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Introduction 

The aim of this project is the development of perfume deposition technologies for 

use in liquid detergents, which represent very complex mixtures of natural and 

synthetic molecules. Current fragrance carriers (such as melamine formaldehyde-

based polymer capsules) present a good compatibility with the laundry detergent 

components and a high perfume loading efficiency. However, not all the perfume 

raw materials can be stably incorporated into the capsules because some of them 

(mainly the hydrophilic ones) easily leak out of the capsules by breakage and 

diffusion before the capsules deposit on the fabrics during the wash. Therefore, 

these perfume ingredients are not deposited effectively on the fabrics. 

On these basis, our aim is the design of innovative perfume carriers with i) 

excellent stability in liquid detergent formulation and ii) improved deposition 

during product application. Among the possible candidates for the development of 

such a technology, vinyl alcohol-based copolymers, currently referred to as PVA 

(poly vinyl alcohol) or EVOH (poly ethylene-co-vinyl alcohol), represent a suitable 

tool to obtain a carrier system, which can be used for the purpose of this project 

thanks to the great stability of their aggregates in water. Moreover, particles formed 

by these copolymers are characterized by excellent transport properties: indeed, 

diverse vinyl alcohol-based systems have been already proposed as carriers in 

biomedical applications or environmental science for pollutant removal. An 

efficient procedure to obtain PVA or EVOH-based particles consists in promoting 

the aggregation of the chains by preparing a polymer solution and adding a certain 

quantity of a salt (i.e. NaCl) that is able to favor the salting-out process: this effect 

was already tested for another common water soluble polymer like PEG 

(polyethylene glycol). 

In the following section (chapter 1) we present different examples of polymer 

particle-based technologies and their preparation protocols, giving more emphasis 

to the vinyl alcohol-based technologies and the salting-out method, which was 
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studied in this project. A detailed description of the materials and methods used for 

the preparation and the characterization of the investigated systems is given in the 

experimental section (chapter 2). The choice of the salt used to induce the salting-

out process is presented (chapter 3). Consequently, the polymer aggregation 

process triggered by the presence of the salt and the structural properties of the 

obtained polymer particles are discussed (chapter 4 and chapter 5, respectively). A 

model compatibility study performed in the presence of polymer aggregates and 

two common surfactants employed in the final liquid detergent matrix is shown 

(chapter 6). The perfume segregation efficiency and the washing tests aimed at 

evaluating the technology efficiency are presented in chapter 7 and chapter 8, 

respectively. Finally, conclusions are summarized in chapter 9. 
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Chapter 1 – Polymer particle-based technologies 

During the last years, an emerging interest has been devoted to the development of 

micro- and nano-structured materials for a wide range of applications in 

biomedicine, catalysis or environmental science. Specifically, soft polymer 

particles have been proposed as effective technologies to deliver target molecules 

with a precise function. Different protocols for the preparation of polymer-based 

delivery systems can be found in literature and the choice of a particular 

preparation method strictly depends on the final application of the developed 

technology. In this Ph. D. project, our attention was focused on the ion-specific 

effect on the macromolecule solubility, rationalized through the so-called 

Hofmeister series, which can be used as a tool to predict the polymer aggregation 

behavior in solution. In particular, the polymeric aggregates prepared through the 

addition of a salt to a polymer solution to be used as an effective carrier system for 

increasing the deposition of perfume ingredients on fabrics. In this chapter, we give 

an overview of the methods aimed at preparing polymer particles, as well as a 

focus on the technologies which are currently in use at industrial level for 

enhancing the deposition efficiency of active components in laundry products. 

Some examples of application of vinyl alcohol-based copolymers, which were 

investigated in this project, are also shown. Moreover, we present some general 

theories concerning the Hofmeister effect, as well as a description of the 

aggregation mechanisms that lead to the particle formation, in order to provide a 

theoretical basis to support this study. 

 

1.1 – An overview of polymer particle preparation protocols  

Polymer particles can be prepared through many different preparation protocols, 

which can be usually divided into two groups: those based on the polymerization of 
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monomers and those taking advantage of preformed polymers, as clearly 

summarized in fig. 1.1.1.
1
  

At the same time, these two methods can be classified into two categories: i) two-

steps procedures involving the preparation of an emulsification system followed by 

formation of particles in the second step of the process and ii) one-step procedures 

where emulsification is not required for the particle formation.
2
 Other methods 

have also been reported recently and they are based on spray-drying strategies
3,4

, 

supercritical fluid technologies
5,6

 or piezoelectrical ways
7
. 

 

 

Figure 1.1.1 – Schematic representation of the preparation methods of polymer 

particles. 

 

Concerning the first category, emulsions are defined as a mixing of two or more 

totally or partially immiscible liquids with or without a surface active agent. They 

are typically classified according to the size of the droplets: microemulsion, 

containing thermodynamically stable droplets with a diameter ranging from 10 to 

100 nm and miniemulsion or macroemulsion, which are not stable and that contain 

droplets with a diameter ranging from 100 to 1000 nm and above 1000 nm, 

respectively.
8,9,10

 Emulsions can be obtained through low-energy and high-energy 

emulsification techniques. Among the first ones, we can find the spontaneous 

emulsification
11,12

, which consists in promoting the solubilization of the oily 
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component into a water-soluble solvent and then in adding the obtained solution 

into the aqueous phase. Such a technique is also described as solvent displacement 

method
13

, well known as “Ouzo effect”. Other routes are the emulsion inversion 

point
14

 and the inversion temperature
15

 methods. Among the second ones, we can 

find the emulsification with rotor-stator devices
16

, sonication
17,18

 and microfluidic 

techniques
19,20

. After the preparation of the emulsion, the formation of polymer 

particles can be carried out by following different protocols. The solvent 

evaporation method consists in dissolving the polymer into volatile solvent like 

dichloromethane, chloroform or ethyl acetate. In a second step, at least the 90% of 

solvent is removed through fast evaporation and then the residual solvent is 

evacuated through slow evaporation. Poly(lactic-co-glycolic acid) (PLGA)-, 

poly(lactic acid) (PLA)- and polyethylene glycol (PEG)-based particles were 

successfully prepared through this technique.
21,22,23

 The solvent diffusion method 

consists in promoting the formation of a two-phase system, followed by 

emulsification and dilution with water with the consequent formation of polymeric 

particles from the emulsion. PLA, PLGA, but also gelatin or chitosan particles 

were synthesized through solvent diffusion
24,25,26

, with poly-vinyl alcohol (PVA) 

typically employed as a steric stabilizer. Salting-out is another process that 

generally requires the use of a solvent miscible with water (usually acetone), whose 

solubility is modified by adding high amounts of salt or sucrose. The emulsion is 

formed with a polymer dissolved in the solvent droplets and particle precipitation is 

induced by adding a large quantity of water that drops the salt concentration. 

Typical salts used are magnesium chloride
27,28

 or calcium chloride
29

, even though 

salting-out can be exerted by preparing a saturated solution of PVA
30

, which acts as 

thickener and emulsion stabilizer. A further process is the gelation of emulsion 

droplets, which is obtained by either cooling down the previously prepared 

nanoemulsion
31

 or inducing ionic gelation
32

 through the addition of divalent cations 

(like calcium). Conventional emulsion
33,34

, surfactant-free emulsion
35,36

, 

miniemulsion
37,38

, microemulsion
39,40

, interfacial
41

 and controlled/living radical
42
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polymerization are other traditional protocols used for the preparation of polymer 

particles. 

As regards the second category, nanoprecipitation is one of the easiest, most 

reproducible and economic routes to produce nanoparticles using preformed 

polymers. In this method only the polymer, the solvent and the non-solvent for the 

polymer are required: the polymer can be either synthetic or natural, typical 

polymer solvents are ethanol, acetone, hexane and a common non-solvent phase is 

either a single component or a mixture of non-solvents for the polymer, with or 

without surfactants. The mechanism of particle formation is similar to that one 

already described for the solvent displacement technique. Such a method can be 

chosen for a wide range of polymers
43,44

 and also non-polymeric compounds
45

. 

Dialysis
46

 is another common method very similar to the one previously described, 

with the presence of additional tools such as dialysis tubes or membranes provided 

with specific molecular weight cutoffs.  Desolvation
47

 is also very similar to 

nanoprecipitation and consists in promoting the precipitation of the polymer 

through addition of salts, alcohols or solvents in solution of macromolecules. Self-

assembly and gelation are two other processes used to obtain polymer particles in 

an easy way. As an example, complexation of polyelectrolytes is a spontaneous 

association phenomenon involving charged macromolecules that are able to 

assemble themselves to form complexes which can be swollen by water. Nucleic 

acids
48

, alginate
49

 or chitosan
50

 are commonly used. 

 

1.2 – Increasing the deposition efficiency of active components: the 

current technologies at industrial level 

From an industrial viewpoint, the choice of a proper technology implies 

considering different aspects like the cost of raw materials and process, the 

possibility to scale-up the preparation protocol and the compatibility with the other 
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components of the matrix where the technology is introduced. Therefore, a limited 

number of processes and materials can be taken into account. 

Concerning the increase of deposition of active components like enzymes, 

perfumes, bleaching agents or antioxidants, many different technologies have been 

proposed and have been claimed. Generally, industrial technologies are designed to 

be the most versatile possible, covering a wide range of applications. However, in 

this paragraph we draw our attention on the delivery systems for perfume additives, 

since they represent the target molecules of this research project. 

Stabilization and fragrance deposition increase can be achieved through the use of 

silicone pellets
51

, perfume-impregned macroparticles
52

 or powdery solids
53

. In most 

of these cases, it is possible to obtain a suspension rather than a homogeneous 

system. Alternatively, liquid formulations can be enclosed within pouches where 

the perfume is contained in the pouch core.
54,55

 Also solid polymer matrices made 

of polypeptides or polyelectrolytes
56

, as well as of silicone, silicon-wax or 

cellulose
57

 have been claimed: in this case, the most hydrophobic and less volatile 

fragrances are dispersed within the matrix, that allows protecting the perfume from 

emulsification. Gel systems containing fragrances
58,59,60

, able to release the active 

component upon external stimuli have also been proposed: natural polymers 

frequently used are carrageenan gum, gellan gum, Arabic gum, pectin, starch, 

whereas the most common synthetic polymers are poly(propylene glycol) esters, 

polyacrylates or poly-vinyl alcohol. 

Even though some of the previous inventions can be used in liquid detergent 

matrices, the most successful technologies currently in use in laundry products are 

the polymer capsules, i.e. particles whose structure is usually characterized by a 

polymeric shell and a core containing perfume. Ethylene vinyl copolymers, as well 

as PVA, or poly-methyl methacrylates, polystyrene, ethyl cellulose, poly-vinyl 

pyrrolidones, poly-acrylic acid or starches have been used for designing the 

polymeric shell.
61,62,63,64,65,66
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Also in literature it is possible to find many different examples of fragrance 

containing capsules prepared by following distinct protocols. Peppermint oil was 

successfully encapsulated through preliminary emulsification and consequent in 

situ polymerization through the use of a melamine-formaldehyde polymer.
67

 

Optical and scanning electron micrographs of the obtained particles are shown in 

fig. 1.2.1. Vanillin was enclosed within polysulfone microcapsules prepared 

through the solvent displacement method.
68

 Also α-pinene was encapsulated within 

acrylate-based polymers by miniemulsification through sonication followed by free 

radical polymerization of the monomers.
69

 A blend of hydroxypropyl 

methylcellulose, PVA and ethylcellulose was used to prepare capsules in the 

presence of (1R)-camphor, (3R)-citronellal, eucalyptol, D-limonene, (1R, 2S, 5R)-

menthol and 4-tert-butylcuclohexyl salicylate by following the solvent 

displacement method supported by dialysis.
70

 Again, α-pinene was enclosed upon 

emulsification and encapsulation through the use of a glass capillary microfluidic 

device
71

: in particular, the photocurable oil in the middle phase was in situ 

polymerized by UV exposure, as shown in fig. 1.2.2. 

 

 

Figure 1.2.1 – Image photographs of melamine-formaldehyde resin microcapsules 

containing peppermint oil. Panel A: optical micrograph (× 100). Panel B: scanning 

electron micrograph (× 3500).
67
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Figure 1.2.2 – Schematic illustration of the glass capillary microfluidic device for 

preparing polymer microcapsules enclosing a preformed fragrance-in-water (F/W) 

emulsion. Bottom optical microscope image shows the generation of triple 

emulsion drops containing multiple internal fragrance drops. Upon UV irradiation, 

the photocurable oil in the middle phase polymerizes to form a polymeric shell. 

Scale bar represents 200 μm.
71

 

 

The main advantages of the polymer capsules are the high compatibility with the 

laundry detergent components and the high perfume loading efficiency (up to 30% 

w/w of active component). However, the main drawback of this technology is that 

not all perfume components remain within the capsules since they can leak out due 

to various mechanisms (such as diffusion or capsule breakage) before the product is 

used. Those perfume ingredients are then emulsified by the surfactants contained in 

the detergent matrix. A promising alternative to the rigid capsules are the soft 

capsules, whose structure is composed by a soft polymer matrix enclosing perfume 
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surrounded by the surfactants contained in the laundry detergent that are able to 

self-assemble to form spheroidal particles. In this case, the polymer matrix is not 

cross-linked and the mechanical resistance is higher. Therefore, soft particle-based 

technologies may represent a successful improvement of the current technologies. 

 

1.3 – Vinyl alcohol-based technologies: an overview 

As already shown in the previous paragraphs, vinyl alcohol-based copolymers, 

such as PVA or poly-ethylene-vinyl alcohol (EVOH) are among the most common 

species used for preparing polymer particles. This is thanks to their non-toxicity, 

non-carcinogenicity, good biocompatibility and desirable physical properties such 

as rubbery or elastic nature and high degree of swelling in aqueous solutions.
72,73

 

Moreover, these copolymers are commercially available and can be obtained at low 

cost, which are two important factors to consider from an industrial point of view. 

It is possible to find many examples of vinyl alcohol-based technologies in 

literature and several preparation protocols. A model protein drug, bovine serum 

albumin (BSA), was successfully incorporated into injectable PVA hydrogel 

nanoparticles prepared by mixing a BSA and a PVA solution and by adding silicon 

oil to an aqueous BSA and PVA solution.
72

 Then, the obtained mixture was 

homogenized in order to obtain a water-in-oil emulsion, which was frozen through 

multiple freeing-thawing cycles resulting in the conversion of the emulsion to a 

suspension of PVA hydrogel particles extracted by using acetone and separated by 

means of filtration. Fig. 1.3.1 shows a scanning electron micrograph of the 

obtained particles, with a radius of about 100 nm. Capillary electrophoresis was 

then used in order to check the release efficiency of BSA, which was found to be 

about 95% at 37 °C. 
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Figure 1.3.1 – A scanning electron micrograph of the PVA hydrogel nanoparticles 

showing the shape and the surface characteristics.
72

 

 

Acrylamine-functionalized PVA particles for would healing application were 

prepared through UV cross-linking. The model drug used for this study was 

soybean trypsin inhibitor, whose maximum release was about 76% in optimized 

conditions.
74

 PVA particles can be also prepared through chemical cross-linking. 

Glutaraldehyde is the most common molecule used for this purpose. As an 

example, PVA microspheres were prepared via inverse suspension-chemical cross-

linking method.
75

 In this study, the effect of stirring speed, cross-linker amount, 

hydrochloric acid concentration and oil-to-water volume ratio on microsphere 

diameter were taken into account. EVOH functional nanofibers for pollutant 

removal with an average radius of 260 nm were successfully synthesized through 

melt-blending extrusion of immiscible blends.
76

 In a second step, layer deposition 

technology was used in order to obtain films formed by the previously prepared 

EVOH fibers. The resulting membranes were then tested for Cr(VI) adsorption. 

EVOH foams in the presence of propylene carbonate as a cross-linker were 

prepared by a high-temperature thermal treatment that allowed the formation of a 

gel phase.
77

 In this case, among the different parameters considered, also the effect 
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of the propylene carbonate amount on the foam expansion ratio was taken into 

account and it was found that such a parameter reaches a maximum value at 

intermediate cross-linker concentration, as shown in fig. 1.3.2. 

 

Figure 1.3.2 – Scanning electron micrographs of EVOH foams with different 

propylene carbonate contents. Image A: 2 parts per hundred resin (phr). Image B: 6 

phr. Image C: 10 phr.
77

 

 

In this Ph. D. project, we decided to investigate about an easy and cheap particle 

preparation protocol, which differs from the previous ones shown in this paragraph. 

This method is the salting-out, already described in paragraph 1.1. Such a protocol 

does not require the use of chemical cross-linkers and does not modify the structure 

of the vinyl alcohol-based copolymers, preserving their original properties of 

biocompatibility and biodegradability. The theoretical bases that support this 

preparation method are discussed in detail in the following paragraphs. 

 

1.4 – The Hofmeister effect  

The presence of different ions affects the solubility of macromolecules in 

solution.
78,79,80,81

 In his first pioneering study
78

 Franz Hofmeister rationalized the 

ion-specific effect on the protein solubility, demonstrating that the influence of the 
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salt on the protein conformation is strictly dependent on the nature of the ions. This 

phenomenon was rationalized through the so-called Hofmeister series
82,83,84

, shown 

in fig. 1.4.1. Then, it was shown that this effect is more universal and the 

Hofmeister series was used to predict the physiochemical properties of many 

phenomena that occur in solution, like pH variation
85

, protein crystallization
86

, 

enzyme activities
87,88

, optical rotation of aminoacids
89

, emulsion stability
90

, 

swelling and deswelling of hydrogels
91

 and polymer solubility
92

. 

 

Figure 1.4.1 – Representation of the Hofmeister series. The species on the right are 

known as chaotropes and are able to increase the macromolecule solubility in water 

(salting-in effect), whereas the species on the left are known as kosmotropes and 

decrease the macromolecule solubility in water, leading to the salting-out 

phenomenon. 

 

At the beginning, it was supposed that the ion specificity was intimately related to 

the specific interactions that ions have with water. This is reflected in different 

easily measurable physicochemical parameters of aqueous salt solutions, i.e. 

conductivity and viscosity.
93

 As regards the conductivity in solution, it was 

originally hypothesized that the ionic electrochemical mobility in solution was high 

for small ions and low for big ions.
94

 However, the trend was the opposite of what 

was expected, since the actual effective size of ions in water is very different for 

that in a crystal. This is due to the higher degree of hydration of the smaller ions 

(e.g. Li
+
, F

-
), which are highly polarizable and able to bear several water molecules 

while migrating in solution. As a consequence, they move slowly compared with 
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bigger and poorly hydrated ions. Concerning the viscosity of salt solutions, it was 

found that such a parameter is related to the nature of the salts according to the 

following equation
95

: 

BccA 
0


   equation 1.4.1 

where η/η0 is the relative viscosity, A is an electrostatic parameter about equal for 

all salts and B is an ion-specific parameter known as the Jones Dole viscosity 

coefficient. Therefore, it was supposed that the water structure, formed by a 

dynamic fluctuation of the hydrogen bond network, was affected by the ion nature, 

thus by the B value. The ions with a positive value of this parameter increased the 

viscosity of aqueous solutions, making order in the water structure, whereas those 

with a negative B value decreased the viscosity, breaking the water structure order. 

The former were called kosmotropes, the latter chaotropes. On the basis of this 

classification, the Hofmeister’s experiment on salt induced protein precipitation can 

be clearly explained: kosmotropic anions withdraw the water molecules from the 

hydration shell of proteins, reducing their solubility and forcing the aggregation, 

i.e. the salting-out phenomenon, whereas chaotropic anions act with the opposite 

mechanism, leading to the salting-in phenomenon.
96

 

However, there are several observations that demonstrate that the mechanism at 

work is more complicated than that one presented and there are still many open 

questions that are not solved. Firstly, whereas the kosmotropic behavior of anions 

can be clearly explained by the water withdrawing power mechanism previously 

discussed, the salting-out behavior of chaotropic cations still remains a doubt. 

Secondly, it was found in literature that the Hofmeister series was reversed in 

order.
97,98

 This is due to the fact that both specific surface hydration–ion hydration 

interactions and hydrated ion–bulk water interactions are involved. Thirdly, it was 

originally thought that the Hofmeister effects occurred at high salt concentrations, 

typically from 0.5 to 3 M
99

, but it was then shown that the ion-specific effect has a 

strong impact at definitely lower salt concentrations (from 0.1 to 0.15 M), 
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reflecting the key role of the ion specificity in most biochemical mechanisms.
100

 

Finally, some experiments have demonstrated that ions do not affect hydrogen 

bonding of water beyond their first solvation shells.
101

 Therefore, ions do not affect 

the long-range water structure. 

Many macromolecules show ion-specific aggregation and changes in phase 

transition temperature with ion types. Let us consider a model macromolecular 

surface, shown in fig. 1.4.2, and let us assume that the macromolecular surface 

does not undergo direct ion-induced structural changes.
102

 

 

 

Figure 1.4.2 – Schematic representation of two macromolecules in ion solutions. 

Ions are drawn as spheres. 

 

Instead, at the macromolecular surface, the surface ion concentration and the bulk 

ion concentration can be different, and there can be an excess charge density 

accumulated at the macromolecular surface. When two surfaces approach closer 

than the interfacial depth w1, where the surface ion concentration deviates from the 

bulk ion concentration, this will induce depletion interaction, while at the same 

time any excess charge at one macromolecular surface will also interact with the 

excess charge at the other macromolecular surface electrostatically. As a 

consequence, the macromolecules feel the attractive force when ions are depleted 
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from the macromolecular surface, which is proportional to the concentration 

difference between the bulk ion concentration and the surface ion concentration. At 

the same time, when the surface ion concentration becomes significant, the excess 

charge density at the macromolecular surface induces electrostatic repulsion. 

Therefore, the aggregation phenomenon is governed by two opposite forces: the 

depletion attraction that favors the salting-out and the excess charge repulsion that 

favors the salting-in, i.e. the homogeneous distribution of the macromolecules in 

solution. The ions ranked higher in the Hofmeister series, such as Cl
-
, have smaller 

ion concentrations at the surface compared with ions ranked lower, such as Br
-
 and 

I
-
. As a consequence, both depletion attraction and excess charge repulsion act in a 

concerted way to favor macromolecular aggregation.
102

 

 

1.5 – The salting-out behavior exerted by sodium chloride 

As clearly shown in the previous paragraph, some salts are able to trigger the 

aggregation of macromolecules in solution. In particular, for the present study, 

sodium chloride was used in order to induce the formation of the EVOH and PVA-

based particles. The reason will be explained in chapter 3, where experimental data 

supporting this choice are presented. 

Furthermore, it has been already shown in literature that sodium chloride, whose 

position in the Hofmeister series is within the salting-out behavior, is able to favor 

the aggregation of many different hydrophilic polymers
103,104

. Indeed, the presence 

of NaCl above a threshold concentration which depends on the nature of the 

polymer may dramatically influence the interaction between the solvent and the 

solute, as shown for both natural (e.g. lysozyme
105

) and synthetic macromolecules 

(e.g. poly(styrene-b-sodium acrylate)
106

). From a thermodynamic point of view, 

this happens due to the change of two fundamental parameters that are involved in 

the aggregation process: the second virial coefficient
107

 and the interaction 
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parameter
108

 that describe the polymer-solvent and the polymer-polymer 

interaction, respectively. Light scattering techniques, i.e. Static Light Scattering 

and Dynamic Light Scattering, are the method of choice for the determination of 

these parameters. At the same time, the above-mentioned techniques can be used to 

determine fundamental structural parameters, like the radius of gyration or the 

molar weight of the scattering particles, whose knowledge allows shedding light on 

the kind of regime that governs the aggregation process. 

 

1.6 – The aggregation mechanisms: a theoretical insight  

The most widely considered form of colloid aggregation is that which begins with a 

suspension of monodisperse particles. Upon aggregation, these particles collide due 

to their Brownian motion and stick together irreversibly to form rigid clusters. The 

clusters themselves continue to diffuse, collide and form yet larger clusters, 

resulting in a polydisperse mass distribution. This process is called cluster-cluster 

aggregation, and is a non-equilibrium, kinetic growth process. Both the aggregation 

kinetics and the shape of the cluster mass distribution are intrinsically related to the 

structure of the clusters that are ultimately formed. A complete characterization of 

this aggregation process must include a full description of both the structure of the 

clusters, as well as the shape and time evolution of the cluster mass distribution.
109

 

Two different regimes of colloid aggregation have been identified. The first occurs 

when the aggregation rate depends only on the time between the collisions of the 

particles due to their diffusion and is called diffusion limited aggregation (DLA).
109

 

The second occurs when the reaction rate of two particles is much slower than the 

collision rate, so that a large number of collisions are necessary before two particles 

can stick together, and is called reaction limited aggregation (RLA).
110

 

A kinetic study on the evolution of the cluster mass over time allows determining 

which regime governs the aggregation process. The time dependence of the cluster 
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mass can be determined by means of the Smoluchowski equations
111

. For a DLA 

process, a linear dependence is predicted and the relation between cluster mass and 

time can be represented as follows: 

1
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From the analysis of Light Scattering data collected for three different colloidal 

systems (gold, silica and polystyrene latex nanoparticles) it was finely 

demonstrated that both kinds of regime are universal and independent on the nature 

of the cluster. This was clearly presented through the construction of master curves 

where the data from all investigated systems are reported, showing an excellent 

superposition of the different scaled datasets.
109,110  

An example of master curve obtained from Dynamic Light Scattering data is 

shown in fig. 1.6.1. In particular, experimental data from the three different 

colloidal systems were represented by scaling the average effective diffusion 

coefficient through the use of a constant, i.e. the value of diffusion coefficient at 

null scattering vector. Then, this ratio was plotted as a function of the product 

between the scattering vector and the hydrodynamic radius. 

 

In the case of soft polymers, such as elastomers with glass-transition temperature 

significantly lower than room temperature, upon aggregation they may deform or 

even coalesce as a result of polymer chain inter-diffusion or viscous flow. Due to 
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the coalescence, the particle identity within a cluster is lost, that is, all of the 

spherical primary particles merge to form a larger spherical particle. 

 

Figure 1.6.1 – Master curves obtained independently for gold, silica and 

polystyrene latex nanoparticles for RLA.
110

 

 

Once coalescence occurs between two particles, even though it is a physical 

process owing to the inter-diffusion and anchoring of the polymer chains, the two 

particles can permanently stick together and are difficult to separate. If the 

coalescence of particles within a cluster can be controlled to a desired degree 

through physical gelation, a permanent gel can be directly obtained with desired 

structures.
112
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Chapter 2 – Experimental section 

The design of a novel technology for applications in laundry products implies a 

deep study that starts from the choice of a proper preparation protocol. In this 

project, we drew our attention on the salting-out phenomenon, which may occur 

when either natural or synthetic macromolecules are present in solution together 

with salts. The polymer aggregation behavior depends on the nature of the 

kosmotropic species used in order to favor the aggregation process, on the 

polymer-polymer and the polymer-solvent interactions, as well as on the effect 

exerted by all the components present in complex mixtures like surfactants and 

additives (i.e. perfumes). We performed a study aimed at increasing the number of 

components of the investigated systems gradually, starting from a binary solution 

containing just polymer and water until reaching a complex mixture containing 

polymer, salt, surfactant, additives and solvents. In particular, in order to rationalize 

the role of each species, as a first step we needed to study the chemico-physical 

properties of many different systems containing a limited number of components. 

As a second step, we focused our attention on the synergic effect of all components 

shedding light on possible interactions among them. In this chapter, the materials 

and methods used for the preparation of all these solutions are reported, as well as 

the sample preparation procedure. Moreover, the protocols and the procedures 

followed to design the technology for the final application are described. 

 

2.1 – Investigating the Hofmeister series: the choice of the salt 

2.1.1 – Materials 

Poly-vinyl alcohol (PVA) +99% hydrolyzed, mass average molecular weight 

85000 ÷ 124000 g mol
-1

, sodium chloride (NaCl, purity ≥ 99%, AR grade), sodium 

thiocyanate (NaSCN, purity ≥ 99.9%), potassium chloride (KCl, purity ≥ 99.0%) 
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and calcium chloride (CaCl2, purity ≥ 96.0%) were purchased from Sigma Aldrich, 

Milano (Italy). All aqueous solutions were prepared by using twice distilled Milli-

Q water. 

 

2.1.2 – Sample preparation 

A PVA stock solution was prepared by weighing the polymer and water into a 

glass vial. The vial was placed into a controlled temperature bath at 85 °C and the 

solution was kept under stirring at 700 rpm for 4 hours. The obtained solution was 

kept at room temperature (about 20°C) for 1 hour. Stock salt solutions at different 

concentrations were prepared by adding the proper quantities of salt and water into 

a vial. In order to avoid the presence of dust particles, all solvents were filtered by 

using 0.20 μm filters. PVA stock solution was filtered, since a small amount of 

polymer was not completely solubilized. About 2 g of solution were used for 

determining the PVA concentration through Total Organic Carbon (TOC) analysis. 

For Dynamic Light Scattering measurements, the samples were prepared by 

diluting a stock PVA 2% w/w solution with water and/or a stock salt 4.5 mol kg
-1

 

solution. 

 

2.1.3 – Characterization techniques 

TOC analysis was performed by splitting the amount of PVA solution used for the 

analysis in two parts. A first aliquot of solution was treated with phosphoric acid so 

as to transform all the inorganic carbon into CO2. A second aliquot of solution was 

injected into a combustion chamber at 700 °C in order to transform all the carbon 

(both inorganic and organic) into CO2. An IR spectrophotometer was used for 

determining the concentration of carbon dioxide. Then, the TOC was determined 

by subtracting the carbon concentration obtained in the acidification step from the 

carbon concentration obtained in the combustion step. 
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Dynamic Light Scattering (DLS) measurements were carried out by using a home-

made instrument composed by a Photocor compact goniometer, a SMD 6000 Laser 

Quantum 50 mW light source operating at 532.5 nm, a photomultiplier (PMT-120-

OP/B) and a correlator (Flex02-01D) from Correlator.com. All measurements were 

performed at 25 °C with the temperature controlled through the use of a thermostat 

bath. We measured the scattering intensity at fixed scattering angle of 90°. 

 

2.2 – Characterization of the aggregation process 

2.2.1 – Materials 

Poly-ethylene-vinyl alcohol (EVOH) HR-3010 resin (purity > 97%) was purchased 

from Kuraray, Chiyoda, Tokyo (Japan). Poly-vinyl alcohol (PVA) +99% 

hydrolyzed, mass average molecular weight 85000 ÷ 124000 g mol
-1

, sodium 

chloride (NaCl, purity ≥ 99%, AR grade) and dideuterium water (D2O, 99.9% atom 

D) were supplied by Sigma Aldrich, Milan (Italy). All aqueous solutions were 

prepared by using twice distilled Milli-Q water with the only exception of samples 

for neutron scattering experiment where D2O was used. 

 

2.2.2 – Sample preparation 

Stock polymer and NaCl solutions were prepared as described above. 

For Dynamic Light Scattering measurements on solutions containing EVOH, the 

samples were prepared by diluting a stock EVOH 2% w/w solution with water 

and/or a stock NaCl 2.3 mol kg
-1

 solution. We analyzed a 1% w/w salt-free 

polymer solution and 15 samples at 5 different EVOH concentrations (0.70% w/w, 

0.85% w/w, 1.00% w/w, 1.15% w/w and 1.30% w/w) and 3 different NaCl 

concentrations (0.65 mol kg
-1

, 0.75 mol kg
-1

 and 0.85 mol kg
-1

). For PVA we 

followed the same protocol described for EVOH. The samples were prepared by 
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diluting a stock PVA 2% w/w solution with water and/or a stock NaCl 4.5 mol kg
-1

 

solution. In this case, the polymer concentration was kept constant (1% w/w) and 5 

different NaCl concentrations (1.500 mol kg
-1

, 1.625 mol kg
-1

, 1.750 mol kg
-1

, 

1.875 mol kg
-1

 and 2.00 mol kg
-1

) were studied. 

The samples prepared for Small Angle Neutron Scattering measurements on the 

EVOH solution were prepared by following the same procedure shown for the 

samples analyzed through Dynamic Light Scattering by using a mixed solvent, so 

as to obtain a final solvent weight ratio D2O/H2O of 80/20. Such ratio was chosen 

in order to obtain a good contrast between the polymer and the solvent keeping a 

reasonable EVOH solubility. We prepared a free-salt sample containing EVOH at 

1% w/w. For PVA, D2O was chosen as a solvent and a sample at PVA 1% w/w was 

prepared. 

For Static Light Scattering measurements on solutions containing EVOH, the 

samples were prepared by diluting a stock EVOH 2% w/w solution with water 

and/or a stock NaCl 4.5 mol kg
-1

 solution. We studied 4 sets of samples at different 

NaCl concentrations: 0 mol kg
-1

 (i.e. salt-free samples), 0.25 mol kg
-1

, 0.75 mol  

kg
-1

 and 1.50 mol kg
-1

. For each set, 4 different EVOH concentrations were 

investigated (0.50% w/w, 0.75% w/w, 1.00% w/w and 1.50% w/w). For PVA the 

same procedure described for EVOH was followed, with the only exception that 

the investigated NaCl concentrations were 0 mol kg
-1

, 0.50 mol kg
-1

, 1.00 mol kg
-1

 

and 2.00 mol kg
-1

. For each set, 4 different PVA concentrations were investigated 

(0.25% w/w, 0.50% w/w, 0.75% w/w and 1.00% w/w). 

 

2.2.3 – Characterization techniques 

Static Light Scattering (SLS) and Dynamic Light Scattering (DLS) measurements 

were performed by using the same instrument described above. We measured the 

scattering intensity at fixed scattering angle of 90°. 
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The refractive indexes of all solutions studied through SLS were measured by 

using an Abbe refractometer (Atago
®
 NAR-3T) operating at 25°C by dropping 100 

μL of solution between the illuminating and the refracting prisms. Each 

measurement was repeated three times and the average value of refractive index 

was calculated. 

Small Angle Neutron Scattering (SANS) measurements were performed at 25 °C 

with the KWS-2 diffractometer operated by Julich Centre for Neutron Science at 

the FRMII source located at the Heinz Maier Leibnitz Centre, Garching 

(Germany). For all the samples, neutrons with a wavelength of 5 Å and Δλ/λ ≤ 0.2 

were used. A two-dimensional array detector at two different wavelength 

(W)/collimation (C)/sample-to-detector (D) distance combinations (W 5 Å/C 8 

m/D 2 m and W 5 Å/C 8 m/D 8 m) measured neutrons scattered from the samples. 

These configurations allowed collecting data in a range of the scattering vector 

modulus q between 0.08 Å
−1

 and 0.4 Å
−1

 for the salt-free samples containing only 

polymer at 1 % w/w. 

 

2.3 – Structural characterization of polymer aggregates 

2.3.1 – Materials and sample preparation 

The same materials presented in paragraph 2.2.1 were used. Stock polymer and 

NaCl solutions were prepared as described above. 

For Static Light Scattering measurements on EVOH aggregate solutions, 3 sets of 5 

samples at constant NaCl concentration and different polymer concentrations were 

prepared by diluting a stock EVOH 1% w/w aggregate solution with a NaCl stock 

solution of the same concentration. We studied 3 different NaCl concentrations: 

0.65 mol kg
-1

, 0.75 mol kg
-1

 and 0.85 mol kg
-1

. At each NaCl concentration, 5 

different EVOH concentrations (0.20% w/w, 0.40% w/w, 0.60% w/w, 0.80% w/w 

and 1.00% w/w) were investigated. Samples containing PVA were prepared by 
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diluting a stock PVA 1% w/w aggregate solution with a NaCl stock solution of the 

same concentration. We studied 5 different NaCl concentrations: 1.500 mol kg
-1

, 

1.625 mol kg
-1

, 1.750 mol kg
-1

, 1.875 mol kg
-1

 and 2.000 mol kg
-1

. At each NaCl 

concentration, 5 different PVA concentrations (0.20% w/w, 0.40% w/w, 0.60% 

w/w, 0.80% w/w and 1.00% w/w) were investigated. 

For Small Angle Neutron Scattering measurements on EVOH solution, 3 samples 

at constant EVOH concentration (1% w/w) and 3 different NaCl concentrations 

(0.45 mol kg
-1

, 0.55 mol kg
-1

 and 0.65 mol kg
-1

) were prepared by using a mixed 

solvent so as to obtain a final solvent weight ratio D2O/H2O of 80/20. For PVA, 3 

samples at constant PVA concentration (0.85% w/w) and at 3 different NaCl 

concentrations (1.50 mol kg
-1

, 1.75 mol kg
-1

 and 2.00 mol kg
-1

) were prepared by 

using D2O as a solvent. 

 

2.3.2 – Characterization techniques 

Cryogenic Transmission Electron Microscopy (Cryo-TEM) was used to study the 

microstructure of the EVOH aggregates in the presence of NaCl. The EVOH 

samples were vitrified by using a standard vetrification robotic system 

(Vitrorobot™ Mark IV by FEI™) at 25 
o
C and 100% relative humidity. A sample 

drop of 1-2 μL was loaded on a carbon-coated film with a woven pattern supported 

on a copper grid (standard 200-mesh TEM grids by Electron Microscopy Science). 

Once the sample was loaded on the carbon grid, the drop was rapidly blotted in 

order to remove any sample excess from the grid. Following the loading and 

blotting, the grid was quenched into clean liquid ethane and as result a thin layer of 

vitrified EVOH sample was obtained. The samples were then rapidly placed into a 

cryogenic holder in the presence of liquid nitrogen (N2) at a temperature below       

-170 
o
C to maintain the vetrification and avoid any structural change during data 

collection. The microscope used is the FEI™ Tecnai G2 Sphera, which was held 

with an accelerating voltage of 200 kV. The EVOH samples were observed in a 
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low-dose mode to minimize radiation damages. Sample images were taken with a 

digital camera and analyzed with Gatan Digital Micrograph software. 

Transmission Electron Microscopy (TEM) images for PVA were collected by 

using a JEM-2100 Plus Transmission Electron Microscope located at the 

department of Chemistry of Texas Christian University. 

Static Light Scattering (SLS) and Dynamic Light Scattering (DLS) measurements 

were carried out by using the same instrument described above. In the case of SLS, 

we measured the scattering intensity at different scattering angles: 60°, 75°, 90°, 

105° and 120°, in the case of DLS, at fixed scattering angle of 90°. 

The refractive indexes of all solutions studied through SLS were measured by 

using the instrument described above. 

Small Angle Neutron Scattering (SANS) measurements were performed by using 

the same instrument described above. In this case, a two-dimensional array detector 

at three different wavelength (W)/collimation (C)/sample-to-detector (D) distance 

combinations (W 5 Å/C 8 m/D 2 m, W 5 Å/C 8 m/D 8 m, and W 5 Å/C 20 m/ D 20 

m) measured neutrons scattered from the samples. These configurations allowed 

collecting data in a range of the scattering vector modulus q between 0.002 Å
−1

 and 

0.4 Å
−1

. For the sample at higher NaCl concentration, we also used neutrons with a 

wavelength of 10 Å and Δλ/λ ≤ 0.2 and the same wavelength (W)/collimation 

(C)/sample-to-detector (D) distance combination reported above, in order to extend 

the experimental profile at lower values of the scattering vector. 

 

2.4 – Investigation on polymer-surfactant interaction 

2.4.1 – Materials 

EVOH, PVA, NaCl and D2O, whose characteristics are reported in paragraph 2.2.1, 

were used. A mixture of non-ionic ethoxylated surfactants (Lorodac 7-24, traded as 

C12-C14 ethoxylated alcohols, 100% active component) was supplied by Sasol, 
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Antwerp, Belgium. Sodium Laureth Sulfate (SLES, 70% active component) was 

supplied by KLK Tensachem, Liège, Belgium. 

 

2.4.2 – Sample preparation 

Stock polymer and NaCl solutions were prepared as described above. Surfactant 

(C12-C14 ethoxylated alcohols or SLES) solutions were prepared by weighing a 

certain amount of surfactant into a glass vial and by adding either water, D2O, a 

NaCl solution or a polymer solution according to the type of sample to prepare. 

Samples for surface tension measurements on binary (surfactant + water) systems 

were obtained by preparing a stock solution at a surfactant concentration 

corresponding to about 10 times the expected critical micellization concentration. 

This solution was then gradually added to about 15 g of water. Samples for surface 

tension measurements on ternary (surfactant + polymer + water) systems were 

prepared by preparing a stock surfactant solution by using a polymer (EVOH or 

PVA) solution at 1% w/w as a solvent at a surfactant concentration corresponding 

to about 10 times the critical micellization concentration. This solution was then 

gradually added to about 15 g of polymer solution at 1% w/w. Samples for surface 

tension measurements on ternary (surfactant + NaCl + water) systems were 

obtained by preparing a stock surfactant solution by using a 2 mol kg
-1

 NaCl 

solution as a solvent at a surfactant concentration corresponding to about 5 times 

the critical micellization concentration. This solution was then gradually added to 

about 15 g of a 2 mol kg
-1

 NaCl solution. 

DLS measurements on binary (surfactant + water) systems were carried out on 3% 

w/w surfactant solutions, whereas DLS measurements on quaternary (surfactant + 

polymer + NaCl + water) systems were performed at 1% w/w polymer (EVOH or 

PVA), 0.65 mol kg
-1

 or 1.50 mol kg
-1

 NaCl (for EVOH and PVA, respectively) and 

at a surfactant concentration corresponding to 5 times the critical micellization 

concentration determined in water. 



31 
 

SANS measurements on binary (surfactant + D2O) systems were carried out on 5% 

w/w surfactant solutions, whereas SANS measurements on quaternary (surfactant + 

polymer + NaCl + solvent) systems were performed at 1% or 0.85% w/w polymer 

(for EVOH and PVA, respectively), 0.45 mol kg
-1

 or 1.50 mol kg
-1

 NaCl (for 

EVOH and PVA, respectively) and at a surfactant concentration corresponding to 5 

times the critical micellization concentration determined in water. 

 

2.4.3 – Characterization techniques 

Surface tension measurements were carried out by using a Sigma 70 Force 

Tensiometer from Nordtest, equipped with an interface and a system unit and based 

on the du Noüy ring technique. This method allows measuring the force required to 

raise a platinum ring from the surface of the liquid, which is related to the surface 

tension. 

Dynamic Light Scattering (DLS) measurements were performed by using the same 

instrument described above. We measured the scattering intensity at fixed 

scattering angle of 90°. 

We carried out Small Angle Neutron Scattering (SANS) measurements with the 

same instrument and configuration described in paragraph 2.3.2. 

 

2.5 – Fragrance segregation process 

2.5.1 – Materials 

EVOH, PVA and NaCl, whose characteristics are reported in paragraph 2.2.1, were 

used. A fragrance mixture of 10 different components (Decylaldheyde, p-

Methylacetophenone, Methyl salicylate, Eugenol, Hexyl Acetate, Citral, Ethyl-2-

Methyl Butyrate, Geraniol, Habanolide and PRM A) was supplied by Procter and 

Gamble. The exact composition of such mixture was determined through GC-FID 
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(Gas Chromatography with Flame Ionization Detection) by using the single 

components (all with purity ≥ 97%) supplied by Sigma Aldrich. Ethanol (purity ≥ 

99.8%), hexane (purity ≥ 95%) and octane (purity ≥ 99%) were also purchased 

from Sigma Aldrich. 

 

2.5.2 – Sample preparation 

PRM stock solutions were prepared by solubilizing a certain amount of fragrance 

either in a mixture of hexane and octane 100:1 w/w or ethanol. Stock polymer and 

NaCl solutions were prepared as described above. 

For GC-FID measurements on PRM solutions, 10 stock solutions of single 

fragrances at a concentration of 4% w/w were prepared by using as a solvent a 

mixture of hexane and octane 100:1 w/w. Then, 10 sets of samples at 2 more 

different PRM concentrations (1% w/w, 2% w/w) were obtained by diluting the 

stock 4% w/w solutions in the hexane and octane mixture, so as to have 3 PRM 

concentrations for each set of samples, which were used for building the calibration 

curves. 

For the solubilization tests we prepared 11 samples at fixed fragrance concentration 

(1% w/w) and 11 different ratios of water and ethanol, ranging from 100/0 w/w to 

0/100 w/w with a step of 10% w/w. 

For Dynamic Light Scattering measurements the samples were prepared by diluting 

a stock EVOH 2% w/w solution with a stock PRM solution and ethanol. We 

analyzed 2 solutions containing fragrance at 0.5% w/w and polymer at 1% w/w 

solubilized in a mixture of ethanol and water 30/70 w/w.  

For GC-FID measurements on the hexane extracts, firstly a solution containing 

polymer particles was prepared, by choosing a final EVOH or PVA concentration 

of 1% w/w and a final NaCl concentration of 0.85 mol kg
-1

 and 2.00 mol kg
-1

 for 

the samples containing EVOH and PVA, respectively. Then, a stock fragrance 

solution in ethanol was added, in order to have a final PRM concentration of 0.5% 
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w/w and a final ethanol concentration of about 30% w/w. The final concentrations 

here reported are related to the final solutions obtained by mixing the aggregate 

solution with the PRM solution. Reference solutions without polymer and at 

comparable PRM concentrations were prepared. Finally, about 1 g of solutions 

containing polymer, NaCl, PRM, water and ethanol was filtered by using 0.20 μm 

filters and the filtered solutions were treated with 2 g of hexane. The same 

procedure was followed for the reference samples without polymer. 

For GC-MS measurements on the hexane extracts, the same preparation protocol 

described for GC-FID measurements was followed. In this case, we tested 3 

different concentrations of PRM A (0.09% w/w, 0.12% w/w and 0.15% w/w) and 

polymer (0.51% w/w, 0.68% w/w and 0.85% w/w), instead of the mixture of 10 

fragrances and the fixed 1% w/w polymer concentration used for GC-FID 

measurements. The ratio PRM A/polymer was kept constant for all samples. The 

final ethanol concentration was 30% w/w and the final NaCl concentration was of 

0.85 mol kg
-1

 and 2.00 mol kg
-1

 for the samples containing EVOH and PVA, 

respectively. 

 

2.5.3 – Characterization techniques 

GC-FID measurements were carried out by using a FOCUS GC System from 

Thermo Electron Corporation equipped with an apolar DB-5 capillary column (30 

m x 0.32 mm x 0.25 μm) and a Flame Ionization Detection system with an 

acquisition rate of 300 Hz. Liquid injection was performed into an oven at 260 °C 

with a 1:8 split ratio. Nitrogen was used as mobile phase. We operated by using a 

temperature-programmed analysis (from 40 °C for 2 min to 200 °C for 15 min with 

a heating rate of 30 °C/min). 

Dynamic Light Scattering (DLS) measurements were performed by using the same 

instrument described above. We measured the scattering intensity at fixed 

scattering angle of 90°. 
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GC-MS (Gas Chromatography with Mass Spectrometry detection) measurements 

were carried out by using a Hewlett Packard G1530A GC System equipped with a 

DB-5MS apolar capillary column (30 m x 0.25 mm x 1 μm) and a Hewlett Packard 

5973 MSD (Mass Spectrometric Detector). Hexane extracts were put into 2 mL 

glass vials and closed with a magnetic cap provided with a perforable silicon 

septum. Liquid injection was performed into an oven at 260 °C with a 1:8 split 

ratio. We operated at constant flow mode (1.5 mL/min at 113 kPa, with a total flow 

of 16.8 mL/min) by using a temperature-programmed analysis (from 40 °C for 1 

min to 80 °C with a heating rate of 30 °C/min and from 80 °C to 250 °C with a 

heating rate of 8 °C/min). Finally, the analytes were detected by fast GC-MS in full 

scan mode. Perfume concentrations were subsequently quantified through the use 

of Chemstation Software. 

 

2.6 – Washing tests 

2.6.1 – Materials 

EVOH, PVA and NaCl, whose characteristics are reported in paragraph 2.2.1, were 

used. Ethanol (purity ≥ 99.8%) and PRM A (purity ≥ 97%) were purchased from 

Sigma Aldrich. PRM B (purity ≥ 97%) was supplied by International Flavors & 

Fragrance, Benicarló (Spain). Unperfumed liquid detergent containing both anionic 

and non-ionic surfactants was used for the washing tests. 

The exact composition of the unperfumed laundry product and the name of the 

fragrances tested (traded as PRM A and PRM B) cannot be disclosed due to 

confidentiality. 

 



35 
 

2.6.2 – Sample preparation 

Technology (polymer + fragrance) and reference (free perfume) solutions were 

prepared by following two different protocols: the 5 steps in a row protocol and the 

5 steps in 2 parts protocol. 

According to the first protocol, solutions and solvents were added as follows: 

1) Polymer stock solution; 

2) Water (if needed); 

3) Ethanol (if needed); 

4) PRM stock solution in ethanol; 

5) NaCl stock solution in water. 

According to the second protocol, solutions and solvents were added as follows: 

FIRST PART 

1) Polymer stock solution; 

2) Water (if needed); 

3) NaCl stock solution in water; 

SECOND PART 

4) Ethanol (if needed); 

5) PRM stock solution in ethanol. 

For both protocols, calculated volumes of all solutions and solvents were added 

under stirring at 1200 rpm. Final concentrations of all components were the same, 

independently on the protocol followed. Reference solutions were prepared by 

adding water instead of the polymer solution. 

Tab. 2.6.2.1 reports the concentrations of the stock solutions and the final polymer, 

NaCl, PRM, ethanol and water concentrations. As an example, tab. 2.6.2.2 

summarizes the amounts used for preparing the technology solutions for a fixed 

quantity of final solution (about 10 g) at a final technology concentration of 1% 

w/w. Such amounts differ according to the polymer and the PRM used for the 

preparation. The same stock solutions were used for preparing the samples at lower 
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technology concentrations (0.6% w/w and 0.8% w/w): in this case, we used a lower 

quantity of polymer and PRM solutions and a higher amount of ethanol and water. 

 

 

Table 2.6.2.1 – Concentrations of stock solutions and final concentrations of all 

components in the mixture. 

Technology 

Concentration [% w/w] 

Polymer 

stock 

NaCl 

stock 

PRM 

stock 

Polymer 

final 

NaCl 

final 

PRM 

final 

Ethanol 

final 

Water 

final 

EVOH particles 

+ PRM A 
2.00 18.1 0.750 0.850 4.68 0.150 19.8 74.52 

EVOH particles 

+ PRM B 
2.00 19.8 0.750 0.925 4.68 0.0750 30.0 64.32 

PVA particles 

+ PRM A 
4.00 21.1 0.750 0.850 10.4 0.150 19.8 68.8 

PVA particles 

+ PRM B 
4.00 21.1 0.750 0.925 7.98 0.0750 30.0 61.02 

 

Table 2.6.2.2 – Volumes of solvents and stock solutions needed for preparing the 

technology solutions at a fixed amount of final solution (about 10 g) at a final 

technology concentration of 1% w/w. 

Technology 

Volume [μL] 

Water Ethanol 
Polymer 

solution 

NaCl 

solution 

PRM 

solution 

EVOH particles 

+ PRM A 
1176 0 4325 2284 2579 

EVOH particles 

+ PRM B 
0 2589 4706 2084 1290 

PVA particles 

+ PRM A 
978 0 2162 4326 2579 

PVA particles 

+ PRM B 
912 2589 2353 3331 1290 
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For DLS measurements we prepared 4 different sets of samples at distinct 

technology concentrations (0.6% w/w, 0.8% w/w and 1% w/w). Such samples and 

their references were prepared by following the 5 steps in two parts protocol and by 

using water, ethanol and the stock solutions whose concentrations are reported 

above. 

Washing tests were carried out by using a Launder-o-Meter. Cotton and polyester 

fabric tracers of 5 cm x 5 cm were used. The details of the washing procedure are 

reported below: 

1) The fabric is weighed and put into the metal Launder-o-Meter jar; 

2) 10 metal spheres are added into the jar; 

3) 200 mL of demineralized water are poured; 

4) About 1 g of unperfumed detergent are added into the jar; 

5) Either the free perfume reference solution or the technology solution (about 

5.0 g) are poured into the jar; 

6) The jars are closed and placed into the Lauder-o-Meter; 

7) The temperature is set to be between 35 °C and 40 °C (37-38 °C); 

8) After 1 hour, the jars are removed from the Launder-o-Meter; 

9) The fabrics are squeezed by applying the same pressure; 

10) The jars and the metal spheres are rinsed; 

11) The washed fabric is put into the jar again together with the metal spheres; 

12) 200 mL of demineralized water are poured; 

13) The jars are closed and placed into the Lauder-o-Meter; 

14) The temperature is set to be between 35 °C and 40 °C (37-38 °C); 

15) After 5 minutes, the jars are removed from the Launder-o-Meter; 

16) The fabrics are squeezed by applying the same pressure; 

17) Finally, according to the test, the fabrics are treated as follows: 

a. for deposition: each fabric is placed into a tray on an aluminum foil 

and dried at room temperature for one night; 
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b. for dry release: each fabric is placed into a tray on an aluminum foil 

and dried at room temperature for one night; 

c. for wet release: each fabric is placed into a vial for GC-MS head-

space analysis and the vial is closed. 

The samples for release tests were prepared by using glass vials of 20 mL equipped 

with a magnetic cap and a plastic septum. 

The samples for deposition tests were prepared as follows: 

1) Each dried fabric is put into a 20 mL vial; 

2) 12 mL of ethanol are poured into each vial containing the fabrics; 

3) 12 mL of ethanol are also poured into 3 vials for the preparation of the 

standards (at 3 different perfume levels); 

4) All the vials containing the fabrics are placed into an oven with orbital 

shaking at 60 °C for 1 hour; 

5) All the vials are transferred into an ultrasonic bath and left under sonication 

for 15 minutes; 

6) The vials are shaken and each ethanol solution is poured into a different vial 

(containing the extracts); 

7) A stock PRM solution (about 0.5% w/w of PRM in ethanol) is prepared. 

This solution is used to prepare a work solution with a concentration of 

0.008% w/w of PRM in ethanol; 3 different amounts or work solutions are 

added to the vials containing 12 mL of ethanol, previously prepared; 

8) 4.5 mL of a 20% w/w solution of NaCl are transferred into a vial for GC-

MS head-space analysis. This procedure is repeated for each extract and 

standard solution. Each sample is replicated; 

9) 0.5 mL of PRM solutions in ethanol (extracts and standards) are poured into 

the vials containing the NaCl solution; 

10) The vials are closed and the GC-MS analysis is started. 
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2.6.3 – Characterization techniques 

Dynamic Light Scattering (DLS) measurements were performed by using the same 

instrument described above. We measured the scattering intensity at fixed 

scattering angle of 90°. 

GC-MS head-space analysis was carried out by using an Agilent Technologies 

7890B GC System equipped with a DB-5UI apolar capillary column (30 m x 0.25 

mm x 0.25 μm) and an Agilent Technologies 5977A MSD (Mass Spectrometric 

Detector). Either ethanol extracts or fabrics were put into 20 mL glass vials and 

closed with a magnetic cap provided with a perforable silicon septum. Samples 

were equilibrated for 10 minutes at 65 °C. Then, the head-space above the samples 

was sampled via Solid Phase Micro Extraction (SPME) by using a fiber made of 

Divinylbenzene (DVB), Carboxen and Polydimethylsiloxane (PDMS). The 

compounds adsorbed on the fiber were then desorbed into the GC by using a 

temperature-programmed analysis (from 40 °C for 0.5 min to 270 °C for 0.25 min 

with a heating rate of 17 °C/min). Finally, the analytes were detected by fast GC-

MS in full scan mode. Perfume head-space concentrations were subsequently 

quantified through the use of Chemstation Software. 
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Chapter 3 – A preliminary screening of the Hofmeister 

series: a model study 

The ion-specific effect on the solubility of macromolecules in water, rationalized 

through the Hofmeister series, can be used as an effective method to obtain 

polymer particles with desired microstructural properties thanks to the salting-out 

effect. By choosing the proper salt and optimizing the polymer and the salt 

concentration, it is possible to tailor the particle structural features like the radius 

and the degree of compactness and to speed up the aggregation process until 

complete conversion from free chains to aggregates. In this chapter, we present a 

model study concerning a screening of different salts belonging to the Hofmeister 

series with the aim of finding the best kosmotropic species to use in order to induce 

the aggregation process. 

 

3.1 – Screening of different salts 

We started to study the aggregation behavior of a highly hydrolyzed (+99%) PVA, 

chosen as a model polymer, in the presence of different salts whose anions and 

cations belong to the Hofmeister series. Fig. 3.1.1 reports the species investigated 

in this first preliminary screening. The anions and cations reported in the left side 

are well known salting-out agents, i.e. they favor the aggregation, whereas the 

species reported in the right side are salting-in agents, i.e. they increase the 

macromolecule solubility.
113,114,115

 Therefore, we chose NaSCN, CaCl2, KCl and 

NaCl, whose anions and cations belong to very distinct positions of the Hofmeister 

series. 

DLS allowed us to study the aggregation process over time: fig. 3.1.2 shows the 

results related to the reference sample (free-salt) and the samples at the highest salt 

concentrations and at the highest polymer concentration (1% w/w) tested. 
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Figure 3.1.1 – Common cations and anions belonging to the Hofemeister series. 

Blue circles indicate the investigated species. 

 

In the case of the salt-free sample, we can observe a population at about 20 nm, 

whose dimensions do not change over the 6 days of measurements. A similar 

behavior was found for the sample in the presence of NaSCN and for the sample in 

the presence of CaCl2. In these three cases no aggregation was observed. Thus we 

can infer that the salting-in behavior induced by SCN
-
 and Ca2

+
, predicted by the 

Hofmeister series, is followed for the investigated PVA. In the case of the sample 

in the presence of KCl, we observe the presence of a single and broad population 

just after the sample preparation and after 1 day, whereas after 3 days a second 

population appears. After 6 days the system reaches the equilibrium and no further 

evolution in terms of hydrodynamic radius distribution can be observed. For KCl 

concentrations higher than 1 mol kg
-1

 (1.25 mol kg
-1

 was tested) massive 

precipitation of the polymer occurs. In the case of the sample in the presence of 

NaCl, a second population appears after 1 day from preparation and a single 

population at about 200 nm can be observed after 3 days. Thus, we can infer that 

also for KCl and NaCl the salting-out behavior predicted by the Hofmeister series 

is followed. However, for the samples in the presence of KCl and NaCl salt 

concentration plays a key role in the aggregation process: whereas for KCl 1 mol 

kg
-1

 no further aggregation is observed, for NaCl 2 mol kg
-1

 the aggregation occurs 

in a very short time, even though the position of K
+
 in the Hofmeister series is 

closer to the salting-out behavior with respect to Na
+
. 
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Figure 3.1.2 – Evolution of hydrodynamic radius distributions over time for the 

salt-free sample and for the samples in the presence of NaSCN 2 mol kg
-1

, CaCl2 2 

mol kg
-1

, KCl 1 mol kg
-1

 and NaCl 2 mol kg
-1

 at constant PVA concentration (1% 

w/w). 
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3.2 – The choice of the salt 

The preliminary results reported in the previous paragraph show that both KCl and 

NaCl are species that induce PVA aggregation over time. However, the aggregation 

in the presence of KCl is very sensitive to salt concentration, since a slight change 

of this parameter leads to massive precipitation of the polymer, whereas in the case 

of NaCl the aggregation process can be controlled more easily. Therefore, by 

taking into account the final aim of this project, which is finding a new technology 

for delivering active components in liquid detergent formulations, we decided to 

draw our attention to the polymer aggregation process in the presence of NaCl. 

Indeed, the aggregates obtained through the salting-out induced by NaCl could be 

used as an effective delivery system in laundry products. 

When designing a process aimed at obtaining a carrier system, different parameters 

have to be considered. In our case, the most critical ones are the salt concentration 

and the polymer concentration: such parameters may have a strong impact on the 

particle size and morphology. Another important parameter is the time needed for 

the aggregation: this is an indirect parameter which is reasonably influenced by 

both salt and polymer concentration and it has to be considered in order to build-up 

a process which is compatible with the industrial timings. 

Therefore, a complete rationalization of the polymer aggregation process in the 

presence of NaCl is fundamental. Two different polymers were chosen: a fully 

hydrolyzed (+99%) PVA, considered in this preliminary study as a model, and a 

super-hydrolyzed (+99.9%) EVOH. Once performed this basic research, an 

optimization of the critical parameters is needed in order to develop a process that 

occurs over a reasonable time scale. 
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Chapter 4 – Rationalization of the polymer aggregation 

process in the presence of sodium chloride 

From the results shown in the previous chapter, we observe that NaCl is the best 

kosmotropic species to use in order to favor the aggregation process of PVA, 

chosen as a model polymer. In this chapter, we present a detailed study concerning 

the characterization of the aggregation process of two polymers (EVOH and PVA) 

in the presence of NaCl. Kinetic and thermodynamic aspects are discussed. 

 

4.1 – The choice of the polymers 

Among the possible candidates for the design of the target delivery technology, 

vinyl alcohol-based copolymers, currently referred to as PVA (poly vinyl alcohol) 

or EVOH (poly ethylene-co-vinyl alcohol), represent a suitable tool to obtain a 

carrier system characterized by a great stability of their aggregates in water. At the 

same time, EVOH and PVA are considered to be biocompatible, thanks to their low 

toxicity. Moreover, particles formed by such copolymers have excellent transport 

properties: indeed, different vinyl alcohol-based systems have been already 

proposed as carriers in biomedical applications or environmental science.
72,116,117

 

The structures of both copolymers are shown in fig. 4.1.1. 

 

Figure 4.1.1 – EVOH (left) and PVA (right) structures: x, y and z represent the 

number of vinyl alcohol, vinyl acetate and ethylene units, respectively. 
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Both copolymers can be easily synthesized through radical polymerization using 

either vinyl acetate and ethylene (for EVOH) or just vinyl acetate (for PVA) as 

monomers. In a second step, the acetate groups are hydrolyzed in order to increase 

the polymer solubility in water. In the present study, we chose two super-

hydrolyzed copolymers, containing more than 99% of vinyl alcohol. However, 

PVA is a polymer containing mainly vinyl alcohol units, whereas EVOH is a more 

hydrophobic polymer containing mainly both vinyl alcohol (about 60% mol) and 

ethylene (about 40% mol) units. Therefore, we are aware that the different 

chemical composition of the investigated species may have a deep influence on the 

aggregation properties in the presence of NaCl. Thus, we needed to rationalize the 

aggregation process for both copolymers, in order to optimize the polymer and the 

salt concentrations for the final application. 

 

4.2 – Aggregation properties of aqueous polymer solutions 

EVOH and PVA well dissolve in water up to 4% w/w and 10% w/w respectively, 

the maximum concentrations here tested. Fig. 4.2.1 shows the evolution of RH over 

time obtained by DLS measurements for a 1% w/w EVOH and a 1% w/w PVA 

solution in water. For both systems, the results show the presence of a single 

population whose hydrodynamic radius is centered at 16 ± 1 nm for EVOH and at 

18 ± 1 nm for PVA. Neither variation of RH or additional populations were 

observed over time. The constancy of RH and the lack of new populations with time 

seem to indicate that no aggregation occurs over the 21 days of measurements. 

In order to shed light on the nature of such population, we performed SANS 

measurements on the polymer solutions at a concentration of 1% w/w. Fig. 4.2.2 

and fig. 4.2.3 show the neutron scattering intensity profiles for EVOH and PVA 

obtained after 2 days from the preparation. 
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Figure 4.2.1 – Distribution curves of hydrodynamic radii for EVOH (left) and 

PVA (right) in water at different times from the preparation of the polymer solution 

at a concentration of 1% w/w. 

 

In the case of solutions containing single polymer chains, two models are 

commonly used: the Debye Model
118

 and the Polydispersed Gaussian Coil (PGC) 

model
118

. The former is used for gaussian polymer chains in theta solvent 

condition, i.e. when the polymer coils do not show either attractive or repulsive 

forces towards the solvent. The latter is used for gaussian polymer chains in good 

solvent condition, i.e. when the polymer coils show high affinity towards the 

solvent. Although both models were tested, the best result was obtained by using 

the PGC model, represented by the following equation: 
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This model calculates an empirical functional form for the scattering from 

a polydisperse polymer chain assuming a Schulz-Zimm type molecular weight 

distribution.
118

 

From the Porod analysis performed in the high-q region (insets of fig. 4.2.2 and fig 

4.2.3) we obtained a slope of -1.51 ± 0.02 for EVOH, and a slope of -1.48 ± 0.01  

for PVA, close to the theoretical value of 5/3 = 1.667, which is the signature for 

fully swollen coils
119

. The fully swollen state is related to the high hydration of the 

chains. Therefore, by taking into account the high affinity of both polymers 

towards the solvent, the low polymer concentration and the absence of other 

populations from DLS measurements, the experimental curve was fitted by the 

Polydispersed Gaussian Coil (PGC) model, as represented by equation 4.2.1. 

 

 

Figure 4.2.2 – Neutron scattering intensity profile for EVOH after 2 days from the 

preparation at a concentration of 1% w/w: experimental data are represented by 

circles and the fittings by straight lines. Inset: Porod analysis performed in the 

high-q region. 
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Figure 4.2.3 – Neutron scattering intensity profile for PVA after 2 days from the 

preparation at a concentration of 1% w/w: experimental data are represented by 

circles and the fittings by straight lines. Inset: Porod analysis performed in the 

high-q region. 

 

The morphological parameters obtained from fitting are the radius of gyration of 

the free polymer chain and the polydispersity (Mw/Mn). For EVOH such values 

were found to be 13.8 ± 0.2 nm and 3.9 ± 0.1, respectively, whereas for PVA we 

obtained 16.5 ± 0.2 nm and 3.6 ± 0.1, respectively. RH values well agree with the 

DLS result, if we consider that the hydrodynamic radius is slightly higher due to 

the contribution of the solvent hydration shell. As a consequence, we can assume 

that the single population observed corresponds to the free polymer chain. 
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4.3 – Sodium chloride effect on polymer behavior in solution 

In order to study the effect of NaCl on the aggregation properties of EVOH, we 

performed a SLS study. The measurements were carried out in a NaCl 

concentration range 0 ÷ 1.5 mol kg
-1

, so as to find the appropriate salt concentration 

at which the aggregation process is favored. Preliminarily, we analyzed 4 different 

sets of samples, characterized by the same concentration of salt and different 

concentrations of polymer at constant scattering angle (90°). Each dataset was 

fitted by using the equation A.1.4, according to a procedure widely diffused in 

literature
120,121

, which allowed the Debye plot to be obtained. From the intercept of 

the fitting lines the polymer average molecular weight Mw was calculated whereas 

from their slope the second virial coefficient A2 was obtained. Experimental data, 

linear fits and fitting parameters are shown in fig. 4.3.1 and tab. 4.3.1, respectively. 

 

Figure 4.3.1 – Linear fits obtained from equation A.1.4 by SLS at 4 distinct salt 

concentrations. Error bars were calculated by considering the standard deviation on 

the average intensity value and the propagation of the relative error. 
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The values of Mw are the same at each NaCl concentration: this clearly indicates 

that no aggregates are present at time = 0, i.e. when the aqueous polymer and salt 

mixtures were prepared. The dependence of A2 on salt concentration is reported in 

fig. 4.3.2. 

 

Table 4.3.1 – Molecular weight Mw and second virial coefficient A2 obtained from 

the fittings shown in fig. 4.3.1. 

NaCl concentration 

[mol kg
-1

] 

Mw 

[g mol
-1

] 

A2 

x 10
4
 [mol mL g

-2
] 

salt-free 32000 ± 3000 7.2 ± 1.6 

0.25 34000 ± 2000 0.3 ± 1.0 

0.75 32000 ± 2000 -3.0 ± 0.8 

1.50 33000 ± 2000 -4.3 ± 0.7 

 

 

Figure 4.3.2  – Dependence of the second virial coefficient A2 on the salt 

concentration. The dotted line is a guide to the eye. 

 

Positive values of the second virial coefficient indicate a good solvent condition, 

i.e. polymer-solvent interactions are favored, whereas negative values indicate a 

bad solvent condition, i.e. such interactions are not favored and aggregation may 
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easily occur.
122

 Therefore, we are able to predict the phase behavior of EVOH in 

solution. In the absence of the electrolyte (salt-free) the polymer is well hydrated 

and aggregation does not occur. For NaCl 0.25 mol kg
-1

, A2 is almost null and we 

are approaching the theta solvent condition, corresponding to an unperturbed state, 

for which the polymer-solvent and the polymer-polymer interactions are totally 

compensated. In this case, even slight temperature or concentration fluctuations 

may influence the equilibrium, easily leading to positive or negative values of A2. 

For NaCl 0.75 mol kg
-1

 and NaCl 1.5 mol kg
-1

 A2 is negative, indicating a bad 

solvent condition. In this case, the polymer is less hydrated due to the high salt 

concentration and, consequently, interactions between polymer and solvent are 

weak. Therefore, NaCl exerts a salting out effect promoting the polymer 

aggregation, which is thermodynamically favored.
123

 

 

An identical SLS study was carried out also for PVA. In this case, the 

measurements were carried out in a wider NaCl concentration range (0 ÷ 2.0 mol 

kg
-1

), since we had previously observed in the preliminary study shown in chapter 

3 that a higher NaCl concentration is needed in order to favor PVA aggregation. 

Data analysis was performed as described above for EVOH solutions. 

Experimental data, linear fits and fitting parameters are shown in fig. 4.3.3 and tab. 

4.3.2, respectively. 

We can observe that the values of Mw are very similar among the samples at 

different NaCl concentration: this clearly indicates that no aggregates are present at 

time = 0, i.e. when the aqueous polymer and salt mixtures were prepared. The 

dependence of A2 on salt concentration is reported in fig. 4.3.4. Also for PVA, we 

can notice a decreasing trend of A2 with NaCl concentration, as already observed 

for EVOH, but in this case the value of the second virial coefficient does not 

become negative even at the highest NaCl concentration tested. Such a trend is 

similar to that one found in literature for lactoferrin
124

. Thus, we can infer that PVA 

has a stronger affinity for the solvent than EVOH. 
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Figure 4.3.3 – Linear fits obtained from equation A.1.4 by SLS at 4 different salt 

concentrations. Error bars were calculated by considering the standard deviation on 

the average intensity value and the propagation of the relative error. 

 

Table 4.3.2 – Molecular weight Mw and second virial coefficient A2 obtained from 

the fittings shown in fig. 4.3.3. 

NaCl concentration 

[mol kg
-1

] 

Mw 

[g mol
-1

] 

A2 

x 10
4
 [mol mL g

-2
] 

salt-free 99000 ± 5000 3.4 ± 0.4 

0.5 101000 ± 5000 2.7 ± 0.4 

1.0 120000 ± 10000 1.6 ± 0.6 

2.0 114000 ± 7000 0.7 ± 0.1 

 

However, even though a NaCl concentration of 2 mol kg
-1

 is high enough to trigger 

PVA aggregation (as shown in the DLS study reported in chapter 3), the absence of 

a negative value of A2 at any NaCl concentration does not explain the experimental 

evidence given by the previous DLS measurements. Therefore, we might assume 

that PVA aggregation is a kinetically controlled process, whose behavior cannot be 

easily predicted by the value of A2. We can also hypothesize that the estimation of 
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the second virial coefficient for PVA in sodium chloride solutions should not be 

carried out on fresh polymer solutions, but after a certain time from preparation. 

However, we are aware that the presence of a monomodal hydrodynamic radius 

distribution is necessary in order to obtain reliable results from SLS analysis. Since 

a second aggregate population is observed after 24 hours from preparation for the 

sample at 2 mol kg
-1

 NaCl, we were not able to repeat this analysis at a different 

time. 

 

Figure 4.3.4  – Dependence of the second virial coefficient A2 on the salt 

concentration. The dotted line is a guide to the eye. 

 

4.4 – Aggregation process in the presence of sodium chloride 

4.4.1 – EVOH aggregation process 

SLS results clearly show that at NaCl concentrations above 0.25 mol kg
-1

 EVOH 

aggregation is promoted. Hence, aiming at rationalizing the aggregation process, 

we carried out DLS experiments by varying both salt and polymer concentration. 

We investigated the growth of the aggregates at NaCl concentrations corresponding 

to negative values of A2, between 0.65 mol kg
-1

 and 0.85 mol kg
-1

. We also studied 
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the effect of polymer concentration on the aggregation process, by varying it within 

the range 0.7% ÷ 1.3% w/w at constant salt concentration. Incubation of EVOH in 

the presence of NaCl eventually results in polymer precipitation and precipitation 

time depends on salt concentration. In particular it was observed at shorter times 

for higher salt concentrations: 15 days later at 0.65 mol kg
-1

 NaCl, 11 days later at 

0.75 mol kg
-1

 NaCl and 8 days later at 0.85 mol kg
-1

 NaCl. DLS measurements 

were performed every day until precipitation occurred. Fig. 4.4.1.1 shows the 

evolution of the hydrodynamic radii over time for the samples at 1% w/w of 

polymer at 3 different NaCl concentrations. A similar trend was observed for other 

EVOH concentrations. All distribution curves indicate the presence of both a first 

population at about 15 nm and a second one, which appears at earlier times for 

higher NaCl concentrations. After a certain number of days, depending on salt 

content, the first population at lower RH values disappears, indicating a complete 

conversion of the free chains to aggregates. This is achieved in 14 days at 0.65 mol 

kg
-1

 NaCl, in 10 days at 0.75 mol kg
-1

 NaCl and in 5 days at 0.85 mol kg
-1

 NaCl. 

Thus, at all salt and polymer concentrations aggregation is observed, at shorter 

times for higher NaCl concentrations, agreeing with the prediction based on the 

SLS results. 

By plotting the evolution of hydrodynamic radii of the aggregates vs time it is 

possible to get further insights into the aggregation process of EVOH in the 

presence of NaCl. Fig. 4.4.1.2 reports the trend of the aggregate hydrodynamic 

radii over time at different polymer and salt concentrations. For all the samples we 

observe an increase of RH over the days of measurements. However, the slopes of 

the curves reported in fig. 4.4.1.2 change when varying NaCl concentration: in 

particular, we can notice an increase of such slope with NaCl concentration. 

Therefore, it is possible to assume that aggregation is slower at 0.65 mol kg
-1

 NaCl 

and faster at 0.85 mol kg
-1

 NaCl. 
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Figure 4.4.1.1 – Evolution of hydrodynamic radii distributions over time by DLS 

for a polymer concentration of 1% w/w and for NaCl concentrations of 0.65 mol 

kg
-1

 (panel A), 0.75 mol kg
-1

 (panel B) and 0.85 mol kg
-1

 (panel C). 

 

DLS results clearly highlight that both salt concentration and polymer 

concentration influence the EVOH aggregation. Concerning the salt effect, from 

fig. 4.4.1.1 we observe that the increase of RH is faster at higher NaCl 

concentrations. As regards the role of the polymer concentration (fig. 4.4.1.2), such 

parameter does not substantially influence the aggregation rate, since the slopes of 

the hydrodynamic radius curves versus time are similar at the same NaCl 

concentration, while it clearly affects the size of the aggregates. This effect is 
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particularly strong at 0.85 mol kg
-1

 NaCl, for which the hydrodynamic radius is 

twice bigger if we compare the datasets at the lowest and the highest polymer 

concentration. Therefore, NaCl concentration plays a key role in the aggregation 

rate, whilst mainly polymer concentration affects the aggregate size. 

 

 

Figure 4.4.1.2 – Evolution of hydrodynamic radii of EVOH aggregates over time 

by DLS for 5 different polymer concentrations and 3 NaCl concentrations (0.65 

mol kg
-1

, panel A; 0.75 mol kg
-1

, panel B; 0.85 mol kg
-1

, panel C). Error bars were 

calculated by considering the standard deviation for 4 independent measurements. 

The dotted lines are guides to the eye. 
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An insight into the solute-solute interaction is given by the evaluation of the 

interaction parameter kD in equation A.2.5. Diffusion coefficients as a function of 

polymer concentration were linearly fitted (fig. 4.4.1.3) and kD values were 

calculated at different salt concentrations from DLS measurements carried out at 

time = 0. The interaction parameter (tab. 4.4.1.1) decreases with NaCl 

concentration, confirming the influence of salt concentration on the aggregation 

rate, earlier discussed. Furthermore, such results agree with those obtained from 

SLS measurements, which highlighted a progressive decrease of A2 with salt 

concentration. A similar behavior was already shown elsewhere for lysozyme
105

 

and poly(styrene-b-sodium acrylate)
106

. 

 

Figure 4.4.1.3 – Linear fits for free chains diffusion coefficient at 3 different NaCl 

concentrations from DLS measurements collected just after the preparation. 

 

Table 4.4.1.1 – Interaction parameter kD for free chains, calculated from equation 

A.2.5, at 3 different NaCl concentrations. 

 NaCl 0.65 mol kg
-1

 NaCl 0.75 mol kg
-1

 NaCl 0.85 mol kg
-1

 

kD -0.19 ± 0.06 -0.31 ± 0.08 -0.44 ± 0.06 

 



58 
 

4.4.2 – PVA aggregation process 

For PVA, since the effect of the polymer concentration was already studied for 

EVOH, we drew our attention on the effect of NaCl concentration on the 

aggregation process. Therefore, we investigated the growth of the aggregates at 5 

different NaCl concentrations (1.500 mol kg
-1

, 1.625 mol kg
-1

, 1.750 mol kg
-1

, 

1.875 mol kg
-1

 and 2.000 mol kg
-1

) and constant polymer concentration (1% w/w). 

Also for PVA, precipitation was observed at shorter times for higher salt 

concentrations: upon 46 days for 1.500 mol kg
-1

 NaCl, 26 days for 1.625 mol kg
-1

 

NaCl, 15 days for 1.750 mol kg
-1

 NaCl, 9 days for 1.875 mol kg
-1

 NaCl, and 8 days 

for 2.000 mol kg
-1

 NaCl. Fig. 4.4.2.1 shows the evolution of the hydrodynamic 

radii over time for the samples at 1% w/w of polymer at 5 different NaCl 

concentrations. All curves indicate the presence of both a first population at about 

18 nm and a second one, which appears at earlier times for higher NaCl 

concentrations. 

The complete conversion from free chains to aggregates is achieved upon 15-16 

days for 1.500 mol kg
-1

 NaCl, 7-8 days for 1.625 mol kg
-1

 NaCl,  3-4 days for 

1.750 mol kg
-1

 NaCl, 3 days for 1.875 mol kg
-1

 NaCl and 2-3 days for 2.000 mol 

kg
-1

 NaCl. Therefore, also for PVA at all salt concentrations aggregation is 

observed and this process is faster at higher NaCl concentrations. Moreover, it is 

worth highlighting the presence of a further population that appears just before 

polymer precipitation, whose dimension ranges between 800 and 1200 nm. Only at 

NaCl 1.750 mol kg
-1

 this population is absent, but we can observe a single broad 

population. The presence of either this further population or a broad one is 

probably due to the coalescence of the aggregates, whose number becomes 

statistically relevant, leading to the formation of a third population of “aggregates 

of aggregates”. This phenomenon could explain the subsequent PVA precipitation, 

which is due to the increased aggregate size. 
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Figure 4.4.2.1 – Evolution of hydrodynamic radii distributions over time by DLS 

for a PVA concentration of 1% w/w and for 5 different NaCl concentrations. 
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4.4.3 – A picture of the aggregation process 

From the previous results we can observe that both EVOH and PVA show a similar 

behavior in NaCl solutions. However, whereas for EVOH precipitation occurs just 

after the formation of a single aggregate population, for PVA this process is slower 

and a monomodal distribution is present for about 4 days at 2.0 mol kg
-1

 and for 

about 25 days at 1.5 mol kg
-1

. As regards the conversion from free chains to 

aggregates, such a phenomenon seems to occur over similar times if compared the 

lowest and the highest NaCl concentrations tested for both polymers. For PVA 

particles, precipitation can be clearly explained by hypothesizing coalescence 

among aggregates, whereas for EVOH such process might be too fast to be 

monitored over time. However, due to the analogous aggregation behavior for both 

polymers, we can provide a general picture of the aggregation process, shown in 

fig. 4.4.3.1.  

 

Figure 4.4.3.1 – Sketch representing a hypothetical mechanism of polymer 

aggregation for both EVOH and PVA: violet particles are the result from the free 

chain aggregation, whereas green particles come from the addition of free chains to 

the aggregates already formed. 

 

In particular, free chain aggregation leads to the formation of bigger particles, 

whose dimensions grow over time by consecutive addition of free chains. At this 

step, both free chains and aggregates are present in solution and the scattering 
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contributions are relevant for both populations. Then, when free chains are not 

statistically significant, their scattering contribution is definitely lower and only the 

aggregate population appears from DLS data. At this stage, free chains are still 

present in solution and this explains, especially for PVA, why the growing process 

of the aggregates is still ongoing. Finally, when the aggregate number increases 

statistically, coalescence among bigger particles occurs, leading to polymer 

precipitation. 
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Chapter 5 – Structural characterization of polymer 

particles 

In the previous chapter we observed that NaCl induces aggregation of both EVOH 

and PVA. In order to shed light on the structural properties of the aggregates 

obtained through salting-out, a combined microscopy and scattering study was 

performed. In this way, we were able to obtain a full picture of the investigated 

systems at different length scales. 

 

5.1 – Determination of the aggregate structural parameters 

5.1.1 – EVOH particles 

In order to have structural information on EVOH aggregates, we performed Cryo-

TEM measurements. Fig. 5.1.1.1 shows two Cryo-TEM images collected at 0.75 

mol kg
-1

 NaCl and 1% w/w EVOH after 3 days from preparation. Such a time was 

chosen by taking into account the previous results from DLS, with the aim of 

obtaining a picture of the system during the aggregation process, when both free 

chains and aggregates are present in solutions. The polymer aggregates exhibit a 

“sponge-like” structure (fig. 5.1.1.1, panel A) where the free chains, which formed 

the aggregates, can be barely distinguished. Moreover, the images show the 

presence of particle whose radii are within the range of 70-100 nm, which is in 

good agreement with the DLS data. The image reported in fig. 5.1.1.1, panel B, 

clearly shows the presence of the primary particles (of radius ranging between 15 

and 20 nm) composing the aggregate. 

In order to obtain further information on the structural properties of these 

aggregates, we estimated their average molar weight through SLS. Such 

measurements were performed for 0.65 mol kg
-1

, 0.75 mol kg
-1

 and 0.85 mol kg
-1
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NaCl, once obtained a monomodal hydrodynamic radius distribution of polymer 

aggregates, as shown in fig. 4.4.1.1. Dilution of the stock 1% w/w EVOH 

aggregate solution, performed in order to have a set of samples at different polymer 

concentration, did not affect either the size or the particle radius distribution. Kc/Rθ 

values were plotted against [hc + sin
2
(θ/2)], and each dataset was fitted at constant 

angle and constant concentration, as shown in equations A.1.5 and A.1.6. As an 

example, the Zimm plot obtained for EVOH aggregates at 0.75 mol kg
-1

 NaCl is 

shown in fig. 5.1.1.2. Parameters obtained from fittings are summarized in tab. 

5.1.1.1. Once obtained the weight average molar weight of the particles, we also 

estimated the number of polymer chains Nchains within the aggregates, dividing the 

weight average molar weight of the particle by the weight average molecular 

weight of the free chain, previously obtained by SLS. Such results were combined 

with those from DLS measurements in order to estimate the chain density ρchain, 

expressed as number of polymer chains per unit of hydrodynamic volume. Results 

are shown in tab. 5.1.1.1. 

 

 

Figure 5.1.1.1 – Cryo-TEM images collected for EVOH aggregates at 0.75 mol  

kg
-1
. The image in panel A well highlights the “sponge-like” structure of the 

polymer particle, whereas the image in panel B clearly shows the primary particles 

(free chains) approaching to form the aggregate. 
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Figure 5.1.1.2 – Zimm plot for EVOH aggregates at 0.75 mol kg
-1

. Open squares 

indicate experimental data, whereas straight blue lines and straight red lines 

represent the fitting curves at constant concentration and constant angle, 

respectively. Full squares indicate extrapolated points. Error bars were calculated 

as the standard deviation for 4 independent intensity measurements. 

 

Table 5.1.1.1 – Aggregate structural parameters obtained by fitting data in fig. 

5.1.1.2 and fig. 4.3.1 at different NaCl concentrations CNaCl: weight average molar 

weight Mw; number of polymer chains within the aggregate Nchains; number of 

polymer chains per unit of hydrodynamic volume, i.e. chain density ρchain. 

CNaCl 

[mol kg
-1

] 

Mw 

[kg mol
-1

] 

Nchains 

[-] 

ρchain 

x 10
5
 [chains nm

-3
] 

0.65 1590 ± 20 48 ± 1 0.39 ± 0.01 

0.75 5600 ± 300 170 ± 8 1.07 ± 0.07 

0.85 19000 ± 400 580 ± 120 1.5 ± 0.3 

 

By comparing the values of Mw, we can observe a progressive increase of molar 

weight of the aggregates with NaCl concentration. NaCl concentration directly 

affects the polymer density within the aggregate, since the value of ρchain increases 
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with salt concentration. Therefore, at higher NaCl concentrations the aggregate 

structure is more compact. 

From DLS results, previously shown, we could observe an increasing tendency to 

the aggregation and a faster precipitation at higher salt concentrations. The 

knowledge of the aggregate molar weight allows the DLS measurements to be re-

analyzed to estimate the value of the interaction parameter also for the aggregates. 

Indeed, the same procedure already shown for the free chains was repeated by 

taking into account the values of diffusion coefficients collected at a scattering 

angle of 90° on the same day of SLS measurements, once we observed the 

complete conversion of the free chains to aggregates. Linear fits and kD values are 

shown in fig. 5.1.1.3 and tab. 5.1.1.2, respectively. The interaction parameter 

decreases with NaCl concentration, indicating a stronger tendency to the 

aggregation at higher salt concentrations. Differently from the data shown in fig. 

4.4.1.3, related to the aggregation tendency for the free chains, in this case kD 

reflects the aggregation tendency for the aggregates that leads to massive 

precipitation after a number of days that depends on salt concentration. 

 

Figure 5.1.1.3 – Linear fits for polymer aggregates at 3 different NaCl 

concentrations from DLS measurements collected on the same day of SLS 

measurements. 
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Table 5.1.1.2 – Interaction parameter kD for polymer aggregates, calculated from 

equation A.2.5, at 3 different NaCl concentrations. 

 NaCl 0.65 mol kg
-1

 NaCl 0.75 mol kg
-1

 NaCl 0.85 mol kg
-1

 

kD -0.05 ± 0.01 -0.14 ± 0.03 -0.49 ± 0.07 

 

5.1.2 – PVA particles 

Also the structure of PVA aggregates was investigated through microscopy. 

However, differently from EVOH particle solutions, we were not able to use Cryo-

TEM, due to the high concentration of NaCl in the investigated samples, that led to 

crystallization of NaCl during the freezing step. As a consequence, PVA particle 

structure was analyzed by means of TEM. Fig. 5.1.2.1 shows a TEM image 

collected at 1.75 mol kg
-1

 NaCl and 1% w/w PVA after 3 days from preparation.  

 

Figure 5.1.2.1 – TEM image collected for PVA particles at 1.75 mol kg
-1

. The 

image well highlights the “sponge-like” structure of the aggregates. 

 

The polymer aggregates exhibit a “sponge-like” structure, which looks very similar 

to that one already shown for EVOH particles. Therefore, irrespectively of the 

nature of the polymer, the aggregate structure is the same. Moreover, the image 

shows the presence of a spherical particle whose radius is about 90 nm, which is in 

good agreement with the DLS data. 
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In order to obtain further information on the structural properties of these 

aggregates, we estimated their average molar weight through SLS. Such 

measurements were performed for 1.500 mol kg
-1

, 1.625 mol kg
-1

, 1.750 mol kg
-1

 

1.875 mol kg
-1

 and 2.000 mol kg
-1 

NaCl, once obtained a monomodal 

hydrodynamic radius distribution of polymer aggregates, as shown in fig. 4.4.2.1. 

Also in this case, dilution of the stock 1% w/w PVA aggregate solution, performed 

in order to have a set of samples at different polymer concentration, did not affect 

either the size or the particle radius distribution. Since PVA aggregation occurs 

over a wider time scale, we were able to study the evolution of both the particle 

molar masses and structural parameters over time, by repeating the SLS 

measurements every day until polymer precipitation. Kc/Rθ values were plotted 

against [hc + sin
2
(θ/2)], and each dataset was fitted at constant angle and constant 

concentration, as shown in equations A.1.5 and A.1.6. As an example, the Zimm 

plots obtained for PVA particles at 5 different NaCl concentrations at a specific 

time from the preparation (27 days, 19 days, 12 days, 6 days and 4 days for 1.500 

mol kg
-1

, 1.625 mol kg
-1

, 1.750 mol kg
-1

 1.875 mol kg
-1

 and 2.000 mol kg
-1 

NaCl, 

respectively) are shown in fig. 5.1.2.2. The evolutions of the aggregates molar 

weights and the hydrodynamic radii (from DLS measurements carried out on the 

same day of SLS measurements) over time are reported in fig. 5.1.2.3 and fig. 

5.1.2.4, respectively. Moreover, from the values of RH we estimated the evolution 

of the chain density over time, expressed as number of polymer chains per unit of 

hydrodynamic volume. Results are shown in fig. 5.1.2.5. 

As regards the data reported in fig. 5.1.2.3, it is clear that at every NaCl 

concentration the aggregate molar weight shows an exponential dependence on the 

aggregation time. In particular, the growth is faster at higher NaCl concentrations, 

as already confirmed by DLS data, for which we can observe a linear dependence 

of RH on time. 
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Figure 5.1.2.2 – Zimm plots for PVA aggregates at 1.500 mol kg
-1

, 1.625 mol kg
-1

, 

1.750 mol kg
-1

 1.875 mol kg
-1

 and 2.000 mol kg
-1 

NaCl (panel A, B, C, D and E, 

respectively). Open squares indicate experimental data, whereas straight blue lines 

and straight red lines represent the fitting curves at constant concentration and 

constant angle, respectively. Full squares indicate extrapolated points. Error bars 

were calculated as the standard deviation for 4 independent intensity 

measurements. 
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Figure 5.1.2.3 – Evolution of aggregate molar weights (obtained from SLS 

measurements) over time at 5 different NaCl concentrations. For 1.500 mol kg
-1

, 

1.625 mol kg
-1

 and 1.750 mol kg
-1

 NaCl fittings are also reported. 

 

 

Figure 5.1.2.4 – Evolution of aggregate RH (obtained from DLS measurements) 

over time at 5 different NaCl concentrations. 
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Figure 5.1.2.5 – Evolution of aggregate chain density over time at 5 different NaCl 

concentrations. These results were obtained by combining SLS and DLS data. 

 

From the exponential dependence of Mw over time we can infer that the PVA 

aggregation occurs under a RLA (Reaction Limited Aggregation) mechanism
125

. In 

particular, the aggregation rate is given by the following expression: 

k »n exp(V
b
/ k

B
T)   equation 5.1.2.1 

where Vb is the repulsive barrier between two approaching particles and ν is the 

attempt frequency, that depends on the diffusive motion of the particles, as well as 

on their radius and concentration. When two particles approach each other closely 

on Brownian trajectories, the probability P of sticking increases with the aggregate 

mass. RLA typically occurs when Vb ≥ kBT, making k sufficiently small that there is 

a significant range of cluster size with P << 1, even though the attempt frequency, 

that depends on diffusion, remains high.
125

 Once observed an exponential 

dependence of Mw on the aggregation time, experimental data reported in fig. 

5.1.2.3 were fitted by using a modified version of an equation already reported in 

literature
125

: 

)/exp(0 mw ttAAM    equation 5.1.2.2 



71 
 

where A0 is the intercept at time = 0, A is the pre-exponential factor and tm is a 

sample-dependent constant which is related to the aggregation rate. Interpolation of 

the experimental data was possible only for the datasets at 1.500 mol kg
-1

, 1.625 

mol kg
-1

 and 1.750 mol kg
-1

 NaCl, since a minimum number of experimental points 

was required for the fitting. The obtained values of tm are reported in tab. 5.1.2.1. 

We can observe a progressive decrease of this parameter with NaCl concentration, 

which indicates that the aggregation process is faster at higher NaCl concentrations. 

 

Table 5.1.2.1 – Values of tm obtained from fittings of the data reported in fig. 

5.1.2.3. 

 NaCl 1.500 mol kg
-1

 NaCl 1.625 mol kg
-1

 NaCl 1.750 mol kg
-1

 

tm [days] 7.4 ± 0.5 3.2 ± 0.2 2.8 ± 0.2 

 

As regards the evolution of the chain density (or packing degree) over time, it is 

possible to observe a general increase of this parameter with aggregation time for 

all NaCl concentrations. Moreover, at higher NaCl concentrations, the chain 

density increases faster. At the same time, if we compare the values of packing 

degree at different NaCl concentrations but at the same aggregation time (i.e. 5 

days for 1.750 mol kg
-1

, 1.875 mol kg
-1

 and 2.000 mol kg
-1

 NaCl) we can notice 

that this parameter is higher when salt concentration increases. This means that a 

higher salt concentrations leads to a more compact aggregate, as already observed 

for EVOH particles. Similar comparisons can be made for different datasets at 

distinct aggregation times. 

The knowledge of the parameters derived from SLS measurements on PVA particle 

solutions allowed us to obtain further insights into the particle structure. In 

particular, the values of aggregate molar weight and gyration radius obtained from 

the Zimm plot analysis (whose examples are shown in fig. 5.1.2.2) at the same 

aggregation time were fitted for 3 different datasets (1.500 mol kg
-1

, 1.625 mol kg
-1
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and 1.750 mol kg
-1

 NaCl) by applying the following equation, that allows obtaining 

the value of the shape parameter α
126

: 


wg BMR     equation 5.1.2.3 

where B is a pre-exponential factor. 

This analysis was not carried out for 1.875 mol kg
-1

 and 2.000 mol kg
-1

 NaCl, due 

to the limited amount of available experimental points, that did not allow obtaining 

a reliable fitting. The couples (Mw, Rg) derived from Zimm plot analysis at specific 

aggregation times are reported in fig. 5.1.2.6, where also interpolations are shown. 

The values of  α  from the fittings are presented in tab. 5.1.2.2. 

 

 

Figure 5.1.2.6 – Dependence of gyration radius on aggregate molar weight at 3 

different NaCl concentrations. The couples (Mw, Rg) derived from Zimm plot 

analysis at specific aggregation times were considered. 

 

Table 5.1.2.2 – Values of α obtained from fittings of the data reported in fig. 

5.1.2.6. 

 NaCl 1.500 mol kg
-1

 NaCl 1.625 mol kg
-1

 NaCl 1.750 mol kg
-1

 

α 0.36 ± 0.02 0.39 ± 0.02 0.32 ± 0.02 
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The parameter α gives information about the shape of the particle. The theoretical 

value for a spherical homogeneous particle is 0.33
127

, thus we can infer that PVA 

aggregates show a shape similar to a sphere characterized by a homogeneous 

density. This finding is coherent with the TEM image previously shown. Moreover, 

since α does not substantially change with NaCl concentration, we can observe that 

salt concentration does not affect the shape of the particle. 

 

5.2 – Investigation on mesoscopic length scales 

5.2.1 – EVOH particles 

EVOH samples in NaCl solutions were also analyzed by SANS, in order to obtain 

more detailed structural information. SANS measurements were performed in a 

mixed solvent, containing a D2O/H2O weight ratio of 80/20, which gave a good 

contrast between the polymer and the solvent. However, we are aware, from 

previous studies reported in literature
128,129

, that the presence of D2O influences the 

aggregation rate, since D2O is a worse solvent than H2O due to the isotopic effect 

of deuterium. 

As an example, fig. 5.2.1.1 shows the comparison between the hydrodynamic radii 

distributions obtained after 3 days for an EVOH sample at 1% w/w at 0.65 mol kg
-1

 

NaCl in the presence of pure H2O and in the mixed solvent (D2O/H2O, 80/20). We 

can observe the presence of two main populations (free chains and aggregates) for 

the sample in pure H2O and one main population of aggregates for the sample in 

the presence of D2O. Therefore, it can be assumed that heavy water influences both 

the aggregation rate and the aggregate size. In particular, in the presence of D2O, 

the conversion from free chains to aggregates is faster and the aggregate size is 

bigger if compared to the sample in pure H2O. 
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Figure 5.2.1.1 – Hydrodynamic radii distributions after 3 days from preparation for 

an EVOH 1% w/w sample in 0.65 mol kg
-1

 NaCl in water and at a weight D2O/H2O 

ratio of 80/20. 

 

Nevertheless, since we were interested in a trend of the structural parameters at 

different NaCl concentrations, for SANS measurements we chose salt 

concentrations lower with respect to those used for SLS and DLS, in order to avoid 

a too fast aggregation process. In this way, we could obtain aggregation rates very 

similar to those ones obtained for the samples measured by SLS and DLS. 

SANS experimental profiles were collected after 6 days from the preparation, in 

order to shed light on possible morphological changes at different NaCl 

concentrations, as already observed from SLS and DLS measurements. Data were 

analyzed through a double approach, by separating the scattering data at low q-

values and at intermediate and high q-values, respectively. The information 

obtained from the low q-region is related to wider length scales, whereas the data at 

intermediate and high q-values give information at lower length scales, i.e. the 

microstructural properties. In particular, the intermediate and high q-region was 

analyzed by using a form factor, whereas the low q-region was analyzed through 

the Kratky plot. Fig. 5.2.1.2 shows the experimental profiles at intermediate and 

high q-values and the related fittings. 
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As regards the choice of the proper form factor, in all curves we could generally 

observe the presence of a slope value close to -2 at intermediate q-values and its 

slight increase with NaCl concentration: this indicates an increasing fractal 

dimension of the aggregates, i.e. a progressive growth of the degree of compactness 

of the polymer chains, as already shown from SLS measurements. 

 

Figure 5.2.1.2 – SANS experimental profiles and related fittings at 1% w/w EVOH 

and 3 different NaCl concentrations. Curves were scaled for a better comparison as 

indicated in the graph. Inset: Sketch representing the hypothetical structure of the 

aggregates, formed by randomly oriented lamellae. 

 

By considering the results from DLS measurements, it can be assumed that the 

aggregation process mainly involves free chains that form bigger particles. At the 

same time, from Cryo-TEM images we could observe the presence of primary 

particles of sizes ranging from 15 nm to 20 nm, compatible with the values of RH 

measured by DLS. As a consequence, it was possible to consider that EVOH 

particles were formed by free chains as primary particles. Therefore, we tried to fit 

the experimental profile by using different shape-independent form factors like the 

mass fractal model
130

, the surface fractal model
130

 and their combination
131

. 
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However, the first and the second model were not able to fit the experimental 

profiles, whereas the third model gave a value of surface fractal dimension
130

 

(about 3.5) which was not physically acceptable. Hence, we needed to explore 

different compatible models. A diagnostic feature of the scattering profile is the 

slope at intermediate q-values. In particular, a value of the slope close to -2 at can 

be related to the presence of bidimensional scattering objects. In our case, from 

Cryo-TEM measurements we know that polymer aggregates are present as spheres, 

so that both a vesicle model
132

 and a spherical core shell form factor
132

 were 

chosen. Also in this case both models were not appropriate to fit the experimental 

profiles. Finally, we tried to use a very simple and general model for bidimensional 

scattering objects, i.e. the lamellar form factor, which gave the best results from the 

fittings. Its equation is reported below: 

 )cos(1
2

)(
2

2




q
q

qP 


   equation 5.2.1.1 

where Δρ is the neutron contrast and δ is the lamellar thickness. 

This model relates to the scattering intensity for a lyotropic lamellar phase where a 

uniform scattering length density and random distribution in solution are 

assumed
133,134

. Thickness polydispersity was also considered in the fitting by 

assuming a Schulz distribution. 

By applying the lamellar form factor, we assumed that the aggregate is a spherical 

particle composed by small randomly oriented lamellae formed during the 

aggregation process. In particular, we could infer that the free chains in the 

presence of NaCl go through a conformational change from random coils to open 

linear chains. This is due to the aggregation process that favors the formation of 

hydrogen bonds among different polymer chains that assume a more locally 

ordered phase. At the same time, the addition of free chains to the aggregates is a 

process that can happen along any orientation, thus the lamellae are randomly 

oriented in the space and form a spherical aggregate (see inset/sketch in fig. 
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5.2.1.2). We focused on the evolution of the lamellar thickness at 3 different NaCl 

concentrations. The results obtained from the fittings are reported in tab. 5.2.1.1 

and show that the thickness increases with salt concentration. 

The region of the scattering profiles at low q-values was analyzed through the 

Kratky plot, in which I(q)q
2
 is reported as a function of q.

135
 In this type of plot, the 

q-value related to the maximum can be used to estimate the radius of gyration of 

the particles by applying the following equation: 

q
Rg

2
    equation 5.2.1.2 

Kratky plots are shown in fig. 5.2.1.3 and the obtained values of Rg are reported in 

tab. 5.2.1.1. We could observe a progressive increase of the radii of gyration with 

NaCl concentration, matching with the results found by DLS. Even though the 

investigated concentrations are not the same, we could observe the same trend, 

indicating a good agreement among the results obtained from light and neutron 

scattering techniques. 

 

 

Figure 5.2.1.3 – Kratky plots at 3 different NaCl concentrations. 
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Table 5.2.1.1 – Comparison of the structural parameters (lamellar thickness and 

radius of gyration) obtained from SANS fittings and Kratky plot analysis. Errors on 

lamella thickness and related polydispersity are derived from the fitting, whereas 

the error on Rg was estimated by considering the standard deviation on this 

parameter calculated by considering a point adjacent to the maxima of the curves 

shown in fig. 5.2.1.3. 

NaCl concentration [mol kg
-1

] 0.45 0.55 0.65 

Thickness [Å] 

polydispersity 

42.4 ± 0.1 

0.24 ± 0.01 

48.3 ± 0.3 

0.53 ± 0.01 

55.2 ± 0.1 

0.54 ± 0.01 

Rg [nm] 136 ± 5 240 ± 16 415 ± 25 

 

5.2.2 – PVA particles 

Also PVA samples in NaCl solutions were analyzed by SANS. In this case, the 

measurements were performed in D2O, since such a solvent does not strongly affect 

PVA solubility. For all samples, we chose a lower PVA concentration (0.85% w/w) 

with respect to that one used for DLS measurements, in order to have comparable 

aggregation times. Moreover, the use of D2O as a solvent allowed obtaining a 

sufficiently high contrast even though polymer concentration was lower. SANS 

measurements were repeated at 3 different times from preparation, in order to shed 

light on possible morphological changes. At the same time, we were able to 

compare the evolution of the structural parameters with NaCl concentration, by 

choosing identical times from preparation for the samples at 1.50 mol kg
-1

 and 1.75 

mol kg
-1

 NaCl (8 days) and for those ones at 1.75 mol kg
-1

 and 2.00 mol kg
-1

 NaCl 

(4 and 6 days). 

Fig. 5.2.2.1 shows the data and the related fittings. As already performed for 

EVOH samples, the intermediate and high q-region was analyzed by using a form 

factor, whereas the low q-region was analyzed through the Kratky plot. 
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Figure 5.2.2.1 – SANS data and fittings at 0.85% w/w PVA and 1.50 mol kg
-1

, 

1.75 mol kg
-1

 and 2.00 mol kg
-1

 NaCl (panels A, B and C, respectively) and 3 

different times from preparation. Curves were scaled for a better comparison. 
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Also in this case, the lamellar form factor, reported in equation 5.2.1.1, gave the 

best results from the fittings. By applying this model, we assumed that the PVA 

particles are formed according to the same mechanism described for EVOH. Since 

PVA aggregation occurs over a wider time scale, we were able to study the effect 

of both time from preparation and salt concentration on the lamellar thickness 

obtained from the fittings. The results are reported in tab. 5.2.2.1 and show that the 

thickness increases with time for the samples at 1.50 mol kg
-1

 NaCl, whereas for 

the samples at higher concentration such a trend is not observed. Thus, we could 

infer that for 1.75 mol kg
-1

 and 2.00 mol kg
-1

 NaCl, the maximum values of 

thickness are reached after 4 days and 2 days from preparation, respectively. As 

regards the effect of NaCl concentration at the same time from preparation, we 

could observe an increase of the thickness by comparing the samples at 1.50 mol 

kg
-1

 and at 1.75 mol kg
-1

 NaCl. 

 

Table 5.2.2.1 – Structural parameters obtained from SANS fittings and Kratky plot 

analysis. Errors on lamella thickness and related polydispersity are derived from 

the fitting, whereas the error on Rg was estimated by considering the standard 

deviation on this parameter calculated by considering a point adjacent to the 

maxima of the curves whose examples are shown in fig. 5.2.2.2. 

1.50 mol kg
-1

 NaCl 8 days 11 days 14 days 

Thickness [Å] 

polydispersity 

49.4 ± 0.2 

0.61 ± 0.03 

57.5 ± 0.3 

0.57 ± 0.03 

61.4 ± 0.1 

0.32 ± 0.02 

Rg [nm] 228 ± 18 280 ± 27 314 ± 32 

1.75 mol kg
-1

 NaCl 4 days 6 days 8 days 

Thickness [Å] 

polydispersity 

59.9 ± 0.1 

0.28 ± 0.02 

60.1 ± 0.2 

0.44 ± 0.01 

61.6 ± 0.2 

0.24 ± 0.03 

Rg [nm] 278 ± 41 472 ± 39 - 

2.00 mol kg
-1

 NaCl 2 days 4 days 6 days 

Thickness [Å] 

polydispersity 

59.7 ± 0.3 

0.31 ± 0.01 

58.7 ± 0.2 

0.29 ± 0.02 

58.4 ± 0.3 

0.25 ± 0.03 
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An example of the Kratky plot analysis for the dataset at 1.50 mol kg
-1

 NaCl is 

reported in fig. 5.2.1.2, and the results are shown in tab. 5.2.2.1. For some samples 

this analysis was not possible because the maxima of the curves were out of the 

investigated q-range. In general, we can observe a progressive increase of the radii 

of gyration with NaCl concentration and time. 

 

 

Figure 5.2.1.3 – Kratky plots at 1.50 mol kg
-1

 NaCl and 3 different times from 

preparation. 
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Chapter 6 – The effect of surfactants on polymer 

aggregation and structural properties: a model study 

After studying the polymer aggregation process and the particle structural 

properties, we carried out a model study by using two mixtures of surfactants that 

are commonly used in liquid detergent formulations and that are present as main 

components in the laundry product used for the washing tests performed in this 

work: a mixture of non-ionic ethoxylated surfactants and sodium laureth sulfate. In 

particular, in this chapter we show the results regarding the effect of both surfactant 

mixtures on polymer aggregation and structural properties. 

 

6.1 – Surfactant characterization in aqueous solutions 

The structures of the investigated species are reported in fig. 6.1.1. Both surfactants 

are complex mixtures of different components, due to the polydispersity of the 

alkyl chains and the ethoxylated units. 

 

Figure 6.1.1 – Structures of the surfactants used in the present study. Top: C13 

ethoxylated alcohol; bottom: SLES. For the non-ionic surfactant mixture, n (i.e. the 

number of the ethoxylated units) may change between 4 and 10, whereas for SLES 

n ranges between 2 and 3. 

 

As a first step, we performed surface tension measurements at 25 °C in order to 

estimate the critical micellization concentration (cmc) of both mixtures of 
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surfactants. Such measurements were carried out on aqueous solutions of the single 

mixtures by increasing the surfactant concentration gradually through small 

additions of a stock surfactant solution. The values of surface tension were 

measured 3 times after each addition and the average values at each surfactant 

concentration were considered. As an example, fig. 6.1.2 reports the surface tension 

as a function of surfactant concentration for both mixtures of surfactants in water 

and the graphical method used for the determination of the cmc. In both curves, we 

could observe a dramatic change of the slope, which is related to the concentration 

value corresponding to the formation of surfactant micelles. In particular, the cmc 

was estimated by fitting the experimental data before and after the slope change 

and determining the graphical intersection of both linear fits. 

 

Figure 6.1.2 – Variation of the surface tension as a function of surfactant 

concentration for the mixture of ethoxylated surfactants (left) and for SLES (right). 

Dashed lines show the graphical method used for the determination of the cmc. 

 

In order to investigate about a possible interaction among the surfactants and the 

polymers used in this study, we also determined the critical micellization 

concentration for both mixtures of surfactants in the presence of PVA and EVOH 

by keeping the polymer concentration constant at 1% w/w. Tab. 6.1.1 reports the 

values of cmc of all the investigated systems. In the absence of PVA and EVOH, 
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the cmc value that we found for SLES well agrees with that one from literature 

(0.12 mM, comparable with 0.095 mM, corresponding to 4.1∙10
-5

 g/g, estimated in 

our study)
136

. For C12-C14 ethoxylated alcohol a direct comparison with literature 

values is not simple, since the mixture of surfactants is particularly complex. 

However, we found a good agreement with the cmc value calculated and observed 

for a C13 8-ethoxylated alcohol (C13E8), which was found to be 0.027 mM (that 

corresponds to 1.5∙10
-5

 g/g)
137

. Moreover, the cmc in the absence and in the 

presence of both kinds of polymer changes slightly. This happens for both 

surfactant mixtures. Therefore, such evidence clearly indicates that interaction 

among components are quiet weak, due to the fact that both polymers are not 

charged. 

 

Table 6.1.1 – Cmc values of C12-C14 ethoxylated alcohols and SLES at 25 °C in 

water, in the presence of 1% w/w EVOH and in the presence of 1% w/w PVA. 

Surfactant 
Critical micellization concentration [g/g] 

H2O EVOH solution PVA solution 

C12-C14 ethoxylated alcohols 9.0∙10
-6

 1.8∙10
-5

 1.0∙10
-5

 

SLES 4.1∙10
-5

 2.6∙10
-5

 3.5∙10
-5

 

 

As a second step, we characterized the aggregation and the structural properties of 

the surfactant solutions by means of DLS and SANS. Fig. 6.1.3 reports the 

evolution of RH for C12-C14 ethoxylated alcohols and SLES over time at a 

surfactant concentration of 3% w/w. The values of hydrodynamic radius for the 

mixture of non-ionic surfactants and SLES are 6 ± 1 nm and 2.7 ± 0.9 nm, 

respectively. No additional populations were observed over the 15 days of 

measurements. Thus, we can infer that aggregation does not occur over time for 

both systems. We also noticed that when changing surfactant concentration, no 

significant variation of RH was observed. 
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Fig. 6.1.4 shows the neutron scattering profiles for a 5% w/w solution of C12-C14 

ethoxylated alcohols in D2O and for a 5% w/w solution of SLES. We chose higher 

concentrations with respect to those ones used for DLS measurements in order to 

have enough scattering intensity. 

 

 

Figure 6.1.3 – Evolution of RH over time for the non-ionic surfactant mixture (left) 

and SLES (right). 

 

 

Figure 6.1.4 – Neutron scattering profiles and related fittings for the mixture of 

ethoxylated surfactants (left) and SLES (right). 
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Experimental data for the mixture of non-ionic surfactants were fitted by using a 

core-shell spherical form factor
132

, where the core is composed by the hydrophobic 

alkyl chains and the shell by the hydrated ethoxylated groups. The equation of the 

model used for the fitting is reported below: 
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  equation 6.1.1 

where scale, Vs, Vc, ρc, ρs, ρsolv, rc, rs and bkg are the scale factor, the volume of the 

outer shell, the volume of the core, the scattering length density (SLD) of the core, 

the shell SLD, the solvent SLD, the core radius, the shell radius and the 

background, respectively. We obtained a hydrophobic core value of 2.01 ± 0.05 nm 

and a hydrophilic thickness value of 2.16 ± 0.03 nm. The obtained results well 

agree with those ones obtained from DLS, if we consider that the hydrodynamic 

radius is slightly larger due to the presence of the hydration water. 

The scattering intensity profile obtained for SLES shows a well-pronounced peak 

at intermediate q-values. Therefore, we used an ellipsoid form factor together with 

a Hayter Penfold structure factor
138,139

. Such structure factor is used in case of 

charged, spheroidal objects in a dielectric medium and takes into account the 

interparticle interference effects due to screened coulomb repulsion between 

charged particles. The equation representing the ellipsoid form factor is shown 

below: 
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In particular, V, Δρ, Ra, Rb and α are the volume of the ellipsoid, the neutron 

contrast between the particle and the solvent, the ellipsoid radius along the 

rotational axis, the ellipsoid radius perpendicular to the rotational axis and the 
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angle between the rotational axis and the scattering vector, respectively. We used a 

simplified version of the model, which does not take into account the orientation of 

the ellipsoid axis and the q-vector, assuming a system of randomly oriented 

ellipsoids. We obtained Ra = 4.01 ± 0.01 nm , Rb = 2.15 ± 0.01 nm and a surface 

charge of 27 electrons. Polydispersity on Ra and Rb was also considered and the 

values were found to be 0.28 ± 0.01 and 0.13 ± 0.01, respectively. Also in this case, 

the dimensions are in good agreement with those ones found by DLS. 

 

6.2 – Aggregation process in the presence of surfactants 

6.2.1 – NaCl effect on critical micellization concentration 

With the aim of characterizing the aggregation process of PVA and EVOH in the 

presence of surfactant micelles, we needed to define the surfactant concentration 

ranges within which to perform our study. Thus, we had to consider the effect of 

the salt on the surfactant aggregation properties. In particular, we are aware that the 

presence of NaCl may influence the cmc value, due to the salting-out effect exerted 

by the salt on the surfactants.
140,141,142

 Therefore, we performed surface tension 

measurements in the presence of NaCl at the highest concentration used for our 

polymer aggregation studies (2 mol kg
-1

). The obtained results are reported in tab. 

6.2.1.1. 

 

Table 6.2.1.1 – Cmc values of C12-C14 ethoxylated alcohols and SLES in an 

aqueous 2 mol kg
-1

 NaCl solution at 25 °C. 

Surfactant Critical micellization concentration [g/g] 

C12-C14 ethoxylated alcohols 1.3∙10
-6

 

SLES 9.5∙10
-7
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We observed that the presence of NaCl causes a cmc decrease of almost one order 

of magnitude for C12-C14 ethoxylated alcohols and of more than one order of 

magnitude for SLES with the respect to the cmc values obtained in pure water, 

shown in tab. 6.1.1. Such a result was quite expected, since the presence of a high 

concentration of ions coming from the salt results in a decrease of the hydration 

degree of the ethoxylated units, leading to an increase of the “effective” surfactant 

concentration. Such phenomenon was already shown in literature for non-ionic
143

 

and anionic
144

 ethoxylated surfactants. 

Therefore, in both cases the presence of NaCl lowers the cmc value. Since we have 

already shown that the presence of the polymer does not dramatically influence the 

surfactant cmc, we chose the cmc values of the surfactants in water as the threshold 

reference concentration at which surfactant micelles are present in solution. 

 

6.2.2 – Aggregation properties of EVOH and PVA in the presence of 

surfactants 

The characterization of the aggregation process of EVOH and PVA at 1% w/w in 

the presence of surfactants was performed by considering a surfactant 

concentration which was 5 times higher than the cmc value determined in water. As 

regards NaCl concentration, in order to monitor the aggregation process over a 

adequately long time, we chose 0.65 mol kg
-1

 and 1.50 mol kg
-1

 for EVOH and 

PVA, respectively. As a reference, we also prepared 2 solutions at the same 

polymer and salt concentrations without surfactants and the aggregation process 

was studied by DLS. Fig. 6.2.2.1 reports the trend of RH as a function of time for all 

the investigated samples. 
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Figure 6.2.2.1 – Hydrodynamic radii of free chains and aggregates plotted ad a 

function of time for EVOH (left) and PVA (right) in NaCl solution (black curves), 

in a NaCl solution containing C12-C14 ethoxylated alcohols (red curves) and in a 

NaCl solution containing SLES (blue curves). 

 

It can be clearly observed that aggregation occurs in the same way for the reference 

samples (without surfactants) and for the samples containing both kinds of 

surfactants. Therefore, the presence of surfactant micelles, at the investigated 

surfactant concentrations does not influence the aggregation process of both 

polymers. 

 

6.3 – Aggregate structural properties in the presence of surfactants 

The microstructural properties of EVOH and PVA aggregates in the presence of 

surfactants were studied through SANS at a surfactant concentration which was 5 

times higher than the cmc value determined in water. EVOH samples were 

prepared at 0.45 mol kg
-1

 NaCl, whereas PVA samples at 1.50 mol kg
-1

 NaCl, 

which correspond to the lowest NaCl concentrations used for the SANS analysis 

carried out in the absence of surfactant. As already performed in the case of DLS 

measurements, we studied the effect of both C12-14 ethoxylated alcohols and 

SLES on the structural properties of EVOH and PVA particles. 
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We followed the same data analysis approach explained in detail in paragraph 5.2. 

Fig. 6.3.1 and fig. 6.3.2 report the SANS experimental profiles with related fittings 

and the Kratky plot analysis for EVOH aggregates. Results are summarized in tab. 

6.3.1. As regards the values of lamellar thickness, no significant differences are 

found in the presence of surfactants. This means that the microstructural properties 

of the aggregates are not influenced by either C12-C14 ethoxylated alcohols or 

SLES. Concerning the values of Rg, we can observe an increase of this parameter in 

the presence of surfactants. However, we have to consider that whereas the 

surfactant-free sample was measured after 6 days from preparation, the 

experimental profiles of the samples in the presence of surfactants were collected 

after 8 days from preparation. Therefore, a slight effect of the time from 

preparation on the radius of gyration has to be considered. 

 

 

Figure 6.3.1 – SANS experimental profiles and related fittings at 1% w/w EVOH, 

0.45 mol kg
-1

 NaCl in the presence and in the absence of surfactants. Curves were 

scaled for a better comparison as indicated in the graph. 
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Figure 6.3.2 – Kratky plots for EVOH samples in the presence and in the absence 

of surfactants. 

 

Table 6.3.1 – Comparison of the structural parameters (lamellar thickness and 

radius of gyration) obtained from SANS fittings and Kratky plot analysis. Errors on 

lamella thickness and related polydispersity are derived from the fitting, whereas 

the error on Rg was estimated by considering the standard deviation on this 

parameter calculated by considering a point adjacent to the maxima of the curves 

shown in fig. 6.3.2. 

 surfactant-free C12-C14 ethoxylated alcohols SLES 

Thickness [Å] 

polydispersity 

42.4 ± 0.1 

0.24 ± 0.01 

40.6 ± 0.3 

0.41 ± 0.03 

40.1 ± 0.2 

0.32 ± 0.01 

Rg [nm] 136 ± 5 212 ± 19 225 ± 16 

 

Fig. 6.3.3 and fig. 6.3.4 report the SANS experimental profiles with related fittings 

and the Kratky plot analysis for PVA aggregates. Results are summarized in tab. 

6.3.2. In this case, we cannot observe any significant difference among the 

structural parameters in the absence and in the presence of surfactants. 
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Figure 6.3.3 – SANS experimental profiles and related fittings at 0.85% w/w PVA, 

1.50 mol kg
-1

 NaCl in the presence and in the absence of surfactants. Curves were 

scaled for a better comparison as indicated in the graph. 

 

 

Figure 6.3.4 – Kratky plots for PVA samples in the presence and in the absence of 

surfactants. 
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Table 6.3.2 – Comparison of the structural parameters (lamellar thickness and 

radius of gyration) obtained from SANS fittings and Kratky plot analysis. Errors on 

lamella thickness and related polydispersity are derived from the fitting, whereas 

the error on Rg was estimated by considering the standard deviation on this 

parameter calculated by considering a point adjacent to the maxima of the curves 

shown in fig. 6.3.4. 

 surfactant-free C12-C14 ethoxylated alcohols SLES 

Thickness [Å] 

polydispersity 

57.5 ± 0.3 

0.57 ± 0.03 

55.9 ± 0.2 

0.40 ± 0.01 

55.3 ± 0.2 

0.53 ± 0.01 

Rg [nm] 280 ± 27 313 ± 32 278 ± 36 

 

6.4 – General considerations 

We observed that for both EVOH and PVA the presence of surfactant micelles 

does not influence the structure of the aggregates. At the same time, we are aware 

that higher surfactant concentrations may have a deep impact on both the 

aggregation and the structural properties of the particles. However, this model 

study, carried out at surfactant concentrations that are not comparable with the 

liquid detergent compositions, gave a first piece of information in terms of 

understanding the compatibility of the polymer particles with two common 

surfactants used in laundry products. All the synergic effects provided by the 

components of a complex mixture cannot be considered separately, thus a 

performance study, described later in chapter 8, is definitely more useful in order to 

understand the formulatability and the applicability of the investigated technology. 
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Chapter 7 – Fragrance segregation within the polymer 

particles 

The polymer particles prepared through salting-out can be used as an effective 

carrier system for target molecules used in laundry products. In particular, additives 

like fragrances, which are present at low concentrations in the final product, can be 

segregated within the polymer particles present in solution. In this chapter, we 

report a detailed classification of the perfumes used for the segregation tests, as 

well as the characterization of the polymer aggregation in the presence of 

perfumes. Finally, the fragrance segregation efficiency of the tested polymer 

particles is evaluated. 

 

7.1 – Perfume Raw Material classification 

Perfume construction is a complicated process whose development strictly depends 

on the formulation type. Specifically, in the case of laundry detergents, there are 

three different categories of fragrances which are commonly employed: top notes, 

characterized by a high volatility; middle notes, whose presence is fundamental to 

give body and to fill out the perfume; base notes, i.e. species with a high boiling 

point that provide the perfume foundation and support top and middle notes. 

Because of their different purposes, fragrances employed in laundry formulations 

may belong to distinct functional classes (i.e. ethers, alcohols, esters), hence they 

are characterized by diverse chemico-physical properties. Boiling point and 

hydrophobicity (expressed as the logarithm of the partition coefficient in water and 

octanol, LogP) are the main parameters used to categorize them in the quadrant 

model (fig. 7.1.1, panel A). 

We received from Procter and Gamble a prototype mixture of 10 critical Perfume 

Raw Materials (PRMs), since the most of them is easily lost during the washing 
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and the drying step. Every fragrance contained in the prototype mixture was 

classified according to boiling point and hydrophobicity, whose values were taken 

from the MSDS of each of them (fig. 7.1.1, panel B). 

 

Figure 7.1.1 – Quadrant model including four examples of molecules characterized 

by different boiling point and hydrophobicity (panel A) and classification of four 

fragrances contained in the prototype mixture (panel B). 
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We chose Gas Chromatography with Flame Ionization Detector (GC-FID) for the 

identification of the perfumes, thanks to the high sensitivity of such technique and 

to the availability of the single fragrances composing the prototype mixture. In 

order to obtain a calibration curve for each perfume, three standard fragrance 

solutions were prepared by using a mixture 100:1 wt:wt of hexane (main 

component) and octane (chosen as internal standard) as a solvent. A temperature-

programmed analysis was carried out and the retention times of each fragrance 

were determined. Then we analyzed the prototype mixture by using the same 

configuration setting for the single fragrances, so as to quantify the percentage of 

perfume oils through the calibration curves. The chromatogram of the prototype 

mixture where the fragrance peaks are identified is shown in fig. 7.1.2. It is worth 

noting that some of the fragrances contain impurities or isomers (in particular E-Z 

isomers for citral and eugenol), which cannot be isolated: the strong signal of such 

species indicates their relatively high concentration. Results are shown in tab. 

7.1.1. 

 

Figure 7.1.2 – Fragrance peaks in the prototype mixture. Hexane and octane peaks 

are not shown. 



97 
 

Table 7.1.1 – Results obtained from GD-FID measurements. Hexane (main 

solvent) and octane (internal standard) peaks have a retention time of 5.86 min and 

6.20 min respectively. Data for PRM A are not shown due to confidentiality. 

Fragrance Letter 
Retention time 

[min, ± 0.05 min] 

Composition in prototype mixture 

[%wt, ± 0.1 %wt] 

Decylaldheyde A 9.82 0.6 

p-Methylacetophenone B 10.20 1.5 

Methyl salicylate C 11.45 0.8 

Eugenol D 12.56 13.5 

Hexyl Acetate G 8.74 7.1 

Citral H 11.25 2.6 

Ethyl-2-Methyl 

Butyrate 
I 7.61 4.8 

Geraniol J 11.08 12.1 

Habanolide K 14.74 10.1 

PRM A M not shown not shown 

impurities, isomers to 100 

 

7.2 – Aggregation process in the presence of Perfume Raw 

Materials 

7.2.1 – Solubilization tests 

In order to study the effect of the Perfume Raw Materials on the polymer 

aggregation, we monitored the aggregation by means of DLS. However, we needed 

to find a proper solvent, which was able to solubilize the fragrances contained in 

the prototype mixture. Therefore, we decided to use a mixture of ethanol and water, 

since all the Perfume Raw Materials contained in the prototype mixture show a 

poor solubility in pure water. 

Solubilization tests were carried out by choosing different ethanol/water ratios and 

different perfume concentrations. As an example, fig. 7.2.1.1 shows the appearance 
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of the solutions at the highest perfume concentration tested (1% w/w). For ethanol 

concentrations lower than 0.19 g/g phase separation occurs, since the amount of 

ethanol is not sufficient to obtain a homogeneous system. For ethanol 

concentrations higher than 0.29 g/g a single phase is obtained. At ethanol 

concentrations corresponding to 0.19 g/g and 0.29 g/g we observe the formation of 

an emulsion, which is stable for 24 hours in the first case and for 48 hours in the 

second case. The opalescence of these two solutions is due to the so-called Ouzo 

effect
145,146

, which is related to the presence of a microemulsion. 

 

 

Figure 7.2.1.1 – Image showing the appearance of 11 different solutions 

containing the prototype fragrance mixture at a concentration of 1% w/w and 

different ethanol contents (indicated in the picture). The opalescence of the 

solutions containing 0.19 g/g and 0.29 g/g ethanol is due to the Ouzo effect. 

 

From the obtained results, an ethanol concentration of about 0.40 g/g should be 

sufficient to obtain a homogeneous system. However, we were aware that ethanol 

might have a strong impact on the polymer aggregation.
147,148

 In fact, at this ethanol 

concentration, precipitation of both EVOH and PVA was observed. Therefore, for 

our study we reduced the fragrance concentration to 0.5% w/w. At this fragrance 
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concentrations we obtained a homogeneous system already at ethanol 

concentrations of 0.30 g/g. Consequently, we studied the aggregation process at 

these conditions. 

 

7.2.2 – Characterization of the aggregation process in the absence of NaCl 

We monitored the aggregation behavior of both polymers, EVOH and PVA, at a 

concentration of 1% w/w in the presence of 0.5% w/w fragrance solubilized in 

ethanol/water 30/70 w/w. DLS measurements were carried out over almost 3 weeks 

and the results are shown in fig. 7.2.2.1. 

 

Figure 7.2.2.1 – Evolution of hydrodynamic radii for the samples in the presence 

of 0.5% w/w fragrance solubilized in a mixed ethanol/water solvent 30/70 w/w in 

the case of EVOH (left part) and PVA (right part). 

 

At time = 0 from the preparation we can observe the presence of two populations of 

distinct hydrodynamic radii in the case of both polymers. For EVOH the first one is 

centered at about 12 nm, whereas the second one is at about 150 nm. For PVA the 

first population is centred at about 15 nm, whilst the second one is at about 200 nm. 

For both polymers the second population grows over time until reaching a radius of 

about 300 nm. Therefore, we observed that the presence of the PRMs in the mixed 
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solvent causes a partial polymer aggregation. This process is paricularly fast, since 

already at time = 0 a significant aggregate population is present. For both polymers 

the evolution to bigger sizes is very slow and no polymer precipitation over time 

was observed. However, from the obtained results we are not able to discriminate 

between the contribution to the aggregation given by the mixed solvent and by the 

fragrances, since an ethanol/water solvent is necessary in order to obtain a 

homogeneous system. Nevertheless, we were able to study the effect of the mixed 

solvent on the polymer aggregation in the absence of fragrances and for the most 

water-soluble fragrances (p-Methylacetophenone and Eugenol) we studied the 

aggregation process in water, by introducing an amount of PRM which was 0.5 

times the solubility limit in water. Finally, we could observe that the contribution 

given by ethanol is definitely stronger than the one given by the PRMs, even 

though the effect of the fragrances is not negligible. 

The characterization of the aggregation process in the system in the presence of 

polymer, fragrance, ethanol, water and NaCl was performed in a second step, once 

optimized the polymer and salt concentrations for the industrial application. The 

results related to this study will be shown in the next chapter. 

 

7.3 – Perfume Raw Material segregation 

7.3.1 – GC-FID measurements 

As already discussed above, one of the peculiar features of the fragrance carrier 

system to develop is the high stability in liquid detergent formulations and, of 

course, a high efficiency of fragrance segregation. Therefore, we set up a method 

aimed at segregating a selection of Perfume Raw Materials and estimating the 

amount of fragrances lodged in the polymer aggregates. The method consists in 

adding a solution containing the PRMs to a solution containing the polymer 
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particles prepared through salting-out. Since the most of the PRMs is insoluble in 

water, their solubility was increased by using ethanol as solvent for the PRM 

solution. Aggregates with sizes above the filter cut off (0.20 µm) were removed 

through filtration and the residual fragrances present in the filtered solution were 

extracted by using hexane. The organic phase was analyzed by GC-FID. As a 

reference, we used a standard mixture of fragrances, containing a comparable 

concentration of PRMs. For this solution, we followed the same protocol described 

for the sample containing polymer particles. In these preliminary segregation tests, 

we were able to estimate the amount of some PRMs segregated by the polymer 

aggregates. We prepared both EVOH and PVA aggregates, in order to check and 

compare the segregation efficiency of both polymers. Results are summarized in 

tab. 7.3.1.1. Segregation efficiency SE was calculated through the following 

equation: 

 

/mm

A

/mm

A

SE

RHEXRPRM

R

PHEXPPRM

P

%1001

,,

,,






































   equation 7.3.1.1 

where AP, AR mPRM,P, mPRM,R, mHEX,P and mHEX,R are the areas from the 

chromatograms for the particle and the reference solution, the masses of PRM used 

for the preparation of the particle and the reference solution and the masses of 

hexane used for the extraction for the particle and the reference solution, 

respectively. 

This parameter ranges between    20% and    75% and is generally higher for PVA. 

Less hydrophobic components are segregated better than the most hydrophobic 

ones (PRM C), probably due to their completely different structure. Such results 

represent a first proof of concept that encourages the use of such systems for the 

development of innovative fragrance carriers, which have to protect the target 

molecule from the emulsification process carried out by the surfactants contained 

in liquid detergent formulations. 
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Table 7.3.1.1 – Results obtained from some preliminary segregation tests 

performed by using both EVOH and PVA. Names are not disclosed for 

confidentiality. 

PRM name 
SE 

(EVOH) 

SE 

(PVA) 

PRM C   20%   50% 

PRM D   60%   45% 

PRM E   25%   70% 

PRM A   75%   75% 

 

7.3.2 – GC-MS measurements 

The results presented in the previous paragraph show that PRM A is the component 

which is segregated better than the other ones contained in the prototype mixture. 

Therefore, we decided to focus our attention on this PRM and we repeated the 

segregation tests by following the same preparation protocol described above and 

using Mass Spectrometry as detection method. 

Firstly, we prepared a solution containing PRM A in ethanol and a solution of 

polymer particles containing EVOH or PVA, water and NaCl. Both solutions were 

mixed. As a reference, we prepared a solution containing PRM A, NaCl, ethanol 

and water at the same concentrations. Secondly, with the aim of separating the 

polymer aggregates, both solutions (the one containing polymer particles and the 

reference sample) were filtered by using filters with a 0.20 µm cut off. Finally, the 

fragrance was extracted from the filtered solutions with hexane for 30 minutes 

through the use of an ultrasonic bath. In order to check the PRM A extraction 

efficiency, three different sets of samples at distinct fragrance concentrations 

(0.09% w/w, 0.12% w/w and 0.15% w/w) were prepared. For the solutions 

containing the polymer, the amount of polymer was also changed so as to have the 

same PRM A/polymer ratio. The organic phase was injected into a GC column 
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with equipped with a MS detector. By applying the same formula shown in the 

previous paragraph, we calculated the segregation efficiency. The results are shown 

in tab. 7.3.2.1. 

 

Table 7.3.2.1 – Results obtained from the segregation tests performed by using 

both EVOH and PVA followed by GC-MS analysis at three different 

concentrations of PRM A and polymer. 

PRM A concentration 

[% w/w] 

Polymer concentration 

[% w/w] 

SE 

(EVOH) 

SE 

(PVA) 

0.09 0.51 55 ÷ 58% 56 ÷ 59% 

0.12 0.68 55 ÷ 57% 55 ÷ 59% 

0.15 0.85 54 ÷ 59% 55 ÷ 60% 

 

The percentage of segregation calculated by using the GC-MS method is lower 

with the respect of the value obtained by the GC-FID method. However, the results 

obtained from GC-MS measurements are definitely more accurate, thanks to the 

high sensitivity of the detection technique. Moreover, by GC-MS it is possible to 

repeat the analysis by using more sample replicates and, as a consequence, to 

define a confidence interval. The obtained results clearly show that the amount of 

PRM A segregated by the polymer particles is the same for EVOH and PVA 

(ranging between 54% and 60%). At the same time, the percentage of PRM A 

segregated by the particles is also independent on the PRM A concentration: this is 

probably due to the fact that the PRM A/polymer ratio was kept constant. 

Moreover, this result demonstrates that the extraction efficiency is the same within 

the interval of PRM A concentration tested. 
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Chapter 8 – Washing tests: evaluating the technology 

efficiency 

From the results shown in the previous chapter we observe that polymer particles 

are able to segregate the PRMs. One important step that allows understanding the 

applicability of such systems from an industrial viewpoint consists in performing 

washing tests by reproducing conditions that are close to the real washing process. 

In this chapter we present the modification of the preparation protocol of polymer 

particles containing perfume, by taking into account the industrial timing, which 

obviously requires speeding up the aggregation process. Moreover, we show the 

results of the washing tests in order to evaluate the efficiency of the designed 

technology. 

 

8.1 – Modification of the preparation protocol 

8.1.1 – Speeding up the preparation protocol and the aggregation process 

From the results shown in chapter 4 we could observe that the time needed for a 

complete conversion from free chains to aggregates is strictly dependent on NaCl 

concentration. In particular, we found that at 0.85 mol kg
-1

 NaCl and at 2.00 mol 

kg
-1

 NaCl a full conversion to aggregates is achieved for EVOH and PVA 

respectively after 3 days from the preparation. However, we know that such a time 

is not compatible with the industrial timing, hence a modification of the preparation 

protocol was fundamental in order to speed up the aggregation process. 

Firstly, the sample preparation procedure was modified by applying the so-called 

mass-to-volume conversion. Instead of preparing each sample by weighing the 

stock solutions individually, the solutions were prepared by adding calculated 

volumes of each stock solution under stirring. This first modification allowed 

reducing the preparation time for a single solution from 5 minutes to 1 minute. 
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Secondly, the aggregation time was reduced by modifying the salt/polymer ratio. In 

order to achieve this purpose, we kept the salt concentration constant and we varied 

the polymer concentration. 

 

8.1.2 – Comparison between two preparation protocols 

The first preparation protocol that we tested is the so-called 5 steps in a row 

protocol. We needed to define the mixing steps to follow in order to prepare the 

final technology (polymer particles + fragrance) solution, so as to avoid polymer 

precipitation during the preparation. Therefore, 5 distinct stock solutions and 

solvents were added according to the following order: 

1) Polymer stock solution; 

2) Water (if needed); 

3) Ethanol (if needed); 

4) PRM stock solution in ethanol; 

5) NaCl stock solution in water. 

The second preparation protocol tested is the so-called 5 steps in 2 parts protocol. 

Also in this case we defined the mixing steps to follow in order to prepare the 

technology solution and to avoid polymer precipitation at the same time. Stock 

solutions and solvents were added according to the following order: 

FIRST PART 

1) Polymer stock solution; 

2) Water (if needed); 

3) NaCl stock solution in water; 

SECOND PART (after complete conversion from free chains to aggregates) 

4) Ethanol (if needed); 

5) PRM stock solution in ethanol. 
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For both protocols we tested two PRMs, PRM A and PRM B, which are 

characterized by very different boiling point and hydrophobicity. The exact values 

of these parameters cannot be disclosed. 

By comparing both preparation protocols, we observe that the mixing order is 

different. In the first case, all solutions or solvents are added at the same time and 

the NaCl stock solution is the last one added, whereas in the second case two 

solutions and water are added in a first step and then the other stock solution and 

ethanol are added in a second step. In the latter case, the time between the addition 

of ethanol and the PRM stock solution to the solution containing polymer, water 

and NaCl is strictly dependent on the time needed for achieving a complete 

conversion from free chains to aggregates. As clearly shown below, this time 

depends on the amount of polymer added during the first step. 

Even though the final polymer, NaCl, PRM and ethanol concentrations are the 

same for both protocols, we wanted to check by means of DLS whether the mixing 

order affects the aggregation process. At the same time, we tested three different 

polymer concentrations and we kept the final NaCl concentration constant (2.00 

mol kg
-1

 and 0.85 mol kg
-1

 for PVA and EVOH respectively). 

As an example, fig. 8.1.2.1 shows the evolution of the hydrodynamic radii over 

time for the sample containing PVA at the highest polymer and PRM A 

concentrations tested (0.85% w/w and 0.15% w/w, respectively), which correspond 

to a technology concentration of 1% w/w. Panel A and panel B report the 

distribution curves related to the 5 steps in a row protocol and to the 5 steps in 2 

parts protocol, respectively. 

In the first case we observe the presence of two distinct populations: one centered 

at about 15 nm and another one at about 150 nm. After 7 days the second 

populations grows slightly, but free chains are still present in solution. By 

comparing the distribution curves collected at 7 days and 12 days from the 

preparation, no significant change in hydrodynamic radii can be noticed. 
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In the second case, after the addition of the polymer stock solution, water and NaCl 

stock solution, we can observe two populations at about 17 nm and about 100 nm 

after 30 minutes from the preparation. After 110 minutes the conversion from free 

chains to aggregates is almost complete and the aggregate population is bigger. 

Then, after 180 minutes the conversion from free chains to aggregates is complete 

and the hydrodynamic radius of the single aggregate population is about 280 nm. 

At this point, upon addition of ethanol and the PRM A solution, the aggregate 

population grows until reaching a stable value of about 320 nm after 6 days from 

the preparation. No polymer precipitation was observed over time. By considering 

all the collected data, the time needed for obtaining a monomodal distribution of 

aggregates is strictly dependent on the polymer concentration. In the case of PVA 

the time needed is 3 hours at a final polymer concentration of 0.85% w/w, 4 hours 

and 30 minutes at 0.68% w/w and 6 hours at 0.51% w/w. In the case of EVOH a 

complete conversion is achieved after 6 hours at a final polymer concentration of 

0.85% w/w, after 8 hours at 0.68% w/w and after 10 hours at 0.51% w/w. As an 

example. Fig. 8.1.2.2 shows a picture of 3 PVA solutions and their reference 

samples at the 3 different polymer concentrations tested. 

 

Figure 8.1.2.1 – Evolution of hydrodynamic radii for the samples prepared through 

the 5 steps in a row protocol (panel A) and the 5 steps in two parts protocol (panel 

B). 
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Figure 8.1.2.2 – Evolution of sample appearance over time for the analyzed PVA 

and NaCl solutions and their related references. T1REF, T2REF and T3REF = 

NaCl solutions containing PRM A at 0.09% w/w, 0.12% w/w and 0.15% w/w, 

respectively; T3POL = PVA and NaCl solution at a final salt concentration of 2.00 

mol kg
-1

 and final PVA concentration of 0.85% w/w; T1, T2 and T3 = PVA and 

NaCl solutions at a final salt concentration of 2.00 mol kg
-1

 and final PVA 

concentrations of 0.51% w/w, 0.68% w/w and 0.85% w/w, respectively and 

containing PRM A at 0.09% w/w, 0.12% w/w and 0.15% w/w, respectively. 
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From the results shown above it is clear that the different order of adding the stock 

solutions and the solvents affects the aggregation process. For the 5 steps in a row 

protocol all components are added at the same time, thus the salt and the polymer 

concentrations are lower. Moreover, the presence of ethanol dramatically changes 

the dielectric constant of the solvent
149

, leading to a different aggregation behavior. 

In particular, no further aggregation after 7 days is observed if ethanol is introduced 

at time = 0. For the 5 steps in two parts protocol polymer and NaCl are added 

before ethanol and the fragrance, thus the temporary concentrations of both 

components are higher. This leads to a very fast aggregation process. Upon 

addition of ethanol and the PRM solution in ethanol the aggregation is stopped due 

to the presence of ethanol. This is a key role of such a solvent, since it allows 

obtaining an aggregate solution which is stable over time. Indeed, in the absence of 

ethanol, polymer precipitation would have been observed, as already discussed in 

chapter 4. 

These findings clearly show that the 5 steps in 2 parts protocol is more suitable 

than the 5 steps in a row protocol to obtain a complete conversion from free chains 

to aggregates and a stable aggregate suspension. 

 

8.2 – Evaluation of the technology efficiency 

8.2.1 – An overview of the tests 

Technology efficiency was evaluated by performing middle scale tests through the 

use of a Launder-o-Meter. We tested two different types of fabric: cotton and 

polyester. We carried out two kinds of test: a first one aimed at evaluating the 

amount of PRM deposited on fabrics and a second one aimed at evaluating the 

amount of PRM released by the fabrics at three different touch points: wet, dry and 

rebloom. The wet touch point represents the stage corresponding to the wet fabric 

coming from the washing machine. In this condition the most volatile and 
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hydrophilic fragrances are easily detected and the perfume level is particularly high 

since a significant amount of water is absorbed on the fabric. In particular, due to 

the higher hydrophilicity of cotton, the perfume intensity is higher than for 

polyester. In our experiments the dry touch point corresponds to the fabric 

spontaneously dried overnight (about 15 hours) without the use of a drying 

machine. In this condition the less volatile fragrances are detected, since a 

significant amount of volatile component is lost during the drying process. Finally, 

the rebloom touch point represents the stage corresponding to a rebloomed fabric, 

i.e. a fabric which is rewetted by spraying a certain amount of water. At this stage 

the most volatile and hydrophilic fragrances which are still adsorbed on the fabrics 

can be released. 

The technology efficiency was evaluated for the following technologies: PVA 

particles containing PRM A; PVA particles containing PRM B; EVOH particles 

containing PRM A; EVOH particles containing PRM B. 

 

8.2.2 – Washing procedure and analysis approach 

The washing tests in Launder-o-Meter were performed by scaling down the typical 

amounts of water and detergent used for washing. Normally, in European 

conditions the washing is performed using 13 L of water and about 66 g of liquid 

detergent. By considering the volume of water used in the Lauder-o-Meter (200 

mL), the amount of detergent to be used is about 1 g. During the washing tests, a 

solution containing the technology (polymer particles + fragrance) was added on 

top, i.e. by adding a certain amount of solution into the Launder-o-Meter jars 

containing the fabric, water and detergent. In order to test the efficiency of the 

technology tested, we always used an internal reference, i.e. a solution containing 

free perfume, which is a fragrance solution without polymer particles. In this way, 

the fabrics washed with the technology and the fabrics washed with the reference 

solution were treated under the same conditions. It was not possible to use a 
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technology already in use as a reference for both business reasons and for the 

different preparation protocols needed, that could have introduced a significant 

variable to consider when evaluating the results. A detailed description of the 

washing procedure is given in chapter 2. After washing, the fabrics were analyzed 

in order to check the efficiency of the technology.  

Deposition tests were carried out by using dry fabrics. After washing, the fabrics 

were spontaneously dried overnight (about 15 hours) without using a drying 

machine. Then, the residual fragrance was extracted by using ethanol. The extracts 

from the samples containing the technology and from the reference samples were 

analyzed by head-space GC-MS. Release tests were performed by analyzing the 

fabrics at wet, dry and rebloom touch points by head-space GC-MS. The 

experiments in wet conditions were carried out just after the washing step, whereas 

the dry release tests were carried out after drying the fabrics overnight. Finally, the 

rebloom release experiments were performed after rewetting the dry fabrics. A 

detailed description of both kinds of test is given in chapter 2. 

 

8.2.3 – Deposition tests 

The GC-MS head-space analysis performed to check the deposition efficiency was 

carried out by measuring directly the concentration of the fragrance in the head-

space from ethanol extracts. Each sample was replicated twice (external replicates) 

and the average values of the correlation area obtained from the analysis were 

considered. The correlation areas were calculated by extracting the specific ion 

chromatogram for each sample. For PRM A, we used the characteristic m/z value 

of 121. After obtaining the extracted chromatogram, the signals at retention times 

corresponding to 5.68 min and 5.72 min were integrated and the sum of the 

correlation areas obtained from the integration was related to the PRM 

concentration in the head-space. For PRM B, we chose m/z = 228 and retention 

times corresponding to 9.30, 9.35, 9.58 and 9.63 min. Moreover, 3 standard 
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solutions containing the target PRM were prepared and a calibration curve for each 

experiment was built by correlating the results obtained from the integration to the 

PRM concentration, already known and previously calculated. The slope of the 

straight line used to fit the experimental data was used to estimate the fragrance 

concentration for each sample. Then, the concentration was normalized by the mass 

of fabric (after washing) and the mass of technology or perfume-free solution used 

for the washing step. The normalized concentration value obtained for the reference 

sample (without technology) and the main sample (with technology) were 

compared through a comparison factor CF, whose formula is reported below: 
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where Cref and Csample are the normalized head-space concentrations of the target 

fragrance in the ethanol extracts coming from the reference fabric and the fabric 

washed with the technology solution, respectively. However, since all experiments 

were performed by using an internal reference sample, the comparison factor could 

have been also calculated directly from the normalized correlation areas giving the 

same value. The values of CF were calculated for each technology by repeating the 

same experiment three times and by considering an average value. The results are 

reported in tab. 8.2.3.1 

For every technology the value of comparison factor is positive. In particular, the 

best results were found for PVA particles containing PRM A, which lead to a very 

high increase of deposition on cotton and for PVA particles containing PRM B, 

that give a significant benefit on polyester. If we consider the hydrophobicity of 

both molecules, we can notice that the particles containing PRM A are less 

hydrophobic than the particles containing PRM B due to the different LogP of the 

PRMs used, thus a higher amount is deposited on the more hydrophilic cotton 

rather than on polyester. The opposite happens for PVA particles containing PRM 

B, which are deposited better on the more hydrophobic polyester. 
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Table 8.2.3.1 – Average values of comparison factor obtained from deposition 

tests for 4 different technologies. 

Technology 
Comparison factor 

Cotton Polyester 

EVOH particles 

+ PRM A 
+15% ± 7% +10% ± 6% 

EVOH particles 

+ PRM B 
+8% ± 3% +5% ± 3% 

PVA particles 

+ PRM A 
+38% ± 13% +8% ± 5% 

PVA particles 

+ PRM B 
+5% ± 2% +20% ± 5% 

 

8.2.4 – Release tests 

The GC-MS head-space analysis performed to check the release efficiency was 

carried out by measuring directly the concentration of the fragrance in the 

headspace from the fabrics. In this case, each measurement was replicated 3 times 

(internal replicate) and the average values of the correlation area were considered. 

In order to calculate the correlation areas, we followed the same approach 

described for the deposition tests, with the only exception that the comparison 

factor was calculated by considering directly the normalized correlation areas, i.e. 

the values obtained from the chromatograms normalized by the fabric mass (after 

washing) and the mass of technology or perfume-free solution used for the washing 

step. The formula used is reported below: 
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where Aref and Asample are the normalized correlation areas of the target fragrance 

for the reference fabric and the fabric washed with the technology solution, 

respectively. 

Also in this case, the values of CF were calculated for each technology by 

repeating the same experiment three times and by considering an average value. 

The results are reported in the tab. 8.2.4.1 

 

Table 8.2.4.1 – Average values of comparison factor obtained from release tests 

for 4 different technologies (CK = knitted cotton; PE = polyester). 

Technology 

Comparison factor 

wet dry rebloom 

CK PE CK PE CK PE 

EVOH particles 

+ PRM A 

+8% 

± 1% 

+7% 

± 1% 

+12% 

± 5% 

+7% 

± 2% 

+20% 

± 6% 

+2.5% 

± 0.5% 

EVOH particles 

+ PRM B 

+10.4% 

± 0.4% 

+16% 

± 1% 

-10% 

± 6% 

+7% 

± 3% 

-3% 

± 1% 

+3% 

± 2% 

PVA particles 

+ PRM A 

+13% 

± 1% 

+4% 

± 1% 

-16% 

± 4% 

+2.8% 

± 0.9% 

-5% 

± 3% 

+8% 

± 1% 

PVA particles 

+ PRM B 

+3.0% 

± 0.6% 

+17% 

± 2% 

+4% 

± 2% 

+17.4% 

± 0.2% 

+2.5% 

± 0.5% 

+3.7% 

± 0.6% 

 

In most of the cases, the value of comparison factor is positive and the best results 

are found at wet touch point for both kinds of fabrics. At this stage the values of 

comparison factor are always positive, i.e. all technologies deliver a benefit. As 

already observed from the deposition tests, particles containing PRM A lead to a 

higher value of comparison factor for cotton, whereas particles containing PRM B 

give more benefit on polyester. This clearly indicates that the PRM hydrophobicity 

significantly influences the deposition and the release efficiency. 

In some cases, the comparison factors obtained from the dry release tests are 

negative. This could suggest a discrepancy between deposition and dry release tests 
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since both kinds of test are performed with dried fabrics. However, it is worth 

noting that in deposition tests the PRM extraction is forced by using a solvent, 

whereas in dry release no solvents are used. Therefore, a negative release value 

does not necessarily mean that less perfume is deposited on the fabric, since the 

presence of the technology may reduce the PRM volatility. The positive values of 

comparison factor from wet release tests for particles containing PRM A are very 

encouraging because PRM A represents one of the most used top notes in the 

perfume accords, with concentrations up to 20% w/w. A technology which favors 

the deposition and the release of such components is highly desirable, due to the 

high cost of the perfume components used in liquid detergent formulations. 

As regards PRM B, the positive results obtained in the most of rebloom tests for 

both EVOH and PVA particles are particularly attractive, since this PRM is used as 

a malodor blocking component. Due to the fact that bad smell usually comes out 

when the fabrics are rewetted, a higher release of PRM B may reduce the 

perception of malodor from fabrics, especially in the case of polyester. 

 

8.2.5 – Product aging 

We also evaluated the aging effect on the technology efficiency. In particular, we 

decided to draw our attention on the technology that worked better (PVA particles 

+ PRM A). The solution containing the technology was mixed with liquid detergent 

and the product was left at room temperature (20 °C) for 10 days. We followed the 

same procedure for the reference product (without technology and containing free 

perfume). The washing step was carried out by using the aged products and wet 

release test was performed. Data were analyzed as described in the previous 

paragraphs. We still obtained positive comparison factors: +10% ± 0.1% for cotton 

and +3% ± 1% for polyester. Therefore, storing PVA particles containing PRM A 

with liquid detergent does not affect the technology efficiency negatively.  
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Chapter 9 – Conclusions 

In this chapter the main conclusions derived from the experimental results 

previously shown are summarized. Final remarks and future perspectives are also 

reported. 

 

9.1 – An easy, fast and cheap protocol for the preparation of vinyl 

alcohol-based particles 

In this project, we have shown that vinyl alcohol-based copolymers are suitable 

candidates for the preparation of polymer particles able to segregate perfume 

ingredients. Differently from the preparation protocols commonly used in literature 

and at industrial level, salting-out is an easy, fast and cheap method for preparing 

polymer particles. Indeed, such a protocol does not require the use of chemical 

cross-linkers and allows preserving the biocompatibility and the biodegradability of 

the polymers used for the preparation, since the chemical structure of the polymer 

is not altered due to the absence of covalent bonds among polymer chains. At the 

same time, the particles show a compact structure, thanks to the presence of 

hydrogen bonds among the hydroxyl side groups composing the repeating units. 

 

9.2 – Tunable aggregation and structural properties 

The aggregation time can be easily tuned by varying both polymer and salt 

concentration within an optimized range. We have shown that it is possible to 

speed-up the aggregation process by increasing both the salt and the polymer 

concentration up to threshold values above which massive precipitation of the 

polymer is observed. Polymer and salt concentrations also affect the structural 

parameters of the polymer particles, like the hydrodynamic radius, whose value 
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increases at higher concentrations and same aggregation times. Moreover, salt 

concentration directly affects the microstructural properties of the aggregates. Both 

the packing degree and the lamellar thickness of the particles tend to increase when 

NaCl content is higher. The knowledge acquired through a deep study of the 

thermodynamic properties of polymer solutions in the presence of NaCl has 

allowed us to optimize the salting-out preparation protocol, obtaining very short 

aggregation times, compatible with the industrial timing. 

 

9.3 – Surfactant-resistant polymer particles 

The model study performed on solutions containing polymer particles in the 

presence of two common surfactants used in liquid detergent formulations has 

shown that, when surfactant micelles are present in solution, neither the 

aggregation process or the structural properties are dramatically influenced. Even 

though the composition of the final product is extremely different from the 

simplified mixture here characterized, such a result is a useful proof of concept that 

encourages the use of these polymer particles for laundry applications. 

 

9.4 – High segregation efficiency and fragrance deposition/release 

Both EVOH and PVA particles are able to segregate the fragrances. In particular, 

we have found a perfume segregation efficiency of about 60%. Such a high 

segregation efficiency allows reducing the amount of technology needed for 

achieving the desired benefit for the consumers. This implies the use of a lower 

amount of perfume which reduces the formulation costs. 

At the same time, we have observed that the presence of the here presented 

technology allows obtaining both a higher fragrance deposition on fabric and a 

higher perfume release with the respect to the washing product containing free (i.e. 
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not segregated) perfume. Such a benefit is particularly evident for fragrance release 

from wet fabrics. The achieved result is extremely encouraging, since the effective 

release in wet conditions represents an important step for consumers’ acceptance. 

 

9.5  – Final remarks and future perspectives 

The technology presented in this work may represent a suitable alternative to the 

current carrier systems used in laundry products, i.e. the polymer capsules. Indeed, 

the main drawback of this technology is the perfume leakage that can easily happen 

due to the breakage of the capsule walls caused by mechanical stress. The use of a 

soft particle-based technology like the one designed in this project may avoid the 

performance reduction caused by leakage. 

At the same time, we are aware that still many fundamental steps forward have to 

be made. Firstly, the formulatability in liquid detergent composition has to be 

studied, in order to avoid a too high water content in the final laundry product. 

Secondly, the product stability over time has to be tested: we have already observed 

that no polymer precipitation occurs over time, but local aggregation phenomena 

within the complex matrix may take place over longer time scales and they are not 

easy to detect due to the high number of the product components. Finally, the 

perfume diffusion out of the polymer particles has to be studied in the final matrix, 

since the presence of surfactants may reduce the segregation efficiency of the 

technology. However, the encouraging results obtained after product aging have 

shown that the designed technology present a good compatibility with the other 

matrix components. 
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Appendices 

In the following appendices we report the data analysis approach followed for the 

collected Light Scattering data. 

 

A.1  – SLS data analysis  

In SLS experiments the time-averaged scattering intensity is related to the 

molecular properties of the systems, i.e. solute-solvent interaction, reflected in the 

second virial coefficient, molecular weight, shape and size of the scattering objects. 

The relation between the scattering intensity, concentration of the scattering objects 

and scattering angle is the following
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where c is the concentration of the scattering objects and 
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constant that depends on the incident wavelength λ, the Avogadro number NA, the 

solvent refractive index n and the variation of the solution refractive index with the 

polymer concentration dn/dc. When samples are highly diluted, it can be assumed 

that dn/dc does not change with the wavelength.  

The parameter q = 4πn sin(θ/2)/λ is the modulus of the scattering vector, where θ 

represents the scattering angle. Mw, Rg and A2 are the mass average molecular 

weight, the radius of gyration and the second virial coefficient for the scattering 

objects, respectively, that are the structural and the thermodynamic parameters that 

can be derived from SLS measurements. Finally, Rϴ is the Rayleigh ratio and 

represents the term of the equation where the scattering intensity appears. 
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Its expression is: 
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where IS, I0 and IR are the scattering intensities of the sample, the solvent and the 

reference (toluene), respectively, n0 is the refractive index of the solvent and nR is 

the refractive index of the reference. Rϴ,R is the Rayleigh ratio of the reference at 

the same incident wavelength, calculated by applying the following relation
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equation A.1.3 

where λ is the incident wavelength and ρu is the depolarization factor for non-

polarized light, which was calculated by considering an average value from those 

already reported in the literature for different wavelengths
151

. 

In the case of small particles, typically with dimension d < λ/10, it is possible to 

neglect the angular contribution to the scattering intensity, i.e. the scattering object 

can be represented as a point and, therefore, the constructive/destructive 

interference arising from the optical path difference can be considered null.
150

 

Therefore, equation A.1.1 can be modified in: 
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  equation A.1.4 

In this case, it is sufficient to perform a linear fit of the experimental data at 

different concentrations in order to obtain information about the molecular weight 

(from the intercept) and the second virial coefficient (from the slope). 

In the presence of bigger particles, this approximation is not longer valid and the 

scattering intensity dependence on both concentration and scattering angle has to 

be taken into account. Therefore, the values of 
R

Kc
 have to be plotted as a function 

of two independent variables, c and q, in order to obtain the so-called Zimm plot
152

. 
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By extrapolating the values of 
R

Kc
 at both null concentration and null angle (i.e. 

null scattering vector), it is possible to obtain two datasets that, once fitted, give the 

molecular weight, the second virial coefficient and the radius of gyration, as shown 

in the equations below:  

cA
MR

Kc

w

22
1




    for θ = 0  equation A.1.5 
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Kc g
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     for c = 0  equation A.1.6 

 

A.2  – DLS data analysis  

In DLS measurements the intensity autocorrelation function, g
(2)

(t), is related to the 

electric field autocorrelation function, g
(1)

(t), shown in equation A.2.1 as the 

inverse Laplace transform of the distribution of the relaxation rate Γ, which allows 

calculating the translational diffusion coefficient D = Γ/q
2
 
153

: 





  ln)/exp()()()1( dtAtg   equation A.2.1 

where τ = 1/Γ and q is the modulus of the scattering vector. A modified version of 

the CONTIN algorithm incorporated in the Precision Deconvolve software
154

 can 

be used in order to perform the inverse Laplace transform. In the case of spherical 

objects, continuous medium and infinite dilution, the diffusion coefficient can be 

easily related to the hydrodynamic radius RH through the Stokes-Einstein equation: 

D

Tk
R B

H
6

           equation A.2.2 

where kB is the Boltzmann constant, T is the absolute temperature and η is the 

solvent viscosity. For non-spherical particles, RH represents the radius of a 

spherical aggregate with the same measured diffusion coefficient. In this 
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hypothesis, equation A.2.2 can be reasonably used to estimate the averaged 

hydrodynamic radius of the particles.
118,153

 From the diffusion coefficients it is 

possible to determine also other parameters. In a given solvent, the diffusion 

coefficient can be expressed as a function of the concentration of the scattering 

objects
108

: 

ScDD  )0(    equation A.2.3 

where D is the diffusion coefficient at a specific concentration, D(0)  is the 

diffusion coefficient at infinite dilution and S represents the slope of the linear 

fitting obtained by plotting D as function of c. S and D(0) are related to the 

interaction concentration coefficient kD
108

, through the following expression: 

)0(D

S

M

VN
k

w

HA
D     equation A.2.4 

where VH is the hydrodynamic volume. Lower values of the interaction coefficient 

indicate a stronger tendency to the aggregation, i.e. the interaction among solute 

molecules or particles is favored. By combining equation A.2.2 and equation A.2.4 

it is possible to obtain the equation below: 

3

)0(63
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w
D




  equation A.2.5 

where the hydrodynamic volume of the sphere is made explicit by introducing the 

hydrodynamic radius obtained from the Stokes-Einstein equation. 
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