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Synopsis 

 

A  large  part  of  the  world’s  most  precious  cultural  heritage  and  artworks  are  made  of  

stone with a finite life, and they are slowly but irreversibly disappearing. Biofilms 

living at rock-atmosphere interface are heterogeneous, complex consortia whose 

ability to alter properties of the substratum is defined biodeterioration. This 

phenomenon received serious attention by scientists only within the last three 

decades. The present work is aimed to advance the understanding of mechanisms 

involved in microbial biodeterioration: new investigation tools for the investigation of 

the biofilms are indeed required, so that the needs of small amount of sampling 

material to be analyzed in non-invasive and highly reproducible assay can be 

satisfied. Three sampling campaigns were carried out at the archaeological sites of 

Oplontis, Pompeii and at Phlegrean Phields.   

In a series of in vitro colonization experiments, the pioneer attitude of the fungi 

Fusarium solani and Alternaria tenuissima as well as the cyanobaterium Oculatella 

subterranea, was tested and monitored for a short-term period. Through the use of 

many variants of microscopy included CLSM and computer image analysis it has 

been possible to depict fine structure and architecture of the studied microrganisms, in 

a controlled environment where the realistic conditions of the respective sampling 

points have been reproduced.  

A novel approach for the study of subaerial biofilms via the construction of qPCR 

primers and fluorescent internal probes is also proposed, based on a deep survey on 

microrganisms occurring over stone monuments in European countries. 

A further proposed tool is the characterization of microbial diversity through the use 

of flow cytometry; phototrophic components of sampled biofilms were analyzed with 

flow cytometry, which allowed the sorting of the two Genera Cyanidium and 

Galdieria. Species identification was later obtained with the use of novel-designed 

species-specific primers targeting plastidial gene rbcL. 
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Larga  parte  del  patrimonio  culturale  e  delle  opere  d’arte  più  preziose  al  mondo  ha  i  
giorni contati e sta lentamente ma irreversibilmente scomparendo. Le patine 
microbiche  che  vivono  all’interfaccia  roccia-atmosfera sono consociazioni complesse 
ed eterogenee la cui capacità di alterare il substrato è definita come 
biodeterioramento.   Tale   fenomeno  ha   ricevuto   l’opportuna   considerazione   da   parte  
degli  scienziati  solo  negli  ultimi  trent’anni.   
Il presente lavoro si propone di avanzare la comprensione dei meccanismi coinvolti 
nel biodeterioramento microbico: sono perciò necessari nuovi strumenti 
d’investigazione   per   lo   studio   delle   patine   microbiche,   tali   da   richiedere   piccole  
quantità di campione e che possano essere analizzate in saggi non invasivi ed 
altamente riproducibili. Sono state condotte tre campagne di campionamento nei siti 
archeologici di Oplonti e Pompei e ai Campi Flegrei.  
In una serie di esperimenti di colonizzazione in vitro è stata monitorata a breve 
termine la capacità pioneristica per i funghi Fusarium solani ed Alternaria 
tenuissima, così come per il cianobatterio Oculatella subterranea.  Attraverso  l’uso  di  
molte   varianti   di   microscopia,   inclusa   quella   CLSM   unita   all’analisi   digitale   di  
immagini, è stato possibile rappresentare la struttura fine   e   l’architettura      dei  
microrganismi studiati, in un ambiente controllato ove le condizioni dei rispettivi 
punti di campionamento sono state riprodotte realisticamente.   
Un nuovo approccio per lo studio delle patine microbiche è inoltre qui proposto 
mediante   la   costruzione   di   oligonucleotidi   per   qPCR   così   come   l’utilizzo   di   sonde  
interne fluorescenti, basate su una approfondita ricerca dei microrganismi ritrovati 
sui monumenti in pietra in tutta Europa. Un ulteriore  strumento  proposto è la 
caratterizzazione della diversità microbica mediante citometria a flusso; le 
componenti fotoautotrofe delle patine campionate sono state analizzate in 
citofluorimetria, che ha permesso di isolare i due generi Cyanidium e Galdieria. 
L’identificazione   delle   specie   è   stata   poi   ottenuta   con   l’ausilio   di   oligonucleotidi    
specie-specifici di nuova realizzazione costruiti sul gene plastidiale rbcL.  
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CHAPTER 1  

GENERAL INTRODUCTION 
 
1. 1 Main features of subaerial biofilms 

 

The term 'subaerial biofilm' (SAB) has been introduced for microbial communities 

that develop on solid mineral surfaces exposed to the atmosphere. These communities 

are ubiquitous and self-sufficient microbial ecosystems that may be found on 

buildings, monuments and bare rocks at all latitudes where direct contact with the 

atmosphere and solar radiation occurs (Gorbushina, 2007; Caneva et al, 2008).  

These patinas are composed by densely packed microorganisms that live in self-

organized structures of micron to millimeter scales. Made up of a moltitude of many 

different microbial cells, the exertion of coordinated survival strategies increases 

biocide resistance and microbial fitness, and avoids the loss of energy and nutrients 

(Stewart and Franklin 2008, Stone 2015). All major metabolic groups of 

microorganisms can be found, including chemolithotrophs, chemoorganotrophs and 

phototrophs (Gorbushina, 2007).  

1.1.1 Ecology of subaerial biofilms 

Terrestrial cyanobacteria and algae are pioneer organisms, which colonize habitats 

potentially unavailable for living organisms and transform them, giving the 

opportunity to other organisms to settle (Schopf  et al., 1996). Tipically, phototrophic 

biocenosis may allow the later growth of more complex communities, including the 

heterotrophic microbiota (Tomaselli et al., 2000). The association of phototrophic 

components embedded in a biofilm enriches itself with organic and inorganic 

substances and growth factors (Tiano, 2002) providing an excellent nutrient base for 

the subsequent trophic succession. However, the establishment of heterotrophic 

communities on rocks is possible even without the pioneering participation of 

phototropic organisms and may in fact facilitate the subsequent growth of 

photosynthetic populations (Roeselers et al., 2007). In this case, organic substrates 

from various sources are used, including airborne particles and organic vapors, 

organic matter naturally present in sedimentary rock (usually between 0.2% and 2%), 
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excreted organic metabolic products and biomass from other organisms (Warscheid 

and Braams, 2000; Urzì, 2004). 

Stone-atmosphere interface can be considered as an extreme environment 

characterized by severe environmental fluctuations. Especially desiccation, low 

nutrient concentrations, large temperature variations, high exposure to wind and UV 

radiation are some of the features of this stressful habitat (Viles and Cutler 2012). For 

this reason, only microorganisms with a very broad range of tolerance to multiple and 

fluctuating stresses can establish themselves under these conditions (Zakharova et al. 

2013). 

A decisive role in the growth and development of cyanobacteria and algae is played 

by appropriate light conditions, temperature and humidity, which are greatly 

associated with the distance from larger aquatic ecosystems and vegetation 

(Barberousse et al., 2006). In particular humidity probably represents the most 

important factor for the colonization of aeroterrestrial microalgae; moreover, when 

dried they can quickly recover if water becomes available again, e.g., after rain 

events. This ability explains well the ecological success of phototrophs in thriving on 

building facades and roof tiles in urban areas (Häubner et al., 2006). 

The access to mineral compounds and adequate substrate pH are also important 

(Grbić et al., 2010) and the stone substratum itself may act as a putative source of 

minerals together with the air chemistry that may provide inorganic and organic 

compounds (Villa et al. 2015).  

Atmospheric gases, aerosols, pollutants and particulates can be accumulated in 

biofilms and serve as nutrient sources as well as inoculum (Warsheid and Braams, 

2000). 

Although the number of eukaryotic studies is limited, algal and fungal communities 

on stone revealed a lower diversity in biofilms on stone surfaces compared with those 

in most natural systems (Gorbushina and Broughton 2009; Cutler et al 2013). Which 

particular microbial community dominates may depend on the substrate, the 

atmosphere, and abiotic stresses (Ranalli, et al., 2009). Organic components in the 

rock substrate or atmosphere also encourage chemoorganotrophic development, 

which in turn leads to further organic enrichment of the system through biomass 

production, exudation and exopolymer synthesis (Warsheid and Braams, 2000).  
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1.1.2 Establishment of a subaerial biofilm 

Colonization is one of the first steps leading to the subsequent formation of a biofilm 

on a material, resulting at best in a reduction of its performance and, at worst, in its 

destruction. Hamilton and Characklis (1989) described the phases of biofilm 

development as follows: (l) the transport of organic molecules and cells to the surface, 

(2) the adsorption of organic molecules to give a 'conditioned' surface, (3) the 

adsorption of cells to the conditioned surface, (4) the growth of adsorbed cells with 

associated synthesis of expolymeric substances (EPS). 

Biofilms are composed primarily of microbial cells and EPS, that may account for 

50% to 90% of the total organic carbon of biofilms (Flemming et al., 2000) and can 

be considered the primary matrix material of the biofilm. EPS may vary in chemical 

and physical properties, but it is primarily composed of polysaccharides. Some of 

these polysaccharides are neutral or polyanionic, as is the case for the EPS of gram-

negative bacteria. The EPS matrix is also highly hydrated because it can incorporate 

large amounts of water into its structure by hydrogen bonding. Its production is 

known to be affected by nutrient status of the growth medium; excess available 

carbon and limitation of nitrogen, potassium, or phosphate promote EPS synthesis 

(Sutherland 2001) It is known that bacteria embedded in the biofilm matrix are 

remarkably more tolerant to biocides, up to 1000-fold relative to planktonic cultures 

of the same bacterial strains, depending on the species–drug combination (Davies 

2003). 

After the establishment of a biofilm community, a highly degraded stone surface with 

subsequent alteration of the physical condition of the rock, provide appropriate 

conditions for the germination of reproductive structures from higher organisms. The 

formation  of  a  ‘‘proto-soil’’ enables the growth of cryptogams (mosses and ferns) and 

higher plants (Lisci et al., 2003). 
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1.2 Biological weathering of stone substrata 

 

Although ineluctable, stone weathering depends on its mineral composition and 

environmental conditions, mostly influenced by climate and human activities 

(Warscheid and Braams 2000). A   large   part   of   the   world’s   most   precious   cultural  

heritage and artworks are made of stone with a finite life, and they are slowly but 

irreversibly disappearing (Schreerer et al. 2009). 

For the first time in 1965, Hueck (1965, 1968) defined biodeterioration   as   “any 

undesiderable change in the properties of a material caused by the vital activities of 

organisms”;;  till  then,  the  weathering  of  stone  monuments  and  artworks  was  attributed  

to physical agents, while later it became more and more clear that biofilms play an 

active role in stone decay. 

 

1.2.1 Biodeterioration  

Biofilms are particularly evident in altering the appearance of stone structures (Cutler 

and Viles, 2010; Gaylarde and Gaylarde, 2005) with fungi considered to be the most 

important chemoorganotrophs (De la Torre et al.,1993, Koestler et al., 1997). 

Microbial growth on stone surfaces follows the complex topography of the substrate 

and generates a patchy biofilm that spreads between the mineral grains filling 

depressions, fissures, and inter-granular spaces (Gorbushina 2007). There are, 

however, trends in colonization, which are related to the physical properties of 

materials such as roughness and porosity (Barberousse et al., 2007).  The solid surface 

may have several characteristics that are important in the attachment process. 

Characklis et al. (1990) noted that the extent of microbial colonization appears to 

increase as the surface roughness increases. Tolker-Nielsen and Molin (2000) noted 

that every microbial biofilm community is unique although some structural attributes 

can generally be considered universal. 

Stone inhabiting microorganisms may grow on the surface (epilithic), in crevices and 

fissures (chasmolithic), or may penetrate some millimetres or even centimetres into 

the rock pore system (endolithic)(Tiano, 2002b), thereby gaining protection from 

environmental extremes (Hoppert et al., 2004). The pore spaces in rocks, that is, the 

endolithic environment, can also host photosynthesis-based communities that are 

often thought to be among the simplest ecosystems known (Walker and Pace, 2007). 
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Typical mechanisms of microbial weathering involve physical and biochemical 

destruction. Generally speaking, biodeterioration process can occur due to: 

 (1) Mechanical processes, where the material is damaged as a direct result of the 

activity of an organism, such as its movement or growth. An example of this form of 

biodeterioration is the damage caused to cabling as a result of insect or rodent attack. 

(2) Chemical assimilatory biodeterioration, perhaps the most common form of 

biodeterioration. It occurs when a material is degraded for its nutritive value. The 

breakdown of cellulosic materials by cellulolytic micro-organisms, is an example of 

this type of biodeterioration. 

(3) Chemical dissimilatory biodeterioration, which occurs when meta- bolic products 

damage a material by causing corrosion, pigmentation, or by the release of toxic 

metabolites into a substance. The poisoning of grain by mycotoxins is an example of 

this process. 

(4) Soiling/biofouling, the form of biodeterioration which occurs when the mere 

presence of an organism or its excrement renders the product unacceptable. The 

biofouling of ships' hulls, the formation of slime in fuel lines and corrosion within 

water pipelines are examples of this form of biodeterioration.  

 

Physical mechanisms of bioweathering include penetration by filamentous 

microorganisms (for example, certain actinobacteria, cyanobacteria, algae, fungi) 

along points of weakness, or direct tunnelling or boring, especially in weakened or 

porous substrata (Hoppertet al., 2004; Jongmans et al., 1997; Lian et al., 2008). 

Many cyanobacteria, not necessarily filamentous, have also been shown to have a 

boring ability (Cockell and Herrera, 2008). Organisms that actively bore (euendoliths) 

widely occur in cyanobacteria, red and green algae and fungi (Cockell and Herrera, 

2008). Other physical effects on substrate integrity can be due to cell turgor pressure, 

and exopolysaccharide and/or secondary mineral formation (Barker and Banfield, 

1996). 

The   production   of   efflorescences   (‘salting’)   involves   secondary   minerals   that   are  

produced through the reaction of anions from excreted acids with cations from the 

stone. Such secondary mineral formation can cause blistering, scaling, granular 

disintegration   and   flaking   or   ‘spalling’   of   outer   layers.   This  may   often   be   a  major  

mechanism of stone decay (Wright, 2002). 
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Phototrophs inhabiting anthropogenic substrates thereby contribute to their rapid 

biodeterioration (Tomaselli et al., 2000; Crispim and Gaylarde, 2004; Samad and 

Adhikary, 2008). They produce photosynthetic pigments, which change the color of 

the substrates on which the cyanobacteria and algae grow. This adversely affects the 

aesthetic value of buildings and cultural monuments (Grbić et al., 2010; Stupar et al., 

2012). When humidity changes, the hydration and volume of algal cells are also 

modified, causing structural microdamages to substrates (Hauer, 2010). Many 

phototrophs are capable of dissolving compounds contained in a substrate and 

penetrating into it, causing mechanical erosion (Brehm et al., 2005; Crispim and 

Gaylarde, 2004). During the metabolic activity of the algal cells, various types of 

inorganic and organic acids are produced and algae secrete them into the external 

environment, causing chemical deterioration of substrates (Gaylarde and Morton, 

1999; Stupar et al., 2012). 

For instance, aerobic microorganisms produce respiratory carbon dioxide, which 

becomes carbonic acid and contributes to dissolution of stone and soluble salt 

formation (Griffin et al., 1991; Wakefield & Jones, 1998). The precipitation of 

calcium salts on cyanobacterial cells growing on limestone suggests the migration of 

calcium from neighbouring sites (Arino et al., 1997; Crispim & Gaylarde, 2005). In 

addition, the production of organic acids such as lactic, oxalic, succinic, acetic, 

glycolic and pyruvic has been found and associated with the dissolution of calcite in 

calcareous stones (Danin & Caneva, 1990; Caneva et al., 1992). Endolithic photosyn- 

thetic microrganisms actively dissolve carbonates to enable penetration into the stone, 

enhancing stone porosity (Fernandes, 2006). Furthermore, the slimy surfaces of 

microbial biofilms favor the adherence of airborne particles (dust, pollen, spores, 

carbonaceous particles from combustion of oil and coal), giving rise to hard crusts 

and patinas (Saiz-Jimenez, 1999). 

 

1.2.2 Bioreceptivity  

Attachment is a complex process regulated by diverse characteristics of the growth 

medium, substratum, and cell surface. In order to explain the particular and specific 

interactions that occur among microrganisms and different substrata, Guillitte (1995) 

introduced the definition of bioreceptivity, explained as  “the aptitude of a material (or 

any other inanimate object) to be colonized by one or several groups of living 

organisms without necessarily undergoing any biodeterioration”.   The   word  
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‘colonize’  is  important  since  it  indicates  that  conditions  for  harbouring,  development 

and multiplication have to be met and excludes the ability of a material to receive 

living organisms in a transient and fortuitous manner. It implies that there is an 

ecological relationship between the material and the colonising organisms.  

The susceptibility of stone and mineral-based material to bioweathering is influenced 

by chemical and mineralogical composition, physical form, and geological origin 

(Hutchens, 2009; Turick and Berry 2016). 

The presence of weatherable minerals in stone such as feldspars and clays may 

provide points of weakness and significantly increase susceptibility to attack 

(Warsheid and Braams, 2000).  
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CHAPTER 2 

STATE OF THE ART 
 

2.1 Traditional and modern methods for the characterization of a subaerial 

biofilm 

 

One of the most remarkable aspects in the study of biofilms is the identification of the 

phototrophic and heterotrophic components and the analysis of the hidden 

biodiversity of these consortia, together with the reciprocal organization and the 

architecture of the community. At this aim, for a long time the main focus of 

researchers has been dedicated to the isolation and cultivation of microrganisms and 

their identification through their morphological features.  

Moreover, culture media used to isolate environmental microbes include saccharides, 

proteins and vitamins in concentrations, which do not occur under environmental 

conditions, enabling the development of fast-growing species. Nevertheless, 

microscopy is still considered an useful instrument to investigate biofilm composition, 

especially CLS-M. Confocal laser scanning microscopy in fact has been largely used 

for the understanding of the relationships among microrganisms in a biofilm or 

between microrganisms and substratum (Sommerfeld Ross et al., 2014).  

Although the protocols for electron microscopy can generate artifacts and even 

destroy the samples, the variant ESEM is low-vacuum scanning electron microscopy 

technique for biofilm that enables imaging of hydrated specimens (Little et al., 1991). 

Zammit et al., (2011) used  Energy Dispersive X-Ray Spectroscopy (EDS) coupled to 

Environmental Scanning Electron Microscopy (ESEM) to study mineral structures 

formed by bacterial and microalgal biofilms growing on the archaeological surface in 

Maltese Catacombs.  

In the last three decades, the advance of molecular biology techniques made possible 

to study new aspects of biofilm ecology and community structures, especially thanks 

to the enlargement of genomic databases united with the broad use of barcoding 

markers. Most common molecular markers used for the identification are the genes 
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encoding for the 16S rRNA for prokaryotes and 18S rRNA for eukaryotes (Gonzalez 

and Saiz-Jimenez 2005; Dakal and Arora, 2012). They are present in all prokaryotic 

and eukaryotic organisms and structurally and functionally conserved; most 

importantly, they alternate highly conserved and variable regions, which allow the 

fingerprinting  (Rastogi and Sani, 2011). Also internal transcribed spacer (ITS) 

region, located between 18S and 28S rRNA, can be used to determine algae and 

molds. DNA extraction coupled with PCR reaction regarding barcoding genes 

allowed to identify microrganisms efficiently; Macedo and colleagues (2009) for 

instance report several years of identification of phototrophic species returning a 

picture of biodiversity of phototrophic species dwelling on monuments in the area of 

Mediterranean basin. Moreover, a number of techniques exist which were 

implemented on PCR for community studies. 

2.1.1 Molecular techniques for the study of microbial communities 

In denaturing gradient gel electrophoresis (DGGE), the PCR-amplified molecular 

markers are separated in polyacrylamide gels containing a linearly increasing gradient 

of denaturants such as urea and formamide. In these methods, DNA fragments of 

equal length, but with different base-pair sequences can be separated (Muyzer et al., 

1993; Muyzer and Smalla, 1998). Temperature gradient gel electrophoresis (TGGE) 

relies on the same principle as DGGE, except that temperature gradient is used 

instead of a mixture of urea and formamide (Rastogi and Sani, 2011). Migration of 

DNA fragments in DGGE and TGGE is based on the electrophoretic mobility of a 

partially melted DNA molecule in the polyacrylamide gel. The DGGE/TGGE 

techniques have been applied to evaluate the structure of microbial communities 

consisting of bacteria (Gurtner et al., 2000; Schabereiter-Gurtner et al., 2001), 

cyanobacteria (Cappitelli et al., 2009; Gaylarde et al., 2012), archaea (Rölleke et al., 

1996) and fungi (Carmona et al., 2006; Giacomucci et al., 2011) sampled from walls, 

cave paintings, stained window glasses and several others substrata.  

ARDRA is a useful method for rapid monitoring of microbial communities over time, 

or comparing biodiversity in response to changing environmental conditions. In this 

assay ribosomal RNA genes are amplified by a PCR reaction from environmental 

DNA. Later the products are digested into specific DNA fragments with tetracutter 

restriction endonucleases and separated on agarose or polyacrylamide gel. One of the 
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major limitations of ARDRA is that it provides little or no information about the type 

of microorganisms present in the sample (Gich et al., 2000). The ARDRA method 

was used to evaluate the biodiversity of cyanobacteria on stone monuments in the 

Boboli Gardens in Florence (Tomaselli et al., 2000). 

T-RFLP protocol involves the amplification of the 16S rRNA gene by using the PCR 

method. The major difference from ARDRA is that one or both primers used during 

the PCR reaction are   5’-fluorescently labeled (Liu et al., 1997). Amplified target 

genes are digested with restriction enzymes and the obtained terminal restriction 

fragments (TRFs) are separated by using capillary or polyacrylamide gel 

electrophoresis in an automated DNA sequencer. Only the terminally fluorescently 

labelled restriction fragments are detected, the analysis of the structure of microbial 

communities (Rastogi and Sani 2011, Cetecioglu et al., 2012). Cutler et al (2015) used 

T-RFLP for the understanding spatial heterogeneity in the biodeterioration of stone as 

the observed patchiness of fungal and algal varieties is likely to be correlated with 

centimetre-scale variation in stone degradation and soiling. 

Single strand conformation polymorphism (SSCP) is based on separation of the same-

length DNA fragments according to their differences in mobility in polyacrylamide 

gel caused by differences in the secondary structure of folded DNA. PCR products are 

denatured and this is followed by electrophoretic separation in a non-denaturing 

polyacrylamide gel (Cetecioglu et al., 2012).  

Automated ribosomal intergenic spacer analysis (ARISA) is a high resolution, 

culture-independent method suitable for an analysis of biodiversity and richness of 

microbial communities. Developed by Fisher and Triplett 1999, the PCR 

fingerprinting technique is based on the size and nucleotide sequence variability of 

the intergenic spacer region (IGS) present between the small (16S) and large (23S) 

ribosomal subunits (Cardinale et al., 2004). The IGS fragments are analysed by an 

automated capillary electrophoresis system containing a laser detector. The ARISA 

technique was applied by Cuzman and coworkers (2010) to study the species structure 

of biofilms formed in historic fountains in Italy and Spain. 

MDA consists of a pre-PCR amplification strategy using random hexamers and  fi29 

DNA polymerase. The reaction is carried out at a constant temperature of 30°C and 



 13 

generates non-specific genomic amplification products. In a second step the newly 

generated DNA serves as template for a PCR reaction using 16S-rRNA-specific 

primers, a thermostable DNA polymerase, and standard thermal conditions. This 

procedure results in the amplification of 16S rRNA gene fragments from natural 

samples at concentrations 10-fold lower than used in standard PCR amplifications 

(Gonzalez et al., 2005). 

2.1.2 Methods for microbial biomass estimation 

A biomass estimation of biofilms can be used to define the extent of microbial growth 

on a substrate. Several methods can be applied to this aim: HPLC chromatography is 

broadly used for the determination of the biomass, both for the heterotrophic and the 

autotrophic components in a biofilm through the quantification of ergosterol and / or 

chlorophyll a, even from solid substrata as showed by Gors and coworkers (2007).  

The estimation of algal biomass has also been successfully performed with LIBS 

(laser induced breakdown spectroscopy). This is a spectrochemical analytical 

technique LIBS, which is based on generating a laser-induced plasma (LIP) by high 

energy laser pulses and subsequent time-resolved spectral analysis of the LIP 

emission, can be used to analyze materials in any state of matter (Cremers and 

Radziemski, 2006; Miziolek, et al., 2006. ). An interesting application is the analysis 

of algal biomass for industrial biotechnology (Pořízka, 2012; Martin et al., 2017). 

Flow cytometry has been successfully applied for years to analyze phytoplanktonic 

communities. Recently it has been also used for the quantification of phototrophic and 

heterotrophic components of solid biofilms from Moidons caves (France) and also for 

bacterial biofilms to test anti-fouling coatings in marine environment  (Borderie et al., 

2016; Camps et al., 2014). This powerful analysis permitted to discriminate 

microrganisms on the basis of DNA content and/or quality of the pigments. 
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2.2 In vitro experiments for the understanding of biofilm ecology 

 

In general terms, deterioration can be defined as a loss of structural capacity with time 

as a result of the action of external agents or material weakening (Sanchez-Silva and 

Rosowsky, 2008). 

The study of biodeterioration and weathering effects on material decay requires a 

combination of microbiological, surface analysis and materials characterization 

techniques. Biodeterioration evaluation typically involves the identification of the 

major types of microorganisms present in biofilms formed on building materials 

united with the microscopical observation of the interface biofilm/ material. 

Moreover, the elemental and mineral analysis of the damaged material and the 

correlation between the morphological and metabolic properties of the identified 

organisms, the morphology of the decay and the chemistry of the altered material are 

relevant for the assessment of biodeterioration (Herrera and Videla, 2009). 

A better understanding of the mechanisms involeved in bio-weathering and its effects 

on materials properties is still needed. At the moment, tests to study biodeterioration 

of building materials exist, including a broad range of materials and microrgansims. 

Among them some were developed without accelerated weathering of the matrix 

leading to longterm experiments  (Ohsima  et  al.,  1999;;  Urzı`  and  De  Leo,  2007),  while  

some other aim on qualifying aesthetic damage of external wall surface exposed to 

biofilm  colonisation (Escadeillas et al., 2007). 

Natural stone exhibits a wide range of mineral composition, texture and structure. 

Therefore, the physical and chemical properties of different types of stone are 

extremely variable, resulting in stone with widely different abilities to resist 

weathering (durability). Decay of stone materials as a result of their interaction with 

the environment can lead to loss of the essential messages of the architectural object, 

in terms of cultural or artistic values. The most immediate consequence of this 

interaction is chemical and physical alteration followed, in most cases, by biological 

colonization. 

The degree of biological colonization of a stone surface depends not only on 

environmental factors but also on the intrinsic properties of the material (Guillitte, 

1995), thus two different types of stone may undergo different degrees of colonization 

under the same environmental conditions. 
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Several studies have investigated the bioreceptivity of stone materials (among the 

others e.g. Saiz-Jimenez et al., 1995; Urzì and Realini, 1998; Prieto and Silva, 2005; 

Prieto et al., 2006; Cámara et al., 2008, 2011; Favero-Longo et al., 2009; 

Giannantonio et al., 2009 ). 

Such experimental simulations, commonly used in ecological studies, are of great 

interest for the particular case of cultural heritage materials, since they allow 

experimental manipulation of the microbial ecosystem without the need for sampling 

and subsequent damage to cultural assets.  
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CHAPTER 3 

AIMS OF THE WORK 
 

Monuments and façade of historical buildings can be optimal environments to study 

ecological relationships of stone communities together with the complex mineralogical 

properties of the substrata and the microclimatic parameters, that are demonstrated to 

play a key role in the establishment of subaerial biofilms (Benavente et al., 2008).  

Cultural heritage in all its forms and expressions can host species of notable scientific 

interest and singular behavior. Only within the last three decades biodeterioration 

received serious attention from conservators and conservation scientists (Price, 1996; 

Schnabel, 1991). A thorough understanding of the factors and mechanisms involved in 

microbial biodeterioration is essential to develop appropriate methods for its control. Two 

main groups of microorganisms, algae and fungi, are known to colonize the external 

surfaces of buildings and monuments giving the surface a dirty, neglected and unsightly 

appearance (Perrichet, 1987). Both of them were studied in the present work, under 

several aspects. 

 

Three main objectives were crosswisely pursued in the presented works: 1) the advance 

in isolation and identification methods for the identification of microrganisms; 2) the 

assessment of in vitro systems to study the early steps of microbial colonization and 

bioreceptivity of stone; 3) the assessment of new tools for the evaluation of subaerial 

biofilms.  

 

In recent times molecular biology techniques have been necessary in order to understand 

composition and structure of subaerial biofilms, avoiding the cultivation and the isolation 

of single components. Neverthless the identification of microrganisms is not informative 

itself about the true composition of the mat, and no one of the present techniques used to 

this aim permits to obtain both qualitative and quantitative information.  More than a 

deep description of all the microrganisms involved in a mat, often present just in little 

traces, an evaluation of the microbial community on the basis of its main actors may be 

needed. It’s   the  author’s   thought   that this kind of approach could be very helpful in the 



 17 

study of biofilms for the extimation of bacterial, fungal and algal biomass both for direct 

in situ analysis and in vitro simulation. 

Real time PCR (qPCR) is an extremely sensitive assay which allows the quantification of 

a target gene or a transcript; if coupled with internal fluorescent probes it can also be 

informative about differential targets within the template, ie. two splicing variants of a 

transcript. Moreover, fluorescent internal probes may be used in a multiplex reaction, 

determining relative levels of template for each target.  

In this work it is presented a novel approach for the study of subaerial biofilms through 

the construction of three fluorescent internal probes, respectively designed on 16S, ITS 

and tufA genes. The work is presented in Chapter 4, as a paper in submission entitled 

“Survey of relevant taxonomic groups for the design of qPCR primers and internal 

fluorescent probes for whole biofilm characterization”. 

 

Besides, in Chapter 5 it is discussed the use of flow cytometry and species-specific 

primer design for the isolation and identification of Cyanidiales (Rhodophyta). 

One of the issue in the sampling of microbial mats from lithic substrata is the subsequent 

isolation of microrganisms. In a survey at the ancient Stufe of Solfatara (Pozzuoli, Italy) 

were retrieved microrgansisms belonging to the Order Cyanidiales (Rhodophyta), which 

thrive in thermoacidic environments. Despite the ordinary methods applied to the 

isolation and identification of microalgae, Cyanidiales cannot be selected on differential 

media and their poor morphology hardly permits to distinguish among them. Cyanidiales 

are currently divided into three Genera, namely Cyanidium, Galdieria and 

Cyanidioschyzon.  

In collaboration with the PRECYM platform at MIO Institute (University of Aix-

Marseille) a cell-sorting strategy was developed in order to isolate and assess the purity 

of three collected samples. The results obtained by the flow cytometric analysis of the 

samples were then confirmed in a PCR assay with species-specific primers designed for 

this aim. The study of Cyanidiales, which have a peculiar tolerance to harsh conditions 

and are also capable of endolithic growth, may lead to new insights relevant to the 

colonization of stone substrata and their fissures and cavities, even when the 

environmental parameters would be prohibitive for the broad majority of microrganisms. 

The work is a paper in submission entitled  “A flow cytometry coupled to species-specific 

primers approach for the isolation and identification of Cyanidiales (Rhodophyta) 

sampled  at  Stufe  of  Solfatara  (Pozzuoli,  Italy).” 
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Moreover, a series of in vitro experiments were performed both on Fungi (Fusarium 

solani, Alternaria alternata) and algae (Oculatella subterranea) to obtain a model that 

allows to evaluate both the aspects related to the colonizing attitude of microrganisms and 

the bioreceptivity of building materials toward some of the most common rock 

inhabitants.  

These kind of experiments allow to produce a controlled environment in which light, 

nutrients, temperature, humidity, substratum and model organism may be alternatively 

changed to observe different response in colonization. It has been decided to focus on 

some features of subaerial biofilms that are poorly discussed in literature, such as the 

cryptoendolithic growth determination and the orientering of branchings during the 

growth, included the density of the architecture of the colony. To do so, several 

techniques were used, especially: light and metallurgical microscopy, fluorescence and 

confocal microscopy, counts of conidia, determination of ergosterol with HPLC, image 

analysis and statistics with opportune softwares. 

Both lithotypes and microrganisms used for the experiments were chosen on the basis of 

sampling campaigns in some of the most significant archaeological sites in Campania 

(Italy), the archaeological sites of Oplontis and Pompeii. All the efforts on this aim were 

collected into three works in submission presented in Chapters 6, 7 and 8. 
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CHAPTER 4 
Survey of relevant taxonomic groups for the design of qPCR primers and internal 

fluorescent probes for whole biofilm characterization 
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Abstract A survey of biodetergiogen microrganisms occuring on stone monuments in Europe has been 

performed. The obtained lists for eukaryotic algae, phototrophic and non-phototrophic bacteria and soil 

fungi were sorted by Genera and corresponding sequences in triplicate were downloaded by nucleotide 

database Genbank for a number of selected barcoding markers. On the basis of collected diversity, multiple 

nucleotide alignements were produced and primers were designed for a qPCR assay. The aim of the present 

study was to obtain accurate oligos for the characterization of subaerial biofilms. Primers were designed on 

conserved regions flanking a a variable region, specific for each of the studied groups of microrganisms. 

Standard curve for absolute quantification relative to each group were determined. Then, variable regions in 

the alignments were used to design fluorescent internal probes for qPCR aimed for a multiplex reaction in 

which relative abundance could determined.  

 

 

Introduction 

The identification of the phototrophic and heterotrophic components of subaerial biofilms 

is to date one of the most pursued aims of biofilm research. The advance of molecular 

biology techniques made possible to discover new aspects of biofilm ecology and 

community structures, primarily due to the enlargement of genomic databases together 

with the broad use of barcoding markers. Most common molecular markers used for the 

identification are the genes encoding for the 16S rRNA for prokaryotes and 18S rRNA 

for eukaryotes (Gonzalez and Saiz-jimenez 2005; Dakal and Arora, 2012). They are 

present in all prokaryotic and eukaryotic organisms and structurally and functionally 

conserved; most importantly, they alternate highly conserved and variable regions, which 

allow the fingerprinting (Rastogi and Sani, 2011). Also internal transcribed spacer (ITS) 

region, located between 18S and 28S rRNA, can be used to determine molds (Op De 

Beeck et al., 2014). DNA extraction coupled with PCR reaction regarding barcoding 

genes allowed to identify microrganisms efficiently. Beside the use of 18S marker for 

green algae identification, a number of plastidial markers have been proposed and 

established, above all rbcL and TufA (Hall et al., 2010; Saunders and Kucera, 2010; Du 
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et al., 2014). 

Similarly for Cyanobacteria it has been proposed the use of cpcA (C-phycocyanin alpha 

chain) (Neilan et al., 1995; Miller and McMahon, 2011) and dinitrogenase reductase nifH 

genes for barcoding (Zehr and McReynolds, 1989; Poly et al., 2000). 

In addiction, a number of techniques exist which were implemented on PCR for 

community studies, as ARDRA, DGGE and ARISA (Rastogi and Sani, 2011; Agrawal et 

al., 2015). However, they cannot be reliable for quantitative results and/or may be present 

problems in pattern visualization on agarose gel and other major limitations (Neilson et 

al., 2013; Rastogi and Sani, 2011; Agrawal et al., 2015). For this reason, new tools are 

required in order to describe composition and relationships of microbial mats. 

The aim of the present study is to describe microrganism involved in biofilm formation in 

Europe and Mediterranean countries; on this basis, the authors also propose the use of 

novel designed oligos for whole characterization of subaerial biofilms, with possible 

application in a multiplex qPCR assay with fluorescent internal probes.  

 

Material and methods 

Survey of identified biodeteriogens  

Case studies and reviews regarding biodeterioration of stone monuments in Europe and 

Mediterranean countries were collected, and all identified microrganisms were listed. 

Compilation proceeded by genera, that were annoted with the available nucleotide 

sequences for selected markers (Supplementary materials Table 1-2-3-4). 

Diatoms and red algae are scarcely represented in these kinds of biofilm and were 

excluded by marker selection (Supplementary materials Table 5).  

 

Multiple nucleotide alignment for the selected markers 

Seven candidate molecular markers (Bacteria: cdcA, 16S, NifH; Green microalgae: rbcL, 

tufa, 18S; Fungi: ITS1) were chosen for the three selected groups of microrganisms. For 

each candidate marker at least three sequences were downloaded by Genbank nucleotide 

database for each Genus, plus additional sequences of related genera not retrieved on 

monuments, in order to confirm the conserved regions and find selective variability in 

non-conserved ones. Seven nucleotide multiple alignments were generated with UGENE 

software v.1.27 (Okonechnikov et al., 2012). The alignments were then trimmed and 
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adjusted by eye, and the primers were designed in regions showing selective differences 

according to species attribution and position similarity score into the alignment. Original 

alignments and side information are available in Supplementary materials. Primers were 

designed in order to obtain amplicons of maximum size of 200bp. Primers have been 

located in regions of 100% nucleotide conservation which contained a sequence variable 

selectively for the organisms of interest, suitable for designing an internal fluorescent 

probe. In silico PCR simulation were performed with Amplify4 software v.0.9.5 (Engels, 

2015) that also provided the annealing temperature for each primer. The oligos were 

synthesized by IDT Company.  

DNA extraction and PCR 

The DNAs were extracted by ACUF collection (www.acuf.net) strains (Supplementary 

Materials Table 6) with CTAB DNA extraction (Doyle and Doyle, 1987). PCR were 

carried out in a 25µl aliquots containing approximately 50ng DNA, a deoxynucleoside 

triphosphate mixture (0.2 mM each), buffer (1/10 volume of the supplied 10x buffer), 

supplemented to give a final concentration of 2.5mM MgCl2, 1.25U of Taq polymerase 

(EconoTaq, Lucigen), and 0.5pmol of each primer. Amplifications were run in a Applied 

Biosystem 2720 thermal cycler. The profile used was 10 min at 95°C, 15 cycles of 95°C 

for 30s, 48°C for 30s, and 72°C 30s with annealing increasing of +0,5° at each cyle, 

followed by 20 cycles of 95°C for 30s, 56°C for 30s, and 72°C 30s and a final elongation 

step of 10mins at 72°C. Finally, 1.5% (w/v) agarose gel electrophoresis was used to 

examine the reaction products. All four couples of primers were used in four different 

PCR reactions targeting four different mixtures of DNAs in order to test group-

specificity.  

Standard qPCR curve for absloute DNA quantification 

Six dilution series of mixed DNAs at eight different concentrations has been used to 

establish a standard curve for determining the initial starting amount of the target 

template in experimental samples and for assessing the reaction efficiency for each 

selected primer couple. This procedure has been followed for each group of 

microrganisms for the four selected markers, 16S, rbcl, tufa, ITS. The PCR reactions 

were carried out using the RealAmp™ SYBR qPCR Master (GeneAll® Biotechnology), 

1,5 pmol of each primer and 1µl of DNA-dilution. Amplification reactions were 

performed in a total reaction volume of 10 µl in a 96-well PCR-Plate (StarLab, Hamburg, 
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Germany) on the Applied Biosystems 7500 (Foster City, CA, USA) with the following 

program: 10 min at 95°C (denaturation and Taq polymerase activation), an amplification 

program of 45 cycles at 95°C for 15s, 60°C for 20s, and 72°C for 31s. The threshold 

cycle   value   (Ct),   which   refers   to   the   cycle   number   where   the   sample’s   fluorescence  

significantly increases above the background level, was calculated automatically by the 

instrument software as the first maximum of the second derivative of the curve. Reaction 

efficiency was evaluated with LRE analyzer 0.9.10. 

Fluorescent internal probes design 

After that selected primers were tested in PCR and qPCR, fluorescent internal probes 

were designed. The choice for the opportune fluorophores and quenchers has been driven 

by the possibility to use the probes in a multiplex reaction, in compatibility with a 

StepOnePlus™ Real-Time PCR System instrument (Foster City, CA, USA). Four probes 

have   been   designed   with   the   Oligo   Architect™ online software 

(http://www.sigmaaldrich.com) for three barcoding markers, namely TufA, ITS and 16S. 

Two probes were designed for Fungi, in order to detect Ascomycota/Zygomycota and 

Basidiomycota phyla. LNA were inserted in order to increase the melting temperature of 

each probe, so to reach 10°C over the respective primer couple. The probes were 

synthesized by Sigma-Aldrich Company. 

 

 

Results and discussion 

Diversity of biodeteriogens and evaluation of barcoding markers 

Organisms involved in subaerial biofilm formation represent a huge variety of 

microalgae, cyanobacteria, soil fungi and bacteria (Salvadori and Municchia, 2016; Isola 

et al., 2016). Our survey could not assess a defined majority that is primarily involved in 

biodeterioration. This evidence could mean that there is no precise involvement of one 

ore more species in biofilm formation, thus the participation of ubiquitous soil and 

freshwater microrganisms occurs in a way that could be primarily influenced by 

environmental parameters or metabolic features. Phototrophic bacteria all belong to the 

phylum Cyanophyceae, but their diversity in subaerial biofilms is mainly restricted to 

three Orders, i.e. Nostocales, Chrococcales, Oscillatoriales. Eukaryotic microalgae are 

mainly represented by the Chlorophyta phylum (93%); the extant 7% is due to the 

contribution of Charophyta phylum, by the Orders Zygnematales and Desmidiales. 
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Similarly, soil Fungi show a broad majority of organisms of the Ascomycota phylum 

(88%), followed by Basidiomycota and Zygomycota. However, even at the higher rank of 

Order, both Chlorophyta and Ascomycota retrieved in subaerial biofilms showed a wide 

diversity, with the presence of 12 different Orders of Chlorophyta and 17 different Orders 

of Ascomycota. Since the investigation of subaerial biofilms has been historically object 

of the study of phycologists and mycologists, Bacteria are somehow less investigated; 

moreover, non-phototrophic Bacteria may not be viable and cultivable. Data collected by 

literature reports were also analyzed for heterotrophic bacteria, and as expected 

variability is already notable at the level of phylum. Diatoms also scarcely retrieved in 

subaerial biofilms, although it is seldom reported the presence of Naviculales (Navicula, 

Diadesmis), Melosirales (Melosira) and Achnantales (Achnanthes). All the graphics are 

shown in Figure 1.  

Barcoding markers are widely used for the identification of microrganisms; nonetheless, 

their use for the quantification of microrganisms is strictly limited to some particular 

cases (Pavón et al., 2011) and no suitable primers are available in literature for the 

specific aim of determining biofilm composition. Due to the availability of sequences in 

the databases, only four markers by the firstly selected seven were used for qPCR assays, 

i.e. Rbcl, TufA, 16S, ITS. Moreover, the chosen barcoding markers responded to the 

prerequisites in alternation of conserved and variable regions. Design proceeded in a way 

that is discriminating for the three major groups of microrganisms investigated. BLAST 

search and in silico PCR simulations were used to assess the specificity for the chosen 

templates, whereas classical PCR assays determined the real specificity on the selected 

DNAs, without cross amplification for each of the selected groups. Also, non-

amplification for human and vertebrates was checked. The obtained oligos are reported in 

Table 1. 
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Fig. 1 - Phyla and Ordines reported diversity for A) eukaryotic microalgae B) soil fungi C) phototrophic 
bacteria D) non-phototrophic bacteria. 
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Table 1 - Selected barcoding markers and oligos for qPCR amplification of eukaryotic algae, 
bacteria and fungi from subaerial biofilms. 

 

 

Standard curves and amplification efficiency 

Absolute quantification describes a real-time PCR experiment in which samples of 

known quantity are serially diluted and then amplified to generate a standard curve. 

Unknown samples are then quantified by comparison with this curve. Quantification is 

performed by comparing Ct values for unknown samples against this standard curve or, 

in the case of relative quantification, against each other, with the standard curve serving 

as an efficiency check. Ct values are inversely related to the amount of starting template: 

the higher the amount of starting template in a reaction, the lower the Ct value for that 

reaction. To determine the sensitivity of the real-time PCR system developed, standard 

curves relating Ct values and the logarithm of DNA were built (Fig. 2). The amplification 

efficiency was initially assessed by the slope of the standard curve, with the formula 

E=10^(-1/slope). The slopes of the linear equations were considered not reliable 

(>100%). It is reported that overestimation in reaction efficiencies may indicate pipetting 

errorsor contaminations (González-Salgado et al., 2009). However, it is the first time in 

which a standard curve is derived by mixed DNAs template; for this reason more than the 

exponential character of PCR reaction (i.e. primer efficiency) of the reaction, a Linear 

Regression of Efficiency was performed with LRE analyzer 0.9.10 (Rutledge and 

Stewart, 2008; Rutledge 2011). Standard curves were used to indirectly quantify mixed 

DNA specimens from in vitro experiments (data not shown). In Figure 2 the obtained 

standard curves are shown. 

Marker Oligo+name Sequence+ Length

TufA Tufa_F 5’)–)GCTGCTCAAATGGATGGTGC)–)3’ 23bp
Tufa_R 5’)–)TCATATTTATCTAAAGTTTCACG)–)3’) 20bp

RbcL rbcl_F 5')8)TTYATGCGTTGGAGAGAYCG)8)3' 20bp
rbcl_R 5')8)GTGCATAGCWCGGTGAATRTG)8)3' 21bp

ITS ITS_F 5')8)CTTTCAACAACGGATCTCTTG)8)3' 21bp
ITS_R 5')8)TTCAAAGATTCGATGATTCAC)8)3' 21bp

16S 16s_F 5')8)AGGATGCAAGCGTTATCCGG)8)3' 20bp
16s_R 5')8)AATCCCATTCGCTCCCCTAG)8)3' 20bp
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Fig. 2 - Standard qPCR curves from mixed DNAs coming from Fungi (ITS) (A), Bacteria (16S) (B) and 

eukaryotic algae with rbcL and tufa (C and D). 

 

 

Table 2 - List of the novel-designed fluorescent internal probes. Fluorophores and quenchers were chosen 
to be compatible in a multiplex reaction. Letters in square brackets symbolize LNA nucleotides. 

 

 

Conclusion 

In recent times molecular biology techniques have been necessary in order to understand 

composition and structure of subaerial biofilms, avoiding the cultivation and the isolation 

of single components. Neverthless the identification of microrganisms is not informative 

itself about the true composition of the mat, and no one of the present techniques used to 

this aim permits to obtain both qualitative and quantitative information.  

More than a deep description of all the microrganisms involved in a mat, often present 

just in little traces, an evaluation of the microbial community on the basis of its main 

actors may be needed. In this work we present a novel approach for the study of subaerial 

biofilms through the construction of qPCR primers and fluorescent internal probes for the 

characterization and quantification of whole biofilms. Real time PCR (qPCR) is an 

extremely sensitive assay which allows the quantification of a template; if coupled with 
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internal fluorescent probes it can also be informative about differential targets within the 

template, ie. groups of phylogenetically distinct microrganisms. Moreover, fluorescent 

internal probes may be used in a multiplex reaction, determining relative levels of 

template for each target. The authors propose this kind of approach in the study of 

biofilms for the extimation of algae, molds and bacteria both for direct in situ analysis 

and in vitro simulation. 
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CHAPTER 5 
A flow cytometry coupled to species-specific primers approach for the isolation and 
identification of Cyanidiales (Rhodophyta) sampled at Stufe of Solfatara (Pozzuoli, Italy)
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Abstract The present paper proposes a polyphasic approach for isolation, identification and mantainance of 

collection strains of Cyanidiales. Species diversity of Cyanidiales (Rhodophyta) was investigated for 

biofilms retrieved on the Stufe of Solfatara (Pozzuoli, NA, Italy) using flow cytometry and four novel 

designed species-specific primers. Primers were built on rbcL gene for a PCR assay and tested on axenic 

Cyanidiales strains of ACUF collection. Three environmental samples were analyzed for their autotrophic 

components with flow cytometry, revealing the presence of Galdieria sulphuraria and Cyanidium 

caldarium. Relationships between flow cytometry results and PCR analysis were established for the 

isolation and identification of Cyanidiales. For the first time unicellular Rhodophyta were sorted with flow 

cytometry, allowing a sensitive and accurate separation among closely related Red Algae.  

Introduction 

Flow cytometry allows fast counting and optical analysis of individual particles, and it 

has also been adopted for species discrimination, since wide application of flow 

cytometry can be found for the analysis of phytoplanktonic communities (Ubelaar and 

Jonker, 2000; Trask et al., 1981). Only few attempts have been made to screen 

aeroterrestrial microalgae, and mostly aimed to follow up the development of 

biotechnological processes with axenic strains of microalgae expressing higher content of 

valuable biological compounds (Hyka et al., 2012). In the study of microrganisms 

inhabiting stone substrata and building materials also few studies are reported in which 

flow cytometry is applied, as for the identification of phototrophic communities in 

Moidons cave (Borderie et al., 2016). Nonetheless, to our knowledge in literature there is 

no reported attempt of separating with flow cytometry cells belonging to morphologically 

related aeroterrestrial microalgae.  

Soils and rocks of thermo-acidic environments are frequently inhabited by large 

populations of unicellular microalgae belonging to Cyanidiophytina (Rhodophyta), in 

which can coexist members of the genera Cyanidium, Galdieria and Cyanidischyzon. 
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They were considered as a single species and described as Cyanidium caldarium and 

officially recognized as a member of the Rhodophyta only in 1958 (Hirose). Merola et al. 

(1981) erected the three genera Cyanidium, Galdieria and Cyanidioschyzon, 

differentiating Galdieria from Cyanidium on the basis of cell size, chloroplast structure, 

endospore number, and ability to grow in heterotrophic conditions . Nonetheless, the life 

cycles of Cyanidum and Galdieria present phases in which cell size and morphological 

features are overlapping. The fact that Cyanidiales thrive in the same habitats, sharing 

common traits of acidotolerance and thermophily (De Luca and Taddei, 1970) may 

explain the uncertainty about the taxonomy of the Cyanidiophyceae of pre-molecular era. 

With this premise, we have used an approach based on flow cytometry coupled with 

molecular analyses to point out cellular complexity and size in order to sort these two 

genera. Species-specific primer PCR is a popular technology for species identification 

due to its high accuracy, sensitivity and convenience (Aguirre et al., 2015). The plastid 

encoded rbcL gene has been widely used for phylogenetic inference in algae. Universal 

primers are not available for rbcL, although some primers can be used on a wide range of 

taxa (Lewis et al., 1997). Given that variable portions of the gene are small enough to be 

sequenced in a single reaction and a large amount of sequence data is available from a 

wide range of taxa through GeneBank it is possible to design lineage-specific primers 

(Hall et al., 2010). Currently, phylogenetic analyses based on rbcL sequencing support 

the division of the Cyanidiophytina into four distinct lineages that include seven species 

(Ciniglia et al., 2004; Yoon et al., 2004). The aim of this work is to find practical tests to 

assess the identity of natural samples collected in the volcanic site of Phlaegrean Fields, 

Naples, Italy. In these samples is frequent to find Galdieria species in association with 

Cyanidium caldarium, Four species-specific primers were designed in order to easily 

discriminate among the most frequent Cyanidiales species occurring in natural samples 

collected in Phlaegrean Fields. A cytofluorimetric and sorting analysis was conducted to 

discriminate among these species, and the identity of the sorted strains was confirmed by 

PCR with the above mentioned species-specific primers. This is the first reported attempt 

to sort Cyanidiales with flow cytometry, and to our knowledge also the first one among 

aeroterrestrial microalgae aimed to separate morphologically close species, followed by a 

proper molecular identification. 
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Materials and methods 

Sampling site and used algal strains 

The algae used in this work were sampled in the area of the Solfatara, (Pozzuoli, NA, 

Italy), which is an active volcanic area with low pH values to sulfuric acid gas emissions 

and temperatures above 50°C. The Stufe are two ancient caves dug into the side of the 

mountain on the north side of the volcanic area of Solfatara (Pozzuoli, Na, Italy) at the 

end of century XIX to build natural sudatorii. In a second time they were covered with 

masonry, on which the patina was sampled. Three samples were collected and named as 

S64, S20 and S16. Beside the sampled algae, eight strains, namely Galdieria sulphuraria 

ACUF004; ACUF005; ACUF006; G. maxima ACUF132 – ACUF425 – ACUF742; 

Cyanidium caldarium ACUF008 – ACUF019; Cyanidioschyzon merolae ACUF199 - 

ACUF732, belonging to ACUF collection (www.acuf.net) were used to develop sorting 

strategy and PCR assay with species-specific primers. All of them were firstly confirmed 

as Cyanidiales by their morphological characteristics (Pinto et al., 2003) and selected on 

solid agar Allen  medium  (Allen,  1959)  acidified  with  7‰  H2SO4.  The  strains  were  all  

maintained in a climate chamber at 37 °C and ca. 20–25 µmol photons m_2 s_1 under 

continuous light (Osram - Daylight). 

Species-specific primer design 

A total of 115 sequences belonging to different Cyanidiales (25 Galdieria maxima, 62 G. 

sulphuraria, 6 Cyanidioschyzon merolae, 16 Cyanidium caldarium, 6 Cyanidium cave. 

See Supplementary materials, Table A for the Accession ID) were downloaded by 

Genbank nucleotide database; rbcL gene multiple alignment was obtained with UGENE 

software v.1.27 (Okonechnikov et al., 2012). The alignment, consisting of 1179 sites, was 

then trimmed and adjusted by eye, and the primers were designed in regions showing 

selective differences according to species attribution and position similarity score into the 

alignment. In silico PCR simulation were performed with Amplify4 software v.0.9.5 

(Engels, 2015) that also provided the annealing temperature for each primer. The oligos 

were synthesized by IDT Company.  
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Specificity and sensitivity test of the species-specific primers 

The DNA was extracted with a modified CTAB DNA extraction protocol (Cutler et al., 

2012). Then PCR was carried out in a 25 µl aliquot containing approximately 50ng DNA, 

a deoxynucleoside triphosphate mixture (0.2 mM each), buffer (1/10 volume of the 

supplied 10x buffer), supplemented to give a final concentration of 2.5mM MgCl2, 1.25U 

of Taq polymerase (EconoTaq, Lucigen), and 0.5pmol of each primer. Amplification was 

run in a Applied Biosystem 2720 thermal cycler. The profile used was 5 min at 95°C, 33 

cycles of 95°C for 30s, 48°C for 45s, and 72°C 40s, and a final elongation step of 10mins 

at 72°C.Finally, 1.4% (w/v) agarose gel electrophoresis was used to examine the reaction 

products.  

The specificity of the four couples of species-specific primers was tested by performing 

PCR assays on ten strains of ACUF – algal collection (see above) previously isolated 

with serial dilutions and striking on agar plates. All four couples of primers were used in 

four different PCR reactions targeting four different DNAs of Cyanidiales. 

Sensitivity tests for the species-specific primers were carried out in a series of seven 

concentrations for each one of the four different species, ranging from 0.001 ng/mL to 50 

ng/mL and a negative control. The same reaction mixture and cycling processes described 

above for DNA amplification were used for both the specificity and the sensitivity tests. 

Flow cytometry and sorting of Galdieria and Cyanidium strains 

FCM analyses and cell sorting were performed at the Regional Flow Cytometry Platform 

for Microbiology PRECYM (https://precym.mio.univ-amu.fr/) with a BD Influx 

MarinerTM (BD Biosciences, Franklin Lakes, NJ, USA) high-speed cell sorter equipped 

with three laser lines: 488 nm (200 mW, Sapphire, Coherent), 561 nm (75 mW, Jive, 

Cobolt), and 355 nm (100 mW, Xcyte, JDSU).Cells were characterized by five optical 

signals collected from the 488nm laser: 1) Forward scatter (FSC) related to cell size; 2) 

Side scatter (SSC) related to cell structure and shape; 3) Green fluorescence (FLG, 510 < 

λ488 nm < 550 nm) related to SYBR Green nucleic acid staining; 3) Orange fluorescence 

(FLO,   565  <   λ488 nm < 595 nm) related to phycoerythrin; 4) Red fluorescence (FLR, 

λ488 nm >   630   nm)   related   to   chlorophyll   a.    In   addition,   the   chlorophyll   a   red  

fluorescence was also collected from the 355 and 561 nm (FLR355 nm,   λ   > 630 nm, 

FLR561 nm,   and   λ   > 630 nm), allowing a better discrimination among the different 
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subgroups containing chlorophyll a. Cell sorting was performed on four gated regions, 

chosen on the basis of pigment content ratio and morphological features of populations 

with 1 drop pure setting mode. 

 

Results 

Specificity and sensitivity of species-specific primers 
Four species-specific primer couples were successfully developed based on rbcL gene 

(Table 1). All the primers could specifically amplify the rbcL gene sequence of G. 

maxima, G. sulphuraria, C. merolae and C. caldarium. No cross-amplification was 

detected among Cyanidiales as well as non-specific amplification products. PCR with the 

species-specific primers in a series of seven concentrations for a single strain of each 4 

species was conducted to test the sensitivity of the primers. The DNA template 

concentrations of the used strains were 0.001, 0.01, 0.1, 1, 10, 25, and 50 ng/mL. The 

results showed that all species-specific primers could amplify the positive electrophoresis 

band at 0,001 ng/mL. Additionally, all species-specific primers indicated that the 

electrophoresis bands in the agarose gel appeared clearer with increasing concentrations 

of the DNA template. Gel revelations for all specificity and sensitivity assays are 

available in Supplementary materials.  

 

Table 1 – The species-specific primers for rbcL amplification of four Cyanidiales species 

 

Flow cytometry and sorting of the sampled strains 
Three samples from the Stufe were analyzed with flow cytometry. Two main populations 

were identified for the FSC and SSC parameters in two out of three samples. Although 

the profile of Chlorophyll a content and phycoeritrin was distinctively differentiated into 

two high-content and low-content populations, they were not univocally linked to the two 

populations identified on morphological parameters, but more likely related to the 

Species Primer* 5'-3' Length Tm*(°C) Target*fragment

Galdieria(maxima GM_F GCATGTGATGTCTATCGTGC 20 57 540bp
GM_R TTCAGCTCTCTTATAAATCTCC 22 52

Galdieria(sulphuraria GS_F AGCAGCAGACTTATATAGAGC 21 51 541bp
GS_R ATTAGCACGTGCATACATTTC 21 55

Cyanidium(caldarium CyCALD_F AGAGAAAGGTTCTTGTACGTG 21 54 433bp
Cy_R GCCCAGTCCATTTCAAAGAA 20 60

Cyanidioschyzon(merolae CM_F ACGTCCATTATTAGGTTGTAC 21 51 444bp
CM_R GAAATGACACGGAAGTTG 18 52
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cellular size of the cells.  

In order to sort Cyanidium and Galdieria, four gates were designed, namely: CYA, 

POP1, POP2 and SPORES. Four ways sorting has been used in order to verify if an 

overlapping of the two genera occurs between the two populations identified for the 

FSC/SSC parameters and were based on variation in size and cellular complexity in 

addition to pigments content. This gating strategy has been used for the samples 020 and 

064; sample 016 showed a single population, therefore it has not been sorted (Fig. 1). 

 

 
Fig. 1 – Flow cytometric analysis of environmental samples of Cyanidiales. A. FSC /SSC plot for the 

sample 064 and gating on hypothetical popultaions of Cyanidium and Galdieria. B. FSC /SSC plot for 
the sample 016, ungated; hypothetical Cyanidium population was not recorded. C. Phycoeritrin / 
Chlorophyll a fluorescence bivariate plot for the sample 064; in purple, hypothetical Cyanidium 
population as gated from FSC /SSC plot. 

 

Molecular identification of the sorted algae 

PCR assays with species-specific primer were performed in order to assess the identity of 

the three samples from the Stufe of Solfatara. Sample S016, which in cytofluorimetric 

analysis showed a single population for FSC/SSC parameters, was confirmed as a G. 

sulphuraria, and no other species were revealed when the DNA was used in combination 

with the other species-specific primers. On the other hand, PCR application to all four 

sorted population from the samples S020 and S064 confirmed that the sorted CYA 

population contained only Cyanidium caldarium whereas POP1, POP2 and SPORES 

sorted cultures were all belonging to the genus Galdieria, in particular Galdieria 

sulphuraria (Fig. 2). 
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Fig. 2 - The application of species-specific primers for rapid species identification with 
electrophoresedrbcL PCR amplification products from four sorted cultures of Sample 064.A. M: 
DNA Marker 1kb plus; 1:CYA (primer GM_F, GM_R); 2: CYA (primer GS_F, GS_R); 3: CYA (primer 
CYcald_F, CY_R); 4: CYA (primer CM_F, CM_R); 5: POP1 (primer GM_F, GM_R); 6: POP1 (primer GS_F, 
GS_R); 7: POP1 (primer CYcald_F, CY_R); 8: POP1 (primer CM_F, CM_R); 9: Negative control).B.M: 
DNA Marker 1kb plus; 1:POP2 (primer GM_F); 2: POP2 (primer GS_F, GS_R); 3: POP2 (primer 
CYcald_F, CY_R); 4: POP2 (primer CM_F, CM_R); 5: SPORES (primer GM_F, GM_R); 6: SPORES (primer 
GS_F, GS_R); 7: SPORES (primer CYcald_F, CY_R); 8: SPORES (primer CM_F, CM_R); 9: Negative 
control). 

Discussion 
Biofilm growing on building materials are usually retrieved as multispecies aggregations 

in which the presence of several ubiquitous phototrophs and heterotrophs leads to self-

sufficient complex consortia (Tomaselli et al., 2000), able to resist to the fluctuating 

conditions of rock-atmosphere interface (Zakharova et al., 2013). 

When the environmental conditions are harsh and prohibitive as in the volcanic 

environments, only few species are able to successfully colonize the rocks (Rothschild 

and Mancinelli, 2001). In our survey at the Stufe of Solfatara, the identified 

microrganisms were all unicellular autotrophs belonging to the Order of Cyanidiales 
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(Rhodophyta). Despite their simple morphological features they display a large diversity 

(Ciniglia et al., 2004) hence requiring great efforts for the isolation of axenic species. 

Flow cytometric analysis and sorting allowed to easily recognize and isolate the genera 

Cyanidium and Galdieria, especially on their cellular size and cell complexity features. 

Morphological features that can hardly be attributed with optical microscopy even at high 

magnification become relevant when analyzed through FACS systems. Our findings were 

then also confirmed with the use of novel designed species-specific primers. Specific 

molecular variability of plastidial gene rbcL allowed to conceive a fast PCR assay in 

which purity and the identity of Cyanidiales strains can be asserted. 

Conclusion 

The present study offers a useful tool for the identification and the maintenance of 

Cyanidiales strains, from both environmental and culture collection origin. The simple 

and fast application of flow cytometry and PCR techniques not only permits the 

identification of these microrganisms but also the isolation of the small C. caldarium. 

Moreover, the use of flow cytometry for the detection of phototrophic components in 

subaerial biofilms may lead to significant progress in the study of biodeterioration itself. 

Non-filamentous aeroterrestrial microalgae can be analyzed with flow-cytometry and 

sorted, allowing to skip the time-consuming cultivation and isolation process. 
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CHAPTER 6 
In vitro colonization experiments for the assessment of mycelial growth on a tuff 

substratum by a Fusarium solani strain isolated from the Oplontis (Naples, Italy) 

archaeological site 
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Abstract  
 
In order to investigate the mycelial structure of rock-inhabiting fungi, an in vitro colonization 
test has been set with a low carbon source supply. A surface overlay documentation of the 
spreading colonies and their hyphal branching was observed both by metallurgical microscopy 
and fluorescence microscopy with the use of a fluorescent chitin and cellulose binding dye, 
calcofluor, during the whole experiment. The thickness of the fungal mat was also measured in 
central, medial and distal areas of the colony for each tuff tile, using a metallurgical 
microscope. Finally, after 20 days the tiles were also observed with CLS-microscope and all 
the photographic documentation was used for a segmentation image analysis on Fiji software 
to calculate the overlay and the volume of the mycelium. Our findings confirm that in vitro 
experiments coupled with microscopic observations are useful tools to evaluate and quantify 
fungal biomass on a stone substratum, especially in the early steps of fungal colonization. 
 
Keywords:  Fusarium solani, colonization of hyphae, primary bioreceptivity, image analysis, 
CLSM confocal microscopy 
 

 
 
Introduction  

 
Fungi can be a serious threat for cultural heritage and artworks and are among the major 

agents of microbial deterioration of building stones [1] since they can establish on monuments 
made of different lithic materials, including granite, limestone, marble, sandstone [2]-[4]. 
Climatic conditions may be harsh and may also not allow rapid growth of mycelia; 
nevertheless, fungi can develop a low profile growth, forming small colonies or unicellular 
aggregates with a high surface to volume ratio that allows them to thrive also under the limiting 
and fluctuating conditions of open environments [5], [6]. Dispersal of fungi is achieved through 
the formation and propagation of spores which can rest on bare substrates, also in the presence 
of very reduced organic sources, thanks to loose structure colonies at the microbe! "!mineral 
surface that helps the cells to adhere to the substratum and to assimilate nutrients [7]. In this 
respect, under the reduced availability of nutrients typical of lithic materials the first organism 
that colonize a virgin substratum will gain a primary advantage [8]. 
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Fungal biofilms accelerate the weathering processes of lithic materials by enhancing the 
irregularities of the surface (ridges and groove), penetrating inside the pores of the stone [9], 
and also constructing new ducts and cavities into intact mineral material [10]. 

In a survey conducted on the Roman monuments of Oplontis, Italy, we have observed a 
frequent occurrence of patinas caused by fungal growth on tuff walls: the following efforts to 
isolate these organisms led to the identification, among other less frequent genera, of fungal 
strains belonging to Fusarium solani. Fusarium is a genus of filamentous fungi (Hypocreales, 
Ascomycota,) commonly retrieved as soil contaminant and plant pathogen [11]; but also 
frequently found as a component of biofilms deteriorating stone monuments [12]-[14]. 

The understanding of the early steps of microbial colonization is a challenging issue for 
the biology of biofilms. Complicate interactions occur in biofilms, which involve any possible 
microbial individual in the formation of communities that are able to persist and flourish in 
extremely variable and harsh environments such as rocks and building materials. Though fungi 
appear to behave as a late colonizer of biofilm, in the opportune environmental conditions they 
can also act as pioneers, starting wide patinas that lead to the discoloration and the alteration of 
the material [15] [16]. 

Here we present an in vitro laboratory test coupled with optical, fluorescence and 
confocal microscopy, to study the early steps of the colonization of yellow tuff tiles by a 
Fusarium solani strain (ACUF 016f) isolated from the archaeological site of Oplontis. 
Literature is poor as regards the assessment of fungal growth on stone substrate [17] [18]; in 
most cases, the inoculum of the fungus is not reproducible or the initial medium supply is 
composed of more than one carbon compound, giving misleading results in the following 
observations. One of the issues linked to the use of small inoculum and limiting carbon source, 
is the subsequent way of determining the biomass and the colonization degree of the colony. 
Hyphae can be thin and translucent for non-melanized fungi, and difficult to detect on a matt 
substratum [19]. 

Few studies have been performed on thickness variability of biofilms growing on hard 
substrates [20][21][22], with the aim of providing a quantitative basis for analysis of microscale 
architecture of biofilms[23][24], especially for the investigation of bacterial populations [25]. In 
order to investigate the mycelial structure of rock-inhabiting fungi, the growth of F. solani on 
yellow Neapolitan tuff tiles has been followed in sealed glass chambers under low sucrose 
concentration and high Relative Humidity (RH). This in vitro model allowed us to shed light on 
bi and three-dimensional evolution of the fungal mycelium by using a polyphasic approach 
based on the use of epifluorescence and metallurgical microscopy in bright field combined with 
CLS-microscopy. 
 
Material and Methods 

 
Sampling site description and identification of a Fusarium solani strain 
The strain used for this experiment has been collected in a survey at the Oplontis 

archaeological site (Fig. 1, top and left bottom). Sample was collected from the external tuff 
walls of the residential villa, known as the “Villa of Poppea” with sterile scalpels, and grown in 
the lab on PDM agarized medium. Fungal hyphae were isolated with the aid of a 
stereomicroscope and then separately cultivated, using the same culture medium. The 
identification of a F. solani strain (Fig. 1, right bottom) was initially assessed on the basis of 
morphological observations, and confirmed by molecular analysis. DNA was extracted with a 
modified Doyle and Doyle DNA extraction protocol [26] and used for a Polymerase Chain 
Reaction with primers targeting ITS spacers (primer forward 5’-
TCCGTAGGTGAACCTGCGG-3’; primer reverse 5'-TTCAAAGATTCGATGATTCAC-3'). 
PCR was carried out in a 25 µl aliquot containing approximately 100ng DNA, a 
deoxynucleoside triphosphate mixture (0.2 mM each), buffer (1/10 volume of the supplied 10x 
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buffer), supplemented to give a final concentration of 2.5 mM MgCl2, 1.25U of Taq 
polymerase (EconoTaq, Lucigen), and 0.5 pmol of each primer. Amplification was run in an 
Applied Biosystem 2720 thermal cycler. The profile used was 5 min at 95°C, 33 cycles of 95°C 
for 30s, 60°C for 45s, and 72°C 45s, and a final elongation step of 7 min at 72°C. 
 

 
Fig. 1. Detail of the archaeological site of Oplontis (top), detail of the biofilm on the surface of a 

tuff wall (bottom left) from which it was isolated F. solani (bottom right). 
 

PCR product was evaluated on 1.4% (w/v) agarose gel in an electrophoretic run and 
purified using QIAquick® PCR Purification kit (Qiagen Inc, Valencia, CA, USA). Sequence 
reaction was obtained with the BigDye Terminator Cycle Sequencing technology (Applied 
Biosystems, Foster City, CA), purified in automation using the Agencourt CleanSEQ Dye 
terminator removal Kit (Agencourt Bioscience Corporation, 500 Cummins Center, Suite 2450, 
Beverly MA 01915 - USA) and a robotic station Biomek FX (Beckman Coulter, Fullerton, CA). 
The product was analyzed by an Automated Capillary Electrophoresis Sequencer 3730 DNA 
Analyzer (Applied Biosystems). The amplification primers were used as the sequencing 
primers. 

Nucleotide sequence similarity was determined by using BLAST version 2.0 (National 
Center for Biotechnology Information databases). The isolated strain of F. solani was 
maintained following the protocol by McGinnis et al. [27]. 

 
Roughness and Porosity analysis, Petrographic data 
In many archeological sites the use of local stone for architectural purposes very 

frequent; in Campania region (Italy) the large availability of volcanic products as Neapolitan 
Yellow Tuff (NYT) and their easy workability, determined their great utilization since the 
earliest times [28]. The lithic samples used in in vitro tests were taken from the caves 
Neapolitan Yellow Tuff (NYT) of Quarto (Napoli). NYT samples were cut especially with 
measures suitable for the needs of this experiment (average size 3x3x1 cm). 

According to standard ISO 4287:1997 [29] the roughness parameters were evaluated on 
each sample with an ALPA© RT-20 palmar rugosimeter. All measurements were performed in 
triplicate, and data acquisition was conducted using the Measurement Studio Lite 1.0.3.96 
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software. The porosity of tuff lithic samples was assessed through mercury porosimetry 
(Autopore 4, Micromeritics®). The water absorption coefficient (WAC) of the tiles (mean ± sd) 
was calculated according to Barberousse et al. [30]. Eight lithic samples were held at a constant 
temperature (21°C) and relative humidity (51-55%) for two weeks. The density (mean ± sd) of 
the tuff was obtained by evaluating the ratio weight/volume. 

 
Laboratory strains and Culturing conditions 
All the tuff tiles used in the experiments were washed with sterile water, dried and 

displaced in triplicate in glass chambers, which were tyndallized. The tiles were then watered at 
their maximum absorbance capacity with sterile Bold’s Basal Medium (BBM) [31] added with 
sucrose 12g/L, according to Jeger et al. [32]. 

F. solani conidia were obtained from a 5 days old colony treated for 1 minute with PBS-
Tween20 solution at the final concentration of 0,5% and mechanically scraped with a sterile 
handle. The suspension was then recovered and filtered through a sterile gauze, conveniently 
diluted and the number of conidia per milliliter was determined through a direct microscopic 
count in a Bürker blood-counting chamber. In all the experiments the inoculum consisted of 
5000 conidia suspended in 5µl of sterile distilled water, injected with a pipette tip in the middle 
of each tile. During the whole time of observation, no bacterial contamination was found. One 
more glass chamber was prepared with tuff tiles watered with distilled water instead of nutritive 
medium and kept until the end of the experiment as a control. 

To evaluate the fungal growth, every 4 days three tuff tiles from each of the three glass 
chambers were analyzed, and once the measures were taken they were discarded. 

 
F. solani growth under different sucrose concentrations or relative air humidities 
Preliminary experiments were carried out to evaluate the kinetic of F. solani fungal 

growth according to Table (1). Six different concentrations of sucrose in the medium were used, 
ranging from 1.5 g/L to 48 g/L, at a constant RH of 100%. The fungal overlay was then 
assessed by digital image analysis. The relationship between relative humidity and F. solani 
growth on tuff tiles was assessed according to Häubner et al. [33]. In the bottom of four glass 
chambers were poured distilled water or saturated salt solutions of NaCl, KNO3, Ca(NO3)2, to 
provide respectively 100, 93, 85, 76%, relative air humidity; the tiles inoculated with the fungal 
spores were positioned on perforated ceramic grilles placed at about two cm from the solutions, 
and each glass chamber was covered with a glass lid and sealed with silicone foam. 

Both RH and sucrose experiments were monitored for 12 days: every 4 days, 3 samples 
were photographed with a digital camera. Digital image analysis was applied to quantify the 
growth of the mycelium on the stone samples inoculated at different sucrose concentration or at 
different values of Relative Humidity. The photographic recording of each tile was performed at 
3 incubation times (4, 8 and 12 days) with a digital camera (Nikon D5100 with Nikkor 50mm 
objective). The conventional RGB color images obtained with the digital camera were used to 
quantify the colonization area on each lithic sample with the program Trainable Weka 
Segmentation [34], [35], a plugin of open source image processing package Fiji, an open source 
image processing package [36] and also at http://www.fiji.sc. 

 
F. solani growth in constant nutrients and moisture 
The methods previously described were used to select the best experimental conditions 

to be adopted in the following test, planned to describe the mycelial structure of F. solani 
biofilm on tuff tiles. 

The tests were performed at 12 g/l sucrose and at 100% RH and lasted three weeks. In 
this set of experiments, ten points of observation were chosen for each tile, as previously 
described, and the observations were carried out at an interval of four days. 
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For the assessment of the fungal mat architecture on the lithic substrate, five glass 
chambers were prepared for the test, under the same experimental conditions. Fifteen tuff tiles 
were inoculated with F. solani conidia and also distributed in the 5 glass chambers at 100% RH 
as previously described. The experiment lasted three weeks and was repeated two times. 

Each tile was virtually divided into three zones ranging from the middle to the external 
borders of the tile and 10 points of observation, 2 central (near the inoculum), 4 median 
(average distance of 9 mm from the center of the sample) and 4 distal (average distance of 18 
mm from the center of the sample) were selected (Fig. 2, left). To evaluate the fungal growth, 
the experiment was monitored for 20 days: every 4 days, three tuff tiles from each of the five 
glass chambers were analyzed, and once the measures were taken they were discarded. 
 

 
Fig. 2. Representation of the 10 measuring points of the biofilms of F. solani on the tuff tile (left); an example of 

biofilm cutting for thickness calculation (right), metallurgical microscope photos. 
 

Each set of measurements was performed for three weeks at an interval of 4 days in the 
following way: 

1. Quantification of the colonization area. The samples of tuff tiles were photographed with 
a digital camera. From the digitized images, the coverage area was calculated by means 
of WEKA segmentation showing the colonized areas of the tile, and by using Analyze 
Particle. 

2. Measurement of the fungal thickness. In the 10 selected points, the hyphal network was cut 
with a pen cutter (Fig. 2, right) equipped with blade oblique (WLXY®, model number: 
WL9309). According to Bakke and Olsson [37] the thickness values were determined 
with a metallurgical microscope (Leitz Wetzlar Ortholux Microscope) with an objective 
4x. 

3. Measurement of the mat surface texture. The same tiles used for the measurement of 
thickness were then sprayed with Calcofluor White 1% [38], a fluorescent dye that binds 
cellulose and chitin in the fungal wall The observations were carried out on the 10 
selected points with an epifluorescence microscope (Nikon Eclipse E800) at 20x 
magnification, using the DAPI filter (excitation 395 to 415 nm, emission from 455 nm). 
A photographic documentation was collected and later used for computer image 
analysis, with the threshold tool of Fiji software, to evaluate the coverage area of the 
hyphae network. 
The results obtained by the triplicates for any given set of measurements for both the 

thickness and surface data were used as means for each observation point and then plotted with 
their respective standard errors. 

At the end of the experiments (20th day), the growth of F. solani on three tuff tiles was 
also analyzed with a Confocal Microscope Zeiss LSM700 (software Zen 2011) by capturing 
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images at 10x. The fluorescence of hyphae was recorded in one channel using the Calcofluor 
white to label the hyphae with excitation beams at 405-458 nm and emission at 415-505 nm 
(blue-green channel). The images from stacks were captured at 13.46 µm intervals. For each 
biofilm, 3 replicates were used for taking Z-stacks images. The substratum area of the image of 
the epilithic stack was 1024 x 1024 pixel (640.174 x 640.174 µm). The number of images in 
each stack varied according to the thickness of the biofilm. Fiji was also used to evaluate the 
area of the fluorescence photographs and all stacked CLSM images. The images have been 
previously converted to 8-bit and then resampled by using the tool Threshold [39]-[41]. 
Comstat2 [42], 3D Manager [43] and DiameterJ [44] tools were used to determine the volume, 
thickness, roughness and features of the hyphae of each Z-stacks [45]. 
 

Table 1. Number of tiles (in triplicates) and sucrose and RH conditions for each set of experiments. 
 

 
 
 

Tuff tiles RH (%) Sucrose concentration 
(g/L) 

Observation time 
(1t = 4 days) 

Duration 
(days) 

Different RH 9 

76 
85 
93 

100 

12 3 12 

Different sucrose 9 100 

1.5 
3 
6 

12 
24 
48 

3 12 

Constant RH and sucrose 15 100 12 5 20 

 
Results and Discussion 
 

Roughness and Porosity analysis, Petrographic data 
The NYT shows its typical assemblage of prevailing epigenetic phases (phillipsite, 

chabazite and analcime), feldspar, and a minor amount of mica, hydrated iron oxides and 
volcanic glass [46]. The roughness profile was calculated considering 1600 sample points for 
each lithic sample to determine the average roughness (Ra = 19.32), the root mean square 
surface roughness (Rq = 23.21), mean roughness depth (Rz = 85.68) and maximum or total 
roughness (Rt = 101.83). The porosity parameters of tuff lithic samples were calculated, along 
with density and water adsorption coefficient (Table 2). 

 
Table 2. Water adsorption coefficient (WAC), porosity and roughness of tuff tile. 

 

WAC 
(g dm-2 min-1/2) 

 Porosity Roughness  
Density 
(g cm-3) 

Porosity 
(%) 

Average pore 
diameter (nm) 

Total pore area 
(m2/g) Ra Rq Rz Rt 

49.28-5 1.461 56.63 247.8 9.47  19.32 23.21 85.68 101.83 
 

Preliminary assessment of F. solani growth under different sucrose concentrations or 
relative air humidities 

A development of fungal hyphae on tuff was observed since the first week of incubation, 
as reported for other accelerated test of stone colonization by fungi [47]. 

At all the selected sucrose concentrations a F. solani fungal mat developed on the 
surface of the tiles, and a linear increase of surface coverage was observed between 1.5 and 24 
g/L of sucrose concentration (Fig. 3, left). At 24 and 48 g/L sucrose, the surface of the tiles was 
completely covered by F. solani hyphae at the end of the experiments. According to 
experimental data of Chertov et al. [48] and the mathematical model developed by Picioreanu et 
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al. [49], the spread of F. solani depended on nutrient concentration, and sucrose concentration 
lower than 24 g/L that did not allow the complete coverage of the tiles during the course of the 
tests were considered as limiting. 

The effect of the atmospheric relative humidity on F. solani growth was assessed in the 
range 76-100% RH. In these experiments, a sucrose concentration of 12 g/L was used to 
supplement the inorganic culture medium (Fig. 3, right). The results of digital image analysis 
show that HR levels from 82 to 100% equally supported the growth of F. solani during the 
whole experiment. It is known that microorganisms can survive also under very reduced water 
availability, but in that case, they are not able to grow [49]. F. solani growth is dependent on 
relative humidity (Fig. 4) but, contrary to what reported by Dubey and Jain [50] fungal growth 
on the tuff stone was observed also at 76% RH, probably due to the high water adsorption 
coefficient of tuff stone and its ability to retain moisture. 
 

 
Fig. 3. Growth (percentage coverage) of F. solani on tufa tiles: different concentrations of nutrients and at 100% RH 

(left), different 100% RH and to sucrose concentration of 12 g/L (right) at 4 (light grey █), 8 (dark grey █) and 12 
(black █) days incubation. 

 

 
Fig. 4. Percentage of thickness of biofilm growth on tufa tiles (left), surface colonization on tufa tiles (right); points: 

central (‒‒), median (- - -), distal (· · ·). 
 

F. solani mat structure under constant nutrients and moisture 
The growth of hyphal filaments was observed in all the observation points corresponding 

to central, median and distal regions of the tiles (Fig. 4, left). In the central region, the aerial 
mycelium increases its thickness during the first 15 days of incubation, reaching a plateau at the 
16th day. The maximum average thickness appears to be fixed to about 200 µm for all the 
considered regions on the tile. A similar pattern, albeit shifted in the time, was also observed in 
the median region, where the plateau was reached at the 20th day, whereas in the distal region F. 
solani growth was significantly lower, and the hyphae were unable to colonize all available 
space in the course of the experiments, due to limiting available nutrients (Fig. 4, right). In this 
region a noteworthy development of conidiophores was observed (not shown). 
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Fungal growth on tuff tiles results in a mycelium with a reticulate texture, with open 
spaces that separate the fungal mat, leading to a patchy structure of the fungal growth. The 
development of a reticulate texture could be due to change in the growth direction of filaments, 
as reported for cyanobacterial growth on lithic substrates [51]. The surface texture of the 
hyphae (sprayed with fluorescent brightener Calcofluor White) during the colonization of the 
substrate was observed with an epifluorescence microscope. Data show that in each region of 
the tile there is a constant increase of the hyphal branching over the time, that are leading to a 
progressive reduction of the void dimension in the texture. 

 Surface texture and thickness are not related (R2 = 0.45), suggesting that in our 
experimental conditions the hyphal organization is oriented toward a higher superficial 
branching degree more than increasing the thickness of the mycelium. 

In order to assess if the spatial organization of hyphal branching is subject to major 
changes along the layers forming the mat, and/or in the three regions of the tile, we performed a 
three-dimensional evaluation of the hyphal branching by CLS-microscopy (Fig. 5). At the end 
of the 20th day of incubation, the tuff tiles were sprayed with Calcofluor white and then 
analyzed with a confocal microscope in order to evaluate some structural parameters in the 
central, medial and distal region of the biofilm (Table 3, top). Z-Stacks analysis has shown a 
clear resemblance of structural patterns of hyphae in the central and median regions. To 
evaluate the characteristics of the hyphae network, we analyzed z-stack MIP images with Fiji’s 
DiameterJ plugin (Table 3, bottom). 
 

 
Fig. 5. MIPs of F. solani biofilm on lithic tuff tile, central (left), median (central)  

and distal (right) z-stack to the biofilm growth surface. 
 

Table 3. Analysis of various architectural parameters of F. solani biofilm 
 

 Central Median Distal 
Area MIP (%) 44.112±1.822 35.941±3.862 11.878±0.665 
Biomass (µm3) 32780434.778±1051337.997 33470831.368±2373961.800 20381191.392±19922166.572 
Thikness average 215.7985±113.608 220.940±3.080 125.140±64.875 
Thikness max 420.000±141.421 334.500±11.313 240.000±133.643 
Ra 0.7355±0.057 0.645±0.041 1.417±0.286 
Mean pore area (µm2) 28.514±5.499 30.497±3.156 34.803±8.2654 
Max. pore area (µm2) 1241.723±614.373 2654.363±258.238 3734.674±1821.298 
Number of pores 719±226.981 964±151.228 270±98.558 
n° of intersections 31213±620.386 50680±1380.868 14984±1569.448 
Diameter mean (µm) 1.176±0.215 1.87±0.561 4.867±1.256 
Diameter max (µm) 4.575±2.121 10.457±4.85 68.071±10.684 

 
According to the consideration of Matsuura and Miyazima [52], that larger leading 

hyphae continue to extend, whereas secondary hyphae seem to be more sensitive to nutrient 
depleting conditions, we observed a prevalent presence of very thick hyphae in the distal region 
of the tuff tiles. 
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The three-dimensional architecture of fungal biofilm on different substrates is largely 
influenced by the environment: mat formation by Saccharomyces cerevisiae was grown on 
medium containing a low agar concentration showed a radial pattern of growth, with a central 
hub made of a complex network of cells and radial spokes, originated from the hub. This 
structure was influenced by the viscosity of the medium, and nutrient availability [53]. 
Similarly, CSLM analyses performed on Fusarium populations grown on soft contact lens 
revealed that biofilm thickness was limited by the water content of lenses and that the 
architecture of fungal mat was dependent on surface characteristic of lenses, albeit remaining 
uniform at the center and periphery [53]. 

In our experiments, the structural features of yellow Neapolitan tuff seem to dictate a 
different three-dimensional structure of Fusarium solani mats. Table 3 shows that the roughness 
of the mat increases from central to distal regions of the tiles, these latter showing an almost 
double roughness compared to the central and median regions. Moreover, there is an increase in 
the average and maximum size of the hyphae network voids from the central to the distal region 
of the tile, and also the values of the mean and maximum diameters of the hyphae show an 
increase from central towards distal regions of the tile. Finally, the number of intersections of 
hyphae has a drastic decline from the center to the borders of the tile (Table 3). All these results 
concur to indicate that the mycelium in the central and median regions is compact and consists 
of a very intricate network of prevalently thin filaments, and that is homogeneous along the 
stacks. Conversely, in the distal areas, the mycelial network is loose and double-stranded 
filaments prevail. Also, in this case, no vertical zonation of hyphal architecture was evidenced. 
 
Conclusions 

 
In vitro colonization experiments can be useful to understand the role of environmental 

parameters such as relative humidity, temperature, light intensity and nutrients on the fungal 
three-dimensional organization. Our tests have indicated that F. solani is able to colonize the 
tiles also in very limiting conditions of carbon supply and relative humidity and that the yellow 
Neapolitan tuff is a very bioreceptive material. Using the in vitro model, we showed that the 
colonization of the tuff tiles exhibited a well-defined pattern:  

• The surface roughness of the biofilm and mean and maximum diameters of the hyphae 
showed an increase from central towards distal regions;  

• the number of intersections of fungal filaments declined from the center to the borders of 
the mat, causing the increase of the average and maximum size of the voids in the distal 
region of the mycelium. 
A combination of microscopical techniques (epifluorescence, metallurgical microscopy 

in bright field and CLS-microscopy) can be successfully applied to assess the first steps of 
fungal colonization on stone substrate, especially to evaluate thickness and structural texture of 
the mycelium, less investigated parameters in biodeterioration studies although they play a key 
role in the establishment of mature biofilms pioneered by fungi. 
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CHAPTER 7 
A biological and quantitative study on in vitro colonization of Neapolitan yellow tuff by 
Alternaria tenuissima 
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Abstract An in vitro colonization experiment has been performed to investigate epilithic and 

cryptoendolithic growth of the fungus Alternaria tenuissima. Colonization test proceeded for 20 days on 

tuff stone with low carbon source supply. Growth has been documented for the whole experiment duration 

with photographical documentation of the spreading colonies, monitored with both metallurgical 

microscopy and CLSM microscopy, with the use of a fluorescent chitin-binding dye. Thickness of the 

biofilm was also measured in central, medial and distal areas of the colony for each tuff tile. Moreover, 

overall growth af the fungus has  been measured with total conidia count, ergosterol determination through 

HPLC and total DNA extraction. Our findings confirm that in vitro experiments coupled with 

microscopical observations and computer image analysis are useful tools to evaluate and quantify fungal 

biomass on a stone substratum, especially in the early steps of fungal colonization.  

 

Keywords: crypto-endolithic growth, weathering, image analysis, CSLM confocal microscopy 

 

Introduction 
Fungi can be a serious threat for cultural heritage and artworks and are among major 

agents of microbial deterioration of building stones [1]. Besides the spoiling due to color 

change and patina formation, they can deeply colonize cracks and fissurations because of 

the extraordinary penetrating power of their hyphae into the substratum, causing 

breakings and lesions to the artwork.  

Harsh environmental conditions and wide fluctuations of relative humidity, light 

exposure, available nutrients and temperature are limiting factors for microrganisms that 

thrive on stones; nevertheless, fungi are able to tolerate these adversities keeping their 

viability on building materials also under the 50% of relative humidity [2]. 

Tuff has been a very common building material in the area of Pompeii over the centuries 

[1]. Particularly, Neapolitan yellow tuff is incredibly porous, with a considerably high 

water absorption coefficient [3] and its pores act as perfect niches for the colonization of 

microrganisms. 

A better understanding of biodeterioration mechanisms and its effects on materials are 

needed in order to preserve constructions from fungal colonisation; to this aim, in vitro 
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experiments are useful to assess bioreceptivity of different lithotypes [4] and 

biodeterioration due to phototrophs colonisation [5] or fungal colonisation [6]. 

In our previous surveys on biofilms sampled from the archaeological sites of 

Herculaneum, Pompeii and Cumae (Campania, Italy), the presence of Alternaria was 

confirmed to be costant amongst the identified molds. Alternaria is a genus of 

filamentous fungi (Ascomycota, Pleosporales) commonly retrieved as soil contaminant 

and plant pathogen; most of the alternarioid species are considered to be cosmopolitan 

saprobes that are ubiquitous through natural and manmade environments [1]. Alternaria 

is also frequently found in the biofilm deteriorating stone monuments [2-5]. 

Here we present a laboratory test to study the initial steps of fungal colonization above 

tuff tiles. An Alternaria strain sampled in the portico of the southern garden (Oplontis) 

was chosen, due to the peculiar shape of its conidia, of the melanized hyphae and its easy 

cultivation. Fungal growth has been followed in a 20 days experiment in which a a 

controlled environment was created with a single carbon source and high relative 

humidity in glass petri dishes containing yellow tuff tiles. Several typical parameters of 

the fungal growth have been recorded each 4 days, such as number of conidia, thickness 

of the fungal mat and biomass estimation through total DNA extraction and ergosterol 

quantification. 

Since the peculiar features of tuff substratum, we focused on characterizing the 

architecture of a fungal mat both on the surface of the stone and inside its cracks and 

fissurations. A surface overlay documentation of the spreading colonies and their hyphal 

branching observed with metallurgical microscope was taken during the whole 

experiment to assess mycelial architecture and its development on a stone substratum. 

Also a description of hyphal penetration was provided through CLSM-microscopy stack 

reconstruction in order to evaluate crypto-endolithic growth of the fungus. 

 

 

Materials  and  Methods 

Petrographic  analysis,  roughness  and  porosity 

In many archeological sites the use of local stone for architectural purposes has been a 

very wide common. In Campania region (Italy) the large availability of volcanic products 

and their easy workability, determined the their great utilization. The lithic samples used 

in in vitro tests were taken from the caves Neapolitan Yellow Tuff (NYT) of Quarto 
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(Napoli). The NYT shows its typical assemblage with prevaling epigenetic phases 

(phillipsite, chabazite and analcime), feldspar, and minor amount of mica, hydrated iron 

oxides and volcanic glass [7]. According to standard ISO 4287:1984 [8] the roughness 

parameters were evaluated on each tessera with an ALPA© RT-20 palmar rugosimeter. 

All measurements were performed in triplicate, and data acquisition was conducted using 

the Measurement Studio Lite 1.0.3.96 software. We calculated the roughness profile from 

1600 sample points for each tile to determine the average roughness (Ra), the root mean 

square surface roughness (Rq), mean roughness depth (Rz) and maximum or total 

roughness (Rt). We report the above data with the mean density and the water absorption 

coefficient only for the tiles for which we obtained meaningful microbial growth. The 

porosity of tuff lithic samples was assessed through mercury porosimetry (Autopore 4, 

Micrometrics). Before assessing the density and water adsorption coefficient, eight lithic 

samples were held at a constant temperature (21°C) and relative humidity (51-55%) for 

two weeks. The density (mean ± sd) of the tuff was obtained by evaluating the ratio 

weight/volume. The water absorption coefficient (WAC) of the tesserae (mean ± sd) was 

calculated according to Barberousse et al. [9]. 

 

Origin and culture of the strains 

The strain used for this experiment has been collected in a survey at the portico of the 

southern garden in Oplontis. Together with the other components of the biofilm, it was 

identified through a polyphasic approach. Samples were cultivated on agar PDB (BD 

Difco™   Potato   Dextrose   Broth,   USA),   isolated   with   the   stereomicroscope   and   then  

observed with the optical microscope. A further confirmation of the observations and the 

assessment of the species was obtained through a molecular analysis. 
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Fig. 1. Location of the archaeological site of Oplontis in the Campanian region (A), surface detail of a tuff 

a wall (B) from which it was isolated A. tenuissima, neutral red staining, 40x magnification (C). 

 

The isolated strains were kept in the ACUF collection (Algal Collection of University 

Federico II) of Department of Biology in Napoli, Italy following the protocol by 

McGinnis et al. [10]. Nutritive medium used for biodeterioration test was composed of 

BBM (Bold’s  Basal  Medium) [11] plus the addition of sucrose 12g/L, according to Jeger 

et al. [12]. 

 

DNA-based molecular analysis 

DNA was extracted with a modified Doyle and Doyle DNA extraction protocol [13] and 

used for a Polymerase Chain Reaction with primers targeting ITS spacers (primer 

forward   5’-TCCGTAGGTGAACCTGCGG-3’;;   primer   reverse   5'-

TTCAAAGATTCGATGATTCAC-3'). The amplification product was then evaluated by 

agarose gel electrophoresis, purified with QIAquick® PCR Purification kit (Qiagen Inc, 

Valencia, CA, USA). Sequence reaction was obtained with the BigDye Terminator Cycle 

Sequencing technology (Applied Biosystems, Foster City, CA), purified in automation 

using the Agencourt CleanSEQ Dye terminator removal Kit (Agencourt Bioscience 

Corporation, 500 Cummins Center, Suite 2450, Beverly MA 01915 - USA) and a robotic 

station Biomek FX (Beckman Coulter, Fullerton, CA). Product was analyzed on an 

Automated Capillary Electrophoresis Sequencer 3730 DNA Analyzer (Applied 

Biosystems). The amplification primers were used as the sequencing primers. The 
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obtained sequence was loaded in BLAST version 2.0 (National Center for Biotechnology 

Information databases) and identified as Alternaria tenuissima. 

 

Accelerated colonization 

The Neapolitan Yellow Tuff tiles (average size 3 x 3 x 1cm) were displaced in triplicate 

and tyndallized in 5 glass petri dishes, one for each experimental observation. The tiles 

were then watered at their maximum absorbance capacity with the nutritive medium 

while preserving sterility. The inoculum consisted of 5000 conidia suspended in 0.9% of 

NaCl solution and injected in the middle of the tile. Conidia were obtained from a 5 days 

old A. tenuissima colony treated for 1 minute with PBS-Tween20 solution at the final 

concentration of 0.5% and mechanically scraped with a sterile handle. The suspension 

was then recovered and filtered through a sterile gauze, conveniently diluted and number 

of conidia per milliliter was determined through a direct microscopic count in a counting 

chamber (Burker blood-counting chamber, HBG – German). Glass petri dishes (100 x 15 

mm) containing the tuff tiles with the inoculum were kept at 100% relative humidity with 

sterile filter paper discs soaked in sterile distilled water and stored at 26°C in a climatic 

cell. A petri dish missing of the inoculum was prepared in the same manner and kept for 

20 days as a control. 

 

 

Image analysis 

Digital image analysis was applied to quantify the hyphae growth on and into the stone 

samples after 4 incubation time. The photographic recording of each tessera was 

performed with a digital camera (Nikon D5100 with Nikkor 50mm objective). The 

conventional RGB color images obtained with the digital camera were used to quantify 

the colonization area on each lithic sample. The program Trainable Weka Segmentation 

[14, 15], a plugin of open source image processing package Fiji [16, and also 

http://www.fiji.sc], was used to evaluate the colonized areas of each photograph (Fig. 

2A). 
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Fig. 2. A. Segmentation analysis for the determination of surface overlay of fungal colony; B. ten 

observation points for each analyzed tile were used for the measurement of thickness and local fungal 

overlay with metallurgical microscope. The observation points were then classified as central (2), median 

(4) and distal (4) region. C. Pen cutter blade cut in aerial mycelium for the determination of thickness with 

metallurgical microscope. D. Observation points for CLSM analysis and substacks division for crypto-

endolithical determination of hyphal growth.  

 

Optical, metallurgical and laser confocal microscopy (CLSM) 
Optical 

The colonized surface of the tuff tile was energetically scraped with a razor blade and the 

fungal biomass was recovered into 1,5mL tubes, and suspended in 1mL 0.9% of NaCl 

solution. The sample was then properly diluted and aliquoted into two tubes. Conidia 

from each tube were counted in triplicate through a direct microscopic (Nikon Eclipse 

E800) count in a Burker chamber. 

Metallurgical 

In order to monitor fungal growth during test, the surface of each specimen was observed 

each 4 days with metallurgical microscope (Leitz Wetzlar Ortholux Microscope) with an 

objective 4x. The measurement was performed in 10 points of each tile, 2 central (near 

the inoculum), 4 mean and 4 peripheral (Fig. 2B). In each of 10 points were cut the 

   

   0     to -128 μm       1° substack 
-128   to -256 μm       2° substack 
-256   to -384 μm       3° substack 
-384   to -512 μm       4° substack 
-512   to -640 μm       5° substack 
-640   to -768 μm       6° substack 
-768   to -896 μm       7° substack 
-896   to -1024 μm     8° substack 
-1024 to -1152 μm    9° substack 
-1152 to -1280 μm  10° substack 

      2°                       1°                      3° 
                           z-stacks 
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hyphae network with a pen cutter with blade oblique (WLXY®, model number: 

WL9309). According to Bakke and Olsson [17] the thickness values of mycelium were 

determine. Each observed point was also shoot with (Nikon D5100) photographical 

documentation was later used for computer image analysis to evaluate the covering area 

of the hyphae. 

CLSM  

The microbial populations on the substrate were also analyzed with Zeiss LSM700 

(software Zen 2011) by capturing images at 10x. The fluorescence of hyphae was 

recorded in one channel using calcofluor white to stain the hyphae, with an excitation 

beams at 405-458 nm and emission at 415-505 nm (blue channel). The images from 

stacks were captured at 13.46 µm intervals. For each fungal mat, 3 replicates were used 

for taking Z-stacks images. The substratum area of the image of epilithic stack was 1024 

x 1024 pixel (640.174   x   640.174   μm). The number of images in each stack varied 

according to the thickness of the fungal mat. 

Epileptic growth was monitored through the z-stack of the top of the lithic sample. The 

stone samples were cut perpendicular to the inoculated surfaces (Fig. 2C) after the 

incubation period, no trace of hyphae was visible to the naked eye. Crypto-endolithic 

colonization was followed by recording to CLSM. The Z-stacks recorded of the sections 

perpendicular to the stone surface enabled studying the distribution of hyphae network, 

their development on the subsurface of the samples and their relationship with the 

substrata. 

Fiji was used to evaluate the area of all stacked CLSM images, and to obtain 2D MIPs. 

The images have been previously converted to 8-bit and then resampled by using the tool 

Threshold [18-20]. Comstat2 [21] tool was used to determine the volume, thickness, 

roughness of each Z-stacks [22, 23]. 

The substratum area of the image of crypto-endolitic stack was 1024 x 1024 pixel 

(1280.348 x 1280.348 μm). The recording to CLSM, for the hyphae crypto-endolithic 

growth, produced Z-stacks with parallel slices to the fracture surface (Fig. 2D). Each slice 

shows the hyphae nearest to the part where epileptic growth (upper part of the slices) has 

occurred, and even the hyphae that it grows deeper (lower part of the slices). 

In order to obtain a more appropriate quantification of the network of hyphae grows 

crypto-endolitically, the Z-stacks have been superimposed on grids at parallel equidistant 

lines.  This  grid  was  used   to  obtain   substacks,   representing   intervals  of  128μm   in  depth 

(Fig. 2D). 
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Ergosterol estimation through HPLC chromatography and DNA quantification 

The analysis of ergosterol content was performed as previously reported [25]. Briefly, 

each algae suspension was lyophilized and the crude residue in dependence of its weight 

was dissolved in 0.5-2.0 mL of MeOH by sonication for 3 minutes. Each suspension was 

refluxed for 2 hours, added with 0.3-3.0 mL of 2 N KOH in MeOH, mixed and then 

saponified for 30 minutes. It the end, the suspension was cooled down to room 

temperature and extracted with ethyl ether (10 mL), twice. The organic upper phase was 

analysed by HPLC Shimadzu LC-8A equipped with a Shimadzu SCL-10AVP system 

control and a Shimadzu SPD-10A VP UV/VIS detector, using a C18-110A prep. column 

(Gemini 10 mm, 250 x 21.2 mm i.d., Phenomenex) with MeOH as mobile phase. The 

quantification of ergosterol with the absorption maximum of 282 nm was obtained using 

an external standard via a five-point calibration. 

Results 
 
Lithic  sample  characterization 

The tiles of Neapolitan Yellow Tuff used in this study were analyzed for water 

absorption coefficient, porosity and roughness as described in Materials and methods. 

Data regarding tuff characterization are consistent with the properties and description of 

this building material and measured values for petrographic characterization are showed 

in Table 1. 

 
 Table 1. Water adsorption coefficient (WAC), porosity and roughness of tuff tile. 

WAC 
(g dm-2 min-1/2) 

 Porosity Roughness  

Density 
(g cm-3) 

Porosity 
(%) 

Average pore 
diameter (nm) 

Total pore area 
(m2/g) Ra Rq Rz Rt 

49.28-5 1.461 56.63 247.8 9.47  19.32 23.21 85.68 101.83 

 

 

Thickness, surface overlay and viability of the colony on tuff tile 

Image analysis performed on whole colony developing on tuff tiles showed a continuous 

overall radial growth. The areas calculated as percentage of overlay were used as means 

of triplicates and plotted with their respective standard errors in Fig. 3.  
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Fig. 3. A. tenuissima colonization on tuff tile determined with image segmentation analysis. The areas 

obtained for each of the triplicates were normalized to the tile surface area.  
 

Metallurgical microscopy measurements for thickness and surface overlay were used to 

monitor fungal growth on the tuff tiles. Each set of measurments for the ten observation 

points in the tile were used in triplicate for determining the mean and the standard 

deviation and plotted as the proceeding of central (points 1 , 2), median (points 3, 4, 5, 6) 

and distal (7, 8, 9, 10) regions (Fig. 4).  

 
Fig. 4. Mean values obtained by metallurgical microscopy observations were plotted for each experimental 

time grouped as central, median and distal region for both local hyphal overlay (A) and thickness (B) of 

fungal colony on tuff tiles. 
 

After 16 days incubation both thickness and overlay appearently decrease in central and 

medial regions, while in distal region this trend appears after 20 days incubation. We 

have hypothesized that both parameters may be influenced by conidia production and 

dispersal. Since in A. alternata conidia are tipically shaped as elliptical or spindle-shaped 
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structures their orientation toward the outside of the colony may have affected the values 

regarding thickness and overlay. For this reason total conidia number was also measured 

at the same observation times; the counts were performed in triplicate with a light 

microscope and a counting chamber. Also, the initial number of conidia that were 

inoculated on each tile may be considered negligible in the following counts, as the 

numeric evidence suggests that all conidia are newly formed by the colony. In the Fig. 5 

it is showed that conidia production is continuous over the time in our experimental 

conditions and increases with an exponential trend, confirming that the inversion 

observed for thickness and overlay after 16 and 20 days incubation is not related with 

nutrients availability or an alteration state of the colony on the stone. 

 

 

 

Fig. 5. Total number of conidia recorded for each experimental time. 

 

Since the hyphal structure is not subjected to relevant movements on the substratum, it is 

clear that the stage of the colony and the formation of reproductive structures greatly 

influences the shape of the colony and its morophology also on stone substrata.  

 

Biomass estimation through ergosterol and DNA quantification 

Fungal biomass on tuff tiles was also determinated for each experimental time using both 

HPLC for the estimation of the total ergosterol and total DNA extraction and 

quantification. Ergosterol is a found in cell membranes of fungi and protozoa, where it 

serves the same functions of cholesterol in animal cells. It has been widely used as 

biomass indicator [25]. Fungal biomass has been energically scraped from the 
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substratum, peeling also few millimeters of substratum in which endolithic growth was 

supposed to be observed. The mixture of hyphae, conidia and stone debris corresponding 

to a quadrant of the surface, were used in duplicate for both ergosterol and DNA 

quantification. In Fig. 6 are showed values and correlations between ergosterol and DNA 

content, which have a high concordance. Both the indicators were also correlated with 

other overall parameters relevant for the fungal growth as percentage of surface overlay 

and number of conidia (Table 2). All the correlations are consistent; this supports the idea 

of the usage of image analysis as a tool for biomass monitoring in fungal mats on stone. 

 

 
 Fig. 6. All the six possible combinations of the measured indicators are shown in the figure above: A) 

conidia and fungal area; B) ergosterol and fungal area; C) ergosterol and conidia; D) DNA and fungal area; 

E) conidia and DNA; F) ergosterol and DNA.  

 

 

 

Table 2. Correlation of ergosterol, DNA, conidia and percentace of overlay for the A. tenuissima fungal 

mats. 

  Ergosterol (ppm) DNA (µg) Conidia % overlay 
Ergosterol (ppm)  0,001 0,002 0,035 
DNA (µg) 0,975  0,001 0,012 
Conidia 0,962 0,974  0,003 
% overlay 0,844 0,909 0,953  
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Epilithic and endolithic structure 

Tuff is a very porous material, that allows a forward crypto-endolithic growth of 

mycelium. In order to investigate the architecture of the colony respect to the texture of 

the substratum, CLSM stacks were recorded after a calcofluor white 1% staining. Three 

points, in central medial and distal range of the surface were used to analyze the structure 

of the micelyum for all the experimental times. After the observation of the epilithic 

mycelium, the tuff tile was divided crosswise, and the inner section was also stained and 

observed in three points, corresponding with central medial and distal region. 

Cryptoendolithic growth was found in the cross section of the tile. To analyze the depth 

and the extension of cryptolithic hyphae the stacks were divided into ten  “sub-stacks”  of  

128µm each. All data obtained by image analysis for the epilithic and cryptoendolithic 

growth of the hyphae in this experiment are reported in Table 3 and Table 4. 

The analysis of horizontal distance reach and volume for cryptoendolithic hyphae is 

showed in (Fig. 6) for all experimental times. Horizontal distance reach of the crypto-

endolithic hyphae is higher in the area of the inoculum and increases over the time. On 

the other hand, hyphal volume seems not to be related to the progress of fungal 

colonisation; in any case it appears to be greater in correspondance with the area of the 

inoculum. Taken together these findings suggest that penetration and development of 

mycelium substratum during the colonisation progresses inside the pores and the cracks 

into the substratum with a non-equal rate over the time, but shows a trend that is 

directionally spread from the inoculum to the periphery, and increases from the surface 

level to the inner layers.  
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Table  4.  Analysis  of  various  architectural  parameters  of  the  crypto-endolitic  colonization  of  A.  

tenuissima. 

 

Time 

 
Depth 
(μm) 

fom             to 

  Area tot. 
(μm²) Area (%) Vol./MIP 

(μm³/μm²) Volume  (μm³) Biomass 
(μm³/μm²) 

Surface to 
biovolume ratio 

(μm²/μm³) 

Thickness 
(μm) Ra Surface 

4 days 

0 -128 427,620 10166,480 6,118 78,506 798134,273 4,985 1,531 30,084 1,872 1222407,010 

-128 -256 507,640 7885,545 4,746 78,109 615928,742 4,007 1,054 22,081 1,900 649599,050 

-256 -384 433,870 8085,655 4,866 66,058 534123,444 3,404 1,020 22,629 1,899 545057,130 

-384 -512 567,650 9684,964 5,829 75,249 728780,754 4,377 2,059 27,891 1,877 1500589,930 

-512 -640 445,210 5241,918 3,155 70,864 371464,312 2,324 2,065 10,480 1,936 767208,540 

-640 -768 300,290 6050,172 3,641 76,385 462143,055 2,830 0,971 10,569 1,924 449150,760 

-768 -896 176,340 2979,747 1,793 67,749 201876,033 1,286 0,946 5,040 1,962 191133,680 

-896 -1024 431,550 4364,876 2,627 73,180 319423,318 1,922 0,718 7,170 1,944 229372,390 

-1024 -1152 418,870 3705,144 2,230 59,872 221836,113 1,385 1,512 6,294 1,953 335459,210 

-1152 -1280 221,310 1493,001 0,899 74,812 111693,707 0,659 4,561 2,166 1,979 509441,170 

8 days 

0 -128 1902,410 13860,676 4,171 50,614 717325,170 2,300 3,994 12,593 1,911 2779095,240 

-128 -256 1944,310 12381,741 3,726 44,242 559336,453 1,724 1,579 10,132 1,923 1066342,080 

-256 -384 1805,520 10490,096 3,157 44,834 473629,468 1,524 2,073 7,552 1,932 853132,830 

-384 -512 1962,010 14262,459 4,292 40,522 631103,741 2,101 1,050 9,229 1,908 1017587,790 

-512 -640 2034,310 9930,410 2,988 43,371 450461,437 1,430 2,950 5,198 1,937 1353046,160 

-640 -768 1247,940 3922,451 1,180 22,461 172150,465 0,538 5,246 1,700 1,976 453494,280 

-768 -896 1214,160 4275,762 2,573 38,786 165837,650 1,035 2,539 5,666 1,946 421162,840 

-896 -1024 1050,290 1769,714 1,065 37,348 66095,173 0,412 4,527 2,127 1,977 299255,950 

-1024 -1152 380,140 1727,504 1,040 37,298 64432,799 0,402 1,871 2,656 1,978 120564,730 

-1152 -1280 8,750 128,194 0,077 30,367 3892,903 0,022 0,925 0,149 1,998 4210,146 

12 days 

0 -128 1702,200 7987,164 2,403 21,156 397795,578 2,553 2,110 10,883 1,845 867726,550 

-128 -256 1546,810 5382,621 1,620 20,386 391244,215 3,288 1,918 16,995 1,819 667172,180 

-256 -384 1934,320 6400,363 1,926 19,848 496156,728 4,411 2,183 16,491 1,791 1273145,140 

-384 -512 1762,920 5954,807 1,792 20,173 447758,448 3,878 1,121 15,849 1,816 702610,390 

-512 -640 2024,310 6714,596 2,020 54,588 613264,417 3,813 1,329 13,500 1,799 783362,430 

-640 -768 1747,340 6251,844 1,881 18,152 257682,021 2,095 1,303 7,373 1,855 405068,900 

-768 -896 1726,780 8149,754 2,452 19,544 296147,331 2,400 1,970 9,998 1,831 517061,650 

-896 -1024 812,030 3841,155 1,156 18,506 150633,803 1,371 3,574 5,451 1,894 468484,870 

-1024 -1152 411,460 2901,581 0,873 24,859 132362,284 1,027 7,807 6,276 1,911 324448,130 

-1152 -1280 21,670 948,955 0,571 42,024 39878,653 0,239 4,005 1,019 1,987 159729,600 

16 days 

0 -128 3283,030 17650,212 3,541 46,782 817006,551 1,698 1,507 8,740 1,925 1121194,029 

-128 -256 3506,190 63569,005 12,752 46,141 3234862,760 6,625 1,403 39,943 1,745 5159297,710 

-256 -384 3520,740 76338,470 15,314 53,224 4726247,329 10,354 1,487 47,609 1,673 5923035,290 

-384 -512 3704,470 80861,251 16,221 53,560 4251793,475 8,046 1,604 33,971 1,735 7828805,660 

-512 -640 3733,560 63251,654 12,688 49,913 3579946,291 7,642 1,223 40,291 1,740 5835929,700 

-640 -768 3535,970 41697,724 8,365 55,049 2328207,763 4,782 2,458 29,385 1,828 6062417,170 

-768 -896 2820,770 50590,054 10,149 60,155 2943178,814 6,080 1,873 34,325 1,792 4333216,260 

-896 -1024 2613,230 41685,215 8,362 54,134 2622432,155 5,422 3,523 24,625 1,827 5307693,240 

-1024 -1152 2420,810 26023,555 5,220 39,669 792944,595 1,639 2,576 9,336 1,892 1979543,800 

-1152 -1280 1224,930 12145,678 2,436 35,458 521584,224 1,058 1,261 4,012 1,950 669386,310 

20 days 

0 -128 3366,610 3952,930 0,793 357,873 1264876,745 8,843 3,669 70,941 1,617 4022523,380 

-128 -256 3503,530 4613,055 0,925 306,467 1324386,765 7,736 3,806 62,719 1,642 4819080,820 

-256 -384 3424,903 6663,388 1,337 196,166 1287471,452 8,999 3,528 68,938 1,593 4292355,170 

-384 -512 3600,620 5039,459 1,011 194,453 1098116,942 7,661 3,902 49,569 1,660 4320699,330 

-512 -640 3276,020 4992,558 1,002 164,475 923212,476 6,438 8,145 45,410 1,693 5954753,600 

-640 -768 2602,510 8026,630 1,610 69,995 633017,594 4,411 4,766 30,097 1,782 2817806,010 

-768 -896 2819,820 4155,774 0,834 100,868 430874,491 3,013 6,596 19,039 1,844 2305547,720 

-896 -1024 1827,250 3368,627 0,676 44,993 181814,473 1,265 9,450 7,287 1,927 1419368,520 

-1024 -1152 360,340 1130,302 0,227 21,021 28148,116 0,203 9,213 1,152 1,983 103175,600 

-1152 -1280 - - - - - - - - - - 
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Fig.  6  Crypto-endolithic  growth  of  A.  tenuissima  on  tuff  tiles.  Horizontal  growth  (A)  and  volume  (B)  
of  crypto-endolithic  hyphae;;  on  x  axys  is  reported  sub-stacks  separation,  scale  128µm.  Dark brown  
●:  day  4;; light  brown  ●:  day  8;; light  grey  ●:  day  12;;  dark  grey  ●:  day  16;;  ● black:  day  20. 

 
Discussion 
Colonization is one of the first steps leading to the subsequent formation of a biofilm 

on a material, which may result in the worst case in the destruction of the substratum. 

The development of microbial communities on stone surfaces tends to adequate to 

substrate topography and to fill depressions, fissures, and inter-granular spaces [26].  

In our in vitro colonization experiments, the fungus Alternaria and Fusarium [27] 

show a loose net reticulum colonization on tuff stone. Hyphal branching increases 

over the time in the inner region of tile surface, that is associated with the inoculum; 

however the dispersal of conidia after the first week of observation deals to a 

remodeling of aerial mycelium structure. In in vitro experiments there is no external 
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perturbation, although in open systems fluctuating conditions and atmospheric 

weather can leave serious marks on the development of subaerial biofilms. It is 

probably in a scenario of conidia dispersal that the nest of hyphae already established 

on tuff stone can host other microrganisms, especially phototrophic communities. 

Roeselers and coauthors noted that the establishment of heterotrophic communities on 

rocks is possible even without the pioneering participation of phototropic organisms 

and may also facilitate the subsequent growth of photosynthetic populations [28]. The 

understanding of fungal establishment on stone rocks may also be considered as a fast 

biodeteriorating system both for the destructive penetrating power of fungi and for the 

ability to host heterogeneous communities over the time.  

It is renewed that colonization may show trends that are associated with physical 

properties of materials such as roughness and porosity [9]. Neapolitan Yellow Tuff 

stone is an heterogeneous material, consisting of feldspar, mica, hydrated iron oxides 

and volcanic glass and with a incredibly high roughness and porosity [29]. These 

features determine a patchy substratum with a high water absorption coefficient, that 

is implied in moisture retainment. For this reason epilithic growth of A. tenuissima 

has also been monitored with CLS-Microscopy over the whole incubation time. 

Epilithic growth of the fungus is consistent with the overall growth biomass indicators 

relating to number of conidia, DNA and ergosterol, beside the surface overlay area. 

Image segmentation analysis provided a useful tool for an easy and fast determination 

of fungal overlay on stone surface, and the correlation with other biomass indicators 

may hopefully lead to the use of image analysis also for an in field application for the 

monitoring of natural biofilms.  

Finally, the presence of feldspars and clays in a material provides points of weakness 

and significantly increase susceptibility to attack [30]. Few attempts have been 

reported for the measurement of endolithic growth in stone substrata [31]. For this 

reason crypto-endolithic growth of A. tenuissima has been measured with CLS-

Microscopy by transversely splitting the stone tile in the middle and staining the inner 

section with a fluorescent dye for fungal walls. Our findings suggest that penetration 

and development of mycelium substratum during the colonisation proceeds inside the 

pores into the substratum with a non-equal rate over the time and that the spreading 

from the inoculum to the periphery increases from the surface level to the inner 

layers. This finding is corroborated by the fact that the apex of the hyphae is oriented 

in the sense of depth and not toward the surface, confirming that what we measured is 
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effectively a cryptoendolithic growth and not an hyphal growth that starts in a 

depression of the stone. 

 

Conclusion 

The study of fungal colonization on stone is an intriguing topic for biofilm research 

and conservation science. Heterotrophic communities may act as pioneers on bare 

rocks, and their presence can lead to the establishment of flourishing heterogeneous 

biofilms. Also, molds are renowned to be dangerous biodeteriogens, whose effects 

contribute massively to the fragmentation of the substratum.  

In the present study a biological and quantitative survey on in vitro colonization of 

Neapolitan yellow tuff by Alternaria tenuissima was performed, thereby confirming 

the use of in vitro experiments for the understanding of biofilm establishment on 

stone. 

Our tests have shown that A. tenuissima is able to colonize tuff tiles also in limiting 

conditions of carbon supply and that the yellow Neapolitan tuff is a very bioreceptive 

material, as previously assessed for the fungus F. solani. A combination of 

microscopy techniques (optical, epifluorescence, metallurgical and CLSM) and 

molecular techniques (DNA extraction, HPLC) has been successfully applied to 

assess the early steps of fungal colonization on stone substrata, especially to evaluate 

thickness and structural texture of the aerial mycelium. On the other hand, surface 

overlay of fungal colony and fine parameters of hyphal architecture were measured 

with computer image analysis, allowing also to analyze cryptoendolithic displacement 

and development of the hyphae into the stone substratum. 
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CHAPTER 8 
Colonization patterns on different lithotypes of an Oculatella subterranea 
(Cyanobacteria) strain isolated from Pompeii archaeological site (Italy)  
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Abstract  The Cyanobcterium Oculatella subterranea inhabits hypogea and stone caves and is a 

pioneer of different stone substrata. In this study a strain isolated from the House of Marco Castricio 

(Archaeological park of Pompeii, Italy) was identified with a polyphasic approach and used for an in 

vitro colonization test. Fine architecture of O. subterranean biofilms was revealed as well as filaments 

orientation toward light source. This aim has been succeeded through CLSM microscopy and computer 

image analysis. Moreover, bioreceptivity of five different lithotypes, commonly retrieved in 

archaeological sites of Campania, was  assessed for O. subterranea. Our results also indicates that the 

three-dimensional structure of O. subterranea biofilm is poorly affected by physical and geochemical 

features of substrates: in fact, the porous architecture of its biofilm was preserved, independently of the 

materials. It is opinion of the authors that a detailed knowledge of the three dimensional arrangement 

during the early steps of colonization can lead to the development of  strategies specifically targeted to 

control the proliferation of this organism, improving the safeguard of cultural heritage.  

 

Keywords bioreceptivity, Oculatella subterranea, lithotypes, image analysis, CSLM confocal 

microscopy, architecture of biofilms 

 

 

Introduction 

Biofilm adhesion is a manifold process regulated by the geo-chemical features of the 

material and the biological characters of the colonizer organism(s). Guillitte (1994) 

introduced  the  definition  of  bioreceptivity  as  “the aptitude of a material (or any other 

inanimate object) to be colonized by one or several groups of living organisms 

without necessarily undergoing any biodeterioration”   meaning   that   there   is   an  

ecological relationship between the material and the colonizing organisms.  

In a survey carried out at the archeological site of Pompeii (Italy) we have observed 

evident traces of bioweathering both on outdoor and indoor lithotypes of numerous 
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Roman Houses. A preliminary sample campaign has revealed that in many cases the 

prevailing organism occurring in biofilm was a filamentous, not branching 

Cyanobacterium, microscopically identified as Oculatella subterranea. This species 

was erected by Zammit et al. (2008), and has been reported as the typical inhabitant of 

caves and hypogeal (Hithsch et al. 2013). However, in Pompeii we found this 

organism under different light conditions, ranging from a dim light of internal rooms, 

to shadow spots lying on the outside walls of various buildings, and on different types 

of substrates (frescoes, tuff walls, Roman concrete, mosaic tesserae). Preliminary 

laboratory tests have shown that this strain grown on solid culture medium forming an 

open network of filaments with a high porosity. We have recently reported that the 

first steps of a surface colonization by phototrophic microorganisms can proceed 

according to two different patterns, defined compact or porous (Marasco et al. 2016); 

the first one presents an homogeneous structure, with a reduced number of empty 

spaces between cells or filaments, whereas in the latter, the spatial disposition of 

filaments allows the presence of numerous empty volumes. The aim of the present 

study is to verify the influence of the substrate on the biofilm architecture. On one 

strain isolated from the House of Marco  Castricio  and morphologically identified as 

O. subterranea we have carried out a molecular and phylogenetic analysis to confirm 

its full identity with this species. Then, we have performed a series of laboratory tests 

with the aim of assessing if the different features of the most frequent lithotypes 

occurring in Pompeii houses influences the first step of colonization by this strain. 

Five different substrata, namely: tuff, porphyry, brick, limestone and glass paste have 

been selected, and the tests were carried out following the procedure described by Del 

Mondo et al. (in press).  With the aid of CLSM confocal microscopy we have tried to 

verify if the three-dimensional structure of O. subterranea could be influenced by the 

kind of lithotype. This point could shed light on the role of this organism as a pioneer 

in the establishment of biofilms on lithic substrates, since the structure and species 

composition of a biofilm depend on the spatial texture of the organism that starts the 

colonization (Curtis, Sloan 2004). 
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Material  and  methods 

Petrographic data, Roughness and Porosity analysis  

In vitro experiments were performed on 5 different lithotypes. The samples of 

Neapolitan Yellow Tuff were taken from the quarry of Quarto (Langella et al. 2000). 

The clay used for the production of brick samples comes from Sant’Agnello  (NA) (De 

Bonis et al. 2013), the local manufacturing transformed the clay in little bricks, that 

were cut to obtain our samples. Porphyry comes from the quarries of Trentino Alto 

Adige (Martelli 1930; Pivko 2003). Vitreous samples were produced by ArteMarcia 

(http://www.artemarcia.com/). Limestone blocks are described in Marasco et al. 

(2016). All the lithotypes were cut in small blocks. Choosing the average size of the 

samples (20 x 20 x 10 mm) was based on the following elements: surface receiving 

the inoculum at the beginning of the tests was 2 cm2; a small thickness (1 cm) was 

chosen to allow total and rapid humidification of the slab surface. The roughness 

parameters were evaluated on each block with an ALPA© RT-20 palmar rugosimeter, 

as described in the standard ISO 4287:1984. The measurements consisted of 

analyzing the surface of each block with 1600 sampling points (with a cut-off of 

0.625 µm). All measurements were performed in triplicate, and data acquisition was 

conducted using the Measurement Studio Lite 1.0.3.96 software. To assess the density 

and the water absorption coefficient, the blocks were previously held at a constant 

value of temperature (21°±1 C) and relative humidity (51-55%) for two weeks. The 

average density (mean ± sd) of the different lithotypes was obtained by calculating the 

ratio weight/volume. The water absorption coefficient (WAC)  (mean ± sd) was 

calculated according to Barberousse et al. (2007). According to Giesche (2006) the 

pore size and percentage of the 5 lithotypes were assessed through the technique of 

the mercury porosimetry (Autopore 4, Micromeritics). 

 

Origin and identification of the strain 

The  experiments  were  conducted  with  the  strain  O.  subterranea  (ACUF  823;;  Fig.  1C)  

of  the  algal  collection  of  the  Department  of  Biology,  University  Federico  II  of  Naples  

(www.   acuf.net).   Two   apparently   identical   strains   were   isolated   from   samples  

collected  on  a  mural  painting  of   the  Marco  Castricio  House,  Pompeii  Archeological  

site,  Naples,  Italy  (Fig.  1A,  B).  DNA  was  extracted  from  liquid  cultures  of  two  strains  

with a modified Doyle and Doyle (1990) DNA extraction protocol and used for a 
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Polymerase Chain Reaction with primers targeting 16S rDNA (16S_long_F 5’-

AGGATGCAAGCGTTATCCG-3’;;  16S_long_R 5’-

GGGGCATGCTGACTTGACG-3’).   PCR   was   carried   out   in   a   25   µl   aliquot  

containing approximately 100ng DNA, a deoxynucleoside triphosphate mixture (0.2 

mM each), buffer (1/10 volume of the supplied 10x buffer), supplemented to give a 

final concentration of 2.5 mM MgCl2, 1.25U of Taq polymerase (EconoTaq, 

Lucigen), and 0.5 pmol of each primer. Amplification was run in a Applied 

Biosystem 2720 thermal cycler. The profile used was 5 min at 95°C, 33 cycles of 

95°C for 30s, 60°C for 45s, and 72°C 45s, and a final elongation step of 7 min at 

72°C. The amplification product (672bp) was evaluated on 1.2% (w/v) agarose gel in 

a electrophoretic run and purified using QIAquick® PCR Purification kit (Qiagen Inc, 

Valencia, CA, USA). Sequence reaction was obtained with the BigDye Terminator 

Cycle Sequencing technology (Applied Biosystems, Foster City, CA), purified in 

automation using the Agencourt CleanSEQ Dye terminator removal Kit (Agencourt 

Bioscience Corporation, 500 Cummins Center, Suite 2450, Beverly MA 01915 - 

USA) and a robotic station Biomek FX (Beckman Coulter, Fullerton, CA). Product 

was analyzed on an Automated Capillary Electrophoresis Sequencer 3730 DNA 

Analyzer (Applied Biosystems). The amplification primers were used as the 

sequencing primers. Nucleotide sequence similarity was determined by using BLAST 

version 2.0 (National Center for Biotechnology Information databases). 

A total of 41 sequences belonging to different Oculatella species and including 

Leptolyngbya as an outgroup were downloaded by Genbank nucleotide database; 16S 

rDNA multiple alignment was obtained by ClustalW (Larkin et al. 2007) with the 

addition of the two Oculatella strains isolated from Pompeii. The alignment, 

consisting of 611 sites, was then trimmed and adjusted by eye. Bayesian inference 

was obtained with MrBayes 3.2.0, running 2 millions generations and a sample 

frequency of 100 and using the General time reversible model (Tavaré 1986) with an 

invariable four gamma-distributed substitution rate categories to correct for among 

site rate variation (GTR+G+I); the analysis was stopped at an average standard 

deviation of split frequencies of 0.004086. The first 25% of sampled trees were 

discarded as burn-in before calculating posterior probabilities. The runs were 

evaluated with Tracer v1.6.0 and the final tree visualized and edited with FigTree 

v1.4.2. 

 



 79 

 

 
   Fig. 1 Location of the archaeological site of Pompeii (A), detail of the some 
biofilms on the fresco of a wall (Marco Castricio House), macroscopic details (B) 
and microscopic view (C) 

 

 

Accelerated colonization 

A 20μl aliquot of a liquid culture of a O. subterranea in exponential growth phase 

(equivalent to 0,075 mg dry weight biomass), was inoculated with a sterile pipette on 

the middle of the upper surface of previously autoclaved  blocks of tuff, porphyry,  

brick, limestone and glass paste.  

A total of 25 blocks were inoculated for the primary bioreceptivity study. Five blocks 

of each material were observed weekly and growth rate of O. subterranea was 

followed by image analysis; the experiments lasted 12 weeks. 

 The experiments were conducted in sealed glass chambers filled for one third of their 

volume with sterilized distilled water to produce an environment with a relative air 

humidity close to 100%. A perforated ceramic grille was placed in each chamber at 

about 5 cm from the level of the water, and the inoculated blocks were placed on 

these grilles. The blocks were put in a climatic chamber at 20±2 °C, laterally 
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illuminated by growth light Osram white fluorescent lights placed sideways, with a 

16:8 h light dark cycle, at an irradiance of 60 μmol  photons  /m2/s. The irradiance was 

measured with a LI-COR Biosciences radiation (data logger LI-1400, quantum sensor 

LI-190).  

 

Image analysis 

Digital image analysis was applied to quantify the microbial growth on the blocks 

after the incubation time. The samples were taken out of the cell chamber and placed 

on filter paper to remove excess water. The photographic recording of each lithotype 

block was performed in triplicate with a digital camera (Nikon D5100 with Nikkor 

50mm objective). The conventional RGB color images obtained with the digital 

camera were used to quantify the colonization area on each lithic sample. The 

program Trainable Weka Segmentation (Arganda-Carreras et al. 2017; Vyas et al. 

2016), a plugin of open source image processing package Fiji (Schindelin et al. 2012; 

and also http://www.fiji.sc), was used to evaluate the colonized areas of each 

photograph were measured. Then, the empty and colonized areas on each tessera 

were identified by means of the shape and color, respectively. 

 

CLSM Observations 

At the end of the experiments (12th week) each block was also observed with a 

Confocal Laser Scanner Microscope (CLSM) Zeiss LSM 700 (software Zen 2011) by 

capturing images at 10x in order to distinguish the three dimensional structure of the 

microbial biofilms. The autofluorescence of phototrophs and EPS were recorded in 

the two channels simultaneously; red channel for pigment autofluorescence 

(chlorophyll a and phycobilins), with an excitation beams at 543 and 633 nm and 

emission at 590-800 nm (red channel). The acid polysaccharides of the 

extrapolymeric matrix (EPS) were detected using the concavalina-A with the Alexa 

488, at an excitation beams at 488 nm and emission at 553-636 nm (green channel). 

The images from stacks were captured at 5-6 µm intervals. The substratum area of the 

image stack was 1024 x 1024 pixels. The number of images in each stack varied 

according to the thickness of the biofilm. 

The open source image processing package Fiji (http://www.fiji.sc) was used to 

evaluate the area of all stacked CLSM images, and to obtain 2D Maximum Intensity 

Proiections (MIPs). The images have been previously converted to 8-bit and then 
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resampled by using the tool Threshold (Baveye 2002; Lepanto et al. 2014; Kuehn et 

al. 1998). The stacked images were then analyzed with 3D Manager (Ollion et al. 

2013) and Comstat2 (Heydorn et al. 2000) for the characteristic three-dimensional 

biofilm. Biofilm samples that showed better growth were subjected to further image 

analysis to characterize algal filament networks. To estimate the local orientation (Liu  

1991) of the algae filaments, we used the ImageJ plugin OrientationJ created by 

Daniel Sage (http://bigwww.epfl.ch/demo/orientation/), following their respective 

instructions. To obtain the distribution of fiber diameters we used the plugin 

DiameterJ (Hotaling et al. 2015). In addition, the plugin Fractal Dimension, applying 

a box-counting algorithm, evaluated the fractal dimensions of each organism pattern 

(www.bonej.org/fractal). 

 

Results 

Petrographic data, Roughness and Porosity analysis 

The lithological characteristics of brick, limestone, glass and Neapolitan yellow tuff 

used in this work have already been described in Langella et al. 2000; Marasco et al. 

2016; Verità 2014; De Bonis et al. 2013, respectively. The chemical composition of 

porphyry consisted of oxides of aluminum, titanium, iron, calcium, magnesium, 

potassium, sodium and most of silicon oxides (Martelli 1930; Camera di Commercio 

IAA di Trento 2008). The mineralogical components of glass blocks were: quartz, 

sanidino, plagioclase, subordinately biotite, redox, and pasta glass (Stern 2008; 

Campanella et al. 2007). For each lithotype, mean density, water absorption 

coefficient (WAC), roughness and porosity are reported in Table 1.  

 
Table 1 Density, water absorption,  roughness and porosity of different materials  on which the 

microbial strains grew 

Lithic sample Mean density 
(g cm-3) 

Water absorption 
coefficient (WAC) 

g dm-2 min-1/2 
Ra Rq Rz Rt Porosity 

(%) 

Brick 2.04 29.81-5 2.44 3.33 16.70 27.6 51.80 
Porphyry 2.55 3.55-5 6.69 8.2 33.47 51.95 45.90 
Tufa 1.46 49.28-5 17.63 21.4 77.99 97.56 56.63 
Glass 3.41 1.17-5 1.13 1.35 5.19 7.05 48.23 
Limestone 2.61 2.13-5 2.97 3.70 14.14 23.89 33.39 

 

The average density of lithotypes used in this experiment is increasing according to 

the order: tuff, brick, porphyry, limestone and glass. The same order of materials, but 
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an opposite ranking was also found as far as concerns WAC. The characteristics of 

the surfaces of the different lithotypes can be derived from porosity and roughness 

(Table 1);  Figure 1 shows the cumulative intrusion (mL/g) of mercury relative to the 

pores diameter (nm) of the different materials. Both indicators concurr to indicate a 

high irregularity of yellow tuff, followed by brick. Glass is the material with the 

lowest pore sizes (Fig. 2) and surface roughness (Table 1). 

 

 
Fig. 2 Cumulative intrusion of Hg in relation to the pore size of the selected five 

substrata. brick (- - -), porphyry (� � �), glass (� � �), tuff (── black line), limestone 
(── gray line). 

 

 

Strain identification 

Molecular analysis attributed the two strains isolated form a fresco of the  House  of 

Marco  Castricio  (archeological site of Pompeii, Italy) to the species O. subterranea, 

with a 99% similarity score on BLAST (https://blast.ncbi.nlm.nih.gov). Bayesian 

inference also confirmed the relationships among the extant Oculatella species, 

providing a robust clade for the species O. subterranea that cluster with a high 

posterior probability support (Fig. 3). 
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Fig. 3 Phylogenetic tree of Oculatella species. The identities of strains correspond to those given in 
the databases and accession numbers are given in parentheses after the taxonomic assignment. 
The phylogram was obtained from partial sequences of 16S rDNA. Posterior probabilities from 
Bayesian analysis by numbers on branches 

 

 

Accelerated colonization 

O. subterranea grew on all substrates, but the rate of colonization depended on the 

physical features of the block surfaces. In our the experimental conditions, growth 

was no more recorded on glass and limestone from 7th week to the end of the 

experiment (Fig. 5); on the contrary, larger biofilms consisting of many layers were 

found on brick, yellow tuff, and, to a minor extent, on porphyry. Brick was the 

material on which the growth of O. subterranea was faster: in the second week the 

surface coverage was already 48.18%, and at the end of the experiment the biofilm 

had reached 100% (Fig. 4, 5). The growth of the cyanobacterium on the yellow tuff 

also produced a final surface coverage of 100%, although with a slower rate of 

colonization. The growth of O. subterranea on porphyry showed intermediate 
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characters between brick and tuff on one side, and limestone and glass on the other, 

with a final coverage of 36.27% of the lithic surface (Fig. 5).  

 

 

Fig. 4 Example of colonization on a brick block by O. subterranean; each 
photograph corresponds to a temporal progression (1 week) of biofilm for the first 
five weeks (A-E); in F the surface overlay at end of the experiment (12th week)  

 

 
Fig. 5 Evolution of surface colonization (%) of O. subterranea on the five 

different substrata. Brick (──),  glass  (•  •  •),  limestone  (- - -),  porphyry  (∙  - ∙  -), 
tufa (─  ─  ─) 

  

 

In order to obtain a quantitative estimate of biofilm structure, bio-volume, maximum 

thickness, substratum coverage and roughness parameters were extracted from the 

confocal stack images (Table 2). Despite the differences in geolithological properties 

of the six chosen materials, in all of them O. subterranea filaments generated a 

reticulated mat, whose biomass, thickness, air-exposed roughness surface and other 

structural elements exhibited different values. 
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Table 2 Analysis of various architectural parameters of O. subterranea biofilm 

Lithotype Brick Glass Limestone Porphyry Tuff 

Substratum 
coverage photo 
(%) 

100 ± 0.25 0 0 36.27 ± 2.43 100 ± 0.54 

Substratum 
coverage MIP 
(%) 

100 ± 1.16 0.81 ± 0.3 0.88 ± 0.51 30.82 ± 5.62 100 ± 1.94 

Biomass (µm3/ 
µm2) 30.17 ± 3.23 0.49 ± 0.22 0.58 ± 0.31 3.673 ± 0.92 12.95 ± 3.52 

Roughness 
coefficient (Ra) 28.78 ± 2.71 1.72 ± 0.84 2.45 ± 0.53 31.74 ± 2.18 17.42 ± 5.82 

Mean thickness 
(µm) 21.18 ± 1.27 2.27 ± 0.28 1.67 ± 0.41 2.78 ± 0.74 16.27 ± 2.65 

Max thickness 
(µm) 35.94 3.83 2.72 6.58 46.27 

 

 

As expected, the O. subterranea biomass on brick and tuff was larger and thicker than 

those on the other materials; moreover the roughness of the biofilm surface on the 

above mentioned materials showed high values, and produced a visual patchy 

appearance, dictated from the arrangement of O. subterranea filaments on the surface 

of substrates (Fig. 6).  

If we take into consideration the three materials that showed a higher bioreceptivity to 

the cyanobacterium, the vertical profile of O. subterranea mats starting from the 

surface of the blocks showed an area/perimeter ratio that increased with increasing 

height, then decreasing in the top layers (Fig. 7). This trend was found on brick, 

yellow tuff and porphyry, even though the values of the area/perimeter ratio found in 

biofilm growing on brick exceeded by at least one order of magnitude those typically 

measured in yellow tuff, and porphyry. 
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Fig. 6 Superficial growth of the O. subterranea biofilm on brick (A), porphyry (C) 

and tuff (E); the 3D reconstruction of the z-stacks (B,D,F) with one channel 
(autofluorescence red) 

 
 

    
Fig.   7  Vertical  profiles  of  the  area/perimeter   ratio  of  O.  subterranean  biofilm  grown 

on:  brick  (black   ━━),  porphyry  (light  grey  ━━), tuff  (dark  grey  ━━)  
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The net-like structure of each biofilm was analyzed through the determination of 

filament orientation, diameter, mean length, number of intersections, number and 

dimensions of voids, determined with different plug-ins on all the available Z-stacks 

(Table 3). We assumed that algal filaments were mainly located in the 

circumferential–longitudinal plane, which allowed us to flatten the 3D data to 2D  

(Hotaling   et   al.   2015).  O.   subterranea   grows   on   the   blocks   by   building   a   porous  

structure  made  by  single  filaments intermingled with bundled filaments, that contour 

around void spaces, whose number and maximum area progressively increases from 

brick, to yellow tuff and porphyry. Filament length and intersection data concur to 

indicate that on brick the spatial arrangement of O. subterranea is more regular, with 

a prevalence of shorter filaments that can form large bundles, with a parallel course 

and a relatively low rate of overlapping, whereas yellow tuff and porphyry produce a 

more reticulated pattern of surface colonization. Finally, as far as concerns spatial  

orientation,   the   predominantly   axial   orientation   of  O.   subterranea   filaments   on   the  

blocks  fluctuates  from  -11.46°  to  +18.84°  (Fig.  6).  The  network  of  filaments  produced  

on  porphyry  did  not  show  a  preferred  horizontal  orientation,  in  contrast  to  the  biofilm  

grown  on  brick  and  yellow  tuff,  that  had  a  more  pronounced  character  of  orientation  

(brick:  10.41°;;  yellow  tuff:  18.84°). 

 

 
Table 6 Analysis of various parameters of filament network of O. 
subterranea biofilm 

 Brick Porphyry Tufa 
Fiber length (µm) 30898.18 42745.94 59075.00 

Mean pore area (µm2) 
284.69 ± 
101.53 

150.62 ± 
41.43 

451.01 ± 
212.76 

Min. pore area (µm2) 33.05 18.26 36.98 
Max. pore area (µm2) 410.05 4558.07 13036.24 
Number of pores 512 787 673 
n° of intersection 3967 7171 7182 
Intersection density 
(ints / µm2) 0.004 0.015 0.007 

Char. length (µm) 
(lungh tot fibr / n° fibr 
sovrapp) 

2.967 9.92 15.29 
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Discussion 
 

The susceptibility of stone and mineral-based material to bioweathering can be 

influenced by chemical and mineralogical composition, physical form, and geological 

origin (Hutchens 2009; Turick and Berry 2016).  Rougher  textured  surfaces  also  tend  

to   collect   more   algae,   presenting   empty   spaces   to   accommodate   potential   new  

organisms: Characklis et al. (1990) noted that the extent of microorganism 

colonization appeared to increase as the surface roughness increased. Recently, 

Vázquez-Nion et al. (2018) reported that open porosity and capillary water plays a 

pivotal role in the development of biofilms on lithic materials, whereas a minor 

contribution was provided by chemical properties of the stones. All these findings 

have been confirmed also in our experiments: O. subterranea formed larger and 

multilayered biofilm on substrates with high WAC, roughness and porosity, namely 

brick and yellow tuff. However, our results suggest also that the 3D structure of O. 

subterranea biofilm during the early stages of colonization is scarcely affected by 

physical and geochemical features of substrates: in fact, the porous architecture of O. 

subterranea biofilm was preserved, independently of the materials. On the other hand, 

an increasing heterogeneity of the reticulate mat was found among biofilms developed 

on brick, yellow tuff and porphyry, even though it is very difficult to establish when 

two biofilms are different. This distinction should be based on an arbitrary definition 

of a significant difference (Beyenala et al. 2004); however our data indicate that in 

larger biofilms growing on brick porosity decreases and cell bundles are larger. This 

pattern should reduce the average diffusion distance that a nutrient needs to travel to 

get filaments (Yang et al. 2000) ensuring that each cell can receive the required 

feeding.  

The genus Oculatella is characterized by a reduced production of EPS (Zammit et al, 

2012), and also in the course of our experiments we observed only traces of external 

polysaccharides, thus suggesting that the amount of EPS produced are more 

dependent on the intrinsic characteristics of the organisms rather than on the physical 

and chemical features of the substratum. The spatial organization of mature O. 

subterranea biofilm on different substrates is similar, a spindle-shaped distribution of 

filaments was observed on each surface, and is probably consistent with a response to 

light availability. Filaments initially grew horizontally, but after one week orient 

themselves normal to the surface of the mat, as also observed in the case of lab tests 



 89 

on stromatolites spatial geometry (Petrof et al. 2010).  This configuration probably 

permits a better exposition to light irradiance, whereas the numerous voids could act 

air trappers, allowing an effective carbon dioxide distribution along the filament 

layers. 

Cyanobacteria are resistant to desiccation and high solar irradiation (Garcia-Pichel et 

al. 1993; Roy et al. 1997), and  their growth on stone surfaces is very diffused  in the 

tropical and sub-tropical countries (Gaylarde and Gaylarde 2005; Gaylarde et al. 

2012). At Mediterranean latitudes O. subterranea is largely diffused in hypogean 

habitats, but our findings reveals that can grow also on different substrata under the 

daylight, although not directly exposed to sun irradiation. In these situations,  O. 

subterranea can give a major contribution to the first colonization of different hard 

substrata, and its net-like structure may facilitate the following establishment of other 

microorganisms. Recently, new strategies of control as nanographene oxides (Bruno 

et al. 2014), and new LED illumination systems (Bruno and Valle, 2017) gave 

promising results in the control of the growth of several cyanobacteria, including O. 

subterranea. In our opinion, a detailed knowledge of the three dimensional 

arrangement during the first stages of colonization can lead to the development of 

strategies specifically targeted to control the proliferation of this organism, improving 

the safeguard of cultural heritage.  
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CHAPTER 9 

GENERAL CONCLUSIONS  
 

The study of subaerial biofilms may open new insights for a wide range of 

applications. Cell-adhesion to the substratum in different environments, fast 

evaluation of biofilm composition in solid-matrix bioreactors, identification of urban 

pollution bio-indicators, design of new materials and antifouling coatings are all 

research field which can be implemented with a deeper knowledge of subaerial 

biofilms structure and ecology. 

A further remarkable intent is the preservation of cultural heritage: it represents a 

unique and non-renewable resource to the societal and economic well-being of 

communities. Historical buildings, archaeological sites, stone monuments, wall 

paintings and frescoes are all subjected to the deterioration caused by living 

organisms, especially microbes; depending on several factors as light exposure, 

humidity and human intervention, a variety of eukaryotic and prokaryotic 

heterotrophs and autotrophs can thrive at rock-atmosphere interface.  

It is well known that some microrganisms are pioneers in colonization of virgin 

substrates; however it is still not clear if their ability is related to specific metabolic 

and morphologic features or if their attachment and proliferation on substrates is 

pushed by favorable environmental conditions. A huge step in this direction has been 

provided by in vitro colonization experiments, which made possible to selectively 

study the ability of microrganisms to attach and colonize as well as the refractoriness 

of the surface subjected to colonization. Till recent times it was commonly accepted 

that Cyanobacteria were the only microrganisms able to successfully colonize stone 

surface, due to their poor metabolic exigencies and the ability to grow also in dim 

light. However, nowadays there is strong evidence that also heterotrophic eukaryotes 

can act as first colonizer, enhancing the formation of mixed consortia.  

In our in vitro colonization experiments, the pioneer attitude of the fungi Fusarium 

solani and Alternaria tenuissima as well as the cyanobaterium Oculatella 

subterranea, was tested and monitored for a short-term period. Molds were isolated 

from the Villa of Poppea in the archaeological site of Oplontis while the 

cyanobacterium was isolated from the House of Marco Castricio in the archaeological 
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park of Pompeii. Through the use of many variants of microscopy included CLSM 

and computer image analysis it has been possible to depict fine structure and 

architecture of the studied microrganisms, in a controlled environment that 

reproduced realistically the conditions of the respective sampling points. Besides, 

additional investigations were performed on characteristic features of these 

microrganisms, as the crypto-endolithic growth of the fungus A. tenuissima or the 

reorientation of filaments toward light source of O. subterranean. These 

achievements can elucidate the treatment and the restoration strategies of weathered 

monuments, in which these organisms and others related are likely to occur. 

In fact, beside the standard operation of samplings and identification accomplished 

for several archeological sites in Campania, also a deep documentation of case studies 

and reviews was collected, in order to list the organisms that occur on weathered 

monuments in European countries. From this list it has been found that there is no 

phylogenetic conditioning in the colonization of stones, id est many and different 

Phyla and Ordines of eukaryotic algae and fungi and prokaryotes are identified as 

living on stone substrata. This finding encouraged the construction of nucleotide 

alignments for a selection of barcoding markers, in order to design group-specific 

oligos, specifically aimed to the biofilm characterization.  

New investigation tools for the investigation of the biofilms are indeed required, that 

can satisfy the needs of small amount of sampling material to be analyzed in non-

invasive and highly reproducible assay.  To achieve this purpose in the present work it 

has been discussed the employment of the designed group-specific primers to be used 

in qPCR reaction for the quantification of biofilm components, as well as group-

specific fluorescent internal probes. Quantitative PCR is extremely sensitive and 

reproducible, and the proposed oligos were projected in a way that is fully compatible 

with a multiplex reaction assay to obtain relative levels of abundance in biofilms for 

each selected group of microrganisms. Moreover, probes design can be targeted also 

for specific genera or species, increasing the specificity of the assay to particular 

situations.  

A further proposed tool is the characterization of microbial diversity through the use 

of flow cytometry. Although this technique has been widely used in ecology for the 

identification of marine communities, there are only shy attempts for its use with 

microbial mats of subaerial biofilms and aeroterrestrial algae. In the present work, 

biofilms sampled from the Stufe of Solfatara (Pozzuoli, Italy), a harsh volcanic 
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environment characterized by the presence of few species sharing common characters 

of tolerance to acids and high temperature. Phototrophic components were analyzed 

with flow cytometry, which allowed the sorting of the two Genera Cyanidium and 

Galdieria, unicellular Rhodophyta whose morphological identification is obtained by 

poor and overlapping diacritic characters. Confirmation of cytometry results and 

precise assessment of the species was later obtained with the use of novel-designed 

species-specific primers targeting plastidial gene rbcL, and here developed for the 

identification of Cyanidiales. 

Taken together, the findings reported in the present work represent an encouraging 

advance in the study of subaerial biofilms with a number of techniques that rely on 

small amounts of samples and improve the sensitivity of characterization of biofilms. 

Moreover, the use of image analysis applied to the study of fine architecture of 

microrganisms has been coupled with the setting of reproducible in vitro colonization 

experiments, defining behavior and features of microscopical growth of 

microrganisms on stone substrates. 
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