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1. INTRODUCTION 

1.1 BACTROCERA OLEAE: THE KEY PEST OF OLEA EUROPAEA 

1.1.1 HISTORY AND ORIGIN OF THE SPECIES 

The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) (Rossi, 1790) was first observed and 

described in the human history by the ancient Greek academic, Theophrastus of Eresus (c. 371–

287 BC), colleague and successor of Aristotle in the Peripatetic school (Fortenbaugh and Gutas, 

1992). Between c. 350 BC and c. 287 BC, Theophrastus wrote the Historia Plantarum, one of 

the most significant contributions to botanical science during ancient times and the Middle Ages, 

in which he mentioned the presence of a worm into the olive fruit and underlined the detrimental 

effect of the insect on the olive oil production (Hort, 1916). 

 

  

 

 

 

 

 

 

 

 

 

 

The origin and ancient history of the olive fruit fly are strictly linked to its host plant: the olive 

tree, Olea europaea (Nardi et al., 2005; 2010). It is due to their exclusive relationship and 

coevolution that indicates a long-term and constant plant-insect association (Nardi et al., 2010). 

Thus, it might be hypothesized that the evolution and the historical distribution of B. oleae are 

―Now the worm which infests the olive, if it 

appears below the skin, destroys the fruit; but 

if it devours the stone it is beneficial. And it is 

prevented from appearing under the skin if 

there is rain after the rising of Arcturus. 

Worms also occur in the fruit which ripens on 

the tree, and these are more harmful as 

affecting the yield of oil. 

Indeed these worms seem to be altogether 

rotten; wherefore they appear when there is a 

south wind and particularly in damp places.‖ 

 

Theophrastus of Eresus, Historia Plantarum, 

IV volume, XIV, 9-10 
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strongly related to the evolutionary process and the range expansion of its host plant (Nardi et 

al., 2010).  

Whereas these species are commonly associated to the Mediterranean Basin, where the olive 

production has been historically and economically of great importance, neither olive tree nor 

olive fruit fly originated in this region (Nardi et al., 2005; 2010). Their common origin is still an 

issue for the scientific community but recent studies indicate that both the species have been 

originated in Southern-Eastern African countries (Zohary 1994; Angiolillo et al. 1999; Nardi et 

al., 2005; 2010). 

The basal diversification of the olive tree probably took place in consequence of the 

desertification of African midlands during the early Pliocene with the division of two lineages: 

the Asian and African lineages of O. europaea subsp. cuspidata and the European and North 

African O. europaea subspecies group (Nardi et al., 2010). 

Before the domestication, since Pre-Quaternary, the original and dominant form of the olive tree 

in the Mediterranean region was the wild olive tree, O. europaea subsp. cuspidata var. sylvestris 

(Besnard et al., 2007; 2009; Baldoni et al., 2002 Zohary and Spiegel-Roy, 1975) that have been 

later mainly replaced by the cultivated form (Lumaret et al., 2004). In spite of the reduced pulp 

and oil content of their fruits, wild olive trees have been utilized by humans in the Neolithic 

(Zohary and Hopf, 2000) and they had represented the sole host plant of B. oleae (Katsoyannos, 

1992; Tzanakakis, 2006).  

The expansion of the olive fruit fly in the Mediterranean Basin probably took place during 

Pleistocenic recolonization when the basal diversification of the African and Mediterranean 

populations of B. oleae occurred (Nardi et al., 2010). Thus, the Mediterranean population was 

first present on the wild olive form (Nardi et al., 2010).  

Domestication of the wild variety probably occurred in the Middle East during the 4th 

millennium BC (Lumaret et al., 2004; Zohary and Hopf, 2000) and subsequently, cultivated 

olive tree, O. europaea subsp. europaea var. europaea, have been introduced in the 

Mediterranean region through human-mediated commercial exchanges (Ruiz Castro, 1948; 

Boardman, 1976). Indeed, the Mediterranean population of the olive fruit fly was first present on 

wild olive and subsequently, after the olive tree domestication, transferred from its original host 

to a richer food source provided by cultivated olive form, with a significant adaptation process in 

host searching and feeding mechanisms (Nardi et al., 2010). 
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1.1.2 GEOGRAPHIC RANGE 

Nowadays, the olive fruit fly is wide-spread (Figure 1), mainly covering the natural geographic 

range of the wild and cultivated olive tree with rare exceptions in isolated areas or where low 

temperatures restrict its development (Tzanakakis, 2006). It is found in all the Mediterranean 

country of Europe, Asia, and North Africa, in the Canary Islands, in South and Central Africa, in 

the Middle East and Pakistan (Nardi et al., 2005; Daane and Johnson, 2010). Recently, it has 

been accidentally introduced to California (USA) and Mexico (Rice, 1999; Rice et al. 2003; 

Nardi et al., 2005). 

 

 

Figure 1: B. oleae world geographical distribution. Last updated: 2016-07-04 

 

 

1.1.3 TAXONOMY AND MORPHOLOGY 

B. oleae (Diptera: Tephritidae) belongs to the Dacinae subfamily (Table 1) that includes 

carpophagous species in which the olive fruit fly is the only exponent of the Bactrocera genus 

inhabiting the Mediterranean basin. 
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Table 1: Taxonomical classification of B. oleae 

Taxonomical classification 

Kingdom: Animalia 

Phylum: Arthropoda  

Class: Insecta  

Order: Diptera  

Suborder:  Brachycera 

Section:  Schizophora 

Subsection:  Acalyptrata 

Superfamily: Tephritoidea 

Family: Tephritidae  

Subfamily: Dacinae 

Genus: Bactrocera  

Subgenus: Daculus  

Species: B. oleae (Rossi, 1790) 

 

Adults: 4-5mm in length; head characterized by fulvous face with a pair of black spots under the 

antennae, brownish maxillary palpi and mouthparts and blue-greenish compound eyes; thorax 

orange-reddish with a black scutum and metanotum, yellowish postpronotal lobes and an 

episternal stripe not reaching anterior notopleural seta; scutellum pale yellow and black post-

scutellum. Wings are hyaline with stigma, veins and a small spot around the apex of vein R4+5 

fuscous; abdomen mainly fulvous with dark brown to black anterolateral corners on tergites III 

and IV and black spots on tergites I to IV. Female is characterized by an evident serrated 

ovipositor, partly invaginated in urite VII; male tergite III with a pecten (setal comb) on each 

side; surstylus with short posterior lobe (Belcari, 1989; Tremblay, 1994). 

Eggs: elliptical and whitish, typically with a length of about 0.7 mm and a diameter of 0.12 mm, 

they present a mircopilum that is used to carry out the respiratory functions (Mouzaki and 

Margaritis 1987; Mouzaki et al., 1991). 

Larvae: acephalic with a greatly reduced head, completely enclosed in the thorax. It remains a 

retractile capsule that bears strongly modified mouthparts transformed into an apparatus called 

cephalopharyngeal skeleton (Phillips, 1946; Belcari, 1989; Tremblay, 1994).  

https://en.wikipedia.org/wiki/Animal
https://en.wikipedia.org/wiki/Arthropod
https://en.wikipedia.org/wiki/Insect
https://en.wikipedia.org/wiki/Fly
http://www.giand.it/diptera/taxa/Brachycera/?lang=en
https://en.wikipedia.org/wiki/Tephritidae
https://en.wikipedia.org/wiki/Bactrocera
https://en.wikipedia.org/wiki/Daculus
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There are three larval instars that can be distinguished by shape, size of the mouthparts and the 

presence of the thoracic stigma. The color is whitish to yellowish and they present a caudal 

ridge. The first larval instar has the mouthparts barely sclerotized with an apical unculus and 

shows a metapneustic respiratory system. The second larval instar has partially sclerotized 

mouthparts and shows an amphipneustic respiratory system with characteristic prothoracic 

stigma. The third larval instar is provided with a fully developed cephalopharyngeal skeleton and 

has an amphipneustic respiratory system with fully developed prothoracic stigma. The full-

grown larva reaches 6-7 mm long and is able to jump; it presents dorsal spinules on segment T1-

A1 (Phillips, 1946; Belcari, 1989; Tremblay, 1994).  

The puparium is 4-6 mm long with an elliptical shape, normally yellowish to brownish with 

markedly evident segments (Tremblay, 1994). 

 

1.1.4 LIFE CYCLE AND BIOLOGY 

The olive fruit fly is considered a homodynamic pest since it can reproduce and develop during 

all the year if temperature and humidity are favorable (Tzanakakis, 2003; 2006). A limiting 

factor for its development is the availability of olive fruit since the larval development only 

occurs in the host mesocarp (Fletcher, 1987). In fact, B. oleae has different feeding behaviors 

depending on the life stage: adult fly is polyphagous feeding on several organic sources whereas 

larval stages are monophagous feeding exclusively on the fruit pulp of O. europaea subsp. 

europaea (cultivated and wild forms) and O. europaea subsp. cuspidata (Fletcher, 1987; Daane 

and Johnson 2010). 

To guarantee access to food sources to the new hatching larvae, B. oleae females perform a 

puncture on the olive fruit surface by their ovipositor and lay their eggs in the olive pulp, beneath 

the olive skin (Tzanakakis, 2003).  Ovipositing females are increasingly attracted by olive until 

the fruit reached 3.5 g in size. From this stage, the preference for unripe green fruits is stable 

while the preference for ripe black fruit start to decline (Daane and Johnson 2010) 

As soon as the larva emerges, it immediately starts to feed on the olive pulp forming galleries 

into the mesocarp that progressively increase their size and deepens its path into the endocarp 

during the larval development. At the end of the third instar, the larva moves from the proximity 

of the endocarp to the olive surface and create a pupation room right beneath the olive skin 

where it performs a hole that may serve as air duct, if the pupation takes place into the olive, or 
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as an exit hole for the larva itself, if the pupation occurs in the soil (Tzanakakis, 2006). Usually, 

B. oleae larvae have a tendency to pupate into the olive pulp during the summer whereas in 

autumn they prefer to pupate in the soil to a depth of 1-3cm (Tzanakakis, 2003). 

The length of each developmental stage is deeply influenced by temperature and environmental 

condition. At optimal conditions the egg incubation lasts 1-2 days, the larval development 8-9 

days and the pupal development 9-10 days, ranging from 1 to 19. From 8 to 37 and from 9 to 49 

respectively, under different temperature regimes (Neuenschwander and Michelakis, 1979; 

Tsitsipis, 1977). The lower and upper-temperature threshold are respectively 7.5-10°C and 30-

32°C for egg development and 10-12.5°C and 30-32°C for larval development, with an optimal 

temperature at 24-25°C (Tsitsipis, 1977). Even if the pre-imaginal development can be achieved 

at 30°C, in this condition the mortality is high with pupal death up to 48% (Tsitsipis, 1980). 

After the pupation the new adult emerges and completes gonad maturation in 5-8 days, reaching 

the sexual maturity (Canale et al., 2012). B. oleae females are oligogamous and generally mate 

1-3 times during their life cycle (Zouros and Krimbas, 1970) although males are polygamous and 

can mate daily depending only on receptive female‘s availability (Zervas, 1982). A daily rhythm 

in sexual activities has been observed since matings take place in late afternoon and at dusk, both 

in laboratory and field conditions (Mazomenos, 1989). Females start the oviposition 3-5 days 

after mating, laying from 1 to 10 eggs per day (Tzanakakis, 2006).  

The number of annual generations in field conditions is dependent on several factors such as 

environmental temperature, humidity, microclimate within the olive orchard and the quality and 

availability of host fruits (Burrack and Zalom, 2008; Kounatidis et al., 2008). Thus, the recorded 

number of annual generations widely varies within the olive fruit fly geographical range that 

includes several climatic regions (Daane and Johnson, 2010). In Southern Italy, within the 

coastal zone, the warm climate conditions allow the development of 5-7 generations per season 

while in Central and Northern Italy, characterized by colder winters, the annual generations are 

generally 3-4 (Delrio and Cavalloro, 1977). 

In Italy as in most of the Mediterranean countries, B. oleae seems to be best adapted to autumn 

period conditions, in which the larval development is enhanced by the wide availability of olive 

fruits, high humidity and mild temperatures with maximum values that infrequently reach 27°C. 

Thus from mid-September until mid-November, the population density reaches the highest level 

(Tzanakakis, 2006; Wang et al., 2009). The lower population observed in summer is probably 

due to the reproductive quiescence of the female that has been hypothesized to be caused by the 
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high temperatures and low humidity (Fletcher and Kapatos, 1983; Fletcher et al., 1978; Mourikis 

and Fytizas, 1970).  

Several studies have tried to address the question about how the olive fruit fly overwinters and so 

far, it has been speculated that it can overwinter as an adult, as larvae in the host fruit or as pupae 

in the soil (Kapatos and Fletcher 1984; Neuenschwander et al. 1981). The population dynamics 

during winter and spring seems to be complex (Raspi et al. 1997. 2002; Ragaglini et al. 2005) 

but the more accredited hypothesis is that the B. oleae adults observed in early spring derive 

from the previous autumn population (Ragaglini et al., 2005). A recent study on the 

overwintering population reported that, in March and April, females ovaries contains follicular 

relicts and sperm cells indicating the occurrence of egg fertilization and demonstrating that the 

overwintering adults complete one generation in early spring (Marchini et al., 2017). 

 

1.1.5 DAMAGE 

Depending on the yearly fluctuations of the climate conditions, the olive fruit fly may cause 

severe damage and economic losses in the olive production due to yield reduction and 

degradation of products composition, quality, and properties (Pereira et al., 2004). The impact of 

this pest on the olive oil and olive table sector is frequently extremely detrimental and the 

average annual loss caused by olive fruit fly infestation is estimated to be 5% of the total world 

production with an estimated economic loss of 800 million US$ a year (Montiel Bueno and 

Jones, 2002). In Italy, during the 2014-2015 season in which the olive fly infestation was very 

high, a decrease of 35% in olive oil production in comparison with the previous season has been 

recorded (source: ISTAT and ISMEA). 

B. oleae may affect the olive production in numerous ways (Daane and Johnson 2010). Immature 

fruit may undergo to abortion if stung during the early development but the main damage is 

certainly caused by the larval stages during development as they chew and feed on the olive pulp 

destroying it and in some cases determining a premature fruit drop (Tzanakakis, 2006). 

Therefore, the quantitative loss of the yield is a direct effect of the larval feeding while 

microorganisms‘ proliferation in the feeding tunnels and necrotic areas occurrence that affect the 

fruit quality are indirect effects (Angerosa et al., 1992). 

It has been estimated that a single larva can consume from 50 to 150 mg of olive fruit pulp 

during its development depending on cultivar (Neuenschwander and Michelakis, 1978). The 
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impact on crops of the larval development widely varies with the final use of the fruit. Table 

olive crops present a tolerance threshold of B. oleae infestation near zero larvae per fruit while 

the threshold values are much higher in the cultivation of oil olive crops (e.g., 10–30% of 

infested fruits) (Daane et al., 2005; Neuenschwander and Michelakis, 1978).   

The overall impact of olive fruit fly on olive oil production is influenced by several factors such 

as olive cultivar, harvest date, length of storage time before pressing, the presence of microflora 

and the timing and severity of the pest infestation (Torres-Villa et al., 2003; Tzanakakis, 2006; 

Tamendjari et al., 2004; Pereira et al., 2004). B. oleae larval infestation increases olive oil 

acidity and the alteration of phenol, peroxides and sterol content that significantly reduce the oil 

quality with the occurrence of musty off-flavors and the consequent downgrading of the product 

(Gómez-Caravaca et al., 2008; Angerosa et al., 1992).  The increase of oil acidity and the 

consequent decrease of olive oil quality if is directly proportional to the length of the fruit 

storage and to the presence of microorganisms including bacteria (Xanthomonas), yeast (mainly 

Torulopsis and Candida) and molds (mostly Fusarium and Penicillium) that thus contributes to 

the oil degradation (Torres-Villa et al., 2003). 

B. oleae has shown to differentially infest olive crops depending on the cultivars, moreover there 

are cultivars that have a higher susceptibility to the infestation, and thus, cultivars can also 

deeply influence the pest impact on the crop (Gumusay et al., 1990; Alzaghal and Mustafa, 

1987; Burrack and Zalom, 2008).  The infestation rate can range from less than 10% to up to 

31% depending on the olive tree cultivar (Iannotta and Scalercio,  2012) thus, the cultivar can 

deeply influence the olive oil quality since an infestation rate of 10% can still lead to a high 

quality olive oil (Gucci et al., 2012). 

The mechanisms on which the different level of tolerance to B. oleae infestation is based is 

complex and may rely on chemical factors, as the oleuropein and cyanidine abundance into the 

olive pulp, mechanical barriers, as the aliphatic waxes presence on the esocarp, and 

morphological characteristics of the fruits (Corrado et al., 2016; Grasso et al., 2017).  

The molecular response of the olive fruit to larva feeding have been also investigated and the 

tolerance mechanism seems to involve a large variety of genes with a known role in oxidative 

stresses response, defense, plant structure and metabolism (Grasso et al., 2017). 

Other factors that may influence the pest impact are the phenological stage of the crop, fruit size, 

color and weight, epicarp hardness and surface covering and in particular the amount of aliphatic 
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waxes present (Donia et al., 1971; Iannotta et al. 2007. Neuenschwander et al., 1985). It seems 

that high amounts of oleuropein and cyanidine decrease B. oleae infestations (Iannotta et al. 

2007). 

 

1.1.6 CONTROL STRATEGIES 

During the last 40 years, the control strategies of B. oleae have been based on the wide use of 

organophosphate insecticides such as dimethoate and fenthion generally utilized as bait sprays 

and cover sprays (Skouras et al., 2007; Margaritopoulos et al., 2008; Kakani and Mathiopoulos, 

2008). More recently, pyrethroids and spinosad have been introduced into the chemical pest 

management of the olive fruit fly (Margaritopoulos et al., 2008; Thomas and Mangan, 2005).  

Since 1970, it is well known that B. oleae may develop resistance to dimethoate and other 

organophosphates (Tsakas and Krimbas, 1970; Stasinakis et al., 2001. Skouras et al., 2007). 

Thus, the occurrence of insecticides resistance has driven the scientific community to research 

alternatives to organophosphate cover sprays like mass trapping programs, adopted since 1985, 

that mainly rely on attraction to baits, colors and/or pheromones (Broumas, 1985).   

Fruit flies are commonly attracted to wide varieties of compounds (Dìaz-Fleischer and Aluja, 

2001) such as molasses, protein hydrolysates, yeast, NuLure and ammonia-releasing salts, which 

have been utilized as baits in several trapping strategies for the olive fly pest management 

(Haniotakis et al., 1986; Katsoyannos and Kouloussis, 2001; Thomas and Mangan, 2005). The 

color yellow is highly attractive to B. oleae adults thus, it has been integrated into the design of 

numerous kinds of sticky and McPhail traps used either for mass trapping or monitoring 

(Katsoyannos, 1989). Nonetheless, yellow traps usually catch several beneficial insects and for 

this detrimental effect on the biodiversity of the olive tree canopy, this control strategy has been 

abandoned in some regions (Neuenschwander, 1982). 

Between 1977 and 1980. the sex pheromones produced by male and female have been 

discovered, synthesized and then applied to the trapping control strategy with a great 

improvement of its efficacy and selectivity (Haniotakis et al., 1977; Baker et al., 1980. Daane 

and Johnson, 2010). 

As evidence underlined that B. oleae wild populations may potentially develop noteworthy levels 

of insecticides resistance (Tsakas and Krimbas, 1970; Stasinakis et al., 2001. Skouras et al., 
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2007), traditional control strategies, mainly provided with cover and bait sprays, may lose their 

efficacy in the near future (Daane and Johnson 2010). Therefore, the development of 

noninsecticidal control strategies is essential to avoid the resistance occurrence reducing the 

selection pressure on the field populations (Daane and Johnson 2010). Furthermore, alternative 

control methods to chemical pesticides may significantly reduce the environmental impact of 

olive crop and guarantee a safer product for consumers (Saour and Makee, 2004). 

Since the 1970s, the sterile insect technique (SIT) has been explored as an insecticide-free 

method on olive fruit fly control without effective results (Economopoulos 1972; 

Economopoulos and Zervas 1982; Estes et al., 2012b). In fact, gamma-sterilized, laboratory-

reared males have markedly shown a reduced longevity and ability to search, find and mate with 

wild females (Economopoulos, 2002). Fitness decrease of laboratory-reared fly is probably due 

to the alteration of the fly's bacterial microbiota, induced by antibiotics administration into the 

artificial diet, and particularly to the elimination of olive fruit fly's specific endosymbiont, 

"Candidatus Erwinia dacicola‖, which deeply increase the adult and larval fitness of this pest 

(Estes et al., 2012b; Ben-Yosef et al., 2010; 2014; 2015; Ras et al., 2017).    

Another alternative to synthetic chemical pesticides in B. oleae pest management is the kaolin-

based particle film application. The product, which is obtained by a high rafination of the 

kaolinic mineral, is sprayed onto the foliage in a liquid suspension and once the water evaporates 

a white and powdery film remains on the leaves and fruits surface. The insecticidal properties of 

this product are not due to the toxic effect on the insect pest but to a combination of its repellent 

nature, antiovipositional qualities and the high reflectiveness of its white coating, which could 

severely damage olive fruit fly orientation within the orchard (Saour and Makee, 2004). The 

application of this product in olive groves have shown a great potential for the replacement of 

chemical pesticides since the decrease of the infestation level obtained is comparable with 

treatments with conventional insecticides such as Dimethoate (Saour and Makee, 2004). 

Copper products are also successfully used in olive groves for the B. oleae control (Belcari and 

Bobbio, 1999; Sacchetti et al., 2004; Iannotta, 2004; Caleca et al., 2010). Copper spray 

application leads to a significant decrease of the infestation and interestingly determines a high 

rate of larval mortality, suggesting that the treatment may act as a symbioticides (Rosi et al., 

2007). It was also demonstrated that copper products could act as an adult oviposition deterrent 

(Prophetou-Athanasiadou et al., 1991). 
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Biological control has also been attempted numerous times throughout the twentieth century.  

Most of the trials resulted unsuccessful because of the transportation difficulties of the natural 

enemies, their lack of adaptability to the new propagation environments and / or cultivated 

varieties, and the rearing technical hitches concerning both the olive fruit fly and parasitoids 

(Delucchi V. 1957; Monastero and Delanoue, 1966; Kapatos et al., 1977; Liaropoulos et al., 

1977; Wharton, 1989; Raspi and Loni, 1994; Miranda et al., 2008; Yokoyama et al., 2008). 
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1.2 ENDOSYMBIOSIS BETWEEN BACTERIA AND B. OLEAE 

1.2.1 ENDOSYMBIOTIC BACTERIA WITHIN INSECTS 

The mutualistic symbiosis between prokaryotes and eukaryotes has significantly contributed to 

the evolution of life on Earth (Margulis and Fester, 1991). In contrast with most of the 

unicellular organisms, eukaryotes have limited capabilities in synthetizing metabolic 

compounds; therefore, symbiosis with prokaryotes has delivered an evolutionary strategy to 

increase the range of metabolic sources. One of the best examples of eukaryotic-prokaryotic 

symbiosis is mutualism between insect and bacteria. 

Insects are the most abundant and evolutionary successful class among the Animalia Kingdom 

(Novotny et al., 2002). This is reflected in the variety of habitats in which they live and in the 

incredible amount of different species which is estimated to be more than 4 million. This success 

can be explained by the multiplicity of feeding strategies they exploit (Schoonhoven et al., 2005; 

Slansky and Rodriguez, 1987). The extraordinary capacity to adapt to a vast variety of ecological 

niches is frequently linked to the association with symbiotic microorganisms (Douglas, 2009; 

Ratzka et al.; 2012) and it has been hypothesized that the large diversity of insect species can be 

due to their tendency to associate with beneficial bacteria (Janson et al. 2008). 

The early associations between insects and bacteria, estimated about 300 Million Years ago 

(Moran and Telang, 1998), considering the several advantages that bacteria offer to their insect 

hosts, could be the key factors in the evolutionary success of this class of organisms (Douglas, 

1998; Moran and Bauman, 2000). 

It has been estimated that more than 15–20% of all insect species live in symbiotic relationships 

with bacteria (Buchner, 1965). These ancient associations, known since last century by Petri 

(1909), allow hosts to achieve new niches hence contributing to host diversification and success 

(Wernegreen et al., 2002). 

During the past 20 years, technological advances in molecular characterization and the advent of 

the Next Generation Sequencing techniques have allowed exploration of the world of these 

symbionts, which are mostly uncultivable bacteria (Moran and Wernegreen, 2000). 

Endosymbiotic bacteria have recently become the subject of several scientific investigations, 

which have explored their diverse ecological and evolutionary effects on the insect host. These 

effects include host fitness advantages such as nutritional improvement (Ben-Yosef et al., 2015; 
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Brune and Dietrich, 2015; Douglas, 1998), enhancement of insect metabolism (Douglas, 2013; 

Zientz et al., 2004), thermal tolerance (Dunbar et al., 2007), upgrading of parasitoids and/or 

pathogen resistance (Kaltenpoth, 2009; Currie et al., 2003) and manipulation of plant physiology 

(Giron et al. 2016b). Furthermore, they can affect the host reproductive system, influencing the 

reproductive isolation, population structure, and speciation (Moran et al., 2008). 

While the insect host may obtain several advantages during their life history thanks to the 

relationship with beneficial bacteria, the endosymbiotic bacteria can benefit from a reasonably 

constant environment within the insect body and from a reliable transmission to host offspring 

(Klepzig et al. 2009).  

Endosymbiotic bacteria are generally classified into primary and secondary symbionts. Primary 

endosymbionts are mostly intracellular and inherited maternally via the germline (Giron et al., 

2016a). These symbionts have an obligate and long-term association with their insect host and 

often live in specialized host cells (so-called bacteriocytes) that are essential for the host's 

nutrition, survival and reproduction (Baumann, 2005; Braendle et al., 2003; Tremblay, 1960). 

One of the most intensively studied examples of primary endosymbionts is Buchnera aphidicola 

(Munson et al., 1991), which ensures the adaptation to feeding on phloem to aphid hosts.  

Conversely, many endosymbionts, which can be found intra- or extracellularly, do not reside into 

the bacteriocytes and are facultative for host survival and reproduction (Dale and Moran, 2006). 

These secondary endosymbionts may be both vertically and horizontally transmitted (Olivier et 

al., 2010; Dale and Moran, 2006; Russell et al., 2003) and, even if they are not required for the 

host‘s development, they may deeply influence their host biology (Giron et al., 2016a). It is the 

case of Wolbachia, one of most widespread endosymbiont among the insect class, well known 

for its impact on host reproduction (Engelstädter and Hurst, 2009) but also for conferring 

resistance to several virus infections (Joubert and O‘Neill, 2017) and for mediating the 

interactions between its insect hosts and the plant they consume (Kaiser et al., 2010; Giron and 

Glevarec,  2014). 

It is well known that the majority of insect species which harbor beneficial bacteria are 

monophagous and hemimetabolous (Baumann, 2005; Baumann and Moran 1997; Gil et al. 2004; 

Kikuchi et al. 2009). In fact, many of these hosts feed on unbalanced diets that lack nitrogen, 

essential amino acids, and vitamins, which are required for basic metabolic needs and provided 

by their microbial partners (Douglas 2009. Moran et al., 2008). Within the Homoptera order, 

there are several examples of endosymbiotic bacteria, which synthesize the nutrients that lack in 
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their host's diet (Douglas et al. 2001; Moran and Degnan 2006). In contrast, few polyphagous 

insects have been studied for mutualistic endosymbiosis (Estes, 2009). Equally, only a few 

holometabolous insect are known to harbor vertically transmitted and permanent endosymbiotic 

bacteria since the tissues where they would reside may be degraded during metamorphosis 

(Estes, 2009). 

A particular case study of polyphagous and holometabolous insect species permanently 

associated with a specific beneficial bacterium is the olive fruit fly, B. oleae, around which this 

thesis is focused on.  

 

1.2.2 ENDOSYMBIOTIC BACTERIA WITHIN TEPHRITIDS 

The Tephritidae family is one of the largest families of the Diptera order, with more than 4710 of 

described species and almost 500 genera (White, 2006; Pape and Thompson, 2017). Within 

tephritids, just about 70 species are considered as important agricultural pests (White and Elson-

Harris, 1992) and some of the most detrimental genera, such as Anastrepha, Ceratitis, 

Bactrocera, Dacus, Rhagoletis and Toxotrypana mainly infest fruits (Norrbom et al., 1999). 

Nevertheless, there are considerable differences in feeding strategy among the developmental 

stages of these species. The larval stages of Dacinae and Trypetinae subfamilies predominantly 

use fleshy fruits of host plants of a large variety of species as the food source while the 

Tephritine subfamily counterparts feed on plant tissue and mainly on the flowerheads of 

Asteraceae species (Headrick and Goeden, 1998). In contrast, adult fruit flies are generally 

polyphagous and exploit various substrates found on fruit and foliar surfaces of which plant 

exudates, homopteran honeydews, and bird droppings are considered the primary resources 

providing carbohydrates and nitrogen (Bateman, 1972; Fletcher, 1987. Drew and Yuval, 2000).   

Shreds of evidence of hereditary endosymbiotic bacteria in Tephritidae family have been first 

described in the olive fly B. oleae, by the Italian plant pathologist Lionello Petri (Petri, 1909), 

who reported an evagination of the foregut, a cephalic organ connected to the pharynx of the 

adult fly, so-called oesophageal bulb, in which symbiotic bacteria were harbored. The presence 

of the oesophageal bulb has been further detected in all adults' tephritid flies even with different 

shapes and sizes from B. oleae ones and not always linked to the presence of endosymbiotic 

bacteria (Girolami, 1973. 1983). 
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Girolami (1973) described four principal types of oesophageal bulbs in the Tephritidae family 

based on morphological and histological observations and on the presence or absence of bacteria 

within (Figure 2): 

1. ―Bactrocera or Dacus type,‖ characteristic of B. oleae according to the description of 

Petri (1909). It is large and sphere-shaped, with a base provided with columnar epithelial 

cells and full of symbiotic bacteria.  

2. ―Ceratitis type,‖ characteristic of Ceratitis capitata and other species of the subfamilies 

Trypetinae and Dacinae (except for B. oleae). This type is also spherical but smaller than 

the first type, frequently containing bacteria and with a columnar epithelium in the apex. 

3. ―Ensina type,‖ characteristic of some genera of the subfamily Tephritinae 

(Acanthiophilus, Trupanea, Ensina, Noeeta, Tephritis, Urophora, Xyphosia, 

Campiglossa, Oxyna, Sphenella). It is small and ovoid-shaped, with a wide muscle tunic 

and without columnar epithelium in the apex. Bacteria have been never detected in this 

type of oesophageal bulb. Remarkably, all the Tephritinae species in which symbiotic 

bacteria have been found in a specific tract of the midgut present this type of esophageal 

bulb. 

4. “Chaetorellia type‖ characteristic of other Tephritinae species (Chaetorellia, 

Chaetostomella, Orellia, Terellia). This type is an intermediate oesophageal bulb, 

between the ―Ceratitis type‖ and the ―Ensina type‖. 
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Figure 2: Different types of oesophageal bulbs of tephritid species. Abbreviations: CBE, cuboidal epithelium; CLE 

columnar epithelium; CI, cuticular intima; MT, muscle tunic. Bar = 0.1mm. (From Girolami V., Redia, 54. 269-294. 

1973). 

In the case of flies belonging to the subfamily Tephritinae, German zoologist Hans-Jürgen 

Stammer (Stammer, 1929) first reported the presence of symbiotic bacteria in several genera. 

Subsequent studies have proposed a specific genus of endosymbiotic bacteria ―Candidatus 

Stammerula" to be associated with several species of the subfamily Tephritinae. In particular, 

"Ca. Stammerula tephritis‖, predominantly in association with the genus Tephritis and ―Ca. 

Stammerula trupanea‖ which include symbionts of the Trupanea, Phaeogramma and Capitites 

genera (Mazzon et al., 2008; Mazzon et al., 2010; Mazzon et al., 2011; Viale et al., 2015). These 

unculturable bacteria belong to the family Enterobacteriaceae seem to play an important 

nutritional role in the adult fly fitness (Mazzon et al., 2008; Mazzon et al., 2010; Mazzon et al., 

2011; Viale et al., 2015). These symbionts are vertically transmitted from the mother to the 

offspring but, in contrast with the case of B. oleae. Several studies affirm that in the adult flies of 
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the Tephritinae subfamily, the esophageal bulb seems to be empty of symbiotic bacteria that are 

indeed located in the gut lumen, externally to the peritrophic membrane in contact with midgut 

epithelial cells (Mazzon et al., 2008; Mazzon et al., 2010; Mazzon et al., 2011; Girolami, 1973. 

1983).  

Olive fruit fly and Tephritinae subfamily flies have been studied for their tight association with 

beneficial bacteria and it has been hypothesized a potential co-evolutionary interaction between 

these bacteria and its host (Mazzon et al., 2008. 2010; Estes et al., 2009).  

Tephritids are largely known to harbor also secondary endosymbiotic bacteria of which 

numerous belong to Enterobacteriaceae family such as Enterobacter, Pantoea, Citrobacter, 

Providencia and Klebsiella genera that consistently inhabit the tephritid gut (Lauzon et al., 1998; 

2003; Liu et al., 2016). Most of these free-living, rot-inducing bacterial genera are commonly 

inoculated into the fruit by females during oviposition and improve larval nutrition participating 

in the carbon and nitrogen cycle of the host with the synthesis of essential amino acids and 

minerals (Miyazaki et al., 1968; Lauzon et al., 2000; 2003; Lauzon, 2003; Drew and Lloyd, 

1991; Behar et al., 2008; 2009). 

In Ceratitis capitata (Wiedemann), intestinal associated Enterobacteria have shown to be 

involved in nitrogen fixation and in pectin degradation and to prevent the colonization of 

pathogenic bacteria thus, improving the host fitness (Behar et al., 2005; 2008) 

Lauzon et al. (2000) demonstrated that most of the Enterobacteria species associated with 

tephritids form a biofilm into the adult gut that contributes in the catabolism of nitrogen and 

plays an important role in adult flies survival in nature. Biofilms are metabolically active 

structures (Costerton et al. 1995) that frequently work as a coordinated digestive organ with 

complex and diverse metabolic capabilities. The gut biofilm, in fact, can also catabolize several 

toxic compounds such as the plant antifeeding substances. This is the case of E. agglomerans, an 

endosymbiont of Rhagoletis pomonella that has been proven to degrade phloridzin, a toxic and 

antifeeding compound of Malus spp. (Lauzon et al., 2003). Therefore, the architecture and width 

of the biofilm may regulate the transit time of nutrients into the gut allowing a maximized 

digestion and assumption of them and at the same time may act as an effective barrier for toxic 

substances (Gjersing et al. 2005. Lauzon et al., 2009). 

As it is well known that some symbiotic bacteria mediate detoxification of insect food sources 

(Cejanavarro et al., 2015; Genta et al., 2006), there are also evidence that they can degrade 
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pesticides conferring insecticides resistance to their hosts (Boush and Matsumura, 1967; Kikuchi 

et al., 2012). It is the case of one of Bactrocera dorsalis gut symbionts, Citrobacter freundii, 

which is able to degrade trichlorphon, a moderately toxic organophosphate insecticide (Cheng et 

al., 2017). The B. dorsalis populations that harbor C. freundii in their gut have shown a prevalent 

resistance to this insecticide treatment (Cheng et al., 2017). 

Considering the digestive physiology of Diptera Cyclorrhapha (Lemos and Terra, 1991; Terra 

and Ferreira, 2012) and the attributes of symbiosis across the Tephritidae (Girolami, 1973; 

Martinez-Sanudo, 2009), it has also been hypothesized that fruit flies might satisfy their protein 

needs by digesting symbiotic bacteria which are previously collected in their gut (Drew et al., 

1983; Drew and Yuval, 2000). 

Another important example of facultative tephritid endosymbiont is represented by Wolbachia 

pipientis, an obligatory, maternally inherited, intracellular, endosymbiotic bacterium that is 

probably the most widespread bacterium infecting insect species all over the world (Apostolaki 

et al., 2011). This bacterium is an alpha-proteobacteria of the Rickettsiaceae family (O‘Neill et 

al. 1992; Werren 1997; Stouthamer et al. 1999; Jeyaprakash and Hoy 2000; Saridaki and 

Bourtzis 2010) that can be either primary for the host survival (Dedeine et al. 2003) or 

facultative. Facultative Wolbachia infections can either result in a fitness improvement (Dedeine 

et al. 2003) or can be detrimental (Min and Benzer 1997; Fry et al. 2004). 

Within Tephritidae family, Wolbachia have been recorded as a facultative symbiont of several 

species of Anastrepha genus (Werren et al., 1995; Selivon et al., 2002) as well as of Bactrocera 

dorsalis (Sun et al., 2007), Rhagoletis pomonella (O'Neill et al., 1992), Rhagoletis cerasi 

(Riegler and Stauffer, 2002; Arthofer et al., 2009), Ceratitis capitata (Rocha et al., 2005) and 

Dacus oscillatoria (Kittayapong et al., 2000). The presence of Wolbachia in fruit flies has begun 

of interest for the scientific community because this bacterium is well known to manipulate host 

reproduction. The bacteria inducing cytoplasmic incompatibility (CI), male killing, feminization 

or parthenogenesis (Stouthamer et al. 1990; Hoffmann and Turelli 1997; Rigaud 1997; Hurst et 

al. 1999) and thus, can be utilized in the development of the Incompatible Insect Technique 

(IIT). Some research groups have started trials to evaluate the effectiveness of this control 

strategy on Ceratitis capitata (Riegler and Stauffer 2002; Zabalou et al. 2004; 2009) and B. 

oleae (Apostolaki et al., 2011) with remarkable results.  

Thus, it is evident that the role of symbiosis between bacteria and fruit flies can deeply influence 

the impact of these pests on agriculture and that accurate investigations of these interactions may 
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lead to innovative and environmentally friendly strategies for the fruit flies control. Therefore, in 

the last ten years, several papers have been focused on the endosymbiosis studies in pests of 

economic interest and this topic is becoming a new frontier for the scientific community. 

 

1.2.3 ―CA. ERWINIA DACICOLA‖: THE PRIMARY ENDOSYMBIONT OF B. OLEAE 

As we already mentioned, the first evidence of hereditary bacterial symbiosis in B. oleae dates 

back to the beginning of the twentieth century (Petri, 1909). The bacteria observed by Petri 

continuously multiply within the oesophageal bulb (Figure 3), developing masses that are then 

discharged into the midgut. The transmission to the offspring might be assured by the smearing 

of bacteria on the egg surface that the female act during oviposition through the contractile 

perianal glands that become filled with bacteria after they reach the sexual maturity. A bacterial 

cap-like mass is characteristically found nearby the egg's micropile and, when the embryo 

completes its development, the unhatched larva already contains the bacterial symbionts within 

its blind sacs. After the egg enclosure, the bacteria multiply inside intestinal caeca of all larval 

stages. Adult flies harbor large amounts of bacteria in the oesophageal bulb before emerging 

from their puparium (Petri, 1909). These early observations already supported the hypothesis 

that B. oleae bacterial endosymbionts are vertically transmitted from the mother to the offspring 

(Petri, 1909).  

The same Author hypothesized that these symbiotic bacteria might belong to the Pseudomonas 

savastanoi (Smith) species, the agent of the olive knot disease. Later, the development of the 

DNA-based methodologies occurred in the last two decades, enabled the taxonomist to approach 

the description and the phylogenetic study of unculturable bacteria (Baumann and Moran, 1997). 

Thus in 2005, thanks to the molecular approach, Capuzzo et al. demonstrated that the B. oleae 

endosymbiont was not P. savastanoi and proposed a novel unculturable, inheritable taxon within 

the family Enterobacteriaceae, designed as ―Candidatus Erwinia dacicola‖.  
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Figure 3: Picture of the oesophageal bulb under microscope after dissection (A) and picture of bacteria inhabiting 

the oesophageal bulb and of the biofilm that they produce with scanning electron microscope (B) 

 

“Ca. Erwinia dacicola‖ belong to the ‗Gammaproteobacteria‘ class with a cell envelope 

structurally coherent with the Gram-negative model. The similarity study of 16S rRNA gene 

sequence with BLAST algorithm against the GenBank database showed a 97% similarity with 

Erwinia persicina and Erwinia rhapontici, two plant pathogens belonging to the subgroup of 

Erwinia amylovora. This bacterial species is located exclusively in association with its host 

within larval blind sacs, imaginal oesophageal bulb, mid- and hindgut, anal glands, ovipositor 

and egg surface (Capuzzo et al., 2005). The presence of the bacterial endosymbiont in the 

ovipositor, but not in the ovaries or testes, might confirm that ―Ca. Erwinia dacicola" is 

vertically transmitted via smearing as the egg passes by the ovipositor diverticulum that is filled 

with bacteria (Sacchetti et al., 2008). The mechanism throughout the symbiotic bacteria reach 

the embryo‘s blind sacs has not been clarified, but it can be hypothesized that the bacteria 

present on the egg surface pass through aeropilar or micropilar openings of the egg, in fact, 

Mazzini and Vita (1981) suggested it as a possible mechanism of symbiont transmission. 

A 

B 
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Otherwise, it can be hypothesized that the newly hatched larva ingests bacteria when it breaks 

the chorion (Sacchetti et al., 2008).  

In the study published by Capuzzo et al. (2005), all the PCR products of the bacterial 16S region 

that were sequenced were found to be identical confirming that a single bacterial species 

represent the entire or at least the most abundant fraction of the symbiotic microbiota of the olive 

fruit fly. The DNA was extracted from the oesophageal bulb, the mid-gut and the ovipositor of 

adult females of B. oleae belonging to wild Italian populations and all the samples showed the 

presence of ―Ca. Erwinia dacicola" (Capuzzo et al., 2005). 

This study showed the first example of an obligate symbiotic relationship between a bacterium 

and a fruit fly. B. oleae also diverges from all the other species of the Tephritidae family for the 

characteristic structure of its oesophageal bulb and it could be hypothesized that these marked 

morphological differences may be explained by a coevolution with its specific symbiotic 

bacterial species (Capuzzo et al., 2005). 

Subsequent, recent studies have confirmed the presence of ―Ca. Erwinia dacicola" in 

geographically distinct populations coming from Italy, Greece, Spain, Israel and South-Western 

USA (Belcari et al., 2003; Capuzzo et al., 2005; Sacchetti et al., 2008; Silva et al., 2008; Estes et 

al., 2009. 2012a; Kounatidis et al., 2008; Savio et al., 2012. Ben-Yosef et al., 2010. 2014). 

These data suggest that this endosymbiont has a specific and long-term association with its host. 

―Ca. Erwinia dacicola" is commonly accompanied by other bacteria such as Acetobacter 

tropicalis, Providencia and Pantoea spp., which are considered transiently associated with the 

host gut and most likely acquired by the insect diet (Kounatidis et al., 2008; Sacchetti et al., 

2008; Estes et al., 2009; 2012a; Ben-Yosef et al., 2015). The relative abundance of these bacteria 

seems to depend on ―Ca. Erwinia dacicola‖ titer in insect gut, suggesting the presence of a 

regulation mechanism between these bacteria species (Estes, 2009).  

During mass-rearing, the use of antibiotics in the artificial diet interrupts the natural transmission 

of the endosymbionts that are replaced by environmental bacteria. In these conditions, both adult 

and larval stages showed a remarkable fitness decrease (Estes et al., 2012; Ben-Yosef et al., 

2015; Ras et al., 2017). 

The images acquired by transmission electron microscope (TEM) showed that the symbiotic 

bacteria are located intracellularly in all larval stages, within the cellular membrane of epithelial 

cells of the digestive tissue. On the contrary, in the adult stage, ―Ca. Erwinia dacicola‖ resides 
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extracellularly and forms a bacterial biofilm into the digestive system lumen as in the 

oesophageal bulb, outside the cellular membrane of host cells (Estes et al., 2009) (Fig. 3-B).  

During the olive fly development, the bacterial endosymbiont switches from an intracellular 

existence in the larval stages to an extracellular existence in adults. This transition, that is very 

rare and of which there are only a few other examples reported in the literature (Cheng and 

Aksoy, 1999; Pais et al., 2008), could be crucial to the bacteria survival in their holometabolous, 

polyphagous host. Nonetheless, ―Ca. Erwinia dacicola‖ is the first case of an intracellular 

endosymbiont within tephritids (Estes et al., 2009; Lauzon, 2003). 

During metamorphosis, Diptera larvae degrade their digestive tissues that are then reassembled 

from the larval mid-gut regenerative cells in adult stage (Greenberg, 1959; Jiang et al., 1997). 

Therefore, permanent bacterial endosymbionts must carry out a mechanism to survive during the 

degradation of larval tissues and recolonize the adult's ones. It could be hypothesized that the 

bacteria inhabiting the larval regenerative cells reestablish themselves in the adult gut (Estes et 

al., 2009).   

The bacterial amount of recently eclosed adults is very low, while the oesophageal bulb of older 

adults is filled with bacteria, this suggests a rapid multiplication of bacteria in the first days post-

eclosion (Estes et al., 2009). As soon as biofilms were established, thus after about 5-days post-

eclosion, the endosymbionts cannot be removed from their host by oral administration of 

antibiotics (Estes et al., 2009).  

―Ca. Erwinia dacicola‖ is found to be associated with B. oleae in high frequency. Its presence in 

all life stages of different widespread populations, its vertical transmission to offspring and its 

skill to be located within the larval host cells imply that this bacterial species has a highly 

specific and long-term association with the olive fruit fly (Estes et al., 2009; Paracer and 

Ahmadjian, 2000; Ishikawa, 2003). 

 

 

 

 

 



24 

 

1.2.4 B. OLEAE ADULT FITNESS ADVANTAGES DUE TO PRESENCE OF ITS 

SPECIFIC ENDOSYMBIONT ―CA. ERWINA DACICOLA‖ 

Nitrogen is the most common limiting factor in insect nutrition since proteins synthesis depends 

on the availability of dietary amino acids of which the essential ones cannot be synthesized de 

novo (Dadd, 1985). The association between insects and bacteria has been often evolved to 

overcome nutritionally unbalanced diets constraints. Monophagous insects feeding on a nitrogen-

poor substrate are particularly liable to such restrictions (Douglas, 2006; 2013) but also 

polyphagous insects can difficulty find an optimal and predictable nutrient input (Kaufman et al., 

2000). In fact, both kinds of insects are known to frequently satisfy their protein needs 

throughout the association with bacterial symbionts, which enable them to synthesize essential 

amino acids, fix nitrogen or recycle nitrogenous waste compounds (Zientz et al., 2004; Douglas, 

2009. 2013; Dillon and Dillon, 2004; Engel and Moran, 2013).  

The olive fruit fly has a monophagous feeding strategy in the larval stages that exclusively feed 

on the olive fruit mesocarp while the adult stage is polyphagous and exploits various substrates 

of which plant exudates, homopteran honeydews, and bird droppings are considered the primary 

resources providing carbohydrates and nitrogen (Bateman, 1972; Fletcher, 1987. Drew and 

Yuval, 2000). There is evidence that these substrates considerably endorse the insect fitness 

compared to a diet consisting exclusively of carbohydrates (Tsiropoulos, 1977). 

Nonetheless, these food sources are mostly rich in carbohydrates but moderately poor in amino 

acids (Wackers, 2005; Lundgren 2009) and often the amino acids content is mainly composed of 

non-essential ones (Wackers, 2005; Douglas 2006).  On the other hand, bird drops are rich in 

uric acid, urea and ammonia salts (Davis, 1927; Tsahar et al., 2005) but insects are mostly 

incapable to degrade purines and urea and these nitrogen compounds cannot be exploited for 

their nutrition (Cochran, 1985). Thus, the actual nutritional value of the adult olive flies‘ diet 

may be quite restrictive and unbalanced in its amino acid composition. Furthermore, the protein 

content in diet is particularly important for adult females, which require a considerable amount 

of essential amino acids to achieve a successful maturation of their eggs (Tsiropoulos, 1980; 

1983; 1984) and this reproductive demand seems to be unlikely satisfied by their poor and 

unbalanced diet (Tsiropoulos 1977; Drew and Yuval 2000). 

Since nutrient acquisition for adult olive flies can be spatially and temporally patchy, the 

formation of a symbiotic bacterial biofilm in the digestive lumen may provide resistance to low 

nutrients periods and other stresses (Davey and O‘Toole, 2000; Estes et al., 2009). 
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It has also been hypothesized that symbiotic bacteria housed in the oesophageal bulb and 

subsequently forming biomasses discharged into the gut, might be digested by their host, thus 

providing a direct nitrogen source for adult olive fly, as described for other fruit flies (Estes et 

al., 2009; Drew and Yuval 2000; Drew and Lloyd 1991; Lemos and Terra 1991). 

Ben-Yosef et al. (2010) have recently pointed out the role of the gut microbiota, mainly 

composed of ―Ca. Erwinia dacicola‖, on the adult olive flies‘ nutrition and fertility. B. oleae 

adult females treated with antibiotics (aposymbiotic specimens) and fed on diets provided with 

non-essential amino acids have shown a significantly lower fecundity in comparison with the 

non-treated counterparts (symbiotic specimens) fed on the same diet. The number of eggs 

produced by the aposymbiotic females was comparable with the one produced by symbiotic 

females fed on sugar diets without any nitrogen compounds addiction, revealing that B. oleae is 

unable to exploit non-essential amino acids without the presence of its specific endosymbiont 

and suggesting that these bacteria exploit the nitrogen available in the host diet to complement 

the missing amino acids required for protein synthesis. (Ben-Yosef et al., 2010; 2014).  

Similar results have been obtained in another experiment (Ben-Yosef et al., 2014) in which 

symbiotic and aposymbiotic females were fed on diet provided either with urea or with bird 

droppings, which contain a variety of waste nitrogenous compounds including uric acid, urea and 

ammonia (Davis, 1927; van Tets et al., 2001; Tsahar et al., 2005). The aposymbiotic females 

produced a significantly lower amount of eggs in comparison with their symbiotic counterparts, 

accounting for more than a two-fold decrease in fecundity, and responded as if completely 

deprived of nitrogen. These results reveal that the presence of the gut endosymbionts is essential 

for the olive fly to exploit the nitrogenous waste metabolites present in its natural diet as a 

nitrogen source and suggest that these bacteria are involved in the metabolism of uric acid, urea, 

and ammonia (Ben-Yosef et al., 2014). It can be hypothesized the activity of a bacterially 

derived urease, into the insect gut, that might hydrolyze urea, generating ammonia that is the 

initial precursor of de novo amino acid synthesis. Thus, we can assume that ammonia might be 

successively used by bacteria for synthesizing amino acids and that the host females satisfy their 

protein needs by utilizing these bacterially derived amino acids (Ben-Yosef et al., 2014).  

On the contrary, the aposymbiotic and symbiotic females showed a similar amount of produced 

eggs either when they were fed only on sucrose diet or on diets provided with a proper quantity 

of essential amino acids. These results indicate that ―Ca. Erwinia dacicola" plays an essential 

role in the olive fly's nutrition and fertility only when there is a nitrogen source in the host diets 
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and when this source is composed of non-essential amino acids and/or nitrogenous waste 

metabolites, that are, anyway, the most common nutritional circumstances occurring in the field 

environment (Ben-Yosef et al., 2010; 2014).  

Consequently, we can assume that ―Ca. Erwinia dacicola‖ is able to use either the non-essential 

amino acids or the nitrogenous waste metabolites present in the fly‘s diet as building blocks for 

essential amino acid synthesis, which can successively be utilized by its host in their free form or 

integrated into a bacterial protein after their secretion into the gut. Thus, this endosymbiont 

promotes the olive fly females nutrition and oogenesis by compensating for essential amino acid 

deficiencies in its host diet (Ben-Yosef et al., 2010; 2014).   

Earlier studies of bacteria isolated from the gut of B. oleae and other fruit flies (Hellmuth, 1956; 

Lauzon et al., 2000; Robacker and Lauzon, 2002) displayed that some of these bacteria were 

able to utilize uric acid and urea and to recycle these compounds into the host gut. These 

biosynthetic pathways seem now to be present within a heritable, obligate symbiont such as "Ca. 

Erwinia dacicola", suggesting the importance of this symbiosis to the natural history and the 

evolution of its host (Ben-Yosef et al., 2014).   

 

1.2.5 B. OLEAE LARVAL FITNESS ADVANTAGES DUE TO PRESENCE OF ITS 

SPECIFIC ENDOSYMBIONT ―CA. ERWINA DACICOLA‖ 

Another peculiarity of the olive fruit fly is the feeding strategy of its larval stages. While most 

fruit flies lay their eggs in ripe fruit (Fletcher, 1987), which better support the larval development 

(Greany, 1989; Messina and Jones, 1990; Joachim-Bravo et al., 2001; Rattanapun et al., 2009), 

B. oleae larvae predominantly develop in unripe olive fruit, permitting them to complete several 

generation before the fruit ripening (Kapatos and Fletcher, 1984; Neuenschwander, 1985).  

Unripe fruits are generally resistant to herbivores and pathogens attack thanks to the high content 

of secondary metabolites with antimicrobial, anti-nutritive and toxic effects (Whitehead et al., 

2013; Gutierrez-Rosales et al., 2012). The unripe fruit of Olea europaea is no exception; in fact, 

it contains several secondary compounds, the most abundant of which is oleuropein, a bitter 

phenolic glycoside that can contribute up to 14% of the fruit‘s dry weight (Alagna et al., 2012; 

Amiot et al., 1986; Gutierrez-Rosales et al., 2012). Phenolic compounds are well known to act as 

strong protein alkylators once activated that prevent herbivores and pathogens attack (Bennett 

and Wallsgrove, 1994; Felton and Gatehouse, 1996; Taiz and Zeiger, 2010; Pentzold et al., 
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2014). After enzymatic activation by plant β-glucosidase and phenoloxidase, oleuropein forms 

highly reactive aldehydes and quinones, which are able to cross-link proteins contained in plant 

tissues forming high molecular weight aggregates throughout a covalent binding of their lysine 

that is an essential nutrient (Konno et al., 1999; Koudounas et al., 2015). Activated oleuropein 

has also a strong antimicrobial effect inhibiting bacteria and fungi attack (Brenes et al., 2011; 

Dobler et al., 2011).  

It has been demonstrated that insects feeding on Ligustrum spp., a plant genus belonging to the 

Oleaceae family that also contains a high amount of oleuropein, undergo to growth arrestment 

caused by decreased lysine content in their diet (Konno et al., 2009; 2010). Therefore, it has 

been hypothesized that a similar defense mechanism, characterized by lysine amino acid 

unavailability with a consequent lack of protein content, is present in the unripe olive fruits 

(Spadafora et al., 2008; Kubo et al., 1985; Koudounas et al., 2015).  

A high larval mortality has been described in laboratory condition, adding antibiotics to the adult 

diet (Fytizas and Tzanakakis, 1966) but also in field trials where a remarkable negative effect of 

copper treatments, that could act as symbioticides, have been reported on larval growth 

(Tzanakakis in 1985; Belcari and Bobbio 1999; Belcari et al. 2005). These results support the 

hypothesis that the presence of endosymbiotic bacteria in the blind sacs of the larvae midgut 

might positively influence the larval fitness and development. 

In 2015, Ben-Yosef et al., published a study in which the interaction between olive fly larvae, 

their symbiotic bacteria, and olive fruit chemistry have been investigated. Hypothesizing that the 

phenolic compounds present into the unripe olive fruits might carry out a substantial restriction 

on the larval nutrition by reducing the nutritional value of protein, the possibility that this 

constraint could be overcome by their symbiotic bacteria have been evaluated (Ben-Yosef et al., 

2015).  

Symbiotic and aposymbiotic larval development either into ripe or unripe olive fruits had been 

monitored. While symbiotic larvae were able to develop in unripe olive fruits, their aposymbiotic 

counterparts could not reach the pupal stage demonstrating that ―Ca. Erwinia dacicola‖ is 

essential for the development of B. oleae larvae into unripe olive fruits. On the contrary, both 

symbiotic and aposymbiotic larvae successfully developed in ripe olive fruits, nonetheless, the 

aposymbiotic larvae completed their development nearly 2 days later and their weight was 

approximately 12% less than their symbiotic counterparts. These results suggest that even if the 

presence of this specific endosymbiont is not essential for B. oleae larvae to develop into ripe 
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fruit, it significantly accelerate their development, most likely increasing larval nutrition (Ben-

Yosef et al., 2015). 

The pattern observed in larval development suggest that the more the lysine is lost and protein 

complexes accumulate following incubation of ovalbumin in fruit extract, the more the larvae 

depend on the presence of its symbiont to successfully develop. In fact, unripe olive fruits extract 

showed a greater capacity to bind ovalbumin together and destroy lysine residues than ripe olive 

fruits one, indicating that probably oleuropein is more active in unripe olive fruits (Ben-Yosef et 

al., 2015). Furthermore, the content of oleuropein and β-glucosidase—the main activating 

enzyme of oleuropein— progressively decrease during ripening, reaching a low level in ripe fruit 

(Briante et al., 2002;  Alagna et al., 2012; Amiot et al., 1986), while the content of lysine of 

olive pulp proteins substantially increase (Zamora et al., 2001).  

Thus, the phenology of oleuropein during ripening seems to be the main process influencing 

lysine and protein content in the olive fruit pulp available for the nutrition of B. oleae larvae and 

it is probably the key reason for the ripening-dependent capability of aposymbiotic larvae to 

develop into  the olive fruit (Ben-Yosef et al., 2015). 

Ben-Yosef et al. (2015) suggested that oleuropein is not toxic but has an anti-nutrient effect 

(Felton and Gatehouse, 1996; Konno et al., 1999), causing a severe nutritional restriction by 

lysine deficiency in on olive fly larvae which lacks their specific endosymbiont (Tsiropoulos, 

1984). Furthermore, oleuropein might act as enzymes activity inhibitor, decrease the digestibility 

of dietary protein (Kroll et al., 2003; Felton and Gatehouse, 1996; Pentzold et al., 2014) and 

prevent any premature decomposition of the olive pulp due to bacterial or fungal proliferation, 

which may enhance larval nutrition (Brenes et al., 2011). Thus, it has been assumed that olive fly 

larvae feeding on unripe fruits have to deal with high molecular weight and cross-linked protein 

aggregates, with a low lysine content and most likely hard to digest and that these constraints are 

counteracted by their bacterial symbionts (Ben-Yosef et al., 2015).  

Although the precise mechanism by which ―Ca. Erwinia dacicola" improve the larval 

development is still unknown, some hypotheses have been proposed. These bacteria undoubtedly 

provide a source of protein or amino acids to the larvae during their development (Ben-Yosef et 

al., 2015). This might be realized throughout the neutralization of plant defense compounds as 

has been reported for other symbiotic bacteria associated with fruit flies (Boush and Matsumura, 

1967; Lauzon et al., 2003). Furthermore, they may act to dissociate the oleuropein-protein 
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complexes secreting polyphenol-degrading enzymes or polyphenol-binding polymers (e.g. Smith 

et al., 2005; Dowd, 1992). 

―Ca. Erwinia dacicola" is phylogenetically close to some necrotrophic free-living Erwinia 

species, which are well known to exploit living plant tissue as a nutritional source throughout the 

secretion of extracellular enzymes (Mazzon et al., 2008; Barras et al., 1994). This phylogenetic 

proximity supports the hypothesis that this endosymbiont is somehow involved in the secretion 

of degrading enzymes targeting on plant secondary compounds (Ben-Yosef et al., 2015).  

It is also possible that, in addition to their detoxification activity, these bacteria were utilized by 

their host as a direct and renewable source of balanced protein and amino acids, by their 

digestion into the larvae gut, thus enhancing the larval nutrition (Ben-Yosef et al., 2015). This 

hypothesis is supported by the knowledge about the evolution of Tephritidae, which probably 

have saprophagous ancestors feeding on microbe-rich, rotting plant tissues (Diaz-Fleischer et al., 

2000). Furthermore, fruit flies are also well known to have deep physiological adaptations for 

lysing and digesting bacteria (Lemos and Terra, 1991; Terra and Ferreira, 2012). Moreover, B. 

oleae midgut caeca has a contractile nature and the bacteria are often discharged into the larval 

gut during development (Petri, 1909) thus, suggesting that endosymbiotic bacteria can be 

eventually digested (Ben-Yosef et al., 2015). 

A transcriptomic and proteomic approach has been recently performed to investigate the 

interaction between B. oleae, ―Ca. Erwinia dacicola‖ and the olive fruit (Pavlidi et al., 2017). 

The gene expression of wild olive fly larvae during their development in artificial diet and unripe 

and ripe olive fruit as well as the endosymbiont gene expression, has been analyzed in order to 

elucidate the mechanism that allow the B. oleae larval stages to overcome the host plant defenses 

and in particular to deal with the presence of high concentration of oleuropein in unripe fruits 

(Pavlidi et al., 2017).  

Olive fruit fly larvae developing in unripe fruit showed a remarkable overexpression of genes 

encoding detoxification enzymes. Under the same conditions, the larvae endosymbionts 

presented an overexpression of genes involved in the secretion of an inhibitor of oleuropein 

compound. It is still not clear if the secretion of degrading enzymes occurs in the insect or in 

their bacterial endosymbiont but it can be hypothesized that both partners of this symbiosis 

interaction contribute to oleuropein degradation (Pavlidi et al., 2017).  
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2. AIM OF THE THESIS 

While some investigations on the role that endosymbiotic bacteria play in the olive fly fitness 

have been recently pinpointed, little is known about the possibility of utilizing symbioticides 

compounds that may interfere with the ―Ca. Erwinia dacicola" / Olive Fly interaction reducing 

the destructiveness of this widespread pest.  

Taking into account the fact that ―Ca. Erwinia dacicola" is essential for the larval survival in 

unripe olive fruits and remembering that the first 4 or 5 generations develop in unripe olive 

fruits, it is evident that use of efficient symbioticides could represent a substantial step forward 

in B. oleae pest management. 

Therefore, the identification of environmentally friendly compounds that could be used as 

symbiosis inhibitors seems to be an interesting but poorly explored field of research that could 

lead to the development of new solutions/options to enhance the olive fruit fly integrated pest 

management.  

The aim of the research project here-presented is based on this approach. Promising microbial 

metabolites and Copper Oxychloride solution were selected for this purpose and these substances 

were administered to wild specimens of B. oleae during the experimental phase. Assessment of 

biological parameters (mortality rate, the amount of ingested diet, females' capability to mate and 

lay eggs, and newly hatched larvae ability to develop in unripe olive fruits and cause damage) 

was carried out for each treatment. 

The research project was designed to avoid the influence of the symbionts presence on the 

nutrition of the adult stages. In fact, the selected substances were administered within two 

different diets respectively consisting of sucrose only (S-diet) and of sucrose and yeast 

hydrolysate mixture ((S+P)-diet) which contained all the essential amino acids required by the 

adult‘s development and reproduction. As reported by Ben-Yosef (2014), in these two opposite 

nutritional conditions the olive fruit fly cannot benefit from its specific endosymbiont since, in 

the case of the S-diet, the actual lack of nitrogen sources make impossible for the symbionts to 

synthesized the essential amino acids to complement the flies nutritional needs, and, in the case 

of the (S+P)-diet, the presence of all the elements required by the fly‘s development make 

useless the presence of the symbionts.   

Data on differential adult fitness (longevity, ability to mate and lay eggs) were utilized to 

identify treatments whose effects are probably linked to a toxic effect of the substances rather 
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than to the symbiont decrease. On the contrary, substances were considered efficient 

symbioticides if a strong effect on the larval survival was recorded (without significant influence 

on adult fitness).  

Moreover, for further evidence that the larval fitness decrease was due to the symbiotic titer 

reduction, molecular analysis by real-time PCR was performed on the mid-gut and the 

oesophageal bulb of the treated flies, in order to quantify the fly's beneficial bacterial population 

corresponding to each treatment. In any event, broadening the knowledge about the symbiosis 

between B. oleae and its specific endosymbiont and better understanding the mechanisms of 

microbiome alteration and its consequence on the insect fitness may provide valuable insight into 

control options of this significant agricultural pest. 
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3. MATERIALS AND METHODS 

 

3.1  FITNESS TESTS 

 

3.1.1 SAMPLING, ORIGIN, AND MAINTENANCE OF B. OLEAE WILD POPULATION 

Experiments were conducted with wild flies emerged from field infested olive fruits of the same 

cultivar to achieve a physiologically uniform population. Olive fruits were weekly collected from 

olive trees located at the Department of Agricultural Sciences of the University of Naples, 

Federico II (Portici, NA), from September to December of 2015 and 2016. Trees are cultivated 

for scientific purposes and have never undergone to chemical treatment. 

At the beginning of June 2015 and 2016. some branches of selected trees were enveloped in 

100L mesh fabric to avoid the pest attack and provide uninfested olive fruits, required during the 

research project. The rest of the branches were left unenveloped to permit the pest attack and 

provide the field infested olive fruits. 

2 kg of infested olive fruits were weekly collected, placed in plastic trays over a paper layer and 

incubated. Mature larvae and pupae were daily collected and placed in 100L mesh cages. After 

emergence, adults were separated by sex, divided into groups of 25 specimens and placed in 

cylindrical cages of a diameter of 20 cm and a height of 25cm. 

All experiments were conducted in a controlled environment (24 ± 2°C, 60 ± 10% RH and 12/12 

LD cycle). 

 

3.1.2 TEST OF FITNESS REDUCTION THROUGH MICROBIOME ALTERATION 

In order to verify if the alteration the B. oleae microbiome – and in particular the reduction of the 

endosymbiont presence into the fly‘s digestive system – could reduce the adult and larval fitness, 

a selection of microbial metabolites and copper oxychloride were orally administered to the new 

hatching adults for a 20 days‘ time span.  

The compounds to be orally administered were selected for their well-known antibacterial 

properties (Sivasithamparam and Ghisalberti, 1998; Keswani et al., 2014; Howell, 2003; Vinale 

et al., 2006; 2014; Dias et al., 2012; Chiang et al., 2009; Mukherjee et al., 2006; Pascale et al., 
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2017 Asaka and Shoda 1996; Chen and Wu 1999; Harris and Adkins 1999; Ferreira et al. 1991; 

Sholberg et al. 1995; Mari et al. 1996; Raaijmakers et al. 2002; He et al. 1994). Microbial 

metabolites were provided by the research team of the IPSP-CNR of Portici (NA) that extracted 

them from different Trichoderma species and Bacillus subtilis (Table 2).  

Copper oxychloride has been hypothesized to act as symbioticides in the olive fruit fly (Rosi et 

al., 2007; Sacchetti et al., 2004; Belcari and Bobbio, 1999; Tzanakakis, 1985), for this reason, it 

was introduced into this research project to effectively test its antibacterial effect on the B. oleae 

microbiome. 

Table 2: Microbial metabolites list with relative origin organism and lower concentration with antibacterial properties 

Microbial metabolites Organism 
Antibacterial properties    

concentration 

Harzianic acid Trichoderma harzianum 10
-2

 M 

6-pentyl-α-pyron  Trichoderma atroviride 10
-3

 M 

Viridiol Trichoderma virens 10
-4

 M 

Lipopeptides mixture Bacillus subtilis 100 ppm 

 

The selected compounds were directly added to the fly‘s diet in two or three 5-fold serial 

dilutions. Two different adult diets were used, respectively consisting of sucrose (S-diet) and of 

1 : 1 (w/w) mixture sucrose and yeast hydrolysate ((S+P)-diet), to compare the effect of the 

treatments depending on the nutritional state of the flies. S-diet, which is deprived of any source 

of proteins, represent a nutritionally unbalanced diets constraint while (S+P)-diet is provided 

with essential and non-essential amino acids and is thus considered nutritionally complete. 

As a negative control, cohorts of females and males were separately fed on the same diets with 

the addition of antibiotics (Piperacillin, Sigma, 100 µg/mL). It has been demonstrated that this 

treatment effectively clears the endosymbiotic bacteria from the fly's digestive system (Ben-

Yosef et al. 2008; 2010; 2014). Simultaneously, reciprocal adult groups fed with diets with no 

added substances were utilized as a positive control. 

A number of 28 different treatment was tested (Table 3), each with 3-5 biological repetition. 

Every single repetition was carried out on 50 specimens, 25 females and 25 males, separately for 

the first 14
th

 days and together for the subsequent 6 days. 
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Table 3: List of the treatments with relative substances, concentrations and diet type. 

Treatment 
Added substance and 

concentration 
Diet 

S CONTROL No substances added S 

S+P CONTROL No substances added S+P 

S ANTIBIOTICS Piperacillin 0.01‰ S 

S+P ANTIBIOTICS Piperacillin 0.01‰ S+P 

S COPPER OX. 0.5% Copper oxychloride 0.5% S 

S+P COPPER OX. 0.5% Copper oxychloride 0.5% S+P 

S COPPER OX. 0.1% Copper oxychloride 0.1% S 

S+P COPPER OX. 0.1% Copper oxychloride 0.1% S+P 

S COPPER OX. 0.02% Copper oxychloride 0.02% S 

S+P COPPER OX. 0.02% Copper oxychloride 0.02% S+P 

S HARZIANIC ACID 0.5% Harzianic acid 0.5% S 

S+P HARZIANIC ACID 0.5% Harzianic acid 0.5% S+P 

S HARZIANIC ACID 0.1% Harzianic acid 0.1% S 

S+P HARZIANIC ACID 0.1% Harzianic acid 0.1% S+P 

S+P HARZIANIC ACID 0.05% Harzianic acid 0.05% S+P 

S VIRIDIOL 0.5% Viridiol 0.5% S 

S+P VIRIDIOL 0.5% Viridiol 0.5% S+P 

S VIRIDIOL 0.1% Viridiol 0.1%  S 

S+P VIRIDIOL 0.1% Viridiol 0.1% S+P 

S+P VIRIDIOL 0.05% Viridiol 0.05% S+P 

S 6PP 5% 6-pentyl-α-pyron 5% S 

S+P 6PP 5% 6-pentyl-α-pyron 5% S+P 

S 6PP 1% 6-pentyl-α-pyron 1% S 

S+P 6PP 1% 6-pentyl-α-pyron 1% S+P 

S BACILLUS 5% Lipopeptides mixture 5% S 

S+P BACILLUS 5% Lipopeptides mixture 5% S+P 

S BACILLUS 1% Lipopeptides mixture 1% S 

S+P BACILLUS 1% Lipopeptides mixture 1% S+P 
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3.1.3 ADULT AND LARVAL FITNESS TESTS 

Each group of 25 specimens of the same sex was maintained for 14 days after emergence, which 

is a time required by females to mature sexually (Zervas, 1982), in a cage supplied with water 

and one of the different diets with the addition of the above-mentioned compounds depending on 

the experiment. 

The exact weight of the diet supplied in each cage was recorded on the day 1
st
 and successively 

on the day 14
th

 to determine the mean amount of treatment administered to each specimen. The 

number of dead specimens was daily recorded from the emergence until the end of the 

experiments. 

On their 14
th

 day, females were joined with the males to permit the mating and simultaneously 

25 unripe and un-infested olive fruits were supplied into the cages (1 olive fruit/female) to 

provide a natural substrate for female‘s oviposition. The supplied olive fruits were collected 

from the enveloped branches and carefully examined to avoid the use of already infested fruits.    

After 3 days, the olive fruits were collected and replaced with the same amount of a new group, 

which was successively collected after 3 days. These two groups of olives, corresponding to the 

first two oviposition tests, were separately processed, to verify if the time span required for 

oviposition varied among the different treatments.  

Half of each olive group was immediately dissected under microscope and the number of eggs 

laid was recorded. The remaining half was incubated for 2-4 weeks to record the differential rate 

of offspring adult emergence among the treatments. 

The number of eggs/female, after 14 days of treatment, was used to assess the fitness of adults. 

Since the number of females was equal to the number of un-infested olive fruits exposed into the 

cage, it was assumed that the number of laid eggs in each olive fruit corresponded to the number 

of laid eggs for female. Olive fruits were exposed twice for a period of 3+3 days, and the number 

of laid eggs in the first exposition period was recorded separately from the second one. 

The number of laid eggs was recorded separately for the two oviposition tests, the first 

corresponding to the day 14th-17th of treatment, immediately after that males and females were 

placed into the same cage, and the second corresponding to the day 17th-20th. Thus, analyzing 

the differences between the first and the second oviposition test in each group, it was possible to 

verify the time required by flies to mate and by females to mature eggs, associated with the 
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different administered treatment. An addition of the average number of laid eggs in first and 

second oviposition test was also calculated to have an index of the total females' fertility 

regardless of the time span. 

The larval fitness was tested on the F1 larvae, offspring of the treated females derived from the 

eggs deposited during the tests. As larval fitness index, the number of eggs that completed the 

larval development and survived until the adult stage was used. The average number of F1 

offspring per female emerging from the olive fruits exposed to the treated females was analyzed 

to investigate the efficiency of the treatments as symbioticides. The hypothesis was that the 

lower amount of the offspring was due to the lack of the specific endosymbiont into the larvae 

ecdysed from the eggs laid by the treated females. The number of the F1 adults was reported 

separately for the two oviposition test, the first corresponding to the day 14th-17th of treatment, 

immediately after that males and females were placed into the same cage, and the second 

corresponding to the day 17th-20th. An addition of the average number of offspring in first and 

second oviposition test was also calculated to have an index of the total larval fitness regardless 

of the time span. 

Comparing the number of laid eggs and the number of offspring per female the larval mortality 

rate was calculated for each treatment.  

At the end of the second oviposition test, all the treated adults were frozen (-80°C) and stored 

until further processing. 
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3.2    MOLECULAR ANALYSIS OF MICROBIOME ALTERATION 

 

3.2.1 ENDOSYMBIOTIC BACTERIA QUANTIFICATION BY REAL-TIME PCR 

In order to understand whether the differences between the fitness of the treated flies and the 

fitness of the control groups truly depended on the antimicrobial activities of the treatment 

instead of a hypothetical toxic effect, the bacterial titer of the flies after 20 days of treatment was 

evaluated. 

The endosymbiotic bacteria quantification was carried out by real-time PCR on 12 females of 

each treatment group, divided into 3 pools of 4 specimens. 

Real-time PCR was used to quantify the number of copies of "Ca. Erwinia dacicola" 16S rDNA 

present in each sample of treated files in comparison with the positive control (no treatment) and 

the negative control (treated with antibiotics). Real-time PCR was carried out on biological 

triplicates and technical triplicates for each treated group 

 

3.2.2 DNA EXTRACTION 

The frozen flies were surface-sterilized by vortexing for 15 s in a 1% sodium hypochlorite –0.1% 

Triton X solution, rinsed twice with distilled water and then dissected under sterile conditions in 

a laminar flow hood to separate the head and the abdomen where the oesophageal bulb and mid-

gut are located, respectively. 

After dissection, the pool of 4 heads and the pool of 4 abdomens were separately used for the 

genomic DNA extraction. The DNA was extracted using the PureLink® Genomic DNA Mini Kit 

(Thermo Fisher Scientific) following the manufacturer‘s instructions.  

At the end of the extraction, 2 DNA samples of the same 4 flies were obtained, one from the 

heads and one from the abdomens. These 2 kinds of DNA were always processed separately. The 

reason why the DNA was extracted separately from these 2 body parts was to investigate the 

changes of the bacterial titer and simultaneously the microbiome composition within the two 

organs: the oesophageal bulb and the mid-gut. Taking into account that the oesophageal bulb is a 

specific diverticulum coevolved with the endosymbiont ―Ca. Erwinia dacicola‖ while the mid-

gut is generally inhabited by several bacterial species, it was considered interesting to study the 

different patterns of bacterial titer and microbiome alteration between these 2 body parts. 
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The extracted DNA quality and concentration were evaluated using the Varioskan (Thermo 

Fisher Scientific). All the DNA samples were stored at -80°C until further processing. 

 

3.2.3 PRIMERS, HOUSEKEEPING GENE, AND REAL-TIME PCR CONDITIONS 

The amplification of "Ca. Erwinia dacicola" 16S rDNA region was obtained with primers 

EdEnRev (Estes et al. 2012) and EdF1 (Estes et al. 2009), which generate a 90pb amplicon. 

These primers were already tested in a study on the relative abundance of "Ca. Erwinia dacicola" 

across life stages of B. oleae (Estes et al. 2012). 

To normalize data a housekeeping gene of the B. oleae genomic DNA was used: β-actin gene. 

Housekeeping genes are expressed at consistent and stable level across different tissues and 

under mostly all kinds of experimental conditions. The products of these genes are typically 

enzymes or proteins needed for the cell survival and maintenance and are extremely abundant in 

all cell types; this is the case of actin, tubulin, and ribosomal RNA. Hence, these genes are used 

as a reference to normalize real-time PCR data. 

The amplification of a portion of the β-actin gene was obtained with a couple of primers 

designed with Primer Express Software (Thermo Fisher Scientific). 3 couples of primers were 

designed and their efficiency was tested. The most efficient couple, Act2F (5‘-

GCAGAGCAAACGTGGTAT-3‘), and Act2R (5‘-TGTGATGCCACACTTTCT-3‘), which 

generates a 91pb amplicon, was chosen.  

Real-time PCR experiments were carried out with SYBR Green PCR Master Mix (Thermo 

Fisher Scientific) in 13µl of total volume, containing 3µl of diluted genomic DNA, 6.5µl of 

Master Mix and a solution of primers with a final concentration of 300 nM. The cycle used by 

Estes (2012) was tested and adapted. The experiments were performed with a Step-one Cycler 

(Life Technologies) as follows: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 60°C 

for 1 min. Reactions were followed by a quality control melting curve and terminated by a 

cooling. 

Negative controls and 2 standard curves, one for ―Ca. Erwinia dacicola‖ 16S rDNA and another 

one for B. oleae β-actin gene, were run on each 96 wells plate. 
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3.2.4 STANDARD CURVES 

Standard curves were generated using purified amplicons, produced with the above-mentioned 

primers, as the template. A classic PCR was performed with DreamTaq PCR Master Mix 

(Thermo Fisher Scientific) in a total volume of 50µl, using 3µl of genomic DNA extracted from 

the control samples and 2µl 10mM of primers EdEnRev (Estes et al. 2012) and EdF1 (Estes et 

al. 2009), for the amplification of ―Ca. Erwinia dacicola‖ 16S rDNA, and Act2F and Act2R for 

the amplification of B. oleae β-actin gene.  

The PCR products were undergone by agarose gel electrophoresis and the bands were 

successively extracted from the gel and purified with QIAquick Gel Extraction Kit (Qiagen) 

following the manufacturer‘s instructions. The exact concentration of purified amplicons was 

determined using the Qubit 2.0 Fluorometer (Life Technologies).  

The following equation was used to calculate the numbers of amplicon copies into the purified 

template with a predetermined concentration: weight of PCR fragment (g/µl) / (660 g/mol × pair 

bases number of the PCR fragment) × (6.023 × 10(23)) = number of genomic copies per 

microliter (Malorny et al., 2003). 

Knowing the number of copies of the templates per microliter, it was possible to make five 10-

fold serial dilutions with a certain number of copies, starting from the most concentrate with 

1.00E+07=10000000 number of copies until the less concentrate with 1.00E+03=1000 number 

of copies. These serial dilutions were used to generate the standard curves. 

Standard curves were performed with 3 different concentration of primer: 300mM, 600mM, and 

900mM. In order to verify the concentration with the highest efficiency and lowest amount of 

aspecific amplification products, melting curves and standard curves equation were analyzed. 

Best results were obtained with the 300mM concentration of primers in both standard curves. 

The equation of ―Ca. Erwinia dacicola‖ 16S rDNA standard curve was: y = -3.3213x + 34.689 

with an efficiency of 100.02%, and an R² = 0.9939. The equation of B. oleae β-actin gene 

standard curve was: y = -3.3290x + 34.531with an efficiency of 101.34%, and an R² = 0.9999. 

Both curves had very similar efficiency and slope allowing the use of 2
-(ΔΔCt)

 method for the 

relative quantification. 
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3.2.5 BACTERIAL QUANTIFICATION 

The abundance of ―Ca. Erwinia dacicola‖ 16S rDNA was calculated relative to the B. oleae β-

actin gene reference using the 2
-(ΔΔCt)

 method. The ΔCt between the reference gene (B. oleae β-

actin) and the target gene (Ca. Erwinia dacicola‖ 16S rDNA) was calculated for each sample 

using the following equation: ΔCt = Cttarget gene – Ctreference gene. Then, the ΔΔCt between the ΔCt 

of the treated samples and the average ΔCt of the control groups was calculated using the 

following equation: ΔΔCt = ΔCt treatment – mean ΔCt control. Finally, the fold change 2
-(ΔΔCt) 

was 

calculated and averaged. 

Then the data obtained were log-transformed and the logarithm of the fold change 2
-(ΔΔCt) 

was 

used as an index of the relative abundance of the bacterial titer in comparison with the control. 

 

3.3 STATISTICAL ANALYSIS OF RESULTS 

Statistical analyses of the results were carried out with Minitab 18 Statistical Software ®, PAST 

3 ® and Microsoft Excel ®.  

 

3.3.1 FITNESS DATA 

About the fitness tests data, the distributions were analyzed and the summary statistic calculated. 

The normal distribution of each parameter dataset was verified with a Shapiro-Wilk test with a 

W ≥ 0.05 and a p normal ≥ 0.05. The dataset was divided into 4 subsets by sex and diet type: ♀ - 

S-diet; ♂ - S-diet; ♀ - (S+P)-diet; ♂ - (S+P)-diet for mortality and amount of ingested diet 

parameters. The dataset of the number of laid eggs per female and the number of offspring per 

female were divided into 6 subsets: 2 subsets for the total number of laid eggs divided by diet 

type, and 4 subsets divided by oviposition test and diet type: S-diet - I oviposition; S-diet - II 

oviposition; (S+P)-diet – I oviposition; (S+P)-diet – II oviposition.  Boxplots and bar-charts of 

each distribution were generated. 

To investigate if the variability of the analyzed parameters was linked with some variables such 

as sex, diet type, treatment concentration, time of the oviposition test, analysis of covariance 

(ANCOVA) was performed using the above-mentioned variables as covariates. A General 

Linear Model (GLM) was generated for each compound with a p-value for each variable and the 
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model summary consisting of R
2
. R

2
 adjusted and S, to analyze how well the model fitted the 

data. Even when the summary of the model was not robust, if the p-value of a variable was ≤ 

0.05 it was taken as an indication that that variable was linked with the variability of the 

analyzed parameter.
 

In the datasets where diet type was underlined as a covariate that significantly influenced the 

parameters, a further ANCOVA was carried out on the dataset of each diet type in order to verify 

whether the others variables were influent within the same diet experiment. 

For each of the analyzed parameter, One-way analysis of variance was carried out verify if there 

were statistical differences between any of the mean of the dataset. Levene's test for 

homogeneity of variance from means and medians was performed to assess if the assumption of 

homoscedasticity, required by ANOVA, was verified and the H0 was accepted with p-value ≥ 

0.05%.  

In some cases, datasets were transformed using Box-Cox transformation or Log transformation 

to achieve homoscedasticity and normality distribution of the residuals. Subsequently, One-way 

ANOVA was performed. The normality distribution of the residual was verified with the 

Shapiro-Wilk test with a W ≥ 0.05 and a p normal ≥ 0.05. Tukey's pairwise post-hoc test was 

used to identify the treatments that were statistically different and Dunnet simultaneous test for 

level mean versus control mean revealed the treatments that statistically differ from the control.  

 

3.3.2 MOLECULAR DATA 

The logarithm of the fold change 2
-(ΔΔCt)

 was used as an index of the relative abundance of the 

bacterial titer in comparison with the control. The dataset was divided into 4 subsets by organ 

(oesophageal bulb and mid-gut) and diet type. The distributions of datasets were analyzed and 

the summary statistic calculated. Successively, the normal distribution of these subsets was 

verified with a Shapiro-Wilk test with a W ≥ 0.05 and a p normal ≥ 0.05. Bar charts were 

generated for each subset.  

One-way ANOVA was performed on each dataset separately to verify if the bacterial titer 

detected from the real-time PCR at each treatment significantly differ from the control. Levene's 

test for homogeneity of variance from means and medians was performed to assess if the 
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assumption of homoscedasticity, required by ANOVA, was verified and the H0 was accepted 

with p-value ≥ 0.05%. 

Tukey's pairwise post-hoc test was used to identify the treatments that were statistically different 

and Dunnet simultaneous test for level mean versus control mean revealed the treatments that 

statistically differ from the control.  

ANCOVA was performed to verify if the variables diet type, treatment concentration, and organ 

type were significantly influent on the bacterial titer variation. 

A GLM was generated for each compound with a p-value for each variable and the model 

summary consisting of R
2
. R

2
 adjusted and S, to analyze how well the model fits the data. 
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4 RESULTS 

 

4.1   TEST OF FITNESS REDUCTION THROUGH MICROBIOME ALTERATION 

The results of fitness tests showed statistically significant differences among a large part of the 

treatments and the control for most of the analyzed parameters. 

 

4.1.1 MORTALITY 

The mortality rates at the 14
th

 day of trial for each treatment are presented in Table 4. The dataset 

distribution is shown in two Boxplots, separately for S-diet and (S+P)-diet (Figure 4 and Figure 

6). 

 

Table 4: Mean mortality rates recorded at the 14
th

 day of treatment ± SD. 

Treatment Diet 
n° specimens/ 

group 

n° 

repetition 

total n° 

specimens 

mean rate of mortality on the 14th 

day of treatment ± SD 

     

♀ ♂ 

CONTROL S 50 5 250 28% ± 16.7 27% ± 12.1 

CONTROL S+P 50 4 200 26% ± 17.4 36.5% ± 25.7 

ANTIBIOTICS 0.01‰ S 50 3 150 32.8% ± 12.7 31% ± 23.9 

ANTIBIOTICS 0.01‰ S+P 50 3 150 28.3% ± 4.5 53.3 ± 19 

COPPER OX. 0.5% S 50 3 150 46% ± 10.5 51.5 ± 10.6 

COPPER OX. 0.5% S+P 50 3 150 95% ± 5.1 91.6 ± 4.1 

COPPER OX. 0.1% S 50 3 150 41% ± 2 31.3% ± 10 

COPPER OX. 0.1% S+P 50 3 150 75% ± 9.6 74% ± 5.5 

COPPER OX. 0.02% S 50 3 150 21.3 % ± 10.7 15 ± 8.8 

COPPER OX. 0.02% S+P 50 3 150 24.6% ± 22.8 26.6% ± 11 

VIRIDIOL 0.5% S 50 3 150 18% ± 11.5 24.6% ± 13.5 

VIRIDIOL 0.5% S+P 50 3 150 26% ± 4.5 94± 5.5 

VIRIDIOL 0.1% S 50 3 150 10% ± 2.6 24% ± 11.1 

VIRIDIOL 0.1% S+P 50 3 150 12.6% ± 7.3 95.6 ± 5.8 

VIRIDIOL 0.05% S+P 50 3 150 53% ± 17.7 69.6% ± 14.7 

HARZIANIC ACID 0.5% S 50 3 150 14.3 ± 9 14.6 ± 9 

HARZIANIC ACID 0.5% S+P 50 3 150 34.6 ± 8.5 72 ± 24.9 

HARZIANIC ACID 0.1% S 50 3 150 8.6 ± 3.5 12% ± 3.6 

HARZIANIC ACID 0.1% S+P 50 3 150 34% ± 9.8 28.3 ± 5 

HARZIANIC ACID 0.05% S+P 50 3 150 25% ± 6 22.3% ± 6.5 

6-PENTYL-α-PYRON 5% S 50 3 150 37% ± 21.3 46.6% ± 21 

6-PENTYL-α-PYRON 5% S+P 50 3 150 74.6% ± 8.3 56.3% ± 6.1 

6-PENTYL-α-PYRON 1% S 50 3 150 13.6% ± 9.3 23% ± 11.7 
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6-PENTYL-α-PYRON 1% S+P 50 3 150 32.3% ± 12.9 31% ± 11 

LIPOPEPTIDES 5% S 50 3 150 15.6 ± 13.6 52 ± 12.7 

LIPOPEPTIDES 5% S+P 50 3 150 92% ± 7.5 94% ± 4.7 

LIPOPEPTIDES 1% S 50 3 150 23% ± 9.5 47 ± 11.5 

LIPOPEPTIDES 1% S+P 50 3 150 43% ± 8.3 92.3% ± 7 

 

The statistical analysis results showed that diet type was significantly influent on all the 

administered compounds, with exception of Control and Antibiotics treatment. In some cases, 

where diet was a covariate, also sex was significantly influent. The concentration was also 

detected as a covariate for some compounds. 

With regard to the Control and Antibiotics treatment, the results showed very low values of R
2
 

and R
2 

adjusted with a high value of S, which assume that the model does not fit well the data. P 

values were all ≥ 0.05 either for sex and diet variable which means that the mortality variability 

in these treatments is not explained and linked with the examined variables. Concentration was 

not included as a variable since there was no difference in concentration into the experiment 

program both for antibiotics and control. 

The GLM generated for Copper Oxychloride evidenced a value of R
2 

= 90.6 %, an adjusted R
2 

= 89.1% with S = 7.8. Both diet type and concentration were considered as covariates (p-value 

diet type = 0.000; p-value concentration = 0.000) while sex variable was discarded (p-value sex = 0.626). 

The variance inflation factors of both the covariates were very low  

(VIF diet type = 1.00; VIF concentration = 1.33), diet type and concentration resulted as independent 

variables and that the diet type is the most influent variable in flies‘ mortality. Thus, the rate of 

mortality in flies treated with Copper Oxychloride is significantly higher in (S+P)-diet and is 

directly proportional to the concentration of the treatment administered, with no significant 

difference between sexes.  

The GLM generated for Viridiol evidenced a value of R
2 

= 69.5%, an adjusted R
2 

= 64.6% with 

S = 19. Both diet type and sex were considered as covariates (p-value diet type = 0.000. p-value sex 

= 0.000) while concentration variable was discarded (p-value concentration = 0.804). The variance 

inflation factors of both the covariates were very low (VIF diet type = 1.30;  

VIF sex = 1.00), therefore sex of the flies and concentration are independent variables and that sex 

is the most influent variable in flies' mortality. The mortality rate in flies treated with Viridiol is 

significantly higher in male and the combination of the treatment with the (S+P)-diet increases 

the mortality with no significant influence of the concentration.  
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The GLM generated for Harzianic Acid evidenced a value of R
2 

= 60.1%, an adjusted R
2 

= 

53.74% and an S = 13. Both diet type and concentration were considered as covariates (p-value 

diet type = 0.000; p-value concentration = 0.005) while sex variable was discarded (p-value sex = 0.198). 

The variance inflation factors of both the covariates were very low  

(VIF diet type = 1.20; VIF concentration = 1.75), therefore diet type and concentration are independent 

variables and that the diet type is the most influent variable in flies' mortality. The mortality rate 

in flies treated with Harzianic Acid is significantly higher in (S+P)-diet and is directly 

proportional to the concentration of the treatment administered, with no significant difference 

between sexes.  

The GLM generated for 6-pentyl-α-pyron evidenced a value of R
2 

= 63.7%, an adjusted R
2 

= 

58.2% with S = 14. Both diet type and concentration were considered as covariates (p-value diet 

type = 0.004; p-value concentration = 0.000) while sex variable was discarded (p-value sex = 0.989). 

The variance inflation factors of both the covariates were very low  

(VIF diet type = 1.00; VIF concentration = 1.00) the diet type and concentration are independent 

variables and that are equally influent variables on flies' mortality. The mortality rate in flies 

treated with Harzianic Acid is significantly higher in (S+P)-diet and is directly proportional to 

the concentration of the treatment administered, with no significant difference between sexes.  

The GLM generated for Lipopeptides extracted from B. subtilis evidenced a value of R
2 

= 80.9 

%, an adjusted R
2 

= 78.09 % with S = 14. Both diet type and sex were considered as covariates 

(p-value diet type = 0.000. p-value sex = 0.000) while concentration variable was discarded (p-value 

concentration = 0.058). The variance inflation factors of both the covariates were very low (VIF diet 

type = 1.00; VIF sex = 1.00), therefore the sex and the concentration are independent variables and 

equally influent variables on mortality. The mortality rate in flies treated with Lipopeptides is 

significantly higher in male flies and the combination of the treatment with the (S+P)-diet 

increases the mortality with no significant influence of the concentration.  

In S-diet dataset, Levene's test confirmed the homogeneity of variance from means and medians 

(p-value means = 0.552; p-value medians = 0.894). The normality of the distribution was 

verified with the Shapiro-Wilk test (W=0.976; p normal = 0.591). One-Way ANOVA performed 

on diet S dataset evidenced that some of the means significantly differ from other in both sexes. 

Tukey's pairwise post-hoc test and Dunnet test showed no significant differences between the 

control and the treatments mortality in both sexes at all the treatment concentration. A significant 

difference was evinced between Copper Oxychloride 0.5% and Copper Oxychloride 0.02% 
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treatments (p-value = 0.015), underlining that the concentration of this compound deeply affects 

the flies' mortality and that the higher concentration led to a significantly higher mortality 

(Figure 5). 

ANOVA detected a significant difference between females and males' mortality in Lipopeptides 

5% treatment (p-value = 0.028), showing a higher mortality in males than in females. 

 

 

Figure 4: Boxplot of mortality rate recorded at each treatment in females and males fed on S-diet 
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Figure 5: Dunnet test result on mortality rate recorded at each treatment in flies fed on S-diet 

 

With regard to the (S+P)-diet, ANCOVA on (S+P)-diet dataset showed that sex was significantly 

influent on mortality in some treatments, therefore, two ANOVA were performed on the 

female‘s and male‘s datasets separately and the results showed that some of the means 

significantly differ from other in both sexes. 

Tukey's pairwise post-hoc test identified the treatments that were statistically different and 

Dunnet simultaneous test revealed the treatments that statistically differed from the control 

(Figure 7 and Figure 8). 

The mortality rate recorded in Copper Oxychloride treatments at a concentration of 5% and 1% 

and in Lipopeptides treatment at a concentration of 5% was significantly higher in both sexes in 

comparison with the control (p value = 0.000). The mortality rate recorded in 6-pentyl-α-pyron 

5% treatment was significantly higher only for females (p value = 0.001). The mortality rate 

recorded in Viridiol treatments at all the concentrations (p value VIR 0.5% = 0.000; p value VIR 0.1% = 

0.000; p value VIR 0.05% = 0.011), in Harzianic Acid 5% (p value HA 0.05% = 0.018) and 

Lipopeptides treatment at a concentration of 1% (p value LIP 5% = 0.00) was significantly higher 

only for males. 
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Significant differences between different concentrations of the same administered compound 

were also evidenced in both sexes. In females' subset, the mortality was significantly higher in 6-

pentyl-α-pyron 5% treatment in comparison with the less concentrated 6-pentyl-α-pyron 1% (p-

value = 0.005) and the same trend was recorded for the Lipopeptides treatment (p-value = 

0.000). On the contrary, a significantly higher mortality was recorded in the less concentrated 

Viridiol treatment (p-value VIR 0.05% = 0.045) in comparison with the 0.1% concentration but not 

with the most concentrated one, the 0.5%.  In males' subset, the mortality rate was significantly 

higher in the most concentrated treatment of Harzianic Acid (HA 0.5%) in comparison with both 

the less concentrated treatments (HA 0.1% with p-value = 0.014; HA 0.05% with p-value = 

0.003). In both the subsets the most concentrated treatment of Copper Oxychloride led to a 

significantly higher mortality in comparison with both the less concentrated treatments (CO 

0.1% with p-value = 0.011; CO 0.02% with p-value = 0.000). These analyses confirmed that the 

concentration has a significant influence on the flies' mortality when combined with (S+P)-diet. 

 

 

Figure 6: Boxplot of the mortality rate recorded at each treatment in females and males fed on (S+P)-diet 
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Figure 7: Dunnet test result on the mortality rate recorded at each treatment in females fed on S -diet 

 

 

Figure 8: Dunnet test result on the mortality rate recorded at each treatment in males fed on S-diet 
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4.1.2 DAILY DIET CONSUMPTION 

Daily ingested diet per specimen was used also to verify if some of the treatments were repellent 

for flies. The recorded data and the summary statistic are reported in Table 5. The dataset 

distribution is shown in two Boxplots, separately for S-diet and (S+P)-diet (Figure 9 and Figure 

10). 

Table 5: Mean of the daily diet consumption of females and males at each treatment calculated in mg per specimen 

per day ± Standard deviation 

Treatment Diet 
n° specimens/ 

group 

n° 

repetition 

Total n° 

specimens 

Mean quantity of diet ingested ± 

SD (mg/day/specimen) 

     ♀ ♂ 

CONTROL S 50 5 250 0.641±0.052 0.536 ± 0.083 

CONTROL S+P 50 4 200 0.606±0.140 0.516 ± 0.134 

ANTIBIOTICS 0.01‰ S 50 3 150 0.631 ± 0.011 0.603 ± 0.028 

ANTIBIOTICS 0.01‰ S+P 50 3 150 0.607±0.032 0.612 ± 0.032 

COPPER OX. 0.5% S 50 3 150 0.449 ± 0.028 0.316 ± 0.021 

COPPER OX. 0.5% S+P 50 3 150 0.709±0.056 0.480 ± 0.073 

COPPER OX. 0.1% S 50 3 150 0.530 ± 0.038 0.454 ± 0.050 

COPPER OX. 0.1% S+P 50 3 150 0.330±0.012 0.175 ± 0.005 

COPPER OX. 0.02% S 50 3 150 0.646 ± 0.020 0.541 ± 0.024 

COPPER OX. 0.02% S+P 50 3 150 0.627±0.047 0.585 ± 0.027 

VIRIDIOL 0.5% S 50 3 150 0.535 ± 0.036 0.458 ± 0.031 

VIRIDIOL 0.5% S+P 50 3 150 0.600±0.020 0.506 ± 0.022 

VIRIDIOL 0.1% S 50 3 150 583 ± 0.048 0.536 ± 0.041 

VIRIDIOL 0.1% S+P 50 3 150 0.603±0.017 0.614 ± 0.056 

VIRIDIOL 0.05% S+P 50 3 150 0.642±0.051 0.591 ± 0.031 

HARZIANIC ACID 0.5% S 50 3 150 0.607 ± 0.034 0.506 ± 0.081 

HARZIANIC ACID 0.5% S+P 50 3 150 0.638±0.088 0.593 ± 0.159 

HARZIANIC ACID 0.1% S 50 3 150 0.665 ± 0.062 0.604 ± 0.016 

HARZIANIC ACID 0.1% S+P 50 3 150 0.727±0.184 0.635 ± 0.102 

HARZIANIC ACID 0.05% S+P 50 3 150 0.711±0.029 0.703 ± 0.028 

6-PENTYL-A-PYRON 5% S 50 3 150 0.474 ± 0.055 0.415 ± 0.069 

6-PENTYL-A-PYRON 5% S+P 50 3 150 0.351±0.031 0.401 ± 0.012 

6-PENTYL-A-PYRON 1% S 50 3 150 0.648 ± 0.049 0.540 ± 0.060 

6-PENTYL-A-PYRON 1% S+P 50 3 150 0.607±0.043 0.615 ± 0.064 

LIPOPEPTIDES 5% S 50 3 150 0.494 ± 0.040 0.425 ± 0.035 

LIPOPEPTIDES 5% S+P 50 3 150 0.551±0.058 0.491 ± 0.039 

LIPOPEPTIDES 1% S 50 3 150 0.646 ± 0.034 0.560 ± 0.044 

LIPOPEPTIDES 1% S+P 50 3 150 0.607±0.035 0.555 ± 0.029 
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Statistical analysis results showed that the treatment concentration was significantly influent on 

the quantity of diet ingested by flies in most of the treatments with an inversely proportional 

function, while the diet type seems to be irrelevant in most of the treatment. Sex resulted as 

deeply influent on most of the treatment including Control and Antibiotics, thus it seems that 

female flies have naturally the tendency to eat more, independently from the treatment and the 

diet type, probably because of the nutritional needs required for oogenesis.  

With regard to the Control and Antibiotics treatment, the results showed very low values of R
2
 

and adjusted R
2 

with a high value of S, which assume that the model does not fit well the data. 

The p-value for diet type was ≥ 0.05 which means that this variable is not linked with the 

variability of the ingested diet in control and antibiotics dataset. On the contrary, sex was 

evidenced as significantly influent (p-value ANTIB = 0.047; p-value CONT = 0.004), with a 

significantly higher quantity of diet ingested by females in comparison with males. 

Concentration was not included as a variable since there was no difference in concentration into 

the experiment program for both antibiotics and control. 

The GLM generated for Copper Oxychloride evidenced a value of R
2 

= 64.51 %, an adjusted R
2 

= 58.63% with S = 43. Both sex and concentration were considered as covariates (p-value sex = 

0.000; p-value concentration = 0.000) while diet type variable was discarded (p-value diet type = 0.896). 

The variance inflation factors of both the covariates were very low  

(VIF sex = 1.00; VIF concentration = 1.33), sex and concentration are independent variables and the 

first parameter is the most influent variable on the quantity of diet ingested by flies when copper 

is added. Thus, the quantity of diet ingested by flies treated with Copper Oxychloride is 

significantly lower in males and the more the treatment is concentrated the less the flies tend to 

ingest it. 

The GLM generated for Viridiol evidenced a value of R
2 

= 66.5%, an adjusted R
2 

= 61.2% with 

S = 39. All the three variables: concentration, diet type and sex, were considered as covariates 

(p-value diet type = 0.003; p-value sex = 0.001; p-value concentration = 0.002). The variance inflation 

factors of all the covariates were very low (VIF diet type = 1.20; VIF sex = 1.00; VIF concentration = 

1.87), thus the three variables resulted independent and sex is the most influent variable on daily 

diet consumption. Therefore, the amount of ingested diet by flies treated with Viridiol is 

significantly lower in males and in S-diet experiments and it is inversely proportional to 

treatment concentration. 
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The GLM generated for Harzianic Acid evidenced a value of R
2 

= 36.8%, an adjusted R
2 

= 

26.6% and an S = 87.  The variables, concentration, diet type and sex were discarded as 

covariates with p values ≥ 0.05 (p-value diet type = 0.065; p-value sex = 0.153; p-value concentration = 

0.071). Therefore, the amount of ingested diet is not affected by sex, diet type, and treatment 

concentration.     

The GLM generated for 6-pentyl-α-pyron evidenced a value of R
2 

= 75.3%, an adjusted R
2 

= 

71.7% with S = 61.1. Concentration was verified as covariate (p-value concentration = 0.000) while 

sex and diet type variables were discarded (p-value diet type = 0.317; p-value sex = 0.293). The 

variance inflation factor of concentration was very low (VIF concentration = 1.00). Therefore, the 

daily diet intake in flies treated with 6-pentyl-α-pyron is related with the treatment concentration 

and resulted inversely proportional to this parameter.  

The GLM generated for Lipopeptides extracted from B. subtilis evidenced a value of  R
2 

= 70.7 

%, an adjusted R
2 

= 66.3 % with S = 43. Both treatment concentration and sex were considered 

as covariates (p-value concentration = 0.000. p-value sex = 0.002) while diet type variable was 

discarded (p-value concentration = 0.896). The variance inflation factors of both the covariates were 

very low (VIF diet type = 1.00; VIF sex = 1.00), with sex and treatment concentration independent 

variables equally influent on the amount of ingested diet. Thus, the daily diet intake in flies 

treated with Lipopeptides is significantly lower in males and it is inversely proportional to 

treatment concentration. 
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Figure 9: Boxplot of daily diet consumption of females and males fed on S-diet calculated in µg per specimen per 

day 

 

 

Figure 10: Boxplot of daily diet consumption of females and males fed on (S+P)-diet calculated in µg per specimen 

per day 
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Observing boxplots obtained from the distribution of the two different diet datasets (Fig. 8-9), it 

seems that two different patterns are displayed. Analyzing these datasets separately by 

ANCOVA with sex and treatment concentration as variables this hypothesis is confirmed. With 

regards to S-diet dataset, sex and concentration were evidenced as significant variables on the 

quantity of ingested diet with p values ≤ 0.05 in all the treatments including Control and 

Antibiotics. The analysis clearly showed that males fed significantly less than females and that 

there is an inversely proportional correlation between daily intake and the treatment 

concentration: the more the treatment is concentrated the less the flies tend to feed. On the other 

hand, (S+P)-diet dataset showed a less clear pattern with Control and Antibiotic treatment data 

that evidenced no significant difference between sex, Harzianic Acid treatment data that seems 

to be independent from both sex and concentration and 6-pentyl-α-pyron treatment data whose 

variability showed no correlation with treatment concentration.  

With regards to the S-diet, the influence of sex on the variability was recorded in all treatments. 

Levene's test confirmed the homogeneity of variance from means and medians (p-value means = 

0.691; p-value medians = 0.820).  The normality of the distribution was verified with the 

Shapiro-Wilk test (W=0.983; p normal = 0.564). The ANOVA carried out on both sexes showed 

that the daily intake in flies treated with Copper Oxychloride 0.5%, 6-pentyl-α-pyron 5% and 

Lipopeptides 5% were statistically different from the Control one with p values ≤ 0.05 (Figure 

11). Significant differences between different concentrations of the same administered 

compound were also recorded. The quantity of ingested diet was significantly lower in 6-pentyl-

α-pyron 5% treatment in comparison with the less concentrated 6-pentyl-α-pyron 1% (p-value = 

0.006) and the same trend was recorded for the Lipopeptides dataset between 5% and 1% 

treatments (p-value = 0.010) and Copper Oxychloride dataset between 0.5% and 0.02% 

treatment (p-value =0.000). 

With regards to the (S+P)-diet, the sex influence on the variability was not recorded in all 

treatments. The ANOVA carried out on females‘ and males‘ dataset separately showed that the 

daily diet intake in flies treated with Copper Oxychloride 0.1% was significantly lower in both 

females and males while in 6-pentyl-α-pyron 5% it was statistically lower only in females' subset 

with p values ≤ 0.05 (Figure 12 and Figure 13). Significant differences between different 

concentrations of the same administered compound were also evidenced. In females' subset, 

Copper Oxychloride 0.1% treatment was showed as statistically different from highest 
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concentration: 0.5% (p-value = 0.000); and the lowest concentration: 0.02 (p-value =0.029), 

underlying that the females treated with Copper Oxychloride 0.1% fed significantly less in 

comparison with the other two treatment concentration. In males‘ subset, 6-pentyl-α-pyron 5% 

was evidenced as statistically different from the lower concentration 1%, thus males treated with 

the most concentrated treatment tend to feed less than the counterparts treated with the last 

concentrated diet. 

 

 

Figure 11: Dunnett test result of daily diet consumption of flies fed on S-diet  
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Figure 12: Dunnett test result of daily diet consumption of females fed on (S+P)-diet 

 

 

Figure 13: Dunnett test result of daily diet consumption of males fed on (S+P)-diet 
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4.1.3 FECUNDITY  

The average number of eggs laid per female was used as an adult fitness indicator. The data of 

some treatments on (S+P)-diet were not shown because of the high rate of mortality in one or 

both sexes (higher than 90%) that made impossible to conduct all the fitness test due to the lack 

of available specimens. The recorded data and the summary statistic are presented in Table 6. 

The dataset distribution is shown in two Boxplots, separately for S-diet and (S+P)-diet (Figure 

14 and Figure 15).  

Table 6: Mean number of eggs laid by flies at each treatment ± Standard deviation in the first and second 

oviposition test and in total 

Treatment Diet 
n° specimens/ 

group 

n° 

repetition 

Total n° 

specimens 
Mean number of laid eggs/female ± SD 

     
I oviposition II oviposition Total 

CONTROL S 50 5 250 1.23±1.26 2.38 ± 1.51 3.65 ± 2.22 

CONTROL S+P 50 4 200 5.87±3.12 3.633 ± 0.90 9.50 ± 4.02 

ANTIBIOTICS 0.01‰ S 50 3 150 1.15±0.60 1.71 ± 0.34 2.86 ± 0.92 

ANTIBIOTICS 0.01‰ S+P 50 3 150 5.11±1.66 3.46 ± 0.85 8.47 ± 2.51 

COPPER OX. 0.5% S 50 3 150 0.01 ± 0.01 0.03 ± 0.01 0.04 ± 0.02 

COPPER OX. 0.5% S+P 50 3 150 
   

COPPER OX. 0.1% S 50 3 150 0.07 ± 0.02 0.12± 0.09 0.17± 0.08 

COPPER OX. 0.1% S+P 50 3 150 0.04±0.03 0.004 ± 0.004 0.044 ± 0.05 

COPPER OX. 0.02% S 50 3 150 1.43± 1.31 0.62 ± 0.45 2.05 ± 1.76 

COPPER OX. 0.02% S+P 50 3 150 0.06±0.04 0.013± 0.011 0.073± 0.046 

VIRIDIOL 0.5% S 50 3 150 1.21 ± 0.30 1.33 ± 0.90 2.54 ± 1.06 

VIRIDIOL 0.5% S+P 50 3 150 
   

VIRIDIOL 0.1% S 50 3 150 0.26 ± 0.20 1.66± 0.71 1.93± 0.72 

VIRIDIOL 0.1% S+P 50 3 150 
   

VIRIDIOL 0.05% S+P 50 3 150 1.06±0.25 0.89 ± 0.21 1.96 ± 0.20 

HARZIANIC ACID 0.5% S 50 3 150 1.95 ± 0.22 1.04 ± 0.27 2.99 ± 0.50 

HARZIANIC ACID 0.5% S+P 50 3 150 3.73±1.05 1.06 ± 0.35 4.79 ± 0.70 

HARZIANIC ACID 0.1% S 50 3 150 1.11 ± 0.10 0.58 ± 0.28 1.68± 0.18 

HARZIANIC ACID 0.1% S+P 50 3 150 9.23±1.59 4.46 ± 0.80 13.69 ± 1.99 

HARZIANIC ACID 0.05% S+P 50 3 150 2.65±0.85 4.51 ± 0.87 7.16 ± 1.64 

6-PENTYL-A-PYRON 5% S 50 3 150 0.36 ± 0.25 1.95 ± 0.68 2.32 ± 0.93 

6-PENTYL-A-PYRON 5% S+P 50 3 150 2.66 ± 0.28 3.4 ± 0.55 6.06 ± 0.28 

6-PENTYL-A-PYRON 1% S 50 3 150 0.76 ± 0.30 1.31 ± 0.43 2.08 ± 0.40 

6-PENTYL-A-PYRON 1% S+P 50 3 150 1.25 ± 0.58 0.83 ± 0.48 2.08 ± 0.54 

LIPOPEPTIDES 5% S 50 3 150 0.86 ± 0.25 2.70 ± 0.55 3.56 ± 0.32 

LIPOPEPTIDES 5% S+P 50 3 150 
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LIPOPEPTIDES 1% S 50 3 150 1.05 ± 0.22 3.63 ± 0.92 4.68 ± 1.07 

LIPOPEPTIDES 1% S+P 50 3 150 
   

 

ANCOVA results showed that the diet type was significantly influent on the average number of 

laid eggs per female in all the treatments with a significantly higher number in (S+P)-diet. 

Treatment concentration was also evidenced as statistically influent in most of the cases while 

the oviposition test time variable (I corresponding to the 14
th

-17
th

 days of treatment and II 

corresponding to 17
th

-20
th

 ones) was showed as influent only in some treatment.  

With regard to the Control and Antibiotics treatment, the results showed very low values of R
2
 

and adjusted R
2 

with a high value of S, meaning that the model does not fit well the data. P value 

for diet type was ≤ 0.05 which means that this variable statistically linked with the variability of 

the female fertility in control and antibiotics dataset, with a significantly higher number of eggs 

laid in (S+P)-diet. On the contrary, the oviposition time was discarded as a covariate with a p-

value ≥ 0.05. Concentration was not included as a variable since there was no difference in 

concentration into the experiment program for both antibiotics and control. 

The GLM generated for Copper Oxychloride evidenced a value of R
2 

= 37.41 %, an adjusted R
2 

= 27.93% with S = 0.48. Both diet type and concentration were considered as covariates (p-value 

diet type = 0.014; p-value concentration = 0.013) while oviposition time variable was discarded (p-value 

ov. time= 0.353). The variance inflation factors of both the covariates were very low (VIF diet type = 

1.00; VIF concentration = 1.17), therefore diet type and concentration resulted as independent 

variables and the diet type was the most influent variable on females‘ fertility. The same pattern 

was reported by the GLM generated for Harzianic Acid and 6-pentyl-α-pyron.  

Harzianic Acid GLM evidenced a value of R
2 

= 55.4%, an adjusted R
2 

= 48.35% with S = 1.87. 

Both diet type and concentration were considered as covariates (p value diet type = 0.000; VIF diet 

type = 1.20; p value concentration = 0.039; VIF concentration = 1.67) while oviposition time variable was 

discarded (p value ov. time= 0.053).  

6-pentyl-α-pyron GLM evidenced a value of R
2 

= 54.7%, an adjusted R
2 

= 47.9% with S = 0.76. 

Both diet type and concentration were considered as covariates (p value diet type = 0.007; VIF diet 

type = 1; p value concentration = 0.003; VIF concentration = 1) while oviposition time variable was 

discarded (p value ov. time= 0.053). Therefore, the number of eggs laid by flies treated with Copper 

Oxychloride, Harzianic Acid and 6-pentyl-α-pyron is significantly lower in females fed on S-diet 

and treated with higher concentrations of the compound. 
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It was not possible to generate a GLM with oviposition test time, diet type and concentration as 

variables for Viridiol and Lipopeptides treatments since for these two compounds very high 

rates of mortality were associated with (S+P)-diet and there were no data available for both diet 

type at the same concentration. Thus, a second ANCOVA was carried out within the data subsets 

S-diet and (S+P)-diet using concentration and oviposition test time as variables. 

With regards to S-diet, ANCOVA showed a high rate of variability in females' fertility linked 

with the treatment concentration and/or the oviposition test time. In Copper Oxychloride the 

treatment concentration was highlighted as a covariate with a p-value = 0.015. showing that the 

more concentrated is the diet fed by the flies the less they are able to produce and lay eggs 

regardless of the time of the oviposition test. In Harzianic Acid treatment both oviposition time 

and treatment concentration were evidenced as covariates (p-value concentration = 0.001 and p-value 

ov. time= 0.001) showing a higher number of laid eggs in the first oviposition test in comparison 

with the second one and an inversely proportional correlation with the treatment concentration. 

In Lipopeptides and 6-pentyl-α-pyron treatments, the oviposition test time was underlined as a 

covariate (p-value =0.000 and p-value = 0.006 respectively) with a statistically higher number of 

laid eggs in the second oviposition in comparison with the first one. On the contrary, the fertility 

of females treated with Viridiol showed to be not influenced by both the variables concentration 

and oviposition test time.  

With regard to (S+P)-diet, the ANCOVA displayed a high rate of variability in females' fertility 

influenced by the oviposition test time and/or the treatment concentration. In Control and 

Antibiotics treatments, oviposition test was evinced as a covariate (p-value =0.043 and p-value = 

0.019 respectively), with a significantly higher number of laid eggs in the first oviposition test in 

comparison with the second one. The same trend was presented by Copper Oxychloride 

treatment in which the oviposition time test was significantly influent (p-value = 0.040) while 

concentration was not linked with the female fertility (p-value = 0.489). In females treated with 

Harzianic Acid, the number of laid eggs was influenced by both treatment concentration (p-value 

= 0.002) and oviposition test time (p-value = 0.048), with a significantly higher number in the 

first oviposition test in comparison with the second one. In 6-pentyl-α-pyron treatment, the 

females' fertility was showed as independent from the oviposition test time (p-value = 0.635), 

while concentration was displayed as a covariate (p-value = 0.000), with a significantly higher 

number of laid eggs in the most concentrated treatment in comparison with the less concentrated 

one. 
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Figure 14: Boxplot of fecundity of females fed on S- diets expressed as mean number of laid eggs per female during 

the first and the second oviposition test 

 

 

Figure 15: Boxplot of fecundity of females fed on (S+P)-diet expressed as mean number of laid eggs per female 

during the first and the second oviposition test 

oviposition test

Li
po

pe
pti

des
 1

%

Li
po

pe
pt

id
es

 5
%

6PP
 1

%

6P
P
 5

%

H
A
 0

,1
%

H
A
 0

,5
%

Vi
ri
d
io

l  0
,1

%

Vi
ri
d
io

l 0
,5

%

Co
pp

er
 0

,0
2%

Co
pp

er
 0

,1
%

Cop
p
er

 0
,5

%

A
nt

ib
io

ti
cs

Co
n
tr

o
l

I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

5

4

3

2

1

0

n
° 

la
id

 e
g

g
s/

fa
m

a
le

Female fecundity in S-diet experiments

oviposition test

6P
P 
1%

6P
P 5

%

HA 0
,0
5%

H
A 0

,1
%

H
A 0

,5
%

Viri
dio

l 0
,0
5%

Copper
 0

,0
2%

Copper
 0

,1
%

Ant
ib

io
tic

s

Cont
ro

l

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

10

8

6

4

2

0

n
° 

la
id

 e
g

g
s/

fe
m

a
le

Female fecundity in (S+P)-diet experiments



61 

 

Since ANCOVA did not display a clear pattern with regard to the oviposition time test, showing 

that in most of the treatment this variable was irrelevant, another ANCOVA was carried out on 

the total number of eggs laid by females regardless of the oviposition time. 

With regard to S-diet, the analysis showed that the treatment concentration was not influent on 

the variation of the fertility of females treated with Copper Oxychloride, Viridiol, 6-pentyl-α-

pyron, and Lipopeptides, while the only treatment where the treatment concentration was 

evidenced as a covariate was the Harzianic Acid, with a p-value = 0.013. 

With regard to (S+P)-diet, the treatment concentration was statistically influent on the number of 

eggs laid by females treated with Harzianic Acid and 6-pentyl-α-pyron (p-value = 0.001 and p-

value = 0.00 respectively). 

From the whole dataset of the total number of laid eggs (Figure 16) and carrying out another 

ANCOVA with diet type and treatment concentration as variables, it emerges that the diet had a 

high rate of influence on the female fertility, with a significant increase in the number of laid 

eggs in (S+P)-diet  in all the treatments. 

 

 

Figure 16: Boxplot of fecundity of females fed on S-diet and (S+P)-diet, expressed as total number of eggs laid per 

female 
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Furthermore, One-way ANOVA was also carried out on both diet type dataset separately to 

verify if the females‘ fertility associated with any of the treatment significantly differ from the 

control. 

Since the oviposition time was evinced as irrelevant on the variability of the number of eggs laid 

in most of the treatment, ANOVA was carried out on the total number of laid eggs, recorded in 

the first and second oviposition tests. 

With regards to S-diet, the number of eggs laid by flies treated with Copper Oxychloride at 

0.5%, and 0.1% was statistically different from the Control with p values ≤ 0.05 (Figure 17). 

With regard to the (S+P)-diet, the number of eggs laid by flies treated with Copper Oxychloride 

0.1%, Copper Oxychloride 0.02%, Viridiol 0.05%, Harzianic Acid 0.5%, and 6-pentyl-α-pyron 

were statistically different from the Control one with p values ≤ 0.05. with a reduced number of 

laid eggs (Figure 18). Significant differences between different concentrations of the same 

administered compound were also recorded. In particular, Harzianic Acid 0.1% treatment was 

showed as statistically different from highest concentration: 0.5% (p-value = 0.000); and the 

lowest concentration: 0.05 (p-value =0.005), underlying that the females treated with Harzianic 

Acid 0.1% tend to lay a significantly higher amount of eggs in comparison with the other two 

treatment concentration. 
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Figure 17: Dunnet test result of female fecundity in S-diet experiments 

 

Figure 18: Dunnett test result of female fecundity in (S+P)-diet experiments 
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4.1.4 NUMBER OF OFFSPRING PER FEMALE 

The average number of F1 offspring per female emerging from the olive fruits exposed to the 

treated females was analyzed to investigate the efficiency of the treatments as symbioticides. The 

data of some treatments on (S+P)-diet were not shown because of the high rate of mortality in 

one or both sexes (higher than 90%) that made impossible to carry on all the fitness test for lack 

of specimens. The recorded data and the summary statistic are presented in Table 7. The dataset 

distribution is shown in a Boxplot (Fig. 17). 

Table 7: Mean number of offspring per female corresponding to each treatment ± SD in the first and second 

oviposition test and in total 

Treatment Diet n° specimens/ 

group 
n° 

repetitions 
Total n° 

specimens Mean number of offspring/female ± SD 

     

I oviposition II oviposition total 

CONTROL S 50 5 250 0.97±0.556 0.91 ± 0.32 1.89 ± 0.64 

CONTROL S+P 50 4 200 1.20±0.29 1.31 ± 0.34 2.52 ± 0.49 

ANTIBIOTICS 0.01‰ S 50 3 150 0.02±0.01 0.03 ± 0.01 0.05± 0.004 

ANTIBIOTICS 0.01‰ S+P 50 3 150 0.02±0.01 0.027 ± 0.014 0.047± 0.026 

COPPER OX. 0.5% S 50 3 150 0.01 ± 0.007 0.004 ± 0.003 0.014± 0.011 

COPPER OX. 0.5% S+P 50 3 150 
   

COPPER OX. 0.1% S 50 3 150 0.02 ± 0.01 0.03± 0.01 0.05± 0.02 

COPPER OX. 0.1% S+P 50 3 150 0.025±0.015 0.03 ± 0.02 0.055 ± 0.02 

COPPER OX. 0.02% S 50 3 150 0.04± 0.02 0.07 ± 0.03 0.11 ± 0.03 

COPPER OX. 0.02% S+P 50 3 150 0.08±0.02 0.09± 0.03 0.17± 0.046 

VIRIDIOL 0.5% S 50 3 150 0.50 ± 0.27 0.28 ± 0.13 0.78 ± 0.19 

VIRIDIOL 0.5% S+P 50 3 150 
   

VIRIDIOL 0.1% S 50 3 150 0.20± 0.11 0.73± 0.19 0.93± 0.07 

VIRIDIOL 0.1% S+P 50 3 150 
   

VIRIDIOL 0.05% S+P 50 3 150 1.04±0.39 0.32 ± 0.2 1.33 ± 0.20 

HARZIANIC ACID 0.5% S 50 3 150 0.75 ± 0.34 0.24 ± 0.08 0.99 ± 0.41 

HARZIANIC ACID 0.5% S+P 50 3 150 0.03±0.02 0.023 ± 0.01 0.053± 0.035 

HARZIANIC ACID 0.1% S 50 3 150 0.18 ± 0.13 0.02 ± 0.01 0.20 ± 0.13 

HARZIANIC ACID 0.1% S+P 50 3 150 0.04±0.02 0.033 ± 0.032 0.073 ± 0.04 

HARZIANIC ACID 0.05% S+P 50 3 150 1.03±0.3 0.15± 0.13 1.1 ± 0.17 

6-PENTYL-A-PYRON 5% S 50 3 150 0.41± 0.36 0.25 ± 0.24 0.65 ± 0.17 

6-PENTYL-A-PYRON 5% S+P 50 3 150 0.021 ± 0.02 0.009± 0.003 0.03 ± 0.022 

6-PENTYL-A-PYRON 1% S 50 3 150 0.21 ± 0.10 0.20 ± 0.11 0.42 ± 0.16 

6-PENTYL-A-PYRON 1% S+P 50 3 150 0.11± 0.08 0.14± 0.10 0.25 ± 0.18 

LIPOPEPTIDES 5% S 50 3 150 0.005 ± 0.005 0.017 ± 0.014 0.022± 0.013 

LIPOPEPTIDES 5% S+P 50 3 150 
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LIPOPEPTIDES 1% S 50 3 150 0.043 ± 0.49 0.19± 0.04 0.23 ± 0.06 

LIPOPEPTIDES 1% S+P 50 3 150 
   

 

ANCOVA results showed that oviposition test time was always irrelevant as variable thus it was 

excluded from the model and an additional ANCOVA was performed on the total number of 

offspring dataset using only diet type and treatment concentration as covariates. 

Results showed that the diet type was significantly influent on the average number offspring per 

female in some of the treatment. Treatment concentration was evidenced as statistically influent 

only on Copper Oxychloride treatment. 

With regards to the Control and Antibiotics treatment, the results showed very low values of R
2
 

and adjusted R
2 

and high value of S, with the model that does not fit well the data. The GLM 

generated for Control dataset displayed a p-value for diet type ≤ 0.05 which means that this 

variable statistically linked with the variability of the number of offspring, with a significantly 

higher number in (S+P)-diet. On the contrary, the GLM generated for Antibiotics treatment 

showed that the number of offspring was not influenced by the diet type (p-value ≥ 0.05). The 

variable concentration was not included in the model since there was no difference among the 

applied concentration for both antibiotics and control treatments. 
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Figure 19: Mean number of offspring per female at each treatment on S-diet  and (S+P)-diet 

  

The GLM generated for Copper Oxychloride evidenced a value of R
2 

= 76.61 %, an adjusted R
2 

= 70.22% with S = 0.03. Concentration treatment was considered as covariate (p-value concentration 

= 0.001) while diet type variable was discarded (p-value diet type = 0.211;). The variance inflation 

factor of the covariate was very low (VIF concentration = 1.00), therefore diet type is an independent 

variable and that is strongly influent on the offspring number of females treated with Copper 

Oxychloride.   

The GLM generated for evidenced very low values of R
2
 and adjusted R

2 
with a high value of S, 

and the model that does not fit well the data. Both diet type and concentration were discarded as 

covariates with p values ≥ 0.05 meaning that these variables were not linked to a number of 

offspring variability looking at the two diet type dataset at the same time. 

The GLM generated for 6-pentyl-α-pyron evidenced a value of R
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= 58.7%, an adjusted R
2 

= 

54.9% with S = 0.19. Diet type and was considered as a covariate (p-value diet type = 0.006) while 

treatment concentration was discarded (p-value concentration = 0.934). Therefore, the number of 

offspring per female treated with 6-pentyl-α-pyron is highly related to the diet type, with a 

significantly lower amount in females fed on (S+P)-diet.  
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It was not possible to generate a GLM using diet type and concentration as variables for Viridiol 

and Lipopeptides treatments, since for both compounds a very high rate of mortality was 

associated with (S+P)-diet and no data were available for both diet type at the same 

concentration. Thus, a second ANCOVA was carried out within the data subsets S-diet and 

(S+P)-diet using concentration as variable. 

With regards to S-diet, ANCOVA showed a high rate of variability in females' offspring number 

linked with the treatment concentration. In Copper Oxychloride and Lipopeptides treatments, 

concentration resulted as a covariate with a p-value ≤ 0.05 (p-value copper = 0.006; p-value 

Lipopeptides = 0.004), showing that the more concentrated is the treatment fed by the flies the less 

their offspring are able to develop and emerge. In Harzianic Acid, treatment concentration 

resulted as a covariate with a p-value = 0.004. But in these cases, the concentration seemed to 

have an opposite effect, since at higher concentration the number of recorded offspring was 

higher. In Viridiol and 6-pentyl-α-pyron treatments, the different concentrations did not 

statistically influence the offspring number. 

With regard to (S+P)-diet, ANCOVA showed a high rate of variability in females' offspring 

number linked with the treatment concentration. In Copper Oxychloride and Harzianic Acid 

treatments, the concentration resulted as a covariate with a p-value ≤ 0.05 (p-value Copper = 0.025; 

p-value HA = 0.000), showing that fly emergence was inversely related with concentration. In 6-

pentyl-α-pyron treatment, the concentration was statistically irrelevant on the offspring number. 

Furthermore, One-way ANOVA was also performed on both diet type dataset separately to 

verify if the average number of offspring per female associated with any of the treatment 

significantly differ from the control. 

With regard to S-diet , the number of offspring of females with Antibiotics, Copper Oxychloride 

0.5%, Copper Oxychloride 0.1%,  Copper Oxychloride 0.02%, Harzianic Acid 0.1%, 6-pentyl-α-

pyron 5%, 6-pentyl-α-pyron 1%, Lipopeptides 5% and Lipopeptides 1%  were evidenced as 

statistically different from the Control (p ≤ 0.05), with reduced number of laid eggs in 

comparison with the Control (Figure 20 and Figure 21).  

Significant differences among concentrations of the same administered compound were also 

evidenced. Copper Oxychloride 0.5% treatment resulted statistically different compared to the 

lowest applied concentration (0.02%), with a reduced number of offspring. The same pattern was 

recorded for Lipopeptides, where the highest concentration was statistically different from the 
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lowest one. Harzianic Acid 5% was also statistically different from the lower concentration 1%, 

but an opposite pattern was showed since the highest concentration led to a higher number of 

offspring. 

 

Figure 20: Mean number of offspring per female in S-diet. Bars marked with a sign (***) resulted significantly 

different from the control mean in the Tukey's pairwise post-hoc test performed after the ANOVA. 

 

 

Figure 21: Dunnett test result of the mean number of offspring per female in S-diet experiments 
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With regard to (S+P)-diet, the number of offspring of females with Antibiotics, Copper 

Oxychloride 0.1%, Copper Oxychloride 0.02%, Harzianic Acid 0.5%, Harzianic Acid 0.1%, 6-

pentyl-α-pyron 5% and 6-pentyl-α-pyron1 resulted statistically different from the Control (p 

values ≤ 0.05), with reduced number of eggs laid compared to the control cohort (Figure 22 and 

Figure 23).  

 

 

 

  

 

 

 

 

 

Figure 22: Mean number of offspring per female in (S+P)-diet. Bars marked with a sign (***) resulted significantly 

different from the control mean in the Tukey pairwise post-hoc test performed after the ANOVA. 
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Figure 23: Dunnett test result of mean number of offspring per female in (S+P)-diet experiments 

Significant differences between different concentrations of the same administered compound 

were also evidenced. Harzianic Acid 0.05% treatment resulted statistically different from both 

the higher concentration: 0.5% and 0.1% with a higher number of offspring. The same pattern 

was recorded in 6-pentyl-α-pyron treatments.  

 

4.1.5 LARVAL MORTALITY 

The number of laid eggs and the number of offspring per female datasets were compared to 

verify the larval mortality rate. The recorded data and are presented in Table 8. The comparison 

between the two recorded parameters is shown in two Barcharts, separately for S-diet and (S+P)-

diet (Figure 24 and Figure 25). 

Table 8: Rate of larval mortality recorded in each treatment. (Average offspring/female - eggs/female) 

Treatment Diet n° eggs/female n° offspring/female Larval mortality 

CONTROL S 3.65 1.89 48.22% 

CONTROL S+P 9.5 2.52 73.47% 

ANTIBIOTICS 0.01‰ S 2.86 0.05 98.25% 

ANTIBIOTICS 0.01‰ S+P 8.47 0.047 99.45% 

COPPER OX. 0.5% S 0.04 0.014 65.00% 

COPPER OX. 0.5% S+P 
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COPPER OX. 0.1% S 0.17 0.05 70.59% 

COPPER OX. 0.1% S+P 0.044 0.055 -25.00% 

COPPER OX. 0.02% S 2.05 0.11 94.63% 

COPPER OX. 0.02% S+P 0.073 0.17 -132.88% 

VIRIDIOL 0.5% S 2.54 0.78 69.29% 

VIRIDIOL 0.5% S+P 
   

VIRIDIOL 0.1% S 1.93 0.93 51.81% 

VIRIDIOL 0.1% S+P 
   

VIRIDIOL 0.05% S+P 1.96 1.33 32.14% 

HARZIANIC ACID 0.5% S 2.99 0.99 66.89% 

HARZIANIC ACID 0.5% S+P 4.79 0.053 98.89% 

HARZIANIC ACID 0.1% S 1.68 0.2 88.10% 

HARZIANIC ACID 0.1% S+P 13.69 0.073 99.47% 

HARZIANIC ACID 0.05% S+P 7.16 1.1 84.64% 

6-PENTYL-A-PYRON 5% S 2.32 0.03 98.71% 

6-PENTYL-A-PYRON 5% S+P 6.06 0.03 99.50% 

6-PENTYL-A-PYRON 1% S 2.08 0.42 79.81% 

6-PENTYL-A-PYRON 1% S+P 2.08 0.25 87.98% 

LIPOPEPTIDES 5% S 3.56 0.022 99.38% 

LIPOPEPTIDES 5% S+P 
   

LIPOPEPTIDES 1% S 4.68 0.23 95.09% 

LIPOPEPTIDES 1% S+P 
   

 

Larval mortality resulted very high in most of the treatment with no exception for the control. 

The amount of offspring in comparison with the number of laid eggs was particularly low in S-

diet for Antibiotics, Copper Oxychloride 0.02%, Harzianic Acid, and Lipopeptides. In (S+P)-diet 

the larval mortality was particularly high in Antibiotics, Harzianic Acid, and 6-pentyl-α-pyron. 
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Figure 24: Barcharts of mean number of laid eggs and mean number of offspring per female fed on S-diet 

 

 

Figure 25: Barcharts of mean number of laid eggs and mean number of offspring per female fed on (S+P)-diet 
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4.2    ENDOSYMBIOTIC BACTERIA QUANTIFICATION BY REAL-TIME PCR 

 

Results obtained from real-time PCR showed that most of the treatment had a negative impact on 

the B. oleae microbiome, with a significant decrease of the bacterial titer calculated relatively to 

the β-actin gene of the insect with the 2
-(ΔΔCt)

 method. 

Unfortunately, a storage problem of the DNA samples of 6-Pentyl-α-Pyron and Lipopeptides 

made impossible to carry out the real-time PCR on these samples. All the other treatments were 

successfully processed and the bacterial quantification was achieved. 

 

4.2.1 ENDOSYMBIOTIC BACTERIA QUANTIFICATION IN MID-GUT SAMPLES 

With regards to the results obtained from mid-gut samples of females fed on diet S, Levene's test 

confirmed the homogeneity of variance from means and medians (p-value means = 0.337; p-

value medians = 0.467). The normality of the residuals distribution was verified with the 

Shapiro-Wilk test (W=0.961; p normal = 0.064).  

The ANOVA showed that the bacterial titer was significantly lower in samples treated with 

Antibiotics, Copper Oxychloride 0.1% and Viridiol 0.1% while in copper oxychloride 0.5% and 

0.02% it was lower too, but with a p-value a little higher than 0.05 (Figure 26 and Figure 27).  

 

Figure 26: Bacterial titer resulted by real-time PCR and expressed as log (2
-(ΔΔCt)

) in mid-gut samples of females fed 

on S-diet. Bars marked with a sign (***) resulted significantly different from the control mean in the Tukey pairwise 

post-hoc test performed after the ANOVA. 
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Figure 27: Dunnett test result of the bacterial titer recorded in mid-gut samples of females fed on S-diet. 

 

With regards to the results obtained from mid-gut samples of females fed on diet S+P, Levene's 

test confirmed the homogeneity of variance from means and medians (p-value means = 0.258 p-

value medians = 0.442). The normality of the residuals distribution was verified with the 

Shapiro-Wilk test (W=0.947; p normal = 0.052).  

ANOVA showed that the bacterial titer was significantly lower only in samples treated with 

Antibiotics while in Copper Oxychloride 0.02% it resulted to be significantly higher (Figure 28 

and Figure 29).  
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Figure 28: Bacterial titer resulted by real-time PCR and expressed as log (2-(ΔΔCt)) in mid-gut samples of females 

fed on (S+P)-diet. Bars marked with a sign (***) resulted significantly different from the control mean in the Tukey 

pairwise post-hoc test performed after the ANOVA. 

 

 

Figure 29: Dunnett test of the bacterial titer recorded in mid-gut samples of females fed on (S+P)-diet 
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4.2.2 ENDOSYMBIOTIC BACTERIA QUANTIFICATION IN OESOPHAGEAL BULB 

SAMPLES 

With regard to the results obtained from oesophageal bulb samples of females fed on diet S, 

Levene's test confirmed the homogeneity of variance from means and medians (p-value means = 

0.332 p-value medians = 0.524). The normality of the residuals distribution was verified with the 

Shapiro-Wilk test (W=0.965; p normal = 0.072).  

ANOVA showed that the bacterial titer resulted to be significantly lower in samples treated with 

Antibiotics, Copper Oxychloride 0.02%, Viridiol 0.5%, Viridiol 0.1%, Harzianic Acid 0.5% and 

Harzianic Acid 0.1% (Figure 30 and Figure 31).  

 

 

Figure 30: Bacterial titer resulted by real-time PCR and expressed as log (2
-(ΔΔCt)

) in oesophageal bulb samples of 

females fed on S-diet. Bars marked with a sign (***) resulted significantly different from the control mean in the 

Tukey pairwise post-hoc test performed after the ANOVA. 
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Figure 31: Dunnett test result of the bacterial titer reported in oesophageal bulb samples of females fed on S-diet. 

 

With regard to the results obtained from oesophageal bulb samples of females fed on diet S+P, 

Levene's test confirmed the homogeneity of variance from means and medians (p-value means = 

0.819 p-value medians = 0.580). The normality of the residuals distribution was verified with the 

Shapiro-Wilk test (W=0.975; p normal = 0.580).  

ANOVA showed that the bacterial titer resulted to be significantly lower in samples treated with 

Antibiotics, Copper Oxychloride 0.02%, Viridiol 0.5%, Viridiol 0.1%, Harzianic Acid 0.5% and 

Harzianic Acid 0.1% and Harzianic Acid 0.05% (Figure 32 and Figure 33). 
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Figure 32: Bacterial titer resulted by real-time PCR and expressed as log (2
-(ΔΔCt)

) in oesophageal bulb samples of 

females fed on (S+P)-diet. Bars marked with a sign (***) resulted significantly different from the control mean in 

the Tukey pairwise post-hoc test performed after the ANOVA 

 

 

Figure 33: Dunnett test result of the bacterial titer recorded in oesophageal bulb samples of females fed on (S+P)-

diet. 
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The results of ANCOVA carried out with diet type, treatment concentration, and organ type as 

variables, showed that the organ type was statistically influent on all the treatments with an 

exception for the Antibiotics, while diet treatment concentration was influent only on Viridiol 

and Harzianic Acid and type resulted to be linked to the bacterial titer variability only in 

Antibiotics treatment. 

The GLM generated for Copper Oxychloride evidenced a value of R
2 

= 27.71 %, an adjusted R
2 

= 24.23% and S = 0.81. With the model that does not fit well the dataset since only ≈ 25% of the 

variability was explained. Organ type was considered as a covariate (p-value organ type= 0.001) 

while diet type and treatment concentration variables were discarded (p-value diet type = 0.745; p-

value concentration = 0.968). Therefore, the bacterial titer in flies treated with copper depends on the 

organ type analyzed but is independent of the diet type and the treatment concentration. 

The GLM generated for 6-pentyl-α-pyron evidenced a value of R
2 

= 60.3%, an adjusted R
2 

= 

57.1% and with S = 0.59. Both organ type and concentration were considered as covariates (p 

value organ type = 0.000; p value concentration = 0.032) while diet type variable was discarded (p value 

concentration= 0.053). Therefore, the bacterial titer of flies treated with Harzianic Acid depends on 

the organ type and the treatment concentration. The same pattern was evinced for Viridiol (p 

value organ type = 0.000; p value concentration = 0.045; p value diet type= 0.143). 

Performing an ANCOVA on the two organs dataset separately using diet type and treatment 

concentration as variables, a strong influence of the diet type was evidenced in most of the 

treatments. While in oesophageal bulb the presence of proteins resulted to significantly increase 

the reduction of the bacterial titer in all the treatments, in the mid-gut dataset the pattern 

displayed was not clear with a decrease of the reduction in Copper treatments and Viridiol 0.1% 

and no significant difference in the other treatments (Figure 34).  



80 

 

 

 

Figure 34: Comparison among the bacterial titer resulted by the Real-Time PCR analysis in the oesophageal bulb 

samples (A) and mid-gut samples (B) extracted by females fed on diet S and on (S+P)-diet 

  

A 

B 
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5. DISCUSSION  

 

5.1 ADULT AND LARVAL FITNESS TESTS 

 

5.1.1 MORTALITY 

 

The statistical analysis carried out on mortality dataset demonstrated that the presence of protein 

in the diet significantly increase the mortality rate in all the treatments, except for Control and 

Antibiotics. The fact that the mortality rate associated with Control and Antibiotics treatment 

was not statistically different in both diet type experiments confirm that the lack of beneficial 

bacteria does not affect the survival of the adult stage (Ben-Yosef et al 2010; 2014). 

Therefore, it is possible that the differences between the mortality means of control groups and 

treatments were not due to the microbiome alteration but it was linked with a possible toxic 

effect of the treatments. 

ANOVA did not detect any significant difference between the means of the control groups and 

the treatments in the S-diet dataset (Figure 4), while in the (S+P)-diet dataset many treatments 

significantly differ from the control with a higher mortality rate for both sexes (Figure 5, Figure 

7 and Figure 8). This is the case of Copper Oxychloride treatments with higher concentrations, 6-

pentyl-α-pyron at the highest concentration and Lipopeptides at the highest concentration.  

Thus, it seems that the proteins assimilated by flies somehow intensify the toxicity of the 

treatments. It could be hypothesized that the high-protein diet led to a metabolism acceleration 

that could increase the quantity of treated diet assimilated by flies, thus lowering the tolerance 

threshold for the administered compounds. A similar effect was already observed in a study on 

the influence of the diet composition associated with resistance mechanism to Bacillus 

thuringiensis in the cabbage looper (Shikano and Cory, 2014). Another study also underlined the 

detrimental effect of a high-protein diet in the tolerance of the burying beetle, Nicrophorus 

vespilloides to the entomopathogenic bacteria, Photorhabdus luminescens (Abdullah et al., 

2017).  

A clear pattern was evidenced in Copper Oxychloride treatments where the most concentrated 

treatment showed a higher mortality rate than the medium and less concentrated ones (Figure 4 

and Figure 6). 
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In Viridiol treatments administered in (S+P)-diet the mortality rate recorded in females was 

substantially similar to the control one, while males cohorts showed significantly higher values, 

up to 100% in the more concentrated treatments. Thus, data show that this particular compound 

is highly toxic and even lethal for male olive flies in a concentration-dependent manner.    

Differential sex-linked mortality was recorded, with a significantly higher mortality in males 

than in females. Higher male mortality was recorded also always in more concentrated 

treatments, highlighting again the key role of this parameter in the toxic effect on adult files. 

Treated males resulted more susceptible than females in some of the treatments. These results 

cannot be explained by the current level of knowledge. Further analysis of the proteomic 

statement of the available data may clarify the functional and metabolic differences existing 

between males and females specimens of B. oleae that could explain the different responses to 

the same treatment. 

Copper Oxychloride 0.02%, Harzianic Acid 0.1 and 0.05% and 6-pentyl-α-pyron 1% treatments, 

showed no toxic effect on B. oleae adults. 

 

5.1.2 DAILY DIET CONSUMPTION 

 

Two different patterns emerged by the statistical analysis of the amount of ingested diet per 

specimen and per day depending on the diet type. 

The results obtained from the S-diet dataset showed that the daily diet intake was substantially 

higher in females than in males in most of the treatment including Control and Antibiotics.  In 

fact, female flies naturally have the tendency to feed more, because of the nutritional needs 

required for oogenesis, as described also in the following paragraph (§ 5.1.3). It was also 

highlighted that the daily diet consumption of flies of both sexes diminished with the increase of 

treatment concentration.  

This pattern was particularly clear in S-diet dataset as, for all the administered compounds, 

(Figure 9). Therefore, a possible explanation is that all compounds act as a repellent when 

administered in higher concentration even if the repellent effect was variable for each compound.  

On the contrary, in (S+P)-diet dataset, the sex of the flies seems to be a less important factor, in 

fact, neither Control nor Antibiotics treatments put in evidence significant differences between 
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the amount of ingested diet by females and males. The observed difference between the two diet 

type datasets could be explained by the fact that in S-diet the deprivation of proteins, strategic for 

egg maturation led the females to feed more, trying to compensate the lack of proteins. This does 

not occur when the females are fed on (S+P)-diet, which is provided with all the essential amino 

acids.  

However, the pattern that emerged from the (S+P)-dataset is less clear since, if fly sex is 

irrelevant on the average amount of ingested diet in the Control and Antibiotics treatment, it is 

still a covariate in Copper Oxychloride., Viridiol and Lipopeptides. For all these treatments, in 

fact, females ingest significantly more diet than males. Moreover, the treatment concentration 

resulted as a covariate of ingested diet in most of the treatment, however without a clear pattern 

(Figure 12 and Figure 13).  

 

5.1.3 FECUNDITY 

 

The statistical analysis carried out on the mean number of eggs laid per female confirmed that 

the presence of protein in the flies‘ diet significantly increase the fecundity of both aposymbiotic 

and symbiotic females, respectively treated with Antibiotics and the untreated Control group. 

Obviously, high-protein diets enhance females‘ nutrition and oogenesis regardless of the 

presence of endosymbiotic bacteria as reported from Ben-Yosef et al. (2014).  

The same trend was observed for Harzianic Acid treatments where the females fed on (S+P)-diet 

showed an increase of the number of laid eggs between 60% and 700% in comparison with the 

S-diet cohorts. Females treated with the most concentrated treatment of 6-pentyl-α-pyron also 

evidenced a significantly higher fertility when fed on (S+P)-diet, with an increase of the number 

of laid eggs of 160%.  

Lipopeptides, Viridiol, and Copper Oxychloride 0.5% treatments, it was impossible to verify the 

effect of the proteins on females‘ fecundity due to the high rate of mortality, associated with the 

(S+P)-diet. 

On the contrary, females treated with Copper Oxychloride showed an opposite trend. In fact, it 

was observed a strong decrease in the number of laid eggs with values ranged between 75% and 

96% when the treatment was administered in (S+P)-diet. Thus, the presence of proteins 

combined with copper led to a substantially lower females‘ fertility. Copper Oxychloride was 
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previously evidenced as probably toxic, with a higher mortality rate compared with the Control, 

and repellent since flies tend to avoid feeding on a diet that contains it. Therefore, it is not 

surprising that also the female fecundity is affected by the combination of Copper with proteins 

even if the mechanism behind this evidence is far from being explained. Further studies should 

be carried out to clarify the physiological and metabolic processes triggered by the interaction 

between proteins and copper. Copper compounds were already evidenced as moderately toxic 

when orally administered to insects in both adult and larval stages in a concentration-dependent 

manner (Jensen and Trumble, 2003; Cheruiyot 2012; Cheruiyot et al., 2013). The fact that the 

toxicity seems to be increased by the high-protein diet could be again compared to the tolerance 

decrease observed in other studies (Shikano and Cory, 2014; Abdullah et al., 2017). 

Flies fed on S-diet required more time to mature eggs after mating and the number of eggs laid in 

the first oviposition test was lower than in the second one. An opposite trend was recorded for 

flies fed on (S+P)-diet, where females tend to lay more eggs in the first oviposition test than in 

the second one. So, it can be concluded that the high-protein diet accelerates the oogenesis. 

Treatment concentration resulted to affect females‘ fertility in an inversely proportional manner    

While in S-diet dataset, the number of eggs laid per female was significantly lower only in the 

most concentrated treatment of Copper Oxychloride, in (S+P)-diet dataset, most of the 

treatments produced a significant reduction of females fertility compared with the control 

cohorts (Figure 17 and Figure 18). Interestingly, a significant increase in the number of laid eggs 

was recorded in Harzianic Acid 1%. 

The fact that the high-protein diet is often associated with a decrease in the fertility of the 

females should be explained again by an increase of the toxic effect caused by the treatments 

(dose-response). 

Since the presence of endosymbiotic bacteria has been demonstrated not to be linked with the 

female fertility, we can assume that the differences between treatments and control should be 

explained by treatment‘s toxicity.   

The treatments with Harzianic Acid 0.1 and 0.05%, 6-pentyl-α-pyron 5%, and Control, showed 

comparable female fertility values in both the diet type experiments thus we can affirm that these 

treatments do not affect the fitness of B. oleae females.  



85 

 

In any case, assuming that every compound may turn out to be toxic above a certain threshold, it 

is probably that most of the compounds will negatively affect the fertility of females only when 

combined with the high-protein diet with subsequent increase of the compounds assumption. 

Therefore, it could be possible that the same treatment at the same concentration could lead to 

different physiological response depending on the nutritional condition of the flies (Shikano and 

Cory, 2014; Abdullah et al., 2017). 

 

5.1.4 NUMBER OF OFFSPRING PER FEMALE 

 

The number of F1 offspring obtained by the oviposition tests at each treatment was the most 

important parameter analyzed in the fitness tests. In fact, it has been demonstrated that the 

presence of ―Ca. Erwinia dacicola‖ is essential for B. oleae larval survival in unripe olive fruit 

(Ben-Yosef et al., 2015). The present study hypothesized that a substantial reduction of the 

offspring of the treated flies in comparison with the control was an evidence of the symbioticides 

effect of the treatment.   

The presence of proteins in the flies‘ diet resulted again significant, but the influence of the diet 

type displayed two opposite patterns. In control groups, the presence of proteins significantly 

increase the number of offspring per female, but in some of the treatments such as Harzianic 

Acid and 6-pentyl-α-pyron, the effect was opposite with a substantial decrease. On the contrary, 

in Copper Oxychloride treatments (0.1% and 0.02%) no significant differences were evidenced 

comparing the S-diet and the (S+P)-diet dataset.  

The effect of treatment concentration on the number of offspring per female produced an 

inversely proportional function. In Copper Oxychloride and Lipopeptides treatments, the more 

concentrated was the administered treatment the less numerous was the females‘ offspring. For 

all other treatments, even where a statistically significant difference was detected among the 

means of different concentrations of the same compound, it was not possible to establish a clear 

pattern. 

Anyhow, results showed that most of the administered treatments led to a significant reduction of 

the number of offspring (Figure 20 and Figure 22).  

Antibiotics treatment did not affect the fecundity of B. oleae treated females with levels 

comparable with their symbiotic counterparts. However, antibiotic treatment led to a reduction in 
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the number of offspring up to the 98% compared with the control cohort. The data confirm that 

the absence of endosymbiotic bacteria in mothers caused the incapability of the offspring larvae 

to successfully develop in unripe olive fruit (Ben-Yosef et al., 2015). 

Therefore, looking for potentially symbioticides compounds, active ingredients that showed to 

have an effect on the flies‘ fitness similar to the Antibiotics, have to be taken into accounts. 

  

5.1.5 LARVAL MORTALITY 

 

Larval mortality resulted very high in most of the treatment with no exception for the control, 

and in particular, for control flies fed on (S+P)-diet. In this condition, females were able to lay 

almost 10 eggs per olive fruit but only about 2.5 could successfully develop and reach the adult 

stage. That could be explained by the fact that the olive fruits exposed into the cages faced with a 

progressive drying and maybe it was impossible in this kind of fruits to host more than 2.5 larvae 

and support their development. 

Some treatment resulted to have negative larval mortality (Table 8). In these cases, the number 

of laid eggs per olive fruit was very low with less than 0.01 eggs/olive. That could lead to an 

error of estimation of the egg number per olive since the number is so low and it is possible that 

just 1 egg was not detected during the dissection or that the number of eggs into the two groups 

of olive fruit wasn't identical, that would explain these abnormal results. 

In any case, the larval mortality computation seemed to be scarcely important in those treatments 

where the number of laid eggs was less than 0.1 eggs/female. 

On the contrary, interesting results were found in some treatment where although the number of 

laid eggs was high, the number of offspring developed from those eggs was very low (Figure 24 

and Figure 25). This is the case of Harzianic Acid, 6-pentyl-α-pyron, and Lipopeptides.  
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5.1.6 SUMMARY OF THE FITNESS RESPONSE TO EACH COMPOUND 

 

The effects of the evaluated compounds on the fitness of the olive fly are summarized herein: 

 Copper Oxychloride administering led to a significant decrease of the number of eggs 

laid in at highest concentration in both the diet type. The number of offspring per female 

was significantly lower in all concentrations for both diet types. The presence of protein 

reduces the olive fly tolerance threshold to this compound. The same trend was observed 

for the mortality rate, not significantly different from the control in S-diet but higher in 

(S+P)-diet for two treatments (0.5% and 0.1%). The quantity of ingested diet was 

significantly lower in S-diet at 0.5% concentration and in (S+P)-diet at 0.1%. This 

compound has a moderate to high toxic effect on the fly fitness depending on the 

treatment concentration and on the presence of protein in the diet. Even if toxic effects 

can be expected, also a symbioticides effect has been recorded. Therefore, a combination 

of toxic, repellent and symbioticide effects could be the most likely hypothesis. Copper 

Oxychloride was already evidenced as moderately toxic when orally administered to 

insects in both adult and larval stages in a concentration-dependent manner (Jensen and 

Trumble, 2003; Cheruiyot 2012; Cheruiyot et al., 2013). Anyhow, these results would 

confirm the previous study about the possible symbioticide effect of Copper on olive fruit 

fly endosymbiont (Rosi et al., 2007; Sacchetti et al., 2004; Belcari and Bobbio, 1999; 

Tzanakakis, 1985). 

 

 Viridiol led to a significantly higher mortality of males when the compound was 

administered with the addition of proteins. The high mortality of males in (S+P)-diet did 

not allow to complete the fitness tests thus the lack of available data gave an incomplete 

picture of the Viridiol effect on the olive fly. Further investigations would be necessary to 

explain this unusual result. No repulsive effect was detected, but the presence of proteins 

seemed to increase the toxic effect of the compound. The number of offspring in S-diet 

was statistically lower only in the most concentrated treatment (0.5%). The same result 

was obtained in (S+P)-diet. In summary, it was hypothesized that the higher 

concentration of Viridiol could act as symbioticides. This would confirm the antibiotic 

activity of this compound as already reported in literature (Sivasithamparam and 

Ghisalberti, 1998; Keswani et al., 2014; Howell, 2003; Vinale et al., 2006; 2014; Dias et 

al., 2012; Chiang et al., 2009; Mukherjee et al., 2006; Pascale et al., 2017). Anyhow, the 
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significantly higher rate of mortality in males fed on high-protein diet suggested the 

occurrence of a toxic effect of Viridiol. 

  

 Harzianic Acid administration did not affect the mortality rate of females regardless of 

the diet type. For males fed on (S+P)-diet a significantly higher rate of mortality was 

observed in the most concentrated treatment. Thus, as well as for Viridiol, B. oleae males 

showed a lower tolerance threshold to this compound than females but in a concentration-

dependent manner. No repulsive effect was detected, while in the particular case of 

Harzianic Acid 0.05% in (S+P)-diet a significantly higher quantity of diet was ingested 

by males, showing that in lower concentration the compound could act as attractive for 

males. A concentration-dependent effect on females‘ fecundity was detected even if the 

pattern was not easy to interpret since at different concentration opposite effects were 

observed. The decrease of the number of eggs laid by females could be explained by a 

possible toxic effect of the high-concentrated treatment when administered in addition 

with proteins. In S-diet the mortality rate, amount of ingested diet and the number of laid 

eggs did not differ from the control whereas in high-protein diet some of these 

parameters were statistically different. In (S+P)-diet, both the medium- and high-

concentrated treatments showed a significantly lower amount of offspring. Thus, 

Harzianic Acid seemed to have a symbioticides effect on B. oleae adults that would lead 

to a higher larval mortality and this effect appears to be related to the treatment 

concentration and the diet type. The antibiotic activity of Harzianic Acid is well-known 

and these results seem to confirm it and to endorse that this compound may act 

symbioticides on ―Ca. Erwinia dacicola‖ (Sivasithamparam and Ghisalberti, 1998; 

Keswani et al., 2014; Howell, 2003; Vinale et al., 2006; 2014; Dias et al., 2012; Chiang 

et al., 2009). 

 

 6-pentyl-α-pyron did not affect the mortality rate of both sexes when administered 

without proteins. On the contrary, in (S+P)-diet, the high-concentrated treatment led to a 

significantly higher mortality. Females apparently have a lower tolerance threshold to 

this compound depending on the treatment concentration and the diet type. The high-

concentrated treatment act as a repellent for both sexes. The number of laid eggs was not 

affected by 6-pentyl-α-pyron treatment when it was administered in S-diet, while a lower 

amount of laid eggs was recorded in (S+P)-diet but only in the lower concentration. 

Therefore, the higher mortality rate of females and the lower amount of laid eggs 
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suggested a possible toxic effect of the compound depending on the presence of proteins 

in the diet. The number of offspring per female was significantly low in all the 

concentrations and in both the diet type. This result supports the hypothesis that the oral 

administering of 6-pentyl-α-pyron had a strong symbioticides effect on the 

endosymbiotic bacteria of the olive fruit fly. This would confirm the antibiotic activity of 

this compound as already reported in literature (Sivasithamparam and Ghisalberti, 1998; 

Keswani et al., 2014; Howell, 2003; Vinale et al., 2006; 2014; Dias et al., 2012; Chiang 

et al., 2009; Mukherjee et al., 2006; Pascale et al., 2017). 

 

 Lipopeptides extracted from B. subtilis administration did not affect the mortality rate of 

both sexes when administered without proteins. On the contrary, in (S+P)-diet, the high-

concentrated treatment led to a significantly higher mortality in both sexes. A reduced 

daily intake was observed for the most concentrated treatment, thus it might be 

hypothesized a repellent effect neutralized when the proteins are added to the diet. The 

lack of data available for the (S+P)-diet for fertility and offspring gave an incomplete 

picture of the role of the proteins on Lipopeptides effect on the olive fly fitness. The 

recorded decrease of offspring was directly proportional to the treatment concentration. 

The fact that the treatment did not affect the number of laid eggs and that the number of 

offspring was significantly lower, suggested a symbioticide effect of the compound in a 

concentration-dependent manner. This would confirm the antibiotic activity of this 

compound as already reported in literature (Asaka and Shoda 1996; Chen and Wu 1999; 

Harris and Adkins 1999; Ferreira et al. 1991; Sholberg et al. 1995; Mari et al. 1996; 

Raaijmakers et al. 2002; He et al. 1994). 

 

 

5.2 ENDOSYMBIOTIC BACTERIA QUANTIFICATION BY REAL-TIME PCR 

 

5.2.1 MICROBIOME ALTERATION IN MID-GUT 

 

The bacterial quantification achieved by real-time PCR showed that most of the treatments did 

not affect the bacteria inhabiting the mid-gut of the treated females. A significant decrease was 

obtained only with Antibiotics in both the diet type experiments and in Viridiol 0.1% but only in 
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S-diet (Figure 26). On the contrary, a significant increase of the bacterial titer was obtained in 

Copper Oxychloride 0.02% treatment in (S+P)-diet (Figure 28).  

Taking into account that the mid-gut of tephritids is known as inhabited by several species of 

bacteria, it was hypothesized that the symbioticide effect on ―Ca. Erwinia dacicola‖ might be 

masked by the proliferation of opportunistic bacterial species. In fact, while the couple of 

primers utilized for real-time PCR could be considered as specific in the oesophageal bulb 

environment, it was not possible to rule out that in mid-gut samples also other bacterial species 

were amplified by primers, thus altering the results of the endosymbiotic bacteria quantification.  

The oesophageal bulb is a characteristic structure with marked morphological differences that 

diverges from all the other species of the Tephritidae family. That can be explained by a 

coevolution with its specific symbiotic bacterial species (Capuzzo et al., 2005; Mazzon et al., 

2008. 2010; Estes et al., 2009). From literature ―Ca. Erwinia dacicola‖ predominantly inhabits 

this organ and it is unlikely that in case of decrease of the specific endosymbiont other bacteria 

can colonize it. On the contrary, in the mid-gut numerous species of opportunistic bacteria might 

proliferate if the presence of the specific endosymbiont decrease as already reported in several 

studies (Estes et al., 2012; Ben-Yosef et al., 2015. Ras et al., 2017).  

Further metagenomics analysis on mid-gut samples could clarify the composition of bacterial 

microbiome corresponding to each treatment and verify if a replacement of the beneficial 

bacteria for opportunistic species may occur. This hypothesis could explain why the bacterial 

quantification did not detect a significant decrease of the endosymbiont titer even in those 

treatments where a significant fitness reduction of the olive fly was observed. 

 

5.2.2 MICROBIOME ALTERATION IN OESOPHAGEAL BULB 

 

The bacterial quantification achieved by real-time PCR showed that most of the treatments led to 

a significant reduction of the bacteria inhabiting the oesophageal bulb of the treated females 

(Figure 30 and Figure 32).  

The presence of protein in the diet intensifies the symbioticide effect of the administered 

compounds. It was particularly clear in Antibiotics treatment where the bacterial titer reduction 

was more than 2 times higher in comparison with the S-diet counterparts. The same pattern was 

observed for all other treatments were both the diet type data were available (Figure 33). The 
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molecular analysis too showed that the nutritional condition of the fly might play a role in the 

bacterial reduction.  

The molecular analysis on oesophageal bulb confirmed the symbioticide effect of Viridiol, 

Harzianic Acid and Copper Oxychloride in the lower concentrated treatment. Unfortunately, it 

was not possible to verify the bacterial titer of Lipopeptides and 6-pentyl-α-pyron treatments, 

since a storage problem of the DNA samples occurred.  
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6 CONCLUSIONS 

In conclusion, the results obtained confirmed that ―Ca. Erwinia dacicola‖ plays an essential role 

in B. oleae larval development in unripe olive fruits (Ben-Yosef et al., 2015).  In adult fitness, 

the role of the bacterium is marginal when the diet administered totally lack of nitrogen sources 

(S-diet) or is fully provided of all the essential amino acids (S+P diet) (Ben-Yosef et al., 2010; 

2014).  

Furthermore, the present study demonstrated that the oral administration of some microbial 

metabolites such as Viridiol and Harzianic Acid could act as symbioticides and affect the B. 

oleae fitness. The antibiotic activity of these microbial metabolites is well known and widely 

reported in the scientific literature. In fact, their application is addressed against plant pathogens 

as Microbial Biological Control Agents due to antifungal and amending properties 

(Sivasithamparam and Ghisalberti, 1998; Keswani et al., 2014; Howell, 2003; Vinale et al., 

2006; 2014; Dias et al., 2012; Chiang et al., 2009; Mukherjee et al., 2006; Pascale et al., 2017). 

To our knowledge, this is the first study in which the efficacy of the antibacterial activity of 

these compounds has been evaluated against primary endosymbiotic bacteria of an insect 

species. 

The same effect was in part obtained also with the oral administration of Copper Oxychloride, 

which has shown a strong toxic and a moderate symbioticide effect that, anyhow, affect both the 

adult and larval fitness of the olive fly. This would confirm the previous study about the toxicity 

of Copper for insects in a concentration-dependent manner (Jensen and Trumble, 2003; 

Cheruiyot 2012; Cheruiyot et al., 2013), but also its possible symbioticide effect on olive fly 

endosymbiont (Rosi et al., 2007; Sacchetti et al., 2004; Belcari and Bobbio, 1999; Tzanakakis, 

1985). 

Lipopeptides extracted from B. subtilis and 6-pentyl-α-pyron resulted to be promising 

compounds that could act as symbioticides but further molecular analyses are required to 

confirm their actual effectiveness on ―Ca. Erwinia dacicola‖. 

The antibiotic properties of Lipopeptides extracted from B. subtilis have been widely reported in 

literature and successfully used for the biocontrol of several plant diseases (Asaka and Shoda 

1996; Chen and Wu 1999; Harris and Adkins 1999; Ferreira et al. 1991; Sholberg et al. 1995; 

Mari et al. 1996; Raaijmakers et al. 2002; He et al. 1994). To our knowledge, this is the first 
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study in which the efficacy of the antibacterial activity of Lipopeptides from B. subtilis has been 

evaluated against primary endosymbiotic bacteria of an insect pest. 

The antimicrobial activity of 6-pentyl-α-pyron is well known and widely reported in literature 

but, its application was limited as Microbial Biological Control Agents against plant pathogens 

(Sivasithamparam and Ghisalberti, 1998; Keswani et al., 2014; Howell, 2003; Vinale et al., 

2006; 2014; Dias et al., 2012; Chiang et al., 2009; Mukherjee et al., 2006; Pascale et al., 2017). 

An acaricidal activity was also reported by Salwa Sholla and Metwally Kottb (2017) against the 

two-spotted spider mite Tetranychus urticae. To our knowledge, this is the first study in which 

the efficacy of the antibacterial activity of 6-pentyl-α-pyron has been evaluated against primary 

endosymbiotic bacteria of an insect species. 

Evidence provided by this study seem to be consistent with previous studies in which a tolerance 

decrease to microbial metabolites was observed in combination with high-protein diet (Shikano 

and Cory, 2014; Abdullah et al., 2017). 

The present study represents the first step for the identification of environmentally friendly 

compounds that may be used as symbiosis inhibitors that could lead to the development of new 

formulations for the olive fruit fly integrated pest management. 
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