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Abstract 
 

 

The thermal rheological state along with the depth to the Curie isothermal surface have been 

investigated in this thesis in order to provide a solid and a consistent subsurface image of the 

crust under Yellowstone caldera. This latter well-known caldera represents a unique geological 

and geophysical laboratory, where complex geodynamic processes in a continental hotspot are 

manifested, and it has been the center of interest for decades monitored since the fifties.  

 In the first part of this manuscript, I started by mapping the distribution of the depth to 

the Curie isothermal surface. To this end, I assume that the bottom of the magnetic crust 

corresponds to the depth of the iso-Curie surface where the magnetic minerals lose their 

magnetization due to the increase of temperature. Comparing with previous findings, our 

outcomes are computed with new aeromagnetic dataset with higher resolution, which play a key 

role in the improvement of the final results. I used two techniques based on spectral analysis of 

the magnetic anomalies: the first approach is the modified centroid method assuming a statistical 

ensemble of blocks of varying depth, width, thickness, and magnetization, each one uniformly 

distributed. It is simple to argue that this kind of distribution is not uncorrelated but it is instead 

a correlated distribution of magnetic sources, with a sloping exponent of about 3 that is within 

the fractal range. The misunderstanding may be explained in this way: even though the 

magnetization spectral factor is constant (a white power spectrum), the magnetization 

distribution must instead be defined by the product of spectral factors related to the prism size, 

magnetization and thickness, which is a red power spectrum, as discussed above. The second 

approach is the fractal distribution of magnetic sources, for which a spectral factor exists with a 

sloping exponent within the fractal range (from 2 to 4).   

The application of the two methods to our dataset suggest that in both cases, a shallow Curie 

isothermal surface ranging from 1 km to 5 km is retrieved. 

The second part of the thesis is focused on building a 3D thermal model. It was constructed 

through solving a 3D finite element problem of heat transfer in a conductive system using Comsol 

Multiphysics software involving a trial and error optimization of the density, velocity models 

jointly with the geothermal heat source parameters. The previous obtained depth to the Curie 

isothermal map was a key constraint parameter to check the validity of the thermal model. 

Subsequently, a 3D rheological model was built using the 3D temperature model as an input 

along with the geological and the geophysical information from literature. The most part of 

earthquakes epicentres were found to be concentrated in the brittle zone of the volume while the 
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ductile zone is not totally homogeneous confirming the sandwich theory of the crust suggested 

by different authors which states that the ductile zone contains some brittle stratification. This 

brittle-ductile volume is the first 3D mapping of the rheological features of the crust under 

Yellowstone caldera. 

The results obtained from this work can be considered as a new valuable information that 

provide a new insights into Yellowstone caldera, improve the monitoring of the volcanic evolution 

and assess the risk of its hazard. 
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Introduction 
 

Calderas are geological structure associated with the collapse of the roof of the volcano magma 

chamber after a major explosion eruption. In particular, large Quaternary calderas (e.g., 

Yellowstone) are associated with the world’s largest volcanic eruptions (Piskarev and Elkina., 

2017). In this context, Yellowstone is one of the most spectacular and dangerous volcanoes on 

earth, and despite his long period of dormancy (now over 70.000 years), the caldera continuous 

to be an active and dynamic environment, with thousands of earthquakes, active ground 

deformation and considerable heat and mass flux. Therefore, studying its thermal behaviour and 

crustal status is very important to understand its future behaviour. 

The aims of the present thesis are: (i) to investigate the thermal characteristics of the crust 

under Yellowstone by estimating the depth to the Curie isothermal and then, (ii) to evaluate the 

brittle ductile transition limit. The knowledge of the rheology and in particular the brittle-ductile 

(later referred as B/D) transition inside the crust and in the upper mantle may provide insights 

to verify the role of some geological mechanisms in the evolution of tectonic processes such as 

slab pull, crustal delamination and insurgence of volcanic process (Solaro et al., 2007). 

The Curie isothermal surface is generally associated to a temperature reported in the 

bibliography as 570°C for magnetite (e.g. Bansal et al., 2011: 2013; Bouligand et al., 2009; Chiazzi 

et al., 2005; Dimri et al., 2000; Maus et al., 1997; Bhattacharyya and Le, 1975). An aeromagnetic 

survey (USGS, 2000) was used to investigate the depth to the Curie isothermal due to different 

reasons (i) a higher speed in collecting data, which implies lower costs and reduced effects on 

data of the magnetic field time variations; (ii) a better spatial coverage with respect to ground-

based magnetic surveys, allowing surveying of areas inaccessible to ground work; (iii) a variable 

spatial resolution of the data as the flight altitude can be tuned to favour imaging of magnetic 

effects from structures of different sizes and depths. 

The achieved cut-off of rock’s magnetization surface, jointly with available geothermal 

information or/and the boreholes temperature (in our case, there are only very shallow and few 

boreholes temperature data for Yellowstone), and superficial heat flow measurements will allow 

us to constrain a thermal conductive model of the 3D temperature distribution in the upper crust 

under Yellowstone caldera, through an optimized finite element modeling.  

More specifically, in order to investigate the thermal state of Yellowstone Caldera, we carry 

out a 3D time-dependent finite element model in a conductive thermal regime. The boundary 

settings considered for numerical model consist in the heterogeneous crustal domains 

determined by integration of a priori geological and geophysical information (Tizzani et al., 
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2015). The initial condition will be determined by considering the major eruptive events of the 

volcanic area. Starting from the performed 3D thermal distribution, we will define the rheological 

stratification of the crust via the imaging of the B/D transition for the Yellowstone caldera area. 

The B/D can be investigated via the rheological profiles that provide a representation of the 

mechanical strength of the crust (Ranalli, 1997). This approach is commonly used to correlate the 

thermo-mechanical structure of lithosphere with the seismicity or active ground deformation in 

a wide variety of geodynamic environments. 

To this purpose, I constrain the rheological crust models by using the information derived by 

thermal investigation of the area (i.e. geothermal and heat flow measurements) and data derived 

from an aeromagnetic survey measurements. In particular, I focus my attention to the inversion 

of the available aeromagnetic data in order to individuate the Curie isothermal depth surface. 

That is the crustal depth where after it, the crustal rocks lose their magnetic field due to inverse 

temperature. 

This present manuscript starts with an introduction where I explain the motivations behind 

this work, an overview of the methodologies used and the expected results. Chapter 2 is a 

geological review of Yellowstone National Park area: I collected the most important information 

about Yellowstone plateau seismicity and crustal structure and the volcanic system of that area. 

The most important concepts behind the magnetic field and the rheology are explained in 

Chapter 3, it contains the necessary tools to understand the main two chapters of this thesis. The 

estimation of the depth to the Curie isothermal is discussed in Chapter 4, where I used two 

different spectral analysis methods: the modified centroid method and the fractal analysis 

method.  In Chapter 5, I built the 3D thermal model and the 3D rheological model and we 

constrain the result with the available surface heat flow measurements and the acquired depth to 

the Curie isothermal from Chap.3. Finally, some conclusions are given and some future 

perspectives are recommended. 
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Chapter 2: Geological Framework 
 

2.1.  Geological Setting 
 

The so-called Yellowstone Plateau covers an area of about 6,500 km2, mostly within the 

Yellowstone National Park, which extends from northwestern Wyoming, northeastern Idaho and 

southern Montana (USA). The Yellowstone Plateau is one of the largest latest Pliocene and 

Quaternary silicic volcanic fields on Earth with an original extent of almost 17,000 km2 (Hilderth 

et al., 1984). The geologic history of the field defines three cycles of volcanic events which have 

erupted more than 6,000 km3 and have been characterized by the eruption of extensive sheets of 

rhyolitic ash-flow tuff interrupted by eruptions of rhyolitic lavas and tuffs in and near the source 

areas of the ash-flow sheets and by the eruption of basalts around the margins of major rhyolitic 

volcanism (Christiansen, 2001).  

Based on secular geochemical and isotopic relations and eruptive histories (e.g. Hildreth et al. 

1984, 1991; Christiansen, 2001; Vazquez and Reid, 2002), each cycle has been interpreted as the 

result of the accumulation, storage, and differentiation of discrete silicic magma reservoirs 

(Figure 1): 

- The rocks of the oldest cycle erupted between about 2.2 and 2.1 Ma, are basalts in 

northern and eastern Yellowstone National Park and a rhyolitic lava flow at the south end of 

Island Park, Idaho. The oldest ash-flow sheet of the Yellowstone Group, the Huckleberry Ridge 

Tuff, was erupted at 2.1 Ma and was emplaced as a single cooling unit of more than 2,450 km3 

over an area of 15,500 km2. 

- The second cycle: Rocks of this cycle are present just west of Yellowstone National Park 

and probably are buried beneath the Yellowstone Plateau. Early second-cycle rhyolite flows crop 

out west of Island Park. The Mesa Falls Tuff, exposed near Island Park, is a cooling unit of more 

than 280 km3, erupted at 1.3 Ma within the northwestern part of the first-cycle caldera. 

- The third cycle perhaps overlapped the second, beginning about 1.2 Ma with eruption of 

rhyolitic lavas and related tuffs around a growing annular fissure system encircling central 

Yellowstone National Park. Flows vented periodically along this fissure system for about 600,000 

years until ring-fracture development was terminated by rapid emplacement of the ~1,000 km3 

ash-flow eruptions of the Lava Creek Tuff at at 639±2 ka (Lanphere et al. 2002), probably through 

the same ring-fracture zone. These ash flows buried more than 7,500 km2. The floor of 

Yellowstone caldera has been subsequently filled by rhyolite lavas and lesser tuffs primarily 

composing the Upper Basin and Central Plateau Members of the Plateau Rhyolite (Christiansen 

and Blank 1972). 
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Each sequence of volcanism resulted in the collapse of a central area and while the oldest two 

calderas are no longer visible because are buried beneath younger basaltic lava flows and 

sediments that blanket the Snake River Plain, the latest caldera covers an area 60 km wide and 

40 km long.  

 

Figure 1. Yellowstone caldera (a) and associated Plateau Rhyolite lavas and tuffs (b) (modified from Vazquez 
and Reid, 2002). Data available from the Wyoming State Geological Survey and U.S. Geological Survey. 

 

2.2. Ground deformation in Yellowstone’s Volcanic System 
 

Since the last eruption (about 70,000 years ago), Yellowstone has remained restless, with high 

seismicity and continuous uplift/subsidence episodes. Furthermore, the widespread 

hydrothermal system with over 10,000 geysers hot springs, and fumarole of Yellowstone 

National Park indicates that the underlying volcanic system remains active. To entirely 

understand the volcano's behavior and forewarn a potential reawakening, a volcano surveillance 

center for monitoring Yellowstone's activity was specifically created in 2001, complementing 

existing ones for Hawaii, Alaska, the Cascades, and Long Valley, California. The Yellowstone 

Volcano Observatory (YVO) is supported jointly by the U.S. Geological Survey, the University of 

Utah, and Yellowstone National Park.  

The monitoring activity currently includes different types of observations on a continuous or 

near-real-time basis: earthquakes, ground movement, volcanic gas, rock chemistry, water 

chemistry, remote satellite analysis (Figure 2). By integrating previous data with the latest 

technological resources, scientists have been able to track in time rapid uplift and subsidence of 

the ground connected with significant changes in hydrothermal features and earthquake activity 

(Evans et al., 2010; Farrell et al., 2010). Benchmarks surveys discovered an unprecedented uplift 

of the Yellowstone Caldera of more than 72 cm over five decades during the period 1923-1975 
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(Pelton and Smith, 1982), especially in the east-central part of the Yellowstone caldera, near the 

base of Mallard Lake and the Sour Creek resurgent dome where an average rate of 14±1 mm/year 

from 1923 to 1976 and 22±1 mm/year from 1976 to 1984 were recorded (Dzurisin et al., 1994). 

The uplift was associated to the influx of molten material into the upper crust beneath the caldera 

(<20km of depth). 

Additional surveys across the eastern part of the caldera nearly every year have been 

conducted from 1983 to 1998. The new findings revealed a nearly continuous movement in time 

but with a different trend.  The floor of the caldera continued to rise until 1984, stopped rising 

during 1984-85, and then subsided for the following 10 years at rates of 19 mm/yr  (Dzurisin et 

al., 1994; Wicks et al., 1998; Stauffer, 2004). The earthquake swarm of late 1985 may have been 

caused by the escape of hydrothermal fluids through the impermeable rock layer above the 

magma reservoir, which also initiated the episode of subsidence in the caldera.  

Starting from 1987, GPS was added to the Yellowstone monitoring system and corroborated 

the results from the leveling surveys (Meertens, et al., 1991) and several years later new and 

revolutionary satellite-based method - Interferometric Synthetic Aperture Radar (InSAR) - has 

been deployed in order to assemble a more detailed picture of how and when the ground moves 

above Yellowstone's magma reservoir. 

Until the 1990s, it was thought that all the inflations and deflations was located near Le Hardy 

Rapids, in the central part of the caldera which began rising again in 1995, but a more complex 

pattern of uplift and subsidence has prevailed since 2000. InSAR data show that between 1995 

and 1997 a large area along the northwest rim of the Yellowstone Caldera, centered near Norris 

Geyser Basin, started to rise. A period of uplift of 12 cm, between 1997 and 2003, in the northern 

part of the Yellowstone caldera connected with pulse of basaltic magma (Wicks, et al., 2006). 

Since that time, the area, including the Norris Geyser Basin, has stopped moving, while uplift has 

returned to the central part of the caldera and the two resurgent domes and along the Northern 

Caldera Rim. In particular, geodetic measurements of Yellowstone ground deformation from 

2006 to June 2010 reveal deceleration of the recent uplift of the Yellowstone caldera following 

an unprecedented period of uplift that began in 2004. In 2006–2008 uplift rates decreased from 

7 to 5 cm/yr and 4 to 2 cm/yr in the northern and southwest caldera, respectively, and in 2009 

rates further reduced to 2 cm/yr and 0.5 cm/yr in the same areas (Chang et al., 2010). 
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Figure 2. Monitoring instruments of the YVO in the Yellowstone Caldera (available at 
https://volcanoes.usgs.gov/volcanoes/yellowstone/monitoring_map.html). 

 

 

 

2.3. Yellowstone Plateau seismicity 
 

The Yellowstone region is one of the most seismically active areas of the western U.S. with 

often 1 to 20 earthquakes recorded everyday which amount to over a thousand earthquakes per 

years (Waite and Smith, 2004). Historical seismicity of Yellowstone (Figure 3), monitored since 

the installation of a permanent seismic network in 1973, is distinguished by spatial and temporal 

clusters of small and shallow earthquakes (<5 km depth). About 40% of the total earthquakes are 

associated with swarms, most of which have magnitudes less than 4 and concentrates between 

the 0.64 Ma northern rim of the Yellowstone caldera and the 44-km-long rupture of the 1959 

MS7.5 Hebgen Lake earthquake (the largest historic earthquake in the western U.S. interior) 

where the cumulative seismic moment release in this region is an order of magnitude higher than 

inside the Yellowstone caldera, implying the dominance of aseismic mechanisms for the caldera 

(Puskas et al., 2007). The central part of the caldera has relatively low seismicity, and no distinct 

seismic patterns are associated with the Mallard Lake or the Sour Creek resurgent domes. 
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Figure 3. - Plot of recorded earthquake activity with a minimum magnitude cutoff of MC 1.5 at Yellowstone 
from 1974 through 2010 along with caldera crustal deformation (modified from Waite and Smith, 2002). Data 

available from U.S. Geological Survey. 

 

Focal mechanisms reveal predominantly normal faulting. However, fault orientations vary 

across the Yellowstone caldera. Furthermore, events do not always occur along the mapped and 

dated Late Quaternary faults such as the Hebgen, Madison, and Gallatin faults (Smith and 

Arabasz, 1991; Miller and Smith, 1999), as many seismogenic structures may have been buried 

by the post-caldera rhyolite flows and yet still act as zones of weakness (Christiansen, 2001). 

The picture that emerges from all these data is of a dynamic system in which the caldera floor 

is in almost constant motion with episodes of uplift and subsidence occurring at various locations 

and over different time scales. Spatial and temporal variations of Yellowstone ground movement 

are correlated with changes in seismic and hydrothermal activity in and around the caldera 

(Waite and Smith, 2002, Chang et al., 2007, Smith et al., 2009). 

 

2.4. Yellowstone Plateau crustal structure 
 

Earliest works on the structure of the Yellowstone volcanic system included earthquake and 

Curie isothermal depth determinations that revealed a shallow crustal heat source and focal 

mechanisms consistent with general crustal extension of the Yellowstone Plateau (Smith et al., 

1974, 1977). Controlled source seismic studies revealed a relatively homogenous lower crust to 

40 km deep that was similar to that of the surrounding lithosphere not affected by lower crustal 

magmatism but could not discern the shape or depth of low velocity upper crustal source (Smith 

et al., 1982; Schilly et al., 1982; Lehman et al., 1982). This seismic image of the magma reservoir 

is consistent with a geochemical model by Lowenstern and Hurwitz (2008) that suggests magma 
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rises closest to the surface (5–7 km depth) beneath the resurgent domes. Their model, based on 

CO2 flux and heat flow, requires continued intrusion of plume-derived basalt to sustain the silicic, 

upper-crustal magmatic system responsible for Yellowstone's youthful volcanism. 

New findings have been possible in the latest 30 years thanks to the inversion of GPS and/or 

InSAR and/or leveling correlated with gravity measurements and seismic tomography studies. 

The new datasets provide important constraints on the dynamics of the Yellowstone magma 

system and its potential for future volcanic eruptions and earthquakes. 

The findings can be summarized in two families of models which have been proposed to 

explain surface deformation at Yellowstone Caldera (Tizzani et al., 2015): “hydrothermal” or 

“magmatic” model.  

The former relies mainly on pressurization/depressurization of fluids other than magma to 

produce surface uplift/subsidence. The primary deformation mechanism is a pressure change 

within the hydrothermal system in response to some perturbation such as a gas/fluid pulse 

where: 

- According to  Fournier (1989), the inflation episodes are given by phase separation from 

crystallizing magma and trapped beneath a self-sealing layer at lithostatic pressure in ductile rock 

and rupturing of the seal would produce subsidence  

- Another theory invokes the poroelastic deformation in the shallow hydrothermal system 

induced by magmatic gas influx at the base of the hydrothermal system (Dzurisin et al., 1999; 

Hutnak et al., 2009) 

In any of the two hydrothermal representations, the model implies that the depth of the 

sources should be above the brittle-ductile transition zone, that in Yellowstone is at a depth 

between 4 and 6 km under the resurgent domes area (DeNosaquo et al., 2009), and that their 

density should be ρ ≤ 1000 kg/m3. 

Differently, the primary deformation mechanism associated with the magmatic models is the 

injection of magma or fluid exsolved from magma at or below the base of the hydrothermal 

system at depth below the brittle-ductile transition zone and density around 2500 kg/m3.  

In this framework, tabular bodies beneath the caldera have been identified as the source of 

deformation which have been intermittently active during the last three decades: (1) one (e.g., 

Chang et al., 2007; Farrell et al., 2014) or two (e.g., Wicks et al., 2006) bodies at a depth of 6-14 

km beneath the caldera resurgent domes and (2) a source 8-16 km deep under the Northern 

Caldera Rim area. The microgravity observations by Arnet et al. (1997) are consistent with a 

“magmatic” model where surface uplift is caused, at least in part, by intrusion of magma in the 
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midcrust, while subsidence could either be the result of fluids migration outside the caldera or 

the gravitational adjustment of the source from a spherical to a sill-like geometry (Tizzani et al.,. 

2015). The source depths indicated by these models are below the brittle-ductile transition- 

thought to occur at a depth between 4 and 6 km under the resurgent domes area (DeNosaquo et 

al., 2009).
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Chapter 3: Introduction to Magnetic and Rheology 

  

3.1. Magnetic field 
 

3.1.1. Earth’s Magnetic Field 
 

Our planet is surrounded by a magnetic field, which, similarly to the gravity field, admits a 

scalar potential and can be measured by magnetic instrumentation. The geomagnetic field is 

approximately dipolar with a dipole axis inclination of about 10.3° from the Earth's rotation axis. 

However, the signal obtained from magnetic field measurements is a sum of different source 

contributions which may be summarized in three main categories: 

 The main field, generated in the Earth’s fluid core by a geodynamo mechanism; 

 The lithospheric field, generated by magnetized rocks in the Earth’s lithosphere; 

 The external field, produced by electric currents in the ionosphere and in the 

magnetosphere, due to the interaction of the solar electromagnetic radiation and the solar wind 

with the Earth’s magnetic field. 

Moreover, the Earth’s magnetic field structure varies not only in a spatial scale but is also 

subject to continuous long-term and short-term time variations. The long-term variations 

(secular variations) have deep origin and may be detected by the use of datasets covering large 

periods of time (at least 5-10 years), while the short-term variations have external origin and 

generally cover very short range of time (from second to few years) (Lanza and Meloni, 2006). 

In this brief overview, we are going to talk about the lithospheric component of the magnetic 

field since we are interested to retrieve the properties of magnetic source in the Earth’s crust. 

Many authors studied the magnetic contribution in the uppermost mantle, at least in a specific 

geological environments (e.g. Arkani-Hamed and Strangway, 1987; Bostock et al., 2002; Blakely 

et al., 2005; Chiozzi et al., 2005; Ferré et al., 2014). 

1.1.1. The lithospheric magnetic field 

In the space exterior to the Earth's surface, assuming the absence of magnetic material, 

Maxwell's equations are expressed in SI units as: 

∇ ∙ 𝐁 = 0     (1.1) 

∇ × 𝐁 = μ0 𝐉   (1.2) 
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Where B is called magnetic induction or flux density. It is measured in Tesla (T) or nano-Tesla 

(nT), more conveniently in the geomagnetic field studies; J is the current density in Ampere per 

square meter (A/m2), and μ0, known as the permeability of free space, is a constant equal to 4𝜋 ×

 10−7 henrys per meter (H/m) (Blakely, 1996). 

Then, if ∇ × 𝐁 = 0 , we have that: 

𝑩 = −𝛻 𝛹    (1.3) 

Where 𝛹 is the magnetic potential. 

So, substituting (1.10) in (1.8), we will obtain: 

∇2 𝛹 = 0    (1.4) 

That is, the potential satisfies Laplace’s equation. 

So, the magnetic field measured at a specific position r and time t may be defined as: 

 

𝐁(𝐫, 𝑡) = 𝐁𝑚(𝐫, 𝑡) + 𝐋(𝐫) + 𝐃(𝐫, 𝑡) + 𝐞(𝑡),  (1.5) 

 

Where 𝐁𝑚(𝐫, 𝑡) is the field produced by the Earth's core (main field), L(r) is the lithospheric 

field, D (r,t) the external field and e(t) the measurement error. By this, the lithospheric or 

external residual field may be obtained subtracting the main field to the magnetic 

measurement.The description of the core magnetic field is referred to a model, called 

International Geomagnetic Reference Field (IGRF), which is updated every five years by IAGA 

(International Association of Geomagnetism and Aeronomy) due to time variations of the 

geomagnetic field.  

The solution of Laplace's equation expressed in a spherical harmonic representation provides 

a formal separation of the internal (𝐁𝐦 + 𝐋) and external (D) field components. In fact, each 

source region is defined by specific spherical harmonic terms (degree l and order m), which 

determine the spatial scale of such contribution. Generally, low degrees correspond to the largest 

spatial scales, or to the deepest source contributions, and vice-versa. This representation was 

used by Gauss in the 19th century to fit the magnetic observatory data and show that the largest 

part of the geomagnetic field is by far of internal origin. 

3.1.2. Magnetic properties of the rocks 
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The origin of the lithospheric fields is strictly related to the magnetic properties of the rocks 

within the crust, which vary for different geographical regions, mineral composition and 

temperature. The magnetic effect on materials allows identifying three different categories 

(Reynolds, 1977): 

 Diamagnetic materials have a weak, negative susceptibility to magnetic fields. 

 Paramagnetic materials have a small, positive susceptibility to magnetic fields. 

These materials are slightly attracted by a magnetic field and the material does not retain the 

magnetic properties when the external field is removed. 

 Ferromagnetic materials have a large, positive susceptibility to an external magnetic field. 

They exhibit a strong attraction to magnetic fields and are able to retain their magnetic properties 

after the external field has been removed. 

For understanding the behavior of rocks materials in a magnetic field environment, we may 

start defining m as the magnetic moment of a simple dipole, expressed in [ 𝐴 𝑚2], which leads to 

the magnetization (M) in the case of a large volume (V) composed of several single dipoles : 

𝐌 =
∑ 𝐦𝐢𝑖

𝑉
     (1.6) 

Where 𝐌 is measured in A/m. 

Then, we may rewrite the Maxwell's equation to obtain the magnetization current 𝐉𝐦: 

 

∇  × (𝐁 − 𝜇0 𝐌) =  𝜇0 𝐉        (1.7) 

 

And we define the magnetic field intensity H as:  

𝐇 =
𝐁−𝜇0𝐌

𝜇0
    (1.8) 

M and H are related by the magnetic susceptibility (𝜒), which determines the ease with 

which a material is magnetized: 

𝐌 =  𝜒𝐇  (1.9) 

So, the magnetic field expression becomes: 

𝐁 =  𝜇0(𝜒 + 1)𝐇 =  𝜇𝐇   (1.10) 



 
                                                                                   Chapter3: Introduction to magnetic and rheology  

13 
 

Mouna Brahmi 

Where, 𝜇 is the absolute permeability. 

Here we mean that the magnetization is induced (𝐌𝐢) by the external field H, there is also a 

component of the magnetization which is called permanent or remanent (𝐌𝐫). In crustal 

materials, remanent magnetization is a function not only of the atomic, crystallographic, and 

chemical make-up of the rocks, but also of their geologic, tectonic, and thermal history (Blakely, 

1996). So, the rock magnetization may be written as: 

𝐌 = 𝐌𝑖 + 𝐌𝑟     (1.11) 

From which we obtain the Koenigsberger ratio(𝑄): 

𝑄 =
|𝐌𝑟|

|𝐌𝑖|
=

|𝐌𝑟|

𝜒|𝐇|
    (1.12) 

 

Both magnetizations arise from spontaneous magnetization, a complex property of the 

ferromagnetic minerals in the Earth's crust. The spontaneous magnetization is dependent on the 

temperature. As a material is heated, the spacing between neighboring atomic moments 

increases to a threshold point where the spontaneous magnetization falls to zero. This 

temperature is called the Curie isotherm, whose definition is discussed in more detail in Chapter 

4. Hence, both induced and remanent magnetizations vanish at temperatures greater than the 

Curie isotherm. Paramagnetic and diamagnetic effects persist at these temperatures, but from 

the perspective of magnetic-anomaly studies we may consider rocks above the Curie isotherm to 

be nonmagnetic. The Curie isotherm differs for each mineral formation but, in magnetic field 

studies, the Curie isotherm of Magnetite (about 580°C) is considered as the standard 

temperature boundary for the whole magnetic crust with magnetite as the main magnetic mineral 

for percentage, size, and shape (Hunt et al., 1995). 

3.1.3. Investigation of the depth to the Curie isotherm (CD) in literature 
 

The Curie isotherm was named after Pierre Curie, who showed that magnetism was lost at a 

critical temperature. This temperature is assumed to be 580 °C for magnetite, which is the 

dominant magnetic mineral in the deep crust within the continental region (Langel and Hinze, 

1998), at atmospheric pressure. The Curie depth (CD) at which temperature reach the Curie point 

is assumed to be the bottom of the magnetized bodies in the earth crust (Khojamli et al., 2016), 

bellow that the lithosphere is vertically nonmagnetic. 
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The depth to Curie isotherm can also provide an understanding of the thermal structure: e.g., 

in volcanic areas convective heat transfer complicates the determination of the thermal structure 

from heat flow measurements alone and determination of Curie isotherm point depths from 

magnetic data can prove to be helpful for understanding the thermal structure (Mita Rajaram., 

2007). 

The remotely sensed magnetic (surface, airborne, satellite-borne) measurements indirectly 

provide an isothermal surface within the lower crust. The first use of the aeromagnetic data was 

dated to 1975 where Bhattacharyya and Leu (1975), mapped for the first time the CD for 

geothermal reconnaissance in Yellowstone National Park in USA and their results were balancing 

between 4and 8 km of depth. In Greece and from aeromagnetic and heat flow data, Tselentis 

(1991) was able to understand the nature and the extent of the regional geothermal system 

through constructing the Curie isotherms which varies considerably, reaching 20 km towards 

western Greece and about 10 km beneath the Aegean. In east and Southeast Asia, Tanaka et al. 

(1999) determined the CD using the spectral analysis of magnetic anomaly method; they 

estimated the CD in that area, using the centroid method and many heat flow boreholes, to be 

ranging from 9 to 46 km which was pretty close to the result from the heat flow data. Dolmaz et 

al., (2005) conducted a study of the relationship between the earth crust’s thermal structure in 

the southwestern and the study of the brittle ductile transition in that area as well as the heat flow 

variations.  

Curie isotherm varies from region to region depending on the geology and the mineralogical 

content of the rocks. Therefore, one can normally expect shallow Curie point depth at the regions, 

which have geothermal potential, young volcanisms and thin crust (Aydin and Oksum 2010). The 

assessment of the variations in the Curie isotherm depth of an area can provide valuable 

information about the regional temperature distribution at depth and the potential of subsurface 

geothermal energy (Tselentis 1991) as well as the geothermal gradients of the region. 

Combining a travel time inversion of a micro-seismic dataset together with a CD analysis 

based on aeromagnetic data allowed Karastathis et al. (2010) to found the deep origin of the 

geothermal fields and volcanic centers in central Greece, they estimated the CD at about 7 to 8 

km. 

The aeromagnetic data was used also by Bansal et al., (2011) in order to estimate the CD in 

Germany: using the centroid method and comparing the results with the heat flow density data. 

Salah et al. (2013) estimated the CD of the Northern Red Sea rift in Egypt using the spectral 

analysis of the aeromagnetic data: the result varied from 5 to 20 km. The shallowest depths of 5 

km are associated with a high heat flow and suggested a promising area for geothermal 

exploration.  
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In the Eastern sector of central Nigeria, Eletta and Udensi (2012) investigated the CD isotherm 

from aeromagnetic data to prepare a preliminary potential map of geothermal resources. They 

showed that the high prospect areas are located in the south-west parts of the study area, whereas 

applying the spectral analysis of aeromagnetic data for geothermal prospecting in the north-east 

of Nigeria was conducted by Obande et al. (2014), they estimated the top and the centroid depths 

of magnetic sources from the power spectrum and they obtained results that varies from 6 km 

near the thermal springs to 12 km elsewhere. 

From a magnetic analysis of the Tohoku arc, Japan, Okubo, and Matsunaga (1997) find that 

the CD varies from 10 km in the volcanic province of the back arc to 20 km or deeper at the 

eastern limit of Tohoku. They find that the boundary between the seismic and aseismic zones in 

the overriding plate correlates with the inferred Curie isotherm, indicating that the seismicity in 

the overriding plate is related to temperature. 

3.2. Rheology  

 
Rheology is the science dealing with the deformation and flow of matter. Shear stress, shear 

rate and viscosity are the building parameters leading to an understanding of rheology. Viscosity 

is a measure of a fluid’s resistance to flow. When, a fluid starts to flow under the action of a force, 

a shearing stress arises everywhere in that fluid that tends to oppose the motion. As one layer of 

the fluid moves past an adjacent layer, the fluid’s molecules interact so as to transmit momentum 

from the faster layer to the slower layer trending to resist the relative motion. The intent of this 

part is to explain the fundamentals of rheology since we are going to use it in the second part of 

this thesis. 

The distinguishing feature of a fluid, in contrast to a solid, is the ease which the fluid may be 

deformed. If a shearing force, however small, is applied to a fluid, the fluid will move and continue 

to move as long as the force acts on it. Even though a fluid can deform easily under an applied 

force, the fluid’s viscosity creates resistance to this force. Here are some simple definitions of 

some terminology used while studying the rheology of a field in order to provide some basic 

understanding of the field. 

3.2.1. Viscosity   
 

In a very simple way, viscosity is the resistance measure of a fluid to an applied stress. Sir 

Isaak Newton was the first to define viscosity. Newton assumed the force required to maintain a 

difference in speed was proportional to the difference in speed through a liquid. This simple 

relationship in fluids for which the shear stress divided by the shear rate (which remain equal 

independent of the shear rate in case of Newtonian fluid) is the practical definition of viscosity. 



 
                                                                                   Chapter3: Introduction to magnetic and rheology  

16 
 

Mouna Brahmi 

The viscosity depends on the shear rate, temperature, pressure, time (the history of the shear) 

and the physical properties of the media. 

3.2.2. Shear stress 
 

Shear stresses is a stress that causes shear. It is of the same dimension as pressure. But while 

pressure causes compression, shear stresses cause shear. It tends to deform the material without 

changing its volume, and are resistant to the body’s shear modulus. In other words, it means the 

load resisted by the section of a material taken parallel to the external load direction. Whenever 

an external load is applied on a member, the load tends to deform the body in turn the resisting 

forces are developed in the member to counteract the deformations, this resisting force developed 

per unit area of the section of the material is called stress. 

Shear stress produces shear deformation in form of angle. So here the proportionality constant 

is Modulus of rigidity (G), as in case of stress produces strain where the proportionality constant 

is Young's modulus of elasticity (E). When there is only normal stress acting on a body then there 

is no shear stress as only linear deformation will be there, however normally every materials 

subjected to biaxial or triaxle stress system where shear stress at different plane exists.  The shear 

deformation angle plays an important peat while analyzing failure of any materials. 

3.2.3. Shear Rate 
 

Velocity change in the field where the fluid flows over an adjoining layer. It defines the term 

of viscosity which is the resistance to movement of fluid (a definition for Fluid Mechanics) For 

example: Non-Newtonian Models. 

For the Non Newtonian, fluids tend to be the rule rather than the exception in the real world, 

making an appreciation of the effects of shear rate a necessary for anyone engaged in the practical 

application of rheological data. It would, for example, be disastrous to try to pump a dilatant fluid 

through a system, only to have to go to solid inside the pump, bringing the whole process to an 

abrupt halt. While this is an extreme example, the importance of shear rate effects should not be 

underestimated. When a material is to be subjected to a variety of shear rates in processing or 

use, it is essential to know its viscosity at the projected shear rate. If these are not known, an 

estimate should be made. 
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Chapter 4: Estimation of the depth to the Curie 

isothermal surface in Yellowstone 

 

4.1. Introduction 
 

Yellowstone National Park (YNP), located in the northwest of Wyoming, is considered a 

significant geothermal energy source. Many authors studied its geothermal flow using different 

kind of data (e.g. Lowenstern and Hurwitz, 2008; Vaughan et al., 2012; Hurwitz and Lowenstern, 

2014). Vaughan et al. (2012) used ASTER, a NASA satellite, to estimate how much geothermal 

heat was radiating away from Yellowstone thermal area, which was about 1,970 megawatts. Most 

of the heat flow studies (e.g. White, 1969; Ellis and Wilson, 1955; Fournier et al., 1976; Hurwitz 

et al., 2007; Lowenstern and Hurwitz, 2008; Vaughan et al., 2012; Hurwitz and Lowenstern, 

2014) were conducted on Yellowstone thermal features: thermal springs, mud pots,  geysers, and 

still the heat flow remains poorly known in our study area. In order to provide an independent 

estimation of the thermal status of Yellowstone, I investigate the depth to the Curie isothermal 

surface in the area using aeromagnetic data and through two different methods based on spectral 

analysis technique. The Curie isotherm is about 570°C, which represents the bottom of magnetic 

sources. In other words, it is when materials tend to lose their magnetic properties and become 

paramagnetic (e.g. Langel and Hinze, 1998; Rajaram, 2007). 

Surprisingly, the only extensive published study of the depth to the Curie isothermal surface 

in Yellowstone caldera, was done back in 1975 by Bhattacharyya and Leu (Bhattacharyya and Leu, 

1975) using aeromagnetic data from a survey conducted over Yellowstone in 1973.  

It is important to mention that the depth to the Curie isotherm surface in Yellowstone area 

was estimated before Bhattacharyya and Leu (1975) by Shuey et al. (1973) and Smith et al. (1974) 

who studied the average isotherm depth for the whole area. 
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Figure 4. Estimation to the depth to the Curie isotherm surface in Yellowstone after Bhattacharyya and Leu., 
1975 

 

The results of Bhattacharyya and Leu (1975) are shown in Figure 4. The authors used the 

centroid method developed by Spector and Grant (1970) to estimate the Curie depth and they 

concluded that the central area of the caldera was marked by a shallow Curie isotherm at depths 

of only 5 to 6 km whereas, the isotherm outside (but within the caldera rim) lied generally at 

depths of 6 to 8 km. They also mentioned that, around the south-eastern and the southern 

sections of the study area, there were some significantly shallow depths ranging from 4 to 6 km 

which could indicate the presence of local hot spots. 

In this present study, I am going to use both spectral analysis approaches: fractal (Maus et al., 

1997) and the corrected Spector and Grant (1970) method (Fedi et al., 1997), which is defined in 

the whole chapter as the modified centroid method. First I will present the aeromagnetic data 

used in this work. Then, I will explain the two methods employed to estimate the depth to the 

iso-Curie surface. Finally, I will interpret and discuss the results. 

 

4.2. Data 
 

In this study, I am going to use the aeromagnetic data collected over YNP from the aero-

magnetic survey conducted in 1997 (USGS, 2000): the survey, named  Yellowstone 97, covers 

about 106 km by 112 km. It was flown between September and October 1997 in an east- west 

direction with an averaged altitude of 244 m relative to sea level. The line space used is about 

400 m. 
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The survey (U.S. Geological Survey, 1973) used by Bhattacharyya and Leu (1975), covers 131 

km by 131 km, was flown with an elevation of about 4 km above YNP. The advantage of using a 

single survey is that we have a coverage of our study area with a homogeneous flight spacing and 

flight elevation with high resolution. Some studies (e.g. Bouligand et al., 2009) tend to overlap 

different surveys to cover a larger area of study. 

The major limitation of this survey is the area size: an area of 106 km by 112 km is considered 

small comparing to different areas and can cause some errors during computations. The 

Yellowstone 97 allows us to have a high resolution data with short wavelength magnetic 

anomalies (Grauch and Millegan., 1998). The aeromagnetic map (Figure 5), is a residual 

magnetic map of just Yellowstone area obtained from an open file with the U.S. Geological 

Survey. It was gridded using Oasis software using the minimum curvature gridding technique 

with a step of 200 m. They had already removed the Earth’s main geomagnetic field without being 

Reduced to the Pole, although Finn and Morgan (2002) later have reduced the data to the North 

Pole. 

The principal feature noted in the map (Figure 5) is the high magnetic intensity, which reaches 

250 (nT) in the northeast part of Yellowstone. This part corresponds to the Absaroka Mountains 

in the geological map (Figure 6). The lowest magnetization (-375 nT) is located in the caldera 

area (Figure 5) which can be explained by the topographically low area accompanied by 

hydrothermally altered volcanic rocks (Figure 6). It can be also explained by the fact that the 

igneous rocks in the caldera reserved their magnetization or it can be the result of the absence of 

magnetic rocks (Finn and Morgan, 2002). The presence of a good correlation between the 

aeromagnetic map of Yellowstone and its geological and the topographic map is clear. 
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Figure 5. Aeromagnetic map plotted over the topographic map from U.S. Geological Survey, 1997 

 

 

 

Figure 6. The Yellowstone National Park geological map modified from USGS I-711 by Miller, Oregon 
University 
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4.3. Methodology 
 

I estimate the depth to the iso-Curie surface through two different spectral techniques: the 

centroid method and the fractal method. Both techniques are based on transforming the spatial 

total field data into frequency domain through a Fourier transform (Blakely, 1997), thanks to the 

relationship between the spectrum of the magnetic data and the depth of the magnetic sources 

(Shuey et al., 1977). 

4.3.1. The estimation of the depth to the top and to the centroid from 
the power spectrum of magnetic field (modified centroid method)  

 

Bhattacharyya (1966) presented the Fourier domain response of a rectangular prism. Later, 

Spector and Grant (1970), assuming a statistical ensemble of rectangular prisms, found the 

relationship between the slope of the logarithm of the power spectrum and the statistical average 

of the depth to the top of the source. In particular, they assumed a vertical-sided parallelepipeds, 

characterized by a joint uniform frequency distribution for the depth, width, length, depth extent, 

magnetization, and direction cosines of the magnetization (𝐿, 𝑀, 𝑁) and the geomagnetic field 

vector(𝑙, 𝑚, 𝑛). 

𝑃𝑠(𝜌, 𝜃) = (
𝑢0

2
)

2
𝑞2𝑒−2ℎ𝜌(1 − 𝑒−𝑡𝜌)𝑆2(𝜌, 𝜃)𝑅𝑇

2(𝜃)𝑅𝑘
2(𝜃)    (4.1) 

 

Equation (4.1) represents the spectral expression for a single parallelepiped (Bhattacharyya, 

1966) in the polar coordinates, 𝜃 , where  

𝑆(𝜌, 𝜃) =  
sin(𝑎 𝜌 𝑐𝑜𝑠𝜃)

𝑎𝜌 𝑐𝑜𝑠𝜃
 
sin(𝑏𝜌 sin 𝜃)

𝑏 𝜌 sin 𝜃
  (4.2) 

𝑅𝑇
2(𝜃) = 𝑛2 + (𝑙 cos 𝜃 + 𝑚 sin 𝜃)2   (4.3) 

𝑅𝑘
2(𝜃) = 𝑁2 + (𝐿 cos 𝜃 + 𝑀 sin 𝜃)2                      (4.4) 

2𝑎, 2𝑏 and 𝑡 are the body dimensions, 𝑢0 is the permeability of the free space (4𝜋 × 10−7 SI) 

and 𝑞/4𝑎𝑏 is the magnetic moment/unit volume of the body. 

Spector and Grant (1970) used a statistical mechanics hypothesise that the mathematical 

expectation of an ensemble power density function was equal to an ensemble average. They 

assumed that all ensemble parameters were uniformly and independently distributed. The 

ensemble power spectrum could then be written: 
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𝑃𝑠 = (
𝑢0

2
)

2
𝑞̅2 𝐶(𝜌, 𝑎̅, 𝑏̅) 𝑇(𝜌, 𝑡̅) 𝐻(𝜌, ℎ̅)      (4.5) 

ℎ̅, 𝑎̅, 𝑏̅, 𝑡̅, 𝑞̅, refer to the average parameter values of the ensemble. C is the azimuthal average, 

which deals with the range of the shape factor of an allowed widths and lengths (see Fedi et al., 

1997); H is strictly related to the depth factor 〈(𝑒−2ℎ̅𝜌)〉 for depth variation ∆ℎ < 0.5ℎ̅. 

Fedi et al (1997) and Quarta et al. (2000), recognized that the shape factor S in the Spector & 

Grant (1970) equation has a power-law form, for relatively large source horizontal dimensions,  

𝑆(𝑘) = 𝐿𝑘−𝛽    (4.6) 

Where 𝑆 is the shape factor of the power spectrum; 𝐿 is a constant; 𝑘 is the wavenumber and 

𝛽 is the sloping exponent, of the power-law:  𝛽 = 2.9. The value of the scaling exponent 

represents the degree of correlation. 

 

Figure 7. The correction technique for an ensemble of sources: the correction removes the fictitious deep slope 
change of the uncorrected spectrum (After Fedi et al., 1997) 

 

According to Fedi et al (1997), the rate of decay of the power spectrum for a field at a h distance 

to the source top, is determined by two parameters: the exponent of the power law – 𝛽 and the 

exponent of an exponential-law factor, 2h; 

𝑃𝑠 ≅ (
𝑢2

2
)

2
𝑞̅2 𝑘−2.9 𝐻(𝜌, ℎ̅)              (4.7) 

So, to make an accurate estimate of the depth to the source, a power-law correction for the 

shape factor (approximately 𝑘2.9) is necessary (Figure 7). For small sizes of the sources with 

respect to the data step (Fedi et al., 1997; Quarta et al., 2000), however, the correction has not to 

be applied, since the shape factor S tends to assume a flat shape (Figure 1, Fedi et al., 1997). So, 
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the power law correction is most suitable when the main behaviour of the anomaly field is 

characterized by rather extended anomalies. 

For a horizontal layer with top at depth d and thickness t (Blakely, 1995), the power spectrum 

𝑃𝑠 can be written as:  

𝑃𝑠(𝑘𝑥, 𝑘𝑦) = 4𝜋2𝐴 𝑃𝑠𝑚(𝑘𝑥, 𝑘𝑦)|Θ𝑚|2|Θ𝑓|
2

𝑒−2|𝑘|𝑍𝑡(1 − 𝑒−|𝑘|(∆𝑧))
2
    (4.8) 

where 𝑘𝑥, 𝑘𝑦 are wavenumbers in x and y directions, A is a constant, 𝑃𝑠𝑚 is the power spectrum 

of the magnetization; 𝛩𝑚 and 𝛩𝑓 are the directional factors related to magnetization and 

geomagnetic field respectively , 𝑍𝑡, here is the depth to the top of the isothermal Curie depth and 

∆𝑧 is the thickness. 

When this equation is used, usually the 2D power spectrum is transformed to a radial 

spectrum, which implies that the directional factors related to magnetization and geomagnetic 

field become constant. In case of a random and uncorrelated distribution of the sources, which 

means that we have a white noise distribution, the power spectrum of magnetization 𝑃𝑠𝑚 becomes 

constant as well. 

Then, Equation 4.8 can be written as  

𝑃𝑠(𝑘) = 𝐵𝑒−2|𝑘|𝑍𝑡(1 − 𝑒−|𝑘|∆𝑧)
2
   (4.9) 

Where B is a constant and for a very thick magnetic body, the right-hand side of Equation 2 

will contain only the depth to the top of the magnetized layer and it will be reduced as 

𝑃𝑠(𝑘) = 𝐵𝑒−|𝑘|𝑍𝑡    (4.10) 

Equation 4.10 may be used to find the depth to the top. 

Now, to find the depth to the centroid of magnetic layer, Bhattacharyya and Leu (1975) and 

Okubo et al (1985) applied the natural logarithm to both sides of the equation and later 

normalizing with the wavenumber 

ln (
𝑃𝑠(𝑘)1 2⁄

𝑘
) = 𝐷 − |𝑘|𝑍0  (4.11) 

Where D is a constant and 𝑍0 represents the depth to the centroid. 

The depth to the bottom or the Depth to the iso-Curie surface is then computed as follow 

𝑍𝐵 = 2𝑍0 − 𝑍𝑡   (4.12) 
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Ōkubo et al. (1985) studied the Curie depth of Kyushu, Japan and suggested that centroid 

estimations could be derived from data windows what are as small as 40 km × 40 km, which 

however, can sometimes lead to estimate shallow (and maybe intermediate) layers but not deep 

ones. Tanaka et al (1999), assumed that the layer extends infinitely far in all horizontal directions, 

then the depth to the top of the layer is small compared to the horizontal scale of magnetic source. 

The magnetization in this case is also distributed in two dimensions (x and y). Moreover, for 

wavelengths less than about twice the thickness of the layer they were able to estimate the depth 

to the top by the slope of the power spectrum of the total field.  

Equation 4.9 becomes  

ln[𝑃𝑠(|𝑘|)1 2⁄ ] = ln 𝑀 − |𝑘|𝑍𝑡       (4.13) 

Where M is a constant. 

In order to estimate the depth to the centroid they rewrote Equation 4.2 as  

 

𝑃𝑠(|𝑘|)
1

2⁄ = 𝐹𝑒−|𝑘|𝑍0(𝑒−|𝑘|(𝑍𝑡−𝑍0) − 𝑒−|𝑘|(𝑍𝐵−𝑍0))     (4.14) 

 

Where F is a constant. At long wavelengths, Equation 4.14 becomes 

ln[𝑃𝑠(|𝑘|)1 2⁄ ] = 𝐹𝑒−|𝑘|𝑍0(𝑒−|𝑘|(−∆𝑧 2⁄ ) − 𝑒−|𝑘|(∆𝑧 2⁄ ))~𝐹𝑒−|𝑘|𝑍02|𝑘|
∆𝑧

2
    (4.15) 

We can write then, 

ln{[𝑃𝑠(|𝑘|)1 2⁄ ]/|𝑘|} = ln 𝑀1 − |𝑘|𝑍0    (4.16) 

Where M1 is a constant.  

The estimation of the depth to the top and the depth to the centroid can be done by fitting a 

straight line through the high-wavenumber and the low-wavenumber parts of the radially 

averaged spectrum of Equation 4.13 and Equation 4.16, respectively. In other words, from 

ln[𝑃𝑠(|𝑘|)1 2⁄ ] and ln{[𝑃𝑠(|𝑘|)1 2⁄ ]/|𝑘|}.  

This method has been extensively employed to estimate the depth of the Curie surface (e.g. 

Bhattacharyya and Leu 1975; Okubo et al., 1985; Tselentis 1991; Tanaka et al., 1999; Dolmaz et 

al., 2005; Karastathis et al. 2010; Salah et al., 2013; Eletta and Udensi., 2012; Obande et al., 

2014). 

Although the centroid method is one of the simplest method to estimate the depth of the 

magnetic sources, it provides an overestimation of the depth values, the assumption of a random 

and uncorrelated distribution of sources (e.g. Pilkington and Todoechuck, 1993; Maus and Dimri 

1994, 1996; Bansal and Dimri 1999). 
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 Considering not a layer, but a statistical ensemble of prisms (Spector and Grant’s model, 

Equation (5)) Fedi et al., (1997), showed how to correct for this overestimation by removing the 

shape factor. 

 

4.3.2. The fractal Method 
 

The fractal-based method for depth estimation has a similar approach, excepted for the scaling 

exponent, assumed constant (around 3) in Fedi et al (1997), while in the fractal method (e.g. 

Maus et al., 1997) is  assumed a value within an interval of sloping exponents characterizing the 

fractal sources.  

The method developed by Maus et al (1997) simultaneously estimated the fractal scaling 

exponents, depth to the top and the thickness of the magnetized layer. 

𝑃𝑠(𝑘) = 𝐴 − 2𝑘𝑍𝑡 − ∆𝑧𝑘 − 𝛽 ln(𝑘) + 𝑙𝑛 [∫ [cos ℎ (∆𝑧𝑘) − cos(∆𝑧𝑤)] (1 +
𝑤2

𝑘2 )
−1−𝛽 2⁄

𝑑𝑤
∞

0
]   

(4.17) 

Where 𝛽 is the sloping exponent, controlled the source distribution, and 𝑤 is the 

wavenumber in a vertical plane. 

Bouligand et al (2009) were able to resolve all the integrals in Equation 4.11, which made it 

possible to be used and applied (see Bouligand et al (2009)). 

In their tests on the synthetic data, Bouligand et al (2009) had difficulties estimating the depth 

to the top simultaneously with the scaling factor 𝛽 and the thickness due to the uncertainties on 

the power spectrum. This is why they needed to fix the scale exponent from the beginning. 

4.3.3. Limitations 
 

Every method has its own limitations, but since the fractal analysis method and the modified 

centroid method belong both to the spectral methods, they do share some similarities and even 

most of the major limitations. The results of both methods are highly affected by the resolution 

of the used dataset (Comparing Figure 4 / Bhattacharyya (1975) and Figure 13 (my results)). 

The obtained map of depths to the iso-Curie surface does not always represent the bottom of 

the magnetized crust, it can simply represent a lithological contact, a bottom of very high-

magnetization sources (e.g. even a bottom of volcanic rocks).  
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Moreover, assuming that the measured magnetization is only horizontally distributed, can be 

not realistic. 

Figure (8) represents the log spectra of the Yellowstone National Park magnetic data 

(Bouligand et al., 2009 and Fedi et al., 1997). The shape of the spectra predicted by the two 

models are almost identical. I used a power-law exponent of 2.9 for the fractal method. The 

spectra were performed using different thicknesses (0.1 km; 1 km; 2 km; 5 km; 20 km; 90 km and 

the infinity) in a very precise wavenumber range (from 10-7 rad/m to 10-1 rad/m). 

The window choice is affected by the size of the map and the spacing used to do the grid 

(Nyquist - max). It is obvious, through the different windows used, that not all the windows can 

cover all the spectrum, except the window of 200 km going beyond the data area so it is not 

possible to use it. In the next sections I used some window sets that are ranging from 30 km to 

50 km and then later I choose which one is the adequate for our case of study. For the modified 

centroid method, I used two set of windows: 30 km and 150 km. 

 

Figure 8. Log spectra vs the wavenumber [rad/m]: the red asterisk represents the spectrum after (Bouligand et 
al., 2009); and the black line represents the spectrum generated after Fedi et al. ( 1997) 
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4.4. Results and discussions  
 

4.4.1. Modified centroid method 
 

As mentioned in the in the methodology section, the basic 2-D spectral analysis method was 

described by Spector and Grant (1970). They estimated the depth to the top of magnetized 

rectangular prisms (DT) from the slope of the log power spectrum. Bhattacharyya and Leu (1975, 

1977) further calculated the depth to the centroid of the magnetic source bodies. Okubo et al. 

(1985) developed the method to estimate the bottom depth of the magnetic bodies (DB) using the 

spectral analysis method of Spector and Grant (1970). Fedi et al (1997) corrected the Spector and 

Grant (1970) spectrum by a power-law of exponent 3.   

Figure (9) represents the computed depth to the top (Figure 9.a) and depth to the bottom 

(Figure 9.b) of the magnetized layer. The window used to compute these result is 30 km and both 

maps are corrected using the altitude file grid provided by USGS (USGS, 2000). Both the black 

lines in the maps represent the limits of Yellowstone caldera: in Figure (9.a), the resulted depths 

are ranging from 0.8 km to 0.4 km. The shallowest depths (from 0.5 km to 0.4 km) are 

concentrated in the caldera area, whereas, for figure (9.b) the depths to the bottom or to the iso-

Curie surface are ranging from 6 km to almost 1 km (the depths to the top DT are the shallowest 

and are concentrated in the caldera region). 

 

 

Figure 9. Depth to the iso-Curie surface (DB) and depth to the top (DT) of the magnetized layer from the 
modified centroid method using a 30 km window 

 

a) 
b) 
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Figure (10) represents the computed depth to the top (Figure 10.a) and depth to the bottom 

(Figure 10.b) of the magnetized layer, the window used to compute these result is 150 km. Both 

maps are corrected using the altitude file provided by USGS (USGS, 2000) and the black lines in 

the maps represent the limits of Yellowstone caldera. For figure (10.a), the resulted depths are 

ranging from 0.7 km to 0.45 km, the shallowest depths (from 0.5 km to 0.4 km) are concentrated 

in the caldera area. Whereas, for figure (10.b) the depths to the bottom or to the Iso-Curie surface 

are ranging from almost 6 km of depth to almost 1.5 km (the depths to the top DT are the 

shallowest and are concentrated in the caldera region). 

 

Figure 10. Depth to the Iso-Curie surface (DB) and depth to the top (DT) of the magnetized layer from the 
modified centroid method using a 150 km window 

 

4.4.2. Fractal analysis method  
 

As mentioned in the methodology, the fractal analysis of magnetic anomalies were first 

introduced by Maus et al.  (1997), and then developed by Bouligand et al., (2009): it belongs to 

spectral analysis, where the power spectrum of time series is plotted against frequency (or wave 

number in the case of space series) and the value of slope, known as scaling exponent (mentioned 

before as beta or 𝛽), controls the balance of high and low frequencies and determines the degree 

of correlation of the series. 

 Since the best result of the fractal analysis method is based upon the best choice of the scaling 

exponent and of the swiping window, I performed several tests (Figure 11 and Figure 12) in order 

to choose, the best scaling exponent range and the best window range. The choice is based on the 

root mean square error: wherever it’s the lowest, I use the corresponding parameters. 

b) a) 
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All the results in Figure 11 were reached using scaling exponent of 3. The choice to present the 

results of the scaling exponent (𝛽 = 3 )was made not only after taking into account the result of 

the study of Bouligand et al (2009) but also because I used all different betas and the best and 

the acceptable ones are around 3 (see Figure 11). The figure itself includes three graphs, where c) 

graph represents the Root Mean Square (RMS) of an iteration on a set of windows that are going 

from 20 km to 90 km. In other words, I was applying the fractal analysis method on the 

aeromagnetic data using each time a window that start from 20km to 90 km, every 0.5 km. The 

b) graph represents the corresponding thickness of each window. Figure 12a shows the depth to 

the top (DT) versus the windows interval. 

The smallest RMS is concentrated from window of about 25 km to a window of almost 50 km, 

which give us the information that the expected DT and thickness are going to be respectively 

shallow and thin. 

 The expected DT are going to be ranging from 0.270 km to 0.350 km and the thickness is 

expected to be ranging around 3 km to 4 km. 

One last and important thing to mention, analyzing Figure (11), is that the results are largely 

dependent on the window size, which itself confirms the results assumed describing Figure (8). 

 

Figure 11. Testing the best range of windows (from 20 km to 90 km) 

 

a) b) 

c) 
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The results shown in the graphs of Figure 12, were calculated using a window size of 30 km. 

As in Figure (11), c) graph, represents the Root Mean Square (RMS) of an iteration realized on a 

set of sloping exponents that are going from 2 to 4. In other words, I was applying the fractal 

analysis method on the aeromagnetic data using each time a different scaling exponent number 

ranging from 2 to 4 and with a step of 0.1. The Figure 12b graph represents the corresponding 

thickness of each scaling exponent. Figure 12a shows the depth to the top (DT) versus the sloping 

exponent interval. 

The shallowest RMS is ranging from the scaling exponent of 3 to the scaling exponent of 3.6, 

which align with the previous result of windows: It is expected a DT and thickness respectively 

shallow and thin. 

 The expected DT in this case are going to be ranging from 0.2 km to 0.15 km and the thickness 

is expected to be ranging around 2 km to 1.5 km. 

 

 

Like the window size and the scaling exponent tests, I performed different tests trying to 

choose the best wavenumber limits applied to our study.  

For each scaling exponent, I applied the fractal analysis method and I obtained a different 

result using all the window sizes that are adequate (Figure 11). 

 

Figure 12.Test the best ranging of the scaling exponent. 

a) b) 

c) 
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Concerning the main result of the fractal analysis in investigating the depth to the Iso-Curie 

surface at Yellowstone, Figure (13) represents the obtained final result:  

 DT represents the depth to the top of the magnetized layer: this map is corrected using 

the altitude file provided by (USGS, 2000). The depths are ranging from 0.25 km to 0.05 km 

slightly above the sea level. The shallowest depths to the top are concentrated in the Caldera area. 

The peripheral areas have the deepest depths (deeper than 0.300 km).  

It’s important to mention that the depth to the top map was consistent during all the tests. The 

shape of the depth anomaly has never change. 

 DB represents the depth to the bottom of the magnetized layer, which I consider as the 

Curie isotherm or the depth to the Iso-Curie surface. The depths are ranging in the map from 1 

km to 5 km; the shallowest depths are concentrated in the caldera area as for the depth to the 

top; depths outside the caldera can reach more than 5 km. 

 Normalized RMS represents the normalized root mean square (NRMS). The map shows 

NRMS ranging from 0 to 2 with 1 represents the best results. The overall NRMS values in the 

map are ranging from 1 to more than 1.5 outside the caldera.  
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To certain the obtained results, I opted to pre-set the depth to the bottom acquired from our 

final result (Figure 13) and applying the fractal method another time to double check the 

consistence. In other words, the acquired result state that the depth to the bottom of the 

magnetized layer inside the caldera is around 1 km, then I set the depth to the bottom to that 

value everywhere in the map in order to check the result of the NRMS. The result was satisfying 

(Figure 14), since everywhere in the map has a very high error except inside the caldera area 

where I have a Normalized RMS of 1 which means that the model-generated data and the 

measured data are so close.  

Figure 13. The best result of the fractal analysis method. 
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Figure 14. Checking the Validity of our results inside the caldera 

 

The Depth to the top (DT) in Figure (14), conserved the same feature shape of the original 

depth to the top map. It is relatively deep outside the caldera and shallow inside it. 

Now, in order to check the depths outside the caldera, I assumed a depth to the bottom of the 

magnetized layer of 5 km (Figure 15). I remark that the normalized Root Mean Square is 

acceptable outside the caldera but not inside of it. This result demonstrates that assuming 5 km 

as a depth to the bottom can be acceptable, which means also that all retrieved depths outside 

the caldera that are around that value are acceptable too. 

To sum up the result of the fractal analysis method, I retrieved a depth to the Iso-Curie surface 

that is ranging from 1 km inside the caldera to 5 km outside the caldera. This shallow depths are 

so how expected since we have a very hot zone with a very high heat flow (Smith et al., 2009). 
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Figure 15. Checking the Validity of our results outside the caldera 

 

 

 

4.5. Conclusions 
 

This Chapter summarize the work performed to investigate the depth to the isocurie surface 

under Yellowstone. It is made of a comparison between two techniques derived from the same 

family of method (Spectral analysis methods) but with different approach and different 

assumptions but basically the same limitations.  

The best results acquired from the fractal analysis method is obtained with a law-power 

exponent equal to 3, which is equivalent to the correction applied by Fedi et al (1997) to the 

Spector and Grant (centroid method) (1970). 
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The results achieved from the fractal analysis and the modified centroid method show the 

same range of depths (from 1 km to 5 km), and relatively the same distributions. The shallowest 

depths are located inside the caldera and the deepest depths are located everywhere else. 

The estimation of the most suitable fractal sloping exponent led to a value equal to the fixed 

sloping exponent of the corrected Spector and Grant method, which imply that the two methods 

have given basically the same result. 

Using the depth to the Curie isothermal surface, we could obtain a heat flow estimation using 

the same parameters of Bouligand et al (2009) since they were used for western USA and they 

were acceptable.  

The acquired depth to the isocurie map was used later as a very important constraint to check 

the validity of the 3D thermal model I am going to build and present in the next chapter (see 

chapter 5). 
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Chapter 5: 3D thermo-rheological model of the crust 

beneath Yellowstone caldera 
 

5.1. Introduction  
 

The geodynamic processes of the crust plays a key role in controlling the thermal structure of 

the Earth. Therefore, a good knowledge of thermal conditions is crucial for a quantitative 

understanding of a wide variety of geological processes and rheological/rock-physics parameters 

in general (e.g. Bansal et al., 2011). 

A thermal area is a contiguous geologic unit generally including one or more thermal feature, 

bounded by the maximum areal extent of hydrothermally altered go round, hydrothermal 

mineral deposits, geothermal gas emissions, or heated ground (Jaworowski and others 2010). 

The Yellowstone hotspot is a continental hotspot, responsible for the large scale volcanism in 

Oregon, Nevada, Idaho and Wyoming states (USA) where is located the Yellowstone National 

Park. On this context, the North American tectonic plate movements across the Yellowstone 

hotspot has formed the Eastern Snake River Plan through a succession of caldera-forming 

eruptions.  

In this geodynamic scenario, the Yellowstone geothermal system is the surface manifestation 

of partly molten magma reservoir that exists beneath the 0.64 Ma Yellowstone Caldera 

(Christiansen, 2001) with over 10,000 geysers, hot springs, and fumaroles. It has the world's 

highest concentration of hydrothermal features reflecting its extraordinarily high convective 

ground water circulation (Fournier, 1989). The large hydrothermal systems are considered to be 

the result of hot water circulating along fractures in the crust heated by crystallizing magma 

(Fournier, 1989).  

The active hydrothermal, magmatic, and tectonic system in Yellowstone can cause a future 

violent events and make it a highly potential hazards to the area. 

Despite the huge amount of studies on Yellowstone caldera, a detailed analysis on determining 

the thermal-rheological state of the crust under this caldera has not yet been performed. This is 

for different reasons, among which the most important one, is the difficulty to measure and 

discriminate the nature of the heat flow for the active role played by the convective and 

conductive thermal regime. 

In this context, assessing the Curie surface coupled with the conductive finite element thermal 

model, allow us to discretize the thermal distribution of the crust and to compute a 3D rheological 

model as well. 

http://www.sciencedirect.com/science/article/pii/S0377027309003266#bib17
http://www.sciencedirect.com/science/article/pii/S0377027309003266#bib17
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In this chapter I firstly analyse the crustal thermo-rheological state beneath Yellowstone, by 

performing a finite element temperature model using the existent data and then produce a 3D 

rheological model for defining the brittle ductile transition and finally a relationship between 

seismicity cutoff and rheological condition of the study area will be displaced.  

5.2. Collected Data  

In this section, I display the amount of the multiplatform from dataset employed in the 

realization of the crustal thermal model and the 3D rheological model. 

One of the most important piece of data used in this part of the work is the Curie isotherm 

surface as results from Chapter.4 /Figure 13,  which will be used as a temperature constraint to 

check the validity of our thermal model: in particular, I used the isocurie surface calculated using 

the fractal analysis method, like a constrained surface to evaluate the certainty of the model. Most 

data used in this chapter are taken from previous research (e.g. Smith et al., 2009; Farrell et 

al.2014; Husin et al., 2014; Huang et al., 2015). 

I retrieved the density model (Figure 17) of the crust under Yellowstone using the tomography 

model (Figure 16) performed by Huang et al (2015) applying the Lindseth equation (Lindseth, 

1979). 

The present velocities are ranging from 3000 m/s on the surface where, the location of the 

magma chamber (from about 5 km to 8 km of depth) under the caldera limits (red dots in the 

figure), to 7500 m/s at the base of the model (from about 40 km to 44 km, the last depth of the 

model). 
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Figure 16 Tomography model after (Huang et al., 2015) 

As mentioned before, the density model was performed, using the Lindseth (1979) 

relationship. Accordingly, the densities of the model (Figure 17) are ranging between 2600 

kg/m3, as expected by the presence of the magma chamber which is a rhyolitic magma, to 3000-

3200 kg/m3 at the base of the volume. I can notice variability of densities (from 2900 to 2950 

kg/m3) exist also inside the volume, attesting a heterogeneous density distribution into the 

model. 
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Figure 17. Density model after (Huang et al., 2015) 

 

For the heat production source (Figure 19), I used the density model generated after Farrell et 

al (2014) and optimized later in the present study. 

Other important data used in this study was the heat flow measurements (e.g. Smith at al., 

2009; Blackwell et al., 2011). They were used to control the resulted heat flux on the surface. 

Based on the priori available geophysical and geological information, I was able to generate a 

3D finite element models using a Comsol Multiphysics environment: I performed a 3D Finite 

Element modeling of thermal field, by optimizing the heat production of the detected magma 

source in order to provide the best crustal temperature configuration that minimize the distance 

between the observed superficial heat flow and the performed iso-Curie surface. 

Another important data to mention are the drillholes presented in that area (White et al, 1979), 

but since these wells are not deep enough t0 estimate the geothermal gradient, I chose the heat 

flow information measured at the surface. 

5.3. 3D thermal Finite Element Model 

 

Like many volcanoes, Yellowstone has an active hydrothermal (hot water and steam) and 

geothermal system that resides between the Earth’s surface and the underlying magma. 
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According Castaldo et al. (2017), the physical heat regime considered is just conductive 

transfer, which means excluding the radiation and the convective. I carried out a 3D thermal 

finite element model of the first 44 km of the crust. The physical study as well was assumed to be 

time independent where all the field variables were considered constant and, the main 

temperature equation corresponds to the differential from Fourier’s law that contains in our case 

an additional contribution which is the heat production generated from the source. 

Therefore, the governing equations meant to be solved in this specific regime case 

(conductive) and under these assumptions are: 

 

𝜌 × 𝐶𝑃 × ∇𝑇 = −∇ ∙ 𝐪 + 𝑄       (5.1) 

 

Where, 𝜌 represents the density of the rocks in kg/m3, 𝐶𝑃 is the specific heat capacity measured 

in J/kg/K, T is the absolute temperature K, 𝐪 is the conductive heat flux vector measured in W/m2 

and 𝑄 is the volumetric heat source production that is measured in W/m3. The conductive heat 

flux vector is expressed by the next equation   

𝐪 = −𝑘 × ∇𝑇        (5.2) 

Where  𝑘, is the thermal conductivity measured in W/m/K. 

The computational domain is characterized by a size of 66900 × 77300 × 44000 𝑚3. The 

defined 3D mesh geometry (Figure 18) is controlled by 181553 tetrahedral elements characterized 

by 12 vertex elements, 543 edge elements, 15475 boundary elements and a maximum element 

size of 3000 m and a minimum of 300 m. 
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Figure 18. The finite element method meshed 

The generated mesh is further validated through several resolution tests (Jiaxiang, 1998), 

which suggests that the use of a finer mesh would only improve the results of less than 5%.  

A natural geothermal gradient (about 33 °C/km), has been used for the first 5 km, while 

another gradient has been implemented, as suggested from a quick study on the geothermal 

gradient in Yellowstone (White et al., 1975), as initial values of temperature. 

I used the density from the available velocity tomography model (Huang et al., 2015) as 

mentioned before. Gardner et al (1974) have shown that density is closely proportional to the 

one-quarter power of velocity, the relation varying slightly with rock type. In our case in order to 

calculate the density, I am using the model from Lindseth (1979) where  

𝑉 = 0.308 𝜌𝑉 + 1054        (5.3) 

 𝑉 represents the P velocity in m/s derived from Huang et al (2015), 𝜌 is the density kg/m3. 

In this study, I tried to identify the source by extracting the density from the tomography 

performed by Farrell et al. (2014) and found a heat source corresponding to the magma chamber, 

as shown in Figure (19). Unlike several studies consider the magma chamber as a spheroid or the 

sum of two spheroidal sources (e.g. Battaglia et al, 2003, Tizzani et al., 2015; Vasco et al., 1990), 

I found that it rather appears as an oval shape. 
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Figure 19. The considered heat source geometry after Huang et al. 2015 

 

According to previous volcanological studies, basaltic lavas have erupted around the margins 

of the active, mainly rhyolitic Yellowstone Plateau volcanic field throughout its evolution.  The 

absence of basalts from within the rhyolitic source areas is interpreted to reflect the trapping 

within the crust of any basaltic magma that might have intruded from zones of partial melting in 

the upper mantle beneath crustal rhyolitic magmas of lower density (Christiansen, 2001).  

Only after about a million years have basalts erupted through the cooled, crystallized, and 

fractured upper-crustal magmatic sources of the first and second rhyolitic cycles, no basaltic 

vents, however, occur within the third-cycle Yellowstone caldera.  A few small outcrops of basalt 

do occur on the northwest caldera wall near Purple Mountain (Christiansen and Blank, 1974), 

but they are erosional remnants of lavas that flowed down the steep slope from vents farther 

north.  Additionally, some rare quenched inclusions of basaltic magma were found within the 

basal part of the rhyolitic West Yellowstone flow near the crest of the Madison Plateau west of 

Little Firehole Meadows (Christiansen and Lipman,1972), suggesting that basaltic magmas from 

lower-crustal levels might have played a role in mobilizing some intra-caldera rhyolitic magmas 

for eruption. 
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Figure 20. Schematic model for the Yellowstone crust–upper mantle magmatic system (e.g. Farrell et al, 2014; 

Huang et al., 2015). 

 

Shen et al (2013) suggested that the Moho is situated at 45 km (Figure 20) which was also 

used by Farrell et al (2014) and then by Huang et al (2015), whereas Bouligand et al (2009) 

suggested that the Moho discontinuity is situated at about 40 km. I opted for the Moho depth of 

44 km in our model. 

In order to find the best-fit solution on Yellowstone caldera, I used a trial and error 

optimization of the geothermal heat production source and the parameters applied for generating 

the temperature model. 

The boundary conditions were set in order to enhance and to give some real limitation to the 

finite element model: I considered an outgoing heat flow at the lower part of the computational 

domain, which represents the local Moho discontinuity, a temperature condition at four sides of 

the domain, assigned to the above mentioned geothermal gradient. 

All the model parameters employed in the optimization are procedure are presented in Table 

(1). 
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Table 1. Parameters used to perform the model 

density 2600-3200   [kg/m3] 

specific heat capacity 850 [J/kg/K] 

thermal conductivity 1.5  [W/m/K] 

volumetric heat source production 6.10-5   [W/m3] 

 

A very quick study was performed on the basis of the existent drillholes in Yellowstone 

national park (Figure 21), most of the drillholes are inside Yellowstone caldera, on the central 

plateau. 

 

Figure 21. Position of the drillholes in the Yellowstone National park and in the caldera from (White, 1979) 

 

The studied 15 wells are very shallow. Figure (22), shows a representation of depth versus 

temperature. It illustrates the fast trend of the temperature with the depth. Also, the maximum 

achieved depth is less than 0.2 m, which means that they are too shallow to be considered, thus 

they will be excluded in our modelling approach. 
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Figure 22. Depth vs temperature plots for the well collected after (White et al., 1975) 

 

The retrieved thermal model is represented in Figure (23). It shows the temperature 

distribution beneath Yellowstone caldera. The result of the finite element conductive thermal 

model point out the existence of thermal anomaly region ranging from 55 °C (on the surface) to 

1120 °C (at the base of the volume solution) which corresponds to a depth of about 40 km (Figure 

23). These range of temperature is confirmed by different studies (e.g. Horwitz and Lowenstern, 

2014/ Figure 5), where it is shown that the base of their model (deeper than 45 km unlike our 

case) is composed by a rising basaltic magma whose temperature is about 1200 °C and that the 

magmatic chamber is constituted of rhyolite whose temperature is about 800 °C. 
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To improve the retrieved temperature model, I compared the iso-Curie surface extracted from 

the thermal model and the iso-Curie surface already computed from the aeromagnetic data (see 

Chapter4). 

 

Figure 23. 3D thermal model of the crust under Yellowstone 
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Figure (24), represents the computed finite element thermal model with the extracted iso-

Curie surface at 500 °C, this isotherm, which is represented by the orange surface  (Figure 24) 

appears to be very shallow, above the magmatic chamber and deeper going to the edges of the 

crust. 

 

 

Figure 24. The thermal model with the extracted isocurie surface. 

A comparison between the Curie surface obtained from the finite element model and the depth 

to the Iso-Curie surface obtained from the aeromagnetic data (Figure 25), shows that in the 

caldera area (blue square in the Figure 25) there is a low misfit (RMSE). In Figure (25), SA 

represents the depth to the Iso-Curie surface obtained from the spectral analysis methods (see 
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Chapter 4) while FEM, represents the Curie surface resulted from the finite element modeling 

(Figure 13). The RMSE is ranges from 1.8 in the SW-NE profile P1, to 2.4 in the NW-SE direction 

of the Profile P4. 

 

 

 

Figure 25. Comparison between Depths to the curie surface obtained from the finite element modeling (FEM) 
and the fractal method of the spectral analysis (SA); RMSE means the root mean square error in the blue area 

which represent the caldera region. 

 

A slice of the temperature model at 4500 m of depth is reported in Figure (26), it appears to 

perfectly fits perfectly the location of the source in the volume with a temperature ranging from 

200 °C in the edges to a higher temperature at the magmatic chamber (higher than 700°C).  
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Figure 26. Temperature sliced at 4500 m of the volume. 

 

I have also computed the volumetric heat flow.  The Figure (27) reports the heat flow at the 

surface, where the conductive heat flux ranges from zero W/m2 to 0.14 W/m2 above the magmatic 
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source, confirming the study which has been done by Smith et al. (2009) and by Blackwell et al. 

(2011). 

 

 

Figure 27. Heat flux computed at the surface of the volume 

Even though fumaroles at Yellowstone have far lower temperatures than at many volcanoes, 

thousands of boiling thermal features dot the landscape and cover about 70 km2 (out of 9000 

km2 in the park) (Lowenstern et al, 2006). Probably the most convincing evidence for a relatively 

shallow magma body is the immense heat flow issuing from Yellowstone on a continuous basics 

(Figure 28). Figure (28), represents some profiles done in order to map the heat flow at the 

surface and the temperature distribution of the volume along the caldera: the temperature, as I 

have shown before, ranges from 0 °C at the surface to about 1150 °C at the bottom of the model. 

The heat flow profiles show the maximum value (0.15 W/m2) exactly above the caldera and then 

it significantly decreases. The iso-Curie surface which I deduced from the previous comparison 

with the spectral analysis iso-Curie surface result can be set around 500 °C, in all the profiles a 

purple contour lines interval is highlighted in order to give a range of temperature where the 

Curie surface can be: the Iso-Curie surface is definitely above the magmatic chamber whose 

presented in the profiles and especially well manifested in the N-S profiles (along Y coordinates). 

It is well shown that the temperature in the magmatic chamber is ranging from 700 °C to 750 °c 

- 800°C. 
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Figure 28. Profiling the temperature and the heat flow along the caldera 

 

 

5.4. 3D Rheological Model 

 

The long-time rheological behaviour of the lithosphere is strongly dependent upon 

temperature. For T<T*, where T* depends on the material under consideration, the behaviour is 

brittle. At higher temperature, the behaviour is ductile. Brittle behaviour, in a static sense, is 

adequately described by the Columb-Navier shear failure criterion (e.g. Jaeger and Cook, 1979; 

Ranalli, 1995). 

The ductile deformation a result of a low-frequency behaviour (Figure 29), is governed by 

(Kirby, 1983): 

(𝜎1 − 𝜎3)𝐷 = (𝜀̇ 𝛢⁄ )1 𝑛⁄ 𝑒𝑥𝑝 (𝑄
𝑛𝑅𝑇⁄ )        (5.4) 

where: 
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Figure 29. Representations & Equations of the Brittle and Ductile behaviour 

 

 

Although, the brittle deformation express a high-frequency behaviour (Figure 29), which is 

governed by (Sibson, 1974): 

(𝜎1 − 𝜎3)𝐷 ≥ 𝛽𝜌𝑔𝑧(1 − 𝜆)          (5.5) 

 

Where 𝜎1 − 𝜎3 measured in Pa is the stress difference required to maintain the steady-state 

strain rate ε, g is the acceleration of gravity, z the depth in m, R is the gas constant measured in , 

T is the temperature, 𝜆 the pore fluid factor, 𝛽 is the type of faults ranging from 0.75  to 3 (3.0 for 

the thrust, 1.2 for the strike-slip and 0.75 for the normal faulting), 𝜌 is the rock density measured  

(kg/m3); 𝜆 is the pore factor and A, the pre-exponential of Arrhenius equation (MPa-n s-1), n mole 

and Q (KJ/mol) the energy activation for the creep and  represents the properties of the rocks. 

The brittle-ductile transition could be retrieved by a comparison between (Equation 5.4) and 

(Equation 5.5). A very important information like the rheological model could be obtained: The 

Brittle-Ductile (B/D) transition in the crust is thought to be related to the seismic– aseismic 

boundary.  

For instance, Solaro et al. (2010) performed a rheological model along a WSW–ENE-oriented 

cross-section running from Neapolitan Volcanic Zone to Apulia foreland, Italy. This study gave a 

continuous solution showing that the area is characterized by horizontal rheological variations, 

with two horizons interlayered with ductile horizons, which are quite predominant with respect 

to the vertical ones. 
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While Solaro et al (2010) have done their study using rheological profile along a section that 

goes from the Neapolitan volcanic area to Puglia crossing the Apennine (Italy), Denosaquo et al., 

(2009), calculated the strength envelop in just three discrete points. 

This latter, computed the strength profile (Figure 30) of the Plane River Snake including 

Yellowstone, but in certain points: the eastern Snake River Plain (SRP), Yellowstone Plateau 

(YP), and Yellowstone caldera (YC).  

 

Figure 30. Strength models of the eastern SRP, Yellowstone Plateau, and Yellowstone caldera (after Denasoquo 

et al., 2009). 

These locations represent the track of the Yellowstone hotspot, the area immediately adjacent 

to the active volcanic system, and the active volcanic system itself. In the eastern Snake River 

Plane, the brittle-ductile transition for granite occurs at about 8 km. The Snake River Plane mid-

crustal sill is brittle to about 16 km depth, and the lower crust is entirely ductile. The brittle-

ductile transition in the lower crust occurs at about 21 km and the mantle is entirely ductile. In 

the Yellowstone plateau the brittle-ductile transition occurs at about 11 km. 

A brittle-ductile transition occurs in the lower crust at about 27 km. The upper mantle behaves 

as a brittle medium as well. Inside the Yellowstone caldera the brittle-ductile transition occurs at 

about 4 km. The lower crust and upper mantle are both ductile. In the eastern Snake River Plane 

and the Yellowstone Plateau the lower crust is partially brittle. 

 

Based on the geological and the thermal information I already retrieved in section 5.3, a 3D 

rheological model was computed considering a  𝛽 = 0.75 , through which I investigated our B/D 

transition zone for different time scales 108 years (𝜀 = 10−8 𝑠−1), corresponding to recent 

dynamic of the Yellowstone caldera (Figure 31) and 1013 years (𝜀 = 10−13 𝑠−1), corresponding to 
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the time evolution of the caldera (Figure 32). Both models agree well with the present distribution 

of earthquakes (Figure 34a,b).  

 

 

 

 

 

 

Figure 31. The brittle- ductile volume distribution for a strain rate of 10-8s-1. 
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5.5. Rheology and natural seismicity 

 

The Yellowstone Plateau is one of the most seismically active areas of the western U.S. and is 

part of the distinct N–S band of intraplate seismicity known as the Intermountain seismic belt 

(Smith and Sbar, 1974; Smith and Arabasz, 1991). Overall, seismic activity in Yellowstone is 

characterized by swarms of small, shallow earthquakes (Farrell et al., 2014).  

The earthquake data used in this study (Figure 33) are from the University of Utah Seismic 

Stations (UUSS) catalog from 1996 to 2014 (Farrell et al., 2014), and the earthquake from 2014 

to 2017 were a personal communication from Dr. Jamie Farrell. Most of the seismicity is 

concentrated in the northeastern part of Yellowstone caldera. 

 

 

Figure 32. Brittle-Ductile volume modeled for a strain rate of 10-13 s-1. 

http://www.sciencedirect.com/science/article/pii/S0377027309003266#bib56
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Figure 33. Earthquakes distribution on Yellowstone (The pink point limit represent the caldera limits); the 
33,696 events are collected from 1996-2017 with a maximum magnitude 4.8  

 

Focal depths within the Yellowstone caldera are very shallow, limited by high temperature, 

indeed they are located at 4-6 km of depth where the brittle-ductile transition exists. The latter 

deepens up to 18 km in the much cooler tectonic regime in the Hebgen Lake, MT area west of the 

caldera (Smith et al., 2009) 

About 33,696 earthquakes were recorded, with the highest magnitude is 4.8 and is located 

outside the caldera. The acquired depths are ranging from 0.2 km inside the caldera to 10 km 

outside the caldera. 

Figure (35) represents the histograms of number of earthquakes along the caldera in the same 

direction of the Brittle-Ductile profiles (e.g. Figure 34.a; Figure 34.b); most of the earthquakes 

are concentrated in the upper part of the crust (the first 4 km), as also confirmed by the ductile 

behaviour of the crust and the high temperature. 

http://www.sciencedirect.com/science/article/pii/S0377027309003266#bib59


 
                                       Chapter 5: 3D thermo-rheological model beneath Yellowstone caldera 

57 
 

Mouna Brahmi 

 

 

Figure 34. Both figures represent the earthquakes distribution a) Cross sections along the caldera with a strain 
rate of 108; b) Cross sections along the caldera representing the results of  1013 strain  

 

Figure 34 (a, b.), represents the mapping of the Brittle-Ductile behaviour of the crust under 

Yellowstone caldera for a strain rate of 10−8 𝑠−1 and 10−13 𝑠−1 respectively. We can notice that 

the earthquake distribution in the Figure (34 a) does not reach the transition, being do not go to 

the transition (Figure 35), being concentrated in the brittle region while the Figure (34 b) 
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evidences that the earthquakes in some locations go beyond the brittle domain. This finding 

confirms the validity of the computed rheological model. 

 

 

Figure 35. Histograms of number of earthquakes vs depths along the caldera 
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5.6. Discussions & Conclusions 

 

In order to investigate the rheological features of the crust beneath Yellowstone caldera, I 

performed a 3D thermal model followed by a 3D rheological model. To do this, I performed a 3D 

finite element stationary conductive model, by inverting the tomography model, and optimizing 

the geothermal heat source parameters. 

I was able to characterize the structural domains in terms of thermal variations and Brittle–

Ductile behaviour. In this contest, I generated several forward models consisting in a 3D 

stationary conductive solution of the thermal regime of the crust beneath Yellowstone caldera. 

 

Figure 36. Comparison between the computed 3D thermal model and the model built by Hurwitz and 
Lowenstern (2014) 

I remark that the achieved results, relevant to the temperature distribution and the heat flow 

distribution, are also in agreement with previous studies (e.g. Hurwitz and Lownstern, 2014; 

smith et al., 2009; Farrell et al., 2014) (Figure 36). 

Finally, I use of the depth distribution of the iso-Curie surface computed using spectral 

analysis methods from aeromagnetic data, and a full earthquakes catalog to constrain and to 

validate our results. 

 The absence of the deep geothermal well data were replaced by the presence of the few yet, 

representing heat flow measurements that converge with our heat flow result. 
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Conclusions and future perspectives 
 

The study has different aspects to the purpose of making the analysis and the understanding 

of the rheological crust under volcanic areas and in particular Yellowstone caldera. Many reasons 

were behind the choice of Yellowstone caldera as a study area, for instance: 

• Yellowstone, as many scientist described it, is a geological smoking gun that illustrates 

how violent the Earth can be.  

• It is an explosive supervolcano where many studies have proven that beneath it lies a hot, 

upwelling plume of mantle.  

• It is characterized by a very high heat flow yet there is no quantification of the brittle 

ductile transition in that area.  

And countless other reasons. The eruption at Yellowstone 2.1 Ma ago, released 2,450 cubic 

kilometres of material. The last eruption at Yellowstone which was 640,000 years ago released 

1,000 cubic kilometres of material; such an eruption at Yellowstone would have catastrophic 

consequences.  

The purposes of this work are (i) to give an estimation of the depth to the iso-Curie surface 

and (ii) to portray a full three-dimension image of the thermal situation as well as the rheological 

behaviour of the crust under Yellowstone. 

To investigate the depth to the Iso-Curie surface under Yellowstone,  a comparison between 

two Spectral analysis methods (Fractal analysis, and the corrected Spector and Grant method) 

was performed; although, they use different approaches and assumptions, they do basically have 

the same limitations. Moreover, the estimation of the most suitable fractal sloping exponent led 

to a value equal to the fixed sloping exponent of the corrected Spector and Grant method. 

The results achieved from using these methods have the same range of depths (from 1 km to 

5 km), and relatively the same distributions. The shallowest depths are located inside the caldera 

and the deepest ones are located everywhere else. 

A 3D thermal model was constructed through solving a 3D finite element problem of heat 

transfer in a conductive system using Comsol Multiphysics software, involving a trial and error 

optimization of the density, velocity models jointly with the geothermal heat source parameters. 

The obtained depth to the Curie map was a key constraint parameter to check the validity of the 

thermal model. 
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Subsequently, a 3D rheological model was built with the 3D temperature model as an input 

along with the geological and the geophysical information from literature. The most part of 

earthquakes epicentres were found to be concentrated in the brittle zone of the volume while the 

ductile zone is not totally homogeneous confirming the sandwich theory of the crust suggested 

by different authors (e.g. Ranalli, 1997); this Brittle-Ductile volume is the first 3D mapping of the 

rheological features of the crust under Yellowstone caldera. 

Regarding the future perspectives, I recommend investigating the deformation field under 

Yellowstone caldera in order to have a third-part information. As mentioned above, the 

Yellowstone caldera, represents a key opportunity to evaluate the geodynamics processes 

activities in a continental hotspot and its interaction with a continental plate. 

 Investigating the crust using the Differential Interferometric Synthetic-Aperture Radar 

(DInSAR) ground deformation data could be an important advantage to our results. 

I also recommend investigating the ability of this ground deformation field to be considered 

as a potential field (Brahmi et al., 2017), by using the elastic rheology model. And in this scenario, 

considering the elastic field theory under the Boussinesq (1885) and Love (1892) approximations, 

methods such as the CWT (Fedi., 2007; Fedi et al., 2009) and the Euler Deconvolution, will allow 

investigation of the sources’ features responsible of the recorded active deformation, so 

enhancing the rheological model of the Yellowstone volcano. 
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