
UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

A NEW TECHNIQUE

FOR VIDEO COPY-MOVE FORGERY

DETECTION

LUCA D’AMIANO

TUTOR: Prof. Giovanni POGGI

COORDINATOR: Prof. Daniele RICCIO

XXX CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELLE TECNOLOGIE
DELL’INFORMAZIONE

“What is the most resilient parasite?
Bacteria? A virus? An intestinal worm?

An idea.
Resilient... highly contagious.

Once an idea has taken hold of the brain
it’s almost impossible to eradicate.

An idea that is fully formed
- fully understood - that sticks;

right in there somewhere.”

Contents

List of Figures iii

Introduction 1

1 Detection of Image and Video Copy-Move Forgeries 3
1.1 A Short History of Image and Video Forgery 3
1.2 A Classification of Image and Video Forgeries 12
1.3 Overview on Image Copy-Move Forgery Detection 18

1.3.1 A Dense-Field Technique for Image Copy-Move
Forgery Detection 22

1.4 Overview on Video Copy-Move Forgery Detection 24
1.4.1 A Method for Detection of Block Duplications in Videos 26

2 Feature Extraction 31
2.1 Zernike Moments . 33
2.2 3D Flip-Invariant Features 36

3 Matching Algorithm 39
3.1 PatchMatch . 41
3.2 Modified PatchMatch . 42

3.2.1 Adapting PatchMatch to video 43
3.3 PatchMatch with Multiresolution 44

4 Post Processing 49
4.1 Dense Linear Fitting . 49

4.1.1 Morphological Operations 51
4.2 Removing False Alarms . 53

i

ii CONTENTS

5 Experimental Results 57
5.1 The GRIP Dataset . 57
5.2 Performance Assessment . 62

5.2.1 Numerical results . 66
5.3 Complexity . 71
5.4 A real-world case: the Varoufakis video 77

Conclusion 81

Bibliography 83

List of Figures

1.1 Tampered picture of President Abraham Lincoln 4
1.2 Tampered picture of General Ulysses Grant 5
1.3 Tampered picture of Dictator Benito Mussolini 5
1.4 Tampered pictures in the show business 6
1.5 Kerry-Fonda tampered picture 7
1.6 Tampered picture of English soldier in Iraq 7
1.7 Tampered picture of city bombing in Lebanon 8
1.8 Tampered picture of iranian missiles 8
1.9 Jedi Kittens tampered video 9
1.10 Varoufakis’ foregery . 10
1.11 Face-to-Face tampered video 11
1.12 Example of image copy-move. 13
1.13 Image inpainting. 14
1.14 Intra-frame Video copy-move 15
1.15 Additive and occlusive video copy-moves 15
1.16 Copy-moves with geometric transformations 17
1.17 Examples from FAU and GRIP databases 20
1.18 Experimental results for image CMFD techniques 21
1.19 Modified PatchMatch: first-order predictors 23
1.20 Video forgery detection: classification scheme 24
1.21 Method proposed in [7]: trends of ctBn

m
. 28

1.22 Method proposed in [7]: examples of detections 29

2.1 Examples of radial profiles 34
2.2 Examples of sampling grids 35
2.3 Feature 3D explanation . 37

3.1 PM vs KDtree: computational time 40
3.2 PatchMatch 3D: propagation in time dimesion 43

iii

iv LIST OF FIGURES

3.3 Block diagram of the proposed video copy-move detector . . . 45
3.4 Video partitions for PM parallel computing 47

4.1 Post-processing steps . 52
4.2 Removing random false matches 53
4.3 Detection Maps: DUAL vs NO-DUAL 55

5.1 GRIP dataset: videos from #1 to #5 58
5.2 GRIP dataset: videos from #6 to #10 59
5.3 GRIP dataset: videos from #11 to #15 60
5.4 Examples of ground truth and detection map 62
5.5 Examples of 3D detection maps 68
5.6 Trends of detection variables’ distributions 69
5.7 ROCs comparison between proposed technique and [7] 71
5.8 ROCs: DUAL vs NO-DUAL 72
5.9 Detection maps: examples for plain CMs 73
5.10 Detection maps: examples for plain pristine 74
5.11 Detection maps: examples for CMs with rotation 75
5.12 Detection maps: examples with compression 76
5.13 Computational cost of the proposed algorithm 77
5.14 Varoufakis’ videos . 78
5.15 Detection in Varoufakis videos 79

Introduction

Nowadays, anyone can easily modify the appearance and content of digital
images by means of powerful and easy-to-use editing tools such as Adobe
Photoshop, Paintshop Pro or GIMP. This becomes more and more true also
for digital videos. Powerful and widespread tools exist for video editing, like
Adobe After Effects and Premiere Pro, which allow users to perform a number
of video manipulations. Most of the times, these have the only purpose of
improving the quality of videos or their appeal. Sometimes, however, they
are not so innocent, aiming at falsifying evidence in court, perpetrating frauds
or discrediting people. Therefore, in the scientific community there is an
increasing activity towards the design of efficient and reliable techniques for
the detection and localization of video forgeries [73].

One of the simplest, yet effective, video manipulations consists in copy-
moving a video object from a source location to one or more target loca-
tions. This attack can be additive, when a semantically relevant object is copy-
moved, or occlusive, when part of a background region is copy-moved to hide
a foreground object. In both cases, a number of tricks can be used to reduce
the attack detectability, like rotating or resizing the object, flipping it along the
temporal axis, adding noise, etc. However, additive attacks provide a number
of clues to the investigator, from the very same presence of visually similar
objects which can raise the attention of the observer, to the presence of salient
details (keypoints) which can be exploited to match the clones. Occlusive
copy-moves, instead, offer no such clues, and are in fact much more difficult
to detect.

In this thesis a new algorithm for the reliable detection and localization of
video copy-move forgeries is proposed, taking inspiration from the technique
proposed in [26] for still images. To reliably detect both additive and occlusive
copy-moves, we use a dense-field approach, based on the matching of suitable
features, computed on a spatio-temporal grid and invariant to various spatial,

1

2 Introduction

temporal, and intensity transformations, which guarantee robustness to sev-
eral post-processing operations. To limit complexity in the matching phase, a
suitable video-oriented version of PatchMatch [3, 4] is used, with a multireso-
lution search strategy. PatchMatch allows us to build a nearest-neighbor field
(NNF), connecting each feature with its best-matching [26, 32, 33]. Finally,
the NNF is post-processed to single out areas with coherent spatio-temporal
displacement as candidate copy-moves.

To the best of our knowledge, this is the first algorithm for video copy-
move detection based on a dense-field approach. Thanks to this choice, it is
able to detect and localize reliably both additive and occlusive copy-moves.
Moreover, despite the huge computational challenge intrinsic in copy-move
video detection, it runs in a reasonable time, allowing effective forensics anal-
yses. As said before, it extends the detector proposed in [26] for still images,
introducing, however, a number of innovations to deal efficiently with videos.
The main technical innovations of this work consist in i) the definition of a
new flip-invariant 3D feature based on the Zernike moments; ii) the design of
a fast version of the matching algorithm, based on multi-scale processing and
parallel implementation; iii) the introduction of a new criterion in the post-
processing phase to tell apart copy-moves from false matches. The algorithm
is available online (www.grip.unina.it) to guarantee research reproducibility
and to enable other researchers to innovate upon this basis. A further contri-
bution of this work concerns performance assessment, which relies on a new
dataset, designed ad hoc, and including realistic copy-moves, both additive
and occlusive, in a wide variety of challenging situations. The experimental
results show that the proposed method is able to detect and localize with good
accuracy video copy-moves, even in adverse conditions.

In the rest of the thesis, Chapter 1 provides an overview on image and
video forgery detection, with special focus on copy-move attacks, and analyzes
the state of the art. The following chapters describe the proposed algorithm,
analyzing in turn feature extraction, Chapter 2, matching, Chapter 3, and
post-processing Chapter 4. Chapter 5 presents the experimental setting and
analyzes numerical results, leading to the final conclusions.

Chapter 1

Detection of Image and Video
Copy-Move Forgeries

This chapter provides the introductory material necessary for the full under-
standing of the proposed method described later on. After an historical tour
on image and video forgery, these attacks are classified systematically, before
going in more depth on the problem of detecting and localizing copy-move
attacks, both in image and videos.

1.1 A Short History of Image and Video Forgery

Photography is an extraordinary communication tool. Its ability to convey
information has been accompanying us in many aspects of our lives for two
centuries. It is often said that an image is worth a thousand words, and also
that seeing is believing. However, to keep relying on proverbs, all that glitters
is not gold, and more and more often pictures are used to convey false or
distorted information.

The first attempts to obtain some forms of photography date back to the
early 19th century, although the photographic process reached maturity only
around the middle of the century when taking a picture became possible with-
out a long exposure of the subject. As time went on, photography began to play
a fundamental role not only for entertainment, but also in a number of practi-
cal applications, especially in the commercial, journalistic and political fields.
Moreover, due to their ability to provide rich information, and their perceived
reliability, photos started very soon to be used as evidence in courtrooms.

The continuous technological progress led to many innovations throughout

3

4 Copy-Move Detection

Figure 1.1: Tampered picture of President Abraham Lincoln: on the left
the forged image, on the right the pristine image.

these two century, however it seems safe to say that the advent of digital pho-
tography brought about a huge shift of paradigm. Taking and sharing photos
has become straightforward, and we are now surrounded and overwhelmed by
billions of pictures, also thanks to the rapid diffusion of social networks. In-
deed, a fundamental feature of these new platforms is the opportunity of easily
sharing multimedia material, especially photographs.

However, with images acquired and stored in digital form, the fast ad-
vances of image processing methods and tools has made very easy to modify
their content. Actually, image manipulation has quite a long history, but this art
was once limited to a small number of very skilled individuals. With modern
image editing tools, instead, anyone can easily manipulate images, threaten-
ing the very same use of these pieces of information for sensitive applications,
especially as investigative tools and evidence in court. In this section we are
going to expose, through a historical excursus, some common kinds of falsifi-
cations that can be carried out on digital images.

It is not advisable to trust every photograph we see. Indeed, pictures were
modified already a few decades after the birth of the first photograph by Niepce
in 1814. One of the first known manipulated images dates back to 1860 and
portrays the United States President Abraham Lincoln (Fig.1.1). Lincoln’s
head was put on the body of another man, the politician John Calhoun, in order
to obtain a more dramatic, and almost heroic, style. Another famous fake is a
photograph of General Ulysses S. Grant, showing him in front of his troops on
the City Point (Virginia) battlefield in 1864, during the American Civil War.

1.1. A Short History of Image and Video Forgery 5

Figure 1.2: Tampered picture of General Ulysses Grant: on the right the
pristine images used to make the forged image on the left.

Figure 1.3: Tampered picture of Dictator Benito Mussolini: on the left
forged image, on the right pristine image.

An accurate research of the Congress Library has revealed that this image is
an excellent composition of three different photos, as shown in Fig.1.2.

Jumping to the twentieth century, the 1942 picture of Fig.1.3, featuring the
Italian dictator Benito Mussolini, was modified by removing the person who
held the horse to create a heroic atmosphere.

With digital cameras and software editing tools, it has become very easy to
modify images. It has been estimated that almost the 10% of the colored pic-
tures published in the United States of America in 1989 were already falsified
and defaced. In 1989, the cover of Tv Guide showed the famous anchorwoman
Oprah Winfrey, but actually it was a fake: Oprah’s head was put on the body
of another actress. The false picture was created without the actress’ autho-
rization and she discovered the trick recognizing her dress (Fig.1.4). In 2005,
Newsweek’s cover illustrated a photograph of Martha Stewart with a caption
calling to mind her weight loss due to the prison term. The picture was not real
and Stewart’s head was actually placed on a model’s slimmer body (Fig.1.4).

During the 2004 U.S. presidential campaign, a photo was diffused portray-
ing Senator John Kerry was, candidate for the Democratic party, next to the

6 Copy-Move Detection

Figure 1.4: Tampered pictures of Oprah Winfrey (left) and Martha Stew-
art’s (right).

activist Jane Fonda during an assembly against the war in Vietnam (Fig.1.5).
But, again, it was a collage of two different photos, later retrieved, when the
damage to Kerry campaign was done and irrecoverable.

There are many manipulations also in more sensitive contexts than poli-
tics or show businesses, it is the case of war’s pictures. In April 2003, in fact,
a photo was published showing an English soldier in Basra, Iraq, who com-
manded Iraqi civilians to bend down. This picture, taken by Brian Walski, was
made public on the Los Angeles Times’ cover after the invasion of Iraq by
United States of America. When the publisher found out that the image was a
juxtaposition of two different photos, he did not hesitate to dismiss the photog-
rapher although he had thirty years of experience in his line of work (Fig.1.6).
Another example dates back to August 2006 when Reuters Agency published
on its website a picture, taken by the Lebanese photographer Adnan Haji, that
portrayed a Lebanese city bombarded by Israeli. The image was, successively,
deleted when a manipulation was discovered, which increased the smoke due
to the bombing in order to overstate the impact over the city (Fig.1.7). Reuters
removed more than 1000 pictures taken by Haji from his archive.
In 2008 an Iranian missile was digitally added to an image in order to conceal

a missile on the ground that did not fire. The forged image appeared on the
front page of many major newspapers (Fig.1.8).

All the cases previously exposed are a little part of an endless sequence of
photos that have been manipulated and spread through history1. In each case

1The link http://www.fourandsix.com/photo-tampering-history/ provides many other ex-
amples of forged images

1.1. A Short History of Image and Video Forgery 7

Figure 1.5: Tampered picture obtained by the juxtaposition of John Kerry
and Jane Fonda images: on the right the pristine images used to fabricate
the forged image on the left.

Figure 1.6: Tampered picture of an English soldier in Iraq: on the right
pristine images used to make forged image on the left.

8 Copy-Move Detection

Figure 1.7: Tampered picture of city bombing in Lebanon: on the right
forged image, on the left pristine image.

Figure 1.8: Tampered picture of iranian missiles. Right: the forged image
with an added missile. left: the pristine image.

the aim is to spread false news or to smear a particular event, a person or a
nation. Studies have shown that modified images stick in the mind for a long
time and they are also able to create or alter memories of who is looking. Few
days before the Presidential elections in 2004, a voter was asked for whom he
had voted and why. Among the many reasons to justify his vote for George
W. Bush, the man said he could not forget the picture of John Kerry and Jane
Fonda together even though he knew it was a fake. During a research, original
and false images of memorable events were shown to the participants. The
modified photos, portraying a larger crowd or more violence, succeeded to
change participants’ memories tied to that event, a proof that photography is
one of the new media forms able to change men’s perception.

There are many different software tools able to realize these types of
manipulations. Starting with programs created for image visualization, that
often allow to correct some imperfections, modify colors or resize the number
of pixels, until the latest tools specifically projected to make more advanced
forgeries as Photoshop, Gimp, Paint and so on.

1.1. A Short History of Image and Video Forgery 9

Figure 1.9: Some frames from the Jedi Kittens tampered video

Unlike for digital images, it is not so easy to find documented cases of tam-
pered videos. This is because it is much more difficult to manipulate a video
data structure changing its informative content and leaving it credible. Even if
video editing tools are becoming more and more user-friendly, manipulating
the video content in order to modify its information is still a job for profes-
sionals. Probably, this is one of the reasons why video was considered as an
infallible instrument to show the evidence of a fact until about a decade ago
[95].

In the last few years, however, there has been a sharp increase in the
number and quality of tools used for video manipulation (Adobe Premiere,
Adobe AfterEffects, Photoshop, Cinelerra, Lightworks etc.), many scientific
papers have been written to propose powerful techniques for video manipu-
lation [60, 83, 30, 92, 57, 82, 48], and the phenomenon is growing fast. In
some cases, it is possible to recognize the video manipulation by visual in-
spection, since its contents appears to be unrealistic; in other cases the video
content looks so natural that only forensic techniques may be able to expose
the forgery. Just like for digital images, video manipulations can be realized
for various aims, both benign and malevolent.

Notable examples of the first type are the videos realized by Zach King, a
video artist very popular on social media. In 2011 King posted on YouTube
a video called Jedi Kittens2 featuring two cats fighting with laser swords (see
Fig.1.9). The video had been obviously tampered with, but the manipulation
was performed with great skill, obtaining a great impact. Within a few days
from its publication it reached millions of visualizations.

Turning to malevolent tampering, it is worth mentioning the Varoufakis
case, which made the headlines in 2015. Fig.1.10 shows frames taken from

2https://www.youtube.com/watch?v=NtgtMQwr3Ko

10 Copy-Move Detection

Figure 1.10: Frames taken from the three Varoufakis videos. From top to
down: #1, sticking middle finger, #2, arm down, #3, victory sign.

1.1. A Short History of Image and Video Forgery 11

Figure 1.11: A face-to-Face tampered video featuring the manipulation of
lips movement. Frames taken from source and target videos (left) are used
to create the manipulated video on the right.

three different versions of the same video, all allegedly original, portraying the
Greek economist and politician Yanis Varoufakis during a public speech. In
the first version, Varoufakis raises his arm and shows the middle finger while
mentioning Germany; in the second one, he does not even raise his arm; in
the third one, he raises his arm and shows middle and index fingers in the
victory sign. The diffusion of the first video was followed by a heated media
debate: Varoufakis immediately disproved the allegations. Obviously, two of
the videos are well-crafted fakes, and it is not easy to find out which one by
visual inspection, and not even by forensic analyses. In the paragraph 5.4
there is a detailed analysis of the three videos, conducted with the algorithm
proposed in this thesis, with experimental proofs that partially dissipate the
doubts.

The former example, however, was still rather naive. A much more

12 Copy-Move Detection

threatening attack is represented by software tools such as Face-to-Face. In
2015, researchers of the Max-Planck-Institute for Informatics of the Erlangen-
Nuremberg University (D) and of the Stanford University (USA), introduced
a new technique that allows to manipulate very effectively a person’s face in a
video in real time [104] [105]. The authors demonstrate a possible application
of this technique. They take a source video, filmed in laboratory, and a tar-
get video, typically downloaded from social media and show that it is possible
to replace the face’s labial in the target video with the lips’ movement of the
source video (Fig.1.11). In other words, the target video can be manipulated
so that the person appears to pronounce some specific words, which of course
can be easily modified as well. It is not hard to imagine the damage that such
a tool could bring to a person’s image if used malevolently.

1.2 A Classification of Image and Video Forgeries

There are a number of ways to manipulated an image content, involving both
local and global processes, and possibly combined with one another. We
briefly describe, here, the most important attacks, that is splicing, copy-move,
and inpainting.

Splicing: consists in pasting on the target image an object taken from another
(source) image. The source can be both a natural or computer-generated image.

Copy-Move: differs from splicing because source and target images coincide.
That is, the object is copied from a position of the image and moved some-
where else.

Inpainting: was proposed originally to restore parts of images damaged by
scratches or other impairments, by filling the voids in correspondence of the
damaged part. However, it has soon be employed to remove unwanted objects
from the image, extending the background to hide the traces.

The forgeries shown in figures 1.1 through 1.6 are all splicing, while those
of figures 1.7 and 1.8 are copy-moves. Both attacks can be additive and oc-
clusive. Assuming that the image can be divided in foreground objects and a
background, an additive forgery is obtained by inserting a foreground object
in the image, taken either form another (splicing) or the same (copy-move)
image. Instead, an occlusive forgery aims at hiding a foreground object by
means of some background areas, which is almost always taken from the same
image to obtain a more realistic effect. Under this point of view, inpainting is

1.2. A Classification of Image and Video Forgeries 13

Figure 1.12: Example of image copy-move. Pristine image (top left),
forged image (top right). A branch of the tree from the top right side of the
image is copied and pasted in the middle side of the image (as highlighted
by the image in the bottom)

always occlusive. Unlike copy-move, it does not cover the foreground image
by means of a single region, but rather juxtaposing a large number of small
blocks (exemplar-based inpainting) or else diffusing the background to fill the
unwanted region (diffusive inpainting).

Fig.1.12 shows a clear example of additive copy-move, while Fig.1.13 il-
lustrates the phases of a diffusive inpainting.

Turning to videos, the same type of attacks exist, with obvious differences
due to the three-dimensional (or 2D+t) nature of the objects. However, a fur-
ther distinction is due between Inter-frame and Intra-frame forgeries.

We talk of Inter-frame forgeries when the manipulation affects groups of
video frames taken as a whole. Examples of Inter-frame forgery are the re-
moval or insertion of whole video frames, or the cloning of a set of video
frames from one temporal location to another (inter-frame copy-move).

14 Copy-Move Detection

(a) (b) (c)

Figure 1.13: Example of image inpainting. Original photo with a scratch
(a), inpainting mask (b), inpainted image (c). The scratch region will be
filled with content taken from the surrounding area.

In Intra-frame forgeries, instead, the manipulation affects only a part of a
frame or group of frames (see Fig.1.14). This technique is therefore used to
remove or add video objects. Partial copy-move (only a part of the frame is
manipulated) and inpainting techniques can be included in this category.

Inter-frame techniques are simpler to perform but less flexible allowing
a restricted number of manipulations. Intra-frame techniques, instead, allow
more sophisticated manipulations. For example, it is possible to remove a
person from a surveillance video replacing it with suitable material taken from
the same or other videos [113]. These techniques are more difficult to perform,
but allow for more flexible and subtle content modifications. Moreover, if
properly carried out [47, 46], they can be quite challenging to detect, as they
leave no obvious traces in the video temporal structure. As already mentioned,
these attacks can be additive, when a video object of interest is inserted anew in
the target video, or occlusive, when an object is deleted from the video, through
inpainting or by copying background over it. Fig.1.15 shows examples of both
situations.

A more systematic review of intra-frame attacks is summarized in Tab.1.1.
Additive forgeries may be performed by pasting a video object taken either
from another video (splicing) or from the same video (copy-move). The first
case is certainly more interesting, however it can be hardly performed without
leaving a long trail of clues. In fact, objects taken from a different source are
very likely to have statistical, physical and semantic properties incompatible

1.2. A Classification of Image and Video Forgeries 15

Figure 1.14: Additive intra-frame video copy-move. A ball from the
source video is copied and pasted in another spatio-temporal position of
the same video.

(a) Original frame (b) Additive forgery

(a) Original frame (b) Occlusive forgery

Figure 1.15: Additive (top) and occlusive (bottom) video copy-moves.
Cell counting videos, like those shown in the bottom, can be easily ma-
nipulated to commit scientific frauds. Detection may be quite difficult,
especially in the occlusive case, due to the lack of salient keypoints.

16 Copy-Move Detection

attack action target area source video in
se

rt
io

n
ar

tif
ac

ts
ph

ys
ic

al
in

co
ns

is
te

nc
ie

s
st

at
is

tic
al

in
co

ns
is

te
nc

ie
s

additive splicing copy object different X X X

additive copy-move ′′ ′′ same X – –

occlusive splicing ′′ background different – – X

occlusive copy-move ′′ ′′ same – – –

in-painting synthesize ′′ same – – X

Table 1.1: Video forgery attacks’ properties. When new objects are in-
serted in a video (lines 1 and 2) artifacts at the boundaries easily appear.
If objects are taken from another video (line 1) physical and statistical in-
consistencies are also likely, while copy-moved objects in the same video
(line 2) may originate suspicious multiple clones. Hiding objects with
background (lines 3-5) is easier, but finding the right textured cover in
other videos (3) may be hard. Moreover, splicing (line 3) and in-painting
(line 5) always produce statistical inconsistencies and in-painting works
only for small areas. With some care, occlusive copy-moves (line 4) can
be performed without leaving obvious traces.

with those of the target video. Copy-move, whenever applicable, is definitely
preferable, as it can be implemented leaving little visible traces. On the down
side, repeated instances of the same foreground object may easily raise the
attention and suspects of viewers. Occlusive forgeries are generally simpler
to perform, since background areas abound, and do not raise much attention.
Using material taken from other videos for this purpose (splicing) makes lit-
tle sense, and may be difficult when the background is textured. The simplest
way to hide a subject is by copy-moving on it parts of background taken from
other frames of the same video. A possible alternative is background syn-
thesis (inpainting) but it applies only to objects relatively small in space or
time, otherwise the quality of the synthesis can degrade significantly. In sum-
mary, copy-move is a highly effective editing operation that is at the same
time technically also quite straightforward to perform. As such, it is probably
the manipulation attack with the best cost-effect ratio. A carefully executed
copy-move can easily fool visual scrutiny, especially in the occlusive case.
Moreover, it may elude forensic tools looking for statistical inconsistencies,

1.2. A Classification of Image and Video Forgeries 17

Figure 1.16: Copy-moves with geometric transformations. In green and
red are shown the spatio-temporal supports of source and copied video
objects, respectively, for several types of copy-moves: plain (top left), with
rotation (top right) , with temporal flip (bottom left), plain with moving
object (bottom right).

since the copied object comes from the video itself.
From this analysis, it is clear that video copy-moves represent by far the

easiest and most effective way to perform a video forgery. In particular, well-
crafted occlusive copy-moves cannot be spotted by visual inspection, and the
analyst must rely exclusively on automatic tools. However, if a video ob-
ject is copied as is from one location to another, it is very simple to detect
the duplication, even by trivial lexicographic ordering of video patches. For
this reason, copy-moves are typically accompanied by some further process-
ing which guarantees that source and target objects are not identical, and hence
much more difficult to detect (Fig.1.16). Among the most common such ma-
nipulations we can list rotation, resizing, change of brightness, noise addition,
temporal flipping. The first three are routinely used also to adapt the copied

18 Copy-Move Detection

video object to the new context, which may differ from the original one under
many respects. In any case, they have the effect of changing the copy with re-
spect to the source, making naive approaches worthless. The addition of noise
is enacted on purpose for the same reason and may regard only the clone or
the whole video. In the first case, the clone will exhibit an anomalous level of
noise, a clue for the analyst, in the second one the video quality will decrease.
Temporal flipping is also made on purpose: by reversing the order of the frames
in the clone the object moves backwards and can be hardly associated with he
source object. For natural objects, the movement may appear unnatural and
be spotted easily, but often this is not the case as for the cell counting video
of Fig.1.15 bottom. To all these action, usually further processing steps are
added, like the smoothing of boundaries, to avoid sharp transitions from the
object boundaries to the background, and some forms of compression which,
distorting the whole video, tends to further hide the traces of manipulation.

1.3 Overview on Image Copy-Move Forgery Detection

To face the growing threat of image forgery, a large number of methods have
been proposed in recent years in the scientific literature. Following [38], they
can be grouped in five large families following distinct approaches. Pixel-
based techniques are based on statistical analyses of the data, both in the
original domain (pixels) and in some transform domain [108, 24, 27]. For
example [102] detects possible forgeries based on blur inconsistencies in the
image, [54] relies on the traces left by resampling, [20] detects cloned re-
gions based on the matching of local invariant features, while [28, 29] train
neural networks to find anomalies in the digital image. Format-based meth-
ods detect forgeries based on the traces left by lossy compression schemes.
For example, the methods proposed in [69, 13, 8] detect traces of double
JPEG compression or other JPEG-related artifacts. Camera-based techniques
[118, 42, 85, 40, 71, 11, 16, 25, 17, 18, 15] rely on the traces left in the im-
age during the acquisition phase, which can be regarded as image signatures.
Physics-based and geometric-based techniques [52, 53] look for physical or
geometrical inconsistencies of the objects present in the image, such as incon-
sistent lighting, shadows or geometric features in the scene.

We do not try to explore this large body of literature, here, referring the
reader to a few recent reviews [84, 10, 87, 97] for more information. Instead,
in the following we analyze in more depth image copy-move forgery detection
methods, describing in more detail the work of Cozzolino et al. to which this

1.3. Overview on Image Copy-Move Forgery Detection 19

thesis work is inspired. Then, in the following section, we will do the same for
the video case.

In the last few years, a large number of techniques have been proposed for
the detection and localization of copy-move forgeries in digital images [20].
Virtually all such techniques comprise three major steps: i) feature extraction,
ii) matching, and iii) post-processing. In the first step a suitable feature is
associated with each pixel of interest. Based on such features, each pixel is
then linked with its best match over the image, generating a field of offsets.
Finally, this field is processed to single out regularities which points at possible
copy-moves.

Some techniques, e.g. [80, 1, 121], operate only on a small set of salient
keypoints, characterized through well-known local descriptors, such as SIFT
or LBP. This approach is computationally efficient, but it fails completely if
no keypoint is associated with the forgery, as in the common case of occlusive
copy-moves over a smooth background [20, 26].

Techniques based on dense sampling are much more reliable. Their main
issue is complexity, since all pixels are involved in the three phases of fea-
ture extraction, matching, and post-processing. To reduce computation, com-
pact features are extracted, typically through some transforms, like DCT [41],
wavelet [75], PCA [72] or SVD [120]. By so doing, a good robustness is
also obtained with respect to intensity distortions, originated for example by
JPEG compression or blurring. Instead, to deal with geometric distortions
due to rotated or rescaled copy-moves, specific invariant features are needed.
The Zernike moments and the polar sine and cosine transforms have been
used [89, 64, 63] to obtain rotation invariance, while for scale-invariance
the Fourier-Mellin Transform with log-polar sampling has been considered
[6, 114] (Chapter 2).

Feature extraction, however, is only part of the problem. Exhaustive search
of the best matching (nearest neighbor) feature is prohibitively complex, and
faster techniques must be devised to produce the offset field in a reasonable
time. To this end, approximate search strategies have been used, such as kd-
tree search, in [62, 20], or locality sensitive hashing, in [89, 64]. Nonetheless,
computing the nearest-neighbor field keeps being too slow for the large images
generated by today’s cameras. A much better result can be obtained, however,
by exploiting the strong regularity exhibited by the NNFs of natural images,
where similar offsets are often associated with neighboring pixels. This is done
in [22] and [26], where the offset field is computed by means of a suitably
modified version of PatchMatch [3, 4], a fast randomized search technique

20 Copy-Move Detection

Figure 1.17: Forged images (on the left) from the FAU database (top) and
the GRIP database (bottom) with relatives ground truth binary maps (on
the right).

specifically tailored to the properties of images (Chapter 3).
To assess the performance of image copy-move detection techniques, sev-

eral dedicated datasets have been designed. One of the most popular is the
FAU dataset3, proposed by Christlein et al. in their review paper [20], which
comprises 48 realistic copy-moves divided in three classes: smooth, rough and
structured. Also useful is the GRIP dataset4, proposed by Cozzolino et al.
[26], comprising 80 accurate realistic copy-moves. Fig. 1.17 shows exam-
ples from both datasets. In Fig.1.18, instead, we show some example results
computed experimentally on the GRIP dataset. The performance is in terms
of F-measure, and various cases of interest are considered besides plain copy-
moves, including noise addition, rotation, resizing, and JPEG compression.

3http://www5.cs.fau.de/
4http://www.grip.unina.it

1.3. Overview on Image Copy-Move Forgery Detection 21

Fi
gu

re
1.

18
:

To
p:

Im
ag

e-
le

ve
lF

-m
ea

su
re

cu
rv

es
fo

r
C

hr
is

tle
in

20
12

,A
m

er
in

i2
01

3
an

d
C

oz
zo

lin
o2

01
5’

s
te

ch
ni

qu
es

.
B

ot
to

m
:P

ix
el

-l
ev

el
F-

m
ea

su
re

cu
rv

es
fo

rC
hr

is
tle

in
20

12
,A

m
er

in
i2

01
3

an
d

C
oz

zo
lin

o2
01

5’
s

te
ch

ni
qu

es
.

22 Copy-Move Detection

1.3.1 A Dense-Field Technique for Image Copy-Move Forgery De-
tection

In this paragraph we briefly describe the method for image copy-move de-
tection and localization, proposed in [26], on which this thesis work relies.
Thanks to the use of rotation-invariant and robust features, copy-moves are
reliably detected even in the presence of various forms of intensity and geo-
metric distortion. Efficiency is ensured by using a suitably modified version of
PatchMatch for the offset field computation and a fast ad hoc post-processing
to remove false matches.

Let I(ρ, θ) be the input image in polar coordinates, with ρ ∈ [0,∞] and
θ ∈ [0, 2π], and let

Kn,m(ρ, θ) = Rn,m(ρ)
1√
2π
ejmθ (1.1)

be a kernel function obtained as the product of a radial profile Rn,m(ρ) and
a circular harmonic. By projecting the image over the kernel we obtain the
feature

f(n,m) =

∫ ∞
0
ρR∗n,m(ρ)×

[
1√
2π

∫ 2π

0
I(ρ, θ)e−jmθdθ

]
dρ (1.2)

By choosing the Zernike orthonormal radial functions [103] f(n,m) turns out
to be the Zernike moment of order (n,m) of the image. Note that the integral
in square brackets is the Fourier series of I(ρ, θ) along the angle coordinate,
and its magnitude is invariant to rotations of the image I . Therefore, by se-
lecting as features the magnitude of Zernike moments we guarantee rotation
invariance. In addition, if only a few low-order moments are used, a compact
feature vector is obtained, robust to intensity distortions, which are mostly of
high-pass nature.

To compute the offset field efficiently authors resort to PatchMatch. How-
ever, the basic version of the algorithm is designed for patchwise constant off-
set fields, a model appropriate for rigid copy-moves, as in Fig.1.19(a), while
rotated and resized copy-moves give rise to linearly varying offsets, as in
Fig.1.19(b). A generalized version of PatchMatch was proposed in [4] to deal
with this problem. Unfortunately, it works only on image patches (not com-
pact features) and is significantly more complex than the basic version. A
much simpler modification was proposed in [22], adding first-order predictors
to the zero-order predictors used in PatchMatch, so as to deal effectively also

1.3. Overview on Image Copy-Move Forgery Detection 23
1

����
srr r

c

cc

d

dd

a

aa

(a) (b) (c)

Figure 1.19: Modified PatchMatch. With rigid copy-moves (left) clones
are connected by a constant offset field. In the presence of rotation and/or
resizing (center) clones are connected by a linearly varying offset field.
PatchMatch (right) uses zero-order predictors of the offset, based on neigh-
boring pixels (r, c, d, a) on the same row, column, or diagonal as the target
(s). The modified version uses also first-order predictors, involving neigh-
bors farther apart (rr, cc, dd, aa) so as to follow linear variations.

with linear offset fields. With reference to Fig.1.19(c), a zero order prediction
of the offset δ(s) at site s is given by

δ̃0x(s) = δ(x), x ∈ {r, d, c, a} (1.3)

that is, the offset is predicted as being equal to the offset of the neighbor on the
same row, column, diagonal or antidiagonal. Adding first-order predictors

δ̃1x(s) = 2δ(x)− δ(xx) (1.4)

we take into account linear variations of the offset along the same four direc-
tions. Eventually, we obtain the enlarged set of predicted offsets

∆P (s) = {δ(s), δ̃0r(s), δ̃0d(s), δ̃0c(s), δ̃0a(s),

δ̃1r(s), δ̃1d(s), δ̃1c(s), δ̃1a(s)} (1.5)

which are used in the propagation phase to perform the search.
Finally, to take full advantage of PatchMatch’s efficiency, the post-

processing phase must be equally fast. With this aim, an ad hoc post-
processing was implemented, called dense linear fitting (DLF). An affine
model is fit locally to each point of the offset field, with parameters estimated
from the data themselves. The fitting is typically good in correspondence of a
copy-moved regions, where the offset field is either constant (for plain copy-
moves) or linearly varying (in the presence of rotations or resizing). On the

24 Copy-Move Detection

Figure 1.20: Video forgery detection: classification scheme

contrary, in pristine areas of the image, with a more chaotic field, a worse fit is
typically observed. Therefore, by looking for large areas with low fitting error,
copy-moves can be reliably detected. The fitting procedure is very fast, as it
only requires a few linear filtering and products per pixel.

1.4 Overview on Video Copy-Move Forgery Detection

The large-scale manipulation of videos can be considered a quite recent ac-
tivity. Nonetheless, several review paper have been already published on this
topic [91, 95, 96]. In [96] a simple classification of methods is proposed,
shown in Fig.1.20

There is a first distinction between active and passive techniques. The
former, based for example on watermarking, are outside the scope of this work
and neglected in the following, as already done for images. Passive techniques
are further divided in inter-frame and intra-frame. The former try to discover
anomalies induced in the temporal structure of the encoded stream [98], or
other types of inconsistency, like artifacts due to double encoding [110, 44],
and irregularities in motion-compensated edges [99] or in the velocity field
[115]. To detect whether a group of frames has been deleted the use of ad hoc
statistical features extracted from the motion residual has also been proposed
[39, 86].

In recent years, only a few pioneering papers have addressed the detection
of video object, that is, intra-frame, forgeries. Coding-based methods have

1.4. Overview on Video Copy-Move Forgery Detection 25

been proposed in [112, 101, 61, 49] where artifacts introduced by doubly-
compressed MPEG videos are used as evidence of tampering. An alternative
camera-based approach relies on detecting the camera “fingerprint” (camera
PRNU pattern) as already done for images [11, 16]. In [74] the camcorder fin-
gerprint is estimated on the first frames of the video and used to detect various
types of attacks. A similar idea is followed in [50, 12, 36, 77] where ma-
nipulations are discovered by extracting and analyzing some suitable features
from the noise residues of consecutive frames. In [55], instead, the camera-
dependent photon shot noise is used as an alternative to the PRNU for static
scenes.

In the classification tree, special attention is devoted to copy-move forg-
eries (duplication) both inter- and intra-frame, emphasizing the importance of
this type of attack in the video case. Generally, techniques that implement
algorithms of copy-move detection make use of similarities or correlations
calculation between the video frames regions. The technique showed in [50]
calculate the residual error in each video frame and evaluate the correlation of
this residual along the temporal direction. If there is a tampered region, the cal-
culated correlation is subjected to a more significant change than other video
regions. This technique is suitable for static videos and frame-replication de-
tection. The authors in [14, 45] calculate the residual parameters on video’s
patches and evaluate the correlation between the adjacent patches using the
same hypothesis of [50]. Anomalies in the values of correlation show the
presence of a forgery. Even this technique is only applicable to static videos
(no camera-motion). In [34] authors state that the presence of a forgery pro-
vokes an unnatural similarity among the frames’ blocks couples of the video.
This technique can be applied only to inter-frame forgeries, in addition it is
not applicable in a case of compression. In [68] a connection measure be-
tween the consecutive frames is computed and irregularities are searched for
the considered time-space consistency measure. These irregularities reveal the
presence of the forgery. In [81] a detection technique is presented for the ob-
jects’ removal. This technique uses Scale Invariant Feature Trasform (SIFT)
and k-NN search for the detection of spatial copy-move. On the contrary, for
the detection of temporal copy-move it makes the video frames residual noise
cross-correlation calculation. This algorithm is applicable only if the forgery
copy-move is spatial or temporal. In [21] a technique is presented for the de-
tection of copy-moves produced by removing movable objects from the video.
The article is based on the hypothesis that the removal of these objects causes
the insertion of artifacts in the video sequence. This technique is applicable

26 Copy-Move Detection

only to videos with a stationary background. In [9] authors use optical-flow
anomalies for the video forgery detection. This technique assumes a priori
knowledge of the suspected regions in the video, and can be applied only to
MPEG compressed videos. In [111] the correlation coefficient is used as a
measure of similarity for detecting large copy-moved blocks, while [7] ex-
tends the same method to use spatio-temporal blocks. However, this approach
works well only if the cloned area is relatively large and has not been subject
to subsequent post-processing. Performance drops in the presence of compres-
sion, blurring, geometric transformations and change of intensity. This is not
immaterial, since these operations are often needed to make the forgery more
realistic, and can be even enacted on purpose by a skilled forger to fool forensic
tools.

For what concerns localization, [66] addresses only the case of whole
frames inserted in the video. [100], instead, proposes a method based on HOG
features and exhaustive search, which is more general but so computation-
intensive to be inapplicable in practice. It should be realized that a carefully
crafted copy-move may be very hard to discover by means of statistical ap-
proaches, because the copied object has the same statistics as the background,
unless it is rotated or resized. In addition, occlusive copy-moves, based on the
copy of background areas, do not offer visual clues or salient keypoints (see
again Fig.1.15) which enable their discovery. Finally, a clever attacker may
enact further expedients to confuse matching-based methods, like temporally
flipping the inserted video object.

1.4.1 A Method for Detection of Block Duplications in Videos

In this section we focus on the video copy-move forgery detection algorithm
proposed in [7]. So far, this technique was the only method proposed in lit-
erature working under the hypothesis mentioned at beginning of this chapter;
i.e., as the technique proposed in this thesis, the algorithm proposed in [7]: i)
is designed to detect region duplication, where the source of the cloned region
belongs to video under test itself, and ii) is completely blind with respect to the
video format. For this reason, in chapter 5, we will compare the performance
of the proposed algorithm with this technique. The algorithm is basically a cor-
relation method able to detect copy-move forgeries and, in the case a forgery
is detected, it can localize the temporal position of the tampered region, i.e. it
reveals the video’s tampered frames, but not its precise spatial position.

The idea is to detect duplicated regions by cross-correlating small 3D
blocks of the video residual. Let V be the video under test whit size I×J×T ,

1.4. Overview on Video Copy-Move Forgery Detection 27

firstly the video residual RV is calculated by computing difference between
adjacent frames; let xti,j be the gray value of the pixel of the video V , and
rti,j the value of the video residual RV in position (i, j, t), with (i, j, t) ∈
[1, I]× [1, J]× [1, T − 1]:

rti,j = xti,j − xt+1
i,j (1.6)

In order to reduce the computational complexity, a 5× downsampling is carried
out in the spatial domain, while no downsampling is applied in the time domain
to retain the full temporal resolution. In the second step, the resized version of
RV (let it beR) is split into non overlapping 3D blocksBn

m of size di×dj×dt,
where n is the starting time index of Bn

m and m ∈ [1,M] (M is the total
number of blocks). The next step of the algorithm consists of computing the
phase-correlation between Bn

m and R as:

Cti,j(B
n
m) = F−1

(
F(Bn

m)F(R)∗

|F(Bn
m)F(R)∗|

)
(1.7)

where F is the Fourier transform operator, and ∗ indicates the complex con-
jugate. This phase-correlation is computed for each block Bn

m. The quantity
Cti,j(B

n
m) denote the similarity between the block Bn

m and R. After this step,
the maximum correlation value ctBn

m
for each position time is computed as:

ctBn
m

= max
i,j

(
|Cti,j(Bn

m)|
)

(1.8)

In Fig.1.21 the behavior of ctBn
m

is shown for a duplicated and a non-duplicated
block.

Each block has a peak due to autocorrelation. Only if the block belongs to
a duplicated region, a second prominent peak should appear in ctBn

m
. So, if the

second peak is sufficiently large (the authors suggest at least 0.6 times the first
peak), a confidence value is associate to the block Bn

m as:

pBn
m

=
max

(
ctBn

m

)
1

T−1

∑
t c
t
Bn

m

(1.9)

The value pBn
m

is computed for each block, and the block corresponding to the
largest of all pBn

m
is the most likely duplicate candidate. For the final decision,

this block is compared with those starting from the frame in time position ñ
where ñ is the index where the second peak of ctBn

m
is located. Let this block

28 Copy-Move Detection

Figure 1.21: Trends of ctBn
m

for a nonduplicated block (blue), and for a
duplicated one (red). The dashed line represent the starting time of Bn

m. In
the red line a second prominent peak appears, that indicates the temporal
position of the clone.

be Bñ
m̃, a forgery is detected if a matching block is detected, i.e. the following

condition occurs:
MSE

(
Bn
m, B

ñ
m̃

)
< τ (1.10)

where MSE is the mean square error between two blocks and τ is a threshold
defined by user to tune the tradeoff between false positives and false negatives.
In Fig.1.22 an example of detection performed by the algorithm just described
is shown.

1.4. Overview on Video Copy-Move Forgery Detection 29

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.22: Examples of block duplication detection for 3 sequences.
Original (left), forged (middle), and frames with duplicated blocks (right).
The red shape highlights a detected duplication.

Chapter 2

Feature Extraction

As already said, to perform efficiently and effectively the search of clones
through the image or video it is necessary to associate a compact and expres-
sive feature with all (or some) target pixels, computed on suitable patches sur-
rounding them. These features should possess several invariance properties in
order to be robust with respect to a number of possible sources of distortion
and deformation.

Suppose to have a forged video V where a given object with support Ω1 has
been copy-moved to Ω2 = T (Ω1), with T (·) an affine transform (indicating for
example a translation and/or rotation of the object.) Let us now consider patch
P1 anchored to pixel s1 ∈ Ω1; under the affine transform it will be mapped to
another patch P2 = T (P1) associated with pixel s2 = T (s1) ∈ Ω2. Due to
geometric distortions induced by T (·), the two patches will not be identical,
and they may even differ significantly under naive distortion measures, like
the mean square error. Just think of the case in which P2 is rotated by 180
degrees with respect to P1. In order for the matching algorithm to discover
that these patches are indeed related, we need to associate with each patch a
feature f = Ψ(P) which is invariant to translation and rotation. Moreover, if
the detection algorithm must be robust with respect to other distortions, like
compression, or noise addition, the transform Ψ(·) should be also invariant
with respect to small differences between the patches.

More formally, let f1 = Ψ(P1) be the feature vector associated with patch
P1 and f2 = Ψ(P2) the feature vector associated with patch P2 = T (P1), we
want a transform Ψ(·) such to minimize the Euclidean distance between f1 and
f2, irrespective of the affine transform T (·). On the contrary, Ψ(·) should make
the distance between features associated with patches that are unrelated under

31

32 2. Feature Extraction

T (·) relatively large, that is, it should have a high discriminative power.

Invariant features have been the object of intense research for years, es-
pecially in Computer Vision, and a large number of them have been proposed
which possess a number of interesting properties. Indeed, many of these fea-
tures have been already used for forensic applications [67, 6, 88, 20, 89, 64].
Here, we mention only some of the most powerful and popular, like Scale In-
variant Feature Transform (SIFT) [70], Speeded Up Robust Feature (SURF)
[5], Fast Local Descriptor for Dense Matching (DAISY) [106], Shift Invariant
Descriptor (SID) [56], Histogram of Oriented Gradients (HOG) [31], Local
Binary Patterns (LBP) [78], Zernike Moments [119]. However, we will not go
into further details, except for the Zernike features used in this work, referring
the reader to the original papers for a deeper analysis.

In the context of this thesis, it is important to focus on whether the features
are extracted densely in the image or else are associated with selected key-
points. A keypoint is a pixel associated with some salient characteristic of the
image, like for example a corner, or more in general a point that could raise the
interest of a human observer and be easily found by a specialized detector. As
an example, SIFT features are usually computed on keypoints that are selected
as maxima in a suitable space, and are typically characterized by the presence
of significant image gradients. Therefore SIFT features are not extracted in ho-
mogeneous regions of an image. On the other hand, SIFT features guarantee
rotation invariance thanks to the estimation and use of the dominant direction
in the patch: for homogeneous patches, a dominant direction may not exist
or be unreliably estimated, due for example to added noise or compression,
providing unreliable information for subsequent uses.

Therefore, only some features can be meaningfully computed densely on
the image, irrespective of the patch nature. This property will be important
when addressing the problem of occlusive copy-moves. In fact, when a ho-
mogeneous region is copy-moved to hide an object it will hardly give rise to
significant keypoints. Therefore, to find such kind of attacks, features must be
computed densely on the image and should be able to provide valuable clues
also on smooth regions.

In the following we will focus on a specific class of features, the Zernike
moments, belonging to the family of Circular Harmonic Transforms (CHT),
which possess desirable invariance properties and keep providing valuable in-
formation even when computed on smooth regions. Moreover, the Zernike
moments have already been used with success in copy-move forgery detection
[89]. The following description is inspired to [23].

2.1. Zernike Moments 33

2.1 Zernike Moments

In this section we describe the process that leads us to definition of the features
used in our detection algorithm. These features were originally designed for
still images. In fact, calculation of Zernike Moments for each frame of the
video is the first step to compute our final features. As already said, Zernike
Moments belong to the family of Circular Harmonic Transforms (CHT), that
we are going to present now.

Let us consider a scalar image I(x, y) defined on a continuous space,
(x, y) ∈ R2. We can represent the image in polar coordinates as I(ρ, θ),
where ρ ∈ [0,∞] and θ ∈ [0, 2π].

To define the CHT we consider the basis functions Kn,m(ρ, θ) defined as

Kn,m(ρ, θ) = Rn,m(ρ)
1√
2π
ejmθ (2.1)

where Rn,m(ρ) is called radial profile and 1√
2π
ejmθ is a circular harmonic.

The image’s transform is

fI(n,m) =

∫ 2π

0

∫ ∞
0
I(ρ, θ)K∗n,m(ρ, θ)ρdρdθ (2.2)

We can rewrite the previous equation as

fI(n,m) =

∫ ∞
0
ρR∗n,m(ρ)×

[
1√
2π

∫ 2π

0
I(ρ, θ)e−jmθdθ

]
dρ (2.3)

The integral in square brackets, let it be Î(ρ), is the Fourier series of I(ρ, θ)
along the angle coordinate. This results explains CHT rotation invariance. In
fact, a rotation of θ0 radians in I can be written in polar coordinates as an
operation that turns I(ρ, θ) into I(ρ, θ + θ0). As well known, this contributes
just a phase term ejmθ0 in the Fourier Transform Î , which can be estimated and
compensate or simply removed by taking the magnitude of the coefficients.

The various CHTs differ in the radial profile. Various choices have been
considered in literature for the most appropriate radial profile. For example, in
[117] authors consider Polar Cosine Transform (PCT), where the radial profile
is defined as

Rn(ρ) = Cn cos(πnρ2) (2.4)

where ρ ∈ [0, 1] and Cn are normalizing coefficients.

34 2. Feature Extraction

0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ρ

Z
M

 r
a
d
ia

l
fu

n
c
ti
o
n
s

n=0 ; m=0

n=1 ; m=1

n=2 ; m=0

n=3 ; m=1

(a)

0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ρ

P
C

T
 r

a
d
ia

l
fu

n
c
ti
o
n
s

n=0

n=1

n=2

n=3

(b)

0re
a
l
p
a
rt

 o
f
F

M
T

1 2 3 4 5 6

0

ρ

im
a
g
e
 p

a
rt

 o
f
F

M
T

n = −5.77

n = −2.88

n = 0.00

n = 2.88

n = 5.77

(c)

Figure 2.1: Radial profiles of some CHTs: Zernike (a), PCT (b), FMT (c).

In [93] the Fourier-Mellin Transform (FMT) is chosen, where the radial
profile is

Rν(ρ) =
1

ρ2
ejν ln(ρ) (2.5)

where ρ ≥ 0 and ν is a continuous parameter. With this choice, the integral
in eq.2.3, after a coordinate mapping, can be regarded as the bi-dimensional
Fourier transform of I in log-polar coordinates. This guarantees scale invari-
ance properties to the transform.

For our algorithm we chose the Zernike Moments (ZM), already used in
[103] for image analysis. In this case the radial profile is

Rn,m(ρ) =

(n−|m|)/2∑
h=0

Cn,m,hρ
n−2h (2.6)

where ρ ∈ [0, 1] andCn,m,h are suitable coefficients that ensure orthonormality
of the basis functions. Examples of these radial profiles are shown in Fig.2.1.

In several applications, including forensics, Zernike Moments have proven
quite robust with respect to small distortions of the image, like noise addition,
moderate compression, etc., which is the main reason that led us to prefer it to
other solutions.

The problem discussed so far is defined in a continuous domain. In the rest
of the paragraph we explain how to translate these theoretical definitions into
practical formulas, since we need to compute our features on a discrete grid
(the digital image), preserving the invariance properties. As a first step, we
have to choose a patch size, since computation must regard only a limited sup-
port for the sake of efficiency. This parameter affects both discrimination and
robustness. In fact patches too small might not catch the local image behavior,

2.1. Zernike Moments 35

(a) (b) (c)

Figure 2.2: Examples of rectangular (a), polar (b) and log-polar (c) sam-
pling grids.

while patches too large might loose resolution. Then, we have to choose a suit-
able finite number of (n,m) couples, not too large, to limit computational cost
and also memory storage, but neither too small, to avoid losing discrimination
ability. Finally, we must approximate the integral (2.2) with a summation over
the patch.

There are two ways to do the approximation. The first way consists in re-
sampling the basis functions Kn,m(ρ, θ) on the grid points (x, y) of the patch.
Let W be the domain where the path is defined, the integral in eq.2.2 becomes

f
′
I (n,m) =

∑
(x,y)∈W

I(x, y)K∗n,m(ρ(x, y), θ(x, y)) (2.7)

with ρ(x, y) =
√
x2 + y2 and θ(x, y) = ± arctan(y/x).

Otherwise, we can resample the image on polar (or logpolar) coordinates
(see Fig.2.2(b)-(c)), In this case eq.2.2 becomes

f
′′
I (n,m) =

∑
(ρ,θ)∈W

I(x(ρ, θ), y(ρ, θ))K∗n,m(ρ, θ)ρi (2.8)

with i = 1 for the polar grid and i = 2 for the logpolar one. These two ways to
perform the approximation of the integral entails non-negligible consequences
on performance, as shown in [116]. In particular, polar sampling guarantees
perfect invariance for rotation angles multiple of the sampling step ∆θ. In-
stead, features computed in the first way (on the cartesian grid) can entail the
loss of the rotation invariance, mainly for angles close to π/4 ± kπ/2 [65].
For these reasons we chose the polar sampling to compute the features for our
experiments. Moreover, after some preliminary experiments, we chose a patch
size of 16× 16 and kept only 12 moments, that is, 12 (n,m) couples.

36 2. Feature Extraction

2.2 3D Flip-Invariant Features

Building upon the still-image copy-move detector of [26] we begin by asso-
ciating with each pixel a feature vector composed by the Zernike moments
computed on a polar grid centered on the target. Dealing with a video source,
however, we have the opportunity to extract features from 3D rather than 2D
patches. With this choice a more expressive feature is obtained, accounting
also for informative temporal changes. On the down side, 3D patches may
be less effective with forgeries of very short duration or with fast moving ob-
jects, because many 3D patches would include both pristine and copy-moved
regions, making it difficult to find the correct match. Moreover, 3D features are
more fragile with respect to temporal distortions, such as flipping or temporal
down/up-sampling which may be used to modify the speed of an object. Since
both solutions (3D-patch or 2D-patch based features) have pros and cons, we
will test them both in the experiments. For the second case, however, we define
a flip-invariant feature so as to be robust to the simplest form of tampering in
the temporal dimension.

Specifically, let f(s, t, n,m) be a generic feature associated with the t-th
frame of the video, for spatial location s and Zernike moment (n,m). Then,
the 2D-patch feature vectors used in the algorithm, or 2D features for short,
will be defined as

f2D(s, t) = { f(s, t, n,m), (n,m) ∈ F2D} (2.9)

where F2D identifies a subset of all Zernike moments1.
This subset should be as small as possible to limit complexity and memory

problems in the algorithm, while including sufficient discriminative informa-
tion on the patch.

Now, we could define 3D-features as

f3D(s, t) = { f(s, t+τ, n,m), |τ | ≤ T, (n,m) ∈ F3D} (2.10)

where Zernike moments from 2T+1 consecutive frames are taken, and F3D

identifies a new subset of Zernike moments2, smaller than before to limit the
overall feature size when 2T+1 such moments are stacked. This latter fea-
ture, however, is not flip invariant, and would not allow the detection of clones

1(n,m) ∈ { (0, 0); (1, 1); (0, 2); (2, 2); (1, 3); (3, 3); (0, 4); (2, 4); (4, 4); (1, 5);
(3, 5); (5, 5)}

2(n,m) ∈ { (0, 0); (1, 1); (0, 2); (2, 2); (1, 3); (3, 3)}

2.2. 3D Flip-Invariant Features 37

Figure 2.3: Example of features 3D computation (with T = 3 in Eq.2.10).
From top to bottom: 2D features of all video sequence; 2D features from
frames t − 1, t and t + 1; 2D features from frame t − 1, t and t + 1 in
position s; 3D feature in position (s, t);

38 2. Feature Extraction

played backwards in time. Therefore, to improve robustness to malicious at-
tacks, we modify it as

f3D,FI(s, t) = { g(s, t+τ, n,m), |τ | ≤ T, (n,m) ∈ F3D} (2.11)

where, displaying only the dependence on the temporal index,

g(t+τ) =

1√
2
| f(t+τ) + f(t−τ)| τ > 0

| f(t)| τ = 0

1√
2
| f(t+τ)− f(t−τ)| τ < 0

(2.12)

The even-odd transform of Eq.(2.12) guarantees the desired flip invariance.
The scheme of this transformation is shown in Fig.2.3.

Note that the transform is applied on the Zernike moments, not their abso-
lute values. By so doing, the f3D,FI vectors are invariant to spatial rotations of
the whole 3D patch. Taking the absolute value of the moments before the even-
odd transform would enforce invariance with respect to different rotations for
each frame. This is a useless property for our problem, since temporal and
spatial manipulations do not interfere with one another. We also note explic-
itly that the above formulas refer to a 3D patch with an odd number of frames,
similar formulas apply for the even number case.

Chapter 3

Matching Algorithm

Once all features have been extracted, and they represent faithfully the patches
they are associated with, it is necessary to find for each of them the best match-
ing feature, or nearest neighbor. When a copy-move is present in the image
or video, all pixels belonging to a clone exhibit coherent nearest neighbors,
namely, with the same spatial and temporal offset from the source. Therefore,
the problem decomposes to i) finding the nearest neighbor field (NNF) and ii)
processing this field to decide whether a region with coherent offsets exist and
is significant. In this chapter with deal with the first problem, matching.

Finding the nearest neighbor to a given point in a set of D-dimensional
points is a fundamental problem in signal processing and computer vision, with
uncountable applications, from vector quantization to image retrieval, to name
a few. Exhaustive search becomes very quickly unfeasible as the cardinality of
the dataset grows beyond a few thousands. Dealing with images, the number
of features to match is in the order of millions and grows towards the billions
when considering videos. Therefore, it is mandatory to consider some fast
methods for approximate nearest neighbor (ANN) search. In the last decades
there has been intense research on this topic, and a large number of ANN
search algorithms have been proposed. Among the most popular and effective,
we mention those based on locality sensitive hashing (LSH) [35, 109, 107], on
k-D trees [94, 76], and on product quantization [51, 2], referring the interest
reader to the original papers for more information. Unfortunately, although ex-
tremely effective, these algorithms can reduce the complexity (keeping a good
accuracy) by only two-three orders of magnitude with respect to exhaustive
search [107], which is not enough to meet the complexity challenges offered
by dense field matching in images and videos.

39

40 3. Matching Algorithm

Figure 3.1: Comparison between CPU time (in log-scale) of PatchMatch
(blue) and Kd-Tree (red) as a function of the size of the data structure
(Mpixel). Time for kd-tree includes tree creation. For PatchMatch 10
iterations are considered.

However, these algorithms have been developed for generic sources and
do not take into account the peculiar nature of our problem, finding a spatial
nearest neighbor field associated to a typically smooth image or video. Thanks
to this further information, one can assume that the NNF itself is generally
smooth, which provides a formidable asset to reduce complexity. In particular,
this hypothesis is exploited in the PatchMatch algorithm, proposed originally
[3] in 2009, which indeed reduces the search complexity hugely, allowing to
solve our matching problem with reasonable complexity and very good ac-
curacy. As an example Fig.3.1 shows the trends of the computation time for
KD-tree and PatchMatch w.r.t. number of pixel of the searching field.

In fact, PatchMatch exploits the intrinsic smoothness of multimedia
sources assuming that if a matching exist between features at pixel s1 and s2, it
is very likely that feature at pixel s1 +∆s matches a feature at pixel s2 +∆s or
very close to that. This property, which holds very often in images and video,
is the key to PatchMatch speed. In the following, we describe PatchMatch and
its proposed modifications in more detail.

3.1. PatchMatch 41

3.1 PatchMatch

Let I = {I(s) ∈ RK , s ∈ Ω} be an image defined over a regular rectangular
grid Ω. With each pixel s we associate a feature vector, f(s), which describes
the image patch centered on s. Given a suitable measure of distance between
features, d(f

′
, f

′′
), we define the nearest neighbor of s as the pixel, s′ ∈ Ω,

which minimizes the feature distance w.r.t. s over the whole image

NN(s) = arg min
s′∈Ω

d(f(s), f(s′)) (3.1)

Rather than the nearest-neighbor field (NNF) itself, in the following we will
consider the equivalent offset field, with the offset defined as δ(s) = NN(s)−
s.

PatchMatch is a randomized iterative algorithm for NNF estimation. As all
iterative algorithms, convergence to the desired solution is much faster in the
presence of a good initial guess. With images, however, such a good guess is
easily obtained, because their NNFs are typically constant or linearly varying
over large areas, as a consequence of image smoothness, and hence highly
predictable. Given this core idea, PatchMatch is easily understood. Following
a random initialization, the two phases of offset prediction and random search
alternate until convergence.

Initialization. The offset field is initialized at random, as δ(s) = U(s) − s.
where U(s) is a bi-dimensional random variable, uniform over the image sup-
port Ω. In copy-move search, we enforce an additional constraint on matches,
which must be reasonably far from the target, excluding offsets smaller than
a given threshold. Most of the initial offsets are useless, but a certain number
will be optimal or near-optimal. These are quickly diffused to the rest of the
image in the propagation phase.

Propagation. In this step, the image is raster scanned top-down and left-to-
right (with scanning order reversed at every other iteration), and for each pixel
s the current offset is updated as

δ(s) = arg min
φ∈∆P (s)

d(f(s), f(s+ φ)) (3.2)

where ∆P (s) = {δ(s), δ(sr), δ(sc)}, and sr and sc are the pixels preceding
s, in the scanning order, along rows and columns, respectively. Therefore, the
algorithm uses the offset of nearby pixels as alternative estimates of the current
offset, and selects the best one. If a good offset is available for a given pixel

42 3. Matching Algorithm

of a region with constant offset, this will very quickly propagate to the whole
region.

Random search. To avoid getting trapped in bad local minima, after each prop-
agation step a random search step follows, based on a random sampling of the
current offset field. The candidate offsets δi(s), i = 1, . . . , L are chosen as
δi(s) = δ(s) + Ri where Ri is a bi-dimensional random variable, uniform
over a square grid of radius 2i−1, excluding the origin. In practice, most of
these new candidates are pretty close to δ(s), but large differences are also
allowed, with small probability. Given the rare sampling, only a few new can-
didates are eventually selected. The random-search updating reads therefore
as

δ(s) = arg min
φ∈∆R(s)

d(f(s), f(s+ φ)) (3.3)

where ∆R(s) = {δ(s), δ1(s), . . . , δL(s)}.
Experiments [3] show that typically PatchMatch converges to a near-

optimal NNF in less than 10 iterations.

3.2 Modified PatchMatch

Given the very good performance of PatchMatch, several research teams have
soon proposed modified versions of the basic algorithm. In [58] and in [79],
fast approximate NN search techniques are used in place of the random initial-
ization, possibly with spatial sub-sampling, reducing drastically the number
of iterations required for convergence, and hence the overall processing time.
The authors of PatchMatch proposed its generalized version [4], which can
deal with rotated and rescaled objects by working in a 4D space including
scale and angle besides the spatial coordinates. Unfortunately, this version can
work only on image samples (not compact features), and is significantly more
complex than the basic version due to the need of patch resampling and the
slower convergence.

A much simpler, yet effective, modification is proposed in [22] which in-
volves only the propagation step, where better offset predictors are included.
The main observation is that basic PatchMatch uses only zero-order predictors
in the propagation phase, which makes sense when the offset field is constant
(e.g. rigid copy-move forgeries) but not in the presence of rescaling and ro-
tation, in which cases a linearly varying offset field is obtained. Therefore,
in [22] the set of predictors is enlarged to include zero-order and first-order

3.2. Modified PatchMatch 43

Figure 3.2: Left: pixels used to compute the predictors of δ(s). Center:
with a linearly varying offset field, zero-order predictors may be wrong:
δ̂0r(s) = δ(r) 6= δ(s) , while first-order predictors are always correct:
δ̂1r = 2δ(r)− δ(rr) = δ(s) . Right: with videos, predictors develop also
along the third (frame f) direction.

predictors along several directions (row, column, diagonal antidiagonal, see
Fig.3.2, that is

∆P (s) = {δ̂(s), δ̂0r(s), δ̂0d(s), δ̂0c(s), δ̂0a(s),

δ̂1r(s), δ̂1d(s), δ̂1c(s), δ̂1a(s)} (3.4)

where δ̂ix(s) indicates the i-th order predictor along direction x, and hence
δ̂0x(s) = δ(x) and δ̂1x(s) = δ(x) + [δ(x)− δ(xx)].

With this modification, linear offset fields can be easily tracked along the
image, with a negligible increase in complexity. Moreover, the algorithm can
make use of any features, including scale- and rotation-invariant ones, which
results in improved localization of copy-move forgeries [22, 26].

3.2.1 Adapting PatchMatch to video

To take advantage of the features’ invariance to rotations, we use the modified
version of PatchMatch proposed in [26]. Then, to deal with a video source, we
adopt some further straightforward modifications, originally developed in [32].
First of all, while keeping the general structure of the algorithm, we include
further predictors to take into account the temporal direction, and in particular
the zero-order and first-order predictors along frames δ̂0f (s) and δ̂1f (s). Us-
ing first-order prediction along time allows one to deal also with subsampling
[upsampling] in the temporal direction, corresponding to a change of speed in
moving objects. In addition, the random search step is also modified to sample
the whole 3D space, testing offsets taken at random in the whole datacube.

44 3. Matching Algorithm

Despite the increased size of the source, with a large number of frames, the
same number of candidates is used as for still images. Since this procedure is
repeated for all pixels in the video, a large number of near-optimal offsets are
sampled anyway, and then propagated to the whole video.

3.3 PatchMatch with Multiresolution

The overall complexity of the image-based algorithm [26] is clearly dominated
by the matching phase, accounting for about 75% of the total CPU-time, with
the computation of features taking another 15%, and the post-processing phase
the remaining 10%. In the case of video, these proportions do not change
much. Therefore all efforts should be devoted to further reduce the cost of
computing the NN field.

Using PatchMatch, the complexity of computing the NN field, measured
in number of multiplications, can be approximated as

c = nitn(cP + cR)f (3.5)

where nit is the number of iterations of PatchMatch, n the number of pixels
in the video, cP and cR are the number of candidate offset tested in the prop-
agation and random search phases, respectively, and f is the feature length. n,
in its turn, is the product of frame size and number of frames. Using typical
values, that is, frames of 0.5 Mpixels, 8 iterations of PatchMatch, with 10 can-
didates tested in each phase, and features of length 10, the overall complexity
is 8 × 108 multiplications per frame. At 25 frames/second, this represents a
huge computational burden, even for short videos.

The only effective way to reduce significantly this burden is through sub-
sampling. Indeed, keypoint-based methods use exactly this strategy, comput-
ing matches only for some sparse keypoints. As we follow a dense-field ap-
proach, we perform instead a regular S × S subsampling (that is, we take
one every S-th pixel along rows and columns). Note that features are always
computed on the original frames before subsampling, therefore they represent
patches observed at the native resolution, say level-0, with no loss of informa-
tion. Also, no subsampling is performed along the temporal direction.

3.3. PatchMatch with Multiresolution 45

-
V

Fe
at

ur
in

g
-

f0
↓

-
f1

↓

?

f2

?f0

Pa
tc

hM
at

ch

N
N

2
�

↑
�
N
N

1 0

?
?f0

C
M

D
�
N
N

1

�
M

1

↑

?

Vo
I

↑
�
N
N

0 0

?

C
M

D
�

M

fu
ll

re
so

lu
tio

n
S
×
S

lo
w

er
re

so
lu

tio
n

S
2
×
S
2

lo
w

er
re

s.

Fi
gu

re
3.

3:
B

lo
ck

di
ag

ra
m

of
th

e
pr

op
os

ed
vi

de
o

co
py

-m
ov

e
de

te
ct

or
w

ith
m

ul
ti-

re
so

lu
tio

n
pr

oc
es

si
ng

.
T

he
hi

gh
-

re
so

lu
tio

n
fie

ld
of

fe
at

ur
es

f0
is

ex
tr

ac
te

d
fr

om
th

e
or

ig
in

al
vi

de
o,
V

.
T

hi
s

fie
ld

is
th

en
do

w
ns

am
pl

ed
tw

ic
e

to
ob

ta
in

fie
ld

s
f1

an
d

f2
.

A
tl

ev
el

2
(l

ow
es

tr
es

ol
ut

io
n)

Pa
tc

hM
at

ch
w

or
ks

on
f2

an
d

f0
to

pr
ov

id
e

th
e

N
N

fie
ld
N
N

2
.

T
hi

s
is

up
sa

m
pl

ed
to

be
co

m
e

th
e

in
iti

al
N

N
fie

ld
at

le
ve

l1
,N
N

1 0
.A

tl
ev

el
1,

th
e

co
py

-m
ov

e
de

te
ct

or
(C

M
D

)w
or

ks
on

f1

an
d

f0
to

re
fin

e
N
N

1 0
to
N
N

1
,a

nd
to

ex
tr

ac
tt

he
de

te
ct

io
n

m
ap
M

1
by

ap
pl

yi
ng

th
e

po
st

-p
ro

ce
ss

in
g.

C
op

y-
m

ov
ed

ob
je

ct
s

ar
e

de
te

ct
ed

in
th

is
le

ve
l,

bu
tt

he
ir

sh
ap

e
ca

n
be

re
co

ve
re

d
m

or
e

pr
ec

is
el

y
at

le
ve

l0
.

So
M

1
is

up
sa

m
pl

ed
to

de
fin

e
th

e
vo

lu
m

e
of

in
te

re
st

(V
oI

)a
nd
N
N

1
is

up
sa

m
pl

ed
to

be
co

m
e

th
e

in
iti

al
N

N
fie

ld
at

le
ve

l0
,N
N

0 0
.A

tl
ev

el
0,

th
e

co
py

-m
ov

e
de

te
ct

or
w

or
ks

on
f0

,l
im

ite
d

on
ly

to
th

e
Vo

I,
to

ex
tr

ac
tt

he
fin

al
ou

tp
ut

,t
he

de
te

ct
io

n
m

ap
M

0
=
M

.

46 3. Matching Algorithm

By working at level-1 resolution (that is, after subsampling) PatchMatch
complexity reduces by a factor S2, approximately, if all other parameters are
kept fixed. Moreover, with a moderate subsampling step, we expect to keep
detecting at level-1 most, if not all, the copy-moves detectable at level-0. Of
course, there is a loss in spatial accuracy. However, this can be largely recov-
ered by upsampling the NN field back at level-0, and running a few iterations of
PatchMatch to propagate the correct offsets. Since detection has been already
performed at level 1, at level 0 PatchMatch is applied only to the volumes of in-
terest (VoI), namely the frames where copy-moves have been detected, while
the random search phase is skipped altogether. With these simple modifica-
tions, the processing at level 0 does not impact heavily on the overall cost. In
particular, since the regions involved in the copy-move are a little percentage
of the whole video, the use of VoI alone is already very effective.

Algorithm 1 Multi-resolution Video Copy-Move Detector

Require: V . input video

Ensure: M . output detection map

1: f 0 = FeatureExtract(V) . will work on features from now on

2: f 1 = f 0 ↓ S . S × S downsampling

3: f 2 = f 1 ↓ S . S × S downsampling

4: NN2 = PatchMatch(f 2, f 0) . NN field at level 2

5: NN1
0 = NN2 ↑ S . initial estimate of NN1

6: [M1, NN1] = CMD(f 1, f 0, NN1
0) . CMD at level 1

7: M0
0 = M1 ↑ S . M0

0 gives the VoI

8: NN0
0 = NN1 ↑ S . initial estimate of NN0

9: [M,NN0] = CMD(f 0, NN0
0 , VOI) . CMD at level 0 on VoI

Therefore, the bulk of processing is now at level 1, where PatchMatch
works in its standard configuration. To further reduce the processing cost we
resort again to S × S subsampling, and run PatchMatch at this level-2 reso-
lution. The retrieved NN field is then upsampled and used to initialize Patch-
Match at level-1 in order to ensure its quick convergence, thus reducing the
number of iterations. Note that subsampling operates only to reduce the source
features to match, while the target features are not sampled at all, otherwise the
correct offset may not be found. For example, at the lowest resolution, features
drawn from F 2 are matched to features drawn from F 0. Note also that, thanks
to the first-order predictors, propagation keeps working correctly. In Fig.3.3
and Algorithm 1 we show a block diagram and the pseudo code of the com-

3.3. PatchMatch with Multiresolution 47

(a) (b)

(c)

Figure 3.4: Example of video partitions for PM parallel computing with
4 threads. Each color corresponds to a region of the video assigned to a
specific thread. Each two iterations of PatchMatch the configuration of
video partition switchs into one of the three shown in the figure to better
propagate matchs in all directions of the video.

plete multiresolution scheme.
Finally, to gain some more speed, we resorted to parallel computing.

The parallel code works seamlessly for feature extraction and in the post-
processing phase. As for PatchMatch, each thread operates only on a por-
tion of the source data (while target data are not partitioned), and the offset
subfields are joined after each iteration. By so doing, however, propagation of
offsets across partition boundaries may be delayed significantly. Therefore, we
change partitions after each couple of forward-backward iterations, orienting
boundaries along columns, rows, or frames in round-robin fashion (Fig.3.4).

Chapter 4

Post Processing

In this chapter we describe the last step of the algorithm which, starting from
the offset field obtained through the matching step, leads to the creation of the
3D detection map. For copy-move detection algorithms, this step is usually
called Post-Processing Dense Linear Fitting (DLF) and false alarm removal
are the main parts of our post-processing, described in the next two sections.

4.1 Dense Linear Fitting

Let NNF be the nearest neighbor field at the output of the matching algorithm.
It could be expected to be mostly chaotic in the pristine regions of the video
and very smooth, with linear behavior, in the regions where a copy-move oc-
cur. Actually, real NNFs do not follow so closely this model, causing missing
detections in tampered regions and false alarms in pristine ones. The technique
to avoid, or at least reduce, false alarms will be described in next section. In-
stead, to prevent missing detections we rely on a suitable regularization of the
NNF. Many papers have treated the regularization problem and many sophisti-
cated methods have been proposed in the context of copy-move detection (e.g.
RANSAC [89], SATS [19]). These methods, however, are too slow for our
needs. Furthermore, thanks to the behavior of our matching algorithm, the
NNF is already smooth enough to perform a simpler regularization based on
median filtering followed by dense linear fitting. The idea is to compute the
dense linear fitting error of the NNF and use it to compute the detection map.

Let δ(s) be the offset field in a N -pixel neighborhood of the position s.
We want to fit δ(s) with an affine model

δ̂(si) = Asi, i = 1, . . . , N (4.1)

49

50 4. Post Processing

where A (the parameters of the transformation) is chosen to minimize the sum
of squared errors w.r.t. δ(s)

ε2(s) =

N∑
i=1

‖δ(si)− δ̂(si)‖2 (4.2)

Our offset field is 3-dimensional and the optimization problem can be solved
one component at a time. So let us redefine δ(s) as a single component field.
Now we can formulate the problem as

aopt = arg min
a
‖δ − Sa‖2 (4.3)

In eq. 4.3 δ = [δ(s1), δ(s2), . . . , δ(sN)]T is the vector of offsets, a =
[a0, a1, a2]T is the vector of the transform’s parameters and S is the N × 3
matrix of the homogeneous coordinates of all pixels in the neighborhood

S =

1 s11 s12

1 s21 s22
...

1 sN1 sN2

 (4.4)

With this notation the affine model becomes

δ̂(si) = a0 + a1si1 + a2si2, i = 1, . . . , N (4.5)

This is a multiple linear regression problem [59] with solution

aopt = (STS)−1ST δ (4.6)

With this solution, the corresponding sum of squared errors (SSE) is associated

ε2(s) = ‖δ − S(STS)−1ST δ‖2

= ‖(I −H)δ‖2

= δT (I −H)δ (4.7)

where H = S(STS)−1ST . By choosing always the same shape of the neigh-
borhood and taking the coordinates in (4.4) relative to s, the matrix H does
not depend on s, so we can compute the SSE by evaluating the quadratic form
(4.7).

4.1. Dense Linear Fitting 51

In order to reduce the processing cost, we can consider that the rank-3
matrix H can be decomposed as:

H = QQT , Q = [q1, q2, q3] (4.8)

where qj is a column vector of length N . This leads to calculate the SSE as

ε2(s) = (δT δ)− (δT q1)2 − (δT q2)2 − (δT q3)2 (4.9)

computed through a few filtering operations and some products.

4.1.1 Morphological Operations

We can now outline the process that leads to the creation of the 3D detection
map (Fig.4.1), that is a firs version of the final map, as we will see in the next
paragraph.

Let us consider the (squared) dense linear fitting error ε2 and the smoothed
version of nearest neighbor field, NNFf , computed by median filtering the
original NNF . Again, we make reference to the offset field, δ, that is, the
NNFs relative to each position s of the video. To this end, if S is a matrix
such that S(s) = s, we define the offset

δ = NNFf − S; (4.10)

Now, remember that ε2 is a 3D matrix, with the same size as the video, and
that each value of the matrix is a 3-component vector comprising the errors
computed in the three dimensions of the video (ε2r , ε

2
c , ε

2
t). Therefore, we

compute a binary map of the error, Merror, by thresholding a weighted sum of
these error components

Merror =
(
ε2r + ε2c + η · ε2t

)
≤ Terror (4.11)

where η > 1 is a parameter used to emphasize the error over the time dimen-
sion and Terror is a suitable threshold. Another binary map, Mdistance, is then
defined to discard matching between regions that are too close. To this aim, if
Dmin is the minimum acceptable distance for a copy move, we can write

Mdistance = ‖δ‖2 ≥ Dmin (4.12)

A first version of the detection map, M̂ , is then obtained as the product1 of
these two maps

M̂ = Merror ⊗Mdistance (4.13)
1The product ⊗ in eq. 4.13 denotes the element-by-element multiplication.

52 4. Post Processing

(a)

0

100

200

300

400

500

600

(b)

0

100

200

300

400

500

600

(c)

−40

−20

0

20

40

60

(d)

(e) (f)

Figure 4.1: Post-processing steps: (a) forged image, (b) magnitude of
offsets, (c) median filtering, (d) fitting error ε2(s) (dB), (e) thresholding of
ε2(s), (f) final mask.

4.2. Removing False Alarms 53

.

1

A A′-�

B - C

1

A - A′

?
A′′�A′′′

6
.

Figure 4.2: Left: removing random false matches. The preliminary detec-
tion map MDLF includes two clones, A,A′, and a false match B pointing
to regionC that has zero vlues in the detection map. SinceB does not point
to a detected region in the map it is eventually removed. Right: multiple
clones. The four clones, A,A′, A′′, A′′′ all belong to the preliminary map.
Even though no two regions match one another, they all match regions in
the map, so they are all kept.

Unfortunately, spurious matchings abound in video sequences because of
repeated patterns, uniform background and mainly stationary scenes. For these
reasons M̂ is typically characterized by several highlighted regions, which
represent false alarms. However, such regions that do not correspond to a real
copy-move are usually quite small, hence we can remove most of them through
a simple morphological opening, with a circular structuring element of suitable
radius. The resulting map, MDLF, is the starting point for the last step of our
post-processing, described in the next section.

4.2 Removing False Alarms

Pristine regions that are similar to one another abound in images and videos,
and may induce a copy-move detection algorithm to produce false alarms. In
[26], dealing with images, these were largely eliminated through morphologi-
cal filtering. When dealing with videos, however, this problem becomes much
more relevant because subjects, and especially background areas, appear al-
most identical in many subsequent frames, giving rise to a large number of
false alarms, over extended regions. Standard morphological filtering cannot
solve the problem anymore. We therefore add a further control, working al-
ways on the NNF to keep high efficiency.

The inspiring principle, already used for other aims [43, 37, 90], is that
true clones should match both ways, that is

(s, t) + δ(s, t) = (s′, t′) ⇔ (s′, t′) + δ(s′, t′) = (s, t) (4.14)

54 4. Post Processing

Points for which this condition does not hold may be random matches rather
than corresponding points of a copy-move. Actually, this is too strict a con-
dition to enforce, since small deviations from this rule apply also to actual
copy-moves. In addition, with multiple clones, the very same principle weak-
ens, as points may exhibit a circular matching. Therefore we use a weaker but
still effective constraint, requiring simply that regions matching through the
NNF all belong to preliminary detection map MDLF. This is rarely the case
for false matches, while it happens with near certainty for actual copy-moves.
Pictorial examples of the application of these rules are shown in Fig.4.2 with
reference to a 2D geometry.

In Fig.4.3, instead, we show some example detection maps for videos with
copy moves before and after the application of the proposed technique for false
alarm removal. In both cases the copy-moves are detected with good accuracy,
but the original map also present a large number of false alarms, which are
mostly removed with the specific post-processing.

4.2. Removing False Alarms 55

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

Fi
gu

re
4.

3:
E

xa
m

pl
es

of
co

lo
r-

co
de

d
de

te
ct

io
n

m
ap

s
fo

r
vi

de
os

w
ith

co
py

-m
ov

es
,o

ri
gi

na
l(

to
p)

an
d

af
te

r
ap

pl
yi

ng
th

e
te

ch
ni

qu
e

fo
r

fa
ls

e
al

ar
m

re
m

ov
al

(b
ot

to
m

).
T

P
pi

xe
ls

ar
e

gr
ee

n,
FP

pi
xe

ls
ar

e
re

d
an

d
FN

pi
xe

ls
ar

e
bl

ue
.

T
N

pi
xe

ls
ar

e
tr

an
sp

ar
en

tf
or

co
rr

ec
tv

is
ua

liz
at

io
n.

Chapter 5

Experimental Results

The performance of the proposed method was assessed through a number of
experiments under various operative conditions. In the following we will de-
scribe the datasets, the performance measures, and finally the experimental
results.

5.1 The GRIP Dataset

We prepared a dataset, called the GRIP dataset from now on, comprising 15
short videos with rigid copy-moves, 10 additive and 5 occlusive. They were
obtained using After Effects Pro, a tool for video editing. As a result, there are
little or no artifacts which may raise suspects on the video, just as would hap-
pen with a real-world skilled attacker. Nonetheless, since we consider rather
short videos, additive copy-moves may be obvious anyway, since the same ob-
ject appears twice within a few seconds. On the contrary, it seems safe to say
that occlusive copy-moves can be hardly spotted without specific tools. In ad-
dition, by using rotation or temporal flipping, when meaningful, also additive
copy-moves become less visible. All copy-moved videos are available online
at http://www.grip.unina.it/ together with their pristine versions and the ground
truths.

Tab.5.1 shows synthetic statistics of all videos and forgeries, while Figures
5.1, 5.2 and 5.3 show a sample frame of the original and forged video, together
with a 3D view of the ground truth which provides some immediate insight
on the spatio-temporal structure of the forgery. Large and static copy-moves,
like that of TV Screen (video #1) will be easily detected in any condition.
On the contrary, small and fast-moving copy-moves represent a severe chal-

57

58 5. Experimental Results

a) video #1, TV screen: additive, large, static

b) video #2, Fast car: additive, large, fast (low depth)

c) video #3, Felt-Tip Pen: additive, small

d) video #4, Rolling Can: additive, large

e) video #5, Falling can: additive, small, fast (low depth)

Figure 5.1: GRIP dataset: videos from #1 to #5. From left to right:
original frame, copy-moved frame, 3D view of the ground truth. In the 3D
views, the origin of the axes is the bottommost point, and the time axis is
on bottom-right.

5.1. The GRIP Dataset 59

f) video #6, Walnuts: occlusive, small, saturated area

f) video #7, Can 1: additive, large

f) video #8, Can 2: additive, large

a) video #9, Lamp: additive, large

b) video #10, Ball: additive, large

Figure 5.2: GRIP dataset: videos from #6 to #10. From left to right:
original frame, copy-moved frame, 3D view of the ground truth. In the 3D
views, the origin of the axes is the bottommost point, and the time axis is
on bottom-right.

60 5. Experimental Results

c) video #11, Student: occlusive

d) video #12, Cell 1: additive

e) video #13, Cell 2: occlusive

f) video #14, Wall frame: occlusive, small

f) video #15, Statue: occlusive

Figure 5.3: GRIP dataset: videos from #11 to #15. From left to right:
original frame, copy-moved frame, 3D view of the ground truth. In the 3D
views, the origin of the axes is the bottommost point, and the time axis is
on bottom-right.

5.1. The GRIP Dataset 61

video copy-move

name frame size frames add./occ. ρmax dmax rot. flp.

1 TV screen 576×720 141 add 182.7 43 X X

2 Fast Car 370×720 140 add 203.2 9 X

3 Felt-Tip Pen 550×720 100 add 62.3 4 X X

4 Rolling Can 480×660 125 add 229.6 18 X X

5 Falling Can 480×720 174 add 71.3 29

6 Walnuts 480×720 221 occlusive 199.5 102

7 Can 1 520×720 201 add 220.6 28 X

8 Can 2 720×720 210 add 112.1 15 X X

9 Lamp 390×465 455 add 159.9 129 X

10 Ball 640×360 200 add 195.4 31 X

11 Student 400×380 340 occlusive 176.3 60

12 Cell 1 400×500 92 add 63.7 92 X X

13 Cell 2 512×512 92 occlusive 107.5 92 X X

14 Wall Frame 500×570 200 occlusive 50.6 155 X

15 Statue 590×480 100 occlusive 65.9 61

Table 5.1: Features of the GRIP dataset

lenge. Note that by “fast”, we mean a copy-move with a rapidly changing
mask, maybe spanning just a few frames at any pixel, like in both Fast Car
(video #2) and Falling Can (video #5), while the speed of the physical ob-
ject inside the mask is immaterial for our aim. To capture synthetically these
geometric features we use the max-radius and max-depth indicators. The max-
radius is defined as ρmax = maxt

√
A(t)/π, with A(t) being the area of the

tampered region in frame t. Likewise, max-depth is dmax = maxs d(s), with
d(s) the depth of the tampered region for pixel s, possibly much smaller than
the total copy-move duration. Walnuts (video #6) and Student (video #11)
are examples of occlusive forgeries. The first one may be especially challeng-
ing, giving rise to a large number of false alarms due to the saturated area in
the middle.

Besides our own dataset, we also consider the REWIND dataset, described

62 5. Experimental Results

Figure 5.4: Examples of ground truth (GT) and detection map (M). In
GT (left) copy-moved regions, both original and clones, are set to 1 (red).
In M (right), detected copy-moves are set to 1 (green).

in [7] and available online1. This dataset, however, comprises only rigid addi-
tive copy-moves and comes without a ground truth. In addition, some videos
(e.g., Duck, Fast Car) appear to be splicings rather then copy moves (maybe
with material taken from parts of the video not available to the user) or else
the copied regions have been subjected to some unreported processing before
pasting them back. For these reasons, we use REWIND only for some experi-
ments, turning to the GRIP dataset for a more reliable analysis.

5.2 Performance Assessment

The performance is measured in terms of detection and localization accuracy,
besides processing time. Detection is declared if, after the post-processing,
which includes the removal of small regions, a large number of detected pixels
are present in the output map M

|M | > Tdetection (5.1)

where |x| counts the number of ones in x and the threshold Tdetection is set
for each version of the algorithm in order to maximize the detection’s per-
formance. When a copy-move is actually present, this is a correct detection,
otherwise it is a false alarm. Therefore, to quantify both missing detections

1https://sites.google.com/site/rewindpolimi/downloads/datasets/video-copy-move-
forgeries-dataset

5.2. Performance Assessment 63

and false alarms, in the experiments we run our detectors twice, first on the
copy-moved video and then on the pristine original video.

To measure the localization performance we define the sets

• TP (true positive): detected copy-move pixels;

• FP (false positive): detected pristine pixels;

• TN (true negative): undetected pristine pixels;

• FN (false negative): missed copy-move pixels.

(see also Fig.5.5) from which the F-measure indicator is derived as

F =
2|TP|

2|TP|+ |FP|+ |FN|
(5.2)

If detection map and ground truth coincide, then |FP| = |FN| = 0, and the
F-measure reaches its maximum value, equal to 1. However, as the number
of false negative or false positive pixels increases, the F-measure decreases
rapidly. In particular, the F-measure is more informative than the overall ac-
curacy when the two classes of interest are very unbalanced, which is the case
of typical forged videos, where only a small fraction of the data are tampered
with.

Finally, we measure efficiency in terms of normalized CPU-time, s/Mpixel,
that is, the time in seconds required to process the whole video divided by
its size in Mpixel. CPU-times refer to a computer with a 2GHz Intel Xeon
processor with 16 cores, 64GB RAM and GPU Nvidia GeForce GTX Titan X.

64 5. Experimental Results

B
as

ic
2D

B
as

ic
3D

Fa
st

2D
Fa

st
3D

B
es

ta
gi

ni

vi
de

o
de

t.
f.a

.
F

tim
e

de
t.

f.a
.

F
tim

e
de

t.
f.a

.
F

tim
e

de
t.

f.a
.

F
tim

e
de

t.
f.a

.
F

tim
e

1
X

0.
96

15
.4

2
X

0.
95

17
.5

0
X

0.
97

2.
17

X
0.

97
3.

25
X

–
8.

9

2
X

0.
88

15
.4

5
X

0.
68

17
.1

9
X

0.
78

2.
77

X
0.

67
3.

44
X

–
7.

3

3
X

0.
56

16
.3

9
X

0.
29

23
.2

4
X

0.
60

2.
67

X
0.

31
3.

00
X

–
6.

7

4
X

0.
88

14
.9

2
X

0.
79

16
.7

5
X

0.
88

2.
77

X
0.

76
3.

32
X

–
7.

2

5
X

0.
84

16
.7

0
X

0.
86

20
.2

9
X

0.
81

2.
07

X
0.

86
3.

24
X

X
–

14
.9

6
X

X
0.

72
16

.5
0

X
0.

74
18

.5
8

X
X

0.
73

2.
35

X
0.

81
3.

45
–

11
.7

7
X

0.
83

18
.4

5
X

0.
78

20
.2

5
X

0.
90

2.
54

X
0.

81
3.

41
X

X
–

11
.5

8
X

0.
87

19
.7

3
X

0.
77

24
.2

3
X

0.
89

2.
20

X
0.

76
3.

32
X

X
–

15
.2

9
X

0.
93

17
.8

0
X

0.
92

20
.3

1
X

0.
94

2.
40

X
0.

93
4.

02
X

X
–

14
.4

10
X

0.
91

15
.6

9
X

0.
89

16
.6

7
X

0.
94

2.
30

X
0.

92
3.

45
X

X
–

6.
3

11
X

X
0.

88
14

.1
4

X
0.

87
18

.0
0

X
X

0.
86

3.
05

X
0.

88
4.

15
–

7.
7

12
X

0.
80

16
.2

3
X

0.
77

18
.7

8
X

0.
87

1.
96

X
0.

83
3.

81
–

2.
6

13
X

0.
91

15
.4

3
X

0.
90

18
.2

6
X

0.
92

2.
49

X
0.

91
4.

02
–

4.
4

14
X

0.
74

16
.6

6
X

0.
71

19
.4

2
X

0.
77

2.
35

X
0.

77
3.

39
–

8.
8

15
X

0.
72

16
.0

5
X

X
0.

51
20

.1
7

X
0.

00
2.

26
X

X
0.

41
3.

32
–

3.
8

Σ
,µ

15
2

0.
83

16
.3

7
15

1
0.

76
19

.3
1

14
3

0.
79

2.
42

15
1

0.
75

3.
51

9
5

8.
8

Ta
bl

e
5.

2:
D

et
ec

tio
n,

lo
ca

liz
at

io
n

an
d

ef
fic

ie
nc

y
pe

rf
or

m
an

ce
fo

rp
la

in
co

py
-m

ov
es

on
th

e
G

R
IP

da
ta

se
t

5.2. Performance Assessment 65

B
as

ic
2D

B
as

ic
3D

Fa
st

2D
Fa

st
3D

B
es

ta
gi

ni

da
ta

se
t

ca
se

#
vi

de
os

de
t.

f.a
.

F
de

t.
f.a

.
F

de
t.

f.a
.

F
de

t.
f.a

.
F

de
t.

f.a
.

F

G
R

IP
pl

ai
n

15
15

2
0.

83
15

1
0.

76
14

3
0.

79
15

1
0.

75
9

5
–

G
R

IP

Q
P

=
10

15

15
1

0.
84

15
1

0.
77

14
2

0.
74

14
1

0.
75

9
5

–

Q
P

=
15

15
1

0.
76

15
1

0.
72

13
2

0.
65

15
1

0.
70

9
4

–

Q
P

=
20

12
1

0.
54

12
1

0.
56

13
2

0.
53

12
0

0.
52

9
5

–

G
R

IP

θ
=

5o

8

8
–

0.
81

7
–

0.
73

5
–

0.
40

7
–

0.
68

2
–

–

θ
=

25
o

7
–

0.
71

4
–

0.
60

3
–

0.
25

4
–

0.
44

2
–

–

θ
=

45
o

5
–

0.
56

4
–

0.
43

2
–

0.
12

4
–

0.
43

2
–

–

G
R

IP
fli

pp
in

g
9

8
–

0.
81

9
–

0.
76

6
–

0.
59

7
–

0.
59

3
–

–

R
E

W
IN

D
pl

ai
n

10
8

4
–

9
4

–
8

4
–

6
1

–
6

3
–

Ta
bl

e
5.

3:
Su

m
m

ar
y

of
de

te
ct

io
n

an
d

lo
ca

liz
at

io
n

pe
rf

or
m

an
ce

on
th

e
w

ho
le

se
to

fe
xp

er
im

en
ts

66 5. Experimental Results

5.2.1 Numerical results

In Tab.5.2 we report results for the GRIP dataset in the presence of plain copy-
moves, involving only rigid spatio-temporal translations, and possibly some
local processing at the boundary of the copied area to reduce artifacts. No
rotation or flipping are allowed, here, and no global post-processing, such as
compression, and noise addition. For each technique and each video we mark
with a X symbol whether the copy move is detected (det), and whether a false
alarm (f.a.) is declared, namely a copy-move is detected in the pristine video
where there are none. Then we report the F-measure, to quantify localization
accuracy, and the normalized CPU-time. We use features of the length 12, in
the 2D case, and length 18, in the 3D case, the latter obtained by considering
6 Zernike moments over 3 consecutive frames and computing the even-odd
transform. In the fast versions, with the multi-resolution analysis scheme,
a subsampling step S = 4 is used. To provide some comparison with the
state-of-the-art, we include also the technique proposed by Bestagini et al. [7]
which, however, addresses only the detection task.

Unfortunately, other literature techniques like [50] and [100] make very
restrictive hypotheses on the forged videos, hence they cannot be used on re-
alistic datasets as GRIP or REWIND. In fact, in [50] only rigid copy-moves
between consecutive frames are considered, while in [100] matching is carried
out through an exhaustive search on dense HOG features, making the proce-
dure unfeasible even for very short videos.

Performance figures are very good for all variants of the proposed algo-
rithm. The basic version of the algorithm, without multi-resolution process-
ing, detects all copy-moves, both with single-frame 2D features (Basic-2D
algorithm, from now on) and with 3D flip-invariant features (Basic-3D), with
very few false alarms. On the other hand, a few false alarms in this context are
not really critical since they raise attention on some candidate copy-moves that
may be analyzed with much greater care afterwards. On the contrary, missed
detection cannot be recovered easily. The fast versions of the algorithms (Fast-
2D and Fast-3D) are also quite reliable. Only Fast-2D misses one copy-move,
of the occlusive type, probably because of the loss of spatial synchronization
due to subsampling. The reference method [7], instead, misses all occlusive
copy-moves and also an additive one, besides originating a slightly larger num-
ber of false alarms.

The localization performance is extremely high in all cases. Barring video
15, missed by Fast-2D, the only critical case seems to be video 3, and only for
the Basic-3D and Fast-3D algorithms. This is easily explained by noting that

5.2. Performance Assessment 67

dmax = 4, for this video, namely, the copy-move is extremely thin in time,
causing inaccuracies at the temporal boundaries when 3D features are used.
Nonetheless, these problems do not prevent correct detection.

Turning to processing speed, the overall CPU times scale proportionally
with the video size (frame size × number of frames). In fact, the Basic 2D
and 3D algorithms take about 16.4 s/Mpixel and 19.3 s/Mpixel, respectively,
with very small deviations across the videos. The fast versions are indeed
much faster, bringing the average CPU-time down to 2.9 and 3.5 s/Mpixel,
respectively, the difference mainly due to the longer 3D features.

Let us now analyze performance in more challenging situations, namely,
in the presence of video compression, and of copy-move rotation and flipping.
Experimental results are reported in Tab.5.3, only in synthetic form for the sake
of brevity. In the same table we also report results obtained in the absence of
further processing on the GRIP dataset (GRIP plain, first line, reported again
for completeness) and on the REWIND dataset (REWIND plain, last line).
Instead, we do not show CPU-times anymore, since they depend almost exclu-
sively on the video size, and very little on the level of compression or the type
of attack.

Compressed videos are more the norm than the exception, and studying
performance in this situation is of paramount importance. To this end, we con-
sider MPEG-2 compression at quantization parameter QP = 10, 15, and 20,
which correspond roughly to high, medium and low quality sources. Together
with the forged videos, we compress also the pristine ones, which allows us
to compute both detection and false alarm figures. The basic version of the
algorithm keeps providing an excellent performance with both 2D and 3D flip-
invariant features, although some missed detections are observed in the most
challenging case of QP = 20. A similar behavior is observed with the fast
versions, with just a few further missed detections. The F-measure remains
always quite large (lower values are mostly due to missed detections), indicat-
ing a very good localization ability. In all cases, a very small number of false
alarms is observed. Note that the reference technique detects only 9 copy-
moved videos, with a larger number of false alarms and, as already said, does
not have localization ability.

In lines 5-7 of Tab.5.3 we analyze the case of video objects that are ro-
tated before pasting, which may be due to composition needs (small angles) or
made on purpose to fool copy-move detectors. The analysis applies only to the
8 videos with rotated copy-moves, while no false alarm analysis is possible,
since objects are not rotated in the original videos. The basic algorithm keeps

68 5. Experimental Results

(a) Plain copy-move in video #6 Walnuts (b) Copy-move with compression at
QP=20 in video #1 TV screen

(c) Copy-move with flipping in video
#2 Fast Car

(d) Copy-move with 45o rotation in
video #14 Wall Frame

Figure 5.5: Sample color-coded detection maps for videos of the GRIP
dataset. TP pixels are green, FP pixels are red and FN pixels are blue.
TN pixels are transparent for correct visualization. The plain (top-left)
and flipped (bottom-left) copy moves are fully detected, with only some
inaccuracies at the boundaries. Compression (top-right) impacts on local-
ization performance, especially on the saturated areas of the video object.
Rotation (bottom-right) causes the loss of a copy moved segment, follow-
ing sudden camera motion.

5.2. Performance Assessment 69

Figure 5.6: Analisys of performance over the whole test set as a function
of the detection threshold. Each graph shows the distribution of the de-
cision variable for forged videos (red) and pristine videos (blue), the cor-
responding F-measure (black line), and the selected threshold (magenta
dashed line). Basic-2D (top-left), Basic-3D (top-right), Fast-2D (bottom-
left), Fast-3D (bottom-right).

working very well at small angles, while at large angles, 25 or 45 degrees, the
version with 3D features exhibits a large number of missed detections. This is
likely due to temporal boundary discontinuities, quite relevant for videos with
small dmax. On the other hand, 3D features seem more robust when moving to
the fast version, with no further missed detection, while the Fast-2D algorithm
exhibits a limited reliability. The reference algorithm, instead, looks definitely
unreliable with rotated copy-moves at all angles. In the presence of flipping,
the proposed algorithm works very well with 3D flip-invariant features, with
no missed detection for the basic version and only two of them for the fast ver-
sion, slightly better than when 2D features are used. Together with previous
results, this suggests using 3D flip-invariant features with the fast algorithm,

70 5. Experimental Results

while 2D features seem slightly preferable with the basic algorithm. Finally,
let us consider the REWIND dataset. In this case, no algorithm is able to pro-
vide perfect detection. The best result is obtained with Basic-3D, but even in
this case there is one missed detection and four false alarms. However, this is
to be ascribed to the video themselves since some forgeries appear to be splic-
ings rather than copy-moves (notably the fast car video), which fully justifies
the failures. Indeed, the reference algorithm, tested by the authors on this very
same dataset, provides an even poorer performance. In Fig.5.5 we show some
sample detection maps obtained with the proposed algorithm (basic, 2D fea-
tures) on GRIP videos with copy-moves and various operating conditions. The
performance is always very good, although a whole segment is missed in the
rotated copy-move, due to the large rotation angle, highlighting the challenges
raised by post-processing for detection.
All above results have been obtained by selecting the detection threshold which
maximizes the F-measure computed on the whole dataset. As shown in Fig.5.6,
the four versions of the algorithm are quite robust w.r.t. errors in the selection
of the threshold. In particular, a threshold much smaller than the optimal can
be used with an F-measure loss of approximately 0.1 for the Basic versions,
and largely negligible for the Fast versions.
In Fig.5.7 we show the receiver operating curves (ROCs) obtained on the whole
dataset by varying the detection threshold of eq.(5.1) for the proposed tech-
nique compared with the technique proposed in [7]. Besides the good perfor-
mance, the curves testify to a good robustness to small errors in the selected
threshold. Fig.5.8, instead, compares the ROCs obtained with and without
the new post-processing described in Section 4.2 to reduce false alarms. The
performance improvement is limited but consistent. Figures 5.9 through 5.10
illustrate the behavior of the proposed algorithm in various situations of inter-
est by displaying the output 3D detection maps for some videos of the GRIP
dataset. In particular, Fig.5.9 shows results for plain copy-moves and illus-
trates the effect of false positives on performance. Fig.5.10 compares the out-
put maps obtained for the same video with and without copy-move. Fig.5.11
shows results for copy-moves with rotation, considering several rotation angles
and focusing on the worst case for the algorithm. Finally, Fig.5.12, illustrates
the technique’s behavior in the presence of various levels of compression.

5.3. Complexity 71

Figure 5.7: ROCs comparison between proposed technique and [7]: the
sum of ones of the detection map is used as detection variable to generate
these ROCs. To carry out a meaningful comparison, we considered only
videos with forgeries that are detectable with the method proposed in [7],
i.e. plain copy-moves and copy-moves with compression.

5.3 Complexity

In the development of the proposed algorithm, a major effort has been devoted
to computational efficiency. The bar graphs of Fig.5.13 describe the results
for the case of 2D features (left) and 3D flip-invariant features (right) in terms
of normalized CPU times (s/Mpixel) averaged over all experiments, compris-
ing a grandtotal of 153 videos. From left to right, the bars refer to the basic
algorithm, its multi-resolution version, and the parallel implementation of the
latter, while colors identify the phases of feature extraction (blue), matching
(green) and post-processing (red). The multi-resolution processing impacts
only on the matching phase, largely reducing its cost and bringing total CPU-
time from 16.85 to 5.99 s/Mpixel with 2D features and from 20.06 to 7.42
s/Mpixel with 3D features. The parallel implementation, instead, reduces the
cost of all phases, although to different degrees, bringing the total CPU-time
to 2.43 and 3.47 s/Mpixel, respectively. Overall, Fast-2D guarantees a 7×

72 5. Experimental Results

Figure 5.8: ROCs for the Basic-2D (top-left), Fast-2D (top-right), Basic-
3D (down-left) and Fast-3D (down-right) algorithms, obtained by varying
the detection threshold. In both cases, the post-processing used in this
work (DUAL, blue line) provides significant improvements with respect to
the simpler post-processing (NO-DUAL, red line).

speed-up w.r.t. Basic-2D, and Fast-3D a 6× speed-up w.r.t. Basic-3D, with
differences due mainly to the longer features used in the second case.

It should be realized that this is a huge time saving with respect to plain
search. Indeed, the complexity of copy-move detection is inherently quadratic
with the length of the video, since, in principle, all features must be compared
with one another. For the small videos of the GRIP dataset, one should com-
pute in the order of 107 distances per feature. Thanks to PatchMatch, our basic
algorithms reduce this number to about 102. Then, our fast parallel version is
6-7 times faster than that. Noteworthy, the method proposed in [7], based on
Fourier-domain analysis, is much slower than Fast-2D and Fast-3D, and the
same applies to a simple 3D version of the keypoint-based method proposed
in [1].

All this said, the proposed algorithms are still computation-intensive and
far from achieving real-time processing. To process a 1-minute video at 25

5.3. Complexity 73

Figure 5.9: Examples of color-coded detection maps for plain copy-
moves. TP pixels are green, FP pixels are red and FN pixels are blue. TN
pixels are transparent for correct visualization. From left to right: videos
#9, #14 and #3. From top to bottom: results of Basic-2D, Basic-3D,
Fast-2D, Fast-3D techniques. For video #3, the presence of false posi-
tives (red in the maps) causes a reduction of the F-measure, as shown in
Tab.5.2.

74 5. Experimental Results

Figure 5.10: Examples of color-coded detection maps for forged vs. pris-
tine video #6. TP pixels are green, FP pixels are red and FN pixels are
blue. TN pixels are transparent for correct visualization. From left to
right: results of Basic-2D, Fast-2D, Fast-3D techniques. Top: maps for the
forged video; bottom: maps for the pristine video. False positives on the
pristine video produce false alarms, as shown in Tab.5.2.

frames/s, with 0.5 Mpixel frames, about 30 minutes of CPU time are currently
necessary. Obviously, much faster methods can be conceived, trading off speed
for reliability. To explore this opportunity, we tested a bare-bone version of
the proposed algorithm where i) the video is subsampled with step 16 in both
spatial directions; ii) simpler non-flip invariant 2D features are used; and iii)
PatchMatch relies only on vertical and horizontal predictors for propagation.
With these simplifications, a dramatic 40× speed-up is obtained with respect
to Fast-3D, reaching 0.08 s/Mpixel as opposed to 3.47 s/Mpixel. However, the
decline in performance is not acceptable. Restricting attention to plain copy-
moves, we observe a good detection rate, nearly 90%, even in the presence
of compression, but a false alarm rate that grows to 20%, in the absence of
compression, and to 40%, with compression. Therefore, given 1000 pristine
videos, this tool would select from 200 to 400 of them for further analysis,
hardly a saving of resources for the human analysts. Moreover, for copy-moves
with flipping the detection rate drops to about 50%, and nearly to zero for
copy-moves with rotation, allowing a smart attacker to easily fool the detector
through a very small rotation of the copy.

In any case, in many circumstances, reliability is far more important than

5.3. Complexity 75

Figure 5.11: Examples of color-coded detection maps for copy-moves
with rotation. TP pixels are green, FP pixels are red and FN pixels are
blue. TN pixels are transparent for correct visualization. From left to
right: videos #9, #1 and #14. From top to bottom: results for rotations
of 5, 25 and 45 degrees. Results are obtained with the Fast-2D technique,
the worst case for rotations, as shown in Tab.5.3.

76 5. Experimental Results

Figure 5.12: Examples of color-coded detection maps for copy-moves
after compression. TP pixels are green, FP pixels are red and FN pixels are
blue. TN pixels are transparent for correct visualization. From left to right:
videos #4, #1 and #6. From top to bottom: no compression, compression
with QP=10, QP=15 and QP=20. Results are obtained with the Fast-3D
technique, but represent well all other versions of the technique. Video #6
represents the worst case in the presence of compression due to the type of
forgery, that is an occlusive copy-move covering a relatively small region.

5.4. A real-world case: the Varoufakis video 77

Figure 5.13: Computational cost of feature extraction (blue), match-
ing (green), and post-processing (red) phases for various versions of the
proposed algorithm using 2D features (left) or 3D flip-invariant features
(right). The dominant source of complexity in the basic algorithm (bar 1)
is matching. Multiresolution processing (bar 2) reduces sharply this cost.
Parallel computing (bar 3) further reduces the cost of all phases. The final
speed-up w.r.t. the basic version is about 7× with 2D features and 6× with
3D flip-invariant features.

speed, especially in forensic applications. In addition, often one has already
selected a fragment of the video for verification, because of its semantics (see
next subsection), and wants to analyze the rest of the video to locate regions
that match the target fragment. In this modality, the search complexity reduces
from quadratic to linear in the length of the video, with a major impact on
efficiency.

5.4 A real-world case: the Varoufakis video

We tested our algorithm on a real-world case that recently made the headlines
all over the world, the well-known Varoufakis video. While politicians of the
European Union (EU) were actively addressing the Greek financial crisis, in
early 2015, a video was posted on YoutubeTM with the greek minister of econ-
omy, Yanis Varoufakis, apparently “sticking the middle finger” at Germany to
underscore his disappointment about the proposed EU economic recipes. The
video become immediately a diplomatic case. Although minister Varoufakis
quickly denounced the video as a fake, doubts persisted over its real nature, as
it was impossible to discover clear signs of manipulations. The case became

78 5. Experimental Results

Figure 5.14: Frames taken from the three Varoufakis videos. From top to
down: #1, sticking middle finger, #2, arm down, #3, victory sign.

5.4. A real-world case: the Varoufakis video 79

(a) Matching frames

(b) Detection maps

Figure 5.15: Findings in the Varoufakis video #2 (arm down). Top, evi-
dence of copy-move with flipping. Bottom, sample detection maps.

even more complicated when two more versions of the same video appeared2,
one with the minister’s arm down, and another one with raised arm but two
fingers sticking in a victory sign. Frames extracted from the three videos are
shown in Fig.5.14. Obviously, at least two of the videos had been manipulated.
We therefore applied our algorithm to the videos in search of clues of what re-
ally happened. Although the videos were several minutes long, the sequence
with the raised finger, where the videos differ, lasted just a few seconds, so we
could adopt an asymmetric modality of analysis, focusing only to this section
and looking for possible matching in the rest of the video. This circumstance
made the computational effort fully acceptable. The proposed algorithm did
not discover any copy-moves in videos #1 (middle-finger) and #3 (victory).
Since only one of them (at most) can be pristine, we are missing a forgery. A

2see http://henryjenkins.org/2015/08/f-for-fake-in-the-second-order-yanis-varoufakis-the-
germans-and-the-middle-finger-that-wasnt-there.html for a full account.

80 5. Experimental Results

first possible explanation is that the victory video is original, and the other one
is obtained by hiding the index finger through inpainting, very easy on small
areas. However, it is also possible that the middle-finger video is original,
and the victory sign is obtained by copy-moving the index from somewhere
else. However, for such a small copy-move detection becomes very unlikely
for any algorithm. The proposed algorithm was instead able to detect a clear
forgery in video #2 (arm down), a copy-move with flipping from a temporally
close section of the same video. Fig.5.15 shows the relevant frames, with the
matching regions, and the corresponding detection maps. To obtain a visual
confirmation of this finding, we played two instances of video #2 side by side,
one going forward and the other backward in time. With suitable synchroniza-
tion, the copy-move appeared obvious, and could easily pass the scrutiny of a
court of justice. Therefore, the proposed method seems to work also outside
the laboratory, barring prohibitive conditions where any algorithm would fail.

Conclusion

We have proposed a method for the detection and localization of video copy-
moves. Since keypoint-based approaches are ineffective with most occlusive
forgeries, we focused on dense-field methods. With this approach, the main
issue is complexity, especially for videos, cursed by their huge data size. To
deal with this problem we resorted to a fast randomized patch matching algo-
rithm, a hierarchical analysis strategy, and parallel implementation. Experi-
ments confirm that the proposed method has an excellent detection and local-
ization ability, also for occlusive copy-moves, and even in adverse scenarios
including rotated copy-moves and compressed videos. Moreover, the running
time is much reduced w.r.t. linear search, enabling practical video analysis.

Despite all efforts, the proposed method cannot be used for real-time anal-
ysis or mass screening of video repositories. Therefore, there is much room
for future research on tools that solve these problems, even at the price of
reduced reliability. We ourselves are currently working on the development
of fast keypoint-based methods for video analysis, and on the integration of
PatchMatch with fast nearest neighbor search algorithms [107].

81

Bibliography

[1] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A
sift-based forensic method for copy-move attack detection and trans-
formation recovery,” IEEE Transactions on Information Forensics and
Security, vol. 6, no. 3, pp. 1099–1110, Sep. 2011.

[2] A. Babenko and V. Lempitsky, “The inverted multi-index,” in Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on. IEEE, 2012, pp. 3069–3076.

[3] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “Patch-
match: A randomized correspondence algorithm for structural image
editing,” ACM Transactions on Graphics, vol. 28, no. 3, pp. 24:1–24:11,
Jul. 2009.

[4] C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstein, “The gen-
eralized patchmatch correspondence algorithm,” in European Conf. on
Computer Vision, vol. 6313, 2010, pp. 29–43.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” Computer vision–ECCV 2006, pp. 404–417, 2006.

[6] S. Bayram, H. Sencar, and N. Memon, “An efficient and robust method
for detecting copy-move forgery,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, Apr. 2009, pp. 1053–1056.

[7] P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Local tamper-
ing detection in video sequences,” in IEEE International Workshop on
Multimedia Signal Processing, October 2013, pp. 488–493.

[8] T. Bianchi and A. Piva, “Image forgery localization via block-grained
analysis of jpeg artifacts,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 3, pp. 1003–1017, Jun. 2012.

83

84 BIBLIOGRAPHY

[9] A. Bidokhti and S. Ghaemmaghami, “Detection of regional copy/move
forgery in mpeg videos using optical flow,” in Artificial intelligence and
signal processing (AISP), 2015 International symposium on. IEEE,
2015, pp. 13–17.

[10] G. K. Birajdar and V. H. Mankar, “Digital image forgery detection using
passive techniques: A survey,” Digital Investigation, vol. 10, no. 3, pp.
226–245, 2013.

[11] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining image ori-
gin and integrity using sensor noise,” IEEE Transactions on Information
Forensics and Security, vol. 3, no. 1, pp. 74–90, March 2008.

[12] S. Chen, S. Tan, B. Li, and J. Huang, “Automatic detection of object-
based forgery in advanced video,” IEEE Transactions on Circuits and
Systems for Video Technology, in press 2015.

[13] Y.-L. Chen and C.-T. Hsu, “Detecting recompression of jpeg images via
periodicity analysis of compression artifacts for tampering detection,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 2,
pp. 396–406, Jun. 2011.

[14] G. Chetty, “Blind and passive digital video tamper detection based on
multimodal fusion,” in Proc. of the 14th WSEAS International Confer-
ence on Communications, 2010, pp. 109–117.

[15] G. Chierchia, S. Parrilli, G. Poggi, L. Verdoliva, and C. Sansone, “Prnu-
based detection of small-size image forgeries,” in Digital Signal Pro-
cessing (DSP), 2011 17th International Conference on. IEEE, 2011,
pp. 1–6.

[16] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, “A Bayesian-
MRF approach for PRNU-based image forgery detection,” IEEE Trans-
actions on Information Forensics and Security, vol. 9, no. 4, pp. 554–
567, April 2014.

[17] G. Chierchia, D. Cozzolino, G. Poggi, C. Sansone, and L. Verdoliva,
“Guided filtering for prnu-based localization of small-size image forg-
eries,” in Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on. IEEE, 2014, pp. 6231–6235.

BIBLIOGRAPHY 85

[18] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, “Prnu-based
forgery detection with regularity constraints and global optimization,” in
Multimedia Signal Processing (MMSP), 2013 IEEE 15th International
Workshop on. IEEE, 2013, pp. 236–241.

[19] V. Christlein, C. Riess, and E. Angelopoulou, “On rotation invariance
in copy-move forgery detection,” in IEEE International Workshop on
Information Forensics and Security, December 2010.

[20] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An
evaluation of popular copy-move forgery detection approaches,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 6, pp.
1841–1854, Dec. 2012.

[21] V. Conotter, J. F. O’Brien, and H. Farid, “Exposing digital forgeries
in ballistic motion,” IEEE Transactions on Information Forensics and
Security, vol. 7, no. 1, pp. 283–296, 2012.

[22] D. Cozzolino, G. Poggi, and L. Verdoliva, “Copy-Move forgery detec-
tion based on PatchMatch,” in IEEE International Conference on Image
Processing (ICIP), Oct. 2014, pp. 5312–5316.

[23] D. Cozzolino, “Image forgery detection and localization,” 2015.

[24] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Image forgery de-
tection through residual-based local descriptors and block-matching,”
in Image Processing (ICIP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 5297–5301.

[25] D. Cozzolino, F. Marra, G. Poggi, C. Sansone, and L. Verdoliva, “Prnu-
based forgery localization in a blind scenario,” in International Confer-
ence on Image Analysis and Processing. Springer, 2017, pp. 569–579.

[26] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copy–
move forgery detection,” IEEE Transactions on Information Forensics
and Security, vol. 10, no. 11, pp. 2284–2297, 2015.

[27] ——, “Splicebuster: A new blind image splicing detector,” in Informa-
tion Forensics and Security (WIFS), 2015 IEEE International Workshop
on. IEEE, 2015, pp. 1–6.

86 BIBLIOGRAPHY

[28] ——, “Recasting residual-based local descriptors as convolutional neu-
ral networks: an application to image forgery detection,” arXiv preprint
arXiv:1703.04615, 2017.

[29] D. Cozzolino and L. Verdoliva, “Single-image splicing localization
through autoencoder-based anomaly detection,” in Information Foren-
sics and Security (WIFS), 2016 IEEE International Workshop on.
IEEE, 2016, pp. 1–6.

[30] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object re-
moval by exemplar-based image inpainting,” IEEE Transactions on im-
age processing, vol. 13, no. 9, pp. 1200–1212, 2004.

[31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

[32] L. D’Amiano, D. Cozzolino, G.Poggi, and L. Verdoliva, “Video forgery
detection and localization based on 3D PatchMatch,” in IEEE Interna-
tional Conference on Multimedia and Expo Workshops, 2015, pp. 1–6.

[33] L. D’Amiano, D. Cozzolino, G. Poggi, and L. Verdoliva, “A
patchmatch-based dense-field algorithm for video copy-move detection
and localization,” arXiv preprint arXiv:1703.04636, 2017.

[34] S. Das, G. Darsan, L. Shreyas, and D. Devan, “Blind detection method
for video inpainting forgery,” International Journal of Computer Appli-
cations, vol. 60, no. 11, 2012.

[35] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proceed-
ings of the twentieth annual symposium on Computational geometry.
ACM, 2004, pp. 253–262.

[36] D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva, “Autoencoder
with recurrent neural networks for video forgery detection,” in IS&T
International Symposium on Electronic Imaging: Media Watermarking,
Security, and Forensics, 2017.

[37] G. Egnal and R. P. Wildes, “Detecting binocular half-occlusions: Em-
pirical comparisons of five approaches,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 24, no. 8, pp. 1127–1133, 2002.

BIBLIOGRAPHY 87

[38] H. Farid, “Image forgery detection,” IEE Signal Processing Magazine,
vol. 26, no. 2, pp. 16–25, Mar. 2009.

[39] C. Feng, Z. Xu, W. Zhang, and Y. Xu, “Automatic location of frame
deletion point for digital video forensics,” in ACM workshop on Infor-
mation hiding and multimedia security, 2014, pp. 171–179.

[40] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image forgery local-
ization via fine-grained analysis of cfa artifacts,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 5, pp. 1566–1577, Oct.
2012.

[41] J. Fridrich, D. Soukal, and J. Lukás, “Detection of copy-move forgery in
digital images,” in proc. of Digital Forensic Research Workshop, 2003.

[42] H. Fu and X. Cao, “Forgery authentication in extreme wide-angle lens
using distortion cue and fake saliency map,” IEEE Transactions on In-
formation Forensics and Security, vol. 7, no. 4, pp. 1301–1314, Aug.
2012.

[43] P. Fua, “A parallel stereo algorithm that produces dense depth maps
and preserves image features,” Machine vision and applications, vol. 6,
no. 1, pp. 35–49, 1993.

[44] A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A video
forensic technique for detection frame deletion and insertion,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
May 2014, pp. 6226–6230.

[45] J. Goodwin and G. Chetty, “Blind video tamper detection based on fu-
sion of source features,” in Digital Image Computing Techniques and
Applications (DICTA), 2011 International Conference on. IEEE, 2011,
pp. 608–613.

[46] M. Granados, K. Kim, J. Tompkin, J. Kautz, and C. Theobalt, “Back-
ground inpainting for videos with dynamic objects and a free-moving
camera,” in European Conference on Computer Vision (ECCV), 2012,
pp. 682–695.

[47] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and C. Theobalt,
“How not to be seen object removal from videos of crowded scene,” in
Computer Graphics Forum 31, 2012, pp. 219–228.

88 BIBLIOGRAPHY

[48] J. Hays and A. A. Efros, “Scene completion using millions of pho-
tographs,” in ACM Transactions on Graphics (TOG), vol. 26, no. 3.
ACM, 2007, p. 4.

[49] P. He, X. Jiang, T. Sun, and S. Wang, “Double compression detection
based on local motion vector field analysis in static-background videos,”
Journal of Visual Communication and Image Representation, vol. 35,
pp. 55–66, 2016.

[50] C.-C. Hsu, T.-Y. Hung, C.-W. Lin, and C.-T. Hsu, “Video forgery detec-
tion using correlation of noise residue,” in IEEE International Workshop
on Multimedia Signal Processing, 2008, pp. 170–174.

[51] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[52] M. K. Johnson and H. Farid, “Detecting photographic composites of
people,” in International Workshop on Digital Watermarking. Springer,
2007, pp. 19–33.

[53] ——, “Exposing digital forgeries through specular highlights on the
eye,” in International Workshop on Information Hiding. Springer,
2007, pp. 311–325.

[54] M. Kirchner, “Fast and reliable resampling detection by spectral analy-
sis of fixed linear predictor residue,” in proc. of the ACM Workshop on
Multimedia and Security. ACM, 2008, pp. 11–20.

[55] M. Kobayashi, T. Okabe, and Y. Sato, “Detecting forgery from static-
scene video based on inconsistency in noise level functions,” IEEE
Transactions on Information Forensics and Security, vol. 5, no. 4, pp.
883–892, December 2010.

[56] I. Kokkinos and A. Yuille, “Scale invariance without scale selection,”
Department of Statistics, UCLA, 2011.

[57] N. Komodakis and G. Tziritas, “Image completion using efficient belief
propagation via priority scheduling and dynamic pruning,” IEEE Trans-
actions on Image Processing, vol. 16, no. 11, pp. 2649–2661, 2007.

BIBLIOGRAPHY 89

[58] S. Korman and S. Avidan, “Coherency sensitive hashing,” in Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011,
pp. 1607–1614.

[59] M. Kutner, C. Nachtsheim, J. Neter, and W. Li, Applied Linear Statisti-
cal Models. McGraw-Hill, 2004.

[60] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut tex-
tures: image and video synthesis using graph cuts,” in ACM Transac-
tions on Graphics (ToG), vol. 22, no. 3. ACM, 2003, pp. 277–286.

[61] D. Labartino, T. Bianchi, A. D. Rosa, M. Fontani, D. Vazquez-Padin,
A. Piva, and M. Barni, “Localization of forgeries in MPEG-2 video
through GOP size and DQ analysis,” in IEEE International Workshop
on Multimedia Signal Processing, 2013, pp. 494–499.

[62] A. Langille and M. Gong, “An efficient match-based duplication de-
tection algorithm,” in Canadian Conf. on Computer and Robot Vision,
2006.

[63] L. Li, S. Li, H. Zhu, and X. Wub, “Detecting copy-move forgery under
affine transforms for image forensics,” Computers & Electrical Engi-
neering, vol. 40, no. 6, pp. 1951–1962, 2014.

[64] Y. Li, “Image copy-move forgery detection based on polar cosine trans-
form and approximate nearest neighbor searching,” Forensic Science
International, vol. 224, no. 1-3, pp. 59–67, 2013.

[65] S. X. Liao and M. Pawlak, “On the accuracy of zernike moments for
image analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 12, pp. 1358–1364, December 1998.

[66] S.-Y. Liao and T.-Q. Huang, “Video copy-move forgery detection
and localization based on Tamura texture features,” in International
Congress on Image and Signal Processing, 2013, pp. 864–868.

[67] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M.
Lui, “Rotation, scale,and translation resilient watermarking for images,”
IEEE Transactions on Image Processing, vol. 10, pp. 767–782, 2001.

[68] C.-S. Lin and J.-J. Tsay, “A passive approach for effective detection and
localization of region-level video forgery with spatio-temporal coher-
ence analysis,” Digital Investigation, vol. 11, no. 2, pp. 120–140, 2014.

90 BIBLIOGRAPHY

[69] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-
grained tampered jpeg image detection via dct coefficient analysis,” Pat-
tern Recognition, vol. 42, no. 11, pp. 2492–2501, 2009.

[70] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[71] J. Lukáš, J. Fridrich, and M. Goljan, “Detecting digital image forgeries
using sensor pattern noise,” in proc. of the SPIE, vol. 6072, 2006, pp.
720Y–11.

[72] B. Mahdian and S. Saic, “Detection of copy-move forgery using a
method based on blur moment invariants,” Forensic Science Interna-
tional, vol. 171, pp. 180–189, 2007.

[73] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi,
and S. Tubaro, “An overview on video forensics,” APSIPA Transactions
on Signal and Information Processing, vol. 1, December 2012.

[74] N. Mondaini, R. Caldelli, A. Piva, M. Barni, and V. Cappellini, “Detec-
tion of malevolent changes in digital video for forensic applications,” in
Proc. of SPIE Conference on Security, Steganography and Watermark-
ing of Multimedia, vol. 6505, 2007.

[75] G. Muhammada, M. Hussain, and G. Bebis, “Passive copy move image
forgery detection using undecimated dyadic wavelet transform,” Digital
Investigation, vol. 9, pp. 49–57, 2012.

[76] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[77] P. Mullan, D. Cozzolino, L. Verdoliva, and C. Riess, “Residual-based
Forensic Comparison of Video Sequences,” in Internation Conference
on Image Processing, Proceedings, I. ICIP, Ed., Beijing, 2017, pp. 1–6.

[78] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-
scale and rotation invariant texture classification with local binary pat-
terns,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 24, no. 7, pp. 971–987, 2002.

BIBLIOGRAPHY 91

[79] I. Olonetsky and S. Avidan, “Treecann-kd tree coherence approximate
nearest neighbor algorithm,” Computer Vision–ECCV 2012, pp. 602–
615, 2012.

[80] X. Pan and S. Lyu, “Region duplication detection using image feature
matching,” IEEE Transactions on Information Forensics and Security,
vol. 5, no. 4, pp. 857–867, Dec. 2010.

[81] R. C. Pandey, S. K. Singh, and K. Shukla, “Passive copy-move forgery
detection in videos,” in Computer and Communication Technology (IC-
CCT), 2014 International Conference on. IEEE, 2014, pp. 301–306.

[82] K. A. Patwardhan, G. Sapiro, and M. Bertalmı́o, “Video inpainting un-
der constrained camera motion,” IEEE Transactions on Image Process-
ing, vol. 16, no. 2, pp. 545–553, 2007.

[83] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM
Transactions on graphics (TOG), vol. 22, no. 3. ACM, 2003, pp. 313–
318.

[84] A. Piva, “An overview on image forensics,” ISNR Signal Processing,
pp. 1–22, Oct. 2012.

[85] A. Popescu and H. Farid, “Exposing digital forgeries in color filter array
interpolated images,” IEEE Transactions on Signal Processing, vol. 53,
no. 10, pp. 3948–3959, Oct. 2005.

[86] H. Ravi, A. Subramanyam, G. Gupta, and B. A. Kumar, “Compression
noise based video forgery detection,” in IEEE International Conference
on Image Processing, 2014, pp. 5352–5356.

[87] A. Rocha, W. Scheirer, T. Boult, and S. Goldenstein, “Vision of the
unseen: Current trends and challenges in digital image and video foren-
sics,” ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 26, 2011.

[88] S. Ryu, M. Lee, and H. Lee, “Detection of copy-rotate-move forgery
using zernike moments,” in Information Hiding Conference, 2010, pp.
51 – 65.

[89] S.-J. Ryu, M. Kirchner, M.-J. Lee, and H.-K. Leee, “Rotation invariant
localization of duplicated image regions based on zernike moments,”
IEEE Transactions on Information Forensics and Security, vol. 8, no. 8,
pp. 1355–1370, Aug. 2013.

92 BIBLIOGRAPHY

[90] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps us-
ing structured light,” in Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 1.
IEEE, 2003, pp. I–I.

[91] S. Sharma and S. V. Dhavale, “A review of passive forensic techniques
for detection of copy-move attacks on digital videos,” in Advanced
Computing and Communication Systems (ICACCS), 2016 3rd Interna-
tional Conference on, vol. 1. IEEE, 2016, pp. 1–6.

[92] Y. Shen, F. Lu, X. Cao, and H. Foroosh, “Video completion for perspec-
tive camera under constrained motion,” in Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, vol. 3. IEEE, 2006, pp.
63–66.

[93] Y. Sheng and H. Arsenault, “Experiments on pattern recognition using
invariant fourier mellin descriptors,” J. Opt. Soc. Amer., vol. 3, pp. 771–
776, 1986.

[94] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image de-
scriptor matching,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[95] R. D. Singh and N. Aggarwal, “Video content authentication tech-
niques: a comprehensive survey,” Multimedia Systems, pp. 1–30, 2017.

[96] K. Sitara and B. M. Mehtre, “Digital video tampering detection: An
overview of passive techniques,” Digital Investigation, vol. 18, pp. 8–
22, 2016.

[97] M. C. Stamm, M. Wu, and K. R. Liu, “Information forensics: An
overview of the first decade,” IEEE Access, vol. 1, pp. 167–200, 2013.

[98] M. Stamm, W. Lin, and K. R. Liu, “Temporal forensics and anti-
forensics for motion compensated video,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 7, no. 4, pp. 1315–1329, August
2012.

[99] Y. Su, J. Zhang, and J. Liu, “Exposing digital video forgery by detect-
ing motion-compensated edge artifact,” in International Conference on
Computational Intelligence and Software Engineering, 2009, pp. 1–4.

BIBLIOGRAPHY 93

[100] A. Subramanyam and S. Emmanuel, “Video forgery detection us-
ing HOG features and compression properties,” in IEEE International
Workshop on Multimedia Signal Processing, 2012, pp. 89–94.

[101] T. Sun, W. Wang, and X. Jiang, “Exposing video forgeries by detect-
ing MPEG double compression,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2012, pp. 1389–1392.

[102] Y. Sutcu, B. Coskun, H. Sencar, and N. Memon, “Tamper detection
based on regularity of wavelet transform coefficients,” in IEEE Interna-
tional Conference on Image Processing (ICIP), vol. 1, Sep. 2007, pp.
397–400.

[103] M. Teague, “Image analysis via the general theory of moments,” Journal
of the Optical Society of America, vol. 70, no. 8, pp. 920–930, Aug.
1980.

[104] J. Thies, M. Zollhöfer, M. Niessner, L. Valgaerts, M. Stamminger, and
C. Theobalt, “Real-time expression transfer for facial reenactment.”
ACM Trans. Graph., vol. 34, no. 6, pp. 183–1, 2015.

[105] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niessner,
“Face2face: Real-time face capture and reenactment of rgb videos,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2387–2395.

[106] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor
applied to wide-baseline stereo,” IEEE transactions on pattern analysis
and machine intelligence, vol. 32, no. 5, pp. 815–830, 2010.

[107] L. Verdoliva, D. Cozzolino, and G. Poggi, “A reliable order-statistics-
based approximate nearest neighbor search algorithm,” IEEE Transac-
tions on Image Processing, vol. 26, no. 1, pp. 237–250, January 2017.

[108] ——, “A feature-based approach for image tampering detection and lo-
calization,” in Information Forensics and Security (WIFS), 2014 IEEE
International Workshop on. IEEE, 2014, pp. 149–154.

[109] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

94 BIBLIOGRAPHY

[110] W. Wang and H. Farid, “Exposing digital forgeries in video by detect-
ing double MPEG compression,” in ACM Workshop on Multimedia and
Security, 2006, pp. 37–47.

[111] ——, “Exposing digital forgeries in video by detecting duplication,” in
ACM Multimedia and Security Workshop, 2007, pp. 35–42.

[112] ——, “Exposing digital forgeries in video by detecting double quantiza-
tion,” in ACM Workshop on Multimedia and Security, 2009, pp. 39–48.

[113] J. Wickramasuriya, M. Alhazzazi, M. Datt, S. Mehrotra, and
N. Venkatasubramanian, “Privacy-protecting video surveillance,” in
SPIE Int.l Symposium on Electronic Imaging, 2005, pp. 64–75.

[114] Q. Wu, S. Wang, and X. Zhang, “Log-polar based scheme for revealing
duplicated regions in digital images,” IEEE Signal Processing Letters,
vol. 18, no. 10, pp. 559–652, 2011.

[115] Y. Wu, X. Jiang, T. Sun, and W. Wang, “Exposing video inter-frame
forgery based on velocity field consistency,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing, 2014, pp. 2674–
2678.

[116] Y. Xin, M. Pawlak, and S. Liao, “Accurate computation of zernike mo-
ments in polar coordinates,” IEEE Transactions on Image Processing,
vol. 16, no. 2, pp. 581–587, Feb. 2007.

[117] P.-T. Yap, X. Jiang, and A. Kot, “Two-dimensional polar harmonic
transforms for invariant image representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1259–
1270, July 2010.

[118] I. Yerushalmy and H. Hel-Or, “Digital image forgery detection based on
lens and sensor aberration,” International Journal of Computer Vision,
vol. 92, no. 1, pp. 71–91, 2011.

[119] F. Zernike, “Diffraction theory of the knife-edge test and its improved
form, the phase-contrast method,” Monthly Notices of the Royal Astro-
nomical Society, vol. 94, pp. 377–384, 1934.

[120] J. Zhao and J. Guo, “Passive forensics for copy-move image forgery
using a method based on dct and svd,” Forensic Science International,
vol. 233, no. 1-3, pp. 158–166, 2013.

BIBLIOGRAPHY 95

[121] J. Zhao and W. Zhao, “Passive forensics for region duplication image
forgery based on harris feature points and local binary patterns,” Math-
ematical Problems in Engineering, vol. 2013, p. 12 pages, 2013.

