for the isolation technology. 
[Schellenberg et al. 2016] carry out an experimental campaign for the 
simulation of buildings with IIS, through a real-time hybrid simulation 
system combined with a shaking table; the major focus of the paper is the 
hybrid shake table testing method rather than the IIS, and having fixed the 
isolation and superstructure period, the effect of varying the period of the 
lower structure is assessed, without any specific considerations on the 
definition of the design parameters and with only some final 
recommendations on the period ratio. [Ryan & Earl 2010] examine the 
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effectiveness of IIS as a function of its location along the building 
elevation, basically adopting the design criteria of BIS.  
Finally, some papers [De Angelis et al. 2012 and 2015, Chang et al. 2012, 
Chey et al 2013] mainly focus the attention just on the mass damper effect, 
appointed as non conventional or building tuned mass damper: in 
particular [De Angelis et al. 2015] investigates the behavior of IIS through 
a reduced order 2DOF model (SDOF lower structure +TMD system), 
and define the optimal TMD parameter, namely the frequency ratio, which 
minimizes the displacement response of the structure. [Chey et al 2013], 
as well, investigate the “added stories isolation system” as a TMD 
optimally tuned according to the procedure proposed by [Sadek et al 
1997]. 

1.2. RESEARCH OBJECTIVES AND METHODS 

1.2.1. Research objectives 

In view of the foregoing, the major research objectives of the thesis work 
are: 

- to compare the three different approaches of isolation, dissipation 
and mass damper effect, and merging together the precious design 
guidelines coming from each of them, covering all the range of 
actual and potential applications of IIS; 

- to identify the predominant role among the three behavioral 
aspects of isolation, mass damping and energy dissipation, in 
different ranges of IIS application; 

- to define design criteria both for new and existing buildings. 

1.2.2. Methods 

In a first step of research the analysis of two real building case-studies 
representative of the wide IIS applicability, has been carried out, in order 
to interpret the latest design practice in the light of approaches and 
indications coming from the world of research.  
Hence, starting from the precious outcomes of the analyses, two 
parametric analyses have been carried out, considering both new and 
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existing buildings. In the first parametric analysis, developed on 1D-
MDOF inter-story isolated models, the influence of different locations of 
the isolation system along the building height, and of different mass and 
stiffness distributions, has been investigated. In the second parametric 
analysis, carried out on 1D-3DOF inter-story isolated models, the 
response of an IIS vertical addition for retrofitting an existing masonry 
building, has been investigated, with the aim of identifying the optimal 
superstructure configuration; then, a 3D FEM model is adopted for the 
detailed analysis of the IIS structure. 

1.3. OUTLINE OF THE THESIS 

The thesis is composed of the following chapters and appendices: 

Chapter 2: “BIS, TMD, IIS – theoretical basis” – In this chapter, in order to 
grasp the dynamic behavior of structures with isolation systems, base 
isolation (BIS), tuned mass damping (TMD) and intermediate isolation 
(IIS) strategies are firstly examined separately; and, secondly, the equations 
of motion of simplified two and three degrees-of-freedom IIS (2 and 3 
DOF IIS) models are compared to the two degrees-of-freedom BIS 
(2DOF BIS) and single degrees-of-freedom with TMD (SDOF + TMD) 
models. 
 
Chapter 3: “Design practice and applications” – An overview of the main real 
applications of IIS, both for new building and for vertical addition in the 
retrofit of existing buildings, is provided in this chapter; in particular the 
exam of IIS real buildings refers to four new buildings and one retrofitted 
building. 
 
Chapter 4: “Literature overview and discussion” – In this chapter the review of 
the scientific literature is presented, focusing the attention on: modeling 
approaches, problem formulation, identification of the design parameters, 
results of parametric analyses, design criteria, experimental tests. The 
major outcomes and observations coming from the literature review and 
the relevant design implications are discussed. 
 
Chapter 5: “Analysis of real IIS buildings” – Two real-world applications of 
IIS are chosen as case studies and thoroughly analyzed, in order to 
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interpreting the latest design practice in the light of approaches and 
indications coming from the world of research. In the chapter the 
buildings are described, and the major data obtained from publications 
and communication with the designers are presented and utilized for an 
approximate prediction of, and a preliminary discussion on the dynamic 
properties of the three structural parts of each building, and, consequently, 
on their expected dynamic interaction; in addition, a straightforward 
comparison between the anticipated dynamic behavior of the two 
buildings is presented. Modal and time history analyses are then carried 
out on the MDOF models of the two buildings; the main results are 
reported and design implications are discussed, in the light of the previous 
observations and of the provisions suggested in the inherent scientific 
literature. 
 
Chapter 6: “Parametric analysis” – The modal properties of the inter-story 
isolation system (IIS) structures are explored in this chapter, with 
particular attention to the mode coupling effect of the higher modes 
(MCE).  
Multi-degree-of-freedom isolated models, representative of a 10-story 
building, are considered, and the influence of different placements of the 
isolation system, as well as of different mass and stiffness distributions are 
investigated. Multi-degree-of-freedom fixed-base models are also 
considered for comparison. In this framework an analytical formulation 
for avoiding MCE is derived for MDOF systems, and, then, extended to 
3DOF IIS models. 
 
Chapter 7: “IIS for retrofit” – This chapter explores the effectiveness and the 
feasibility of the inter-story isolation system (IIS) as a seismic retrofit 
strategy; a case study is selected for this purpose, an existing three-story 
masonry structure that has large safety margin with respect to gravity load 
condition. Firstly, a simplified 3DOF parametric analysis is proposed to 
identify the optimal superstructure isolated configuration, i.e. the one that 
minimizes the seismic response. Hence, a 3D FEM model is adopted for 
the detailed analysis of the IIS structure, carrying out linear and non-linear 
dynamic analyses. Finally, a comparison between the results obtained with 
the simplified 3DOF model and the more refined 3D FEM model is 
provided.  
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Chapter 8: “Conclusions” – This chapter has assessed the effectiveness and 
the feasibility of the inter-story isolation system on the basis of the 
literature review, the analysis of real applications of IIS, and the results of 
the parametric analyses carried out on new and existing buildings. 
 
Appendix A: “IIS for retrofit” – This appendix provides insights about 
Chapter 7 in terms of modal, response spectrum and time history analyses, 
carried out on simplified 3DOF IIS models.  
 
Appendix B: “Design implications” – This appendix shows the main design 
implications for IIS buildings. 
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Equation Chapter (Next) Section 2 

2. BIS, TMD, IIS – THEORETICAL BASIS  

2.1. INTRODUCTION 

A IIS structure can be ideally divided in two portions, an upper and lower 
structure above and below the isolation layer. 
Shifting the position of the isolation layer from the base to a generic level 
along the height of the building, it is quite intuitive that the building 
substructure, with its own flexibility, may affect the response of the 
isolated superstructure. 
From a dynamic point of view, the flexible interface combines seismic 
isolation and mass damping strategies: isolation reduces input energy 
transmitted to the structure by lengthening its fundamental period; mass 
damping reduces the response dynamics of the structure by transferring 
vibration energy from the main structure to the auxiliary mass, called to 
dissipate it. 
Therefore, on the one hand the isolation interface acts as a filter for the 
inertia forces rising to the upper structure, on the other the lower structure 
shows a reduced response thanks to the mass damping effect exerted by 
the isolated superstructure. 
In the scientific literature, the IIS technique is addressed by focusing both 
on the aspects of seismic isolation and mass damping, using simplified 
lumped 2 degrees-of-freedom models, 1D-3DOF IIS ([Villaverde 1985-
2002, Sadek et al. 1999, Murakami 2001, Murakami et a. 2001, Murakami 
& Sueoka, Qi et al. 2006, Ping et al 2008-2016, De Angelis et al. 2012, 
Moutinho 2012, Chey et al.2013, Reggio & De Angelis 2015, Zhou et al. 
2016]), and 3 degrees-of-freedom models, 1D-3DOF IIS, ([Kobayashi & 
Koh 2008, Wang et al. 2011, 2012a-b, 2013, Moriizumi & Kobayashi 
2012]). 
The 1D-2DOF IIS models are often based on the premise that the isolated 
superstructure behaves as a rigid body under earthquake excitations. This 
assumption is considered accurate when the flexibility of the isolated 
portion is mainly concentrated at the isolation layer; and the upper 
structure is very rigid, both with respect to the isolation system and to the 
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lower structure; consequently, the mass of the upper structure and 
isolation is characterized by one lumped mass supported by the isolator; 
the lower part of the structure below the isolation story is represented by 
another lumped mass.  
In order to capture the effect of the flexibility of the upper structure on 
the response of base isolated buildings Kelly developed a 2DOF (the so-
called “isolated single DOF”) where the isolation and the upper stories are 
modeled as two lumped-mass models [Kelly 1990]. Analogously, in a mid-
story isolation system, the representation of the upper part flexibility leads 
to a 3DOF model.  
In the present chapter, in order to grasp the dynamic behavior of mid-
story structures, base isolation (BIS), tuned mass damping (TMD) and 
intermediate isolation (IIS) strategies are firstly examined separately, and, 
secondly, the equations of motion of 2-3 DOF IIS models are compared 
to the corresponding ones of 2DOF base-isolated structure (2DOF BIS) 
and SDOF with TMD (SDOF + TMD). 

2.2. BASE ISOLATION SYSTEMS (BIS) 

2.2.1. Base Isolation Theory for 2DOF Systems 

An elementary analysis for the purpose of gaining insight into the behavior 
of isolated buildings is developed by J. M. Kelly [Kelly 1990, Naeim & 
Kelly 1999] using a simple linear two-degree of freedom (2DOF) model, 
with linear springs and linear viscous damping. Since most isolation 
systems are intrinsically non-linear this analysis will be only approximate 
for such systems, and effective stiffness and damping will have to be 
estimated by some equivalent linearization process. 
The kinematic parameters that characterize the absolute motion of the 
2DOF BIS model are (Fig. 2.1):  

gu : ground displacement 

bu : absolute displacement of the isolation system 
u : absolute displacement of the main structure 
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Fig. 2.1. 2DOF BIS model 

 

2.2.1.1. Governing equations of motion  

The absolute equations of motion are: 
 

   b b
mu c u u k u u        (2.1) 

   b b b b g b b g
mu m u c u u k u u         (2.2) 

 
It is convenient to work with relative displacements (Fig. 2.2): 
 

s b
v u u     (2.3) 

b b g
v u u     (2.4) 

 
from which the absolute displacement of the main structure can be written 
as: 
 

s b g
u v v u      (2.5) 

 
and the Eqs. (2.1) - (2.2) become: 
 

b s s s g
mv mv cv kv mu            (2.6) 

   b b s b b b b b g
m m v mv c v k v m m u           (2.7) 
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Fig. 2.2. Absolute vs. relative displacement 

 
It is easy to see that if the relative motion between the structure and the 

base, expressed by s
v , is suppressed, Eq. (2.7) becomes the equation of a 

single-degree-of-freedom equivalent to the base isolation system: 
 

b b b b b g
Mv c v k v Mu           (2.8) 

 
where M  is the total mass of the building plus that of the isolation layer 

(isolators and concrete slab). If b
v  is suppressed, the Eq. (2.6) becomes 

the usual equation for a fixed-base single-degree-of-freedom system: 
 

s s s g
mv cv kv mu           (2.9) 

2.2.1.2. Modal Analysis of the simplified model  

This two-degree-of-freedom system of equations can be solved directly or 
through modal decomposition. A modal analysis provides insight into the 
response of isolated systems and the results will be applicable to more 
elaborate models. To develop the modes, frequencies and participation 
factors of the system, the Eqs. (2.6) - (2.7) can be rewritten in the matrix 
form: 
 

g
u   Mv Cv Kv Mr    (2.10) 

 
where M , C  and K are the mass, damping and stiffness matrices 
respectively corresponding to 
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b b
M m c 0 k 0

;    ;     
m m 0 c 0 k

     
       
     

M C K    (2.11) 

 
and the vectors v  and r  are 
 

b

s

v 1
;     

v 0

   
    

  
v r    (2.12) 

 
Defining the mass ratio   as: 

 

b

m m

m m M
  


   (2.13) 

 

and the nominal frequencies s
ω , b

ω and the damping factors s
 , b

  

(respectively corresponding to the structure and the isolation system) as:  
 

b

s b

kk
ω , ω

m M
     (2.14) 

b

s b

s b

cc
ξ = , ξ =

2mω 2Mω
   (2.15) 

 
the following order of magnitude are assumed for:  

i) 
b

m m  (i.e.  <1) but of the same order of magnitude 

ii) s b
ω ω , and, defining 

2

b

s

ω
ε =

ω

 
 
 

, the ratio -2ε = O(10 ) ; 

iii) s
  and b

  of the same order of magnitude as ε . 

 
In terms of these quantities, the Eqs. (2.6) - (2.7) become: 
 

2

s b s s s s s g
v v 2 v v u          (2.16) 

2

s b b b b b b g
v v 2 v v u           (2.17) 

 
The eigenvalues and the eigenvectors problem associated to Eq. (2.10) is 



Chapter 2 

 

14 
 

 

  n2

n
 K M 0    (2.18) 

where 
n

  is the frequency of the system and  
T

n n n

b s
,     is the 

corresponding modal shape, with n = 1, 2. The characteristic equation for 
this system can be expressed in the following explicit polynomial form: 
 

   4 2 2 2 2 2

n b s n b s
1- γ ω - ω +ω ω +ω ω = 0      (2.19) 

 

The lower of the two roots of this equation ( 1
  and 2

 ) will be denoted 

by *

b
ω , which represents the shifted isolation frequency, and the higher 

root by *

s
ω , which represents the structural frequency modified by the 

presence of the isolation system. The exact roots are given by: 
 

 
     

1/2
2

2 2 2 2 2 2 2

1,2 s b s b s b

1
ω ω ω ω ω 4 1 γ ω ω

2 1 γ

           
  (2.20) 

 

Accounting for the fact that 
b s

ω  ω  ( -2ε = O(10 ) ) and rewriting the 

radical in the form: 
 

 
2 2

2
2 2 s b

s b 2 2

s b

ω ω
ω ω 1 4γ

ω ω

 
  

 
      (2.21) 

 

and then expanding this binomial series, the roots 2

1
ω and 2

2
 , of the same 

order of  , are given by:  
 

 
2

2 *2 2 2b

1 b b b2

s

ω
ω ω ω 1 γ ω 1 γε

ω

 
     

 
    (2.22) 

 
2

2 *2 s

2 s

ω
ω = ω = 1+ γε

1- γ
      (2.23) 

 
In many cases it may be sufficiently accurate to take as approximations for 

*2

b
ω , *2

s
ω  the first terms: 
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*2 2

b b
ω ω        (2.24) 

 

2

*2 s

s

ω
ω

1 γ



       (2.25) 

 
This indicates that the isolation frequency is only slightly changed by 
flexibility in the structure (the change is of order ε ), while the structural 
frequency is significantly increased by the addiction of the base mass. The 
separation between the isolation frequency and the fixed-base structural 
frequency is increased by combining the two elements. 

The undamped natural modes of the system  
T

n n n

b s
,    with n 1,2 , are 

given by the two equations: 
 

   

   

2 2 n 2 n

n b b n s

2 n 2 2 n

n b n b s

ω ω γω 0

or

ω ω ω 0

   

 

 

    

      (2.26) 

 

in which the roots 2

n
ω  ( 2 *2

1 b
ω ω and 2 *2

2 s
   ) are computed by Eqs. (2.22) 

- (2.23). 

The first mode shape 


 , setting 1

b
1   and retaining terms of order  , is 

given by: 
 

1

ε

 
  
 

         (2.27) 

 

Analogously, the second mode 


  is: 

 

 

1

1
1 1 γ ε

γ

 
 

  
     

 

       (2.28) 

 

These are sketched in Fig. 2.3 and show that 


  is approximately a rigid 

structure mode, whereas 


  involves both structural deformation and 
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isolation system deformation. The displacement of the top of the structure 
is of the same order as the base displacement, but opposite direction. 

Considering -2ε = O(10 ) , the eigenvectors have the following approximate 

expression:  
 

2,
1 1

0 1 γ

   
   

   

        (2.29) 

 

 
Fig. 2.3. Mode Shapes of the 2DOF BIS model 

 

The vectors 


  and 


  form a complete base and they are used to 

uncouple the equations of motion (2.10), writing 
 

b

1 2

s

v
q q

v

 
   
 

v
          (2.30) 

 

where 
1

q and 
2

q are the unknown time-dependent modal coefficients. 

From Eq. (2.30), the relative displacements b
v  and s

v  can be expressed 

in the scalar form as: 
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1 2

b 1 b 2 b
v q q          (2.31) 

1 2

s 1 s 2 s
v q q          (2.32) 

 
Substituting Eq. (2.30) into Eq. (2.10) and considering the orthogonality 

properties of the modal  matrix    
     with  respect  to the mass 

M , the stiffness K  and damping matrix C , we obtained 
 

* * *2

1 b b 1 b 1 1 g
+ 2ω ξ q +ω q = -Lq u       (2.33) 

* * *2

2 s s 2 s 2 2 g
+ 2ω ξ q +ω q = -Lq u       (2.34) 

 
where it is implicitly assumed that the damping in the system is light 
enough to retain the orthogonality of the modes.  
In these equations the following notations are used: 
 

n n n n n

* * *2

n n nn n n n nn n
2 , , L

  

  

    

       
    

C Mr

M

K
   (2.35) 

 

with *

n
 and 

n
L the damping ratio and the participation factor of the n-th 

mode, respectively. 

The computation of the first participating factor 
1

L  involves the following 

matrix multiplications: 
 

 T

1 1

M m 1
L m 1 M m

m m 0


   
        

   

1
Mr     (2.36) 

where 

 T 2

1

M m 1
m 1 M 2m m

m m
 

   
         

   
1 1

M    (2.37) 

 
Retaining only terms to order  , it is obtained: 
 

1
L 1 γ           (2.38) 

For the second participation factor 2
L , the same computations give: 
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T

2 2

2L m M ma  Mr       (2.39) 

where 
 

2T 2

2

2m M 2ma ma    M      (2.40) 

 
and 

 
1

a 1 1 γ ε
γ
             (2.41) 

Since 
m

M
   

 

 2 2
L m M 1 γ ε         (2.42) 

 
and 

   
2

1 γ 1 2 1 γ ε
m M

γ

    
       (2.43) 

Thus 
 

2
L γε         (2.44) 

 
Together with the shift in the frequencies, these results reveal why the 
seismic isolation system is effective.  

The participation factor for the first mode, 1L , is, according to the 
assumptions on the order of magnitude of γ and  , almost equal to 1.  

The participation factor for the second mode, 2L , which is the mode that 
involves structural deformation, is of order  , and if the original 

frequencies bω and sω are well separated , this could be very small. In 
addition, the frequency of this mode is shifted to a higher value than the 
original-fixed base frequency and if the earthquake input has large spectral 
accelerations at the original structural frequency, shifting it higher could 
shift it out of the range of strong earthquake motion.  
However, since the participation factor for this mode is very small, this 

mode is orthogonal to the earthquake input characterized by guMr . This 

means that even if earthquake does have energy at this frequency, the 
ground motion will not be transmitted into the structure. This is the real 
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effectiveness of a seismic isolation system. It does not absorb energy; it 
deflects energy through this property of orthogonality. 
 
Energy absorption is of course an important part of the behavior of an 
isolation system and in this simple model it is represented by linear viscous 
damping considering uncoupled equations of motion.  

For what concerns the damping factors *

b
  and *

s
 , respectively 

corresponding to the isolation system and the main mass, it is possible to 
make very good estimates in each element when treated separately.  
An isolation system, composed by laminated rubber bearings, will provide 
a degree of damping in the range of 10 ÷ 20% of the critical damping. The 
structure will have somewhat less, probably of the order of 2%. In 
conventional structural analyses it is generally assumed that the damping 
in a structure will be about 5% of critical damping, assuming some degree 
of damage in the design. 
A base-isolated system aims to reduce the forces experienced by the 
structure to such a level that no damage will occur to the structure or to 
nonstructural elements such as partitions, thus, a lower value for the 
structural damping is appropriate. 
Normally, this large difference in damping between the two components 
would lead to a coupling of the equations of motion, and a complex modal 
analysis should be used to correctly analyze the system; however, using 
such an approach, the simplicity that allow to develop an intuitive grasp 
of the system’s behavior could be lost. Therefore, an approximate form 

will be used by neglecting the off-diagonal terms of n n
C



  , which would 

couple the equations of motion. 
From Eqs. (2.22), (2.23) and (2.35), recalling that: 
 

 

 

1/2
n n

* 1/2 * * *

b b s s n n1/2 n n

1+ γε
ω = ω (1- γε) , ω = ω , 2ω ξ

1- γ


C




 

  
 

 

and utilizing the previous results for 
1

m  and 2
m , it is found that: 

 
* *

b b b b
2ω ξ = 2ω ξ (1- 2γε)        (2.45) 

* * s s b b

s s

2ω ξ + γ2ω ξ
2ω ξ =

1- γ
      (2.46) 
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Thus, the damping factors *

b
  and *

s
 are given by: 

 

 
b*

b b1/2

ξ 1- 2γε 3
ξ = = ξ 1- γε

21- γε

 
 
 

      (2.47) 

   

1/2

* s b

s 1/2 1/2

ξ ξ ε 1
ξ = + γ 1- γε

21- γ 1- γ

   
        

     (2.48) 

 
Combining the structure and the isolation system, from Eq. (2.47) can be 

noticed that the damping *

b
  is almost equal to 

b
 ; conversely, Eq. (2.48) 

shows that the structural damping is increased by the damping in the 

bearings to the order of 1/2ε ; the product of 
b
  and 1/2ε  may be a 

significant addiction to the term 
s
  and could be important if 

s
  is very 

small. This shows that high damping in the rubber bearings can provide 
significant damping to the structural mode. 

2.2.1.3. Response to sinusoidal input 

With these results for 
1

L , 
2

L , 
1
 , 

2
 , we are able to estimate the response 

of the system to any dynamic input. Let us consider first the response to 
sinusoidal input and look at the amplification factor defined by the 
magnitude of the ratio of relative displacement to ground displacement. 
We denote: 
 

s b

s b

g g

v v
A ; A

ˆ ˆu u
        (2.49) 

 

  
Fig. 2.4. Mode Shapes of the 2DOF BIS model 

 

m

k, c

k, c

mb

kb, cb

m

ISOLATOR
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and set:  
 

2 i t

g g
ˆu = u e          (2.50) 

 
in the modal equations, considering the sinusoidal force periodic of . We 
then have: 
 

   

2 2

1 2s 1 2

s s s* 2 2 * * *2 2 * *

g b b b s s s

v L L
A = = +

û ω - + i2ω ξ ω - + i2ω ξ

 
 

   
  (2.51) 

 
and: 
 

   

2 2

1 2b 1 2

b b b* 2 2 * * *2 2 * *

g b b b s s s

v L L
A = = +

û ω - + i2ω ξ ω - + i2ω ξ

 
 

   
  (2.52) 

 
Although these expressions can be written out as algebraic functions of 
  without imaginary parts, it is more instructive to look at the form that 
they take for specific values of  . We focus the attention to three 

frequencies, namely the fixed-base frequency 
s

ω  and the two isolated 

frequencies *

b
ω , *

s
ω .  

When *

b
= ω , we have: 

 

   

 

* 2* 2
bb

s * 2 * *2 * 2 * * *

b b s b s b s

1- 1- γ ε γεω1- γε ω 1
A = ε -

i2ω ξ γ ω -ω + i2ω ω ξ

       (2.53) 

 
Retaining terms to the first order in  , this gives: 
 

s *

b

ε
A =

2ξ
        (2.54) 

 
For the amplification of the base motion we have: 
 



Chapter 2 

 

22 
 

 

2

b *

b

1- γε γε
A = +

2ξ 1- ε + iε
      (2.55) 

 
which, to the same order in ε , is: 
 

b

b
b

1- γε 1 1
A = = 1+ γε

3 2ξ 2
2ξ 1- γε

2

 
 

   
 
 

     (2.56) 

 

When *

s
ω = ω  we find (by means of the same manipulations) that: 

 

  s *

s

ε
A = 1- 1- γ ε

2ξ
       (2.57) 

 
and: 
 

 

2 2

b 2
*

s

1 γ ε
A = 1+

2 2ξ
       (2.58) 

 
The values of the amplification factors A , 

b
A , 

s
A , for the forcing 

frequency   respectively equal to the two isolated frequencies *

b
ω , *

s
ω , 

and the fixed-base frequency 
s

ω  are provided in Tab. 2.1; in addition, a 

schematic representation of the three conditions by comparing the fixed-
base and the base-isolated structures, is depicted in Fig. 2.5. 
 

Table 2.1. Order of magnitude for the structural response 

  A  
s

A  
b

A  
*

b
ω    1  1 /   

*

s
ω  1  1  1  

s
ω  1 /     1  
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Fig. 2.5. Amplification factors: (a) 
*

b
= ω , (b) 

*

s
= ω , (c) 

s
= ω  

 
From Fig. 2.5 and Tab. 2.1 can be observed that, the most favorable 
situation corresponds to a harmonic motion close to the building 
frequency

s
ω . In this case, the amplification factor 

s
A  for an isolated 

building is   which is much lower than the one corresponding to a fixed-
base structure, equal to 1/  . The amplification factor for the base is 

b
A

which in this case has an order of magnitude 1. Furthermore, the 
amplification factors 

b
A  and 

s
A corresponding to the second mode also 

have an order of magnitude 1.  
The exact expressions for all values of   are: 
 

   

   

1/2

2 2
*2 * 2 2 * * * *

s b s s b b2

s 2 2
* 2 2 * 2 2 * 2 *2 2 *2 2 *2

b b b s s s

ω -ω + 2ω ξ - 2ω ξ
A = ε

ω - + 4ω ξ ω - + 4ω ξ

 
 

                 

(2.59) 

 

k, c

m

k, c

m

k, c

m

ISOLATOR
mb

m

kb, cb

k, c

ISOLATOR
mb

m

kb, cb

k, c

ISOLATOR
mb

m

kb, cb

k, c
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   

   

1/2

2 2
*2 * 2 2 * * * *

s b s s b b2

b 2 2
* 2 2 * 2 2 * 2 *2 2 *2 2 *2

b b b s s s

ω -ω + γε 2ω ξ - 2ω ξ
A =

ω - + 4ω ξ ω - + 4ω ξ

 
 

                 

(2.60) 

 
These expression have been evaluated for a few choices of the parameters 
 ,  , 

b
 , 

s
  and the results are shown in Fig. 2.6. 

 

 

 
Fig. 2.6. Amplification Factors for the 2DOF BIS subjected to sinusoidal 
excitation  

2.2.1.4. Response to a generic seismic input 

If the time history of the ground motion g
u (t)  is known, the modal 

components 
1

q  and 
2

q can be computed from: 

 

(Ω/ωs) 
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 
* *
b b

t
ω τ *1

1 g b*

0b

L
q u t τ e sinω τdτ

ω

 
        (2.61) 

 
* *
s s

t
ω τ *2

2 g s*

0s

L
q u t τ e sinω τdτ

ω

 
        (2.62) 

 
and estimates of the maximum values of 

1
q  and 

2
q are given by: 

 

 * *

1 1 D b bmax
q L S ω ,ξ        (2.63) 

 * *

2 2 D s smax
q L S ω ,ξ        (2.64) 

 

where  D
S ω,ξ  is the displacement response spectrum for the ground 

motion 
g

u (t)  at frequency ω and the damping factor  . 

Generally, for design purposes, a design damped acceleration response 
spectrum is given. In this case, the predicted maximum displacements will 
be: 
 

    
1/2

2 2
1 2

s s 1,max s 2,maxmax
v q q        (2.65) 

    
1/2

2 2
1 2

b b 1,max b 2,maxmax
v q q        (2.66) 

 
where now: 
 

 * *

1,max 1 A b b*2

b

1
q L S ω ,ξ

ω
       (2.67) 

 * *

2,max 1 A s s*2

s

1
q L S ω ,ξ

ω
       (2.68) 

 

with  A
S ω,ξ  the acceleration design spectrum at ω  and  . Thus, 

substituting Eqs. (2.67) - (2.68) into Eqs. (2.65) - (2.66), it is obtained: 
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 
 

  
 

1/2
2 * * 2 * *

22 A b b A s s2 2 2

s *4 2 *4max

b s

S ω ,ξ S ω ,ξ1
v ε 1 γε 1 1 γ ε γ ε

ω γ ω

     
        
        

 

        (2.69) 

 
   

1/2
2 * * 2 * *

2 A b b A s s2 2

b *4 *4max

b s

S ω ,ξ S ω ,ξ
v 1 γε γ ε

ω ω

     
      
        

  (2.70) 

 
Many design spectra are approximately constant velocity spectra and in 
such cases the values of 

A
S  for different frequencies, neglecting variations 

due to damping, are related by: 
 

 A V
S ω,β ωS        (2.71) 

 
where 

V
S  is a constant. For such design spectra the maximum 

displacements are: 
 

    
 

1/2
*2 *2

22 b s b V

s V*4 *4 2max

b s s

ω ω ω S
v ε 1 γε 1 1 γ ε S

ω ω 1 γ ω

 
     

 
  (2.72) 

   
1/2

*2 *2
2 2b s V

b V D b b*4 *4max

b s b

ω ω S
v 1 γε γε S S ω ,ξ

ω ω ω

 
    
 

   (2.73) 

 
The design base shear coefficient 

s
C  is defined by: 

 

2s s

s s s

k v
C ω v

m
         (2.74) 

 
For a fixed-base structure this is: 
 

   2

s s D b b A b b
C ω S ω ,ξ S ω ,ξ       (2.75) 

 
When the structure is isolated this becomes: 
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       
222 2 * * 2 2 * *

A b b A s s2

s s *4 *4

b s

ε 1 γε S ω ,ξ ε 1 1 γ ε S ω ,ξ
C ω

ω ω

      
  

  

 (2.76) 

 
Substituting Eqs. (2.22) - (2.23) into Eq. (2.76), the base shear coefficient 
for the isolated structure assumes the form: 
 

   
 

   
 

 

        

22 2 * * 2 * *

A b b A s s

s 2 22

2

22 * * 2 2 * *

A b b A s s

1 γε S ω ,ξ 1 1 γ ε S ω ,ξ
C ε

1 γε ε 1 γε

1 γ

S ω ,ξ ε 1 γ 1 2ε S ω ,ξ

 
 

     
   

  
 

 

   

  (2.77) 

 

Although the second term is multiplied by 2ε , it can be of the same order 
as the first term. This will be the case if the spectrum is a constant 
displacement spectrum. If the spectrum is either constant velocity or 
constant acceleration, the second term is negligible. These results indicate 
that for small ε and a typical design spectrum, the isolation system can be 
designed at least in the initial phase for a relative base displacement 

 D b b
S ω ,ξ  and the building for a base shear coefficient of  A b b

S ω ,ξ . The 

reduction in base shear as compared with a fixed-base structure where 

 s A s s
C S ω ,ξ  is given by: 

 

 

 
A b b

A s s

S ω ,ξ

S ω ,ξ
        (2.78) 

 
Which for a constant  velocity spectrum is 

b s
ω / ω  or  roughly of  order 

1/2ε , and this underestimates the reduction since 
b
ξ  will in general be 

larger than 
s
ξ . 

2.2.1.5. Isolation of very flexible structures 

The isolation of very flexible structure is here proposed for both new and 
existing buildings; the first case refers to IIS applications while the second 
one to both BIS and IIS technologies. 
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In new IIS applications the flexibility of the upper structure may affects 
the response of the overall structure leading to a possible detrimental 
amplification of the response of both upper and lower structures (see 
Chapter 6); in retrofit applications the isolation is proposed for existing 
buildings that are deficient in seismic resistance but with relatively long 
fixed-base periods. 
In particular, the retrofit by means of inter-story isolation is realized 
introducing the isolation interface between the original configuration and 
its vertical addition, leading to a reduced response of the existing structure 
thanks to the mass damper effect exerted by the isolated upper structure; 
in addition, the isolation acts as a filter for the inertial forces transmitted 
to the upper structure, thanks to the isolation effect (see Chapter 7). 
On the contrary, in retrofit BIS applications, a cut at the base of pillars is 
made to insert the isolation layer; a reduction in the seismic load is 
provided due to the isolation effect. 
In order to illustrate both the benefits and limitations of this approach, it 
is useful to consider the special case when both the fixed-base period, 

s
ω

, and the isolation frequency, 
b

ω , are the same. In this case, the 

characteristic equation for 
n

ω in Eq. (2.19) for the two frequencies of the 

composite system becomes 
 

  4 2 2 4

n 0 n 0
1- γ ω - 2ω ω +ω = 0       (2.79) 

 
where 

0 b s
ω = ω = ω . 

The two frequencies are given by: 
 

2
1/2

* 2

b 0

1- γ
ω = ω

1- γ
       (2.80) 

2
1/2

* 2

s 0

1+ γ
ω = ω

1- γ
       (2.81) 

 
Combining the structure and the isolation system, from Eq. (2.80) can be 

noticed that the frequency *

b
ω  is larger than

b
ω ; conversely, Eq. (2.81) 

shows that the structural frequency is lower than the frequency 
s

ω . 

The mode shapes 
  and 

 , corresponding to these are 
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11 γ

γγ

1 1

γ



   
   

    
  

 





   (2.82) 

 

 
1 γ 1

γγ

1

γ

1



   
 





   
    
   

  




   (2.83) 

 
These are sketched in Fig. 2.7 and show that in both the mode shapes the 
relative modal displacement of the structure with respect to the isolation 

layer is equal to -1/2γ . 

 
Fig. 2.7. Mode Shapes of the 2DOF BIS model with isolation of very flexible 
structure 

 
The participation factors for each mode, calculated from Eq.(2.35), with 

the appropriate results for 
n

ω and
n ,  are: 
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1

1
L

2
         (2.84) 

2

1
L

2
         (2.85) 

 
and, since the higher mode participates with the same fraction of mass 
than the fundamental mode, its effect is not negligible. 
Using the same approximations for modal damping as given by Eqs. (2.47) 
and (2.48), the damping factors for the two modes are: 
 

1/2

* b 2

b 1/2

ξ + ξ 1
ξ =

2 1- γ

 
 
 

      (2.86) 

1/2

* b s

s 1/2

ξ + ξ 1
ξ =

2 1+ γ

 
 
 

      (2.87) 

 
Combining the structure and the isolation system, from Eq. (2.86) can be 

noticed that the damping *

b
  is larger than b

 ; conversely, Eq. (2.87) 

shows that the structural damping is almost equal to the damping in the 

bearings to the order of 1/2ε ; the product of b
  and 1/2ε  may be a 

significant addiction to the term s
  and could be important if s

  is very 

small. This shows that high damping in the rubber bearings can provide 
significant damping to the structural mode. 
 

2.2.1.6. Rigid structure vs. Flexible structure with respect to 
the isolation system 

A comparison between rigid and flexible structures with respect to the 
isolation system is proposed in the following numerical example. 
 

• Rigid structure with respect to the isolation system – I = 5 

Data: 

s
T 0.4 s;  

s
ω 15.708 rad / s   

b
T 2 s;   

b
ω 3.142 rad / s   
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b

s b

m
0.6

m m
  


 

s
0.02    

b
0.10   

 
Results: 
According to the data, the drift ratio,  , is: 
 

2 2 2 2

b s

s b

T 1 0.4
0.04

T I 2

       
            

       
  

 
and, a period ratio I, defined as the ratio of the nominal period of the 
isolation system, 

b
T , to the nominal period of the structure, 

s
T , is equal 

to: 
 

b

s

T 2
I 5

T 0.4
     

 
From Eqs. (2.22) and (2.23), the circular frequencies of the base isolated 
structure are: 
 

*

1 b b 1
ω ω ω 1 γε 3.142 1 0.6 0.04 3.104 rad / s; T 2.024 s         

*

2 s s s
ω ω ω ω 15.7

1+ γε 1+ γε 1+ 0.6 0.04

1- γ 1- γ 1
08 25.133 rad / s

- 0.6
; 


    

2
T 0.25 s   

 
From Eqs. (2.47) and (2.48), the damping ratios of the base isolated 
structure are: 
 

*

1 b b

3 3
ξ ξ = ξ 1- γε 0.10 1- 0.6 0.04 0.0964

2 2

   
      

   
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   

 

1/2

* s b

2 s 1/2 1/2

1/2

1/2

ξ ξ ε 1
ξ ξ = + γ 1- γε

21- γ 1- γ

0.02 + 0.6 0.10 0.04 1
           1- 0.6 0.04 0.05

21- 0.6

   
        

    
         

 

 
Therefore, combining the isolation system and the structure it can be 
noticed that: the first period 

1
T increases almost of 1.2% with respect to 

the nominal isolation period
b

T , while the second period 
2

T  decreases of 

the 37.5% with respect to the nominal period of the structure
s

T ; the first 

damping ratio 
1
 decreases of the 3.6% with respect to the nominal 

isolation period
b
 , while the second period 

2
  increases of the 150% with 

respect to the nominal period of the structure
s
 .  

• Flexible structure with respect to the isolation system – I = 5 

Data: 

s b
T T 2.0 s;   

s b
ω ω 3.142 rad / s    

b

s b

m
0.6

m m
  


 

s
0.02    

b
0.10   

 
Results: 
According to the data, the drift and period ratios,  and I, are: 
 

2 2 2 2

b s

s b

b

s

T 1 2
1

T I 2

T 2
I 1

T 2

       
            

       

  

  

 
It is worth noticing that when the structure has the same flexibility of the 
isolation system, the drift and isolation periods are equal to 1. 
From Eqs. (2.80) and (2.81), the circular frequencies of the base isolated 
structure are: 
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1/2 1/2

*

1 b 0 1

1- γ 1- 0.6
ω ω = ω 3.142 2.359 rad / s; T 2.663 s

1- γ 1- 0.6
     

1/2 1/2

*

2 s 0 2

1+ γ 1+ 0.6
ω ω = ω 3.142 6.618 rad / s; T 0.949 s

1- γ 1- 0.6
     

From Eqs. (2.86) and (2.87), the damping ratios of the base isolated 
structure are: 
 

1/2 1/2

* s b

1 b 1/2 1/2

ξ + ξ 1 0.02 0.10 1
ξ ξ = 0.126

2 1- γ 2 1- 0.6

    
     

  
 

1/2 1/2

* s b

1 b 1/2 1/2

ξ + ξ 1 0.02 0.10 1
ξ ξ = 0.045

2 1+ γ 2 1+ 0.6

    
     

  
 

 
Therefore, combining the isolation system and the structure it can be 
noticed that: the first period 

1
T increases almost of 33.1% with respect to 

the nominal isolation period
b

T , while the second period 
2

T  decreases of 

the 52.5% with respect to the nominal period of the structure
s

T ; the first 

damping ratio 
1
 increases of the 26% with respect to the nominal 

isolation period
b
 , while the second period 

2
  increases of the 125% with 

respect to the nominal period of the structure
s
 .  

 
With reference to the above, the drift ratio   is inverse proportional to the 
isolation ratio I, but when the structure possesses the same flexibility of 
the isolation,  and I are equal. 
Looking at the periods of the rigid and flexible structures, the first period 
is respectively almost equal (2.026 s), and larger than (2.664 s), the nominal 
isolation period (2.0 s); the second period in both cases is less than the 
nominal structural period (0.25 s vs. 0.4s and 0.949 s vs. 2 s). 
Instead, considering the damping ratios of the rigid and flexible structures, 
the first damping ratio is respectively almost equal (0.096), and larger than 
(0.123), the isolation damping ratio (0.1); the second damping ratio in both 
cases is larger than the structural damping ratio (0.05 s and 0.045 vs. 0.02). 
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2.2.2. Base Isolation Theory for MDOF Systems 

The foregoing two-degree-of-freedom analysis of a simple linear model 
can be applied to the case of a building with several stories. The structural 

system of this building may be represented by a mass matrix sM , a 

damping matrix sC , and a stiffness matrix sK . If the structure were 

conventionally based, the relative displacement su  of each degree of 
freedom with respect to the ground would be given by: 
 

s s s s s s s s gu   M u C u K u M r       (2.88) 

 

Where sr  is a vector that couples each degree of freedom to the ground 
motion. When this structural model is superposed on a base isolation 
system with base mass 

b
m , stiffness 

b
k  and damping 

b
c , this equation is 

replaced by: 
 

 s s s s s s s s g bu v    M v C v K v M r      (2.89) 

 
where 

b
v  is the relative displacement of the base slab to the ground. The 

overall equation of motion for the combined building and base slab is: 
 

T
s s s s g s g b g b b b b b( ) m (u v ) c v k v 0      r M v r v r u    (2.90) 

 
which can be written in the form: 
 

   T
s s s b b b b b b b gm m v c v k v m m u    r M v    (2.91) 

 

In this equation we have identified T
s s sr M r  as the total mass of the 

building so that 
b

m m  is the total mass carried on the isolation system. 

The matrix form of these equations is: 
 

g
u   Mv Cv Kv Mr       (2.92) 

 
where: 
 

T
bb s s

ss s s

c 0m m
;

   
    

  

r M
M C

0 CM r M
    (2.93) 
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and: 
 

b

s

k 0 1
;

   
    
   

K r
0 K 0

      (2.94) 

 
with: 
 

b

s

v 
  
 

v
v

        (2.95) 

 
The natural modes of the fixed-base structure are assumed known and 

denoted by i

s
  where i=1 to N. in terms of these, the displacement of each 

degree of freedom of the superstructure can represented as: 
 

N
i

s s,i s
i=1

= q v         (2.96) 

 

The natural frequencies 2

s,n
ω  are given by: 

 
n 2 n

s s s,n s s
ω = M K        (2.97) 

 

and we assume that n m

s s s
 C  = 0 if n ≠ m. 

The matrix equations of motion reduce to the N+1 equations: 
 

   T i

s s s s,i b b b b b b b g
q m m v c v k v m m u     r M    (2.98) 

 
and: 
 

2

s,i s,i s,i s,i s,i s,i s,i g b
q 2ω q ω q L (u v ), i=1  Nξ to        (2.99) 

 

where 
s,i

L  are the participation factors of the fixed-base modes, i.e.: 

 
i

s s s

T

s,i i i

s

T

s

L


 


M r

M
        (2.100) 
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The fixed-base modal masses, stiffnesses and damping constants are: 
 

i i i i i i

s,i s s s s,i s s s s,i s

T

s

T T

s
m ; k ; c       M K C    (2.101) 

 
and we can write these equations in the form: 
 

N
s,i 2

s,i b b b b b b g
i 1 b

s,i
m

 q + v + 2ω v ω v = -u
m +

L
ξ +

m

    (2.102) 

 
and: 
 

b s,i s,i s,i s,i s,i s,i s,i

2

,i gs
L + + ξ q +v ω q , i =1 toq 2ω = -  NL u    (2.103) 

 
Comparing the Eqs. (2.102) - (2.103) with the previous set of the 2DOF 
isolated model, i.e. Eqs. (2.17) - (2.16), the equations can be made to 

correspond if we replace bv  in the elementary analysis with 1 bL v , 
g

u  with 

1 g
L u , and  

 

b

m

m m
 


  

 
by: 
 

2

s,1 s,1

b

L m

m m
 


   (2.104) 

 
giving: 
 

s,1 2

s,

2

s,1

s,1 s,1 s,1 s,i b b b b b b g

b

1

m
q + v + 2ω v ω v

L
L = - u

m + m
ξ L + L L    (2.105) 

 

s,1 b s,1 s,1 s,1 s,1 s,1 s, s,

2

1 1 g
+ + ξ q +ω qL v q 2ω = -L u    (2.106) 

 

If this is done, 
s,1

q  will be given by the solution for . 

The basic results for the single-degree-of-freedom structure, namely that: 
s

v
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b A b b2max

b

1
v = S (ω ,ξ )

ω
       (2.107) 

 
and: 
 

2 * * 2 2 * * (1/2)

s A A s sb b
C = S (ω ,ξ ) + ε (1- γ)S (ω ,ξ )    (2.108) 

 
are replaced as follow. The maximum relative base displacement is given 
by: 
 

s,1 b s,1 A b b2max
b

1
L v = L S (ω ,ξ )

ω
      (2.109) 

 
and, since 

1
L  appears on both sides, the elementary result is uncharged. 

In order to obtain the base shear we have: 
 

1/2
2 2 2 * * 2

s,1 s,1

2 2 * *

A b b A s s

max *4 *4s

b s

,1

ε L S (ω ,ξ ) ε L S (ω ,ξ )
| q | = +

ω ω

  
 
  

   (2.110) 

 

where now *

s
ω , *

s
ξ  are calculated using the earlier transformations, and  

 

        (2.111) 

 

The relative displacement vector 
s

v  is given by: 

 
1

s s,1 s
= q v         (2.112) 

 
and the inertial force on each element, neglecting damping contributions, 
is 
 

1 1 2

s s s s,1 s s s,1 s s s,1
= = q = q ω F K v K M      (2.113) 

 
the total horizontal force on the superstructure is: 

2

b

2

1

ω
ε =

ω



Chapter 2 

 

38 
 

 
2

s s s,1 s

T

,1 s,1 1
q ω L mr F =       (2.114) 

 

and this is the turn expressed in terms of the base shear coefficient 
s

C  

through: 
 

s s s
C m  r F         (2.115) 

 
Thus: 

      

      

2
1/2

2s,1 2 2 2 2 2 * *

s s,1 A b b s,1 A b b

2
1/2

2s,1 s,1 2 2 2 * *

A b b A b b

s,1
L

C L S ω ,ξ 1 γ ε L S ω ,ξ
m

L
S ω ,ξ 1 γ ε S ,ξ

m

m

m
ω

   

  

  (2.116) 

 
In the standard equivalent lateral force procedure, the building considered 
as a fixed-base structure is designed to resist the lateral seismic base shear 

V  given by 
s

V C W , where W is the total weight. The value of 
s

C  is 

derived from a formula such as: 
 

v

s 2/3

1.2A S
C

RT
         (2.117) 

 

With 
v

A  a code-specified acceleration, S  a factor to represent soil type, 

T the period of the building and R  a ductility factor. Alternativy, the value 
of 

s
C  can be derived from a spectrum. 

The lateral seismic shear force 
x

F  at any level denoted by x is given by: 

 

xx V
F C V         (2.118) 

 
where 

x

j

x x

V j

i ii

W h
C

W h



       (2.119) 

 

In this formula the terms 
i

W , 
x

W are the weights of levels i-th and x, ih , 

xh  the heights of levels i and x, and j-th an exponent which is taken to be 
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1 if the period is 0.5 seconds or less and 2 if it is 2.5 seconds or more. This 
reflects the fact that a stiff, low building will respond predominantly in 
shear with a roughly linear first mode and a tall, flexible building in 
bending with a quadratic first mode. The exponent j may be selected by 
linear interpolation between 1 and 2. 
The seismic shear force at any level x is calculated from: 
 

N

x i
i 1

V F


         (2.120) 

 
For an isolated building the distribution of shear force should be given by 

the shape of the first isolated mode, namely  
T

1 1
1,εL  , or, if we neglect 

the ε  terms, the distribution shoul be uniform. Then: 
 

xx V
F C V         (2.121) 

 
and: 
 

x

x

V

W
C

W
         (2.122) 

 
and: 

1

N N N
i

x V s i
i x i x i x

W
V C V V C W

W  

          (2.123) 

 
Therefore, in design we estimate 

s
C  from the design spectrum and design 

the superstructure at each level for a shear force equal to 
s

C  ties the weight 

above. If appropriate, the ductility factor R can be taken into account, but 
the reduction factor varies from 1 to 8 depending in the structural system 
used and represents the intuitive feeling that many structural forms have 
substantial reserves of strength beyond their elasticity capacity. 
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2.3. TUNED MASS DAMPER SYSTEMS (TMD) 

2.3.1. Tuned Mass Damper Theory for SDOF Systems 

2.3.1.1. Undamped Structure: Undamped TMD 

Fig. 2.8 shows an undamped SDOF + TMD model composed by a main 
system with a mass m  and a spring stiffness k , and a tuned mass damper 
attached to the primary mass with a mass 

d
m and a stiffness 

d
k . 

The various displacement measures are:
g

u , the absolute ground motion; 

s
v , the relative motion  between the primary mass and  the ground; and 

d
v , the relative displacement between the damper and the primary mass.  

Considering the primary mass subjected to both external forcing and 
ground motion, the governing equations take the form 
 

d d s d d d g
m (v v ) k v m u          (2.124) 

s s d d g
mv kv k v mu p           (2.125) 

 

where 
g

u is the absolute ground acceleration and p  is the force loading 

applied to the primary mass. 
 

 
Fig. 2.8. Undamped SDOF system coupled with an undamped TMD system 

 

Considering both excitations periodic, of frequency  , i.e.: 
 

g g
ˆu u sin t          (2.126) 

ˆp psin t          (2.127) 
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expressing the response as 
 

s s
ˆv v sin t          (2.128) 

d d
ˆv v sin t          (2.129) 

 
and substituting for these variables, the equilibrium equations are 
transformed into: 
 

 2 2

d d d d s d g
ˆˆ ˆm k v m v m u            (2.130) 

 2

d d s g
ˆ ˆˆ ˆk v m k v mu p             (2.131) 

 
The solutions for 

s
v̂ and 

d
v̂ are given by 

 
2 2

gd d

s

1 1

ˆmuˆ 1- ρ 1+ - ρp
v̂ = -

k D k D

   
   
   

     (2.132) 

2
g

d

d 1 d 1

ˆmup̂ ρ
v̂ = -

k D k D

     
   
   

      (2.133) 

 
where 
 

  2 2 2

1 d
D = 1-ρ 1-ρ - ρ        (2.134) 

 
 is the mass ratio equal to 
 

d
m

m
          (2.135) 

 
 , 

d
  are dimensionless frequency ratios, given by  

 

s

Ω Ω
ρ = =

ω k m
       (2.136) 

d

d d d

Ω Ω
ρ = =

ω k m
       (2.137) 
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with 

s
ω  and 

d
ω  the frequencies of the primary mass and the absorber, 

respectively. 
Selecting the mass ratio and the damper frequency ratio such that 
 

2

d
1+ - ρ = 0         (2.138) 

 
reduces the solutions (2.132) and (2.133) to 
 

s

p̂
v̂

k
          (2.139) 

g2

d

d d

ˆmup̂
v̂ = - ρ +

k k
       (2.140) 

 
This choice isolates the primary mass from ground motion and reduces 
the response due to external force to the pseudo-static value p̂ / k . A 

typical range for   is 0.01 ÷ 0.1. Then, the optimal damper frequency is 
very close to the forcing frequency. The exact relationship follows from 
Eq. (2.138) and is given by: 
 

d opt

Ω
ω =

1+
       (2.141) 

 
The corresponding damper stiffness is 
 

 
2

d d dopt opt

Ωm
k = ω m =

1+




      (2.142) 

 
Finally, substituting for 

d
k , Eq. (2.140) takes the following form 

 

g

d 2

ûˆ1 p
v̂

k

  
  
  
 

       (2.143) 

 
One specifies the amount of relative displacement for the damper and 
determines  with Eq.(2.143). Given   and  , the stiffness is found 
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using Eq. (2.142). It should be noted that this stiffness applies for a 
particular forcing frequency. Once the mass damper properties are 
defined, Eqs. (2.132) and (2.133) can be used to determine the response 
for a different forcing frequency. The primary mass will move under ground 
motion excitation in this case. 

2.3.1.2. Undamped Structure: Damped TMD 

Fig. 2.9 shows an undamped SDOF + damped TMD model composed by 
a main system with a mass m  and a spring stiffness k , a tuned mass 
damper attached to the primary mass with a mass 

d
m , a stiffness 

d
k and a 

viscous damper 
d

c . 

 

 
Fig. 2.9. Undamped SDOF system coupled with a damped TMD system 

 

Considering the primary mass subjected to both external forcing p and 

ground motion 
g

u , the governing equations take the form 

 

d d s d d d d d g
m (v v ) c v k v m u          (2.144) 

s s d d d d g
mv kv c v k v mu p           (2.145) 

 
The inclusion of the damping terms in Eqs. (2.144) - (2.145) produces a 
phase shift between the period excitation and the response. It is 
convenient to work initially with the solution expressed in terms of 
complex quantities. The excitation is expressed as 
 

i t

g g
ˆu u e          (2.146) 

i tˆp pe          (2.147) 
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where g
û  and p̂ are real quantities. The response is taken as 

 
i t

s s
ˆv v e          (2.148) 

i t

d d
ˆv v e          (2.149) 

 
where the complex amplitudes, 

s
v̂  and 

d
v̂  are considered to be complex 

quantities. The real and the imaginary parts of 
g

u  correspond to cosine 

and sinusoidal input. Then, the corresponding solution is given by either 
the real (for cosine) or imaginary (for sine) parts of 

s
v  and 

d
v . Substituting 

Eqs. (2.148) - (2.149) in the set of governing equations and canceling i te   
from both sides results in 
 

 2 2

d d d d d s d g
ˆˆ ˆm ic k v m v m u            (2.150) 

   2

d d d s g
ˆ ˆˆ ˆic k v m k v mu p             (2.151) 

 
The solution of the governing equations is 
 

     g2 2 2 2

s d d

2 2

ˆmup̂
v̂ = f - ρ + i2ξ ρf - 1+ f - ρ + i2ξ ρf 1+

kD kD
     (2.152) 

2
g

d

2 2

ˆmup̂ρ
v̂ = -

kD kD
       (2.153) 

 
where 
 

    2 2 2 2 2 2

2 d
D = 1-ρ f - ρ - ρ f + i2ξ ρf 1- ρ 1+       (2.154) 

 
with 
 

d

s

ω
f =

ω
        (2.155) 

 
the frequency ratio between the mass damper and the main structure, and 
was defined earlier as the ratio of   to 

s
  (see Eq. (2.136)). 
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Converting the complex solutions to polar form leads to the following 
expressions 
 

1 2giδ iδ

s 1 2

ˆmup̂
v̂ = H e - H e

k k
      (2.156) 

3 3g-iδ -iδ

d 3 4

ˆmup̂
v̂ = H e - H e

k k
      (2.157) 

 

where the iH  factors define the amplification of the pseudo-static 
responses, and the  terms are the phase angles between the response and 

the excitation. The various iH  and i expressions are listed below 
 

   
2 22 2

d

1

2

f - ρ + 2ξ ρf
H =

D
      (2.158) 

   
2 2

2 2

d

2

2

1+ f - ρ + 2ξ ρf 1+
H =

D

      
    (2.159) 

2

3

2

ρ
H =

D
        (2.160) 

4

2

1
H =

D
        (2.161) 

    
2 2

2 2 2 2 2 2 2 2 2

2 d
D = 1-ρ f - ρ - ρ f + 4ξ ρ f 1- ρ 1+      

 (2.162) 

 
Also 
 

1 1 3
δ = α - δ         (2.163) 

2 2 3
δ = α - δ         (2.164) 

 

 

  

2

d

3 2 2 2 2 2

2ξ ρf 1- ρ 1+
tanδ =

1- ρ f - ρ - ρ f

  


     (2.165) 

d

1 2 2

2ξ ρf
tanα =

f - ρ
        (2.166) 
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 

 
d

2 2 2

2ξ ρf 1+
tanα =

1+ f - ρ




       (2.167) 

 
From Eqs. (2.158) - (2.159) can be seen that the amplification factors 

1
H  

and 
2

H  depend on four essential variables, i.e. , 
d
 , f  and  . 

In what follows, both  the solutions  corresponding  to  external  forcing 
(

1
H ) and ground motion (

2
H ) are examined and optimal values for the 

loading conditions are established. 
Figs. 2.10 - 2.11 shows the variation of the amplitudes 

1
H  and 

2
H  with 

the frequency ratio  for specific values of damper mass   and frequency 

ratio f , and various values of the damper damping ratio, 
d
 ; in particular, 

with dotted lines are depicted the curves with damping equal to 0 and  , 
with continuous lines are drown the curves with different not null 
damping values. 

 

 
 

Fig. 2.10. H1 vs. ρ [Den Hartog 1940] 

s
ρ = Ω ω   

d
0    

 

1/ 20

f 1

 


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Fig. 2.11. H2 vs. ρ [Connor & Laflamme 2014] 

 
From Figs. 2.10 - 2.11 the following observations can be made:  
for 

d
ξ = 0  the case of the damper absorber falls into the case of the 

undamped TMD and there are two infinite peaks located on each side of 
ρ =1 ;  

for 
d
ξ    the two masses are virtually damped together into a single 

degree of freedom system with a total mass 
d

m m and there is a single 

infinite peak located at ρ 1 ;  

damping factors in between 0 and   produce finite resonant peak; 
all the curves pass through the point P  and Q  independently by the 

damping. 
The values of 

d
  equal to 0 and   can be physically explained as follows 

[Den Hartog 1947]. “It was seen that damping energy is dissipated, i.e., 
converted into heat. When the damping force does considerable work, the 
amplitude remains small at resonance. This is a relation that holds for 
more complicated systems also. The work done by the damping force is 
given by the force times the displacements through which it operates. In 
our case the displacement is the relative motion between the two masses 
or also the extension of the damper spring.  
If 

d
ξ = 0 , the damping force is zero, no work is done, and hence the 

resonant amplitude is infinite. But when 
d
ξ   , the two masses are locked 

0.01

f 1

 



 

 

s
ρ = Ω ω   
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each other, their relative displacement is zero and again no work is done. 
Somewhere in between 0 and   there is a damping for which the product 
of damping force and displacement becomes a maximum, and then the 
resonant amplitude will be small.” 
 
The goal to be pursued is to reduce the resonant peak of the amplitude 
down to its lowest possible value.  

Since all the curves pass through the points P  and Q  independently on 

the damping value, the problem is solved by the calculation of their 
location. The most favorable curve is the one that passes with a horizontal 
tangent through the highest of the two fixed points P or Q. Therefore, the 
best obtainable resonant amplitude (at optimum damping) is the ordinate 
of that point. 
In addition, by changing the frequency ratio f of the damper with respect 

to the main system, P  and Q can be shifted up and down the curve for 

d
ξ = 0 . By changing f one point goes up and the other goes down.  

Clearly, the most favorable case is such that, first by a proper choice of f

the fixed points are adjusted to equal height, and second by a proper 
choice of 

d
  the curve is adjusted to pass with a horizontal tangent 

through one of them. 
 
From the above considerations, the amplification factors 

1
H  and 

2
H  can 

be written as  
 

2 2 2 2 2 2

1 d 2 1 2 d2

1,2 2 2 2 2 2 2

3 d 4 4 3 4 d

a + ξ a a / a + ξa
H = =

a + ξ a a a / a + ξ
     (2.168) 

 
where the a terms are functions of  ,   and f . Then, for 

1
H and 

2
H to 

be independent of 
d
 , the following condition must be satisfied 

 

31

2 4

aa

a a
        (2.169) 

 
The corresponding values for 

1
H  and 

2
H are 
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2

1,2 P,Q
4

a
H

a
         (2.170) 

 
Starting from this point, two loading conditions, i.e. sinusoidal force and 
harmonic ground motion, are separately examined as follows. 

Sinusoidal external force 

An in-depth treatment of the external forcing case is contained in Den 
Hartog’s text [Den Hartog 1940]; the main features are reported in the 
following. 
Substituting the 

1
a , 

2
a , 

3
a , 

4
a terms of the amplification factor 

1
H  for 

the sinusoidal external force, (2.158),  
 

 
2

2 2

1
a = f - ρ , 

2 2

2
a = 4ρ f , 

  
2

2 2 2 2 2

3
a = 1- ρ f - ρ - ρ f 

 
, 

 
2

2 2 2

4
a = 4ρ f 1-ρ 1+   , 

 
in Eq. (2.169), i.e.:  
 

 
  

 

2
2 2 2 2 2

2
2 2

2
2

1- ρ f - ρ - ρ f
f - ρ =

1- ρ 1+

 
 

  

    (2.171) 

 

a quadratic equation for 2ρ  is obtained: 

 
2 2 2

4 21+ f + f 2f
ρ - 2 ρ + = 0

2 + 2 +



 
     (2.172) 

 
The two positive roots, 

1
ρ and 

2
ρ , are the frequency ratios corresponding 

to the abscissa of the points P  and Q .  

Similarly, Eq. (2.170) expands to 
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 
1 P,Q 2

1,2

1
H

1 1


  
       (2.173) 

 
Optimal tuning frequency 
From Eq. (2.172), substituting the two roots into Eq. (2.173) and equating 
the two expressions, the same ordinate for the points P and Q is derived. 

By simple algebra manipulations, the optimal tuning frequency 
opt

f  is given by: 

opt

1
f

1


 
        (2.174) 

 
Thus, the corresponding optimum damper frequency is 
 

d opt sopt
ω = f ω         (2.175) 

 
and the corresponding roots and optimal amplification factors are 
 

1,2 opt

1
ρ 1

1 2

 
       

      (2.176) 

1 opt

2
H 1 


        (2.177) 

 

with coordinates of the fixed points equal to  1,2 opt 1 opt
P,Q ;H  . 

 
Optimal damping 

The optimal damping d opt
  at the optimal tuning frequency opt

f  can be 

derived substituting Eq. (2.174) into Eq. (2.158) and writing the resulting 
expression in terms of damping, as follows. 
 

    

 

22
2 2 2 2 2 2 2 2

12

d 2
2 2 2 2

1

f - ρ - H 1-ρ f - ρ - ρ f
ξ =

4f ρ 1- H ρ 1+

 
 

  

    (2.178) 
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Differentiating Eq. (2.178) with respect to  , thus finding the slope of the 

curve, and equating it to zero, for both the points P and Q, the expressions 
of 

d
 can be calculated, leading to: 

 

  
 

2

d 2

3 2

8 1

   
 

 
      (2.179) 

 

A useful average value between the two gives the optimal damping d opt
  

at the optimal tuning frequency: 
 

 
d 2opt

3

8 1


 

 
       (2.180) 

 
A graphical representation of the optimal condition is depicted in Fig. 
2.12.  
 

 
 

Fig. 2.12. H1 vs. ρ for fopt [Den Hartog 1940] 

Harmonic ground acceleration 

Substituting the 
1

a , 
2

a , 
3

a , 4
a terms of the amplification factor 

2
H for the 

harmonic ground acceleration, (2.159),  
 

 

0.25   
 

s
ρ = Ω ω   
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 
2

2 2

1
a = 1 f ρ     , 

 
22 2

2
a = 4ρ f 1  , 

  
2

2 2 2 2 2

3
a = 1- ρ f - ρ - ρ f 

 
, 

 
2

2 2 2

4
a = 4ρ f 1-ρ 1+   , 

 
in Eq. (2.169), i.e.:  
 

 

 

  

 

22 2 2 2 2 22 2

2 2
2

1,2

1 f f1 f

1 1 1

          


      

  (2.181) 

 

a quadratic equation for 
2ρ  is obtained: 

 

 4 2 2 21+ 0.5
- 1+ f + + f = 0

1+

 
    

     (2.182) 

 
The two positive roots, 

1
 and 

2
 , are the frequency ratios corresponding 

to the abscissa of the points P  and Q .  

Similarly, Eq. (2.170) expands to 
 

 
2 P,Q 2

1,2

1+
H =

1-ρ 1+



  

      (2.183) 

 
Optimal tuning frequency 
From Eq. (2.182), substituting the two roots into Eq. (2.183) and equating 
the two expressions, the same vertical coordinate for the points P and Q 
is derived. 

By simple algebra manipulations, the optimal tuning frequency opt
f  is given by: 

 

opt

1 0.5
f

1

 


 
       (2.184) 

 
Thus, the corresponding optimum damper frequency is 
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d opt sopt
ω = f ω         (2.185) 

 
and the corresponding roots and optimal amplification factors are 
 

1,2 opt

1 0.5

1

 
 

 
       (2.186) 

2 opt

1
H

0.5

 



       (2.187) 

 

with coordinates of the fixed points equal to  1,2 opt 2 opt
P,Q ;H  . 

 
Optimal damping 

The optimal damping d opt
  at the optimal tuning frequency 

opt
f  can be 

derived substituting Eq. (2.184) into Eq. (2.159) and writing the resulting 
expression in terms of damping.  
Differentiating this resulting expression with respect to  , thus finding 

the slope of the curve, and equating that slope to zero respectively for the 
point P and Q, the expressions of 

d
 can be calculated. 

The expression for the optimal damping at the optimal tuning frequency 
is 
 

 
  d opt

3 0.5

8 1 1 0.5

  
 

   
     (2.188) 

 

Figs 2.13 ÷ 2.18 show the variation of the optimal parameters (i.e.: 
opt

f , 

1,2 opt
 , d opt

 , 2 opt
H , 4 opt

H , 
4 2

H / H ) with the mass ratio,  .  

 



Chapter 2 

 

54 
 

 

Fig. 2.13. Optimum tuning frequency ratio, 
opt

f  [Connor & Laflamme 2014] 

 

 

Fig. 2.14. Input frequency ratios at which the response is independent of damping 
[Connor & Laflamme 2014] 

α 

α 
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Fig. 2.15. Optimal damping ratio for TMD [Connor & Laflamme 2014] 

 

 

Fig. 2.16. Maximum dynamic amplification factor for SDOF system (optimal 
tuning and damping) [Connor & Laflamme 2014] 

 

α 

α 
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Fig. 2.17. Maximum dynamic amplification factor for TMD [Connor & Laflamme 
2014] 

 

 

Fig. 2.18. Ratio of maximum TMD amplitude to maximum system amplitude 
[Connor & Laflamme 2014] 

 

α 

α 
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Lastly, response curve for a typical mass ratio,  = 0.01, and optimal 
tuning is plotted in Fig. 2.19.  
 

 

Fig. 2.19. H2 vs. ρ for fopt [Connor & Laflamme 2014] 

The response for no damper is also plotted in the graph. One observes 
that the effect of the damper is to limit the motion in a frequency range 
centered on the natural frequency of the primary mass and extending 

about 0.15 sω . Outside of this range, the motion is not significantly 
influenced by the damper. 
Since the maximum amplification for a damped SDOF system without a 
TMD, undergoing harmonic excitation, is given by [Chopra 2000]: 
 

max
2

1
H =

2ξ 1- ξ
       (2.189) 

 
considering that   is small, a reasonable approximation of (2.189) is 

 

max

1
H

2ξ
         (2.190) 

 
Expressing the optimal 

2
H  in a similar form provides a measure of the 

equivalent damping ratio 
e
ξ  for the primary mass, i.e.: 

s
ρ = Ω ω   

opt

0.01

f 0.9876

 


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e

2 opt

1

2H
          (2.191) 

 
Fig. 2.20 shows the variation of 

e
ξ  with the mass ratio  ; for example, 

according to the graph for a mass ratio of 0.02, 
e
ξ  is equivalent to about 

5% of damping in the primary system. 
 

 

Fig. 2.20. Equivalent damping ratio 
e
 for optimally tuned TMD [Connor & 

Laflamme 2014] 

2.3.1.3. Damped Structure: Damped TMD 

Real systems always contain some damping. Although an absorber is likely 
to be added only to a lightly damped system, assessing the effect of 
damping in the real system on the optimal tuning of the absorber is an 
important design consideration. 
Fig. 2.21 shows a damped SDOF + TMD model composed by a main 
system with a mass m , spring stiffness k  and viscous damper c , and a 
tuned mass damper attached to the primary mass, with a mass 

d
m , 

stiffness 
d

k and viscous damper 
d

c .  

α 
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Fig. 2.21. Damped SDOF system coupled with a damped TMD system 

 

Considering the system subjected to both external forcing and ground 
excitation, the equations of motions are 
 

d d s d d d d d g
m (v v ) c v k v m u          (2.192) 

s s s d d d d g
mv cv kv c v k v mu p           (2.193) 

 
Proceeding in the same way as for the undamped case (see Eqs. (2.146) ÷ 
(2.149)), the governing equations can be rewritten as 
 

 2 2

d d d d d s d g
ˆˆ ˆ-m Ω + ic Ω + k v -m Ω v = -m u     (2.194) 

   2

d d d s g
ˆ ˆˆ ˆ- ic Ω + k v + -mΩ + icΩ + k v = -mu + p    (2.195) 

 
and the solution is 
 

     g2 2 2 2

s d d

3 3

ˆmup̂
v̂ = f - ρ + i2ξ ρf - 1+ f - ρ + i2ξ ρf 1+

kD kD
     (2.196) 

 
2

g

d d

3 3

ˆmup̂ρ
v̂ = - 1+ i2ξ ρ

kD kD
      (2.197) 

 
where 
 

       2 2 2 2 2 2 2 2 2

3 s d d s
D = 1-ρ f - ρ - ρ f - 4ξ ξ fρ + i2 ξ ρf 1-ρ 1+ + ξ ρ f - ρ        

        (2.198) 
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Converting the complex solutions to polar form leads to the following 
expressions 
 

5 6giδ iδ

s 5 6

ˆmup̂
v̂ = H e - H e

k k
      (2.199) 

7 8g-iδ -iδ

d 7 8

ˆmup̂
v̂ = H e - H e

k k
      (2.200) 

 
The various H and  expressions are listed below 
 

   
2 22 2

d

5

3

f - ρ + 2ξ ρf
H =

D
      (2.201) 

   
2 2

2 2

d

6

3

1+ f - ρ + 2ξ ρf 1+
H =

D

      
    (2.202) 

2

7

3

ρ
H =

D
        (2.203) 

 
2

d

8

3

1+ 2ξ ρ
H =

D
       (2.204) 

       
22

2 2 2 2 2 2 2 2 2

3 s d d s
D = 1-ρ f - ρ - ρ f - 4ξ ξ fρ + 4 ξ ρf 1- ρ 1+ + ξ ρ f - ρ      

 

        (2.205) 

5 1 7
δ = α - δ         (2.206) 

6 2 7
δ = α - δ         (2.207) 

8 3 7
δ = α - δ         (2.208) 

   
  

2 2 2

d s

7 2 2 2 2 2 2

s d

ξ ρf 1- ρ 1+ + ξ ρ f - ρ
tanδ = 2

1- ρ f - ρ - ρ f - 4ξ ξ fρ

  


    (2.209) 

3 s
tanα = 2ξ ρ         (2.210) 

 
The terms 

1
α and 

2
α are defined by Eqs (2.166) - (2.167).  

In what follows, the case of an external force applied to the primary mass 

is considered. Since 
3

D  involves s
ξ , one cannot establish analytical 

expressions for the optimal tuning frequency and optimal damping ratio 
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in terms of the mass ratio only; in this case, these parameters also depend 

on 
s
ξ . Numerical simulations can be carried out to evaluate 

5
H  and 

7
H  

for an appropriate range of ρ , given the values for , 
s
ξ , f , and 

d
 . 

Starting with specific values for  and 
s
ξ , plots of 

5
H versus ρ can be 

generated  for a range of f and 
d
 . Each 

5
H -ρ plot has a peak value of 

5
H . The combination of f and 

d
  that correspond to the lowest peak value 

of 
5

H  is taken as the optimal state. Repeating this process for different 

values of   and 
s
ξ  produces the behavioral data needed to design the 

damper system. 
Fig. 2.22 shows the variation of the maximum value of 

5
H  for the optimal 

state. The corresponding response of the damper, 
7

H , is plotted in Fig. 

2.23. Adding damping to the primary mass has an appreciable effect for 
small value of  . Noting Eqs. (2.203) and (2.201), the ratio of damper 
displacement to primary mass displacement is given by 
 

   

2

d 7

2 22 2
s 5

d

v̂ H ρ
= =

v̂ H f - ρ + 2ξ ρf

     (2.211) 

 

Since the damping ratio 
s
ξ  is small, the ratio 

7 5
H / H  is essentially 

independent of 
s
ξ . Fig. 2.34 confirms this statement.  

The  optimal values  of the frequency and damping ratios, i.e. opt
f  and 

d opt
 , generated through simulation are plotted in Figs. 2.25 - 2.26.  

Lastly, using Eq. (2.191), 
5 opt

H  can be converted to an equivalent 

damping ratio for the primary system (Fig. 2.27), i.e.: 
 

e

5 opt

1

2H
          (2.212) 
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Fig. 2.22. Maximum dynamic amplification factor for damped SDOF system 
[Connor & Laflamme 2014] 

 

 
Fig. 2.23. Maximum dynamic amplification factor for TMD [Connor & Laflamme 
2014] 

α 

α 
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Fig. 2.23. Ratio of maximum TMD amplitude to maximum system amplitude 
[Connor & Laflamme 2014] 

 

 

Fig. 2.25. Optimum tuning frequency ratio for TMD, opt
f  [Connor & Laflamme 

2014] 

α 

α 
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Fig. 2.26. Optimal damping ratio for TMD, d opt
  [Connor & Laflamme 2014] 

 

Fig. 2.27. Equivalent damping ratio for optimally tuned TMD, 
e
  [Connor & 

Laflamme 2014] 

α 

α 



2. BIS, TMD, IIS – Theoretical basis 

 

65 
 

2.3.2. Tuned Mass Damper Theory for MDOF Systems 

The theory of a SDOF system can be extended to deal with a MDOF 
system having a number of tuned mass damper located throughout the 
structure. 
Fig. 2.28 shows a damped 2DOF + TMD model composed by a main 
system with masses 

1
m and 

2
m , spring stiffnesses 

1
k and 

2
k  and viscous 

dampers 
1

c and 
2

c , and a tuned mass damper attached to the primary mass 

with mass 
d

m , stiffness 
d

k and viscous damper 
d

c .  

Considering the primary masses 
1

m and 
2

m  subjected to both external 

forcing 
1

p and 
2

p , respectively, and ground motion 
g

u , the governing 

equations take the form 
 

   1 1 1 1 1 1 2 2 1 2 2 1 1 g 1
m v c v k v c v v k v v m u p           (2.213) 

   2 2 2 2 1 2 2 1 d d d d 2 g 2
m v c v v k v v c v k v m u p           (2.214) 

 d d d d d d d g 2
m v c v k v m u v          (2.215) 

 

 
Fig. 2.28. Damped 2DOF system coupled with a damped TMD system 

 

It is convenient to reduce the primary 2DOF system into an equivalent 
SDOF system, thus Eqs. (2.213) - (2.214) can be combined in a form 
similar to SDOF case defined by (2.193). 
The approach followed here is based on transforming the original matrix 
equation to scalar modal equations. Introducing matrix notation, Eqs. 
(2.213) - (2.214) are written as 
 

1 g 1

s s s s s s

2 g 2 d d d d

m u p 0

m u p c v k v

    
      

      
M v C v K v    (2.216) 
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where the displacement vector sv  and the mass sM , stiffness sK  and 

damping sC  matrices are  
 

1 1 1 2 2 1 2 2

s s s s

2 2 2 2 2 2

v m 0 k k k c c c
, , ,

v 0 m k k c c

          
          

        
v M K C  

        (2.217) 
 

The vector sv  can be expressed in terms of modal coordinates as 
 

1 2

s s s,1 s s,2
q q  v        (2.218) 

 
The modal vectors satisfy the following orthogonality relations 
 

jT i 2 jT i

s s s ij sij s s s
     K M       (2.219) 

 
Defining modal mass, stiffness and damping terms  
 

jT i jT i 2 jT i

s, j s s s s, j s s s s, j s, j s, j s s s
m , k m , c ,         M K C   (2.220) 

 

expressing the elements of j

s
  as 

 
j

s,1j

s j

s,2


 

  
  

        (2.221) 

 
and assuming damping proportional to stiffness 
 

s p saC K         (2.222) 

 

with pa  a proportional coefficient, a set of uncoupled equations for 
1

q  

and 
2

q  is obtained as follows 

 

   j j

s, j s, j s, j s, j s, j s, j s,1 1 g 1 s,2 2 g 2 d d d d
m q c q k q m u p m u p c v k v             

        (2.223) 
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with j = 1, 2. 
With this assumption, the modal damping ratio is given by 
 

s, j p s, j

s, j 2

s, j s, j

c a

2m 2


  


      (2.224) 

 
Since a TMD is effective for a narrow frequency range, we have to decide 
on which modal resonant response is to be controlled with the TMD. 
Once this decision is made, the analysis can proceed using the selected 
modal equation and the initial equation for the TMD, i.e. Eq. (2.215). 
Considering the first modal response is to be controlled, Eq. (2.223) for 
j=1 becomes:  
 

   1 1 1 1 1

s,1 s,1 s,1 s,1 s,1 s,1 s,1 1 s,2 2 1 s,1 2 s,2 g s,2 d d d d
m q c q k q p p m m u c v k v              

        (2.225) 
 

In general, 
2

v  is obtained by superposing the modal contributions 

 
1 2

s,2 s,2 s,1 s,2 s,2
v q q           (2.226) 

 
However, when the external forcing frequency is close to 

1
 , the first 

mode response will dominate, and it is resonable to assume  
 

1

s,2 s,2 s,1
v q          (2.227) 

 
Solving for 

1
q  

s,2

s,1 1

s,2

v
q 


        (2.228) 

 
and then substituting in Eq. (2.225), the equation is rewritten as 
 

1e s,2 1e s,2 1e s,2 d d d d 1e 1e 1e g
m v c v k v c v k v p L m u         (2.229) 
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where 
1e

m , 
1e

k , 
1e

c , 
1e

L  and 
1e

p  represent the equivalent SDOF 

parameters for the combination of mode 1 and mass 2, (the mass at which 
the TMD is attached) and, respectively correspond to: 
 

s,1 s,1

1e 1e 1e p 1e1 2 1 2

s,2 s,2

m k
m , k , c a k  

 
     (2.230) 

1 1

s,1 1 s,2 2 1

1e 1 1

s,2 s,2

p p p
p

  
 

 
      (2.231) 

 
1

s,2 1 1

1e 1 s,1 2 s,2

s,1

L m m
m


          (2.232) 

 
Eqs. (2.215) and (2.229) are similar in form to the SDOF equations treated 
in the previous section, i.e. Eqs. (2.192) and (2.193). 
Given the mass damper 

d
m , the mass ratio   is defined in terms of the 

equivalent SDOF mass 
1e

m  

 

d

1e

m

m
          (2.233) 

 
The damper parameters are  
 

d 1e d opt 1 d d opt d d
m m , f , c 2 m            (2.234) 

 
This derivation can be readily generalized to allow for tuning on the i-th 
modal frequency. Thus, Eq. (2.228) can be written as  
 

s,2

s,i i

s,2

v
q 


        (2.235) 

 
where i is either 1 or 2. The equivalent SDOF mass 

ie
m , force 

ie
p  and 

modal participation factor 
ie

L  are 

 

s,i s,i

ie ie ie p iei 2 i 2

s,2 s,2

m k
m , k , c a k  

 
     (2.236) 
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i i

s,1 1 s,2 2 i

ie i i

s,2 s,2

p p p
p

  
 

 
      (2.237) 

 
i

s,2 i i

ie 1 s,1 2 s,2

s,i

L m m
m


          (2.238) 

 
The general case of a MDOF system with a tuned mass damper connected 
to the n-th degree of freedom is reported in the following. With the same 
notation defined above, the j-th modal equation can be expressed as 
 

 j

s, j s, j s, j s, j s, j s, j j s,n d d d d
m q c q k q p c v k v j 1,2,..., N         (2.239) 

 

where 
j

p  denotes the modal force due to ground motion and external 

forcing, and j

s,n
  is the element of j

s
  corresponding to the n-th 

displacement variable. To control the i-th response, by setting j = i in Eq. 
(2.239) and introducing the approximation 
 

s,n

s,i i

s,n

v
q 


        (2.240) 

 
Eq. (2.239) can be written in terms of 

s,n
v  as follows. 

 

ie s,n ie s,n ie s,n d d d d ie
m v c v k v c v k v p         (2.241) 

 
where 

T
s,i s,i 2i i

ie ie s,i ie ie p iei 2 i 2 i 2

s,n s,n s,n

m k
m , k m , c a k

 
     
  

M
   (2.242) 

i

1e i

s,n

p
p 


       (2.243) 

d ie d opt s,i d d opt d d
m m , f , c 2 m            (2.244) 

 
The optimal mass damper for mode i is obtained by selecting n such that 

i

s,n
  is the maximum element in i

s
 . 
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2.4. INTER-STORY ISOLATION SYSTEMS (IIS) 

2.4.1. Inter-Story Isolation Theory for 3DOF and 2DOF 
Systems 

2.4.1.1. Simplified modeling  

The equations of motion of simplified two and three degrees-of-freedom 
IIS (2DOF IIS and 3DOF IIS) models are compared to the corresponding 
ones of 2DOF base-isolated structure (2DOF BIS) and SDOF with TMD 
(SDOF + TMD), examined previously in §2.2 - 2.3. 
A graphical representation of the four simplified lumped mass models 
(3DOF IIS, 2DOF IIS, 2DOF BIS, SDOF+TMD) is given in Fig. 2.29. 
 

 

Fig. 2.29. Simplified models: (a) 3DOF IIS, (b) 2DOF IIS, (c) 2DOF BIS, (d) 
SDOF+TMD 

2.4.1.2. Governing equations of motion 

The governing equations of motion for the four models considered herein 
are described as follows. 
 
3DOF IIS Model 
The equations of motion for the 3DOF IIS model concerning the inter-
story isolation system are given by: 
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 US US ISO LS US US US US US g
m v v v c v k v m u        (2.245) 

 ISO ISO LS ISO ISO ISO ISO ISO g
m v v c v k v m u       (2.246) 

LS LS LS LS LS LS LS g ISO ISO ISO ISO
m v c v k v m u c v k v        (2.247) 

 

in which: m, c and k are the masses, the viscous damping constants and 

the stiffnesses; v and u are the relative and the absolute displacements of 

the dofs. In Eqs. (2.245) ÷ (2.247) the subscripts US, ISO, LS and g 
respectively correspond to upper structure, isolation level, lower structure 
and ground. 
 
2DOF IIS Model 
The equations of motion for the 2DOF IIS model concerning the inter-
story isolation system are given by: 
 

  US ISO ISO LS ISO ISO ISO ISO ISO g
m m v v c v k v m u        (2.248) 

LS LS LS LS LS LS LS g ISO ISO ISO ISO
m v c v k v m u c v k v        (2.249) 

 
where the sum 

US ISO
m m represents the total isolated mass above the 

isolation layer, i.e. 
ISO

M . 

 
2DOF BIS Model 
The equations of motion for the 2DOF BIS model concerning the base 
isolation system, given by Eqs. (2.6) and (2.7), are recalled here for 
completeness: 
 

b s s s g
mv mv cv kv mu           (2.6) 

   b b s b b b b b g
m m v mv c v k v m m u          (2.7) 

 

in which m, mb, c, cb, k, kb are the masses, the damping constants and the 
stiffnesses respectively corresponding to the main structure and the 

isolation system; v, vb are the relative displacements of the same dofs.  
 
SDOF+TMD Model 
The equations of motion for the SDOF+TMD model concerning the 
tuned mass damper system, given by Eqs. (2.192) and (2.193), are recalled 
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here for completeness (neglecting the contribution of the external force 
p): 
 

d d s d d d d d g
m (v v ) c v k v m u        (2.192) 

s s s d d d d g
mv cv kv c v k v mu         (2.193) 

 

where m, md, c, cd, k, kd are the masses, the damping constants and the 
stiffnesses respectively corresponding to the main structure and the TMD; 

v, vd are the relative displacements of the same dofs.  

2.4.1.3. Comparison among the equations of motion of 
the different simplified models  

Observing Eqs. (2.245) ÷ (2.247) of the 3DOF IIS model it is possible to 
subdivide the system in two schemes: the first one is a 2DOF model, 
analogous to the 2DOF BIS model ([Kelly 1990]); the second one is 
analogous to the SDOF+TMD model ([Connor & Laflamme 2014]). 
 
By setting: 

US US US
m m, c c, k k,     

US US
u u, v v,   

since US ISO LS g US
v v v u u     and s b g

v v u u   , 

 
the analogy between Eqs. (2.245) and (2.6), respectively corresponding to 
the upper structure of IIS and IIS, is provided; i.e.: 
 

US US US US US US

s s

m u c v k v 0

mu cv kv 0




  

  
   (2.250) 

 
By setting: 

ISO b ISO b ISO b
m m , c c , k k ,     

ISO b ISO b
u u , v v ,   

since ISO LS g ISO
v v u u    and   b b g s b b

m m v u mv mu m u ,       

the analogy between Eqs. (2.246) and (2.7), respectively corresponding to 
the isolation system of IIS and BIS, is provided; i.e.: 
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ISO ISO ISO ISO ISO ISO US US US US

b b b b b b s s

m u c v k v c v k v

m u c v k v cv kv

    

  



   (2.251) 

 
By setting: 

LS LS LS
m m, c c, k k,     

LS ISO d
v v, v v , 

 
 
the analogy between Eqs. (2.247) and (2.193), respectively corresponding 
to the lower structure of IIS and the main structure with TMD, is 
immediately verified, i.e.: 
 

LS LS LS LS LS LS LS g ISO ISO ISO ISO

s s s g d d d d

m v c v k v m u c v k v

mv cv kv mu c v k v

     


     
  (2.252) 

 
In addition, comparing the 3DOF IIS and SDOF+TMD models, by 
setting: 
 

ISO d ISO d ISO d
m m , c c , k k ,     

ISO d LS s
v v , v v , 

 
 
Eq. (2.246) is comparable to Eq. (2.192), i.e.: 
 

 ISO ISO LS ISO ISO ISO ISO ISO g

d d s d d d d d g

m v v c v k v m u

m (v v ) c v k v m u

     


    

   (2.253) 

 
or even, comparing the 2DOF IIS and SDOF+TMD models, by setting: 
 

ISO d ISO d ISO d
M m , c c , k k ,     

ISO d LS s
v v , v v ,   

Eq. (2.248) is comparable to Eq. (2.192), i.e.: 
 

 ISO ISO LS ISO ISO ISO ISO ISO g

d d s d d d d d g

M v v c v k v M u

m (v v ) c v k v m u

     


    

   (2.254) 
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The comparison between the equations of motion of the four models 
(3DOF IIS, 2DOF IIS, 2DOF BIS, SDOF + TMD) confirm that 
intermediate isolation systems combine the strategies of isolation and 
mass damping. 
 
Therefore, the dynamics of IIS is more complex than that of BIS and 
TMD; for this reason, the evaluation of the vibrational behavior of such 
systems can be addressed from different points of view.  
In Chapter 4 is provided the overview of the scientific literature on this 
topic, which reflect a variety of approach both in the formulation of the 
problem and in the definition of the design criteria.  
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Equation Chapter (Next) Section 3 

3. DESIGN PRACTICE AND 
APPLICATIONS 

3.1. INTER-STORY ISOLATED STRUCTURE 

The use of intermediate story isolation systems (IIS, also appointed as 
mid-story isolation), is currently spreading and gaining significant 
popularity, mainly in Japan, both for the seismic design of new buildings, 
and for vertical addition in the retrofit of existing buildings. A recent study 
by [Kobayashi & Sasaki 2009] refers to more than 60 buildings equipped 
with IIS, realized starting from the late 90s. 
 
The main information provided in the paper by [Kobayashi & Sasaki 2009] 
refer to: 

- Building height per year (Fig. 3.1a); 

- Equivalent first period per year (Fig. 3.1b); 

- Structural types of the upper and lower structure (Fig. 3.1c); 

- Location of the isolation layer along the height of the building (Fig. 
3.1d); 

- Types and combination of isolators and types of damper (Fig. 3.1e, 
f); 

- drift in the structural portions and deformation of the isolation 
system (Fig. 3.2); 

- story shear coefficient of upper and lower structures and of the 
isolation systems (Fig. 3.3); 

- Main differences between IIS and BIS buildings (Table 3.1). 

As can be seen from Fig. 3.1a, b the structural types considered are 
reinforced concrete, steel and mixed steel-reinforced concrete (RC, S, 
SRC) structures or other types. In particular, for the upper (U) and lower 
(L) structure the same or different structural types can be used. 
During the period 1995 ÷ 2007 an improvement of the building height, 
with an average value of 60 m, was observed (52 data). The major height 
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was reached with RC buildings with a maximum value of 130 m in 2007, 
followed by RC and SRC respectively for the upper and lower structures, 
or other types. 
In addition, from Fig. 3.1c it is also noticed that RC buildings and U+L 
RC + SRC are the structural types more frequent with the 78% and 8%, 
respectively, followed by S or mixed structures with 2%. 
Looking at the equivalent 1st period for the II earthquake level, Fig.3.1b 
shows an improvement during the period 1995 ÷ 2007 with average 
growth of 0.09 s per year and a mean value of 3.81 s. 
The height of 60 m was used as reference for defining the location of the 
isolation level along the height of the building. From Fig. 3.1d can be seen 
that for building height less than 60 m, the isolation level was placed at the 
lower levels with the 51%, while for building height larger than 60 m up 
to the second floor with the 20%. 
From Fig. 3.1e can be seen that the isolator types are natural rubber 
bearing (NRB), lead rubber bearing (LRB), high damping rubber bearing 
(HDRB). More frequently was used LRB with the 40% or a combination 
of LRB and NRB with the 26%.  
From Fig. 3.1f can be seen that the damper types are steel damper (SD) , 
lead damper (LD), oil damper (OD); more frequently were used SD and 
LS with the 39% and 33%, respectively.  

Looking at the interstory drift, in Fig. 3.2 can be observed that the 
upper and lower structure show the same range of values (1/1600 ÷ 
1/200) with more frequent values of 1/400 – 1/200 and 1/1600, 
respectively; the more frequent displacement of the isolation layer is 40 
cm. Kobayashy & Sasaki provided also the average values corresponding 
to 1/387 and 1/487 respectively for upper and lower structures, and an 
average displacement of the isolation equal to 32.98 cm.  

In terms of shear coefficient, in Fig. 3.3 can be observed that the upper 
structure and isolation (ISO) system show the same range of values (0.06 
÷ 0.15) with more frequent values of 0.09 ÷ 0.12; the lower structure 
shows values between 0.1 ÷ 0.4 with more frequent values of 0.2 ÷ 0.3. 
Kobayashy & Sasaki provided also the average values corresponding to 
0.11 and 0.23 respectively for the upper structure and isolation, and the 
for lower structure.  
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Fig. 3.1. (a) building height per year (52 data), (b) equivalent 1st period per year 
(521 data), (c) structural types (59 data), (d) isolation level (60 data), (e) types and 
combination of isolators (31 data), (f) types of dampers (18 data). [redrawn from 
Kobayashi & Sasaki 2009] 
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Fig. 3.2. (a) interstory drifts of U and L structures (U:118 data, L: 22 data), (b) 
interstory drifts of isolation layer (114 data), (c) schematic representation of the 
drift distribution [redrawn from Kobayashi & Sasaki 2009] 
 
 

 

Fig. 3.3. (a) shear coefficient of the U structure and isolation layer (U: 98 data, 
ISO: 114 data), (b) shear coefficient of the lower structure (23 data), (c) schematic 
representation of the shear coefficient distribution [redrawn from Kobayashi & 
Sasaki 2009] 
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In the paper by [Kobayashi & Sasaki 2009] a comparison between the 
average values of the maximum response of mid-story and base isolated 
structure is provided (Tab. 3.1). The average values refer to the first 
equivalent period, peak roof acceleration, maximum story drift, base shear 
coefficient and maximum displacement.  
Generally, in the mid-story isolated structure are observed larger values 
than the base isolated structure counterparts due to the interaction 
between upper and lower structures.  
 

Table 3.1 Average values of the maximum response 

Structure T1,eq [s] Peak roof 
acc.[cm/s2] 

Max story 
drift [-] 

Base 
shear coef. 
[-] 

Max displ. 
[cm] 

IIS 3.81 254.2 1/387 0.11 32.98 

BIS 3.33 221 1/1742 0.12 26.9 

3.2. IIS REAL BUILDINGS 

An overview of the main real applications of IIS, both for new building 
and for vertical addition in and /or retrofit of existing buildings, is 
provided in the following. 
In particular the IIS real buildings refer to four new buildings, i.e. the 
Iidabashi 1st Building [Tsuneki et al. 2008 - 2009, Murakami et al. 2000], 
the Shiodome Sumito Building [Suoeka et al. 2004, Tsuneki et al. 2008 - 
2009], Nakanoshima Festival Tower [Nikken Journal 14 – 2013, Okada et 
al. 2014, Nakagawa et al. 2015], Tekko Building [Tamari et al. 2017]; one 
retrofitted building, i.e. China Basin Berry Street Building [Sumnicht 2008, 
China Basin Addition 2008, Dutta et al. 2009]. 

3.2.1. IIS for new building 

3.2.1.1. Iidabashi 1st Building - JAPAN 

The building, located in Tokyo, has been designed by Nikken Sekkei and 
completed in the year 2000, Fig. 3.4. 
It is a mixed-use building with 14 stories above ground (height H=59 m), 
two stories below ground and one-story penthouse. The elevation is 
divided in two portions (Fig. 3.5 d) by an isolation layer located between 
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the 9th and 10th floor. The two portions are different for plan dimensions, 
space occupancy, and structural system: the lower part, with a plan 130 x 
40 m (Fig. 3.5 c), extends for nine stories and reaches 38 m of height, is 
devoted to office space, and has a mixed structure, made of shear walls 
and steel reinforced concrete (SRC) frame; the upper part, with a much 
narrower plan 130x15m (Fig. 3.5 a), is made by five stories and reaches 59 
m above ground, has retails/condominium occupancy, and present shear 
wall reinforced concrete (RC) structure. 
 

 
Fig. 3.4. Iidabashi 1st building [Murakami et al. 2000] 

 
The isolation system is composed by 40 laminated natural rubber bearings 
(RB), with diameter equal to 800 mm, and 212 lead dampers (LD), 180 
mm in diameter; the grid of the isolators, 6.4 x 16.35 m (Fig. 3.5b), 
replicates the main floor grid of the lower structure. An interior view of 
the isolation layer is provided in Fig. 3.6. 
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Fig. 3.5. Iidabashi 1st building: Plans and Sections (a) upper typical floor, (b) 
isolation floor, (c) lower typical floor, (d) Transversal section (dimension in 
meters) [redrawn from Murakami et al. 2000, Murakami 2001] 
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Fig. 3.6. Interior view of the isolation layer [Murakami et al. 2000, Murakami 2001] 

 

Simplified analysis 

Simplified model 
A simplified lumped masses multi-degree of freedom (MDOF) model was 
utilized for the vibration analysis of the building. 
The Iidabashi 1st building is represented by 15 lumped masses, 9 in the 
lower part, 1 in the intermediate isolation layer and 5 in the upper part. 
A graphical representation of the MDOF vibration analysis model of the 
buildings with the corresponding values of the lumped masses and of the 
story horizontal stiffness, is given in Fig. 3.7. 
Tab. 3.2 shows the secant stiffness of rubber bearings; the first stiffness 

and yield shear force of dampers, Fy,tot; the ratio of the total damper yield 

force Fy,tot to the total building weight Wtot. 
In the MDOF models, viscous damping equal to 2% is assumed in the 
upper and lower structures, and 0% for the rubber bearings in the seismic 
isolation interface, where the major source of dissipation is given by the 
hysteretic response of the lead units, explicitly accounted for by means of 
the bi-linear force-displacement model of the isolation system. 
From Fig. 3.7, can be easily derived that the mass of the upper part of the 
building was about 22% of the total mass above ground. 
 

Table 3.2 Characteristics of the dampers 

Device secant stiffness (RB), 

1st stiffness (LD) 

 [GN/m] 

Fy,tot 

[kN] 
y,tot'

s

tot

F
α =

W
 

RB 0.0530 - - 

LD 1.6251 13544 2% 

RB (Rubber Bearing), LD (Lead Damper) 
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Node Mass 

[kNs2/m] 

Stiffness 

[GN/m] 

15 1657.9 9.4 
14 2305.4 16.6 
13 2305.4 20.1 
12 2315.2 22.9 
11 2315.2 34.4 
10 4022.1 * 
9 12704.0 7.2 
8 4914.8 7.5 
7 4914.8 8.0 
6 5091.4 8.5 
5 5179.7 9.1 
4 5189.5 9.8 
3 5209.1 11.0 
2 5532.8 12.8 
1 5434.7 12.3 

* see Table 3.2 

Fig. 3.7. Vibration analysis model  

 

Energy dissipation 
[Murakami et al. 2000] deal with the IIS as a “concentrated energy 
dissipation” design problem, and assume the dampers yielding force as the 
major design parameters for achieving the performance objective of the 
structural complex.  
An artificial seismic wave is used to simulate the level-2 earthquake motion 
(large earthquake motion). The artificial seismic wave is made setting the 
velocity response spectra in the long period range at Sv=100 cm/s 
(ξ=0.05). 
The relation between the amount of seismic input energy under the level-
2 earthquake motion (large earthquake motion) and the amount of energy 
absorption in each structural portion (LS, ISO and US), varying the 
damper volume, is provided in Fig. 3.8. The variation of the damper 
volume is represented by the ratios αs, i.e. the yield strength of the 
damper/ to the weight of the upper stories, and α's, i.e. the yield strength 
of the damper to the total weight. 
With an increase in the damper volume, about the 70 – 80% of seismic 
input energy is absorbed by hysteretic damping of the isolation story 
(dampers). The amount of energy absorbed by internal viscous damping 
of the upper stories is as small as 0.1 – 0.3% with respect to the amount 
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of seismic input energy in the same case of ordinary base-isolated 
buildings. With an increase in the volume of the damper, the amount of 
energy absorbed by internal viscous damping of the lower stories is as 
small as 20 – 30% of seismic input energy and stable. 
 

 
Fig. 3.8. Relation between the damper volume and the amount of energy of each 
portion 

 
Fig. 3.9 shows the maximum deformation of the isolation story in 
changing the volume of the damper. From Fig. 3.9 can be noticed that the 
maximum deformation of the isolation story decreases with increase in the 
volume of the damper and that it gets steady at about α's=0.02 - 0.025 
(αs=0.09 - 0.12). 
It is worth to noticing that with α's=0.02 - 0.025 (αs=0.09 - 0.12) both the 
amount of energy absorbed by hysteretic damping of the isolation story 
and the maximum deformation of the isolation story are stable. 
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Fig. 3.9. Relation between the damper volume and the maximum deformation of 
the isolation story 

 
Three-dimensional analysis 

More detailed studies also were made by earthquake response analysis 
using a 3-dimensional analysis model of a total of 15 stories including nine 
stories of lower stories, one story of isolation story and five stories of 
upper stories. 
 
Modal analysis 
Tab. 3.3 gives the natural period of the 3-D analysis model respectively.  
 

Table 3.3. Natural period of the analysis space model 

Model T1 [s] T2 [s] T3 [s] 

3D IIS - RB+LD 1.35 1.35 1.21 

3D IIS - RB 3.47 3.45 3.20 

3D US 0.29 0.24 0.21 

 
Time history analysis 
The seismic motion wave forms used in the analysis were three actually 
measured wave forms (El Centro NS, Taft EW, Hachinohe NS) and an 
artificial seismic motion wave form (ARTWAVE474), each with a 
maximum velocity of 50cm/sec. The artificial seismic motion wave form 
was produced using the phase characteristics of measured seismic wave 
motion wave forms, setting the acceleration response spectrum shape in 
the long period region so that in the velocity response spectrum Sv = 80 
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cm/s (ξ = 0.05). The earthquake response spectrum for the seismic input 
wave considered herein is provided in Fig. 3.10 (ξ =0.05). 
 

 
Fig. 3.10. Pseudo-velocity response spectrum 

 

Therefore, design of the building was made to provide α's=0.02 - 0.03 
setting the design target of the isolation story at 40 cm or below in the 
maximum deformation in the level-2 earthquake.  
 
Fig. 3.11 shows the results of response analysis in the level-2 earthquake 
in the direction of the short side of the building. The graph on the left 
refers to the maximum story deflection, while the graph on the right refers 
to the maximum shear force. 
From Fig. 3.11a can be observed that the deformation of the building is 
mainly concentrated in the isolation story with a maximum deformation 
of 32.6 cm within the target value. 
The peak drift of the US stories is 0.20 cm, i.e. about 1/1530 of the story 
height, and the peak drift of the LS stories is 2.1 cm, i.e. about 1/195 of 
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the story height. Both the peak drifts of US and LS stories are remarkably 
small as compared with ordinary earthquake-resistant buildings.  
From Fig. 3.11b can be observed that the maximum shear forces of the 
US and LS stories are below the elastic limit strength and have excellent 
earthquake resisting performance. The maximum response story shear 
force in the building is about 1/5 in the US and 1/2 in the LS with respect 
to the corresponding counterparts in a reference fixed-base structures. 
 

 

Fig. 3.11. (a) maximum story drift, (b) maximum shear force 

 

Energy dissipation 
Fig. 3.12 shows the relation between the amount of seismic energy 
absorption on each story under the artificial seismic wave. From Fig. 3.12 
can be seen that almost the 80% of the seismic energy is absorbed the lead 
damper in the isolation story. This distribution confirm that the inter-story 
isolation system can be seen as a “concentrated type” of energy dissipation 
system, different from the common approach of distributed energy 
dissipation systems, where the dampers are spread throughout the building 
structure.  
 
Iidabashi 1st building has been chosen as case study and the is thoroughly 
analyzed in Chapter 5, in order to evaluate the dynamics of real mid-story 
isolated building in the light of approaches and indications coming from 
the world of research.  
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Fig. 3.12. Input distribution of seismic energy to each story of the building 

3.2.1.2. Shiodome Sumitomo building - JAPAN 

The building, designed by Nikken Sekkei as well, and completed in 2004, 
is located at Shiodome, in Tokyo, Fig. 3.13.  
It is a mixed-use tall building, with 3 basement levels and 25 stories above 
ground, reaching the height of 126.1 m; the plan is approximately 110 x 
40 m, with a floor area of 4339 m2 (Fig. 3.14 a, b, c). 
The isolation layer is located between the 11th and 12th floor, approximately 
at 50 m height, and divides the building in two portions (Fig. 3.14 a, b), 
only distinguished for the occupancy, i.e. hotel and office space in the 
lower and upper structure, respectively. A peculiarity of the building is the 
presence of a large atrium, about 40 m of height, which is located on the 
North side of the lower structure (Fig. 3.14 c). The structural system is a 
steel (S) frame, both for the upper and lower parts. 
The atrium covers the 10 hotel’s floors in height and the halved hotel floor 
area in plan. Therefore, the most important proposition for this building 
from a structural planning aspect was how to achieve the building above 
the large atrium maintaining high structural performance.  
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The section column is hexagonal, and it is consisted of welded steel plates 
(thickness is 36mm and 70mm). 
These columns, about 40 m long, support large vertical permanent load 
(about 20000 kN). Thus, to prevent buckling, the top and bottom of 
column is steel casting, the wide of top section is smaller than center 
section, the bottom of column is pin (Fig. 3.15b).  
 

 
Fig. 3.13. (a) external view of the building, (b) atrium internal view [Sueoka et al. 
2004] 

 
The isolation system is composed by 41 laminated natural rubber bearings 

(RB) of different diameter, namely: 13 ϕ 1300 mm, 19 ϕ 1100 mm, 9 ϕ 
1000 mm, plus 100 lead dampers (LD) and 14 steel dampers (SD). Three 
alignments of isolators, two perimeter and one interior, can be observed 
in the plan longitudinal direction of the isolation floor (Fig. 3.14 b), with 
device spacing equal to 12.8 m and 6.4 m; the distribution of isolators and 
dampers in plan suggests the need of balancing the different mass 
distributions in the upper and lower parts. 
A view of the isolation layer and of the atrium columns during the 
construction is provided in Fig. 3.16. 
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Fig. 3.14. Shiodome Sumitomo building: Plans (a) upper typical floor, (b) isolation 
floor, (c) lower typical floor, (dimension in meters) [Sueoka et al. 2004] 
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Fig. 3.15. Shiodome Sumitomo building: Sections (a) transversal, (b) 
Longitudinal, (dimension in meters) [Sueoka et al. 2004] 
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Fig. 3.16. Shiodome Sumitomo building: Sections (a) construction of the isolation 
layer, (b) construction of the atrium columns [Sueoka et al. 2004] 

 

Simplified analysis 

Simplified model 
A simplified lumped masses multi-degree of freedom (MDOF) model was 
utilized for the vibration analysis of the building. 
A graphical representation of the MDOF vibration analysis model of the 
buildings with the corresponding values of the lumped masses and of the 
story horizontal stiffness, is given in Fig. 3.16. 
The Shiodome Sumitomo building is represented by 26 masses, 11 in the 
lower part, 1 in the intermediate isolation layer and 14 in the upper part. 
Tab. 3.4 shows the secant stiffness of rubber bearings; the first and second 

stiffness and yield shear force of dampers, Fy,tot; the ratio of the total 

damper yield force Fy,tot to the total building weight Wtot. 
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Story Mass 

[kNs2/m] 

Stiffness [kN/mm] 
X Y 

26 5767.6 2.1 1.5 
25 3460.8 2.4 1.7 
24 3446.5 2.9 2.1 
23 3075.4 3.0 2.2 
22 3083.6 3.0 2.2 
21 3093.8 3.1 2.3 
20 3116.2 3.3 2.5 
19 3167.2 3.3 2.5 
18 3169.2 3.4 2.6 
17 3124.4 3.3 2.6 
16 3131.5 3.4 2.7 
15 3139.7 3.4 2.6 
14 3185.5 3.0 2.3 
13 3566.8 4.0 3.1 
12 4029.6 * * 
11 3127.4 1.3 1.1 
10 3126.4 5.6 4.5 
9 1720.7 5.3 4.8 
8 1697.2 5.2 5.0 
7 1717.6 5.3 5.2 
6 1714.6 5.4 5.4 
5 1715.6 5.6 5.7 
4 1732.9 5.7 5.9 
3 1725.8 6.1 6.3 
2 2582.1 2.3 2.7 
1 3079.5 2.7 3.2 

* see Table 3.4 

Fig. 3.16. Vibration analysis model [Sueoka et al. 2004] 

 

Table 3.4. Characteristics of the isolation interface 

Device secant stiffness (RB), 

1st stiffness (LD) 

 [GN/m] 

2nd 

stiffness 
[kN/cm] 

Fy,tot 

[kN] 
y,tot'

s

tot

F
α =

W
 

RB 0.0807 - - - 

LD 2.65 - 22000 3% 

SD 6.78 0.0022 3500 3% 

RB (Rubber Bearing), LD (Lead Damper), SD (Steel Damper) 
 

In the MDOF models, viscous damping equal to 2% is assumed in the 
upper and lower structures, and 0% for the rubber bearings in the seismic 
isolation interface, where the major source of dissipation is given by the 
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hysteretic response of the lead and steel units, explicitly accounted for by 
means of the bi-linear force-displacement model of the isolation system. 
From Fig. 3.16, can be easily derived that the mass of the upper part of 
the building was about 68% of the total mass above ground. 
 

Modal Analysis 
The natural vibration periods of the 26DOF IIS model considering both 
isolators and dampers are provided in Tab. 3.5. In particular in the table 
are given the period values taking into account either the secant stiffness 
of the isolation system or the elastic stiffness of only isolators. 
The vibration modes of the 26DOF IIS model are depicted in Fig. 3.18; 
the graph on the left refers to the initial stiffness of both isolators and 
dampers, while the graph on the right refers to the secant stiffness of 
isolators. 
 

Table 3.5. Characteristics of the isolation interface 

Mode Direction Natural 
period 

[s] 

Modal 
Participation 

Factor 

1 X 5.95 (3.26) 7.47 (7.97) 

 Y 6.04 (3.42) 7.45 (-7.82) 

2 X 1.06 (1.06) 3.16 (2.44) 

 Y 1.17 (1.15) -1.56 (2.57) 

3 X 0.96 (0.65) 2.60 (-1.76) 

 Y 0.96 (0.70) 3.77 (1.87) 

4 X 0.52 (0.48) -0.11 (0.98) 

 Y 0.60 (0.53) -0.17 (-1.31) 

The value in ( ) shows the values at the initial stiffness 
 

A first, quite trivial consideration is that, taking into account only isolators 
a much longer first period is obtained than in the case of both isolators 
and dampers. 
In Fig. 3.18b the 1st mode involves deformation mainly concentrated at 
the isolation level, with almost no deformations in the US and only slight 
deformations in the LS; on the contrary the 2nd and 3rd modes show 
comparable displacements for both US and LS, and the 4th and 5th modes 
display negligible deformations in the US. Similar considerations can be 
done for the vibration modes in Fig. 3.18a; however, the reduced 1st period 
leads to a minor deformation in the isolation layer and major deformations 
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in the US in the fundamental mode; the higher modes (from the 2nd to the 
5th) show displacements in both US and LS. 
 

  
Fig. 3.18. Vibration modes (a) initial stiffness of both dampers and isolators, (b) 
linear stiffness of isolators [Sueoka et al. 2004] 

 
Time history Analysis 
The seismic waves used for the response analysis are three simulated 
seismic waves, i.e. Hachinohe EW (K1-wave), Tohoku NS (K2-wave) and 
Kobe NS (K3-wave). The pseudo-velocity response spectra of each wave 
are shown in Fig. 3.19.  
The story drift and acceleration envelopes obtained from the time history 
analyses of the 26DOF IIS model of the Shiodome Sumitomo buildings 
are shown in Fig. 3.20. 
The distribution of maximum displacement is similar to the shape of first 
vibration mode, when only isolators are considered (Fig. 3.18). The 
maximum displacement of isolation interface is about 30 cm, the peak drift 
of the other floors is within 1 ÷ 3 cm, i.e. below 1/200 of story 
deformation angle. The maximum acceleration is observed in the floor 
below the isolation layer; the upper floors show a reduction of the story 
acceleration thanks to the isolation effect. 
The story shear force envelope obtained from the time history analyses of 
the 26DOF IIS model of the Shiodome Sumitomo buildings is shown in 
Fig. 3.21. The upper floors show the larger reduction of the shear force 
thanks to the isolation effect.  
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A comparison of the peak story shear force under K3-wave between the 
isolated model and a reference fixed-based model is also provided in Fig. 
3.22. 
 

 
Fig. 3.19. Pseudo-velocity response spectrum 

 

 
Fig. 3.20. (a) maximum absolute displacement, (b) maximum absolute 
acceleration 

 

It can be observed that the maximum shear forces of the US and LS stories 
are below the elastic limit strength and have excellent earthquake resisting 
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performance. The maximum response story shear force in the building is 
about 1/3 - 1/2 in the US and 1/2 in the LS with respect to the 
corresponding counterparts in a reference fixed-base structures. 
 

 
Fig. 3.21. Maximum shear force 

 

 
                  
Fig. 3.22. Isolated vs. fixed-base models - shear force under K3-Wave 
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Energy dissipation 
The distributions of the energy components obtained from the time 
history analyses of the 26DOF model of Shiodome Sumitomo building 
subjected to a specific seismic input (Hachinohe, Tohoku, Kobe) is shown 
in Fig. 3.23. In each graph are provided the time histories of the Input 
Energy, the Inertia Energy, the Internal Viscous Damping Energy and the 
Hysteretic Energy. 
From the figure, it is possible to notice that a large amount of the seismic 
input energy is dissipated through the hysteretic response of the dampers 
within the isolation system; the share of hysteretic energy is between 70 ÷ 
80%. 
This distribution confirm that the inter-story isolation system can be seen 
as a “concentrated type” of energy dissipation system, different from the 
common approach of distributed energy dissipation systems, where the 
dampers are spread throughout the building structure. 
 

 
Fig. 3.23. Time histories of the energy components: (a) Hachinohe EW, (b) 

Tohoku NS, (c) Kobe NS 
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Shiodome Sumitomo building has been chosen as case study and the is 
thoroughly analyzed in Chapter 5, in order to evaluate the dynamics of real 
mid-story isolated building in the light of approaches and indications 
coming from the world of research.  
 

3.2.1.3. Festival Tower Osaka - JAPAN 

The original Festival Hall in Osaka was constructed in 1958. The hall 
boasted 2,700 seats and was characterized by excellent acoustics, referred 
to as “sound from the heavens”. However, in December 2008, it was torn 
down on its 50th anniversary, to be rebuilt as a new hall.  
Nakanoshima Festival Tower (Fig. 3.24), designed by Nikken Sekkei, and 
completed in 2012, is located in Osaka. 
 

 
Fig. 3.24. View of the building 

 

It is a mixed-use tall building, with 3 underground levels and 39 stories 
above ground, reaching the height of 200 m.  
The building is comprised of 3 broad sections, i.e. the lower-level floors 
from the 8th floor and below including the hall (Fig. 3.25), the 
intermediate-level floors from the 9th floor directly above the hall to the 
12th floor, and the upper-level floors from the 13th floor which includes 
the Sky Lobby (Fig. 3.26). The new hall occupies floors 3 through 8 of the 
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lower-level floors. It is a large-scale hall with the same maximum seating 
capacity of 2700 seats as the old hall.  
 
The architectural basic floor plans and the architectural cross section of 
the building are depicted in Fig. 3.27, a structural cross section is provided 
in Fig. 3.28. 
The isolation layer is located immediately above the new Festival Hall 
between the lower-level and middle-level floors, and divides the building 
in two portions (Fig. 3.28), only distinguished for the occupancy, i.e. hotel 
and office space in the lower and upper structure (Fig. 3.27 a, c), 
respectively. A peculiarity of the building is the presence of a large hall, 
which covers 7 floors (2nd through 8th floors) and all the plan (Fig. 3.27 c, 
e and Fig. 3.28).  
The lower-level floors of the Nakanoshima Festival Tower are steel-
reinforced concrete (SRC) and the middle-level (9th to 12th) and the upper-
level floors (14th and above) are steel (S) frame (Fig. 3.28).  
 

          

Fig. 3.25. (a) Interior of Festival Hall, (b) Interior of the three-floor atrium  
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Fig. 3.26. (a) Sky Lobby on the 13th floor, ceiling height is 9.6 m, (b) Mega-truss 
members visible in the Sky Lobby  

 
The most important proposition for this building from a structural 
planning aspect was how to achieve the building up of center-core high-
rise offices above the large 2700-seat capacity hall while maintaining high 
structural performance. In order to implement this proposition, the 
following two points that characterize the structural plan of this building 
were employed: 

- Giant trusses to transfer the load of upper-level floors to the 
perimeter of the hall and secure the large open space of the hall; 

- Mid-story seismic isolation system to create a seismic isolation 
layer in the boundary between the hall and the office floors. 

Rigidity and strength are obtained for the upper-level floors (Fig. 3.29a) 
from the earthquake resistant brace assembly of the center core frame and 
the perimeter frame surrounding the building with 128 H-shaped steel 
columns spaced at 1.8 m, forming a bearing wall-like perimeter framework 
(outer-framed tube). CFT (concrete filled tube) is employed for the 9 
columns of the core, and oil dampers are implemented to reduce motion 
by either seismic force or wind force. The top of the building has a “hat-
truss” that reduces warping of the building as a whole. 
Between the upper and middle levels of the building, corresponding to the 
13th to 15th floors, are two major trusses; a mega-truss and a belt-truss (Fig. 
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3.30). The mega-truss is a huge three-dimensional structure 20 meters 
high; it supports the column axial force of the upper level core (38000 t) 
and transmits the load of the upper floors to the 16 big columns, namely 
“big columns, with a cross section of 3 x 1.5 m, directly below the outer 
perimeter of the upper-level floors. The belt-truss is a two dimensional 
truss around the outside of the 14th floor. It serves to distribute the force 
of the 128 perimeter steel columns around the upper-level floors to the 
big columns, each column supports a total load of 6000t. The big columns 
support the entire load of the building from the 13th floor up, and the two 
huge trusses make possible the vast space obtained for the hall in the lower 
part of the building (Fig. 3.29b). 
 
The framing plan and framing elevations for the mega trusses and prime 
columns are shown in Fig. 3.31. The mega-trusses are comprised of the 
13th floor girders (Fig. 3.31a) which are the lower chord members, the 
girders inside the core on the 15th floor (inside the core in Fig. 3.31b) 
which are the upper chord members, and the diagonals which connect 
them with a distance of approximately 27 m between nodes (outside the 
core in Fig. 3.31b). The long-term load supported by each diagonal is 
approximately 3000 t. 
The various members of the mega-trusses and the prime columns contend 
three-dimensionally (Fig. 3.32), and a maximum of 8 members converge 
on a single node. 
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Fig. 3.27. Floor plans: (a) upper typical floor, (b) 13th floor, (c) 5th floor, (d) 2nd 
floor, (e) cross section of the building 
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Fig. 3.28. Cross section 
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Fig. 3.29. (a) basic floor layout of upper-level floors, (b) basic floor layout of lower-
level floors 

 

 
Fig. 3.30. Outline of mega-trusses and belt trusses between the 13th and 15th floors 
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Fig. 3.31. (a) 13th floor framing plan, (b) 15th floor framing plan 

 

 

Fig. 3.32. Schematic diagram of Mega-truss connection 

 
The isolation system is composed by 66 lead rubber bearings (LRB), 
subdivided in 32 square LRB 1500 x 1500 mm and in 34 circular LRB of 
different diameter between ф 800 ÷1000 mm, plus 24 oil dampers (OD), 
12 for each direction. A view of the isolators and damping devices is 
provided in Fig. 3.34. 
The layout of the seismic isolation layer and a view of the isolators and 
damping devices are shown in Figs. 3.33 and 3.34, respectively. The oil 
dampers are employed as energy-absorbing elements and each damper 
offers a maximum resistance of 1000 t; the large square LRBs are set to 
support the prime columns which bear 95% of the building weight above 
(each couple of square LRBs support the weight of each prime column, 
i.e. 6000 t); the remaining 5% weight is supported by the circular LRBs. 
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In order to avoid crashing, the clearance between the object isolated side 
and the object fixed side is secured as 650 mm. In addition, since the 
seismic isolation layer of this building is installed directly above the hall, 
the area of the upper section of the stage called the fly tower becomes a 
staggered seismic isolation layer which is 2 stories higher and the clearance 
between the structural components of isolated side and the fly tower are 
secured as 750 mm at least. 
 

 
Fig. 3.33. Schematic layout of seismic isolation floor 

 

  
Fig. 3.34. (a) view of the square LRBs, (c) view of the OD 

 
Three-dimensional model 

Time history analysis 
The seismic performance of the mid-story seismic isolation system is 
verified through series of dynamic response analyses using two levels of 
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variation of earthquakes set created in accordance with Japanese law. The 
intensity of the motion is set as “rare” earthquake for Level 1 and 
“extremely rare” earthquake for Level 2. Dynamic response analyses were 
performed using six to ten varieties of earthquakes including recorded 
motion data and artificially generated motion considering geological 
properties of the specific site. 
This building's seismic-resistant design criteria are shown in Tab.3.6. 
 

Table 3.6. Target performance of seismic design 

Earthquake 

scale 

 Level 1 
earthquake 

Level 2 
earthquake 

U floors Member stress Short-term allowable stress or less 

I floors Story drift angle ≤ 1/300 ≤ 1/150 

ISO Deformation level 1/2 stable def. or less stable def. or less 

 Deformation ≤ 200 mm ≤ 400 mm 

L floors Member stress Short-term allowable stress or less 

 Story drift angle ≤ 1/800 ≤ 1/400 

Foundation Member stress Short-term allowable stress or less 

 Support strength Short-term allowable bearing capacity or less 

U (Upper), I (Intermediate), ISO (Isolation), L (Lower)  
 

The peak drift angle and floor acceleration responses are provided 
respectively in Fig.3.35 a and b. 
From Fig. 3.35 can be observed that, since the lower-level floors are SRC 
construction as rather rigid structure, seismic force is largely amplified at 
the top of the hall. Mid-story seismic isolation layer reduces the 
acceleration into the intermediate-level floors to around 25% thanks to 
the isolation effect. The maximum story drift of the upper level floors is 
more than 30% smaller than that of general high-rise office buildings. 
 
It is worth noticing that Nakanoshima Festival Tower has a most efficient 
structural system to avoid the rubber bearings subjected to tensile force 
because of application of mega-trusses. Since the building weight is 
concentrated to the large square LRBs which are laid out along perimeter 
line of the upper-level floors, the uplift force caused by overturning 
moment is theoretically minimized. 
Therefore, by employing this mid-story seismic isolation structure, the 
building is able to achieve the high seismic safety required of the 
headquarters of a news company. 
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Fig. 3.35. (a) peak drift angle response, (b) peak floor acceleration response 

 

3.2.1.4. Tekko Building - JAPAN 

The building, located on a narrow site more than 200m long near Tokyo 
station, has been designed by Mitsubishi Jisho Sekkei Inc. and completed 
in 2015, Fig. 3.36.  
 

 
Fig. 3.36. East view of the building 

 
It is a mixed-use tall building, consisting of 2-seismic isolated buildings on 
an integrated lower part, i.e. a Main Building (office building) located on 
the north side of the site, and a South Tower (lively facilities building) 
located on the south side. The building layout is provided in Fig. 3.37. 
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The Main Building is 3 basement levels, 26 stories above ground and 2 
stories penthouse, reaching the height of 136.9 m; the plan is 
approximately 114.5 x 28 m, with a floor area of 3206 m2. The South 
Tower is 3 basement levels, 19 stories above ground and 1 story 
penthouse, reaching the height of 99.2 m (Figs. 3.38 – 3.39); the plan is 
approximately 38.3 x 28 m, with a floor area of 1072.4 m2. 
The main structure is a steel (S) frame above ground and a steel framed 
reinforced concrete (SRC) below ground. 
 

 
Fig. 3.37. Building layout 

 

 
Fig. 3.38. Longitudinal section of the building 



3. Design practice and applications 

 

111 
 

 

 
Fig. 3.39. Transversal section: (a) South Building, (b) Main Building 

 

The isolation layer is located below the 4th and 6th floor of the Main 
Building and the South Tower, respectively, and divides the building in 
two portions (Figs. 3.38 – 3.39), only distinguished for the occupancy in 
the tower, i.e. commercial facilities and apartments in the lower and upper 
structure, respectively. 
The isolation system of the Main Building is composed by 48 laminated 

natural rubber bearings (RB) of diameter ϕ 1000 ÷ 1500 mm, plus 30 u-
shape steel dampers (LD) and 40 oil dampers (OD) with 8 units with 
locking mechanism. Three main alignments of isolators, two perimeter 
and one interior, can be observed in the plan longitudinal direction of the 
isolation floor (Fig. 3.40), with device spacing equal to 16.8 m and 7.2 m.  
The isolation system of the South Tower is composed by 10 laminated 

natural rubber bearings (RB) of diameter ϕ 800 ÷ 1200 mm, plus 8 oil 
dampers (OD). Two perimeter alignments of isolators can be observed in 
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the plan longitudinal direction of the isolation floor (Fig. 3.41), with device 
spacing equal to 28 m and 7.2 m.  
 

 
Fig. 3.40. Seismic isolation plan of Main Building 

 

 

Fig. 3.41. Seismic isolation plan of South Building 

 

Seismic design 

Simplified analysis 

Simplified model 
A coupled lumped-mass analysis model in which 2 buildings are arranged 
in parallel with a boundary below them is adopted for the vibration 
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response analysis, as the building is configured with 2 buildings and an 
integrated lower part.  
In the model, the B3 floor is assumed to be fixed on the earth with no 
displacement and each of the mass of the 3 basement floors is assumed to 
be integrated. 
The masses of the floors of 3 parts, the Main building, the South Tower 
and the boundary, from 1st to 3rd floor are arranged in parallel and the 
three of them are assumed to be rigid floor with the same displacement. 
The seismic isolation layers of the Main Building and the South Tower are 
placed below the 4th floor and 6th floor, respectively. 
Above those, the structure of the Main Building and the South Tower is 
modeled as 23 lumped masses and 16 lumped masses, respectively, with 
bending-shear spring. 
A graphical representation of the coupled - MDOF vibration analysis 
model of the buildings is given in Fig. 3.42. 
 

 
Fig. 3.42. Vibration Analysis Model 
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Modal Analysis 
The natural vibration periods of the building are shown in Tab. 3.7 
considering both the initial stiffness and the deformation of the isolation 
system at the time of 30 cm. From Tab. 3.7 can be noticed that the 1st 
period of the South Tower is 5.68 s in both the cases considered while the 
1st period of the Main Building is equal to 4.24 s and 5.38 s, respectively 
for the initial state and the state at the time of 30 cm. 
Parametric studies were carried out to investigate amplification of the 
response caused by resonance due to a coupling effect or variation in the 
level of the input seismic motions or equivalent stiffness, as the seismically 
isolated periods of the 2 buildings are close. 
 

Table 3.7. Natural vibration periods of the building 

Direction Mode Natural period [s] 

  Initial 
state 

Deformation at 
the time of 30 cm 

X 

1st (SB, 1st) 5.68 5.68 

2nd (MB, 1st) 3.79 5.06 

3rd (MB, 2nd) 1.32 1.53 

4th (SB, 2nd) 1.21 1.21 

5th (MB, 3rd) 0.79 0.84 

Y 

1st (SB, 1st) 5.66 5.66 

2nd (MB, 1st) 4.24 5.38 

3rd (MB, 2nd) 1.44 1.71 

4th (SB, 2nd) 1.11 1.11 

5th (MB, 3rd) 0.84 0.90 

MB (Main Building), SB (South Building), ( ) number of mode in the MB and SB as 
standalone structures 
 

Time History analysis 
Time history analysis was carried out including 3 measured waves from 
the past (El Centro 1940 NS, Taft 1952 EW, and Hachinohe 1968 NS); 3 
waves prescribed by the notification (Hachinohe, Kobe, and random 
phase), each of which were defined for Level 1 and Level 2; two waves 
unique to the site were examined, assuming the Kanto earthquake and the 
Tokai/Tonankai /Nankai (three coupled) earthquakes. 
The target performance of the seismic design under the Level 1 (rarely 
occurring seismic motion) and Level 2 (extremely rarely occurring seismic 
motion) is shown in Tab. 3.8. 
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Table 3.8. Target performance of seismic design 

 Level 1 Earthquake 
Rare 

Level 2 Earthquake 
Extremely rare 

U and L 
floors 

Short-term allowable stress 
or less 

Short-term allowable stress 
or less 

  Story drift ≤ 1/200 Story drift ≤ 1/100 

ISO Bearing Shear strain 200% Bearing Shear strain ≤ 267% 

 No tensile force Tensile stress ≤ 1 N/mm2 

Short-term allowable surface 
pressure or less 

Basement Short-term allowable stress 
or less 

Elastic limit stress 
or less 

Foundation Short-term allowable stress 
or less 

Ultimate stress 
or less 

U (Upper), I (Intermediate), ISO (Isolation), L (Lower)  
 

The results of the time history analysis in terms of maximum angle of the 
relative deformation and of maximum deformation are depicted in Figs. 
3.43 - 3.44, respectively for the Main Building and the South Tower.  
From Figs. 3.43 - 3.44 can be noticed that the maximum story drift under 
the level 2 was 1/184 and 1/173 for the Main and South Buildings, 
respectively; the maximum displacement of the isolation layer was 33.6 cm 
and 25.1 cm for the Main and South Buildings, respectively. 
 

 
Fig. 3.43. Results of the vibrational analysis (Main Building) 
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Fig. 3.44. Results of the vibrational analysis (South Building) 

 
Wind design 
In the design of the building against wind, an analysis was carried out for 
2 levels of wind loading. 
The target performance of the wind design under the Level 1 and Level 2 
for the structural frames and the isolation system is shown in Tabs. 3.9 – 
3.10. 
 

Table 3.9. Target wind performance of the structural frame 

Load level Story drift Stress in structural frame members 

Level 1 ≤ 1/200 Equal to the short term  
allowable stress or less Level 2 

 

Table 3.10. Target wind performance of the seismic isolation layer 

Load level Seismic isolation layer 

Level 2 

Deformation of the ISO ≤ seismic isolation clearance 
No uplift on the seismic isolation bearings 
No fatigue failure of steel dampers 
Integrity of oil dampers 
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From the wind loading response analysis results, it was confirmed that the 
responses shear force for both the 
Main Building and the South Tower were less than the design shear force, 
and the shear stresses under the Level 2 wind load were less than the short 
term allowable stresses.  
 
Locking mechanism for oil dampers 
The elevators, which pass through the seismic isolation layer in the Main 
Building, will stop when a large displacement occurs in the seismic 
isolation layer.  
Under normal conditions the oil dampers with a locking mechanism 
(Fig.3.45) function as normal oil dampers without locking, but during 
strong winds the oil dampers are locked using a solenoid valve.  
In the Main Building the oil dampers with locking mechanism are locked 
under wind loads with a return period of 4-5 years (wind velocity at the 
top of the building of 25 m/s), the strong wind warning level of the Japan 
Meteorological Agency, based on measurements by a wind direction 
anemometer installed on the top of the building (Fig.3.46). 
The locking mechanism is released using a timer, so that the locking 
mechanism is released at a certain time after the locking mechanism has 
been activated, and also can be controlled manually. 
When an earthquake occurs while the locking system is activated, there is 
a system whereby the lock is released 
based on accelerometer measurements.  
In addition, in order to verify safety, seismic response analysis has also 
been carried out using the stiffness of the seismic isolation layer when 
locked, assuming a case in which the lock release function did not work 
normally. 
 

 
Fig. 3.45. Damper with a locking mechanism 
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Fig. 3.46. Use of damper with a locking mechanism 

 
Monitoring of building under seismic and wind loads 

After completion of the construction of the building, measurements of 
the building were carried out under seismic and wind load for a year. 
 
Building measurement during earthquakes 
During this period, earthquakes of seismic intensity 3 were measured 
twice, and in each earthquake the seismic isolation effect was confirmed. 
In particular, the first one was an M5.5 earthquake on 16th May 2016 with 
an epicenter in the south of Ibaraki Prefecture and the second one was an 
M7.4 earthquake on 22nd November 2016 with an epicenter in the sea off 
Fukushima. Going from the level below to the level above the isolation 
interface, a reduction of the acceleration response equal to 31% and 62% 

(32.2 gal → 9.9 gal and 18.3.2 gal → 11.4 gal) for the Main Building, and 

of 17% and 32% (29.5 gal → 4.9 gal and 19.2 gal → 6.2 gal) for the South 

Building were observed respectively for the two earthquakes, Fig. 3.47. 
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Fig. 3.47. Observed maximum accelerations: (a) May 16, 2016, (b) Nov 22, 2016 

 
Building measurement during strong winds 
In the wind measurements in the 1 year after completion of construction, 
instantaneous maximum wind velocity exceeding 25 m/s on the top of the 
building was measured on 2 days, 2017/4/17 and 2017/4/29, during 
which the locking mechanism of the oil dampers was activated. 
 
In the wind measurements on 2017/4/29 it was found that the 
instantaneous maximum wind velocity exceeded 25 m/s twice, with 
measured values of 30 m/s and 26 m/s (Fig. 3.48).  
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Fig. 3.48. Observed maximum accelerations, Apr 29, 2017 

 
When the locking mechanism of the oil dampers was activated, the 
acceleration response increased below the seismic isolation layer due to 
the wind pressure acting above the seismic isolation layer. As a result, it 
was confirmed that the oil damper locking mechanism was activated 
properly; in both the Main and South buildings excellent habitability less 
than the H-10 was observed on the roof floor (Figs. 3.49 – 3.50). 
 

 
Fig. 3.49. Response situation during strong wind (Main Building) 
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Fig. 3.50. Response situation during strong wind (South Building) 

 
Therefore, the validity of the design was confirmed by the measurements. 

3.2.2. IIS for existing building 

3.2.2.1. China Basin 185 Berry Street Building - USA 

The 185 Berry Street building at China Basin (Fig. 3.51) was originally 
designed in the mid-1980s and opened in 1991. With the construction of 
Pac Bell Park just to the east, and the new University of California at San 
Francisco (UCSF) Mission Bay campus to the west, office space and life 
science space in this portion of the City became highly desirable. 
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Fig. 3.51. View of the building [“On the Grid”, JohnnSumnicht 2008] 

 
The existing building is a three-story, about 274.3 m long and 30.5 m wide 
concrete frame structure with post-tensioned flat slabs and two expansion 
joints at approximately the third of the length (Fig. 3.52). 

 
Fig. 3.52. Plan View of the China Basin Building  

 

Development manager McCarthy Cook & Co wanted to expand this 
structure adding as much new rentable space as possible. In its existing 
condition, approximately 7432 mq of additional space could be added on 
top of the existing building with light-weight steel framing without 
implementing a seismic upgrade to the existing structure. In order to add 
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the desired two new floors conventional upgrade approaches involved 
building new reinforced concrete shear walls within the existing occupied 
structure. This would have been highly disruptive to the bio-science 
laboratories operated by UCSF, a major existing tenant in the building. 
Despite the fact that the University desired to expand its presence at China 
Basin, it could not tolerate the disruption of its existing operations that 
seismic retrofit construction would have entailed. 
The San Francisco office of Simpson Gumpertz and Heger (SGH) 
proposed that the two new stories be constructed on seismic isolation 
bearings placed on top of the existing structure. This mid-level isolation 
concept had never previously been implemented in any building in the 
United States. In initial feasibility studies, SGH demonstrated that using 
this technique, the new construction atop the isolation bearings would act 
like a giant tuned, 244 m long mass damper. During strong earthquake 
shaking, the new stories addition would move laterally to counteract and 
dampen the motions of the existing building and actually reduce the 
amount of earthquake force and displacement demand on the existing 
structure. This not only permitted the new space to be constructed 
without requiring a structural upgrade but also improved the seismic 
performance capability of the existing building. Most importantly, it 
eliminated the need for an intrusive and disruptive seismic retrofit of the 
nearly, fully occupied building below. 
The final solution allowed the maximum addition of added floor area with 
respect to retrofitting conventional methods (13500 mq vs. 8400 mq) 
without the introduction of seismic joints (Fig. 3.53). In addition the 
project scale of China Basin (252 m) is comparable to the Transamerica 
Building (260 m) and to Bank of America Building (241 m) project scale 
(Fig. 3.54). 
 
It is worth noticing that the retrofitted “impressive project, and unique 
application of b.i. technology, …, really very challenging” of the Berry Street 
won the “SEAONC Awards – Excellence in Structural Engineering 
2008”; the Jury comment was: “The design solution was highly ingenious, requiring 
innovative use of cutting-edge technology.” 
Some pictures of the China Basin elevation under construction are 
provided in Fig. 3.55. 
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Fig. 3.53. (a) Existing floor plate area, (b) maximum addition with conventional 
methods, (c) vertical addition on isolators 

 

 
Fig. 3.54. Project scale: (a) China Basin, (b) Transamerica Building, (c) Bank of 
America Building 
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Fig. 3.55. (a) elevation under construction, (b) – (c) view of the seismic joints, (d) 
– (e) steel beam installation 
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The design of the isolation system was a real challenge because a relatively 
light superstructure had to be isolated and the isolators were required to 
be stable at a displacement of +/- 1.14 m which was approximately 1.5 
times the code required maximum displacement of +/- 76 cm (average of 
seven maximum credible earthquakes). 
For this reason, a system composed of 87 seismic isolators, including 33 
lead rubber bearings (LRBs), and 54 sliders in series with an elastomeric 
bearing (EBSs), was designed.  
The number and location of the two devices were optimized to give the 
correct balance of stiffness and displacement demand in the isolated 
structure. The LRB’s were placed along the exterior lines in order to 
maximize the torsional resistance while the ESB’s were placed in the 
interior lines (Fig. 3.56).  
The main dimensions of the LRBs are: 1156 mm diameter with 0.361 m 
of rubber and a 0.152 m lead core. 
The elastomeric slider (ESB) consisted of a 1829 mm stainless steel sliding 
plate on top of a 0.61 m diameter elastomeric bearing with a 0.127 m lead 
core and a 0.305 m diameter PTFE sliding surface.  
A detail of the LRB and the steel girders of the isolation layer is depicted 
in Fig. 3.57; a view of the isolator devices is provided in Fig. 3.58.  
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Fig. 3.56. (a) Seismic isolation plan, (b) detail of the elastomeric bearing, (c) 
Cross-section of the building 

 

 
Fig. 3.57. Detail of the elastomeric bearing and the steel girder of the isolation 
system 
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Fig. 3.58. (a) rubber bearing, (b) elastomeric sliders  

 

The isolation system is characterized by a tri-linear restoring force 
characteristic model, the isolation system design properties are shown in Fig. 
3.59. An example of the results of the prototype test on the LRB and ESB 
are provided in Figs. 3.60 – 3.61, respectively.  
 

  
Design Properties 

Device Fy or μ 
[Kips] 

K1 
[k/in] 

Δy 

[in] 
K2 

[k/in] 
Δ2 

[in] 
K3 

[k/in] 
Δ3 

[in] 
K beyond 

Δ3 

LRB 36 70 0.51 7 35 10.5 44+/- >0 

Slider 0.1 22 μD/22 0 31.5 8 42 16-20 to 45” 

Fig. 3.59. Isolation System Design Properties [Dutta et al. 2009] 
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Fig. 3.60. Hysteresis Loops of the Lead Rubber Bearings [Dutta et al. 2009] 

 
Fig. 3.61. Hysteresis Loops of the Elastomeric Sliders [Dutta et al. 2009] 

 

Three-dimensional analysis 

SGH developed a highly detailed analytical model of the structure that 
represented the nonlinear characteristics of the existing structure, the 
seismic isolators, the new addition, and even the existing foundation piles 
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beneath the structure. Analyses were further complicated by the fact that 
the existing building is actually three separate structures, formed by the 
presence of two expansion joints located at approximately the 1/3 points 
of the 252 meters long structure. SGH modeled the structure so that the 
effects of pounding between the three separate structures could be 
explored. Eventually, SGH decided to place viscous dampers at the joints 
between the separate structures, to dissipate some of the energy 
transferred between the separate pieces as they collide, much as such 
devices are used to cushion the forces associated with berthing large ships 
at marine terminals. 
A full three dimensional non linear model of the three wings was 
constructed in RAM Perform. 
 
Time history analysis 

SGH performed a sophisticated non linear time history analysis to justify 
that the base isolated addition was not detrimental to the existing 
structure.  
Time history analysis were carried out under two different sets of 7 ground 
motions with two orthogonal components. The first set (Fig. 3.62 and 
Tab. 3.11), representative of the ground shaking at the ground surface, is 
scaled to a consensus MCE (Maximum Considered Earthquake) level 
spectrum developed by the geotechnical engineer of record with review 
by the Peer Review Panel. The second set was used for analyses of the 
structure considering the lateral flexibility of the piles. Lateral flexibility of 
the piles was determined by performing a nonlinear static analysis of a 
typical pile modeled using nonlinear beam and soil spring elements. 
 

Table 3.11. Ground Shaking Records Used to Develop Surface Motions [Dutta et 
al. 2009] 

Earthquake Record 

1940 Imperial Valley El Centro 

1995 Kobe Amagasaki 

1999 Kocaelli Duzce 

1992 Landers Yermo 

2002 Denali Pump Station 10 

1992 Landers North Palm Springs 

1987 Superstition Hills Imperial County Center 
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Fig. 3.62. Spectra for suite of spectrally matched ground surface motions used in 
analyses [Dutta et al. 2009] 

 
 
Reliability Analysis 
The peer review team requested to demonstrate that the building along 
with the addition possessed the necessary toughness of a code compliant 
structure. To prove that, the SGH performed a reliability analysis using 
the results from Incremental Dynamic Analyses (IDAs) in order to 
estimate a confidence level associated with the existing building's ability to 
resist global collapse at MCE level shaking. 

In these analyses, the records previously used for the MCE analyses 
were progressively amplitude scaled up from 1.0 to a maximum multiplier 
of 2.2 on the MCE spectrum. The end point of most of the analyses was 
due to convergence failure caused by excessive deformation in one or a 
group of elements, suggesting occurrence of collapse. The amplitude scale 
increment was scaled immediately preceding that point as the collapse 
capacity of the structure for the particular record. 

The scalar ground motion multiplier is depicted in Figs. 3.63 ÷ 3.65 as 
a function of the peak displacement at the center of the roof in the west, 
center, east x and y direction, respectively. From Figs. 3.63 ÷ 3.65 can be 
observed that the retrofitted structure was able to withstand motions up 
to a multiplier of 1.5 for all the curves except for Yermo record.  
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The maximum multiplier that did not produce any non-convergence for 
the Yermo record was 1.2. Based on this, it can be concluded that a global 
instability will ensue if the structure is subjected to approximately 1.5 times 
the MCE level ground motion, for most records.  
 

 
 

Fig. 3.63. Displacements of the IDA: (a) X-West, (b) Y-West [Dutta et al. 2009] 

 

 
Fig. 3.64. Displacements of the IDA: (a) X-Center, (b) Y-Center [Dutta et al. 2009] 
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Fig. 3.65. Displacements of the IDA: (a) X-East, (b) Y-East [Dutta et al. 2009] 

 
The results of the IDA are satisfactory and in conformance with the 
recommendations of FEMA 356 which requires that a pushover analysis 
be continued to 1.5 times the target displacement to capture any 
undesirable collapse modes that might be triggered in the vicinity of the 
expected response displacement. 
Using the results of the IDAs, SGH determined the confidence level, as 
the reliability, R, as defined by Benjamin and Cornell and as further 
explained below. 
The numerical formulation of the reliability R is obtained using the total 
probability theorem. Assuming that the displacement capacity for the 
structure is represented by the random variable C and the demand by 
random variable D, reliability R is given by the probability that the capacity 
is greater than the demand. Mathematically this can be written as: 
 
R 1 P(C D)           (3.1) 

 
which for this project, is evaluated at the MCE ground shaking intensity 
level, using statistical distributions for the random variables C and D, 
respectively obtained from IDAs at MCE level shaking. 
 
Assuming that the capacity C and the demand D are independent random 
variables, the probability of failure at a given displacement value Δ, 

P(C D )  , can be calculated as the product of the conditional probability 

of the demand equaling displacement Δ, P(D )  , and the probability 
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that the structure’s displacement capacity is less than Δ, P(C )  . Finally, 

the total reliability can be calculated by integrating Eq. (3.1) over the entire 
range of displacement values, Δ. Therefore, formula (3.1) can be rewritten 
as: 

0
R 1 P(D ) P(C )d



              (3.2) 

 
The reliability of the existing building and the retrofitted building with the 
isolated addition is depicted in Fig. 3.66 in terms of the maximum 
displacements in West and East X and Y (WX, WY, EX, EY) directions. 
The histograms show that the base isolated addition has a higher reliability 
than the base structure without the addition. This clearly illustrates that 
the beneficial effect isolation has on the overall performance of the China 
Basin building. 
 

 
Fig. 3.66. Comparison of Reliability of the Original and the Building with Isolated 
Addition  

3.3. OBSERVATIONS 

The seismic database of more than 60 Japanese buildings equipped with 
IIS and realized starting from the late 90s, has demonstrate the growing 
confidence in the seismic performance achievable by this technique, 
representing a valid option for structural designers to ensure superior 
seismic performance to new buildings or in order to retrofit existing ones. 
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For this reason, the overview of the main real applications of IIS, both for 
new buildings and for vertical addition in the retrofit of existing buildings, 
is provided in this chapter. 
In particular five IIS buildings, four new and one retrofitted, are selected 
for the representativeness of the wide applicability of mid-story isolation 
in the current design practice. In fact, typical and atypical configurations 
are examined; design solutions are provided to overcome particular issues 
related mainly to the flexibility of IIS structures both from architectural - 
functional and structural points of view. 
In the chapter are also provided some differences between BIS and IIS 
structures. 

Generally, in mid-story isolated structures are observed larger values 
than base isolated structures counterparts due to the interaction between 
upper and lower structures. In addition, the building as a whole is affected 
by higher mode vibrations, thus, the vibration characteristics of the 
building are governed not only by the stiffness of the isolation layer and 
the number of dampers, but also by the stiffness of the upper and the 
lower structures, and the weight ratio of the upper and lower structures.  
Moreover, the dynamic behavior of the structural depends not only on the 
location of the isolation layer, which defines the mass and stiffness ratios 
between superstructure and substructure, but also on the distribution of 
the mass and stiffness along the height of the building, which may affect 
the response of upper and lower structures and of the overall structure. It 
is a consequence of the architectural and functional flexibility of IIS. 

From the exam of the buildings it is observed a typical case in which 
the upper structure is very stiff and shows a minor number of floors with 
respect to the lower structure.  
In other atypical cases the upper structure is heavier and more flexible 
than the lower structure counterparts due to the larger number of floors 
with respect to the substructure and to a partial or almost total emptying 
of the lower structure. In this context, seismic performance has been 
ensured by creating ad hoc structural systems: a system of perimeter 
columns which cover the entire height of the lower structure, paying more 
attention to buckling; or giant truss to transfer the load from the upper 
structure to the perimeter lower structure through a mega-columns 
system. In addition, since in these cases the superstructure has many 
floors, the overturning moment due to horizontal loads could cause 
traction in isolators; thus, thanks to the transfer structure the isolators are 
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always under compression, and placing the isolators along the perimeter, 
the uplift force is minimized. 
Moreover, a twin inter-story structure is considered; the designers carried 
out analyses to avoid resonance effects at the seismic isolation periods of 
the coupled buildings. A locking mechanism by means of oil dampers is 
implemented to reduce the displacement of the seismic isolation layer 
during strong winds. After completion of construction, the effectiveness 
of inter-story isolation was confirmed by measurements of the buildings 
carried out during earthquakes and wind.  
Looking at the existing building, the vertical addition by means of inter-
story isolation has demonstrate the feasibility and the effectiveness of IIS 
technique for retrofitting existing buildings. 

The overview of the IIS applications has also shown the variety of 
approaches, both in the formulation of the problem and in the definition 
of the design objectives and parameters. The conceptual approaches of 
isolation, mass damping and energy dissipation are clearly identified. 
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Equation Chapter (Next) Section 4 

4. LITERATURE OVERVIEW AND 
DISCUSSION 

4.1. DYNAMIC BEHAVIOR OF INTERMEDIATE 

ISOLATION SYSTEMS 

Shifting the position of the isolation system (ISO) from the base to a 
generic level of the building, the isolation interface divides the structure in 
two portions, an upper structure (US) and a lower structure (LS), 
respectively above and below the isolation layer.  
The intermediate seismic isolation (IIS) combines the strategies of 
isolation and mass damping. In fact, the set of US and ISO can be seen 
analogous to a base isolation system (BIS) and as a mass damper (TMD) 
for the LS. 
This statement derived from the comparison of the equations of motion 
of the simplified models of BIS, TMD and IIS reported in Chapter 2 (see 
Eqs. (2.6) - (2.7); (2.192) - (2.193); (2.245) ÷ (2.249)). 

It is quite intuitive that the upper and lower structures not only can be 
studied separately, but also the interaction between the two portions can 
be considered, leading to two main problems: effect of the higher modes 
and energy dissipation. 
Generally speaking, in IIS systems the first mode represents the mode of 
the isolation while the higher modes correspond to the modes of the 
isolated US and LS. If the US is sufficiently stiff with respect to the 
isolation system, the higher modes of the isolated US are negligible, since 
the combination of US + ISO behaves as a BIS. Instead, the higher modes 
of LS are effective since, no matter how flexible the isolation is, the 
dynamic of the LS cannot directly enjoy from this flexibility. In addition, 
the higher modes can be characterized by a higher fraction of participating 
mass. Therefore, since these modes show periods like that of a 
conventional fixed-base structure, the input energy of IIS and fixed-base 
structures can be comparable. Furthermore, the energy dissipation 
represents an important feature for the IIS effectiveness. 
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The peculiarities of IIS explain why the design approach for such 
systems is not well established and uniquely shared.  
For these reasons, in the current scientific literature on this topic, it is 
possible to define three major conceptual approaches, each mainly 
focusing on one single aspect of the three ones related to IIS, namely: 
energy dissipation, isolation, mass damping. 

With this purpose, in the present chapter the review of the main 
scientific contributions is presented focusing the attention on modeling 
approaches, problem formulation and identification of the governing 
design parameters, results of parametric analyses and design criteria 
derived from the analyses and tests. Then, the main analytical formulations 
for the three approaches are analyzed. Finally, the major outcomes and 
observations coming from the literature review and the relevant design 
implications are discussed. 

4.2. MODELING OF INTERMEDIATE ISOLATION 

SYSTEM (IIS) 

In order to evaluate the effect of a mid-story isolation system on the 
dynamic behavior a multistory building, it is necessary that a complete 
model of the system accurately incorporates the details of the building and 
the isolation system properties. 
Simplified lumped mass models and more refined three-dimensional (1D 
and 3D) models, accounting for the linear and/or non-linear restoring 
force characteristics of the isolation system, have been commonly adopted 
in literature. 
Whereas multi-degree-of-freedom lumped-mass (1D-MDOF) models are 
adopted for a detailed guess of the dynamic behavior of IIS systems, two- 
and three- lumped-mass (1D-2DOF and 1D-3DOF) models are used to 
simply examine the impact of the design parameters, once established the 
correspondence between the reduced-order 2DOF or 3DOF and MDOF 
models. In fact, these simplified lumped-mass models can be very helpful 
in preparing and planning an initial design solution; then, the effectiveness 
of the design solutions can be finally evaluated by more refined 3D 
MDOF models. 
1D-MDOF models are composed of all the degrees of freedom of the 
upper and lower portions, considered as standalone structures, and of the 
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isolation system. Many researchers adopt multi-lumped-mass model to 
grasp the global dynamic behavior of the mid-story buildings, paying more 
attention on the effect of the flexibility of the upper part of the isolated 
structure on the system response, and on the impact of the dynamic 
interaction between substructure and isolated superstructure. 
1D-MDOF models are utilized by the following researchers, within widely 
differentiated scopes and with different research objectives. 
[Murakami et al. 2000-2001, Sueoka et al. 2004, Tsuneki et al. 2008-2009] 
utilize MDOF models to describe the behavior of real new “flexible-stiff 
mixed-used” and retrofitted existing buildings; [Zhou et al. 2004, Hu et al. 
2004] study the effectiveness of mid-story isolation as a retrofitting 
strategy in a real mixed-used public building. [Sadek et al. 1999] employ 
IIS technique for new and existing buildings and extend the method to the 
vibration control system proposed by [Feng & Mita 1995], the so-called 
“mega-sub configuration”, for tall buildings. With the aim of retrofitting 
existing buildings, [Villaverde 2002] studies an aseismic roof isolation 
system and [Chey et al. 2013] investigate the performance of “added 
stories” isolation system. [Moutinho 2012], [Matta & De Stefano 2007] 
and [Tian et al 2007] exploit a roof isolation system to reduce seismic 
vibration of the whole building. [Reggio & De Angelis 2015], [Ryan & Earl 
2010] and [Champis et al. 2012] examine the effectiveness of inter-story 
isolation systems as a function of their location; in particular [Ryan & Earl 
2010] and [Champis et al. 2012] include both single-story and every-story 
isolation. [Kobayashi et al. 2003, Kobayashi & Koh 2008] investigate on 
the effect of the dynamic interaction between upper and lower structures 
in intermediate isolated systems. 
The 1D-2DOF models of IIS are often based on the premise that the 
isolated superstructure behaves as a rigid body under earthquake 
excitations. This assumption is considered accurate when the flexibility of 
the isolated portion is mainly concentrated at the isolation layer; and the 
upper structure is very rigid, both with respect to the isolation system and 
to the lower structure; consequently, the mass of the upper structure and 
isolation is characterized by one lumped mass supported by the isolator; 
the lower part of the structure below the isolation story is represented by 
another lumped mass.  
For instance, [Villaverde 1985], [Murakami 2001, Murakami et a. 2001, 
Murakami & Sueoka], [Qi et al. 2006] and [Zhou et al. 2009] utilize the 
total masses of the lower part of the isolated structure as the bottom mass 
of the two-mass model; [Sadek et al. 1999], [Villaverde 2002], [Ping et al 
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2008-2016], [De Angelis et al. 2012], [Moutinho 2012], [Chey et al.2013] 
and [Reggio & De Angelis 2015] incorporate the modal characteristics of 
the lower part to determine the bottom mass.  
It is worth noticing that, also the “dual isolation systems”, in which 
isolation layers are placed both at the base and at a mid-story, can be 
represented by a 2DOF model. In this case the two-lumped masses 
respectively correspond to the base and the mid-story isolation layer, thus, 
assuming that each isolated superstructure behaves as a rigid body. [Becker 
& Ezazi 2016]. 
In order to capture the effect of the flexibility of the upper structure on 
the response of base isolated buildings Kelly developed a 2DOF (the so-
called “isolated single DOF”) where the isolation and the upper stories are 
modeled as two lumped-mass models [Kelly 1990]. Analogously, in a mid-
story isolation system, the representation of the upper part flexibility leads 
to a 3DOF model.  
Such three-lumped mass models are used by [Kobayashi & Koh 2008, 
Moriizumi & Kobayashi 2012] and [Wang et al. 2011, 2012a-b, 2013], to 
study the impact of modal interaction on the substructure and isolated 
superstructure response; in particular [Wang et al. 2011, 2012a, 2013] 
adopt 3DOF models to identify the range of lower and upper structure 
frequencies where modal interaction and coupling can adversely affect the 
performance of the isolation system; however, in [Kobayashi & Koh 2008, 
Moriizumi & Kobayashi 2012] and [Wang et al. 2011, 2012a, 2013] the 
mass of the upper and lower structure is equal to the corresponding 
reactive mass, in [Wang et al. 2012a] the concept of generalized mass is 
adopted for the modal definition. 

4.3. PARAMETRIC ANALYSES 

In the existing literature on IIS parametric analyses have been carried out 
by varying: 

- the location of the isolation system, having fixed mass and 
stiffness distributions and the damping ratios of the structural 
portions [Ping et al. 2008, Zhou et al. 2016, Wang et al. 2013, 
Reggio & De Angelis 2015];  
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- the mass and stiffness distributions in the upper and lower 
structures, having fixed the damping ratios of the structural 
portions and the location of the isolation system [Chey et al. 2013]; 

- the location of the isolation system and the mass and stiffness 
distributions, having fixed the damping ratios of the structural 
portions [Zhou et al. 2016, Wang et al. 2012a, Kobayashi & Koh 
2008, Ryan & Earl 2012]; 

- the damping ratios of upper and lower structures, having fixed 
mass and stiffness distributions of the structural portions and the 
location of the isolation system [Reggio & De Angelis 2015]. 

4.3.1. Design parameters 

The design parameters governing the dynamic behavior of intermediate 
isolation system are: 

- mass ratios; 

- frequency ratios; 

- nominal isolation period; 

- nominal period of the structural portion; 

- damping of the isolation system; 

- damping ratios of the structural portions; 

- ratio of the damper yield force to total above-ground mass. 

Some of those parameters are specifically addressed for exploiting either 
the isolation effect or the mass damper effect; others can be used for both 
purposes. 
In the following the design parameters are expressed according to the 
notation used in the present work. 

In terms of mass, the following parameters have been used:  

- the ratios of masses of the upper and lower structure to the 

isolation mass US US ISOr m / m  and LS LS ISOr m / m  [Wang et al. 
2011, 2012a, 2013];  

- the ratio between the masses of the upper and lower structures, 

i.e. US LSm / m [ Wang et al. 2011, 2012a, 2013; Kobayashi & Koh 
2008; Ryan & Earl 2010];  
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- the ratio between the total isolated mass, equal to the mass of the 
upper structure and isolation system, and the lower mass, i.e. 

US ISO LS(m m / m)   [Ping et al. 2008, Zhou et al. 2016, 

Kobayashi & Koh 2008, Sadek et al. 1997, Chey et al. 2013, De 
Angelis et al. 2012, Reggio & De Angelis 2015];  

- the ratio between the total isolated mass and the total mass, i.e. 

m US ISO totR (m m / M)  [Murakami et al. 2000, Sueoka et al. 2004, 

Tsuneki et al. 2008-2009]. 

In terms of frequency, the following parameters have been used:  

- the ratio between the frequencies of the upper or lower structure 

and the isolation system, i.e. 
US ISO

/ω ω  and 
LS ISO

/ω ω , for 

exploiting the isolation effect [Wang et al. 2011, 2012a, 2013]; 

- the ratio between the frequencies of the isolation system and the 

lower structure, i.e. 
ISO LS

/f=ω ω , for exploiting the mass damper 

effect [Ping et al. 2008, Zhou et al. 2016, Sadek et al. 1997, Chey 
et al. 2013, De Angelis et al. 2012, Reggio & De Angelis 2015]. 

The nominal isolation period, TISO, has been used by [Wang et al. 2011, 
2012a, 2013; Kobayashi & Koh 2008; Ryan & Earl 2010], the nominal 
period of the substructure, TLS, has been adopted by [Kobayashi & Koh 
2008] and the nominal period of the superstructure, TUS, has been assumed 
by [Ryan & Earl 2010]. 

The damping ratio of the isolation system, ξISO, and of the substructure, 

ξLS, have been used by [Ping et al. 2008; Zhou et al. 2016; Wang et al. 
2011, 2012a, 2013; Kobayashi & Koh 2008; Ryan & Earl 2010; Sadek et 
al. 1997; Chey et al. 2013; De Angelis et al. 2012; Reggio & De Angelis 

2015], and the damping ratio of the of the superstructure, ξUS, has been 
assumed by [Wang et al. 2011, 2012a, 2013; Kobayashi & Koh 2008; Ryan 
& Earl 2010; Chey et al. 2013; Reggio & De Angelis 2015]. 

The ratio of the damper yield force to total above-ground mass, α’s, has 
been adopted by [Murakami et al. 2000, Sueoka et al. 2004, Tsuneki et al. 
2008-2009]. 

The ranges of values adopted for the design parameters defined above by 
the authors of the major papers on IIS are reported in Tab. 4.1; in addition, 
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the value assumed for each conceptual approach are reported and 
discussed in §4.5. 
 

Table 4.1. Values adopted for the design parameters 

Design 
Parameters 

Total range 

of values 

Range of values 
IS MD ED 

USr  0 ÷ 15 0 ÷ 15   

LSr  0 ÷ 12 0 ÷ 12   

US LS/m m  0 ÷ 5 0 ÷ 5   

  0 ÷ 10 0.2 ÷ 6 0 ÷ 10  

mR  0.1 ÷ 1 0.2 ÷ 1  0.1 ÷ 0.8 

US ISO/ω ω  3 ÷ 40 3 ÷ 40   

LS ISO/ω ω  3 ÷ 40 3 ÷ 40   

f  0 ÷ 10 0.025 ÷ 0.3 0 ÷ 10  

ISO  0 ÷ 1 0 ÷ 0.7 0 ÷ 1  

US  0.02 ÷ 0.05 0.02   

LS  0 ÷ 0.05 0.02 0 ÷ 0.05  

ISO  1 ÷ 4 1 ÷ 4   

US  0.05 ÷ 0.7 0.05 ÷ 0.7   

LS  0.05 ÷ 0.7 0.05 ÷ 0.7   

'
s  0.005 ÷ 0.08   0.005 ÷ 0.08 

IS = Isolation, MD = Mass Damping, ED = Energy Dissipation 

 
Although those parameters spread in a wide range, the analyses carried out 
for each approach are more restricted and, however, characterized by 
some variability. 
In order to provide an overall picture for understanding the dynamics of 
IIS structures, a preliminary discussion on the design parameters adopted 
is provided. In Tab. 4.1, starting from the values assumed for each 
approach, the values derived for the other control strategies are marked in 
italics. 

For what concerns the isolation approach, the major parameters considered 

are the mass ratios USr , LSr , US LS/m m ; the frequency ratios US ISO/ω ω  and 

LS ISO/ω ω ; the damping ratios ISO , LS , US ; the nominal periods ISO , 

LS , US . Considering the mass damping approach, the major parameters 
considered are the mass ratio  ; the frequency ratio f ; the damping ratios 
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ISO and LS . In terms of the energy dissipation approach, the major 

parameters considered are the mass ratio mR  and the shear coefficient of 

the dampers '
s .  

In all the control strategies the range of values in terms of mass ratios are 
more extended for exploring, from a theoretical point of view, all the 
possibilities. However, in practice these values are more restricted.  

In general, increasing the values of USr , LSr , US LS/m m ,   and mR  the level 
of the isolation layer moves from the top to base of the building. In 
addition, these values can represent a different mass distribution of the 
upper and lower structures. For example, one structural portion could be 
characterized by more stories and a great emptying for architectural needs. 

The nominal periods, explicitly addressed in the isolation approach, 
represent in a synthetic way the ratio of the mass and stiffness of the single 
portion or, in addition, the interaction between different mass and 
stiffness distributions. In fact, the same value can correspond to a portion 
more flexible and lighter or stiff and heavy in equal measure, or even 
different their combinations. 

The frequency ratios US ISO/ω ω  and LS ISO/ω ω  are assumed as design 
parameters in the isolation approach. The structural frequencies are 
chosen such that the isolation represents a flexible interface with respect 
to both upper and lower structures.  

The frequency ratio f , addressed in the mass damping approach, is the 

inverse of the ratio LS ISO/ω ω . Lower values of f  lead to a rigid LS with 

respect to the isolation layer; larger values of f  represent a quite rigid or 
flexible LS with respect to the isolation. It is worth noting that, while the 
LS can be more flexible than the isolation system, if this happens for the 
US, the combination of US + ISO does not behave as a BIS and the overall 
behavior of the IIS changes, leading to a fixed-based isolated structure. 

The damping ratios are greater for the mass damping approach. In 
general, the damping ratio of the structural portions can be neglected, 
since it is small compared to that of the isolation. This leads to a reduced 
computational complexity. However, since the damping ratio of the 
structural portions is lower than the one of the isolation, the system is 
characterized by non-proportional damping. For this reason, the 
assumption of proportional damping commonly adopted in design 
practice could not be adequate to grasp the behavior of IIS systems. 

The shear coefficient of the dampers '
s  is utilized in the energy 

dissipation approach by the Japanese school of researchers. It represents 



4. Literature overview and discussion 

 

145 
 

the shear distribution at the isolation layer of the dampers normalized with 

respect to the weight of the building. Increasing the ratio '
s , the energy 

dissipated by the isolation system increases; however, excessive values of 
the shear coefficient does not lead to a significant improvement in the 
response of the building. 

4.3.2. Design criteria and relevant response parameters 

The main design criteria implemented for reducing the response in mid-
story isolated structure consist in: 

- minimizing the base shear force [Ping et al 2008, Zhou et al 2016, 
Wang et al. 2011, 2012a, 2013; Kobayashi & Koh 2008; Ryan & 
Earl 2010]; 

- minimizing the displacements of the upper structure, lower 
structure, or both upper and lower structures [Wang et al. 2011, 
2012a, 2013; Kobayashi & Koh 2008; De Angelis et al. 2012]; 

- equalizing both damping ratios and frequencies of the main 
structure and TMD in the complex mode of vibrations [Sadek et 
al. 1997, Chey et al. 2013]; 

- maximizing the energy dissipated by the isolation system 
[Murakami et al. 2000, Sueoka et al. 2004, Tsuneki et al. 2008-2009, 
Reggio & De Angelis 2014, 2015]. 

In order to achieve the effectiveness of such systems, some indices which 
represent the response of the controlled structure normalized with respect 
to the uncontrolled configuration were defined, expressed in terms of: 

- the displacement of the main structure; 

- the relative displacement between the structure and the device 
mass;  

- the absolute acceleration of both the main system and the TMD. 
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4.4. OVERVIEW OF THE MAJOR PAPERS ON 

INTERMEDIATE ISOLATION SYSTEMS 

The overview of the main papers on IIS related to the three major 
conceptual approaches, i.e. isolation, mass damping and energy 
dissipation, is provides in the following. 

4.4.1. Threefold approach (energy dissipation, isolation, 
mass damping) 

The papers by [Ping et al 2008] and [Zhou et al 2016] provide an overview 
of the optimal design parameters covering the range of all the three design 
approaches; in addition, this range of values of the threefold approach is 
shown in Tab. 4.2. 
 
[Ping et al. 2008] consider a 2DOF reduced-order model, and employ an 
optimization procedure based on the minimization of the base shear 
variance assuming earthquake excitation as a stationary stochastic process 
with zero mean. The optimal design parameters are the frequency ratio f 

and the damping ratio ξISO. The ratios f and ξISO respectively vary in the 
interval 0.05 ÷ 1 and 0 ÷ 0.7, by varying the mass ratios α in the range of 
0.01 ÷ 10. It is worth noticing that the lower limit of the frequency ratio f 
is selected to avoid excessive drift of the isolation layer, as a design “rule”, 
while the upper value corresponds to the fact that the optimum frequency 
ratio is usually less than 1; the lower and upper limits of the mass ratio α 
respectively correspond to conventional TMD (α = 0.1) and BIS (α = 10) 

systems; the upper limit of the damping ratio ξISO refers to technical 
considerations. [Ping et al. 2008] show that increasing the mass ratio, the 

optimal frequency ratio fopt decreases while the corresponding damping 

ratio ξISO,opt increases. The optimal parameters fopt and ξISO,opt vary in the 
following ranges, respectively: for the tuning zone, in which α is less than 
1, they are 0.5 ÷ 0.9 and 0.1 ÷ 0.3; for mid-story isolation zone, in which 
α is between 1 and 4, they are 0.05 ÷ 0.5 and 0.3 ÷ 0.7; for base isolation 
zone, in which α is greater than 4, they are 0.05 and 0.5 ÷ 0.7 (Figs. 4.1 ÷ 
4.3). 
Therefore, it exists an optimal damping ratio of the isolation layer in the 
tuning frequency zone and the base isolation zone; however, in the mid-
story isolation zone whose control mechanism is isolation and energy 
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dissipation, the higher damping level results in a better control 
performance.  

 

Fig. 4.1. Optimal design parameters: (a) optimal frequency ratio vs. mass ratio (b) 
optimal damping ratio vs. mass ratio 

[Ping et al. 2008] 

 

 

Fig. 4.2. Power spectral density function of base shear for optimal design 
parameters: (a) α = 0.1, (b) α = 2, (c) α = 8 

[Ping et al. 2008] 
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Fig. 4.3. modal mass participation factor vs. mass ratio [Ping et al. 2008] 

 
[Zhou et al. 2016] utilize a mode synthesis-based approach to define a 
2DOF reduced-order model which accurately described the complete 
structure behavior. 
The authors define an optimization criterion which consists in minimizing 
the total base shear thanks to the mid-story isolators to limit the 
complexity of optimization. In particular, two base shear-based 
performance objectives are considered for deriving the optimal isolation 
parameters (frequency ratio f and damping ratio ξISO): the maximum base 
shear for any harmonic excitation, and the variance of the base shear for 
a band limited white noise (representing the excitations with energies in a 
range of frequencies). The behavior of the isolation system is assumed 
linear. 
Since the damping in the main structure is relatively small compared to the 
isolation system, the damping of the original structure is ignored in order 
to simplify analytical formulation. Zhou et al. suggested that this 
assumption was, however, not expected to produce highly suboptimal 
isolators. 
Varying the mass ratio α between 0 ÷ 10, the design parameters frequency 
ratio f and damping ratio ξISO were varied in the range 0.05 ÷ 1 and 0 ÷ 
0.5, respectively. The lower and upper limits of the mass ratio were 
respectively chosen to represent conventional TMD and BIS systems; the 
upper and lower limits of the frequency ratio were respectively selected to 
prevent large story drift of isolators and to consider that optimum 
frequency ratio is usually less than 1; the upper limit of the damping ratio 
was selected for technical considerations, in fact, in order to increase the 
damping, additional damping devices are necessary. 
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It is worth noticing that the optimization criterion and the range of interest 
of the design parameters used by Zhou et al. are remarkably similar to the 
ones used by Ping. at al. 
Similar values for the optimal isolation parameters were provided for both 
the base shear-based performance objectives.  
Zhou et al. find that increasing the mass ratio, the optimal frequency ratio 
fopt decreases while the corresponding damping ratio ξISO,opt increases. The 
optimal parameters fopt and ξISO,opt were varied in the following ranges, 
respectively: for the tuning zone, in which α is less than 1, they were 0.3 ÷ 
1 and 0.1 ÷ 0.5; for mid-story isolation zone, in which α is between 1 and 
6, they were 0.05 ÷ 0.3 and 0.5; for base isolation zone, in which α is greater 
than 6, they are 0.05 and 0.5, Fig. 4.4. Thus, for mass ratios larger than 1 
the damping ratio is always 0.5. 
 

 
Fig. 4.4. Optimal design parameters, minimum base shear amplitude vs. 
minimum base shear variance: (a) frequency ratio vs. mass ratio, (b) damping 
ratio vs. mass ratio [Zhou et al. 2016] 

 
The methods of Zhou et al. and Ping et al. are comparable; however, 
increasing the mass ratio, the different upper bound for the optimal 
damping ratio provides quite different optimal parameters.  
The optimization procedure based on the minimization of the base shear 
variance was implemented by Zhou et al. in two buildings very different 
from each other.  
The first building is an ideal 16-story building modeled as shear structure 
with uniform mass and stiffness distributions; 16DOF IIS models are 
developed changing the placement of the isolation level at every story 
from the 2nd to the 16th level. The second building, “likely to be 
encountered in an urban setting”, is a 11-story building composed of two 
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underground floors and nine floors above ground; different mass and 
stiffness characteristics are chosen and the isolation system is placed at the 
first level above ground. 
In both buildings, viscous dampers are included in each story to introduce 
a damping ratio equal to 0.05. 
Re-arranging the floor mass values of both the buildings, the range of the 
mass ratios and a comparison between the mass of the structural portion 
and of the overall structure are reported in the following. 

For the first 16-story building the mass values and ratios for the extreme 
placement of the isolation level, i.e. the 16th and 2nd floors, are:  
mUS = 0÷14000 kg, mISO = 1000 kg, mLS = 15000÷0 kg, Mtot = 16000 kg, 
rUS = 0÷14, rLS = 15÷1, mUS /mLS = 0÷14, α = 0.07÷15, Rm = 0.06÷0.94. 

For the second 11-story building the mass values and ratios are:  
mUS = 9037.9 kg, mISO = 960.1 kg, mLS = 15673.5 kg, Mtot = 25671.5 kg, 
rUS = 9.4, rLS = 16.3, mUS /mLS = 0.58, α = 0.64, Rm = 0.4. 

In order to assess the effectiveness of mid-story isolated structure, 
performance indices, which represent the rms response of the controlled 
structure normalized with respect to the uncontrolled configuration, are 
defined in terms of base shear and roof accelerations. 
Under El Centro motion, in the 16MDOF IIS models the ratio of the base 
shear varies in the range 0.2 ÷ 0.6 and increases by increasing the location 
of the isolation system; the ratio of the roof acceleration varies in the range 
0.2 ÷ 1.2 and increases by increasing the location of the isolation system, 
being larger than 1 only for the roof isolation system. Considering the 
same input wave, in the 11DOF IIS model, the ratio of the base shear is 
equal to 0.524 while the ratio of the roof acceleration is equal to 0.360. 
Comparing the values of the indices derived in 11DOF IIS model and in 
16DOF models, the following consideration can be done: in terms of base 
shear, the same values are obtained placing the isolation system between 
15th and 16th levels; in terms of roof acceleration, the same values are 
obtained placing the isolation system between 12th and 13th levels; 
considering the same placement of the isolation layer, the 11DOF IIS 
model shows higher values; considering the same mass ratios of 11DOF 
IIS model, the isolation system should be placed between the 11th and 12th 
levels. 
From the contributions of Ping et al. and Zhou et al. emerge that moving 
the isolation layer from the roof to the bottom of the structure, the control 
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mechanism changes going from tuning frequency, isolation and energy 
dissipation to base isolation. In addition, the performance of both lower 
and isolated upper structures depends not only on the location of the 
isolation layer, which defines the mass and stiffness ratios between the 
upper and lower structures, but also on the distribution of the mass and 
stiffness along the height of the building, which may affect the response 
of these structural portions and of the overall structure. 
 

Table 4.2. Threefold approach: mass damping, energy dissipation and isolation 

Design 
Parameters 

Ping et al. 2008 Zhou et al. 2016 
MD IIS BIS MD IIS BIS 

  0 ÷ 1 1 ÷ 4 4 ÷ 10 0 ÷ 1 1 ÷ 6 6 ÷ 10 

LS  0.05 0.05 0.05 0 0 0 

f  0.05 ÷ 1 0.05 ÷ 1 0.05 ÷ 1 0.05 ÷ 1 0.05 ÷ 1 0.05 ÷ 1 

ISO  0 ÷ 0.7 0 ÷ 0.7 0 ÷ 0.7 0 ÷ 0.5 0 ÷ 0.5 0 ÷ 0.5 

optf  0.3 ÷ 0.9 0.05 ÷ 0.3 0.05 0.3 ÷ 1 0.05 ÷ 0.3 0.05 

ISO,opt  0.1 ÷ 0.3 0.3 ÷ 0.7 0.5 ÷ 0.7 0.1 ÷ 0.5 0.5 0.5 

MD = Mass Damping, IIS = Intermediate Isolation System, BIS = Base Isolation System 

4.4.2. Isolation Approach [Wang et al. 2011, 2012, 2013; 
Kobayashi & Koh 2008; Ryan & Earl 2010] 

Along this direction, the conceptual approach of the isolation provides 
precious insights into the overall dynamic behavior of mid-story isolated 
structures, and the impact of the dynamic interaction between 
substructure and isolated superstructure, the effect of the flexibility of the 
upper isolated structure, the influence of the higher modes, the effect of 
coupling of the higher modes on the seismic performance of structural 
portions. 
 
In this framework, some major contributions are provided by [Wang et al. 
2011, 2012, 2013], [Kobayashi & Koh 2008], [Ryan & Earl 2010]; in 
addition, the range of values of the isolation approach is shown in Tabs. 
4.3 – 4.4; in the tables the values of the design parameters derived starting 
from the data in each paper are marked in italics. 
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In particular [Wang et al. 2011, Kobayashi & Koh 2008] investigate the 
dynamic behavior of mid-story isolated structures, describing the main 
theoretical results of analyses carried out on 3DOF models, that simply 
suggest the impact of the major design parameters; thereafter, on the basis 
of the theoretical formulation of the problem, the results of two 
experimental campaigns are proposed [Wang et al. 2012, Wang. et al. 
2013]; then, the study is extended to MDOF models which are more able 
to describe the interaction of the structural portions [Kobayashi & Koh 
2008, Ryan & Earl 2010]. 
 

Table 4.3. Isolation approach – Wang et al. 

Design 
Parameters 

Wang et al. 
2011 2012 2013 TOT. 

USr  5 2.4 4.7 2.4 ÷ 5 

LSr  1,-,2 1.2,-,2.4 1.7 1 ÷ 2.4 

US LS/m m  2.5,-,5 1,-,2 2.8 1 ÷ 5 

    1.42,-,2.83 5.7 1.42 ÷ 5.7 

mR    0.59,-,0.74,-,1 0.77 0.59 ÷ 1 

US LS/k k  0.1 ÷ 5* 0.25,-,0.87 0.098,-,0.5 0.1 ÷ 5 

US ISO/k k    34.59 8.97 9 ÷ 35 

LS ISO/k k    39.71,-,141.35 17.89,-,92.14 18 ÷ 141 

ISO  [s] 2 2 1 1 ÷ 2 

US  [s] 0.05 ÷ 0.67 0.29 0.30 0.05 ÷ 0.67 

LS  [s] 0.05 ÷ 0.67 0.1,-,0.27 0.056,-,0.13 0.05 ÷ 0.67 

US ISO/ω ω  3 ÷ 40 7 3.3 3 ÷ 40 

LS ISO/ω ω  3 ÷ 40 7.5,-,20 7.8,-,17.7 3 ÷ 40 

f  0.025 ÷ 0.33 0.05 ÷ 0.13 0.056 ÷ 0.13 0.025 ÷ 0.33 

ISO  0.2 0.2 0.2 0.2 

US  0.02 0.02 0.02 0.02 

LS  0.02 0.02 0.02 0.02 

*practical range 
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Table 4.4. Isolation approach – Kobayashi & Koh, Ryan & Earl 

Design 
Parameters 

Kobayashi & Koh 2008 Ryan & Earl 
3DOF MDOF TOT. 2010 

USr    3 ÷ 15 3 ÷ 15 0 ÷ 4.54 

LSr    0 ÷ 12 0 ÷ 12 0 ÷ 4.54 

US LS/m m    0.25 ÷ 2.75 0.25 ÷ 2.75 0 ÷ 4 

  0.5,-,1,-,3 0.33 ÷ 3 0.33 ÷ 3 0.22 ÷ 5.1 

mR    0.25 ÷ 1 0.25 ÷ 1 0.18 ÷ 1 

US LS/k k        

US ISO/k k    100 100   

LS ISO/k k  21.33,-,64,-,13 100 21.33÷ 128   

ISO  [s] 4 2.5 ÷ 3.4 2.5 ÷ 4 2.5 

US  [s]     0.5 

LS  [s] 0.5  0.5   

US ISO/ω ω      5 

LS ISO/ω ω  8  8   

f  0.13  0.13 0.2 

ISO  0.2 0.2 0.2 0 

US  0.02 0.02 0.02 0.02 

LS  0.02 0.02 0.02 0.02 

 

4.4.2.1. Parametric analyses by Wang et al. [2011, 2012, 2013] 

The papers by [Wang et al. 2011, 2012, 2013] propose a simplified analyses 
of mid-story isolated structures by means of 3DOF models, composed by 
LS, ISO and US. The authors identify the parameters governing the 
dynamic response of the structure and the mode coupling effect, namely: 
the ratios of masses of the upper and lower structure to the isolation mass 
rUS = mUS/mISO and rLS = mLS/mISO; and the ratios of the frequency of the 
upper and lower structure to the isolation frequency, i.e. ωUS/ ωISO and 
ωLS/ ωISO. 
The mass ratios considered in the analysis always correspond to the case 
of superstructure heavier than the substructure; further, the frequency 
ratios are defined by a lower bound equal to 3, which ensures an isolation 
period at least three times the US period (according to the rule commonly 
adopted for base isolated structures), and an upper bound, equal to 40, 
that corresponds to very stiff LS and US. 



Chapter 4 

 

154 
 

Starting from the above design parameters, the ratio of the dynamic 

stiffness of the US and LS, i.e. 
US LS

k / k , can be derived considering that:  
2

US US US
k m   and 2

LS LS LS
k m  ; the ratio rUS/rLS varies between 2.5 and 5; 

the frequency ratios vary between 3 and 40. The range of the stiffness 

ratios between the US and LS are:  
2

US LS
k / k (3 40) / (3 40) 2.5     and 

 
2

US LS
k / k (3 40) / (3 40) 5    .  

Considering the possible combinations between minimum and maximum 

values, the ranges of the stiffness ratio 
US LS

k / k  are 0.014 ÷ 444 and 

0.028÷889; however, a more restricted practical range of 0.1 ÷ 5 seems to 
be adequate in order to take into account more stiff or flexible US than 
LS. 

4.4.2.2. Modal Coupling Effect – MCE [Wang et al. 2011, 
2012, 2013] 

Considering the range of the design parameters described above, and in 
particular ωUS/ωISO and ωLS/ωISO, [Wang et al. 2011, 2012, 2013] have 
investigated the effect of the higher modes on the dynamic behavior of a 
mid-story isolated structures.  
Basically, it is recognized that the dynamics of structures with mid-story 
isolation is affected by the vibration characteristics of the US and LS, and 
that, depending on these characteristics, two different scenarios for the 
dynamic behavior of the global structure are found: a major influence of 
one of the higher modes (either the 2nd or the 3rd mode), or a coupling 
effect of the 2nd and 3rd modes. 
Coupled higher modes are detrimental for the dynamic response of the 
structure, since amplification in the LS or US are expected. 
The results of the parametric analysis carried out on 3DOF models are 
shown in Fig. 4.5 where the effect of higher modes and the potential of 
modal coupling effect in mid-story isolated structures are provided as a 
function of the couples of frequency ratios ωUS/ ωISO and ωLS/ ωISO. In 
particular the graph is divided into three parts, which represent the two 
regions where either the 2nd or the 3rd mode prevails, and the bandwidth, 
marked by dashed lines, where coupling of the 2nd and the 3rd modes 
occurs.  
From the Fig. 4.5 it can be observed that contemporary low values of both 
frequency ratios ωUS/ωISO and ωLS/ωISO cause a mode coupling effect, while 
large values of both parameters not only exclude a dynamic coupling 
between the US and LS, but also allow for remarkable simplifications from 
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a design point of view, namely the first frequency and mode damping are 
approximately equal to the isolation system counterparts, i.e. ω1 ≈ ωISO and 
ξ1 ≈ ξISO. 
 

 
Fig. 4.5. Summarized dynamic characteristics of higher modes in 3DOF IIS 
model [Wang et al. 2013] 

 
However, according to the graph, in order to exclude a coupling effect is 
sufficient to have quite different values for the two frequency ratios 
ωUS/ωISO and ωLS/ωISO. In particular, when the value of ωUS/ ωISO is large 
(say, larger than 20), even though ωLS/ ωISO is small, the effect of the 2nd 
mode is predominant, the second modal frequency is approximately equal 
to the frequency of the substructure, i.e. ω2 ≈ ωLS, and the participating 
mass ratio of the 3rd mode, Γ3, is equal to zero. When ωLS/ωISO is large, say, 
larger than 20, if ωUS/ωISO is smaller than 8, the effect of the 3nd mode is 
predominant, the third modal frequency is approximately equal to the 
frequency of the substructure, i.e. ω3 ≈ ωLS, and the participating mass ratio 
of the 2nd mode, Γ2, is equal to zero; for ωLS/ωISO  equal to 20, instead, the 
effect of the 2nd mode is predominant if ωUS/ωISO is larger than 11, while 
for ωLS/ωISO larger than 20, no coupling effect is predicted if ωUS/ωISO is, as 
well, larger than 20. In all cases, since [Wang et al. 2011] consider a rigid 
US, the effect of the higher modes are only related to the motion of the 
LS. When there is a coupling effect, both frequencies ω2 and ω3 are almost 
equal and far from the frequency ωLS and both participating mass ratios Γ2 
and Γ3 are different from zero. 

ωLS/ωISO 

ω
U
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/

ω
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On the bases of the above results, the paper by [Wang et al. 2013] 
demonstrates analytically the adverse effect arising from the coupling of 
the higher modes on the seismic response of mid-story isolated structures. 
The condition in which MCE occur (i.e. ω2 ≈ ω3) is investigated solving the 
eigenvalue problem of a simplified 3DOF mid-story isolated model and 
making some reasonable assumptions, namely: the fundamental modal 
frequency ω1 is assumed approximately equal to the nominal frequency of 
the isolation system ωISO and well separated from the higher modal 
frequencies ω2 and ω3; this means that the two structural portions are 
sufficiently stiff with respect to the isolation system and both the square 
of the frequency ratios (ωUS/ωISO)2 and (ωISO/ωLS)

2 are more less than 1, 
typically of order O(10-1).  
With some algebraic manipulations, Wang et al. derive simple linear 
expressions for addressing MCE,  either in terms of frequency or stiffness 
and mass ratios:  
 

   LS ISO US ISO US LS US US
/ / 1 r or 1 r            (4.1) 

LS LS

LS US

US ISO

m m
k k

m m

 
  

 
   (4.2) 

 
Observing the MCE expression, the design parameters which govern the 
occurrence of this undesirable condition are ωUS, ωLS and rUS; this means 
that the MCE occurrence is independent on ωISO, thus, irrelevant to 
different types, mechanical properties, and deformation extent (linear or 
nonlinear behavior) of seismic isolation bearings. 
Even though the expression derived by Wang et al for addressing MCE is 
very simple and useful to implement, the physical meaning of the 

frequency US US1 r   is not explicitly given. 

4.4.2.3. Modal Coupling Effect – MCE [Kobayashi & Koh 
2008] 

The dynamic interaction between the upper and lower structures of mid-
story isolated building and the detrimental effect of the coupled higher 
modes are also investigated by Kobayashi and Koh in [Kobayashi & Koh 
2008], where the dynamics of IIS structure is analyzed by means of a 
3DOF model and different parameters are selected for understanding the 
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impact of the dynamic interaction between substructure and isolated 
superstructure. 
The design parameters are the nominal period of the isolation, TISO, and 
of the lower structure, TLS, which are set respectively equal to 4 s and 0.5 
s; and the mass ratio α which is set equal to 0.5, 1.0 and 3.0. 
On the basis of the results of [Ping et. al 2008], it can be stated that the 
mass ratios considered herein spread from the tuning to the mid-story 
isolation zone; therefore, different placements of the isolation layer are 
implicitly considered. However, the long value of TISO oriented the 
research of [Kobayashi & Koh 2008] to the conceptual approach of 
isolation rather than the dissipation or mass damper effect. 
For analyzing the higher modes effect, Kobayashi and Koh employed the 
method outlined by [Skinner 1993] for defining the contribution of the 
higher modes to earthquake response of base isolated structures. In fact 
Skinner has revealed the influence of the higher mode to earthquake 
response of base isolation buildings, that consists in sweeping the modal 
response with free-free mode shape vectors.  
In the paper [Kobayashi & Koh 2008], the same method is applied to mid-
story isolation buildings. The free-free 3DOF IIS model (ff-3DOF IIS) is 
obtained by setting the stiffness of seismic isolation layer equal to zero (i.e. 
ideal isolation). Solving the eigenvalues problem, it can be observed that 
the perfect isolation allows to consider the dynamic behavior of the ff-
3DOF IIS system as a combination of the base isolated US, with the 
stiffness of seismic isolation layer equal to zero (ff-2DOF ISO+US), and 
the fixed-base LS (SDOF LS). In this framework, the MCE can be 
expressed by a parameter β, being: 
 

ff US ISO,2

LS


 


         (4.3) 

 
i.e. the ratio between the second frequency of the ff-2DOF ISO+US 

model, ff US ISO,2 , and the frequency of the SDOF LS model, LS . The 

parameter β can be rewritten in terms of the nominal frequencies of the 
US and LS as follows:  
 

US US

LS

1 r 
 


  (4.4) 
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and can be easily calculated, showing that when it is equal or very close to 
one, the MCE occurs. 
Comparing the (4.4) and the (4.1), it can be stated that the analytical 
formulations derived by [Wang et al. 2013] and [Kobayashi & Koh 2008] 

for addressing MCE are exactly the same (quite trivially, equate LS  and 

US US1 r   means that the ratio between those frequencies is equal to 

one).  
 
Therefore, a simple design rule can be derived: no MCE arises if the second 
frequency of the base-isolated US is far from the frequency of the fixed-base LS. 

4.4.2.4. Experimental campaigns 

On the basis of the above theoretical formulation of the problem, Wang 
et al. perform two experimental campaigns described in detail in the papers 
[Wang et al. 2012] and [Wang. et al. 2013]. In [Wang et al. 2012] the 
differences between the dynamic behaviors in base-isolated and mid-story 
isolated buildings are investigated by fixing the dynamic characteristic of 
the upper structure of two inter-story isolated structures, with a base 
isolated model also considered for comparison. In [Wang et al. 2012] the 
effect of the coupling of the higher modes (MCE) is specifically explored 
by fixing the dynamic characteristic of the upper structure of two inter-
story structures, which respectively simulate the dynamic behavior of a 
building with and without MCE. The main design parameters and results 
of the two experimental campaigns are given in the following. 
 
In the first experimental campaign the authors perform shaking table tests 
on three scaled down structural models, namely: Specimen A, Specimen B 
and Specimen C, depicted in Figs. 4.6 ÷ 4.8. The isolation system is 
composed of high damping rubber bearings. 
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Fig. 4.6. Design drawing and installation photo of Specimen A [Wang et al. 2012] 

 

 
Fig. 4.7. Design drawing and installation photo of Specimen B [Wang et al. 2012] 
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Fig. 4.8. Design drawing and installation photo of Specimen C [Wang et al. 2012] 

 

The seismic reactive mass per floor assigned at the upper and lower 
structures is respectively 4 kNs2/m and 6 kNs2/m, the isolation story mass 
is 5 kNs2/m.  
From the above values the mass ratios can be derived, i.e.:  

Specimen A: Rm = 1;  

Specimen B: rUS = 2.4, rLS = 1.2, mUS/mLS = 2.0, Rm = 0.74 and α = 2.83;  

Specimen C: rUS = 2.4, rLS = 2.4, mUS/mLS = 1.0, Rm = 0.59 and α = 1.42.  

Comparing these values with the corresponding counterparts of the 
parametric analysis carried out on [Wang et al. 2011], i.e. rLS = 1, 2 and rUS 
= 5, it is can be noted that in Specimens B and C the mass ratio rUS is 
halved; recalling the results of [Ping et al. 2008], a mass ratio α in the range 
of 1 ÷ 4 places Specimens B and C in the mid-isolation zone. 
The nominal isolation period TISO is not specified in the paper; however, 
it is reasonable assume a value of 2 s (or likewise, a nominal isolation 
frequency ωISO equal to π) utilized I n the previous paper by the same 
authors[Wang et al. 2011]. With this assumption, the frequency ratios 
(ωLS/ ωISO, ωUS/ ωISO) for Specimen B are around (20, 7) and for Specimen 
C are around (7.5, 7).  
Starting from the above values for the design parameters, the nominal 
frequencies (or periods) of the structural portions, as standalone 
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structures, and the stiffness ratios between the structural portions can be 
derived and compared with the values assumed in the parametric analysis. 
Specimen B, ωLS = 62.832 rad/s (TLS = 0.10 s) and ωUS = 21.991 rad/s (TUS 
= 0.286 s); kUS/kLS ≈ 0.35.  
Specimen C, ωLS = 23.562 rad/s (TLS = 0.267 s) and ωUS = 21.991 rad/s 
(TUS = 0.286 s); kUS/kLS ≈ 1.23.  
It is noted that Specimen C simulates an “extreme and practically rare” 
mid-story isolated structure in which the lower structure is not sufficiently 
stiff, but still not comparable to the flexibility of the isolation system. 
The value of the MCE parameters for Specimen B and C is given by 
 

US US

B

LS
B

1 r 21.991 1 2.4 40.549
0.59 1.0

68.832 68.832

   
     

  

  (4.5) 

US US

C

LS
C

1 r 21.991 1 2.4 40.549
1.72 1.0

23.562 23.562

   
     

  

  (4.6) 

 
Both Specimens B and C are far from MCE. Observing the results for 
Specimen C, the almost equal frequencies of structural portions (

LS
 = 

23.562 rad/s vs. 
US

 = 21.991 rad/s, scatter of 7%) are not able to give 

rise to MCE, since the mass ratio rUS is always greater than 1 in design 

practice; thus, β is at least 1.41 (assuming 
LS

 =
US

 and 
US

r = 1). 

 
Observing the identified modal characteristics and shapes of test 
specimens subjected to 1999 Chi-Chi earthquake (Taiwan) provided in 
Fig. 4.9, the following considerations can be done.  
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Fig. 4.9. Identified mode shapes of test specimens subjected to 1999 Chi-Chi 
earthquake with PGA of 1.19 g: (a) Specimen A, (b) Specimen B, (c) Specimen C 
[Wang et al. 2012] 

 
Specimen A shows the typical mode shapes of base isolated buildings with 
a negligible participation of the higher modes. The first mode shape of 
Specimens B and C shows displacement mainly in the isolation layer and 
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minor deformation in both the structural portions; the first participating 
mass ratio of Specimens B and C is almost equal to the mass ratio Rm (with 
scatter respectively equal to 4.3% and 14.6%) and it is lower in Specimen 
C. The higher mode shapes of Specimens B and C show deformation 
mainly concentrated at either upper or lower structure; the effective higher 
mode for Specimens B and C (i.e. the one possesses not negligible 
participating mass ratio) is the third and the second mode, respectively. 
Looking at the modal damping ratios, the mid-story isolated structures 
show lower values than the base isolated structure counterpart; 
furthermore, increasing the mass and the flexibility of the lower structure 
(i.e. Specimen C), the first modal damping ratio decreases.  
It is noticeable that, with the same design of the isolated upper structure, 
the mid-story isolation design (i.e. both Specimens B and C) has more 
significant participation of the higher modes, longer fundamental modal 
period and smaller fundamental modal damping ratio than the base 
isolation design (i.e. Specimen A). This is particularly evident when the 
isolation system is designated at a higher level of the building (the lower 
structure possesses a larger mass), or when the lower structure is more 
flexible (i.e. Specimen C).  
These considerations support the results of [Wang et al. 2011] which 
demonstrate experimentally that the first modal damping ratio and the first 
modal participation mass ratio of a mid-story isolated building are 
significantly affected by the mass and stiffness of the lower structure. 
Observing the displacement and acceleration response histories and the 
peak of the shear force response, it can be noticed that: the response of 
base isolated structure is less than the response of mid-story isolated 
structures; however, depending on the frequency content of the 
earthquake, the unusual mass and stiffness distributions of Specimen C 
cause larger peak values of base shear and relative displacements both in 
the lower and in the upper structures, with respect to Specimen B. 
 
In order to simulate intermediate isolated structures with and without 
MCE, shaking table tests are performed in the second experimental 
campaign by [Wang. et al. 2013] on two scaled down structural models, 
appointed as Specimen D and Specimen E, depicted in Figs. 4.10 – 4.11.  
Both models are equipped with mid-story isolation system composed of 
lead rubber bearings and located on the top of the first floor.  
Specimen D refers to an inter-story isolated building where the mass and 
frequency ratios between the lower and upper structures are chosen to 
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avoid MCE, while Specimen E refers to a building where the dynamic 
characteristics of the structural portions give rise to MCE. 

 

Fig. 4.10. Design drawing and installation photo of Specimen D [Wang et al. 2013] 

 

 

Fig. 4.11. Design drawing and installation photo of Specimen E [Wang et al. 2013] 

 

The main design parameters of Specimen D and E are mass and frequency 
ratios, specified as follows. 
For both models, the seismic reactive masses assigned to the lower 
structure, isolation level and upper structure respectively correspond to 5 
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kNs2/m, 3 kNs2/m and 14 kNs2/m, leading to mass ratios rLS and rUS equal 
to 1.7 and 4.7. These values agree with the mass ratios assumed in the 
authors’ parametric analysis, i.e. rLS = 1, 2 and rUS = 5. The nominal 
isolation period TISO is set equal to 1 s, or likewise, the nominal isolation 
frequency ωISO is equal to 2π.  
From the above parameters the other mass ratios can be derived, e.g. 
mUS/mLS = 2.8, Rm = 0.77 and α = 5.7. Recalling the results of [Ping et al. 
2008], a mass ratio α equal to 5.7 places the models in the base isolation 
zone; however, setting TISO = 1 s seems not enough long to ensure the 
isolation effect, particularly if compared to the corresponding value used 
in other research papers, such as the work of [Kobayashi & Koh 2008], 
where TISO = 4 s. 
The frequency ratios (ωLS/ ωISO, ωUS/ ωISO) for Specimen D are (17.7, 3.3) 
and for Specimen E are (7.8, 3.3); thus, the unique difference between the 
two models is the stiffness of the upper structure. 
Starting from the above design parameters, the nominal frequencies (or 
periods) of the structural portions, as standalone structures, and the 
stiffness ratios between the structural portions can be derived and 
compared with the values assumed in the parametric analysis. 
For Specimen D, ωLS = 111.213 rad/s (TLS = 0.0564 s) and ωUS = 20.734 
rad/s (TUS = 0.303 s); kUS/kLS ≈ 0.1. For Specimen E, ωLS = 49.009 rad/s 
(TLS = 0.128 s) and ωUS = 20.734 rad/s (TUS = 0.303 s); kUS/kLS ≈ 0.5.  
The values for the MCE parameter for Specimen D and E are given by: 
 

US US

D
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D

1 r 20.734 1 4.7 49.502
0.44 1.0
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  (4.8) 

 

Since only βE is close to 1, MCE is expected to occur in Specimen E. 
Useful information can be derived by observing the mode shapes, modal 
frequencies and participating mass ratio of the two structures after 
dynamic identification, Fig. 4.12.  
The first modal shape for both Specimen D and E shows displacement 
mainly in the isolation layer and minor deformation in the LS. Also in 
terms of period and participating mass, it can be observed that the first 
period is coincident with the isolation period, and the participating mass 
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is very close to the mass ratio Rm. Those results suggest that the first mode 
is representative of the isolation mode. Some differences between the two 
structures arise looking at the higher modes. The second and the third 
modes of the Specimen D respectively correspond to the mode of the 
isolated upper structure with almost no deformation in the LS, and of the 
mode of the lower structure, with almost no deformation in the US. On 
the contrary, for Specimen E it is shown the coupled mode shape obtained 
as a combination of the identified second and third mode shapes 
according to their identified participation mass ratios. This mode shows 
deformation in both the lower and isolated upper structures. 
 

 
(a) Specimen D 

 
(b) Specimen E 

f1, f2, f3, fcouple: First, Second, Third and Coupled Modal Natural Frequencies 

L1, L2, L3, Lcouple: First, Second, Third and Coupled Modal Participation Mass 

Ratios 

Fig. 4.12. Identified mode shapes of test specimens subjected to 1999 Chi-Chi 
earthquake with PGA of 0.32 g: (a) Specimen D, (b) Specimen E [Wang et al. 
2013] 
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Observing the story drift and acceleration response histories it can be 
noticed that: the condition in which MCE occurs is independent of the 
design of isolation bearings and on the intensity of earthquake excitation; 
MCE results in the amplified seismic responses at both upper and lower 
structures; depending on the frequency content of the earthquake, going 
from the upper to the lower structure the peak displacement of Specimen 
E grow from 20% to 430% and the peak acceleration from 10% to 200% 
with respect to the Specimen D counterparts. 

4.4.2.5. Parametric analysis by Kobayashi and Koh 
[Kobayashi & Koh 2008] 

[Kobayashi & Koh 2008] describe the vibration characteristics of mid-
story isolated buildings based on the results of eigenvalue analyses and 
time history analyses, paying more attention on the modal coupling effect 
of the higher modes, which may cause a detrimental amplification of the 
upper structure response. 
For this purpose, the dynamic response of MDOF fixed-base and mid-
story isolated models is compared. The fixed-base model is a 16DOF 
shear model, with uniform mass distribution and stiffness distribution that 
gives rise to uniformly inter-story drift; the fundamental period and the 
damping ration are set to 1 s and 0.02, respectively. Six 16DOF isolated 
models are considered, shifting the position of the isolation system from 
the 1st, 5th, 8th, 9th, 10th to the 13th story; the mass and stiffness distributions 
are the same of the conventional system except for the isolation layer in 
which the stiffness of isolators is adjusted to 1/100 of the corresponding 
counterpart in the uncontrolled configuration. Therefore, the first natural 
period in the controlled configuration goes from 3.4 s and 2.5 s for the 
extreme 1st isolated story and 13th isolated story 16DOF models. The 
isolation system is composed of isolators, hysteresis and viscous dampers; 
the damping ratio of the isolators and structural portions are equal to 0.2 
and 0.02, respectively.  
Under El Centro NS motion; the acceleration and story shear coefficient 
of the upper structure in the 8th story isolation model are remarkably large 
compared with other models. This is caused by modal coupling effect; 
thus, the ratio between the mass and the stiffness of the structural portions 
may strongly affect the response of the structure, mainly of the isolated 
superstructure. 
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4.4.2.6. Parametric analysis by Ryan and Earl [Ryan & Earl 
2010] 

[Ryan & Earl 2010] examine the effectiveness of inter-story and multi-
story isolation systems. The seismic response of different isolated systems 
is compared to reference fixed-base and base-isolated models.  
The fixed-base structure is modeled as 6-story shear frame (infinitely rigid 
beams) with a uniform mass distribution and a segmented stiffness 
distribution. In particular, the story stiffnesses ki, for i = (1,…,6 ) going 
from the bottom to the top story, are equal to k1 = k2 = k, k3 = k4 = 7/8 k, 
k5 = k6 = 3/4 k where k is scaled to give a fundamental period of 0.5 s. 
Five 6-single-story isolation and two multi-story isolation frames are 
considered: in the first group the isolation layer is placed at the base and 
on the top of the 1st, 2nd, 3rd and 6th story; in the second group the isolation 
layers are placed at the base and on the top of the 3rd story, and at every 
story, Fig. 4.13.  

 
Fig. 4.13. Inter-story isolation systems to be evaluated include single-story 
isolation at: (a) base, (b) top of the first story, (c) mid-height, (d) roof; and multi-
story isolation at: (e) base and mid-height, and (f) every story ;(g) reference fixed 
base model [Ryan & Earl 2010] 

 
The total mass at the isolation level exceeds the story mass of the un-
isolated level of 10%; the stiffness of the isolation system is selected to 
obtain a first natural period of 2.5 s for all the isolated models. A damping 



4. Literature overview and discussion 

 

169 
 

ratio of 0.02 is assigned in the fixed-base frame while no damping is 
included in all the isolation systems. 
Time history analyses are performed to select the optimum design 
deformation of non-linear inter-story and multi-story isolators; the 
authors recommend to determine the design deformation as the median 
deformation observed from linear response history analysis of the system 
with nominal isolation properties under a suite of selected ground 
motions. 
On the basis of time history analyses in terms of story drifts and base shear 
(Fig. 4.14), it is observed that: the single-story isolation is effective in 
mitigating the force demands above the isolation system but less effective 
in mitigating lower-level forces, the better performance is shown 
decreasing the isolation level (in agreement with the results of [Reggio & 
De Angelis 2014, 2015]); no improvements are observed locating the 
isolation level at the top of the first floor or inserting the isolation system 
at every story with respect to base isolation; the roof isolation is the least 
effective inter-story system, since the design parameters have been 
selected to exploit the isolation effect and not the mass damper effect for 
which the roof isolation is commonly designed (see [Sadek et al. 1997, 
Villaverde 2002, Villaverde et al. 2005, Matta & De Stefano 2009, De 
Angelis et al. 2012, Moutinho 2012]). 
 

 
Fig. 4.14. (a) Inter-story drifts and (b) ratio of inter-story shear to base shear of the 
fixed-base building compared for different inter- and multi-story isolation 
systems [Ryan & Earl 2010] 
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4.4.3. Mass Damper Approach [De Angelis et al. 2012; 
Villaverde 1985, 2002; Sadek et al. 1997; Chey et al. 
2013; Miranda et al. 2013; Reggio & De Angelis 2014, 
2015] 

Considering the mass damper effect, it is well established that small tuned 
mass dampers (TMDs) attached to structure are very effective in reducing 
excessive harmonic vibrations induced by external loads like wind but are 
not equally interesting within the content of earthquake engineering 
problems. 
Three inherent limitations to the seismic effectiveness of the TMD can be 
found ([De Angelis et al. 2012]): the lack of robustness against deviations 
in design parameters; a high dependence on earthquake frequency content; 
and the impulsive character of the earthquake excitation.  
In order to overcome these limitations, TMDs should require relatively 
large mass and, hence, large space for the installation; furthermore, since 
by design the mass is set in resonance with the supporting structure, it 
usually experiences large displacements with respect to the main structure, 
and, as a result, large clearance is required to accommodate such large 
displacements. Lastly, the mass need to be mounted on a smooth surface 
to minimize friction forces and facilitate the free motion ([Villaverde 
2002]). 
Recent studies have proposed a new, non-conventional configuration, the 
so-called non-conventional TMD, in which masses already present in the 
structure to be protected are converted into tuned masses, retaining 
structural and architectural functions beyond the mere control function 
([De Angelis et al. 2012]). The implementation of a flexible isolation layer 
at an intermediate level of the structure simultaneously provides a large 
mass, represented by the upper isolated structure, and allows to 
accommodate large displacements at the isolation floor. Therefore, a non-
conventional TMD realized by means of a mid-story isolation system 
seems the logical solution to enhance the effectiveness of TMD under 
seismic excitation.  
 
Along this research direction, [Villaverde 1985] implements a heavily-
damped vibration absorber to increase the damping of a building and 
reduce its response to earthquake. Villaverde finds that TMDs performs 
best when the first two complex modes of vibration of the main structure 
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and mass device have approximately the same damping ratio at the average 
of the damping ratio of the structure and TMD, i.e.  

s ISO

ISO,opt
2

  
          (4.9) 

 
Villaverde observed that this condition can be reached only if the TMD is 
in resonance with the main structure, i.e. f = 1.  
Afterwards, [Sadek et al. 1997] show that increasing the mass ratio (values 
greater than 0.005) the design formulae of Villaverde fail in ensuring the 
equality of modal damping ratios and that the structural response is mainly 
influenced by the mode with the lower damping; depending on the 
frequency content of the earthquake, higher TMD displacement response 
is achieved with respect to the uncontrolled configuration. 
In order to extend the validity of the Villaverde methodology, [Sadek et 
al. 1997] use a SDOF structure - TMD system and select the values of the 
TMD design parameters that result in equal damping ratios and equal 
frequencies in the two complex modes of vibration.  
The mass ratio is varied in the range of 0 ÷ 1, the structure damping ratio 
is set equal to 0, 0.02 and 0.05. 
Numerical searching technique based on the complex eigenvalue problem 
is proposed and, using a curve fitting of the results, closed-form design 
formulae for the optimal TMD frequency and damping ratios are derived. 
For the damped structure, the optimal frequency and damping ratios are 
given by: 
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f 1 ;

1 1 1 1

   
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  (4.10) 

 
Quite trivially, for the undamped structure the expressions (4.10) assume 
the following form: 
 

opt ISO,opt

1
f ;

1 1


  

 
   (4.11) 

 
Sadek et al. also extend the theory developed for 2DOF systems to MDOF 
models, finding that the tuning frequency ratio for a MDOF system is 
nearly equal to the one derived for a SDOF system, with mass ratio ,  
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being   the amplitude of the first mode of vibration for a unit 

participation factor computed at the location of TMD, i.e. 

MDOF SDOF
f ( ) f ( )    and 

MDOF SDOF
( ) ( )     . Therefore, the optimal 

frequency and damping ratios are given by 
 

s
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1 1 1 1

   
     

    
           (4.12) 

 
The control procedure by Sadek et al. is successfully applied and many 
researchers implement the methods [Chey et al. 2013, Miranda et al. 2013] 
or use it for comparison [De Angelis et al. 2012, Reggio & De Angelis 
2014, 2015]. 
The paper by [Chey et al. 2013] explore the potentials of an “added 
stories” (ASI) system as a retrofitting strategy for enhancing the seismic 
performance of an existing 12-story reinforced concrete frame structure; 
two and four isolated stories were respectively added on the 12-story 
model, increasing the mass of 24% and 40%, Fig. 4.15. 
 

 

Fig. 4.15. (a) 12-story target model (b) 14-story retrofitted model, (c) 16-story 
retrofitted model [Chey et al. 2013] 
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The design procedure for ASI system developed by Chey et al. employs 
the control method proposed by Sadek et al. for defining the optimal 
TMD design parameters, i.e. the frequency and damping ratios, for 
MDOF systems. The authors provide the optimal tuning and damping 
ratios versus mass ratio values ranging from 0 to 1, with 5% of internal 
damping for “12 + 2” and “12 + 4” ASI models. It is found that increasing 
the mass ratio, the optimal tuning ratio decreases while the optimal 
damping ratio increases; for “12 + 2” ASI model with a mass ratio of 0.31, 
the optimal frequency and damping ratios respectively correspond to 
0.684 and 0.716; for “12 + 4” ASI model with a mass ratio of 0.52, the 
optimal frequency and damping ratios respectively corresponded to 0.568 
and 0.842. 
Comparing the approaches presented in the papers by [Chey et al. 2013] 
and [Ping et al. 2008], it is can be noticed that for mass ratios less than 1, 
which represent the tuning frequency zone, the results are in agreement 
only in terms of optimal frequency ratio, since the method of Sadek et al. 
results in much higher damping ratios. 
The effectiveness of ASI system is evaluated on the basis of a statistical 
assessment, by comparing the 50th (median) percentile responses under 
time history records spanning over a range of three seismic levels (low, 
medium and high suites); of the “12”, “12+2” and “12+4” story models 
were compared. The assessment indicated that, on average, the ASI system 
receives considerably more input energy than the original 12-story 
building; however, the share of structural components of the system from 
this energy remaines small. This is in agreement with the considerations 
made in the paper by [Ziyaeifar & Noguchi 1998]. 
Some control indices, which represent the 50th percentile response of the 
controlled structures normalized to the uncontrolled configuration in 
terms of peak relative displacements, inter-story drift ratios, story shear 
forces and total accelerations are evaluated.  
In general, the indices cover a range of 0.6 ÷ 0.85; the lower values, 
corresponding to the high suite for story shear forces and total 
accelerations, and to low suite for peak displacements and inter-story drift, 
are observed for the “12+4” ASI system, thanks to the large mass ratio 
(Fig. 4.16). 
 
[De Angelis et al. 2012] investigate the dynamic behavior of a non-
conventional TMD with large mass ratio implemented via inter-story 
isolation by means of high damping rubber bearings. 



Chapter 4 

 

174 
 

 

Fig. 4.16. (a) 12-story target model (b) 14-story retrofitted model, (c) 16-story 
retrofitted model [Chey et al. 2013] 

 
The governing equations are firstly derived for a MDOF proportionally 
damped structure (a two-story steel frame) equipped with TMD, then a 
generalized SDOF structure - TMD system is introduced for design 
purposes.  
The optimization criterion consists in a numerical searching technique 
which minimizes the root-mean-square (rms) displacement response of 
the damped main structure; a stationary Gaussian stochastic process with 
zero mean and white noise spectral density is used to model ground 
acceleration. 
The mass ratio α is set equal to 1.049 to realize the non-conventional 
TMD; considering the frame response dominated by the first mode, the 
dynamic properties of the generalized SDOF structure are determined as 

the frequency of the fundamental mode ω1 = 33.61 rad/s (T1 = 0.187 s) 

and the damping ratio ξ1 = 0.02. Since the equivalent damping ratio of 
HDRBs experimentally varies between 0.10 and 0.15 for a target shear 
strain of 100-150%, the damping ratio in the first complex mode is 
assumed to be a constant equal to 0.12; consequently, the only design 
parameter, the frequency ratio f, is varied in between 0 ÷ 1. 
From the optimization procedure the optimum frequency ratio fopt is 
found equal to 0.42; in addition, some indices which represent the rms 
response of the controlled structure normalized to the uncontrolled 
configuration are defined in terms of displacement of the main structure 
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(U1), relative displacement between the structure and the device mass 
(U21), absolute acceleration of both the main system and the TMD (A1 and 
A2). At the optimal fopt, the indices A2, A1 and U21 are found respectively 
0.3, 0.4 and 0.8; therefore, the stroke U21 and the acceleration device A2 
are in allowable range. 
Comparing the approaches of [De Angelis et al. 2012] and [Ping et al. 
2008], for mass ratios almost equal to 1, which represent the transition 
between the tuning frequency and mid-story isolation zones, the results 
are in agreement, since the optimal parameters fopt belongs to the range 
0.4 ÷ 0.5.  
In order to evaluate the novelty of the design procedure, [De Angelis et 
al. 2012] compare the proposed method with the method of [Sadek et al. 
1997]; in particular, a small mass ratio of 0.02 and a large mass ratio of 
1.049 are considered to compare both the cases of conventional and non-
conventional TMDs, Fig. 4.17. 
 

 

Fig. 4.17. Frequency response function of the main structure displacement vs.  to 
ground acceleration in the uncontrolled (RC) and optimally controlled (TMD) 
configurations. Optimal design of TMD using: (a) the method proposed by De 
Angelis et al. and (b) the method by Sadek et al. Two mass ratios are considered: 
0.020 and 1.049. [De Angelis et al. 2012] 
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While for the small mass ratio the two methods give rise to similar results, 
for large mass ratio significant differences emerge both in terms of optimal 
design parameters and modal properties. The method of Sadek et al. 
results in much higher damping ratios (ξ2:0.7253 vs. 0.1630) and modal 
damping ratio (η1: 0.5226 vs. 0.1200, η2: 0.5370 vs. 0.1044). It is worth 
noticing that similar results are not feasible for implementing HDRBs in 
the isolation layer. Furthermore, the stroke U21 with the method of De 
Angelis et al. was halved with respect to the one of Sadek et al. 
The seismic effectiveness of proposed method was finally evaluated by 
means of shaking table tests. 
The analytical results coupled to experimental evidence show that: a non-
conventional TMD with a large mass ratio provides greater reduction of 
the structural response with respect to a conventional TMD; the large 
mass ratio leads to a more robust and effective control system; thanks to 
the TMD robustness, the system becomes less frequency dependent and 
the reduced response is obtained also for non-optimal configurations.  
Sometimes, the boundaries between the different conceptual approaches 
are overcame, as in the paper by [Reggio & De Angelis 2014, 2015] in 
which the authors combine the non-conventional TMD and the 
concentrated energy dissipation approaches. 
[Reggio & De Angelis 2014, 2015] propose an energy-based design 
methodology for non-conventional TMD implemented via inter-story 
isolation, considering both MDOF and 2DOF reduced-order models 
which represent the dynamic behavior of a multi-story shear type frame 
structure equipped with a single-story isolation system. The optimization 
criterion consists in maximizing an energy performance index (namely: 
EDI), defined as “the ratio between the incremental energy dissipated in 
the isolation system and the incremental input energy globally transferred 
to the two-DOF model”, by assuming the ground acceleration as a 
stationary Gaussian stochastic process with zero mean and white noise 
spectral density. The procedure has then been implemented in 5DOF 
models, shifting the position of isolation layer from the third to the roof 
level and carrying out seismic analysis under historical accelerograms with 
different frequency content. 
The optimal design parameters are the frequency ratio f and the damping 
ratio ξISO, which are greater than 0 and in between 0 ÷ 1, respectively; the 
mass ratio α is set equal to 0.1, 0.5 and 1.0 while the damping ratio of the 
lower structure is equal to 0.02. It is shown that varying the couple f - ξISO, 
the energy performance index spreads in between 10 ÷ 90%; however, 
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increasing the mass ratio the interval in which EDI attains the higher 
values significantly expands, enhancing the robustness of the control 
performance, Fig. 4.18. For instance: for α = 0.5 the optimal parameters 
are fopt = 0.6543 and ξISO,opt = 0.29, which correspond to EDImax=0.9155. 
In order to investigate the influence of the damping ratio of primary 
oscillator, the authors consider three different values of the damping ratio, 
i.e. 0.02, 0.03, 0.05. Fig. 4.19 shows the values of EDImax and of the optimal 
design parameters, frequency and damping ratios, versus mass ratio by 
varying the damping ratio of the main structure. From this figure it can be 
observed that increasing the damping of the primary oscillator the value 
of EDImax decreases while comparable results are obtained for the optimal 
parameters. 
 

 
Fig. 4.18. Reduced-order two-DOF model under stochastic white-noise input, 
Energy Dissipation Index (EDI) vs. design parameters: frequency ratio, isolation 
damping ratio and sensitivity of EDI = EDImax to deviations of the design 
parameters; Mass ratios: (a) 0.10, (b) 0.50, (c) 1.0; damping ratio in the main 
structure equal to 0.02. [Reggio & De Angelis 2015] 
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Fig. 4.19. Reduced-order two-DOF model, EDImax and optimal design parameters 
vs. mass ratio for various damping ratios of the primary oscillator, i.e. 0:02; 0:03; 
0:05: (a) EDImax, (b) optimal frequency ratio, (c) optimal damping ratio [Reggio 
& De Angelis 2015] 

 
The implementation of the methodology in 5DOF models, with uniform 
mass and stiffness distributions, has shown a considerable reduction of 
the structural response in all the controlled structures with respect to the 
fixed-base configuration; the mid-story isolation system (i.e. the isolation 
layer placed at the third level) allows the better performance. 
Comparing the approaches of [Reggio & De Angelis 2014, 2015] and [Ping 
et al. 2008], it is can be noticed that, although the optimization criterions 
used are different (the former maximizes an energy performance index 
and the latter minimizes the base shear variance), for mass ratios less than 
1, which represent the tuning frequency zone, the results are in agreement 

since the optimal parameters fopt and ξISO,opt belong to 0.5 ÷ 0.9 and 0.1 ÷ 
0.3, respectively. 
It is worth to noticing that, while [Sadek et al. 1997] selected the TMD 
design parameters by equating both the damping and the frequency ratios 
in the two complex modes, [Reggio & De Angelis 2014, 2015] found that 
the maximization of EDI leads to approximately equal damping ratios and 
different modal frequency. However, Sadek et al. gives optimal parameters 
that are very difficult to implement and tune in practice. 
The range of values of the design parameters adopted for the mass 
damping approach is shown in Tab. 4.5. 
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Table 4.5. Mass Damping Approach 

Design 
Parameters 

Sadek et al. Chey et al. De Angelis et al. Reggio & De Angelis 
1997 2013 2012 2015 

  0 ÷ 0.15 0 ÷ 1 0.02,-,1.049 0.01 ÷ 10 

LS  0,-,0.02,-,0.05 0.05 0.02 0.02,-,0.03,-,0.05 

US    0.05   0.02 

f  0.85 ÷ 1 0 ÷ 1 0 ÷ 1 0.1 ÷ 10 

ISO  0 ÷ 0.5 0 ÷ 1 0.10 ÷ 0.15 0 ÷ 1 

1     0.12   

EDI       0.1 ÷ 1 

optf  0.85 ÷ 1 0.4 ÷ 1 0.42 0.1÷ 1 

ISO,opt  0 ÷ 0.4 0.2 ÷ 1   0.05 ÷ 0.5 

,optEDI  0 ÷ 0.4 0.2 ÷ 1   0.25 ÷ 1 

4.4.4. Concentrated energy dissipation systems [Murakami 
et al. 2000, Murakami 2001, Sueoka et al. 2004, 
Tsuneki et al. 2008-2009] 

Some papers, coming from the Japanese research community, also 
including the designers of important buildings with IIS [Murakami et al. 
2000, Murakami 2001, Sueoka et al. 2004, Tsuneki et al. 2008-2009], 
mainly deal with the IIS as a “concentrated energy dissipation” design 
problem, and assume the dampers yielding force as the major design 
parameters for achieving the performance objective of the structural 
complex (Tab. 4.6).  
The main features of the concentrated energy dissipation approach are 
reported in the paper by [Tsuneki et al. 2009]: 
“In a high-rise building employing a middle-story isolated structural 
system, the product of the inertial force considering the upper structure 
to be a rigid body and the horizontal displacement is governed by the 
elastic strain energy accumulated in the laminated rubber bearings, so the 
ratio of the mass of the upper structure with respect to the total mass 
above ground (Rm) has a big effect on the response reduction effect on 
the building as a whole. 
In general, the high stiffness and resistance of the lower structure is not 
necessary, while it is possible that the energy is concentrated in the 
isolation layer if the stiffness of the lower structure is large compared with 
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the laminated rubber bearings and its resistance can be ensured general 
elastic behavior. As almost all the seismic energy input into the building is 
absorbed by the dampers, it is necessary to ensure the energy absorption 
capability of the dampers at the base isolation. A response prediction 
analysis was carried out by an artificial seismic motion, in which the input 
energy equivalent to the major earthquake motion was converted into a 
velocity value (VD = 150 cm/s). And the ratio of the mass of the upper 
structure to that of the total above-ground mass (Rm) is used as a 
parameter in this analysis. The maximum shear coefficient in the isolation 

layer (mα) and the response shear coefficient at the first story (uα) was 

plotted respectively against the ratio of the damper yield force (α’s) to 

total above-ground mass, see Fig. 4.20. From this figure it can be seen that 
if the mass ratio of the upper structure (Rm) is about 0.2 or higher, a mass 
damper effect can be obtained. When the optimum amount of damping is 
similar to that of base isolation, the optimum amount of damping 
increased with the mass ratio, while for a mass ratio of 0.3 or higher, the 
amount is in the range from 0.03 to 0.05.  
With high rise buildings employing a middle-story isolated structural 
system, it is necessary to carry out a time 
history response analysis to determine the detailed behavior during an 
earthquake, but [Murakami 2001] proposes response prediction equations 
for schematic design for use as a guide. The proposed response prediction 
equations were obtained from energy balance and a characteristic function 
obtained from modal analysis of the two-mass model, after checking that 
a multi-mass middle story isolation structure model could be replaced with 
the equivalent two-mass middle-story isolation structure model. From this 
response prediction method, it is possible to numerically evaluate the 
specific effect of the energy input to the building, the mass ratio of the 
upper structure, the yield force ratio of the dampers, and the period of the 
isolated structure on the response shear force and relative deformation of 
the isolation layer, and the base shear coefficient of the lower structure. 
By comparing this response prediction method with the vibration 
response analysis results under the major earthquakes for the “Iidabashi 
First Building, First Hills Iidabashi,” it was found that the predicted values 
virtually enveloped the analysis values, so the method is effective as a 
response prediction method for schematic design. Also, from the results 

it was found that the optimum ratio of the damper yield force (α’s) to the 

total above-ground weight was about from 0.025 to 0.03, see Fig. 4.21”. 
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Fig. 4.20. Maximum predicted response value in each part when the velocity 
conversion value of the energy that contributes to damage is VD = 150 cm/s 
[Tsuneki et al. 2009] 

 

Fig. 4.21. Relationship between quantity of dampers and maximum response 

values in each part under the major earthquake (VD = 150 cm/s) [Tsuneki et al. 

2009] 

 

Tabs. 4.6 ÷ 4.8 summarize the values assumed for the three approaches, 
i.e. isolation, mass damping and energy dissipation, by considering the 
contributions of all the papers. 
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Table 4.6. Global values for the Energy Dissipation Approach 

Design 
Parameters 

Energy 
Dissipation 
Approach 

mR  0.1 ÷ 0.8 

m  0.1 ÷ 0.9 

u  0.1 ÷ 0.9 

'
s  0.005 ÷ 0.08 

t
'
s,op  0.025 ÷ 0.03 

m opt  0 .15÷ 0.4 

u opt  0.25÷ 0.58 

CED  0.7÷ 0.8 

CED = Concentrated Energy dissipation 
 

Table 4.7. Global values for the Isolation approach 

Design 
Parameters 

Isolation 
Approach 

USr  0 ÷ 15 

LSr  0 ÷ 12 

US LS/m m  0 ÷ 5 

  0.2 ÷ 6 

mR  0.2 ÷ 1 

US LS/k k  0.1 ÷ 5 

US ISO/k k  9 ÷ 100 

LS ISO/k k  18 ÷ 141 

ISO  [s] 1 ÷ 4 

US  [s] 0.05 ÷ 0.7 

LS  [s] 0.05 ÷ 0.7 

US ISO/ω ω  3 ÷ 40 

LS ISO/ω ω  3 ÷ 40 

f  0.025 ÷ 0.3 

ISO  0 ÷ 0.2 

US  0.02 

LS  0.02 
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Table 4.8. Global values for the Mass Damping Approach 

Design 
Parameters 

Mass Damping 
Approach 

  0 ÷ 10 

LS  0 ÷ 0.05 

US  0.02 

f  0 ÷ 10 

ISO  0 ÷ 1 

1  0.12 

EDI  0.1 ÷ 1 

optf  0.1 ÷ 1 

ISO,opt  0.05 ÷ 0.5 

,optEDI  0.25 ÷ 1 

4.5. ANALYTICAL FORMULATIONS IN THE CURRENT 

LITERATURE 

4.5.1. Isolation Approach 

4.5.1.1. Modal Analysis of the simplified 3DOF IIS model 

Considering the 3DOF IIS model, Eqs. (2.245) ÷ (2.247) can be written in 
matrix form as follows. 
 

g
u   Mv Cv Kv M    (4.13) 

 

where  
T

LS ISO US
v v vv  is the vector of the relative displacement to 

the ground;  
T

1 0 0  is the vector which multiplies the ground 

acceleration g
u ; the matrices of mass M , of damping C , of stiffness K , 

respectively correspond to: 
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LS LS ISO LS ISO

ISO ISO ISO US ISO US

US US US US US

m 0 0 c c 0 k k 0

m m 0 ; 0 c c ; 0 k k

m m m 0 0 c 0 0 k

      
     

    
     
          

M C K  

  (4.14) 
 
in which 

LS LS LS LS
c = 2ξ m ω , 

US US US US
c = 2ξ m ω , 

ISO ISO ISO ISO
c = 2ξ M ω  are the 

damping constants; 
LS
ξ , 

US
ξ , 

ISO
ξ  are the damping ratios and 

 

LS US ISO

LS US ISO

LS US ISO

k k k
ω , ω , ω

m m M
      (4.15) 

 
the nominal frequencies of the LS, US and ISO. 
Solving the eigenvalue problem of Eq. (4.13), the characteristic equation 
is obtained as follows: 

3 2λ aλ bλ + c = 0     (4.16) 
 
where a, b, c are given by: 
 

      

  

2 2 2

LS m ISO m US m

m

1 R 1 1 R 1 R
a

1 R 1

        
 

  
  (4.17) 

   

  

2 2 2 2 2 2

LS ISO m LS US m ISO US

m

1 R 1 R
b

1 R 1

       


  
   (4.18) 

2 2 2

LS US ISOc
1

  
 

 
   (4.19) 

 
where 

m
R  is the mass ratio of the isolated mass,

ISO ISO US
M m m  , to the 

total mass,
tot LS ISO US

m m m m ,    i.e.: 

 

ISO US ISO

m

LS ISO US tot

m m M
R

m m m m


 

 
   (4.20) 

 
and   is the mass ratio defined in Chapter 2 (§2.2) for the linear theory 

developed by Kelly for base-isolated system, i.e.
b

m (m m)   ; in 
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particular, assuming 
US

m m  and 
b ISO

m m , the parameter   assumes the 

form: 
 

US US

ISO US ISO

m m

m m M
  


   (4.21) 

 
Employing Eqs. (4.20) and (4.21), the n-th mode shape vector 

n
  (n = 1, 

2, 3) is given by: 
 

 

2 2

LSn LS nm

2

m ISOn ISOn

2 2

USn LS nm

2 2

m US n

1

1 R

R

1 R

R 1



 
 

        
     

        
      

   (4.22) 

 
where 

LSn
 , 

ISOn
 , 

USn
  are the n-th mode shapes of story drifts of the lower 

structure, isolation layer and upper structure, respectively (Fig. 4.22). 
 

 
Fig. 4.22. Mode Shapes of the 3DOF IIS model 

 
The fundamental (or isolated) modal natural frequency 

1
ω  may be very 

close to the isolated frequency 
ISO

ω , and is well separated from the residual 

modal natural frequencies if the elastic lateral stiffnesses of the 
substructure and superstructure are much greater than the effective lateral 
stiffness of the isolation system.  
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Defining 2 2

1 ISO LS
ε = ω / ω  and 2 2

2 ISO US
ε = ω / ω , and assuming that 

1
ε  and 

2
ε  

are of an order equal to or less than 10−1, the first mode shape of story 
drifts can be approximated by substituting 

ISO
ω for 

1
ω . Therefore, the first 

mode shape of story drifts is obtained from Eq. (4.22) as follows: 
 

 

 

2
m 1LS1 LS

2
m 1 ISO1 ISO1

2 2
LS 1mUS1 LS

2 2
m US 2 US

1 1

1 R 1 ε 1

R ε

1 ε1 R 1

R 1 1 ε



   
                

         
             

           

  (4.23) 

 
where   is the mass ratio of the isolated mass,

ISO ISO US
M m m  , to the 

lower mass,
LS

m , i.e.: 

 

ISO

LS

M

m
     (4.24) 

 
and 

LS1
 , 

ISO1
 , 

US1
  are the 1st mode shapes of story drifts of the lower 

structure, isolation layer and upper structure, respectively. 
 
Neglecting the high-order terms of 

ISO LS
ω / ω  and 

ISO US
ω / ω , the first 

modal damping ratio 
1
ξ  can be obtained based on the classical damping 

assumption in which the off-diagonal terms of the modal damping matrix 
are neglected. In particular, 

1
ξ  is given by: 

 

ISO

1 2 2

2ISO ISO

LS US

ξ
ξ

ω ω
1 2 4γ

ω ω


   

     
   

   (4.25) 

 
and the first modal participation mass ratio L1 can be determined by: 
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2 2

tot ISO LS ISO

ISO LS ISO US

1 2 2

tot ISO ISO

ISO LS US

m ω m ω
1 2γ

m ω m ω
L

m ω ω1 γ
2 2

m ω ω

    
     
     


    
     
      

   (4.26) 

 
From Eq. (4.25), it is seen that the first modal damping ratio may be 
significantly affected by the masses and stiffnesses of the upper and lower 
structure.  
If the elastic lateral stiffness of the substructure and superstructure is 
much greater than the effective lateral stiffness of the isolation system, 
such that 

ISO LS
ω / ω  and 

ISO US
ω / ω  are sufficiently small, it is reasonable to 

assume that the first vibration mode is the isolation mode and the effective 
damping ratio is equal to the first modal damping ratio. 
 
 

However, the damping ratios of the structural portions, i.e. ξUS, ξLS, 

generally differ from the damping ratio of the isolation system ξISO. 
Therefore, assuming different values of the damping ratios for the three 
DOFs, the IIS model is characterized by non-proportional damping. 
A non-classical or non-proportional viscous damped system is characterized by 
complex-valued natural modes, and does not satisfy the Caughey and O’ 

Kelly identity: 1 1 CM K KM C  [Veletsos & Ventura 1986]. 
The common design assumption of proportional damping, which leads to 
real-valued natural modes of vibration identical to the ones of the 
associated undamped system, and allows for neglecting the off-diagonal 
terms of the damping matrix C  (i.e. the Caughey and O’ Kelly identity is 
satisfied) could not be adequate to grasp the actual dynamic behavior of 
the system. 
 
Furthermore, when C  is an arbitrary symmetric positive definite matrix, 
the expansion in terms of the eigenvectors for the undamped system and 
real modal coordinates does not lead to uncoupled modal equations. In 
this case, we have to work with an expansion involving complex modal 
coordinates and complex state eigenvectors [Connor & Laframme 2014]. 
Therefore, rather than working with second-order equations, it is more 
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convenient to transform the system provided in Eq. (4.13)to a set of first-
order equations which represent the state space formulation, i.e.: 
 

   (4.27) 

 
where the state space matrix  (2n x 2n), the input matrix  (2n x 1) 

and the state space vector  (2n x 1) are given by: 

 

1 1

2nx2n

 

 
  

  

0 I
A

M K M C
 

  (4.28) 
 

2nx1


 
  

 
g

0
B    (4.29) 

 

2nx1

 
  
 

u
z

u
   (4.30) 

 
 (n x n) the unit matrix. 

 
Considering the absolute displacement with respect to the ground, the 
matrices M, C, K and the vector τ respectively correspond to: 
 

LS LS ISO ISO

ISO ISO ISO US US

US US US

LS ISO ISO

ISO ISO US US

US US

m 0 0 c c c 0

0 m 0 ; c c c c ;

0 0 m 0 c c

k k k 0

k k k k

0 k k

    
   

    
   
      

  
 

   
 
  

M C

K

  (4.31) 

 

 
T

nx1
1 1 1  

Considering the non-classically damped IIS, the eigenvalue problem of 
Eq. (4.32): 

g
(t) (t) u (t) 

g
z Az B

A
g

B

(t)z

1 1

2nx2n

 

 
  

  

0 I
A

M K M C

I



4. Literature overview and discussion 

 

189 
 

 

i i i
 Au u    (4.32) 

 
is solved to obtain the i-th complex eigenvalue, 

i
 , and eigenvector, 

i
u . 

The i-th frequency and damping ratio are: 
 

i i
f 2      (4.33) 

i i i
( )    Re    (4.34) 

 
where 
 

2 2

i i i
( ) ( )    Re Im    (4.35) 

 
is the modulus of the i-th eigenvalue; 

i
( )Re  and 

i
( )Im  are the real and 

complex conjugate pair of 
i

 . 

4.5.1.2. Modal Analysis of the simplified 3DOF IIS model 

Considering the 2DOF IIS model, Eqs. (2.248) - (2.249) can be written in 
the same matrix form as (4.13), in which the v  and  are: 

 
T

LS ISO
v vv and  

T
1 0  ;  

the matrices of mass M , of damping C , of stiffness K , respectively 
correspond to: 
 

LS LS ISO LS ISO

ISO ISO ISO ISO

m 0 c c k k
; ;

M M 0 c 0 k

      
       
     

M C K   (4.36) 

 
Solving the eigenvalue problem of Eq. (4.13), the characteristic equation 
is obtained as follows: 

2aλ bλ + c = 0    (4.37) 
 
where a, b, c are given by: 
 

LS ISO
a m M    (4.38) 

   LS ISO ISO LS ISO
b m k M k k         (4.39) 

LS ISO
c k k    (4.40) 
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Therefore, the n-th mode shape vector 
n

  (n = 1, 2) is given by: 

 

LSn 2 2

n LS n

ISOn 2

ISO

1

1

 
   

      
     

   (4.41) 

 
A graphical representation of the two mode shapes is provided in Fig. 
4.23. 
 
 

 
Fig. 4.23. Mode Shapes of the 3DOF IIS model 

 

Considering the ratio 2 2

1 ISO LS
ε = ω / ω  of an order equal to or less than 10−1, 

and 
1

ω  approximately equal to 
ISO

ω , the first mode shape obtained from 

Eq.  as follows: 
 

LS1 2

1 1 LS

ISO1 2

1 ISO

11

1 ε1 1

ε



  
     

        
           

  (4.42) 

 
Considering the non-classically damped IIS, the eigenvalue problem is the 
same described in § 4.6.1.1. 
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Frequency Response Function (FRF) 
The 

y, j
H (iω)  as a frequency response function of j-th story displacement 

under sinusoidal excitation: 
 

i t

g
y e     (4.43) 

 
is evaluated as follows: 
 

   
1 T2(iω) = - ω iω , 1 1 ...


   
y

H M C K Mr r    (4.44) 

 
T

y,1 y,2 y, j
(iω) H (iω) H (iω) ... H (iω) ...

y
H    (4.45) 

 

The 
A, j

H (iω)  as a frequency response function of j-th story absolute 

acceleration, and 
r, j

H (iω)  as that of inter-story drift of the j-th story are 

evaluated by 
y, j

H (iω)  as follows: 

 
2

A, j y, j
H (iω) =1-ω H (iω)    (4.46) 

r, j y, j y, j-1 r,1 y,1
H (iω) = H (iω) - H (iω), H (iω) = H (iω)    (4.47) 

 
The 

X
  as root-mean-square (RMS) value of a random variable response 

X to S(ω)  as power spectrum ground acceleration is expressed by using 

the frequency response function 
X

H (iω) as Eq. (4.48). When the power 

spectrum S(ω) is assumed ad white noise which is a constant value for , 

the 
m n

   as RMS value ratio of random vibration response m and n is 

evaluated by Eq. (4.49). 
 

2
2

X X0
H (i ) S( )d



        (4.48) 

2 2

m n m n0 0
H (i ) d H (i ) d

 

           (4.49) 
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4.5.2. Mass Damping Approach 

4.5.2.1. Approaches of [Sadek et al. 1997], [Miranda et al. 
2012], [Chey et al. 2010],[Wang et al. 2017]Approach 
of [Sadek et al. 1997] 

 
For a SDOF with TMD, the state matrix A  in terms of the natural 
frequency and damping ratio (

LS
  and 

LS
 ) of the structure, and the mass, 

frequency, and damping ratio ( , f  and
ISO
 ) of the TMD is given as 

follows. 
 

   

2 2 2 2

LS LS LS ISO LS ISO

2 2 2 2

LS LS LS ISO LS ISO LS

0 0 1 0

0 0 0 1

f f 2 f 2 f

f 1 f 2 f 2 f

 
 
 


       
 
               

A   (4.50) 

 
The eigenvalue problem - λA I  results in the following four-order 
equation: 
 

 

   

4 3

ISO LS

LS LS

2

2 2

LS ISO ISO LS

LS LS

2f 1 2

1 f 1 4f 2f f 0

    
               

    
                      

  (4.51) 

 
The solution of Eq. (4.51) gives the complex eigenvalues of the system 
matrix, which are in the following form: 
 

2

j, j 1 jj jj jj jj
i 1


          (4.52) 

 
where j, j 1

  are the pair of conjugate eigenvalues associated with the j-th 

vibration mode, which are related to its circular frequency jj
  and the 

modal damping ratio jj
 .  

The eigenvectors associated with eigenvalues are generally complex 
entities, and, thus, the vibration modes are non-classically damped. 
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It is worth noticing that, the eigenvalue in Eq. (4.51) are normalized with 
respect to the frequency 

LS
 .  

It means that the optimal parameters, (
opt

f  and
ISO,opt
 ), are independent of 

the entity of the natural frequency of the main structure. 

[Sadek et al 1997] proposed a numerical searching technique for the 
optimum parameters 

opt
f  and

ISO,opt
 . In particular, for a given damping 

ratio 
LS
  and for each mass ratio  , the values of f  and

ISO
  are varied, 

matrix A  is formed, and its eigenvalues are computed.  

The optimum values are obtained for approximately equal damping and 
frequency ratios of the complex modes, i.e. 

11 22
    and 

11 22
  . 

For design purpose, a curve fitting of the data is used for both damped 
and undamped structures. The formulations introduced in the previous 
section for the SDOF + TMD system as well as of the MDOF + TMD 
are recalled for completeness: 
 

LS

opt LS ISO,opt

1
f 1 ;

1 1 1 1

   
     

    
           (4.10) 

opt ISO,opt

1
f ;

1 1


  

 
              (4.11) 

 

s

opt s ISO,opt

1
f 1 ;

1 1 1 1

   
     

    
              (4.12) 

 

with 
MDOF SDOF

f ( ) f ( )   , 
MDOF SDOF

( ) ( )     ,   the amplitude of the 

first mode of vibration for a unit participation factor computed at the 
location of TMD. 
 

Approach of [Moutinho et al. 2012] 

[Moutinho et al. 2012] define the optimum parameters opt
f  and ISO,opt

  

starting from the methodology proposed by [Sadek et a. 1997] (Eqs. (4.50) 
÷ (4.52)) but defining different objectives. The optimum parameters are 
found by selecting the parameters that simultaneously meet the condition 

11 22
    and are in correspondence with the minimum value of the 
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maximum FRF amplitude associated with the response of the primary 
mass. 
 

Approach of [Chey et al. 2010] 

[Chey et al. 2010] define the optimum parameters 
opt

f  and
ISO,opt
  starting 

from the formulation proposed by [Sadek et a. 1997] for MDOF, i.e. Eqs. 
(4.12). On the basis of these optimum parameters, the stiffness and 
damping constant of the isolation system are defined. Then, the 
effectiveness of the TMD with large mass ratio is verified by carrying out 
time history analyses for different suites of earthquake with a statistical 
method.  
 

Approach of [Wang et al. 2017] 

Even though Wang et al. belong to the school of the isolation approach, 
recently they have investigated also the mass damping approach. Wang et 
al., drawing upon the insight of isolation, consider the 3DOF IIS model, 
without neglecting the interaction between the upper and lower structures.  
The authors define the optimum parameters of both the upper structure 
and the isolation system starting from the results of Sadek et al. in terms 
of the equality of the damping ratios, i.e. 

11 22 33
      in the complex 

modes. Based on the proposed objective function with given 
LS

 , 
ISO

 , 

US
 ,

LS
 , and 

US
 , the optimum design parameters for 

ISO
f , 

US
f  and 

ISO
 , 

i.e. 
ISO,opt

f , 
US,opt

f  and 
ISO,opt
 , respectively, can be determined. The 

procedure is validated by an experimental campaign with shaking table 
tests. 
 

4.5.2.2. Approaches of [De Angelis et al. 2012], [Reggio & De 
Angelis 2014, 2015] 

[De Angelis et al. 2012] propose the optimal design of structures with large 
mass ratio TMD, considering a reduced-order SDOF + TMD: 
 

2

LS LS LS LS LS LS g

LS

p
u 2 ω u ω u u

m
         (4.53) 

ISO g

LS

p
u u

m
       (4.54) 
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2

LS ISO ISO LS ISO

LS

p
f ω v 2 f ω v

m

        (4.55) 

 
In order to consider the probabilistic nature of earthquake, ground 
acceleration is modeled as a Gaussian random process having zero mean 
and white noise power spectral density. 
This choice seems to be adequate to a design phase, although it neglects 
the dependency on the excitation frequency content. 
 
Being the input process stationary with zero mean, such is assumed to be 
the system response and the following non-dimensional variables are 
introduced: 
 

LS,TMD ISO,TMD LS,TMD ISO,TMD

LS,RC ISO,RC LS,RC ISO,RC

u v a a

LS ISO LS ISO

u u a a

U , V , A , A
   

   
   

  (4.56) 

 

In Eqs. (4.56), standard deviation   coincides with the RMS  
2

E  
 

, 

where the symbol  E  denotes the expected value operator. 
 
Optimization 
An optimization problem was defined which consists in minimizing the 
RMS ratio 

LS
U  of the main structure displacement with respect to f . The 

equation 
 

 LS
U f

0
f





   (4.57) 

 
was solved through a numerical search algorithm. 
It is worth noticing that the parameter 

ISO
  is here assumed constant for 

implementing high damping rubber bearing in the isolation interface. In 
fact, these devices are characterized by equivalent damping ratios in the 
range of 0.1 ÷ 0.15 for a target shear strain of 100% ÷ 150%. For this 
reason, the damping ratio 

ISO
  is fixed to obtain a first modal complex 

damping ratio equal to 0.12. 
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In addition, in order to compare the response of the uncontrolled (RC) 
and controlled (TMD) configurations, the frequency response function 

LSu
H ( )  of the main structure displacement with respect to ground 

acceleration is derived as follows. 
 

LS,RCu
2 LS

1
H ( )

2i
1

1

  


 
 

  (4.58) 

 

LS

0

u ,TMD 2

0 LS

C ( )
H ( )

1 C ( ) 2i 1


  

       
   (4.59) 

 
where 
 
is the ratio between the input frequency and the natural frequency of the 
system in the RC configuration 
 

2

ISO

0 2 2

ISO

f (1 ) 2i f 1
C ( ) 1

f (1 ) 2i f 1

      
   

       
   (4.60) 

 
[Reggio & De Angelis 2014, 2015] propose an optimal energy-based 
seismic design of non-conventional TMD implemented via inter-story 
isolation. 
The probabilistic nature of seismic excitation is taken into account by 
modeling the ground acceleration as a stationary Gaussian stochastic 
process with zero mean and white noise power spectral density.  
Writing the equations of motion (4.53) ÷ (4.55) in the first-order state 
space form (4.27), and assuming a zero mean stationary input process and 
zero initial conditions, response (t)z  is in turn a zero mean stationary 

process whose complete description is given by its covariance matrix 
TE    zz

G zz  which satisfies the following differential equation 

 
T T

0
2 S   

zz zz zz
G AG G A BB    (4.61) 

 
which however reduces to an algebraic equation 
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T T

0
2 S   

zz zz
AG G A BB 0    (4.62) 

 

When 
zz

G 0  due to the stationarity of (t)z . Eq. (4.62) is in the form of 

a Lyapunov equation and can be solved numerically to determine 
zz

G .  

 
Energy balance 
The equation of relative energy balance [24], derived by considering one 
DOF at a time, is used to characterize the dynamic behavior of the 
reduced-order two-DOF model from an energy-based point of view. 
The equation of motion of the primary oscillator, Equation (1a), is first 
considered. The equation of relative energy balance is obtained by 

multiplying both members by P u1, the velocity of the primary oscillator 

relative to ground, and then integrating over time, yielding 
 

         k,LS d,LS e,LS i,LS f
E t E t E t E t E t       (4.63) 

 

Where  k,LS
E t  is the relative kinetic energy;  d,LS

E t  is the energy 

dissipated by viscous damping;  e,LS
E t is the elastic strain energy;  i,LS

E t

is the relative input energy; and  f
E t is the energy flowing from the 

secondary to the primary oscillator through the isolation system.  

Being the design input a stochastic process, Eq. (4.63) can be formulated 
in terms of expected values as 
 

 k,LS d,LS e,LS i,LS f
E E E E E                 E E E E E    (4.64) 

 

In a time increment t  , Eq. (4.64) is given for the energy increments as 
 

 d,LS f i,LS
E E E          E E E    (4.65) 

 

because k,LS e,LS
E E 0         E E due to the conservation of mechanical 

energy. 
The equation of motion of the secondary oscillator, Eq.(4.54), is 
subsequently considered. By multiplying both members by the velocity 

ISO
u  of the secondary oscillator relative to ground 
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ISO ISO g ISO ISO

LS

p
u u u u u

m
       (4.66) 

 
rewriting Eq. (4.66) in the form 
 

ISO ISO g ISO LS ISO

LS LS

p p
u u u u u v

m m
        (4.67) 

 
and integrating over time, the equation of relative energy balance is 
obtained as 
 

         k,ISO i,ISO f d,ISO e,ISO
E t E t E t E t E t       (4.68) 

 

where  k,ISO
E t is the relative kinetic energy;  i,ISO

E t is the relative input 

energy;  e,ISO
E t is the elastic strain energy;  d,ISO

E t is the energy 

dissipated by viscous damping and  f
E t is the energy flowing from the 

secondary to the primary oscillator as in Eq. (4.64). By formulating Eq. 
(4.68) in stochastic terms 
 

 k,ISO i,ISO f d,ISO e,ISO
E E E E E                 E E E E E   (4.69) 

 
and considering the energy increments corresponding to a time increment 

t , it follows: 
 

 d,ISO f i,ISO
E E E          E E E    (4.70) 

 

as k,ISO e,ISO
E E 0         E E  consistently with the conservation of 

mechanical energy. 
 
Optimization problem 
Within the set of parameters that govern the response of the reduced-
order two-DOF model, mass ratio  and dynamic properties 

LS
  and 

LS
  

are known data, depending on the properties of the structure provided 
with inter-story isolation, while frequency ratio f  and damping ratio 

ISO
  
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are the design parameters of the isolation system, to be determined 
through an optimization problem. 
An energy-based approach to the optimization problem is here proposed 
as it can deal, in a synthetic and effective way, with the different response 
quantities influenced by inter-story isolation. 
With the aim of achieving the global protection of both the structural 
portions separated by the isolation system, or, in other words, of reducing 
the seismic response of both the substructure and the isolated 
superstructure in the meantime, the following energy performance index, 

named Energy Dissipation Index (EDI) 
 

d,ISO

i,LS i,ISO

E
EDI

E E

  


        

E

E E
   (4.71) 

 
is defined. Referring to the stochastic relative energy balance, it represents 
the ratio, in terms of expected values, between the incremental energy 
dissipated in the isolation system and the incremental input energy globally 
transferred to the two-DOF model in a time increment Δt. The former is 
given by 
 

 
2

d,ISO ISO LS ISO
E 2 f ω v t         

E E    (4.72) 

 
while the latter is computed by substituting Eqs. (4.65) and (4.70) as 
 

   

i,LS i,ISO d,LS d,ISO

2 2

LS LS LS ISO LS ISO

E E E E

2 ω u t 2 f ω v t

                  

         
   

E E E E

E E
 

  (4.73) 
 
By virtue of the zero mean input assumption, the expected values 

LS
u 2E[( ) ]  and ISO

v 2E[( ) ]  in Eqs. (4.72) and (4.73) are equal to the variances 

LS

2

u
  and 

ISO

2

v
  of velocities 

LS
u  and 

ISO
v , respectively.  

Variances 
LS

2

u
  and 

ISO

2

v
  are derived from the covariance matrix 

zz
G , 

which is determined by solving Eq. (4.62). 
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A single-objective optimization problem is then formulated by requiring 
the objective function, or EDI, to be maximized over the space of the 
design parameters ( f , 

ISO
 ): 

 

 
ISO

ISO ISO
f ,

find max EDI f , subject to f 0 and 0.0 1.0


        (4.74) 

 

The maximum value EDImax and the corresponding optimal values 
opt

f  and

ISO,opt
  of the design parameters are found through a numerical search 

algorithm, with f  and 
ISO
  spanning their ranges with increments of 10-4

 

to reach the desired accuracy. The optimal design parameters 
opt

f  and

ISO,opt
  are hence used to determine the engineering design parameters of 

the isolation system, the stiffness 
ISO,opt

k  and the damping 
ISO,opt

c  

coefficients: 
 

opt LS

2 2

ISO,opt ISO
k M f     (4.75) 

ISO,opt ISO,opt ISO ISO,opt
c 2 M k     (4.76) 

4.5.3. Concentrated Energy Dissipation 

4.5.3.1. Energy Input Concept 

Considering a single-mass oscillatory system subjected to uni-directional 
horizontal ground motion, the equation of motion is expressed as follows 
[Akiyama 1985]. 
 

e
My Cy F(y) F      (4.77) 

 
where M is the mass; Cy  the damping force; F(y) the restoring force, 

e g
F Mu   the seismic force, with g

u the ground acceleration; y the 

displacement of the mass relative to the ground.  
 
Multiplied by dy ydt on both sides, and integrated over the entire 
duration of an earthquake, 

0
t , Eq. (4.77) assumes the following form: 

 
0 0 0 0t t t t2

e0 0 0 0
M yydt C y dt F(y)ydt F ydt         (4.78) 
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where 
 

0t

e0
F ydt E   represents the total amount of energy exerted by 

an earthquake, namely: input energy; 
 

0t 2

h0
C y dt W   expresses the energy consumed by the damping 

mechanism; 
 

0

0

t 2

t t0
M yydt My / 2


   expresses the kinetic energy at the instant when the 

motion vanishes; 
 

0t

0
F(y)ydt   expresses the strain energy deposited in the spring 

system, which consists of cumulative plastic 
energy, 

p
W , and elastic strain energy at the instant 

when the earthquake motion fades away. 
The kinetic energy and the elastic strain energy constitute the elastic 
vibrational energy, 

e
W . 

Therefore, Eq. (4.78) can be rewritten as follows. 
 

E P h
W W W E      (4.79) 

 
The elastic vibrational energy 

E
W  has a range of 

 

Y

E

Y

Q
0 W 


   (4.80) 

 
with 

Y
Q  and 

Y
 respectively corresponding to the horizontal force and 

the displacement at the elastic limit.  

P
W  is the accumulated effect of the plastic deformation of the spring 

system and it is defined as the damage to the structure to an earthquake.  
 
Akiyama considers the assumption of Housner to define the elastic-plastic 
vibrational systems: 
 

E P H
W W E     (4.81) 
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where 
 

2

H max
E MV / 2   is the energy input attributable to damage; 

max
V   is the maximum velocity response of the elastic 

systems (velocity response spectrum) 
 
Denoting 
 

E P D
W W E     (4.82) 

 
being 

D
E  the energy input attributable to damage, the following relation 

holds, since 
H

E  represent the maximum vibration energy during an 

earthquake: 
 

D H
E E    (4.83) 

 
Observing Eqs. (4.79) and (4.82), it is possible to notice that in an 
undamped system the energy 

h
W is null and, consequently, E is equal to 

D
E ; instead in a damped system,  

 

D h
E W E     (4.84) 

 
and 
 

 
E P 2

s s

1
W W E

1 3 1.2

 

   

   (4.85) 

 
where 
 

 s s
1/ 1 3 1.2      is a coefficient obtained by comparing the input 

energies E and 
D

E  as a function of the period T of  
the structure under El Centro input motion, and by 
considering a damped system with elastic-perfectly 
plastic restoring force characteristics; 

s
    is the structural damping ratio. 

 
Therefore, the energy absorption due to miscellaneous damping is 
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h D
W E E     (4.86) 

 
A seismic input can be described in terms of pseudo-velocity converted 

from the total energy exerted by an earthquake, VE. Therefore, the 
equivalent velocity is defined as follows 
 

E

2E
V

M
    (4.87) 

 
In the same manner the equivalent velocity that contributes to the damage 
is defined as follows. 
 

D

D

2E
V

M
    (4.88) 

 
According to Eqs. (4.85), (4.87) and (4.88), the ratio between the 
equivalent velocity that contributes to the damage, 

D
V , and the equivalent 

input velocity, 
E

V , is defined as 

 

 
D

E s s

V 1

V 1 3 1.2


   
   (4.89) 

 
Varying the damping ratio h in the range of 0.02 ÷ 0.03, and substituting 
these value into Eq. (4.89), the equivalent velocity that contributes to the 
damage assumes the following values. 
 

s D E

s D E

0.02 V 0.81V

0.03 V 0.77V

   

   
  

 
An energy spectrum can be considered to check the ultimate strength of 
structures against the earthquake motion. 

The energy spectrum, represented by the VE – T relationship, is built 
considering one-mass system with 10% of damping constant [Akiyama 
1985, 1988]. 
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A design energy spectrum can be simply expressed by two line segments 
which envelop the energy spectrum, as can be seen in Fig. 4.24. One is the 
line that represents the energy input in the range of the shorter natural 

periods, which must go through the origin of the VE – T diagram. The 
other is the line for greater natural period, which is parallel to the T-axis. 
The two lines are expressed as follows [Akiyama 1994]: 
 
for 

G
T T  (shorter period range) 

EM

E

G

V T
V

T
    (4.90) 

 
for 

G
T T  (longer period range) 

E EM
V V    (4.91) 

 
where 
 

G
T   is the transient period which separates the range of period; 

EM
V  is the level of 

E
V  in the longer period range; 

T   is the fundamental natural period in the elastic range. 
 
Considering the elongation of substantial period of vibration due to 
plastification of structure, the energy spectrum for design use must be 

modified by introducing a magnification factor as as follows. 
 

EM

E s

G

V T
V a

T
    (4.92) 

 

The value of as depends on the restoring force chracteristics and the extent 
of plastification of the structure and lies in the range of 1.2 to 1.5 for 
practical structures. 
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Fig. 4.24. Energy spectrum 

 

For design purpose, the VE – T curve can be built as a function of the soil 
class (Fig. 4.25). In the Japanese building code the ground is classified in 
four categories, going from the Class-I for ground consisting of bedrock 

to Class-IV for the softest soil. The values of the ground period TG and 

of the pseudo-velocity VE are reported as follows. 
 

TG = 0.4 s, VE = 120 cm/s for Class-I ground, 

TG = 0.6 s, VE = 150 cm/s  for Class-II ground, 

TG = 0.8 s, VE = 200 cm/s for Class-III ground, 

TG = 1.0 s, VE = 250 cm/s for Class-IV ground. 
 

 
Fig. 4.25. Forms of the VE – T relationships 
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In general, for a preliminary analysis, it is possible to choose the following 
values for the equivalent velocities: 
 

E

D

V  = 200 cm/s

V  = 150 cm/s
   (4.93) 

 
Therefore, the equivalent velocity ratio is equal to 

D

E

V
 = 0.75

V
   (4.94) 

4.5.3.1. Energy Balance concept in seismic isolated 
structures 

In isolated structures, most of the seismic energy input is absorbed by 
isolators and dampers installed in the isolation story. 
In practical design, the most fundamental issue is related to the structural 
characteristics of the isolation story, which are summarized as follows 
[Yamaguchi et al. 1993]. 
 

1) The stiffness of isolators can be expressed by the first natural 

period Tf of the building, assuming that the horizontal load is 

supported by isolators only; 

2) The damping characteristics can be expressed by the coefficient 

of the yield shear force of dampers αs, which is equal to ratio of 

the yield strength of the damper to weight of the upper stories; 

3) The deformation limit of isolators and dampers δmax. 

Considering the non-linear restoring force characteristics of isolators 
without hysteresis loop and the perfect elastic-plastic characteristics of the 
dampers, the energy stored by the isolation system is shown in Fig. 4.26. 
 

 
Fig. 4.26. Energy stored by the isolation system [Yamaguchi et al. 1993] 
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BIS 

According to the Recommendation for the Design of Base-Isolated 
Buildings of the AIJ’s subcommittee, the energy stored by the isolation 

story is equal to the sum of the elastic energy stored by isolators, WE, and 

the accumulated energy stored by dampers, WP, i.e.: 
 

2 2

2f max

E max2

f

K δ 4π M
W = = δ

2 2T
   (4.95) 

 

P S m max
W = κα Mg δ    (4.96) 

 
where κ  is a damage concentration index, which depends on the 
characteristics of the isolation story and input seismic wave. Based on the 
results of the parametric dynamic analysis, [Akiyama 1989, 1992] proposed 
κ  = 8. 
The seismic capacity of the isolation interface in terms of equivalent 
velocity converted from the accumulated energy is: 
 

2 2

D De Dp
V V V     (4.97) 

 

where 
De

V  and Dp
V  represent the equivalent velocity of the energy stored 

by the isolators and dampers, respectively, i.e.: 
 

E

De max

f

2W 2π
V δ

M T
     (4.98) 

P

Dp S max

2W
V 4 α gδ

M
     (4.99) 

 
Therefore, from Eq. (4.88) can be derived the energy attributable to 
damage as follows. 
 

2

D

D

MV
E

2
    (4.100) 
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IIS 

In a BI structure isolators and dampers are installed at the base of the 
building. The isolation and damping devices alone absorbed the seismic 
input energy while the structure does not play a part in energy dissipation. 
In a IIS structure not only the isolation interface but also the lower 
structure contribute to the energy dissipation. 
In this section the study of [Murakami et al. 2001, Murakami & Suoeka 
2004] is provided to define the energy balance concept for the 
intermediate isolation systems. 
 
1D-2DOF IIS model 
Starting from a MDOF IIS model, in order to predict the response of a 
mid-story isolated building a reduced-order 2DOF IIS model is 
considered. A graphical representation of the MDOF and 2DOF IIS 
models is shown in Fig. 4.27. 

 

Fig.4.27. 1D MDOF IIS vs. 1D 2DOF IIS  

 
In the MDOF IIS model, the total number of degrees of freedom is N; 
the dofs of the lower structures are m – 1 and the dofs of the upper 
structure are N – m, with m the dof of the isolation story.  
In the reduced-order 2DOF IIS model the upper lumped-mass represents 

the total mass of the isolated US, 0M; the lower lumped-mass represent 

the total lower mass, uM. The equivalent stiffness of the LS is obtained 

taking into account the mass total mass, MTOT = 0M + uM and the first 

natural period of the MDOF LS, Tu, considered as a standalone structure. 
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2

TOT

u eq 2

u

4π M
k =

T
   (4.101) 

 
The stiffness of the isolation system is equal to the sum of the stiffness of 
isolators and dampers, i.e.: 
 

m t m f m s
K K K     (4.102) 

 

With the subscripts 0, m, u, are generally indicated the upper structure, the 
mid-story isolation and the lower structure, respectively.  
The same restoring force characteristics for isolators and dampers of BIS 
are assumed for the IIS structure, see Fig. 4.28. 
 
 

 
Fig.4.28. Restoring force characteristics: (a) Dampers, (b) Rubber Bearings  

 
The energy balance in Eq. (4.79) can be rewritten as: 
 

     0 E 0 P 0 h m E m P m h u E u P u h
W W W W W W W W W E          (4.103) 

 

Furthermore, the aliquots which take part in the energy balance are: the 
elastic strain energy of the isolation system, 

m E
W , and of the lower 

structure, 
u E
W ; the cumulative inelastic strain energy of the isolation 

system, 
m P
W ; the energy absorption due to miscellaneous damping of the 

lower structure, 
u h
W . Therefore, Eq. (4.103) assumes the form: 
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m E m P u E u h
W W W W E       (4.104) 

 
Therefore, the total elastic strain energy, 

E
W , the total cumulative inelastic 

strain energy, 
P

W , and the total energy absorption due to miscellaneous 
damping, 

h
W , are respectively equal to: 

 

E m E u E
W W W     (4.105) 

 

P m P
W W    (4.106) 

 

h u h
W W    (4.107) 

 
Total cumulative inelastic strain energy 
The cumulative inelastic strain energy 

m P
W  is equal to: 

 

m P y s p
W Q     (4.108) 

 
where 
 

y
Q  is the yield strength considering of dampers;  

s p
  is the cumulative inelastic deformation of dampers. 

 

The cumulative inelastic deformation 
s p
  is equal to the sum of the i-th 

positive and j-th negative plastic deformation contributes, i.e. 
pi

  and 

pi

 , respectively (Fig. 4.28a): 

 
n m

s p pi pi s p s p
i 1 j 1

   

 

             (4.109) 

 

where the total positive and negative cumulative plastic deformations, 
s p

  

and 
s p

 , are respectively equal to: 

 
n m

s p pi s p pi
i 1 j 1

,   

 

          (4.110) 
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The cumulative inelastic deformation 
s p
  can be expressed in terms of the 

yield displacement of dampers, 
s y
 , by introducing the cumulative 

inelastic deformation ratio, 
m
 , being 

m
  the ratio of 

s p
  to 

s y
 , i.e.: 

 

s p

m

s y


 


   (4.111) 

 
Defining the kinematic ductility 

m max
  as: 

 

m max s y

m max

s y

  
 


   (4.112) 

 
in which 

m max
  is the maximum deformation of the isolation system, the 

relationship between the ratio 
m
  and the ductility 

m max
  can be expressed 

as:  
 

m m max
     (4.113) 

 
where κ  it is still assumed equal to 8, according to the value proposed by 
[Akiyama 1989, 1992]. 
Therefore, the displacement 

m max
  is given by: 

 

  m

m max m max s y s y
1 1

 
        

 
   (4.114) 

 
Substituting Eq. (4.111) into Eq. (4.108), the energy 

m P
W  can be rewritten 

as: 
 

2

y

m P m y s y m

m t

Q
W Q

K
        (4.115) 

 

where s y y m t
Q K  . 
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Introducing the yield shear coefficient of dampers
s

 , being 
s

  the ratio 

of  the  yield strength, 
y

Q ,  to  the total weight of the upper structure, 

u
Mg , i.e. 

 

y y

s

0 m TOT

Q Q

Mg R M g
      (4.116) 

 
where 

m
R is the mass ratio of the upper structure to the whole structure, 

i.e.: 
 

0 0

m

0 u TOT

M M
R

M M M
 


   (4.117) 

 
the expression (4.115) becomes: 
 

s m

2 2 2 2

TOT

m P m

m t

R M g
W

K


     (4.118) 

 

Then, from Eq. (4.101) recalling the total mass 
TOT

M  can be written as: 

 
2

u u eq

TOT 2

T K
M

4



   (4.119) 

 
Eq. (4.118) becomes: 
 

2 2 2

TOT u s m

m P m 2

M g T c
W

4


 


   (4.120) 

 

where 
2

u eq m

m

m t

K R
c

K
 . 

 
Finally,  substituting Eq. (4.114), expressed in terms of 

m
 , into Eq. 

(4.120), and recalling Eq. (4.106), the total cumulative inelastic strain 
energy, 

P
W , assumes the form: 
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2 2 ' 2

TOT u u eq sm max

P m P 2

s y m

M g T K αδ
W W κ -1

δ 4π K

 
   

 
 

   (4.121) 

 
Total elastic strain energy 
The elastic strain energy of isolators 

m E
W  is given by (Fig. 4.28b): 

 
2

m f m max

m E

K δ
W

2
    (4.122) 

 
The elastic strain energy of dampers 

u E
W  is given by (Fig. 4.28a): 

 
22

u eq u eq u eq u w u f

u E

K δ K δ δ
W

2 2


     (4.123) 

 
in which 
 

u w s y
δ = δ    (4.124) 

u f m max
δ = ζ δ    (4.125) 

u w

m w u w

u
=

u - u
    (4.126) 

 

   

   

2

2 2 f2

f1 u f1 f2 u f2

f1

2

2 2
f2

f1 m f1 u f1 f2 m f2 u f2

f1

T
β u + β u

T
ζ =

T
β u - u + β u - u

T

 
   

 

 
        

 

   (4.127) 

 

where 
 

u w
δ  is the relative modal displacement of the lower structure, 

considering both isolators and dampers under elastic 
behavior; 

 

u f
δ  is the relative modal displacement of the lower structure, 

considering only isolators; 
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 , ζ    are drift ratios; 

 

m w
u , 

u w
u  are the first modal displacements considering both 

isolators and dampers under elastic behavior; 
 

m f
u , 

u f
u , 

f
  are the modal displacements and participation factors of 

the two modes of vibration, considering only isolators  
 
Solving the square of binomial and considering Eqs. (4.124) and (4.125), 
Eq. (4.123) becomes: 
 

2 2 2 2

u eq m max u eq s y

u E u eq m max s y

K δ K δ
W K δ δ

2 2

 
        (4.128) 

 
Therefore, substituting Eqs. (4.122) and (4.128) into Eq. (4.105), the total 
elastic strain energy assumes the following form: 
 

 2 2 2 2
m f u eq m max u eq s y

E u eq s y m max

K K δ K δ
W K δ δ

2 2

  
      (4.129) 

 
The mode shapes of the 2DOF IIS models considering only isolators or 
both isolators and dampers are depicted in Figs. 4.29 – 4.30, respectively. 
From the figures can be seen that when only isolators are considered, the 
first mode shows the same shape as in a BIS structure, in which the 
displacements are mainly concentrated in the isolation layer; when also the 
dampers are taken into account, the displacement of the lower structure 
increases while that of the isolation layer decreases with respect to the 
presence of only the isolation devices. 
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Fig.4.29. Mode shapes of the 2DOF IIS model considering only isolators  

 

 

Fig.4.30. First mode shape of the 2DOF IIS model considering both isolators and 
dampers 

 
Total energy absorption due to miscellaneous damping 

The energy absorption due to miscellaneous damping, Wh, is due to the 
contribution of only the lower structure, i.e.: 
 

h u h D
W W E E      (4.130) 

 
where the energy attributable to damage, 

D
E , is obtained substituting Eqs. 

(4.121) and (4.129) into Eq.(4.82), as follows. 
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 2 2

m f u eq m max

D

2 2 2 2 ' 2

u eq s y TOT u u eq sm max

u eq s y m max 2

s y m

K K δ
E

2

K δ M g T K αδ
K δ δ κ -1

2 δ 4π K

 
 

 
     

 
 

 

  (4.131) 
 
Maximum displacement of the isolation system 
Recalling Eq. (4.88), ED can be written in terms of the pseudo-velocity 
attributable to damage, VD, i.e.: 
 

2

TOT D

D

M V
E

2
    (4.132) 

 
Equating Eqs. (4.131) and (4.132), the maximum displacement of the 
isolation system, 

m max
δ , can be derived as a function of the energy balance. 

The procedure is reported in the following. 
 

 

 

2 22
m f u eq m maxTOT D

D

2 2 2 2 ' 2

u eq s y TOT u u eq sm max

u eq s y m max 2

s y m f m s

K K δM V
E

2 2

K δ M g T K αδ
K δ δ κ -1

2 δ 4π K K

 
  

 
     

   

   (4.133) 
 

 
 

2 2 ' 2

2 2 TOT s

m f u eq m max u eq s y m max

m f m s s y

2 2 ' 2

2 2 2TOT s

u eq s y TOT D

m f m s

κM g α
K K δ 2 K δ δ

K K δ

2M g α
K δ M V 0

K K

  
      

  

 
     

 

  (4.134) 

 
2

m max

b b AC
δ

A

  
    (4.135) 

 

 2

m f u eq
A K K      (4.136) 
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 

2 2 ' 2

TOT s

u eq s y

m f m s s y

κM g α
b K δ

K K δ
  


   (4.137) 

 
2 2 ' 2

2 2 2TOT s

u eq s y TOT D

m f m s

2M g α
C K δ M V

K K

 
    

 
   (4.138) 

 
 

 

    

'

m u m s TOT s

m max

m s m t e

2
2 2 2 2 ' 2 2 2 2

u m m s m t e m s u m t TOT s m s m t TOT D

m s m t e

K K κ K M g
δ

K K K

K K κ K K K 2 K K K M g α K K M V

K K K

  
 

 

     


 

 

  (4.139) 
 
where 
 

m f m s m t
K K K  , 

m t m
K K  , 2

m f u eq e
K K K   , 

u eq u
K K  . 

 

4.5.3.2. Shear coefficient distribution 

Earthquake ground motions exert seismic forces to buildings. These 
seismic forces can have different shapes due to the stiffness distribution 
considered (Fig.4.31) [Ishiyama 2011]. 
If the building moves as a rigid body along with the ground motion, 
seismic forces and seismic coefficients become uniform from the top to 
the base as shown in Fig.4.31 a. The seismic forces of the upper stories 
are transmitted to lower stories and finally to the ground through the 
foundation, and the seismic shear forces are the sum of seismic forces of 
upper stories. In case the seismic forces are uniformly distributed, the 
seismic shear forces increase linearly from top to base (Fig.4.31 d). This 
distribution (Fig.4.31 a, d) is called (1) uniform distribution of seismic 
forces. 
Since the building is not rigid, the upper stories are subjected to larger 
seismic forces. If the response displacements increase linearly from the 
base to the top, so as the seismic forces (Fig.4.31 b). Then the distribution 
of seismic shear forces becomes as a parabola where the vertex locates at 
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the bottom or which opens to the left (Fig.4.31 e). This distribution 
(Fig.4.31 b, e) is called (2) inverted triangle distribution of seismic forces. 
For high-rise buildings, the seismic forces of upper stories become very 
large, and the distribution of the seismic forces can be shown as Fig.4.31 
c. Then the seismic shear forces distribute as a parabola where the vertex 
is at the top or which opens downwards (Fig.4.31 f).  
 

 
Fig.4.31. Distributions of seismic forces (coefficients) and seismic shear forces 
[Ishiyama 2011] 

 

Defining the normalized weight di, cf. Eq. (4.141) as the weight above the 
level concerned divided by the total weight above the base, the distribution  

of the seismic shear forces is proportional to d . Therefore, this 

distribution can be called (3) “ d  distribution” (Fig.4.31 f). Incidentally 

the distribution of seismic forces is proportional to 1 d  (Fig.4.31 c). 

The seismic shear force at the level concerned divided by the weight 
above the level is called “seismic shear coefficient”. In the seismic code of 
Japan, the distribution of the seismic shear coefficients is given by so-
called Ai distribution as follows. 
 

i i

i

1 2T
A 1 d

1 3Td

 
   

   

   (4.140) 

 
where, T  (s) is the fundamental natural period of the building, and 

i
d is 

the normalized weight of the i-th level that is defined as follows. 
 

√d 
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N

j
j i

i N

j
j 1

w

d

w










   (4.141) 

 

where, N is the number of stories above the base, i and j indicate the story  

number, and 
j

w is the weight of the j-th story.  

The ratio di becomes unity (1.0) at the first story and converges to zero at 
upper stories, but never becomes zero. This normalized weight is very 
convenient to express the distributions of seismic forces and shear forces, 
although only Japanese code adopts the normalized weight as a seismic 
force parameter.  
 
Ai distribution includes the three distributions indicated in Fig.4.31, i.e. (1) 
uniform distribution of seismic forces, (2) inverted triangular distribution  

of seismic forces, and (3) 
i

d  distribution.  

Ai distribution converges to the distribution (1) when the natural period 
becomes shorter for low-rise buildings, and the effects of the distributions 
(2) and (3) becomes larger for high-rise buildings. 
The Ai distribution is also shown in Fig. 4.32. 
 

 
Fig. 4.32. Ai distribution for BIS  
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IIS 

Considering the simplified 2DOF IIS described above, [Murakami et al. 
2001, Murakami & Suoeka 2004] propose a simplified method for the 
prediction of response of mid-story isolated buildings extending the 
optimum shear coefficient distribution for BIS to IIS structures.  
Therefore, considering the upper isolated structure of the IIS model 
behaving as a BIS structure, the shear coefficient distribution is the same 
for the upper structure of BIS and IIS. Then, the procedure is extended 
to the lower structure. 
 

Isolation Story 

The shear coefficient of the isolation story, 
m
α , is provided as follows: 

 

m f s
α = α +α    (4.142) 

 
where the shear coefficient of isolators, 

f
α , and dampers, 

s
α , are 

respectively given by: 
 

m f m maxf

f

m TOT m TOT

KQ
α

R M g R M g


     (4.143) 

 

s y m s m y

s

m TOT m TOT

Q K
α

R M g R M g


     (4.144) 

 
Upper Structure 

The shear coefficient of the i-th story of the upper structure (i=m+1, …, 
N), 

0 i
α , is defined as the ratio of the maximum shear force of the i-th 

upper story, 0 i,max
Q , to the total weight above the story considered, i.e.: 

 

0 i,max

0 i N

j
j=i

Q
α =

m g
   (4.145) 

 

Furthermore, 
0 i
α  can be expressed as follows [AIJ 1993]. 
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0 i f 0 si
α = α + α    (4.146) 

 
where 

 

m f m maxf

f

m TOT m TOT

KQ
α

R M g R M g


     (4.147) 

 
is the shear coefficient of isolators; 
 

0 si 0 i 0 opt s
α a α α    (4.148) 

 
is the shear coefficient of the i-th story considering only dampers, where: 
 

0 opt
α   is the optimal shear coefficient distribution;  

0 i
a  is a coefficient which increases along the height of the 

building with a linear distribution; 

0 opt
a    is an optimum coefficient.  

 

In particular, 
0 opt
α  can be assumed equal to the 

i
A distribution of the i-th 

upper story, 
0 i
A ; from Eqs. (4.140) and (4.141) it is given by: 

 

0 1

0 i 0 i

0 10 i

2 T1
A 1 d

1 3 Td

 
   

   

   (4.149) 

 
with 
 

N

j
j m 1

0 i

m TOT

m

d
R M

 



   (4.150) 

 

where 
0 m TOT
M R M . 

 

Considering that 
0 i
a  is equal to 1 at the isolation level and to 0 opt

a  at the 

top story, it can be expressed as: 
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 0 opt 0 opt

0 i

a 1 N a
a i 1 m

N m N m

 
   

 
   (4.151) 

 

In addition, the optimum coefficient 
0 opt
a  can be expressed in terms of a 

stiffness ratio
0 s
b , between the stiffness of the first upper story, 

0 m 1
k


, and 

that of the dampers, 
m s

k , i.e. : 

 

0 m 1

0 s

m s

k
b

k

    (4.152) 

 

0 opt 0 s
a 3.1238 0.1238 b  ,    for 

0 s
1 b 10    (4.153) 

0 opt 0 s
a 2.0127 0.0127 b  ,    for 

0 s
10 b 80    (4.154) 

0 opt
a 1  ,    for 

0 s
b 80   (4.155) 

 
Moreover, the range of these equations is set to 

s
0.01 0.06    and 

0 s
1 b  in a basic isolated structure. However, the authors have assumed 

expression (4.153), even if it is 
0 s

1 b . 

 

When the stiffness ratio 
0 s
b  becomes 100 or more, the shear coefficient 

distribution of the upper structure is shown typically in the Fig. 4.33. 

 

Fig.4.33. Conceptual diagram of response distribution of the upper structure 
[Murakami & Sueoka 2004] 
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Lower Structure 

The shear force produced by the mode in which the lower structure mainly 
moves when only the stiffness of the isolators at the isolation story is 
considered is given as follows. 
 

 i m

u i m TOT m u i u m m TOT

m

d - R
Q = R M g α + A α - R α M g

1- R
   (4.156) 

 
where  
 

N

j
j i

i

TOT

m

d
M





   (4.157) 

 
is the normalized weight of the i-th story considering the whole structure, 
 

 i m

u i m m u i u m m

i m

d - R1
α = R α + A α -R α

d 1- R

 
 
 

   (4.158) 

 
is the shear coefficient of the i-th lower story, with i = 1, …, m - 1. 
 

In particular the 
u i
A  distribution considering only the lower structure is 

provided as follows. 
 

u

u 1

u i l i

1l i

2 T1
A 1 d

1 3 Td

 
   

   

   (4.159) 

 
where 
 

 

m 1

j
j i

u i

m TOT

m

d
1 R M









   (4.160) 

 
is the normalized weight of the i-th story considering only the lower 
structure, 
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and 
 

m max u eq u eq s

u

TOT m s

δ ζ K K α'
α = +

M g K


   (4.161) 

is the maximum shear coefficient of the lower structure. 

 
The shear coefficient distribution of the lower structure is shown typically 
in the Fig. 4.34. 

 

Fig.4.34. Conceptual diagram of response distribution of the lower structure 

 [Murakami & Sueoka 2004] 
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4.6. OBSERVATIONS AND RESULTS 

Shifting the position of the isolation system from the base to a generic 
level along the height of the building, the dynamics of IIS become more 
complex than that of BIS. In fact, the IIS technology combines the 
strategies of isolation, mass damping and energy dissipation. 
For this reason, in the current literature a variety of approaches both in 
the formulation of the problem and in the definition of design parameters 
and criteria is observed. Each school of thought focus the attention on 
one of the aspects related to IIS (isolation, mass damping and energy 
dissipation). 

In this chapter the overview of the main papers on this topic is 
presented to define the design parameters and characteristics which 
influence the dynamic behavior of such systems as well as the design 
criteria adopted. 
 
The main features of the three approaches and some observations on 
dynamic and design issues coming from the overview of papers on IIS are 
provided in the following. 

Considering the isolation approach, the impact of the dynamic interaction 
between upper and lower structures (US and LS), the effect of the higher 
modes and its possible modal coupling (MCE) are investigated. 
Basically, it is recognized that the dynamic of structures with mid-story 
isolation is affected by the vibration characteristics of the US and LS.  
When the dynamic characteristics of the structural portions (US and LS) 
are similar, the MCE is expected. This detrimental effect consists in 
undesirable amplifications in the response of upper and lower structures. 
However, from the results of the analyses it is noticed that, the MCE is 
independent on the characteristic of the isolation system and it can be 
prevent by a careful design.  

Looking at the mass damping approach, the IIS is implemented by 
converting masses already present on the structure into tuned masses, 
retaining their structural function in addition to the control function. For 
this reason, these systems are also appointed as “non-conventional” or 
“building” tuned mass damper. 
From the results of parametric analyses, it is shown that a non-
conventional TMD with a large mass ratio provides greater reduction of 
the structural response. Consequently, its major robustness leads to a 
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system less dependent on the frequency content and on the optimal 
configuration. 

With the energy dissipation approach, the isolation interface is designed 
as a concentrated energy dissipation system. It was observed that 
increasing the mass ratio, the maximum energy dissipated by the isolation 
system reaches values of 70 ÷ 80%; however, increasing the damping of 
the structural portions the dissipated energy decreases. 

In this context, in order to evaluate the dynamic behavior of IIS 
buildings, parametric analyses have been carried out in the current 
literature by adopting simplified (1D) and more refined (3D) models. 
Multi or 2 - 3 lumped-mass (1D MDOF or 2-3DOF) models are used to 
provide a good prediction of the dynamic response of the structure, while 
three-dimensional (3D MDOF) models are considered for a global 
assessment of the seismic behavior of the building. 
The design parameters commonly adopted in the papers refer to: mass 
and frequency ratios between either the structural portions or the 
structural portions and the isolation system; damping ratios of upper and 
lower structures and of the isolation system; ratio of the yield strength of 
dampers to the total above-ground weight.  
The design criteria available in the main papers on this topic consist in 
reducing the base shear and the displacement of the structural portions or 
in maximizing the energy dissipated by the isolation system.  
From the results of the analyses it is stated that the position of the isolation 
level, the mass and stiffness distributions and the higher modes influence 
the dynamic behavior of such systems. Moving the isolation layer from 
the top to the bottom of the structure, the control mechanism changes 
going from tuning frequency, isolation and energy dissipation to base 
isolation. 
 
From the overview of the current literature emerges the necessity of 
merging the precious outcomes coming from each conceptual approach 
for a more complete understanding of the design problem. 
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Equation Chapter (Next) Section 5 

5. ANALYSIS OF REAL IIS BUILDINGS 

5.1. INTRODUCTION 

In this chapter two real-world applications of IIS are chosen as case 
studies and thoroughly analyzed, in order to interpreting the latest design 
practice in the light of approaches and indications coming from the world 
of research. In the following the buildings are described, and the major 
data obtained from publications and communication with the designers 
are presented and utilized for an approximate prediction of, and a 
preliminary discussion on the dynamic properties of the three structural 
parts of each building, and, consequently, on their expected dynamic 
interaction; in addition, a straightforward comparison between the 
anticipated dynamic behavior of the two buildings is presented. Modal and 
time history analyses are then carried out on the MDOF models of the 
two buildings; the main results are reported and design implications are 
discussed, in the light of the observations and of the provisions suggested 
in the inherent scientific literature. 

5.2. THE CASE STUDIES: BRIEF DESCRIPTION 

Starting from the overview of the main real-world applications of IIS 
provided in Chapter 3, two high-rise buildings, i.e. Iidabashi 1st Building 
and Shiodome Sumitomo Building [Murakami et al. 2000, Sueoka et al. 
2004, Tsuneki et al. 2008-2009], are herein chosen as case studies. The 
buildings are selected on the basis of two criteria: availability of data and 
representativeness of the full range of IIS applications in the current 
design practice. A view of the buildings; the framing elevation and the 
typical plan of the upper, intermediate and lower structure; the 
arrangement of the isolators and dampers; are shown in Figs. 3.4 - 3.5 for 
Iidabashi 1st Building and in Figs. 3.13 ÷ 3.15 for Shiodome Sumitomo 
Building. The general description of the two buildings are also reported in 
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Chapter 3. The major data of the two buildings are given in Tab. 5.1 for 
completeness.  
 

Table 5.1. Major data of the buildings 

 IB SSB 

No. stories 14 + penthouse 25 
Plan dimension [mxm] 130.1 x 39.6 (off.),  

130.1x15.0 (apart.) 
109.6 x 39.5  

(off. and hotel) 

Floor area [m2] 5152.0 (off.),  
1951.5 (apart.) 

4339 
(off. and hotel) 

Tot. floor area [m2] 43324 108475 

Height [m] 59.0 126.1 

Interstory height [m] 4.1 (off.), 3.05 (apart.) 4.2 

Structure SRC + RC + S S 

Isolation System 40 RBs (Ф800) 41 RBs (Ф1300, Ф1100, Ф1000) 
 212 LDs Ф180 100 LDs + 14 SDs 

IB (Iidabashi 1st Building), SSB (Shiodome Sumitomo Building) 
SRC (Steel Reinforced Concrete), RC (Reinforced Concrete), S (Steel) 
RB (Rubber Bearing), LD (Lead Damper), SD (Steel Damper) 

5.3. SIMPLIFIED MODELING AND DYNAMIC 

PROPERTIES 

Simplified lumped masses multi-degree of freedom (MDOF) models are 
developed and utilized for an in depth analysis and discussion of the 
buildings dynamics. In particular for both buildings, three different 
MDOF models are considered, namely: RB, RB+D and FB models (RB 
= Rubber Bearing, D = Damper, FB = Fixed-Base). In the RB models the 
isolation layer is only represented by the isolators, while in the RB+D 
model both isolators and dampers are taken into account; finally, the FB 
models for each building are composed by the degrees of freedom of the 
lower and upper structures, without the one corresponding to the isolation 
system. 

For the modal analyses carried out in the next paragraph, two different 
RB+D models are considered, respectively appointed as RB+D(1) and 
RB+D(2); in both models the parallel combination of isolators and 
dampers are considered, with the global initial stiffness in the RB+D(1) 
models, and the global secant stiffness, computed at the design 
displacement, in the RB+D(2) models. 
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The data necessary for the construction of the MDOF models, i.e. the 
floor mass values, the interstory structural stiffness distribution, the 
characteristics of the isolators and dampers, are all derived from the papers 
[Murakami et al. 2000, Sueoka et al. 2004] (Chapter 3) and/or have been 
kindly provided by the designer through personal communication [K. 
Murakami, personal communication, 2015]. 

The Iidabashi 1st Building is represented by 15 lumped masses, 9 in the 
lower part, 1 in the intermediate isolation layer and 5 in the upper part; the 
Shiodome Sumitomo Building is represented by 26 masses, 11 in the lower 
part, 1 in the intermediate isolation layer and 14 in the upper part. 

A graphical representation of the MDOF RB+D models of the two 
buildings, with the corresponding values of the lumped masses and of the 
story horizontal stiffness, are given in Figs. 5.1 – 5.2. 

The structure horizontal stiffness at each level is represented by an 
equivalent linear shear spring, while the stiffness of the isolation interface 
is represented by means of two springs working in parallel: an equivalent 
linear elastic spring, which describes the global behavior of the rubber 
bearings, and an elastic-plastic spring with bi-linear restoring force 
characteristic, which represents the total contribution of the hysteretic 
dampers. 

 
Node Mass 

[kNs2/m] 

 Stiffness 

[GN/m] 

15 1657.9  9.4 
14 2305.4  16.6 
13 2305.4  20.1 
12 2315.2  22.9 
11 2315.2  34.4 

10 4022.1 RB 
RB+D(1) 

RB+D(2) 

0.053 
1.653 
0.087 

9 12704.0  7.2 
8 4914.8  7.5 
7 4914.8  8.0 
6 5091.4  8.5 
5 5179.7  9.1 
4 5189.5  9.8 
3 5209.1  11.0 
2 5532.8  12.8 
1 5434.7  12.3 

Fig. 5.1. Vibration analysis model of Iidabashi 1st Building 
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Node Mass 

[kNs2/m] 

 Stiffness 

[GN/m] 

26 5767.6  1.5 
25 3460.8  1.7 
24 3446.5  2.1 
23 3075.4  2.2 
22 3083.6  2.2 
21 3093.8  2.3 
20 3116.2  2.5 
19 3167.2  2.5 
18 3169.2  2.6 
17 3124.4  2.6 
16 3131.5  2.7 
15 3139.7  2.6 
14 3185.5  2.3 
13 3566.8  3.1 

12 4029.6 RB 
RB+D(1) 

RB+D(2) 

0.081 
2.849 
0.134 

11 3127.4  1.1 
10 3126.4  4.5 
9 1720.7  4.8 
8 1697.2  5.0 
7 1717.6  5.2 
6 1714.6  5.4 
5 1715.6  5.7 
4 1732.9  5.9 
3 1725.8  6.3 
2 2582.1  2.7 
1 3079.5  3.2 

Fig. 5.2. Vibration analysis model of Shiodome Sumitomo Building 

 

The total stiffness KD,tot, and yield shear force of dampers, Fy,tot, as well as 

the ratio of the total damper yield force Fy,tot to the total building weight 

Wtot, appointed as α’s, are given in Tab. 5.2. 
In the MDOF models, viscous damping equal to 2% is assumed in the 
upper and lower structures, and 0% for the rubber bearings in the seismic 
isolation interface, where the major source of dissipation is given by the 
hysteretic response of the lead and steel units, explicitly accounted for by 
means of the bi-linear force-displacement model of the isolation system. 
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Table 5.2 Characteristics of the dampers for the two buildings 

Building Device KD,tot 

[GN/m] 

Fy,tot 

[kN] 
y,tot'

s

tot

F
α =

W
 

IB LD 1.6 13544 2% 

SSB 
LD 2.7 22000 

3% 
SD 0.068/0.0022* 3500 

IB (Iidabashi 1st Building), SSB (Shiodome Sumitomo Building) 
RB (Rubber Bearing), LD (Lead Damper), SD (Steel Damper) 
* 2nd stiffness 

 

It is worth noticing that the assumption of null value for the damping ratio 
of rubber bearings seems to be adequate, since it is negligible with respect 
to the dampers counterpart. In the cases in which the source of dissipation 
is given only by isolators, the damping ratio is necessary different from 
zero. However, in order to compare RB and RB+D models, when only 
isolators are taken into account the viscous damping is still assumed equal 
to 0%. 

In the following text, for the sake of brevity, the Iidabashi 1st Building 
and the Shiodome Sumitomo Building are respectively appointed as IB 
and SSB; in addition, upper and lower structures (also appointed as 
superstructure and substructure) are often identified as US and LS. 
 
Considering the MDOF systems represented in Figs. 5.1 – 5.2, the 
equations of motion, expressed in matrix form, are given by: 
 

gx   Mx Cx Kx Mr    (5.1) 

 

where M , C , K  are the (N x N) mass, damping and stiffness matrices 
of IB and SSB, with N the total number of dofs of RB and RB+D models, 
i.e. 15 for IB and 26 for SSB; (t)x  is the (N x 1) displacement vector of 

the structures with respect to the ground, r  is the (N x 1) unit vector that 

multiplies the ground acceleration gx (t) .  

Quite trivially, considering the FB models of the two buildings, in Eq. (5.1) 
the matrices and vectors have dimensions respectively equal to (N-1 x N-
1) and (N-1 x 1). 
 

The major global data utilized for the models of the Iidabashi and 
Shiodome buildings are shown and compared in Tab. 5.3 and Tab. 5.4.  
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In the Tab. 5.3 are provided mass, stiffness and period values; in particular: 

the  total  masses of  the whole  building ( TOTM ), of  the  lower structure 

( LSm ), of the upper structure ( USm ), and of the isolation level ( ISOm ); the 
global stiffness parameters of the lower and upper structure, and of the 

isolation system, i.e.: LS,stk  and LS,dynk , US,stk  and US,dynk  and, ISO,RBk  and 

ISO,RB D

(2)k  ; the natural period values of the upper and lower structures 

considered as standalone structures ( LST , UST ), of the fixed base structure 

( FBT ), and of the isolation layer ( ISO,RBT and ISO,RB D

(2)T  ). 

It is worth spending some words for specifying the assumptions made 
in the simplified calculation of the global values of the stiffness parameters 
for the upper and lower structures, provided in the Tab. 5.3 and appointed 

as LS,stk  and LS,dynk , US,stk  and US,dynk , as well as in the calculation of the 

stiffness of the isolation system, ISO,RBk  and ISO,RB D

(2)k  . From a static point 

of view, the global stiffness of the upper and lower structures US,stk  and 

LS,stk  are defined by combining in series the shear spring constants of the 

relevant stories, i.e. : 
 

US(LS),st U(L)

u(l) u(l)

1
k

1

k




   (5.2) 

 
where U and L represent the degrees of freedom of the US and LS, 
respectively. From a dynamic point of view, equivalent one lumped mass 
(SDOF) models are defined for the LS and the US, and on the basis of the 
total mass and the first natural period, the so-called dynamic stiffness 

parameters, US,dynk  and LS,dynk , are derived: 

 
2

US(LS)

US(LS),dyn 2

1,US(LS)

4 m
k

T


    (5.3) 

 
It is worth noticing that the dynamic stiffness values of both the upper 

and lower structure are slightly larger than the static counterparts, since 
the dynamic values are derived from the formula (5.3), where the actual 
distribution of stiffness and masses in the structure is taken into account 
through the period value. 
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Concerning the stiffness of the isolation system, ISO,RBk  is the global 

stiffness only given by the rubber bearings, while ISO,RB D

(2)k   is the secant 

stiffness given by the parallel combination of rubber bearings and dampers 
at the design displacement, respectively equal to 40 cm for the IB and 50 
cm for the SSB. Analogously, two values of the isolation period are 

reported in the Tab. 5.3, namely ( ISO,RBT ) and ( ISO,RB D

(2)T  ), both derived 

considering a SDOF model, with mass equal to USm + ISOm , and stiffness 

respectively given by ISO,RBk   and ISO,RB D

(2)k  . 

Starting from the data of Tab. 5.3, in Tab. 5.4 are also given, for the IB 

and the SBB: the mass ratio US LSm m , the stiffness ratio US LS st,dyn(k k ) , the 

period ratios ISO UST T  and ISO LST T , computed both for the RB and 

RB+D models. In the last column of both Tab. 5.3 and Tab. 5.4, each 
couple of parameter values determined for the IB and SSB is directly 
compared. 

The values provided in Tab. 5.3 and Tab. 5.4 allow for an approximate 
guess of, and a preliminary discussion on the dynamic properties of the 
three structural parts of each building, and, consequently, on their 
expected dynamic interaction. In addition, a straightforward comparison 
between the anticipated dynamic behavior of the two buildings is possible. 

 

Table. 5.3. Mass, Natural Period and Stiffness values; comparison between IB 
and SSB 

  IB SSB IB vs. SSB 

MTOT [kNs2/m] 69092 75498 1 : 1.1 

mUS  10899 47528 1 : 4.4 

mISO  4022 4030 1 : 1 

mLS  54171 23940 2.3 : 1 

TFB [s] 1.17 3.27 1 : 2.8 

TUS  0.21 2.18 1 : 10.4 

TISO,RB  3.33 5.02 1 : 1.5 

TISO,RB+D
(2)  2.60 3.90 1 : 1.5 

TLS  0.98 1.06 1 : 1.1 

kUS,st [GN/m] 3.46 0.163 21.2 : 1 

kUS,dyn  9.76 0.39 24.7 : 1 

kISO,RB  0.053 0.081 1 : 1.5 

kISO,RB+D
(1)  1.653 2.849 1 : 1.7 

kISO,RB+D
(2)  0.087 0.134 1 : 1.5 

kLS,st  1.02 0.32 3.2 : 1 

kLS,st  2.23 0.84 2.6 : 1 
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Table. 5.4. Mass, stiffness and frequency ratios; comparison between IB and SSB 

 IB SSB IB vs. SSB 

mUS/mLS 0.2 2.0 1 : 9.9 

(kUS/kLS)st 3.4 0.5 6.7 : 1 

TISO,RB /TUS 15.9 2.3 6.9 : 1 

TISO,RB /TLS 3.4 4.7 1 : 1.4 

TISO,RB+D
(2)/TUS 12.4 1.8 6.9 : 1 

TISO,RB+D
(2)/TLS 2.7 3.7 1 : 1.4 

(kUS/kLS)dyn 4.4 0.5 9.3 : 1 

 
As can be seen from Tab. 5.3 and Tab. 5.4, the two buildings, despite 

the different height (59.0 vs. 126.1 m) and number of stories (14 vs. 25), 
have quite similar total masses, only 10% larger in the SSB, where the large 
atrium in the LS covers about 40 m of height and approximately 50% of 
the plan area. The upper structure in IB has a weight equal to 20% of the 
lower structure, while in SSB the US is approximately 2 times heavier than 
the LS. 

In terms of dynamic stiffness ratios, it can be noticed that the US of 
the IB is 4.4 times more rigid than the LS, while in the SSB the US has a 
lateral stiffness approximately halved with respect to the LS. Comparing 
the two buildings it is possible to notice that the upper and lower 
structures of IB are more rigid than the SSB counterparts, of 25 and 2.6 
times, respectively. 

On the basis of both mass and stiffness comparison, it results that the 
US of the IB is lighter and more rigid than the US in the SSB; in fact, as a 
standalone structure, the IB superstructure has a natural period 10 times 
shorter than the SSB one (0.21 sec versus 2.18 s). The LS of IB is heavier 
and more rigid than the SSB LS, but the ratio between the mass and the 
stiffness are quite similar, so the natural period of the two substructures is 
comparable (0.98 vs. 1.06 s), with a slight scatter of 8%. Globally, IB is 
slightly lighter (10%) and much more rigid than SSB, thus the first natural 
period of the IB overall structure, considered as a fixed-base structure 

(T𝐹𝐵, neglecting the presence of the isolation layer) is quite shorter 
(approximately 40%) than the SSB counterpart. 

Looking at the isolation system in the two buildings, very similar mass 
values can be (quite trivially) observed. The global stiffness given by the 

isolators only ( ISO,RBk ) and by the combination in parallel of isolators plus 

dampers ( ISO,RB D

(2)k  ), are respectively 1.5 and 1.6 larger in the SSB than in 

IB, while the yield shear coefficient sα'  is equal to 2% for IB, and of 3% 
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for SSB. However, being the upper part of the SSB approximately 4.4 

times heavier the IB counterpart, the isolation period values ( ISO,RBT ) and 

( ISO,RB D

(2)T  ) are is much longer for SSB than IB, namely 5.02 vs. 3.33 s, and 

3.90 vs. 2.60 s. 

5.4. MODAL ANALYSES 

Modal analyses are carried out on the MDOF models (RB, RB+D(1), 
RB+D(2), and FB) of the two buildings; the main results are reported and 
discussed, in the light of the previous observations and of the design 
provisions suggested in the inherent scientific literature. 

The first three natural vibration modes obtained for the four MDOF 
models of the Iidabashi and Shiodome buildings are depicted in Fig. 5.3 
and Tab. 5.5. The three graphs on the left refer to the results obtained for 
the IB, while the ones on the right refer to SSB; the values of periods and 
participating mass ratios for the four models are also provided in Tab. 5.5. 
 

Table 5.5. Vibration modes: (a) Iidabashi 1st building, (b) Shiodome Sumitomo 
building 

Building Model 1st mode 2nd mode 3rd mode 

T [s] Γ [%] T [s] Γ [%] T [s] Γ [%] 

IB 

RB 3.43 26.4 0.954 58.1 0.341 9.3 
RB+D(1) 1.30 77.2 0.521 10.1 0.319 6.8 
RB+D(2) 2.74 29.8 0.938 54.9 0.341 9.3 

FB 1.17 80.9 0.375 11.9 0.215 3.8 

SSB 

RB 5.97 73.4 1.18 3.2 0.960 18.8 
RB+D(1) 3.43 80.7 1.17 9.0 0.701 4.6 
RB+D(2) 5.08 75.2 1.18 4.7 0.911 15.5 

FB 3.27 80.6 1.10 9.0 0.677 5.0 

 
A first, quite trivial consideration is that in the RB models the first 

natural period is much longer than in the RB+D(1) models, since the 
flexible interface in RB models only accounts for the isolators; however 
the RB+D(2) models, where the design secant stiffness of the isolation 
system is considered in lieu of the initial stiffness, the periods lengthen 
again, and closely approach the values given in Tab. 5.3. 
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Fig. 5.3. Vibration modes: (a) Iidabashi 1st building, (b) Shiodome Sumitomo 
building 

 
The first period of the overall building structures, both in the case of 

the RB and RB+D(1) models are very close to the values obtained by the 
designers with more refined three-dimensional models and provided in 
the papers [Murakami et al. 2000, Sueoka et al. 2004]; in particular, for the 
IB, the periods herein calculated are 3.43 s (RB) and 1.30 s (RB+D(1)), that 
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are practically coincident with 3.47 s and 1.35 s given by the designers; for 
the SBB, as well, the values of 5.97 s (RB) and 3.43 s (RB+D(1)) closely 
match 6.04 s and 3.42 s, respectively. 

In the following, the results from the RB models and the RB+D 
models are separately examined, since the RB models allow to understand 
the dynamics of the isolated buildings, while the RB+D models show how 
this dynamic behavior is modified by the introduction of the dampers. 

5.4.1. RB models 

Looking at the RB models, it is worth noticing that, in both buildings, the 
first mode involves deformation mainly concentrated at the isolation level, 
with almost no deformations in the US and only slight deformations in 
the LS. 

In the case of the IB, the first period RB,1T  is practically coincident with 

the SDOF isolation period ISO,RBT  (3.43 vs. 3.33 s), and the participating 

mass ratio, RB,1 , equal to 26.4%, is quite close to the ratio 

US ISO TOT(m m ) / M  (21.6%). 

For the SSB RB model, as well, the comparison RB,1T  vs. ISO,RBT  (5.97 vs. 

5.02 s) and RB,1  vs. US ISO TOT(m m ) / M  (73.4% vs. 68.3%) basically 

confirms the above general considerations; in this case the large value of 
the participating mass associated to the first mode is directly related to the 
US mass value, 2 times the LS one. These observations suggest that the 
RB models of both buildings apparently behave like a base isolation 
system of the superstructure. 
Larger differences between the two buildings arise considering the second 
and third modes: while for the IB these modes mainly involve 
deformations in the LS and isolation system, with negligible deformations 
in the US, for the SSB, both US and LS show comparable displacements. 
The second period of the IB RB model is very close to the natural period 

of the LS considered as a standalone structure ( RB,2T  = 0.95 s vs. LST  = 

0.98 s), and also the large value of the participating mass ratio, RB,2 , equal 

to 58.1%, is related to the large mass of the LS ( LS TOTm / M = 78.4%). The 
third mode of the IB RB model reminds the second mode of the LS, and 
is characterized by a lower mass participating ratio (9.3%). 
On the contrary, in the SSB, both the second and third modes of the RB 
model show displacements in the US and LS; the second mode shape 
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appears similar to the fixed-base one, is characterized by a very small 

participating mass (3.2%) and period RB,2T  = 1.18 s, while the third mode 

involves a larger mass (18.8%) with a period RB,3T  = 0.96 s, and again 

exhibits deformations throughout the elevation, though more 
concentrated in the LS and isolation system. It is worth noticing that the 

equivalent period of the lower structure, LST , equal to 1.06 s, is an average 

value between RB,2T  and RB,3T . 

Summing up, the first mode of both RB models represents the first mode 
of the US isolated at the base, with minor deformations in the LS. In the 
IB RB model, the second and third modes are representative of the first 
and second mode of the LS, with almost no deformation in the US. In 
SSB RB model, the second and third modes involves displacements both 
in the US and LS, suggesting a mode coupling effect. 

5.4.2. RB+D models 

The RB+D(1) and FB models show, for both buildings, very close values 
of natural period and displacements in the first mode. This is true for both 
buildings; in the Shiodome building the closeness of modal displacements 
and period values between the RB+D(1) and FB models is also preserved 
in the 2nd and the 3rd mode. On the contrary, for the Iidabashi building, 
larger differences between the two models can be observed in the higher 
modes: in the second mode the behavior of the LS in the RB+D(1) model 
is intermediate between the RB and FB models, with also the period value, 
equal to 0.521, intermediate between the RB and FB ones (0.954 s and 
0.375 s, respectively); in the third mode, the LS displacements closely 
match the RB model counterparts, while also US displacements can be 

observed, contrarily to the RB model; in this case the period ( (1)
RB D,3T   = 

0.319 s), is closer to RB than FB counterpart ( RB,3T = 0.341 s vs. FB,3T  = 

0.215 s). Generally, also the modal participating mass ratios of RB+D(1) 
and FB models are very similar, for both buildings. 

The RB+D(2) models, instead, provide results very similar to the RB 
counterparts, with almost overlapping displacement distributions for both 
buildings in the three modes, and close values of natural period; the largest 
difference between the two models can be observed with reference to the 

first period, for both buildings, going from RB,1T   = 3.43 s to (2)
RB D,1T   = 

2.74 s for the Iidabashi Building, and from RB,1T  = 5.97 s to (2)
RB D,1T   = 

5.08 s for the Shiodome Building. On the basis of this close matching of 
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vibration characteristics, the discussion on the modal analysis results made 
in the previous sub-paragraph with reference to the RB models, is also 
valid for the RB+D(2) counterparts. 

5.4.3. Mode Coupling Effect 

From the previous exam of the building modal characteristics it clearly 
emerges that almost no mode coupling was evident for the Iidabashi 
building in the RB and RB+D(2) models, while a slight coupling could be 
observed in the RB+D(1). On the contrary, the three Shiodome Building 
models, RB and RB+D(1) and RB+D(2), all show coupling of the US and 
LS in the higher modes; for the RB+D(1), even the first mode show 
displacements both in the US and LS. 

This coupling effect of the higher modes, which can produce an 
amplification in the seismic response of the structure, has been explicitly 
addressed in some papers on mid-story isolation [Wang et al. 2011, 2012, 
2013; Kobayashi & Koh 2008]; basically, it is recognized that the dynamics 
of structures with mid-story isolation is affected by the vibration 
characteristics of the US and LS, and that, depending on these 
characteristics, two different scenarios for the dynamic behavior of the 
global structure are found: a major influence of one of the higher modes 
(either the 2nd or the 3rd mode), or a coupling effect of the 2nd and 3rd 
modes. 

In the next paragraph, the vibration characteristics of the buildings are 
interpreted through the lens of the theoretical framework established by 
[Wang et al.]. By now, let’s consider that, from a physical point of view, a 
mode coupling effect implies that the US and the LS structures move 
together. Observing the 2nd and the 3rd mode shapes of the RB and 
RB+D(2) models (Fig. 5.3), in the IB only the LS displays deformations, 
while in the SSB comparable deformations are exhibited by both the US 
and LS. For a more detailed assessment, all vibration modes of the RB 
models, i.e. 15 for IB and 26 for SSB, are considered and the relevant 
structural parts involved in the modal displacements (LS, ISO, US, or 
coupled LS+US), are provided in Fig. 5.4, along with participating mass 
ratios. 

From the IB graph of Fig. 5.4, it is possible to recognize: 1 mode for 
the intermediate isolation layer, 9 and 5 modes, respectively, for the lower 
and upper structures; these mode distributions among the three structural 
parts exactly reflects the number of the degrees of freedom of the ISO (1), 
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LS (9) and US (5). The cumulative participating mass ratios for the three 
parts are equal to 26.4%, 73.6% and 0.0% for the ISO, LS and US, 
respectively. In this perspective, the IB appears as a paradigmatic example 
of ideal middle-story isolation, where the US is designed in order to be 
very stiff with respect to the LS, and the predominant modes, beyond the 
isolation one, are the modes of the LS.  
 

 
Fig. 5.4. Vibration modes: (a) Iidabashi 1st building, (b) Shiodome Sumitomo 
building 

 
On the contrary, the upper structure of the SSB is more flexible; therefore, 
from the SSB graph of Fig. 5.4 can be clearly individuated: 1 mode for the 
ISO, 8 modes for the US (instead of 14, number of degrees of freedom in 
the upper structure), and 7 modes for the LS (instead of 11, number of 
degrees of freedom in the lower structure). Therefore, 10 modes are 
coupled. The cumulated participating mass are equal to 73.4%, 0.0%, 
0.6%, respectively for ISO, LS, US, and 26.0% for the coupled LS - US. It 
is worth noticing that a little percentage of the mass is related to the US 
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only, as well as all modes only involving the LS have null participating 
mass. 

5.5. THEORY AND DESIGN PRACTICE: ISOLATION AND 

MASS DAMPING APPROACHES VS. IB & SSB 

In order to compare the dynamic response of the two real case studies in 
the light of the isolation and mass damping approaches, currently adopted 
in the inherent scientific literature, reduced single degree of freedom 
models for the LS, US and isolation system are considered.  
It is worth highlight that, until now, the equivalent reduced-order SDOF 
models of the three parts have been defined as a function of the total mass 
and the fundamental mode of each part, see § 5.3.  
In this section, in lieu of the total masses and the equivalent stiffnesses of 
the structural portions and the isolation system, the modal masses, 
stiffnesses and damping constants are considered, still taking into accout 
the fundamental mode of each part. 

For reducing the order of the LS MDOF part, as can be seen in Chapter 
2 (§ 2.3), the lower structure can be assumed analogous to a structure with 
attached a TMD, i.e. the isolated US. The modal mass, stiffness and 
damping constant of the LS are given by Eq. (2.220), i.e.: 
 

T
LS LS,1 LS,1 LS LS,1m m    M    (5.4) 

T
LS LS,1 LS,1 LS LS,1k k    K    (5.5) 

T
LS LS,1 LS,1 LS LS,1c c    C    (5.6) 

 

where LSM , LSK , LSC  are the (L x L) LS mass, stiffness and damping 
matrices of IB and SSB, with L the total number of the LS dofs, i.e. 9 for 

IB and 11 for SSB; LS,1  is the first mode shape of the LS, obtained 

assuming equal to 1 the modal displacement of the mass at which the 
TMD (the isolated US) is attached, i.e. the top one.  

For reducing the order of the US+ISO MDOF part, as can be seen in 
Chapter 2 (§ 2.2), the isolated upper structure can be assumed analogous 
to a base isolated structure. The modal mass, stiffness and damping 
constant of the US are given by Eq. (2.101), i.e.: 

T
US US,1 US,1 US US,1m m    M    (5.7) 
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T
US US,1 US,1 US US,1k k    K    (5.8) 

T
US US,1 US,1 US US,1c c    C    (5.9) 

 

where USM , USK , USC  are the (U x U) US mass, stiffness and damping 
matrices of IB and SSB, with U the total number of the US dofs, i.e. 5 for 

IB and 14 for SSB; US,1  is the first mode shape of the US. 

The modal mass, stiffness and damping constant of the isolation system 
are respectively given by: 
 

ISO US

1
m m

 



   (5.10) 

2
ISO ISO ISOk M     (5.11) 

ISO ISO ISO ISOc 2 M      (5.12) 

 
where the mass ratio  , given by Eq. (2.104), is equal to:  

 
2
1 ISO US ISO,1

ISO ISO

L M

M M


      (5.13) 

 

with US ISO,1L   and US ISO,1  the first participation factor and participating 

mass of the isolated US, ISO US ISOM m m   the total modal isolated mass.  
The values adopted for the reduced-order single degree of freedom of the 
three parts are provided in Tab. 5.6. 

5.5.1. Isolation Approach: Wang and Kobayashi vs. IB & 
SSB 

In order to grasp the dynamic behavior of structures with middle-story 
isolation through the lens of the isolation approach, a brief description on 
the main research contributions is provided in the following. In particular, 
the studies carried out by [Wang et al. 2011, 2012, 2013], [Kobayashi & 
Koh 2008] for IIS and by [Kelly 1997] for BIS are briefly introduced and 
the relevant design provisions are discussed with reference to the IB and 
SSB case studies. 
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Table. 5.6. Dynamic characteristics of LS, US and ISO SDOF models 

Parameters IB SSB 

LSm  [t] 26963 11502 

LSk  [kN/m] 1112880 404910 

LSc  [kN s/m] 6929 2730 

LS  0.02 0.02 

USm  [t] 4688 23125 

USk  [kN/m] 4278073 191045 

USc  [kN s/m] 5665 2659 

US  0.02 0.02 

  0.589 0.750 

ISOm  [t] 3276 7692 

ISOM  [t] 7964 30817 

ISOk  [kN/m] 28275 48236 

ISOc  [kN s/m] 6003 15422 

ISO  0.20 0.20 

 

5.5.1.1. Design parameters and comparison to IB and SSB 

The paper by [Wang et al. 2011 - 2013] proposes a simplified analyses of 
mid-story isolated structures by means of 3DOF models, composed by 
LS, ISO and US. The authors identify the parameters governing the 
dynamic response of the structure and the mode coupling effect, namely 
(adopting the symbols utilized in the thesis): the ratios of masses of the 

upper and lower structure to the isolation mass US US ISOr m / m  and 

LS LS ISOr m / m ; and the ratios of the frequency of the upper and lower 

structure to the isolation frequency, i.e. US ISO/   and LS ISO/  . 
A parametric analysis is carried out with 3DOF models, by setting an 
isolation period equal to 2 s and varying the above design parameters, i.e. 

adopting for the mass ratios the value couples ( LSr , USr ) = (1, 5) and ( LSr , 

USr ) = (2, 5), while the frequency ratios US ISO/   and LS ISO/   vary in 
the range 3 ÷ 40. In the analysis, both the US and LS have inherent viscous 
damping ratio of 5%, while for the isolation system an equivalent damping 
ratio of 20% is assumed. 
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The mass ratios considered in the analysis always correspond to the case 
of superstructure heavier than the substructure; further, the frequency 
ratios are defined by a lower bound equal to 3, which ensures an isolation 
period at least three times the US period (according to the rule commonly 
adopted for base isolated structures), and an upper bound, equal to 40, 
that corresponds to very stiff LS and US. 

Starting from the above design parameters, the ratio of the dynamic 

stiffness of the US and LS, US LSk / k , can be derived and compared to the 
corresponding values of the case studies considered in this paper; for this 

purpose, derived the ratio US LSr r , which varies between 2.5 and 5, and 

varying both the frequency ratios between 3 and 40, the range of the 
stiffness ratios between the US and LS are computed. As can be seen in 

Chapter 4 (§ 4.4.2), the range for the ratio US LSk / k  is equal to 0.1 ÷ 5; 
thus, both stiffer and more flexible US than LS are considered.  
The ranges of the design parameters selected by [Wang et al. 2011 - 2013], 

namely the mass ratios ( USr , LSr , US LSm / m ), the period ratios ( ISO UST / T , 

ISO LST / T ), the stiffness ratios ( US LSk / k ), are compared to the 
corresponding values of the Iidabashi and Shiodome buildings in Tab. 5.7. 

 

Table. 5.7. Comparison of design parameters: [Wang et al 2011 - 2013] vs. IB and 
SSB 

 Wang et al. IB SSB 

rUS 5 1.4 3.0 

rLS 1 ÷ 2 8.2 1.5 

US LSm / m  2.5 ÷ 5 0.2 2.0 

TISO,RB /TUS 3 ÷ 40 15.9 2.3 

TISO,RB /TLS 3 ÷ 40 3.4 4.7 

TISO,RB+D
(2)/TUS 3 ÷ 40 12.5 1.8 

TISO,RB+D
(2)/TLS 3 ÷ 40 2.7 3.7 

(kUS/kLS)dyn 0.1 ÷ 5 4.4 0.5 

 

From the comparison with the parameter ranges, it is possible to observe 

that: the US mass ratio, , is smaller than 5, the reference upper bound 
set by [Wang et al. 2011 - 2013], for both the buildings; the LS mass ratio, 

, in IB is larger and in SSB is smaller than 2, the maximum value defined 

by [Wang et al. 2011 - 2013]; the US-LS mass ratio, , is smaller 
than 2.5, the minimum value adopted by Wang, for both buildings. 

With regard to the period ratios, i.e. ISO UST / T  and ISO LST / T , both fall 

within the range 3 ÷ 40 for the IB; in the SSB only ISO LST / T  is within the 

USr

LSr

US LSm / m
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range, while ISO UST / T   is much smaller than the lower bound. Finally, the 

stiffness ratio US LSk / k  of both the buildings are within the Wang range 
0.1 ÷ 5. 

Summing up, in both buildings the mass ratios (US and LS to ISO) fall 

outside the range defined by Wang (except for the ratio LSr  in SSB), while 
the ratio between the two masses of US and LS is smaller in IB than in 
SSB, and only the latter is within the considered range. In IB both the 
frequency and stiffness ratios belong to the range set by Wang, while in 

SSB only ISO LST / T  is approximately equal to the lower bound of the range. 
The value that mainly seems to affect the dynamic behavior of SSB, as 

already seen in the previous paragraphs, is the stiffness ratio US LSk / k , that 
is very small. 

5.5.1.2. Analysis results – mode coupling effect and 
comparison to IB and SBB 

Considering the range of the design parameters described above, and in 

particular US ISO/   and LS ISO/  , [Wang et al. 2011 - 2013] have 
investigated the effect of the higher modes on the dynamic behavior of a 
mid-story isolated structure. The results of the parametric analysis carried 
out on 3DOF models are shown in Fig. 5.5, where the effect of higher 
modes and the potential of modal coupling effect in mid-story isolated 
structures are provided as a function of the couples of frequency ratios 

US ISO/   and LS ISO/  . 
In particular the graph is divided into three parts, which represent the two 
regions where either the 2nd or the 3rd mode prevails, and the bandwidth, 
marked by continuous lines, where coupling of the 2nd and the 3rd modes 
occurs. 
In particular, the dotted line in the MCE bandwidth is obtained 
considering the following formula derived by [Wang et al. 2011 - 2013; 
Kobayashi & Koh 2008] for addressing the coupling, described in Chapter 
4 and recalled here for completeness, i.e.: 
 

LS US

US

ISO ISO

1 r
 

 
 

   (4.1) 

 
In Fig. 5.5, the bandwidth is built up considering a deviation from Eq. 
(4.1) of ±15%.  
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From the Fig. 5.5 it can be observed that quite different values of the 
frequency ratios cause a mode coupling effect; on the contrary, equal or 

very different values of US ISO/   and LS ISO/   avoid MCE. Large values 
of both parameters not only exclude a dynamic coupling between the US 
and LS, but also allow for remarkable simplifications from a design point 
of view, namely the first frequency and mode damping are approximately 

equal to the isolation system counterparts, i.e. 1 ISO    and 1 ISO   . 

 

 
Fig. 5.5. Effect of the higher modes  

 

According to the graph, when the value of US ISO/   is large (say, larger 

than 16), even though LS ISO/   is small, the effect of the 2nd mode is 
predominant, the second modal frequency is approximately equal to the 

frequency of the substructure, i.e. 2 LS  , and the participating mass 

ratio of the 3rd mode, 3 , is equal to zero. When LS ISO/   is large, say, 

larger than 16, if US ISO/   is smaller than 8 in IB and 6 in SSB, the effect 
of the 3nd mode is predominant, the third modal frequency is 

approximately equal to the frequency of the substructure, i.e. 3 LS  , 

and the participating mass ratio of the 2nd mode, 2 , is equal to zero; for 

LS ISO/   equal to 20, instead, the effect of the 2nd mode is predominant 

if US ISO/   is larger than 15 in IB and 12 in SSB, while for whatever value 

of LS ISO/   larger than 16, no coupling effect is predicted if US ISO/   is, 
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as well, larger than 16. In all cases, since [Wang et al. 2011 - 2013] consider 
a rigid US with respect to the isolation system, the effect of the higher 
modes are only related to the motion of the LS. When there is a coupling 

effect, both frequencies 2  and 3  are far from the frequency 𝜔𝐿𝑆 and 

both participating mass ratios 2  and 3  are different from zero. 

In addition, from Eq. (4.1), the term US1/ 1 r  represents the slope of 

the dotted lines in Fig. 5.5. When this term is equal to 0.63, i.e. US ISO/ 

is 0.63 times LS ISO/  , the MCE occurs in IB; when it is equal to 0.50, i.e. 

US ISO/  is 0.50 times LS ISO/  , the MCE arises in SSB. 
Considering the two building case studies, it is possible to represent in the 

diagram of Fig. 5.5 the couples of values ( LS ISO/  , US ISO/  ), 
respectively for RB and RB+D(2) models, i.e.: (3.4, 16.0) and (2.7, 12.5) for 
the IB; (4.7, 2.3) and (3.7, 1.8) for the SSB. 

In the IB, at quite large values of US ISO/   correspond low values of 

LS ISO/  ; while in the RB model both the values fall within the parametric 

range (3 ÷ 40), in the RB+D(2) model the parameter LS ISO/  is lower than 
the lower bound. In the SSB, on the contrary, the couples are composed 

by quite low values, and in particular US ISO/   are smaller than the lower 
bound of the range. Therefore, a predominant effect of the 2nd mode is 
expected in the IB, while a modal coupling effect should occur in the SSB. 
The above predictions on dynamic characteristics and higher mode effects 
in the two buildings fully agree with the results of the modal analysis 
carried out on the RB MDOF models, already provided in Fig. 5.3. In fact, 

for the IB RB model, the second period, RB,2T  is 0.95 s, which closely 

matches the equivalent period of the LS, LST , equal to 0.98 s; according to 

[Wang et al. 2011 - 2013], when RB,2 LST T   and the frequency ratios are 

quite distant, as in the IB case, the vibration characteristics of the building 
are mainly affected by the 2nd mode and the third mode effect is negligible, 

as confirmed by the participating mass ratio, RB,2  and RB,3 , respectively 

equal to 58.1% and 9.3%. In the SSB RB model RB,2T  and RB,3T  are equal 

to 1.183 s and 0.96 s, and the equivalent period of the LS, LST , equal to 

1.06 s, is an average value between RB,2T  and RB,3T ; further, considering 

that the frequency ratios are very similar, a coupling effect of the higher 
modes is expected, as can be clearly observed looking at the second and 
third mode shapes of Fig. 5.3, and as also confirmed by Fig. 5.4, where, 
considering all higher modes, 10 over 26 are coupled modes, with 
displacements occurring both in the LS and US. 
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Similar considerations can be done taking into account the IB and SSB 
RB+D(2) models. 
In addition, recalling the MCE parameter   introduced in Chapter 4 for 

3DOF IIS models (see [Wang et al. 2011 - 2013; Kobayashi & Koh 2008]): 
 

US US LS

US

LS US

1 r T
1 r

T

 
   


       (4.4) 

 
the MCE occurs when it is equal or very close to one. 
Therefore, the MCE parameter   for IB and SSB, also provided in Fig. 

5.5, is respectively equal to 
 

IB SSB

0.98 1.06
1 1.4 7.33 1.0; 1 3.0 0.97 1.0

0.21 2.18
          

 
For IB a value of   equal to 7.33 (very far from 1) indicates no coupling 

of the higher modes, while for SSB a value of 0.97 (close to 1) suggests 
MCE.  
Observing each term in the formula for both IB and SSB, while the 

periods 
LS

T  are comparable (0.98 s vs. 1.06 s), the periods 
US

T  (0.21 s vs. 

2.18 s) and the US mass ratio 
US

r  (1.4 vs. 3.0) are far away from each other. 

Therefore, the dynamic characteristics (mass and stiffness) of the US lead 
to a deeply different dynamic behavior of the two buildings, suggesting 
modal coupling only in SSB. 
Approximately, from the analysis of the two buildings, the MCE is avoided 
if the periods of the US and LS are well separated, at least 1:5. 
It is worth noticing that this formulation is still valid for MDOF models 
since the MCE occurs between the first mode of the US isolated at the 
base and of the LS. If the modal coupling arises for modes higher than the 
first of those two portions, the parameter   so defined is not able to keep 

the global behavior of the model. 
These results seem to confirm the previous preliminary guess of the MCE 
implying US and LS structures move together. 
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5.5.2. Isolation approach: Kelly vs. IB and SSB 

An additional insight into the behavior of the mid-story isolated structures 
can be done by checking if the structural complex made by the US and 
ISO can be considered dynamically equivalent to a base isolated structure. 
For this purpose, a comparison is carried out with reference to the linear 
theory formulated by [Kelly 1997, Naeim and Kelly 1999], detailed 
described in Chapter 2 (§ 2.2). 
According to Kelly’s linear theory, a base isolated structure is mainly 

affected by the first mode, with a mode shape    1
1, 

T T
ε (Eq. (2.27)), 

where the parameter ε represents the amplification of the displacement in 
the US with respect to the isolation layer.  
The parameter ε can be estimated as the square of the ratio between the 

frequencies of the base isolated system, b , and of the fixed base structure, 

s , or, equivalently, between the period s  and b , i.e.: 
 

2 2

b s

BIS

s b

T

T

   
     

   
   (5.14) 

 

In the case of a mid-story isolated structure, we can substitute s  and b  

with UST  and ISOT , respectively, in order to obtain an estimate of  : 
 

2

US

ISO

ISO

T

T

 
   

 
   (5.15) 

 

For a base isolated structure, with T
s
= 0.4 sec, T

b
=2.0 sec, and a mass 

ratio γ equal to 0.6 (being bm / (m m )   , Eq. (2.13)), the parameter ε  

is equal to 0.04. Typically, for base isolated buildings with well separated 
fixed-base and isolation frequencies,   is of the order of 10-2. 
In the Iidabashi and Shiodome buildings, the values of   calculated 
according to the formula (5.15), are equal to 0.004 and 0.19, i.e. one order 
of magnitude smaller and larger, respectively, than the typical value of a 
base isolated structure. Considering the MDOF models, it is also possible 
to estimate ε  as a function of the modal characteristics, i.e.: 
 

TOP,US ISOu      (5.16) 
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where TOP,US  is the modal relative top-bottom displacement of the US 

and ISOu  is the modal displacement of the isolation. The values of ε 
computed according to the formula (5.16) are: for the Iidabashi building 
0.008, and for the Shiodome building 0.20. 
Therefore, the prediction of the first mode shape according to the linear 
theory of Kelly for base isolated structures is also valid for mid-storey 
isolated buildings, considering the upper structure and the intermediate 
isolation system. With respect to typical base isolated structures, a wider 
variation of the values of   (of two orders of magnitude) can be observed 
as a function of the upper structure flexibility in the case studies here 
considered. The values of   computed according to the formula (5.16) are 
of the same order of magnitude as the ones obtained according to the 
definition (5.15). The order of magnitude of 10-1 derived from (5.15) and 
(5.16) for the SSB, confirm the peculiar, non typical behavior of this 
building. 
On the basis of the above observations, the parameter  , computed 
according to the formula (5.15) on the basis of the US and isolation 
periods, can be used in a preliminary design of the superstructure in order 
to have the order of magnitude of the expected relative displacements, i.e. 
as a prediction of the value given by the formula (5.16). 

5.5.3. Theory and practice: Mass Damping Approach vs. IB 
and SSB 

In order to apply the optimal formulations provided in the current 
literature for the mass damping approach, a controlled 2DOF reduced-
order model is considered by neglecting the contribution of dampers 
(2DOF RB model) for the sake of simplicity.  

Considering the 2DOF RB model, in Eq. (5.1) the matrices M , C , K  
and the vectors x , r  have 2 x 2 and 2 x 1 dimensions, respectively.  
In particular the first and the second degree of freedom are characterized 

by masses, stiffnesses and damping constants respectively equal to LSm , 

LSk , LSc , and ISOM , ISOk , ISOc . 
The mass ratio  , defined as the ratio between the isolated mass and the 

lower mass, i.e. ISO LSM / m  , the real value of f , a variation of the 

isolation damping ratio  between 0.1 ÷ 0.5 are provided in Tab. 5.8 

for the two buildings. 

ISO
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The values of the frequency and damping ratios, f  and ISOξ , adopted for 

IB and SSB, are compared to the optimal values, optf  and ISO,optξ , derived 

from the papers [Sadek et al. 1997, Reggio & De Angelis 2015, Zhou et al. 
2016, Ping et al. 2008, Ayorinde & Warburton 1980, Moutinho 2012, 
Hoang et al. 2007] and are provided in Tab. 5.9. 
 

Table. 5.8. Real values of  , f , ISOξ of the two buildings 2DOF RB models 

Parameters IB SSB 

  0.295 2.679 

f   0.293 0.211 

ISO  0.10 ÷ 0.50 0.10 ÷ 0.50 

 

Table 5.9. Optimal values in the current literature 

Paper IB SSB 

optf  [-]  ISO,optξ  [-] optf  [-] ISO,optξ  [-] 

Sadek et al. 1997 0.765 0.493 0.267 0.859 

Reggio & De Angelis 2015 0.762 0.246 0.275 0.432 

Zhou et al. 2016 0.745 0.500 0.408 0.500 

Ping et al. 2008 0.666 0.250 0.094 0.500 

Ayorinde & Warburton 1980 0.713 0.249 - - 

Feng & Mita 1995 0.713 0.299 - - 

Moutinho 2012 0.765 0.298 - - 
Hoang et al. 2007 0.716 0.209 - - 

 

From Tab. 5.9 can be seen that, for IB optf  varies between 0.666 ÷ 0.765 

and ISO,optξ  between 0.209 ÷ 0.500; for SSB optf  varies between 0.094 ÷ 

0.408 and ISO,optξ  between 0.432 ÷ 0.859.  

Therefore, for both the buildings, a certain variability of the optimal values 
can be observed. In addition, for SSB, that is characterized by a large mass 
ratio   (say, more than 1), many optimal formulae cannot be applied. This 
suggests that, for the mass damping effect, the mass ratios should be 
smaller than, or almost equal to, 1. 
The formulations or the graphical representation of the optimal values, 
adopted by the authors of these papers, have been described and discussed 
in the previous Chapters 2 and 4, and are recalled here for completeness. 
 
 



Chapter 5 

 

252 
 

• [Sadek et al. 1997] 

The optimal parameters defined by Sadek et al. for a SDOF structure - 
TMD system, resulting in equal damping ratios and equal frequencies in 
the two complex modes of vibration, are derived by a curve fitting of the 
results, i.e.: 
 

LS

opt LS ISO,opt

1
f 1 ;

1 1 1 1

   
     

    
           (4.10) 

• [Reggio & De Angelis 2015]  

Reggio and De Angelis propose an energy-based design methodology for 
non-conventional TMD, consisting in the maximization of an energy 
performance index (namely: EDI), defined as the ratio between the energy 
dissipated in the isolation system and the total input energy, by assuming 
the ground acceleration as a stationary Gaussian stochastic process with 
zero mean and white noise spectral density. Considering a SDOF structure 

- TMD system, for LS  = 0.02 the optimal parameters can be derived by 

Fig. 4.19, recalled here for completeness. 
 

 
Fig. 4.19. Reduced-order two-DOF model, EDImax and optimal design parameters 
vs. mass ratio for various damping ratios of the primary oscillator, i.e. 0:02; 0:03; 
0:05: (a) EDImax, (b) optimal frequency ratio, (c) optimal damping ratio [Reggio 
& De Angelis 2015] 

• [Zhou et al. 2016] 

Zhou et al. derive the optimal parameters for a 2DOF reduced-order 
model by minimizing the variance of the base shear for a band limited 
white noise. Neglecting the structural damping, the following optimal 
formulae are utilized: 
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2 2
2 LS,1 1 2

opt

1

C 4L C C
f

2C

 
    (5.17) 

   
2 2

1 LS,1C 3 1 L      (5.18) 

      
2 2

2 LS,1 ISO,max LS,1 LS,1C L 4 1 2L 1 L              (5.19) 

 

where ISO,max 0.5   and LS,1L  is the participation factor of the LS 

fundamental mode.  

•  [Ping et al. 2008] 

Ping et al. employ an optimization procedure based on the minimization 
of the base shear variance assuming earthquake excitation as a stationary 
stochastic process with zero mean. Considering a 2DOF reduced-order 
model, the optimal parameters can be derived by Fig. 4.1, recalled here for 
completeness. 
 
 

 

Fig. 4.1. Optimal design parameters: (a) optimal frequency ratio vs. mass ratio (b) 
optimal damping ratio vs. mass ratio [Ping et al. 2008] 

• [Ayorinde & Warburton 1980] 

Ayorinde and Warburton defined the optimum parameters for an 
undamped 2DOF reduced-order model under a white noise ground 
excitation, given by: 
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 

  opt ISO,opt

1 / 41 / 2
f ;

1 4 1 1 / 2

 
  

  
  (5.20) 

• [Feng & Mita 1995] 

Feng and Mita utilized a mega-subconfiguration systems in which the 
mega-structure represents the main structure, while the substructure the 
TMD. The authors derived the optimum parameters of a 2DOF reduced-
order model by minimizing the mean square values of the displacements 
of the mega-structure and accelerations of substructures, assuming a 
ground motion represented by a white noise, i.e.: 
 

 
 

 

2 2

4 2

opt ISO,opt 3

1 3 1 f1 / 2 1
f ; 1 f f

1 2 1

 
     

 
  (5.21) 

• [Moutinho 2012] 

Moutinho defines the optimum parameters for a 2DOF reduced-order 
model that simultaneously meet the condition of equal modal damping in 
the complex modes of vibration, and are in correspondence with the 
minimum value of the maximum frequency response function (FRF) 
amplitude associated with the response of the main mass. 
The author provides tabulated optimum values as a function of the 
structural damping ratios and the mass ratios between the TMD and the 
main structure. A simple parabolic interpolation is used to calculate 
intermediate values among the values proposed by Moutinho. 

• [Hoang et al. 2007] 

Hoang et al. proposed different optimum parameters by considering the 
ground motion modeled by a stationary stochastic process with a power 
spectral density. 
They conclude that the ground damping ratio produces negligible effect 
on the determination of optimal TMD parameters.  
For a 2DOF reduced-order model, considering a structural frequency 
equal to the ground frequency, the optimal parameters are derived by a 
curve fitting of the results, i.e.: 
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    
 

2 2

opt LS ISO,opt

1 0.6 1 1 2.5
f 0.7 ;

1 2 1 2.7

     
    

  
 (5.22) 

 
In order to compare the real and optimal values of the frequency and 

damping ratios for IB and SSB, the frequency response function 
LSu

H ( )  

of the LS displacement with respect to ground acceleration for the 
uncontrolled (LS) and controlled (IIS) configurations, described in 
Chapter 4, is utilized and recalled here for completeness.  
 

LS,LSu
2 LS

1
H ( )

2i
1

1

  


 
 

   (4.58) 

 

LS

0

u ,IIS 2
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C ( )
H ( )

1 C ( ) 2i 1


  

       
   (4.59) 

 
where 
 

LS
     is the ratio between the input frequency,  , and the LS natural 

frequency, 
LS

 .  

 
2

ISO

0 2 2

ISO

f (1 ) 2i f 1
C ( ) 1

f (1 ) 2i f 1

      
   

       
   (4.60) 

 

The frequency response function LSuH ( )  of the LS displacement with 

respect to ground acceleration in the uncontrolled (LS), really and 
optimally controlled (IIS) configurations are shown in Figs 5.6 ÷ 5.13; each 
couple of graphs refers to the results obtained for the two buildings 2DOF 
models. In particular, Figs. 5.6 ÷ 5.9 depict the real configurations of the 
two buildings for different damping ratios (0.1, 0.2, 0.3, 0.5); Figs. 5.10 ÷ 
5.13 show the results for the optimally configurations derived from the 
papers [Sadek et al. 1997, Reggio & De Angelis 2015, Zhou et al. 2016, 
Ping et al. 2008]. 
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Fig. 5.6. IB vs. SSB: frequency response function of the LS displacement with 
respect to ground acceleration in the uncontrolled (dotted line) and controlled 

(continuous line) configurations; ξISO = 0.1. 

 

 
Fig. 5.7. IB vs. SSB: frequency response function of the LS displacement with 
respect to ground acceleration in the uncontrolled (dotted line) and controlled 

(continuous line) configurations; ξISO = 0.2. 
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Fig. 5.8. IB vs. SSB: frequency response function of the LS displacement with 
respect to ground acceleration in the uncontrolled (dotted line) and controlled 

(continuous line) configurations; ξISO = 0.3. 

 

 
Fig. 5.9. IB vs. SSB: frequency response function of the LS displacement with 
respect to ground acceleration in the uncontrolled (dotted line) and controlled 

(continuous line) configurations; ξISO = 0.5. 
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Fig. 5.10. Sadek et al. vs. IB and SSB: frequency response function of the LS 
displacement with respect to ground acceleration in the uncontrolled (dotted line) 
and optimally controlled (continuous line) configurations. 

 

 
Fig. 5.11. Reggio & De Angelis vs. IB and SSB: frequency response function of 
the LS displacement with respect to ground acceleration in the uncontrolled 
(dotted line) and optimally controlled (continuous line) configurations. 
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Fig. 5.12. Zohu et al. vs. IB and SSB: frequency response function of the LS 
displacement with respect to ground acceleration in the uncontrolled (dotted line) 
and optimally controlled (continuous line) configurations. 

 

 
Fig. 5.13. Ping et al. vs. IB and SSB: frequency response function of the LS 
displacement with respect to ground acceleration in the uncontrolled (dotted line) 
and optimally controlled (continuous line) configurations. 
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As can be seen from these figures, the frequency response curves in the 
LS and IIS configurations intersect at two points, which identify the 
bandwidth controlled by the TMD (operating range): between these 
points, the amplitude of the frequency response function is reduced due 
to the presence of the isolators, elsewhere it is increased.  
Comparing the graphs, can be noticed that, in SSB, the large mass ratio  
leads to greater reductions of the LS displacement response over a much 
broader frequency range, also in the really untuned controlled 
configuration (Figs. 5.6 ÷ 5.9). Therefore, the large mass ratio increases 
the robustness of TMD, improving its seismic effectiveness. In fact, the 
system becomes less dependent on the earthquake frequency content and 
on the optimal configuration. In addition, observing the real controlled 
configurations of the two buildings (Figs. 5.6 ÷ 5.9), it is possible noticing 
that, increasing the damping ratio from 0.1 to 0.5, the LS displacement 
response increases in the operating range and decreases outside. 

5.6. TIME HISTORY ANALYSES 

In order to assess the response of the two mid-story isolated buildings to 
seismic inputs, the MDOF RB, RB+D and FB models, already described 
in paragraphs 5.3 and 5.4, have been utilized for carrying out time history 
analyses. The RB+D models fully account for the nonlinear behavior of 
the isolation devices and dampers, while both the US and LS are 
considered elastic. The seismic waves considered for the analyses are 
obtained from three ground motion records, El Centro S00E (TH1), 
Hachinohe NS (TH2) and Taft S69E (TH3), scaled in order to set the 
maximum velocity to the target value of 50 cm/s, as specified by the 
Japanese seismic code. Data of the scaled ground motions are given in 
Tab. 5.10, while in Figs. 5.14 – 5.15 the scaled acceleration input waves 
and the relevant response spectra in acceleration are provided. 
 

Table 5.10. Major data of scaled input waves for dynamic analysis 

Input wave for analysis El Centro 
S00E 

Hachinohe 
NS 

Taft S69E 

Max. Acceleration [g] 0.457 0.343 0.515 

Max. Velocity [cm/s] 49.98 50.00 50.00 

Step Time [s] 0.02 0.01 0.02 
Analysis Time [s] 53.78 65.68 54.28 





5. Analysis of real IIS buildings 

 

261 
 

 

Fig. 5.14. Acceleration records: (a) El Centro S00E, (b) Hachinohe NS, (c) Taft 
S69E 

 

Fig. 5.15. Scaled Pseudo-Acceleration Response Spectra 

5.6.1. Hysteresis loops 

The hysteresis loops of the dampers obtained from the time history 
analyses of the RB+D models of the Iidabashi and Shiodome buildings 
are shown in Fig. 5.16. 
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Fig. 5.16. Hysteretic response of dampers: (a) Iidabashi 1st Building, (b) 
Shiodome Sumitomo Building 

 
Each couple of graphs refers to the results obtained for the buildings 
models subjected to a specific seismic input, i.e. El Centro, Hachinohe and 
Taft; in each graph, the maximum displacement registered at the isolation 
interface during the time history is also provided. 
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According to the specified restoring force characteristics, the dampers in 
both the buildings show a bi-linear force-displacement response. In 
particular, in the Shiodome building (graphs on the right) the lead dampers 
have a larger value of the first stiffness than the steel dampers, and only 
the latters show a second stiffness different from zero, see Tab. 5.2. The 
isolation layer (rubber bearings + dampers) in the Iidabashi Building is 
characterized by a global initial stiffness and a global damper yield force, 
lower than the Shiodome building counterparts. Therefore the 
displacement of the isolation layer in the IB is always larger than in the 
SSB. 

5.6.2. Maximum story drifts 

The story drift envelopes obtained from the time history analyses of the 
three MDOF (RB, RB+D and FB) models of the Iidabashi and Shiodome 
buildings are shown in Fig. 5.17. As for the previous figure, each couple 
of graphs refers to the results obtained for the two buildings models, 
subjected to a specific seismic input. 
Considering the RB models, and in particular the US and the isolation 
layer, the distribution of the seismic displacements is similar to the one 
obtained from the modal analysis described in the previous paragraphs. 
Furthermore, the ratio between the US relative drift and the isolation layer 

displacement ( TOP,US ISOu ) is of the same order of magnitude of the 

parameter  , calculated in the previous paragraph from the modal 
characteristics according to the formula (5.16).  
In particular, while this parameter varies with the seismic input and its 
energy content, it is in average equal to 0.007 for the Iidabashi and 0.205 
for the Shiodome, thus remaining very close to the values obtained 
according to the formula (5.16), i.e. 0.008 and 0.20, for the IB and SSB, 
respectively. 
Therefore, the linear theory of Kelly can be considered a valid approach 
also for a preliminary estimate of the maximum seismic response of a 
structure with a mid-story isolation system; in fact, despite of the 
dispersion of the displacement values according to the specific ground 
motion, the displacement amplification in the upper structure with respect 
to the isolation layer is almost the same of the one obtained from modal 
analysis, which, in turn, can be estimated through the formula (5.15), as a 
function of the period ratio. 
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Fig. 5.17. Peak story drift envelopes: (a) Iidabashi 1st Building, (b) Shiodome 
Sumitomo Building 

 
In order to compare the displacements of the upper and lower structures 
in the 3 models, relative displacements normalized to the partial heights 
are provided in Tabs. 5.11 – 5.12; in particular the ratio between the 
relative top-bottom displacement of the US (neglecting the displacement 

of the isolation system) and the US height, TOP,US USH ; and the ratio of 
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LS top displacement to LS height, TOP,US LSH , are shown in Tabs. 5.11 – 

5.12 for the Iidabashi and Shiodome buildings, respectively. In the tables 
are also reported the values obtained for the fixed base structures, 
considering either only the degrees of freedom of the US and of the LS, 
or the whole structure. 
 

Table. 5.11. Iidabashi 1st building: normalized drift values 

 Model El Centro 
S00E 

Hachinohe NS Taft S69E 

ΔTOT,US/HUS 

RB 1/8825 1/2520 1/2940 
RB+D 1/2635 1/4710 1/3705 

FB 1/70 1/100 1/70 

ΔTOT,LS/HLS 

RB 1/145 1/195 1/180 
RB+D 1/260 1/340 1/270 

FB 1/155 1/225 1/165 

ΔTOP/HTOT FB 1/230 1/340 1/240 

 

Table. 5.12. Shiodome Sumitomo building: normalized drift values 

 Model El Centro 
S00E 

Hachinohe NS Taft S69E 

ΔTOT,US/HUS 

RB 1/525 1/1080 1/430 
RB+D 1/930 1/705 1/515 

FB 1/105 1/85 1/120 

ΔTOT,LS/HLS 

RB 1/195 1/280 1/295 
RB+D 1/355 1/360 1/340 

FB 1/180 1/120 1/175 

ΔTOP/HTOT FB 1/205 1/165 1/235 

 
Looking at the values in Tabs. 5.11 – 5.12, it is also possible to grossly 
quantify both the isolation and the mass damper effects that occur in the 

buildings. In particular, the values TOP,US USH  show that the presence of 

isolators (RB models) produces a reduction of the displacement in the US, 
with respect to the FB model, of about 2 orders of magnitude (passing 
from 10-2 to 10-4) in the IB, and of 1 order of magnitude (passing from 10-

2 to 10-3) in the SSB. Then, the presence of dampers (RB+D models) 
slightly modifies the US displacements, and, more remarkably, gives rise 
to the so-called mass damper effect, which mainly acts on the LS; this 
effect can also be grossly quantified by comparing the RB and RB+D 

models in terms of TOP,US LSH . 
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The comparison, in the IB, reveals a reduction (from RB to RB+D 
models) of 80% for El Centro and of 50% for Taft; in the SSB, the 
behavior under El Centro is almost the same of the IB, and the 

displacement ratio TOP,US LSH  in the RB+D model decreases of 80% with 

respect to the RB model; on the contrary, a lower mass damper effect can 
be observed for the other two seismic waves, since the displacement ratios 

TOP,US LSH  decreases from the RB to the RB+D model of 30% and 15% 

respectively for Hachinohe and Taft ground motions. 
Of course, the presence of dampers (RB+D models) dramatically 
decreases the displacement of the isolation layer in both buildings: over 
90% for the Iidabashi, in the case of Hachinohe, and over 80% for the 
Shiodome, in the case of Taft. 
Other results of time history analyses (maximum accelerations, shear 
forces, shear force coefficients) reported in the following text, confirm the 
above described general trends in the seismic behavior of the two 
buildings. 

5.6.3. Maximum story accelerations 

The story acceleration envelopes obtained from the time history analyses 
of the three MDOF (RB, RB+D and FB) models of the Iidabashi and 
Shiodome buildings are shown in Fig. 5.18. As can be seen before, each 
couple of graphs refers to the results obtained for the two buildings 
models, subjected to a specific seismic input.  
Considering the RB models, only the US benefits of the isolation 
flexibility, leading to a reduced response with respect to the FB models; 
introducing the dampers, the isolation effect decreases. 
Looking at the LS, comparable or greater peak story accelerations are 
observed in the RB+D with respect to the FB models. 
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Fig. 5.18. Peak story acceleration envelopes: (a) Iidabashi 1st Building, (b) 
Shiodome Sumitomo Building 
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5.6.4. Time histories of story accelerations 

The story accelerations obtained from the time history analyses of the 
three MDOF (RB, RB+D and FB) models of the Iidabashi and Shiodome 
buildings are shown in Figs. 5.19 ÷ 5.21.  
Each couple of graphs refers to the results obtained for the top and the 
stories above (ISO+1) and below (ISO-1) the isolation layer of the two 
buildings models, subjected to a specific seismic input. In accordance with 
the results shown in the previous Fig. 5.18, comparable or larger 
accelerations are observed in the ISO-1 story of RB and RB+D models 
than the FB models; otherwise, comparable or smaller accelerations are 
provided in the ISO+1 and top stories of the controlled models than the 
reference ones. It is worth noticing that, the coupling of the higher modes 
in SSB leads to a minor isolation effect with respect to IB.  

5.6.5. Maximum story shear forces 

The story shear force envelopes obtained from the time history analyses 
of the three MDOF (RB, RB+D and FB) models of the Iidabashi and 
Shiodome buildings are shown in Fig. 5.22. As can be seen previously, 
each couple of graphs refers to the results obtained for the two buildings 
models, subjected to a specific seismic input. 
With regards to the RB models, thanks to the isolation effect, a reduced 
seismic response in both US and LS is observed; considering the RB+D 
models, the mass damper effect allows an additional reduction of the story 
shear force in the LS. 
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Fig. 5.19. Time histories of story accelerations under El Centro S00E 50 cm/s 
input wave: (a) Iidabashi 1st Building, (b) Shiodome Sumitomo Building 
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Fig. 5.20. Time histories of story accelerations under Hachinohe NS 50 cm/s 
input wave: (a) Iidabashi 1st Building, (b) Shiodome Sumitomo Building 
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Fig. 5.21. Time histories of story accelerations under Taft S69E 50 cm/s input 
wave: (a) Iidabashi 1st Building, (b) Shiodome Sumitomo Building 
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Fig. 5.22. Peak story shear force envelopes: (a) Iidabashi 1st Building, (b) 
Shiodome Sumitomo Building 
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5.6.6. Seismic indices 

In order to express the previous results in a synthetic way, the root mean 
square (rms) of the controlled response for the three input waves is 
normalized with respect to the corresponding one of the uncontrolled 
configuration.  
The indices, expressed in terms of peak story drift, peak absolute 
accelerations, and peak story shear forces, and obtained from the time 
history analyses of the MDOF RB+D and FB models of the Iidabashi and 
Shiodome buildings, are shown in Figs. 5.23 ÷ 5.25. In particular, each 
couple of graphs refers to the rms results obtained for the two buildings 
models. 
Broadly speaking, indices smaller than one indicate a reduction of the floor 
response in the IIS configuration as compared with the reference FB one; 
conversely, values greater than one imply an amplification. 

Looking at the peak drift ratio, in Fig. 5.23 values less than one are 
obtained for both the buildings. However, in the US of Iidabashi Building, 
the story drift index is almost equal to one, since the US is 4.4 time stiffer 
than the LS (Tab. 5.4), and thus, it is already more rigid in the reference 
FB model.   

In terms of peak acceleration ratio, in Fig. 5.24 values almost equal to, 
or greater than, one are observed for the LS of both the buildings; on the 
contrary, the US shows values smaller than one. It is worth noticing that, 
the major US rigidity in Iidabashi Building improves the isolation effect 
than in the case of Shiodome Sumitomo Building, that shows comparable 
values of the acceleration index between US and LS (except for the first 
floor below the isolation layer). 

In terms of peak shear ratio, in Fig. 5.25 values lower than one are 
observed for both the buildings. In particular, minor values are obtained 
in the US of IB, thanks to the major rigidity of this structural portion with 
respect to the LS, and in the LS of SSB, due to a design value of the shear 

coefficient of dampers '
s  larger than the corresponding one of IB (0.03 

vs. 0.02). 
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Fig. 5.23. Peak drift ratios: (a) Iidabashi 1st Building, (b) Shiodome Sumitomo 
Building 

 

 
Fig. 5.24. Peak acceleration ratios: (a) Iidabashi 1st Building, (b) Shiodome 
Sumitomo Building 
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Fig. 5.25. Peak shear force ratios: (a) Iidabashi 1st Building, (b) Shiodome 
Sumitomo Building 

5.6.7. Maximum story shear coefficient 

The story shear coefficient distribution represents the normalized shear 
force distribution with respect to the seismic weight of the building. In 
particular, the story shear coefficient is obtained by dividing the peak shear 
force of the i-th story to the seismic weight above the i-th story. 
The story shear coefficient envelopes obtained from the time history 
analyses of the three MDOF (RB, RB+D and FB) models of the Iidabashi 
and Shiodome buildings are shown in Fig. 5.26. As can be seen previously, 
each couple of graphs refers to the results obtained for the two buildings 
models, subjected to a specific seismic input. 
Quite trivially, from the figure can be noticed the same trend observed for 
the story shear force envelopes, depicted in Fig. 5.22. 
Considering the RB+D models, the mean shear coefficient of the first 
story and of the isolation layer, respectively equal to 0.30 – 0.19 and 0.08 
– 0.07 for IB and SSB, are almost within the range defined in Chapter 3 
from the seismic Japanese database of more sixty IIS buildings (Fig. 3.3), 
i.e. 0.1 ÷ 0.4 and 0.06 ÷ 0.15, respectively. 
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Fig. 5.26. Peak story shear coefficient envelopes: (a) Iidabashi 1st Building, (b) 
Shiodome Sumitomo Building 
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5.6.8. Energy components distribution 

The distributions of the energy components obtained from the time 
history analyses of the RB+D models of the Iidabashi and Shiodome 
buildings are shown in Fig. 5.27. In each graph are provided the time 
histories of the different energy components, i.e. Potential Energy Ep, 
Kinetic Energy Ek, Hysteretic Energy Eh, Internal Viscous Damping 
Energy Ed, normalized to the seismic input energy Ei. Each couple of 
graphs refers to the results obtained for the buildings models (IB and SSB) 
subjected to a specific seismic input (El Centro, Taft, Hachinohe). 
From the figure, it is possible to notice that in both buildings a large 
amount of the seismic input energy is dissipated through the hysteretic 
response of the dampers within the isolation system; the share of 
hysteretic energy is between 67% and 73% for the IB and between 50% 
and 67% in the SSB. 
This distribution confirm that the inter-story isolation system can be seen 
as a “concentrated type” of energy dissipation system, different from the 
common approach of distributed energy dissipation systems, where the 
dampers are spread throughout the building structure. The peculiarity of 
the inter-story isolation system is that the dampers are effectively engaged 
thanks to the large local inter-story drift generated by the isolators 
deformation; therefore, in this perspective the isolators work as a 
distinctive “amplification system” for the energy dissipation devices 
concentrated at the isolation level. 
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Fig. 5.27. Time histories of Energy distribution: (a) Iidabashi 1st Building, (b) 
Shiodome Sumitomo Building 
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5.7. THEORY AND PRACTICE: MURAKAMI ET. AL VS. IB 

AND SSB 

[Murakami et al. 2001, Murakami & Suoeka 2004, Tasaka et al. 2008] 
proposed a prediction method, described in detail in Chapter 4 (§ 4.5.3), 
based on the balance of the enveloped-energy by retaining the actions of 
the isolation story and the lower story, and by using the eigen functions 
obtained from the modal analyses of the reduced-order 2DOF RB and 
RB+D models. Considering the 2DOF RB and RB+D models, in Eq. 

(5.1) the matrices M , C , K  and the vectors (t)x , r  have 2 x 2 and 2 x 

1 dimensions, respectively.  
In particular, the lumped masses are respectively equal to the LS mass, 

LSm , and the total isolated mass, ISOM ; the story horizontal stiffnesses are 

respectively equal to the LS equivalent stiffness LS,eqk , defined as a 

function of the total mass TOTM  and the LS fundamental period LST , and 

the stiffness of the isolation story, considering only isolators, i.e. RBk , or 

isolators and dampers at the initial stiffness, (1)
Dk , i.e. (1)

RB Dk  . 
It is worth noticing that the equivalent reduced-order SDOF models of 
the LS and isolation system are the same as considered in § 5.3; the unique 
difference concerns the characterization of the LS equivalent stiffness, 
defined here as a function of the total mass and not in base of the LS mass.  
The authors made this assumption in order to take into account the total 
enveloped energy. 
The values of the dynamic characteristics of the 2DOF RB and RB+D 
models are given in Tab. 5.13. In this table is also provided the main design 

parameter mR , defined as the ratio between the total isolated mass ISOM  

and the total mass TOTM , i.e.: 
 

ISO

m

TOT

M
R

M
    (5.23) 
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Table. 5.13. Lumped masses and story stiffness of the two buildings 2DOF RB 
and RB+D models 

Parameters IB SSB 

ISOM  [kN·s2/m] 14921 51558 

LSm  [kN·s2/m] 54171 23940 

TOTM  

[kN·s2/m] 
69092 75497 

mR  0.216 0.683 

LS,eqk [kN/m] 2849168 2652652 

RBk [kN/m] 52974 80700 
(1)

Dk  [kN/m] 1625125 2117800 
(1)

RB Dk   [kN/m] 1678099 2198500 

- Maximum deformation of the isolation story, m max : 

 

    

'

m u m s TOT s

m max

m s m t e

2
2 2 2 2 ' 2 2 2 2

u m m s m t e m s u m t TOT s m s m t TOT D

m s m t e

K K κ K M g
δ

K K K

K K κ K K K 2 K K K M g α K K M V

K K K

  
 

 

     


 

 

  (4.139) 
 
where 
 

m f m s m t u eq LS,eq

(1) (1)
RB D RB Dk k kK , K , K , K k    ; 

m t m
K K  , 2

m f u eq e
K K K   , 

u eq u
K K  ; 

 

  and   are drift ratios between the LS displacement and the ISO drift, 

obtained respectively considering only isolators and isolators and 
dampers, see Eqs. (4.126) and (4.127);   is a damage concentration index, 
which depends on the characteristics of the isolation story and input 
seismic wave [Akiyama 1989, 1992]. 

- Maximum shear coefficient of the isolation story, m : 

m f s
α = α +α    (4.142) 

where the shear coefficient of isolators, 
f

α , and dampers, 
s
α , are 

respectively given by: 
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m maxf

f

m TOT m TOT

RBkQ
α

R M g R M g


     (4.143) 

 

D,y D,y

s

m TOT m TOT

(1)
DkQ

α
R M g R M g


     (4.144) 

- Maximum shear coefficient of the lower story, u : 

m max s

u

TOT

LS,eq LS,eq

(1)
D

k k

k

δ ζ α'
α = +

M g

 
   (4.161) 

 
The main parameters calculated for deriving the isolation drift and the 
shear coefficient of the isolation and the lower structure, are provided in 
Tab. 5.14. 
 

Table. 5.14. Parameters  

Parameters IB SSB 
'

s  0.02 0.03 

m max  [m] 0.47 0.43 

m  0.263 0.112 

l  0.529 0.217 

f  0.170 0.068 

s  0.093 0.044 

0 sb  21.184 1.467 

0 opta  1.744 2.942 

  2.019 1.023 

  0.231 0.117 

D,y  [m] 0.00834 0.0105 

  
8 8 

 
The isolation drift and the shear coefficient of the isolation and the lower 
structure are plotted in Fig. 5.28 as in function of the mass ratio Rm.  
Quite trivially, from this figure can be noticed that, by increasing the mass 
ratio Rm, for a fixed isolation period, the drift of the isolation system 
increases; in addition, if the mass ratio Rm is equal to, or greater than, 0.2, 
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the reduction of the shear coefficients gives rise to an untuned mass 
damper effect.  
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Fig. 5.28. Untuned Mass Damper: (a) isolation drift, (b) isolation shear 
coefficient, (c) base shear coefficient 

It is worth noticing that, the major reduction of the response parameters 
in SSB is due to larger isolation period (5.02 s vs. 3.33 s) and shear 
coefficient of dampers (0.03 vs. 0.02) than the corresponding ones in IB.  
Starting from these values, it is possible to derive the enveloped energy 
components, depicted in Tab. 5.15, considering the equivalent damage 

velocity equal to = 150 cm/s (for the Level-II earthquake), and the 

equivalent input velocity equal to = 200 cm/s (for the Class-III 
ground), as prescribed by the Japanese building code, see § 4.5.3. 
 

Table. 5.15. Energy components and energy ratios of the two buildings 

Energy 
component 

IB SSB 

eW  [kNm] 28395 12199 

pW  [kNm] 49333 72736 

DE  [kNm] 77728 84935 

E  [kNm] 138184 150995 

hW  [kNm] 60455 66060 

DE /E  0.56 0.56 

hW /E  0.44 0.44 

 
In Tab. 5.15 are also provided the energy ratios  of the damage  energy, 

DE , and hysteretic energy, hW , with respect to the input energy, E , i.e.: 
 

2

D D 2

E

E V
0.75 0.56

E V

 
   
 

  

 
2

h D 2

E

W V
1 1 0.75 0.44

E V

 
     

 
 

 

Having fixed the equivalent velocities DV and EV , the energy ratios DE E  

and hW E  are fixed quantities; quite trivially, for a fixed DV , increasing 

EV , the ratio hW E  increases.  

 

DV

EV
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The shear coefficient distribution of the MDOF RB+D models of the two 
buildings can be predict, by recalling the formulae written in Chapter 4. 

The i-th shear coefficient of the upper structure, 
0 i
α , is equal to: 

0 i f 0 si
α = α + α    (4.146) 

 
where 
 

0 si 0 i 0 opt s
α a α α    (4.148) 

 
is the shear coefficient of the i-th story considering only dampers, where 

0 opt
α  is the optimal shear coefficient distribution ((4.149)); 

0 i
a  is a 

coefficient which increases along the height of the building with a linear 

distribution ((4.151)); 
0 opt
a  is the optimum coefficient ((4.153) ÷(4.155)).  

The i-th shear coefficient of the lower structure is equal to: 
 

 i m

u i m m u i u m m

i m

d - R1
α = R α + A α -R α

d 1- R

 
 
 

   (4.158) 

 
with 

i
d  ((4.157)) the normalized weight of the i-th story considering the 

whole structure; 
u i
A  ((4.159)) the distribution of the seismic shear 

coefficients (Ai distribution) of the LS only. 
 
 
The story shear coefficient envelopes obtained from the time history 
analyses of the RB+D model of the Iidabashi and Shiodome buildings are 
compared with the ones derived from the analytical formulation in Fig. 
5.29. As can be seen above, each couple of graphs refers to the results 
obtained for the two buildings models. 
From Fig. 5.29 it can be noticed that the analytical formulation 
overestimates the shear coefficient in the LS, while it gives comparable 
values in the US with respect to the results of the time history analyses. It 
is worth noticing that, in the US of SSB, this formulation underestimates 
the seismic response, since the mode coupling of the higher modes is 
neglected using a reduced-order 2DOF prediction model. 
It can be concluded that this procedure is valid only if the MCE is not 
expected. 
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Fig. 5.29. Peak story shear coefficient envelopes, theory vs. design practice: (a) 
Iidabashi 1st Building, (b) Shiodome Sumitomo Buildin 

5.8. CONCLUSIVE REMARKS AND DESIGN 

IMPLICATIONS 

In this chapter the design aspects of inter-story isolation system (IIS) have 
been addressed by examining some case studies through the lens of 
research. In fact, the case of IIS appears as one where the real-world of 
construction moves forward much faster than the theoretical realm of 
research. As a matter of fact, despite of more than sixty applications 
realized in nearly twenty years, also trespassing in the sector of tall 
buildings, the conceptual framework for dealing with the design problem 
of IIS is not well established and a variety of approaches and design 
objectives can be found in the inherent scientific literature. 
Starting from these considerations, an in-depth analysis of two building 
case-studies is proposed in this chapter; the major building data are firstly 
examined for an approximate guess of, and a preliminary comparative 
discussion on the dynamic properties of the three structural parts (i.e. 
isolated upper structure US, isolation system IIS, lower structure LS) of 
each building, and, consequently, on their expected dynamic interaction. 
Modal and time history analyses are then carried out on the MDOF 
models of the two buildings.  
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The analysis of the buildings and the exam of their vibration 
characteristics, has proved particularly interesting since the selected case 
studies are very different each other. One of them (the IB) is a 
paradigmatic example of building with inter-story isolation, with a very 
rigid superstructure, and frequencies of the two structural parts (upper and 
lower structure) well separated from the isolation frequency, which gives 
rise to uncoupled higher modes. The other building (the SSB) is not an 
ideal case of IIS, with the upper structures less rigid than the lower one, 
and both structural portions quite flexible, thus frequency ratios are not 
so high to ensure decoupling of higher modes. However, the seismic 
response of both buildings, assessed through nonlinear time history 
analyses, appears very satisfactory; the beneficial effects of isolation, 
dissipation, and consequent mass damping have been clearly identified 
thanks to the use of two analysis models, accounting for only isolators or 
for both isolators and dampers, respectively, and by comparing the 
response of such models to the reference fixed base structures. 
In the authors’ opinion, the peculiarity of the inter-story isolation system, 
and its greater design complexity with respect to base isolation, seems to 
come from the combination of the three above effects; in fact, depending 
on the values of mass ratios, frequency ratios and dampers yielding force, 
either the above aspects may equally and effectively contribute to the 
structural response, or one behavioral aspect may prevails on the others. 
In this perspective the isolators have the most important role: to lengthen 
the first period of the structural complex, to work as a distinctive 
“amplification system” for the energy dissipation devices concentrated at 
the isolation level, and to allow the upper structure moving out of phase 
with the lower one. 
Starting from these observations and from the results obtained in this 
chapter, a wide parametric analysis is carried out in the next two chapters, 
in order to establish the ranges of different structural behavior and to 
propose design guidelines. 
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Equation Chapter (Next) Section 6 

6. PARAMETRIC ANALYSIS  

6.1. INTRODUCTION 

In very general terms, isolation is “a means to change dynamic 
characteristics of a vibrating system”, while the base isolation practically 
reduces a multi-degree of freedom (MDOF) structure to a single-degree 
of freedom (SDOF) system, the mid-story isolation changes one MDOF 
system into another MDOF with different vibration characteristics 
[Ziyaeifar & Noguchi 1998]. In fact “no matter how flexible the isolation 
layer is, the remaining part of mass cannot directly enjoy from this 
additional flexibility”. Another important difference between BIS and IIS 
is that, while the first vibration mode of BI buildings is characterized by 
large mass participation with, consequently, negligible participation of the 
higher modes, in an IIS the first mode only activates a smaller mass 
fraction, and the higher modes, with considerable amount of mass, are not 
ineffective. 
The coupling effect of these higher modes, which can produce an 
amplification in the seismic response of the structure, has been explicitly 
addressed in some papers on mid-story isolation [Wang et al. 2011, 2012, 
2013; Kobayashi & Koh 2008] and the problem was formulated by means 
of simplified reduced-order 3DOF mid-story isolated models to examine 
the impact of the design parameters, mainly frequency and mass ratios. 
As a result, it was recognized that the dynamics of structures with mid-
story isolation is affected by the vibration characteristics of the US and LS, 
and that, depending on these characteristics, two different scenarios for 
the dynamic behavior of the global structure are found: a major influence 
of one of the higher modes (either the 2nd or the 3rd mode), or a coupling 
effect of the 2nd and 3rd modes. 
However, with simplified 3DOF IIS models, only one possible 
combination between the higher coupled modes of the LS and US can be 
found. Generally, the simplified model is built up reducing the order of 
the degree of freedoms of the US and LS to one with respect to the 
fundamental mode. 
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Using more refined multi-degree-of-freedom IIS models, which consider 
the different dofs of the structural portions (US and LS), the possible 
coupling between more than two significant higher modes can be 
investigated. 
In this perspective, this chapter has explored the properties of the inter-
story isolation system (IIS) structures, with particular attention to the 
mode coupling effect (MCE) of the higher modes.  
Multi-degree-of-freedom isolated models, representative of a 10-story 
building, have been considered, and the influence of different placements 
of the isolation system have been investigated; different mass and stiffness 
distributions, representative not only of the commonly distributions 
adopted for structural application but also of extreme real inter-story 
isolated structures, have been considered. Multi-degree-of-freedom fixed-
base models are also analyzed for comparison. 
For examining the effect of the higher modes, a free-free multi-degree-of-
freedom IIS model, in which the stiffness of the isolation layer is assumed 
null (i.e. perfect isolation), is also developed. In this framework an 
analytical formulation for avoid MCE is derived for MDOF systems, and, 
then, extended to 3DOF IIS models. 

6.2. SIMPLIFIED PARAMETRIC ANALYSIS AND DYNAMIC 

PROPERTIES 

6.2.1. Model definition 

Simplified lumped masses multi-degree of freedom (MDOF) models are 
developed and utilized for an in-depth analysis and discussion of the 
building dynamics. In particular two different MDOF models are 
considered, namely: FB and ISO models. The fixed-base (FB) model 
represents the uncontrolled structure; the isolated (ISO) model represents 
the controlled structure by means of high damping rubber bearings 
(HDRBs) in the isolation system, the mass and story stiffness are the same 
as fixed-base model except for the isolation layer. 
A graphical representation of the FB and ISO models is shown in Fig. 6.1. 
As shown in Fig. 6.1, in the IIS model the isolation layer ideally divides 
the structure in three portions (namely: LS, ISO, US), i.e. the portion 
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below the isolation story (LS), the inter-story isolation system (ISO), the 
portion above the isolation story (US); the degrees of freedom of those 
portions are appointed as nUS, nISO, nLS.  
In the FB model the portions above and below the corresponding level of 
the isolation layer in the IIS model also represent the US and LS, 
respectively; thus, the degrees of freedom of the FB model are subdivided 
in the number of the US dofs, nUS, and in the number of the LS dofs plus 
one, nLS+1. Therefore, the total number of dofs in the FB model (nLS+1 + 

nUS) and in the IIS model (nLS + nISO + nUS) is equal to n. 
 

 

Fig. 6.1. (a) MDOF ISO model, (b) MDOF FB model 

 

The structure horizontal stiffness at each level is represented by an 
equivalent linear shear spring, the stiffness of the isolation interface is 
represented by an elastic-plastic spring with bilinear restoring force 
characteristic. 
Both the FB and IIS models are viscously damped systems, in particular 
the hysteretic damping in the isolation story is converted to equivalent 
viscous damping. 
The MDOF FB model is representative of a 10-story residential building 
with a floor area about of 1850 mq; floor weight of 8 kN/mq; inter-story 
height of 3.4 m; total height of 34 m. 
The MDOF IIS model is representative of the same 10-story building in 
which the isolation layer replaces the level below the first story of the US 
in the MDOF FB model. 
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In order to grasp the dynamic behavior of middle isolated structures, 
different ISO models, and consequentially different corresponding FB 
models, are considered, see Fig. 6.2.  
In particular in the controlled structure the isolation interface moves from 
the top to the bottom story changing level by level. Therefore, ten 10DOF 
IIS models are obtained with extreme models related to a roof isolated 
structure (RIS) and a base isolated structure (BIS). Since the total number 
of the dofs is equal to n, changing the isolation level the number of the 
US and LS dofs change; in particular the couples USdof - LSdof 
respectively corresponding to the RIS and BIS ISO models are 0dof – 
9dof and 9dof – 0dof. It is worth to notice that, taking into account the 
isolation story, the total dofs in these extreme models is 10 (0+1+9 and 
9+1+0). 
The FB models corresponding to the extreme RIS and BIS ISO models 
present couples of US - LS+1 dofs equal to 0dof – 10dof and 9dof – 1dof 
for a total number of 10dof, see Fig. 6.2. 
 

 
Fig. 6.2. 10DOF ISO lumped mass models 

 

In order to grasp the dynamic behavior of middle story isolated structure 
different mass and stiffness distributions, not only representative of the 
commonly distributions adopted for structural applications but also of 
extreme real inter-story isolated structures [Murakami at al. 2000, Sueoka 
et al. 2004, Tsuneki et al. 2008-2009], are considered, see Figs. 6.3 ÷ 6.5; 
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the possible combinations between the mass and stiffness distributions are 
depicted in Fig. 6.6. 
 

 
Fig. 6.3. Schematic representation of the different mass and stiffness distributions 

 

 
Fig. 6.4. Mass and stiffness distributions of Iidabashi 1st building 

 

 
Fig. 6.5. Mass and stiffness distributions of Shiodome Sumitomo building 
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Fig. 6.6. Possible combinations between the different mass and stiffness 
distributions 

 

The different mass distributions present the same total mass, TOTM , 
obtained considering an uniform mass distribution in the 10DOF FB 
model. From the above assumptions, the floor mass is given by: 
 

2 2
wA 8 1850 kNs kNs

m 1509 1500
g 9.81 m m


       (6.1) 

 
where w is the floor weight per square meter, A is the floor area and g is 
the gravity acceleration. 
Thus, for a floor mass equal to 1500 t and a total number n of floors, the 
total mass is equal to: 
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2

TOT

kNs
M n m 10 1500 15000

m
         (6.2) 

 
The different stiffness distributions present the same global stiffness, 

st
k , 

equal to the ratio of the base shear, 
base

Q , to the top displacement,
top

Δ , 

i.e.: 
 

2

2base a 1 1 1 d 1

st 1 tot

top d d

Q S (T )Γ ω Δ Γ
k = = 592176= .264 kN / mω M

Δ Δ Δ
    (6.3) 

 
where 

a 1
S (T )  is the spectral acceleration at the fundamental period

1
T

assumed equal to 1 s, 
1

Γ  is the participating mass ratio of the fundamental 
mode and 

d top
Δ Δ  is the target displacement. In addition, in Eq. (6.3) it 

is assumed a first participation factor equal to 1 (i.e. a first mode shape 

 
T

1 nx1
1 1 1 ... 1 ), leading to a first generalized modal mass equal to 

tot
M . 

  

6.2.1.1. 10DOF FB model 

Three mass distributions with the same total mass, TOTM , are considered, 
see Fig. 6.3a: the mass is uniformly distributed for the overall structure 
(A); the j-th mass of the US is two-third the i-th mass of the LS (B); the i-
th mass of the LS is two-third the j-th mass of the US (C). Therefore, the 
floor mass in the three mass distributions A, B and C is respectively equal 
to: 
 

TOT

A

M
m

n
    (6.4) 

B A

US LS 1

n
m m

(2 / 3)n n 




   (6.5) 

C A

US LS 1

n
m m

n (2 / 3)n 




   (6.6) 

 
Three linear stiffness distributions, which present the same static global 

stiffness, stk , are considered. The static global stiffness is obtained by 
combining in series the shear spring constants of the relevant stories, i.e.: 
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st

l ul u

1
k

1 1

k k



 
   (6.7) 

 

where LS 1l (1,..., n ) and LS 2u (n ,..., n)  are the levels of the LS and US, 

respectively. 
The generic stiffness distribution is described by a linear combination of 

the first story stiffness 1k , i.e. LS 1 LS 21 1 1 1n n nk ,...,a k ,a k ,...,a k  ; therefore, the 

generic shear spring constants of the LS and US can be written as l l 1k a k  

and u u 1k a k , with 
 

 
LS 1

LS 1

1

l

LS 1

n
n

a a
a a n l

n 1








  


 and  

LS 2 n

u

US

n
n

a a
a a n u

n 1

 
  


. 

 

Fixing the shape stiffness distribution, i.e. the coefficients la  and ua , the 
first story stiffness is derived according to the following expression: 
 

1 st

l ul u

1 1
k k

a a

 
  

 
     (6.8) 

 

Varying the coefficients la  and ua , the three stiffness distributions 

considered herein are obtained, see Fig. 6.3b: continuous distribution ( 1a

=1, na =2/3), (D); block-shape distribution with the US stiffer than the 

LS ( 1a =1, LS 1na  =2/3, LS 2na   =2, na =4/3), (E); block-shape distribution 

with the LS stiffer than the US ( 1a =1, LS 1na  =2/3, LS 2na  =0.5, na =1/3), 
(F). 
The mass and stiffness distributions A-D are representative of the 
common distributions utilized in design practice; the mass distributions B-
C and the stiffness distributions F-E are representative of real extreme IIS 
buildings, i.e. Iidabashi First Building (IB) and Shiodome Sumitomo 
Building (SSB) [Murakami at al. 2000, Sueoka et al. 2004, Tsuneki et al. 
2008-2009]. In particular the mass and stiffness distributions B-F are 
representative of IB, while the mass and stiffness distributions C-E are 
representative of SSB. 
While the mass and stiffness distributions A-D are constant for each 
10DOF FB model, the mass distributions B-C and the stiffness 
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distributions E-F change level by level; the position of the isolation layer 
varies as well. 
In the FB models, viscous damping equal to 2% is assumed. 

6.2.1.2. 10DOF ISO model 

In the IIS models the isolation mass and stiffness values replace the ones 
corresponding to the story below the first level of the US in the FB 
models.  
The mass and stiffness of the isolation layer are derived as follows. 
Assuming a rigid superstructure, the system consisting of the US and the 
isolation layer is representative of a BIS, which can be characterized by 
means of a SDOF model, with a mass equal to the sum of the masses of 
the US and of the isolation story, and stiffness and damping of the 
isolators. In order to exploit both the isolation and mass damper effects, 

a range of isolation period between 1÷4 s is chosen; the mass of the 
isolation story is assumed equal to the corresponding story mass in the FB 
model; thus, the equivalent stiffness of the isolation system is derived. 
 

2 2

US ISO ISO

ISO 2 2

ISO ISO

4 (m m ) 4 M
k

T T

  
     (6.9) 

Moving the isolation interface from the top to the bottom story, the ratio 
between the total isolated mass 

US ISO
m m  and the total mass of the 

building 
tot

M , i.e: 

 

US ISO ISO

m

tot tot

m m M
R

M M


     (6.10) 

 
varies from 0.10 (RIS) to 1.0 (BIS). 
The parameter 

m
R determines the ratio of upper to lower mass, which, as 

well, strongly affects the resulting vibration characteristics and dynamic 
response of the single upper and lower portions, and of the structural 
complex. 
In the IIS models, viscous damping equal to 2% is assumed for the LS and 
US while an equivalent viscous damping equal to 10% is assumed at the 
seismic isolation interface. 
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6.3. MODAL ANALYSIS 

Depending on the mass distribution, it is possible to associate a mass ratio 

α, being α the ratio of the total isolated mass, ISOM , to the LS mass, LSm , 
i.e.: 
 

ISO

LS

M

m
     (6.11) 

 
to the position of the isolation layer along the height of the building. 
Therefore, considering all the RIS ÷ BIS MDOF AD models, the mass 
ratio α varies in the range 0 ÷ 10, according to the following three 
behavioral categories: 

1. α = 0 ÷ 1,  RIS ÷ IIS5:  TMD zone 
2. α = 1 ÷ 4,  IIS6 ÷ IIS8:  IIS zone 
3. α> 4,  IIS9 ÷ BIS:  BIS zone 

In Figs. 6.7 – 6.8 are respectively depicted the distribution of the first 
participating mass ratio, Γ1, and that of the most significant higher mode, 
Γmax,hm, and of their ratio, Γ1/Γmax,hm, as a function of the mass ratio α. 
 

 
Fig.6.7. Participating mass vs. the mass ratio   
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Fig.6.8. Participating mass ratio vs. the mass ratio   

 
From Fig. 6.7 it can be observed that, for a mass ratio α less than 1 (TMD 
zone), the higher mode possesses the greater fraction of participating 
mass; for α between 1 ÷ 4 (IIS zone) the two participating masses are 
comparable, but increasing α the first mode provides the larger values; for 
α larger than 4 (BIS zone), the higher mode is negligible. Consequently, by 
increasing α, the participating mass ratio Γ1/Γmax, hm increases almost 
linearly (Fig. 6.8); in the IIS area this ratio varies between 1.5 and 4. 
Assuming a damping ratio of the structural portions (superstructure and 

substructure), s , equal to 0.02, and an equivalent viscous damping of the 

isolation system, ISO , equal to 0.10, the MDOF ISO system is non-
proportional viscously damped. 
Considering the above modes, Fig. 6.9 shows the distribution of the 

damping ratios of the first mode, 1 , and of the higher mode that 

possesses the maximum fraction of participating mass, max,hm . From the 

graph, it can be noticed that the damping ratios 1  and max,hm  reach 

respectively the values of ISO  and s  for less values of  . Increasing  , 

1  is almost equal to ISO , while max,hm  assumes values larger than s .  

Since for   larger than 1, the system falls in the isolation zone (from IIS 
to BIS), it is possible to consider the analogy with the linear theory 
proposed by Kelly for 2DOF base isolated structures, for which the first 
damping ratio is almost equal to the equivalent damping ratio of the 
isolation, and the damping ratio of the higher mode is larger than the 
structural damping ratio. 
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Fig.6.9. Damping ratio vs. the mass ratio   

 
The natural vibration modes obtained for the 10DOF FB and ISO models 
are depicted in Figs 6.10 ÷ 6.28; each tris of charts shows the first three 
modes of vibration corresponding to a total participating mass ratio equal 
to or greater than 85%. The values of periods and mass participating ratios 
of the isolated models are also provided in the same figures; the 
corresponding values of periods and masses of the fixed-base models are 
shown in Tab. 6.1. 
 

Table 6.1. Natural periods and participating masses of FB IIS 5 models 

Mass and stiffess 
distributions 

1st mode 2nd mode 3rd mode 
T [s]   [%] T [s]   [%] T [s]   [%] 

AD 0.64 83 0.22 10 0.14 3 
BD 0.60 82 0.23 11 0.13 4 
CD 0.68 85 0.22 8 0.14 4 
AE 0.72 86 0.21 9 0.14 2 
BE 0.68 85 0.22 10 0.14 2 
CE 0.76 88 0.20 7 0.14 2 
AF 0.59 77 0.22 13 0.14 4 
BF 0.54 76 0.22 15 0.13 4 
CF 0.63 80 0.22 10 0.14 4 

N.B. The AD distribution is the same for all the FB models  
 
In the following are discussed the results obtained for: (i) the same mass 
and stiffness distributions (AD) and different placements of the isolation 
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layer (from the 1st to the 10th level), see Figs 6.10 ÷ 6.19; (ii) the same 
position of the isolation layer (i.e. the 5th level corresponding to the 
10DOF IIS 5 model), for the all the possible combinations of the mass 
and stiffness distributions (i.e. AD, BD, CD, AE, BE, CE, AF, BF, CF), 
see Figs 6.20 ÷ 6.28. The isolation period TISO is assumed equal to 3 s. 
From Figs 6.10 ÷ 6.28, it is worth noticing that the first mode in the 
10DOF IIS AD models involves deformation mainly concentrated at the 
isolation level, with almost no deformations in both US and LS. The first 
period T1 is very close to the isolation period TISO in all isolated models, 
varying between 3.03 ÷ 3.05 s, with a mean value of 3.042 s. The 

participating mass ratio, 1 , is close to the mass ratio Rm, and, thus, going 
from BIS to RIS, decreases from 1.0 to 0.1. 
Comparing the first modes of the controlled and uncontrolled 
configurations, a reduction of displacements both in the US and LS is 
observed for all isolated models. 
Some differences arise looking at the higher modes. The second and third 
periods of the 10DOF IIS AD models vary between 0.26 ÷ 0.57 s and 0.14 
÷ 0.20 s, respectively, while the higher periods in the reference FB model 
are 0.22 s and 0.14 s.  
Looking at the higher modes of the IIS models, two different scenarios 
for the dynamic behavior of the global structure are found: a major 
influence of one of the higher modes (either the 2nd or the 3rd mode), or a 
coupling effect of the 2nd and 3rd modes. 
The prevailing higher mode is generally the second one, with 
displacements mainly concentrated in the LS and isolation system and 
minor or almost no deformation in the US. On the contrary, the third 
higher mode shows displacements mainly concentrated in the US and 
isolation system and minor or almost no deformation in the LS. Going 
from BIS to RIS the participation of the LS increases up to the 74 % while 
the participation of the US is almost null. 
It can be noticed that, for isolation layer located at the lower or upper 
levels, almost comparable modal displacements are observed in the 
controlled and uncontrolled configurations, while for isolation located 
around mid-height, an amplification of the displacements of the LS dofs 
closer to the isolation layer is shown. 
In addition, from Figs 6.10 ÷ 6.28 can be seen that no coupling arises for 
the higher modes which are characterized by significant participant mass 
ratios. 
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Fig. 6.10. BIS vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 
Fig. 6.11. IIS 2 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.12. IIS 3 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 
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Fig. 6.13. IIS 4 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.14. IIS 5 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.15. IIS 6 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 



Chapter 6 

 

302 
 

 

Fig. 6.16. IIS 7 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.17. IIS 8 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.18. IIS 9 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 
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Fig. 6.19. RIS vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 
Comparing the modal displacements of the higher modes in the 10DOF 
IIS 5 and FB models with different mass and stiffness distributions 
provided in Figs 6.20 ÷ 6.28, no significant differences arises with respect 
to the AD distributions, except for the stiffness distribution E. In fact, in 
the IIS 5 model, whatever is the mass distribution (either A, B, or C), when 
the US is stiffer than the LS (E), a reduction of the LS displacements with 
respect to the FB model counterparts can be observed. 
Therefore, it seems that, the stiffness distribution affects more than the 
mass distribution the dynamic behavior of the controlled configuration, 
and a stiffer US improves the dynamic response of the overall structure. 
Recalling that the first participating mass is almost equal to Rm, with the 

mass distributions B and C the minimum and maximum values of 1  are 
obtained, respectively, since the former possesses the lighter US 
(minimum Rm) while the latter the heavier US (maximum Rm). 
Varying the mass and stiffness distributions, the mass and stiffness ratios 
between the US and LS changes affecting the interaction between the 
structural portions. In fact, for the same placement of the isolation layer 
(the 5th level) only in IIS 5 AF, with a uniform mass distribution and a 
more flexible US than the LS, the coupling of the higher modes arises. 
The higher modes of the 10DOF IIS 5 AF model show equal periods (0.22 
s), significant participating mass ratios (6.9% and 27.3%) and comparable 
displacements in US and LS. It is worth noticing that, in the second modes 
no significant differences arise between the IIS 5 and FB modes, since the 
isolation displacement is small.  
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Fig. 6.20. IIS 5 vs. FB 10DOF models: natural modes of vibration for the A-D mass 
and stiffness distributions 

 

 

Fig. 6.21. IIS 5 vs. FB 10DOF models: natural modes of vibration for the B-D mass 
and stiffness distributions 

 

 

Fig. 6.22. IIS 5 vs. FB 10DOF models: natural modes of vibration for the C-D mass 
and stiffness distributions 
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Fig. 6.23. IIS 5 vs. FB 10DOF models: natural modes of vibration for the A-E mass 
and stiffness distributions 

 

 
Fig. 6.24. IIS 5 vs. FB 10DOF models: natural modes of vibration for the B-E mass 
and stiffness distributions 

 

 
Fig. 6.25. IIS 5 vs. FB 10DOF models: natural modes of vibration for the C-E mass 
and stiffness distributions 
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Fig. 6.26. IIS 5 vs. FB 10DOF models: natural modes of vibration for the A-F mass 
and stiffness distributions 

 

 
Fig. 6.27. IIS 5 vs. FB 10DOF models: natural modes of vibration for the B-F mass 
and stiffness distributions 

 

 
Fig. 6.28. IIS 5 vs. FB 10DOF models: natural modes of vibration for the C-F mass 
and stiffness distributions 
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6.3.1.1. Modal expansion of the inertial forces 

Assuming the system responds linearly, the relative participation of 
various modes can be represented by the inertial force distribution in each 

mode. The n-th mode force distribution ns  (with units of mass) is defined 

in terms of the mass matrix M, mode shape n  and excitation influence 

vector  , i.e.: 
 

n n n s M    (6.12) 

 
where 
 

T
n

n
T
n n

 

 
 

M

M
 

 
is the participating mass of the mode n. 

In a response spectrum analysis, ns  is multiplied by the n-th mode spectral 
acceleration to obtain equivalent static forces applied to the building [Ryan 
& Earl 2010]. Based on these principles, the effectiveness of IIS can be 
predicted prior to dynamic analysis by examining the inertial forces 
participating in each mode and the periods of the one or more isolation 
modes.  

For the isolation period ISOT  equal to 3 s, in Figs. 6.29 – 6.30 are plotted 
the modal inertial force distributions, normalized with respect to the mass 
at each level, as a function of the natural periods of vibrations. In 
particular, in Fig. 6.29 are considered the different models for the AD 
distributions, in Fig. 6.30 is depicted the IIS 5 model for the different mass 
and stiffness distributions.  
In Fig. 6.29 can be noticed that the higher modes are effective and are 
related to the LS only. Some differences arise looking at Fig. 6.30, in which 
for the same location of the isolation layer, it is observed the influence of 
the mass distribution. Considering the A distribution (uniform mass), the 
inertial forces in the higher modes are mainly attributable to the LS, with 
the B – C distributions (different masses for US and LS) also the US 
contributes to the expansion of the inertial forces. It is worth noticing that 
in IIS 5 AF the second and third modes possess almost equal periods and 
involve inertial forces in both US and LS, suggesting a coupling of the 
higher modes. 
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Fig. 6.29. Modal expansion of inertial force – AD, ISOT  = 3 s 



6. Parametric Analysis 

 

309 
 

 

 

IIS 5 
AD 

 

IIS 5 
BD 

 

IIS 5 
CD 

n
o

d
e
 

 

IIS 5 
AE 

 

IIS 5 
BE 

 

IIS 5 
CE 

 

 

IIS 5 
AF 

 

IIS 5 
BF 

 

IIS 5 
CF 

 natural periods of vibration [s]  

Fig. 6.30. Modal expansion of inertial force – IIS 5, ISOT = 3 s 

 



Chapter 6 

 

310 
 

6.3.1.2. Mode Coupling Effect (MCE) 

The mode coupling effect (MCE) in IIS has been addressed in literature 
[Wang et al. 2012a, Kobayashi & Koh 2008] (see Chapter 4). 
Basically, it is recognized that the dynamics of structures with mid-story 
isolation is affected by the vibration characteristics of the US and LS, and 
that, depending on these characteristics, two different scenarios for the 
dynamic behavior of the global structure are found: a major influence of 
one of the higher modes, with a prevailing contribution of either the LS 
or US, or a coupling effect of the higher modes, with a contribution of 
both the US and LS. 
For exploiting the higher modes effect, the paper by [Kobayashi & Koh 
2008] employed the theory of Skinner [Skinner 1993] for defining the 
contribution of the higher modes in base isolated structures. Skinner has 
revealed the influence of the higher modes to earthquake response of base 
isolation buildings by sweeping the modal response with free-free mode 
shape vectors.  

Kobayashi & Koh applied the same method to mid-story isolation 
buildings by means of a free-free three degree-of-freedom IIS model. The 
free-free 3DOF IIS model (ff-3DOF IIS) is obtained by setting the 
stiffness of seismic isolation layer equal to zero (i.e. ideal isolation). 
Extending this method to multi-degree-of-freedom IIS model, a free-free 
MDOF IIS model (ff-MDOF IIS) can be defined as follows, Fig. 6.31a. 
 

 
Fig. 6.31. free-free isolated models: (a) ff-MDOF IIS, (b) ff-uDOF US+ISO, (c) 
lDOF LS 
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In the ff-MDOF IIS model the free-free mode shape vectors 

 
T

, ,n nx
,...,  0 0 1 0 1

 and natural circular frequency 
,n

2

0 , for n = (1, …, N), 

with N the total number of the dofs, are given by the following 
characteristic equations expressed in matrix form: 
 

,n
 K M

2

0 0 0 0                    (6.13) 

 

where the mass matrix M and the stiffness matrix 0K , in which the 
stiffness of the isolation system is assumed equal to zero, are given by: 
 

LS, l

LS, l

ISO 0

0,US,

US,

m ;

 
  

    
   

M 0 0
K 0

M 0 0 K
0 K

0 0 M

lx lx1 lxu

lx lxu

1xl 1xu

uxl u+1 x u+1
nxn

uxl ux1 uxu
nxn

 

        (6.14) 
 

where LSM (lxl) and LSK (lxl) are the mass and stiffness matrices of the 

LS, with l the number of the dofs of the LS; USM (uxu) is the mass matrix 

of the US, with u the number of the dofs of the US; 0,USK  (u+1 x u+1) is 

the stiffness matrix of the isolated upper structure with kISO = 0. 
Solving the eigenvalue problem, i.e. equating to zero the determinant of 

the matrix [ K M
2

0 0 ]: 

 
2

0 0,n
det - ω = 0K M        (6.15) 

 

the circular frequency 
,n

2

0  is derived. 

It is worth noticing that, assuming kISO = 0, the stiffness matrix 0K can be 
subdivided into two sub-matrices corresponding to the fixed-base lower 

structure, LSK , and the base-isolated upper structure with kISO = 0, 0,USK

. 
In lieu of the complete ff-MDOF IIS model it is possible to consider two 
distinct models, i.e. the l degree-of-freedom lower structure (l-DOF LS 
model), and the u-degree-of-freedom isolated upper structure with kISO = 
0 (ff-u-DOF US+ISO model). 
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For the l-DOF LS and ff-u-DOF US+ISO models, Eqs. (6.13) and (6.15) 
can be respectively re-written as: 
 

LS LS

2

LS LS LS, j LS LS LS, j
; det -ω = 0 2 K M K M    (6.16) 

2

,US ,US ff US ISO,i US ,US 0,US ff US+ISO,i US
; det - ω = 0


 2

0 0 0 K M K M   

        (6.17) 
 

Solving the eigenvalue problem, it is possible to derive the j-th circular 

frequency 
LS, j

2  of the fixed-base LS from Eq. (6.16) and the i-th circular 

frequency 
ff US ISO,i
2  of the isolated upper structure with kISO = 0 from Eq. 

(6.17), where i = (1, …, u) and j = (1, …, l) are the degree of freedoms of 
the US and LS, respectively.  

In this framework, the MCE can be expressed by a parameter 
i, j

  equal to 

the ratio between the i-th frequency of the ff-u-DOF US+ISO model, 

ff US ISO,i
 , and the j-th frequency of the l-DOF LS model, 

LS, j
 , as follows: 

ff US ISO,i

i, j

LS, j




 


       (6.18) 

The MCE parameter 
i, j

  can be easily calculated, showing that when it is 

equal or very close to one, the MCE occurs. 
From Eq. (6.18) a simple design rule can be derived: No MCE arises if the 
i-th frequency of base-isolated US is far from the j-th frequency of the 
fixed-base LS. In general, it is sufficient that the first two-three frequencies 
of the free-free base-isolated US are far from the fixed-base LS 
counterparts. 
It is worth noticing that the minimum number of degrees of freedom to 
grasp the coupling mode effect is three, i.e. one dof for each structural 
portion (US and LS) and one dof for the isolation layer. Therefore, 
considering the free-free three-degree-of-freedom model, ff-3DOF IIS, 
the sub-models become a single-degree-of-freedom fixed-base LS model, 
SDOF LS, and a free-free two-degree-of-freedom isolated US model, ff-
2DOF US+ISO. 
Solving the eigenvalue problem from Eqs. (6.16) and (6.17), the circular 

frequencies 
LS, j

2  and 
US ISO,iff 

2
 become: 
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 US

LS, LS ff US ISO, US US US

ISO

m
; r

m


 
          

 

2 2 2 2 2

1 2 1 1   (6.19) 

 
where 

US US ISO
r m m is the mass ratio defined in the previous Chapter 4. 

Substituting Eq. (6.19) into Eq. (6.18), the MCE parameter assumes the 
form already defined in Chapter 4, according to [Wang et al. 2012a, 
Kobayashi & Koh 2008] (see Eqs. (4.1) and (4.4)), i.e.: 
 

ff US ISO,2 US US

LS LS

1 r  
  

 
      (6.20) 

 
In this case an unique value of   is provided, since it is possible to couple 

the frequency of the LS to only one higher frequency of the free-free 
isolated US. 
Quite trivially, the check of MCE occurrence through the parameter 

given by Eq. (6.20) is easier than utilizing the parameter i, j (Eq. (6.18)). 

However, the formula (6.20) only account for one possible higher mode 
coupling, and is not able to predict the possible detrimental effect arising 
when more than two significant higher modes are coupled.  
From the above results, it is worth noticing that the participating mass 

ratio corresponding to the isolation system ISO  is equal to the mass ratio 

Rm. In fact, the first participating mass 1 , corresponding to ISO , 
expressed in percentage is given by: 
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where the first mode shape    
T

T
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0,...,0 1 1,...,1     shows 

displacement only in the isolation layer while US and LS are infinitely rigid. 
 
In Fig. 6.32 it is shown the sensitivity of the MCE parameter β as a 
function of the mass ratio α; in the graph are considered all the possible 
combinations between the mass and stiffness distributions and the 
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positions of the isolation layer. The values of β for Idiabashi 1st Building 
(IB) and Shiodome Sumitomo Building (SSB), analyzed in the previous 
Chapter 5, are also provided in the graph. 
 

 
Fig.6.32.   vs.   

 
With continuous red lines is depicted the band of MCE, with a variation 
from the unit values of ± 15%. From Fig. 6.32 can be noticed that the 
larger number of values is included in the MCE band; however only the 
red markers possess a fraction of coupled participating mass equal to, or 
larger than, 5%. From the graph it is confirmed that SSB is characterized 
by MCE. 
 

Considering all the mass distribution (A, B, C), for each position of the 
isolation layer, the mass ratio assumes three different values, as depicted 
in Tab. 6.2. In the table the cases of IB and SSB, and the variation of the 
coupled participating mass of the significant higher modes are also 
provided. 
From Tab. 6.2 can be seen that IIS 9 does not possess significant 
participating mass, while IIS 5 (depicted in bold characters) shows the 
larger fraction of participating mass with values of 28% ÷ 42%. It is worth 
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noticing that the minimum and maximum MCE  respectively correspond 
to the mass distributions C and B. In fact, with the heavier US than the 
LS (C), the first mode is characterized by the maximum participating mass 
while the higher modes by the minimum fraction; on the contrary, with 
the lighter US than the LS (B), the first mode displays the minimum 
participating mass while the higher modes the maximum value. 

In addition, for a mass distribution C, with  and MCE  respectively equal 
to 2.15 and 27%, SSB shows values in line with the corresponding ones of 
IIS 5. 
 

Table 6.2. Variation of  and MCE as a function of the mass distribution 

Model 
  [-]  

 MCE [%]  

A B C 

IIS 9 0.25 0.21 0.31 - 
IIS 8 0.43 0.33 0.57 6 ÷ 7 
IIS 7 0.67 0.50 0.92 6 
IIS 6 1.00 0.73 1.40 6 

IIS 5 1.50 1.08 2.13 28 ÷ 42 
IIS 4 2.33 1.67 3.33 21 ÷ 34 
IIS 3 4.00 2.83 5.75 14 ÷ 24 
IIS 2 9.00 6.33 13.00 7 ÷ 14 

IB  0.28  - 
SSB   2.15 27 

 
Considering only the cases affected by MCE and depicted in Fig. 6.32 
within the red band, the effect of the higher modes and the potential of 
modal coupling effect are shown in Figs. 6.33 ÷ 6.39 as a function of the 
higher frequencies ωLS,j and ffωISO+US,i; each tris of graphs provides all the 
coupled higher modes for the same mass distribution (either A, B or C) 
by varying the stiffness distribution (D, E, F). In these figures, the 

participating mass ratios related to ISO ( ISO ), LS ( LS ), US ( US ), and 

coupled LS+US ( MCE ) are also provided. 
In particular each chart is divided into three parts, which represent the two 
regions where either the higher modes of the LS or the isolated US prevail, 
and the bandwidth, marked by continuous red lines, where coupling of the 
higher modes of LS and US occurs; considering the great number of 
modes (coupled or not) of all isolated models, only the coupled modes in 
the bandwidth are depicted in the charts, for the sake of clarity.  
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For each MCE - point the number of the coupled modes and the value of 
the corresponding participating mass are also provided in the charts. The 
acronym which characterizes each MCE - point is “a - b (c)”, where: a 
represents the mode number of the l-DOF LS model; b the higher mode 
number of the ff-u-DOF US+ISO model; c is the corresponding coupled 
participating mass in percentage.  
In particular going from the ff-10DOF IIS 2 to the IIS 9 model, the 
number a varies between 1 and 8 while the number b between 8 and 1 (see 
Fig. 6.2). Quite trivially, the ff-10DOF BIS and RIS models are excluded 
from this analysis, since the higher modes only concern either the US or 
the LS, respectively, and not the interaction between US and LS. 
From the Figs. 6.33 ÷ 6.39 it can be observed that equal values of 
frequencies ωLS,j and ffωISO+US,i cause a mode coupling effect, i.e. the 
coefficient β is equal to 1. According to the graph, in order to exclude a 
coupling effect is sufficient to have quite different values for the two 
frequencies ωLS,j and ffωISO+US,i. In particular for frequencies which are at 
least one the half part of the other, the MCE is always avoided. 
From Figs. 6.33 ÷ 6.39 it can be also noticed that coupling of higher modes 
arises from the ff-10DOF IIS 8 to the IIS 2 model and the number of the 
significant coupled higher modes (with a participating mass greater than 
5%) increases going from IIS 8 to IIS 2, i.e. from the 8th to the 2nd location 
of isolation system. When the isolation layer is placed at the lower levels, 
the LS possesses few dofs with respect to the isolated US counterparts, 
and, thus, it is possible to combine the few modes of the LS with many 
modes of the isolated US; for the same reason, the coupled participating 
mass decreases going from the ff-10DOF IIS 8 to the IIS 2 model, since 
the mass ratio Rm increases. 
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Fig. 6.33. Mode Coupling Effect – IIS 2 10DOF mode 
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Fig. 6.34. Mode Coupling Effect – IIS 3 10DOF model 
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Fig. 6.35. Mode Coupling Effect – IIS 4 10DOF model 
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Fig. 6.36. Mode Coupling Effect – IIS 5 10DOF model 
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Fig. 6.37. Mode Coupling Effect – IIS 6 10DOF model 
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Fig. 6.38. Mode Coupling Effect – IIS 7 10DOF model 
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Fig. 6.39. Mode Coupling Effect – IIS 8 10DOF model 
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As can be seen from Figs. 6.33 ÷ 6.39, the IIS 5 model, in which the dofs 
of US and LS are comparable, possesses the major significant value of 
coupled participating mass, between 28 ÷ 42%. IIS 5 represents also a 
transition model between two types of behavior: for models going from 
IIS 4 to IIS 2 (i.e. with an isolation layer placed in the first half height of 
the building) the significant MCE occurs when the 1st mode of the LS is 
coupled to the first eight higher modes of the isolated US; on the contrary, 
going from IIS 6 to IIS 8 (i.e. with an isolation layer placed in the second 
half height of the building), the 2nd mode of the isolated US is generally 
coupled to the 1st mode of the LS. 
The range of the significant coupled participating mass for the different 

contribution of the a – b coupled modes is the following: 1 – 1, MCE  = 

24 ÷ 42%; 1 – 2, MCE  = 14 ÷ 24%; 1 – 3, MCE  = 10 ÷ 14%; 1 – 4, MCE  

= 7 ÷ 14%; 1 – 5, MCE  = 7 ÷ 10%; 1 – 6, MCE  = 10%; 1 – 7 and 1 - 8, 

MCE  = 7%. 
A schematic representation of the cases affected by MCE, considering all 
the ff-10DOF IIS models (from RIS to BIS) as well as the possible 
combinations of the mass and stiffness distributions (AD, BD, CD, AE, 
BE, CE, AF, BF, CF), is shown in Fig. 6.40; the figure shows the cases 
when a significant coupling of the higher modes occurs, and reports the 
number of the coupled modes (a – b), as well as the corresponding 

participating mass ratio MCE  (expressed in percentage). 
From Fig. 6.40 it can be observed that 31 cases are affected by MCE; 
subdividing these cases for the coupled modes 1-1, 1-2 (or 2-1), 1-3, 1-4, 
1-5, 1-6, 1-7, 1-8, 2-2, the following classification can be drawn.  
The number of each a - b coupled modes observed in the ff-10DOF IIS 

models is: 7 for the couple 1-1 in CD, AF, BF IIS 5 ( MCE  = 28%, 35%, 

42%, respectively), AD, BD, CE IIS 4 ( MCE  = 27%, 34%, 21%, 

respectively and BE IIS 3 ( MCE  = 24%); 6 for the couple 1-2 in CF IIS 4 

( MCE  = 21%), AD, CD, BF IIS 3 ( MCE  = 19%, 14%, 24%, respectively) 

and AE, BE IIS 2 ( MCE  = 10%, 14%, respectively); 4 for the couple 1-3 

in CF IIS 3 ( MCE  = 14%) and AD, BD, CE IIS 2 ( MCE  = 10%, 14%, 7%, 

respectively); 3 for the couple 1-4 AD, CD, BF IIS 2 ( MCE  = 10%, 7%, 

14%, respectively); 2 for the couple 1-5 in CD, AF IIS 2 ( MCE  = 7%, 

10%, respectively); 1 for the couple 1-6 in AF IIS 2 ( MCE  = 10%); 1 for 

the couple 1-7 in CF IIS 2 ( MCE  = 14%); 1 for the couple 1-8 in CF IIS 

2 ( MCE  = 14%); 1 for the couple 2-2 in BF IIS 6 ( MCE  = 6%); 5 for the 
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couple 2-1 in AE IIS 6 ( MCE  = 5%), AD, BD IIS 7 ( MCE  = 6%), AF, CF 

IIS 8 ( MCE  = 7%). 
It is worth noticing that, while in all the models only two coupled higher 
modes are observed, in IIS 2 model are also present three coupled higher 
modes in 4 cases, i.e.: AD (1-5 and 1-6), CD (1-4 and 1-5), AF (1-5 and 1-
6), CF (1-7 and 1-8). 
Looking at the mass (A, B, C) and stiffness (D, E, F) distributions the 
following considerations can be done in terms of the minimum and 
maximum number of coupled modes, considering either the mass 
distribution or the stiffness distribution, or even, taking into account both 
the mass and stiffness distributions. 
In particular the mass distribution B shows the minimum number of 
coupled modes, i.e. 9, while the mass distributions A and C show the 
maximum number of coupled modes, i.e. 11; the stiffness distribution E 
shows the minimum number of coupled modes, i.e. 6, while the stiffness 
distribution F shows the maximum number of coupled modes, i.e. 13; the 
AE, BE, CE distributions show the minimum number of coupled modes, 
i.e. 2; otherwise, the AD and CF distributions show the maximum number, 
i.e. 5.  
Considering both the location of the isolation level and the mass and 
stiffness distributions, the models AF, BF IIS 5 and BD IIS 4 show the 

maximum percentage of the coupled participating mass ratio MCE , 
respectively corresponding to 35%, 42% and 34%. 
In very general terms, with a US stiffer and heavier than the LS (CE), 
minimum or negligible MCE is observed. 
In fact, considering an isolation layer located from the 4th to the 2nd level, 
with CE distributions, the minimum significant coupled mass is obtained 
(7%); otherwise, considering an isolation layer up to the 4th level, for the 
same distributions no MCE arises. 
The different mass and stiffness distributions can be also compared with 
the reference AD distributions commonly adopted in the design practice; 
it can be observed that: for the mass distribution A, when the US is stiffer 
than the LS (AE), the minimum significant MCE is observed (5%), 
instead, when the US is more flexible than the LS (AF), significant MCE 
is expected; for the stiffness distribution D, when the US is lighter than 
the LS (BD), significant MCE occurs; when the US is lighter and either 
stiffer (BE – case of the Iidabashi 1st building) or more flexible (BF) than 
the LS, significant MCE is expected; when the US is heavier and more 
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flexible than the LS (CF – case of the Shiodome Sumitomo building), 
significant MCE arises; however, the heavier the US, the smaller the 
coupled mass participating ratio. 
It is worth noticing that, with the sub-models l-DOF LS and ff-u-DOF 

US+ISO it is possible to define the l-modes of vibrations of the LS and 

the u-modes of the isolated US. Hence, entering in the complete model 

ff-MDOF IIS, it is possible di define the order of the modes of vibration 

and, thus, associate each higher mode to either the LS or the isolated US. 

Therefore, it is necessary operate a simple conversion from the couples (a 

– b), accounting for the sub-models, to the couples of the complete model, 

namely: (a’ – b’), i.e.: 

the number a' is equal to the sum of a and b, i.e. a’ = a + b, while the next 
number b’ is equal to a’ plus one, i.e. b’ = a’+1. 
Consequently, the significant couples of numbers a – b equal to 1-1, 1-2 
(or 2-1), 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 2-2, in the l-DOF LS and ff-u-DOF 
IIS models correspond to the significant couples of numbers a’-b’ equal 
to 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 4-5,  in the 10 DOF IIS models, 
respectively. 
 
The coupled mode shapes of the fourteen 10DOF IIS models affected by 
MCE are depicted in Figs. 6.41 ÷ 6.51; in each graph the coupled 
participating mass ratio, indicated as   for the sake of brevity, is also 
provided. 
In particular in Figs. 6.41 ÷ 6.46 are reported the 2nd-3rd, 3rd-4th, 5rd-6th 
significant coupled modes; each tris of graphs provides all the coupled 
higher modes for the same mass distribution (either A, B or C) by varying 
the stiffness distribution (D, E, F).  
In Fig. 6.47 a-b and Fig. 6.47 c are reported the 4th-5th and 5th-6th significant 
coupled modes, respectively. In Figs. 6.48 ÷ 6.51 the 4th÷6th, 5th÷7th, 6th÷8th, 
8th÷10th tris of coupled higher modes; the first, second and third graph 
provides the first, second and third coupled mode. 
From Figs. 6.41 ÷ 6.51 it can be noticed that the coupled higher modes 
involve deformations both in the US and LS; however, in the 10DOF IIS 
4 and IIS 5 models the displacements of the structural portions are 
comparable in both the coupled modes while in the other 10DOF ISO 
models these modes mainly involve deformations either in the LS or in 
the US.  



6. Parametric Analysis 

 

327 
 

 

Legend: 1 – 1, red; 1 – 2 or 2 – 1 or 2 - 2, blue; 1 – 3, green; 1 – 4, orange; 1 – 5 ÷ 1 – 8, grey 

Fig. 6.40. Schematic representation of all the 10DOF ISO models subjected to MCE 
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Fig. 6.41. MCE - 2nd and 3rd coupled natural modes: (a) IIS 4 AD, (b) IIS 3 BE – 
IIS 4 BD, (c) IIS 4 CE 

 

 

Fig. 6.42. MCE - 2nd and 3rd coupled natural modes: (a) IIS 5 AF, (b) IIS 5 BF, (c) 
IIS 5 CD 

 

 
Fig. 6.43. MCE - 3rd and 4th coupled natural modes: (a) IIS 2 AE, (b) IIS 2 BE, (c) 
IIS 4 CF 
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Fig. 6.44. MCE - 3rd and 4th coupled natural modes: (a) IIS 3 AD, (b) IIS 3 BF, (c) 
IIS 3 CF 

 

 

Fig. 6.45. MCE - 3rd and 4th coupled natural modes: (a) IIS 7 AD – IIS 8 AF, (b) 
IIS 7 BD, (c) IIS 8 CF 

 

 

Fig. 6.46. MCE - 5th and 6th coupled natural modes: (a) IIS 2 AD, (b) IIS 2 BF, (c) 
IIS 2 CD 
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Fig. 6.47. MCE - coupled natural modes: (a) 4th and 5th: IIS 2 BD – IIS 6 BF, (b) 
4th and 5th: IIS 2 CF – IIS 3 CF, (c) 5th and 6th: IIS 2 BF 

 
 

 

Fig. 6.48. MCE - 4th ÷ 6th coupled natural modes – IIS 2 AD: (a) 4th mode, (b) 5th 
mode, (c) 6th mode 

 

 

Fig. 6.49. MCE - 5th ÷ 7th coupled natural modes – IIS 2 CD: (a) 5th mode, (b) 6th 
mode, (c) 7th mode 
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Fig. 6.50. MCE - 6th ÷ 8th coupled natural modes – IIS 2 AF: (a) 6th mode, (b) 7th 
mode, (c) 8th mode 

 

 

Fig. 6.51. MCE - 8th ÷ 10th coupled natural modes – IIS 2 CF: (a) 8th mode, (b) 9th 
mode, (c) 10th mode 

6.4. TIME HISTORY ANALYSIS 

In order to take into account the different frequency content of 
earthquakes, a time history analysis is carried out considering 11 Italian 
natural accelerograms (Fig. 6.52), i.e.: 1976 Friuli Tolmezzo NS, 1980 
Irpinia Bagnoli EW, 1980 Irpinia Calitri EW, 1997 Nocera Umbra NS, 
2009 L'Aquila EW, 2012 Emilia NS, 2016 Accumuli EW (30/10), 2016 
Amatrice EW (26/08), 2016 Amatrice EW (30/10), 2016 Norcia EW 
(30/10), 2017 Casamicciola EW. 
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Fig.6.52. Italian natural accelerogram (from 1976 to 2017) 

 

The ratio between the base share force of the controlled structure, IIS, to 

the uncontrolled configuration, FB, i.e. b,IIS b,FBv V / V , expresses the 

effectiveness of the IIS design strategy in a very synthetic way. 
For the AD distributions, in Figs. 6.53 – 6.54 is depicted the mean 
response of the 11 accelerograms in terms of the base shear ratio v as a 

function of the isolation period ISOT ; in Fig. 6.53 are considered the 
models from RIS to IIS 5 and in Fig. 6.54 from IIS 6 to BIS. 
As can be seen from the figures, the isolation period of 2 s represents a 
transition from the tuning mass zone (Fig. 6.53) to the isolation zone (Fig. 
6.54); in addition, IIS 5 (depicted in red in Fig. 6.53) is the transition model 
from the two zones, since its response is constant for all the isolation 

periods. For ISOT  less than 2 s, in Fig. 6.53 are obtained the minimum 
values of v, with a reduction of the base of about 10% ÷ 25% with respect 

to the uncontrolled configuration; for ISOT  larger than 2 s, in Fig. 6.54 are 
obtained the minimum values of v, with a reduction of about 40% ÷ 90%.  

It is worth noticing that, while in the tuning zone with ISOT  larger than 2 
s the response of the controlled configuration can be comparable or 
greater than the uncontrolled one, as in IIS 9, in the isolation zone a good 
reduction of the base shear is obtained independently on the isolation 
period, thanks to the major robustness of the system. 
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Fig.6.53. v vs. ISOT : from RIS to IIS 5 

 

 

Fig. 6.54. v vs. ISOT : from IIS 6 to BIS 
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6.5. CONCLUSIVE REMARKS AND DESIGN 

IMPLICATIONS 

This chapter has explored the dynamic properties of the inter-story 
isolation system (IIS) structures, with particular attention to the mode 
coupling effect of the higher modes (MCE). 
Eigenvalues and time history analyses are carried out on multi-degree-of-
freedom isolated models, representative of a 10-story residential building, 
have been considered, and the influence of different locations of the 
isolation system, as well as, of various mass and stiffness distributions and 
of isolation periods have been investigated. Multi-degree-of-freedom 
fixed-base models are also considered for comparison. 
In the controlled structure the isolation interface has been moved from 
the top to the bottom story changing level by level, with extreme models 
related to a roof isolated structure (RIS) and a base isolated structure (BIS). 
The different mass and stiffness distributions considered in the analysis 
are representative not only of the commonly distributions adopted for 
structural application (i.e. uniform mass distribution and linear stiffness 
distribution) but also of extreme real inter-story isolated structures, which 
show US lighter or heavier, or even, more flexible or stiffer than the LS 
counterparts. 
The results of the eigenvalue analyses have shown that the coupling of the 
higher modes arises from the 10DOF IIS 8 to the IIS 2 model and the 
number of the coupled higher modes increases going from IIS 8 to IIS 2, 
i.e. from the 8th to the 2nd location of isolation system. In fact when the 
isolation layer is placed at the lower levels, the LS possesses few degrees-
of-freedom with respect to the isolated US counterparts, and, thus, it is 
possible to combine the few modes of the LS with a larger number of 
modes of the isolated US. For the same reason, the coupled participating 
mass decreases going from the 10DOF IIS 8 to the IIS 2 model, since the 
mass ratio Rm increases. 
Significant values of the coupled participating mass ratio, between 5% and 
42%, is observed when only the first mode of the lower structure is 
coupled to the first fives higher modes of the isolated upper structure. 
In general, looking at the mass and stiffness distributions, when the US is 
heavier and stiffer than the LS, the minimum significant MCE is observed, 
vice versa, significant MCE is expected; however, the heavier the US, the 
smaller coupled mass participating ratio. 
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Considering both the placement of the isolation level and the mass and 
stiffness distributions, it is observed that, the larger values of coupled 
participating mass are obtained for comparable degrees of freedom 
between US and LS, i.e. for IIS 4 and IIS 5 models. Considering a lighter 
US than LS, a coupled mass of 34% is obtained for IIS 4; with a lighter 
and more flexible US than LS, the maximum coupled mass is reached for 
IIS 5, i.e. 42%. 
The analyses also show that the mass ratio between the structural parts is 
more significant than the mass distribution; the stiffness distribution 
affects the dynamic behavior of the controlled configuration more than 
the mass distribution, and a stiffer and heavier US than the LS improves 
the dynamic response of the overall structure. 
Even though MCE depends on the dynamic properties of the lower and 
upper structure, it is independent on ISO characteristics and can be 
successfully prevented by a careful design. 
For this reason, a free-free multi-degree-of-freedom IIS model, in which 
the stiffness of the isolation layer is assumed null (i.e. perfect isolation), 
was developed. With the ff-MDOF IIS, the system can be seen as a 
combination of the base isolated US, with the stiffness of seismic isolation 
layer equal to zero (ff-u-DOF ISO+US), and the fixed-base LS (l-DOF 
LS).  
In this framework an analytical formulation for avoiding MCE is derived 
for MDOF systems, and, then, extended to 3DOF IIS models. The 
analytical formulation can be translated in the simple design rule: no MCE 
arises if the i-th frequency of base-isolated US is far from the j-th frequency 
of the fixed-base LS. In more simplified terms, it is generally sufficient 
that the first two-three frequencies of the free-free base-isolated US are 
far from the first two frequencies of the fixed-base LS. 
From the results of the eigenvalues and time history analyses, the zones 

of mass damping, intermediate isolation and base isolation are clearly 

identified. In particular, going from the mass damping to the base isolation 

zone, it can be observed that, the participating mass related to the higher 

modes is larger than, comparable to, and negligible with respect to the 

fundamental participating mass, respectively. In addition, in the mass 

damping zone, the maximum reduction of the base shear is observed for 

less isolation periods; on the contrary, in the isolation zones, the minimum 

base shear is obtained for large isolation periods. However, in the isolation 
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zones, due to the major robustness of the system, , a good reduction of the 

seismic response is reached for all the isolation periods. 
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Equation Chapter (Next) Section 7 

7. IIS FOR RETROFIT 

7.1. INTRODUCTION 

By new findings in the area of seismic effects on buildings, an increasing 
number of existing structures are facing the necessity of seismic retrofit. 
There is not yet a practical method for a large number of buildings to 
improve their performances in the case of an earthquake incident. 
In some cases, an elevation with inter-story isolation has been proved to 
serve as a valid retrofit strategy for existing buildings, avoiding massive 
retrofit interventions in the lower structure and disruption of the hosted 
activities. In an ideal case, it is possible to apply this technique on top of 
the structure simply by a vertical addition. This is considered in fact, a 
lucrative retrofit approach in the places in which land for new buildings is 
expensive [Tsuneki et al 2008, Sumnicht 2008, Dutta et al. 2009, Ziyaeifar 
& Noguchi 1998, Chey et al. 2013, Villaverde 2002]. IIS can also be applied 
in the mid-height of the existing structures by a more complicated process 
[Ziyaeifar & Noguchi 1998, Ming et al. 2004, Zhou et al. 2004]. 
 
The first application of seismic isolation in the world that permits the 
vertical expansion of an existing structure by introducing isolation 
bearings between the existing structure and the addition has been the 
China Basin Berry Street of San Francisco, see Chapter 3. In essence, the 
isolated addition acts more like a tuned mass damper than an isolated 
structure. The existing building which serves as the base for the isolated 
addition is about 251.5 m long and 33.5 wide with two expansion joints at 
approximately the third of the length. The new addition is a continuous 
structure that bridges over the expansion joints and utilizes concentric 
braced frames for its lateral strength. This is truly a unique application of 
the base isolation technology where the plane of isolation has been moved 
from the base of the building to the roof of an existing building. [Dutta et 
al. 2009]. 
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The vertical addition of IIS as a retrofit strategy should be a particularly 
fascinating subject in Italy, given the high seismicity of almost all national 
territory and the need to safeguard our non-monumental masonry 
buildings, which possess large reserve of compression strength.  
The idea is that the additional weight of the IIS elevation has a stabilizing 
effect with regards to the seismic action, and, if the vertical addition is well 
designed, the seismic base shear is not increased, or even decreased, thanks 
to the mass damper effect exerted by the isolated addition. 
 
In this perspective, the effectiveness and feasibility of IIS elevation as 
seismic retrofit strategy for masonry buildings is here proposed. The 
chapter is articulated into the following steps: a) parametric dynamic 
analysis on a three-lumped-mass simplified model, in order to detect the 
optimal characteristics for the upper structure, b) choice of the actual 
design configuration responding to the optimal combination of isolation 
and upper structure, and c) seismic assessment of the three-dimensional 
FEM model of the design configuration including modal, elastic response 
spectrum and time history analyses. 

7.2. SIMPLIFIED 3DOF MODEL 

In IIS buildings the isolation layer is introduced at an intermediate level, 
therefore a lower structure (LS) and an upper structure (US) can be 
defined. IIS building can be preliminarily analyzed through a simplified 
three-lumped-mass (3DOF) system [Wang et al. 2011, Moriizumi & 
Kobayashi 2012], the first mass mLS representing the lower structure and 
the other two masses, mISO and mUS, respectively representing the upper 
structure (in particular, mISO is located at the floor immediately above the 
isolation system). Stiffness and damping constant of lower and upper 
structure and of isolation layer are referred to as kLS and cLS, kUS and cUS, 
kISO and cISO (Fig. 7.1). The stiffness of each DOF is represented by an 
equivalent linear shear spring. The stiffness of the isolation layer is 
represented by an equivalent linear elastic spring as well, describing the 
global behavior of the chosen isolators. 
The nominal frequencies of the three portions are defined as follows:  
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LS ISO US

LS ISO US

LS ISO US US

k k k

m m m m
     


   (7.1) 

 
 

  

Fig. 7.1. Simplified 3DOF system used for IIS structures 

7.3. CASE STUDY 

The case study considered in this paper is a three-story masonry structure 
rising in Giulianova, Italy (Fig. 7.2), built probably in the 17th century and 
still in use nowadays to host offices. The plan has a trapezoidal shape, the 
maximum dimensions measured along the two main directions X and Y 
being 26.4 m and 19.7 m. The story height is 4.50 m. The masonry 
structure is in good overall conditions, apparently exhibiting no signs of 
the past earthquakes (such as detachments or cracks in the walls, or 
between walls and floors). The structure can be defined regular in 
elevation and also quite regular in plan. According to the technical 
documentation of the building, the total seismic mass (i.e. the mass of the 
lower structure mLS as defined in the 3DOF simplified model) is equal to 
2900 t.  
A push over analysis with forces proportional to the equivalent static 
forces has been carried out to detect the lateral stiffness of the equivalent 
single degree-of-freedom existing structure. 
The value of the equivalent lateral stiffness of the building (i.e. the stiffness 
of the lower structure kLS as defined in the 3DOF simplified model), taken 
from the results of previous analyses [Ghersi et al. 2011], is equal to 175 
MN/m. 

mUS 

mISO 

mLS 

kUS, cUS 

kISO, cISO 

kLS, cLS 
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Fig. 7.2. Case study building: (a) front view, (b) first floor plan 

 
In order to estimate the feasibility of a vertical addition for the case study 
building, a preliminary assessment of the stress state in the walls at the 
ground level has been carried out.  
As a result, an average compressive stress due to gravity loads always less 
than 40% of the ultimate compression resistance has been observed for 
all masonry walls. Therefore, it can be concluded that the lower structure 
is capable of bearing the extra loads deriving from an upper addition, 
although not excessively heavy. 
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7.4. SIMPLIFIED PARAMETRIC ANALYSIS 

In order to individuate the optimal configuration of the upper structure 
leading to the best overall behavior of the whole IIS building, a parametric 
dynamic analysis has been carried out using the 3DOF simplified model 
described above. In particular, the known dynamic properties of the lower 
structure are: mLS = 2900 t, kLS = 175 MN/m, TLS = 0.809 s.  
The properties of the upper structure and of the isolation system will be 
chosen according to the results of the parametric study, for which three 
parameters have been adopted, namely: a) a mass ratio α, defined as the 
total isolated mass, MISO = mISO + mUS, normalized to the mass of the 
lower structure mLS; b) a stiffness ratio K, defined as the stiffness of the 
upper structure kUS normalized to the stiffness of the lower structure kLS; 
c) a period ratio I, defined as the nominal period of the isolation system 
TISO normalized to the nominal period of the fixed-base upper structure 
TUS. The values chosen for the parameters are:  
 

 
ISO

LS

M
0.1 1

m
      (from a very light to a very heavy upper structure) 

 
US

LS

k
K 0.1,0.3,0.5,1.0

k
   (from a very flexible to a very stiff upper structure) 

 
ISO

US

T
I 3,4,5,10

T
    (from a less to a more effective isolation system) 

It must be reminded that the parameter I is actually defined for BIS 
buildings, an often appointed as isolation ratio. A minimum value of 3 has 
been chosen because it is the minimum one as recommended by many 
building codes (including Italian NTC2008) for base isolated structures.  

7.4.1. Design parameters 

The parameters α and K respectively provide information on the amount 
of isolated mass and on the flexibility of the US with respect to the LS. In 
order to distribute the isolated mass between the US and the isolation layer 
and to compare the US and the LS flexibility with respect to the isolation 
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layer, the linear theory formulated by Kelly [Kelly 1997, Naeim & Kelly 
1999] for BIS can be assumed as reference for IIS.  

7.4.1.1. Distribution of the isolated mass between the 
US and ISO system 

The parameter α, indicative of the amount of the isolated mass, does not 
provide information on how it is subdivided between the superstructure 
and the isolation system. 
In Tab. 7.1 , considering the i-th floor, are reported the values of the upper 

structural floor mass ( US,im ), the mean of the floor mass, im , the isolation 

mass, ISOm , the total floor isolated mass, ISO,i ISO US,iM m m  , and, also, 

the mass ratios US,i ISO,im / M , ISO im / m , ISO,i ISOM / m  for some Japanese 

isolated buildings, both at the base and at an intermediate level. 
In particular, the intermediate isolated buildings are the Iidabashi 1st 
Building [Murakami et al. 2000, Tsuneki et al. 2008-2009], and the 
Shiodome Sumitomo Building [Sueoka et al. 2004, Tsuneki et al. 2008-
2009]; the base isolated buildings are the Main Building of the Shimizu 
Corporation [Nakamura et al. 2009-2011, Okada et al. 2009], the TC 
Building [Miyazaki et al. 1988] and the Tokyo Prada Aoyama [Nakai 2008, 
Nakai et al. 2009].  

From Tab. 7.1 can be observed that the ratio US,i ISO,im / M  varies between 

0.72 and 0.92 (going from 5 to 14 floors) while the ratio ISO im / m  varies 
between 1.20 and 1.85 (neglecting the value provided by Tokyo Prada 
Aoyama building which possesses an atypical isolation floor). 
In the linear theory formulated by [Naeim & Kelly 1999] for BIS, Kelly 

proposes a value of the mass ratios US,i ISOm / M  in between 0.6 and 0.8, 

and of the mass ratio ISO im / m  in between 1.5 and 2.0. 
In line with the mean values derived by some isolated buildings (Tab. 7.1) 

and by the literature, assuming the mass US,im  equal to two third of the 

corresponding mass at the i-th level in the fixed-base structure, i.e.: 
 

ISO US,i

2
m m

3
    (7.2) 

the isolated mass at the i-th level is given by: 
 

ISO,i ISO US,i US,iM m m 1.667m      (7.3) 
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From formula (7.3) can be noticed that the presence of the isolation 
system increases the mass of the corresponding non-isolated floor about 
of the 70%. 

Tab. 7.1. Isolated mass for some real japanese isolated building 

Building n. floors US,im  im  ISOm  ISO,iM  US,i

ISO,i

m

M

 

i

ISOm
m

 
ISO,i

ISO,i

M
m

 

 US [t] [t] [t] [t] [t] [t] [t] 

IB 5 10899 2180 4022 14921 0.73 1.85 3.71 
SSB 14 47528 3395 4030 51558 0.92 1.19 12.79 
MSC 5 5035 1007 1426 6460 0.78 1.42 4.53 
TC 5 5766 1153 1778 7544 0.76 1.54 4.24 
TPA 7 24456 3494 9384 33840 0.72 2.69 3.61 

IB = Iidabashi Building; SSB = Shidome Sumitomo Building; MSC = Main building 
Shimitzu Corporation; TC = TC building; TPA Tokyo Prada Aoyama 

 
In addition, the following mass ratios can be defined: the ratio of the total 
mass of the upper structure to the total isolated mass, (n) ; the ratio of 

the upper floor mass to the mass of the isolation system, US,ir ; the ratio of 

the total upper mass to the mass of the isolation system, US (n)r . 

Thus, the mass ratios (n) , US,ir  and US (n)r  are given by: 

 

US

ISO

(n, , str.)

( )

m 3n
(n)

M 3n 2




  


   (7.4) 

US,i

US,i

ISO

m

m
r     (7.5) 

US

US

ISO

(n, , str.)
(n)

m

m
r


    (7.6) 

where the subscripts n and str indicate the total number of the US floors 
and the type of structure considered, respectively. 
Considering a number of floor between 1 and 3, the values of the mass 

ratios (n) , US,ir  and US (n)r  are given in Tab. 7.2. 

The number of floors is equal to the ratio of the total US mass, 

US (n, , str.)m  , and the mass of a single floor, US (str)m ,which depends on 

the type of structure (RC: reinforced concrete structure, S: Steel structure, 
M: masonry structure), i.e.: 
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Tab. 7.2. Mass ratios 

n. floors (n)  US,ir  US (n)r  

[-] [-] [-] [-] 

1 0.600 1.5 1.5 
2 0.750 1.5 3.0 
3 0.818 1.5 4.5 

 

ISO

US,str

(n) ( )
(n, , str)

M
n *

m





    (7.7) 

 
Rounding up (n, , str)n *  , in Tab. 7.3 is provided the number of floor 

depending on the structural type (RC, S, M) by varying the mass ratio α. 

 

Tab. 7.3. number of US floor in base of the structural type and the mass ratio α 

  n. floors Structural 
type 

(n)  USr  

[-] [-]  [-] [-] 

0.1 1 S 0.600 1.5 
0.2 1 RC 0.600 1.5 
0.3 2 S 0.750 3.0 
0.4 2 RC 0.750 3.0 
0.5 3 S 0.818 4.5 
0.6 3 RC 0.818 4.5 
0.7 2 M 0.750 3.0 
0.8 2 M 0.750 3.0 
0.9 2 M 0.750 3.0 
1.0 3 M 0.818 4.5 

 

7.4.1.2. Flexibility of the structural portions 

According to Kelly’s linear theory for the 2DOF representing the B.I. 
structure, a base isolated structure is mainly affected by the first mode, 

with a mode shape  
T

T
1 1,  , where the parameter ε represents the 

amplification of the displacement in the US with respect to the isolation 
layer.  
The parameter ε can be estimated as the square of the ratio between the 

frequencies of the base isolated system, b , and of the fixed base 

structure, s , or, equivalently, between the period T𝑠 and T𝑏, i.e.: 

   
2 2

b s s b/ T / T      . 
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In the case of IIS, we can define not only the amplification of the 
displacement in the US with respect to the isolation layer, but also the 
amplification of the displacement in the LS with respect to the isolation 
system.  

Therefore, substituting sT  and bT  with UST  and ISOT , respectively, the 
parameter ε can be estimated as a function of the isolation ratio I: 
 

2 2

US

US

ISO

T 1

T I

   
     

   
   (7.8) 

 

Analogously for the LS, the parameter 𝜀 can be expressed as  
 

2 2

LS LS

LS

ISO US

T T

T I T

   
     

   
   (7.9) 

 
It is also possible to estimate ε as a function of the modal characteristics 
of the first mode. Thus, two parameters, which express the flexibility of 
US and LS with respect to the ISO system, can be defined, i.e. the ratios 

of drifts of the upper and lower structure to the isolation drift US,IIS1  and 

LS,IIS1 : 

 

US,1 US

US,IIS1 US

ISO,1 US1 (1 )

 
    

    
   (7.10) 

LS,1

LS,IIS1 LS

ISO,1

US

1

1

K


    


 
 

   (7.11) 

 

It is worth to noticing that, while the drift ratios US,IIS1 and US are almost 

equal, confirming that the US+ISO portion behaves as an isolated upper 
structure, according to Kelly’s linear theory for 2DOF B.I. structure; the 

drift ratios LS,IIS1  and LS are not equal since the isolated upper structure 

behaves as a mass damper for the lower structure. 

In the parametric analysis the ratios US,IIS1  and LS,IIS1  vary in the range of 

order O (10-3 ÷ 10-1), going from to a very stiff to a very flexible structural 
portion (superstructure and substructure) with respect to the isolation 
system. Broadly speaking, considering the fundamental mode, if both 
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US,IIS1  and LS,IIS1  result equal or less than the order of magnitude 10-2, the 

isolation can be defined “perfect” involving displacements only in the 
isolation interface. 
 
For all the possible combination of the parameters α, K and I, it is possible 
to calculate the nominal period of the superstructure and of the isolation 
layer. For the sake of brevity, in Tab. 7.4 are provided the period values of 
TUS and TISO for the following coupling of the parameters α – K – I: α = 
{0.1, 0.6, 1.0} – K = {0.1, 0.3, 0.5, 1.0} – I = {3, 4, 5}. 

 

Tab. 7.4. Nominal periods TUS and TISO 

  I K = 0.1 K = 0.3 K = 0.5 K = 1.0 

[-] [-] TUS [s] TISO [s] TUS [s] TISO [s] TUS [s] TISO [s] TUS [s] TISO [s] 

0.1 
3 

0.627 
1.880 

0.362 
1.085 

0.280 
0.841 

0.198 
0.594 

4 2.506 1.447 1.121 0.792 
5 3.133 1.809 1.401 0.991 

0.6 
3 

1.716 
5.147 

0.991 
2.972 

0.767 
2.302 

0.543 
1.628 

4 6.863 3.962 3.069 2.170 
5 8.579 4.953 3.837 2.713 

1 
3 

2.314 
6.941 

1.336 
4.007 

1.035 
3.104 

0.732 
2.195 

4 9.254 5.343 4.139 2.926 
5 11.568 6.679 5.173 3.658 

7.4.2. Modeling of damping 

In order to completely define the 3DOF model for IIS, the damping ratios 
of the US, LS and ISO must be defined (from which the damping 

constants cLS, cISO and cUS can be obtained). Typical values are: LS  = 0.05, 

ISO  = 0.10 and US = 0.05.  

It is worth noticing that, assuming different values of the damping ratios 
for the three DOFs, the IIS model is characterized by non-proportional 
damping. 
A non-classical or non-proportional viscous damped system is characterized by 
complex-valued natural modes, and does not satisfy the Caughey and O’ 

Kelly identity: 1 1 CM K KM C  (with M , K  and C the mass, stiffness 
and damping matrices) [Veletsos & Ventura 1986]. 
Therefore, the common design assumption of proportional damping, 
which leads to real-valued natural modes of vibration identical to the ones 
of the associated undamped system, and allows for neglecting the off-
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diagonal terms of the damping matrix C  (i.e. the Caughey and O’ Kelly 
identity is satisfied) could not be adequate to grasp the actual dynamic 
behavior of the system. 
However, for the sake of simplicity, the modal dynamic linear analyses of 
the simplified 3DOF IIS model are firstly carried out assuming 
proportional damping; then, this assumption is removed for the response 
spectrum and time history analyses carried out on the complete MDOF 
3D model of the structure with IIS (3D IIS), see § 7.6. 

7.4.3. Modal Analysis 

Modal analyses are carried out on three different simplified lumped mass 
models: the 3DOF IIS structure, the fixed-base single-degree-of-freedom 
lower structure (SDOF LS), and the two-degree-of-freedom base isolated 
upper structure (2DOF ISO+US).  
For the sake of brevity, only some results of the wide parametric analysis 
are here discussed, i.e. the ones obtained for: case A: α = 1.0, K = 0.1, I = 
5; case B: α = 0.1, K = 0.5, I = 3; case C: α=0.6, K=0.1, I = 3; case D: 
α=0.1, K=1.0, I = 3. 
The case A (α = 1.0, K = 0.1, I = 5) is representative of an ideal IIS with 
a rigid superstructure, frequencies of the two structural parts well 
separated from each other and from the isolation frequency; the case B (α 
= 0.1, K = 0.5, I = 3) is representative of a IIS with a rigid superstructure, 
frequencies of the two structural parts well separated from each other and 
a frequency of the LS not so far from the isolation frequency; the cases C 
(α=0.6, K=0.1, I = 3) is representative of a IIS with both structural 
portions quite flexible with frequencies not well separated from each 
other; the case D (α=0.1, K=1.0, I = 3) is representative of a IIS with 
frequencies of the two structural parts well separated from each other and 
a frequency of the LS greater than the isolation frequency. 
In the following both the natural and complex modes of vibration are 
considered. In particular, damping ratios equal to 0.05 and 0.10 are 
assumed for the structural portions and for the isolation system. 

7.4.3.1.  Natural modes of vibration 

The natural vibration modes obtained for the three models of the cases A 
÷ D are depicted in Figs 7.3 ÷ 7.6, respectively; the i-th displacement of 

the j-th mode, i.e. j
i , is normalized with respect to the maximum 
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displacement of the j-th mode j
max . The values of periods and mass 

participating ratios of the four simplified models are also provided in Figs 
7.3 ÷ 7.6.  
The first modal shape for both the cases A and C represents the first mode 
of the 2DOF ISO+US corresponding to the isolation, with minor 
deformation in the LS. Also in terms of period and mass ratio, it can be 
observed that the first period T1,3DOF IIS is nearly coincident with the first 
period T1,2DOF ISO+US, and the participating mass ratio, L1,3DOF IIS, is very close 

to the ratio m ISO totR M / M . Some differences between the two cases A 
and C arise looking at the higher modes. The second and the third modes 
of the A 3DOF IIS model are respectively corresponding to the second 
mode of the 2DOF ISO+US, with almost no deformation in the LS, and 
of the mode of the SDOF LS, with almost no deformation in the US. 
These correspondences of mode shapes also reflect in terms of very close 
values of periods and mass ratios (almost equal to zero and 1- L1,3DOF IIS  
for the second and the third modes, respectively). On the contrary, the 
second and the third modes of the C 3DOF IIS model involve 
displacements both in the US and LS, thus suggesting higher mode 
coupling, which can produce an undesirable amplification effect in the 
seismic response of the superstructure. In addition, the higher periods of 
the C 3DOF IIS model are quite similar, and both the second and the third 
mass ratios are different from zero.  
Conversely, the case B 3DOF IIS is similar to the case A 3DOF IIS; the 
differences between the models are the following: in B the first mode 
involves displacement both in the LS and in the isolation layer, suggesting 
a “non-perfect” isolation; the period T1,3DOF IIS is slightly higher than the 
period T1,2DOF ISO+US, and the mass ratio is greater than the ratio 

m ISO totR M / M ; the second and the third modes respectively 
correspond to the second mode of the 2DOF ISO+US and the mode of 
the SDOF LS.  
The Case D is an a-typical IIS behaving as a FB structure, since the 
isolation period is less than the period of the lower structure, the order of 
the modes is inverted. It means that, the first mode is the mode of the 
existing structure while the higher modes are the modes of the isolated 
upper structure. However, observing the mode shapes of the isolated 
model it is shown that the first mode involves large displacement in the 
lower structure and almost the total mass of the existing structure is 
engaged; the second mode involves displacement in the isolation system 
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with almost no deformation in the LS and a quite significant mass ratio 
participates; the third mode shows displacement both in the isolation layer 
and in the lower structure. 
 

   

  

 

Fig. 7.3. Mode shapes for the case A: (a) 3DOF IIS, (b) 2DOF ISO+US, (c) SDOF 
LS 
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Fig. 7.4. Mode shapes for the case B: (a) 3DOF IIS, (b) 2DOF ISO+US, (c) SDOF 
LS 
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Fig. 7.5. Mode shapes for the case C: (a) 3DOF IIS, (b) 2DOF ISO+US, (c) SDOF 
LS 
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Fig. 7.6. Mode shapes for the case D: (a) 3DOF IIS, (b) 2DOF ISO+US, (c) SDOF 
LS 

7.4.3.1.1. Modal Coupling Effect (MCE) 

The mode coupling effect (MCE) in IIS has been addressed in literature 
[Wang et al. 2012a, Kobayashi & Koh 2008] (see Chapter 6); the author, 
recognizing that the global dynamic behavior of the mid-story isolated 
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structure depends on the vibration characteristics of the US and LS, have 
derived a simple design rule: no MCE arises if the second frequency of 
base-isolated US is far from the frequency of the fixed-base LS. This 
statement derives from the analytical study carried out by the author on a 
free-free 3DOF IIS model (ff-3DOF IIS), obtained by setting the stiffness 
of seismic isolation layer equal to zero (i.e. ideal isolation) [Skinner et al. 
1993, Kobayashi & Koh 2008]. With the ff-3DOF IIS, the system can be 
seen as a combination of the base isolated US, with the stiffness of seismic 
isolation layer equal to zero (ff-2DOF ISO+US), and the fixed-base LS 
(SDOF LS).  
In this framework, the MCE can be expressed by a parameter , being 

ff US ISO,2 LS/    , i.e. the ratio between the second frequency of the ff-

2DOF ISO+US model, ff US ISO,2 , and the frequency of the SDOF LS 

model, LS . The parameter   can be rewritten in terms of the nominal 
frequencies of the US and LS as follows:  
 

US US

LS

1 r 
 


   (7.12) 

 
and can be easily calculated, showing that when it is equal or very close to 
one, the MCE occurs. 
As can be notice in Eq. (7.12), the MCE does not depend on the isolation 
period TISO, and consequentially on the isolation ratio I. Considering each 
combination of the parameters α and K, for every values of I, only the 

cases α = 0.6, K = 0.1 are affected by MCE, with   equal to 0.94. 

However, with the free-free model the isolation is assumed perfect leading 
to an infinite nominal isolation period. Indeed, in the 3DOF IIS models 
the isolation period possesses a finite value and, thus it can influence the 

effect of the higher modes. As can be noticed from Tab. 7.5, even if   is 

independent from TISO, increasing the isolation period (or the parameter 
I), the participation of one of the two coupled modes is reduced until it 
becomes negligible. 
The effect of the higher modes and the potential of modal coupling effect 
are shown in Fig. 7.5 for all the pragmatic cases herein considered (A: α = 
1.0, K = 0.1, I = 5; B: α = 0.1, K = 0.5, I = 3, C: α=0.6, K=0.1, I = 3, D: 

α=0.1, K=1.0, I = 3) as a function of the higher frequencies LS  and 

ff US ISO,2  of the complete ff-3DOF IIS model. 
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In particular the graph is divided into three parts, which represent the two 
regions where either the 2nd or the 3rd mode prevails, and the bandwidth, 
marked by dashed lines, where coupling of the 2nd and the 3rd modes 
occurs. 
 

Table 7.5. Cases affect by MCE: α=0.6 – K = 0.1 for I = 3; 4; 5 

    node K = 0.1 

  T [s] Γ [-] 

I = 3 
1 5.400 

0.831 
0.796 

0.391 
2 0.141 
3 0.468 

I = 4 
1 7.053 

0.840 
0.804 

0.385 
2 0.037 
3 0.578 

I = 5 
1 8.731 

0.846 
0.806 

0.381 
2 0.013 
3 0.606 

 

From the Fig. 7.7 it can be observed that equal values of both frequencies 

LS  and ff US ISO,2  cause a mode coupling effect, as in case C. However, 

according to the graph, in order to exclude a coupling effect is sufficient 

to have quite different values for the two frequencies LS  and ff US ISO,2 . 

In particular for frequencies which are at least one the half part of the 
other, as in case B, the MCE is always avoided. 
As can be seen in Figs 7.3 ÷ 7.4 the prevailing higher mode in case A is 
the 3rd mode while in case B is the 2nd mode. Thus, is reasonable to assume 

that when ωLS is almost two times larger than ff US ISO,2 , the effect of the 

3rd mode is predominant, the third modal frequency is approximately equal 

to the frequency of the substructure, i.e. ff 3 ≈ LS , and the participating 

mass ratio of the 2nd mode, ff 2 , is equal to zero (as in case A). On the 

contrary, when ωLS is almost the half of ff US ISO,2 , the effect of the 2rd 

mode is predominant, the second modal frequency is approximately equal 

to the frequency of the substructure, i.e. ff 2  ≈ LS , and the participating 
mass ratio of the 3rd mode, Γ3, is equal to zero (as in Case B). When there 

is a coupling effect, both frequencies ff 2  and ff 3  are almost equal and 

both participating mass ratios ff 2  and ff 3  are different from zero (as in 
case C depicted in Fig. 7.5). 
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It is worth to noticing that the case D, depicted in the graph for 
completeness, is out of meaning since the higher modes are the first and 
the second mode of the isolated upper structure and thus, the interaction 
between the structural portions is lost.  

 

Fig. 7.7. Effect of the higher modes  

7.4.3.2. Complex modes of vibration 

In the case of normal (real) modes, the displacement at the various DOFs 
reach their maximum at the same time and pass through the equilibrium 
position at the same time. This is not the case of complex modes, where 
both the maximum values and the null values of modal displacements are 
attained at different time instants for the various DOFs ([Rainieri & 
Fabbrocino 2014]). As a result, while the phase angles are all 0° or 180° 
for normal modes (or in general are aligned), both amplitude and phase 
characterize the motion of the different DOFs in the case of complex 
modes. 
In order to define quickly the modal complexity and thus, to determine 
whether proportional damping could be used to satisfactorily simulate the 
more practical non-proportional damping, the complexity plots of the 
amplitudes and angles of the complex modal vectors for the cases A ÷ D 
are provided in Fig. 7.8. 
In Fig. 7.8 each graph shows the three complex eigenvectors which are 
normalized with respect to the maximum amplitudes of those modes to 
obtain dimensionless real and imaginary components in between 0 ÷ 1; 
the periods and damping ratios of the complex modes are also provided 
in each chart. As can be seen in Fig. 7.8, in each graph the complex 
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eigenvectors are not aligned, suggesting a non-proportional damping. In 
particular, the case C, which is affected by MCE, provides the maximum 
misalignment. Looking at the complex damping ratios the following 
considerations can be drawn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.8. Complexity plots: (a) Case A, (b) Case B, (c) Case C, (d) Case D  

 
Increasing the isolation period, the first complex damping ratio 1  is quite 

less than the isolation damping ratio ISO  (Case A); on the contrary, when 

the fundamental period approaches the nominal period of the lower 
structure, 1  reaches the damping ratio of the lower structure LS  (case 

D). The prevailing higher modes possess the lower damping ratios which 
are, anyway, larger than the damping ratio of the structural portions. 

Therefore, in a linear dynamic analysis, the assumption of damping ratios 
respectively equal to 0.10 and 0.05 for the isolation system and the 
structural portions leads to the following situations: in cases A and C, 1  

is less overestimated while 2  and 3  are quite underestimated; in case B, 

1  is overestimated while 2  and 3  are underestimated; in case D all the 

damping ratios are overestimated. 
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For this reason, the assumption made is almost true for the case A and 
overestimate the case D. However, in order to recognize if the assumption 
made can still be valid, linear and non-linear analyses are carried out to 
clarify the influence of each mode on the overall seismic behavior of the 
mid-story buildings. 

7.4.4. Response spectrum analysis 

Linear dynamic analyses have been carried out on the 3DOF IIS and the 
SDOF LS models, using the elastic acceleration response spectrum 
prescribed by the Italian NTC2008 [D.M. 14/01/2008] for the specific 
case study site (ag = 0.162 g, Fo = 2.347, TC* = 0.333 s, S = 1.47), see Fig. 
7.9.  
For both the 3DOF IIS and the SDOF LS models, a constant modal 
damping ratio of 0.05 is set; the base shear force of the 3DOF IIS model, 
Vb,3DOF IIS, is evaluated through the complete quadratic combination CQC. 
For the sake of brevity only some results are considered herein, i.e. the 
ones obtained for I = 3 in terms of story shear force (Figs. 7.10 ÷ 7.21), 
story displacement (Figs. 7.22 ÷ 7.24) and base shear (Fig. 7.25) are 
depicted. 
 

 

Fig. 7.9. NTC2008 elastic acceleration response spectrum (ξ = 0.05) 

7.4.4.1. Story Shear Force 

In Figs. 7.10 ÷ 7.21, the story shear forces and the corresponding modal 
components are depicted as a function of the isolation period TISO; each 
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curve is built up by varying the mass ratio α for a fixed value of the stiffness 
ratio K. In particular, in Figs. 7.10 ÷ 7.13 are respectively provided the LS 
story shear, QLS, and the corresponding modal components, QLS1, QLS2 and 
QLS3; in Figs. 7.14 ÷ 7.17 are respectively provided the ISO story shear, 
QISO, and the corresponding modal components, QISO 1, QISO 2 and QISO3; 
in Figs. 7.18 ÷ 7.21 are respectively provided the US story shear, QUS, and 
the corresponding modal components, QUS1, QUS2 and QUS3. 
Considering the LS, from Figs. 7.10 ÷ 7.13 is shown that: for TISO less than 
1 s the story shear is given by the prevailing contribution of the first mode 
while for TISO larger than 1 s it is due to the prevailing contribution of 
either the 2nd mode or the 3rd mode. 
Looking at the ISO and US, from Figs. 7.14 ÷ 7.21 is shown that for all 
the isolation periods covered, the story shear force is due to the prevailing 
contribution of either the 2nd mode or the 3rd mode. 
However, the presence of MCE (α = 0.6, K = 0.1 for each I) does not 
increase the response in terms of story shear force.  

 

Fig. 7.10. Story shear force: QLS vs. TISO 
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Fig. 7.11. Modal story shear force: QLS1 vs. TISO 

 

 

Fig. 7.12. Modal story shear force: QLS2 vs. TISO 



Chapter 7 

 

360 
 
 

 

Fig. 7.13. Modal story shear force: QLS3 vs. TISO 

 

 

 

Fig. 7.14. Story shear force: QISO vs. TISO 
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Fig. 7.15. Modal story shear force: QISO1 vs. TISO 

 

Fig. 7.16. Modal story shear force: QISO2 vs. TISO 
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Fig. 7.17. Modal story shear force: QISO3 vs. TISO 

 

Fig. 7.18. Story shear force: QUS vs. TISO 
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Fig. 7.19. Modal story shear force: QUS1 vs. TISO 

 
 

 

Fig. 7.20. Modal story shear force: QUS2 vs. TISO 

 
 



Chapter 7 

 

364 
 
 

 

Fig. 7.21. Modal story shear force: QUS3 vs. TISO 

 

7.4.4.2. Story displacement  

In Figs. 7.22 ÷ 7.24, the story relative drifts are depicted as a function of 
the isolation period TISO; in particular, each curve is built up by varying the 
mass ratio α for a fixed value of the stiffness ratio K.  
As can be seen from Figs. 7.22 ÷ 7.24, the isolation story (quite trivially) 
displays the larger story drifts and the upper structure shows a peak 
corresponding to the detrimental mode coupling effect (Case C: α=0.6, 
K=0.1, I = 3). 
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Fig. 7.22. LS - relative drift 

 
 

 

Fig. 7.23. ISO - relative drift 
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Fig. 7.24. US - relative drift 

 

7.4.4.3. Base Shear 

The ratio between the base share force of the inter-story isolated structure 

and the fixed-base LS, i.e. b,3DOF IIS b,SDOF LSv V / V  , can be used for a 

preliminary guess of the effectiveness of the IIS elevation in protecting the 
LS from seismic actions. 
In Fig. 7.25, the base shear ratio v is depicted as a function of the isolation 
period TISO, in particular each curve is built up by varying the stiffness ratio 
K for a fixed value of the mass ratio α.  
As can be seen from Fig. 7.25, for very low and high values of TISO the 
base shear ratio v is respectively, greater than, and almost equal to, one, 
while for values of TISO in the range of 1.0 ÷ 2.5 s the ratio v is less than 
one.  
When TISO approaches zero, the 3DOF IIS structure behaves as a fixed-
base structure with an additional mass and a global stiffness lower than 
the SDOF LS structure. This condition can be represented by the case D 
3DOF IIS (depicted in Fig. 7.25 with a square marker) in which, as can be 
seen previously, the first mode is related to the LS, which possesses now 
larger mass than the original configuration and, consequently, the base 
shear becomes greater than the corresponding one in the reference model 
(SDOF LS). 
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On the other hand, when TISO tends to infinity (i.e. perfect isolation 
system) or more exactly is greater than 6.5 s, the flexible interface 
decouples the isolated US and the LS, the spectral acceleration 
corresponding to the first period tends to zero; no matter how flexible the 
isolation layer is, the LS cannot take advantage from this additional 
flexibility [Ziyaeifar & Noguchi 1998], thus the base shear is only given by 
the contribution of the LS. This condition can be represented by the case 
A 3DOF IIS (depicted in Fig. 7.25 with a square marker) in which the 

perfect isolation is provided by the fact that the parameters US,IIS1  and 

LS,IIS1  are less or equal to 10-2, respectively, involving a first modal 

displacement only at the isolation interface, see Fig. 7.3.  
For values of TISO in the range of 1.0 ÷ 2.5 s the isolation can be defined 
“non-perfect”, the first mode involves displacement both in the LS and in 
the isolation interface with a high value of the first mass ratio with respect 
to the case of a perfect isolation; the case B 3DOF IIS (depicted in Fig. 

7.25 with a square marker) describes this situation since US,IIS1  and LS,IIS1  

are of the order 10-2 and 10-1, respectively, see Fig. 7.4. Furthermore, the 
“non-perfect” isolation in middle-story isolation system allows an 
improvement in the effectiveness of IIS as a retrofit strategy for existing 
building with a reduction of the base shear with respect to the one of the 
existing structure despite of the additional mass. 
In Fig. 7.25 is also depicted with a square marker the cases C 3DOF IIS 
affected by MCE. It is worth noticing that, the case C reaches the 
minimum v despite of the MCE; in fact, the “non-perfect” isolation is able 
to minimize the MCE reducing the coupled participating mass ratio of the 
higher modes. 
In addition, from Fig. 7.25 can be noticed that the case B (α = 0.1, K = 
0.5, I = 3) shows the minimum v with respect to all the possible 
combinations of the parameters α – K – I, i.e. 0.767 at TISO = 0.841 s 
which is almost equal to TLS (scatter of 4%). 
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Fig. 7.25. v vs. TISO (I = {0.5, 3, 4, 5, 10}) 

7.4.5. Comparison between two 3DOF IIS models 

In this section the influence of the mass ratio, α, and of the isolation 
period, TISO, on the response of the retrofitted building is considered. 
Starting from the case B, two configurations, namely: E and F, which 
possess the same stiffness ratio and two different mass ratios are chosen, 
i.e. case E: α = 0.1, K = 0.5 and case F: α = 0.5, K = 0.5. 
The isolation period is varied between 0.5 and 2.5; the damping ratios of 

both the structural portions, US  = LS  = S , and of the isolation period, 

ISO , are assumed equal to 0.05 and 0.10, respectively. 

Response spectrum analysis (RSA) and time history - spectrum compatible 
ground motion (THA) are carried out on the E and F 3DOF models. 

7.4.5.1. Modeling of the isolators bearings by bilinear 
modeling 

The bilinear model, which globally describes the behavior of high damping 
rubber bearings (HDRBs) [Naeim & Kelly 1999] is depicted in Fig. 7.26. 
The design parameters which completely define the bilinear model are: the 
elastic stiffness k1, the post-yield k2, the characteristic strength Q, the 
design displacement D.  
 

A

B

D
C
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Fig. 7.26. Bilinear HDRB model 

 

The effective stiffness, defined as the secant slope of the peak-to-peak 
values in the hysteresis loop, is given by: 
 

eff 2 y

Q
k k , D D

D
      (7.13) 

 
where Dy is the yield displacement equal to 

 

y

1 2

Q
D

k k



   (7.14) 

 
And the area of the hysteresis loop (the energy dissipate per cycle) WD is 
equal to 
 

 D yW 4Q D D     (7.15) 

 

The effective damping eq  is given by: 

eq 2
eq

4Q(D Dy)

2 k D


 


   (7.16) 

 
The data for building the bilinear model are: 
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   (7.17) 

 
Instead, the design unknowns are the quantities k1, k2 and Dy. 
To build the bilinear model parametrically, it is possible to define a 
stiffness ratio between the post-yield and elastic stiffnesses, a, and a 
displacement ratio between the design and yield displacements, b. The 
ratios a and b are given by: 
 

2 y

1

k D
a ; b

k D
     (7.18) 

 
The parameter a is generally assumed equal to 0.1 [Naeim & Kelly 1999]; 
the yield displacement Dy can be expressed in terms of the thickness of 
the rubber layer tr through the following [Foti & Mongelli 2011]: 
 

y r

D
D t   


   (7.19) 

 
In which the coefficient λ varies between 0.05 and 1.0, the thickness tr is 
equal to the ratio D/γ. 

 From (7.18), the parameter b assumes the form: 
 

b





   (7.20) 

 
Put in system the Eqs. (7.16) ÷ (7.20), the elastic stiffness k1 can be 
expressed in terms of the parameters a and b as follows: 
 

eq eq

1

k
k

2b(1 a)(1 b)




 
   (7.21) 
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7.4.5.2. Response Spectrum Analysis (RSA) 

Response spectrum analysis (RSA) are carried out on the E and F 3DOF 
models varying the isolation period between 0.5 s and 2.5 s. 
The hypothesis of proportional damping is adopted and then removed; 
for this reason, three cases are considered: case 1: ξ equal to 0.05 for all 
modes (as assumed in the previous analyses); case 2: ξ equal to 0.10 for all 
modes; case 3: ξ interpolated as a function of the period T (ξ = 0.10 at T 
= T1 and ξ = 0.05 at T = T2). 

The case 1 (ξ = 0.05) underestimates the contribution of the isolation 
system; the case 2 (ξ = 0.10) overestimates the contribution of the US and 
LS; the case 3 (ξ = ξ (T)) grasps the global behavior of the system, 
associating a modal damping ratio ξ equal to 0.10 for the first mode of the 
isolation system and equal to 0.05 from the second mode involving the 
US and LS. The different response spectra under the different assumption 
for the damping ratios are depicted in Fig. 7.27. 
 

 

Fig. 7.27. Elastic Response Spectra 

 
In Fig. 7.28, for all the cases 1 ÷ 3, the base shear is depicted as a function 
of the isolation period TISO, the base shear of the reference configuration 
is also shown for comparison. In particular, the chart on the left is referred 
to the case E (α = 0.1, K = 0.5) while the chart on the right to the case F 
(α = 0.5, K = 0.5).  
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Fig. 7.28. RSA: (a) α = 0.1, K = 0.5, (b) α = 0.5, K = 0.5 

 
As can be seen from Fig. 7.28a (case E) almost the same results are 
observed for the cases 2 and 3 (ξ = 0.10 and ξ = ξ (T)) when TISO is larger 
than 1 s, and for the cases 1 and 3 (ξ = 0.05 and ξ = ξ (T)) when TISO is 
less than 0.75 s; for TISO in between 0.75 ÷ 1.0 s exists a transition zone in 
which the response of the case 3 is intermediate between the cases 1 and 
2. 
From Fig. 7.28b (case F) the same trend is observed. However, thanks to 
the larger mass ratio, the system is characterized by a greater robustness 
and, thus, for all the isolation periods the base shear in the case F is less 
than the corresponding counterpart in the case E. In addition, the 
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transition zone is more extended, with extreme values equal to 0.75 s and 
2.0 s. 
From the above considerations, it can be noticed that the damping ratio ξ 
is deeply dependent on the dynamic characteristics of the structural 
portions (US and LS) and on the isolation period TISO. Therefore, three 
behavioral situations can be considered: (a) TISO < TLS; (b) TISO ≈ TLS; (c) 
TISO > TLS. 
The condition a (TISO < TLS) can be observed in cases like the case D 
previously described. In this situation, the mid-story isolated structure 
behaves as a FB structure, the base shear is due to the prevailing 
contribution of the first mode. For these reasons, the damping ratio ξ = 
ξ(T) can be interpolated as follows: ξ1 = ξS and ξ2 = ξISO. 
The condition b (TISO ≈ TLS) can be observed in cases like the case B 
previously described. In this situation the base shear is due to the 
contribution of all the modes. For these reasons, the damping ratio ξ = ξ 
(T) can be assumed constant and equal to the mean between the damping 
ratios of the structural portions and the isolation system, i.e. 

S ISO
( ) / 2     . 

The condition c (TISO > TLS) can be observed in cases like the case A 
previously described. In this situation the base shear is due to the 
prevailing contribution of the higher modes. For these reasons, the 
damping ratio ξ = ξ(T) can be interpolated as follows: ξ1= ξISO and ξ2= ξS. 
Increasing the isolation period, the first complex damping ratio η1 is quite 
less than the isolation damping ratio ξISO (Case A); on the contrary, when 
the fundamental period approaches the nominal period of the lower 
structure, η1 reaches the damping ratio of the lower structure ξLS (case D). 
The prevailing higher modes possess the lower damping ratios which are, 
anyway, larger than the damping ratio of the structural portions. 
Therefore, in a linear dynamic analysis, the assumption of damping ratios 
respectively equal to 0.10 and 0.05 for the isolation system and the 
structural portions leads to the following situations: in cases A and C, ξ1 is 
less overestimated while ξ2 and ξ3 are quite underestimated; in case B, ξ1 is 
overestimated while ξ2 and ξ3 are underestimated; in case D all the 
damping ratios are overestimated. 
For this reason, the assumption made is almost true for the case A and 
overestimate the case D. However, in order to recognize if the assumption 
made can still be valid, linear and non-linear analyses are carried out to 
clarify the influence of each mode on the overall seismic behavior of the 
mid-story buildings. 
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It is worth noticing that in the transition zone of the Case F, the 

assumption of a first damping ratio equal to 
S ISO

( ) / 2      is valid for 

isolation period close to the nominal period of the LS; in the other cases 
an estimation of the damping ratios in the complex modes of vibration is 
necessary. Therefore, in lieu of the average between the structural and 
isolation damping ratios, the values of the damping ratios in the complex 
modes can be assumed. 

7.4.5.3. Time History Analysis (THA) 

Non-linear time history (THA) has been performed considering a set of 
10 spectrum-compatible ground motions with the site of Pozzuoli (ag = 
0.162 g, Fo = 2.347, TC* = 0.333 s, S = 1.47) [Software SIMQKE_GR] 
fixing the spectral ordinate at 1.0 s, see Fig. 7.29. 
The cases E and F fully account for the nonlinear behavior of the isolation 
devices (Fig. 7.26), while both the US and LS are considered elastic. 

 

Fig. 7.29. Elastic Response spectrum – compatible ground motions 

 
Starting from the results of the RSA in which three behavioral situations 
are identified, in the THA for TISO less than 1s a constant damping is 
assumed, i.e. ξ1 = ξ2 = 0.05; for TISO equal and larger than 1 s the 
interpolated damping is considered, i.e. ξ1 = 0.00 and ξ2 = 0.05 (neglecting 
the contribution of US and LS to the isolation mode). 
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The base shear obtained from the time history analyses of the two 
configurations, i.e. α = 0.1- K = 0.5 and α = 0.5 - K = 0.5, by varying the 
isolation period between 0.5 and 2.5 s, is shown in Fig. 7.30. Each couple 
of graphs refers to the results obtained for each model; the results of the 
RSA for the case 3 (ξ = ξ(T)) are also depicted in the figure for 
comparison. 
For the case E the curves of the mean THA and the RSA are almost 
overlapped for all the range of the isolation period; instead, some 
differences arise looking at the corresponding curves in the case F because 
of the assumptions made for ξ = ξ(T).  
Both the cases E and F display a reduction of the base shear with respect 
to the original configuration in a range of isolation period between 0.75 ÷ 
1.25 s and 0.75 ÷ 2.0 s, respectively. In fact, the large mass ratio in the 
second configuration enhances the robustness of the mid-story isolation 
system behaving as a MD. 
The peak drift and acceleration values obtained from the time history 
analyses of the two configurations, i.e. α = 0.1- K = 0.5 - TISO = 1 s and α 
= 0.5 - K = 0.5 - TISO = 2 s, are shown in Figs. 7.31 and 7.32, respectively. 
Each couple of graphs refers to the results obtained for each model. 
Considering the results of the mean TH, from Figs. 7.31 and 7.32 can be 
observed that almost equal peak values for the LS are obtained for both 
the configurations; in the second configuration the peak drift of the 
isolation system is larger than, while both the peak acceleration values of 
the ISO and US are less than, the corresponding counterparts in the first 
configuration.  
Therefore, in the second configuration a mass damper effect is observed 
for the LS while an isolation effect is shown for US and ISO. 
It means that, the second configuration, characterized by the larger mass 
ratio and isolation period, represents a more robust system which allows 
almost the same reduction of the LS response and the larger reduction of 
the US response with respect to the first configuration. 
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Fig. 7.30. THA vs. RSA: (a) α = 0.1, K = 0.5, (b) α = 0.5, K = 0.5 
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Fig. 7.31. α = 0.1, K = 0.5: (a) peak drift values, (b) peak acceleration values 
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Fig. 7.32. α = 0.5, K = 0.5: (a) peak drift values, (b) peak acceleration values 

7.5. CHOICE OF THE DESIGN CONFIGURATION FOR 

THE UPPER STRUCTURE AND THE ISOLATION 

SYSTEM 

Starting from the previous results, the find design configuration has been 
chosen considering the following criteria: a) large reduction of the seismic 
base shear Vb with respect to the original configuration (i.e. the pre-
existing building before the IIS elevation, b) an adequate value of TISO 
(around 2.0 s) in order to emphasize the isolation behavior of the IIS 
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system, c) prevention of MCE in order to avoid displacement 
amplification in the upper structure, and d) construction feasibility of the 
vertical addition, in terms of number of stories (not larger than three). 
According to the above criteria, two eligible configurations, appointed as 
G and H, have been individuated, and four corresponding structural 
solutions have been designed (Tab. 7.6).  
The final choice concerns a two-story reinforced concrete frame structure, 
with 30 x 40 cm2 columns and 30 x 60 cm2 beams. For the isolation system, 
high damping rubber bearings of the FIP [FIP Industriale] have been used. 
To place the isolators, 12 positions have been individuated at the 
intersections between the walls of the lower structure (Fig. 7.33). The 
mechanical properties of the isolators have been chosen in order to reduce 
the eccentricity between the floor mass centroid and the stiffness centroid. 
Two different diameters D of the bearings have been used, respectively 
equal to 500 and 550 mm, with equivalent lateral stiffness keq respectively 
equal to 1.25 and 1.51 kN/mm. The other characteristics of the isolators 
are: the shear modulus, G = 0.80 MPa; the total thickness of the rubber, t 
= 126 mm; the equivalent damping ratio, ξ = 0.10; the maximum 
horizontal displacement for lateral actions, δmax = 250 mm. Each isolator 
has been verified against the vertical loads associated both to seismic and 
non-seismic combinations. 
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Fig. 7.33. Location in plan, typology and properties of the isolators 
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Table 7.6. Structural characteristics of the two chosen configurations 

   T1 TISO v Material Structure n. floors Columns 
Shear 
walls 

Beams 

 [s] [s] [-]   [-]    

0.5, 0.5, 3 2.040 1.880 0.895 
Concrete Frame 2 30 x 40 - 30 x 60 

Steel CBF 3 HEB 260 - IPE 550 

0.5, 1, 4 1.913 1.772 0.881 
Concrete Shear w. 2 30 x 40 30 x 150 30 x 60 

Steel CBF 3 HEB 260 - IPE 550 

7.6. THREE-DIMENSIONAL ANALYSIS 

In order to assess the response of the inter-story isolated building, more 
refined three-dimensional models have been developed and used for FEM 
analyses through the software SAP2000. In particular, three different 
models are considered: the IIS structure (3D IIS), the fixed-base lower 
structure (3D LS), and the base isolated upper structure (3D ISO+US). 
The 3D IIS model is composed of lower and upper structure and the 
isolation layer. The 3D LS and 3D ISO+US models are defined to grasp 
the dynamic behavior of the two portions the 3D IIS model is composed 
of. The 3D models have been analyzed through modal analysis, dynamic 
linear analysis (elastic response spectrum analysis), and non-linear time 
history analysis. 

7.6.1. Modal Analysis 

The values of periods and mass participating ratios are shown in Tabs. 7.7 
– 7.8; the number of the natural modes provides a total participating mass 
equal or greater than 85%.  
The significant modes of the 3D LS model show that the prevailing 
directions do not coincide with the main directions X and Y, involving 
both the translational and the torsional contributions. The 3D ISO+US 
model shows the typical modes of vibrations of a base isolated structure, 
i.e. the first two translational modes and the third rotational mode; 
however, the solution adopted for the isolation system provides a slight 
coupling between the translational and rotation modes. As can be seen in 
the previous § 7.4.3, the IIS model combines the modes of vibration of 
the LS and the isolated US when MCE is not expected. In particular, it 
can be observed that the first three modes of the IIS structure correspond 
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to the first three modes of the isolated US in terms of period and 
prevailing direction of vibration. Moreover, the first period T1 of the 3D 
IIS model (1.97 s) is nearly identical to the one obtained by the simplified 
3DOF IIS model (2.04 s), and the first two participating mass ratios L1,x-x 

and L2,y-y (0.289 and 0.304) are very close to the ratio between the isolated 
mass and the total mass of the building (0.330). The higher modes (beyond 
the third) of the 3D IIS correspond to the modes of the 3D LS and the 
higher modes of the 3D ISO+US, involving displacements either in the 
US or in the LS. However, the significant higher modes of the IIS model 
show displacements mainly in the LS.  
 

Table 7.7. Modal analysis of FEM 3D IIS models 

Mode 3D IIS 
T [s] Lx 

[-] 
Ly 

[-] 
Rz 

[-] 

1 1.969 0.289 0.067 0.194 
2 1.938 0.058 0.304 0.058 
3 1.435 0.000 0.000 0.112 
4 0.553 0.009 0.112 0.004 
5 0.440 0.341 0.092 0.223 
6 0.317 0.137 0.158 0.062 
7 0.307 0.000 0.000 0.000 
13 0.126 0.001 0.101 0.037 
14 0.116 0.074 0.019 0.009 
15 0.088 0.021 0.010 0.199 

 

Table 7.8. Modal analysis of FEM 3D ISO+US and LS models 

Mode 3D ISO+US 3D LS 
T [s] Lx 

[-] 
Ly 

[-] 
Rz 

[-] 
T [s] Lx 

[-] 
Ly 

[-] 
Rz 

[-] 

1 1.835 0.997 0.001 0.223 0.611 0.337 0.205 0.196 
2 1.828 0.001 0.998 0.506 0.486 0.292 0.305 0.001 
3 1.364 0.000 0.000 0.269 0.271 0.015 0.088 0.405 
4 0.305 0.001 0.000 0.000 0.137 0.190 0.069 0.107 
5 0.279 0.000 0.001 0.000 0.125 0.075 0.217 0.039 
6 0.228 0.000 0.000 0.000 0.084 0.018 0.002 0.125 
7 0.168 0.000 0.000 0.000 0.071 0.021 0.080 0.088 
13         
14         
15         
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7.6.2. Response spectrum Analysis 

The dynamic linear analyses have been conducted using the same elastic 
response spectrum considered for the simplified 3DOF analysis (Fig. 
7.27); seismic actions have been applied along the two main directions X 
and Y separately. For the sake of brevity, only some results are here 
discussed, i.e. the ones obtained for the 3D IIS and the 3D LS models; in 
addition, the 3DOF IIS model is considered for comparison.  
The hypothesis of proportional damping adopted in the simplified 
dynamic analyses is verified and then removed; for this reason, three cases 
are considered: Case 1: ξ equal to 0.05 for all modes (as assumed for the 
simplified model); Case 2: ξ equal to 0.10 for all modes; Case 3: ξ 
interpolated as a function of the period T (ξ = 0.10 at T = T1 and ξ = 0.05 
at T = T4). 

The case 1 (ξ = 0.05) underestimates the contribution of the isolation 
system; the case 2 (ξ = 0.10) overestimates the contribution of the US and 
LS; the case 3 (ξ = ξ(T)) grasps the global behavior of the system, 
associating a modal damping ratio ξ equal to 0.10 for the first of the three 
modes of the isolation system and equal to 0.05 from the forth mode 
involving the US and LS. 

In Tabs. 7.9 – 7.10 for the 3D IIS model in all the cases 1 ÷ 3, for the 3D 
LS and 3DOF IIS models are provided: the top absolute displacement of 
the US and LS, i.e. dUS and dLS, and the absolute displacement of the 
isolation interface dISO; the top-bottom relative displacement of the US 
and LS, i.e. ΔUS and ΔLS, and the relative displacement of the isolation 
interface ΔISO; the base shear along the main directions x and y, i.e. Vb,x 
and Vb,y.  
From Table 3 can be seen that, comparing the values obtained for the case 
1 with the ones of the simplified analysis, the 3DOF model offers a good 
prediction of the results in terms of base shear, even though the simplified 
model overestimates the seismic response in terms of displacements 
(40%). Looking at the displacements of the 3D IIS models, can be 
observed that: the ones of the US and the isolation system are nearly 
identical in the cases 2 and 3, since a BIS respectively slightly 
underestimates and overestimates the modal damping ratio of the isolation 
and the main mass; the ones of the LS are similar in the cases 1 and 3, 
since the lower structure cannot take advantage from the isolation 
flexibility.  
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Comparing the 3D IIS models, the values of the base shear in the cases 1 
and 3 are almost equal, and are slightly larger than the ones of the case 2. 
However, due to the slight plan irregularity of the lower structure, a base 
shear component is always generated in the direction orthogonal to the 
applied seismic action. In addition, the case 3 shows a LS displacement 
slightly lower than and a base shear slightly higher than the reference 3D 
LS structure. 
 

Table 7.9. Dynamic linear analysis of FEM 3D IIS models 

Models 3D IIS 

Case 1 

ξ = 0.05 

Case 2 

ξ = 0.10 

Case 3 

ξ = ξ(T) 
X Y X Y X Y 

Absolute 
displ. 

dUS [cm] 15.38 14.87 12.77 12.36 12.78 12.36 
dISO [cm] 14.05 13.76 11.66 11.43 11.66 11.44 
dLS [cm] 3.61 2.44 3.11 2.20 3.51 2.32 

Inter-story 
displ. 

ΔUS [cm] 1.33 1.11 1.11 0.93 1.12 0.92 
ΔISO [cm] 10.44 11.32 8.55 9.23 8.15 9.12 
ΔLS [cm] 3.61 2.44 3.11 2.20 3.51 2.32 

Base shear Vb,x [kN] 8813 4372 7704 2955 8730 4369 
 Vb,y [kN] 5411 6656 3897 6070 5408 6548 

 

Table 7.10. Dynamic linear analysis of 3DOF IIS and 3D FEM LS models 

Models 3DOF IIS 3D LS 

 

ξ = 0.05 

ξ = 0.05 

X = Y X Y 

Absolute 
displ. 

dUS [cm] 21.87   -  - 
dISO [cm] 20.06   -  - 
dLS [cm] 5.05  4.01 2.97 

Inter-story 
displ. 

ΔUS [cm] 1.81   -  - 
ΔISO [cm] 15.01   -  - 
ΔLS [cm] 5.05  4.01 3.22 

Base shear Vb,x [kN] 8851  7761 5693 
 Vb,y [kN]  -  5693 7216 

7.4.3. Time History Analysis 

A non-linear time history analysis is carried out applying the N/S 
acceleration component of the 1940 El Centro earthquake record (PGA 
= 0.319 g) along the two main directions X and Y separately. In particular, 
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the 3D IIS model fully accounts for the non-linear behavior of the 
isolators, while both lower and upper structures are considered elastic. 
 In the following are reported the results obtained for the 3D IIS and 3D 
LS models in terms of peak relative story displacement (Fig. 7.34a), peak 
absolute story acceleration (Fig. 7.34b), base shear and energy 
components.  
From Fig. 7.34a can be seen that, moving from the top LS story (LS3) to 
the top US story (US2)  
a reduction of the relative story displacements is observed due to the 
flexibility of the devices, nevertheless the drift between the lowest floor 
and the top of the upper structure is acceptable (around 10 mm). 
Analogously, in Fig. 7.34b a remarkable reduction of the absolute story 
acceleration from LS3 to US2 is observed, confirming the effectiveness of 
the isolation system in filtering the seismic actions rising towards the IIS 
elevation. Therefore, the peak story values of relative displacement and of 
the absolute acceleration along the two main directions of the 3D IIS are 
less or almost equal to the ones of the reference 3D LS model.  
In addition, the base shear ratio v between the 3D IIS and 3D LS models, 
respectively correspond to 0.975 and 0.770 in X and Y directions. The 
distribution of the energy components obtained from the time history 
analysis of the 3D IIS model, not reported herein for the sake of brevity, 
suggests that the inter-story isolation structure can be considered as a 
concentrated type of energy dissipation system, differently from the 
common approach of distributed dissipation in which the damping 
capacity is spread throughout the building. In fact, it can be seen that, 
except the first seconds of excitation dominated by kinetic and potential 
energy, the energy dissipated through the hysteretic behavior of the high 
damping rubber bearings represents the largest fraction of the 
instantaneous energy balance (about 80%). 
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Fig. 7.34. 3D IIS vs. 3D LS: (a) peak relative story displacements, (b) peak 
absolute story accelerations 

7.7. CONCLUSIVE REMARKS AND DESIGN 

IMPLICATIONS 

This chapter has explored the properties of the inter-story isolation system 
(IIS) structures, with particular attention to their application as a seismic 
retrofit strategy through dynamic analysis of a case study building, an 
existing three-story masonry structure that have large safety margin with 
respect to gravity load condition. 
For what concerns the theoretical aspect of the subject, substantial differences 
with respect to the base isolated (BIS) structures have been revealed: in particular, 
due to the connection between the lower structure and the ground, in a IIS 
structure higher modes are not ineffective, and cannot be neglected. For the same 
reasons, modal coupling (MCE) is a typical issue for IIS buildings, even though 
it depends on the dynamic properties of the lower and upper structure, 
independently on ISO characteristics, and can be successfully prevented by a 
careful design. 

The simplified 3DOF modal analyses have shown remarkable reductions 
of the seismic base shear and displacements in the existing lower structure 
thanks to the Mass Damper Effect (MDE), and reduced accelerations in 
the upper structure, thanks to the Isolation Effect (IE). Seismic response 
is minimized for isolation periods not so large; the “perfect” isolation is 
not as effective as the “non-perfect “one. However, MDE arises when 
adequate isolation ratio is adopted, namely I ≥ 3. 
Modal analysis of the IIS FEM three-dimensional model and of its portions 
(fixed-base lower structure and base isolated upper structure) confirmed the 
ability of the isolation layer in keeping uncoupled the modes of vibration of the 
two portions when the latter are joined into a IIS configuration. Dynamic linear 
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analyses on the 3D models have confirmed the good level of prediction offered 
by the simplified 3DOF model analysis. Finally, the time history analyses have 
shown that the isolation system plays an important role in reducing both the 
absolute accelerations and the relative displacements of the upper and lower 
structures.  
It is worth noticing that the dynamic analyses are carried out on the three-
dimensional models assuming both the structural portions in the elastic range. 
While this assumption can be considered valid for the upper isolated structure 
which behaves as a base-isolated structure, for the existing masonry building it 
could not be valid. In fact, the post-yield behavior of masonry structure may 
affect the seismic performance of the overall mid-story isolated building. 
However, the feasibility analysis carried out considering a real case study has 
demonstrated that, the IIS technology can be a valid option for the seismic 
retrofit of existing masonry buildings in good state of conservation and with a 
large safety margin with respect to the gravity loads. 
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8. CONCLUSIONS 

8.1. SUMMARY 

The Intermediate Isolation System (IIS), also appointed as inter-story or 
mid-story isolation, is a research topic of great relevance in the seismic risk 
mitigation and prevention. While IIS is currently spreading and gaining 
significant popularity, mainly in Japan, its potentials are not so well-known 
in Italy and the European countries. 

The inter-story isolation is realized by placing the isolation layer at a 
certain level, other than the base, along the height of the building. 
Therefore, the flexible interface (isolation system, IS) ideally subdivides 
the building in two main structural portions, i.e. an upper structure (US) 
and a lower structure (LS) respectively above and below the isolation 
system.  

It is quite intuitive that the presence of the LS causes a more complex 
dynamic behavior of IIS with respect to a base isolation system (BIS), 
from which the mid-story isolation derives. 
In fact, the IIS combines the strategy of isolation and mass damping: on 
the one hand the isolation interface acts as a filter for the inertial forces 
rising to the upper structure, on the other the lower structure shows a 
reduced response thanks to the mass damping effect exerted by the 
isolated superstructure. 
Differently from the BIS, in the IIS the higher modes not only are 
effective, but may possess a great fraction of participating mass, leading to 
an input energy which may be also greater than the corresponding one in 
a conventional fixed-base building. For this reason, the energy dissipation 
assumes an important role in the dynamics of such systems. 

Furthermore, while the design concepts of base isolation and tuned 
mass damper (TMD) systems are well established and uniquely shared, the 
complexity of IIS leads to a variety of approaches both in the formulation 
of the problem and in the definition of the design objectives and 
parameters. 
In the current scientific literature on this topic, three major conceptual 
approaches are clearly identified, each mainly focused on one single aspect 
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of the three ones related to IIS, i.e.: isolation, mass damping and energy 
dissipation.  
The papers focused on the isolation approach, mainly investigate the impact 
of the dynamic interaction between the structural portions (upper and 
lower structures), and the effect of the higher modes and of their possible 
coupling (mode coupling effect, MCE).  
The research contributions concerning the mass damping approach, start 
from the principle of TMD and take into account the peculiarity of IIS, 
i.e. the coupling of control and structural function of the US, which works 
as a “non-conventional” or “building” mass damper. 
Finally, considering the energy dissipation approach, the isolation interface is 
designed as a concentrated ED system, quite differently from the design 
practice that spreads dissipation devices throughout the building elevation; 
in this perspective, the isolators can be seen as displacement amplification 
devices for triggering and activating the dissipation mechanism.  

From the literature review it is observed that, also considering the same 
behavioral aspect, different approaches to the dynamic problem of IIS are 
often provided; further, all dynamic characteristics which affect the 
dynamic behavior of IIS, are not simultaneously considered. Finally, it is 
recognized that, while advanced applications of IIS have been already 
realized, the research mainly focuses on standard models and example of 
basic structures, evidencing that the real-world of construction industry 
moves forward much faster than the theoretical realm of research. 

These considerations emphasize the need of filling some gaps in the 
research field, as well as between the research and the real design practice. 
 
In this context, the aims of the present thesis are: to explore the actual and 
potential applications of IIS; to identify the predominant role among the 
three behavioral aspects of isolation, mass damping and energy dissipation 
effects, varying the design parameters in a wide range; and to define design 
criteria for benefiting from all these aspects. 
 

Therefore, starting from the literature review and the overview of the 
main real-world applications of IIS, two actual buildings are chosen as case 
studies and thoroughly analyzed, in order to interpreting the latest design 
practice in the light of approaches and indications coming from the 
research. Modal and non-linear time history analyses are carried out on the 
1D MDOF models of the two buildings, considering the presence of only 
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isolators and of both isolators and dampers; fixed-base MDOF models are 
also utilized for comparison. 

From the outcomes of the analyses, two parametric analyses are carried 
out considering both new and existing buildings.  
In the first parametric analysis, all the parameters which affect the 
dynamics of IIS are varied, namely: the dynamic characteristics of both 
structural portions; the isolation period; the location of the isolation layer; 
the mass and stiffness distributions of the upper and lower structures. 
Modal and time history analyses are carried out on 1D 10DOF IIS models, 
and fixed-base models are considered for comparison. 
The second parametric analysis is aimed at exploring the feasibility of IIS 
elevation on the roof of an existing three-story masonry building as 
seismic retrofit strategy: the idea is to exploit the stabilizing effect of 
additional gravity compression, without increasing, or even decreasing, the 
seismic base shear, thanks to the mass damper effect exerted by the 
vertical IIS addition. For this purpose, a simplified 3DOF parametric 
analysis is proposed to detect the optimal isolated superstructure 
configuration that minimizes the seismic response of the overall building. 
Hence, a 3D FEM model is adopted for the detailed analysis of the IIS 
structure. Linear and non-linear analyses are carried out on both 3DOF 
and 3D complete models; in addition, models of the isolated upper 
structure and of the lower structure are considered for comparison. 

From the preliminary analyses of the real-world case studies and from 
the two parametric analyses, the following general conclusions can be 
derived: 

- the mass ratio (i.e. the ratio of the total isolated mass to the lower 
mass) and the isolation period are the main design parameters; 

- the Isolation Effect (IE) on the upper structure is exploited by 
considering long isolation periods; 

- the Mass Damper Effect (MDE) on the lower structure is obtained 
for shorter isolation periods; 

- the Energy Dissipation Effect (EDE) is achieved by considering 
large mass ratios and high damping in the isolation system; 

- the benefit from all the behavioral aspects of isolation, mass 
damping and energy dissipation are obtained with large mass ratios 
and adequate isolation periods; 
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- the improvement of IIS seismic performance is obtained with a 
very rigid US and a quite rigid LS with respect to the isolation 
system; 

- the coupling of higher vibration modes (MCE) only arises when 
the first periods of the LS portion and one of the higher periods 
of the isolated US are very closed, independently on the isolation 
characteristics; thus, this detrimental effect can be predicted and 
avoided by a careful design; 

- with an US heavier and stiffer than the LS, the MCE is negligible, 
and the seismic performance of the IIS building is improved; 

- the stiffness distribution affects the response of the IIS building 
more than the mass distribution; 

- the mass ratio is more significant than its distribution; 
- the damping is strongly affected by the mass ratio, isolation period, 

mass and stiffness distributions, MCE;  
- the IIS design strategy is effective and feasible for both new and 

existing buildings. 

8.2. MAJOR RESULTS 

The major conclusions already provided in each chapter are briefly recalled 
in the following. 
 

Chapter 2: “BIS, TMD, IIS – theoretical basis” 
By writing the equations of motion of the simplified 2DOF BIS, SDOF 
+ TMD, 3DOF IIS and 2DOF IIS models, it is recognized that, in the IIS 
models the isolation degree of freedom represents an isolation system for 
the US, and the set of the US + ISO, a mass damper system for the LS. 
 
Chapter 3: “Design practice and applications” 
The IIS strategy is mainly applied in Japan, both for the seismic design of 
new buildings and for vertical addition in the retrofit of existing buildings. 
The main information derived from Japanese practice (more than 60 
buildings equipped with IIS) are provided as follows: 

- the height of the building is increased during the period 1995 ÷ 
2007, and a maximum value of 130 m is reached for reinforced 
concrete buildings; 
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- the equivalent first period is increased of 0.09 s per year; the range 
of values is between 2.5 ÷ 6.0 s. 

- the more frequent IIS buildings are reinforced concrete buildings; 
- the isolation layer is frequently composed of natural rubber 

bearings and steel dampers; 
- the inter-story drift of the upper and lower structures respectively 

corresponds to 1/400 ÷ 1/200 and 1/1600, while the isolation 
drift is about 40 cm; 

- the shear coefficient of the US and isolation is about 0.09 ÷ 0.12, 
while that of the LS is about 0.2 ÷ 0.3; 

- the mean value of the 1st natural period is 3.81 s, about 0.5 seconds 
longer than that of base isolated buildings; 

- the maximum deformation of the isolation story is 33 cm, about 6 
cm larger than that of base isolated buildings and the maximum 
responses of the upper structure are larger than the corresponding 
ones in base isolated buildings. 

In addition, the overview of the main real applications of IIS has shown 
the wide architectural and structural flexibility as well as the effectiveness 
of such systems.  
 
Chapter 4: “Literature overview and discussion” 
The overview of the main scientific papers on intermediate isolation 
system has shown that: 

-  the dynamic of IIS is more complex than that of BIS and TMD; 
- the higher modes are not negligible; 
- the energy dissipation is an important aspect related to IIS; 
- the IIS is characterized by not a single, fully shared design 

approach, but multiple approaches, each referred to one single 
aspect that characterizes the behavior of IIS, i.e.: isolation, mass 
damping and energy dissipation. 

 
Chapter 5: “Analysis of real IIS buildings” 
From the overview of applications provided in Chapter 3, two real-world 
applications of IIS are chosen as case studies. Starting from the data 
provided in the literature and from personal communication with the 
designers of the buildings, detailed numerical analyses of the case studies 
are carried out; the main results are summarized as follows:  
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- the real-world case studies are representative of the wide 
applicability of IIS buildings: different architectural and structural 
systems for US and LS, which lead to different mass ratios, mass 
to stiffness ratios of structural portions, irregular mass and 
stiffness distributions; 

- the first building (Iidabashi 1st Building) is an ideal IIS case with a 
rigid US with respect to the LS, and frequencies of the isolated US 
and LS well separated from each other and from the isolation 
frequency, allowing for the decoupling of the higher modes; 

- the second building (Shiodome Sumitomo Building) is a non-
typical IIS case with a flexible US with respect to the LS, and 
frequencies of the isolated US and LS not so far to uncouple the 
higher modes. 

- all three behavioral aspects have been clearly identified; 
- it is observed that with a large mass ratio (mass of the isolated US 

to the total mass), the IIS can be designed as an untuned mass 
damper, since its robustness leads to a reduced response also far 
from the optimal configuration; 

- the 60-70% of the dissipated energy is concentrated in the isolation 
layer, thanks to the presence of dissipation devices (steel and lead 
dampers); 

- the results of the non-linear analyses are very satisfactory for both 
buildings. 

 
Chapter 6: “Parametric analysis” 
The parametric analysis, carried out on MDOF IIS models has shown that: 

- the coupling of the higher modes (MCE) causes an amplification 
of the structural response of both US and LS, as well as a reduction 
in the isolation effect; 

- the MCE depends on the frequencies of the LS and the higher 
frequencies of the isolated US, but the magnitude of this coupling 
effect is influenced by the ratio between the frequencies of the US 
and LS, as standalone structures, with respect to the isolation 
system; 

- With an US stiffer than the isolation, the higher modes of the 
isolated US are ineffective, thus, even in presence of coupling, 
these modes are referred to LS only; vice versa, with a quite rigid, 
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or even a flexible US than the isolation, the higher modes possess 
a participant mass attributable to both LS and isolated US; 

- the parameter β, defined as the ratio of the i-th higher frequency of 
the isolated US and the j-th frequency of the LS, defines the MCE 
condition; it is recognized that values between 0.85 ÷ 1.15 lead to 
the coupling; this situation occurs when the first frequencies of the 
LS are coupled with the first higher ones of the isolated US; 

- the greatest fraction of coupled participant mass is obtained when 
there is comparable number of degrees of freedom in the LS and 
US, which also corresponds to the case in which the coupled 
frequencies are the first of the LS and of the isolated US; 

- the MCE occurrence decreases as the isolation period increases; 
- the stiffness distribution affects the dynamic behavior of IIS more 

than the mass distribution; in fact, the total mass, or rather the 
mass ratio, is more significant than its distribution; 

- by increasing the mass ratio, the control mechanism changes going 
from the mass damping, the intermediate isolation to the base 
isolation; 

- by increasing the mass ratio, the robustness of the system 
increases, leading to a reduced seismic response, regardless of the 
earthquake frequency content and the optimal system 
configuration; 

- with a stiffer and heavier US than the LS, the improvement of the 
seismic performance of the IIS structure is obtained. 

 
Chapter 7: “IIS for retrofit” 
The application of IIS for the vertical addition on an existing masonry 
three-story building has shown the effectiveness and feasibility of IIS as a 
seismic retrofit strategy. The main results are provided as follows: 

- the simplified parametric analysis, carried out on 3DOF models, 
has shown that the IIS behavior is related to two main conditions, 
i.e.: “perfect isolation” and “non-perfect isolation”; for each of 
these conditions the MCE can be observed; 

- in general, it is possible to link the perfect isolation to the isolation 
effect, and the non-perfect isolation to the mass damping effect; 

- the damping can be differently defined in presence of perfect and 
non-perfect isolation;  
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- considering the IIS vertical addition as a seismic retrofit strategy 
for a masonry existing building, for mass ratios lower than 1 and 
adequate isolation periods (about of 2 s), it is observed that the 
non-perfect isolation reduces the seismic response more than the 
perfect isolation; 

- the simplified 3DOF models offer a good prediction of the seismic 
behavior of the IIS building, compared to that of the more refined 
3D models. 

8.3. DESIGN IMPLICATIONS 

The major design implications coming from the analyses carried out in the 
thesis are provided in the following in terms of periods, mass ratio, 
damping. 
The periods of upper and lower portions, as standalone structures, and the 
isolation period, as well as their dynamic interaction, give helpful insights 
into the dynamic behavior of IIS structures. 
While the ratio between the periods of the ISO system and US influences 
the local behavior of the isolated US, the ratio between the periods of the 
ISO system and LS affects the global behavior of IIS structures. 

The set of US and ISO behaves as a BIS if the isolation ratio I between 
the isolation and US periods, i.e. I = TISO/TUS, is greater than 1. In order 
to consider the US rigid with respect to the isolation system, I must be 
greater than 3. It is worth noticing that when I = 1 the participating mass 
of the higher modes of the isolated US is significant (say, larger than 5%); 
on the contrary, when I ≥ 3, it is negligible, and the isolated US behaves 
as an ideal base isolated structure. 

With regards to the interaction between the LS and ISO system, when 
the isolation period is at least 3 times larger than the LS period, i.e. when 
the LS is much stiffer than the isolation system, the first mode of the IIS 
structure shows displacement mainly concentrated in the isolated US, 
leading to the isolation effect. If the isolation period is 1 ÷ 2 times larger 
than the LS period, the LS is quite rigid with respect to the isolation system 
and participates to the IIS fundamental mode, suggesting the mass 
damping effect. It is worth noticing that if the isolation period is smaller 
than the LS period, the IIS structure behaves as a fixed-base structure. 
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With a stiffer US than the ISO system (I ≥ 3), considering the dynamic 
interaction between the three parts (LS, ISO, US), the perfect isolation is 
obtained if the ratio of the periods of US and LS are well separated from 
the isolation period (say, 3 ÷ 15 times); on the contrary, the non-perfect 
isolation is reached if the periods of US and LS are respectively well 
separated and not so far from the isolation period (say, 1 ÷ 2 times).  

The main differences between the two conditions are related to the 
participating mass of the fundamental mode and the LS mode of vibration: 
with the perfect isolation these masses are almost equal to the total isolated 
mass and the LS mass; with the non-perfect isolation the first participating 
mass is larger than the total isolated mass while the mass of the LS mode 
is smaller than LS mass. In the latter case the LS participates to the first 
mode subtracting mass to the LS mode with a consequentially reduction 
of the base shear in the controlled configuration with respect to the 
uncontrolled one. 

Looking at the dynamic interaction between the structural portions of 
the IIS (i.e. the isolated US and the LS), when one or more LS periods are 
almost equal to one or more higher periods of the isolated US, the mode 
coupling of the higher modes, MCE, occurs. For I ≥ 3, the MCE can be 
reached in presence of either perfect isolation or non-perfect isolation. In 
particular, with non-perfect isolation, since the LS contributes to the first 
IIS mode, the participating mass of the higher modes is smaller than the 
case of perfect isolation. In addition, with a stiffer US than the isolation 
system (i.e. I ≥ 3), the participating mass of the isolated US higher modes 
is negligible, and thus, the participating mass of the IIS higher modes is 
only related to the LS contribution; on the contrary, when the US is as 
flexible as the isolation system, i.e. I ≈ 1, the higher participating mass is 
referred to both US and LS. 
The MCE can be predicted by a careful design, by applying the following 
simple design rule: “No MCE arises if the first periods of the LS are far from one 
or more higher periods of the isolated US”.  
This principle can be translated in an analytical formulation through the 

MCE parameter β, defined for both MDOF IIS, see formula (6.18), and 
3DOF IIS models, see formula (6.20). 

If β is in the range 0.85 ÷ 1.15, the mode coupling of the higher modes 
occurs. 
The mass ratio α of the total isolated mass to the LS mass, i.e. α = 
MISO/mLS, seems to be the major parameter of the IIS dynamics, since it 
defines the prevailing behavioral aspect, and allows to identify the 
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governing principle among mass damping, intermediate isolation and 
energy dissipation, base isolation.  
A simple chart (Fig. 8.1) that can be useful for design purpose has been 
created, showing that, for α ≤ 1 the mass damping effect prevails, while 
for α = 1÷4 the structure is affected by both isolation and energy 
dissipation that characterized the IIS system. 
 

 
Fig. 8.1. Participating mass vs. the mass ratio  

 
It it worth observing that increasing the mass ratio, the robustness of IIS 
increases: a large mass ratio provides greater reduction of the structural 
response, the system becomes less dependent on the frequency content 
and on the optimal configuration. In addition, with large mass ratios the 
energy dissipated by the isolation system increases. 
 
In terms of damping, the IIS structures are characterized by non-
proportional damping. However, depending on the dynamic 
characteristics of the structural portions and the isolation system, it is 
possible to consider a simplified or a rigorous approach. In the simplified 
approach, the first damping ratio of the IIS structure can be assumed equal 
to the isolation counterpart while the higher damping ratios equal to the 
structural damping ratio; in the rigorous approach, the complex modal 
values should be utilized. In particular, the simplified approach can be 
used in presence of perfect isolation while the rigorous approach in 
presence of non-perfect isolation and MCE. 
 


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APPENDIX A: IIS for retrofit 

In Appendix A are provided insights about Chapter 7, i.e. “IIS for 
retrofit”, in terms of modal, response spectrum and time history analyses 
of the 3DOF IIS models. The main design parameters are recalled here 
for completeness: 

- Mass ratio between the total isolated mass, ISOM , and the lower 

structure mass, LSm : 

ISO

LS

M

m
    

- Stiffness ratio between the stiffness of the upper structure, USk , 

and the stiffness of lower structure, LSk : 

US

LS

k

k
    

- Isolation ratio between the isolation period, ISOT , and the period 

of the upper structure, UST : 

ISO

US

T

T
    

A.1. MODAL ANALYSIS 

Figs. A.1 ÷ A.12 and Tabs. A.1 ÷ A.12 show the modal properties of both 
undamped and non-proportionally damped 3DOF IIS models for the 
cases α = {0.1, 0.5, 0.6, 1.0} - K = {0.1, 0.3, 0.5, 1} - I = {3, 4, 5}. The 
non-proportionally damped systems refers to two conditions: 1) constant 
damping ratio, ξ = 0.05; 2) damping ratio interpolated as a function of the 
period T (ξ1 = ξISO.=0.10 at T=T1 and ξ2 = ξLS. = ξUS.= 0.05 at T=T2), see 
§ 7.4.3. In particular, Tabs. A.1 ÷ A.3 refer to the undamped 3DOF IIS 
models; Tabs. A.4 ÷ A.8 and Tabs. A.9 ÷ A.12 consider the damped 3DOF 
IIS models under condition 1 and 2, respectively. Analogously, Figs. A.1 
÷ A.4 depict the natural modes of vibrations of the cases considered 
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herein; Figs. A.5 ÷ A.8 and A.9 ÷ A.12 show the complexity plots of the 
damped 3DOF IIS models under condition 1 and 2, respectively. 
 

Table A.1. Undamped 3DOF IIS -  =0.1 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.1 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 1.964 0.131 1.176 0.302 0.980 0.613 0.884 0.942 

2 0.801 0.869 0.772 0.698 0.718 0.387 0.563 0.058 

3 0.383 0.000 0.221 0.000 0.171 0.000 0.121 0.000 

I=4 1 2.568 0.112 1.505 0.177 1.194 0.290 0.946 0.722 

2 0.804 0.888 0.792 0.823 0.774 0.710 0.690 0.278 

3 0.389 0.000 0.224 0.000 0.174 0.000 0.123 0.000 

I=5 1 3.182 0.104 1.852 0.138 1.451 0.187 1.075 0.412 

 0.806 0.896 0.799 0.862 0.790 0.813 0.754 0.588 

2 0.391 0.000 0.226 0.000 0.175 0.000 0.124 0.000 

 

Table A.2. Undamped 3DOF IIS -  =0.5 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.5 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.163 0.350 3.021 0.385 2.373 0.422 1.746 0.520 

2 0.805 0.648 0.794 0.615 0.782 0.578 0.752 0.480 

3 0.666 0.002 0.385 0.000 0.298 0.000 0.211 0.000 

I=4 1 6.735 0.343 3.918 0.363 3.059 0.384 2.209 0.439 

2 0.806 0.656 0.800 0.637 0.794 0.616 0.777 0.561 

3 0.680 0.001 0.393 0.000 0.304 0.000 0.215 0.000 

I=5 1 8.333 0.340 4.835 0.353 3.764 0.366 2.696 0.400 

 0.807 0.660 0.803 0.647 0.799 0.634 0.789 0.600 

2 0.686 0.001 0.396 0.000 0.307 0.000 0.217 0.000 
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Table A.3. Undamped 3DOF IIS -  =0.6 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.6 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.400 0.391 3.163 0.427 2.488 0.464 1.834 0.558 

2 0.831 0.141 0.792 0.573 0.780 0.536 0.749 0.442 

3 0.796 0.468 0.475 0.000 0.368 0.000 0.260 0.000 

I=4 1 7.053 0.385 4.106 0.405 3.207 0.426 2.320 0.480 

2 0.840 0.037 0.799 0.595 0.792 0.574 0.775 0.520 

3 0.804 0.578 0.484 0.000 0.375 0.000 0.265 0.000 

I=5 1 8.731 0.381 5.067 0.395 3.947 0.408 2.830 0.442 

 0.846 0.013 0.803 0.605 0.798 0.592 0.787 0.558 

2 0.806 0.606 0.488 0.000 0.378 0.000 0.267 0.000 

 

Table A.4. Undamped 3DOF IIS -  =1.0 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =1.0 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 7.300 0.512 4.269 0.536 3.350 0.561 2.449 0.620 

2 0.946 0.010 0.795 0.463 0.784 0.439 0.758 0.380 

3 0.802 0.478 0.544 0.001 0.422 0.000 0.298 0.000 

I=4 1 9.525 0.507 5.540 0.522 4.323 0.536 3.116 0.572 

2 0.963 0.003 0.800 0.478 0.794 0.464 0.779 0.428 

3 0.805 0.490 0.555 0.000 0.430 0.000 0.304 0.000 

I=5 1 11.785 0.505 6.837 0.514 5.321 0.524 3.809 0.547 

 0.971 0.001 0.803 0.486 0.799 0.476 0.790 0.453 

2 0.807 0.494 0.560 0.000 0.434 0.000 0.307 0.000 
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Table A.5. Damped 3DOF IIS ( ξ =0.05) -  =0.1 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.1 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 1.964 0.045 1.176 0.043 0.980 0.041 0.884 0.044 

2 0.801 0.052 0.772 0.055 0.717 0.056 0.563 0.053 

3 0.383 0.093 0.221 0.093 0.171 0.093 0.121 0.093 

I=4 1 2.568 0.047 1.505 0.046 1.194 0.044 0.946 0.042 

2 0.804 0.051 0.792 0.053 0.774 0.055 0.690 0.057 

3 0.389 0.090 0.225 0.090 0.174 0.090 0.123 0.090 

I=5 1 3.181 0.048 1.852 0.047 1.451 0.046 1.075 0.043 

 0.806 0.051 0.799 0.052 0.790 0.053 0.754 0.056 

2 0.392 0.088 0.226 0.088 0.175 0.088 0.124 0.088 

 

Table A.6. Damped 3DOF IIS ( ξ =0.05) -  =0.5 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.5 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.161 0.044 3.020 0.042 2.373 0.041 1.745 0.044 

2 0.667 0.076 0.793 0.055 0.782 0.057 0.752 0.076 

3 0.804 0.052 0.385 0.075 0.298 0.075 0.211 0.052 

I=4 1 6.734 0.046 3.917 0.045 3.058 0.044 2.209 0.046 

2 0.806 0.052 0.800 0.054 0.794 0.056 0.777 0.052 

3 0.680 0.068 0.393 0.068 0.304 0.068 0.215 0.068 

I=5 1 8.332 0.047 4.834 0.047 3.763 0.046 2.696 0.047 

 0.686 0.064 0.803 0.054 0.799 0.055 0.789 0.064 

2 0.807 0.052 0.396 0.063 0.307 0.063 0.217 0.052 

 
 
 
 



IIS for retrofit 

 

409 
 
 

Table A.7. Damped 3DOF IIS ( ξ =0.05) -  =0.6 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =0.6 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.399 0.044 3.162 0.042 2.487 0.041 1.833 0.038 

2 0.830 0.050 0.792 0.056 0.780 0.058 0.748 0.062 

3 0.797 0.064 0.475 0.061 0.368 0.061 0.260 0.061 

I=4 1 7.051 0.046 4.105 0.045 3.207 0.044 2.319 0.042 

2 0.839 0.051 0.799 0.055 0.792 0.057 0.775 0.060 

3 0.805 0.057 0.484 0.055 0.375 0.055 0.265 0.055 

I=5 1 8.729 0.048 5.067 0.047 3.946 0.046 2.830 0.045 

 0.845 0.049 0.803 0.054 0.798 0.056 0.787 0.058 

2 0.807 0.054 0.488 0.051 0.378 0.051 0.267 0.051 

 

Table A.8. Damped 3DOF IIS ( ξ =0.05) -  =1.0 – K=0.1; 0.3; 0.5; 1.0 – I=3; 4; 5 

α =1.0 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 7.298 0.043 4.267 0.042 3.348 0.041 2.448 0.038 

2 0.945 0.059 0.794 0.057 0.784 0.059 0.758 0.064 

3 0.803 0.058 0.545 0.064 0.422 0.064 0.298 0.063 

I=4 1 9.523 0.046 5.539 0.045 4.322 0.044 3.115 0.042 

2 0.962 0.054 0.800 0.056 0.794 0.058 0.779 0.061 

3 0.806 0.055 0.555 0.056 0.430 0.056 0.304 0.055 

I=5 1 11.783 0.047 6.835 0.047 5.320 0.046 3.808 0.045 

 0.971 0.050 0.803 0.055 0.799 0.057 0.790 0.060 

2 0.807 0.054 0.561 0.051 0.434 0.051 0.307 0.051 
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Table A.9. Damped 3DOF IIS ( LSξ = USξ =0.05; ISOξ =0.10) -  =0.1 – K=0.1; 0.3; 

0.5; 1.0 – I=3; 4; 5 

α =0.1 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 1.962 0.089 1.174 0.079 0.978 0.063 0.883 0.048 

2 0.801 0.055 0.773 0.065 0.718 0.081 0.562 0.096 

3 0.383 0.110 0.221 0.110 0.171 0.110 0.121 0.110 

I=4 1 2.566 0.093 1.504 0.089 1.192 0.083 0.945 0.059 

2 0.804 0.053 0.793 0.058 0.775 0.065 0.691 0.089 

3 0.389 0.102 0.225 0.102 0.174 0.102 0.123 0.102 

I=5 1 3.180 0.096 1.851 0.093 1.449 0.090 1.073 0.077 

 0.806 0.053 0.800 0.056 0.791 0.059 0.756 0.073 

2 0.392 0.098 0.226 0.098 0.175 0.098 0.124 0.098 

 

Table A.10. Damped 3DOF IIS ( LSξ = USξ =0.05; ISOξ =0.10) -  =0.5 – K=0.1; 0.3; 

0.5; 1.0 – I=3; 4; 5 

α =0.5 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.155 0.086 3.016 0.083 2.369 0.080 1.742 0.072 

2 0.804 0.054 0.793 0.062 0.782 0.066 0.752 0.076 

3 0.668 0.110 0.386 0.108 0.299 0.108 0.211 0.108 

I=4 1 6.729 0.092 3.914 0.090 3.055 0.088 2.206 0.083 

2 0.681 0.093 0.800 0.060 0.794 0.063 0.777 0.070 

3 0.805 0.054 0.393 0.092 0.305 0.092 0.215 0.092 

I=5 1 8.328 0.095 4.831 0.093 3.760 0.092 2.693 0.089 

 0.806 0.054 0.803 0.058 0.799 0.060 0.789 0.066 

2 0.687 0.084 0.397 0.083 0.307 0.083 0.217 0.083 
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Table A.11. Damped 3DOF IIS ( LSξ = USξ =0.05; ISOξ =0.10) -  =0.6 – K=0.1; 0.3; 

0.5; 1.0 – I=3; 4; 5 

α =0.6 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 5.393 0.087 3.158 0.084 2.483 0.080 1.830 0.072 

2 0.823 0.056 0.792 0.063 0.780 0.068 0.749 0.079 

3 0.805 0.089 0.476 0.088 0.369 0.087 0.261 0.087 

I=4 1 7.047 0.092 4.101 0.090 3.203 0.088 2.316 0.083 

2 0.833 0.066 0.799 0.061 0.792 0.065 0.775 0.072 

3 0.811 0.064 0.485 0.074 0.375 0.074 0.265 0.074 

I=5 1 8.725 0.095 5.064 0.094 3.943 0.092 2.827 0.089 

 0.843 0.063 0.802 0.059 0.798 0.062 0.787 0.068 

2 0.810 0.058 0.488 0.067 0.378 0.067 0.267 0.067 

 

Table A.12. Damped 3DOF IIS ( LSξ = USξ =0.05; ISOξ =0.10) -  =1.0 – K=0.1; 0.3; 

0.5; 1.0 – I=3; 4; 5 

α =1.0 mode 

K=0.1 K=0.3 K=0.5 K=1.0 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

T  

[s] 

  

[-] 

I=3 1 7.290 0.086 4.262 0.083 3.344 0.080 2.444 0.073 

2 0.942 0.089 0.793 0.064 0.783 0.070 0.758 0.081 

3 0.806 0.066 0.546 0.098 0.423 0.097 0.299 0.096 

I=4 1 9.516 0.092 5.534 0.090 4.318 0.088 3.111 0.084 

2 0.961 0.077 0.799 0.062 0.794 0.067 0.779 0.075 

3 0.807 0.060 0.557 0.081 0.431 0.080 0.305 0.080 

I=5 1 11.777 0.095 6.831 0.093 5.316 0.092 3.804 0.089 

 0.970 0.068 0.802 0.061 0.799 0.064 0.790 0.071 

2 0.808 0.058 0.561 0.071 0.435 0.070 0.307 0.070 
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Fig. A.1. Natural modes -  =0.1; 0.5; 0.6; 1.0 – K=0.1 – I=3; 4; 5 
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Fig. A.2. Natural modes -  =0.1; 0.5; 0.6; 1.0 – K=0.3 – I=3; 4; 5 
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Fig. A.3. Natural modes -  =0.1; 0.5; 0.6; 1.0 – K=0.5 – I=3; 4; 5 
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Fig. A.4. Natural modes -  =0.1; 0.5; 0.6; 1.0 – K=1.0 – I=3; 4; 5 
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Fig. A.5. Complexity plot; ξ  = 0.05 -  =0.1; 0.5; 0.6; 1.0 – K=0.1 – I=3; 4; 5 
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Fig. A.6. Complexity plot; ξ  = 0.05 -  =0.1; 0.5; 0.6; 1.0 – K=0.3 – I=3; 4; 5 
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Fig. A.7. Complexity plot; ξ  = 0.05 -  =0.1; 0.5; 0.6; 1.0 – K=0.5 – I=3; 4; 5 
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Fig. A.8. Complexity plot; ξ  = 0.05 -  =0.1; 0.5; 0.6; 1.0 – K=1.0 – I=3; 4; 5 
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Fig. A.9. Complexity plot; LSξ  = USξ = 0.05, ISOξ = 0.10 -  =0.1; 0.5; 0.6; 1.0 – 

K=0.1 – I=3; 4; 5 
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Fig. A.10. Complexity plot; LSξ  = USξ = 0.05, ISOξ = 0.10 -  =0.1; 0.5; 0.6; 1.0 – 

K=0.3 – I=3; 4; 5 
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Fig. A.11. Complexity plot; LSξ  = USξ = 0.05, ISOξ = 0.10 -  =0.1; 0.5; 0.6; 1.0 – 

K=0.5 – I=3; 4; 5 
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Fig. A.12. Complexity plot; LSξ  = USξ = 0.05, ISOξ = 0.10 -  =0.1; 0.5; 0.6; 1.0 – 

K=1.0 – I=3; 4; 5 
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A.2. RESPONSE SPECTRUM ANALYSIS 

Figs. A.13 ÷ A.18 show the results of the response spectrum analysis 
carried out considering the elastic response spectrum prescribed by the 
Italian NTC2008 [D.M. 14/01/2008] for the specific case study site (ag= 
0.162 g, F0= 2.347, TC*=0.333 s, S=1.47), see § 7.4.4.  
In this section all the possible combinations of the parameters α – K – I 
are considered, i.e.: α = {0.1 ÷ 1.0} - K = {0.1, 0.3, 0.5, 1} - I = {3, 4, 5}. 
Considering a constant damping ratio of 0.05, the seismic response of 
3DOF IIS and SDOF LS models is obtained through the complete 
quadratic combination CQC. 
In Figs. A.13 the base shear ratio v between the controlled and 
uncontrolled configuration is depicted as a function of the isolation 
period; each curve is built up by varying the mass ratio α and by fixing the 
stiffness ratio K, the tris of graphs refers to the three isolation ratios I. 
Figs A.14 and A.15 ÷ A.17 respectively show the combined and modal 
shear forces of the upper and lower structures and of the isolation system 
as a function of the isolation periods, Fig. A.18 plots the peak drift of the 
three parts as a function of the isolation period; each curve is built up by 
varying the mass ratio α and by fixing the stiffness ratio K, the tris of 
graphs refers to the three isolation ratios I. 
 
 
 

 
Fig. A.13. v vs. TISO: (a) I=3, (b) I=4, (c) I=5 
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Fig. A.14. Peak Story Shear Force: (a) I=3, (b) I=4, (c) I=5 
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Fig. A.15. Modal Shear Force, QLSi: I=3; 4; 5: (a) I=3, (b) I=4, (c) I=5 
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Fig. A.16. Modal Shear Force, QISOi: I=3; 4; 5: (a) I=3, (b) I=4, (c) I=5 
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Fig. A.17. Modal Shear Force, QUSi: I=3; 4; 5: (a) I=3, (b) I=4, (c) I=5 
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Fig. A.18. Peak Story Displacement: (a) I=3, (b) I=4, (c) I=5 
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A.3. TIME HISTORY ANALYSIS 

Figs. A.19 ÷ A.22 show the results of the non-linear time history analysis 
carried out considering a set of 10 spectrum-compatible ground motions 
with the specific case study site of Pozzuoli (Naples, Italy) [Software 
SIMQKE_GR]. 
The two configurations E and F (see § 7.4.5) are herein considered, 
respectively corresponding to α = 0.1 - K = 0.5 and α = 0.5 - K = 0.5, by 
varying the isolation period between 0.5 and 2.5 s.  
As can be seen in Chapter 7, considering the interpolated damping ratio 
as a function of the period T, for isolation periods smaller than 1 s, ξ1 = 
ξLS. = ξUS = 0.05 and at T=T1 and ξ2 = ξISO.=0.10 at T=T2; for isolation 
periods larger than 1 s, ξ1 = ξISO.=0.10  and at T=T1 and ξ2 = ξLS. = ξUS = 

0.05 at T=T2. 
In Figs. A.19 - A.20 and A.20 - A.21 are respectively depicted the peak 
drift and the peak story acceleration for the different isolation periods; 
each couple of graph refers to the cases E and F. In particular, in each 
chart are provided the results of the mean time-history and of the 10 time 
histories of the compatible-spectrum ground motions of the IIS models, 
the response spectrum result of the SDOF LS model is considered for 
comparison. 
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Fig. A.19. Peak Story Displacement: (a)  =0.1, (b)  =0.5 
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Fig. A.20. Peak Story Displacement: (a)  =0.1, (b)  =0.5 
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Fig. A.21. Peak Story Acceleration: (a)  =0.1, (b)  =0.5 
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Fig. A.22. Peak Story Acceleration: (a)  =0.1, (b)  =0.5 
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APPENDIX B: Design Implications 

B.1. INFLUENCE OF PERIODS OF THE STRUCTURAL 

PORTIONS AND OF THE ISOLATION SYSTEM 

Since the IIS model can be seen as a combination of the US+ISO and LS 
models, the isolated US and LS can be studied separately or the dynamic 
interaction between the two portions can be considered. 
In this section, the interaction between the structural portions and the 
isolation, as well as between the upper and lower structures, is considered 
by comparing the periods of US, LS and isolation system. 

B.1.1. TISO vs. TUS 

The dynamic interaction of the US and ISO system gives information 
about the local behavior of the isolated US. Considering the analogy 
between the simplified 2DOF BIS and the set of the US+ISO of the 
3DOF IIS, the isolated US behaves as a base isolated structure when the 

period of the US, UST , is almost equal to, or greater than, the isolation 

period, ISOT ; in particular: 
 

for USISOT T  ↔ I 3    
US

US

ISO


 


 = O(10-2) 

for USISOT T  ↔ I 1 3     
US

US

ISO


 


 = O(10-1) 

for USISOT T  ↔ I 1    
US

ISO


 


 = O(100) 

 
where  
 

ISO

US

T
I

T
  is the period ratio, also appointed as isolation ratio;  
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2

US

1

I

 
   

 
  is the square of the inverse of I; 

US

ISO

m

M
   is the mass ratio of the US to the total isolated mass; 

 

US

ISO




  is the US – ISO drift ratio. 

 
Therefore, for a rigid US than the isolation system (I ≥ 2), the 
amplification of the US drift with respect to the ISO drift can be estimated 

as a function of the parameter US ; for a US as flexible as the isolation 
system (I = 1), this amplification approximately corresponds to the inverse 
of the square root of the mass ratio  .  

B.1.2. TISO vs. TLS 

The dynamic interaction of the LS and ISO system gives information 
about the global behavior of inter-story isolated structure. Considering the 
3DOF IIS with the isolated US behaving as a BIS, i.e. I 1 , the following 
cases can be considered. 
 

for LSISOT T  ↔  IS effect  
LS

ISO




 = O(10-3 ÷ 10-1) 

for LSISOT T  ↔  MD effect  
LS

ISO




 = O(10-1) 

for LSISOT T  ↔  IIS as FB  
LS

ISO




 = O(100) 

 
When the isolation period is 1.5 ÷ 15 times the LS period, the isolation 
(IS) effect prevails on the mass damper (MD) effect; otherwise, when the 
isolation period is 1.05 ÷ 1.5 times the LS period, the LS is quite rigid with 
respect to the isolation, the MD effect prevails on the IS effect.  
It is worth noticing that when the isolation period is smaller than the LS 
period, i.e. the LS is more flexible than the LS, the IIS behaves as a fixed-
base structure. 
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B.1.3. TISO vs. TUS and TLS 

Considering the dynamic interaction between both structural portions and 
the isolation system, the following conditions are provided. 
 
for US LSISOT T ,T  ↔  perfect IS – IS effect 

    
US

ISO




= O(10-2),

LS

ISO




= O(10-3 ÷ 10-1) 

 

for USISOT T , LSISOT T  ↔ non-perfect IS – MD effect 

US

ISO




 = O(10-2), 

LS

ISO




 = O(10-1) 

 
As can be seen previously, when both the structural portions are assumed 
rigid with respect to the isolation layer, i.e. the US and LS periods are well 
separated from the isolation period (say, 3 ÷ 15 times), the first IIS mode 
involves displacement only in the isolation layer. This condition 
maximizes the IS effect and it can be defined as perfect isolation. When the 
periods of US and LS are respectively well separated (say, 3÷ 5 times) and 
not so far (say, 1.05 ÷ 1.5 times) from the isolation period, the US is rigid 
and the LS is quite rigid with respect to the isolation layer, the LS 
participates to the fundamental mode, thus, the MD effect is maximized. 
This condition can be defined as non-perfect isolation. 

B.2. “PERFECT” AND “NON-PERFECT” ISOLATION 

B.2.1. Perfect isolation 

Considering the 3DOF IIS model, the perfect isolation is obtained when 
the periods of the structural portions are well separated from isolation 
period. 

Comparing the periods and participating mass ratios of the simplified 
3DOF IIS, 2DOF BIS and SDOF LS models, the following 
considerations can be drawn. 
 

1st mode:  
2DOF BIS,13DOF IIS,1

T T ,  3DOF IIS,1 m ISO TOT
R M / m    
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2nd mode:  3DOF IIS, 2 SDOF LS
T T , 3DOF IIS, 2 LS TOT

m / m   

3rd mode:  3DOF IIS,3 2DOF BIS,2
T T , 3DOF IIS,3

0    

 
The first modal shape represents the first mode of the 2DOF ISO+US 
corresponding to the isolation, with minor deformation in the LS; this 

results in drift ratios US ISO   and LS ISO   respectively of the order 10-2 

and 10-3 ÷ 10-1. The second and the third modes are respectively 
corresponding to the mode of the SDOF LS, with almost no deformation 
in the US, and the second mode of the 2DOF ISO+US, with almost no 
deformation in the LS. 

With the perfect isolation the flexible interface decouples the isolated 
US and the LS, the spectral acceleration corresponding to the first period 
tends to zero; since the LS cannot take advantage from this additional 
flexibility, the base shear is only given by the contribution of the LS.  

B.2.2. Non-perfect isolation 

Considering the 3DOF IIS model, the non-perfect isolation is obtained 
when the US period is well separated from the isolation period and the 
isolation period is not so far from the LS period. 

Comparing the periods and participating mass ratios of the simplified 
3DOF IIS, 2DOF BIS and SDOF LS models, the following 
considerations can be drawn. 
 

1st mode:  
2DOF BIS,13DOF IIS,1

T T ,  3DOF IIS,1 m ISO TOT
R M / m    

2nd mode:  3DOF IIS, 2 SDOF LS
T T , 3DOF IIS, 2 LS TOT

m / m   

3rd mode:  3DOF IIS,3 2DOF BIS,2
T T , 3DOF IIS,3

0    

 
The first modal shape represents the first mode of the 2DOF ISO+US 
corresponding to the isolation, involving deformation both in the LS and 

in the isolation layer; this results in drift ratios US ISO   and LS ISO   of 

order 10-2 and 10-1, respectively. The second and the third modes are 
respectively corresponding to the mode of the SDOF LS, with almost no 
deformation in the US, and the second mode of the 2DOF ISO+US, with 
almost no deformation in the LS. 
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Since the mode of the isolation is characterized by a participating mass 

larger than Rm, and the isolation is able to filter the inertial forces rising to 
the US, the contribution of this mode to the base shear is negligible. 
Furthermore, the mode of the LS possesses a comparable period, and a 
lower participating mass, than those of the LS as a standalone structure; 
the resulting base shear is reduced with respect to the one of the fixed-
base LS. This situation suggests that with the non-perfect isolation, the IIS 
behaves as a mass damper.  

B.3. MODE COUPLING EFFECT (MCE) 

Considering the 3DOF IIS model, the mode coupling effect (MCE) is 
obtained when one or more periods of the LS are not well separated from 
one or more higher periods of the isolated US. With a rigid US than the 
ISO system (I ≥ 3), the MCE can arise both in presence of perfect and 
non-perfect isolation. 

B.3.1. MCE + perfect isolation 

Comparing the periods and participating mass ratios of the simplified 
3DOF IIS, 2DOF BIS and SDOF LS models, the following 
considerations can be drawn. 
 

1st mode:  
2DOF BIS,13DOF IIS,1

T T ,  3DOF IIS,1 m ISO TOT
R M / m    

2nd and 3rd modes: 3DOF IIS, 2 3DOF IIS, 3
T T , 3DOF IIS, 2

0  , 3DOF IIS, 2
0   

 
The first modal shape represents the first mode of the 2DOF ISO+US 
corresponding to the isolation, with minor deformation in the LS. The 
second and third modes involve displacements both in the US and LS. 
When MCE occurs, the detrimental effect is mainly shown in terms of 
amplification of the US drift.  



Appendix B 

 

440 
 
 

B.3.2. MCE + non-perfect isolation 

Comparing the periods and participating mass ratios of the simplified 
3DOF IIS, 2DOF BIS and SDOF LS models, the following 
considerations can be drawn. 
 

1st mode:  
2DOF BIS,13DOF IIS,1

T T ,  3DOF IIS,1 m ISO TOT
R M / m    

2nd and 3rd modes: 3DOF IIS, 2 3DOF IIS, 3
T T , 3DOF IIS, 2

0  , 3DOF IIS, 2
0   

 
The first modal shape represents the first mode of the 2DOF ISO+US 
corresponding to the isolation, with minor deformation in the LS. The 
second and third modes involve displacements both in the US and LS. 
When MCE occurs, the detrimental effect is mainly shown in terms of 
amplification of the US drift. Instead, it is able to slightly reduced the base 
shear and this reduction is more evident in presence of non-perfect 
isolation. 

B.3.3. MCE parameter: β 

The MCE can be prevented by a careful design and a simple design rule 
can be utilized, i.e.: “No MCE arises if one or more periods of the LS are far from 
one or more higher periods of the isolated US”.  
Recognizing that the MCE is independent on the isolation characteristics, 
an analytical formulation can be derived by setting the stiffness of the 

isolation system equal to zero, i.e. following MCE parameter ij  :  

 

ff US ISO,i

ij

LS, j


 


 

 

where ij  is the MCE parameter, equal to the ratio of the i-th higher 

frequency of the isolated US in the free-free MDOF IIS model (null 
isolation stiffness) to the j-th frequency of the LS. 
For a 3DOF IIS model the MCE parameter can be rewritten as: 
 

US US ISO

LS

1 m / m 
 


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When the MCE parameter is close to 1 (0.85 ÷ 1.15) the mode coupling 
effect occurs. 

B.3.4. 3DOF IIS vs. MDOF IIS 

The minimum number of degrees of freedom necessary to estimate MCE 
is three, i.e. one for the US, LS and the isolation system. However, 
considering a 3DOF IIS model, the coupling of only two modes can be 
predicted. If more than two significant coupled modes are present (i.e. the 
participating coupled mass is equal to, or larger than, 5%), MDOF IIS 
model must be considered. 
The number of degrees of freedom can be preliminary defined taking into 
account the position of the isolation layer, 

ISO
h , with respect to the total 

height of the building, H , i.e: 
 

ISO
h

0.5
H

   3DOF IIS, 

ISO
h

0.2 0.4
H

   MDOF IIS (1dof LS + 1dof ISO + u-DOF US), 

u=1÷4 

ISO
h

0.6 0.9
H

   MDOF IIS (l-dof LS + 1dof ISO + u-DOF US), 

l=1÷2, u=1÷2 
 
Starting from the MDOF IIS model, the reduced-order 3DOF IIS can be 
obtained as follows. 
 

ISO
h

0.5
H

  sdof LS:  1st mode of MDOF LS;  

sdof ISO: 1st mode of 2DOF ISO;  

sdof US:  1st mode of MDOF US; 
 

ISO
h

0.2 0.4
H

   sdof LS:  1st mode of MDOF LS;  

sdof ISO: 1st mode of 2DOF ISO;  
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sdof US:  mode n of MDOF US   

(function of 
US LS

T T ); 

ISO
h

0.6 0.9
H

   sdof LS:  2nd mode of MDOF LS; 

sdof ISO: 1st mode of 2DOF ISO;  

sdof US:  mode n of MDOF US   

(function of 
US LS

T T ). 

 
 
In the case of 

ISO
h H 0.2 0.4   the number of the coupled higher mode 

of the isolated US can be defined in function of the period ratio between 
US and LS as standalone structures, i.e. 

US LS
T T , see Tab. B.1. 

 

Table B.1. n-th mode of MDOF US as a function of 
US LS

T T for 
ISO

h H = 0.2 ÷ 0.4  

US LS
T T  1.5÷2 3÷4 5÷5.5 6÷6.5 

u 1 2 3 4 

 

In the case of 
ISO

h H 0.6 0.9   the number of the coupled higher mode 

of the isolated US can be defined in function of the period ratio between 
US and LS as standalone structures, i.e. 

US LS
T T , see Tab. B.2. 

 

Table B.1. n-th mode of MDOF US as a function of 
US LS

T T for 
ISO

h H = 0.2 ÷ 0.4  

US LS
T T  ≤ 0.6 ≈ 1.0 

u 1 2 

 
It is worth noticing that, in this section the cases in which more than 2 
higher modes are coupled are neglected. In fact, for such cases it is 
necessary to consider a MDOF IIS model. 
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B.4. MASS RATIO, IIS ROBUSTNESS, UNTUNED IIS EFFECT 

The mass ratio α between the total isolated mass, ISOM , and the LS mass, 

LSm , represents one of the main parameters for designing inter-story 
isolated structures. In fact, it defines the prevailing behavioral aspect, and 
allows to identify the governing principle among mass damping, 
intermediate isolation and energy dissipation, base isolation; in particular:  
 

for α ≤ 1  mass damping effect  ISO
h

0.1 0.5
H

   

for α = 1÷4  inter-story isolation and and energy dissipation effects 

ISO
h

0.6 0.8
H

   

for α ≥ 4  base isolation   ISO
h

0.9 1.0
H

   

 
Therefore, for α ≤ 1 the mass damping effect prevails on the isolation 
effect; on the contrary, for α > 1 the isolation effect prevails on the mass 
damping effect.  
In addition, the mass ratio α is indirectly related to the position of the 

isolation layer, 
ISO

h , with respect to the total height of the building, H . 

Therefore, when the structural portions (upper and lower structures) 
possess comparable degrees of freedom or the LS shows few dofs with 
respect to the US, the isolation effect prevails; when the US is composed 
of few dofs with respect to the LS, the mass damping effect prevails. 
Excluding the cases in which the isolation layer is placed at the top and 
bottom stories, the position of the isolation layer can be indirectly taken 
into account by considering the mass ratio α and the period ratio between 
the upper and lower structures as follows. 
 

for α ≤ 1 and US

LS

T
0.2 1.0

T
  :  ISO

h
0.2 0.5

H
   

for α = 1÷4  and US

LS

T
1.3 2.0

T
  :  ISO

h
0.6 0.8

H
   

for α ≥ 4 and US

LS

T
3.0

T
 :  ISO

h
0.9

H
  
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Increasing the mass ratio α, the robustness of IIS increases. This large 
mass ratio provides greater reduction of the structural response, the 
system becomes less dependent on the frequency content and on the 
optimal configuration. Therefore, for large mass ratios the IIS can be seen 
as an untuned mass damper; in addition, the energy dissipated by the 
isolation system increases. 

B.5. MASS AND STIFFNESS DISTRIBUTIONS 

Considering the same global mass and static stiffness, the stiffness 
distribution influences the overall behavior of IIS buildings more than the 
mass distribution. 
An improvement of the seismic performance of the building is expected 
with an upper structure stiffer than both the lower structure and the 
isolation layer, and heavier than the lower structure. Since the higher 
modes are affected by the dynamic characteristics of both upper and lower 
structures, the mass and stiffness distributions influence the interaction of 
these structural portions. When the upper structure is stiffer and heavier 
than the lower structures, the coupling of the higher modes can be 
negligible; on the contrary, with a US more flexible and lighter than the 
LS, the MCE is significant. 

B.6. DAMPING 

The IIS structures are characterized by non-proportional damping. 
However, depending on the dynamic characteristics of the structural 
portions and the isolation system, it is possible to consider a simplified or 
a rigorous approach.  

Considering a simplified 3DOF IIS system, for damping ratios 
ISO
  and 

s LS US
      respectively corresponding to the isolation system and the 

structural portions, in presence of perfect and non-perfect isolation, the 
following situations can be obtained. 
 

Perfect Isolation:    
1 ISO
   ; 

2 3 LS US
, ,      

Non-perfect Isolation:   
1 ISO
   ; 

2 3 LS US
, ,      
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assuming modal damping ratios 

1 ISO
    and 

1 2 s
      , with 

s LS US
     . 

 

Therefore, in perfect isolation the first modal damping ratio 
1
  

underestimates, or it is at least almost equal to, the isolation damping ratio 

ISO
 ; the higher damping ratios 

2
  and 

3
  overestimate, or they are at least 

almost equal to, the structural damping ratio. In non-perfect isolation the 

first damping ratio
1
  underestimates the isolation damping ratio 

ISO
  

while the higher damping ratios, 
2
  and 

3
 , overestimate the structural 

damping ratio. 
 
For these reasons, such simplified approach is adequate only in presence 
of perfect isolation with isolation periods larger than 2 s). In the other 
cases a complex analysis is needed. 
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