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Chapter I 

 

1. General introduction and research objectives 

  

1.1 . Species distribution models and ecological niche theory  

 

The knowledge of a species distribution has always been essential to understand species’ ecology and its 

conservation needs (Franklin, 2010).  In the last decades, predictive modelling of species distribution has 

become a widely used technique and an increasingly important tool in many fields of natural and biological 

sciences to address various issues in ecology, biogeography, evolution, conservation biology and climate 

change research (Guisan & Thuiller, 2005; Elith & Leathwick, 2009; Russo et al., 2016). The quantification 

of species-environment relationships represented the core of predictive geographical modelling in ecology 

(Guisan & Zimmermann, 2000).  

“Species distribution models” (SDMs), “ecological niche models” (ENMs) or “bioclimatic envelope models” 

are different names that have been used to describe similar mechanistic or correlative models which infer the 

ecological requirements of the species from field observations on the basis of statistically or theoretically 

derived response surfaces (Peterson, 2006; Kearney & Porter, 2009;  Sillero, 2011).  

SDMs is the term most frequently used, especially for correlative models (e.g. Austin, 2002; Guisan & 

Thuiller, 2005; Pearson, 2007; Lobo et al., 2010) which “characterize the multivariate environmental space 

delimiting species’ distributions, and project this subset of environmental space back onto geography” (Raes, 

2012). Many researchers consider the definitions SDMs, ENMs or bioclimatic envelope models mainly as 

synonyms. However, it is worth to note that some others researchers pointed on the fact that these terms 

(particularly SDM and ENM) are not fully interchangeable and their differences are not merely semantic 

(Peterson, 2006; Peterson & Soberón, 2012) but depend on the choice of the set of variables used to predict 

species’ niche and distribution as well as to the focus of the study (i.e. niche quantification versus spatial 

predictions). As proposed by Araújo & Peterson (2012), bioclimatic envelope models estimate the 

“multivariate space of climatic variables best matching the observed species’ distribution”.  Raes (2012) 

interpreted ENMs as restricting the bioclimatic envelope to variables that are meaningful to the ecological 

niche of the species, without inferring any geographical projection. ENMs “link the envelope to elements of 

ecological niche theory” instead of simply estimating the bioclimatic envelope. The niche concept has 

become a central theme in species distribution modelling (Kearney, 2006; Soberon, 2007; Pearman et al., 

2008) and has been used and defined in many different ways (Chase & Leibold, 2003).  

The Grinnellian theory embodies the idea of the niche as a subdivision of the habitat containing the 

environmental conditions that enable individuals of a species to survive and reproduce, based on broad-scale 

variables (climate) that are not affected by species density (Hirzel & Le Lay, 2008; Wiens et al., 2009).  
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Figure1 Major ecological processes captured by a species distribution model (SDM). Modified picture by 

Kearney & Porter (2009). 

 

 

In the context of SDMs it is considered in the Hutchinsonian manner. Hutchinson (1957) defined the species 

“fundamental niche” as the n-dimensional volume in the environmental space where a species can maintain a 

viable population and persist along time. When a species does not occupy its entire fundamental niche due to 

niche exclusion by competition, Hutchinson used the term “realized niche”. However, the species can be 

absent from suitable habitats for historical reasons or due to limitations in its ability to disperse to those 

habitats (Pulliam, 2000; Holt, 2003). Here, we prefer to use the term SDM because this unifies the niche 

concept with its geographical projection (Guisan & Zimmermann, 2000; Kearney, 2006; Soberón & 

Nakamura, 2009; Wiens et al., 2009; Sillero, 2011). In fact, the development of a SDM can be conceived of 

as first constructing an ecological niche model, and then projecting it onto space to infer a species potential 

distribution (Raes, 2012). The aim of SDMs is to predict the probability of occurrence of a given taxon, 

given a set of environmental variables (climate, topography, land cover, etc.) that are assumed to be related 

to the distribution and habitat preferences of the taxon under study. A habitat suitability map (HSM) of a 

given species is then extrapolated on the basis of the conditions observed in known occurrence sites (Elith & 

Leathwick, 2009). 

SDMs have been described as estimating the fundamental (potential) niche, realized (actual) niche, the 

multivariate species niche (Rotenberry et al., 2006), or, when conditioned only on climate variables, the 

“climatic niche” (Franklin, 2010). It should be noted, however, that any defined ecological niche space 

derived from the observed distribution of species in geographical space is, at best a realized niche. The full 
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extent of a species’ fundamental niche cannot be revealed by the environmental conditions at observed 

collection localities. Estimation of the fundamental niche can only be achieved by experimental studies and 

physiological models (Colwell & Rangel, 2009; Carretero & Sillero, 2016). This limitation should be kept in 

mind while interpreting any correlative model derived from observed collection localities and the abiotic 

conditions at those localities. 

Ecological niche models are developed very differently for correlative and mechanistic SDMs (Dormann et 

al., 2012). In a correlative approach, we start from species occurrence data (geo-referenced locality records 

for a species). A presence (or high abundance) record suggests that, at some stage, individuals of that species 

were able to develop, survive to the adult stage and successfully reproduce in that location (Pulliam, 2000). 

Spatial conditions also geo-referenced to that site, such as climate or soil, are then inferred to be within that 

species tolerance range (Austin, 2002). This alters model parameters or coefficients such that other sites with 

similar conditions are weighted in favour of a prediction of presence, ultimately defining a multivariate space 

of suitable environmental conditions. Many of the ecological processes and interactions that lead to 

successful persistence of the species at that site are implicitly captured by statistical analyses (Kearney & 

Porter, 2009; Figure 1). In a mechanistic (or process-based) approach, functional trait data are linked to GIS 

(Geographic Information System) data through a model that explicitly captures the key processes by which 

traits and habitat features interact to determine the species’ environment (Dormann et al., 2012).  If a 

species’ niche is to be modelled mechanistically to make inference on its potential range, the organism must 

not enter the model as a point on a map but rather as a set of behavioural, morphological and physiological 

traits. Both mechanistic and correlative modelling approach may embody advantages as well as critical 

issues (Kearney & Porter, 2009; Dormann et al., 2012) to the prediction of species distribution.  

In this work we will focus on correlative models which have obtained major success in the development of 

SDMs because they require little knowledge of the mechanistic links between organisms and their 

environments, which often represent an advantage for rare and poorly studied species as well as for alien 

species, also characterised by scarce information on their distribution in the introduction range and poorly 

known adaptation to environments outside the native range.   

As we will discuss afterwards, correlative models provide numerous algorithms and variable selection 

procedures (e.g. regressive or machine-learning based approaches) which can be more easily tailored to fit 

available data. They may exploit a wide range of proxy spatial data types and may use datasets at a great 

variety of scales, capturing processes at different scales within a single model. Furthermore, correlative 

models provide a simple output indirectly representing many different processes and corresponding to a 

dimensionless habitat suitability index or estimates of probability of occurrence or abundance.  

Preparation of environmental and occurrence data usually take much longer than the actual modelling 

procedure itself. This fast deployment time is probably another advantage of correlative modelling approach. 

Mechanistic models commonly take a long time to develop, as they often simulate nonlinear dynamics and 

hence have to deal with issues such as numerical diffusion and time stepping (Dormann et al., 2012). In 

many circumstances, however, it is desirable to explicitly incorporate potentially range-limiting processes. 
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For instance, a mechanistic SDM may provide deep understanding of the constraints limiting the distribution 

and abundance, and may be more robust in the context of environmental and climate change (Davis et al., 

1998; Dormann, 2007).  

 

 

1.2. Framework for modelling species distribution  

 

The following elements are required for modelling and predicting species distributions (Guisan & 

Zimmermann, 2000; Franklin, 2010): 

 

●   A theoretical or conceptual model of the abiotic and biotic factors controlling species distributions in 

space and time, and at different scales, and the expected form of the response functions; 

●  Data on species occurrence (location) in geographical space (a measure of presence, habitat use, 

abundance, or some other property) or expert knowledge about habitat requirements or preferences; 

●   Digital maps of environmental variables representing those factors (or their surrogates) determining 

habitat quality, or correlated with it. These are generally derived from remote sensing, from spatial models of 

environmental processes, or from some other source, and stored in a GIS; 

●     A model linking habitat requirements or habitat use (species occurrence) to the environmental variables;  

●     Data and criteria to validate the predictions and a way to interpret error or uncertainty in the analysis. 

 

 

1.2.1. Conceptual model formulation 

 

The theoretical framework of SDMs is based on the concept of ecological niche (see previous paragraph) and 

may be split into many sub˗ phases. At the very start of the study, researchers must define a conceptual 

model of the system to be simulated based on the existing knowledge on species ecologyand they must 

clearly define the objectives as well as the multiple hypotheses of the work (Guisan & Theurillat, 2000).  

A central and recurrent problem in SDM building is identifying the appropriate scale for modelling (Wiens, 

2002). Scale is usually best expressed independently as resolution (cell size) and extent of the study area, 

because modelling a large area does not necessarily imply considering a coarse resolution (Guisan & 

Thuiller, 2005). Understanding the theory and processes driving the observed distribution patterns is very 

essential to avoid a mismatch between the scale used for modelling and the one at which key processes 

occur. For instance, interspecific competition can only be detected at a resolution where organisms interact 

and compete for the same resources (Huston, 2002). Finer resolution usually provides better predictions for 

fixed or very locally mobile organisms, while for highly mobile species a larger cell size can accountfor 

larger portions of the landscape that need to be included in order to consider all habitat types likely to be 

occupied by the species (Jaberg & Guisan, 2001). 
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Another possible mismatch can occur between the “resolution” at which species data were sampled (e.g. plot 

size in field surveys, grid size in atlas surveys) and the one at which environmental predictors are available.  

Optimally, both should be the same, but such coherence is not always possible. 

Choosing the geographic extent for the study area is a critical step in SDM building and an inappropriate 

selection may yield misleading results (Guisan & Thuiller, 2005). Van Horn (2002) illustrates how an overly 

constrained extent can lead to an incorrect interpretation if only part of an important environmental gradient 

is sampled, in particular when using political instead of physical boundaries. This restriction of the study 

area extent may lead to partial SDMs, which do not include the full environmental variation under which the 

species is known to occur (Raes, 2012). A multiscale hierarchical modelling framework often may provide 

the solution to this spatial scaling issue. For instance, Gallien et al. (2012) developed a hierarchical approach 

to improve regional SDM performance while simultaneously accounting for both global and regional 

information.   

The final phases of the theoretical models consist of assessing available and missing data, identifying an 

appropriate sampling strategy for collecting new data (Hirzel & Guisan, 2002) or for complementing existing 

sets, as well as to  analysing the relevance of environmental predictors for the focal species (Thuiller et al., 

2004). 

 

 

1.2.2. Occurrence data 

 

Species data can be simple presence, presence–absence, or abundance observations based on random or 

stratified field sampling, or based on observations obtained opportunistically, such as those from natural 

history collections (Graham et al., 2004). Often, the only data available about occurrence of a species are 

presence records. Methods for studying species distributions can use these data by analysing information 

about the environmental conditions at those presence locations. In contrast, data sets that also include species 

absence records are informative about sampling effort, hence their inference is much more robust to biases in 

sampling and they can estimate species occurrence probabilities.  

An additional complication is the fact that species are often detected imperfectly, even if sessile (Chen et al., 

2013). Two common and important types of errors can arise in species occurrence data: false negatives and 

false positives. The first ones are the most prevalent in ecological surveys and occur when species are missed 

in searches of occupied sites. The type and strength of the bias induced depends on how detectable a species 

is (Barve et al., 2011; Guillera-Arroita, 2017). False-positive errors are likely to occur in situations where it 

is difficult to distinguish between individual species observed, such as species with similar calls (e.g. grey 

tree frogs in the Eastern US), or morphology (cryptic species) (Ruiz-Gutierrez et al., 2016). 

There are also a number of serious potential traps for the data accuracy. First, the occurrence localities may 

be biased. For example, they are often highly correlated with the nearby presence of roads, rivers or other 

access pathways (Reddy & D´Avalos, 2003). The location of occurrence sites may also exhibit spatial auto-
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correlation (e.g., if a researcher collects specimens from several nearby localities in a restricted area). 

Similarly, sampling intensity and sampling methods often vary widely across the study area (Anderson, 

2003). In addition, data accuracy may be affected by transcription errors or lack of sufficient geographic 

details (especially in older records). Frequently, the number of occurrence sites may be too low to estimate 

the parameters of the model reliably (Stockwell & Peterson, 2002). Many studies highlighted the negative 

effects of small sample size in SDMs performance (Loiselle et al., 2008; Wisz et al., 2008; Mateo et al., 

2010; Tessarolo et al. 2014; Proosdij et al., 2016). Model performance is known to rapidly decrease for 

sample sizes smaller than 20 (Stockwell & Peterson, 2002) or 15 (Papeş & Gaubert, 2007), and is 

dramatically poor for samples sizes smaller than 5 records (Pearson et al., 2007). Contrary to this, some 

modelling techniques, like MaxEnt algorithm, lead to high model accuracy using small samples (Hernandez 

et al., 2006).  

 

 

1.2.3. Environmental variables 

 

The formulation of conceptual models is based on the ecological knowledge of the species and, as a 

consequence, leads to the selection of a set of conceptually (e.g. physiologically) meaningful explanatory 

variables for the species predictive model (Guisan & Zimmermann, 2000). Nowadays environmental data are 

easily obtained from databases found on the Internet or from institutional sources in the form of maps or, 

more precisely, as digital spatial data (Romero et al., 2016; Petitpierre et al., 2017).  

Environmental predictors can exert direct or indirect effects on species, arranged along a gradient from 

proximal to distal predictors (Austin, 2002), and are optimally chosen to reflect the three main types of 

influences on the species (modified from Guisan & Zimmermann, 2000; Huston, 2002): limiting factors, 

defined as factors controlling species eco-physiology (e.g. temperature, water, soil composition); 

disturbances, defined as all types of perturbations affecting environmental systems (natural or human-

induced); resources, defined as all compounds that can be assimilated by organisms (e.g. energy and water). 

These relationships between species and their overall environment can cause different spatial patterns to be 

observed at different scales, often in a hierarchical manner (Pearson et al., 2004). 

Errors may be present in the variables, perhaps due to errors in data manipulation, or inaccuracies in the 

climatic models used to generate climatic variables, or interpolation of lower-resolution data.   

It is important to consider three particular aspects when building a set of predictors to project SDMs in time 

or space: proximality, multicollinearity and over-parameterization. Proximality is the use of limiting factors 

in order to bring the model closer to the real requirements of the species, thus allowing more robust 

predictions (Austin, 2007; Kearney & Porter, 2009). However, without an priori knowledge on the ecology 

and physiology of species, the choice of the most proximal variables is not obvious as they may be 

confounded with other, highly correlated variables. Multicollinearity (i.e. when two or more variables are 

correlated) can significantly decrease the accuracy of SDM predictions if the correlation matrices of the 
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variables differ between the calibration and projection ranges (Dormann et al., 2008; Braunisch et al., 2013). 

A common rule of thumb is to avoid correlations between variables where Pearson’s correlation |r| is higher 

than a fixed threshold (e.g.>0.7; Dormann et al., 2013). When several variables are correlated, it should be 

chosen the variable most proximal to the species’ ecology (Austin, 2007; Austin & Van Niel, 2011). Over-

parameterization can be the result of fitting a model with too many predictors relative to the number of 

available observations. It may result in modelling spurious relationships between biological and 

environmental variables without any ecological and causal relationship, thus potentially reducing 

transferability (Warren & Seifert, 2011). A common solution is the empirical rule of ‘1 in 10’ (Harrell et al., 

1984), i.e. the use of a maximum of one predictor for ten (but preferably 15– 20) species occurrence records. 

 

 

1.2.4. Methods for the development of SDMs 

 

In the past three decades, scientists have developed numerous models to generate habitat suitability maps 

based on the relationship between species occurrences and associated environmental variables. Each 

occurrence locality is simply a georeferenced data denoting a site where the species has been observed, while 

the environmental variables in GIS format all pertain to the same geographic area, the study area, which has 

been partitioned into a grid of cells (Phillips et al., 2006).  

A major difference between kinds of species distribution data is related to the quality and amount (Li & 

Wang, 2013). On this account, modelling techniques can be classified in two main groups: 

“presence/absence” and “presence-only” methods (Brotons et al., 2004; Barbet-Massin et al., 2012). The 

first group of methods includes generalised linear models (GLM), generalised additive models (GAM), 

generalized boosting models (GBM), multivariate adaptive regression splines (MARS), classification and 

regression tree analyses (CART), artificial neural networks (ANN) and random forest (RF).  

These methods require presence/absence data of good quality in order to generate statistical functions or 

discriminative rules that allow habitat suitability to be ranked according to distributions of presence/absence 

data of a species (Manel et al., 1999; Guisan & Zimmerman, 2000). To obtain a good data quality it is 

important to avoid any errors of identification or of georeferencing which may create a false positive record 

that would be not useful and informative (Peterson & Soberón, 2012). Presence records of a species should 

be collected in order to allow modellers to realistically capture a large part of species ecological niche 

(Lomba et al., 2010). Another consideration is that of spatial autocorrelation which may complicate niche 

modelling applications because the non–independence of occurrence points may cause problems in model 

calibration by over-emphasizing certain environmental conditions.  Obviously, the main difficulty in a 

presence/absence model is to have accurate data on absences. In fact, these data are hard to obtain, especially 

for mobile or low-density species. Moreover, in all cases of presence/absence model, sites not easily 

accessible or practicable can distort predictions (Lahoz-Monfort et al., 2013; Syfert et al., 2013; Guillera-

Arroita et al., 2016). 
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Anyway, such models are increasingly used when only presence data is available, by creating artificial 

“absence” data usually called “pseudo-absences” or “background” data (Barbet-Massin et al., 2012). 

Different strategies have been proposed to improve the generation of an appropriate pseudo-absence data 

seta and they lead to the conclusion that random selection yields the most reliable distribution models. The 

best results were also obtained by using a large number of pseudo-absences (e.g. 10,000) with presence and 

absences weighted equally (Phillips & Dudik, 2008; Barbet-Massin et al., 2012). 

The second group of methods includes BIOCLIM (SRE), DOMAIN, Ecological Niche Factor Analysis 

(ENFA); Genetic Algorithm for Rule Set Production (GARP) and Maximum Entropy method (MaxEnt). 

These methods require presence data only and allow to the generation of models where the knowledge of 

absences is inadequate or unavailable. SDM such as MaxEnt or GARP indeed require the use of background 

data or pseudo-absence data (Barbet-Massin et al., 2012) , that often are automatically generated by the 

software implementing the method.  

 

In this section, we briefly describe the characteristics of the SDM methods above listed and highlight their 

strengths and shortcomings. 

 

 Generalized linear models (GLMs) (Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989) are 

mathematical extensions of linear models based on an assumed relationship (called a link function) 

between the mean of the response variable (species presence or absence, but also abundance or 

population density) and the linear combination of the explanatory variables (Guisan et al., 2002). The 

common types of GLMs are linear regression, logistic regression and Poisson regression. The 

explanatory variables of GLMs can contain interaction terms and polynomial terms, so they are 

preferable for nonlinear yet simple relationship between species and environment variables. All model 

parameters of GLMs can be clearly interpreted with ecological meanings. Applying GLMs requires 

careful calibration: users must check the significance of each explanatory variable and remove the non-

significant variables (model selection) (Li & Wang, 2013).  A frequently-used GLM is the Gaussian 

logit model in which the logit of the predicted probability of occurrence (p) is  

 

α + β1f1(x1) + γ1f1(x1)
2
 + . . . + βnfn(xn) + γnfn(xn)

2 

 

where the fj are the environmental variables, α, βj and γj are the fitted coefficients,  xn represents each grid 

cell of the study area and the logit function is defined by logit (p) = ln (
𝑝

1−𝑝
) (Phillips et al., 2006).  

GLM, in particular logistic regression, is one of the best established statistical frameworks for SDM. 

Case studies using GLM for predicting species distributions (and related biotic variables) were 

extensively reviewed in Franklin (2010), Guisan & Zimmermann (2000) and Guisan et al. (2002).  
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 Generalized additive models (GAMs) (Hastie & Tibshirani, 1987) are non-parametric extensions of 

GLMs, thus providing more flexibility and the potential for modelling complex shapes of ecological 

response than GLMs (Yee & Mitchell, 1991; Elith et al., 2006). GAMs use data-defined smoothing 

functions to fit nonlinear species–environment relationships. The smooth functions are computed 

independently for each explanatory variable and added to build the final model. The number of 

smoothing parameters should be reasonably small to avoid overfitting. GAMs are useful when the 

relationship between species and environmental variables has a more complex form not easily fitted by 

GLMs (Li &Wang, 2013). If probability of occurrence is modeled with a GAM using a logit link 

function, the logit of the predicted probability has the form 

p = g1(f1(x1)) + . . . + gn(fn(xn)) 

where the fi are again environmental variables. The gi are smooth functions fit by the model, with the 

amount of smoothing controlled by a width parameter (Phillips et al., 2006). 

 

 Generalized boosting models (GBMs) (Friedman et al., 2000; Friedman, 2001) are designed to fit 

many simple models whose predictions are then combined to give more robust estimates of the 

relationship between species distribution and a set of environmental variables, whereas GLMs seek to fit 

the single model that best explains the relationship between species and environment (Friedman et al., 

2000; Friedman, 2001). It can compute a sequence of simple classification and/or regression trees, 

where each successive tree is built for the prediction residuals of the preceding tree. GBMs can even-

tually produce a good fit even if the specific nature of the relationships between the predictor variables 

and the dependent variable is complex (e.g. nonlinear). GBM can be understood as a method for 

developing a model in a forward stage-wise fashion, at each step adding small modifications in parts of 

the model space to fit better the data (Friedman et al., 2000). GBMs can be used for regression as well 

as classification problems, with continuous and/or categorical predictors.  

 

 Multivariate adaptive regression splines (MARS) (Friedman, 1991) are an extension of linear 

regression models that automatically model nonlinearities and interactions (Friedman, 1991; Li & 

Wang, 2013). A major assumption of linear models is that the coefficients are stable across all levels of 

the explanatory variables. In contrast, MARS allow changes in coefficients, and are suitable when it is 

suspected that the model’ coefficients have different optimal values across different levels of the 

explanatory variables. MARS are particularly powerful when there are large numbers of explanatory 

variables and low-order interaction effects (Thuiller et al., 2009). While MARS are, like GAMs, able to 

model complex relationships between response and predictor variables, they are computationally fast, 

while GAMs can be slow or even impossible to fit for very large datasets (Franklin, 2010). In contrast 
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with previous models, MARS consider interactions between variables, not globally (over the entire 

range of the predictors), but locally – between sub-regions of every basis function.  

 

 Classification and regression tree analyses (CART) (Breiman et al., 1984) consist of recursive 

partitions of the dimensional space defined by the predictors into groups that are as homogeneous as 

possible in terms of response. A classification tree is built by repeatedly splitting the data (in or case, 

species presence or absence data) into two exclusive groups, defined by a simple rule based on a single 

explanatory variable at each step (Segurado & Araújo, 2004). CART is able to uncover complex 

interactions between predictors that may be difficult or impossible to model using traditional 

multivariate techniques (Li & Wang, 2013). 

 

 Artificial neural networks (ANNs) (McCulloch & Pitts, 1943) are a machine learning approach, 

involving a network of simple processing elements (artificial neurons) that can exhibit complex global 

behavior (e.g. select a site as habitat based on numerous environmental variables), determined by the 

links between the neurons and associated functions (Li & Wang, 2013). The key feature of an ANN is 

that it contains at least one hidden layer. Each neuron in the hidden layer receives information from 

each input (predictors variables), sums the inputs, adds a constant (the bias), then transforms the result 

using a fixed function. The response variable, or “output” in neural network terminology, is a weighted 

combination of the derived features in the hidden layer. Weights are defined in an iterative way, during 

the so called "training phase" of a neural network, so that all the input data presented to the network 

generate at the network output the desired result, within a predefined accuracy threshold. ANNs can 

operate like multiple regressions when the outputs are continuous variables, or like classifications when 

the outputs are categorical. ANN usually requires long computation time, especially in the network 

training phase and it doesn’t necessarily perform better than other statistical and machine learning 

methods. 

 

 Random forest (RF) (Breiman, 2001), an extension of CART, is a classifier that consists of many 

decision trees, implementing Breiman’s CART algorithm for classification and regression (Breiman, 

2001). To classify a new object from an input vector, random forest puts the input vector down each of 

the trees in the forest. Each tree gives a classification (which is usually called the tree ‘votes’ for that 

class) and the forest chooses the classification with the most votes (over all the trees in the forest).  

RF is not sensitive to the problem of multicollinearity and runs efficiently with large databases. It may 

process thousands of input variables without variable deletion and provides estimates of what variables 

are important in the classification. RF is one of the most accurate machine-learning algorithms with 

high performance in predicting species distribution. 
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 BIOCLIM (SRE) (Busby, 1986; Nix, 1986) predicts suitable conditions in a “bioclimatic envelope”, 

consisting of a rectilinear region in environmental space representing the range (or some percentage) of 

observed presence values in each environmental dimension. Although it generally does not perform as 

good as some other modeling methods (Elith et al., 2006), particularly in the context of climate change 

(Hijmans & Graham, 2006), it is still used, among other reasons because the algorithm is easy to 

understand. It computes the similarity of a location by comparing the values of environmental variables 

at any location to a percentile distribution of the values at known locations of occurrence (’training 

sites’). The closer to the 50
th
 percentile (the median), the more suitable the location is. 

 

 DOMAIN (Carpenter et al., 1993) predicts a suitability index by computing the minimum distance in 

environmental space between environmental variables at any location and those at any of the known 

locations of occurrence (’training sites’). The Gower distance is then calculated as the mean of these 

distances over all environmental variables. The algorithm assigns to a place the distance to the closest 

known occurrence (in environmental space). 

 

 Ecological Niche Factor Analysis (ENFA) (Hirzel et al., 2002) compares the eco-geographical 

predictor distribution for a presence data set consisting of locations where the species has been detected 

with the predictor distribution of the whole area. Like Principal Component Analysis, ENFA 

summarises all predictors into a few uncorrelated factors retaining most of the information (Hirzel et al., 

2002).   

The advantage of ENFA is that it takes presence records together with environmental data for the entire 

study area, without requiring a sample of background points to be treated like absences. Nevertheless, 

ENFA tended to produce overly optimistic predictions of the extent of suitable habitat in a comparison 

with GAMs and GLMs (high commission error or low specificity) (Franklin, 2010). 

 

 The Genetic Algorithm for Rule-Set Prediction (GARP) (Stockwell & Noble, 1992; Stockwell, 

1999) uses an artificial intelligence framework called genetic algorithms. It produces a set of positive 

and negative rules that together give a binary prediction; rules are favoured in the algorithm according 

to their significance (compared with random prediction) based on a sample of background cells and 

presence cells.  

 

 MaxEnt (Phillips et al., 2006) is a machine learning model which estimates the likelihood of the 

species by finding the distribution of “maximum entropy” (i.e. closest to a multivariate uniform 

distribution) given the constraint that the expected value of each environmental variable under this 

estimated distribution matches its empirical mean. The cells of the study area represent the space on 
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which the MaxEnt probability distribution is defined (X), whereas cells with known species occurrence 

records constitute the sample points, and the features are climatic variables, elevation, soil category, 

vegetation type or other environmental variables, and functions thereof. The unknown probability 

distribution π assigns a non-negative probability π(x) to each point x, and these probabilities sum to 1. 

The approximation of π is also a probability distribution, and we denote it π*. The entropy of π* is 

defined as 

H(π*) = −Σx∈X π*(x) ln π*(x) 

where ln is the natural logarithm.  

In many comparative studies using a large number of SDM methods, MaxEnt was usually among the 

top-performing methods in terms of prediction accuracy (Elith et al., 2006). Phillips et al. (2006) 

outlined some advantages and disadvantages of MaxEnt for SDM compared to other methods. It only 

requires presence data plus environmental information for the whole study area. The results are 

amenable to interpretation of the form of the environmental response functions. MaxEnt is a generative 

approach, rather than discriminative, which makes it very robust to limited amounts of training data 

(small samples) and it can utilize both continuous and categorical data also incorporating interactions 

between different variables. The output is continuous, allowing fine distinctions between the modelled 

suitability of different areas. If binary predictions are desired, there is great flexibility in the choice of 

threshold. If the application is conservation planning, the fine distinctions in predicted relative 

environmental suitability can be valuable to reserve planning algorithms.  

Furthermore, MaxEnt uses an exponential model for probabilities, which is not inherently bounded 

above and can give very large predicted values for environmental conditions outside the range present in 

the study area. Extra care is therefore needed when extrapolating to another study area or to future or 

past climatic conditions.  

 

 

 

 

1.2.5. Ensemble forecasting of species distribution 

 

The number of techniques available for SDMs is large and is increasing steadily, making it difficult to select 

the most appropriate methodology for their needs (Elith et al., 2006; Heikkinen et al., 2006).  Although many 

SDM are based on a correlative approach, they use different assumptions, mathematical algorithms and 

parameterizations. They may vary in how they model the shape, nature, and complexity of species’ response, 

select predictor variables, weight variable contributions, or allow for interactions (Buisson et al., 2010). 

Sometimes different models provide large discrepancies and then diverse predictions (Pearson et al., 2006; 

Randin et al., 2006).  
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A growing concern has recently emerged for “ensemble forecasting” approaches, which fit a number of 

alternative models (i.e., various initial conditions combined with several statistical methods) and explore the 

range of resulting projections (Araujo & New, 2007). Ensemble modelling experiments can be used to 

distinguish regions of consensus among models (i.e. where most models agree that the environment is 

suitable/unsuitable) from regions where there is disagreement. A number of studies have found that 

ensembles outperform individual models providing more reliable and robust predictions of the potential 

distribution of species (Araujo & New, 2007; Marmion et al., 2009; Grenouillet et al., 2011; Crossman et al., 

2012; Guo et al., 2015; Beaumont et al., 2016). 

The idea of ensemble forecasting dates back to 1969, when J.M. Bates and Granger observed that combined 

forecasts would yield lower mean error than any of the constituent individual forecasts (Araujo & New, 

2007). For example, BIOMOD (Thuiller et al., 2009), including its recent version “biomod2”, is a package 

for the open-source R software (R Development Core Team 2011) which can automatically compare 10 

different techniques to calculate an SDM and is able to suggest the “best” model (i.e., the model with the 

best predictive performance) among extensive model comparisons, as well as to use a consensus approach 

that computes a weighted sum of the variability within the ensemble predictions. The output of BIOMOD is 

an “ensemble model” graphically represented as a map where each cell indicates the probability of species 

presence ranging between 0 and 1. This final map can also be transformed into presence–absence values 

using a set of different thresholds provided by the modelling package.  

 

 

1.2.6. Methods for evaluating models 

 

Models generating presence–absence predictions are usually evaluated by comparing the predictions with a 

set of validation sites and constructing a confusion matrix that records the number of true positive (a), false 

positive (b), false negative (c) and true negative (d) cases predicted by the model (Allouche et al., 2006). 

SDMs are best validated using new or independent data, i.e. data not used to estimate the parameters or fit 

the model. However, often it is not feasible to collect new data. In this situation, one approach very 

commonly used to validate SDMs (for review, see Guisan & Zimmerman, 2000) is to divide or partition the 

data into one portion used to calibrate the model, called the training data, and one portion used to validate the 

predictions, called the testing data (Smith, 1994; Franklin, 2010). 

One simple measure of accuracy that can be derived from the confusion matrix is the proportion of correctly 

predicted sites, called overall accuracy. Two alternative measures that are often derived from the confusion 

matrix are sensitivity and specificity. Sensitivity is the proportion of correctly predicted observed presences, 

and therefore quantifies omission errors. Specificity is the proportion of observed absences that are predicted 

as such, and therefore quantifies commission errors.  

Other methods for assessing the accuracy of ordinal score models derive from these two indexes. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2009.02000.x/full#b5
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 The receiver operating characteristic (ROC) curve (Fielding & Bell, 1997) is constructed by using all 

possible thresholds to classify the scores into confusion matrices, obtaining sensitivity and specificity for 

each matrix, and then plotting sensitivity against the corresponding proportion of false positives (equal to 

1 − specificity). The use of all possible thresholds avoids the need for a selection of a single threshold, 

which is often arbitrary (Manel et al., 1999; 2001; Liu et al., 2005), and allows appreciation of the trade-

off between sensitivity and specificity (Pearce & Ferrier, 2000). 

 

 The area under the ROC curve (AUC) is often used as a single threshold-independent measure of 

model performance, therefore not affected by the arbitrary selection of a model threshold.  

This index ranges between 0 and 1 and a model will be considered to discriminate better than chance if 

the AUC is higher than 0.5.  

 

 Minimum difference between training and test data (AUCdiff) is based on the intuitive notion that 

overfit models should generally perform well on training data but poorly on test data (Warren & Seifert, 

2011). By minimizing the difference between training and test data, we minimize the risk that our model 

is over-parameterized in such a way as to be overlay specific to the training data. Excellent model 

performance is expressed by AUCdiff close to 0. 

 

 Cohen’s kappa (Cohen, 1960) corrects the overall accuracy of model predictions by the accuracy 

expected to occur by chance. The kappa statistic ranges from − 1 to 1, where 1 indicates perfect 

agreement and values of zero or less indicate a performance no better than random (Segurado & Araujo, 

2004).   

 

 The true skill statistic (TSS), also known as the Hanssen–Kuipers discriminant, compares the number 

of correct forecasts, minus those attributable to random guessing, to that of a hypothetical set of perfect 

forecasts. It is defined as:  

TSS = Sensitivity + Specificity  ˗ 1 

 

where sensitivity and specificity are calculated based on the probability threshold for which their sum is 

maximized. Like kappa, TSS takes into account both omission and commission errors, and has the same 

range of values as mentioned above (Allouche et al., 2006).  
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1.3 . Applications of SDMs: their role in species’ conservation 

 

SDMs can be used to tackle many issues in applied ecology and conservation biology, the most basic of 

which is to understand the relationships between a species and its abiotic and biotic environment and to 

identify areas where a given species is likely to occur.  

This application allows to detect new areas where the target species presence is unknown and is a useful tool 

for estimating the potential for species to occur in areas not previously surveyed (Hernandez et al., 2008). 

Such models are highly relevant for species that are elusive and difficult to observe (Razgour et al., 2016) 

and, in particular, for rare and threatened species which are usually a conservation priority and for which the 

knowledge gap is generally wider than for more common species (Bosso et al., 2016b; McCune, 2016; 

Proosdij et al., 2016; Shaffer-Smith et al., 2016). Detecting new potential population of rare species could be 

highly productive when planning field surveys on areas where a target taxon is more probably present, 

making field operation more cost-effective (Rebelo & Jones, 2010).   

Furthermore, SDMs offer a very useful tool to assess the effectiveness of networks of protected areas 

(Wilson et al., 2005; Bosso et al., 2016b). Indeed, habitat suitability maps provided by SDMs may be used to 

carry out a gap analysis which, very often, highlights an inappropriate degree of protection offered by the 

overall reserve network to the potential geographic range of the species (Rodríguez et al. 2007; Li et al., 

2016). This application results even more useful when SDMs predict areas of high-priority for conservation 

(Domígues-Vega et al., 2012; Smith et al., 2016; Di Minin et al., 2017), such as hotspots of species richness 

(Vale G. et al., 2016; Cooper-Bohannon et al., 2016) which need of special protection or of appropriate 

restoration (Razgour et al., 2011).  

SDMs may provide the degree of fragmentation of species’ habitat due to natural barriers or when species 

may not be able to migrate across human-modified landscapes which represents an obstacle to gene flow 

between populations occurring in suitable patches. Connectivity analyses applied to SDMs may support 

conservation actions identifying dispersal corridors for species movement across fragmented habitat (Puddu 

and Maiorano, 2016) or patches of reserve networks.  

The ability of SDMs to project the potential effects of anthropogenic global warming on species distribution 

and ecosystem properties has received an increasing attention (Thuiller, 2003; Beaumont et al., 2007; Bagchi 

et al., 2017; Casajus et al., 2016; Benedetti et al., 2017; Bosso et al., 2017a). The Intergovernmental Panel on 

Climate Change (IPCC) has developed a set of climate change scenarios that describe future greenhouse gas 

(GHG) emissions (Nakicenovic et al., 2000) and include a wide variety of possible socio-economic 

projections.  ‘Worst case’ scenarios generate more severe projections, with annual average temperatures 

rising up to 5.8 °C by the end of the century in some regions, while other scenarios are less severe. One of 

the major impacts of climate change may be the movement of populations from their original locations to 

new and unoccupied areas. In this process, depending on the dispersal ability of the species, populations may 

become highly fragmented and local extinctions may occur (Guisan & Thuiler, 2005; Rebelo et al., 2010; 

Aguair et al., 2016). If these situations persist over long periods of time, it is likely that other conservation 
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issues may arise (Hughes et al., 2012). SDMs have an important role in highlighting likely shifts of suitable 

habitat for a species due to climate change (Araujo et al., 2011; Pio et al., 2014; Brown et al., 2015; 

Beaumont et al., 2016; Bagchi et al., 2017; Ofori et al., 2017), detecting a potential range contraction and 

identifying the areas likely to be used as corridors by the species to move across a future fragmented habitat 

and which need major conservation efforts in order to guarantee species survival (Thuiller, 2003; Beaumont 

et al., 2007; Rebelo et al., 2010; Aguair et al., 2016).  

Many studies have used SDMs to project species suitable habitat in the past (most frequently to the Last 

Glacial Maximum) in order to test the existence of a niche conservatism in the present (Rebelo et al., 2012; 

Carotenuto et al., 2016; De Castro et al., 2016). These models permit to determinate the areas where species 

could have persisted, namely glacial refugia. A very recent study applied SDMs in order to test whether 

extinct megafauna responded in a similar manner to extant species while coping with the changing 

environmental conditions that characterized the end of the Pleistocene (Di Febbraro et al., 2017). 

Given the ever growing concern caused by biological invasions and the threat posed by pest species (also 

pathogens; see also Baxter & Possingham, 2011; Bosso et al., 2016a and Schatz et al., 2017), recent studies 

have applied SDMs to predict the potential distribution of alien species, identifying current potential hotspots 

of invasion and assessing climate change influences on the probability of such biological invaders to 

colonize and spread in new areas (Thuiller et al., 2005; Beaumont et al., 2009; Bellard et al., 2013; Di 

Febbraro et al., 2016; Bosso et al., 2016a; Bosso et al., 2017a,b).  

SDMs are applied to explore niche segregation in sympatric species (Peers et al., 2013; Russo et al., 2014).  

In fact, interspecific competition might involve changes in the environmental niche of a species where the 

latter is sympatric to competitors. The importance of biotic factors, like competition, in affecting the species 

distribution has also been highlighted by other recent studies (Razgour et al., 2011; Razgour et al., 2016; 

Jones et al., 2016). 

Habitat suitability mapping is frequently used to support appropriate management plans for species recovery 

and to identify suitable sites for species reintroduction (Olsson & Rogers, 2009; Wilson et al., 2011; 

Ardestani et al. 2015).  

Finally, an important application of SDMs involves the prediction of the impacts of anthropogenic activities 

on the landscape connectivity. The latter is a critical factor which may greatly influence the distribution of 

animals when it alters their movements and their ability to reach foraging grounds (Henry et al., 2007). In 

particular, some recent studies have used SDMs to identify the main animal connectivity routes, such as 

those for seasonal migration, and have analysed the potential interference of anthropogenic infrastructures on 

them (Roscioni et al., 2014). Such an approach makes SDMs a very useful tool to achieve a sustainable 

development of renewable energy infrastructures, like wind farms, and proper surveys for monitoring the 

wildlife fatalities.  
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1.4 . Objectives of the study 

 

After assessing the many different applications of SDMs supporting species’ conservation actions, our study 

focused on other important but less handled issues which have been analysed through three study cases. 

We sought to answer the following questions: 

- Does the spatial scale of the analyses influence the SDMs’ ability to detect niche differences for two 

sympatric species which apparently share the same habitat and ecological requirements?  

Are the management practices adopted for one species also effective for the other one? 

 

- May SDMs be applied to predict the distribution of reintroduced species and support appropriate 

management plans to identify and eventually restore suitable sites which might be colonized in a  

near future by the species? 

 

- Are presence data, which do not take into account the phenology of species, effective to develop 

SDMs representing the full ecological niche of a species?  
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Chapter II 

 

2. Protecting one, protecting both? Scale-dependent ecological differences in two 

species using dead trees, the rosalia longicorn beetle and the barbastelle bat   

 

2.1. Abstract 

 

Organisms sharing the same habitats may differ in small-scale microhabitat requirements or benefit from 

different management. In this study, set in Italy, we focused on two species of high conservation value, the 

cerambycid beetle Rosalia alpina and the bat Barbastella barbastellus, which often share the same forest 

areas and in several cases the same individual trees. We compared the potential distribution and, at two 

spatial scales, the niches between such species. The predicted distributions largely overlapped between the 

beetle and the bat. The niches proved to be similar on a broad scale, yet not at a finer one. Compared with B. 

barbastellus, R. alpina tends to occur at lower altitude in more irradiated sites with lower canopy closure and 

uses shorter trees with wider diameters. B. barbastellus trees occurred more often within forest or along its 

edges, whereas R. alpina lays eggs in trees found in clearings. B. barbastellus plots were more frequent in 

forest, R. alpina ones in forested pasture and open-shredded forest. Overall, solar radiation influenced more 

critically site and tree selection by R. alpina, as a warm microclimate is essential for larval development. 

Although B. barbastellus reproduction may be favoured by warmer roosting conditions, bats may also find 

such conditions in dense forest, in strongly-irradiated cavities high up in tall trees that project above the 

canopy. We emphasize that subtle differences in the ecological requirements of syntopic taxa could be 

missed at broad scales, so multiple-scale assessment is always advisable.    

 

 

2.2. Introduction 

 

Species conservation that is undertaken by adopting management practices developed for organisms other 

than the target one that apparently share the same habitats and ecological requirements may be tantalizing yet 

extremely risky. In fact, syntopic species may often differ markedly in characteristics only revealed at 

different spatial and/or temporal scales: this may make management practices useful for some species, yet 

ineffective or even harmful to others (Martin and Lopez, 2002; Russo et al., 2005). This is one of the reasons 

why the so-called “umbrella species” strategy (managing one species sharing its home range or habitat 
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preferences with several others to benefit a large set of organisms besides the target one) has raised 

significant concern (Simberloff, 1998; Martin & Lopez, 2002; Roberge & Angelstam, 2004).  

Only ecological analyses conducted at multiple spatial scales may reveal spatial or temporal niche 

differences that would otherwise go unnoticed, but such studies in conservation biology are still infrequent 

(Razgour et al., 2011). In this study we test whether a two-scale analysis may reveal differences in two 

management-dependent forest species that are phylogenetically distant yet apparently share similar habitat 

preferences: a tree-roosting bat (the barbastelle Barbastella barbastellus Schreber) and a saproxylic 

cerambycid beetle (the rosalia longicorn Rosalia alpina L.) whose life cycle largely depends on the 

availability of dead wood.  

R. alpina is often mentioned as a flagship species due to its distinctive colouring (Duelli & Wermelinger, 

2005, Caci et al., 2013) and is listed as a Priority Species under Annex II of 357/97/EC Habitats Directive. 

The strong habitat specialization of saproxylic beetles makes them especially vulnerable to human impact 

(e.g. Berg et al., 1994, Vié et al., 2009) and exposes them to adverse effects of intensive forestry (Jonsson et 

al., 2005; 2006). In summer, adults lay eggs in dead wood, so the species only occurs in patches of mature 

forest rich with this substrate, as dead wood is necessary for larval development (Duelli & Wermelinger, 

2005; Russo et al., 2011).  

B. barbastellus is a medium-sized vespertilionid bat featuring in Annexes II, IV of the Habitats Directive. Its 

diet consists largely of moths (Sierro & Arlettaz, 1997), which are hunted in a range of habitats (Hillen et al., 

2011; Zeale et al., 2012; Ancillotto et al., 2014). Although in some cases B. barbastellus maternity groups 

also roost in live trees (Russo et al., 2010) or even rock crevices (Ancillotto et al., 2014), typically they are 

found beneath loose bark on standing dead trees (Russo et al., 2004), where small groups of females gestate, 

give birth and rear young (Russo et al., 2004).  

Despite the very different life cycles, mobility and scales at which saproxylic beetles and snag-roosting bats 

perceive their habitat and landscapes, both species are threatened by the removal of dead or defective trees. 

This is one of the typical consequences of commercial forestry in temperate forests (Dudley et al., 2004) 

driven by concerns over forest health, productivity, fire risk, as well as the spread of pests. Short harvesting 

rotations characteristic of commercial forestry result in trees being logged before they complete their natural 

cycle, so that forest turnover will not lead to significant dead wood production (Hunter, 1999).  Forestry is a 

prime cause for the disappearance of reproductive substrate for cerambycids (e.g. Russo et al., 2011a) as well 

as for the loss of bat roosting habitat (Hayes & Loeb, 2007). Typically, bats roost in small groups spread 

over large forest areas and switch frequently between roosts (Lewis, 1995), so that the persistence of even a 

small number of bats requires many trees (Russo et al., 2005). Since snags are a rare resource even in 

unmanaged forests (Russo et al., 2004), the reduction of dead tree density due to forestry has adverse 

consequences for bats such as B. barbastellus, that specialize on roosting in snags, especially if they use 

snags as nurseries (Kurta et al., 2002; Russo et al., 2004).  

In the course of previous studies carried out in the Italian Peninsula (Russo et al., 2004; 2007; 2010; 2011a) 

both the bat and the beetle were found to share the same forest areas and in several cases even the same 
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individual trees (Russo et al., 2011a). An apparently obvious assumption would be that since the two 

organisms may share trees, conservation practices favouring the bat would also benefit the beetle and vice 

versa. This could be achieved by leaving patches of forest unmanaged and promoting the presence of snags. 

In our case, two potentially important factors might discourage this approach, 1) the considerable 

phylogenetic distance between the two species, which may hide subtle yet crucial differences in ecological 

requirements; and 2) the differing mobility and sensitivity to multiple spatial scales linked with their life 

histories (Russo et al., 2004; 2011a; Drag et al., 2011; Hillen et al., 2011; Ancillotto et al., 2014). For these 

reasons, variables other than tree type might influence selection patterns in different ways and only reveal 

themselves at specific spatial scales.  

Our study was based in Italy, where both species occur sympatrically and sufficient data were available for 

our modelling exercise. We carried out a niche comparison between R. alpina and B. barbastellus and 

hypothesized that differences in ecological requirements, if any, could emerge at a small spatial scale (i.e. the 

tree used and its immediate surroundings), best reflecting microhabitat needs. If the ecological needs of the 

two species differ, conserving the bat and the beetle would require a multiple spatial scale approach within 

areas of sympatry and ad-hoc management practices. Although previous studies had analyzed tree and 

habitat selection in B. barbastellus (Russo et al., 2004) and R. alpina (Russo et al., 2011a) and developed a 

spatially explicit model for the latter (Bosso et al., 2013) to offer a basis for gap analysis, ours is the first that 

compares the two species’ niches at two markedly different spatial scales to explicitly test whether common 

management strategies may be revealed at either scale and adopted to improve the status of two taxa of 

conservation concern.   

Within this framework, we generated the following predictions:  

1. The co-occurrence of the two species in areas characterized by old-growth stands will lead to significant 

overlap in their potential distribution and similarity in ecological niches estimated using factors selected at a 

broad geographical scale. 

2. At a smaller scale, R. alpina will prefer trees in semi-open habitat whose immediate surroundings favour 

sun irradiation, a factor deemed of vital importance for the development of larvae (Duelli & Wermelinger, 

2005; Russo et al., 2001; Bosso et al., 2013). On the other hand, although reproductive females of B. 

barbastellus may be favoured by roosting in sun-exposed cavities, they may do so in dense forest too by 

roosting higher up in trees (Russo et al., 2004; 2007). Roosting in more forested habitats would shelter 

emerging bats from aerial predators and allow them to start foraging earlier (Russo et al. 2007). Therefore, 

unlike R. alpina the bat will tend to occur in more densely forested habitats and will select taller trees.    
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2.3. Materials and methods 

 

 

2.3.1. Study area 

 

We considered the entire Italian territory between latitudes 45° N–36° N and longitudes 6°E–18°E 

(corresponding to ca. 301.000 km
2
, elevation range = 0–4810 m a.s.l.) including the Alpine, Continental and 

Mediterranean biogeographical regions according to the EC/92/43 Habitats Directive classification. 

 

 

2.3.2. Model development and validation 

 

Presence records for R. alpina (n = 350) and B. barbastellus (n = 223) originated from the authors’ personal 

databases and previous publications (Bosso et al., 2013; Russo et al., 2004; 2005; 2010). Records were 

screened in ArcGIS (version 9.2) using average nearest neighbour analyses and Moran’s I measure of spatial 

autocorrelation to remove spatially correlated data points and guarantee independence and equivalence to 

random sampling. After this selection, 37 and 25 data respectively for R. alpina and B. barbastellus were 

used to generate species distribution models and niche analysis (Fig. 1). 

All B. barbastellus data used to generate the models were collected between 2000 and 2013, while 82% of R. 

alpine records were collected between 2000 and 2010 and the remaining 18% between 1990 and 2000. 

Overall, this ensures a good temporal matching with the time period of the land cover map production 

(2006). 

In the recent ecological literature, a diversity of meanings is attributed to the term “niche” so that to avoid 

confusion constant qualification is advisable (McInerny & Etienne, 2012). In this paper, we follow Phillips et 

al. (2006) and assume that environmental conditions at the occurrence localities represent samples from 

realized niche. Therefore, given a certain study area and corresponding environmental dimensions, a niche –

based model provides an approximation of the species’ realized niche. 

To generate models and carry out niche analysis for R. alpina and B. barbastellus, we used a set of 21 

environmental predictor variables. We included one topographical and 19 bioclimatic variables obtained 

from the WorldClim database (www.worldclim.org/current) (Hijmans et al., 2005). Land cover was obtained 

from Global Land Cover 2000 (http://bioval.jrc.ec.europa.eu/products/glc2000/products.php). All variable 

formats were raster files (in ESRI format) with a resolution of 30 arc seconds (0.93×0.93 km = 0.86 km
2
 at 

the equator) and 1,307,195 grid cells. In order to remove the highly correlated variables for the final 

distribution models, we calculated a correlation matrix using the Pearson’s correlation coefficient and 

selected only variables which showed a weak correlation with the others (r<0.5), as done in Russo et al. 
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(2014). We came up with 11 final environmental predictor variables and used them to model habitat 

suitability and niche analysis of both species in ASCII files. Bosso et al. (2013) also developed a species 

distribution model for R. alpina, but in the present study we generated a new model as niche comparison 

required use of the same environmental predictor variables for both species.  

We used the most applied method with scarce presence-only data to develop species distribution models for 

R. alpina and B. barbastellus, i.e. MaxEnt ver. 3.3.3k (http://www.cs.princeton.edu/~schapire/maxent). This 

method usually results in good predictive models compared to other presence-only models (e.g. Elith et al., 

2006). It uses a generative approach, rather than a discriminative one, which can be an important advantage 

when the amount of training data is limited (Phillips et al., 2006). Furthermore, it has a good ability to 

predict new localities for poorly known species (Rebelo & Jones, 2010; Bosso et al., 2013; Russo et al., 

2014).  

To build the models, we used the presence records for R. alpina and B. barbastellus selected as described 

above, and the following  environmental predictor variables: Altitude, Land cover, Mean Diurnal Range, 

Isothermality, Temperature Seasonality, Temperature Annual Range, Mean Temperature of Wettest Quarter, 

Mean Temperature of Driest Quarter, Precipitation Seasonality, Precipitation of Wettest Quarter and 

Precipitation of Coldest Quarter. Further details on environmental predictor variables are given in Table 1.  

Although altitude is an indirect variable usually correlated with other direct variables such as temperature, 

we used it because it was easily recorded for the plot-level analyses and applied to the two-scale analyses for 

consistency.  

In the MaxEnt panel, we selected the following options: random seed; remove duplicate presence records; 

write plot data; regularization multiplier (fixed at 1); 10,000 maximum number of background points; 1000 

maximum iterations; and, finally, 20 replicate effects with cross-validate replicated run type. For the latter 

procedure, 80% of records were randomly extracted for training and 20% for testing the model and the 

procedure was repeated 20 times. The average final map obtained had a logistic output format with 

suitability values from 0 (unsuitable habitat) to 1 (suitable habitat).  

We used Jackknife analysis to estimate the actual contribution that each variable provided to the geographic 

distribution models. During this process, Maxent generated three models: first, each environmental predictor 

variable was excluded in turn and a model created with the remaining variables to check which of the latter 

was most informative. Second, a model was created using each environmental predictor variable individually 

to detect which of them had the most information not featuring in the others. Third, a final model was 

generated based on all variables. Response curves derived from univariate models were plotted to determine 

how each environmental predictor variable influences the probability of presence.  

For the placement of pseudo-absence points following Barve et al. (2011) as background area, we used all 

ecoregions found in the Italian Peninsula including presence points. 

We tested the predictive performance of the models with different methods: the receiver operating 

characteristics (ROC), analysing the area under curve (AUC) (Fielding & Bell, 1997); the true skill statistic 

(TSS) (Allouche et al., 2007); and the minimum difference between training and testing AUC data (AUCdiff) 
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(Warren & Seifert, 2011). Such statistics were averaged across the 20 replicates run on the 80% (training) vs. 

20% (testing) dataset split. These model evaluation statistics range between 0 and 1: excellent models 

performances are expressed respectively by AUC and TSS value close to 1 and AUCdiff close to 0.  

 

Table 1 List of ecogeographical variables used for this study, type and measurement unit.  

 

 

 

Figure 1. Presence records of Rosalia alpina (black dots) and Barbastella barbastellus (grey dots) 

considered for the development of a maximum entropy model. 

Type Ecogeographical Variable Unit Source 

Topographical Elevation m a.s.l. WorldClim database 

Habitat Land cover - GLC 2000 

Climatic Mean Diurnal Range °C WorldClim database 

 

Isothermality % WorldClim database 

 

Temperature Seasonality °C  WorldClim database 

 

Temperature Annual Range °C WorldClim database 

 

Mean Temperature of Wettest Quarter °C WorldClim database 

 

Mean Temperature of Driest Quarter °C WorldClim database 

 

Precipitation Seasonality  % WorldClim database 

 

Precipitation of Wettest Quarter mm WorldClim database 

  Precipitation of Coldest Quarter mm WorldClim database 
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2.3.3 Protecting one, protecting both? Scale-dependent niche differences 

 

We performed niche overlap analyses using the analytical framework proposed by Broennimann et al. (2012) 

and recently adopted by Di Febbraro et al. (2013) and Russo et al. (2014). The procedure follows three steps: 

data pre-processing, calculation of the niche overlap measure and testing niche similarity. For niche 

comparison, we used the Schoener’s D index, ranging from 0 (no overlap) to 1 (niche identical). This index 

was calculated using the “ecospat” package (ran.rproject.org/web/packages/ecospat/index.html; Broenniman 

et al., 2014).  

Niche analysis was conducted both at broad and plot scales. At a broad scale, corresponding to the whole 

Italian territory, we compared the differences in environmental predictor variable values used to build the 

species distribution models between species. To quantify niche overlap we used the ordination method of 

principal component analysis calibrated on the whole environmental space including the presence records 

where the species occur (for details see Broennimann et al., 2012 and Di Febbraro et al., 2013).  

We also compared the niches of R. alpina and B. barbastellus at the plot scale by exploring differences in 

tree and site descriptors for 42 trees used by the former for reproduction and 66 nursery roosts of the latter 

occurring in the same study area (Abruzzo, Lazio and Molise National Park). Our plots are represented by 

the focal tree and the characteristics found in the space corresponding to its canopy. Trees were found in 

earlier studies (Russo et al., 2004; 2005; 2007; 2010; 2011a) in which adults of R. alpina were observed 

inspecting suitable trees and B. barbastellus roosts were found by capturing bats at drinking sites, fitting 

them with radiotags and tracking them in daytime to their roost-trees (see Russo et al., 2004; 2011a for 

further details on methodology). Following Russo et al., (2011a) we considered the following features: (1) 

tree diameter at breast height (in meter); (2) tree height (in meter, obtained with a clinometer); (3) percentage 

canopy closure (assessed visually as the percentage of the tree’s branches and foliage which was in contact 

with those of surrounding trees); (4) sun index (estimated on a 0–12 scale: 0, fully shaded tree; 12, sun from 

all directions); (5) tree condition (live; dead and fallen tree); (6) crown condition (full foliage, foliage or 

branches partly missing, crown absent); (7) tree position (in forest, in clearing, on forest edge); (8) 

undergrowth height (0, between 0 and 1 m, >1 m); (9) altitude (in m a.s.l.); (10) habitat type (forest, forested 

pasture and open shredded forest). “Forest” corresponded to stands mainly unlogged since 1956 or subject to 

occasional very limited and highly selective logging; “forested pasture” was characterized by pastures 

interspersed with (or surrounded by) old trees present at low densities and shrubs; and “open-shredded 

forest”, so called because trees used to be pruned by ‘shredding’ (removing all side branches), a traditional 

form of management aimed to keep open space for pasture and use removed branches and foliage as animal 

fodder (Russo et al., 2011a). 

To quantify niche overlap at plot scale, we used the Factor Analysis for Mixed Data (FAMD) calibrated on 

the above records. FAMD is a principal component method to explore datasets including both continuous 

and categorical variables. The continuous variables are scaled to unit variance and the categorical variables 
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are transformed into a disjunctive data table (crisp coding) in order to balance the influence of both 

continuous and categorical variables in the analysis.  

To explain niche differences between species at both scales we compared environmental predictor variables 

recorded at presence points and plot descriptors measured in the field on trees used with an Analysis of 

Variance (ANOVA) followed by a Tukey’s test post hoc and χ
2
-test at p-value<0.05 using XLSTAT version 

2013.1 (Addinsoft, Paris, France). 

 

 

2.4. Results 

 

 

2.4.1. Broad geographical scale - model development and validation 

 

As predicted, at the broad geographical scale the potential distribution generated by our models for the two 

species largely overlapped. The model for R. alpina identified substantially uninterrupted areas of occurrence 

in Italy from the Alps to southern Apennines (Fig. 2). In the remaining area, only a few scattered sites were 

predicted as suitable. The model for B. barbastellus predicted a higher probability of presence in the central 

Apennines, but also in the southern Apennines and in the western Alps. 

The environmental predictor variable sets contributing the most to the models for the two species were 

similar. In the R. alpina model (limiting our analysis to environmental predictor variable with percent 

contribution > 2%) land cover (45%) and altitude (36%) were the main factors influencing model 

performance. A slightly lower contribution was provided by isothermality (9%), precipitation seasonality 

(5%), mean temperature of driest quarter (2.4%) and precipitation of coldest quarter (2.4%). Based on the 

model’s predictions, R. alpina has a higher probability of occurring in broadleaved deciduous forest found at 

relatively high altitudes (1000–1500 m a.s.l.). The environmental predictor variables that were most 

important to explain the potential distribution of B. barbastellus were: land cover (47%), altitude (27%), 

mean temperature of driest quarter (10%), isothermality (8%), precipitation seasonality (4%) and 

precipitation of coldest quarter (2.1%). We observed that in the areas predicted as suitable for B. barbastellus 

(Fig. 2), land cover was mainly characterized by broadleaved deciduous forest and deciduous shrubs. 

Furthermore, in those areas altitude ranged between 1000-1500 m a.s.l., and the mean temperature of the 

driest quarter between 15-20 ° C. 

Species distribution models achieved excellent levels of predictive performance for R. alpina and B. 

barbastellus as seen from the AUC, TSS and AUCdiff values (Table 2). 
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Figure 2. Maximum entropy model developed for Rosalia alpina (left) and Barbastella barbastellus (right) 

in Italy. Likelihood of species occurrence is expressed as shades of grey (white = 0, black = 1). 

 

 

 

 

 

Table 2 Predictive performances achieved for SMDs developed for R. alpina and B. barbastellus.  

AUC, area under curve; AUCdiff, difference between training and testing AUC data; SD, standard deviation, 

TSS, true skill statistic. 

 

Species AUC Training SD AUC Test SD AUCdiff SD TSS SD 

B. barbastellus 0.953 0.004 0.918 0.029 0.035 0.003 0.701 0.112 

R. alpina 0.948 0.011 0.914 0.014 0.034 0.002 0.721 0.155 
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2.4.2. Protecting one, protecting both? Scale-dependent niche differences 

 

The outcome of niche similarity tests greatly depended on the scale considered. In agreement with our first 

prediction, the two species’ niches were similar at a broad geographical scale, yet they were rather different 

at the plot scale (Table 3). The graphical representation of the niches of the two species in environmental 

space at both scales is shown in Fig. 3. 

At a broad spatial scale, relatively few differences were spotted between the potential areas of occurrence for 

the two species, their large-scale ecological requirements being mostly similar (Fig. 3; Table 4). B. 

barbastellus was found to occur in areas whose mean temperature of driest quarter, and to some extent 

isothermality, were significantly greater than those occupied by R. alpina (Fig. 3). Although both species 

mostly occurred in similar land use types, B. barbastellus was predicted to occur in cultivated and managed 

areas more often than R. alpina, whereas the latter was more often predicted to occur in mosaics of tree cover 

interspersed with other natural vegetation and in semi-open areas of shrubland and deciduous forest.    

At a plot scale, in accordance with our second prediction we identified marked differences in the type of 

habitat used by the two species (Fig. 3; Table 4). Although both species may occur in the same plot and share 

the same tree, R. alpina tends to occur at sites characterized by a lower altitude, lower canopy closure, higher 

sun index (i.e. sites are more irradiated) and to select shorter trees with a larger diameter than B. barbastellus 

(Figs 3 and 4). The trees used by B. barbastellus (mostly snags) occurred significantly more often within 

forests or along forest edges, whereas R. alpina tends to lay eggs in trees found in clearings.   

B. barbastellus plots were significantly more frequent in forest, while those of R. alpina were more frequent 

in forested pasture and open-shredded forest (Table 4).  

 

 

 

Table 3 Outcomes of niche equivalence and niche similarity tests for R. alpina and B. barbastellus at broad 

(Italy) and plot (tree and its immediate surroundings) scales. (n.s.) = not significant 

FAMD, factor analysis for mixed data; NS, not significant; PCA-ENV, principal component analysis 

calibrated on the whole environmental space including the presence records where the species occur. 

 

Scale Method Schoener’s D Niche 

equivalency 

Niche similarity 

R. alpina  B. barbastellus B. barbastellus  R. alpina 

Broad  PCA-ENV 0.487 0.01 0.01 0.01 

Plot  FAMD 0.319 0.003 (n.s.) NS 
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Figure 3. Graphical representation of the environmental niches of Rosalia alpina (dark grey) and 

Barbastella barbastellus (light grey). The upper right panel represents the niche of the two species along the 

two-first axis (PC1 and PC2) of the principal component analysis (PCA-ENV) calculated at broad scale.  

Increasing values of PC1 mainly correspond to increasing precipitation of coldest quarter and decreasing 

mean diurnal range [mean of monthly (maximum temperature – minimum temperature]) and mean 

temperature of wettest quarter. Increasing values of PC2 mainly correspond to increasing values of 

isothermality, mean temperature of driest quarter and precipitation seasonality (coefficient of variation). The 

upper left panel shows the species’ niches along the two-first axis (Axis1 and Axis2) of the factor analysis 

for mixed data (FAMD) calculated at plot scale. Increasing values of PC1 mainly correspond to increasing 

percentage of canopy closure and tree height and decreasing sun index and tree diameter, whereas PC2 

mainly increases with altitude and tree height. For each scale, the corresponding box-and-whisker plots 

illustrated below represent the median, quartiles, and extremes of the two component values. 
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Table 4 Statistical comparisons (analyses of variance or chi-square test) respectively of environmental 

predictor variables values used to build the species distribution models on a broad geographical scale (Italy) 

and plot characteristics measured in an area of sympatry (in central Italy) between Rosalia alpina and 

Barbastella barbastellus. Sample size for Italy: n = 25 (B. barbastellus), n = 37 (R. alpina), broad scale; n = 

66 (B. barbastellus); n = 42 (R. alpina), plot scale. 

 
a
 = F; 

b
 = χ²;  p <0.001 = ***; p < 0.01 = **; p < 0.05 = *; NS = not significant.  

 

 

Italian territory 

Variable B. barbastellus R. alpina Statistics P 

Altitude (m) 984.91 ± 401.08 1100 ± 377.21 1.51
 a
 NS 

Annual Mean Diurnal Range (°C) 7.64 ± 1.03 7.11 ± 1.43 3.04
 a
 NS 

Annual Temperature Range (°C) 25.01 ± 1.82 24.58 ± 2.32 0.87
 a
 NS 

Isothermality (%) 29.97 ± 2.24 28.25 ± 3.45 5.91
 a
 0.01* 

Landcover  

 

25.65
 b
 0.04* 

Mean Temperature of Driest Quarter (°C) 16.45 ± 6.46 11.98 ± 8.70 5.75
 a
 0.01* 

Mean Temperature of Wettest Quarter (°C) 8.83 ± 3.1 9.06 ± 3.22 0.09
 a
 NS 

Precipitation of Coldest Quarter (mm) 213.02 ± 33.47 207.37 ± 35.29 0.46
 a
 NS 

Precipitation of Wettest Quarter (mm) 283.88 ± 37.80 293.80 ± 48.43 0.89
 a
 NS 

Precipitation Seasonality (%) 28.67 ± 9.57 27.51 ± 7.11 0.32
 a
 NS 

Temperature Seasonality (%) 6125.23 ± 303.46 6146.85 ± 369.86 0.02
 a
 NS 

Plot scale 

Altitude  1487.26 ± 115.78 1384.45 ± 137.54 7.86
 a
 0.01* 

Undergrowth height  

  

0.36
 b
 NS 

Canopy closure  32.76 ± 37.71 13.80 ± 29.40 7.54
 a
 0.01* 

Crown condition 

  

0.48
 b
 NS 

Habitat type 

  

22.81
 b
 0.01* 

Tree condition  

  

21.89
 b
 0.02* 

Sun index  5.01 ± 3.32 9.85 ± 2.90 5.70
 a
 0.01* 

Tree diameter 0.92 ± 0.24 1.03 ± 0.31 4.14
 a
 0.03* 

Tree height 20.36 ± 7.66 8.05 ± 4.81 8.55
 a
 0.01* 

Tree position     34.80
 b
 0.01* 
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Figure 4. Typical trees selected by Barbastella barbastellus (a) and Rosalia alpina (b) in Central Italy.   
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2.5 Discussion 

 

 

2.5.1 Scale-dependent niche differences between Rosalia alpina and Barbastella barbastellus  

 

Our study showed that two organisms largely dependent on standing dead wood for a crucial part of their life 

cycle (reproduction), despite being found in the same areas and often in the same tree, exhibit different 

ecological requirements that mostly emerge when niches are compared at a small spatial scale. A broad 

geographical scale is too coarse-grained to reveal considerable differences. In accordance to our first 

hypothesis, the broad scale analysis essentially shows that the two species are largely sympatric and 

syntopic, occurring in the same areas of broadleaved forest, while failing to detect differences in 

microhabitats occupied.  

At a large scale, only limited differences in preferred environmental predictor variables values were detected. 

Besides a small difference in isothermality (= mean diurnal range/temperature annual range, expressing 

temperature “evenness” over a year), B. barbastellus tends to occur in areas characterized by a higher 

temperature of the driest quarter than does R. alpina. Such mild conditions in the season when bats are active 

are important for reproduction. Pregnancy and lactation are energy-demanding because during these phases 

females need to be homeothermic and avoid using torpor to allow foetal development and to provide milk for 

their young, and because the energetic demands of lactation are high (Racey, 1973; Grinevitch et al., 1995). 

Higher roost temperatures (inevitably influenced by ambient temperature) reduce thermoregulatory costs and 

may thus be favourable for females during pregnancy and lactation (Grinevitch et al., 1995). Higher 

nocturnal temperatures also increase insect activity (Taylor, 1963) and thus bat foraging (Russo & Jones, 

2003). For R. alpina, spring temperatures are more important than summer temperatures (Bosso et al., 2013): 

at least some warmth is needed daily in spring for larval development, when larvae build pupal cells beneath 

bark where they will eventually undergo metamorphosis in summer (Duelli & Wermelinger, 2005).   

We found the potential distribution of the two species to largely overlap in terms of land use types, with both 

species predicted to occur in areas dominated by broadleaved forest. B. barbastellus was also predicted to 

occur in cultivated and managed areas more often than R. alpina. The beetle was instead predicted to occur 

more in mosaics of tree cover interspersed with other natural vegetation, and in semi-open areas of shrubland 

and deciduous forest. B. barbastellus forages in a broad range of habitats (Hillen et al., 2011; Zeale et al., 

2012), including farmland, which may locally be of great importance (Ancillotto et al., 2014). In contrast, the 

more marked preference for semi-open landscapes detected for R. alpina may reflect its tendency to lay eggs 

in well-insulated trees (Duelli & Wermelinger, 2005; Russo et al., 2011a; Bosso et al., 2013) – which, as we 

will see, was revealed by plot-level comparisons.  

Apart from these limited differences, the overlap of the species’ potential distributions suggests that wide 

areas of syntopy can be protected, providing conservation benefits to both the beetle and the bat. In Italy, 

over 52% of habitat suitable for R. alpina is unprotected (Bosso et al., 2013). Given the distributional 
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overlap, we may assume that the potential distribution of B. barbastellus also largely falls out of boundaries 

of parks and reserves. Broad scale analysis, however, reveals little of the detailed ecological differences 

characterizing the two species and gives no information on the type of management that the two species 

need. 

In agreement with our second prediction, the niche comparison conducted at plot scale revealed marked 

differences in the ecological requirements of the two species, clearly rejecting the hypothesis that simply 

preserving snags in areas of syntopy will necessarily favour both taxa. The first obvious difference is that 

trees frequented by R. alpina had a much smaller canopy closure (on average almost one third of that 

recorded for B. barbastellus roosts). Consequently, these trunks are much more exposed to sun than those 

used by the bat, as can be seen by their significantly greater sun index. Such trees were also found to occur 

more often in clearings than those used by B. barbastellus, which were more frequent in forest interiors. 

Exposure of reproductive substrate to the sun is of utmost importance for many saproxylic beetles, as it 

provides the microenvironmental conditions that larvae require to develop (e.g. Lindhe et al., 2005; Buse et 

al., 2007; Vodka et al., 2009).  

In the study area we focused on, clearings resulted from traditional shredding to open space for livestock 

grazing (Russo et al., 2011a). Shredded trees often attain large diameters and smaller heights, explaining the 

structural differences we found between trees favoured by R. alpina and B. barbastellus. For B. barbastellus, 

tall trees are important as bats tend to roost close to the canopy (Russo et al., 2004). Roosting at height is 

important for at least two reasons: first, bats are less accessible to predators; second, snag tops often protrude 

out of the canopy, allowing roosts to be irradiated even in dense forest (Russo et al., 2004; 2007). By 

selecting such roosts, reproductive females may achieve lower-cost thermoregulation while gaining some 

extra-foraging time through earlier roost emergence in a cluttered habitat, where predation risks are lower 

(Russo et al., 2007; 2011b). Female B. barbastellus roosting in dead trees may be favoured by the absence of 

living wood tissue, which reduces temperatures in roost trees (Law & Anderson, 2000).  

B. barbastellus plots were more frequent within the forest (which is mostly unmanaged, or subject to very 

little management in the study area), whereas R. alpina plots occurred more often within open shredded 

forest and forested pasture. This result is in agreement with habitat selection studies carried out in the same 

area (Russo et al., 2005; 2011a) and matches well with tree structural characteristics preferred by the two 

species.  

Despite the co-occurrence of R. alpina and B. barbastellus often in the same habitats and sometimes even in 

the same trees, the plot-level analysis revealed important differences in both habitat type and tree descriptors, 

indicating that different types of management may be required for the two species. This once more highlights 

that avoiding confusion between “used” and “preferred” resources or conditions is crucial, and emphasises 

the need to support management with sound scientific data instead of relying on merely qualitative 

observation-driven “expert judgement” which may be misleading.    

Clearly, practices such as girdling may favour both R. alpina and B. barbastellus (Russo et al., 2010; 2011a) 

by increasing snag density but will not suffice to grant these species the conditions they require. In 
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conclusion, fully reconciling the management requirements of the two species appears to be unviable on a 

tree/habitat scale: while the beetle would benefit from clearing some surrounding trees, the bat prefers its 

roosts to be protected by a denser canopy closure. Leaving unmanaged forest patches will increase the 

availability of dead wood (e.g. Ranius & Jansson, 2000), yet it will also lead to the expansion of closed forest 

avoided by R. alpina, at the expense of the beetle’s preferred habitat.  

In areas of syntopy, successful management may only be achieved through a landscape approach, i.e. by 

allowing the interspersion of forest patches with clearings and semi-open areas where snags are more sun-

exposed. In the Italian Apennines, this landscape mosaic was once typical of traditionally exploited forest, 

when humans were more widespread in the mountains, and is now disappearing along with the loss of non-

intensive management such as shredding and moderate livestock grazing. Today grazing intensity is in fact 

polarized, some areas being subjected to unsustainable livestock loads and consequently overgrazed, while 

others that were formerly semi-open are being invaded with re-growth of vegetation due to the absence of 

grazing by herbivores (Moreira & Russo, 2007). 

 

 

 

2.5.2. Conservation implications 

 

Our study has clear implications for conservation and management. First, it shows that important ecological 

differences may be unveiled only at one scale of analysis and missed at others (Levin, 1992). Predicting 

distribution ranges by modelling may offer important guidance in the development of conservation plans, for 

example by allowing more exhaustive gap analyses than when conducted only on ranges established on 

presence data (Bosso et al., 2013); by helping detect corridors, or low-suitability areas in need of restoration 

to improve connectivity (Doko et al., 2011); by making it possible to predict future distribution patterns 

under climate or land use change (Rebelo et al., 2010); or by assisting in the discovery of new areas of 

occurrence for rare species (Rebelo & Jones, 2010). However, subtle differences in ecological requirements 

could be missed at broad analysis scales, so it is always advisable to carry out analyses at multiple scales. We 

also once more highlight the value of a landscape approach to compromise the ecological requirements of 

species of conservation concern that may appear conflictual at habitat scale, and emphasise the importance of 

heterogeneity typical of traditional landscapes, shaped by hundreds of human generations (Di Salvo et al., 

2009; Georgiakakis et al., 2010), to sustain diversity-rich communities.    
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Chapter III 

 

3. Species distribution models as a tool to predict range expansion after   

reintroduction: a case study on Eurasian beavers (Castor fiber) 

 

3.1. Abstract 

 

Species Distribution Models (SDMs) may provide important information for the follow-up phase of 

reintroduction operations by identifying the main areas most likely to be colonized by the reintroduced 

species. We used SDMs to identify the potential distribution of Eurasian beavers (Castor fiber) reintroduced 

to Serbia and Bosnia and Herzegovina in 2004-2006 after being historically driven to extinction by 

overhunting. Models were also used to carry out a gap analysis to assess the degree of protection granted by 

the national reserve networks to the potentially expanding population. Distances from hydrographic network, 

broadleaved forest, main watercourses and farmland were the main factors influencing model performance. 

We estimated that suitable habitat covers 14.0 % (31,000 km²) of the whole study area. In Serbia, in 2004-

2013 beavers expanded their range at a mean colonization speed of 70.9 ± 12.8 km/year (mean ± SD). Only 

2.89% of and 9.72% of beaver’s suitable habitat lie within the national network of protected areas of Bosnia 

and Serbia respectively. We detected new potential areas where beavers will likely settle in the near future, 

advising on where further monitoring should be focused. We also identified low suitability areas to be 

targeted with appropriate management to improve their conditions as well as important regions falling 

outside reserve boundaries where protection should be granted. 

 

 

 

3.2. Introduction 

 

Reintroduction– i.e. the intentional translocation of species into parts of their historically known range from 

which they have been extirpated (IUCN/SSC, 2012) – is one of the key strategies adopted to restore 

biodiversity and ecosystem functioning. Forecasting the expansion of a reintroduced species over a given 

region as part of reintroduction’s follow-up phase may be essential to anticipate events that might otherwise 

jeopardise the operation’s success in order to secure appropriate protection in the newly colonised areas, 

prevent conflicts with humans, optimise monitoring strategies and apply adaptive management of habitat 

quality (e.g. Breitenmoser et al., 2001; Armstrong & Reynolds, 2012; McCarthy et al., 2012). 
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Habitat suitability mapping is frequently used to inform habitat restoration or preservation actions (Gibson et 

al., 2004) or to identify suitable sites for species reintroduction (e.g. Olsson & Rogers, 2009; Ardestani et al., 

2015). This approach has become an important component of conservation planning in recent years, and a 

wide variety of modelling techniques have been developed for this purpose (Guisan & Thuiller, 2005; Elith 

et al., 2006; Elith & Leathwick, 2009). Although Species Distribution Models (hereafter SDMs) appear to be 

a promising tool to guide the planning of reintroduction operations by conservation biologists and landscape 

managers, so far their applications to this field have been scarce (see e.g. Wilson et al., 2011; Adhikari et al., 

2012). Such models may predict the probability of species presence by relating current occurrences and 

environmental features at sample locations (Guisan & Zinnermann, 2000; Phillips et al., 2006). In this way 

the areas that are more likely to be re-colonised as well as the most probable routes followed in the process 

can be forecast, drawing valuable inferences on the establishment, expansion and persistence of a 

reintroduced species (Armstrong & Seddon, 2008). 

A clear understanding of species-habitat relationships makes it possible to identify highly suitable release 

sites that offer the maximum chance of post-release survival or guide habitat restoration prior to 

reintroduction (Seddon et al., 2007). 

Despite the outstanding potential of SDMs in predicting the expansion of a newly introduced species to a 

given region (Armstrong & Reynolds, 2012), their use to achieve this goal has been largely neglected. In our 

study we apply SDMs to assess the post-release expansion of Eurasian beavers (Castor fiber) in Serbia and 

Bosnia and Herzegovina and evaluate the potential role of nature reserves to assist this process. The species 

was once common across Eurasia from the British Isles to eastern Siberia, inhabiting freshwater habitats 

surrounded by forest but also reaching into the tundra and steppe zones (Nolet & Rosell, 1998; Macdonald & 

Barrett, 1993; Macdonald et al., 1995; Halley & Rosell, 2002). Prized for its fur, meat and castoreum (a 

urine-based fluid secreted from castor sacs for scent marking valued by humans for medic or cosmetic 

applications), beavers were wiped out by overhunting from most of their range by the middle 19
th
 century 

(Djoshkin & Safonov, 1972). By the beginning of the 20
th
 century, only 1200 individuals had persisted in 

eight isolated populations across the entire species’ range (Nolet & Rosell, 1998). The remnant populations 

received legal protection, and since 1922 reintroductions started in many European regions to pursue species 

conservation and ecosystem restoration (Kollar & Seiter, 1990; Nolet & Rosell, 1994; Halley & Rosell, 

2002). To date, the return of C. fiber has not yet taken place only in Portugal, Italy, southern Balkans 

(Greece, Albania, Bulgaria, Macedonia and Montenegro) and Ireland (Halley & Rosell, 2002; Halley et al., 

2012), while two wild populations now occur in Scotland on a trial basis (Stringer & Gaywood, 2016). 

Currently, the species is strictly protected in the European Union under the Bern Convention (Appendix III) 

and the EU Habitats and Species Directive (Annex V for the Swedish and Finnish populations, Annex II and 

IV for all others). 

The Serbian population of beavers was driven to extinction by overhunting by the second half of the 19
th
 

century, apart from an unconfirmed report of a beaver shot near Belgrade at the beginning of the last century 

(Ćirović et al., 2003,2007). By then, the species had also disappeared from the whole course of the Danube 
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and its tributaries. In 1999, following the shooting of a beaver in Northern Serbia (Vojvodina, Bačka region) 

that had dispersed from the re-established population of Hungary, a reintroduction operation was started in 

Serbia and Bosnia and Herzegovina (Ćirović et al., 2001,2003). In 2004 and 2005, 75 subjects imported from 

Bavaria were reintroduced to the Obedska Bara and Zasavica Special Reserves in Serbia, and 40 were 

released in Semešnica and Sokočnica rivers in Bosnia and Herzegovina in 2005 and 2006 (Fig. 2). 

Although many studies have assessed beaver habitat requirements (Zurowsky & Kasperczyk, 1990; Parker et 

al., 2001; Fustec et al., 2001; Vorel et al., 2008; Halley et al., 2012) only few applications of habitat 

suitability models have been carried out, e.g.in the Czech Republic (John et al., 2010) and Austria (Maringer 

& Slotta-Bachmayr, 2006). In our study, we quantify the potential distribution of C. fiber for Serbia and 

Bosnia and Herzegovina to predict the species’ spatial pattern of expansion. We hypothesize that 1) given the 

overwhelming importance of riparian habitat and the tendency of beavers to feed on crops (Campbell-Palmer 

et al., 2016), hydrographical network, riparian broadleaved forest and farmland will be the main 

environmental variables influencing potential distribution; and that 2) since most reserves in the study region 

do not comprise rivers, the network of protected areas will offer little protection to the aforementioned 

distribution. 

 

 

 

 

Figure 1. Geographic regions (Serbia and Bosnia and Herzegovina) and Castor fiber presence records 

considered for modelling. 
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Legend 

1 = Vojvodina 

2 = Obedska Bara Special Nature Reserve 

3 = Zasavica Special Nature Reserve 

4 = Semešnica river 

5 = Sokočnica river 

6 = Pannonian Plain 

7 = Sava (Serbia) river 

8 = Drina (Serbia/Bosnia Herzegovina) river 

9 = Morava  river 

10 =  Una river 

11 = Sana river 

 

12 = Vrbas river 

13 = Bosna river 

14 = Šar mountain 

15 = Stara planina 

16 = Dinaric Alps mountain 

17 = Danube river 

18 = Tisa river 

19 = Neretva river 

20 = Beli Drim river 

21 = Fruška Gora National Park 

22 = Kozara National Park 

 

 

Figure 2. Map of the study area showing the main locations and geographic features mentioned in the text.  

  

 

 

 

https://en.wikipedia.org/wiki/Pannonian_Plain
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3.3. Materials and methods 

 

 

3.3.1. Study area 

 

The study area included the whole territories of Serbia and Bosnia and Herzegovina, covering approximately 

139,570 km² between latitudes 41°N-47°N and longitudes 15°E-23°E (Fig. 1). Elevation ranges from 0 up to 

2500 m a.s.l. The area is largely mountainous and forested (c. 50% of Bosnia and 25% of Serbia). Arable 

land covers 53.2% of Serbia and 28.7% of Bosnia and Herzegovina (Corine land cover 2006, 

https://www.eea.europa.eu). Agricultural production is mostly prominent in the fertile Pannonian Plain 

situated in the northern part of Serbia (Vojvodina) and in the region of Serbia between the Sava, Drina and 

Great Morava rivers, while in Bosnia farmland is found in the valleys of Sava, Una, Sana, Vrbas, Bosna and 

Drina rivers.   

 

 

3.3.2. Presence records of the Eurasian beaver 

 

We used 71 presence records of Eurasian beavers from authors’ personal databases obtained from the post-

reintroduction monitoring in Serbia and Bosnia and Herzegovina (Grubešić et al., 2015) (Fig. 1). Records 

cover years 2004-2014, matching the year of production (2006) of the land cover map used for our study 

(Russo et al., 2014, 2015). 

Each record represented the centroids of a beaver’s territory, corresponding to a beaver’s shelter (burrow or 

lodge) or, if this was not found, to the central part of the winter feeding territory. We checked for spatial 

autocorrelation in species occurrences by using Clark & Evans (1954)’s aggregation index – for further 

details, see also Ducci et al. (2015) and Di Febbraro et al. (2015). 

We implemented a sampling procedure to obtain a representative set of the environmental conditions 

occurring throughout the area of each territory. Specifically, we defined the boundaries of each territory by 

intersecting two buffer areas:  

1) a first 1.7 km radius circular buffer was drawn around each occurrence record, whose intersections with 

the watercourse’s main axis were assumed to represent the territory’s outer limits along the watercourse. The 

1.7 km value corresponds to the maximum length known for a beaver’s linear territory (Vorel et al., 2008);  

2) a second 200 m buffer from each river bank was applied to encompass the territory portions alongside the 

river stretch, expressing the maximum territory width observed in the study area. This is approximately the 

longest distance covered by beavers from riverbanks to forage according to published observation and our 

own records (Allen 1983; D. Ćirović, unpublished data). Subsequently, a point was taken randomly from 

each of the areas comprised within the above buffers, repeating this sampling procedure 10 times and 

https://en.wikipedia.org/wiki/Arable_land
https://en.wikipedia.org/wiki/Arable_land
https://en.wikipedia.org/wiki/Pannonian_Plain
https://en.wikipedia.org/wiki/Central_Serbia
https://en.wikipedia.org/wiki/Sava_(river)
https://en.wikipedia.org/wiki/Drina
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obtaining 10 independent sets of 45 “occurrence” points, one for each territory. Each of the 10 replicated sets 

was used to train a separate SDM. 

To fit SDMs with the global scale (Gallien et al., 2012 – see below), we used GBIF records. 

 

 

3.3.3. Environmental variables 

 

To generate SDMs we started from a set of 13 environmental predictors rasterized at a resolution of 100 m, 

including five topographical and seven habitat classification variables, in combination with the 

hydrographical network. The topographic predictors included a Digital Elevation Model (DEM) derived by 

Jarvis et al. (2008), from which altitude and slope were taken, and the following additional topographical 

indices (Wilson et al., 2007): Terrain Ruggedness Index (TRI), Topographic Position Index (TPI) and 

roughness index. Habitat predictors were calculated as Euclidean distances from the 2006 Corine Land 

Cover classes (European Environmental Agency; http://www.eea.europa.eu/data-and-maps/data/corine-land-

cover-2006-raster) and from the hydrographic network of the Digital Chart of the World (DCW; 

http://www.diva-gis.org/gdata). The 13 predictors were checked for pairwise correlation and reduced to 11 

considering a variance inflation factor less or equal to three (Zuur et al., 2010). 

In order to choose the most appropriate set of environmental predictors, we developed a variable selection 

procedure taking into account model performance and overfitting. 

The variables selection procedure was implemented for each of the 10 replicated occurrence datasets 

separately, then selecting the set of predictors that emerged as the best in most of the 10 replicates. First, we 

trained a full SDM (i.e. including all the 11 starting predictors), for which we calculated the training AUC 

and the relative variables importance through the functionalities provided in the biomod2 package. 

Subsequently, considering the rule of thumb proposed by Harrell et al. (1996) that prescribes the number of 

predictor variables in a model not to exceed one tenth of the number of occurrences, we selected the first 

seven most important variables from the full SDM. Starting from them, we trained four candidate SDMs 

including from the first four to all the seven predictors (see table below). 

 

 

Predictors SDM_I SDM_II SDM_III SDM_IV 
1. Euclidean distance from main watercourses     
2. Euclidean distance from hydrographic network     
3. DEM     
4. Euclidean distance from farmlands     
5. Euclidean distance from inland marshes     
6. Euclidean distance from broad-leaved forests     
7. Euclidean distance from mixed forests     
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For these four models, occurrences were randomly split into a 70% sample that was used to calibrate the 

model, and 30% to evaluate the model’s predictive performance, repeating the procedure 10 times. 

Specifically, we calculated a training AUC on the 70% sample, a testing AUC on the 30% and the difference 

AUCtraining – AUCtesting (AUCdiff; Warren & Seifert, 2011). AUCdiff was interpreted as a measure of model 

overfitting (Radosavljevic & Andeson, 2014). The significance of the differences in AUCtesting and AUCdiff 

among the candidate models was tested with the Wilcoxon signed–rank test. Finally, the group of predictors 

that produced an SDM with significant highest AUCtesting and lowest AUCdiff out of all candidate models (i.e. 

the model with the highest predictive performance and the lowest overfitting) was selected as the final. 

The variable selection procedure identified the following six predictors (Table 1) as those producing the best 

models: Elevation and Euclidean distance from hydrographic network, main watercourses, farmlands, inland 

marshes and broadleaved forests. 

 

 

 

3.3.4. Modelling procedure 

 

A growing amount of literature highlights that environmental truncation in niche estimation for areas 

encompassing only a small portion of a species’ global range produces severely biased predictions (Barbet–

Massin et al., 2010; Raes, 2012; Guisan et al., 2014). As C. fiber is distributed across the Palearctic (IUCN, 

2012) and our study area represents a small portion of the entire range, SDMs were produced using a 

hierarchical structure from a global to regional scale (Pearson et al., 2004; Lomba et al., 2010; Gallien et al., 

2012, Di Febbraro et al., 2015). Following this approach, models were first implemented to estimate the 

species’ niche at their global range scale using bioclimatic variables (Global SDMs), then refined at a 

regional scale using land cover, hydrographical network and topographical variables as environmental 

predictors (Regional SDMs; Pearson et al., 2004; Lomba et al., 2010; Gallien et al., 2012, Di Febbraro et al., 

2015).  

Following Gallien et al. (2012) we fitted SDMs at the global scale with species occurrence data, pseudo-

absences and bioclimatic predictors and then calculated a committee averaging as a main outcome. Instead of 

a ‘traditional’ probability of occurrence output, the committee averaging describes the percentage of 

agreement on the species presence between various model projections (for further details, see Thuiller et al., 

2009) and was used as an additional input to train regional SDMs. Species occurrences were gathered from 

the Global Biodiversity Information Facility (GBIF) database. The accuracy of records was assessed by 

including only those whose positional values featured at least two decimal digits (0.01 decimal degrees, 

corresponding to 1.11 km at the equator; Strubbe et al., 2015). In addition, we filtered these data by 

removing duplicated records and those with unrealistic coordinates. A set of 10,000 pseudo-absences were 
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randomly placed over a region identified by the WWF Terrestrial Ecoregions (Olson et al., 2001) that 

included beaver records (Barve et al., 2011). As initial set of environmental predictors, we considered the 19 

bioclimatic variables derived from the WORLDCLIM database at a spatial resolution of 5 arc–minutes (ca. 

10 km; Hijmans et al., 2005). To take into account the pairwise correlation between the predictors, the final 

set of variables was sub-selected considering a variance inflation factor (VIF) ≤ 3 (Zuur et al., 2010). The 

final set included Mean Diurnal Range (BIO2), Isothermality (BIO3), Mean Temperature of Wettest Quarter 

(BIO8), Precipitation Seasonality (BIO15), Precipitation of Warmest Quarter (BIO18) and Precipitation of 

Coldest Quarter (BIO19). All procedures were carried out with the packages “spatstat”, “maptools”, “rgeos” 

and “raster” in the R environment (R Development Core Team, 2015). The potential species distributions 

were predicted using an ensemble forecasting approach, as implemented in the R package “biomod2” 

(Thuiller et al., 2009). We considered the following seven modelling algorithms: generalized linear models 

(GLM), generalized additive models (GAM), generalized boosted models (GBM), random forests (RF), 

multivariate adaptive regression spline (MARS), maximum entropy models (MAXENT) and BIOCLIM 

(SRE) – for further details, see Thuiller et al. (2009). Each occurrence dataset was randomly split into a 70% 

sample, used for the calibration of the model, and a remaining 30%, used to evaluate model predictive 

performance, repeating the procedure 10 times and averaging the results. The predictive performance of each 

model was assessed by measuring the area under the receiver operating characteristic curve (AUC) (Hanley 

& McNeil, 1982) and the true skill statistic (TSS) (Allouche et al., 2006). Models were then projected over 

the study area using bioclimatic rasters at a resolution of 1 arc–seconds (ca. 1 km) following the direct 

downscaling approach (see Araujo et al. 2005; McPherson et al. 2006; Barbosa et al., 2010; Bombi & 

D’Amen 2012; Fernandes et al., 2014). To avoid using poorly calibrated models only projections from 

models with AUC ≥ 0.80 were considered in all subsequent analyses (Di Febbraro et al., 2015). As 

mentioned above, the committee averaging was chosen as the ensemble forecasting method (Gallien et al., 

2012). 

Regional SDMs were developed using an ensemble forecasting approach, as implemented in the package 

”biomod2”in the R software (R Development Core Team, 2009) (Thuiller et al., 2009). Biomod2 is a 

modelling platform that makes it possible to train SDMs using different modelling techniques, as well as to 

evaluate them and perform different averaged outputs of the single-model predictions (see Thuiller et al., 

2009). Using different statistical methods to model species distribution is highly recommended as prediction 

discrepancies between different techniques can be very large (Araujo et al., 2005; Thuiller et al., 2009). We 

considered the following seven modelling techniques (Thuiller et al., 2009; Jiguet et al., 2010; Ducci et al., 

2015): (1) generalized linear models (GLM); (2) generalized additive models (GAM); (3) generalized 

boosted models (GBM); (4) random forests (RF); (5) multivariate adaptive regression spline (MARS), (6) 

maximum entropy models (MAXENT) and (7) BIOCLIM (Surface Range Envelope, SRE) – for further 

details, see Thuiller et al. (2009). 

Following Pio et al. (2014), the modelling settings were tuned as follows. GLMs and GAMs were calibrated 

using a binomial distribution and a logistic link function. GBMs were calibrated with a maximum number of 
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trees set to 5000, threefold cross-validation procedures to select the optimal numbers of trees to be kept and a 

value of seven as maximum depth of variable interactions. Random forest models were fitted by growing 750 

trees with half the numbers of available predictors sampled for splitting at each node. MARS models were 

fitted with a maximum interaction degree equal to 2, MAXENT models were fitted with the default settings 

apart of a maximum value of 1000 iterations and default parameters were used to fit the SRE model. 

Each occurrence dataset was randomly split into a 70 % sample, used for the calibration of the model, and 

the remaining 30 %, used to evaluate model performance. A set of 10,000 background points were randomly 

placed in the study area to characterize its environment and represent pseudo-absences. According to Gallien 

et al. (2012), these background points were not considered ‘true’ absences, i.e. we assumed that some 

absences probably reflect environmental conditions where the species cannot survive, while others reflect 

locations where the species has not been surveyed due to imperfect detection. These pseudo-absences were 

weighted by the committee averaging projections calculated with the Global SDMs (Appendix S2): where 

the Global SDMs showed a high level of agreement with an absence (i.e. a low habitat suitability) we 

attributed a high weight to that absence (i.e. a high probability of being a ‘true’ absence), and vice versa. The 

weight was calculated by an inverse logistic transformation (equation 1) to obtain a stronger discrimination 

between the predictions of absences and presences (Gallien et al., 2012): 

 

Weight(x) = 
1

1+(
projGlob(x)

projGlob(x)−1
)

2
  
      (1) 

 

where Weight(x) is the weight attributed to the pseudo–absence x, which depends on projGlob(x), the 

prediction of the Global SDMs at the location of x [if projGlob(x) = 1 then Weight (x) = 0]. 

The models’ predictive performances were assessed by measuring the area under the receiver operating 

characteristic curve (AUC) (Hanley & McNeil, 1982) and the true skill statistic (TSS) (Allouche et al., 

2006). These validation methods have been widely used (e.g. Russo et al., 2014, 2015; Feuda et al., 2015; 

Bosso et al., 2016 a, b) and offer excellent performances. The data splitting procedure was repeated 10 times 

and the evaluation values averaged. For each of the 10 replicates of the species’ dataset, we ran a total of 70 

Regional SDMs (seven algorithms x 10 splitting replicates for model evaluation). Model averaging 

(ensemble model) was performed by weighting the individual model projections by their AUC scores (only 

models with AUC ≥ 0.8) and averaging the result—a method shown to be particularly robust (Marmion et 

al., 2009). The relative importance of variables was also calculated from the ensemble model using the 

specifically devoted functionality available in the biomod2 package (Jiguet et al., 2010). The final projected 

distribution of the species was obtained by averaging the projections from our 10 replicated ensemble 

models. This final map was also transformed into presence–absence values using a threshold maximizing 

sensitivity (the percentage of correctly predicted presence) and specificity (the percentage of correctly 

predicted absence) (Fielding & Bell, 1997). Such threshold has been widely used (e.g. Algar et al., 2009; 
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Dubuis et al., 2011; Di Febbraro et al., 2015) and constitutes one of the most accurate approaches (Liu et al., 

2005). 

 

 

3.3.5. Assessment of potentially colonized suitable habitat 

 

In order to discriminate predicted suitable areas already potentially colonized by beavers from those 

potentially colonizable in the future, we estimated the approximate distance covered by the beaver 

population since the release until the year of the most recent available record. For this analysis, we used only 

39 records of beavers reintroduced to Serbia, because for Bosnia and Herzegovina we had gaps in the dataset 

for some years (2008 and from 2011 to 2013), and we also discarded some locations of subjects originated 

from Croatia and Hungary. First, we pooled the species’ presence records according to their recording date in 

two-years groups from 2004 to 2013, obtaining 8 groups of points. Subsequently, we calculated the 

maximum distance between all the points within each group (“spDists” function in the sp package; Pebesma 

& Bivand, 2005). This represents the maximum distance covered by beavers in one year. Starting from the 

set of maximum distances calculated in this way, we computed the minimum, mean and maximum distance 

values, then generated three buffers around all occurrences points used for analysis with the “gBuffer” 

function of rgeos package (Bivand & Rundel, 2013). Suitable pixels falling inside the buffers refer to areas 

already potentially colonized by beavers up to 2014 (i.e. the year following that of the most recent available 

record). On the contrary, suitable areas placed beyond the maximum dispersal distance estimated up to 2014 

(i.e. outside the buffers) represent areas that might be colonized by the species in the future. 

 

 

 

3.3.6. Conservation gap analyses 

 

To assess the degree of protection granted to Eurasian beavers by the reserve network of Serbia and Bosnia 

and Herzegovina, we carried out two conservation gap analyses, one based on the actual occurrence maps, 

the other based on the binarized potential distribution map (e.g. Bosso et al., 2013; Bosso et al., 2016c). We 

overlaid such maps with the shape files containing the boundaries of the nature reserves of Serbia and Bosnia 

and Herzegovina. The shape files of the protected areas for these two countries were downloaded from 

http://www.protectedplanet.net/ (UCN and UNEP-WCMC, 2016). We included national parks, Ramsar 

Network Areas (http://www.ramsar.org/activity/ramsar-culture-network) and Reserves (Natural, Managed 

Nature, Strict Nature and Special Reserves). 
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3.4. Results 

 

 

3.4.1. Model performances and habitat suitability 

 

Both Global and Regional SDMs showed good or excellent levels of predictive performance as indicated by 

the AUC and TSS values. AUC and TSS for Global SDMs had a mean value and a standard deviation 

respectively of 0.813 ± 0.019 and 0.537 ± 0.042, whereas evaluation scores for Regional SDMs were equal 

to 0.968 ± 0.006 and 0.824 ± 0.021. According to our hypothesis, the environmental predictors that were 

most important to explain the beaver’s potential distribution were distances from hydrographic network, 

broadleaved forests and farmland. The species was also predicted to occur most likely at lower altitudes (Fig. 

3), but might reach 1000 m a.s.l. in the suitable areas of Southern and Eastern Serbia (Šar mountain in the 

south and Stara planina mountain in the east) and Western Bosnia (Dinaric Alps) (Figs 2 and 4). In general, 

habitat suitability decreased for increasing distances from hydrographic network, broadleaved forests, 

agricultural lands, main watercourses and inland marshes. For main watercourses, the variable’s response 

curve also showed a second peak at greater distances, likely corresponding to the places where secondary 

tributaries occurred (Fig. 3). Regional model predictions showed that the most suitable areas were 

concentrated in Northern Serbia and Bosnia and Herzegovina along the main rivers (i.e. Danube, Sava, Tisa 

and Drina rivers) and their tributaries, in Central Serbia and Bosnia and Herzegovina along the Great 

Morava, Bosna, Vrbas, Una and Sana Rivers and in Southern Serbia and Bosnia and Herzegovina along 

secondary river courses such as Neretva and Beli Drim Rivers, as well as many Great Morava’s tributaries 

(Figs 2 and 4). The percentage of suitable habitat for the beaver accounts for ca. 14% (~31,000 km²) of the 

whole study area.  

When taken separately, outputs of the algorithms employed to implement the ensemble model all predicted a 

high amount of suitable habitat in Southern, South-eastern and Central regions of Serbia (Sar mountain and 

Beli Drim, Danube, Sava and Morava Rivers) and in Central-western regions of Bosnia (Sana and Sokočnica 

Rivers). Unsuitable areas were mostly detected for Northern Serbia and North-western Bosnia (Figs 2 and 4). 

The most restrictive predictions were provided by Random Forest (RF) and Generalised Boosting Models 

(GBM) whereas Generalised Linear Model (GLM) and Generalised Additive Model (GAM) detected 

suitable habitat mostly along the main rivers as well as their tributaries. 

 

 



65 
 

 

 

Figure 3. Box plot and response curves for the six variables used to model Castor fiber potential distribution 

in Serbia and Bosnia and Herzegovina with the “biomod2” computer platform. The Box plot (top) expresses 

variable importance (variables are listed in decreasing order of importance from top to bottom). Response 

curves (bottom) correlate probability of occurrence (y axis) with values of the explanatory variables (x axis). 

Each curve represents one variable (DBF = distance from broadleaved forest; DIM = distance from inland 

marshes; DF = distance from farmlands; DHN, = distance from hydrographic network; DMW = distance 

from main watercourses; E = elevation). Distances are expressed in decimal degrees, elevation in m a.s.l. 
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Figure 4. SDM output for Castor fiber in Serbia and Bosnia and Herzegovina (a) and presence/absence 

binary map (b) obtained using the TSS metrics as a threshold.   

 

 

 

 

3.4.2. Assessment of potentially colonized suitable habitat 

 

From 2004 to 2013 the dispersal distances travelled by the species ranged between 56.61-88.28 km/year with 

a mean colonization speed of 70.9 ± 12.8 km/year (mean ± SD). According to minimum, mean and 

maximum dispersal distances potentially covered by beavers since their release up to 2014 (ca. 35% of the 

all suitable area; Figure 5) individuals from Serbia might have reached the suitable areas of Central Bosnia 

and Herzegovina since the last occurrence of 2013 had they dispersed at the maximum estimated speed. 

Within this portion of territory, they would have been more likely to colonize the northern part of Serbia and 

Bosnia and Herzegovina where more suitable areas occur, especially along the Danube, Tisa and Sava 

Rivers, exploiting the structural connectivity offered by the hydrographic network. According to the 

maximum distance buffer, beaver’s populations could have reached large portions of Central-Eastern Serbia, 

especially along the Great Morava river and its tributaries. By 2014, therefore, the species might have 

reached the borders of the country in the north-western part of the study area, joining individuals from 

Croatia. Large parts of South-Eastern Serbia beyond the maximum dispersal distance estimated up to 2014 

are also suitable for beavers, so they might be colonized in the future. 
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Figure 5. Potential dispersal distances of beavers projected to year 2014 representing the minimum, mean 

and maximum colonization speeds. The buffers are computed considering only Serbian occurrences (red 

filled circles) and excluding those derived from Bosnia, Hungary and Croatia (grey filled circles). 

 

 

 

3.4.3. Conservation gap analyses 

 

As hypothesised, the country’s reserve network offers little protection to the species (Table 2). Specifically, 

no presence records for Bosnia and 39.06% of those for Serbia lie within the boundaries of the national 

network of protected areas, while only 2.89% of Bosnian and 9.72% of Serbian suitable habitat fall within 

this network. In particular, beavers occur in the Serbian Special Natural Reserves of Zasavica and Obedska 

bara, where they were reintroduced, and in the Fruška Gora National Park in the northern part of the country 

near Croatia (Figs 2 and 6a). In Serbia, small portions of suitable habitat lie in the Natural Reserves and 

National Park previously mentioned in the north as well as along river valleys in the Šar planina National 

Park and Stara Planina Nature Park, respectively in south and eastern Serbia (Figs. 2 and 6b). A very small 

portion of suitable habitat in Bosnia and Herzegovina falls within three Ramsar sites (a list of wetlands of 

international importance) and in the Kozara National Park in the country’s northern part between Sava and 

Vrbas Rivers. 
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Figure 6. Percentage of Castor fiber presence records (red filled circles) (a) and suitable habitat (green 

areas) (b) and their overlay with networks of protected areas (simple hatch) for Serbia and Bosnia and 

Herzegovina. 

 

 

 

 

3.5. Discussion 

 

We found that a wide area of Serbia and Bosnia and Herzegovina predicted as suitable for beavers might be 

colonized in the near future, especially in Central and Southern Serbia. Our analysis highlighted that beavers 

have remarkable colonization skills, demonstrated by a very high dispersal distance travelled soon after 

reintroduction, which allows them to reach quickly optimal habitat found far from the release sites. From a 

conservation point of view, expanding beavers could potentially be at risk in both Serbia and Bosnia and 

Herzegovina since the national network of protected areas does not grant sufficient protection to both 

currently occupied areas and those of potential future colonization. 

We confirmed the hypothesis that beaver habitat suitability is mostly influenced by the presence of rivers, 

broadleaved forests and farmlands, as shown by previous studies (Fustec et al., 2001; Maringer & Slotta-

Bachmayr, 2006; Vorel et al., 2008; John et al., 2010). For instance, South et al., (2000) developed a 

spatially explicit model to explore the possibility of reintroducing beavers to Scotland using an individual-

based population dynamics module integrated with GIS data on the spatial distribution of habitat. As in our 



69 
 

case too, sites with sufficient deciduous woodlands adjacent to rivers were classified as suitable for the 

beaver. Besides, field observations carried out in the Netherlands showed that territories occupied by a single 

beaver family include at least ca. 2 km of wooded banks (Nolet & Rosell, 1994). Although some studies 

concluded that vegetation type contributes little to beaver habitat models and highlighted the importance of 

geomorphologic river variables like water depth, slope of river banks and interbank distance (Beier & 

Barrett, 1987; Hartman, 1996; Suzuki & McComb, 1998), John et al. (2010) found that beavers actively 

sought out areas dominated by willows (Salix spp.) during their expansion phase along the Morava River 

basin (Czech Republic). This result is further confirmed by previous observations (Zurowski & Kasperczyk, 

1990) showing that a recently reintroduced beaver population may tolerate environments with extreme water 

fluctuations to settle close to willow patches. We therefore remark that broadleaved forest habitat should be 

regarded as an important predictive variable for beaver settlement in both optimal and suboptimal/marginal 

habitat during expansion phases before a population reaches its carrying capacity.  

The importance of farmland is associated with the species’ ecological flexibility (Nolet & Rosell, 1998): 

crops constitute important food sources when close (within c. 20m) to river banks where beavers have settled 

(Schwab & Schmidbauer, 2003), especially where natural food is scarce (Dewas et al., 2012). 

The mean estimated dispersal distance of ca. 70 km travelled by beavers in a year is in agreement with the 

results of previous studies. For instance, Fustec et al. (2001) estimated a maximum distance travelled by 

colonizing beavers for the Loire Valley between 0-80 km/year. On the other hand, the annual colonization 

speed estimated by John et al. (2010) in the Morava River basin from 1995 to 2007 was lower (0-33 km). 

Our greater values refer to the first ten years following reintroduction, when range expansion typically 

proceeds at a faster pace (Halley & Rosell, 2002; Hartman, 1995). The long dispersal distances we obtained 

may also be due to the fact that shortly after reintroduction beavers follow a spatially discontinuous dispersal 

pattern often colonising optimal sites farther away from closer, less suitable sites (Nolet & Rosell, 1994; 

John et al., 2009, 2010). This kind of expansion pattern appears particularly relevant for management, as 

beavers released in suboptimal habitats are likely to cover long distances to settle farther away where better 

environmental conditions occur (Halley & Rosell, 2002). 

The need for appropriate management to favour beavers’ expansion in Serbia and Bosnia and Herzegovina is 

also remarked by further consideration. Beavers are ecosystem engineers in aquatic habitats because they 

modify riverine and wetland habitats favouring many other species by felling trees (Fustec et al., 2001; John 

et al., 2010) and building dams that create still water conditions (Rosell et al., 2005; Stringer & Gaywood, 

2016; Law et al., 2016). Their impact on forests and cultivations, however, as well as their tendency to settle 

near human-dominated areas may also generate conflicts with humans (Schwab & Schmidbauer, 2003; 

Dewas et al., 2012) and increase beaver mortality. Both in Serbia and Croatia beavers are often killed by 

collision with motor vehicles and entanglement in fishing nets. Most kills occur in spring, when sub-adults 

are more active in food search and explore new sites, and autumn, when increased agricultural practices 

expose beavers to be killed by vehicles or farmers (Grubešić et al., 2015). Conflicts might be mitigated by 

improving the current network of protected areas, which unfortunately is largely insufficient in agreement 
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with our second hypothesis. Appropriate management, such as restoring riparian habitats where needed to 

reduce crop damage and erecting physical barriers to protect crops would also help reduce conflicts and 

human-induced mortality (Dewas et al., 2012). 

Using occurrence records of a beaver population during colonization (not in equilibrium with the 

environment), might violate one of the main assumptions of SDMs (Guisan & Zimmermann, 2000), but we 

overcame this shortcoming by using a hierarchical approach in which weights of pseudo-absences are 

adjusted according to a large-scale climatic model based also on records of populations that have reached the 

equilibrium. Moreover, although ca. 30-50 years are needed for complete colonization to occur (Hartman, 

1995; Halley & Rosell, 2002), the first areas to be colonized are the most suitable ones, regardless of their 

distance from the release site (Nolet & Rosell, 1994; John et al., 2009; John et al., 2010). Overall, we are 

confident that our SDMs were reliable.  

We inevitably considered the environment as isotropic with respect to species expansion (i.e. the species has 

the same probability to expand in all the directions). Recent observations suggest that the area predicted to 

have been occupied by 2014 has in fact only partly been colonized (D. Ćirović, pers. obs.), most likely due 

to the obviously anisotropic nature of the landscape: for example, gaps between rivers may have slowed 

down colonization. More accurate forecasts would require the application of a specific connectivity model. 

Nevertheless, quantifying dispersal distances increased the management value of the SDM, helping to 

identify which areas might have been already occupied and thus target them with urgent monitoring and 

protection. This might be especially important to generate an action plan setting priorities for the 

establishment of conservation actions.   

Based on our findings, we urge that the current reserve network is expanded further to assist the colonisation 

process, reduce mortality and mitigate potential conflicts with people. We therefore remark that accession of 

the two states to the EU would represent a unique chance to assist the further establishment of beavers 

through the designation of Natura 2000 sites. 
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Table 1. List of ecogeographical variables used for the Regional SDMs, their type, index (name used to indicate the variable in the analysis), spatial resolution, 

and CLC (Corine Land Cover) code. All variables are expressed in m.  

 

 

 

 

 

 

 

 

 

 

 

Table 2. Degree of protection granted to Castor fiber by the network of protected areas of Serbia and Bosnia-Herzegovina based on the current occurrence 

records and on the binarized map obtained from SDMs. Reserve = Natural, Managed Nature, Strict Nature and Special reserves. 

 

Occurrence records % records within site 

Geographic area National parks  Ramsar Networks Reserves All 

Serbia 6.68 0.00 32.38 39.06 

Bosnia and Herzegovina 0.00 0.00 0.00 0.00 

 

Species Distribution Models % suitable surface area within site 

Serbia 5.88 0.00 3.84 9.72 

Bosnia and Herzegovina 0.91 1.89 0.09 2.89 
 

 

Type Ecogeographical variable Index Spatial resolution (km) CLC raster code 

Topographical Altitude Elevation 1 - 

Habitat Distance from hydrographic network dist_Rivers 1 - 

Habitat Distance from main water courses dist_Water_courses 1 40 

Habitat Distance from farmlands dist_Land_principally_agriculture 1 21 

Habitat Distance from Broad-leaved forest dist_Broad.leaved_forests 1 23 

Habitat Distance from inland marshes dist_Inland_marshes 1 35 
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Chapter IV 

 

4. Species’ potential distribution may be affected by phenology: bats as a case 

study 

 

4.1. Abstract 

 

Phenology is a key feature to consider in the description of species niches to fully capture seasonality in 

resource use and climate requirements. This is all the more true for temperate bats, whose ecological needs 

differ markedly across seasons, especially between hibernation and reproduction. Species distribution models 

(SDMs) are widespread tools to evaluate a species’ potential distribution and identify its large-scale habitat 

preferences. Modelling studies have experienced a recent boost thanks to the increasing amount of data 

available to implement SDMs: however, despite the chief importance of data phenology to describe a 

species’ niche, the time of year data were collected is often neglected or not controlled for in the process. In 

this study we tested the hypothesis that the output of SDMs developed for six European bat species will 

differ according to whether hibernation or reproductive occurrence data are used. We employed a dataset 

made of 470 independent occurrence records of bat hibernacula and 400 independent records of nursery 

roosts of selected species and for each species we developed separate winter, summer and mixed (i.e. 

generated from both winter and summer occurrences) models. Due to the large geographic scale we used (the 

entire European continent), to generate models we only considered climatic variables. Seasonal and mixed 

potential ranges differed from each other and the direction of this difference was species specific. In general, 

we found that mixed model should be preferred over seasonal models for the description of potential ranges. 

Seasonally-biased models might in fact underrepresent important areas and this might impair their 

application to management or conservation planning. Overall, our work highlights the importance of 

considering data seasonality in the development of SDMs in order to encompass comprehensively the 

different ecological requirements arising from species-specific phenology. 
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4.2. Introduction 

 

 

In the last decades, species distribution models (SDMs) have attracted increasing attention (Guisan et al., 

2013) as a main tool to make explicit predictions on the potential distribution of organisms (Franklin, 2010; 

Peterson, 2011). This approach has been successfully applied to support many strategies for species 

conservation. For instance, SDMs may detect regions of high habitat suitability for species or communities, 

both in the present and in the future (Beaumont et al., 2007; Rebelo et al., 2010; Rubio-Salcedo et al., 2017; 

Zhang et al., 2017), estimate the conservation performance of reserve networks (Carvalho et al., 2010; Doko 

et al., 2011; Tulloch et al., 2015; Bosso et al., 2017c), forecast spatial patterns of biological invasions 

(Thuiller et al., 2005; Di Febbraro et al., 2016; Bosso et al., 2017a), or inform species reintroduction (Olsson 

& Rogers, 2009; Ardestani et al., 2015; Smeraldo et al., 2017). 

SDMs are calibrated on the observed species distribution (Barbet-Massin et al., 2010) and may rest upon 

limited datasets (Hernandez et al., 2006). SDMs may, in general, be generated from small datasets, also 

when these are made of records collected opportunistically, so they perform well with species that are rare, 

endangered or elusive. SDMs basically correlate species occurrence records with a set of environmental 

predictors ecologically relevant for the species (Thuiller, 2003; Thuiller et al., 2005; Thuiller et al., 2009). It 

is therefore evident that an accurate ecological knowledge of target species must be integrated into the 

modelling process to obtain more realistic outputs (Austin, 2002; Huston, 2002; Wiens, 2002; Guisan & 

Thuiller, 2005). Many studies have remarked the importance of collecting data, selecting predictors or study 

areas in a way that best highlights the relationship between a species’ occurrence and the environmental 

variables needed to represent its ecological niche (Guisan & Thuiller, 2005; Van Horn, 2002; Thuiller et al., 

2004).  

Within this framework, the type and quality of occurrences play an important role (Guisan et al., 2013). 

Although the distribution of locations in the geographical and/or ecological space may affect model 

reliability (Reddy & Davalos, 2003; Syfert et al.,2013), the potential effects of sampling biases in the dataset 

are rarely taken into account (Fourcade et al., 2014). This is a potentially important aspect, since models built 

using presence records sampled during a short period of time or/and over a limited space may underrepresent 

a species’ potential niche (Guisan & Thuiller, 2005). A common source of variation in occurrence datasets 

and their ecological correlates is given by phenology, often neglected in ecological niche modelling.  

Phenology integrates genetic and physiologic traits of a certain species with climate and environmental 

variables (Miller-Rushing & Weltzin, 2009), so it logically represents one of the most important traits, if not 

the most important trait, shaping species distribution (Chuine, 2010). A species’ phenological stage is 

typically associated with seasonally variable ecological requirements whose fulfilment may require selecting 

different habitats or areas, or even performing long-range movements (migration) to move to more 

favourable regions (Newton, 2008; Holte et al., 2017). Even many sedentary species may still move 

periodically on a small-scale to sites matching seasonally variable ecological requirements. Hibernating 

species often move between summer and winter habitats, often differing considerably in climate or spatial 

https://link.springer.com/article/10.1007/s10336-016-1419-2#CR35
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resources (Hansson & Åkesson, 2014). Hibernating mammals cope with food scarcity in winter by 

decreasing body temperature and metabolic rate to save energy (Lyman, 2013), and to do so they often seek 

sites that are well protected from predators and provide a stable, cool microclimate. This may imply moving 

seasonally between summer and winter quarters, sometimes between altitudes or latitudes (Nagel & Nagel, 

1991; Webb et al., 1996; Rivers et al., 2006; Papadatou et al., 2008). SDMs built on datasets that do not 

encompass such seasonal environmental variation may offer an incomplete or biased niche representation.  

Following this rationale, we set out to test the effects of data phenology on the calibration of SDMs. 

Temperate insectivorous bats represent ideal model organisms to analyse the influence of phenology on 

species distribution because they show markedly different ecological requirements between summer, when 

they reproduce, and winter, when they hibernate to overcome paucity of prey arthropods caused by low 

ambient temperatures (Grindal et al., 1992; Lewis, 1993; Hoying & Kunz, 1998; Frick et al., 2010; Bellamy 

& Altringham, 2015). Summer and winter roosts differ from one another in terms of microclimate, so their 

often uneven spatial distribution may affect seasonal bat presence. Roost suitability responds to various 

spatial scales because it is typically influenced by e the characteristics of the roost itself as well as by the 

bioclimatic conditions of the surrounding environment (Bellamy & Altringham, 2015).  

Understanding how climate influences bats in different phenological phases may therefore provide insights 

into the limitations it poses to bat distributions (Erickson & West, 2002). We developed separate SDMs for 

six European bat species employing hibernation (winter model), reproduction (summer model) and total 

occurrences (summer + winter occurrences, hereafter termed “mixed models”). We assumed datasets 

featuring both phenological categories of presence records to provide a more comprehensive species’ niche 

representation, and tested two hypotheses: 1) SDMs built using respectively hibernation and reproductive 

occurrences will differ between each other, and 2) mixed models providing equal weight to the two 

phenological statuses will offer a more realistic representation of a species’ geographical range. 

We tested these hypotheses through an analytical framework that investigated divergences in geographical 

distribution and extent between seasonal and mixed SDM outputs. We also analysed potential phenological 

differences in the environmental space through a niche overlap analyses.  
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4.3. Methods 

 

4.3.1. Study area and presence records 

 

 

The study area covered mainland Europe (west of Caucasus), United Kingdom and Ireland and all major 

Mediterranean islands spanning from latitudes 77° N - 34° N and longitudes 24° 31’W - 69° 5’E 

(corresponding to an overall surface area of ca. 4,030,720 km
2
 and elevation range between 0 - 4954 m a.s.l.; 

Fig. 1). Therefore, the study area included the European geographical range of all bat species (Mitchell-Jones 

et al., 1999) we considered for our study. Overall, the climate of Europe can be characterized as temperate 

although considerable variations exist, with a Mediterranean climate dominating in the south (with hot 

summers and mild winters) and a considerably colder and more humid climate in the north and in 

mountainous regions (Huntley et al., 2007).  

Presence records for European bat species were provided by several countries within the Eurobats agreement 

(http://www.eurobats.org/). Additional data were retrieved for Spain, Germany and Italy. Each record 

included coordinates of winter or summer roosts. As the study aimed to develop seasonal SDMs, for each 

species we split the datasets in two groups according to records’ phenological statuses. Subsequently, only 

bat species for which ≥ 20 presence records for each phenological stage were used for analysis (Wisz et al., 

2008).  

Based on such criteria we selected six bat species, i.e. Myotis emarginatus, Myotis myotis, Miniopterus 

schreibersii, Rhinolophus euryale, Rhinolophus ferrumequinum and Rhinolophus hipposideros (Table 1). 

Records were screened in ArcGIS (version 10.2.2) for spatial autocorrelation using average nearest 

neighbour analyses to remove spatially correlated data points and guarantee independence (Dormann et al., 

2007; Russo et al., 2014; Kwon et al., 2016; Smeraldo et al., 2017; Bosso et al., 2017b). The final presence 

dataset varied between a minimum of 132 locations for R. euryale and a maximum of 157 for M. myotis 

including a total of 870 presence records covering most of the European distribution known for our study 

species. Using seasonal datasets of differing size might have potentially biased the resulting models. 

Therefore, we obtained equally large sample size of winter and summer locations as follows. For each 

species, the larger phenological dataset (whether the winter or the summer one) was sampled randomly to 

extract a number of occurrences equaling that of the less numerous dataset, and the sampling procedure was 

repeated 10 times. Mixed models were also developed using the same number of presence records used for 

the corresponding seasonal models and considering equal numbers of winter and summer data to avoid all 

risks of bias. Each of the 10 independent sets of occurrences was used to train a separate SDM.  
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Figure 1. Representation of the study area (dark grey) corresponding to the European territories on which the 

potential distribution of six bat species (Myotis emarginatus, M. myotis, Miniopterus schreibersii, 

Rhinolophus euryale, R. ferrumequinum, R. hipposideros) was projected for the aims of the present study.  

 

 

 

 

Table 1. Initial dataset of species' presence records collected for both phenological stages used to implement 

seasonal and mixed SDM models. 

 

 

Species Summer records Winter records 

Myotis emarginatus 128 140 

Myotis myotis 480 813 

Miniopterus schreibersii 229 99 

Rhinolophus euryale 152 70 

Rhinolophus ferrumequinum 169 343 

Rhinolophus hipposideros 134 389 
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4.3.2. Environmental variables 

 

As initial set of environmental predictors for SDM training, we considered elevation and 19 bioclimatic 

variables derived from the WORLDCLIM dataset (www.worldclim.org/current). Because our models were 

developed for the whole Europe, given such a large scale, we refrained from using land cover variables 

(Huntley et al., 1995; Pearson & Dawson, 2003; Thuiller et al., 2004; Araujo & Guisan, 2006). All variables 

were provided as rasters at a spatial resolution of 2.5 arc–minutes (≈5 km; Hijmans et al., 2005; Di Febbraro 

et al., 2016). To take into account the pairwise correlation between the predictors, the final set of variables 

was subselected considering a Pearson’s correlation coefficient |r|<0.75 (Hernandez et al., 2006; Lobo et al., 

2010; Russo et al., 2015; Bosso et al., 2016). This procedure was carried out in the R environment (R 

Development Core Team, 2012). From this set of predictors, we further subselected only the most relevant 

variables according to the species’ ecological requirements during the two phenological stages (hibernation 

and maternity) based on prior knowledge of the ecology of temperate bats (Erickson & West, 2002; 

Speakman & Thomas, 2003; Austin & Van Niel, 2011), i.e. : annual mean diurnal range (BIO2), 

isothermality (BIO3), minimum temperature of coldest quarter (BIO6), mean temperature of warmest quarter 

(BIO10), precipitation seasonality (BIO15), precipitation of warmest quarter (BIO18) and elevation (Table 

2). 

 

 

Table 2. List of bioclimatic variables used to develop seasonal and mixed SDMs for six bat species in 

Europe (Myotis emarginatus, M. myotis, Miniopterus schreibersii, Rhinolophus euryale, R. ferrumequinum, 

R.  hipposideros)  

 

 

 

 

 

  Type Bioclimatic variable Unit Source 

Topographical Altitude m WorldClim database 

Climatic Annual mean diurnal range °C WorldClim database 

 

Isothermality % WorldClim database 

 

Minimum temperature of the coldest month °C WorldClim database 

 

Mean temperature of the warmest quarter °C WorldClim database 

 

Precipitation seasonality % WorldClim database 

  Precipitation of the warmest quarter mm WorldClim database 
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4.3.3. Species distribution modelling 

 

For each bat species we developed three SDMs: two seasonal models from separate winter and summer 

datasets respectively, and a mixed model generated as described above. SDMs were built through an 

ensemble forecasting approach, as implemented in the R package “biomod2” (https://cran.r-

project.org/bin/windows/base/; Thuiller et al., 2009). We considered the following eight modelling 

techniques (Thuiller et al., 2009; Jiguet et al., 2010; Ducci et al., 2015): 1) generalized linear models (GLM); 

2) generalized additive models (GAM); 3) generalized boosted models (GBM); 4) random forests (RF); 5) 

multivariate adaptive regression spline (MARS), 6) maximum entropy models (MAXENT), 7) Surface range 

envelope (SRE) and 8) artificial neural network (ANN; for further details, see Thuiller et al., 2009). 

Following Pio et al. (2014), the modelling settings were tuned as follows. GLMs and GAMs were calibrated 

using a binomial distribution and a logistic link function. GBMs were calibrated with a maximum number of 

trees set to 5000, threefold cross-validation procedures to select the optimal numbers of trees to be kept and a 

value of seven as maximum depth of variable interactions. RF models were fitted by growing 750 trees with 

half the numbers of available predictors sampled for splitting at each node. MARS models were fitted with a 

maximum interaction degree equal to 2, while MAXENT models were fitted with the default settings apart 

with a maximum value of 1000 iterations. Default parameters were used to fit ANN and SRE models. Each 

occurrence dataset was randomly split into a 70% sample, used for the calibration of the model, and the 

remaining 30%, used to evaluate model performance. Because our datasets contain only presence data, a set 

of 10,000 background points were randomly placed over a region identified by all the WWF terrestrial 

ecoregions (Olson et al., 2001) were species records occurred  (Hirzel et al., 2002; Barve et al., 2011; Barbet-

Massin et al., 2012; Smeraldo et al., 2017).  Predictive performances of SDMs were assessed by measuring 

the area under the receiver operating characteristic curve (AUC; Hanley & McNeil, 1982) and the true skill 

statistic (TSS; Allouche, Tsoar, & Kadmon, 2006). These validation methods have been widely used (e.g. 

Bosso et al., 2016b; Feuda et al., 2015; Breiner et al., 2015; Balestrieri et al., 2016; Smeraldo et al., 2017) 

and offer excellent performances. The data splitting procedure was repeated 10 times and the evaluation 

values averaged. For each species’ dataset, we ran a total of 80 SDMs (eight algorithms × 10 splitting 

replicates for model evaluation). After excluding models with AUC<0.8, model averaging was performed by 

weighting the individual model projections by their AUC scores, a method shown to be particularly robust 

(Marmion et al., 2009). The relative importance of variables was also calculated from the ensemble model 

using the specifically devoted functionality available in the biomod2 package (Jiguet et al., 2010). For winter 

and summer models, the final potential distributions were obtained by averaging the projections from the10 

replicated ensemble models coming from the subsampling procedure (see above). Final maps were also 

transformed into presence–absence values using a threshold maximizing sensitivity (the percentage of 

correctly predicted presence) and specificity (the percentage of correctly predicted absence; Fielding & Bell, 

1997). Such threshold has been widely used (e.g. Algar et al., 2009; Dubuis et al., 2011; Di Febbraro et al., 

2015; Smeraldo et al., 2017) and constitutes one of the most accurate (Liu et al., 2005). 
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4.3.4. Models comparison 

 

We assessed the differences between seasonal and mixed SDMs by comparing the resulting distributions 

both visually and quantitatively. In the former approach, we compared visually the degree of matching 

between potential distributions obtained using seasonal vs. mixed datasets. We also measured the spatial 

agreement in location as the Euclidean distance between geographical centroids of each ranges (Herkt et al., 

2017). For each species, we then measured the absolute (in km
2
) and percent surface of both the entire study 

area and the corresponding IUCN species’ range covered by seasonal and mixed models. We assumed the 

IUCN species range (obtained from www.iucnredlist.org) to express the observed species’ geographic range 

for our study species.  

For each species we also overlaid the binary maps from the two seasonal models and reclassified the output 

in two main categories: “areas of agreement”, where suitable habitat predictions generated by both models 

matched, and “areas of disagreement” where the models disagreed with each other. All procedures were 

carried out with ArcGIS (version 10.2.2).Finally, a generalized linear mixed model (GLMM) was employed 

to test the differences in surface areas of predicted ranges generated by seasonal vs. mixed models. We used 

the percent surface area of predicted range as the response variable, the model type (summer, winter and 

mixed) as fixed term and the species as random term, allowing the model to vary its intercept according to 

these factors. GLMMs were run with R using the “lme4” package (Bates et al., 2008).  

 

 

4.3.5. Niche overlap between seasonal models 

 

We performed niche overlap analyses using the analytical framework proposed by Broennimann et al. (2012) 

and applied to several recent mammal studies (e.g. Russo et al., 2014; 2015; Loy et al., 2017). Within this 

framework, the available environmental space of the six species (i.e. all of the environmental conditions 

occurring in the study area) was used to train a principal components analysis (PCA). Species records 

associated with the two phenologies and environmental conditions were projected into this PCA space. 

Subsequently, the density of the background environments and species records across the first two PCs were 

calculated by a kernel density smoother (Broennimann et al., 2012). The resulting density grids of r × r cells 

in the environmental space were used to compute niche overlaps between the two phenologies in terms of 

Schoener’s D (Schoener, 1970), a metric that ranges from 0 (no overlap) to 1 (complete overlap). We 

performed the niche similarity test sensu Warren et al. (2008) to evaluate if the two phenologies are more 

similar/different in their niche space than expected by chance. The test proceeds by comparing the niche 

overlap values (Schoener’s D) to a null distribution of 100 overlap values, yielding a significant outcome if 

the observed Schoener’s D value between the two phenologies is higher (significant similarity) or lower 

(significant dissimilarity) than the 95% of the null distribution (P < 0.05). In addition, the similarity between 
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niches was tested in both directions, i.e. the amount of phenology 1 niche included in phenology 2 niche, and 

vice versa, following Broennimann et al. (2012). Schoener’s D values for the ten replicated occurrence 

datasets were then averaged, and the percentage of tests yielding significant outcomes was considered (i.e. 

100% of significant similarity tests indicates that a significant outcome arises from each of the ten replicated 

occurrence datasets). The procedure was carried out in R using the “ecospat” package (Di Cola et al., 2017). 

 

 

4.4. Results 

 

4.4.1. SDMs predictive performance and comparison 

 

Both seasonal and mixed models showed high levels of predictive performance. The greatest seasonal model 

performances were achieved for R. euryale (summer, AUC = 0.982 ± 0.004, TSS = 0.891 ± 0.024; winter, 

(AUC = 0.978 ± 0.003, TSS = 0.901 ± 0.011). Mixed models for both R. hipposideros and R. euryale showed 

the highest AUC values (respectively 0.984 ± 0.007 and 0.984 ± 0.005) and TSS (0.917 ± 0.027 and 0.905 ± 

0.023) (Table 3). For all species, the same bioclimatic variables drove both seasonal and mixed models, i.e. 

minimum temperature of the coldest quarter, isothermality, elevation, mean temperature of the warmest 

quarter and annual mean diurnal range (Table 4). However, the contribution of a certain variable differed 

among seasonal models: for instance, the minimum temperature of the coldest month (importance = 

0.487±0.122) and the mean temperature of the warmest quarter (0.11±0.073) influenced especially summer 

distribution, whereas isothermality (0.258±0.236) and annual mean diurnal range (0.074±0.052) contributed 

more to winter than to summer models (Table 4 and Fig. 2). For all species, occurrence in both seasons was 

more likely for minimum temperatures of the coldest month > -10 °C. However, in winter bats were more 

likely to occur in areas where this variable was comprised between -10°C – 0°C, whereas in summer 

occurrence was more likely at higher values, as well as where mean temperatures of the warmest quarter 

were >15°C (Fig. 3). 
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Table 3. Mean AUC and TSS scores of the SDMs for the six analyzed bat species. Standard deviations are reported in parentheses. 

 

 

 

 

Table 4. Average variable importance for seasonal, mixed and total SDMs developed for six bat species in Europe (Myotis emarginatus, M. myotis, Miniopterus 

schreibersii, Rhinolophus euryale, R. ferrumequinum, R. hipposideros) 

 

Bioclimatic Variable Mixed SDMs Summer SDMs Winter SDMs 

Elevation 0.085 (±0.055) 0.117 (±0.059) 0.111 (±0.069) 

Annual mean diural range 0.047 (±0.043) 0.029 (±0.016) 0.074 (±0.052) 

Isothermality 0.170 (±0.088) 0.156 (±0.082) 0.258 (±0.236) 

Minimum temperature of the coldest month 0.470 (±0.068) 0.487 (±0.122) 0.405 (±0.286) 

Mean temperature of the warmest quarter 0.053 (±0.044) 0.110 (±0.073) 0.079 (±0.113) 

Precipitation seasonality 0.009 (±0.007) 0.027 (±0.011) 0.016 (±0.010) 

Precipitation of the warmest quarter 0.029 (±0.020) 0.025 (±0.008) 0.041 (±0.027) 

Species Mixed model Summer model Winter model 

  AUC TSS AUC TSS AUC TSS 

Myotis emarginatus 0.976 (±0.005) 0.889 (±0.02) 0.975 (±0.058) 0.880 (±0.068) 0.973 (±0.002) 0.871 (±0.013) 

Myotis myotis 0.983 (±0.007) 0.893 (±0.026) 0.970 (±0.023) 0.862 (±0.012) 0.976 (±0.005) 0.888 (±0.023) 

Miniopterus schreibersii 0.976 (±0.003) 0.886 (±0.015) 0.975 (±0.003) 0.876 (±0.013) 0.975 (±0.004) 0.895 (±0.012) 

Rhinolophus euryale 0.984 (±0.005) 0.905 (±0.023) 0.982 (±0.004) 0.891 (±0.024) 0.978 (±0.003) 0.901 (±0.011) 

Rhinolophus ferrumequinum 0.971 (±0.008) 0.890 (±0.023) 0.961 (±0.015) 0.860 (±0.022) 0.957 (±0.007) 0.836 (±0.033) 

Rhinolophus hipposideros 0.984 (±0.007) 0.917 (±0.027) 0.974 (±0.013) 0.890 (±0.040) 0.969 (±0.011) 0.859 (±0.038) 
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Figure 2. The histogram expresses the contribution of each variable to summer, winter and mixed models' 

predictive performance (variables are listed in increasing order of importance from top to bottom). Each bar 

represents one variable (BIO15 = precipitation seasonality; BIO18 = precipitation of the warmest quarter; 

BIO2 = annual mean diurnal range; BIO10 = mean temperature of the warmest quarter; ALT = elevation; 

BIO3 = isothermality; BIO6 = minimum temperature of the coldest month). 

 

Summer and winter potential distribution differed considerably from each other, the greatest overlap between 

seasonal models being shown by M. schreibersii and R. euryale (61.30 % and 54.11 % respectively; Table 

5). Summer suitable areas were localized mainly in south-western Europe while winter potential ranges 

extended towards higher latitudes and eastern European regions (Figs 4-5). Seasonal models also predicted 

smaller portions of species ranges than did mixed models (Table 6). For all species, potential distribution as 

predicted by mixed SDMs offered a more comprehensive representation of the range as they correctly 

predicted ca. 90% of both summer and winter suitable habitats (Table 5). Moreover, for all species mixed 

SDMs predicted a larger suitable surface of the study area than did seasonal models (Figs 4-5; Table 6) and 

ca. 57 % of the IUCN range for four out of six bat species, whereas seasonal SDMs in most cases 

underrepresented it (Table 7). The extent of predicted species’ range differed significantly among the three 

(winter, summer and mixed) SDMs: both seasonal SDMs predicted smaller ranges than did mixed SDMs 

(Table 8 and Table 9). Finally, for almost all the species (except M. schreibersii and R. euryale), the range 

centroids of mixed models were closest to those of IUCN ranges centroids, the smallest distance being 80.9 

km for M. emarginatus (Table 10). 
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           a   b 

 

Figure 3. a-b. Response curves for two out of the ten variables used to model the potential distribution of six European bat species. The minimum temperature of 

the coldest month (left column) and the mean temperature of the warmest quarter (right column) determine a different probability of presence for each species 

depending on the seasonal model, i.e. the summer (red curve) or the winter (blue curve) model.             
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Figure 4. Presence/absence maps generated with the biomod2 package for: a-b) Myotis emarginatus; c-d) M. myotis; e-f) Miniopterus schreibersii.  

The left column shows the overlap between summer and winter predicted distributions. The right column represents the habitat suitability map obtained with the 

mixed model approach.  
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Figure 5. Presence/absence maps generated with the biomod2 package for: a-b) Rhinolophus euryale; c-d) R. ferrumequinum; e-f) R. hipposideros.  The left 

column shows the overlap between summer and winter predicted distributions. The right column represents the habitat suitability map obtained with the mixed 

model approach 
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Table 5. Percentage of agreement between predicted summer and winter ranges (S-W), mixed and summer models (Mix-S) and between mixed and winter 

models (Mix-W) developed for six bat species in Europe. The values shown in table express the percent overlap between binary maps derived from the species’ 

ensemble models. S = summer model, W = winter model, Mix = mixed model 

 

Table 6. Percentage and size of the study area predicted as suitable for six European bat species by seasonal and mixed SDMs 

Species 

Range size  

Mixed model Summer model Winter model 

% km² % km² % km² 

       Myotis emarginatus 13.97 1,410,317 8.20 827,817 8.38 846,392 

Myotis myotis 14.87 1,501,175 7.62 769,264 8.53 860,626 

Miniopterus schreibersii 8.90 898,484 8.61 869,208 7.35 742,007 

Rhinolophus euryale 9.22 930,789 7.14 720,706 7.09 715,759 

Rhinolophus ferrumequinum 13.96 1,409,307 9.11 919,684 12.50 1,261,613 

Rhinolophus hipposideros 10.58 1,068,085 7.42 749,073 10.51 1,060,514 

 

 

Species S-W Mix- S Mix-W 

 

  

  Myotis emarginatus 12.82 73.23 84.31 

Myotis myotis 28.21 94.71 85.11 

Miniopterus schreibersii 61.30 94.27 98.48 

Rhinolophus euryale 54.11 94.51 86.68 

Rhinolophus ferrumequinum 46.92 97.81 84.39 

Rhinolophus hipposideros 33.23 87.35 77.08 
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Table 7. Percentage and size of the IUCN range predicted as suitable for all bat species by seasonal and mixed SDMs respectively. 

 

 

Table 8. Summary of the dataset used to develop the GLMM tests. For each species we calculated the percentage of IUCN ranges predicted respectively by 

mixed, summer and winter SDMs. Because 10 replicates were developed for each SDM, in this table we indicated only mean value and standard deviation of the 

IUCN ranges size. 

Species 
Predicted % of IUCN range size  

Mixed model Summer model Winter model 

    Myotis emarginatus 36.7 (±7.26) 34.94 (±0.01) 33.33 (±7.97) 

Myotis myotis 40.87 (±5.06) 40.64 (±0.01) 29.62 (±4.25) 

Miniopterus schreibersii 49.61 (±7.79) 47.32 (±6.19) 46.43 (±0.01) 

Rhinolophus euryale 54.16 (±11.32) 48.94 (±9.81) 49.19 (±0.02) 

Rhinolophus ferrumequinum 56.66 (±5.00) 43.42 (±0.02) 54.43 (±8.06) 

Rhinolophus hipposideros 30.61 (±7.12) 28.14 (±0.01) 35.53 (±11.77) 

Species Range size  

 

IUCN Mixed model Summer model Winter model 

  km² % km² % km² % km² 

Myotis emarginatus 2,807,211 52.25 1,466,768 34.94 980,840 33.72 946,592 

Myotis myotis 3,309,502 55.13 1,824,528 28.63 947,510 28.42 940,560 

Miniopterus schreibersii 3,101,089 59.61 1,848,559 58.30 1,807,935 46.90 1,454,411 

Rhinolophus euryale 1,782,141 66.42 1,183,698 56.00 997,999 52.54 936,337 

Rhinolophus ferrumequinum 2,574,230 64.91 1,670,933 47.22 1,215,551 66.20 1,704,140 

Rhinolophus hipposideros 3,199,009 40.82 1,337,826 30.41 972,819 41.53 1,296,558 
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Table 9. Results from generalized linear mixed models testing the effect of summer, winter or mixed SDMs on predicted range sizes of six European bat species 

(Myotis emarginatus, M. myotis, Miniopterus schreibersii, Rhinolophus euryale, R. ferrumequinum, R. hipposideros). Asterisks denote significant results.  

GLMM response Variable Estimate Error Pr(>|z|)    

     Range size Summer model -0.09563 0.03751 0.01079 *  

     

 

Winter model -0.10839 0.03753 0.00387 ** 

          

 

 

Table 10. Euclidean distance (km) measured between the centroids of our predicted SDMs and IUCN ranges of six European bat species 

 

Species 
Distance from IUCN centroids 

Mixed model Summer model Winter model 

    Myotis emarginatus 80.9 299.4 337.8 

Myotis myotis 155.9 202.9 327.5 

Miniopterus schreibersii 432.9 422.5 547.3 

Rhinolophus euryale 139.2 46.1 80.7 

Rhinolophus ferrumequinum 195.8 274.8 219.5 

Rhinolophus hipposideros 266.4 451.5 373.6 
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4.4.2. Phenology-dependent niche differences 

 

The first two PCA axes featured ca. 60 % of bioclimatic variable’ contribution. The niche similarity tests 

highlighted the existence of three main groups of bat species according to the degree of overlap between 

summer and winter niches, i.e. between reproduction and hibernation ecological requirements (Figure 4). 

Specifically, M. schreibersii and R. euryale showed the highest Schoener’s D (> 0.7) with a symmetric 

overlap of the two niches in the environmental space (Figure 4). R. ferrumequinum and R. hipposideros 

belonged to a second group characterized by a high niche similarity (Schoener’s D index > 0.6) and a 

moderately symmetric overlap between seasonal niches (Figure 4). Finally, M. myotis and M. emarginatus 

showed the lowest niche similarity and an asymmetric overlap of the two niches (Schoener’s D index ≤0.4) 

although for M. emarginatus no replicates of the niche similarity test were significant (Fig. 6). Furthermore, 

in case of difference between the percentages of the two-directions similarity tests yielding significant 

outcomes (i.e. winter → summer and summer → winter) we may identify which phenological niche includes 

the other one. In particular, R. euryale and R. hipposideros summer niches included winter niches, and the 

opposite was observed for R. ferrumequinum and M. myotis.  
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Figure 6. Graphical representation of the environmental niches of: a) Myotis emarginatus; b) M. myotis; c) 

Miniopterus schreibersii; d) Rhinolophus euryale; e) R. ferrumequinum; f) R. hipposideros. Each panel 

represents summer (green) and winter (blue) niches of a species along the first two axis (PC1 and PC2) of 

PCA (left); the percentage of replicates (SR) for which the similarity test of winter to summer niche (blue 

bars) and of summer to winter niche (green bars) was significant (right).  
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4.5. Discussion  

 

All models showed an AUC value > 0.9 and a TSS values > 0.8 representing a very high predictive 

performance (e.g.: Rebelo et al., 2010; Domíguez-Vega et al., 2012; Smeraldo et al., 2017; Bosso et al., 

2017b).  

For almost all the species our first hypothesis was confirmed, i.e. model outputs differed greatly between 

seasons depending on the dataset used. The results also supported our second hypothesis, i.e. SDMs 

developed using records from winter or summer roosts separately were less accurate than the corresponding 

mixed models in predicting a species’ potential range. Such a serious bias should be taken carefully into 

account since SDMs relying on incomplete datasets that underrepresent phenological variation may lead to 

erroneous outputs and potentially affect conservation strategies. Carretero & Sillero (2016) evaluated the 

robustness of SDMs against the use of spatially incomplete datasets for the threatened Iberian lizard 

Podarcis carbonelli and found that the resulting models were biased because models provided a partial 

representation of the environmental niche, which may vary across the distribution range, thus violating the 

assumption of niche equality (e.g. Guisan & Zimmermann, 2000; Wiens et al., 2009; Peterson, 2011). Our 

study adds a further dimension to this problem since occurrence datasets may also underrepresent temporal 

variation in the use of space, and this is especially likely when modelling the ecological niche of species 

showing pronounced phenological patterns. It is also important to remark that for our study we 

conservatively included species that are sedentary or only carrying out small-scale migration movements 

such as M. myotis (Rodrigues et al., 2003). Using long-distance migrants would have probably led to even 

larger discrepancies among models. A thorough knowledge of a species’ year-round physiological 

requirements is therefore essential to select suitable occurrence datasets and generate faithful representations 

of potential distribution (Feng & Papes, 2017).  

Many studies confirmed that a deep knowledge of species’ biology and ecology represents the initial and 

most critical phase of SDMs’ development before giving it concrete support with the use of modelling 

techniques (Austin, 2002; Guisan & Thuiller, 2005; Franklin, 2010; Mathewson et al., 2017). Raes (2012) 

advised that SDMs calibrated across the broadest spatial, environmental and/or temporal extent are 

biologically and biogeographically justifiable to capture a species’ niche in its broadest sense. Neglecting the 

full environmental variation under which a species may occur, i.e. in our case using phenologically biased 

collections to fit SDMs may result in under-predicted species’ distributions, and essentially similar to 

modelling a partial niche.  

In our study, winter SDMs failed to predict many potentially suitable regions of southern Europe and, on the 

contrary, summer SDMs excluded most of the north-eastern part of species’ ranges. These findings are 

related to the influence of different climatic predictors over seasonal ranges (Morganti et al., 2017; Ortega & 

Pérez-Mellado, 2016). Summer potential distribution was mostly limited by the minimum temperature of the 

coldest month: this is explained by the negative response of bat reproduction and lactation towards cold 

summer temperature, which decrease food availability, in turn delaying embryo development and reducing 
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milk production (Lewis, 1993; Hoying & Kunz, 1998; Arlettaz et al., 2001). Colder roost temperatures, 

especially those of poorly insulated roosts that respond promptly to drops in environmental temperatures 

(Russo et al., 2017), may slow down juvenile growth and ultimately affect their winter survival (Racey & 

Swift, 1981; Tuttle & Stevenson, 1982; Erickson & West, 2002). Bats may therefore select for warmer areas 

in summer (Erickson & West 2002; Frick et al., 2010) and this was reflected in our models. On the other 

hand, in winter hibernating bats need low ambient temperatures and small thermal fluctuations to minimize 

energy expenditure (Nagel & Nagel, 1991; Speakman & Rowland, 1999; Speakman &Thomas, 2003; 

Masing & Lutsar, 2007). Since temperatures of hibernacula are generally a consequence of the mean annual 

surface temperature (Perry, 2013), in our winter models low temperature areas were more important than in 

summer models.  

The geographical divergence existing between seasonal SDMs was confirmed by the niche overlap analyses 

for three species, i.e. M. myotis, R. ferrumequinum and R. hipposideros, which showed either an asymmetric 

or a moderate symmetric similarity between winter and summer ranges in the environmental space. Instead, 

M. schreibersii and R. euryale showed a higher degree of similarity between seasonal niches which reflected 

a greater overlap between their habitat suitability maps than in the previously mentioned species group. Both 

species have a more southerly range than the remaining we analysed and share similar roosting requirements 

(Russo et al., 2002), are associated with mild Mediterranean winters and frequently use warm underground 

sites year-round. Based on our results, and given the noticeable differences found between seasonal SDMs, 

we propose that mixed SDMs developed using the same numbers of winter and summer occurrences will 

portray a more realistic potential distribution. 

To evaluate the spatial prediction performances of our models, we considered the IUCN distribution maps as 

“observed” species’ ranges. However, Herkt et al. (2017) found that IUCN expert maps of African bats differ 

substantially from carefully crafted SDMs designed to depict species’ complete ranges. IUCN boundaries are 

developed from spatial information on species occurrences and do not include information on species’ 

environmental preferences (de Castro Pena, Kamino, Rodrigues, Mariano-Neto, & de Siqueira, 2014). In 

severely undersampled regions, all the more in the speciose tropics including those of Africa, such maps will 

tend to fall short of estimating the complete species’ range. Nevertheless, IUCN expert maps may still be 

appropriate for ecological analyses when they focus on easily recorded taxa and well-sampled regions 

(Breiner et al., 2017; Herkt et al., 2017) such as in our work. 

We found that for all species mixed SDMs were able to predict a larger area of the IUCN species’ range than 

did seasonal models so the former provided a better estimation of the observed species’ distribution. 

Nevertheless, some areas within the IUCN ranges were left out, especially some regions at the edge of the 

range. These findings may depend on the inability of IUCN maps to exclude unsuitable habitats due to 

discontinuities in ecological variables necessary to the species, or their sensitivity to extreme outliers 

(Burgman & Fox, 2003; de Castro Pena et al., 2014). For the aims of our work, i.e. to emphasize the 

phenological significance of the occurrences we used, we considered only hibernation and maternity roost as 

species’ presence records. This deliberate restriction of the dataset, which excluded records from bat captures 
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or acoustic detection at foraging or drinking sites, might have underestimated species’ realized niche. 

However, this type of dataset has been also used successfully to generate summer roosting habitat maps for 

bats species in England at different scales (Bellamy & Althringham, 2015). Moreover, given the typical (< 

30 km: e.g. Biscardi et al., 2007) scale of foraging trips made by bats from their roosts to the feeding sites, 

and considering the scale at which our modelling exercise was done, we rule out that omitting foraging 

records from our dataset may have generated discrepancies between our predicted distributions and the 

IUCN maps.  

To our best knowledge, our work is the first to test the effects of data phenology on SDMs. Our conclusion is 

likely to apply to a broad range of organisms besides bats and question to validity, or at least the 

comprehensiveness, of the findings of many previous studies. While we encourage future studies on other 

species showing a more or less pronounced phenological spatial variation, we strongly recommend that for 

conservation and management applications, models based on seasonally mixed datasets in which the 

different phenologies are evenly represented should be preferred over models encompassing only one 

phenological stage or built on seasonally biased datasets.  
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Chapter V 

 

5. Concluding remarks 

 

The aim of this thesis was to evaluate the effectiveness of SDM’s technique in supporting species 

conservation actions. We used SDMs as a methodological approach to test different hypotheses regarding 

ecological, biological and conservation issues. In particular, within the case studies addressed in this thesis, 

SDMs allowed us obtain the following results:  

1. to detect new potential suitable areas where rare and threatened species were not yet surveyed or 

where they have not been observed before due to their elusive behaviour. In this perspective, the 

resulting habitat suitability maps provided a valuable support to researchers who may focus 

monitoring efforts in precise areas avoiding useless and time consuming actions. 

 

2. to investigate the degree of protection guaranteed by the network of protected areas both to the 

current presence sites and to the all potential suitable habitat. Such analyses allow to detect potential 

gaps in species’ conservation and may suggest both to extend the surface of protected areas to new 

suitable habitat and to increase the degree of connectivity between those already existing.  

 

3. to highlight which environmental variables mostly determine species’ probability of presence and 

allow to develop a niche overlap analyses in order to compare ecological niches of two species. 

However, broad scale SDMs revealed limited differences in preferred environmental predictor 

variables while failed to detect differences in microhabitats occupied. Only a small scale niche 

analyses provided us with detailed ecological differences characterizing the two species and gave 

information on the type of management that the species need. Our findings highlighted that it is 

always advisable to carry out analyses at multiple scales due to limitations of SDMs related to the 

choice of the scale of analyses which should be selected according to the aim of the study. 

 

4. to evaluate the effectiveness of SDMs in managing the conservation of reintroduced species during 

the post-release phase. We were able to predict suitable areas which might be colonized in the near 

future by the reintroduced species and to evaluate the potential risk posed to the expanding 

population by the very low degree of protection offered by the national network of protected areas. 

Developing effective strategies aimed to increase the current network of protected areas with the 

support of SDMs may lead to reduce conflicts and human-induced mortality of the species. Using 

occurrence records of a reintroduced population during its colonization phase, might violate one of 

the main assumptions of SDMs which says that species must be in equilibrium with the environment 
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in the study area. We suggested to apply a hierarchical approach in which weights of pseudo-

absences are adjusted according to a large-scale climatic model based also on records of populations 

that have reached the equilibrium.   

5. to focus on the importance of considering species’ phenology as a fundamental trait when collecting 

presence records to develop SDMs. Until now, modelling exercises mostly used presence data 

collected in multiple ways, including all occurrence points in a unique dataset. This approach may 

lead to indirectly neglect the ecological requirements of a species during a certain phenological 

phase when the latter is underrepresented within the species’ presence dataset. We demonstrated that 

SDMs developed using different seasonal data separately, i.e. records of sites used by species for 

hibernation or reproduction, may predict only partial species’ ecological niches. Then, we suggested 

a more valuable method for data collecting aimed to obtain a dataset in which seasonal records are 

equally represented in order to develop SDMs which take into account for all the potential ecological 

requirements of the species during its complete life cycle and predict a more realistic species’ 

geographical range.  

 

Further research may be build up on our findings in order to predict future distribution patterns under climate 

or land use change. For instance, we might apply phenology˗ dependent SDMs to predict the impact of 

climate change on summer and winter ranges of migratory species and evaluate which seasonal range might 

be at risk or expand in the future.  

This thesis has clear implications for conservation and management. Predicting distribution ranges by 

modelling may offer important guidance in the development of conservation plans for example by allowing 

more exhaustive gap analyses or by helping detect corridors, or low-suitability areas in need of restoration to 

improve connectivity as mentioned above. However, linkage between SDM science and practice is still 

weak. We strongly encourage to involve SDMs in real decision-making processes that will benefit from their 

technical input as this modelling approach have the potential to better bridge theory and practice, and to 

contribute to improve both scientific knowledge and conservation outcomes. 
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