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Introduction

After more than 80 years from its first evidence in the Coma galaxy cluster, dark matter

represents one of the deepest mystery in current physics. Even though its existence is

strongly suggested by several gravitational e↵ects such as the anomalies of galactic rotation

curves, the gravitational lensing, the bullet clusters and the cosmological observations, the

nature of dark matter still remains unknown. The most attractive and simplest scenario

is the one dubbed as Weakly Interacting Massive Particle (WIMP) paradigm in which

dark matter particles typically have a mass in the GeV–TeV range and interactions of the

order of weak processes. However, the lacking detection of a signal related to dark matter

has led to very stringent constraints to the WIMP paradigm, encouraging physicists to

look for alternatives to it. During the last decades, di↵erent interesting schemes have

been investigated in elementary particle physics in order to allocate viable dark matter

candidates. In the so-called dark matter zoo, the mass is spread over many orders of

magnitude, ranging from about 10�32 GeV up to 1018 GeV (see Fig. 1 for a pictorial

representation of the typical mass scales for some dark matter candidates). For instance,

alternatives to WIMPs, with a mass smaller than the GeV energy scale, are represented by

axions at about 10�6 ÷ 10�3 eV or keV sterile neutrinos. On the other hand, WIMPzilla

generally have a mass of the order of 1012 GeV.

Up to now all direct, indirect and colliders searches, especially dedicated to the GeV–

TeV energy range, have not provided any clear evidence for dark matter. In this context,

the only viable way to look for very massive dark matter candidates, with a mass larger

than TeV, is based on exploiting indirect searches in astrophysical observations. Indeed,

the astrophysical measurements of high energy neutrinos and gamma-rays have opened

1



INTRODUCTION 2

Figure 1: Pictorial representation of the typical mass scales for some promising dark mat-

ter candidates. The shaded gray area shows the energies at which modern Neutrino and

Gamma-Ray Telescopes are sensitive to constrain the properties of dark matter candidates.

a new window to the cosmos (see Fig. 1), giving the chance to explore very high-energy

phenomena that can be potentially linked to new physics.

The recent discovery of a di↵use neutrino flux at the TeV–PeV range by the IceCube

Collaboration has ushered us into a new era for astroparticle physics, since it provides an

important diagnostic tool for physics and astrophysics. The IceCube Neutrino Observatory

is a neutrino telescope located at the Amundsen-Scott South Pole Station, able to observe

highly energetic neutrinos reaching the Earth’s surface. In six year of data-taking (2010–

2016), the IceCube detector has collected 82 High Energy Starting Events (HESE) with

energies larger than about 10 TeV. Moreover, for the first time, three events fully contained

in the detector with energy larger than PeV (Ernie (1.14 PeV), Bert (1.04 PeV), and

Big Bird (2.2 PeV)) have been observed. In the other hemisphere, from 2007 to 2015,

the ANTARES Neutrino Telescope has additionally observed 33 events with energies above

20 TeV. All these events correspond to the most energetic neutrinos ever measured and o↵er

the possibility to study neutrino physics at energies where phenomena beyond the Standard

Model (SM) can be relevant. The origin of such high energy neutrinos still remains unclear:

they can be produced by a variety of galactic and extragalactic astrophysical sources, or

they could be intriguingly related to dark matter.

In this context, this thesis aims to investigate the relation of the dark matter paradigm
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to neutrino and gamma-ray telescopes. Indeed, depending on the interaction with SM par-

ticles, dark matter can decay or annihilate producing high-energy neutrinos and gamma-

rays. Hence, one can infer the properties of dark matter particles that are able to provide a

detectable signal by comparing the predicted neutrino and gamma-ray fluxes with the corre-

sponding astrophysical observations. Such studies based on characterizing at the same time

the neutrino and gamma-ray fluxes are defined as multi-messenger analyses. In this thesis,

we deeply analyze the scenario where the di↵use TeV–PeV neutrino flux is explained in

terms of a two-component flux, one of which is related to dark matter. The two-component

flux is indeed suggested by the tension of neutrino data, taken by IceCube and ANTARES

telescopes, with the simple assumption of a single power-law, behavior that is expected

in case of standard astrophysical sources once a correlation with hadronic cosmic-rays is

reasonably considered. Indeed, since one would expect a hard power-law (spectral index

smaller than 2.3) according to the gamma-ray and up-going muon neutrino observations,

the di↵use neutrino flux shows a 2–3� excess at 10–100 TeV energies, pointing towards a

two-component neutrino flux. Remarkably, such a low-energy excess is present in di↵erent

IceCube and ANTARES data samples. Once such a tension is statistically characterized,

we focus on the scenario where the low-energy excess is intriguingly due to dark matter. For

this purpose, we phenomenologically scrutinize several dark matter models characterized

by distinct interactions with the Standard Model particles and by di↵erent halo density

distributions of our galaxy. Moreover, we show that the dark matter models proposed to

explain the di↵use neutrino flux are further constrained once the gamma-ray observations,

measured for instance at Fermi-LAT, are taken into account. This strongly underlines the

paramount importance of multi-messenger analysis in the attempt to unveil the nature of

dark matter.

The thesis is organized as follows. In the first Chapter we briefly introduce the Standard

Model and, in particular, we discuss theoretical open problems and experimental observa-

tions (like the ones related to the neutrino physics) that underline the need to go beyond.

The second Chapter is devoted to dark matter: all its evidence and its properties are pre-

sented, di↵erent production mechanisms are described, a list of dark matter candidates

is reported and the status of dark matter searches is reviewed. In the third Chapter, we
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introduce all the ingredients required to compute the flux of neutrinos and gamma-rays

that are produced by decaying/annihilating dark matter particles. The fourth Chapter is

dedicated to review the physics and the observations of Neutrino Telescopes. Moreover,

we also report the first combined analysis of IceCube and ANTARES measurements, high-

lighting the tension of data with the assumption of a single power-law explaining the di↵use

neutrino flux. In the fifth Chapter, the low-energy excess is statistically characterize and

its interpretation in terms of a dark matter signal is investigated by performing analyses on

the angular distribution and the energy spectrum of the observed neutrinos. In the sixth

Chapter, we propose a complete theoretical framework allocating a very heavy leptophilic

dark matter candidate. Here, the model is constrained by examining its predictions for

the neutrino flux and by requiring a viable production mechanism in the early Universe.

Finally, the last Chapter is devoted to the conclusions.



Chapter 1

The Standard Model and Beyond

A series of measurements performed at high-energy particle colliders, as the Stanford Linear

Collider (SLC), the Super Proton Synchrotron (SPS), the Large Electron-Positron collider

(LEP), the TEVATRON and the Large Hadron Collider (LHC), has established the Stan-

dard Model (SM) as a precise theory of particle interactions up to energies of the order of

100 GeV. The SM includes the electroweak theory describing the electromagnetic and weak

interactions of elementary particles, which was originally formulated by S.L. Glashow [10],

S. Weinberg [11] and A. Salam [12], and the quantum chromodynamics [13, 14, 15, 16]. The

model also incorporates the Brout-Englert-Higgs mechanism [17, 18, 19] through which the

matter and interaction fields become massive. The recent discovery of the Higgs boson by

ATLAS [20] and CMS [21] Collaborations at LHC has represented the last piece that has

once again confirmed the predictive e↵ectiveness of the SM.

The most important conceptual basis upon which the SM is built is the gauge princi-

ple [22]. The invariance under a local gauge symmetry was originally proposed in the Quan-

tum Electrodynamic (QED) where, according to the conservation of the electric charge, the

global symmetry of the theory is promoted to a local one: the interactions are then fixed

by the requirement of the invariance under the local gauge transformations of the U(1)

group. Such a gauge principle has been generalized to any compact Lie group providing

the conceptual basis to build any quantum field theory model [23].

The Chapter is organized as follows. In the first Section we introduce the readers to the

5



CHAPTER 1. THE STANDARD MODEL AND BEYOND 6

Name 1st Family 2nd Family 3rd Family

Leptons
⌫e ⌫µ ⌫⌧

e µ ⌧

Quarks
u c t

d s b

Table 1.1: Three families of the SM matter content divided in Leptons and Quarks.

SM. In the second Section we report all the conceptual theoretical problems and physical

phenomena that are not accounted for in the SM. The last Section is devoted to briefly

review the neutrino phenomenology.

1.1 Standard Model in a nutshell

Let us present a very short overview of the Standard Model in oder to provide some no-

tation and concepts used in this thesis. The Standard Model is a renormalizable1 gauge

theory based on the SUC(3) ⌦ SUL(2) ⌦ UY (1) group. The subscript C, L and Y mean

color, left-handed chirality and weak hypercharge, respectively. In particular, the SUC(3)

group is the local symmetry group of the quantum chromodynamics describing the strong

interactions, while the SUL(2)⌦ UY (1) is the Glashow-Weinberg-Salam theory of the elec-

troweak interactions. The matter content of the SM consists of three copies (families) of

fermions. Each family contains 15 chiral fermions, i.e. 2 charged and 1 neutral (neutrino)

leptons, and 12 quarks (see Tab. 1.1). The three generations of quarks and leptons have

identical properties except for di↵erent masses. In addition to fermions, the model contains

two spin zero scalar particles gathering the Higgs field and 12 vector fields. The irreducible

representations of all the SM fields are reported in Tab. 1.2. We note that the SM is an

axial or chiral theory since the left-handed (L) and right-handed (R) chiral components

of the fermion fields belong to di↵erent irreducible representations of the gauge symmetry

group. The hyperchage assignments follow the Gell-Mann-Nishijima relation

Q = I3 + Y , (1.1)

1
The SM renormalizability was proved by G. ’t Hooft and M. Veltman in 1971 [24].
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Name Fields SUL(2) UY (1) SUC(3)

Leptons
L↵L ⌘

0

@ ⌫↵L

l↵L

1

A 2 �1
2 1

`↵R 1 -1 1

Quark

Q�L ⌘

0

@ u�L

d�L

1

A 2 +1
6 3

u�R 1 +2
3 3

d�R 1 �1
3 3

Higgs H ⌘

0

@ H
+

H
0

1

A 2 +1
2 1

Gauge Bosons

Bµ 1 0 1

W
a

µ
3 0 1

G
b

µ
1 0 8

Table 1.2: Irreducible representations of the SM fields: ↵ = e, µ, ⌧ , � = u, c, t for u-quark

and � = d, s, b for d-quark, a = 1, 2, 3 and b = 1, ..., 8.
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which provides the electric charge Q in terms of the third component of the weak isospin

I3 and the hypercharge Y . In the Tab. 1.2, we have neglected the three color indexes of

the quarks. Moreover, since in the SM neutrinos are massless, only left-handed neutrinos

are present.

The SM Lagrangian can be divided into four conceptually di↵erent pieces2: Dirac, Gauge

(Yang-Mills), Yukawa, and Higgs interactions.

LSM = LDirac + LGauge + LHiggs + LY ukawa . (1.2)

The first term contains the kinetic terms

LDirac = i

X
 �

µ
Dµ , (1.3)

where the sum runs over all the chiral fermions  of the model. The gauge interactions of

the matter fields are encoded in the covariant derivative

Dµ = @µ + igsG
b

µ
�b + igW

a

µ
�a + ig

0
BµY , (1.4)

where gs, g and g
0 are the three gauge couplings of the groups SUC(3), SUL(2) and UY (1),

respectively, whereas �b and �a are the generators of SUC(3) and SUL(2), respectively. In

particular, the Dirac Lagrangian contains the so-called neutral-current interactions (NC)

mediated by the neutral vector bosons W 3
µ
and the Bµ, and the so-called charged-current

interactions (CC), which are instead mediated by the charged vector bosons W 1
µ
and W

2
µ
.

The four vector bosons can be recast in the following linear combinations

W
±
µ

=
W

1
µ
⌥ iW

2
µp

2
, Zµ = cos ✓WW

3
µ
� sin ✓WBµ , Aµ = sin ✓WW

3
µ
+ cos ✓WBµ , (1.5)

where W
± and Zµ are the physical weak bosons, and Aµ is the electromagnetic potential

field. The angle ✓W is the so-called Weinberg’s weak mixing angle.

The second term in Eq. (1.2) encodes the interactions of the gauge vector boson fields.

It takes the form

LGauge = �
1

2
Tr (Gµ⌫G

µ⌫)� 1

2
Tr (Wµ⌫W

µ⌫)� 1

4
Bµ⌫B

µ⌫
, (1.6)

2
For the sake of simplicity, here we omit the gauge-fixing terms and the ghost interactions.
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where Gµ⌫ , Wµ⌫ and Bµ⌫ are the field strengths of SUC(3), SUL(2) and UY (1), respectively.

The third term in Eq. (1.2) is the Higgs potential whose expression is given by

LHiggs = DµH
†
D

µ
H � µ

2
H

†
H � �

�
H

†
H
�2

. (1.7)

The coupling � must be positive in order to have the Higgs potential bounded from below,

whereas the coupling µ
2 is negative in order to have the spontaneous breaking of the

electroweak symmetry. Indeed, under the prescription of µ2
< 0, the Higgs acquires a

vacuum expectation value (vev) vSM and breaks the group SUL(2) ⌦ UY (1) down to the

electromagnetic one UQ(1). Let us write the Higgs field as

H =

0

@ H
+

vSM+h+iAp
2

1

A . (1.8)

After the electroweak symmetry breaking, the fields H± and A are identified with the three

Nambu-Goldstone bosons corresponding to the broken generators of SUL(2) ⌦ UY (1) [25,

26, 27]. The three broken degrees of freedom are absorbed by the three physical weak gauge

bosons (W± and Z) which consequently acquire the masses [28]

MW =
g

2
vSM ⇡ 80.4GeV , MZ =

MW

cos ✓W
⇡ 91.2GeV , (1.9)

with vSM = 246 GeV. The photon instead remains massless, as a consequence of the

preserved residual UQ(1) symmetry. The field h is the recently discovered Higgs boson,

whose massMh cannot be predicted by the theory but it has to be experimentally measured.

The ATLAS [20] and the CMS [21] Collaborations have found that Mh ⇡ 125 GeV.

The last term in the SM Lagrangian concerns the Yukawa interactions through which

fermions get mass and couple to the Higgs field. Its expression takes the form

LY ukawa = �
X

ij

�`
ij
LiLH`jR �

X

ij

�d

ij
Q

iL
HdjR �

X

ij

�u

ij
Q

iL
H̃ujR + h.c. , (1.10)

where the indexes i and j label the three generations and H̃ ⌘ i⌧2H with ⌧2 being the

second Pauli matrix. The Yukawa couplings � are complex arbitrary non-diagonal 3 ⇥ 3

matrices. They can be diagonalized by means of bi-unitary transformations

Ya = Ua†
L
�aUa

R
= diag (ya1 , y

a

2 , y
a

3) , (1.11)
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where Ua

L
and Ua

R
are two 3⇥ 3 unitary matrices and the eigenvalues ya

i
are real. Because

neutrinos are massless in the SM, it is possible to consider �` to be diagonal without loss

of generality by performing a simple redefinition of the leptonic fields. This implies that

in the SM the leptonic flavor states coincide with the physical ones that have a definite

mass. On the other hand, this is not the case for quarks since the Higgs field couple to

both u- and d-quarks. This leads to a mismatch between the flavor and mass bases and

consequently to a non-trivial mixing among the quarks. The mixing is encoded in the

so-called Cabibbo-Kobayashi-Maskawa matrix (CKM) [29, 30]

UCKM = Uu†
L
Ud

R
=

0

BBB@

1 0 0

0 c23 s23

0 �s23 c23

1

CCCA

0

BBB@

c13 0 s13e
�i�

0 1 0

�s13ei� 0 c13

1

CCCA

0

BBB@

c12 s12 0

�s12 c12 0

0 0 1

1

CCCA
,

(1.12)

with sij = sin ✓ij and cij = cos ✓ij. The CKM matrix has therefore four free parameters:

three angles and and a phase allowing for CP violation in the quark sector. The CKM

parameters have been measured to be equal to [28]

✓12 ⇡ 13� , ✓23 ⇡ 2.4� , ✓13 ⇡ 0.2� , � ⇡ 59.7� . (1.13)

The Yukawa terms also provide a mass to fermions after the electroweak symmetry breaking

triggered by the Higgs field. Indeed, it is worth observing that mass terms for fermions

cannot be explicitly written because they are not gauge invariant. The masses emerge from

the vev acquired by the Higgs field. For instance, for the electron we have

me = Ye
11 hHi =

1p
2
y
e

1vSM ⇡ 0.511MeV . (1.14)

Lastly, we note that the full SM Lagrangian depends only on 19 unconstrained parameters:

3 gauge couplings, the Higgs quadratic mass coe�cient and self-coupling, 9 quark and

lepton masses, 4 parameters of the CKM matrix, and 1 more parameter related to the

strong CP problem a↵ecting the quantum chromodynamics Lagrangian.
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1.2 Beyond the Standard Model

It is hard to believe that the Standard Model is the last step toward the understanding of

nature. There are indeed conceptual theoretical problems in the SM, that deserve some

explanation. Examples of such theoretical problems are the separation of very di↵erent

energy scales in a field theory with scalars (hierarchy problem), the hint of an unification

of the three gauge couplings for extreme large energy, the particular structure of fermion

masses, the need to provide a quantum description of the gravitational force, etc. More-

over, the SM cannot account for fundamental physical phenomena like the neutrino masses

and oscillations, the existence of dark matter and dark energy, and the matter-antimatter

asymmetry of the Universe. All these aspects, which are referred to as physics Beyond the

SM (BSM), show us the need of new theoretical developments.

Among the conceptual theoretical problems, the hierarchy problem is the large discrep-

ancy between aspects of the weak force and gravity. Within the SM, the question is why

the Higgs boson is so much lighter than the Planck mass (MPl ⇠ 1019 GeV) at which grav-

itational e↵ects cannot no longer be neglected. The problem is that M2
h
receives enormous

quantum corrections from the virtual e↵ects of every particle that couples, directly or in-

directly, to the Higgs field. For example, the one loop correction to the Higgs mass is

proportional to the squared of ultraviolet momentum cut-o↵ ⇤, used to regulate the loop

integral (�M
2
h
/ ⇤2). Since the cut-o↵ ⇤ is the energy at which new physics enters to alter

the high-energy behavior of the theory, it is at least of order of the Planck mass. Therefore,

these corrections are much larger than the Higgs mass: quantum corrections toM2
h
are some

30 orders of magnitude larger that the required value of M2
h
which is about (125GeV)2.

This means that the bare mass parameter of the SM Higgs must be fine-tuned in such a

way that it almost completely cancels the quantum corrections. This level of fine-tuning is

not in agreement with the principle of naturalness.

According to the SM, neutrinos are massless particles. However, several experiments

have observed the neutrino oscillations that can be only originated by non-zero neutrino

mixing and masses. Moreover, still there are no experimental observations indicating the

nature of neutrinos: since they are neutral particles, neutrinos can be either Dirac or
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Majorana particles.

Astrophysical and cosmological observations, such as the measurements of the Cosmic

Microwave Background (CMB), the galactic rotation curves, galaxy clusters, gravitational

lensing and especially bullet clusters, tell us the SM explains only the 5% of the energy

present in the Universe. About 25% should be dark matter, a kind of matter hypothesized

to account for gravitational e↵ects that appear to be the result of invisible mass. The rest

should be dark energy, an almost constant energy density for the vacuum which tends to

accelerate the expansion of the Universe.

Lastly, the SM does not explain why the Universe is made out of mostly matter. It

predicts that matter and antimatter should have been created in almost equal amounts if

the initial conditions of the universe did not involve disproportionate matter relative to an-

timatter. Therefore, no mechanism su�cient to explain this matter–antimatter asymmetry

exists in the framework of SM.

Several extensions of the SM have been proposed in the last decades to account for one

or more of these problems. Among them we remind the Grand Unified Theories [31, 32, 33,

34, 35], based on the idea that at high-energy scale all the forces have the same magnitude

(gauge coupling unification), extra-dimensions [36, 37], the idea of supersymmetry [7, 38, 39,

40, 41] and of baryogenesis through leptogenesis [42]. Regarding supersymmetry, the non-

observation of new particles at the electroweak scale leads to the so-called little hierarchy

problem. Indeed, a small fine-tuning would be still required if supersymmetry is broken

at an energy scale larger than TeV. In particular, as shown in Ref. [7], this is the case if

one consider that the assumption of a one-step unification for the three gauge couplings

naturally provides supersymmetric particles to have a mass as large as about 20 TeV. Such

a scale is well above the energy to be reached in the final phase of the LHC accelerator.

Due to its relevance in this thesis, we devote the next Section to provide an overview of

the neutrino physics, while the dark matter problem is introduced and described in detail

in the next Chapter.
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1.3 Neutrino Physics

Since their existence was first proposed by W. Pauli in 1930, neutrinos have fascinated

theorists and experimentalists. After huge experimental e↵orts, we have acquired great

knowledge about these particles. In particular, we know that neutrinos change their flavor

during the propagation, and that at least two of them have a non-zero mass. The mass split-

tings and oscillations parameters are now measured with great accuracy. The paramount

importance of the discovery of neutrino oscillations was recognized by the Nobel Prize in

Physics that in 2015 was given to T. Kajita and A.B. McDonald, since the observation of

neutrino oscillations is the proof that neutrinos are massive.

Neutrinos and antineutrinos are produced in a given flavor state (⌫e, ⌫µ, ⌫⌧ ) in charged-

current or neutral-current interactions. However, neutrino flavor states are superposition

combinations of di↵erent mass eigenstates that represent the physical neutrinos. As in

case of quarks, the neutrino oscillations are related to the mismatch between the flavor

and the mass bases. Similarly to the CKM matrix, such a mismatch is encoded in the

so-called Pontecorvo-Maki-Nakagawa-Sakata (PNSM) matrix [43, 44, 45, 46] that can be

parametrized as3

UPNMS = U `†
L
U⌫

R
=

0

BBB@

1 0 0

0 c23 s23

0 �s23 c23

1

CCCA

0

BBB@

c13 0 s13e
�i�

0 1 0

�s13ei� 0 c13

1

CCCA

0

BBB@

c12 s12 0

�s12 c12 0

0 0 1

1

CCCA
T ,

(1.15)

with sij = sin ✓ij and cij = cos ✓ij. According to how they are measured, the angles ✓13, ✓23

and ✓12 are defined as reactor, atmospheric and solar angles, respectively. The angle � is

the Dirac phase that accounts for the CP violation in the leptonic sector. Di↵erently from

the CKM, the PNMS matrix also contains two additional phases encoded in

T = diag
�
1, ei↵, ei�

�
. (1.16)

The angles ↵ and � are the Majorana phases. Indeed, since neutrinos are neutral particles,

they can be Dirac or Majorana particles. In the latter case, two additional phases (↵ and

3
Note that there exist other parametrizations for the lepton mixing matrix like for example the sym-

metrical ones [47].
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�) cannot be absorbed by a redefinition of the neutrino fields and have to be taken into

account.

The angles appearing in the PNMS matrix have been measured by several experiments.

In particular, one has to remind the following observations

• disappearance of solar ⌫e [48]: Kamiokande [49], SAGE [50], GALLEX [51, 52],

GNO [53], Super-Kamiokande [54] and SNO [55, 56] Collaborations;

• disappearance of reactor ⌫e: KamLAND Collaboration [57, 58], Double Chooz [59],

Daya Bay [60, 61, 62] and RENO [63] Collaborations;

• disappearance of ⌫µ/⌫µ: Super-Kamiokande [64, 65], K2K [66], MINOS [67, 68, 69]

and T2K [70, 71] Collaborations;

• ⌫µ ! ⌫e oscillations: T2K [72, 73], MINOS [74] and Double Chooz [75] Collaborations;

• remarkably, the first constraints to Dirac phase � by the T2K Collaboration [76].

Hence, the fundamental parameters describing the neutrino physics are three angles, three

phases (1 Dirac and 2 Majorana phases), and three masses m1, m2 and m3. However,

neutrino oscillations only depend on the neutrino mass squared di↵erences�m
2
ij
= m

2
i
�m2

j
.

Indeed, one can show that the probability of the oscillation for a neutrino of flavor ↵ with

momentum �!p into a neutrino of flavor �, during its propagation of a source-detector

distance L, is given by

P⌫↵!⌫�
=

3X

k=1

|U↵k|2 |U�k|2 + 2Re

"
X

j>k

U⇤
↵k
U�kU↵jU⇤

�j
exp

✓
�i

�m
2
kj

2 |�!p | L
◆#

. (1.17)

Hence, oscillation experiments can only measure the di↵erences |�m
2
12| (solar) and |�m

2
13|,

while they are not sensitive to the neutrino absolute mass scale. Under the convention that

m1 < m2 (�m
2
12 < 0), there exist two possibilities:

• Normal Ordering (NO) m1 < m2 < m3;

• Inverted Ordering (IO) m3 < m1 < m2.
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The neutrino absolute mass scale could be instead measured by experiments analyzing beta

decays and neutrinoless double beta decays. The former corresponds to the measurement

of the spectrum of the electrons in the beta decay of tritium atoms, while the latter aims to

observe a double beta decay without the emission of neutrinos, i.e. without missing energy.

The observation of neutrinoless double beta decay is of paramount importance since it

would eventually demonstrate the Majorana nature of neutrinos [77].4 The most stringent

upper bounds coming from beta decay experiments are m⌫e < 2.05 eV and m⌫e < 2.3 eV

at 95% C.L. obtained by the Troitzk [78] and Mainz [79] experiments, respectively. On

the other hand, the non-observation of the neutrinoless double beta decay in the phase

1 of the GERDA experiment provides the constraint hmeei < 0.2 eV at 90% C.L. [80],

where the quantity hmeei is a combination of neutrino masses and elements of the PNMS

matrix. Other experiments looking for neutrinoless double beta decay are CUORE [81],

EXO-200 [82], KamLAND-Zen [83] and NEMO-3 [84]. In addition to such laboratory

experiments, cosmological observations also provide upper bounds on the sum of stable

neutrinos. In particular, the recent analysis performed by the Planck Collaboration gives

the cosmological bound
P

m⌫ < 0.17 eV [85].

The known properties of neutrinos are reported in Tab. 1.3. They are obtained by

performing a global fit of the available experiment data [86] (other global fits are provided

in Ref.s [87, 88]).

�m
2 = �m

2
21 = m

2
2 �m

2
1 , and �m

2 = m
2
3 �

m
2
1 +m

2
2

2
. (1.18)

4
The detection of the neutrinoless double beta decay would constrain and provide important information

on the possible extensions of the Standard Model as shown in Ref. [8].
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Parameter Hierarchy Best-Fit 1� range 3� range

�m
2
/10�5 eV2 NO or IO 7.37 7.12 – 7.54 6.93 – 7.96

sin2
✓12/10�1 NO or IO 2.97 2.81 – 3.14 2.50 – 3.54

|�m
2| /10�3 eV2

NO 2.525 2.495 – 2.567 2.411 – 2.646

IO 2.505 2.473 – 2.539 2.390 – 2.624

sin2
✓13/10�2

NO 2.15 2.08 – 2.22 1.90 – 2.40

IO 2.16 2.07 – 2.24 1.90 – 2.24

sin2
✓23/10�1

NO 4.25 4.10 – 4.46 3.81 – 6.15

IO 5.89 4.17 – 4.48 � 5.67 – 6.05 3.84 – 6.36

�/⇡

NO 1.38 1.18 – 1.61 0 – 0.17 � 0.76 – 2

IO 1.31 1.12 – 1.62 0 – 0.15 � 0.69 – 2

Table 1.3: Neutrino oscillation parameters of the global 3⌫ analysis provided in Ref. [86].

Here, the two mass squared di↵erences are defined as �m2 = �m
2
21 = m

2
2�m

2
1 and �m

2 =

m
2
3 �

m
2
1+m

2
2

2 .



Chapter 2

The Quest for Dark Matter

The first evidence of the existence of Dark Matter (DM) dates back to 1933 when Fritz

Zwicky studied the gravitational anomalies in the Coma cluster of galaxies [89, 90]. By

using the virial theorem, he found that a hidden mass not emitting light was required to

account for the very large dispersion velocities of some galaxies in the Coma cluster. In

particular, the ratio (mass-to-light ratio) between this hidden matter and the directly visible

one was estimated to be roughly 500 to 1. F. Zwicky dubbed such a kind of invisible mass as

dark matter, following the definition of astrophysical dark bodies provided by H. Poincaré

in 1906. The Zwicky’s studies was largely overlooked until the 1970, when Vera Rubin

and Kent Ford analyzed the rotation curves of the spiral galaxies, providing a very strong

evidence for the existence of dark matter [91].

We know that dark matter fills the Universe, plays a fundamental role during the struc-

ture formation, and explains the discrepancy between visible and dynamical astronomical

observations. However, after more than 80 years from the Zwicky’s observations, the nature

of dark matter still remains an open question. The Standard Model, whose success was

once again confirmed by the discovery of the Higgs boson at LHC, only describes the 5% of

the energy content of the Universe, consisting of stars, dust, galaxies, clusters of galaxies

and black holes only. The remaining 95% is given by dark matter and dark energy, whose

nature is completely unknown. Several theoretical frameworks allocating viable DM candi-

dates have been proposed in literature. DM mass is spread over many orders of magnitude:

17
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from about 10�32 GeV up to 1018 GeV, e.g. axions (10�6–10�3 eV), keV sterile neutrinos,

WIMPzilla (⇠ 1012 GeV). Among the interesting schemes provided by elementary particle

physics, one of the most attractive and simplest scenario regards the Weakly Interacting

Massive Particle (WIMP) paradigm that typically predicts a DM mass in the GeV–TeV

range and interaction rates of the order of weak interactions. However, up to now almost

all indirect, direct and collider searches have not provided any clear evidence of dark mat-

ter [28]. Hence, DM observations remain linked to their indirect gravitational footprint

only.

The Chapter, based on Ref.s [92, 93, 94], is organized as follows. In the first Section,

we discuss all the evidence suggesting the existence of dark matter and, consequently, its

properties. In the second Section we describe how DM particles are generally produced

in the early Universe, paying particular attention to the freeze-out production mechanism.

In third Section we report a list of interesting DM candidate, while in the last Section we

provide a review of all DM searches.

2.1 Evidences and properties

There exists a wide variety of astrophysical and cosmological observations that supports the

existence of dark matter. These observations range from galactic scales up to cosmological

ones. At galactic scales, the most convincing and direct evidence comes from the measure-

ments of circular velocities of stars and gas, i.e. the rotation curves. Indeed, according to

the Newtonian dynamics, one would expect a radial velocity decreasing with the distance

from the galactic center. The flatness of the rotation curves at large radii can be explained

by considering an invisible matter spherically distributed in the outer parts of the galaxy.

Moreover, one has also to remind the weak [95] and strong gravitational lensing [96, 97]. At

larger astronomical scales, the observations of the dispersion velocities of individual stars

in cluster of galaxies also provide the indication of a mass-to-light ratio significantly di↵er-

ent from the unity. The collision of two clusters of galaxies, the so-called bullet clusters,

gives the strongest evidence that the mass distribution of clusters is dominated by dark

matter [98]. At cosmological scales, the presence of dark matter is required during the
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epochs of recombination and the structures formation. Furthermore, the analysis of CMB

temperature anisotropies leads to the determination of the matter content (baryons and

dark matter) of the Universe [85].

All the evidence for dark matter is related to gravitational “anomalies”. In 1983,

M. Milgrom proposed a phenomenological model known as modified Newtonian dynamics

(MOND) in order to account for the observed galactic rotation curves without dark mat-

ter [99]. In such a model, the Newton’s second law is modified at very small accelerations

as F = ma
2
/a0 with a0 being a constant. However, MOND and its relativistic formulation

known as Tensor-Vector-Scalar gravity fail in explaining all the observations previously

discussed, in particular the ones related to cluster and cosmological scales. Hence, the in-

troduction of dark matter is the only way to explain all the gravitational anomalies related

to systems of di↵erent sizes and epochs.

Even thought the nature of dark matter is still unknown, the various astronomical and

cosmological observations provide us some properties that a viable DM candidate has to

have. In particular, an acceptable DM candidate should be:

• Neutral. Very strong limits on the electric charge of dark matter are placed by

searches for heavy Hydrogen-like atoms and by limits on strongly interacting DM [100,

101, 102]. In particular, for a DM mass mDM smaller than the electron mass, the DM

electric charge qDM could be as large as 10�15 [103]. For larger masses, the allowed

range is instead qDM . 10�7 (mDM/GeV) [104].

• Stable. Since we observe some of the gravitational anomalies today, DM particles

have to be stable or very long lived. The lifetime ⌧DM has to be at least larger

than the age of Universe, i.e. ⌧DM � 1017 sec. However, observations of cosmic-

rays, gamma-rays and neutrinos provide stronger constraints that in general lead to

⌧DM � 1026 sec [105, 106, 107, 108].

• Cold. The N -body simulations describe the observed structure in the Universe [109]

when dark matter is cold [110, 111], that means it was non-relativistic during the

epoch of formation of galaxies (T ⇡ 1 eV). The galaxies have been formed by primor-

dial density fluctuations that at small scales are washed out by the random thermal
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motion of DM particles. Hence, hot (relativistic) DM particles suppress the growth of

small scale structures. Warm DM particles yield also a good fit predicting the right

amount of satellite galaxies for the Milky Way [112, 113].

• Consistent with Big Bang Nucleosynthesis (BBN). BBN [114] is the epoch

during which the light elements are produced. Since it occurs at T ⇠ MeV, DM

masses of the order of MeV energy are strongly constrained in order to not spoil the

right abundances of Hydrogen, Helium and other elements.

• Collisionless. In frameworks where DM particles interact with themselves [115], the

self-interaction has to be not too strong (�/mDM . 0.3 cm2 g�1) otherwise the galactic

halos would quickly evaporate [116].

• Right DM abundance. The model allocating the DM candidate has to account

also for its production providing the observed abundance

⌦DMh
2
��
obs

= 0.1188± 0.0010 , (2.1)

according to the Planck analysis [85].

Moreover, the DM candidate has to be compatible with all the exclusion limits placed by

DM searches experiments. Such limits will be discussed in the last Section of this Chapter.

In the next Section, instead, it is briefly reviewed the standard mechanism through which

DM particles are in general produced in the early Universe: the thermal freeze-out.

2.2 Production mechanisms: the thermal freeze-out

According to the theoretical paradigm of the evolution of the Universe in standard cosmol-

ogy, the Universe began from an isotropic and quasi-homogeneous hot plasma some fifteen

billion years ago, and then it cooled down due to its rapid expansion. During the his-

tory of the Universe, DM particles are in general produced through their interactions with

particles of the hot plasma. In order to provide an acceptable DM candidate, one has to

address the question “how is dark matter produced in the early Universe?”. In general, it is
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possible to divide the production mechanisms in two categories: thermal and non-thermal.

Among the non-thermal mechanisms, we remind the freeze-in mechanism [117, 118], the

direct production from inflaton decay or from coherent oscillations [119]. Such production

mechanisms are usually model-dependent and fine-tuned to reproduced the correct relic

abundance reported in Eq. (2.1). On the other hand, the thermal freeze-out production

mechanism provides a simple, calculable, and almost model-independent way to create DM

particles from thermal processes with the hot plasma [120, 121, 122]. Let us now briefly

describe the history of DM particles, focusing on the freeze-out mechanism.

The evolution of the number density n� of DM particles (hereafter denoted as �) with

mass m� during the history of the Universe is encoded into the Boltzmann equation. It is

possible to cast the Boltzmann equation in terms of the yield

Y� ⌘
n�

s
, (2.2)

where s is the entropy density whose expression as a function of the temperature T of the

thermal plasma is equal to

s =
2⇡2

45
g
s
⇤ (T )T

3
. (2.3)

Here, gs⇤ (T ) is the sum of the relativistic bosonic (B) and fermionic (F) degrees of freedom

gi weighted by the temperatures of each species in the plasma.

g
s
⇤ (T ) =

X

B

gB

✓
TB

T

◆3

+
7

8

X

F

gF

✓
TF

T

◆3

. (2.4)

The Boltzmann equation for the yield Y� reads

dY�

dT
= � 1

H T s


g�

(2⇡)3

Z
C d

3
p�

E�

�
, (2.5)

where the quantity in brackets contains a general collision term C related to the interactions

of DM particles with SM ones, and H is the Hubble parameter defined as

H = 1.66
p

g⇤ (T )
T

2

MPl
, (2.6)

where MPl is the Planck mass and g⇤ (T ) is given by

g⇤ (T ) =
X

B

gB

✓
TB

T

◆4

+
7

8

X

F

gF

✓
TF

T

◆4

. (2.7)
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The Boltzmann equation (2.5) has been obtained by assuming that the relativistic degrees

of freedom of the thermal bath do not change with decreasing of the temperature, i.e.,

dg⇤

dT
=

dg
s
⇤

dT
= 0 . (2.8)

This implies that Ṫ ⇡ HT . Such an approximation holds in di↵erent settings frequently

studied. At temperatures higher than the electroweak scale, we have g⇤ = g
s
⇤ = 106.75.

Such a value corresponds to the total number of relativistic degrees of freedom in the SM

at high temperature.

The Boltzmann equation (2.5) describes how the yield Y� changes as a function of the

temperature T . By integrating this equation over the temperature, or over the auxiliary

variable x ⌘ m�/T , one obtains the DM relic abundance

⌦DMh
2 =

2m�s0
⇢crit/h

2

"
m�

Z 1

0

dx
1

x2

 
� dY�

dT

����
T=

m�
x

!#
, (2.9)

where s0 = 2891.2 cm�3 is today’s entropy density and ⇢crit/h2 = 1.054⇥ 10�5 GeV cm�3 is

the critical density [28]. In the above expression, the factor 2 accounts for the contribution

of DM antiparticles to the relic abundance in case of Dirac particles.

As an illustrative example, let us now obtain the collision term in case of scenario where

DM particles interact with SM fields  through an unidentified process �� $   with

cross section ���. If the particles  are in thermal equilibrium with the plasma, one can

show that the Boltzmann equation (2.5) becomes equal to

dY�

dT
= �h��� |v|i sH T

�
Y

2
�
� Y

2
�,eq

�
, (2.10)

where h��� |v|i is the thermally averaged cross section of �� annihilation. The quantity

Y�,eq is the yield when the thermal equilibrium holds. It can be obtained by considering

the expressions

n�,eq =

8
>>><

>>>:

g�
⇠

⇡2T
3 relativistic particles

g�

⇣
m�T

2⇡2

⌘3/2
e
�m�/T non-relativistic particles

, (2.11)

where g� is the number of internal degrees of freedom of DM particles. At high temper-

atures T � m� the processes of creation and annihilation are strong enough to maintain
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the DM particles in thermal equilibrium. Hence, in this regimes (relativistic particles)

n� = n�,eq / T
3. As the temperature falls below the DM mass, the processes of creation

become exponentially suppressed while the annihilation should in principle continue. In

this case, the number density of DM particles would be exponentially suppressed (non-

relativistic regime) and DM particles would quickly disappear from the plasma. However,

if the expansion of the Universe, that is encoded by the Hubble parameter H, dominates

over the annihilation rate, it becomes increasingly hard for DM particles to find each other

to annihilate. Hence, the number density n� freeze-out. The condition of freeze-out is

simply expressed by the equality

H ⇠ h��� |v|in�,eq , (2.12)

that means the expansion rate is comparable to the annihilation rate. The exact temper-

ature of freeze-out (TFO or alternatively xFO) can be obtained by solving the Boltzmann

equation numerically. However, it is approximately given by the following analytical ex-

pression

xFO =
m�

TFO
⇡ ln

"
c (c+ 2)

r
45

8

g�

2⇡3

m�MPl (a+ 6b/xFO)

g
1/2
⇤ x

1/2
FO

#
, (2.13)

where c ⇡ 0.5 and the coe�cients a and b are related to the s- and p-wave terms in the

expansion

h��� |v|i = a+ b hvi+O
�
v
4
�
. (2.14)

Then, the DM relic density is approximately given by

⌦DMh
2 ⇡ 1.04⇥ 109 GeV�1

MPl

xFO

g
1/2
⇤ (a+ 3b/xFO)

. (2.15)

2.3 Dark Matter candidates

Here, we provide a brief discussion about some of the most popular and well motivated

candidates belonging to the so-called dark matter zoo.

Neutrinos were the first particles to be proposed as DM candidates. However, they

are not a viable candidates since do not satisfy all the properties listed in the Section 2.1.
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Indeed, one can show that the total neutrino relic density is given by

⌦⌫h
2 =

3X

i=1

mi

93 eV
. (2.16)

By considering the limit on the absolute neutrino masses placed by Troitzk [78] and

Mainz [79] experiments for all the three mass eigenvalues, one obtains that neutrinos cannot

account for the whole DM abundance since ⌦⌫h
2 . 0.07. Moreover, neutrinos are relativis-

tic (hot) at their decoupling occurring at T ⇠ MeV, and hence they are incompatible with

the N -body simulations for structure formation.

Axions were originally introduced to solve the so-called strong CP problem related to

the fine-tuning of the CP-violating coupling ✓Ga

µ⌫
G̃

µ⌫a [123, 124, 125, 126]. Indeed, such a

coupling has to be smaller than 10�9 according to the measurement of the neutron electric

dipole moment. The fine-tuned problem is solved by the Peccei-Quinn U(1) symmetry that

is dynamically and spontaneously broken. The axion is the pseudo-Goldstone boson associ-

ated to this symmetry. These particles are stable and cold (non-relativistic at production),

and have a mass equal to [127, 128, 129]

ma ⇡ 6⇥ 10�6

✓
1012 GeV

fa

◆
eV , (2.17)

where fa is the axion decay constant that ranges from 109 to 1012 GeV.

Sterile neutrinos are simply right-handed neutrinos ⌫R, that are singlet under the SM

gauge group [130]. They interacts only through their mixing with the left-handed neutrinos

⌫L belonging to the SUL(2) lepton doubles. By adding ⌫R to the SM matter content, one

can write two neutrino mass terms

L � mD

hHiLH̃⌫R +
1

2
mS (⌫R⌫

c

R
) + h.c. , (2.18)

where the former is a Dirac mass Yukawa-like term while the latter provides a Majorana

mass. For the sake of simplicity, in the expression we omit the flavor indexes and we consider

just one left-handed and one right-handed neutrinos. After the electroweak symmetry

breaking, the full neutrino mass term becomes equal to

L � 1

2
(⌫L ⌫cR)M

0

@ ⌫
c

L

⌫R

1

A+ h.c. =
1

2
(⌫L ⌫cR)

0

@ 0 mD

m
T

D
mS

1

A

0

@ ⌫
c

L

⌫R

1

A+ h.c. . (2.19)
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In the limit mS � mD, the two eigenstates obtained by diagonalizing the matrix M have

the following masses

|m1| ⇠
m

2
D

mS

, and m2 ⇠ mS . (2.20)

Hence, one eigenstate is a light mainly-active neutrino while the other one is a heavier

mainly-sterile state. This is the so-called type-I seesaw mechanism [131, 132, 133, 134, 135,

136]. The mixing between the two states is provided by the active-sterile mixing angle

given by

|✓| ⇠ mD

mS

⇠
r

m1

m2
⇠ 3⇥ 10�3

⇣
m1

0.05 eV

⌘1/2✓6 keV

m2

◆1/2

. (2.21)

A viable DM candidate is a sterile neutrino with mass m2 in the keV range. Such a

particle could be cold or warm depending on how it is produced in the early Universe.

The most simple production mechanism know as Dodelson-Widrow mechanism is through

the oscillations between active and sterile neutrinos [137]. The keV neutrinos are not

stable, but decay into a light neutrino and a X-ray photon. Even though there exist

stringent astrophysical and cosmological constraints on keV sterile neutrinos, such particles

can explain the observation of the 3.5 keV X-ray line [138, 139]. In this framework, the most

simple model accounting for dark matter, for the light neutrino masses with the seesaw

mechanism and for the baryon asymmetry through leptogenesis is the neutrino minimal

standard model (⌫MSM) [140]. Such a model contains only three sterile neutrinos up to

the Planck scale in addition to the SM particles. One of them is at the keV scale and is a

viable DM candidate, while the other two have a mass in the range 100 MeV – 100 GeV.

Weakly-interacting massive particles (WIMPs) represent a class of DM candidates

that typically have a mass in the GeV–TeV range and have interactions of the same order

of the weak ones with SM particles. The WIMP paradigm is the most attractive scenario

of dark matter for di↵erent reasons:

• WIMP candidates naturally appear in several extensions of the SM. In particular, in

supersymmetric theories the lightest supersymmetric particle is a good DM candidate

with the WIMPs properties. Possible DM candidates are for instance neutralinos,

gauginos or sneutrinos.

• WIMPs are cold, non-relativistic at freeze-out.
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• Independently from the initial conditions of the Universe, the correct relic abundance

is obtained through the thermal freeze-out mechanism once weak scale interactions

between SM and DM particles are assumed.

The remarkable coincidence between the annihilation cross section providing the correct

DM relic abundance and the typical cross section of weak scale interactions is quoted in

literature as the WIMP miracle. Indeed, in case of a DM mass in the GeV–TeV range and

of an annihilation cross section around the weak scale, we have that the freeze-out occurs

at xFO ⇡ 17÷ 25. Hence, by using Eq. (2.15), the resulting relic abundance is

⌦DMh
2 ⇡ 0.1

⇣
xFO

20

⌘⇣
g⇤

80

⌘�1/2
✓

a+ 3b/xFO

3⇥ 10�26cm3 s�1

◆�1

⇡ 0.1
3⇥ 10�26cm3 s�1

h��� |v|i
. (2.22)

The correct DM relic abundance is threfore obtained when a typical cross section of a weak-

scale interaction ↵2
/ (100GeV)2 is considered, providing the so-called WIMP miracle.

2.4 Dark Matter searches

DM particle can be searched for in laboratories through recoil o↵ nuclei (N) via processes

like �N ! �N (direct detection), in the sky by detecting their annihilation or decay

byproducts (indirect detection), and with colliders such as LHC in processes like pp! ��X,

being X any SM particles (collider searches). In Fig. 2.1 they are reported the model-

independent interactions of WIMPs on which direct, indirect and colliders searches are

based. The same interactions are also relevant in di↵erent epochs of the history of the

Universe like the DM production and the structure formation.

2.4.1 Direct searches

Our galaxy is surrounded by a DM halo that extends far beyond the radius of baryonic

matter. Galactic rotation curves and cosmological simulations provides an estimate for the

DM local density (at a distance of ⇠ 8.5 kpc from the Galactic Center). In particular, we
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Figure 2.1: Scheme of WIMP interactions in the early Universe and the three ways of

detections.

have [141]

⇢� = (0.39± 0.03)GeV cm�3
. (2.23)

Due to the motion of the Sun and the Earth, we are crossed by a flux of dark matter particles

that move with an averaged relative velocity of v0 ⇡ 300 km/s. These dark matter particles

can scatter o↵ a nucleus in an underground detector. The idea to infer the DM properties

by measuring the recoil energy ER of the nucleus dates back to 1985 by Goodman and

Witter [142]. From the kinematics, the recoil energy has the following expression

ER ' 50 keV
⇣

m�

100GeV

⌘2✓100GeV

mN

◆
, (2.24)

where mN is the mass of the target nuclei. The experiments dedicated for DM direct

searches are in general sensitive to DM masses m� larger than ⇠ 10 GeV, according to the

threshold energy of few keVs for a positive signal in the detector and to a target nuclei mass

of⇠ 100 GeV (for instance, experiments like XENON100 and LUX we havemXe
N
' 120 GeV,

i.e. the mass of Xenon nuclei). Therefore, direct DM searches in underground detectors

represent the most promising way to look for WIMP candidates. A list of selected dark
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matter experiments is provided in Tab. 2.1. All these experiments provide excluded regions

in the plane defined by the WIMP mass and WIMP-nucleon cross section. The status of

WIMP direct detection results is summarized in Fig. 2.2. We note that:

• the bounds become weaker for masses m� . 10 GeV due to the energy thresholds of

the experiments;

• independently from the experiment, the maximum sensitivity is in general reached

for a DM mass of 50–100 GeV;

• the sensitivity weakens towards larger DM mass because the DM number density of

the Galaxy scales as 1/m�.

By the year 2020, direct detection experiments are expected to have a sensitivity⇡ 10�48 cm2,

i.e. close to the so-called “neutrino floor”. There, coherent neutrinos scatterings become

relevant and the direct detection experiments are no longer background free.

One has to highlight the statistical significant positive signal of DM direct detection

claimed by the DAMA Collaboration, which observed an annual modulation of the event

rate as expected by taking into account the relative motion of the Earth around the

Sun [146]. The DAMA data can be interpreted in terms of dark matter interactions with

nuclei, but such a scenario is in tension with the null results reported by other experi-

ments [147, 148, 149]. However, it is worth observing that astrophysical inputs (local DM

density and its velocity distribution) are subject to large uncertainties, and the responses

of detectors are not completely known (especially in the low mass region [150]).

2.4.2 Indirect searches

Dark matter indirect detection experiments look for signatures of DM annihilation or decay

into (anti-)matter (AMS, PAMELA, CALET, DAMPE), photons (Fermi-LAT, EGRET,

H.E.S.S., MAGIC, HAWC) and neutrinos (IceCube, ANTARES). A summary of the current

constraints on annihilating dark matter is depicted in Fig. 2.3, for di↵erent final-state

channels. Similar constraints can be obtained in case of decaying DM. In all these indirect
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Experiment Location Readout Target mass [kg] Target Dates

DAMA/NaI Gran Sasso � 87 NaI 1995–2002

DAMA/LIBRA Gran Sasso � 223 NaI 2003–

ANAIS Canfranc �

11
NaI

2000–2005

100 2011–

KIMS Yangyang �

35
CsI

2006–2007

104 2008–

CDMS II Soudan �, q

1 Si 2001–2008

3 Ge 2001–2008

superCDMS
Soudan

�, q 12 Ge
2010–2012

SNOLAB 2013–2016

EDELWEISS I Modane �, q 1 Ge 2000–2004

EDELWEISS II Modane �, q 4 Ge 2005–

CRESST II Gran Sasso �, � 1 CaWO4 2000–

SIMPLE Rustrel d 0.2 Freon 1999–

PICASSO Sudbury d 2 Freon 2001–

COUPP Fermilab d

2
Freon

2004–2009

60 2010–

CoGeNT
Chicago

q 0.3 Ge
2005–

Soudan 2008–

ZEPLIN III Boulby �, q 7 LXe 2004–

LUX Sanford �, q 100 LXe 2010–

XENON10 Gran Sasso �, q 5 LXe 2005–2007

XENON100 Gran Sasso �, q 50 LXe 2009–

Table 2.1: List of selected dark matter experiments, including fiducial mass and readout

(scintillation light (�), phonons (�), ionization (q), and super-heated droplets (q)). The

table has been adapted from Ref.s [143, 144].
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Figure 2.2: WIMP dark matter direct detection status circa 2014. The plot is taken from

Ref. [145].

searches, a key role is played by the “background” from ordinary astrophysical processes,

above which a possible DM signal is looked for. To the aim to overcome the astrophysical

background, one has to consider di↵erent final-state channels (like the ones involving anti-

matter) and range of energy, or to target regions of the space dominated by DM, like for

example the Galactic Center of the Milky Way. However, the astrophysical background

is in general a↵ected by large uncertainty, especially in the case of charged particles due

to the lack of a precise knowledge of interactions with galactic magnetic fields and with

distributions of matter and light.

In this context, it is emblematic the data of the positrons and of anti-protons fractions.

In particular, it was claimed that the observed steep increase in the energy spectrum of the

positron fraction e
+
/ (e� + e

+) measured by PAMELA [152], Fermi [153] and AMS [154]
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Figure 2.3: Current bounds (circa 2015) on annihilating dark matter, obtained by some

experiments considering di↵erent annihilating channels. The plot has been taken from

Ref. [151].

can be explained by leptophilic DM particles. However, the same signal can be obtained

by considering nearby pulsars or supernova remnants. A similar situation occurs for the

anti-proton fraction. The discrepancy between the PAMELA [155] and AMS [156] with

the expectations from astrophysical observations can be reconciled by taking into account

all the uncertainties in the calculation of the proton and anti-proton fluxes reaching the

Earth [157].

In the next Chapter, we will discuss the ingredients required to evaluate the flux of

neutrinos and gamma-rays produced by decaying/annihilating dark matter. As will be

seen, the expected DM signals depend on the astrophysical details related to the DM

density distribution in the region of observation. On the other hand, particle physics enters

in the determination of the DM mass, annihilation cross section h�vi or the decay lifetime

⌧�.



CHAPTER 2. THE QUEST FOR DARK MATTER 32

2.4.3 Colliders searches

Lastly, since WIMPs live at the weak scale, they can be detected at colliders like LHC.

In this case, the creation of dark matter would be indicated by missing energy. For in-

stance, the branching ratio of Higgs decays to invisible provides a very strong constrain

on DM models for masses below Mh/2 based on the Higgs portal [158, 159]. Moreover,

since it is possible to related the DM pair production rate at colliders to the annihilation

and scattering at indirect and direct detection experiments, colliders searches represent a

complementary probe in unveiling the nature of dark matter.



Chapter 3

Dark Matter Indirect Detection

Dark matter particles are gathered in our galaxy, the Milty Way, and surround other astro-

physical objects. Depending on the interaction between DM and SM particles, dark matter

can decay or annihilate producing particles like neutrinos, photons, electron and positrons

and so on, that can reach the Earth and can be observed in satellite or underground de-

tectors. The detection of these particles provides a way to indirectly infer the properties of

dark matter particles. As will be discussed in this Chapter, the di↵erential flux of particles

produced by DM decays/annihilations depends on particles physics parameters and on as-

trophysical ones. The latter represents the major source of uncertainties a↵ecting indirect

DM searches.

Among the possible SM particles, neutrinos and photons are the best messengers for

the study of the DM properties. Indeed, they are not (or slightly) a↵ected by propagation

e↵ects that are in general related to galactic and intergalactic magnetic fields. On the other

hand, in case of charged particles like electrons and positions one has to take into account

their propagation in the galactic and intergalactic media. In this case, the di↵erential flux

at the Earth is modified and degraded in energy, and in general secondary particles are

produced.

In this Chapter we describe all the ingredients that are necessary to compute the fluxes

of neutrino (first Section), electrons/positrons (second Section) and photons (third Section)

produced by di↵erent dark matter models.

33
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3.1 Flux of Neutrinos

Let us firstly discuss the di↵erential flux of neutrinos that are possibly produced by DM

decays or annihilations. In this way, we present all the ingredients regarding particle physics

and astrophysics that are required in indirect DM searches.

Neutrinos can be produced as primary or secondary particles by the decays of unstable

DM particles or by the pair-annihilation of stable DM particles. The DM di↵erential

neutrino flux of a flavor ↵ at the Earth (denoted with the symbol �) consists of two

contributions
d�DM

↵

dE⌫d⌦

����
�
=
X

�

P↵�

"
d�G

�

dE⌫d⌦
+

d�EG
�

dE⌫d⌦

#
. (3.1)

The first term corresponds to the Galactic (G) contribution associated with the Milky Way,

while the secondrefers to the Extragalactic (EG) component. In case of neutrinos, the only

e↵ect due to the propagation is due to neutrino oscillations. In order to take into account

the neutrino flavor oscillations during the propagation, the di↵erential neutrino fluxes at

the source and at the Earth are related by the mixing probabilities P↵�. Such quantities

are the probabilities that a neutrino of flavor � is converted into a neutrino of flavor ↵.

By taking the limit of long baseline oscillations in Eq. (1.17) (L� |�!p ⌫ | /�m
2
⌫
) the mixing

probabilities are equal to [160]

Pee = 0.573 , Peµ = 0.348 , Pe⌧ = 0.150 ,

Pµµ = 0.348 , Pµ⌧ = 0.375 , P⌧⌧ = 0.475 .

(3.2)

Let us now report and discuss the expressions of the Galactic and Extragalactic flux of

Eq. (3.1) for the two cases of decaying (dec.) and annihilating (ann.) DM particles. In the

first case, the two contributions take, respectively, the expressions

d�G
�

dE⌫d⌦

�����
dec.

=
1

4⇡mDM

X

f

�f

dN f

⌫�

dE⌫

Z 1

0

ds ⇢h [r (s, `, b)] , (3.3)

d�EG
�

dE⌫d⌦

�����
dec.

=
⌦DM⇢c

4⇡mDM

Z 1

0

dz
1

H (z)

X

f

�f

dN f

⌫�

dE⌫

�����
E0=E(1+z)

. (3.4)

In these expressions we can distinguish two di↵erent sets of parameters: the ones referred
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Figure 3.1: Three flavors neutrino energy spectra for four DM decay channels: leptonic

(left panel) and hadronic (right panel) ones. The DM mass has been fixed to 100 TeV.

to particle physics and the ones to astrophysics. Among the particle physics parameters we

have:

• The Dark Matter mass mDM. This quantity provides the energy cut-o↵ of the

di↵erential flux. Indeed, for a decay channel with n particle in the final-states, the

maximum energy allowed for each particle is mDM/n according to kinematics.

• The decay channels f and their decay widths �f . In general, DM particles

can decay through di↵erent channels producing primary and secondary neutrinos.

The weight of each decay channel is represented by the decay width �f . If it is not

specified in the text, hereafter we consider only one decay channel at a time. In this

case, we have
X

f

�f

dN f

⌫�

dE⌫

! 1

⌧DM

dN⌫�

dE⌫

, (3.5)

where ⌧DM is the DM lifetime.

• The energy spectrum of neutrinos for a give channel. The quantity dN⌫�
/dE⌫

is the energy spectrum of �-flavor neutrinos produced by DM particles, that means the

number of neutrinos in the energy interval E–E + dE. It depends on the particular

DM interaction with the SM particles and, in general, is obtained by means of a

Monte Carlo procedure. In Fig. 3.1 we report the energy spectra of three flavor

neutrinos for a hundred TeV DM mass, in case of four di↵erent DM decay channels.
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We note that in case of leptonic final states (left panel) the neutrino energy spectra

are more peaked in correspondence of the DM mass, while in case of hadronic channels

they are more flat. The energy spectra are taken from Ref. [161], where they have

been evaluated up to a DM mass of 100 TeV by means of a Monte Carlo procedure

that takes into account the decays of unstable SM particles (like pions) and the

electroweak radiative corrections, which are relevant for heavy DM particles [162].

The electroweak radiative corrections correspond to the bremsstrahlung of electroweak

W and Z bosons. They a↵ect the energy spectra by providing unexpected particles

in the final states, especially at low energies. The larger the DM mass, more relevant

the electroweak radiative corrections, since it becomes more probable the emission

of electroweak bosons. In order to perform the analysis for DM masses larger than

100 TeV, we extrapolate the energy spectra given in Ref. [161] by considering an

appropriate rescaling. In particular, for mDM � 100 TeV, the energy spectrum is

given by
dN⌫�

dE⌫

����
mDM�100TeV

=
1

E⌫ ln(10)

dN⌫�

d log x
(x)

����
100 TeV

(3.6)

where the quantity dN⌫�
/d log x, provided in Ref. [161], is a function of the variable

x = E⌫/mDM and it is evaluated with a DM mass of 100 TeV.

On the other hand, among the astrophysical parameters appearing in Eq.s (3.3) and (3.4)

we have:

• The DM halo density density. The Galactic contribution given in Eq. (3.3) is

proportional to the integral over the line-of-sight s of the galactic DM halo density

⇢h (r), function of the radial coordinate

r =
q

s2 + r
2
� � 2sr� cos ` cos b , (3.7)

where r� = 8.5 kpc is the distance between the Sun and the Galactic Center, and (b, `)

are the Galactic coordinates. The DM halo density encodes how the DM particles are

distributed in our galaxy. There exist di↵erent parametrization for ⇢h (r), providing

di↵erent e↵ects to the numerical simulations of structure formation and to galactic
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Dark Matter halo ↵ rs [kpc] ⇢s [GeV/cm3]

NFW – 24.42 0.184

Einasto 0.17 28.44 0.033

EinastoB 0.11 35.24 0.021

Isothermal – 4.38 1.387

Burkert – 12.75 0.712

Moore – 30.28 0.105

Table 3.1: Parameters of the di↵erent DM halo density profiles reported in Eq. (3.8). The

values are taken from Ref. [161].

rotation curves. We remind the following distributions referred as the Navarro-Frenk-

White (NFW) [163], which is considered as a benchmark, Einasto [164, 165], Isother-

mal [166, 167],Burkert [168] and Moore [169]. They take the following expressions

NFW : ⇢NFW(r) = ⇢s
rs
r

⇣
1 + r

rs

⌘�2

Einasto : ⇢Ein(r) = ⇢s exp
n
� 2
↵

h⇣
r

rs

⌘↵
� 1
io

Isothermal : ⇢Iso(r) = ⇢s

1+(r/rs)
2

Burkert : ⇢Bur(r) = ⇢s

(1+r/rs)(1+(r/rs)
2)

Moore : ⇢Moo(r) = ⇢s

�
rs
r

�1.16 ⇣
1 + r

rs

⌘�1.84

(3.8)

where the quantities ⇢s, rs and ↵ are reported in Tab. 3.1. In Fig. 3.2 we depict the

di↵erent DM halo density distributions as a function of the radial coordinate r. As

can be seen from the plot, they have very di↵erent behaviors especially towards the

Galactic Center (r = 0). In this thesis, we mainly consider two DM halo density

profiles that provide two extreme cases (predicting di↵erent angular distributions of

neutrino arrival directions): the Navarro-Frenk-White distribution (NFW) and the

Isothermal one (ISO). The former is enhanced towards the Galactic Center, while the

latter is practically uniform.

• Cosmological parameters. The Extragalactic flux of Eq. (3.4) is instead obtained

by integrating over the redshift z. The required cosmological parameters are the
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Figure 3.2: Di↵erent DM halo density profiles as a function of the radial distance r.

critical energy density ⇢c = 5.5⇥ 10�6 GeV cm�3 and the Hubble expansion rate

H (z) = H0

q
⌦⇤ + ⌦m (1 + z)3 , (3.9)

with h = H0/100 km s�1 Mpc�1 = 0.6711, ⌦DM = 0.2685, ⌦⇤ = 0.6825 and ⌦m =

0.3175 according to Planck analysis [85]. Di↵erently from the Galactic contribution,

the Extragalactic one corresponds to an isotropic flux, i.e. it is independent on the

Galactic coordinates (b, `).

• Propagation e↵ects. In case of neutrinos, the absorption in the intergalactic

medium is negligible. However, as will be discussed in the next Sections, this is

not the case for charged particles (electron and positrons) and photons.

In case of annihilating DM particles instead, the two contributions to the neutrino flux

of Eq. (3.1) are equal to

d�G
�

dE⌫d⌦

�����
ann.

=
1

2

1

4⇡m2
DM

X

f

h�vi
f

dN f

⌫�

dE⌫

Z 1

0

ds ⇢
2
h
[r (s, `, b)] , (3.10)

d�EG
�

dE⌫d⌦

�����
ann.

=
1

2

(⌦DM⇢c)
2

4⇡m2
DM

Z 1

0

dz
B (z) (1 + z)3

H (z)

X

f

h�vi
f

dN f

⌫�

dE⌫

�����
E0=E(1+z)

. (3.11)
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Here, the quantity h�vi
f
is the thermally averaged cross section for the annihilation channel

f . It is averaged over the DM velocity v, and over DM particle and anti-particles (pro-

viding the factor 1/2). An additional factor of 1/2 arises in case of Dirac DM particles.

Moreover, in the Extragalactic component there is the quantity B (z), i.e. the boost fac-

tor (or clumpiness factor). Such a quantity encodes the e↵ect of the inhomogeneities of

the DM distribution in the intergalactic medium. The clumpiness factor can be simply

parametrized as [170]

B (z) =
�2 (0)

(1 + z)3
, (3.12)

where the quantity �2
0 ranges from 104 to 108 depending on the model considered [171].

In this thesis, we also adopt the cosmological boost factor reported in Ref. [161], which

is numerically obtained by considering a Navarro-Frenk-White distribution in each sub-

halo and the power-law model [172, 173] with a minimum halo mass of 10�6
M� [174, 175]

for the concentration parameter. However, one has to underline that the boost factor is

a↵ected by large uncertainties, and the previous model has to be considered as a benchmark

model. Indeed, di↵erent models for the concentration parameter, as well as di↵erent DM

distributions, can be considered. This implies an uncertainty of orders of magnitude for

the cosmological boost factor at low redshift. Such a large uncertainty mainly a↵ects the

angular distribution of neutrino arrival directions, as shown in Ref. [2].

3.2 Flux of charged particles: electron and positrons

Charged particles like electrons and positrons are trapped in the Galaxy by galactic mag-

netic fields and undergo several di↵erent interactions through which they loss energy. In

order to take into account these e↵ects due to propagation, one has to solve the di↵use-loss

equation that for the electrons/positrons number density per unit energy

f (t,�!x ,E) ⌘ dne±

dE
, (3.13)

takes the following expression

@f

@t
�5 (K (�!x ,E)5 f)� @

@E
(b (�!x ,E) f) = Q (�!x ,E) . (3.14)
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Here, the function K (�!x ,E) is di↵usion coe�cient function describing the propagation

throughout the magnetic fields of the Galaxy. Such a function is a↵ected by quite large

uncertainties related to our lack of knowledge about the profile of the Galactic magnetic

field. Furthermore, the function b (�!x ,E) is the energy loss coe�cient function that is

related to di↵erent phenomena characterizing the energy losses of electrons and positrons

during their propagations in the Galaxy [161]. In particular, the energy losses are due

to [176]:

• coulomb interaction and ionization;

• bremsstrahlung, like the emission of gamma-ray;

• inverse Compton scattering, i.e. interactions with CMB, star-light and dust-di↵used

infrared light in the Galaxy;

• emission of synchrotron radiation.

Lastly, the function Q (�!x ,E) is the source term and it is equal to

Qdec. =

✓
⇢h (
�!
x )

mDM

◆X

f

�f

dN f

e±

dE
, (3.15)

Qann. =
1

2

✓
⇢h (
�!
x )

mDM

◆2X

f

h�vi
f

dN f

e±

dE
, (3.16)

where the quantity dN f

e±/dE is the energy spectrum of electrons/positrons produced in the

decay/annihilation channel f .

The general solution of the Eq. (3.14) for the di↵erential flux of electrons and positrons

can be written as

d�e±

dE
(E,
�!
x ) =

ve±

4⇡b (E,
�!
x )

8
>><

>>:

✓
⇢h(�!x )
mDM

◆P
f
�f

R
mDM/2

E
dEs

dNf

e±
dE (Es) I (E,Es,

�!
x )

1
2

✓
⇢h(�!x )
mDM

◆2P
f
h�vi

f

R
mDM

E
dEs

dNf

e±
dE (Es) I (E,Es,

�!
x )

(3.17)

where the function I (E,Es,
�!
x ) is the Green function of Eq. (3.14), which relates the flux

at production with energy Es to the flux di↵erential flux with energy E, for each given

position �!x . The Green function is obtained by means of numerical or semi-analytical



CHAPTER 3. DARK MATTER INDIRECT DETECTION 41

approach (for more details see Ref. [161, 176]) under some approximations. In general, the

di↵use-loss equation (3.14) is solved in a region with a shape of a cylinder containing the

galactic plane. Moreover, the solutions are obtained by considering the approximation of

steady condition, i.e. neglecting the derivative on time.

3.3 Flux of gamma-rays

As for neutrinos, the di↵erential flux of gamma-rays (high-energy photons) consists of Galac-

tic and Extragalactic components.

d�DM
�

dE�d⌦

�����
�

=
d�G

�

dE�d⌦
+

d�EG
�

dE�d⌦
. (3.18)

However, di↵erently from neutrinos, in addition to prompt gamma-rays produced directly

by DM decays/annihilations there are also secondary photons related to the interactions

of electrons and positrons. Indeed, secondary high-energy photons (gamma-rays) are pro-

duced in inverse Compton scatterings, while low-energy photons (X-rays) are emitted by

synchrotron interactions. In this thesis, we are mainly focused on gamma-rays, hence we

report only the expression for secondary photons produced in inverse Compton scatterings.

The prompt Galactic gamma-ray flux is given by

d�G
�

dE�d⌦

�����
dec.

=
1

4⇡mDM

X

f

�f

dN f

�

dE�

Z 1

0

ds ⇢h [r (s, `, b)] , (3.19)

d�G
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Z 1

0
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2
h
[r (s, `, b)] . (3.20)

Instead, the contribution to the galactic gamma-ray flux provided by inverse Compton

scatterings of electrons and positrons can be cast into the following expression
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(3.21)

where IIC (E�, Es, b, `), function of the observed energy of gamma-rays E�, of the energy of

electrons/positrons at the production Es, and of the Galactic coordinates (b, `), is a sort of
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Green function for the Inverse Compton (IC) radiative processes. It takes the expression

IIC (E�, Es, b, `) = 2E�

Z 1

0

ds

⇢�

✓
⇢h [r (s, `, b)]

⇢�

◆⌘ Z Es

me

dE
PIC (E�, E, r)

b (E, r)
I (E,Es, r) ,

(3.22)

where PIC is the di↵erential power emitted into photon due to inverse Compton scatterings

and I (E,Es, r) is the Green function of the di↵use-loss equation for electrons/positrons.

The power ⌘ is equal to 1 and 2 in case of DM decays and annihilations, respectively.

Lastly, the di↵erential Extragalactic flux of gamma-rays is given by
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d�EG
�

dE�d⌦

�����
ann.

=
1

2

(⌦DM⇢c)
2

4⇡m2
DM

Z 1

0

dz
B (z) (1 + z)3

H (z)

X

f

h�vi
f

dN f

�

dE�

�����
E0=E(1+z)

e
�⌧(E,z)

,(3.24)

where the function ⌧ (E, z) encodes the absorption of gamma-rays during their propaga-

tion. Indeed, photons with energy larger than MeV are absorbed through processes of

pair production on baryonic matter, and of photon-photon scattering and pair production

on ambient photon background radiation. Then, the extragalactic secondary emission of

gamma-ray due to inverse Compton scatterings with electrons and positrons is given by

d�EG
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dE�d⌦
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1
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where E
0 = E (1 + z) and
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Chapter 4

Physics at Neutrino Telescopes

In this Chapter, we report the main observations made at ICeCube and ANTARES Neu-

trino Telescopes, and discuss the possible astrophysical interpretation of the di↵use ex-

traterrestrial neutrino flux in the TeV–PeV energy range. The measurement of such a flux

is fundamental to astroparticle physics and astrophysics since it provides an important di-

agnostic tool for physics and astrophysics. This branch of physics is indeed important for

di↵erent reasons [177].

• Neutrinos, which are neutral and weakly interacting particles, are the best messenger

of the cosmos. Due to their nature, neutrinos that are produced in astrophysical

objects have a high probability to escape the sources, while protons and photons

could be absorbed in the astrophysical environment itself. Hence, detecting high-

energy neutrinos can potentially allow us to observe the so-called “hidden sources”

that do not emit cosmic-rays and gamma-rays.

• The Universe is not transparent to gamma-rays (high-energy photons) with energies

higher than TeV. Indeed, they are absorbed on background radiation through the pair

production process �+ �bkg ! e
+ + e

� above a threshold energy that depends on the

energy of the background photons. For example, PeV gamma-rays are absorbed in

the interactions with the CMB. Hence, neutrinos allow us to trace back very distant

sources even in presence of intergalactic backgrounds and magnetic fields.

43
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• The observation of astrophysical neutrinos is a proof for the acceleration of hadronic

matter in Galactic and Extragalactic astrophysical environments and can help us to

better understand the mechanism of the production of cosmic-rays.

• The IceCube detector is able to measure with high precision the atmospheric neutrinos

which are produced in the atmosphere by cosmic-rays.

• The detection of very energetic neutrinos is of paramount importance for elementary

particle physics, because it gives the chance to explore very high-energy phenomena

that can be potentially linked to new physics (leptoquarks, violation of Lorentz in-

variance, non-standard neutrino interactions, etc.). For example, neutrinos can be

produced by the decays or annihilations of very heavy DM particles (this subject will

be analyzed in detail in later Chapters).

The Chapter is organized as follows. In the first two Sections we discuss the atmospheric

and the astrophysical neutrinos, respectively. The third Section is devoted to review the

IceCube experiment, while the fourth Section is dedicated to ANTARES telescope and its

upgrade KM3NeT. In the fifth Section we report the combined analysis of IceCubed and

ANTARES data samples, while in the sixth Section we highlight the tension of both data

sets with the parametrization of the neutrino flux in terms of a single power-law.

4.1 Atmospheric neutrinos

In the underground based Neutrino Telescopes, one has to distinguish neutrinos that have

an astrophysical origin from ones that are produced by cosmic-rays in the Earth’s atmo-

sphere. The former are related to astrophysical objects (or possibly to DM interactions)

and, therefore, physicists are interested in measuring their flux. While the latter are neutri-

nos that are produced through di↵erent chains, starting from the interaction of cosmic-ray

particles with the particles of the Earth’s atmosphere, and play the role of a background.

Before discussing the astrophysical neutrinos, we firstly describe the so-called atmospheric

neutrino background. Such a background is generally divided into two di↵erent fluxes de-

pending on how neutrinos are produced:
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• the conventional atmospheric background consists of penetrating muons and neutrinos

produced by the ⇡/K decays in the atmosphere [178];

• the prompt atmospheric background corresponds instead to neutrinos produced by

the decays of charmed mesons [179].

4.1.1 Conventional atmospheric background

The conventional background represents the main part of atmospheric neutrinos at low

energies. In particular, they are originated in two di↵erent chains. The first one is given

by the process

⇡
± ! µ

± + ⌫µ (⌫µ) , (4.1)

while the second one is

K
± ! µ

± + ⌫µ (⌫µ) . (4.2)

In addition to this process, kaon mesons also decay into pions through the processes

K
± ! ⇡

± + ⇡
0 and K

± ! ⇡
0 + e

± + ⌫e (⌫e) . (4.3)

At low energies (GeV), muon also decay in the atmosphere before reaching the Earth and

produces neutrinos and electrons

µ
± ! e

± + ⌫e (⌫e) + ⌫µ (⌫µ) . (4.4)

Here, the flavor ratio (⌫µ + ⌫µ) / (⌫e + ⌫e) is approximately equal to 2, since the conventional

atmospheric background is dominated by muon decays.

At O (TeV) energies, the conventional atmospheric flux is dominated by ⇡/K decays and

behaves as ⇠ E
�3.7 [178, 180, 181, 182, 183]. This behavior is due to fact that high-energy

pions and kaons have a higher probability to interact before decaying, which steepens the

cosmic-ray spectrum ⇠ E
�2.7 by one power. At these energies, muons do not decay anymore

because their lifetime becomes longer and consequently they can reach the Earth and the

underground detector. Moreover, the muon neutrino and the muon originated in the same

decay (4.1) and (4.2) have the same direction, or, in other words, the opening angle between
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Figure 4.1: E↵ective conventional atmospheric background (solid lines) for the IceCube

experiment as a function of the Zenith angle ✓ for muon (left panel) and electron (right

panel) neutrinos. For down-going neutrinos (cos ✓ � 0.2) the suppression is provided by

looking for the accompanied muons that reach the IceCube detector [185], while for up-

going neutrinos (cos ✓  0.2) it is related to the absorption during the propagation through

the Earth. The plots are taken from Ref. [186].

⌫µ and µ is very small. Hence, since an atmospheric ⌫µ has a certain probability to reach the

detector accompanied with its partner µ, the observation of a muon track passing through

the detector can be used to suppress the conventional atmospheric background coming

from the sky (down-going neutrinos) [184, 185]. In Fig. 4.1, one can see the portion of the

conventional atmospheric neutrino flux that is not accompanied by muons and, therefore,

cannot be suppressed by looking for muon tracks passing through the IceCube detector. It

is worth observing that this suppression works only for down-going neutrinos for which the

partner muons are not absorbed by the Earth (in case of IceCube experiment located at the

South Pole, down-going neutrinos come from the Southern hemisphere, i.e. cos ✓ � 0.2).

This veto technique is indeed used by the IceCube Collaboration.

At higher energies, the conventional atmospheric background is further suppressed since

the lifetime of pions and kaons becomes longer and the interaction probability dominates on

the decay. Therefore, for neutrino energies lager than 100 TeV the conventional atmospheric

background starts to be negligible.

In general, the angular distribution of the atmospheric background is isotropic. However,
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Figure 4.2: Attenuation due to the absorption by the Earth as a function of the neutrino

energy, for neutrinos and anti-neutrinos of di↵erent flavors. The left panel corresponds to

a neutrinos flux �0 / E
�2.0, while the right panel refers to �0 / E

�3.0. The plots are taken

from Ref. [187].

at energies larger than 1 TeV the Earth is not transparent to neutrinos. The Earth’s opacity

is due to the interactions of neutrinos with the particles (mostly protons and neutrons)

making up the Earth. At energies up to E⌫ = 1PeV, neutrinos are absorbed more than

anti-neutrinos since they mainly scatter o↵ the nuclei in the Earth. Since such nuclei are

heavy and, therefore, contain more neutrons (uud) than protons (uud), neutrinos interact

through the exchange of a W boson with a d quark more e�ciently than anti-neutrinos,

which instead interact with u quarks. When the energy becomes higher, valence quarks

are negligible with respect to the sea quarks, and the interactions of neutrinos and anti-

neutrinos with the nuclei asymptotically become equal. Moreover, at a neutrino energy

E⌫ ⇡M
2
W
/2me ⇡ 6⇥ 106 GeV, one has to take into account the resonance

e
� + ⌫e ! W

� ! X , (4.5)

implying that electron anti-neutrinos are absorbed passing through the Earth more than

electron neutrinos. The attenuation of the neutrino flux due to the absorption by the Earth

is displayed in Fig.s 4.1 and 4.2, where it is reported its dependence on the Zenith angle

(cos ✓  0.0) and the neutrino energy, respectively.

In the present thesis, we adopt the calculations of the conventional atmospheric back-
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ground performed by Honda et al. [178] that is considered as a benchmark by the scientific

community. However, it is worth noticing that such an estimation is a↵ected by large un-

certainties related to the hadronic interaction models for the production of mesons in the

atmosphere and to cosmic-ray spectral shape and composition at the knee (⇠ 3⇥ 1015 eV).

In Ref. [188], a detail treatment of such uncertainties has shown that the atmospheric muon

flux is a↵ected by an average error of +15
�13%, while the muon and electron neutrino fluxes

are evaluated within an average error of +32
�22% and +25

�19%, respectively.

4.1.2 Prompt atmospheric background

The prompt atmospheric background flux [179, 189, 190] consists of neutrinos produced

in the semi-leptonic decays of charmed mesons and baryons. Their contribution to the

total atmospheric flux is expected to be important above 100 TeV, where the only other

contribution provided by K decays starts to be negligible. The prompt flux is expected

to behave as the cosmic-ray spectrum, i.e. ⇠ E
�2.7, because the charmed mesons immedi-

ately decay (the rest-frame lifetimes are of the order of 10�12 s) and do not have time to

propagate in the atmosphere. As for the conventional flux, the calculations of the prompt

atmospheric background are a↵ected by uncertainties related to the cosmic-ray normaliza-

tion and spectral distribution. However, it is also a↵ected by the large uncertainties on the

charm production cross sections, which have not been measured in colliders at these high

energies.

It is worth noticing the measurements of the atmospheric background made by AMANDA

(Antartic Muon And Neutrino Detection Array) [191] and IceCube [186, 192, 193, 194, 195]

have not found a significant contribution from charm hadron decays. Moreover, the latest

calculations [196, 197, 198], which take into account the new measurements of the hadronic

cross sections, predict a prompt neutrino flux that is in general lower than its previous

benchmark estimation [179]. For these reasons, in the following analyses we do not take

into account the prompt atmospheric background that is hence considered as negligible.
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4.2 Astrophysical neutrinos

Di↵erently from the atmospheric neutrinos, the astrophysical neutrinos are the ones that are

originated in astrophysical environments where hadronic matter (protons) is accelerated by

magnetic fields and then interact with gas or with radiation. Therefore, depending on how

the neutrinos are produced, we mainly divide the astrophysical sources into two di↵erent

classes:

• the p-p astrophysical sources, where neutrinos are originated by the interactions of ac-

celerated protons with the gas (proton-proton collisions). This interaction is expected

for cosmic-ray reservoirs, where the cosmic-rays escaping from their accelerators are

confined in magnetized environments for a long time. In this case, the neutrinos are

produced through the following processes

p+ p! ⇡
+ + ⇡

� + ⇡
0 and

8
<

:
⇡
± ! µ

± + ⌫µ (⌫µ)

⇡
0 ! � + �

. (4.6)

In general, neutrinos carry in average the 5% of the energy of the parent proton

(E⌫ ⇡ 0.05Ep).

• the p-� astrophysical sources, where neutrinos are instead produced in the interactions

of accelerated protons with light (proton-gamma collisions). The cosmic-rays escape

from the astrophysical environment and interact with radiation (like the CMB) in

the intergalactic space. For this kind of sources, the neutrinos are produced via the

resonance

p+ � ! �!

8
<

:
⇡
+ 1/3 of cases

⇡
0 2/3 of cases

, (4.7)

and the pions later decay into neutrinos and gamma-rays.

In both cases, the flavor ratio of neutrinos at the source is

(⌫e, ⌫µ, ⌫⌧ )S = (1, 2, 0) . (4.8)

However, due to neutrino oscillations during the propagation, the standard astrophysical

sources predict an equal flavor ratio at the Earth.

(⌫e, ⌫µ, ⌫⌧ )� = (1, 1, 1) . (4.9)
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Hence, is it reasonable to assume a correlation between the observed astrophysical neutrinos

and the hadronic cosmic-rays. Thus the dependence of the neutrino flux on energy should

be, at the source, mostly related to the di↵erential spectrum of charged cosmic-rays and to

the pions production e�ciency. Under such a hypothesis, the di↵erential neutrino flux (at

a given energy E⌫ , per unit solid angle ⌦ and per neutrino flavor ↵) can be parametrized

by a power-law behavior

d�astro
↵

dE⌫d⌦
=

1

4⇡
�0

astro

✓
E⌫

100 TeV

◆��

, (4.10)

where �0
astro is the normalization of the neutrino flux at 100 TeV and � is the so-called spec-

tral index. This parametrization does not depend on the angular coordinates and provides

an isotropic neutrino flux as expected for extragalactic astrophysical sources. Moreover, the

normalization �0
astro is equal for each neutrino flavor ↵ according to the prediction of flavor

ration 1:1:1 at the Earth. In this expression, the sum over neutrinos and anti-neutrinos of

flavor ↵ is implicitly assumed.

Depending on the properties of the astrophysical source, the protons can be in general

accelerated up to a maximum energy

E
max
p

= BR , (4.11)

whereB the magnetic field andR the size of the source. Therefore, one can also parametrized

the neutrino flux in terms of a broken power-law (BPL) with an exponential cut-o↵

d�astro (broken)
↵

dE⌫d⌦
=

1

4⇡
�0

astro

✓
E⌫

100 TeV

◆��

exp

✓
� E⌫

Emax
⌫

◆
, (4.12)

where E
max
⌫

is typically equal to 5% of Emax
p

.

The power-law behavior is predicted for protons that are accelerated by magnetic field

in a gas cloud or in a shock front [199, 200]. The benchmark prediction of the Fermi ac-

celeration mechanism is a power-law with spectral index � = 2.0 [199, 200, 201, 202, 203].

However, depending on the particular neutrino production mechanism there can be devia-

tions from such a value. For instance, if neutrinos arise from hadronuclear p-p interactions

then � . 2.2 [204, 205], since the neutrino spectral shape follows the initial proton (or
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hadron) spectrum. On the other hand, models with photohadronic p-� interactions gener-

ally produce peaked spectra [206], then one could have a steep flux (� & 2.2) depending on

the position of the peak.

In general, theoretical models of acceleration mechanism for hadronic matter produce a

flux that should be at most as soft as E�2.4
⌫

. This is expected for Galactic sources once the

proton spectrum at the source is compared to the one measured at the Earth. Once the

propagation e↵ects are taken into account, the galactic cosmic-ray spectrum at the Earth

becomes / E
�(�+�) with � + � ⇡ 2.7 up to the knee at 1 ÷ 10 PeV [28]. The quantity

� = 0.3÷ 0.6 depends on galactic magnetic fields [207, 208].

Di↵erent extragalactic astrophysical sources have been proposed as potential candidates

providing a contribution to the extraterrestrial neutrino flux in TeV–PeV range [177, 209].

Among such sources one can quote:

• SuperNovae Remnants (SNRs) [210, 211, 212] are related to the final stage in

the evolution of stars with a mass eight times bigger than the mass of the Sun. The

hadronic matter is accelerated by the shock waves through the Fermi mechanism.

As pointed out in Ref.s [213, 214, 212, 215], the gamma-ray flux produced in these

p-p astrophysical sources is constrained by the Fermi-LAT measurements [216]. This

leads to a corresponding constraint on the neutrino flux, i.e. the spectral index has

to be smaller than 2.2. Moreover, it was claimed that, according to the gamma-ray

constraints, star-forming galaxies can provide at most a contribution to the neutrino

flux of ⇠ 30% at 100 TeV and ⇠ 60% at 1 PeV [214]. Therefore, they cannot be

the dominant neutrino sources. The tension between neutrino and gamma-ray data

can be alleviated by considering the uncertainties on the gamma-rays absorption

in the astrophysical environment itself and in the intergalactic medium [212]. In

case of StarBurst galaxies (SB) the radio observations lead to a lower bound on the

cumulative di↵use neutrino flux [204]

E
2
⌫
�
SB
⌫
⇡ 10�7

✓
E⌫

1GeV

◆�0.15±0.1

GeV cm�2 s�1 sr�1
, (4.13)

implying the constraint on the spectral index �  2.25.
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• Active Galactic Nuclei (AGN) [217, 218, 219, 220] are accelerators in the center

of a young galaxy. The most powerful AGN are Blazars that are AGN with a super-

massive black hole accelerating matter via jets. These objects can be see if the jets

point towards the Earth. The contribution of AGN to the di↵use TeV–PeV neutrino

flux is constrained by searches for spatial correlation with the Fermi-LAT observa-

tions (point-like searches) [221, 222, 223]. Such analyses claim that AGN can explain

up to ⇠ 25% of the di↵use TeV–PeV neutrino spectrum, only.

• Gamma Ray Bursts (GRBs) [224, 225, 226] are generated in some type of cata-

clysmic transient process involving dying massive stars. GRBs are excellent sources of

neutrinos with energies from MeV to EeV and above. However, the non-observation

of spatial and temporal correlations with the detection of gamma-rays at Fermi-LAT

provides very stringent constraints on GRBs [227, 228]. In particular, only ⇠ 1% of

the total di↵use TeV–PeV neutrino flux can be accounted for by GRBs [228, 229].

In general, one can set an upper bound to these kinds of astrophysical objects, assuming

that they provide a contribution to cosmic-ray spectrum as well. In particular, this is the

so-called Waxman-Bahcall bound (WB) that implies [230]

E
2
⌫
�
WB
⌫

. 2⇥ 10�8 GeV cm�2 s�1 sr�1
. (4.14)

It is worth observing that such a bound and the multi-messenger constraints with

gamma-rays do not hold in case of hidden astrophysical sources, in which cosmic-rays

and gamma-rays are absorbed in the surrounding environment [231, 232, 233]. For in-

stance, in case of low-luminosity GRBs with choked jets [233], no production of detectable

gamma-rays in GeV–TeV energy range is expected, avoiding in this way the Fermi-LAT

constraints.

If we consider a marginal contribution of the hidden sources to the di↵use TeV–PeV

neutrino flux, in view of the previous considerations one can regard as fully compatible

models for neutrino flux the one that predict a power-law with spectral index between

2.0 (Fermi acceleration mechanism) and about 2.2 (upper bound from the observations of

gamma-rays at Fermi-LAT experiment). The range [2.0, 2.2] is also compatible with the

bound provided in Eq. (4.13).
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4.3 IceCube Experiment

The IceCube Neutrino Observatory, located at the National Science Foundation’s Amundsen-

Scott South-Pole Station, is a huge Cherenkov detector with a fiducial volume of 1 km3.

The experiment is based on the Cherenkov e↵ect a↵ecting charged particles produced by

neutrinos after their interaction with nuclei in the ice. The photons are collected by Digital

Optical Modules (DOMs), that are equipped with Photo-Multipliers (PMTs). The detector

consists of 86 strings with 60 DOMs each, between 1450 m and 2450 m below the surface.

It is places underground in deep ice in order to suppress part of the atmospheric flux of

down-going muons that are absorbed before reaching the detector. Moreover, part of the

detector as a veto in order to distinguish the atmospheric muons from the neutrinos, whose

induced events start inside the fiducial volume. Such a veto, as already discussed in Sec-

tion 4.1, is useful to discard both atmospheric muons and atmospheric neutrinos, which at

high energies are accompanied by collinear muons. Taking into account also a threshold on

the deposited energy for each event, the veto technique is able to discard 99.999% of the

atmospheric muon background.

In IceCube, there were observed two di↵erent event topology: tracks and showers. The

tracks are related to CC interactions of muon neutrinos

⌫µ +N ! µ+X , (4.15)

where the energetic muon can travel through the entire detector and, consequently, produces

a track as signature. For this event topology, the angular resolution is ⇠ 1� at 50% C.L..

The showers, instead, correspond to CC interactions of electron and tau neutrinos and to

NC interactions of all flavors

⌫↵ +N ! ⌫↵ +X . (4.16)

The angular resolution is worse, namely ⇠ 15� at 50% C.L.. There exists a third event

topology that has not been observed so far: the double-bang. Such a topology occurs when

a very energetic ⌧ lepton (E⌫ & 1PeV) is produced and then decay far from the first vertex

interaction. This produces two di↵erent shower-like vertexes.

Depending on the di↵erent veto implementations and on the characteristics of the events,

the IceCube data are divided into three classes:
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Figure 4.3: IceCube HESE neutrino events as a function of the deposited energy for 4 years

(left panel) [234] and 6 years (right panel) [235] of data taking.

• High-Energy Starting Events (HESE). This data set refers to neutrino events

whose vertex is located inside the detector, and it has an energy threshold of E⌫ �

20 TeV. It contains 82 events after 6 years of data taking (2010–2016) [235]. In six

years of data, the expected background is 25.2 ± 7.3 muons and 16.5+11.4
�3.9 neutrinos.

Therefore, a purely atmospheric origin of such events is rejected at more than 7�. The

HESE spectrum (number of neutrino events as a function of the deposited energy) is

reported in Fig. 4.3 for 4 years (left panel) and 6 years (right panel) of data taking,

respectively. The plots also show the best-fits of the single power-law flux provided

in Eq. (4.10), whose spectral indexes are �HESE(4yr)
IC = 2.58 ± 0.25 and �

HESE(6yr)
IC =

2.92+0.29
�0.33, respectively.

• Medium-Energy Starting Events (MESE). This data set [186] refers to neutrino

events whose vertex is located inside the detector, but di↵erently from HESE data

neutrino events can have a deposited energy as low as 1 TeV. Such a sample contains

388 events after only 2 year of observations (2010–2012). The down-going (Southern

hemisphere) and up-going (Northern hemisphere) neutrino events are reported as

a function of the deposited energy in Fig. 4.4. The best-fit spectral index of the

astrophysical power-law is �MESE(2yr)
IC = 2.46± 0.12.
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Figure 4.4: IceCube MESE neutrino events as a function of the deposited energy for 2 years

of data taking [186].

Figure 4.5: Left: angular distribution of arrival direction for IceCube 6-year HESE

data [235]. Right: flavor ratio of 4-year HESE neutrino events [237].

• Through-going muon neutrinos. The through-going data sample [195, 236] col-

lects up-going muons which arise from CC interactions of muon neutrinos both inside

and outside the detector. The analysis is restricted to the Northern hemisphere where

the Earth filters atmospheric muons e�ciently. The analysis performed on the 6-year

data provides a best-fit spectra index of 2.13± 0.13 for neutrino energies higher than

about 200 TeV (the data at lower energies are dominated by the atmospheric back-

ground) [195].
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In addition to neutrino spectrum, IceCube Collaboration also provides two further observ-

ables for HESE data: the neutrino sky map [235] and the measured flavor ratio [237], which

are reported in Fig. 4.5 in left and right panels, respectively. The distribution of arrival

direction of neutrino events is important for searches of point-like sources. No significant

correlation with know sources [238, 239, 240] and with the Galactic plan [241] has been

observed so far. Moreover, the measurement of the flavor ratio is of paramount impor-

tance for testing the astrophysical origin of neutrinos that predict a flavor ratio 1:1:1 at the

Earth. Some exotic scenarios providing deviations from the benchmark flavor ratio have

been studied in Ref.s [242, 243, 244].

4.4 ANTARES and KM3NeT experiments

The ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RESearch

project) Neutrino Telescope [245] is a Cherenkov detector located at 2.5 km under the

Mediterranean sea o↵ the coast of Toulon in France. It consists of 12 strings with 75 PMTs.

The ANTARES detector is placed in favored position: since it is in the Northern hemisphere,

it is possible to observe the Galactic Center of the Milky Way (that is pointed towards the

South Pole) with the maximal suppression of the atmospheric muon background due to

the Earth’s absorption. Very recently [246], the ANTARES Collaboration has released the

9-year data (shower + track) whose energy spectra are reported in Fig. 4.6. In particular

19 track-like and 14 shower-like events have been observed. This observation provides for

the first time a ⇠ 2� deviation (p-value equal to 0.15) from the expected background 24±7

events (13.5 track-like and 10.5 shower-like events). Indeed, all the analyses performed using

the previous ANTARES data have not exhibited any significant excess over the atmospheric

background [247, 248].

It is worth observing that the ANTARES detector is not big enough to have a good

energy resolution for the track-like events [249]. This is why the energy of the track-like

events is expressed in arbitrary units (see left panel in Fig. 4.6). On the other hand, the

shower-like events inside the fiducial volume can be reconstructed with an energy resolution

of about 10% [250]. The angular resolution is comparable or even better than the one of
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Figure 4.6: ANTARES neutrino track (left panel) and shower (right panel) events after

9-year of data taking [246].

the IceCube Neutrino Telescope. Indeed, for track-like and shower-like events a median

angular resolution of 0.4� and 3� is respectively achieved [251], allowing the ANTARES

Collaboration to perform detailed searches for point-sources [252].

The KM3NeT Neutrino Telescope [253] is a future Cherenkov detector devoted to Neu-

trino Astronomy with a fiducial volume of 1 km3 that will upgrade the ANTARES exper-

iment. It is under construction under the Mediterranean sea o↵ the coast of Toulon in

France and Capo Passero in Italy. The bigger fiducial volume would substantially increase

the statistics of neutrino events in the Northern hemisphere.

4.5 Combined analysis with IceCube and ANTARES

data

In order to constrain the parameters of the single power-law neutrino flux (see Eq. 4.10), we

perform the first combined analysis of the di↵use neutrino flux observed by ANTARES (9-

year) and IceCube (6-year HESE) [5]. In particular, due to the worse energy resolution, we

consider only shower-like events for the ANTARES data set, whereas we take into account

both tracks and showers in case of IceCube HESE data. As already discussed in the previous

Sections, we consider only the conventional atmospheric background of penetrating muons

and neutrinos.
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Figure 4.7: Number of neutrino events as a function of the energy for ANTARES (left

panel) and IceCube (right panel). The conventional atmospheric background (neutrinos

and penetrating muons) is represented by blue areas. The best-fit (signal plus background)

is displayed by the gray lines. The best-fit power-law deduced by combining IceCube and

ANTARES data corresponds to �0
astro = 2.30⇥ 10�18 (GeV cm2 s sr)�1 and � = 2.85.

This analysis has been performed by means of a Maximum Likelihood estimation us-

ing binned multi-Poisson likelihoods LA, IC for both ANTARES (A) and IceCube (IC) ex-

periments. The combined fit (IC+A) is obtained by maximizing the product of the two

likelihoods

lnL
�
n
IC
, n

A|�0
astro, �

�
= ln(LA · LIC) , (4.17)

which is a function of the astrophysical flux normalization �0
astro and of the spectral index

�. The quantities n
IC and n

A are the IceCube and ANTARES data, respectively. The

expression of the multi-Poisson likelihood function is equal to [254]

lnL =
X

i


ni �Ni + ni ln

✓
Ni

ni

◆�
, (4.18)

where the expected number of events Ni is compared with the observed number of neutrinos

ni, once the background events have been subtracted in each bin i. The number of events

Ni that is predicted by a di↵erential neutrino flux d�↵/dE⌫d⌦ in the bin i (defined by the

deposited energy range �E
0
i
and by the reconstructed solid angle �⌦0

i
) is given by

Ni = �t

Z

�E
0
i

dE 0
⌫

Z

�⌦0
i

d⌦0
Z

dE⌫

Z

4⇡

d⌦
X

↵

d�↵

dE⌫d⌦
A

e↵
↵
(E⌫ ,⌦;E

0
⌫
,⌦0) , (4.19)
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where �t is the exposure time of the experiment and the quantity A
e↵
↵

is the e↵ective area

per neutrino flavor ↵. Such a quantity is a function of the neutrino energy E⌫ , the deposited

one E 0
⌫
as well as of the angular coordinates ⌦ and the reconstructed ones ⌦0. Moreover, the

sum over neutrinos and anti-neutrinos is implicitly considered. In case of the ANTARES

experiment, the exposure time is 2450 days. Its e↵ective area has been obtained by using the

two cosmic neutrino spectra reported in figure 1 of Ref. [246] assuming a constant e↵ective

area in each energy bin. The exposure time of the IceCube experiment is 2078 days, and

the IceCube e↵ective area for HESE data has been taken from Ref. [255].1

Moreover, we consider only neutrino events with E⌫ � 20 TeV for ANTARES and

E⌫ � 60 TeV for IceCube, following the energetic cuts used by the two Collaborations.

Moreover, in case of ANTARES we also consider an upper bound for the neutrino energy

(E⌫  300 TeV) according to Ref. [246].

In Fig. 4.7 it is displayed the neutrino spectrum for ANTARES (left panel) and IceCube

(right panel). In the plots, the best-fit neutrino signal (power-law) is represented by the

gray lines. The total conventional background is instead displayed by the blue regions.

The energetic cuts considered in the fit are shown by the shaded regions. The contour

plots for the fit deduced by using only IceCube 6-year HESE (black) and for the combined

fit with IceCube+ANTARES data (ocher) are shown in Fig. 4.8. The solid (dotted) lines

correspond to the 68% (95%) C.L. contours, respectively. The best-fit values and the 1-2�

ranges of the flux normalization and the spectral index are obtained by marginalizing the

two-dimensional likelihood and are reported in Tab. 4.1. As can be see in the table, the

1
Note that the IceCube HESE e↵ective area is public under the assumption of equality between the

neutrino energy and deposited energy. In general, to statistically estimate the ratio between the de-

posited and neutrino energies a MonteCarlo simulation of the apparatus is required [256]. When for a

bin a significant statistics is collected, one could apply an average ratio that results to be of the order of

(�CC
97%+ �NC

23%)/(�CC
+ �NC

) ⇠ 75% (see Table 1 of [256]). Remarkably, such a number appears to

be quite stable as a function of the neutrino energy. Unfortunately, due to low statistics collected till now,

this procedure would be characterized by a large uncertainty in the energy determination. For this reason,

in case of HESE data we prefer to assume the simplicity ansatz that the two energies coincide. Notice that

in any case an expected shift in the energy of the order of 25% is not going to change dramatically the

results reported in this thesis.
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Figure 4.8: Contour plots of the likelihoods obtained by using IceCube data only (black)

and the combined IceCube+ANTARES ones (ocher).

Fit Parameter Best-fit 68% C.I. 95% C.I.

IceCube
�0

astro 2.44 2.00 – 2.94 1.62 – 3.48

� 2.95 2.76 – 3.21 2.56 – 3.46

IceCube + ANTARES
�0

astro 2.30 1.90 – 2.71 1.56 – 3.16

� 2.85 2.68 – 3.04 2.52 – 3.23

Table 4.1: Best-fit values and 1–2� intervals of �0
astro (in units of 10�18 (GeV cm2 s sr)�1)

and � for the analysis on IceCube 6-year HESE data and the combined analysis Ice-

Cube+ANTARES.

best-fit values for the spectral index and the flux normalization, obtained by using IceCube

data only, di↵er from the ones reported by the IceCube Collaboration by 1% and 0.8%,

respectively. Moreover, we note that the addition of ANTARES data in this fit provides

slightly smaller values for the flux normalization �0
astro and the spectral index �.

4.6 Tension with the single power-law flux

In this last Section, we comment about the simplest assumption that the whole di↵use

TeV–PeV neutrino flux can be interpreted in terms of a single astrophysical power-law. In
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Best-fit

Data sample
Normalization Spectral index

�0
astro

h
10�18 (GeV cm2 s sr)�1

i
�

MESE (2yr) [186] 2.06+0.4
�0.3 2.46+0.12

�0.12

HESE (3yr) [238] 1.50 2.30+0.3
�0.3

HESE (4yr) [234] 2.20+0.7
�0.7 2.58+0.25

�0.25

HESE (6yr) [235] 2.46+0.8
�0.8 2.92+0.29

�0.3

Through-going ⌫µ (6yr) [195] 0.90+0.30
�0.27 2.13+0.13

�0.13

IceCube combined analysis [257] 2.23+0.37
�0.30 2.50+0.09

�0.09

IceCube + ANTARES [5] 2.30+0.86
�0.74 2.85+0.38

�0.33

Table 4.2: Best-fit values for the flux normalization and the spectral index of the power-law

behavior, obtained by considering di↵erent data samples of the di↵use TeV-PeV neutrino

flux.

Tab. 4.2, we report the best-fit values of the flux normalization �0
astro and the spectral index

� deduced by di↵erent data samples. We note some interesting trends and features.

• The best-fit flux normalizations deduced by IceCube HESE data with di↵erent expo-

sures are compatible among themselves, while the best-fit values for spectral index

show an increasing trend with time. This is explained by the fact that IceCube de-

tector has observed only three PeV events, while it is enlarging only the statistics

at low energy. For instance, the 28 events observed between 2014 and 2016 (di↵er-

ence between 82 events in 6-year HESE and 54 events in 4-year HESE) have all a

deposited energy lower than 200 TeV. It is worth observing that the anomalous large

values �HESE(4yr)
IC and �HESE(6yr)

IC for the spectral index can be hardly reconciled with

the multi-messenger constraints on models for realistic astrophysical sources.

• The through-going muon neutrino data sample favors a smaller value for the spectral

index. Such a best-fit value is compatible with the benchmark prediction � = 2.0

of the Fermi acceleration mechanism and the allowed values for the spectral index

(�  2.2) deduced by gamma-ray constraints and models for p-p astrophysical sources.
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It is worth noticing that such a best-fit for the spectral index is in a 3.3� tension with

the one obtained by combing di↵erent IceCube data samples [257]. Moreover, this

data set strongly suggests the presence of an asymmetry between the Northern and

the Southern neutrino fluxes, once it is compared with the other data sets. We

remind that through-going muon neutrinos come only from the Northern hemisphere

(up-going neutrinos). Therefore, the mismatch among the best-fit values for the

spectral index of this data sample and of the other IceCube data ones points out that

a new contribution to the neutrino flux is required at low energies (E⌫  200TeV).

Moreover, the origin of such a new component may be galactic according to the

North-South asymmetry.

• The spectral index obtained by including the ANTARES data in the fit is slightly

smaller, while the flux normalization is compatible with the other best-fit values. This

is due to the fact that the ANTARES data set mainly favors a spectral index close

to the benchmark Fermi value.

These statements point out that there exists a tension of the IceCube andANTARES data

with the simplest assumption of a single power-law neutrino flux (null hypothesis). In order

to statistically quantify this tension, we perform a �2 test. For Poisson distributed data,

the test statistics behaving as a �2 with N �m d.o.f. is given by

�
2 = �2 lnL

�
n
IC
, n

A|�0
astro, �

�
, (4.20)

where L
�
n
IC
, n

A|�0
astro, �

�
is defined in Eq. (4.17). In the case under study (IceCube+ANTARES

combined fit), N = 18 is the total number of energy bins. Since the statistical test is

performed by fixing the spectral index � to some specific values and by fitting the flux nor-

malization �0
astro, the number of free parameters in the fit is m = 1. However, since the �2

analysis has to be performed when the events of each bin are Gaussian distributed, condition

that in principle could not be satisfied for small number of events, we additionally perform a

more general non-parametric test, namely the one-dimensional Kolmogorov-Smirnov (KS)

statistical test, which will be discussed in detail in the next Chapter. For each experiment,

the test compares the empirical cumulative distribution function deduced by data with the
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Figure 4.9: The solid (dashed) line represents the p-value as a function of the spectral

index for the �2-test for the IC (IC+A) data sample. The dot dashed line refers to the KS-

test performed by combining the two data samples with the Fisher’s method. The bands

correspond to an uncertainty of ±20% on the conventional background estimation. The

vertical band, instead, represents the best-fit for the spectral index as deduced by 6-year

up-going muon neutrinos (� = 2.13± 0.13) [195].

one obtained under the null hypothesis of power-law behavior. For a given spectral index,

the p-value is evaluated by a bootstrap method for IceCube and ANTARES experiments,

respectively. The two p-values are then combined by means of the Fisher’s method.

The results of the hypothesis tests are reported in Fig. 4.9. The plot shows the p-value

for the null hypothesis as a function of the spectral index adopted in the analysis. The solid

line corresponds to the �2 test performed by considering only the IceCube 6-year HESE

data. While the dashed line represents the p-values for the combined analysis with IceCube

and ANTARES data. The dot dashed line instead refers to the KS test. The bands are

obtained by considering an uncertainty of ±20% on the conventional background estimation

in both experiments. The addition of ANTARES data set has the e↵ect to reduce the p-

values by about a factor 2÷3, independently of the assumed spectral index. This implies

that if one fix a certain threshold in p-value for rejecting the null hypothesis, the addition of

the ANTARES to the fit enlarges the range of spectral indexes for which the null hypothesis

can be rejected. In particular, the benchmark prediction of Fermi acceleration mechanism
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� = 2.0 is excluded, since it corresponds to a p-value equal to 2.6+3.6
�1.8 ⇥ 10�5 for �2 and

1.6+2.1
�1.0 ⇥ 10�6 for KS statistical tests, where the errors correspond to a ±20% uncertainty

on the conventional atmospheric background. Moreover, the interpretation of the whole

data sample with a single power-law according to the 6-year through-going muon neutrinos

is strongly disfavored (p-value smaller than 10�2).

Such a tension with the single power-law scenario is currently under debate. Neverthe-

less, the theoretical prior of a single astrophysical power-law component with a spectral

index dictated by the Fermi acceleration mechanism suggests the presence of a second

component dominating the di↵use neutrino flux for energies lower than 200 TeV. Such an

additional component can be an another power-law as studied in Ref.s [235, 258, 259, 260,

261, 262]. Viable astrophysical candidates for the large neutrino flux observed at about

100 TeV are the “hidden” astrophysical sources [231, 232, 233], since these kinds of sources

are not constrained by gamma-ray and radio observations. On the other hand, the sec-

ond component at 100 TeV can be also related to DM that could produce a neutrino flux

through its annihilations or decays [1, 2, 3, 4, 6]. This interesting scenario is presented and

studied in detail in the next two Chapters.



Chapter 5

The low-energy excess: a DM

interpretation

In the previous Chapter, we have noted that di↵erent IceCube data samples are in ten-

sion with the interpretation of the di↵use TeV–PeV neutrino flux in terms of a single

astrophysical power-law. Such a tension is also strengthened once the ANTARES 9-year

shower data are included in the analysis. In particular, we underline that, according to the

multi-messenger constraints and with the fit of through-going muon neutrinos, the fully

compatible astrophysical models are represented by a power-law with a spectral index � in

the range [2.0, 2.2]. Once a hard power-law is assumed, a low-energy excess around 100 TeV

is shown in the neutrino data. Fig.s 5.1 and 5.2 display the residual in the number of neu-

trino events once the sum of a hard astrophysical power-law (� equals to 2.0 or 2.2) and

the standard conventional atmospheric background is subtracted. In particular, the black

points in the plots of Fig. 5.1 refer to the analysis performed by using the IceCube 6-year

HESE data, in case of a spectral index � = 2.0 (left panel) and � = 2.2 (right panel).

The gray points instead corresponds to the residuals obtained with IceCube 4-year HESE

events. On the other hand, in Fig. 5.2 we report the residual in the number of neutrino

events in case of the IceCube 2-year MESE data for � = 2.0 (upper panels) and � = 2.2

(lower panels). We remind that this data set is further divided into neutrino events coming

from the Southern hemisphere (left panels) and the Northern one (right panels). Remark-

65
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Figure 5.1: Residuals in the number of neutrino events as a function of the neutrino energy

with respect to the sum of the conventional atmospheric background and a single astro-

physical power-law with spectral index 2.0 (left panel) and 2.2 (right panel). The black

(gray) points refer to IceCube 6-year (4-year) HESE data.

ably, the low-energy excess highlighted in the IceCube observations is also shown in the

ANTARES 9-year data sample as can be seen in Fig. 5.3.

Data sample
Maximum Local Significance

� = 2.0 � = 2.2

IceCube MESE (2yr) 2.3 � 1.9 �

IceCube HESE (4yr) ⇠ 2 � –

IceCube HESE (6yr) 2.6 � 2.1 �

Table 5.1: Maximum local statistical significance of the low-energy excess for di↵erent

IceCube data samples.

It is worth underlining the presence of an excess between about 40 and 200 TeV in all

the data samples. The maximum local statistical significance of such a low-energy excess is

reported in Tab. 5.1. We observe that the statistical significance of the low-energy excess

increases from 4 years to 6 years of data taking in case of HESE sample. Moreover, the

excess shown in the IceCube 2-year MESE data has a larger significance with respect to

the one of the IceCube 4-year HESE data, since the former data set has a large sensitivity

at low energies due to the di↵erent veto implementation.

Under the assumption that such an excess has a genuine physical origin, we pursue a
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Figure 5.2: Residuals in the number of neutrino events for the IceCube 2-year MESE data,

which are divided into Southern (upper panels) and Northern (lower panels) hemisphere.
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Figure 5.3: Residuals in the number of neutrino events obtained by combining the IceCube

6-year HESE data and the ANTARES 9-year ones for a power-law with � = 2.0. The

shaded regions represent the low energy cuts adopted in the fit procedure.

study in order to unveil the nature of the low-energy excess. The Chapter is divided into

two Sections. In the first, we report the study based on the angular distribution of the

observed neutrinos, while in the second we discuss the statistical analysis performed on the

energy spectrum by using di↵erent IceCube data samples. The constraints coming from

gamma-rays observations are also discussed.
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5.1 Analysis on the angular distribution

In order to analyze the origin of the low-energy excess, we firstly compare the angular

distribution of the observed events with the angular distributions expected in case of as-

trophysical sources (galactic and extragalactic sources) and DM signal (both decaying and

annihilating cases). This angular analysis is performed by using the IceCube 4-year HESE

data, where the excess is concentrated in the energy bin 60–100 TeV. Due to the small

number of events collected till now in the energy bin under study, for the sake of simplicity

we consider just one additional component to explain the excess, on top of the conventional

atmospheric background and of the astrophysical E�2 power-law. This allows us to be more

predictive even though more involved scenarios can be proposed where the di↵use neutrino

flux can be explained in terms of several components of di↵erent origin. Di↵erently from

previous angular analyses [263, 264], we also take into account the angular e�ciency of the

IceCube detector for all neutrino flavors through the expression provided in Eq. (4.19).1

The IceCube HESE e↵ective area, normalized and averaged in the energy range considered

(60–100 TeV), is depicted in Fig. 5.4 as a function of the sine of the declination �. We

note that the e↵ective area decreases in the Northern hemisphere (sin � > 0) due to the

Earth’s absorption. In the Southern hemisphere (sin � < 0), only the e↵ective area for

muon neutrinos (green line) is slightly dependent on the declination.

As already stated, we consider di↵erent scenarios for the low-energy excess. In the

following, we report the expected neutrino angular distributions for all the cases considered,

without explicitly considering the IceCube e↵ective area, which is instead taken into account

for the real analysis.

• Galactic astrophysical sources (gal). For Galactic astrophysical sources, a cor-

relation with the Galactic plane is expected. Therefore, the angular distribution of

galactic astrophysical sources in the arrival directions (Galactic latitude b and Galac-

tic longitude l) is given by

p
gal(sin b, l) =

⇥(sin b+ sin bgal)�⇥(sin b� sin bgal)

4⇡ sin bgal
. (5.1)

1
The IceCube HESE e↵ective area is available at http://icecube.wisc.edu/science/data/

HE-nu-2010-2012.

http://icecube.wisc.edu/science/data/HE-nu-2010-2012
http://icecube.wisc.edu/science/data/HE-nu-2010-2012
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Figure 5.4: Normalized IceCube e↵ective area for HESE data set as function of the decli-

nation �, averaged in the energy range 60–100 TeV.

We note that the galactic plane angular distribution depends only on the Galactic

latitude and on the angular size of the Galactic disk, denoted as bgal. Such a quantity

can be derived by assuming that the neutrinos and gamma-rays produced by galactic

astrophysical sources have the same galactic angular distribution [265]. We adopt the

Fermi-LAT template [266], implying that the quantity bgal varies in the range [2�, 4�].

• Extragalactic astrophysical sources (iso). Extragalactic sources are isotropically

distributed in the Galactic angular coordinates. Therefore, their angular distribution

is isotropic, meaning that it is simply a constant.

p
iso(sin b, l) =

1

4⇡
. (5.2)

• Decaying DM scenario (dec). According to Eq. (3.1), the resulting neutrino

flux consists of both a galactic and an extragalactic DM component. As shown in

Eq.s (3.3) and (3.4), the neutrino flux depends on the neutrino energy spectrum

dN/dE⌫ produced by the decay of a DM particle. Since the excess is localized in a

particular energy range 60–100 TeV, for this angular analysis we simply assume that

the neutrino energy spectrum is almost peaked in the same range. This is equivalent

to assume that neutrino energy spectrum for E⌫ � 100 TeV is negligible. In other

words, we consider the case of a DM mass of the order of 100 TeV. We observe that

a not vanishing neutrino energy spectrum for energy smaller that 60 TeV does not
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provide any contribution neither to the galactic component nor to the extragalac-

tic one for the energy bin considered. Under this assumption, the redshift integral

appearing in the extragalactic component has an upper limit that corresponds to

zmax = 100 TeV/60TeV � 1. The quantity zmax is obtained by considering the rela-

tion E
0 = E (1 + z) when the conditions E

0  100TeV and 60TeV  E  100TeV

are applied. After the integration on the redshift, the extragalactic component given

in Eq. (3.4) can be recast in the following approximated expression

d�EG
DM

d⌦
' ⌦DM⇢c

4⇡mDM⌧DM

Z
zmax

0

dz

(1 + z)H(z)
(5.3)

⇥
(Z

Emax

Emin

dE⌫

dN

dE⌫

+

"
dN

dE⌫

����
Emax

Emax �
dN

dE⌫

����
Emin

Emin

#
z

)
,

where Emin = 60 TeV and Emax = 100 TeV. This expression has two interesting

limits: i) the neutrino energy spectrum is fully contained in the energy bin considered,

then dN/dE⌫ (Emin) ' dN/dE⌫ (Emax) ' 0; ii) the neutrino energy spectrum is

wider than the energy bin, hence it is flat within the energy range 60–100 TeV,

implying dN/dE⌫ (Emin) ' dN/dE⌫ (Emax). In these two cases, the dependence

on the neutrino energy spectrum can be factorized (as in case of the galactic DM

component). Therefore, the previous reasonable assumption considerably simplifies

the calculations that are now independent on the particular decay channel of DM

particles. Hence, we arrive to the following expression for the angular distribution

p
dec(cos ✓) /

Z 1

0

⇢h[r(s, cos ✓)]ds+ ⌦DM⇢c �↵ , (5.4)

where

�↵ =

Z
zmax

0

dz

(1 + z)↵H(z)
, (5.5)

whit ↵ = 1 and 0 in the first and second cases respectively. Hence, we have �1 =

0.43/H0 and �0 = 0.56/H0. In order to obtain more conservative results, we consider

the larger extragalactic contribution that corresponds to ↵ = 0. In such a case, the

isotropic cosmological contribution results to be more competitive with the galactic

term. It is worth observing that including explicitly the IceCube e↵ective area in the

above calculations does not change this result, and the case with ↵ = 0 still represents

the most conservative scenario.
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• Annihilating DM scenario (ann). Following the same steps for the case of decay-

ing DM, in this case we similarly obtain

p
ann(cos ✓) /

Z 1

0

⇢
2
h
[r(s, cos ✓)]ds+ (⌦DM⇢c)

2 �2
0 �↵ , (5.6)

where �2
0 is the clumpiness factor [170]. According to Ref. [171], we analyze three

particular and extreme cases where where �2
0 is equal to 104, 106 and 108. Such

three values for the clumpiness factor correspond to an extragalactic contribution

that is sub-dominant, comparable and dominant with respect to the galactic one,

respectively. However, as pointed out in Ref. [267], the cumpliness factor �2
0 can be

as large as few times 106, while larger values are considered unphysical.

Independently of the mass and the couplings of DM, neutrinos originated via decay or

annihilation would have an angular distribution that is more peaked around the Galactic

Center where a higher DM density ⇢h is expected. This is in particular true for annihilating

DM scenario (in case of small clumpiness factor) where the galactic flux is enhanced due to

second power of the DM density profile adopted. Here, we consider the two extreme cases

of the Navarro-Frenk-White profile (NFW) and the Isothermal profile, as representative of

all the parametrization for ⇢h.

In all the listed scenarios, the angular distributions depend on one angle only. There-

fore, we perform a one-dimensional statistical test under the null hypothesis that neutrino

events are distributed according to one of the four angular distributions previously dis-

cussed. We adopt two di↵erent non-parametric statistical tests: the Kolmogorov-Smirnov

test (KS) [268] and the Anderson-Darling test (AD) [269]. These statistical tests com-

pare the cumulative distribution function (CDF) of the null hypothesis with the empirical

cumulative distribution function (EDF), which takes the expression

EDF(cos ✓) =
1

n

nX

i=1

⇥ (cos ✓ � cos ✓i) , (5.7)

where n is the number of observed events with directions cos ✓i (or sin bi for the galactic

plane angular distribution). In the Kolmogorov-Smirnov test, the Test Statistics (TS) is

the maximum distance between the previous two cumulative distribution functions. Hence,
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we have

TSKS ⌘ sup
✓
|EDF(cos ✓)� CDF(cos ✓)| . (5.8)

The Test Statistics of Anderson-Darling test is instead given by

TSAD ⌘ �n�
1

n

nX

i=1

(2i� 1) [ln (CDF(cos ✓i)) + ln (1� CDF(cos ✓n+1�i)] . (5.9)

Since this expression is very sensitive to the di↵erence between the functions EDF and CDF

at the two endpoints (cos ✓ = 1 corresponds to the Galactic Center), the Anderson-Darling

test is a very suitable test for such an analysis.

In oder to take into account the fact that five of the twelve events correspond to the sum

of the conventional atmospheric background and of the astrophysical E�2 power-law, we

consider all possible di↵erent choices of 5 among 12, namely 12!/(5! 7!) = 792 combinations.

Moreover, in order to include the angular uncertainty a↵ecting the reconstruction of the

arrival direction, we treat the uncertainties on declination and right ascension as maximum

errors, and propagate them on the quantity cos ✓. Such an angular uncertainty is included

in the analysis by performing a Monte Carlo by considering 100 possible extractions of

the 7 remaining events from their maximum error intervals using a uniform probability.

For all the 100 di↵erent choices of observed events, we evaluate the corresponding TS

values. In this way, we obtain a range of p-values once the TS values are compared with

the null hypothesis TS distribution. Such a range is finally averaged on the 792 di↵erent

background combinations. In Tab. 5.2 it is reported such an average range for each test

performed. The IceCube 4-year HESE data show that a correlation with the galactic plane

is disfavored. The corresponding p-value range does not significantly change by varying the

angular size bgal in the range [2�, 4�]. Moreover, the annihilating DM scenario with a small

clumpiness factor (�2
0 = 104) is already excluded by the IceCube observations for both the

halo density profiles. We note that for a largest clumpiness factor considered (�2
0 = 108)

we obtain p-value ranges similar to the ones of the astrophysical isotropic distribution.

This is explained by fact that in this case the angular distribution is almost isotropic

(the extragalactic component dominates over the galactic one). Furthermore, it is worth

observing that the lack of events from the Galactic Center implies that the NFW profile

is more in tension with the observations than the Isothermal profile. Indeed the former is
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Scenario KS AD

Astrophysics
Galactic plane 0.007 ÷ 0.008 not defined

Isotropic distribution 0.20 ÷ 0.55 0.17 ÷ 0.54

DM decay
NFW 0.06 ÷ 0.16 0.03 ÷ 0.14

Isothermal 0.08 ÷ 0.22 0.05 ÷ 0.19

DM annihilation NFW (0.3÷ 0.9)⇥ 10�4 (0.3÷ 3.8)⇥ 10�4

�2
0 = 104 Isothermal (0.9÷ 2.8)⇥ 10�3 (1.0÷ 5.0)⇥ 10�3

DM annihilation NFW 0.02 ÷ 0.05 0.02 -÷0.07

�2
0 = 106 Isothermal 0.10 ÷ 0.28 0.08 ÷ 0.29

DM annihilation NFW 0.19 ÷ 0.54 0.17 ÷ 0.53

�2
0 = 108 Isothermal 0.20 ÷ 0.55 0.17 ÷ 0.54

Table 5.2: The p-values ranges for all the four analyzed scenarios, using the Kolmogorov-

Smirnov and the Anderson-Darling statistical tests. The Anderson-Darling test is not well

defined in case of the galactic plane distribution since its CDF is vanishing within the region

b < bgal.

more peaked towards the Galactic Center than the latter. This results in smaller p-values

for NFW density profile with respect to Isothermal one. Moreover, such a di↵erence is

exacerbated for annihilating DM scenario.

Since the small number of events already observed does not allow to exclude all the DM

scenarios, we perform a forecast analysis. The aim is to quantify the statistics required

(number of events) in order to distinguish, at a certain confidence level, a DM distribution

from an isotropic one (extragalactic astrophysical sources). We restrict the forecast analysis

to decaying DM scenario and annihilating DM one with �2
0 = 106. Both scenarios are not

already excluded by the IceCube data. For a given number of events, we generate 105 sets of

data (in the 60–100 TeV energy range) according to the isotropic distribution, and perform

the two statistical tests under null hypothesis that the data samples come from one of the

two DM angular distribution. For the sake of simplicity, we assume that each data sample

is not a↵ected by the background. The e↵ect of the background e↵ect can be included by
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Figure 5.5: Forecast analysis in case of decaying (left panel) and annihilating (right panel)

DM scenarios, for NFW (blue) and Isothermal (red) halo density profiles. The solid

(dashed) lines are obtained by performing the Anderson-Darling (Kolmogorov-Smirnov)

statistical test.

increasing our “predictions” by a factor of ⇠ 12/7 as suggested by present data.

A distribution of p-values is then obtained by varying in the set of 105 data samples. In

Fig. 5.5 we show the p-value at 68% C.L. of that distribution as a function of the number

of signal events (no background) in case of decaying (left panel) and annihilating (right

panel) DM scenarios. The p-value at 68% C.L. represents the upper bound for p-values

in 68% of cases. As already discussed, the Anderson-Darling statistical test (solid lines) is

more appropriate for such an analysis than the Kolmogorov-Smirnov one (dashed lines).

In fact, the p-value falls down to zero very rapidly. If we assume that the p-value required

to exclude a model is O(10�3), then we have that the decaying (annihilating) case will be

completely excluded only when a O(200) (O(300)) number of signal events is collected in

the energy bin of the low-energy excess. However, since the NFW density profile is more

spatially concentrated around the Galactic Center, such a case requires a smaller number

of signal events, namely O(100), to be excluded with respect to the Isothermal profile.
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5.2 Analysis on the energy spectrum

We also characterize the low-energy excess by performing an analysis on the observed neu-

trino spectrum (neutrino events as a function of the energy). In particular, we assume that

the di↵use TeV–PeV neutrino flux is explained in terms of the standard conventional atmo-

spheric background (neutrinos and penetrating muons) and of two additional components:

the first is originated by astrophysical sources (hard power-law with � = 2.0, 2.2), whereas

the second is given by decaying/annihilating DM particles. Under this ansatz, the total

di↵erential flux of extraterrestrial neutrinos at the Earth, at a given energy E⌫ , per flavour

↵ and per unit solid angle ⌦, is equal to

d�↵

dE⌫d⌦
=

d�astro
↵

dE⌫d⌦
+

d�DM
↵

dE⌫d⌦
, (5.10)

The first term is an astrophysical unbroken power-law according to Eq. (4.10), while the

second one is related to DM and its expression is provided in Section 3.1. In order to cover

all the possible phenomenological DM scenarios, we consider the two di↵erent and quite

extreme halo density profile: the Navarro-Frenk-White and the Isothermal distributions.

Moreover, we examine di↵erent decay/annihilation channels (only one channel at a time,

with branching ratio equal to unity) of DM particles � into SM, which have di↵erent features

for the neutrino energy spectrum at the source dN/dE⌫ . In particular, we study:

• � ! ff . A bosonic DM particle that decays into a SM fermion and its anti-fermion.

The SM fermions could be quarks (� ! tt or � ! bb) or leptons (� ! µ
�
µ
+ or

�! ⌧
�
⌧
+).

• � ! `�`+⌫. A fermionic DM particle couples only to charged leptons and neutrinos

(leptophilic DM).2 This channel has two intriguing features: i) since it is a three-

body decay, the neutrino energy spectrum is spread di↵erently from the case of two-

bodies decays; ii) the absence of quarks in the final states provides a peaked neutrino

spectrum for energies close to the DM mass.

2
In the next Chapter we will present a complete model that provides this leptophilic coupling and

accounts for the DM production in the early Universe as well.
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• �� ! ff . Two fermionic stable DM particles that annihilate into SM ones with

f = b, t, µ, ⌧ .

In order to statistically quantify how much the IceCube observations are in favor of a two-

component neutrino flux, where one component is related to DM, we perform a likelihood-

ratio statistical test. In particular, we adopt the Test Statistics (TS) given by

TS = 2 ln
L (�0

astro,�
0
DM 6= 0)

L (�0
astro,�

0
DM = 0)

, (5.11)

where �0
astro is the normalization of the astrophysical power-law, whereas �0

DM is the nor-

malization of the DM signal. We have �0
DM = 1/⌧DM and �0

DM = h�vi in case of decaying

and annihilating DM, respectively. The likelihood function L is the binned multi-Poisson

likelihood defined in Eq. (4.18).

We perform the likelihood-ratio statistical test by fixing the DM model (defined by the

choice of final states and DM mass mDM in the range 10 TeV–10 PeV)3 and the spectral in-

dex � of the astrophysical contribution. For each choice of the spectral index (� = 2.0, 2.2),

the flux normalization �0
astro is always fixed at its best-fit through a maximum-likelihood

procedure. Then, we scan over the only reaming free parameter �0
DM. The quantity �

Astro
0 is

always fixed at the best-fit for the two values of the spectral index considered (� = 2.0, 2.2).

According to the Wilks [274] and the Cherno↵ [275] theorems, the Test Statistics follows

the distribution
1

2
� (TS) +

1

2
�
2 (TS) , (5.12)

through which we can evaluate the number of standard deviations � from the expected value

TS = 0. Deviation from such a value indeed would show the preference of the data for a

two-component flux (astrophysical plus DM fluxes) with respect to the single astrophysical

power-law. The larger the number of standard deviations �, more likely the presence of

a second component related to DM. A similar analysis was performed for searches of DM

gamma-lines in the Fermi-LAT spectrum [276], and very recently it has been proposed to

characterize the significance of DM neutrino-lines in IceCube [160].

3
We focus on DM masses larger than 10 TeV in order to explain the low-energy excess. Bounds on

decaying DM signals for mDM  10 TeV are provided in Ref. [270]. The bounds for the annihilating DM

scenarios with mDM  10 TeV are provided in Refs. [271, 272, 273].
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5.2.1 Gamma-ray constraints

As discussed in Chapter 3, in all the decaying/annihilating channels considered, there is also

the production of primary photons, electrons and positrons. The charged particles produce

secondary photons through inverse Compton scatterings on the intergalactic radiation like

the CMB. Moreover, the primary photon spectrum is degraded in energy due the interac-

tions occurring during the propagation. These processes would provide a photon spectrum

in the GeV–TeV energy range that can be potentially measured in current gamma-ray

Telescope, like the Fermi-LAT observatory. Therefore, the neutrino flux produced by DM

particles is further constrained by multi-messenger analyses related to gamma-ray observa-

tions.

In particular, the Fermi-LAT Telescope has measured the total integrated electromag-

netic energy density !
exp
�

of the isotropic di↵use gamma-ray background (IGRB) from

100 MeV up to 820 GeV [216]. In particular, we have

!
exp
�
' (4.0± 0.7)⇥ 10�7 eV/cm3

. (5.13)

This measurement provides a bound on the contribution of DM particles to the IGRB

spectrum. The total electromagnetic energy density injected by decaying/annihilating DM

particles is evaluated through the following expression.

!
DM
�

=
4⇡

c

Z
Emax

Emin

X

i=gal,extragal

"
E�

d��

dE�

����
i

+ Ee

d�e

dEe±

����
i
#
dE , (5.14)

where the first term in the integral is the prompt gamma-ray flux, whereas the second is

the e
± one. Moreover, the galactic contribution is related to the anti-Galactic Center flux

(b = 0 and ` = ⇡ in Galactic coordinates). The extremes of the integral are Emin = 0.1 GeV

and Emax = mDM/2,mDM in case of decaying and annihilating DM particles, respectively.

The quantity !DM
�

cannot be larger than !exp
�

, independently of the propagation in the

intergalactic medium. The relation

!
DM
�
 !

exp
�

(5.15)

provides a robust constraint on viable DM models. Such a constraint is hereafter defined

as IGRB bound.
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This multi-messenger approach proposed in Ref. [263] would lead to conservative con-

straints on the parameters (mass, lifetime or cross section) that define DM models. More

dedicate multi-messenger analyses constraining DM models are presented in Ref.s [277,

278, 279]. Taking for example the bounds reported in Eqs. (5.3) and (5.6) of Ref. [277],

and updating the measurements of cosmological parameters and the IGRB spectrum, one

recovers the same bounds shown in the next plots, once the same clumpiness factor is

considered.

5.2.2 Results for IceCube 2-year MESE data

We characterize the two-component flux of Eq. (5.10) by analyzing the IceCube 2-year

MESE data in order to provide statistical evidence to a possible interpretation of the low-

energy excess shown in Fig. 5.2. We underline that the MESE data sample is more suitable

for such an analysis focused on low-energy since it has a larger sensitivity for energies

E⌫  100 TeV due to the di↵erent veto technique. The expected number of neutrino events

for the flux of Eq (5.10) is obtained by using the expression (4.19). The MESE e↵ective

area4 is divided into Northern and Southern hemispheres. The two hemispheres correspond

to a reconstructed angle in the range �1.0  cos ✓rec  0.2 and 0.2  cos ✓rec  1.0,

respectively. We remind that the variable ✓ is the Zenith angle. It is worth observing

that it would be interesting to perform a study restricted to the Galactic Center, but it

would require the detailed knowledge of the IceCube e↵ective area as a function of the

reconstructed arrival direction that is unfortunately not public.

Firstly, we present the results of the likelihood-ratio analysis for the case of scalar DM

particles � decaying into a couple of SM fermions f = b, t, µ, ⌧ . In Fig. 5.6, it is shown

the number of standard deviations � in the mDM–⌧DM plane in case of bottom (upper

panels) and top (lower panels) quarks in the final states. The darker the color, the larger

the statistical significance in � in favor of the two-component scenario with a DM neutrino

flux. The cases of spectral index 2.0 (2.2) are depicted in left (right) panels. In all the plots,

4
The IceCube e↵ective area can be found at https:/icecube.wisc.edu/science/data/HEnu_

above1tev.

https:/icecube.wisc.edu/science/data/HEnu_above1tev
https:/icecube.wisc.edu/science/data/HEnu_above1tev
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Figure 5.6: Number of standard deviations in � in the mDM–⌧DM plane for the decay

channels � ! bb (upper panels) and � ! tt (lower panels), once the spectral index of

the astrophysical flux has been fixed to 2.0 (left panels) and 2.2 (right panels). The white

contours bound the regions where the significance level is � � 2 (solid) and � � 3 (dashed).

The white dots correspond to the best-fit values (maximum significance). The red lines

delimit from below the allowed regions according to IceCube data, while the black one refer

to di↵erent contribution of the DM model to the IGRB measured by Fermi-LAT.

the best-fit corresponding to the maximum significance is represented by white dots. The

white contours delimit the regions where � � 2 (solid lines) and � � 3 (dashed lines). The

red lines instead limit from above the regions in the parameter space where the inclusion
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Figure 5.7: Number of standard deviations in � in the mDM–⌧DM plane for the decay

channels � ! µ
+
µ
� (upper panels) and � ! ⌧

+
⌧
� (lower panels). The description of the

plots is the same of Fig. 5.6.

of a DM component to the neutrino flux makes the fit worse with respect to the case of a

single astrophysical power-law. These regions are excluded by the IceCube 2-year MESE

data, once a spectral index 2.0 and 2.2 is respectively assumed.

Furthermore, the Fermi-LAT gamma-ray constraints of Eq. (5.15) are shown by the

almost horizontal black lines. These lines are related to di↵erent DM contributions (1%,

10% and 100%) to the Fermi-LAT IGRB spectrum. In particular, the allowed regions in

the mDM–⌧DM plane is further limited from below by the solid black lines corresponding to
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Figure 5.8: Number of standard deviations in � in the mDM–⌧DM plane for the leptophilic

three-body decay channels �! `
+
`
�
⌫. The description of the plots is the same of Fig. 5.6.

!
DM
�

= !
exp
�

(100% IGRB). However, the 100% IGRB bound corresponds to the unrealistic

situation where the DM signal explains the whole gamma-ray observations made by Fermi-

LAT, leaving no room for a contribution of additional astrophysical sources. Since it is quite

reasonable to assume that the majority of the IGRB spectrum is accounted for by standard

astrophysical sources, we consider the limit !DM
�
 0.1!exp

�
as a realistic constraint for the

allowed DM contribution to the gamma-ray flux.

The results for leptophilic couplings are displayed in Fig.s 5.7 and 5.8. The decaying cases

into muon and tau leptons are shown in upper and lower panels of Fig. 5.7, respectively.

The results of the likelihood-ratio statistical test for the leptophilic three-body decay (�!

`
+
`
�
⌫) are instead reported in Fig. 5.8.

For the plots, one can note that in case of hadronic final states (Fig. 5.6), smaller values

for the lifetime ⌧DM and larger masses mDM are favored with respect to the case of leptonic

final states (Fig.s 5.7 and 5.8). Moreover, the tension with the Fermi-LAT data is more

evident in models with quarks as final states with respect to the models involving only

leptons. Indeed, in order to explain the IceCube measurements, the models with quarks

would required values of mDM and ⌧DM belonging to regions excluded by the 10% IGRB

bound. On the other hand, in the case of a leptophilic interaction, the most significant
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Figure 5.9: Significance in number of standard deviations � as a function of the mass mDM

for all the studied models of decaying DM, in case of a spectral index 2.0 (left panel) and

2.2 (right panel).

region in the parameter space mDM–⌧DM corresponds to a IGRB contribution smaller than

10%. Therefore, we can already conclude that the leptophilic scenarios are in fair agreement

with both neutrinos and gamma-ray observations under the assumption of a two-component

flux. This is not the case of hadronic final states.

For all the analyzed decaying cases, we report the statistical significance in � as a function

of mass mDM in Fig. 5.9. The curves have been obtained by taking the best-fit value for

⌧DM for each choice of decay channel and mass mDM. We note that the maximum value

of such a statistical significance is almost independent on the decay channel. Remarkably,

it results to be 3.7–3.9� and 2.2–2.4� in case of spectral index 2.0 and 2.2, respectively.

Moreover, we find that the maximum significance is achieved for mDM ' 140 TeV for

� ! `
�
`
+, while it is maximized at mDM ' 200 TeV and mDM ' 300 TeV for � ! tt and

� ! bb, respectively. The best-fit of the proposed two-components scenario for the decay

channel � ! ⌧
�
⌧
+ is displayed in Fig. 5.10, where the DM contribution to the observed

neutrino energy spectrum is clearly shown in Southern (left panel) and Northern (right

panel) hemispheres. The di↵erence of the best-fit values for mDM among the DM models

is explained by the fact that in the hadronic cascades neutrinos are mainly produced at

low energies, while in the leptonic channels their energy can be as large as mDM/4 (the
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maximum energy of leptons is mDM/2 for a two-body decays). This consideration also

explains why DM masses larger than about 1 PeV (700 GeV) are excluded by IceCube data

for the leptonic decay channels for � = 2.0 (� = 2.2), while no constraints are obtained

in case of hadronic channels. Moreover, we note that the smallest best-fit DM mass is

obtained in case of the leptophilic three-body decays (dotdashed purple line in Fig. 5.9),

according to fact that primary neutrinos are produced up to an energy equal to mDM/2.

Finally, the results for the annihilating scenarios are reported in in Fig. 5.11, where

only the channels �� ! tt (upper panels) and �� ! ⌧
+
⌧
� (lower panels) are shown.

Indeed, these two annihilating channels are representative for all the hadronic and leptonic

scenarios, respectively. Ase one can see from the plot, the maximum statistical significance

(best-fits shown with white dots) is reached for the same values of the DM mass obtained

in the decaying case. On the other hand, we find at the best-fit a thermally averaged

cross section of the order of 10�24 ÷ 10�23 cm3
/s. As for the decaying case, the maximum

significance in standard deviations is ⇠ 3.8� and ⇠ 2.3� for spectral index 2.0 and 2.2,

respectively.

In addition to the gamma-rays constraints (black lines) delimiting from above the allowed

regions of the parameter space, we have to consider also the constraints due to the unitarity

bound [280, 281, 282] (yellow line). Too large values for the thermally averaged cross section

h�vi are indeed excluded according to the relation

h�vi  4⇡

m
2
DM v

= 1.5⇥ 10�23 cm
3

s


100TeV

mDM

�2
, (5.16)

where the typical value v = 300 km/s of the DM velocity v has been considered (v =

300 km/s). This strong constraint implies that the models of DM particles annihilating

into quarks are not viable for explaining the IceCube observations, which instead would

require larger values for h�vi. On the other hand, leptophilic scenarios are compatible

both with the gamma-ray constraints (IGRB spectrum measured by Fermi-LAT) and with

unitarity.

All the plots presented here have been obtained by considering the Navarro-Frenk-White

halo density distribution. The results related to the Isothermal distribution do not signifi-

cantly di↵er from the shown results, and therefore they are not reported here. In particular,
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Figure 5.10: Numbers of neutrino events as a function of the neutrino deposited energy after

641 days of data-taking (MESE sample), in the Southern (left panels) and Northern (right

panels) hemispheres. The astrophysical component (green color) is a power-law with a

spectral index 2.0 (upper panels) and 2.2 (lower panels). The DM contribution (blue color)

refers to the decaying DM model �! ⌧
+
⌧
� with mDM = 140 TeV and ⌧DM = 6⇥ 1027 sec

(⌧DM = 9⇥ 1027 sec) for � = 2.0 (� = 2.2).

in case of decaying DM the Isothermal profile provides a statistical significance that dif-

fers less than 1% with respect to the NFW distribution. On the other hand, in case of

annihilating DM, the significance level of the two-components flux decreases by 0.1 if the

Isothermal distribution rather than the NFW one is considered. A much larger dependence

on the halo density profile is in general expected in case of a spatial study on neutrino
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Figure 5.11: Number of standard deviations in � in the mDM–h�vi plane for annihilation

channels �� ! tt (upper panels) and �� ! ⌧
+
⌧
� (lower panels). The description of the

plots is the same of Fig. 5.6. In addition, the yellow lines show the unitarity constraint of

the thermally averaged cross section provided in Eq. (5.16).

events (as shown in Section 5.1). However, such a study would require a larger statistics

and a detailed knowledge of the IceCube e↵ective area. Moreover, the results for annihilat-

ing DM have been derived by assuming a particular clumpiness parametrization (described

in Section 3.1). However, even though a change in this parametrization is going to slightly

a↵ect the allowed range for h�vi, the qualitatively conclusions remain unchanged.

We conclude claiming that, under the prior of a spectral index in the interval [2.0, 2.2],
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the statistical relevance of a two-component flux with respect to a single power-law ranges

from 2 to 4�. By comparing Fig.s 5.6, 5.7 and 5.8 with Fig. 5.11, we note that:

• the decaying models are less constrained than the annihilating ones;

• neutrino (IceCube) and gamma-ray (Fermi-LAT) observations are more in favor of

an interpretation of the neutrino low-energy excess in terms of leptonic final states

rather than the hadronic ones.

5.2.3 Results for IceCube 6-year HESE data

In this last part of the Chapter, we perform the analysis on the observed neutrino energy

spectrum by using the latest IceCube 6-year HESE data, following the statistical procedure

adopted for the IceCube 2-year MESE data. The main results of such an analysis are

reported in Fig. 5.12 and 5.13. As for the previous analysis, the plots display the number

of standard deviations � in the mDM–⌧DM plane for the tow decay channels � ! tt and

�! ⌧
+
⌧
�. The upper and lower panels of both figures refer to an astrophysical power-law

with spectral index 2.0 and 2.2, respectively. In the plots, the best-fit values (maximum

significance) are represented by white stars (the capital letter “H” stands for 6-year HESE

analysis). The new best-fits are compared to the previous results (black dots with the

capital letter “M”) deduced by IceCube 2-year MESE data. The white solid (dashed)

contours delimit the regions in the mDM–⌧DM plane where the statistical significance is

larger than 3� (2�). Independently the decay channel considered, we found the maximal

statistical significance at the best-fit to be equal to 3.75� and 2.60� in case of spectral

index 2.0 and 2.2, respectively.

Moreover, the constraints on decaying DM models according to the latest IceCube ob-

servations are shown by the solid red lines. The dashed red lines instead correspond to

the constraints deduced by analyzing the IceCube 2-year MESE data. It is worth observ-

ing that the IceCube 6-year HESE data bound the possible DM models in a region with

mDM � 100 TeV. This feature depends on two e↵ects:

• the di↵erent energy thresholds for HESE data set (20 TeV) and MESE sample (1 TeV)



CHAPTER 5. THE LOW-ENERGY EXCESS: A DM INTERPRETATION 87

Figure 5.12: Number of standard deviations � in the mDM–⌧DM plane for the decay channel

�! tt, once the spectral index of the astrophysical power-law has been fixed to 2.0 (upper

panel) and 2.2 (lower panel). The white contours highlight the regions where the statistical

significance is larger than 2� (dashed line) and 3� (solid line). The white stars (black dots)

correspond to the best-fit values deduced by the IceCube 6-year HESE (2-year MESE) data.

The solid (dashed) red lines bound from below the allowed region according to the IceCube

6-year HESE (2-year MESE) data. The black lines refer to di↵erent contribution of the

DM model to the IGRB measured by Fermi-LAT.

provide di↵erent sensitivity of data and hence of TS for light �;

• as can be seen from Figure 5.1, the second energy bin from left, corresponding to

almost 25–40 TeV, shows a defect in the number of events and thus it disfavors any

additional second component contributing to this energy. This pushes the possible

DM models to higher masses.

The almost horizontal black lines correspond to the gamma-ray constraints as previously

discussed. As for the previous analysis, hadronic channels result to be more in tension

with Fermi-LAT observations since they require smaller values for the lifetime ⌧DM and

larger DM masses mDM with respect to the leptonic channels. In particular, we find the

best-fit values mDM ' 500 TeV and ⌧DM ' 2.77 ⇥ 1027 sec for mDM–⌧DM, while we have

mDM ' 400 TeV and ⌧DM ' 1.65⇥ 1028 sec for �! ⌧
+
⌧
�. Fig. 5.14 shows the predictions
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Figure 5.13: Number of standard deviations in � in the mDM–⌧DM plane for the decay

channel �! ⌧
+
⌧
�. The description of the plots is the same of Figure 5.12.

of the two-component neutrino flux for the latter case. The conclusions of this statistical

analysis confirm the previous results obtained by using the IceCube 2-year MESE data.

However, the best-fits for 6-year HESE prefer larger values for mDM even though this could

be partially explained in terms of a lower sensitivity of such data set to low energy events.
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Figure 5.14: Numbers of neutrino events as a function of the neutrino energy after 2078

days of data-taking (HESE sample), for the two-component flux provided in Eq. (5.10).

The astrophysical contribution (green color) is a power-law with a spectral index 2.0. The

DM contribution (yellow) correspond to the DM model with the decay channel �! ⌧
+
⌧
�

for mDM ' 400 TeV and ⌧DM ' 1.65⇥ 1028 sec (best-fit values).



Chapter 6

Model for Decaying Leptophilic Dark

Matter

In this last Chapter, we present a model with a DM candidate � that couples only with the

leptons of the Standard Model. We define such a candidate as a leptophilic DM particle.

In particular, in the model discussed here, DM is unstable and decay through the three-

body process � ! `
+
`
�
⌫, which provides an interesting and peculiar signal at Neutrino

Telescopes. We show that, in the most minimal version of the model, the same operator

mediating the leptophilic three-body decays could at the same be responsible for the DM

production in the early Universe by means of the freeze-in production mechanism.

The paradigm of decaying DM is in general somewhat unnatural, in the sense that its life-

time has to be at least larger than the age of the Universe (tUniverse ' 4.35⇥ 1017 sec) [283].

This unavoidable constraint implies that the DM decay necessarily has to be a suppressed

process. Since the decay rate of any particle roughly scales with some power of its mass,

we have to find a way to obtain strong suppressions that are required for a DM mass

mDM � 100 TeV (mass range interesting for IceCube). It is worth observing that such

strong suppressions are in general not needed for annihilating DM particles since one can

always invoke some conservation law that keeps � particles stable. The possible ways to

suppress the decay rate of DM particles are listed in the following.

• Small phase space. This can be achieved by either choosing the mass of the decaying

90
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particle to be small or to only allow for final state particles whose sum of masses

is nearly identical to the mass of the parent particle. The former is employed, for

example, for keV sterile neutrinos [130, 284], while the latter option is for example used

to explain the 3.5 keV hint [138, 139] by the decays of excited DM states [285, 286].

However, the suppression due to a small phase space is not a viable option for very

heavy DM particles. We remind that very high-energy neutrinos are required in order

to account for the IceCube observations.

• Operators suppressed by Planck-scale mass. In this case, the resulting inter-

action (or in this case decay) rates are then usually very small. This occurs, for

instance, in processes that may only be induced at very high energies [287], where

gravity is expected to break global symmetries [288]. We will show that this suppres-

sion is not a viable option in case of a model for a mass mDM = O (1 PeV), if one

wants to use the same operator for both DM production and indirect detection at

Neutrino Telescopes. Moreover, we underline that, unless a full UV-complete theory

is specified, an introduction of Planck-scale suppressed operators is not much more

than a parametrization of the apparent lack of knowledge.

• Very tiny couplings. Once the previous ideas are exhausted, this is the remaining

possibility. In particular, very tiny couplings can be regarded as the final generic

option since the previous two possibilities either do not work or are just pushing the

problem to di↵erent scales. Any setting that explain the IceCube data via decaying

DM scenario has to be tuned with very tiny couplings, unless unknown exotic high-

scale physics is assumed, which may alleviate the tension.

These options represent the only simple ways to suppress the decay rate, because apart

from the initial state mass, from the phase space, and from the size of the squared matrix

element, there are no other ingredients that one could play with.

The Chapter is divided into three Sections. The first one is devoted to discuss the DM

model based on an abelian or non-abelian flavor symmetry. In the second Section, we report

the fit of the model deduced by the IceCube 3-year HESE data. In the last Section, we
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describe how the DM is produced in the early Universe by means of the freeze-in mechanism

and we report our numerical results obtained by solving the Boltzmann equations.

6.1 The model

Let us consider a heavy fermionic DM candidate �, which is a singlet under the SM gauge

group UY (1)⌦ SUL(2)⌦ SUC(3). Under the requirement of a direct coupling to neutrinos,

the simplest operator one can think of is the 4-dimension Yukawa interaction

y↵ L̄↵H̃� , (6.1)

where ↵ runs over the lepton flavors e, µ, ⌧ . For the sake of simplicity, here we consider

only a new fermionic singlet particle. The particle � has the same quantum number of the

right-handed neutrino and the interaction term in Eq. (6.1) is the standard coupling for the

type-1 seesaw [131, 132, 133, 134, 135, 136]. Such an operator, whose phenomenological

implications are studied in detail in Ref.s [289, 263, 290, 291], is relevant for the IceCube

observations if the coupling y↵ is very tiny, i.e. y↵ ⇠ O(10�30). Note that, due to the small-

ness of such a coupling, the Yukawa interaction does not provide any sizable contribution

to the mass of light neutrinos. At three level, the decay channels of � mediated by the

operator (6.1) are

�! `
±
↵
+W

⌥
, �! ⌫↵ + Z , �! ⌫↵ +H

0
, (6.2)

with branching ratios equal to 2:1:1. Even though there are channels with primary neutrinos

providing a sharp peak in the neutrino flux, the weak gauge bosons and the Higgs allows for

an abundant production of heavy quarks. As seen in the previous Chapter, the scenarios

with quarks in the final states (hadronic channels) are problematic if one considers the

gamma-ray constraints as well. Moreover, in case of PeV DM, the secondary neutrinos

produced in the hadronic cascades give an almost flat neutrino flux at lower energies. For

mDM = O (1 PeV), such a flux could explain the whole di↵use TeV–PeV neutrino flux,

leaving no room for a contribution from standard astrophysical sources. We remind that

we expect at least an astrophysical neutrino flux behaving as a E
�2.0
⌫

power-law according

to the Waxman-Bahcall bound reported in Eq. (4.14).
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Dimensions Possible allowed operators

4 L̄�̃�

5 ��

6 L̄` L̄�, H
†
HL̄H̃�, (H̃)tDµH̃

¯̀�µ�,

Q̄d L̄�, ūQ L̄�, L̄d Q̄�, ū�µd
¯̀�µ�,

D
µ
H̃DµL̄�, D

µ
DµH̃L̄�,

Bµ⌫L̄�
µ⌫
H̃�, W

a

µ⌫
L̄�

µ⌫
⌧
a
H̃�

Table 6.1: List of gauge-invariant operators up to dimension-6 for a fermionic singlet DM

particle �. The list is taken from Ref. [292].

In order to improve the need of an unnatural very tiny coupling and to provide a lep-

tophilic operator with no quarks in the final states (IceCube and Fermi-LAT observations

are in favor of leptonic final states with respect to hadronic ones), we consider a higher

dimension operator having the following characteristics:

1. the DM particle is coupled to the SM particles via a leptophilic coupling;

2. the non-renormalizable interaction provides a lifetime of � that is suppressed by

powers of a scale of new physics;

3. the operator has to allow for a direct coupling to neutrinos providing a primary

neutrino flux with energy of the order of the DM mass. Neutrinos at lower energies

can be produced in the multi-body decays in such a way that the neutrino flux is also

spread to lower energies;

4. for the sake of simplicity, we assume that � represents the dominating contribution

of Cold DM.

Following Ref. [292], in Tab. 6.1 we report the full list of gauge-invariant operators up to

dimension-6. In order to simplify the notation, we have omitted the family index for all the
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Leptonic Sector Scalar Sector Dark Sector

Field Le, `e Lµ, `µ L⌧ , `⌧ H �

Charge q 2 1 4 0 3

Table 6.2: Uf (1) charges q for a possible realization of a model containing only the operator

of Eq. (6.3).

matter fields. Remarkably, one can note that there exists only one operator in this list that

satisfies the requirements 1–3. Such a non-renormalizable lepton portal operator is given by

y↵��

M
2
Pl

�
L↵`�

� �
L��

�
+ h.c. , (6.3)

where {↵, �, �} are flavor indexes that label a total of 27 di↵erent operators. The round

brackets explicitly indicate the Lorentz contractions. Note that expanding the SU(2) con-

tractions, such an operator always leads to DM decays into two charged leptons and one

neutrino. Depending on the flavor indexes, the charged leptons can then possibly decay

into secondary neutrinos. At this level, i.e. without specifying the full UV-complete theory,

we chose to parametrize the mass scale of new physics in terms of the Planck mass MPl.

The other operators listed in Tab. 6.1 all involve quarks, directly or indirectly through the

couplings to the Higgs field or the UY (1) and SUL(2) gauge bosons.

Hence, if one wants to allow for only the operator (6.3) as source of DM decays, we

have to invoke some symmetry that forbids the 4-dimensional operator (6.1) and the other

6-dimensional ones. The required selection rule can be obtained by using global flavor

symmetries, both Abelian like Uf (1) and non-Abelian like A4. In the following, we will

discuss these two benchmark schemes (Uf (1) or A4 flavor symmetry) as relevant examples.

6.1.1 Abelian flavor symmetry Uf(1)

Let us introduce a new global flavor symmetry that assigns a particular charge to the SM

leptons and to the particle �. We denote with q the Uf (1) flavor charge of a generic

field  . With an Abelian flavor symmetry, it is not possible to single out a flavor-diagonal

operator in Eq. (6.3). Indeed, in this case both the operators L̄↵`↵L̄↵� and L̄↵H`↵ would
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be invariant under such a symmetry, implying also the invariance of the term L↵H̃� that

has to be forbidden. For a flavor-diagonal operator in Eq. (6.3) we have

L̄↵`↵L̄↵� =) �2qL↵ + q`↵ + q� = 0

L̄↵H`↵ =) �qL↵ + q� + q`↵ = 0

9
=

; =) �qL↵ � q� + q� = 0 , (6.4)

relation that inevitably allows for the operator (6.1) in the Lagrangian. This conclusion

can be bypassed by introducing the supersymmetry or allowing for a mix of di↵erent lepton

flavors. In the latter case, a possible realization of a model, which contains only the lep-

tophilic dimension-6 operator (6.3) among the ones listed in Tab. 6.1, is shown in Tab. 6.2.

In this case, in addition to the SM interactions, the Lagrangian contains only the following

invariant dimension-6 operators

O6 =
1

M
2
Pl

�
yµe⌧ Lµ`eL⌧�+ y⌧eµL⌧`eLµ�+ yeµe Le`µLe�

�
+ h.c. . (6.5)

These operators provide three di↵erent DM decay channels with flavor structure

{↵, �, �} ⌘ {µ, e, ⌧}+ {⌧, e, µ}+ {e, µ, e} . (6.6)

It is worth observing that the charge assignment in Tab. 6.2 is not unique. Di↵erent

assignments would provide DM decays with a di↵erent flavor structure. In principle, a

study of the flavor composition of IceCube neutrino data would give useful hints in the

definition of the possible flavor charges.

An Abelian flavor symmetry like Uf (1) is a viable symmetry only for Dirac DM particles.

Indeed, the requirement of a non-zero charge to � implies that the DM candidate cannot

be a Majorana fermion. For the model with the charge assignment of Tab. 6.2 (hereafter

referred as model 1), the total decay width of DM is given by

�� = ⌧
�1
�

=
1

6144 ⇡3

�
2 |yµe⌧ � y⌧eµ|2 + |yeµe|2

� m
5
�

M
4
Pl

, (6.7)

For the sake of simplicity, in the fit performed with IceCube data we assume the following

relation among the three di↵erent couplings

|yµe⌧ � y⌧eµ| = |yeµe| ⌘ y . (6.8)
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We observe that in this model it is also possible to account for the neutrino masses and

oscillations parameters. Indeed, the charge assignment provides a flavor structure for the

dimension-5 Weinberg operator L↵Lc

�
H̃H̃ that is equivalent to the so-called B4 two-zeros

texture given in Ref. [293]. Such a texture allows for a fit of the lepton mixing parameters

as studied in Ref.s [294, 295].

6.1.2 Non-Abelian flavor symmetry A4

Another possible realization of our model with only the additional operator (6.3) can be

achieved by invoking non-Abelian discrete symmetries [296, 297, 298, 299]. Here, we discuss

the case of the A4 symmetry. Such a symmetry is the group of even permutations of four

objects. It can be viewed as the symmetry group of proper rotations leaving invariant a

tetrahedron.1 The group consists of twelve elements and admits four irreducible represen-

tations: a triplet 3 and three di↵erent singlets 1, 10 and 100. The multiplication rules of

these representations are

3⌦ 3 = 3S � 3A � 1� 10 � 100
, (6.9)

3⌦ 1 = 3⌦ 10 = 3⌦ 100 = 3 , (6.10)

10 ⌦ 10 = 100
, (6.11)

100 ⌦ 100 = 10
, (6.12)

10 ⌦ 100 = 1 , (6.13)

1
Such transformations are: eight rotations of 120

�
around an axis passing through a vertex and a face

opposite to the vertex; three rotations around an axis passing through the middle of two edges not belonging

to the same face; and the identity.
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Leptonic Sector Scalar Sector Dark Sector

Field L ` H1 H2 H3 �

Irreducible Representation 3 3 1 10 100 1

Table 6.3: Irreducible representations allocating the fields in case of the non-Abelian A4

symmetric model. The quarks are all singlets under A4.

Denoting with ai and bi the three components of two triplets, the first of the multiplications

rule lead to the following combinations.

3S = (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1) , (6.14)

3A = (a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1) , (6.15)

1 = a1b1 + a2b2 + a3b3 , (6.16)

10 = a1b1 + !a2b2 + !
2
a3b3 , (6.17)

100 = a1b1 + !
2
a2b2 + !a3b3 , (6.18)

where the phase ! = e
2⇡i/3 is such that !3 = 1.

A possible realization of the model under consideration is obtained in a framework

where the fields transform as irreducible representations of A4 as reported in Tab. 6.3. In

particular, the three left-handed lepton doublets and the three right-handed lepton singlets

are allocated into the two A4 triplets L = {(⌫e, eL), (⌫µ, µL), (⌫⌧ , ⌧L)} and ` = {eR, µR, ⌧R},

respectively. As it will be discussed later, the model also requires three di↵erent Higgs-like

SUL(2) doublets H1, H2 and H3 belonging to the A4 singlets 1, 10 and 100, respectively. In

the model (hereafter referred as model 2), the Lagrangian of the Dark Sector contains the

following relevant terms.

L � �1

2
(mDM �

c�+ h.c.) +O6 , (6.19)

where the first term gives the mass mDM to the field �, whereas the second one is the

lowest oder non-renormalizable operator allowed by the A4 symmetry. Such an operator

corresponds to two Fermi-like decay interactions given by

O6 =
y+

M
2
Pl

(L̄`)3S L̄�+
y�

M
2
Pl

(L̄`)3AL̄�+ h.c. , (6.20)
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where the notation (..)3S,A underlines the two possible contractions of two triplets into one

triplet representation according to Eq.s (6.14) and (6.15). Such an operator has the same

properties of the one given in Eq. (6.3). We note that the A4 symmetry also significantly

simplifies the flavor structure allowing for two independent couplings, namely y+ and y�,

only. By expanding the operator (6.20) using the relations (6.14), (6.15) and (6.16), we

obtain

O6 =
X

±

y±

M
2
Pl

[(⌫⌧µR ± ⌫µ⌧R) eL�� (⌧LµR ± µ
L
⌧R) ⌫e�

+ (⌫e⌧R ± ⌫⌧eR)µL
�� (eL⌧R ± ⌧LeR) ⌫µ�

+ (⌫µeR ± ⌫eµR) ⌧L�� (µ
L
eR ± eLµR) ⌫⌧�] + h.c. . (6.21)

These operators allow for six di↵erent decay channels of DM particles with branching ratio

1/6 and with flavor structure {e, µ, ⌧} plus its cyclic permutations. The total decay with

is therefore

�� = ⌧
�1
�

=
1

1024 ⇡3

�
|y+|2 + 3 |y�|2

� m
5
�

M
4
Pl

, (6.22)

For the sake of simplicity, we also assume the equality

|y+| = |y�| ⌘ y . (6.23)

The introduction of A4 symmetry requires a further modification concerning the Yukawa

interactions in the leptonic sector. In the model, the charged lepton and light neutrino

masses arise from the symmetry-invariant operators [292]

L � �
X

i=1,2,3

(ye)i LHi`+
X

i,j=1,2,3

(y⌫)ij L
cH

c⇤
i
H

c†
j
L+ h.c. . (6.24)

Once the three Higgs fields develop vacuum expectations values hHii =
�
0, vi/

p
2
�T

, the

lepton mass matrices are diagonal. In particular, they take the forms

Me =

0

BBB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCCA
, and M⌫ =

0

BBB@

m1 0 0

0 m2 0

0 0 m3

1

CCCA
, (6.25)

where the entries of Me and M⌫ are given by particular combinations of the three vacuum

expectation values, the couplings (ye)i and (y⌫)ij, and the phase !. Since the matrices
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are diagonal, the model does not allow for the lepton mixing that is however observed in

several experiments. The neutrino oscillation parameters can be originated by introducing

an extra Higgs-like field belonging to a A4 triplet or a SUL(2) triplet scalar [292]. These

new fields provide new channels for DM decays that have to be suppressed by invoking

new symmetries (like Z2) or by assuming very small couplings (compared to y+ and y�).

However, the fit of the neutrino oscillation parameters in the framework of the A4 model

discussed here is not the topic of the thesis.

6.2 Fit with IceCube 3-year HESE data

Let us now constrain the two leptophilic models (model 1 and model 2 for Uf (1) and A4

symmetries, respectively) based on the operator given in Eq. (6.3). As for the previous

analyses, we consider a two-component neutrino flux described by Eq. (5.10), where one

contribution comes from astrophysical sources and the other one is originated by DM decays

induced by the operators (6.5) (model 1) and (6.20) (model 2). The astrophysical neutrino

flux is parametrized either by an unbroken power-law (4.10) (UPL) or by a broken power-

law (4.12) (BPL). In case of the BPL parametrization, we fix the value of Emax
⌫

to be equal

to 125 TeV according to the prediction of extragalactic SNRs [211]. Moreover, we restricted

the spectral index to the range � 2 [2, 3]. This allows us to cover a wide range of accelerator

mechanisms related to the di↵erent astrophysical sources (p-p and p-� processes). In this

analysis, we focus on the scenario where the DM signal is mostly concentrated at very high

energies, namely the three PeV neutrinos are related to DM decays. Hence, we consider DM

masses in a range [1 PeV,10 PeV]. The peculiar features of the decay channels considered

(peaked and spread flux due to primary neutrinos produced in the three-body decays, with

sharp cut-o↵ at E⌫ = m�/2) are well in agreement with the IceCube observations at PeV

energy scale.

The fit on the IceCube 3-year HESE data [238] has been performed by maximizing the

multi-Poisson likelihood (4.18). We find the best-fit values in correspondence of m� =

5.0 PeV, independently of the model adopted, and � = 3.0 and � = 2.0 for UPL and

BPL cases, respectively. The marginalized 95% intervals for the parameters of the fit
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DM Model Astrophysical flux y [10�5] J0 [10�8 GeV/cm2
/s/sr] �

2/dof

model 1
UPL 1.0+0.7

�0.7 0.8+1.0
�0.5 10.3/12

BPL 1.1+0.6
�0.5 2.5+2.8

�2.1 9.2/12

model 2
UPL 0.35+0.21

�0.21 0.8+1.0
�0.5 10.7/12

BPL 0.37+0.17
�0.16 2.4+2.8

�2.0 9.6/12

Table 6.4: Marginalized 95% C.L. for the coupling y and the astrophysical flux normaliza-

tion J0 = �0
astro ⇥ (105 GeV)2 for all the scenarios analyzed. The last column reports the

values of the reduced �2.

(DM-SM coupling y and the normalization of the astrophysical flux expressed in terms

of J0 = �0
astro ⇥ (105 GeV)2) are reported in Tab. 6.4 for all the cases considered. It is

worth observing that the IceCube data slightly prefer the BPL scheme with respect to the

UPL one, providing the former smaller values for reduced �2 than the latter. However, the

two astrophysical models essentially have similar features at the level of produced neutrino

flux, and a significative di↵erence cannot be appreciated. We highlight that in each case

a non-vanishing contribution from DM decays is required at 2� level. In other words, the

coupling y is not compatible with zero whiting 2�. This is mainly due to the presence of the

sharp cut-o↵ in the neutrino data at high energy. In each case, the total energy injected by

DM decay in the electromagnetic sector is smaller than the bound provided by Fermi-LAT

experiment [216], as we already expected in case of leptophilic decay channels.

In the upper panels of Fig. 6.1 they are reported the number of neutrino events for two-

component neutrino flux for the model 1 in case of the two di↵erent parameterizations of the

astrophysical component. The lower panels, instead, show the 68% C.L. (dashed) and 95%

C.L. (solid) contours of the marginalized likelihood in the y–J0 plane. The crosses represent

the best-fit points. The same plots for the fit of the model 2 based on the A4 symmetry are

reported in Fig. 6.2. It is worth observing that there is no significative di↵erence between
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Background
Best fit ± 68% CL
Unbroken Power Law
Dark Matter

Background
Best fit ± 68% CL
Broken Power Law
Dark Matter

68% CL
95% CL

68% CL
95% CL

Figure 6.1: Results for the fit of the two-component neutrino flux for the model 1 and the

two astrophysical parameterizations: the unbroken power-law (left panels) and the broken

one (right panels). In the upper panels (neutrino energy spectrum), the red (long-dashed)

line is the best-fit, and its band represents the 68% C.L. resulting from the fit. The purple

(dashed) and green (solid) lines are the astrophysical and DM contributions, respectively.

The black points are the IceCube 3-year HESE data with the blue regions showing the

upper limit for the atmospheric background. The lower panels show the 68% C.L. (dashed)

and 95% C.L. (solid) contours for the two parameters y and J0 = �0
astro ⇥ (105 GeV)2.

the two models. Indeed, both two models predict the observation of neutrinos in the energy

range [0.3 PeV, 1.0 PeV] and a sharp cut-o↵ at the energy of few PeV in correspondence of

m�/2. Since the galactic and extragalactic components of the DM neutrino flux are of the

same order of magnitude (roughly 2/3 and 1/3 respectively), we expect an almost isotropic

neutrino flux with a significant level of anisotropy near the galactic center.

In order to better understand the similarities of the two models, we also characterized
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Background
Best fit ± 68% CL
Unbroken Power Law
Dark Matter

Background
Best fit ± 68% CL
Broken Power Law
Dark Matter

68% CL
95% CL

68% CL
95% CL

Figure 6.2: The description is the same of Fig. 6.1, but for the case of model 2.

two di↵erent realizations of the operator of Eq. (6.3) where only one coupling is non-zero. In

particular, we study the couplings with flavors {↵, �, �} ⌘ {e, e, e} and {↵, �, �} ⌘ {⌧, ⌧, ⌧},

since they represent two extreme cases with the minimum and maximum production of

secondary neutrinos, respectively. In the left panel of Fig. 6.3 we show the flavor com-

positions at the Earth of the DM neutrino flux for model 1 and 2, and the two fully

diagonal cases (e, e, e) and (⌧, ⌧, ⌧) as well. In the plot, the black dot is the best-fit of the

IceCube flavor analysis [300]. Only the diagonal case (e, e, e) leads at Earth to the fla-

vor composition (fe : fµ : f⌧ )� ⇡ (0.55 : 0.19 : 0.26), while the other scenarios correspond

to (fe : fµ : f⌧ )� ⇡ (1/3 : 1/3 : 1/3). In the right panel of Fig. 6.3 one can see that the

DM neutrino flux is not appreciably a↵ected by the choice of the flavor structure of the

operator (6.3).



CHAPTER 6. MODEL FOR DECAYING LEPTOPHILIC DARK MATTER 103

U(1)
A4
τττ ± 68% CL
eee ± 68% CL

Figure 6.3: Left: Flavor compositions at Earth of the di↵erent DM models. Model 1, model

2 and the (⌧, ⌧, ⌧) case are represented by the red disk, whereas the blue star stands for

the (e, e, e) case. The green square shows the best-fit of the IceCube analysis on neutrino

flavors [300]. Right: DM neutrino flux for model 1 (green, solid), model 2 (purple, solid),

(e, e, e) (blue, dashed), and (⌧, ⌧, ⌧) (red, long-dashed). The two 68 % C.L. bands refer to

the two cases (e, e, e) and (⌧, ⌧, ⌧).

6.3 Dark Matter production

Let us now discuss how these very heavy DM particles can be produced in the early Universe.

The standard production mechanism of the thermal freeze-out [120, 121, 122] does not work

in the case at hand for two reasons:

• the interaction strength required to produce DM would be so large that the DM decay

would proceed much too fast;

• the DM mass is so large that the particle would be kinematically not accessible at

too early times, implying an overclose the Universe.

On the other hand, the production mechanism of freeze-in from the thermal bath is a

very good alternative [117]. In such a case, the interactions of the DM particles are so

feeble that they never reach the thermal equilibrium with the plasma. The DM particles

are instead gradually produced at temperatures T � m� from the thermal bath, and
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simply remain present in the Universe because the rate of the back-reactions is too small

or their decays proceed too slowly. A sizable DM abundance can be built up until T ⇠ m�,

temperature at which the DM particles become kinematically hard to access. The DM

candidates that are produced through the freeze-in mechanism are in general called ‘Feebly

Interacting Massive Particles” (FIMPs). It is worth underlining that such a mechanism

provides a non-thermal spectrum [118]. However, in case of very heavy DM particles, their

distribution is peaked towards non-relativistic velocities (cold DM), independently from the

details of the spectrum. The freeze-in production mechanism of DM particles providing a

signal at IceCube is already proposed in Ref.s [301, 302, 303]. However, di↵erently from

Ref. [301] which investigates a full model based on left-right symmetry, we characterize the

most minimal framework where the same operators relevant for the DM production are

responsible for its indirect detection at Neutrino Telescopes.

In order to compute the DM production accurately, we need to find a viable UV-

completion behind the e↵ective operator given in Eq. (6.3). Hence, we introduce an electri-

cally charged and SU(2)L singlet scalar S+. This new scalar features a (potentially) lepton

number violating coupling

�↵�L
c
↵
i�2L�S

+ + h.c. . (6.26)

Such a coupling is similar to the one adopted in the Zee-Babu model [304, 305, 306].2

Furthermore, the new particle S± can couple to the DM particle � according to the operator

�
0
�
`��S

� + h.c. . (6.27)

Thus, for a very heavy particle S± of mass MS, the following e↵ective operator is generated

once the charged scalar is integrated out.

�↵��
0
�

M
2
S

�
Lc
↵
i�2L�

� �
`��
�
+ h.c. . (6.28)

2
The Zee-Babu model was introduced to explain the smallness of neutrino masses, which are generated

only at 2-loop level. This model contains two SU(2) singlet scalars, one of which is doubly charged while

the other one carries a single electric charge. The latter carries the same quantum numbers as S+
in

Eq. (6.26). This model is particularly interesting in what concerns its lepton flavor violation [307] and

collider phenomenology [308, 309], which is linked to the light neutrino masses [310]. Note that, di↵erently

from our setup, the Zee-Babu model does not contain total singlet fermion fields, although it can be

extended to accommodate for a DM candidate [311].
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Such an operator is phenomenologically equivalent to the one provided in Eq. (6.3) with

the relation
�↵��

0
�

M
2
S

 ! y↵��

M
2
Pl

. (6.29)

In order to forbid the Yukawa-like interaction of Eq. (6.1) we can invoke the A4 symme-

try, assuming that the S
± belongs to the triplet irreducible representation of the discrete

symmetry, namely S
+ = (S+

1 , S
+
2 , S

+
3 ) ⇠ 3. Under this assignment, the operator LH(1,2,3)�

is forbidden at tree-level, because it would transform as 3 ⌦ (1,10
,100) ⌦ 1 6� 1, while

⇣
(L)ci�2L

⌘ �
`�
�
⇠ (3⌦ 3)⌦ (3⌦ 1) � 3⌦ 3 � 1. However, once the vacuum expectation

values hH2,3i break the A4 symmetry, the dimension-4 operator LH(1,2,3)� is generated at

1-loop level by gluing together the vertexes `�S, LH`, and (L)cLS. Then, the resulting

dimension-4 operator only arises at one-loop level and it is suppressed by being proportional

to the product of three tiny couplings, whereas the operator (6.28) is only suppressed ��0.

Given the operators of Eq.s (6.26) and (6.27) that depends on two masses (m� and MS)

and on two couplings (�↵� and �0
�
), we now report all the processes that are responsible for

the production and the decay of DM particles.

6.3.1 The relevant processes for production and decay

There exist four di↵erent classes of processes (see Fig. 6.4 for Feynman diagrams of the

last three processes are depicted explicitly, while S-decay would simply correspond to the

“right half” of the leftmost diagram) that provide a contribution to the DM production in

the early Universe:

• decays of S particles, S± ! `
±
�, which are in thermal equilibrium with the thermal

bath due to the hypercharge interactions. These processes are proportional to
���0
�

��2;

• s-channel processes like ⌫c
↵
+ `� ! `� + �, whose squared matrix elements are pro-

portional to 4
���↵��0�

��2;

• t-channel processes like ⌫c
↵
+ `� ! `�+� and `�+ `� ! ⌫c

↵
+�, whose squared matrix

elements are again proportional to 4
���↵��0�

��2;
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2�↵� �
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�

(a) s-channel

S

⌫
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↵

�
`�

�

`�

`� (⌫c↵)

�

2�↵�

�
0
�

(b) t-channel

S

`�

`�

�

�

�
0
�

�
0
�

(c) Annihilation

Figure 6.4: Three of the four Feynman diagrams responsible for the DM production.

• annihilation processes like `� + `� ! � + �, whose squared amplitudes are weighted

by
���0
�
�
0
�

��2.

It is worth noticing that the coupling �↵� is anti-symmetric in ↵ and �, due to the structure

of the operator in Eq. (6.26), while a factor of 2 arises from the singlet combination of two

SU(2) doublets. We have 18 di↵erent flavor combinations for the s-channel processes and

for the t-channel ones, while the number of di↵erent flavor annihilation processes is 9.

Since the scalar particles S carry a hypercharge equal to unity, they can interact with

the SM particles through the hypercharge interactions mediated by the U(1)Y gauge boson

Bµ. Due to the strength of the hypercharge interactions, the S particles quickly reach the

thermal equilibrium and follow a thermal distribution. Once the scalars decouple from the

thermal bath and freeze-out, they can decay to SM particles or DM particles, providing a

contribution to the DM relic abundance.

Indeed, in our setting the scalar S± has at least two decay channels,

S
± ! `

±
↵
+ ⌫� (⌫�) and S

± ! `
±
�
+ � (�) [if MS > �] , (6.30)

where the second channel is of course only accessible if the mass of S± is larger than the

sum of the mass of all its decay products. Even though the scalar particles S
+ can also

decay into further (e.g. non-SM) particles, here we focus our attention only on the most

minimal setting provided by Eq.s (6.28), (6.26), and (6.27). In this case, the total decay

width �S of S particles for MS > m�, is equal to

�S = �S!`⌫ + �S!`� , (6.31)
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where

�S!`⌫ =
1

2⇡

 
X

↵=e,µ,⌧

X

� 6=↵

|�↵�|2
!
MS , (6.32)

�S!`� =
1

8⇡

 
X

�=e,µ,⌧

���0
�

��2
! �

M
2
S
�m

2
�

�2

MS

�
M

2
S
+m2

�

� . (6.33)

In order to take into account the contribution of S decays, we have to solve the Boltzmann

equation for S particles. It has the form

dYS

dT
=

s h�vihyper.
T H

h
Y

2
S
� (Y eq

S
)2
i
+
h�i

S!`⌫

T H [YS � Y
eq
S
] +
h�i

S!`�

T H YS , (6.34)

where Y
eq is the equilibrium yield of S particles. The first term in the right-hand side of

the expression is related to the hypercharge processes S
+
S
� $ BB and S

+
S
� $ ff (f

stands for any SM particle), and it depends on the thermally averaged cross-section

h�vihyper. =
2⇡↵2

y

M
2
S

2

4
y
2
S

⇣P
f
nfy

2
f

⌘

16
+ 4y4

S

3

5

K1 (MS/T )

K2 (MS/T )

�2
, (6.35)

where ↵�1
y

= 59.008 is the hypercharge gauge coupling at the electroweak scale,3 the quan-

tity yf is the hypercharge of the SM multiplet f (yS = 1), and nf is its multiplicity under

the SM gauge group (e.g., nu = 3 for an up-quark u or ne = 1 for an electron e
�). Moreover,

the functions K1 and K2 are the first and second modified Bessel functions, respectively.

The second and third terms on the right-hand side of Eq. (6.34) correspond instead to the

processes S± $ `
±
⌫ and S

± ! `
±
�, respectively.4 In particular, we have

h�i
S!`⌫

=
K1 (MS/T )

K2 (MS/T )
�S!`⌫ and h�i

S!`�
=

K1 (MS/T )

K2 (MS/T )
�S!`� . (6.36)

Therefore, the Boltzmann equation for the DM particles consists of four terms. It is given

by
dY�
dT

=
dY�
dT

����
S dec.

+
dY�
dT

����
s-ch.

+
dY�
dT

����
t-ch.

+
dY�
dT

����
annih.

, (6.37)

3
Considering the running of the gauge coupling corresponds to a rescaling of the new couplings involved

in DM production.

4
We do not consider the inverse decay process `±�! S±

, since the number density of DM particles is

negligible in the early Universe due to the feebleness of couplings involved.
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where the four terms correspond to the four di↵erent classes of processes previously listed.

The first term is given by
dY�
dT

����
S dec.

= �
h�i

S!`�

T H YS , (6.38)

while the other three terms take the form

dY�
dT

����
i

= � 1

512⇡6Hs

Z
ds d⌦

Wip
s
K1

✓p
s

T

◆
. (6.39)

For each process the quantities Wi are equal to

Ws-ch. =
X

↵,�=e,µ,⌧

X

� 6=↵

W
⌫c↵`�!`��

, (6.40)

Wt-ch. =
X

↵,�=e,µ,⌧

X

� 6=↵

h
W⌫c↵`�!`��

+W
`�`�!⌫c↵�

i
, (6.41)

Wannih. =
X

�,�=e,µ,⌧

W
`�`�!��

. (6.42)

The functions Wij!kl in these expressions are given by

Wij!kl = gigjPijPkl |M|2
ij!kl

, (6.43)

where the squared matrix element |M|2 is summed over initial and final spin degrees of

freedom g and averaged over initial ones, and

Pij =
[s� (mi +mj)2]

1/2 [s� (mi �mj)2]
1/2

2
p
s

, (6.44)

where s is the centre-of-mass energy and mi is the mass of particle i. Under the reasonable

approximation of massless in- and out-going SM particles, denoting with ✓ the scattering

angle we have

|M|2
⌫c↵`�!`��

=

���↵��0�
��2

4

s
�
s�m

2
�

�

(s�M
2
S
)2

, (6.45)

|M|2
⌫c↵`�!`��

=

���↵��0�
��2

4

�
s�m

2
�

� ⇥
s (1� cos ✓) +m

2
�
(1 + cos ✓)

⇤
(1� cos ✓)

⇥�
s�m2

�

�
(1� cos ✓) + 2M2

S

⇤2 ,(6.46)

|M|2
`�`�!⌫c↵�

= |M|2
⌫c↵`�!`��

, (6.47)

|M|2
`�`�!��

=

���0
�
�
0
�

��2

4

s

h
s (1 + cos2 ✓)� 4m2

�
cos2 ✓ � 2

q
s
�
s�m2

�

�
cos ✓

i

h
s�

q
s
�
s�m2

�

�
cos ✓ + 2

�
M

2
S
�m2

�

�i2 . (6.48)
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Figure 6.5: DM decay channels due to the coupling leading to the e↵ective operator (6.28).

The DM relic abundance is then obtained by plugging Eq. (6.37) into Eq. (2.9) and numer-

ically performing the integral over x. As will be shown later, the contribution to the DM

relic abundance from the S decays is the dominant one in the region MS > m�. Depending

on the strength of the quantities reported in Eqs. (6.35) and (6.36), the S particles can

freeze-out from the thermal bath or freeze-in at a temperature T = T
⇤. Therefore, if the

decays of scalar mediators become e�cient (h�i
S
> H) for T � T

⇤, by taking Y
eq
S
⇠ 0 in

Eq. (6.34) and using Eq. (6.38), one can obtain the following analytically approximated

expression for the DM relic abundance.

⌦DMh
2
��
S dec.

' 2m�s0
⇢crit/h

2

�S!`�

�S

YS (T
⇤) . (6.49)

The s-channel processes, instead, provide a sub-dominant contribution, while the contribu-

tions of the other two processes is negligible. In case of s-channel processes, by using the

narrow width approximation at the resonance T ⇡ MS, one gets the following analytical

expression for its contribution to the relic abundance of � particles.

⌦DMh
2|

s-ch.

0.1188
=

8
>>>>><

>>>>>:

⇣
106.75
g⇤

⌘3/2✓P
↵,�=e,µ,⌧

P
� 6=↵|�↵��

0
�|2

1.10⇥10�21

◆
for MS < m� ,

⇣
106.75
g⇤

⌘3/2✓P
↵,�=e,µ,⌧

P
� 6=↵|�↵��

0
�|2

3.72⇥10�23

◆
(M2

S�m
2
�)

2

M
4
S

m�

�S
for MS > m� ,

(6.50)

where �S is the total decay width of S particles and it is provided in Eq. (6.31). In our

setting, the � particles decay through the processes depicted in Fig. 6.5, for both cases
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where MS < m� and MS > m�. The total decay width of � particles is therefore given by

�� =

8
>>><

>>>:

P
�=e,µ,⌧

|�0�|2
16⇡ m� for MS ⌧ m� ,

P
↵,�=e,µ,⌧

P
� 6=↵

|�↵��
0
�|2

1536⇡3

m
5
�

M
4
S

for MS � m� .

(6.51)

All the previous expressions have been evaluated in case of Dirac DM particles, but the

final results does not change for Majorana particles.

In the numerical analysis we will present later, for the sake of simplicity we assume that

all the couplings are of the same order of magnitude, independently of the flavor structure.

This means that

�↵� ⌘ � and �
0
�
⌘ �

0
. (6.52)

If this relation is only approximately fulfilled, each process with a di↵erent flavor structure

would lead to a di↵erent contribution to the DM relic abundance. In particular, in the

case of large hierarchies among the couplings �↵�, only the processes proportional to larger

couplings would be significant for DM production. On the other hand, we have seen in

Fig. 6.3 that, due to neutrino oscillations, the IceCube observations are not very sensitive

to di↵erent flavor structures of DM decays, except for the case where � ! e
+
e
�
⌫e is the

only allowed decay channel.

Under the reasonable assumptions of equality among the couplings, we will show in the

next section that the observed DM relic abundance is obtained if � � �
0. By using this

relation, from Eq. (6.49) we obtain

⌦DMh
2
��
S dec.

= 0.1188

✓
|�0| / |�|

4.2⇥ 10�8

◆2 ⇣
m�

1 PeV

⌘ �
M

2
S
�m

2
�

�2

M
4
S

YS (T
⇤) . (6.53)

This quantity depends on the ratio between the two couplings � and �0, being the contri-

bution of Eq. (6.49) proportional to the branching ratio �S!`�/�S. On the other hand,

the s-channel contribution is solely proportional to the coupling �0 and, for MS > m�, it is

given by

⌦DMh
2
��
s-ch.

= 0.1188

✓
106.75

g⇤

◆3/2✓ |�0|
1.0⇥ 10�12

◆2
m�

MS

�
M

2
S
�m

2
�

�2

M
4
S

. (6.54)
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6.3.2 Numerical results

Let us now show that in our minimal setting the operators of Eq.s (6.26), (6.27), and (6.28)

are able to account for the DM production in the early Universe and to provide a detectable

signal at the IceCube Neutrino Telescopes. In particular, few constraints have to be fulfilled

by varying the parameters of the setting:

• the model has to provide the correct observed DM relic abundance [85]

⌦DMh
2 = ⌦DMh

2
��
obs

= 0.1188± 0.0010 ; (6.55)

• the DM lifetime has to be larger than at least the age of the Universe

⌧� � tUniverse ' 4.35⇥ 1017 sec ; (6.56)

• according to the results obtained by fitting the IceCube 3-year HESE data we fix the

DM mass and lifetime to be equal to

m� = 5PeV and ⌧� = 1028 sec . (6.57)

We note that in general the IceCube constraints on decaying DM scenarios are model-

dependent, since the neutrino spectrum depends on the DM decay channels. However, the

IceCube spectrum sets a lower bound on the DM lifetime of the order of 1028 sec, which

is approximately model-independent. The reaming free parameters of such a numerical

analysis are the mass of the charged scalar MS and the two couplings � and �0. Moreover,

we assume that the reheating temperature is above the mediator mass MS.

In Fig. 6.6 we report the contributions of the four di↵erent classes of processes involved

in the DM production as a function of the charged scalar mass MS. For each value of MS,

the couplings � and �0 are chosen in such a way that ⌧� = 1028 sec and the sum of all the

contributions (lines) satisfies the relation of Eq. (6.55). In the plot, the purple region on

the left (MS  m�) is not allowed according to the requirement of Eq. (6.57). On the other

side, the purple region on the right (MS > MPlanck) represents the bound related to the

Planck mass. The whole treatment is indeed valid for sub-Planckian scales only. The green
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Figure 6.6: Contributions to the DM relic abundance as a function of the mass MS. For

each value of MS, the couplings � and �
0 satisfy the conditions ⌦DMh

2 = ⌦DMh
2|obs and

⌧� = 1028 sec for m� = 5 PeV.

region displays the choices of parameters where accouing for the observed DM abundance

would require a non-perturbative coupling � (i.e., larger than
p
4⇡). When all constraints

are satisfied, we observe that there exist two di↵erent regimes:

• for MS . 1015 GeV, the decays of thermal scalar particles provide the main contri-

bution;

• forMS & 1015 GeV, there is a small region in which the s-channel processes dominate.

Hence, we have that for small values of MS, the DM relic abundance is approximately given

by Eq. (6.53), while for very large scalar masses it is provided by Eq. (6.54). The other

two contributions (t-channel and annihilation processes) are always negligible with respect

to the previous ones.

In the left panel of Fig. 6.7, they are reported the yields YS and Y� as a function of the

variable x = MS/T . The correct DM relic abundance is obtained by considering MS =

1010 GeV and by fixing the couplings � and �0 to 1.0⇥ 10�10 and 1.3⇥ 10�15, respectively.

For any initial distribution, the S particles quickly reach the thermal equilibrium, implying
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Figure 6.7: Left: yields of the S and � particles as a function of the auxiliary variable

x = MS/T . Right: interaction rates of di↵erent processes involved in the Boltzmann

equations (6.34) and (6.37). In both panels, the showed quantities are evaluated for MS =

1.0⇥ 1010 GeV, � = 1.0⇥ 10�10, and �0 = 1.3⇥ 10�15.

that the yield YS follows the equilibrium distribution Y
eq
S

(dashed blue line in the plot). As

the temperature decreases and the quantity x reaches approximately the value 10, the S

scalars freeze-out from the thermal bath. Then, at very low temperatures T ⇠ Tdec., they

decay into SM and DM particles as soon as the decay rate becomes e�cient (h�i
S
> H).

On the other hand, DM particles freeze-in at T = Tdec., meaning that the yield Y� increases

as the temperature of the bath decreases and becomes a constant for T  Tdec..

The interaction rates neq h�vi and h�i as functions of the auxiliary variable x are depicted

in the right panel of Fig. 6.7. We remind that when an interaction rate is larger than

the Hubble parameter H (dashed black line in the plot), the corresponding processes are

e�cient. Therefore, the hypercharge interactions (solid blue line) are able to couple the

S particles with the thermal bath. By comparing the two plots in Fig. 6.7, we note that

the region where n
eq
S
h�vihyper. � H corresponds to the one where YS = Y

eq
S
, and that

the scalar particles decouple from the thermal bath when the interaction rate equals the

Hubble parameter. Moreover, the plot shows also that the S decays occur once h�i
S
⇡ H.

The interaction rate of s-channel processes is never larger than the Hubble parameter H,
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Figure 6.8: Allowed region of the parameter space. The excluded regions are related to

the constraints coming from the age of the Universe (light blue), the IceCube data (red),

and the Planck and DM mass (purple). The solid red line corresponds to ⌧� = 1028 sec.

The solid green line bounds from below the allowed values of MS due to � being non-

perturbative in case of ⌧� = 1028 sec. The blue lines display fixed values for the coupling �.

The intersections (circles) between the red line and the blue lines provide the values of MS,

� and �
0 that provide a correct DM production and an detectable signal at the IceCube

Observatory.

implying that the DM particles indeed never reach the thermal equilibrium with the thermal

bath. In particular, it firstly increases as T decreases for T > MS and then rapidly falls

o↵. Note that the s-channel contribution corresponds to the first step in the behavior

of the yield Y�. Moreover, one can observe that according to Fig. 6.6 the t-channel and

annihilation processes are negligible with this choice of parameters. Furthermore, the DM

particles freeze-in when h�i
S
= H occurring at T = Tdec..

Fig. 6.8 shows the main result of this numerical analysis in the MS–�0 plane. The three

lines shown explicitly are related to di↵erent values of the coupling �. The blue (red)

region is excluded since ⌧� < tUniverse (⌧� < 1028 sec). The solid red line corresponds to

the relations given by Eq. (6.57). It is worth noting that IceCube data provide the most
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stringent constraint on models for very heavy DM particles. The purple regions show

the bounds related to the DM mass (left) and Planck mass (right), as already discussed.

Thus, only the white region in the plot is allowed. The choices of parameters belonging

to such a region provide viable DM production and a compatible signal with the IceCube

observations.

It is worth underlining that only the values of MS and �0 surrounding to the solid red line

(⌧� = 1028 sec) are compatible with both fitting the PeV neutrinos and the DM production.

The intersections (marked by the black circles) of the blue lines (i.e., the lines with given �)

with the red one provide the corresponding required values for the coupling �. As can be

seen in Fig. 6.8, the coupling �0 is smaller than � according to Eq. (6.53). In particular, the

requirement of perturbative coupling (green line in the plot) provides an upper bound on

the scalar mass MS and on the couplings �0 and �. A lower bound for the values of the two

couplings is instead obtained in correspondence of MS = 1.3⇥ 107 GeV where a minimum

in �0 is shown in the plot. In the region m�  MS  1.3 ⇥ 107 GeV, the couplings indeed

are larger than their minimum values due to the fact that the expression of Eq. (6.53) is

proportional to the di↵erence (MS �m�). Thus, we find the following bounds:

• Upper bound MS  3.2⇥ 1017 GeV and �0  3.4⇥ 10�7, according to � 
p
4⇡;

• Lower bound �0 & 2.7⇥ 10�16 at MS = 1.3⇥ 107 GeV.

• Lower bound � & 1.0⇥ 10�13 for MS ! m�.

These bounds delimit the region of the three parameters MS, �, and �0, whose values are

compatible at the same time with the DM production and a positive IceCube signal at PeV

energy. Hence, when interpreting the high-energy neutrino events observed at IceCube

Telescope as stemming from DM decay, no complicated new physics is required. Instead,

a few simple additions to the Standard Model su�ce to not only bring all the bounds in

agreement but to also provide a potentially testable parameter space left to explore.

Finally, in Fig. 6.9, we illustrate the e↵ect of Neutrino Telescope like IceCube on the

parameter space. For a coupling � = 1.0⇥ 10�10, we show the m�–MS plane with �0 color-

coded, with the di↵erent bounds on the DM lifetime. Most of the plane is, however, already
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Figure 6.9: Illustration of the impact of Neutrino Telescopes like the IceCube experiments,

shown for the example of � = 10�10. The red region is excluded because of ⌧� < tUniverse.

excluded by the requirementm� < MS. The IceCube bound can be avoided for large enough

MS or small enough �0, both providing a small decay rate. It is worth observing that there

exist further constraints coming from cosmological arguments like reionization [312], which

are strongly model-dependent, and from other astrophysical indirect signals like gamma-

rays (see for instance Ref.s [277, 278]), that are not shown here.



Conclusions

Although the existence of dark matter is strongly suggested by several gravitational phe-

nomena, we still know a very few about its nature. Among the numerous models proposed

to allocate viable dark matter candidates, the most promising WIMP paradigm starts to

be very constrained by all direct, indirect and colliders searches, especially focused on

the GeV–TeV energy range. On the other hand, modern Neutrino and Gamma-ray tele-

scopes are collecting new data that can potentially shed light on the nature of dark matter.

Indeed, the latest astrophysical observations of high-energy neutrinos and gamma-rays pro-

vide the only viable way to look for alternatives to WIMPs having a mass larger than the

TeV energy scale. The measurement of the di↵use TeV–PeV neutrino flux by the IceCube

and ANTARES Neutrino Telescopes has trigged a huge debate in the scientific community

about an intriguing relation between the origin of such high energy neutrinos and dark

matter. Indeed, through its decays or annihilations, dark matter can provide a detectable

contribution to the observed neutrino flux.

The aim of the thesis is to analyze the current neutrino and gamma-ray data in order

to infer the properties of dark matter particles. In particular, we have focused on the 2–3�

low-energy excess (10–100 TeV) shown in the di↵use neutrino flux. Such an excess arises

once a hard astrophysical power-law is considered, in agreement with gamma-rays and up-

going muon neutrinos observations. The excess have been statistically characterized by

using di↵erent IceCube data samples (MESE and HESE). Moreover, we have found that

the tension with the single power-law assumption is strengthened once the latest IceCube

data are combined with the ANTARES ones. This result strongly suggests that the di↵use

neutrino flux has to be explained in terms of two di↵erent components.
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Hence, we have deeply analyzed the scenario where the low-energy excess is due to dark

matter. For this purpose, we have phenomenologically considered di↵erent models where

dark matter particles decay or annihilate into leptonic or hadronic final states. In order to

determine the statistical relevance of such a scenario, we have performed analyses on both

the angular distribution and the energy spectrum of neutrinos observed by the IceCube

telescope. The dark matter models are further constrained once the prediction for the flux

of gamma-rays is compared with the corresponding measurements. In particular, we have

found that the decaying models result to be less constrained than the annihilating ones, and

the leptonic final states are favoured with respect to the hadronic ones, since they provide

a smaller contribution to the gamma-ray flux. This result underlines the importance of

multi-messenger analyses that at the same time take into account the prediction of both

neutrino and gamma-ray fluxes produced by dark matter.

We have also examined an extension of the Standard Model, based on flavor symmetries,

where a leptophilic dark matter candidate is predicted to have an observable signal at

IceCube. The parameters of the model have been fitted to account for the three PeV

neutrinos observed by IceCube. Moreover, in this theoretical framework, by solving the

Boltzmann equations we have shown that the freeze-in mechanism is a viable mechanism

to produce such very heavy dark matter particles in the early Universe. In particular,

we have found that the same operator mediating dark matter decays into neutrinos is

responsible for dark matter production. In such a way, we have provided the most minimal

scenario allocating a dark matter candidate whose signal can be observed at IceCube.
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