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Summary of PhD research activities 

 

Novel polyolefin based elastomers with tailored stiffness from 

metallorganic catalysis: the crystalline elastomers. 

 

 

Elastomers are generally amorphous polymers made by long and highly 

flexible chains with high molecular mass and glass-transition temperature much 

below room temperature.
1
 The flexible segments of the random coil 

conformation in the unstretched state, assume extended conformation upon 

stretching and the entropy-driven recoiling upon releasing the stress is 

responsible for the elastic recovery of size and shape of the whole material in 

the undeformed state.
1,2

 The existence of chemical or physical cross-links 

acting as network knots prevents the material from flowing during application 

of the tensile stress. These amorphous rubbers may partially crystallize under 

stretching.
1
 The small number of small crystals acts as knots of the elastomeric 

network. When the applied tensile stress is removed, the crystals melt, 

providing a positive enthalpic contribution to the Gibbs free energy change 

involved during the elastic recovery of the material; therefore, the elasticity in 

these materials is merely of entropic nature, due to the conformational changes 

experienced by the amorphous “tie-chains”
1
 (Figure 1).  

In general, high level of crystallinity may strongly reduce the elastic 

performances of these materials. However, many semicrystalline polymers 

show elastic properties in spite they present high crystallinity and high 

mechanical strength.
3-19

 Phase transitions may play a key role in the elasticity of 

these systems, resulting in materials where elasticity is not merely entropic as in 

conventional elastomers but similar to super-elasticity of shape memory alloys 

that undergo martensitic phase transitions.
6-19

 An example of this type of 

rubbers is the class of “crystalline elastomers” based on syndiotactic 

polypropylene (sPP) and its copolymers.
13-16

 The unusual elastic behavior of 

sPP is associated with a reversible crystal-crystal martensitic-like phase 

transition between the metastable form III with chains in trans-planar 

conformation, which develops upon stretching, and the more stable form II, 

with chains in helical conformation, that develops upon releasing the tension
6-

9,13-16
 (Figure 2).  
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Figure 1. In absence of network knots the viscous flow of the chain during stretching is not 

prevented and the result is a permanent deformation. In presence of network knots the 

transformation between the random-coil conformation of lower entropy stable in the 

undeformed state and the extended conformation of higher entropy assumed during 

deformation by the tie-chains is reversible. Therefore, after the tensile stress is removed, the 

transformation from the extended conformation and the more stable random-coil 

conformation is still possible (resulting in the recovery of the original shape of the sample). 

 

 
Figure 2. The reversible crystal-crystal martensitic-like phase transition between the 

metastable form III of syndiotactic polypropylene (sPP) with chains in trans-planar 

conformation, which develops upon stretching, and the more stable form II of sPP, with 

chains in helical conformation is partially responsible for the elastic behavior of sPP.  
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The study of these materials has introduced new concepts in thermoplastic 

elastomers and a definition of unconventional elastomers with high crystallinity 

and large modulus,
8,13,14

 with strength, modulus and elasticity that can be 

tailored through a balance of enthalpic and entropic contributions to the elastic 

recovery by modification of the chemical structure and degree of 

crystallinity.
13,14,16-19

 

This project is aimed at studying the new class of materials defined 

"crystalline elastomers", which are innovative polyolefin-based elastomers that 

present increased and tailored stiffness, with respect to conventional elastomers, 

thanks to the presence of non-negligible level of crystallinity. These materials 

are characterized by a combination of mechanical properties typical of 

crystalline polymers (high mechanical strength and stiffness) and of elastomers 

(ease of deformability, ductility and perfect elasticity).  

Starting from syndiotactic polypropylene (sPP), new elastomeric materials of 

different molecular architecture and topology, such as random copolymers of 

sPP, showing elastic properties despite of the presence of non-negligible level 

of crystallinity have been developed. 

Depending on the molecular architecture and copolymer composition, 

different types of structural and morphological transformations may occur 

during deformation, such as mechanical melting, re-crystallization, first order 

crystal-crystal phase transitions, distortions of lattice parameters, orientation of 

the crystals etc. These transformations may possibly be related to the 

mechanical behavior.  

In this project the structure and the crystals morphology of these materials 

and the nature of these transformations have been studied with the aim of 

building correlations between structure and structural evolution during 

deformation and mechanical and viscoelastic behavior.  

Most of the polymers and copolymers studied in this project have been 

synthesized with novel different organometallic catalysts that are able to 

produce polyolefins and copolymers of olefins with molecular structure 

(stereoregularity, regioregularity, molecular mass, distribution of defects and 

molecular architecture) that depends strictly on the structure of the catalysts, in 

particular the ligand framework and type of metal of the organometallic 

complex.
20-23

 

The key point of the project is the study of the relationships between the 

structures of the metallorganic catalysts and the synthetic strategy used for the 
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preparation of the polymers, the molecular and the crystalline structure of the 

obtained materials and the final end-use material properties. Particular attention 

is paid to the links between molecular and crystalline structure, solid-state 

mechanical and viscoelastic properties, crystallization ability, chain dynamic, as 

a function of the molecular architecture fixed in the polymerization step.
24

  

In details the project involves the study of the role played by crystals in the 

elastic recovery of these crystalline polymers. Elasticity in these materials can 

develop only if crystals play an active role in the elastic recovery through 

various mechanisms. In particular, two different mechanisms of action of 

crystals have been studied: 

1) the occurrence of reversible conformational transformations during 

deformation and relaxation that defines the concept of molecular spring, as in 

the case of syndiotactic polypropylene (sPP) and random copolymers of sPP 

with other 1-olefins (Figure 2). The morphology of crystals of sPP samples of 

different stereoregularity and of copolymers of sPP with different comonomeric 

units has been studied and correlated to the mechanical behavior and elastic 

properties; 

2) the birth of crystalline knots through stress-induced crystallization in 

commercial rubbers based on ethylene-propene random copolymers (EPM). 

 

1. Study of crystal morphology of sPP and random copolymers of sPP. 

In samples of sPP, crystallinity, mechanical properties and the nature of 

elastic behavior (enthalpic or entropic) depend on the molecular structure, in 

particular the presence stereodefects and of constitutional defects, for example 

comonomeric units. In stereoirregular sPP samples, the presence of steric 

defects affects the degree of crystallinity and in turn the occurrence of the 

polymorphic transitions during deformation and relaxation. For high 

concentrations of stereodefects very low crystallinity is achieved and formation 

of the trans-planar form III at high deformation is prevented. Therefore, the 

elastic behavior observed in poorly syndiotactic samples is mainly 

entropic.
11,14,25-27 

In random copolymers of sPP, the presence of constitutional defects affects 

the conformational transition since high concentration of ethylene stabilizes the 

trans-planar conformation, while high concentration of long and branched 

comonomers stabilizes the helical conformation. In any case, high 

concentration of comonomeric units prevents occurrence of the polymorphic 

transitions between trans-planar form III and the helical form II during 
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deformation and relaxation. Therefore, in these materials the enthalpic 

contribution to the elasticity becomes negligible with increasing comonomer 

concentration.  

In poorly crystalline samples, where all polymorphic transformations are 

prevented because of the high concentration of defects, the small crystalline 

domains in the amorphous matrix act as physical knots of the elastomeric 

lattice, preventing the viscous flow of the amorphous chains. Since the 

molecular weights of the samples are very high, the amorphous chains, in turn, 

are highly entangled and connect as tie-chains the small crystalline domains. 

They act as spring between the crystals being well-oriented and in extended 

conformation in the stretched state, and return in the disordered coil 

conformation when the tension is removed. The result is a complex network 

made of rigid knots (crystals) and flexible tie-chains that accounts for the elastic 

behavior of these samples even at high defect concentration. According to this 

structural model, these materials necessarily show mechanical properties of 

more or less flexibility, elasticity and strength that depend on the size and 

stability of knots (crystals) and length and entanglement density of tie-chains. 

This in turn depend on the degree of crystallinity and on the properties of the 

amorphous phase in term of packing length.
28

 With increasing concentration of 

molecular defects (streodefects or constitutional defects) and decreasing 

crystallinity, size and stability of crystals decreases and the length of tie-chains 

increases. If in these materials the space-filled spherulites, typical of high 

crystalline polymers, are replaced by thin and elongated crystals, and if the 

amorphous tie-chains connecting these crystals are highly entangled, it is 

expected that the resulting network acts as an elastomeric network with 

development of elastic properties. 

The study of the morphology performed by using Polarized Optical 

Microscopy reported in this work was, indeed, aimed at verifying the existence 

of such elastomeric network in sPP and copolymers of sPP and at finding 

evidences of the presence of small and thin crystals organized in an interwoven 

morphology acting as knots of the network. In addition, the study of the 

rheology of these materials could provide information about the entanglement 

density of the amorphous phase to support the hypothesis of a classic entropic 

contribution to the elasticity.  

We have found that in sPPs and in copolymers of sPP with low defect 

concentrations (stereodefects or constitutional defects) crystals are organized in 

relatively big aggregates, such as bundles of rod lamellae, bow-tie and small 
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open multi-faceted aggregates, along with smaller needle crystals (Figures 

3A,A’ and 3B,B’), but very big space-filled spherulitic superstructures are 

never observed. This morphology is in agreement with the ductility and 

flexibility of these materials notwithstanding the high degrees of crystallinity, 

and the relatively high mechanical strength. These crystalline aggregates are not 

able to fill the space as in the case of completely impinged spherulites of highly 

crystalline polymers (as isotactic polypropylene), probably due to the properties 

of the amorphous chains connecting the crystals that fill and occupy the 

available space between the crystals. This morphology, in particular the 

presence of irregular open aggregates (Figures 3A,B) and of the interwoven 

structure made by needle-type crystals (Figures 3A’,B’), is also in agreement 

with the idea that the crystalline aggregates actively participate to the elasticity 

of sPP and its copolymers, locally acting as microscopic engines through the 

activation of reversible phase transformations during deformation and elastic 

recovery providing an enthalpic contribution to the elasticity, and with presence 

of an entropic contribution to the elasticity provided by the elastomeric network 

formed even in the presence of relatively big crystalline aggregates.  
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sPP3, [rrrr] =94.2% 

  

       A      A' 
 

sPPC20-2_iEE, 0.7 mol% of 1-eicosene 

   

       B      B' 
Figure 3. Comparison of POM images of samples of homopolymer sPP3 with [rrrr] =94.2% 

(A,A’) and random copolymer of sPP with 1-eicosene sPPC20-2_iEE with 0.7 mol% of 1-

eicosene (B,B’) recorded in thinner (A,B) and thicker (A’,B’) zones of the samples. Thinner 

zones display bow-tie and aggregates bigger than those observed in thicker zones where the 

interwoven network prevails. 

 

With increasing defect concentration in sPP and its copolymers 

(stereodefects or constitutional defects) we have found that the open crystalline 

aggregates (bundles of rod lamellae, bow-tie and open multi-faceted 

aggregates) are replaced by small and elongated needle-type crystals organized 

in an interwoven structure where thin and elongated crystals are connected by 

long amorphous tie-chains. This structure resembles a dense elastomeric 

network where small and thin crystals act as efficient knots of the network. This 

morphology accounts for the elastomeric properties shown by sPP and its 

copolymers when the concentration of defects is very high and crystallinity is 

very low. 
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2. Structure, stress-induced crystallization and morphology of ethylene-

propene random copolymers (EPM). 

In the second part of this work the role played by crystals in the mechanical 

behavior of several commercial ethylene-propylene copolymers (EPM) and 

ethylene-propylene-diene terpolymers (EPDM) grades has been analyzed. 

Three sets of samples of copolymers and terpolymers having different 

concentrations of ethylene have been analyzed: the first set of EPM and EPDM 

samples is characterized by high ethylene content in the range 78-70 wt%; a 

second set with ethylene content in the range 67-64 wt%; a third set with low 

ethylene concentration in the range 52-44 wt%. 

EP(D)M terpolymers with high ethylene contents (higher than 78-80 wt%) 

are generally crystalline, with crystallinity arising from crystallization of 

ethylene sequences in the polymorphic forms of polyethylene (PE). EP(D)M 

samples with ethylene concentration in the range 60-70 wt% appear instead 

amorphous in the undeformed state,
31-33

 if analyzed by classic wide-angle X-ray 

diffraction (WAXS). However, the possible presence of crystallinity in the 

underformed state in these copolymers even when not visible through WAXS 

(faint or crypto crystallinity) has been analyzed in detail with different 

techniques of structural analysis in different length scales. In particular, analysis 

by small-angle X-ray diffraction scattering (SAXS) has surprisingly revealed 

the presence of a correlation peaks in samples with low ethylene concentration 

(67-64 wt%) that appear amorphous from the WAXS profiles. For these 

samples the presence of crystallinity has also been revealed by the presence of 

endothermic and exothermic peaks in the DSC heating and cooling curves. 

Therefore, SAXS and DSC data indicate the presence of a cryptocrystallinity in 

the undeformed state of these samples, surprisingly not detected by WAXS but 

revealed by SAXS. This result also indicate that, depending on the catalyst used 

for the synthesis, these samples are characterized by ethylene sequences long 

enough to crystallize even in the presence of a so high concentration of 

propylene units.  

In this work it has also been demonstrated that crystallization of ethylene 

sequences may further occur during deformation. The Stress-Induced 

Crystallization (SIC) in EPM copolymers and EPDM terpolymers of different 

ethylene concentrations has been studied in detail and correlated with the 

ethylene concentrations and the presence of initial crystallinity in the 

undeformed state.  
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It is well-known that SIC influences mechanical properties of materials such 

as tensile strength, ductility, ability to relax when stress is applied and then 

removed (elastic recovery) or in experiments of stress-relaxation or creep. 

Small crystals formed upon stretching act as physical knots in the elastomeric 

network, resulting in increase of tensile strength of the rubber. 

Figure 4 shows a comparison between stress-strain curves of the crystalline 

sample EPM (78 wt% of ethylene) and one of the three copolymers belonging 

to the first set (K5470NT, 70 wt% of ethylene) and the corresponding X-ray 

diffraction patterns recorded during deformation. The sample EPM is already 

crystalline in the undeformed state and stretching produce only orientation of 

these crystals of pseudohexagonal form of PE. The sample K5470NT, instead, 

is initially amorphous or shows faint crystallinity, but further crystallization 

occurs during stretching via SIC. The two samples show great differences in 

modulus and stress at yield, the crystalline sample EPM having higher modulus 

and yield stress, but they display similar stress at break and ductility thanks to 

occurrence of SIC in the sample K5470NT. As a matter of fact, the sample 

K5470NT shows stress at break even slightly higher than the crystalline sample 

EPM, even though it is initially nearly amorphous. 
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Figure 4 Comparison of stress-strain curves and corresponding X-ray diffraction patterns 

recorded during stretching of the copolymer EPM (78 wt% of ethylene, red curve) and the 

terpolymer K5470NT (70 wt% of ethylene, blue curve). 

 

Figure 5 shows a comparison between stress-strain curves and corresponding 

X-ray diffraction patterns recorded during deformation of samples K5470NT 

(with 70 wt% of ethylene) and K6160D (with 64 wt% of ethylene). Both 

samples initially appear amorphous or contain the discussed cryptocrystallinity. 

Crystallization occurs upon stretching but the entity of SIC is higher in the 

sample K5470NT (belonging to the first set of samples) than in sample K6160D 
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(belonging to the second set of samples), as demonstrated by X-ray diffraction 

patterns. The difference in the amount of SIC has been explained in terms of 

difference of ethylene content and, hence, difference in the lengths of ethylene 

sequences, between samples belonging to the first set (having ethylene content 

in the range 78-70 wt%) and samples belonging to the second set (with 67-64 

wt% of ethylene). The two samples show big differences in ductility and tensile 

strength due to different amounts of SIC. Without (or with small) SIC the 

mechanical properties do not improve during deformation. 

For samples of EPDM, when the tension is removed after deformation at a 

maximum strain elastic recovery is observed and, correspondingly, a partial 

melting of crystals formed upon stretching and a partial loss of crystal 

orientation have also been observed. SIC is therefore a reversible phenomenon. 

Nevertheless, we have observed that a residual crystallinity remains in stress-

relaxed fibers, which is related to the ethylene concentration. Since crystals act 

as physical knots in the elastomeric network, the residual crystallinity also 

influence the elastic recovery and the mechanical properties of stress-relaxed 

fibers. It has been demonstrated that the degree of elastic recovery increases 

with decreasing ethylene concentration. In the sample EPM with 78 wt% of 

ethylene the residual crystallinity, similar to the initial crystallinity, is relatively 

high, so that the elastic recovery is low. A fast increase of elastic recovery is 

observed already for small decrease of ethylene concentration and all samples 

with ethylene content in the range 73-64% show similar high values of elastic 

recovery. Therefore, in this range of ethylene concentration, the presence of 

initial crystallinity, the occurrence of strain-hardening and the low values of 

tension set give the best elastic properties associated with remarkable strength. 

In conclusion, the relationships among composition, initial crystallinity, 

stress induced crystallization, residual crystallinity after relaxation and physical 

properties of EPM copolymers and EPDM terpolymers have been analyzed. 

Crystallinity and SIC are influenced by the ethylene concentration and 

distribution of comonomers along the chains and, in particular, by the length of 

ethylene sequences, which, in turn, is defined by the used catalyst. Hence, 

different microstructures induced by different catalysts produce different 

degrees of crystallinity and SIC, and consequent different mechanical properties 

and elastic behavior. This study is an exemplary case of how the properties of 

targeted materials can be retro-designed by tailoring the microstructure by 

controlling the polymerization through the rational choice of catalysts and 

condition of polymerization. 
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Figure 5 Comparison of stress-strain curves and corresponding X-ray diffraction patterns 

recorded during stretching of the terpolymer K5470NT (70 wt% of ethylene, blue curve) and the 

terpolymer K6160D (64 wt% of ethylene, green curve).  
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Introduction 

Elastomers are generally amorphous polymers made by long and highly 

flexible chains with high molecular mass and glass-transition temperature much 

below room temperature.1 The flexible segments of the random coil 

conformation in the unstretched state, assume extended conformation upon 

stretching and the entropy-driven recoiling upon releasing the stress is 

responsible for the elastic recovery of size and shape of the whole material in 

the undeformed state.1,2 The existence of chemical or physical cross-links acting 

as network knots prevents the material from flowing during application of the 

tensile stress. These amorphous rubbers may partially crystallize under 

stretching.1 The small number of small crystals acts as knots of the elastomeric 

network. When the applied tensile stress is removed, the crystals melt, 

providing a positive enthalpic contribution to the Gibbs free energy change 

involved during the elastic recovery of the material; therefore, the elasticity in 

these materials is merely of entropic nature, due to the conformational changes 

experienced by the amorphous “tie-chains” (Figures 1 and 2).1 

 
Figure 1. In absence of network knots the viscous flow of the chain during stretching is not 

prevented and the result is a permanent deformation. In presence of network knots the 

transformation between the random-coil conformation of lower entropy stable in the 

undeformed state and the extended conformation of higher entropy assumed during 

deformation by the tie-chains is reversible. Therefore, after the tensile stress is removed, the 

transformation from the extended conformation and the more stable random-coil 

conformation is still possible (resulting in the recovery of the original shape of the sample). 
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Figure 2. Chemical or physical cross-links can act as network knots. The most important 

example of chemical cross-links are the S-S bonds formed upon vulcanization in many types 

of commercial rubber. The rigid domains formed by an amorphous rigid block in a diblock 

copolymer like the styrene-butadiene block copolymer and the small crystals present in a 

semicrystalline polymer (or eventually formed upon stretching) can be considered two 

examples of physical cross-links. 

 

In general, high level of crystallinity may strongly reduce the elastic 

performances of these materials. However, many semicrystalline polymers 

show elastic properties in spite they present high crystallinity and high 

mechanical strength.3-19 Phase transitions may play a key role in the elasticity of 

these systems, resulting in materials where elasticity is not merely entropic as in 

conventional elastomers but similar to super-elasticity of shape memory alloys 

that undergo martensitic phase transitions.6-19 An example of this type of 

rubbers is the class of “crystalline elastomers” based on syndiotactic 

polypropylene (sPP) and its copolymers.13-16 The unusual elastic behavior of 

sPP is associated with a reversible crystal-crystal martensitic-like phase 

transition between the metastable form III with chains in trans-planar 

conformation, which develops upon stretching, and the more stable form II, 

with chains in helical conformation, that develops upon releasing the tension6-

9,13-16 (Figure 3).  

The study of these materials has introduced new concepts in thermoplastic 

elastomers and a definition of unconventional elastomers with high crystallinity 

and large modulus,8,13,14 with strength, modulus and elasticity that can be 

tailored through a balance of enthalpic and entropic contributions to the elastic 

recovery by modification of the chemical structure and degree of 

crystallinity.13,14,16-19 
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Figure 3. The reversible crystal-crystal martensitic-like phase transition between the 

metastable form III of syndiotactic polypropylene (sPP) with chains in trans-planar 

conformation, which develops upon stretching, and the more stable form II of sPP, with 

chains in helical conformation is partially responsible for the elastic behavior of sPP. This 

transformation will be investigated in more details in the chapter 1. 

 

Aim of the project 

This project is aimed at studying the new class of materials defined 

"crystalline elastomers", which are innovative polyolefin-based elastomers that 

present increased and tailored stiffness, with respect to conventional elastomers, 

thanks to the presence of non-negligible level of crystallinity. These materials 

are characterized by a combination of mechanical properties typical of 

crystalline polymers (high mechanical strength and stiffness) and of elastomers 

(ease of deformability, ductility and perfect elasticity).  

Starting from syndiotactic polypropylene (sPP), new elastomeric materials of 

different molecular architecture and topology, such as random copolymers of 

sPP and block copolymers, showing elastic properties despite of the presence of 

non-negligible level of crystallinity have been developed. 

Depending on the molecular architecture and copolymer composition, 

different types of structural and morphological transformations may occur 

during deformation, such as mechanical melting, re-crystallization, first order 

crystal-crystal phase transitions, distortions of lattice parameters, orientation of 

the crystals etc. These transformations may possibly be related to the 

mechanical behavior.  

In this project the structure and the crystals morphology of these materials 

and the nature of these transformations have been studied with the aim of 
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building correlations between structure and structural evolution during 

deformation and mechanical and viscoelastic behavior.  

The structure and the morphology of these materials have been studied using 

different techniques, as X-ray diffraction, calorimetry, solution NMR, optical 

microscopy and atomic force microscopy (AFM). The mechanical and 

viscoelastic properties, and the structural and morphological transformations 

occurring during tensile deformation have also been studied in detail by 

recording stress-strain curves during stretching and relaxation and performing 

dynamic mechanical thermal analysis in bending and stretching mode to study 

the segmental relaxation as a function of the chain architecture. 

Most of the polymers and copolymers studied in this project have been 

synthesized with novel different organometallic catalysts that are able to 

produce polyolefins and copolymers of olefins with molecular structure 

(stereoregularity, regioregularity, molecular mass, distribution of defects and 

molecular architecture) that depends strictly on the structure of the catalysts, in 

particular the ligand framework and type of metal of the organometallic 

complex.
20-23

 

The key point of the project is the study of the relationships between the 

structures of the metallorganic catalysts and the synthetic strategy used for the 

preparation of the polymers, the molecular and the crystalline structure of the 

obtained materials and the final end-use material properties. Particular attention 

is paid to the links between molecular and crystalline structure, solid-state 

mechanical and viscoelastic properties, crystallization ability, chain dynamic, as 

a function of the molecular architecture fixed in the polymerization step.
24

 The 

research activities are based on the attempt to establish the rules of synthetic 

retro-design (Figure 4), that is the rules that for any given set of desired 

properties and final applications allow identifying the best molecular 

architecture and the most suitable synthetic approach (including catalysts, 

synthetic method, and polymerization conditions) for preparation of the targeted 

polymeric material (Figure 4). As shown in Figure 4, with organometallic 

catalysts our ability to control the molecular structure of the chains of poly(-

olefins) is increased because we can control type and concentration of 

incorporated defects, in particular, defects of stereoregularity and 

regioregularity, or constitutional defects like comonomeric units, and the 

distribution of defects along the chains (random or blocky), by changing the 

structure of the catalyst and tailoring its stereoselectivity and ability to 

incorporate comonomers of any size. This affords a unique opportunity for 
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controlling the final physical properties of the materials because the molecular 

structure influences the crystallization behaviour, which, in turn, affects the 

physical and mechanical properties.
24

 Therefore, the physical properties can be 

retro-designed through catalyst design (Figure 4). 

 

Crystallization Behavior

Target materials with tailored 
properties

Controlled Polymerization by organometallic catalysis

From controlled polymerization to tailored molecular 
structure, to targeted material properties

The materials properties depend
on the molecular structure and
can be rationally retro-designed.

stereo-defects 
(rr triad)

regio-defects 
(2,1 erythro units)

regio-defects 
(2,1 threo units)

constitutional defects 
(copolymers)

Distribution of 

defects: Random or 

blocky

ZrCl2Si

retro-design
 

Figure 4. From design of the catalyst structure to targeted material properties of 

polyolefins. The physical properties of polyolefins depend on the molecular structure which can 

be controlled by organometallic catalysts.  

 

In details the project involves the study of the role played by crystals in the 

elastic recovery of these crystalline polymers. Elasticity in these materials can 

develop only if crystals play an active role in the elastic recovery through 

various mechanisms. In particular, two different mechanisms of action of 

crystals have been studied: 

1) the occurrence of reversible conformational transformations during 

deformation and relaxation that defines the concept of molecular spring, as in 

the case of syndiotactic polypropylene (sPP) and random copolymers of sPP 

with other 1-olefins (Figure 3); 

2) the birth of crystalline knots through stress-induced crystallization in 

commercial rubbers based on ethylene-propene random copolymers (EPM). 
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CHAPTER I 

Syndiotactic Polypropylene and Copolymers 

Since the discovery of stereoselective olefin polymerization in 1954, 

syndiotactic polypropylene (sPP) has been considered only a scientific curiosity 

because it showed scarcely interesting physico-chemical properties due to the 

low stereo- and regioregularities of the macromolecules synthesized with the 

Ziegler–Natta based catalysts, and low crystallinity and melting temperature of 

the produced materials. For these reasons sPP has never had industrial fortune 

and commercial diffusion and the term „polypropylene‟ has been used for over 

thirty years only to indicate the isotactic polymer of propylene, industrially 

produced with heterogeneous Ziegler–Natta catalysts. 

A re-birth of sPP has been observed in the mid 1980s, after the discovery of 

new single-center metallorganic catalysts. Some of these novel catalysts were 

able to produce highly stereoregular and regioregular sPP and completely new 

sPP samples, having high crystallinity and melting temperature, was obtained. 

The new sPP has shown outstanding physical properties, completely different 

from those of the commercial isotactic polypropylene, some of them absolutely 

unexpected. This has refocused the scientific and industrial interest for sPP. The 

most important and unique property relies on the fact that sPP is a high modulus 

thermoplastic elastomer, notwithstanding the high crystallinity and the 

relatively high glass transition temperature. 

The physical properties of sPP basically depend on the crystallization behavior, 

which in turn is strongly related to the chemical structure of the single 

macromolecules. For vinyl polymers the term microstructure of 

macromolecules may be used to describe the sequence distribution of 

monomeric units and the stereochemical relationships between consecutive 

units, therefore indicates stereoregularity and regioregularity of the chains, 

types and concentration of defects in the regular constitutional and 

configurational enchainment of monomeric units (stereo- and regio-defects) and 

distribution of defects along the polymer chains. Different catalysts produce 

different microstructures through different polymerization mechanisms, and, as 

a consequence, sPPs produced with different catalysts display different 

crystallization behavior and physical properties.
1
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1.1. Synthesis of sPP and of random copolymers of sPP 

Syndiotactic polypropylene (sPP) was first obtained by Natta as a minor 

product of the synthesis of isotactic polypropylene (iPP) with heterogeneous 

Ziegler-Natta catalysts based on TiCl3-Al(C2H5)2Cl.
1,2

 These catalysts are, 

indeed, multi-sites and simultaneously produce isotactic, syndiotactic and 

stereoirregular macromolecules, although isotactic polypropylene is the main 

reaction product.
3
 

Later, syndiotactic polypropylene was selectively produced by Zambelli and 

Natta using homogeneous single-site vanadium-based catalysts.
4
 This catalytic 

system comprises a variety of vanadium compounds, as VCl4 or V(III)--

diketonates (V(acetylacetonate)3),
4,5

 an alkyl aluminum halide (typically 

Al(C2H5)2Cl), and a Lewis base (e.g. anisole).
6,7

 Since this catalytic system is 

thermolabile, the polymerization temperature has to be performed much below 

room temperature (-78 °C). The soluble active species also promote 

copolymerization of ethylene with propylene. 

The precursors vanadium compounds are soluble in hydrocarbons and the 

oxidation state of vanadium is at least 3.
7
 The catalytic systems are thermolabile 

and quickly decompose at room temperature producing poorly characterized 

precipitates containing Al, V(II) and Cl,
1,7

 unable to promote polymerization. 

Therefore the polymerization has to be performed either at low temperature, or 

in the presence of a component able to continuously re-oxidate V(II) to a higher 

oxidation state during polymerization (for instance a chlorinated ester). This 

expedient is used, for example, for the commercial production of ethylene-

propylene and ethylene-propylene-diene rubbers.
1
  

Values of the content of r diads up to 90% are obtained for sPP samples 

produced at -78 °C but the syndiotacticity decrease with increasing temperature 

and atactic polypropylene is obtained above 0 °C.
8
  

The 
13

C NMR spectroscopy analysis of sPP samples produced with these 

vanadium-based catalysts has allowed clarifying the microstructure of chains 

and the mechanism of stereocontrol of the insertion reaction on the metal-

carbon bond.
9-22

 The analysis of the saturated chain-ends generated by initiation 

at V-(
13

C-enriched-alkyl) species, have indicated that the initiation step 

involves primary 1,2 insertion of propylene followed by other non-

stereospecific primary insertion steps. Therefore, propene insertion into V-

CH2R bond is prevailingly 1,2 and is not enantioselective. However, the 

presence in the 
13

C NMR spectra (Figure 1.1) of resonances in the ranges 12-16 

ppm and 27-43 ppm, diagnostic of methyl groups of head-to-head units (–
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CH2CH(CH3)CH(CH3)CH2–) and of methylene carbon atoms of tail-to-tail 

units (–CH(CH3)CH2CH2CH(CH3)–), indicates that the regiospecificity of the 

monomer insertion is not high.
12-15

 Once a secondary 2,1 insertion occurs and a 

V-CH(CH3)-CH2R bond is occasionally formed, the 2,1 insertion tends to be 

maintained and sequences of secondary insertion much longer than the 

sequences of primary insertion are obtained. The sequences of secondary 

insertion lead to monomer sequences with a prevailingly syndiotactic 

arrangement. The presence of 
13

C NMR signals of methyl carbon atoms 

corresponding to rrrm and rrmr pentads (besides the fully syndiotactic pentad 

rrrr, Figure 1.1B) indicate that stereodefects are basically isolated m diads. This 

indicates that the stereochemistry of the syndiotactic chain propagation is 

controlled by the chiral last unit of the growing chain (chain-end control).
3,11,12
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Figure 1.1. (A) Solution 13C NMR spectrum of a sample of sPP prepared with the catalytic 

system VCl4/Al(C2H5)2Cl at -78 °C. The chemical shift scale is in ppm downfield of hexamethyl-

disiloxane. The resonances of methyl, methine and methylene carbon atoms in regiodefective 

sequences, P,, T, and S,, respectively, are shown.1,21b (B) Region of the spectrum of the 

methyl carbon atoms resonance. The assignment of methyl signals to pentads stereo-sequences 

is also indicated.1,22 

 

These features result in a block structure of sPP macromolecules consisting 

in syndiotactic stereoblocks spanned by shorter atactic blocks with reversals of 

monomer enchainment at the junctions of blocks (Figure 1.2). The syndiotactic 

blocks are made of tail-to-head (2,1) sequences (–CH(CH3)CH2CH(CH3)CH2–), 

whereas the shorter atactic blocks are made of head-to-tail (1,2) sequences (–
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CH2CH(CH3)CH2CH(CH3)–). Head-to-head and tail-to-tail units bridge the 

different blocks.
21 

 

r r r r r r r r r rm

1,22,12,1 2,1 1,2

 

Figure 1.2. Typical microstructure of a regioirregular chain of sPP produced with 

vanadium-based catalysts. The chain is shown in an adapted Fisher projection, which assumes 

a hypothetical zig-zag conformation of the chain backbone, whose plane is perpendicular to 

that of the figure. Consecutive couples of asymmetric tertiary carbon atoms in R or S relative 

configurations define steric diads meso (m) or racemo (r).
1
  

 

Samples of sPP obtained with homogeneous vanadium-based catalysts are 

able to crystallize, but low degrees of crystallinity are generally achieved with 

melting temperatures never exceeding 120-130 °C. The same soluble catalysts 

also promote copolymerization of ethylene with propylene and of higher -

olefins, such as 1-butene, with either ethylene or propylene. 

However, homopolymerization of higher -olefins only affords low molecular 

mass materials.
23

 Because of the low stereoregularity and crystallinity, 

syndiotactic polypropylene prepared with these catalysts showed scarcely 

interesting physico-chemical properties and has received in the past only a very 

little attention. The homogeneous vanadium-based catalysts are, however, of 

great importance and used commercially for the production of ethylene-

propylene-diene (EPDM) rubber.
24,25 

 

1.1.1. Metallocene catalysts 

In the mid 1980s it was discovered that metallorganic complexes of 

transition metals catalyze in homogeneous phases the polymerization of 

olefins.
26,27

 Stereorigid zirconocenes and titanocenes with C2 symmetry, such as 

rac-ethane(indenyl)2MCl2 (with M = Zr or Ti), in combination with 

methylaluminoxane (MAO),
28

 produce isotactic polypropylene.
26,27

 Some years 

later in 1988 it was found that ansa-zirconocenes with Cs symmetry are able to 

produce highly stereoregular and almost completely regioregular syndiotactic 

polypropylene.
29

 The prototype of this class of ansa-metallocene is 

isopropylidene(cyclopentadienyl)(Fluorenyl) zirconium dichloride 

(Me2C(Cp)(9-Flu)ZrCl2, Me = Methyl Cp = Cyclopentadienyl, Flu = Fluorenyl) 
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shown in the chart 1.
29

 These catalysts do not require subambient reaction 

temperature in order to promote stereospecific polymerization.  

 

1.1.1.1 Cs-symmetric metallocenes 

As for the Ziegler-Natta heterogeneous catalysts, also for the homogeneous 

metallocene complex, the polymerization reactions are generally agreed to 

proceed by coordination of the olefin to a metal, followed by migratory 

insertion of the coordinated olefin into the growing polymer chain (chain 

migratory insertion mechanism). The Cs-symmetric metallocene of Chart 1, 

Me2C(Cp)(9-Flu)ZrCl2, after alkylation and cationization by MAO provide a 

racemic mixture of chiral metallocenium cations (Figure 1.3).
30,31

 The two 

available coordination positions are enantiotopic,
32

 that is, they have a 

preference for opposite propene enantiofaces. The steric arrangement of ligands 

and the non-bonded interactions with the alkyl ligand (that after the first 

insertion step becomes the growing chain) cause, indeed, enatioface selective π 

coordination of the incoming monomer (Figure 1.3). Molecular models for Cs-

symmetric syndiospecific systems are substantially identical to those for C2-

symmetric isospecific systems and have been proposed by various authors.
33-37 

 
Chart 1 

 

 
Figure 1.3. Enantiomorphous interconverting active species produced from Cs-symmetric 

metallocene after cationization. The chain orientation and monomer coordination mode are 

shown.
1,22

 

(CH3)2C ZrCl2

1
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As an example, the energetically favored structures for the R and S chirality 

at the metal atom of the model system [Me2C(Cp)(9-

Flu)Zr(isobutyl)(propene)]
+
, which can be thought to correspond to two 

successive insertion steps, are shown in Figure 1.4a and b, respectively. The 

chirality of the catalytic system pushes the growing chain into an open sector, 

i.e., it imposes a chiral orientation to the growing chain. Again, the favored 

propene enantioface is the one which places the propene methyl group anti to 

the growing chain, thereby minimizing repulsive interactions with the growing 

chain itself. In particular, the re and si propene enantiofaces are favored for the 

R and S chirality at the metal atom, respectively.
33

 Each enantiomer, 

independently, would produce isotactic chains, but they interconvert after each 

monomer insertion through the chain migratory insertion mechanism.
38-40 

 

 
Figure 1.4. Model of catalytic complexes [Me2C(Cp)(9-Flu)Mt(isobutyl)]

+
 cation with 

coordinate propene molecule and the isobutyl group that simulates a growing primary 

polypropylene chain. The coordinated bridged -ligands presents a local Cs-symmetry and the 

two coordination positions which are availble for monomer and growing chain are 

enantiotopic. The carbon atoms of the methyl groups of the isopropyl bridge are omitted for the 

sake of clarity. According to the chain migratory polymerization mechanism, situations (a) and 

(b), with R and S chirality at the metal atom, respectively, alternate regularly during chain 

propagation, which explain the syndiotactic selectivity of the catalyst.
40

  

 

According to this mechanism after each insertion step the growing chain will 

reside at the coordination site previously occupied by the monomer (Figure 

1.5). Chain migratory causes an inversion of the configuration of the zirconium 

cation (Figures 1.3 and 1.4) and consequently of the enantioface selectivity, at 

any insertion steps. Therefore, in two successive insertion steps opposite 
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propene enantiofaces are inserted, resulting in a syndiotactic chain 

propagation.
30,31,38,40 

 

 
Figure 1.5. Schematic representation of the chain migratory insertion polymerization 

mechanism promoted by Cs-symmetric metallocene catalyst Me2C(Cp)(9-Flu)MtCl2 and 

resulting regular sequence of r diads in a syndiotactic chain.
1
  

 

The preferred mode of propene insertion is primary (1,2)
41

 and the 
13

C NMR 

analysis of sPP produced with Cs-symmetric zirconocene of Chart 1 gives no 

evidence of regioerrors, indicating that these catalysts are in general highly 

regiospecific. A typical 
13

C NMR spectrum of highly regioregular and 

stereoregular sPP sample is shown in Figure 1.6. The presence of resonances 

corresponding to methyl carbon atoms belonging to the pentads 

stereosequences rrrm, rrmm, rmmr and rrmr, besides the fully syndiotactic rrrr 

pentad, and the corresponding relative intensities, indicate that the chains 

contain isolated mm stereodefects (A in Figure 1.7) and isolated m defects (B in 

Figure 1.7).  
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Figure 1.6. Solution 
13

C NMR spectrum of a sample of sPP prepared with the catalyst 1 of 

Chart 1 and MAO (A) and region of the spectrum of the methyl carbon atoms resonance (B). 

The assignment of methyl signals to pentads stereo-sequences are also shown.
1
  

 

 

Figure 1.7. Schematic representation of the chain microstructure containing isolated mm triad 

(A) and isolated m diad (B) of sPP produced with Cs-symmetric zirconocene of Chart 1. 
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The mm defects come from monomer insertion with the "wrong" enantioface 

and are consistent with the fact that the stereochemistry of the syndiotactic 

chain propagation is controlled by the chirality of the catalytic site 

(enantiomorphic site control). The m defects are instead due to occasional back-

skipping of the chain after the migratory insertion, that is, the chain flips back 

to the original coordination site in between two consecutive insertions. This 

occurs if the rate of interconversion of the two enantiomorphic sites is faster 

than the actual rate of monomer insertion, and sites epimerize before the next 

insertion. This increases the chance of two consecutive insertions taking place 

at the same enantiomorphic coordination position, adding two monomers with 

the same prochiral face with the corresponding formation of a m diad [ref 

30,38]. This event has been also described as chain back-skip, skipped insertion 

or site epimerization.  

The concentration of m defects increases with decreasing monomer 

concentration, and consequently the chain propagation rate, whereas the amount 

of mm defects only depends on the polymerization temperature.
29-31,42,43

 To 

decrease the concentration of m defects and increase the overall stereoregularity 

of the sPP samples, the site epimerization rate should be reduced to greatest 

possible extent. This can be accomplished performing the polymerization in 

liquid propylene at lowest possible temperature. However, even by solution 

polymerizations highly syndiotactic polypropylene samples with low contents 

of mm defects and concentration of rrrr pentad higher than 90%, with melting 

temperatures as high as 150 °C, can be obtained with the catalyst 1 of Chart 1 at 

polymerization temperatures between 0 °C and ambient temperature.
43 

Changes in the structure of the metallocene complex produce differences in 

catalytic behavior.
38,44

 Several modifications of the structure of the original 

zirconocene 1 of Chart 1, preserving the Cs symmetry, have been reported in the 

literature. The most significant examples have recently been reviewed
38

 and 

some are reported in the Charts 2 and 3. The change of interannular bridge may 

produce interesting effects. In particular, changing the bridge from -Me2C- to -

Ph2C- (2 in Chart 2) results in sPP samples with much higher molecular 

mass.
31c,45,46,

 However, a bridge made of a single carbon atom gives the best 

performance and the molecular mass decreases in the order Ph2C > PhP > C2H4 

> Me2C ~ Me2Si > Ph2Si, whereas syndiotacticity decreases in the order Me2C 

> Ph2C > PhP ~ C2H4 > Ph2Si > Me2Si.
38

  

 



17 
 

 

Chart 2  

 
Chart 3  

 

Expansion of the fluorenyl moiety generally produces increasing of 

syndiotacticity.
47,48

 Modification of the catalyst structure by introducing 

substituents on the aromatic ligands may, indeed, induce lowering of frequency 

of m defects and may also enhance the enantioselectivity of the catalysts, 

lowering the concentration of mm defects.
31c,h

 For instance the substitution in 

positions 3 and 6 of the fluorenyl moiety of the ligand in zirconocenes 1 and 2 

of Charts 1 and 2 with t-butyl groups (3, 4 of Chart 2) causes substantial 

improvement in stereoselectivity of the catalyst with a decrease of 

concentration of both m and mm defects.
49

 This has been reasonably explained 

by the enhanced substituents effect in directing the orientation of the growing 

polymer chain, providing a more effective guidance for the enatioface selective 

π coordination of the incoming monomer (Figure 1.4), and a lowering of the 

site epimerization rate due to steric interactions between t-butyl group and the 

MAO counter ion.
49

  

R2C ZrCl2

3: R = Ph

4: R = CH3

(Ph)2C ZrCl2

2

ZrCl2 SiMe2Me2Si ZrCl2 SiMe2Me2Si

SiMe3

5 6
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It is worth noting that the same Cs-symmetric zirconocene precursors 

reported in Charts 1 and 2 that, once activated with MAO, promote prevailingly 

syndiotactic-specific polymerization of propylene, are able to produce highly 

syndiotactic polymers of other 1-olefins, as poly(1-butene) and poly(4-methyl-

1-pentene).
50

 Quite surprisingly, they instead promote isotactic-specific 

polymerization of 3 branched 1-olefins such as 3-methyl-1-butene and 3-

methyl-1-pentene.
51,52 

It is worth mentioning that the condition of the Cs-symmetry of the 

precatalyst is not sufficient in order to promote syndiotactic-specific 

polymerization of propylene. Actually, Cs-symmetric precursors such as 

Me2Si(Cp)(4-MeCp)ZrCl2, Ph2C(Cp)(H8-Flu)ZrCl2, Me2Si(Cp)(3,4-

(Me3Si)2Cp)ZrCl2 and the analogous Ti complex 5 in Chart 3, produce atactic 

poly(propylene) after activation with MAO.
51,31a,53a

 The additional requirements 

for highly syndiotactic polymerization are a slow chain back-skip rate in 

comparison with the chain propagation rate, and a particularly delicate 

balancing of the non-bonded interactions between the growing chain, the 

spectator ligands and the incoming monomer.
31a,33,35

 

 

1.1.1.2. Half-metallocenes, "constrained geometry" catalysts 

Different catalysts that promote polymerization of propene are based on 

amido complexes of group IV transition metals, the so-called constrained 

geometry catalysts of general formula Me2Si(Me4Cp)(NR)MtX2 (Chart 4), with 

Mt = Ti or Zr, R = alkyl, X = alogen or alkyl.
54,55

 Atactic polypropylene is 

generally obtained with molecular masses and activities that depend on the 

substitution of the cyclopentadienyl ring.
56-58

 In several cases, very high 

molecular masses have been obtained.
59

  

 

 
Chart 4  

N

Me2Si MtX2
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Some attempts have been made in order to introduce a stereoselecting ability 

by means of ligand substitution. The substitution of the Cp ring with fluorenyl 

moiety produces a catalyst that promote the syndiotactic polymerization of 

propene. In particular, it has been reported that a fluorenyl tert-butylamido 

zirconium complex (Chart 5, Mt = Zr)
60,61

 and the analogous Ti complex
62

 

produce moderately syndiotactic polypropylene. The stereodifferentiation arises 

from enantiomorphic site control, quite to be expected in a complex having the 

Cs-symmetry required for syndiospecificity, and the mechanism of stereocontrol 

is strictly analogous to that for the Cs-symmetric ansa-metallocenes (Charts 1 

and 2). However, only poorly syndiotactic polypropylene samples have been 

obtained with these catalysts. 

 

 
Chart 5  

 

More syndiospecific catalysts have been obtained with slight changes of the 

structure of the complex of Chart 5, using di-tert-butyl-substituted fluorenyl 

ligands (Chart 6).
63,64

 These Ti complexes, [Me2Si(2,7-t-Bu2Flu)(t-

BuN)]TiCl2
63

 and, better, [Me2Si(3,6-t-Bu2Flu)(t-BuN)]TiCl2
64

 give, after 

activation with MAO, high molecular weight syndiotactic polypropylene with 

high activity. Although the polymers show only very limited crystallinity, rrrr 

pentad contents reach values in the range 60-80%, with melting temperatures in 

the range 80-120 °C.
49

 The stereoselectivity is higher than that expected from 

catalytic precursors with such flexible and low stereorigid structure. Under 

more favorable conditions, in liquid propylene and low temperatures (< 30 °C), 

these catalysts are even more stereoselective. According to the enantiomorphic-

site controlled chain migratory insertion mechanism, the stereoregularity suffers 

with decreasing monomer concentration and/or increasing polymerization 

temperature, mainly as a result of increased probability of skipped insertion and 

the corresponding increase of m defects concentration.
49,65,66

 The 

N

Me2Si MtX2

Mt = Ti, Zr; X = Cl, Me



20 
 

stereoselectivity decreases much faster compared to the original Ewen's catalyst 

(1 in Chart 1) with increasing polymerization temperature due to a much 

sharper increase of m defects content.  

 

N

Me2Si TiCl2

  

N

Me2Si TiCl2

 

       1      2 

Chart 6  

 

More recently Resconi has described silyl-bridged indenyl-tert-butylamido 

complexes of Ti in which the indenyl ligand has a heterocycle condensed onto 

the cyclopentadienyl moiety
67,68

 (Chart 7). These complexes, after activation 

with MAO, show a high activity in propylene polymerization and produce 

poorly syndiotactic polypropylenes, with concentrations of rrrr pentad of 40-

55%. The methyl region of the 
13

C NMR spectrum of a typical sample prepared 

with catalyst 2 of Chart 7 is presented in Figure 1.8. Soft and non-sticky 

polypropylenes of very high molecular masses (higher than 10
6
) with 

prevailingly syndiotactic microstructure and no measurable regioerrors are 

obtained with these catalytic systems. These properties, most remarkably the 

high molecular masses, are maintained even at the relatively high 

polymerization temperature of 80 °C. In addition, syndiotacticity is not affected 

by polymerization temperature.
67

  

The samples are mainly amorphous but are able to crystallize and only a low 

level of crystallinity (16-20%) is achieved with melting temperatures of 45-60 

°C.
86

 However, the very high molecular mass and the presence of small 

crystallinity give very interesting mechanical properties.
1 
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Chart 7 

 

 

Figure 1.8. Methyl region of the solution 
13

C NMR spectrum (C2D2Cl4, 120°C) of a poorly 

stereoregular sPP sample (sam-PP) prepared with catalyst 2 of Chart 7 and MAO in liquid 

monomer at 80 °C. The assignment of most intense resonances to pentads stereosequences is 

indicated.
1
 

 

1.1.2. Late transition metal-based catalysts 

In 1995 Brookhart and coworkers
69-71

 reported very efficient single-center 

catalysts for the polymerization of ethylene and 1-olefins based on Ni(II) or 

Pd(II) -diimine compounds and MAO or other cationizing reagents (Chart 8). 

The used ligands contrast the high tendency of late transition metals to promote 

-hydrogen elimination, which prevent polymerization of 1-alkenes, by 
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hindering the space around the metal needed for the agostic back-biting of the 

growing chain and the monomer-assisted chain transfer. When these square-

planar diimine complexes of Ni(II) and Pd(II) are used as catalysts for 

promoting the polymerization of propylene only atactic polypropylene of low 

molecular mass is obtained at room temperature. However, at lower 

temperatures (e. g. –78 °C) the resulting polymer is prevailingly 

syndiotactic,
72,73

 due to the onset of the chain-end control of the 

stereochemistry. 

As a matter of fact, the 
13

C NMR spectrum of polypropylene obtained at –78 

°C in the presence of [1,2-bis(2,6-diisopropylphenyl)ethylenediimine]nickel 

dibromide – MAO, presented in Figure 1.9, looks quite similar to that of sPP 

obtained in the presence of homogeneous vanadium catalysts (Figure 1.1). In 

particular, the presence and the similar intensities of the 
13

C resonances 

corresponding to rrrm and rrmr pentads and the negligible intensity of the 

signal corresponding to the rmmr pentad, indicate that the stereodefects are 

mainly isolated m diads, and the stereochemistry of the insertion is controlled 

by the chain end.  

The analysis of the 
13

C-enriched end groups proved that with these catalysts 

the stereospecific propagation occurs through primary (1,2) insertion of the 

monomer on the nickel carbon bond of the active species.
74,75

 However, the 

NMR data of Figure 1.9 in the regions of methyl and methylene resonances, 

show the presence of a considerable amount of tail-to-tail and head-to-head 

monomer units, indicating that the regioregularity is not high. The polymer 

may, indeed, contain up to 10% of 2,1 and/or 3,1 units. 

It is worth noting that pentacoordinate Fe(II) catalysts bearing tridentate 

pyridine-bis(imine) ligands, activated with MAO produce at low temperatures 

highly regioregular predominantly isotactic polypropylene (with mmmm pentad 

concentration up to 67%) with prevalent secondary (2,1) monomer insertion 

and chain-end control.
76-79
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Chart 8  

 

 
Figure 1.9. Solution 

13
C NMR spectrum of a sample of sPP prepared with the catalytic 

system [1,2-bis(2,6-diisopropylphenyl)ethylenediimine]nickel dibromide/MAO at -78 °C (A), 

and region of the spectrum of the methyl carbon atoms resonance (B). The resonances of methyl 

and methylene carbon atoms in regiodefective sequences, P, and S,, respectively, and the 

assignment of methyl signals to pentads stereo-sequences are shown.
1,22
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1.1.3. Non-metallocene catalysts 

A new family of single-center catalysts based on non-metallocene 

complexes, which promote polymerization of ethylene and propylene, have 

recently been discovered.
80-90

 These compounds are titanium chlorides bearing 

phenoxyimine (PHI) ligands and have octahedral coordination geometry and C2 

symmetry (Chart 9). These catalysts are based on a class of compounds 

extensively studied by Mitsui for ethylene polymerization.
83-90

 Because of the 

C2 symmetry they were initially targeted as catalysts for the isospecific site 

controlled polymerization of propylene, as it occurs with the chiral C2-

symmetric metallocenes. Surprisingly these catalysts produced highly 

syndiotactic polypropylenes.
80-90

 The reasons by which these chiral C2-

symmetric catalysts perform a syndiospecific polymerization instead of 

producing isotactic polymers like the symmetrically related ansa-metallocenes 

is related to the different mechanism. Coates et al.
83-90

 have proposed that the 

selectivity derives from chain-end control of stereochemistry enhanced by a 

secondary mechanism of enchainment. Fujita and co-workers have recently 

reported evidences of the presence of end groups of polypropylene consistent 

with elimination following 2,1-insertion of propylene.
90

 Moreover, end-group 

analysis revealed that insertion of propylene into the initiating titanium hydride 

occurs with high 1,2-regiochemistry. Subsequent insertions into primary 

titanium alkyls are regiorandom, while insertions into secondary titanium alkyls 

proceed with high 2,1-regioselectivity.
82

 This mechanism is in agreement with 

the observed unusual high activity for ethylene polymerization, modest activity 

for propylene polymerization, and inactivity for 1-hexene polymerization.  

Besides the unusual ability of producing highly syndiotactic polypropylene 

through exclusive chain-end control of stereoregularity and secondary (2,1) 

monomer insertion mechanism, these catalysts present the very important 

feature of promoting living polymerizations with control of the molecular mass. 

This is the most important improvement with respect to metallocene catalysts 

for which control of molecular weight has been met with limited success as 

most metallocene catalysts are plagued by chain termination and transfer 

reactions that prohibit the synthesis of block copolymers by sequential 

monomer addition.
38

 The importance of living olefin polymerization catalysts is 

largely proportional to their ability to form block copolymers with blocks 

having high melting or glass transition temperatures from common commercial 

monomers, such as ethylene and propylene. The non-metallocene catalysts of 
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Chart 9 have achieved this goal since they are able to promote living 

polymerization of propylene and ethylene producing polymers having narrow 

polydispersities.
80-90

 Syndiotactic polypropylene with very high molecular mass 

and ethylene and propylene-based block copolymers have been obtained with 

these catalytic systems.
81,82

  

The 
13

C NMR spectrum of a sPP sample prepared with the 

bis(phenoxyimine)titanium-based catalyst 2 of Chart 9, is reported in Figure 

1.10. The presence of resonances in the region of methyl carbon atoms, 

corresponding to rrrr, rrmr and rrrm pentad stereosequences and the similar 

intensities of rrrm and rrmr signals (Figure 1.10B), indicates that isolated m-

diads are the lone source of stereoerrors, consistent with a chain-end control 

mechanism. However, such an extremely high level of chain-end control was 

unprecedented in a propylene polymerization; when activated by MAO, the 

pentafluoro catalyst 2 of Chart 9 produces sPP with a rrrr-pentad content of 

96% at 0 °C.
81

  

Moreover, the spectrum of Figure 1.10A also presents less intense and broad 

resonances in the range 14.6-15.8 ppm and 16.6-17.4 ppm, corresponding to 

vicinal threo and erythro methyl carbon atoms, respectively, in the range 34-

36.4 ppm, corresponding to vicinal methylene carbon atoms and vicinal threo 

and erythro methine carbon atoms, and in the range 41.5-44.6 ppm, 

corresponding to methylene carbon atoms close to vicinal methine or methylene 

groups.
91

 This indicates the presence of defects of regioregularity, due to 

primary (1,2) insertions in a prevailingly secondary (2,1) enchainment.
80,81

 

Because of the chain-end stereocontrol and the secondary (2,1) insertion, s-

PP prepared with phenoxyimine-based titanium catalysts of Chart 9, presents a 

microstructure different from that of sPP prepared with Cs-symmetric 

metallocene catalysts of Charts 1 and 2. Chains of sPP prepared with non-

metallocene catalysts of Chart 9 are, indeed, characterized by defects of 

stereoregularity represented basically by isolated m diads (..rrrmrrr..), 

consistent with chain-end control, and ethylene sequences as a result of 

occurrence of defects in the secondary (2,1)-regiospecificity. 

The development of single centers metallocene and nonmetallocene catalysts 

for the syndiospecific polymerization of propylene has allowed production of 

syndiotactic polypropylene having virtually any degree of stereoregularity. 

Depending on the structure of the catalytic precursors, different chain 

microstructures, with different types and concentration of stereodefects and 

regiodefects are produced. Highly syndiotactic polypropylene with high 
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crystallinity and melting temperatures can be obtained with the classic Cs-

symmetric metallocene catalysts (Chart 1 and 2), or with non-metallocene 

catalysts of Chart 9. Depending on the polymerization conditions 

(polymerization temperature and monomer concentration) samples with rrrr 

pentad contents from nearly 75% up to values as high as 96%, can be obtained. 

Lower syndiotactic and crystalline samples, with values of concentration of rrrr 

pentads in the range 60-80%, can be obtained with the constrained geometry 

catalysts of Chart 6 having the preserved Cs symmetry. Finally nearly 

amorphous, poorly syndiotactic polypropylene with high molecular mass and 

rrrr contents of 40-55% can be produced with constrained geometry catalysts 

of Chart 7. The availability of highly crystalline and stereoregular sPP has 

allowed clarifying the complex polymorphic behavior, the determination of 

crystal structures of the various polymorphic forms and finding unexpected 

interesting physical properties.
1
 Moreover, the availability of sPP samples 

covering the whole range of stereoregularity compatible with maintenance of 

crystallinity (from [rrrr] = 40% up to [rrrr] > 96%), has allowed finding 

relationships between the chain microstructure (i.e type and concentration of 

defects of stereo- and regioregularity) generated by the catalysts through 

different polymerization mechanisms, and the crystal structure, the 

crystallization behavior and the physical-mechanical properties of sPP.
1 
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Figure 1.10. Solution 

13
C NMR spectrum of a sample of sPP prepared with the catalyst 2 of 

Chart 9 (A) and regions of the spectrum of the methyl carbon atoms resonance (B). The 

resonances of methyl, methine and methylene carbon atoms in regiodefective sequences, and 

the assignment of methyl signals to pentads stereo-sequences are also shown.
1
  

 

1.2. Crystal structure and polymorphic behavior 

Syndiotactic polypropylene presents a very complex polymorphic behavior. 

The studies performed in the early 1960s on regioirregular and poorly 

syndiotactic polypropylene samples prepared with the vanadium-based Ziegler-

Natta catalysts have already shows the presence of polymorphism.
2,92-95

 Two 

different crystalline forms, characterized by macromolecular chains having 

different conformations, were described at that time. In the most stable form the 

chains presents a two-fold helical conformation, with s(2/1)2 symmetry
95,96

 (the 

sequence of torsion angles along the backbone is (TTGG)n, where T and G 

indicates bonds in trans and gauche conformation, respectively).
2,92,93,95

 The 

less stable form
94

 is characterized by chains in trans-planar conformation and 
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tcm symmetry,
96a

 with a sequence of torsion angles of the kind (TTTT)n. The 

two-fold helical and trans-planar conformations of sPP chains are shown in the 

Figure 1.11.  

Only the more recent structural studies, performed on the highly regioregular 

and stereoregular sPP,
97-132

 prepared with metallocene catalysts,
29

 have shown 

that the polymorphic behavior of sPP is more complex
109

 for the presence of 

new crystalline forms and for the presence of different types and amounts of 

disorder in the crystalline phases, depending on the degree of stereoregularity 

and the mechanical and thermal histories of the samples.
109-122

  

It has also been found that sPP chains may assume in the crystalline phase a 

third different conformation, shown in Figure 1.11C, characterized by a 

sequence of torsion angle T6G2T2G2
108

 and t2 symmetry.
119

 This conformation 

contains both features of helical and trans-planar conformations (Figures 

1.11A,B) since it is constituted by rather long sequences in trans-planar 

conformation (T6) and portions in the two-fold helical TTGG conformation.  

Four different polymorphic crystalline forms (shown in Figure 1.12) and a 

disordered mesomorphic form have been found so far. They have been called 

forms I, II, III and IV regardless of the chronology of their discovery but only 

considering that form I is the most stable and common form (even though it has 

been discovered much later than form II),
97

 whereas forms III and IV are the 

less stable forms observed only in oriented fibers.
94,107,108

 This nomenclature 

has been proposed by De Rosa, Auriemma and Corradini
110

 and is nowadays 

widely accepted. Form I and form II are characterized by chains in s(2/1)2 

helical conformation packed in different orthorhombic crystalline lattices 

(Figure 1.12 A and B, respectively), form III presents polymer chains in the 

trans-planar conformation with tcm symmetry (Figure 1.12C) and, finally, form 

IV is characterized by chains in T6G2T2G2 conformation (Figure 1.12D). 
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Figure 1.11. Conformations of chains of sPP in the different crystalline polymorphic forms. 

Helical (TTGG)n conformation with s(2/1)2 symmetry (A), trans-planar conformation with tcm 

symmetry (B) and T6G2T2G2 conformation with t2 symmetry (C).
1
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Figure 1.12. Limit ordered models of packing of form I (A), form II (B), form III (C) and 

form IV (D) of sPP. R = right-handed helix, L = left-handed helix.
1 
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1.2.1. Form I 

Form I was found by Lotz, Lovinger et al.;
97-100

 it is the stable form of sPP 

obtained under the most common conditions of crystallization, by melt and 

solution crystallizations in powder samples and single crystals of sPP. Lotz and 

Lovinger succeeded in growing highly regular single crystals of sPP and 

performed the first electron diffraction analysis on single crystals of this 

polymer.
97-100

 They found the same molecular conformation and basic unit cell 

dimensions as reported by Corradini in the 1960s,
2,95

 but they obtained a 

different polymorphic form with a different packing of the two-fold helical 

chains.
97

 It is now well known that this new polymorphic form (form I) is the 

most stable form of sPP, much more stable than the polymorphic form found by 

Corradini in the 1960 (form II).  

Form I is characterized by chains in s(2/1)2 helical conformation packed in 

the orthorhombic unit cell having axes a = 14.5 Å, b = 11.2 Å, c = 7.4 Å 

(Figure 1.12A). As proposed by Lotz and Lovinger.
97-100

 the axes of the helical 

chains are in the positions (0,0,z) and (1/2,0,z) of the orthorhombic unit cell 

and, in the ideal limit ordered structure, helical chains with opposite chirality, 

right-handed and left-handed, alternate along a and b axes of the unit cell 

(Figure 1.12A), according to the space group Ibca. 

More detailed studies performed with X-ray and electron diffraction and 

solid state 
13

C NMR CPMAS techniques have shown that the lattice has a 

symmetry lower than Ibca.
110

 A lower symmetry can be obtained by removing 

the crystallographic twofold axes, so that the chains may rotate around their 

axes and translate along the chain axis.
110

 If the chains are slightly rotated 

around their axes, the local two-fold rotation axes of the chains, perpendicular 

to the chain axis, are lost in the lattice and the symmetry is broken. The space 

group is monoclinic P21/a and two of the four chains included in the unit cell 

are independent, that is, not related by any element of symmetry (Figure 

1.13B).
110
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Figure 1.13. Models of packing of chains in the form I of sPP according to the space groups 

Ibc
97-100

 (A) and P21/a
110

 (B). The arrows indicate the crystallographic twofold axes, present in 

A and lost in B. In the model B the chains are rotated by nearly 5° around the chain axes, 

according to the direction indicated by the arrows.
133

 

 

1.2.2. Form II 

Form II is the metastable polymorphic form of sPP with chains in helical 

conformation (Figure 1.12B). It corresponds to the structure deduced by 

Corradini et al.
2,95

 from the analysis of the X-ray fiber diffraction pattern of 

oriented fibers of the low stereoregular and regioregular sPP samples available 

in the 1960s, prepared with Ziegler-Natta catalysts.
2,4

 This form is characterized 

by chains in s(2/1)2 helical conformation packed in the C-centered 

orthorhombic unit cell with axes a = 14.5 Å, b = 5.60 Å, c = 7.4 Å, according to 

the space group C2221 (Figure 1.12B).
2,95

 Helical chains having the same 

chirality are included in the unit cell. Since the resolution of the crystal 

structure of form II by Corradini, dating back to 1960,
2
 this helical form has 

been considered for long time, till to 1988, the most stable polymorph of sPP.  

Form II has been obtained only in oriented fibers, by stretching low stereo- 

and regioregular sPP samples prepared with vanadium-based Ziegler-Natta 

catalysts
2,95,112

 or by removing the tension in fibers initially in the trans-planar 

form III stretched from highly stereoregular sPP samples.
112

 In fact, when 

highly syndiotactic samples, prepared with homogeneous metallocene catalysts, 

are stretched at room temperature fibers in the trans-planar form III (Figure 

1.12C) are generally obtained.
107,109,112

 Form III is stable only in the stretched 

state and transforms into the more stable isochiral helical form II (Figure 

1.12B) by releasing the tension.
112,125-128

 The X-ray diffraction patterns of a 

fiber of highly stereoregular sPP sample, having rrrr pentad content of 96%, 
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stretched at 600% deformation and after removing the tension are reported in 

Figure 1.14 A and B, respectively. The presence of the equatorial (020)t and 

(110)t reflections at 2 = 15.9 and 18.8°, respectively, and of reflections on the 

first layer line corresponding to a trans-planar chain axis periodicity of 5.1 Å 

((021)t and (111)t reflections),
107

 indicate that the fiber in Figure 1.14A is in the 

trans-planar form III.
109,111,125

 The diffraction pattern obtained upon removing 

the tension (Figure 1.14B) shows the typical 200 and 110 reflections at 2 = 

12.2 and 17° of the isochiral form II, and reflections on the first layer line (201 

and 111 reflections at 2 = 17.1 and 20.7°, respectively) corresponding to the 

helical chain axis periodicity of 7.4 Å,
112,125

 indicating transformation of form 

III into form II upon releasing the tension. 

Form II also develops, still in oriented fibers, by annealing at high 

temperatures (100-120 °C) fibers in the trans-planar form III keeping the fiber 

specimens under tension.
109,112

 

Recently, form II has also been observed in powder samples by 

crystallization from the melt at elevated pressure.
129 

Finally, form II has also been obtained by epitaxial crystallization from the 

melt of single crystals in ultrathin films on the surface of crystals of a low 

molecular weight substance (2-quinoxalinol).
106

 

 

 

Figure 1.14. X-ray fiber diffraction patterns of oriented fibers of a highly stereoregular sPP 

sample, having concentration of rrrr pentad of 93%, obtained by stretched compression-molded 

films up to 600% deformation, kept in tension (A), and after the release of the tension (B). The 

arrows indicate reflections on the first layer line arising from the diffraction of crystals in the 

trans-planar form III with a periodicity of 5.1 Å and in the helical form II with a periodicity of 

7.4 Å. The fiber in A is in the pure trans-planar form III, whereas the fiber in B is basically in 

the helical form II.
1,125
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1.2.3. Form III 

Form III is characterized by chains in trans planar conformation packed in 

an orthorhombic unit cell with axes a = 5.22 Å, b = 11.17 Å, c = 5.06 Å, 

according to the space group P21cn (Figure 1.12C).
107

 It is obtained by 

stretching at room temperature and at high deformations films of highly 

stereoregular samples of sPP prepared with metallocene catalysts.
107,109,112

 

Crystals of the most stable antichiral helical form I, present in the film 

prepared, for instance by compression-molding, transform by stretching into the 

trans-planar form III.
109

 The degree of this transformation basically depends on 

the stereoregularity of the sample [112,125,128]. For highly syndiotactic 

samples, with rrrr pentad contents higher than 90%, the transition of the helical 

form into the trans-planar form III is complete already at nearly 300-400% 

deformation, whereas higher values of deformations are necessary to obtain the 

pure form III in samples of lower stereoregularity ([rrrr] = 75-80%).
125,126

 

The polymorphic form of sPP with chains in trans-planar conformation was 

first obtained in the 1964 by cold-drawing specimens quenched from the melt 

of regioirregular and low stereoregular sPP samples prepared with Ziegler-

Natta catalysts.
94

 Because of the low stereo- and regioregularity of the samples, 

highly disordered form with low crystallinity was obtained, so that only the 

trans-planar conformation was determined from the value of the chain axis 

periodicity of 5.1 Å.
94

 The complete crystal structure of form III has been 

determined only recently by Chatani et al.
126

 by using the X-ray fiber 

diffraction data obtained from fibers of highly syndiotactic and fully 

regioregular samples prepared with metallocene catalysts.  

Form III transforms into the most stable helical forms by annealing the 

stretched fibers at temperatures above 100 °C and keeping the fibers under 

tension.
109,112

; as shown in Figure 1.15, fibers in mixtures of crystals of the 

helical form I and form II are generally obtained by annealing.
109,112,126

 

Moreover, as discussed above form III is stable only in the stretched state and 

transforms into the helical form II by releasing the tension (Figure 1.14).
99,112-

115
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Figure 1.15. X-ray fiber diffraction pattern of a fiber of trans-planar form III annealed at 

130 °C for 20 minutes. The annealed fiber is in a mixture of crystals of the helical forms I and 

II. The 020 reflection of form I at 2 = 16° and the 110 reflection of form II at 2 = 17° are 

indicated.
1,112 

 

1.2.4. Form IV 

Form IV was obtained by Chatani et al.
108

 by exposing stretched fiber of s-

PP originally in the trans-planar form III to organic solvents (e.g. benzene at 

temperature below 50 °C). The crystal structure of form IV, as reported by 

Chatani,
108

 is characterized by chains in the (T6G2T2G2)n helical conformation 

having t2 symmetry (Figure 1.11C), packed in a triclinic unit cell with axes a = 

5.72 Å, b = 7.64 Å, c = 11.60 Å,  = 73.1°,  = 88.8° and  = 112.0°, according 

to the space group P1 (Figure 1.16A).
108

 

It has recently been found that the crystal structure of form IV could be 

described by an analogous model having higher symmetry.
119

 In this alternative 

model the unit cell is monoclinic with parameters am = 14.17 Å, bm =5.72 Å, cm 

= 11.60 Å and m = 108.8° and the space group is C2 with two chains included 

in the unit cell (Figures 1.12D and 1.16B).
119

 The monoclinic model can be 

easily obtained from the triclinic structure by small changes of the atomic 

coordinates and packing arrangement.
119

 A comparison between the triclinic 

and monoclinic models is shown in Figure 1.16. 

Form IV has been found only in oriented fibers and never in powder 

samples. It is metastable and readily transforms into the two-fold helical forms 

by annealing above 50 °C.
108
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Figure 1.16. Models of packing of form IV of sPP, according to the triclinic space group 

P1
108

 (A) and monoclinic space group C2
119

 (B). The arrows indicate the crystallographic two 

fold axes, present in B and lost in A. In the model A the chains are rotated by 6.5° according to 

the direction of the arrows and the continuous and dashed lines show the triclinic and 

monoclinic unit cells, respectively.
133

  

 

1.2.5. The mesomorphic form 

Nakaoki et al.
130

 reported that the crystallization of the trans-planar form III 

may be spontaneously induced by quenching the melt to 0 °C without any 

mechanical stress, keeping the sample at 0 °C for long time (at least 20 h).  

If the samples are immediately taken out from the bath at 0 °C and heated to 

room temperature, they rapidly crystallize at room temperature in the more 

stable helical forms.
130

 Longer residence times at 0 °C of the sample increase 

the number of long chain stretches in the trans-planar conformation, which 

inhibit the crystallization of the sample into the more stable helical form I at 

room temperature.
130-132

 

Accurate analyses of the X-ray powder and fiber diffraction patterns (Figures 

1.17 and 1.18A, respectively) and solid-state 
13

C NMR spectra (Figure 1.18B) 

have shown that this crystalline form of sPP, obtained by quenching the melt to 

0 °C, cannot be identified as the known crystalline form III, but it should be 

considered as a new phase characterized by disorder in the packing of chains in 

the ordered trans-planar conformation.
131

 This phase is more properly defined 

as a mesomorphic form of sPP,
131

 characterized by lateral disorder in the 

packing of trans-planar chains, probably associated to a rotational disorder of 

chains around the chain axes and to translational disorder along the chain axes. 

The X-ray powder and fiber diffraction patterns of the mesomorphic form, 
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shown in Figure 1.17 and 1.18A, respectively, are, indeed, characterized by 

broad reflections on the equator at 2 = 17° and on the first layer line at 2 = 

24°, indicating disorder in the structure. The layering of the reflection in the X-

ray fiber diffraction pattern corresponds to a chain periodicity of 5.1 Å (Figure 

1.18A). 

 

Figure 1.17. X-ray powder diffraction profiles of samples of a highly stereoregular sPP 

sample, having concentration of rrrr pentad of 96%, quenched from the melt at 0 °C and kept at 

0 °C for 5 seconds (a), 1 hour (b), 3 hours (c), 6 hours (d) and 15 hours (e).
121
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Figure 1.18. A) X-ray fiber diffraction pattern of an oriented fiber of a highly stereoregular 

sPP sample, having concentration of rrrr pentad of 91%, in the trans-planar mesomorphic 

form. The arrow indicates reflection on the first layer line corresponding to the chain 

periodicity of 5.1 Å of the trans-planar conformation.
123

 B) Solid-state 
13

C NMR CP-MAS 

spectrum of a powder sample of sPP in the mesomorphic form. The assignment of resonances to 

methyl, methine and methylene carbon atoms are indicated.
131

  

 

1.2.6. Transitions between polymorphic forms 

The presence of many different types of disorder in the crystals of the 

polymorphic forms and the structural transitions between the various crystalline 

forms occurring in different conditions, for instance by annealing or stretching, 

result in a very complex pattern of the polymorphic behavior of sPP. A scheme 

of the condition of crystallization of the different polymorphic forms and of the 

structural transitions is reported in Figure 1.19.
1
 The polymorphic transitions 

are strongly affected by the chain microstructure, in particular the 

stereoregularity of the sample and are the basis for understanding some 

outstanding physical properties of sPP.
1,134,135
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Figure 1.19. Schematic representation of the polymorphism of sPP. The conditions of 

crystallization of the different polymorphic forms in powder and fiber samples and of 

interconversion between the forms are shown.
1
 

 

1.2.7. Effect of stretching and relaxation 

In this section a short overview of the main polymorphic transitions induced 

by stretching is reported. 

In the case of highly stereoregular sPP samples, the stretching at high 

deformation of an unoriented film initially crystallized in any crystalline forms 

(helical form I or trans-planar mesomorphic form, obtained, for instance, by 

compression-molding and cooling to room temperature or quenched at 0 °C, 

respectively), produces transformation into the crystalline trans-planar form 

III.
107,109,112,123-128,134,135

 Both the helical form I and the mesomorphic form 

transform by stretching into the form III. In the first case the structural 

transformation involves a conformational transition, whereas in the latter case 
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the transformation basically corresponds to an increase of order in the packing 

of the chains in trans-planar conformation.
123,134,135

 

sPP samples of low stereoregularity (for instance the samples prepared with 

constrained geometry catalyst),
67,68

 generally crystallized in the disordered 

helical form I,
136-138

 do not transform by stretching into the crystalline form III 

but only the trans-planar mesomorphic form is obtained even at high 

deformations.
134-138

 The conformational transition from helical chains into 

trans-planar chains occurs by stretching, but the high concentration of defects 

of stereoregularity prevents formation of the ordered form III.
138

  

The phase transition and the associated irreversible morphological changes 

occurring while stretching unoriented samples in the helical form have been 

followed in real time by in situ X-ray diffraction using a syncrotron radiation.
128

 

The X-ray diffraction patterns, and the corresponding integrated diffraction 

profiles along 2, collected while stretching an unoriented compression molded 

film up to obtain a uniaxially oriented fiber are reported in Figure 1.20. The 

unoriented film shows initially a powder pattern with typical Debye-Scherrer 

rings and is initially crystallized in the form I, as indicated by the presence of 

the (200)hI, (020)hI, (211)hI and (121)hI reflections of form I in the diffraction 

profile of Figure 1.20B (curve at =0). With increasing deformation, the 

crystallites tend to orient with chain axes parallel to the stretching direction. At 

a critical deformation around 90-100% the (200)hI and (020)hI reflections result 

strongly polarized on the equatorial layer line (Figure 1.20A) and appear also 

rather broad due to the fact that the size of the crystallites in the direction 

normal to the chain axis decreases during deformation. Along with this 

morphological transformation, small crystals of form I simultaneously 

transform into the trans-planar form III, as indicated by appearance of the 

reflection on the first layer line, corresponding to the periodicity c = 5.1Å, and 

the (020)t and (110)t equatorial reflections, characteristic of form III of sPP, at 

2 = 7.55 and 8.44° ( = 0.718 Å) in the patterns of Figure 1.20A for 

deformations higher than 106%.
128

 For  = 136% (last frame in Figure 1.20A) 

the fiber is mainly in the trans-planar form III of sPP. The index of crystallinity, 

initially equal to 60% for the unoriented sample, does not change during 

elongation. This indicates that during the stretching, the crystallites in the 

helical form I transform directly into the trans-planar form III in 

correspondence to a critical strain. No evidences of temporary melting of 

crystals of the helical form followed by rapid re-crystallization into the trans-

planar form III have been observed.
128

 



41 
 

All these data indicate that during stretching, when the critical value of the 

strain is achieved, the sample undergoes abrupt structural and morphological 

transformations. The morphological changes from powder into fiber specimens 

are accompanied by two simultaneous phenomena: the breaking of the 

crystallites in direction normal to the chain axes
139

 and the sudden 

transformation of portion of crystals previously in the helical form I into the 

trans-planar form III.
128

 

 

 
Figure 1.20. (A) X-ray fiber diffraction patterns of an unoriented compression molded film 

of a highly stereoregular sample of sPP with [rrrr] = 93% recorded in situ while stretching the 

sample at rate of 5mm/min, using monochromatic X-ray syncrotron radiation. The deformation 

 and the time t are indicated. The characteristic reflections on the first layer line of the helical 

form I and of the trans-planar form III of sPP are also indicated with arrows. (B) X-ray 

diffraction intensity profiles integrated from the two dimensional diffraction patterns reported 

in A, as a function of 2. The positions of (200)hI, (020)hI, (211)hI and (121)hI reflections of the 

helical form I, of the (110)hII reflection of form II and of (020)t and (110)t reflections of the 

trans-planar form III are also indicated.
128

 

 

The trans-planar form III obtained by stretching transforms into the isochiral 

helical form II when the tensile stress is removed.
112,125-128

 This indicates that 

the transition from the stable helical form I into the trans-planar form III 

occurring by stretching unoriented samples is irreversible and is associated to 

the plastic deformation of the crystalline lamellae.
125

 Figure 1.21 illustrates the 

transformation occurring for fibers cyclically stretched and immediately relaxed 

at controlled rate, followed by X-ray diffraction with syncrotron radiation.
127,128

 

The index of crystallinity of the sample over consecutive cyclic stress-

relaxation runs remains constant at nearly 60%, as in the original unoriented 

film.
127,128

 In the unstrained state, the fiber is basically in the isochiral helical 
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form II, as shown by the presence of strong (111)hII reflection at d=4.29Å, and 

by strong (200)hII and (110)hII reflections of form II at d = 7.20 and 5.26Å (2 = 

5.72 and 7.83°, respectively,  = 0.718 Å) in the patterns of Figure 1.21A,A‟ 

for  = 0%.
127,128

 

The stretching of the fiber in form II induces transformation into the trans-

planar form III (Figure 1.21A). For strain lower than a characteristic value, 

c10%, no significant changes in the X-ray diffraction patterns are 

observed.
127,128

 For higher deformations,  > c the intensity of the (200)hII 

reflection gradually decreases with increasing , while the intensities of (020)t 

and (110)t reflections of form III increase (Figure 1.21A,A'). This indicates that 

with increasing deformation, the relative amount of crystals of form II 

decreases and the content of crystals of form III increases. Since the index of 

crystallinity does not change, this indicates that a stress-induced phase 

transition from form II into form III occurs when the sample is stretched above 

a characteristic deformation value.
127,128

 

The structural and morphological changes occurring during stretching are 

reversible. The crystals of the trans-planar form III gradually transform back 

into the helical form II as the tensile stress is released (Figures 1.21B,B').
127,128

 

The (020)t and (110)t reflections of the trans-planar form III, indeed, gradually 

disappear and the intensities of the (200)hII and (110)hII reflections of helical 

form II increase, while releasing the tension (Figure 1.21B). Below a critical 

strain, the sample is almost fully in the helical form II. 
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Figure 1.21. X-ray fiber diffraction patterns (A,B) and corresponding diffraction profiles 

read along the equatorial layer line (A', B'), of an uniaxially drawn fiber of a highly 

stereoregular sample of sPP with [rrrr] = 93%, recorded in situ during cyclic elongation and 

recovery  using monochromatic X-ray syncrotron radiation. The patterns in A,A' were recorded 

while stretching the sample, whereas the patterns in B,B' were recorded while releasing the 

tension. The deformation  and the time t are indicated. The characteristic reflections of helical 

form II and trans-planar form III of sPP on the first layer line are also indicated with arrows. 

The positions of the (200)hII, (110)hII and (111)hII reflections of the helical form II and of the 

(020)t and (110)t reflection of the trans-planar form III are also indicated.
128

 

 

The reversible phase transition between form II and form III occurs 

instantaneously and directly, without involving a third disordered, intermediate 

phase.
125-128

 It has been suggested that this crystal-crystal transition is a 

cooperative process, involving conformational and structural rearrangements of 

bundles of close neighboring chains in short time and may be considered as a 

martensitic transition, with associated characteristic values of stress-strain 
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parameters.
127,128

 As in the case of martensitic transitions occurring in alloys 

and steels, also for sPP, the critical values of the stress-strain parameters depend 

on the temperature. For instance, for temperatures higher than 60 °C the helical 

form does not transform into form III upon stretching.
126

 

Only when the trans-planar form of sPP is obtained by stretching, can the 

chiral form II of sPP be formed by releasing the tension, through the 

spontaneous solid-state transition. When the trans planar form III of sPP does 

not form by stretching, like for instance at high stretching temperature,
126

 or in 

low stereoregular sPP samples
134-138

 or in copolymers of sPP with butene 

comonomeric units,
140

 the chiral form II does not form anymore by releasing 

the tension and the most stable antichiral helical form I is obtained. 

It has been suggested that the evolution of form III into form II, instead that 

into the most stable antichiral form I, is imposed by conformational and steric 

constraints and the isochirality of the resulting helical phase was taken as an 

indication that the transformation is a cooperative process that occurs through 

instantaneous and simultaneous conformational and structural rearrangements 

of close neighboring chains, involving the whole ordered domains.
120,128

 

During the crystal-crystal phase transition from form III to form II, the 

generation of a helix structure requires the introduction of G
+ 

or G
-
 bonds in an 

all-trans chain. 

...TTTTTTTTTT...  ...TTTGGTTTTT...  ...TTGGTTGGTT... 

This implies a modification in chain direction and, ultimately, generation of 

a helix with a larger cross section than that of the initial conformation. Such 

process also involves very major molecular readjustments which, to take place, 

must be direct and cooperative. A possible mechanism for the crystal-crystal 

phase transition from form III into form II of s-PP is shown in Figure 1.22 

[ref.120,128]. Upon releasing the tension form III (Figure 1.22A) is unstable 

and transforms into the more stable isochiral form II (Figure 1.22C). This 

transition implies the generation of ...TTG
+
G

+
TTG

+
G

+
... (right-handed) or ...G

-

G
-
TTG

-
G

-
TT... (left-handed) conformational sequences starting from a fully 

extended chain. Since this transformation is direct and occurs in a very short 

time, it necessarily requires that, in a given ordered aggregate of sPP chains 

initially in form III, gauche bonds having the same sign are formed 

cooperatively, for steric reasons, as sketched in Figure 1.22B. The parallelism 

of the chains may be, indeed, preserved only if the helical stretches, which form 

from the extended chains, are isochiral, i.e. gauche bonds have all the same sign 

(G
+
 or G

-
). In fact, formation of right- and left-handed helical stretches (as in 
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the stable form I) appears sterically forbidden, because it would result in two 

local stem orientations, which would diverge on opposite sides of the initial 

trans-planar chain (Figure 1.22B‟) producing steric interactions with the 

neighboring chains. The two enantiomorphic helical stretches would be oriented 

at right angle each other. As a consequence, during the transformation, helical 

sequences generated in neighboring chains have the same chirality in order to 

avoid steric interactions, and the isochiral form II is obtained, even though the 

antichiral form I is more stable. The cooperativity imposed by steric constraints 

control the generation of gauche bonds and applies traveling in unison along the 

extended chains in the whole ordered domain, in a very short time, inducing the 

formation of the chiral helical form II, even though the antichiral form I is more 

stable.
120,128

 

 
Figure 1.22. A possible cooperative mechanism of the phase transition from the trans-

planar form III (A) into the isochiral helical form II (C) of sPP. The transition occurs through 

formation of a transient state (B) of the crystalline aggregates of chains originally in form III, 

characterized by right handed (R) helical portions of chains formed in unison, connected by 

portions of chains in trans-planar conformation forming king-bands. The formation of helical 

portions of chains having opposite chirality within the same ordered domain is forbidden 

because two antichiral stems would be oriented at right angle each other, producing steric 

interactions with neighboring chains (B’).
128
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The structural evolution of the trans-planar form III upon removing the 

tension depends instead on the crystalline forms present in the starting 

unoriented material.
123

 In particular, when sPP samples containing mixtures of 

crystals of the trans-planar mesomorphic form and of the helical form I are 

stretched at 25 °C, orientation of both crystals occurs at low deformations, 

whereas the transition into the crystalline trans-planar form III occurs at higher 

deformation. The trans-planar form III transforms into the mixture of crystals in 

the helical and mesomorphic forms present initially in the unoriented sample 

upon releasing the tension.
123

 

These results indicate that the structural evolution of the trans-planar form 

III upon removing the tension in stretched fibers strongly depends on the 

memory of the crystalline forms present in the starting unoriented material.
123

 

 

1.2.8. Influence of constitutional defects on the crystallization behavior 

of sPP 

Large changes of the polymorphism and physical properties of sPP have also 

been observed by introducing constitutional defects as comonomeric units. The 

effect of the presence of comonomeric units on the polymorphic behavior of 

sPP has been extensively investigated in syndiotactic copolymers of propene 

with ethylene,
141,142

 butene,
140,141,142a,143

, pentene,
141

 hexene,
141,144-146

 4-methyl-

1-pentene,
141,144

 octene,
144-146

 decene,
144

 dodecene,
150

 and octadecene,
145

 

prepared with Cs-symmetric metallocene catalysts. In particular, the effect of 

the presence of ethylene,
141,142

 butene,
140,141,142a,143

 hexene
141,144-146

 and 

octene
144-149

 comonomeric units on the structure and polymorphic behavior of 

sPP has been investigated in as-prepared, melt-crystallized samples and 

oriented fibers of copolymers. 

Propylene-ethylene copolymers are crystalline up to an ethylene content of 

20-22 mol %, with melting temperatures decreasing with increasing ethylene 

content from 150 °C, typical of sPP homopolymer, to nearly 50 °C.
142c

 Ethylene 

units are partially included in the crystals of both as-prepared and melt-

crystallized samples.
142

 As-prepared samples crystallize in conformationally 

disordered modifications of form II of sPP of the kind of Figure 1.22B, 

containing kink bands,
142a-c

 that is, with chains in prevailingly 2/1 helical 

conformation but containing short sequences in trans-planar conformation, 

which form kink bands defects,
142

 as in the intermediate model of Figure 1.22B. 

These structures are metastable and transform by crystallization from the melt 

into the most stable antichiral helical form I or in the conformationally ordered 
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isochiral helical form II, depending on the ethylene concentration.
142c

 Samples 

having low ethylene contents (up to 6-7 mol %) crystallize from the melt into 

the stable helical form I of sPP, but disordered modifications of form I, with 

disorder in the alternation of right and left-handed helical chains along the axes 

of the unit cell, are always obtained.
142c

 For higher ethylene content, mixtures 

of crystals of forms I and II are obtained by crystallization from the melt.
142c

 

The fraction of form II increases with increasing crystallization temperature and 

ethylene content. 

The presence of ethylene also influences the polymorphic behavior of 

oriented fibers.
142d-f

 For low ethylene contents the stretching produces 

transformation of the helical form I into the trans-planar form III,
142d-f

 which 

transforms into the isochiral helical form II upon releasing the tension,
142d-f

 as 

in the case of sPP. For copolymers with ethylene content in the range 13–18 

mol% the helical form transforms into the trans-planar mesomorphic form by 

stretching.
142d-e

 Even though high concentrations of ethylene units stabilize the 

trans-planar conformation of the chains, the high content of defects prevents the 

ordered packing of conformationally ordered trans-planar chains and, hence, 

prevents the formation of the ordered crystalline trans-planar form III by 

stretching. As a consequence the trans-planar mesophase crystallizes at high 

deformations.
142e

  

The presence of high concentration of ethylene comonomeric units, partially 

included in the crystals of sPP, increases the relative stability of the 

polymorphic forms of sPP with chains in trans-planar conformation, that is, the 

form III in fibers of copolymers with ethylene contents in the range 2–10 mol%, 

and of the mesomorphic form for ethylene concentrations in the range 10–18 

mol%.
142d-e

 For ethylene concentrations higher than 8-10 mol%, indeed, the 

trans-planar forms (form III or mesomorphic form) obtained by stretching do 

not transform into the helical forms upon removing the tension.
142d-e

 

Syndiotactic propene-butene copolymers are crystalline in the whole range 

of comonomer composition.
143

 The values of a and b axes of the unit cell 

increase from the values typical of crystals of sPP to those of crystals of 

sPB,
151-152

 with increasing concentration of 1-butene (Figure 1.23A).
143a,b,e

 This 

indicates cocrystallization of comonomeric units and that propene and 1-butene 

are included in the unit cells of both homopolymers.
143

 The melting temperature 

decreases from the value of nearly 150 °C of sPP to the value of 50 °C of 

syndiotactic poly(1-butene) (sPB) (Figure 1.23B).
151-154
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Figure 1.23. Values of the a axis of the unit cell (A) and melting temperature (B) of 

syndiotactic propene–butene copolymers as a function of the butene concentration.
143a

 (C) 

Models of packing of s(2/1)2 helical chains of syndiotactic propene–butene copolymers as a 

function of butene concentration.
143e

 The unit cells of the B-centered form I of sPP (a,d), the C-

centered isochiral form II of sPP (b) and the C-centered isochiral form I of sPB (c) are 

indicated. For propene-rich copolymers, local arrangements of chains as in the C-centered 

form II of sPP (b) or form I sPB (c) are present in a prevailing mode of packing of the B-

centered form I of sPP (a). At high butene content, local arrangements of chains as in the B-

centered form I of sPP (a,d) are present in a prevailing mode of packing of the C-centered form 

I of sPB (c).
133b

  

 

The cocrystallization of propene and 1-butene in syndiotactic copolymers is 

due to the very similar crystal structures of sPP
1,95,97-101,109

 and sPB.
151,152

 The 

crystal structure of the stable form I of sPB (Figure 1.24B) is characterized by 

chains in s(2/1)2 helical conformation packed in an orthorhombic unit cell 

according to the space group C2221,
151,152

 producing an isochiral structure 

similar to that of form II of sPP (Figures 1.24A an 1.12B).
95

 The copolymers 

crystallize in modifications having structures intermediate between those of 

form I of sPP and form I of sPB (Figure 1.23C).
143e

 As-prepared samples 

having small contents of 1-butene crystallize in disordered modifications of 
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form I, characterized by statistical disorder in the alternation of right and left 

handed helices along both axes of the unit cell. At higher 1-butene content b/4 

shift disorder develops and increases with increasing 1-butene content, and 

disordered modifications having structures intermediate between those of form 

I of sPP and form I of sPB, are obtained.
143

 Samples with contents of 1-butene 

higher than 70 mol% crystallize in a structure similar to that of the isochiral 

form I of sPB, as well as of form II of sPP (Figure 1.23C).
143e

 

 

Figure 1.24. Models of crystal structures of form II sPP
95,109

 (A) and form I of sPB
152

 (B). In 

both cases, chains in s(2/1)2 helical conformation are packed in an orthorhombic unit cell 

according to the space group C2221, resulting in an isochiral packing of helices. R indicates 

right-handed helix. 

 

Samples of propene-butene copolymers crystallize from the melt in the form 

I of sPP up to a content of 1-butene of 60-70 mol%, although disorder in the 

alternation of right and left handed helical chains along both axes of the unit 

cell is present.
140

 More ordered modifications, close to the limit ordered, fully 

antichiral, form I of sPP are obtained by crystallization at high temperatures 

only for samples containing small contents of 1-butene (1-2 mol%).
140

 The 

presence of 1-butene prevents development of the order in the alternation of 

right- and left-handed helical chains at high crystallization temperatures.
140

  

Fiber samples of propene-butene copolymers with small content of 1-butene 

(1-2 mol%) present the same behavior as sPP. Stretched fibers are in the trans-
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planar form III of sPP, which transforms into the isochiral helical form II of sPP 

upon releasing the tension.
140,143e

 High concentration of butene units stabilizes 

the helical conformation and the presence of 1-butene units, for contents higher 

than 4 mol%, prevents the formation of the trans-planar form III of sPP by 

stretching.
140,143e

 In these samples only the antichiral helical form I of sPP is 

observed in the stretched fibers of the copolymers, as well as upon releasing the 

tension.
143e

 The formation of the antichiral form I of sPP, instead of the 

isochiral form II, either in the stretched fibers or upon releasing the tension, is a 

further evidence that the isochiral helical form II of sPP can be obtained only 

from fibers initially in the trans planar form III, through the cooperative 

conformational transformation of Figure 1.22, which induces the formation of 

helical chains having the same chirality.
120,125-128,133

 Therefore, anytime the 

formation of the trans-planar form III of sPP is prevented, like in the presence 

of butene comonomeric units,
140,143

 or by stretching at high temperatures,
126

 or 

for low stereoregular samples,
134-138

 the isochiral helical form II is not observed. 

In copolymers of sPP with higher 1-olefins, as hexene, octene, dodecene, or 

octadecene, the presence of these long branched comonomers destabilize the 

trans-planar conformation of sPP chains and, at relatively high concentrations 

(higher than 4-5 mol%) prevents the crystallization of both the trans-planar 

form III and the trans-planar mesophase.
145,146

 Only at very low concentrations 

(around 1-2 mol%) the behavior of these copolymers is similar to that of sPP, 

that is, the stable helical form I of the melt-crystallized samples transforms into 

the trans-planar form III by stretching at high deformations.
146

 For hexene or 

octene concentrations in the range 2-5 mol% the stretching produces 

transformation of the helical form I into the trans-planar mesophase. For 

hexene and octene concentrations higher than 4-5 mol% the helical form I 

transforms by stretching at high deformation into a different mesomorphic 

form, characterized by chains in the ordered 2/1 helical conformation, and 

disorder in the lateral packing of the chains.
146

 In these samples the trans-planar 

mesomorphic form has not been obtained. 

 

1.3. Physical and mechanical properties of sPP and copolymers of sPP 

Depending on the catalyst and condition of polymerization samples of sPP 

having different stereoregularities, from only slightly syndiotactic fully 

amorphous to highly syndiotactic and crystalline samples, showing different 

physical and mechanical properties can be prepared.
1,154

 In particular the use of 

metallocene catalyst has made it possible to tailor tacticity and melting 
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temperature of polypropylene. The nearly linear relationship between melting 

temperature and syndiotacticity, expressed as concentration of rrrr pentad, is 

shown in Figure 1.25.
1,134,155

 The Cs-symmetric metallocene catalysts of Charts 

1 and 2 produce highly syndiotactic polypropylene with rrrr pentad contents in 

the range 75-96%and melting temperatures in the range 120-153 °C.
1,134,155

 

Half-metallocene "constrained geometry" catalysts (Chart 6) produce lower 

syndiotactic s-PP samples, with rrrr pentad contents in the range 60-80% and 

melting temperatures in the range 80-120 °C.
1,134,155

 Poorly syndiotactic 

polypropylenes with concentration of the rrrr pentad of 40-55% and melting 

temperatures of 45-60 °C have been obtained with similar constrained geometry 

catalysts containing a heterocycle condensed onto the cyclopentadienyl moiety 

(Chart 7).
1,134,155

 Finally, totally amorphous, moderately syndiotactic 

polypropylene, with rrrr contents of about 20-25% are prepared with the 

complexes precursors of the class of constrained geometry catalysts (Charts 4 

and 5).
1,134,155

 Therefore, stereoregularity and the melting temperature can be 

finely tuned in a wide range by changing catalyst structure, while keeping high 

values of the molecular mass. As a consequence, interesting mechanical 

properties are maintained even when stereoregularity, crystallinity and  melting 

temperatures are very low.
1,134,155 

 

Figure 1.25. Values of melting temperature of samples of sPP of different stereoregularity 

produced with different organometallic catalysts as a function of the concentration of the fully 

syndiotactic pentad rrrr.  
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The mechanical properties of sPP strongly depend on the stereoregularity 

and initial morphology of the sample.
1,134,155

 Unoriented samples of high 

stereoregular and crystalline sPP behave as a typical crystalline thermoplastic 

material showing plastic deformation via necking during stretching, with high 

values of the Young's modulus.
1,124-128,134,155

 The samples experience a partial 

elastic recovery after breaking or upon releasing the tension after a given 

deformation.
124-128

 Oriented fibers of sPP show instead a perfect elastic 

behavior upon successive stretching and relaxation cycles.
124-128

 This is the 

most important characteristic and unusual physical property of sPP. It is a 

thermoplastic elastomer notwithstanding the high values of crystallinity and 

melting temperature (nearly 50-60% and 150 °C, respectively, for highly 

syndiotactic samples) and the relatively high glass transition temperature 

(around -6 and 0 °C).
1,155 

The stress-strain curves of compression-molded films of s-PP samples 

having different stereoregularity and melting temperatures, prepared with 

different catalysts of Charts 1, 2, 6 and 7 (see Figure 1.25), are reported in 

Figure 1.26A,B
124-128,134,136,137

 in comparison with the nearly atactic, totally 

amorphous samples prepared with the catalyst of Chart 4 (Figure 1.26C).
136,137

 

These data show that even highly stereoregular and crystalline sPP samples 

present high ductility and toughness at room temperature. The values of the 

Young's modulus and of the residual deformation (tension set) after breaking, 

reported in Figure 1.27 as a function of stereoregularity (concentration of rrrr 

pentad) and crystallinity, decrease with decreasing syndiotacticity.
124-

128,134,136,137
 The decrease of the values of tension set up to nearly 10% with 

decreasing stereoregularity and crystallinity indicates that poorly stereoregular 

sPP samples show elastic behavior even in the form of unoriented compression-

molded films.
136,137

  

The origin of elasticity in s-PP and the mechanism of plastic deformation 

have been extensively studied.
1,124-128,134-138,155

 For more stereoregular samples 

the plastic deformation is associated with the polymorphic transition from the 

stable helical form I, generally present in the unoriented compression-molded 

films, into the trans-planar form III (Figure 1.28) obtained in the stretched 

oriented fibers (see section 1.2.7, Figure 1.20).
109,112

 For less stereoregular 

samples with rrrr content lower than 80% the helical from I first transforms 

into the mesomorphic form at strains higher than the critical value, and then 

into the trans-planar form III at higher values of deformation.
134,135

 For poorly 

syndiotactic samples having rrrr pentad contents in the range 45-70%, the 
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ordered trans-planar form III does not form by stretching even at very high 

deformation. The helical form I transforms at high deformation into the trans-

planar mesomorphic form and the crystalline form III never forms.
136-138

 

 
Figure 1.26. Stress–strain curves of unoriented compression molded films of samples of sPP 

having different stereoregularity.
1,124-128,134,136,137,155
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Figure 1.27. Values of the Young’s modulus (A), X-ray crystallinity (B) and tension set after 

breaking (C) of unoriented compression-moulded films of samples of sPP of different 

stereoregularity, as a function of the concentration of rrrr pentad. 
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The trans-planar form III obtained by stretching is stable only in the 

stretched fibers and transforms into the helical form II (Figure 1.28) upon 

releasing the tension or after breaking (Figure 1.21).
112,124-128

 Due to the 

irreversible plastic deformation only a partial elastic recovery is observed. 

 

 
Figure 1.28. Polymorphic transformations occurring during stretching and relaxation of sPP. 

The helical form I (A) transforms by stretching into the trans-planar form III (B) which 

transforms into the helical form II (C) by releasing the tension of the stretched fibers. 

 

During the transition from the two-fold helical form into the trans-planar 

form III by stretching (Figure 1.28), an increase of the periodicity per structural 

unit h (which comprises two monomeric units) from h = c/2=3.7 Å of the two-

fold helical form to h = c=5.1 Å of the trans-planar form III, is involved. The 

crystal dimensions increase about 38% along c. This increase is completely 

recovered upon the releasing the tension due to the transition of the trans-planar 
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form into the helical form, and, correspondingly, a reduction of the length of the 

specimen occurs. As a result, for a not previously oriented material, a partial 

recovery of the macroscopic dimensions of the sample is attained.
124-128

 

It has been suggested that the polymorphic transition of the metastable trans-

planar form III into the helical form II is in part responsible for the elasticity of 

s-PP due to the enthapy gain achieved when the fibers are relaxed.
124-128

 A 

model of “elasticity assisted” by the crystal-crystal phase transition has been 

suggested for the elastic behavior of sPP.
124-128

 In this idea, both the crystalline 

and amorphous chains play key roles. The small crystalline aggregates actively 

participate to the elasticity of sPP, locally acting as microscopic engines. The 

chains in the amorphous regions are possibly well oriented and in extended 

conformation in the stretched state, and experience a reversible conformational 

transition between disordered random-coil and extended conformations when 

the samples are repeatedly stretched and relaxed. These chains are also highly 

entangled and connect, as tie-chains, different crystals, which undergo the 

structural transition during the mechanical cycles. During elongation, the chains 

in the amorphous regions assume extended conformations and tend to orient 

parallel to the stretching direction. The crystalline aggregates also tend to 

assume a preferred orientation with the chain axes parallel to the stretching 

direction; at the same time, when a given crystal experiences a stress higher 

than a critical value a crystal-crystal phase transition from the helical form II 

into the trans-planar form III occurs and the size of the crystal increases by 

38% along the chain axis direction. During the relaxation step, when a given 

crystal experiences a stress below a critical value, the trans-planar form III 

becomes unstable and transforms instantaneously into the more stable form II; 

correspondingly, the crystal shrinks by 38% along the chain axis direction. 

Since the enthalpy change in this transition is negative, it, in turn, induces an 

abrupt conformational transition in the chains of the amorphous phase close to 

the crystals. These amorphous springs assume suddenly less extended 

conformations generating a sort of chain reaction, which rapidly extends to the 

whole material. The return into entropically favored disordered conformations 

of amorphous chains produces the entropic factor also involved in the recovery 

process. Therefore, while the driving force leading the conventional elastomers 

to recover the initial dimensions is merely entropic, in the case of s-PP elasticity 

is also assisted by the enthalpic gain achieved when the sample is relaxed. 

When the tension is removed, both the enthalpic factor, due to the structural 

transition in the crystalline regions, and an entropic factor, due to the 
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conformational transition of the chains in the entangled amorphous phase, 

contemporarily contributes to the elastic recovery of the s-PP fibers.
1,124-

128,134,155 

In poorly syndiotactic samples with lower crystallinity the trans-planar form 

III does not form any more by stretching, therefore the enthalpic contribution to 

the elasticity decreases or disappears. These samples, however, present good 

elastic properties for both unoriented compression-molded films and oriented 

fibers,
134,136,137

 associated with low tensile strength and Young‟s modulus 

(Figures 1.26-1.27) and high values of strains at break. Because of the very low 

crystallinity these materials experience a negligible plastic deformation and 

show a typical thermoplastic elastomeric behavior (Figure 1.26B). The small 

crystalline domains in the amorphous matrix act as physical knots of the 

elastomeric lattice, preventing the viscous flow of the amorphous chains. The 

entropic effect of the conformational transition of the amorphous chains is 

mainly responsible for the elasticity. Since the molecular weights of the 

samples are very high, these amorphous chains are highly entangled and 

connect as tie-chains the small crystalline domains. They act as spring between 

the crystals being well-oriented and in extended conformation in the stretched 

state, and return in the disordered coil conformation when the tension is 

removed.
136,137

  

Very poorly syndiotactic nearly atactic samples are unable to crystallize and 

present lower strength and experience rapid viscous flow of the chains at high 

deformations (Figure 1.26C). In these samples only when the molecular weight 

is very high the viscous flow is prevented giving interesting elastic properties 

but, however, with very low strength.
136,137

  

These data indicate that s-PP shows different elastic behaviors depending on 

the steoregularity, which can be controlled through the choice of the catalysts 

and conditions of polymerization. Thermoplastic elastomeric materials based on 

sPP with finely controlled physical and mechanical properties can be produced. 

As shown in Figure 1.29, for the more crystalline samples having high melting 

temperatures, the elasticity has a mainly enthalpic character, due to the 

metastability of the trans-planar form III that transforms into the more stable 

helical form II. For less crystalline samples, with low melting temperatures, the 

elastic recovery is not associated to any polymorphic transitions and has a pure 

entropic origin, as in conventional elastomers. Depending on melting 

temperature, elastomers showing conventional entropic or unconventional 

enthalpic elasticity, can be obtained. The development of enthalpic elasticity 
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allows maintenance of elastic properties even when the crystallinity, the 

melting temperature and the mechanical strength of the samples are very high. 

 

 
Figure 1.29. Different elastic behaviors of s-PP samples having different melting temperatures 

and crystallinity prepared with different catalysts. Highly syndiotactic samples with high 

melting temperatures and crystallinity show enthalpic elasticity, whereas samples with low 

stereoregularity, melting temperatures and crystallinity exhibit conventional entropic 

elasticity.
1 

 

A similar effect on elasticity is produced in random copolymers of sPP with 

other 1-olefins, such as ethylene, butene, hexene, octene, 1-dodecene, 1-

octadecene, 1-eicosene by the presence of constitutional defects instead of steric 

defects. Samples of copolymers with concentrations of comonomeric units 

variable in a wide range have been synthesized with the Cs symmetric 

syndiospecific catalyst used for the preparation of highly stereoregular samples 

of sPP (Chart 1). In these copolymers the presence of constitutional defects 

affects the conformational transition since high concentrations of ethylene 

stabilizes the trans-planar conformation, while high concentration of branched 

comonomers stabilizes the helical conformation. In any case, high 

concentration of comonomeric units prevents occurrence of this transformation 

during deformation and relaxation. 

Samples of copolymers of sPP with ethylene (sPPET) with concentration of 

ethylene lower than 18-20 mol % are crystalline and show interesting 

mechanical properties, whereas samples with ethylene content higher than 20% 

are amorphous and experience rapid viscous flow even for low deformation 

and/or by application of stress for long time.
142
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Unoriented films of the crystalline sPPET samples with ethylene content 

lower than 18 mol% present high ductility with remarkable values of 

deformation at break higher than 1000%, and high values of the tensile strength. 

The elastic modulus and the stress at any strain decrease with increasing 

ethylene content, consistent with the decrease of crystallinity, whereas the 

tensile strength remain nearly constant up to ethylene contents of 14-15% 

because of the strong strain hardening which occurs at high deformations. The 

most crystalline samples, with low ethylene content, show poor elastic 

properties because of the irreversible plastic deformation occurring during 

stretching of unoriented films. The elastic properties are greatly improved for 

the lowest crystalline samples with ethylene contents in the range 16-18 

mol%.
142d,f

  

Oriented films of all sPPET samples show good elastic properties regardless 

of the ethylene concentration. The presence of crystalline domains ensures 

values of modulus and tensile strength higher than those of conventional 

elastomers. The elastic behavior of most crystalline sPPET copolymer samples 

with low ethylene contents (lower than 6-7 mol%) is associated to a reversible 

polymorphic transition between the trans-planar form III and the helical form II 

occurring during stretching and relaxation cycles. In these samples elasticity 

has a mainly enthalpic character, due to the metastability of the trans-planar 

form III that transforms into the more stable helical form II upon releasing the 

tension. Lower crystalline sPPET samples with higher ethylene concentrations 

(higher than 10 mol%) show similar elastic properties, which are not associated 

to any polymorphic transitions. In these samples the trans-planar forms are 

stable and do not transform into helical forms during elastic recovery, and 

elasticity has a pure entropic origin as in conventional elastomers.
142d,f

  

These studies have demonstrated that sPPET copolymers prepared with Cs-

symmetric metallocene catalysts represent new materials with improved and 

unprecedented mechanical properties of thermoplastic elastomers, whose 

physical properties and values of mechanical parameters can be finely tuned 

through the simple introduction of the proper amount of ethylene comonomer 

units.
142

  

Copolymers of sPP with butene show good elastic properties with 

remarkable rigidity and mechanical strength due to the cocrystallization of the 

comonomers that produces non-negligible level of crystallinity at any 

comonomer concentration. The elastic properties are improved in oriented 

fibers.
143 



60 
 

For the more crystalline samples with low butene concentration the elastic 

properties are associated with the reversible polymorphic transformations 

between form III and form II that occur during the processes of stretching and 

elastic recovery of fibers. The occurrence of these reversible phase transitions 

assists the elasticity of sPPBu copolymers with butene content lower than 20 

mol%, through a non-negligible free energy contribution.
143 

In the case sPPBu samples with butene content higher that 20mol%, no 

stress induced phase transitions occur, and the defective crystals of form I of 

sPP merely act as physical knots of the elastomeric network, preventing the 

viscous flow of the chains, as in the case of conventional thermoplastic 

elastomers. Also for these copolymers the crystallization properties are 

responsible for the development of the outstanding mechanical properties, 

providing a variety of elastomeric materials characterized by values of stiffness 

and mechanical strength that may be tuned by simply changing the comonomer 

concentration.
143

 

As discussed in the section 1.2.8, the effect of the presence of higher -

olefin comonomers and branched comonomers on the crystallization behavior 

of sPP has also been investigated. In particular, studies on the polymorphic 

behavior and the thermal properties of copolymers of sPP with pentene,
141

 

hexene,
141,144-146

 4-methyl-1-pentene,
141,144

 octene,
144-146

 decene,
144

 dodecene,
150

 

and octadecene,
145

 prepared with Cs-symmetric metallocene catalysts, have 

been reported. The values of the melting and glass transition temperatures of 

these copolymers are reported in in Figure 1.30 as a function of comonomer 

concentration. The melting temperature and the glass transition temperatures 

decrease with increasing comonomer concentration with a different rate 

depending on the size of the commoner. The slower decrease is observed for 

sPPBu copolymers thanks to the compatibility of propene and butene in the 

crystals and their cocrystallization in the whole composition range All these 

copolymers show outstanding mechanical properties of high flexibility and 

ductility and show elastic behaviour either at low or at high comonomer 

concentration regardless of the comonomer content. However, in these 

copolymers high concentration of comonomeric units prevents occurrence of 

the form II - form III transformation during deformation and relaxation because 

the trans-planar form III is destabilized and does not form by stretching. 

Therefore, in these materials the enthalpic contribution to the elasticity becomes 

negligible with increasing comonomer concentration, and the entropic 

contribution becomes prevalent, as illustrated in Figure 1.30.  
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Figure 1.30. Values of melting temperature (A) and glass transition temperature (B) of random 

copolymers of sPP with different comonomers produced with the indicated Cs metallocene 

catalyst as a function of the comonomer concentration. 
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1.4. Aim of the study of the morphology of sPP and copolymers of sPP 

It is well known that mechanical properties of semicrystalline polymers 

depend not only on the crystal structure but also by on the organization of 

crystals on nanometric scale, size and form of crystals and on the relationships 

between chains belonging to the two amorphous and crystalline phases that 

form an interpenetrating network.  

The case of sPP is particularly complex because it is a highly crystalline 

polymers with elastic properties. It has been suggested that both crystalline and 

amorphous phases play key roles in the development of elasticity.
1,124-128,134,136-

138,155
 The crystalline aggregates actively participate to the elasticity of sPP, 

locally acting as microscopic engines through the activation of reversible phase 

transformation during deformation and elastic recovery. The chains in the 

amorphous regions are possibly well oriented and in extended conformation in 

the stretched state, and experience a reversible conformational transition 

between disordered random-coil and extended conformations when the samples 

are repeatedly stretched and relaxed. These chains are also highly entangled and 

connect, as tie-chains, different crystals, which undergo the structural transition 

during the mechanical cycles.
1
 The relative weights of the roles played by 

crystals and amorphous chains depends on the degree of crystallinity, which, in 

turn, depends on the molecular structure of sPP (stereoregularity and presence 

of constitutional defects). The same molecular parameters influence not only 

the degree of crystallinity but also the morphology of crystals (size and form of 

crystals and relationships with amorphous chains), that can be different even at 

the same degree of crystallinity.  

In this work the morphology of crystals of samples of sPP of different 

stereoregularity and samples of random copolymers of sPP with different 

comonomers has been studied and the relationships between crystal 

morphology and elastic properties have been analyzed. The morphology has 

been analyzed in different length scales by using polarized optical microscopy 

(POM), atomic force microspcopy (AFM) and small angle X-ray scattering 

(SAXS). 
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1.5. Materials and methods 

The morphological analysis has been performed on samples of sPP of 

different stereoregularity and on samples of random copolymers of sPP with 

ethylene, butene, 4-methyl-pentene, hexene, octene, 1-dodecene, 1-octadecene, 

1-eicosene. 

Samples of sPP of different stereoregularity have been prepared with the 

catalysts of Charts 1, 2, 4, 6 and 7.
134

 All the analyzed samples of are listed in 

Table 1.1. Highly stereoregular samples, having concentrations of fully 

syndiotactic pentad rrrr in the range 75-95%, have been prepared using the 

single center Cs-symmetric metallocene catalyst 1 of Chart 1, isopropylidene-

(cyclopentadienyl)(9-fluorenyl)zirconium dichloride (Me2C(Cp)(9-Flu)ZrCl2, 

Me = Methyl, Cp = Cyclopentadienyl, Flu = Fluorenyl), activated with 

methylaluminoxane (MAO).
29

 Samples of different stereoregularity have been 

obtained with catalyst 1/MAO performing the polymerization at different 

temperatures (samples sPP1-sPP4, sPP6, sPP7, sPP9 and sPP10 of Table 1.1). 

Highly stereoregular samples with high molecular mass (samples sPP5 and 

sPP8) have been prepared with the catalyst 3 of Chart 2  (Ph2C(Cp)(3,6-t-

Bu2Flu)ZrCl2, Ph = Phenyl, t-Bu = t-Butyl), activated with MAO, at 

polymerization temperatures of 40 and 60 °C, respectively.
49

 These two 

samples have been provided by Dr. A. Razavi of Atofina. Samples of sPP of 

medium stereoregularity have been prepared with the constrained geometry 

catalysts 1 and 2 of chart 6, described by Razavi et al.
49a,64

 These Ti complexes, 

[Me2Si(2,7-t-Bu2Flu)(t-BuN)]TiCl2 (1 of Chart 6)
49

 and [Me2Si(3,6-t-Bu2Flu)(t-

BuN)]TiCl2 (2 of chart 6),
64.

give sPP samples characterized by high molecular 

weight, concentrations of rrrr pentad in the range 60-80%, and melting 

temperatures in the range 80-120 °C. Samples sPP11 and sPP12 with rrrr 

contents of 70.6% and 60.1%, prepared with 1 and 2 of chart 6, respectively, 

activated with MAO, have been provided by Dr. A. Razavi of Atofina. Finally, 

poorly syndiotactic samples with concentration of rrrr pentad in the range 40-

55% (samples sPP13-sPP17), have been prepared with the catalysts 1 and 2 of 

chart 7, composed of silyl-bridged indenyl-tert-butylamido complexes of 

titanium, in which the indenyl ligand has a heterocycle condensed onto the 

cyclopentadienyl moiety.
67

 A fully amorphous polypropylene sample (sPP18) 

having the lowest syndiotacticity ([rrrr] = 26%), but very high molecular mass, 

have been prepared with the Dow catalyst dimethylsilyl 

(tetramethylcyclopentadienyl)(tert-butylamido)TiCl2 (catalyst of chart 4).
54
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These samples have been provided by Dr. Luigi Resconi of Basell Polyolefins. 

All catalysts have been activated with MAO.  

The melting temperature, the concentration of the fully syndiotactic rrrr 

pentad and the average molecular mass of all analyzed samples are reported in 

Table 1.1. The melting temperatures were obtained with a differential scanning 

calorimeter Perkin Elmer DSC-7 performing scans in a flowing N2 atmosphere 

and heating rate of 10 °C/min. The stereoregularity has been determined by 

analysis of the 
13

C NMR spectra. 

Samples of random copolymers of sPP with ethylene (sPPET) having 

concentration of ethylene in the range 0.4 - 59 mol% have been prepared using 

the Cs symmetric metallocene catalyst (phenyl)2methylen(cyclopentadienyl)(9-

fluorenyl)ZrCl2 (Ph2C(Cp)(Flu)ZrCl2) (1 of chart 1) activated with 

methylaluminoxane (MAO), according to the method described in ref. 142b. 

All samples and conditions of polymerization are listed in Tables 1.2 and 1.3.  

Tables 1.4 - 1.10 reports the lists of samples and the conditions of 

polymerization of random copolymers of sPP with butene (sPPBu), 4-methyl-

pentene (sPP4MP), 1-hexene (sPPHe), 1-octene (sPPOt), 1-dodecene (sPPC12), 

1-octadecene (sPPC18), 1-eicosene (sPPC20) prepared with the same catalyst 1 

of Chart 1 activated with MAO, according to the method described in ref. 142b. 
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Table 1.1. Concentration of rrrr pentad, m diad, mm triad and total concentration of stereodefects, melting temperature Tm and 

weight average molecular mass Mw of sPP samples prepared with the indicated different catalysts. 

Sample Catalyst [rrrr] % [m] % [mm] % [total defects] % Tm (°C) Mw (g/mol) 

sRDG-2-1 1 of Chart 1 95.5 0 0.7 0.7 152 - 

sPP2 1 of Chart 1 95.0 0 0.8 0.8 152 228000 

sPP3 1 of Chart 1 94.2 1.48 1.1 2.6 149 213000 

sPP4 1 of Chart 1 92.5 1.7 1.7 3.4 146 164000 

sPP5 3 of Chart 2 91.5 2 1.5 3.5 145 766000 

sPP6 1 of Chart 1 90.7 2.3 1.5 3.8 140 77000 

sPP7 1 of Chart 1 88.6 3.5 1.6 5.1 137 115000 

sPP8 3 of Chart 2 87.0 4 1.7 5.7 136 509000 

sPP9 1 of Chart 1 78.0 6.5 1.8 8.3 124 193000 

sPP10 1 of Chart 1 74.8 8.5 1.9 10.4 122 52000 

sPP11 1 of Chart 6 70.6 9.8 2.5 12.3 100 297000 

sPP12 2 of Chart 6 60.1 12.5 4.3 16.8 77 241000 

sPP13 1 of Chart 7 54.6 13 4.9 17.9 59 1308600 

sPP14 2 of Chart 7 51.6 13.6 5.2 18.8 50 672700 

sPP15 2 of Chart 7 46.9    48 885700 

sPP16 2 of Chart 7 45.8    48 1153200 

sPP17 2 of Chart 7 41.4    45 589200 

sPP18 
Chart 4 with Mt=Ti, 

X=Cl, R = t-butil 
26.5 

   
- 1190800 
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Table 1.2. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular mass (Mv) of 

sPPET copolymer samples prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a 

Samples 
Feed composition 

(mol % ethylene) 

Copolymer composition 

(mol % ethylene)
b
 

T
m 

(°C)
c
 [η] (dL/g)

d
 Mv 

(g/mol)
e
 

sPPET(1) 0.9 0.4 141.3 0.66 0.84×10
5

 

sPPET(2) 2.4 1.5 136.3 0.69 0.88×10
5

 

sPPET(3) 4.9 2.6 129.0 0.89 1.14×10
5

 

sPPET(4) 7.6 6.3 110.2 1.78 2.37×10
5

 

sPPET(5) 10.3 8.0 103.2 2.26 3.03×10
5

 

sPPET(6) 12.1 8.5 95.0 1.94 2.59×10
5

 

sPPET(7) 12.6 9.1 97.5 2.12 2.84×10
5

 

sPPET(8) 15.4 9.8 93.7 2.10 2.80×10
5

 

sPPET(9) 17.3 13.2 91.8 2.02 2.69×10
5

 

sPPET(10) 21.4 14.3 78.2 1.13 1.45×10
5

 

sPPET(11) 24.9 15.9 66.0 1.47 1.94×10
5

 

sPPET(12) 27.1 16.2 65.9 1.47 1.94×10
5

 

sPPET(13) 34.4 17.5 53.9 1.14 1.48×10
5

 

sPPET(14) 45.5 26.8 / 1.17 1.53×10
5

 

sPPET(15) 71.2 47.7 / 0.89 1.14×10
5

 

sPPET(16) 82.5 59.1 / 1.01 1.31×10
5

 
a
)

 
Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerizzation time = 2 h; flow rate = 5mL/s; yeld 2-5g. 
b
) Determined from 

13
CNMR spectra, recorded with a Varian XL-200 

spectrometer operating at 50.3 MHz, of 10% w/v polymer solutions in deuterated tetrachloroethane (also used as internal standard) at 120 °C. 
c
) 

Determined from maximum of melting endotherm recorded using a Perkin-Elmer DSC 7 apparatus in N2 atmosphere at 10°C/min heating rate. 
d
) 

Measured in 1,2,3,4-tetrahydronaphtalene solutions at 135 °C. 
e
) Molecular masses evaluated from values of intrinsic viscosity, using the parameters of 

Mark-Houwink equation reported for atactic polypropylene α = 0.96, k = 1.24×10
-5

 dL/g.
156
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Table 1.3. Composition and melting temperatures (Tm), of sPPET copolymer samples prepared with the catalytic systems 

Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition 

(mol % ethylene) 

Copolymer composition 

(mol % ethylene)
b
 

T
m 
(°C)

c
 

RDG-2-41 0.85 0.4 145.5 

RDG-2-40 2.8 1.7 136.3 

AK-sPPEt-2 4 1.9 133.2 

RDG-2-42 5.8 2.4 132.5 

AK-sPPEt-10 16 8.3 95.4 

AK-sPPEt-15 23 11.9 70.2 

AK-sPPEt-25 43 27.5 - 
a
)

 
Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerizzation time = 2 h; flow rate = 5mL/s; yeld 2-5g. 
b
) Determined from 

13
CNMR spectra. 

c
) Determined from maximum of 

melting endotherm recorded at 10°C/min heating rate. 
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Table 1.4. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular mass (Mv) of 

sPPBu copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a 

Samples 
Feed composition 

(mol% of 1-butene) 

Copolymer Composition 

(mol% of 1-butene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mv (g/mol)

e
 

sPPBu-1 1.1 3.2 138 2.60 349000 

sPPBu-2 2.6 6.1 126 2.00 266000 

sPPBu-3 4.8 6.7 123 2.50 335000 

sPPBu-4 6.6 11.2 110 2.30 307500 

sPPBu-5 7.6 13.6 108 3.00 405500 

sPPBu-6 11.0 18.2 100 2.10 279600 

sPPBu-7 16.5 31.5 85 2.00 266000 

sPPBu-8 22.6 37.9 71 1.50 197000 

sPPBu-9 34.6 51.7 70 1.46 191500 

sPPBu-10 45.2 52.1 64 1.35 176500 

sPPBu-11 65.1 69.9 57 1.10 142600 

sPPBu-12 84.7 89.0 54 1.65 217500 
a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
)

 
Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
Measured in 1,2,3,4-tetrahydronaphthalene solutions at 135 °C. 

e
) Molecular masses 

evaluated from values of intrinsic viscosity.  
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Table 1.5. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular mass (Mv) of 

sPP4MP copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition (mL 

of 4-methyl-1-pentene) 

Copolymer Composition 

(mol% of 4-methyl-1-pentene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mv (g/mol)

e
 

sPP4MP-1 1 1.8 140.0 2.8 377406 

sPP4MP-2 2 4 130.2 2.4 321420 

sPP4MP-3 2.8 5.5 125.0 n.a
f
 n.a

f
 

sPP4MP-4 4 12.9 114.7 2.2 293568 

sPP4MP-5 8 15.2 92.8 2.0 265823 

sPP4MP-6 11.1 20.5 55.9, 77.2g 1.8 238192 

sPP4MP-7 16 21.3 53.5 1.7 224424 

sPP4MP-8 20 24.6 / 1.2 156135 

sPP4MP-9 16 32 57.3 1.3 169711 
a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in 1,2,3,4-tetrahydronaphthalene solutions at 135 °C. 

e
) Molecular masses 

evaluated from values of intrinsic viscosity; 
f
) not available data. 

g
) Multiple melting peaks have been observed. 
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Table 1.6. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular mass (Mv) of 

sPPHe copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO
 
(1 of Chart 1).

a
 

Samples 
Feed composition 

(mL of 1-hexene) 

Copolymer Composition 

(mol% of hexene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mv (g/mol)

e
 

sPPHe-1 1.0 1.7 135.8 3.0 4.1×10
5 

sPPHe-2 2.0 3.0 125.2 3.75 5.1×10
5
 

sPPHe-3 3.0 3.9 111.3 2.3 3.1×10
5
 

sPPHe-4 4.0 5.6 99.8 3.0 4.1×10
5
 

sPPHe-5 6.0 6.4 83.2 2.7 3.6×10
5
 

sPPHe-6 7.8 9.0 68.3 2.4 3.2×10
5
 

sPPHe-7 9.8 11.2 59.0 2.3 3.1×10
5
 

sPPHe-8 12.0 18.8 53.6 2.6 3.5×10
5
 

a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in 1,2,3,4-tetrahydronaphthalene solutions at 135 °C. 

e
) Molecular masses 

evaluated from values of intrinsic viscosity.  
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Table 1.7. Composition, Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular 

mass (Mv) of sPPOt copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition 

(mL of 1-octene) 

Copolymer Composition 

(mol% of octene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mv (g/mol)

e
 

sPPOt-1 1.25 1.9 134.4 2.4 3.2×10
5
 

sPPOt-2 2.5 2.7 124.6 2.4 3.2×10
5
 

sPPOt-3 3.75 3.1 111.6 2.0 2.5×10
5
 

sPPOt-4 5 4 104.9 2.1 2.6×10
5
 

sPPOt-5 6.25 5 99.0 2.4 3.2×10
5
 

sPPOt-6 7.5 6.1 92.3 2.4 3.2×10
5
 

sPPOt-7 10 9.3 61.1 1.2 1.6×10
5
 

sPPOt-8 12.5 18.8 60.0 2.2 2.7×10
5
 

sPPOt-9 15 26.1 57.5 2.1 2.6×10
5
 

a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in 1,2,3,4-tetrahydronaphthalene solutions at 135 °C. 

e
) Molecular masses 

evaluated from values of intrinsic viscosity.  
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Table 1.8. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and viscosity average molecular mass (Mv) of 

sPPC12 copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition 

(mL of 1-dodecene) 

Copolymer Composition 

(mol% of 1-dodecene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mv (g/mol)

e
 

sPPC12-1 1.0 0.8 141.4 2.8 3.7×10
5
 

sPPC12-2 2.5 1.8 133.6 2.8 3.8×10
5
 

sPPC12-3 4.0 2.7 123.7 2.5 3.3×10
5
 

sPPC12-4 8.0 4.2 103.2 2.4 3.2×10
5
 

sPPC12-5 12.0 6.0 86.1 1.3 1.7×10
5
 

a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in 1,2,3,4-tetrahydronaphthalene solutions at 135 °C. 

e
) Molecular masses 

evaluated from values of intrinsic viscosity.  
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Table 1.9. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and weight average molecular mass (Mw) of 

sPPC18 copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition 

(mL of 1-octadecene) 

Copolymer Composition 

(mol% of 1-octadecene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mw (g/mol)

e
 

sPPC18-1_iAc 1 0.3 144.7 0.65 83259 

sPPC18a_iAc 2 0.7 142.8 0.40 51308 

CA-sPPC18-4_iAc 4 0.9 131.9 2.39 338209 

sPPC18-2_iAc 8 2.8 55.6, 111.9
f
 0.54 78394 

CA-sPPC18-12_iAc 12 4.2 51.6, 97.4
f
 2.24 258896 

sPPC18c_iAc 16 5.53 55.3, 92.1
f
 0.92 144658 

a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in o-dichlorobenzene solutions at 145 °C. 

e
) Molecular masses evaluated 

from GPC.
 f
) Multiple melting peaks have been observed. 
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Table 1.10. Composition, melting temperatures (Tm), intrinsic viscosities ([η]), and weight average molecular mass (Mw of 

sPPC20 copolymers prepared with the catalytic systems Ph2C(Cp)(Flu)ZrCl2/MAO (1 of Chart 1).
a
 

Samples 
Feed composition 

(mL of 1-eicosene) 

Copolymer Composition 

(mol% of 1-eicosene)
b
 

Tm (°C)
c
 [η] (dL/g)

d
 Mw (g/mol)

e
 

sPPC20-1_iEE 1.1 0.3 144.6 2.66 283422 

sPPC20-2_iEE 2.2 0.7 140.6 2.78 304852 

sPPC20-3_iEE 4.4 1.6 128.3 2.50 256778 

sPPC20-4_iEE 8.8 1.6 120.6 1.73 214386 

sPPC20-5_iEE 13.2 3.9 99.7 1.24 173742 

sPPC20-6_iEE 17.6 5.4 95 2.00 268381 

sPPC20-7_iAc 25.0 8.6 -0.4, 50.3, 79.4
 f
 1.85 282259 

a
) Polymerization temperature = 10 °C; pressure = 1 atm; solvent = toluene (100 mL); molar ratio Al/Zr = 1000; catalyst amount = 2-3 mg; reactor 

volume = 250 mL; polymerization time = 2 h; flow rate = 0.3 L/min; yield = 2-5 g. 
b
) Determined from 

13
C NMR spectra. 

c
) Determined from DSC 

curves of as-prepared samples recorded at heating rate 10 °C/min. 
d
) Measured in o-dichlorobenzene solutions at 145 °C. 

e
) Molecular masses evaluated 

from GPC. 
f
) Multiple melting peaks have been observed. 
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Thin films (20-50 μm thick) of the samples have been prepared for polarized 

optical microscopy (POM) experiments. Small amounts of the powder samples 

have been sandwiched between glass coverslips, heated at temperature 20-30°C 

higher than the melting temperature Tm of the sample at 40°C/min kept at that 

temperature for 2-5 minutes, and then slowly cooled to room temperature at 2.5 

°C/min. Optical microphotographs of the samples have been recorded at room 

temperature in polarized light using a Zeiss Axioskop 40 microscope provided 

with a Mettler FP82 and/or a Linkam hot stage. 

Calorimetric measurements were performed with a differential scanning 

calorimeter (DSC-822) by Mettler Toledo in a flowing N2 atmosphere. In all 

experiments, small amount of the sample has been heated from room 

temperature up to a temperature 20-30°C higher than the melting temperature of 

the sample at 40°C/min. The sample has been kept at that temperature for 

several minutes (2-5 minutes) and then cooled to room temperature at 

2.5°C/min. X-ray powder diffraction profiles have been obtained with Ni-

filtered CuK radiation using automatic powder diffractometers X‟Pert (for 

thick samples) and Empyrean Multipurpose (for thin films), both by 

PANalytical. 

AFM and SAXS experiments have been performed in the group of Professor 

Thomas Thurn-Albrecht at Martin Luther Universität of Halle-Wittenberg. Thin 

films of the samples have been prepared for AFM measurements. Small 

amounts of the powder samples have been sandwiched between a glass 

coverslip and a kapton foil, then heated at temperature 20-30 °C higher than the 

melting temperature Tm of the sample at 30 °C/min and cooled at 2.5 °C/min to 

room temperature in a Linkam hotstage provided with a THMS600 

Temperature Controller. The kapton foil has been removed before the AFM 

measurement. Measurements in Tapping mode have been performed on a 

Bruker MultiMode 8 AFM at room temperature.  

Small Angle X-ray scattering measurements on compression molded films 

with 2 mm of thickness of random copolymers of sPP with ethylene (sPPEt) 

and 1-butene (sPPBu) have been collected using a Kratky compact camera in 

the slit collimation configuration, attached to a conventional X-ray source 

(CuKα, wavelength λ =1.5418 Å). The scattered radiation was recorded on with 

Position Sensitive Detector (PSD). The measurements have been performed at 

room temperature, after heating up to a temperature 20-30°C higher than the 

melting temperature of the sample and cooling to room temperature. Heating 

and cooling rates were not controlled. Small Angle X-ray scattering 
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measurements on two samples of random copolymers of sPP with 1-butene 

have been collected on powder of compression-molded samples using a 

SAXSLAB‟s GANESHA Instrument provided with Microfocus Rotating 

Anode source (CuKα, wavelength λ =1.5418 Å) and Pilatus detector. Powder of 

as prepared samples have been heated up to a temperature 20-30 °C higher than 

the melting temperature of the sample and then cooled to room temperature at 

10 °C/min in a Linkam stage provided with a TMS94 controller and a Liquid 

Nitrogen Pump. 

 

1.6. Study of the crystal morphology by polarized optical microscopy 

In this section a study of the crystal morphology of samples of sPP of 

different stereoregularity and samples of random copolymers of sPP with 

ethylene, 1-butene, 4-methyl-pentene, 1-hexene, 1-octene, 1-dodecene, 1-

octadecene, 1-eicosene by using polarized optical microscopy will be discussed. 

 

1.6.1. Crystal morphology of sPP of different stereoregularity 

The X-ray powder diffraction profiles of the analyzed as-prepared samples 

of sPP of different stereoregularity of Table 1.1 (rapidly crystallized from the 

polymerization solution) are reported in Figure 1.31A,B. Almost all samples are 

crystallized in the helical form I of sPP (Figure 1.12A), as indicated by the 

presence of the 200 and 010 reflections at 2 = 12 and 16°, respectively, in 

most of the diffraction profiles of figure 1.31A,B. The absence of the 211 

reflection at 2 = 18.8° indicate that the sample are crystallized in disordered 

modifications of form I, characterized by disorder in the regular alternation of 

left and right handed helices along the axes of the unit cell. Samples sPP6 and 

sPP7 with relatively low stereoregularity ([rrrr] = 88-90%) quench precipitated 

from polymerization solution are crystallized in disordered modifications of 

form II of sPP (Figure 1.12B), as indicated by the presence of the 110 reflection 

at 2 = 17° in the diffraction profiles f-g of Figure 1.31A. The disorder 

corresponds to the presence of conformational kink-bands defects in the 

prevailingly two-fold helical conformation (Figure 1.22). 

Figure 1.31C shows X-ray powder diffraction profiles of thin films of 

samples of sPP crystallized from the melt by cooling at 2.5 °C/min, prepared 

for polarized optical microscopy (POM) experiments. The quality of the 

diffraction patterns is low because of the very low thickness of the film and the 

use of the glass coverslip used as a support for the measurements. Therefore, 

the background and the amorphous halo of the glass often cover the crystalline 
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reflections of the samples. In any case the profiles of Figure 1.31C are 

sufficient to demonstrate that all samples observed by POM are crystallized 

from the melt in form I of sPP. Samples sPP13-sPP17 do not crystallize from 

the melt but crystallize in form I by aging at room temperature. 
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Figure 1.31. X-ray powder diffraction profiles of as-prepared samples (A,B) and selected samples crystallized from the melt at cooling rate of 2.5 

°C/min (C) of samples of sPP of different stereoregularity of Table 1.1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical form 

I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated.  
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Polarized optical microscopy (POM) images of samples of sPP of different 

stereoregularity of Figure 1.31 crystallized from the melt at cooling rate of 2.5 

°C/min are reported in Figures 1.32-1.35 at two different magnifications 20X 

(Figures 1.32A-E - 1.35A-E) and 40X (Figures 1.32A‟-E‟ - 1.35A‟-E‟). 

Samples sPP13-sPP18 do not crystallize from the melt, therefore POM images 

of these samples have been collected after melting, slow cooling to room 

temperature and aging at room temperature for at least one month. Moreover, 

only samples sPP13 and sPP14 have showed birefringence after aging and no 

POM images have been collected for samples sPP15-sPP18.  

Different kind of crystalline superstructures have been observed depending 

on stereoregularity. Typical bundles of rod-like lamellae, bow-tie and open 

multi-faceted aggregates have been observed in samples with rrrr content in the 

range 96-91% (Figure 1.32), indicating occurrence of space filling 

crystallization. While the growth of the needles is one-dimensional, rodlike and 

bow-tie aggregates have a clear lateral structure with branches commonly 

perpendicular to the growth direction.
157

 Rare structures also form during the 

crystallization of some stereoregular samples. Figures 1.32D,D‟ depicts 

spherulites with a star structure, which are not regularly branched. It seems that 

this structures have one main growth direction and the branching that would 

give a three dimensional spherulites is hindered, so that the typical Maltese 

cross cannot be observed. 
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sRDG-2-1, [rrrr] = 95.5% 

  

      A      A' 
sPP2, [rrrr] =95% 

  

       B      B' 
sPP3, [rrrr] =94.2% 

  

       C      C' 
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sPP4, [rrrr] =92.5% 

  

       D      D' 
sPP5, [rrrr] =91.5% 

  

       E      E' 

Figure 1.32. POM images of samples sRDG-2-1 with [rrrr] = 95.5% (A,A’), sPP2 with [rrrr] 

= 95% (B,B’) sPP3 with [rrrr] = 94.2% (C,C’,) sPP4 with [rrrr] = 92.5% (D,D’) and sPP5 

with [rrrr] = 91.5% (E,E’). 

 

Samples of sPP with rrrr content in the range of 90-87% exhibit the typical 

bundle-like elongated crystalline entities and needle-like crystals with few 

small bow-tie aggregates (Figure 1.33). The higher amount of stereodefects 

avoid crystallization of bigger crystalline aggregates except in the sample sPP7 

with rrrr concentration of 88.6 mol% where star structures, open multi-faceted 

and other irregular aggregates are visible (Figure 1.33B,B‟). 
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sPP6, [rrrr] =90.7% 

  

       A      A' 
sPP7, [rrrr] =88.6% 

  

       B      B' 
sPP8, [rrrr] =87% 

  

       C      C' 

Figure 1.33. POM images of samples sPP6 with [rrrr] = 90.7% (A,A’), sPP7 with [rrrr] = 

88.6% (B,B’) and sPP8 with [rrrr] = 87% (C,C’). 
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Samples with rrrr content in the range of 78-60% exhibit the typical bundle like 

elongated crystalline entities and needle-like crystals (Figure 1.34) with only 

few small bow-tie aggregates appearing in more stereoregular samples sPP9 

and sPP10 (Figure 1.34 A,A‟-B,B‟). 

 

sPP9, [rrrr] = 78% 

  

       A      A' 
sPP10, [rrrr] = 74.8% 

  

       B      B' 
sPP11, [rrrr] = 70.6% 

  

       C      C' 
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sPP12, [rrrr] = 60.1% 

  

       D      D' 
Figure 1.34. POM images of samples sPP9 with [rrrr] = 78% (A,A’), sPP10 with [rrrr] = 

74.8% (B,B’), sPP11 with [rrrr] = 70.6% (C,C’), sPP12 with [rrrr] = 60.1% (D,D’). 
 

Poorly syndiotactic samples with rrrr lower than 60% do not crystallize 

from the melt and POM images, reported in Figure 1.35, have been recorded 

after crystallization by aging at room temperature for one month. Only needle 

crystals are observed because the low stereoregularity avoids the formation of 

additional bigger aggregates. 

The data of Figures 1.32-1.35 indicate that the morphology of crystals of 

form I of sPP depends on the stereoregularity. For high stereoregularity and 

concentrations of rrrr pentad in the range 96-91%, bigger crystalline 

aggregates, such as open multi-faceted aggregates, spherulites with a star 

structure, bundles of rod-like lamellae and bow-tie aggregates, are observed 

(Figure 1.32). For lower stereoregularity and concentrations of rrrr pentad in 

the range 90-87% only bundle-like elongated entities and needle-like crystals 

with few small bow-tie aggregates are observed (Figure 1.33), whereas for 

concentrations of rrrr pentad in the range 78-60% bundle like elongated entities 

and needle-like crystals are observed (Figure 1.34), and finally for poorly 

syndiotactic samples with concentrations of rrrr pentad lower than 60% only 

needle-like crystals are observed (Figure 1.35).  
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sPP13, [rrrr] = 54.6% 

  

       A      A' 
sPP14, [rrrr] = 51.6% 

  

       B      B' 

Figure 1.35. POM images of samples sPP13 with [rrrr] =54.6% (A,A’) and sPP14 with [rrrr] 

= 51.6% (B,B’). 
 

This analysis has also shown that, in addition to the superstructures observed 

in the Figures 1.32-1.35, that is, open multi-faceted aggregates, spherulites with 

a star structure, bundles of rod-like lamellae and bow-tie aggregates, which are 

observed in thinner regions of the films, also needle-like birefringent entities 

are always present in thicker regions of the films of all samples, regardless of 

stereoregularity. This is shown in Figure 1.36, where POM images recorded in 

thick regions of the films of all samples are reported. For poorly syndiotactic 

samples with rrrr in the range 70-50% (samples sPP11-sPP14), both thin and 

thick regions of the films always depicts only the needle and bundle-like 

morphology observed in Figure 1.34 C,C‟ and D,D‟ and in Figure 1.35 because 

the high concentration of stereodefects avoids the formation of bigger 

aggregates. Therefore, further POM images of these samples in thick regions 

are not reported in Figure 1.36. 
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sRDG-2-1, [rrrr] = 95.5% 

  

       A      A' 
sPP2, [rrrr] =95% 

  

       B      B' 
sPP3, [rrrr] =94.2% 

  

       C      C' 
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sPP4, [rrrr] =92.5% 

  

       D      D' 
sPP5, [rrrr] =91.5% 

  

       E      E' 
sPP6, [rrrr] =90.7% 

  

       F      F' 
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sPP7, [rrrr] =88.6% 

  

       G      G' 
sPP8, [rrrr] =87% 

  

       H      H' 
sPP9, [rrrr] = 78% 

 

         I 
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sPP10, [rrrr] = 74.8% 

  

       L      L' 

Figure 1.36. POM images of samples sRDG-2-1 with [rrrr] = 95.5% (A,A’), sPP2 with [rrrr] 

= 95% (B,B’) sPP3 with [rrrr] = 94.2% (C,C’,) sPP4 with [rrrr] = 92.5% (D,D’), sPP5 with 

[rrrr] = 91.5% (E,E’), sPP6 with [rrrr] = 90.7% (F,F’), sPP7 with [rrrr] = 88.6% (G,G’), 

sPP8 with [rrrr] = 87% (H,H’), sPP9 with [rrrr] = 78% (I,I’) and sPP10 with [rrrr] = 74.8% 

(L,L’) 
 

This morphology, in addition to the structural transformations typical of sPP 

occurring during deformation and relaxation, is in part responsible of the 

mechanical properties of high ductility and flexibility and the elastic behavior 

of the sPP samples, in particular in the case of samples of low stereoregularity. 

Small and elongated needle-like crystals organized in the interwoven 

morphology of Figures 1.36 act as physical cross-links in the amorphous 

matrix, producing the elastomeric network. In the case of samples of high 

stereoregularity showing bigger crystalline aggregates of Figure 1.32-1.34, the 

elastic behavior is mainly due to the enthalpic contribution of the reversible 

polymorphic transformation between the trans-planar form III and the helical 

form II. However, since very big and well-formed spherical spherulites are 

never observed, the contribution to the elastic properties of long and densely 

entangled amorphous tie-chains
158

 is not negligible. 
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1.6.2. Crystal morphology of copolymers of sPP with ethylene 

Samples syndiotactic propylene-ethylene copolymers (sPPET) are crystalline 

up to an ethylene concentration of 18-20 mol%. Ethylene units are partially 

included in the crystals of both as-prepared and melt crystallized samples.
142

 

As-prepared sPPET samples basically crystallize in conformationally 

disordered modifications of form II of sPP containing kink bands (Figure 

1.22B),
142b,c

 as demonstrated by the X-ray diffraction profiles of Figure 

1.37A,B that present for all samples the typical 110 reflection at 2 = 17° of 

form II of sPP. The amount of kink bands defects, represented mainly by T6G2 

sequences, increases with the ethylene content. These modifications are 

metastable and transform by crystallization from the melt into the most stable 

form I or form II, depending on the ethylene concentration. As shown by X-ray 

powder profiles of thin films crystallized from the melt at 2.5 °C/min of Figure 

1.37C, sPPET samples having low ethylene content (up to 6-7 mol%) 

crystallize from the melt into the antichiral form I, even though disordered 

modifications of form I are always obtained.
142c

 For higher ethylene contents, 

mixtures of crystals of forms I and II are obtained by crystallization from the 

melt. The fraction of form II increases with increasing the ethylene content.
142c

 

The form II obtained by melt-crystallizations does not present kink-band 

disorder, all chains being in the more stable (T2G2)n helical conformation.
142c

 

Samples with ethylene content higher than 8 mol% do not crystallize from the 

melt but they crystallize upon aging at room temperature.
142 

As discussed in the section 1.3, all the crystalline samples show elastic 

properties.
142f

 The most crystalline samples, with ethylene contents lower than 

6-7 mol%, show poor elastic properties as in the case of sPP, but higher 

ductility. In these samples the elastic behavior is associated to a reversible 

polymorphic transition between the trans-planar form III and the helical form II 

that provides an enthalpic contribution to the elasticity.
142f

 The elastic 

properties are improved with increasing ethylene concentration. For less 

crystalline samples, with higher ethylene concentration, the elastic recovery is 

not associated to any polymorphic transitions and has a pure entropic origin, as 

in conventional elastomers.
142d,f
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Figure 1.37. X-ray powder diffraction profiles of as-prepared samples (A,B) and samples crystallized from the melt at cooling rate of 2.5 °C/min (C) of 

sPPET copolymers of Table 1.2 (A) and Table 1.3 (B) prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, 

respectively, of the helical form I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated.  
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The POM images of thin films of the samples of copolymers sPPET selected 

from samples reported in Tables 1.2 and 1.3 (AK-sPPEt-2) crystallized from the 

melt by cooling at 2.5 °C/min are shown in Figure 1.38-1.40 at two 

magnification. The morphology of samples with low ethylene concentration, up 

to  6 mol%, that crystallize mainly in the form I, is characterized by the 

presence of bundles of rod-like lamellae, bow-tie and open multi-faceted 

aggregates (Figure 1.38). 

POM images of samples with ethylene content in the range 7-10 mol%, still 

crystallizing mainly in form I of sPP, show prevailingly needle-like and bundle-

like morphology with only small bow-tie aggregates (Figure 1.39). 

For ethylene concentrations higher than 10 mol%, the samples crystallize upon 

aging in form II with low degrees of crystallinity and only needle-like 

morphology has been observed (Figure 1.40). When the ethylene content is 

higher than 15 mol% no birefringence is observed even after aging at room 

temperature for long time. 
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sPPET(2), 1.5 mol% of ethylene 

  
       A            A' 

AKsPPEt-2, 1.9 mol% of ethylene 

  
       B             B' 

sPPET(3), 2.6 mol% of ethylene 

  
       C            C' 

Figure 1.38. POM images of samples sPPET(2) with 1.5 mol% of ethylene (A,A’), AKsPPEt2 

with 1.9 mol% of ethylene (B,B’), sPPET(3) with 2.6 mol% of ethylene (C,C’). 
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sPPET(4), 6.3 mol% of ethylene 

  
       A            A' 

sPPET(6), 8.5 mol% of ethylene 

  

       B            B' 
sPPET(8), 9.8 mol% of ethylene 

  

       C            C' 

Figure 1.39. POM images of samples sPPET(4) with 6.3 mol% of ethylene (A,A’), sPPET(6) 

with 8.5 mol% of ethylene (B,B’) and sPPET(8) with 9.8 mol% of ethylene (C,C’). 
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sPPET(9), 13.2 mol% of ethylene 

  

       A            A' 
sPPET(10), 14.3 mol% of ethylene 

  

       B            B' 
Figure 1.40. POM images of samples sPPET(9) with 13.2 mol% of ethylene (A,A’) and 

sPPET(10) with 14.3 mol% of ethylene (B,B’). 
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1.6.3. Crystal morphology of copolymers of sPP with butene 

Syndiotactic propylene-butene copolymers (sPPBu) are crystalline in the 

whole range of comonomer composition due to the complete cocrystallization 

of butene and propylene in the crystalline lattices of sPP and sPB.
140,143

 The X-

ray powder diffraction patterns of as-prepared samples of sPPBu copolymers 

are reported in Figure 1.41A. It is apparent that the samples are crystalline in 

the whole range of comonomer composition. Samples with the highest content 

of 1-butene (>80 mol %) behave like syndiotactic poly(1-butene) (sPB); they 

are amorphous just after the polymerization but crystallize if kept at room 

temperature for several days. The X-ray diffraction profiles of all copolymers 

present strong analogies with the X-ray patterns of the corresponding 

homopolymers, i.e., they present three strong reflections in the 2θ angular 

ranges 10.5-12.2°, 15-16°, and 19-21° and indicate that samples with low 

butene concentrations are crystallized in the form I of sPP, whereas samples 

with butene content higher than 60-70 mol% are crystallized in form I of 

sPB.
140,143

 The same crystallization behavior has been observed in thin films 

crystallized from the melt by cooling at 2.5 °C/min, as shown by the diffraction 

profiles of Figure 1.41B. Samples are crystallized in the form I of sPP up to a 

content of 1-butene of 60-70 mol %, as indicated by the indexing of the 

reflection at 2 = 15-16° as a 010 reflection of sPP,
140,143

 although disorder in 

the alternation of right- and left-handed helical chains along both axes of the 

unit cell is present as indicated by the absence of the 211 reflection of 

sPP.
1,97,109

 Samples with contents of 1-butene higher than 70 mol % crystallize 

in structures similar to that of form I of sPB,
140

 as indicated by the indexing of 

the reflection at 2 = 15-16° as a 110 reflection of sPB.
152

 However, samples 

with butene content higher than 30 mol% are amorphous just after cooling the 

melt but crystallize by aging at room temperature for several days.
143g

 

Melt-crystallized unoriented films of sPPBu copolymers show good elastic 

properties even though the samples present non-negligible level of crystallinity 

at any comonomer composition. Compared to the sPPET copolymers, sPPBu 

samples show higher crystallinity and melting temperature (Figure 1.30) thanks 

to the cocrystallization of the comonomers at any composition. Therefore, 

sPPBu copolymers behave as thermoplastic elastomers with remarkable high 

rigidity and mechanical strength that can also be tuned by changing the 

comonomer composition. In samples with low butene concentration the elastic 

properties are associated with the reversible transformation between the trans-

planar form III of sPP, obtained by stretching, and the helical form II, formed 
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by releasing the tension. The occurrence of reversible phase transitions assists 

the elasticity of these materials through a non negligible free energy 

contribution that is added to the conventional entropic contribution.
143g 

The POM images of the samples of sPPBu copolymers crystallized from the 

melt at cooling rate of 2.5 °C/min of Figure 1.41B are shown in Figure 1.42, for 

samples up to 18 mol% of butene and in Figure 1.43 for higher butene 

concentration. For low butene content bow-tie crystals and bigger fan-type 

crystals have been observed along with thin needle crystals (Figure 1.42A,A‟). 

As butene content increases, needle-like morphology prevails with crystals that 

become thinner and smaller with increasing butene content (Figure 1.42B,B‟ 

and D,D‟). In some case, a granular morphology instead of needle-like 

morphology has been observed (Figure 1.42C,C‟).
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Figure 1.41. X-ray powder diffraction profiles of as-prepared samples (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min 

(B) of sPPBu copolymers of Table 1.4 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of form I of 

sPP, and the 110 reflection at 2 = 17° of form I of sPB are indicated. 
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sPPBu-1, 3.2 mol% of 1-butene 

  

       A            A' 
sPPBu-2, 6.1 mol% of 1-butene 

  

       B            B' 
sPPBu-4, 11.2 mol% of 1-butene 

  
       C            C' 
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sPPBu-6, 18.2 mol% of 1-butene 

   

       D            D' 

Figure 1.42. POM images of samples sPPBu-1 with 3.2 mol% of 1-butene (A,A’), sPPBu-2 with 

6.1 mol% of 1-butene (B,B’), sPPBu-4 with 11.2 mol% of 1-butene (C,C’) and sPPBu-6 with 

18.2 mol% of 1-butene (D,D’). 

 

Samples with higher butene content do not crystallize from the melt. 

Samples sPPBu7 (31.5 mol% of 1-butene) and sPPBu9 (51.7 mol% of 1-

butene) crystallize upon cooling at 2.5°C/min to room temperature and aging at 

room temperature for 90 and 22 days, respectively, in the form I of sPP (Figura 

1.41B). These samples show prevalently a “salt and pepper” granular 

morphology with some needle-crystals visible only at high magnification 

(Figure 1.43 A,A‟ and B,B‟). Further increase in butene concentration leads to a 

small increase of crystallinity. Samples sPPBu11 (69.9 mol% of 1-butene) and 

sPPBu12 (89 mol% of 1-butene) crystallize upon cooling at 2.5°C/min to room 

temperature and aging at room temperature for 22 days in form I of sPB (Figure 

1.41B). This small increase in crystallinity leads to a small increase in 

birefringence. Therefore, the needle-like and granular morphology displayed by 

the samples sPPBu11 and sPPBu12 (Figure 1.43C,C‟ and D,D‟) is 

characterized by crystals slightly bigger than the samples sPPBu7 and sPPBu9. 
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sPPBu-7, 31.5 mol% of 1-butene 

  

       A            A' 
sPPBu-9, 51.7 mol% of 1-butene 

   

       B            B' 
sPPBu-11, 69.9 mol% of 1-butene 

   

       C            C' 
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sPPBu-12, 89 mol% of 1-butene 

  

       D            D' 

Figure 1.43. POM images of samples sPPBu-7 with 31.5 mol% of 1-butene (A,A’), sPPBu-9 

with 51.7 mol% of 1-butene (B,B’), sPPBu-11 with 69.9 mol% of 1-butene (C,C’) and  sPPBu-

12 with 89 mol% of 1-butene (D,D’). 

 

1.6.4. Crystal morphology of copolymers of sPP with 4-methyl-1-pentene 

Syndiotactic propylene-(4-methyl-1-pentene) copolymer (sPP4M1P) 

samples are crystalline up to a 4-methyl-1-pentene concentration of 20 mol%. 

The X-ray powder diffraction profiles of as-prepared samples of sPP4M1P 

copolymers, reported in Figure 1.44A, show that all samples crystallize in the 

form I of sPP, as indicated by the presence of the 010 reflection of form I of 

sPP at 2 = 16° in the diffraction profiles of all samples. Thin films of samples 

crystallized from the melt at 2.5 °C/min of sPP4M1P copolymers are also 

crystallized in the form I of sPP (Figure 1.44B). Samples with 4-methyl-1-

pentene content higher than 15 mol% do not crystallize from the melt but 

crystallize upon aging at room temperature. Contrary to sPPBu copolymers, the 

200 and 010 reflections of the diffraction profiles of Figure 1.44A and B are at 

the constant values of 2 = 12 and 16°, respectively. This indicates that the 4-

methyl-1-pentene units are mainly excluded by the crystals of form I of sPP.  

All copolymer samples show good elastic properties (data not shown). X-ray 

fiber diffraction patterns recorded during deformation (data not shown) indicate 

that in samples with 4-methyl-1-pentene concentration lower than 15 mol% the 

elastic properties are associated with the reversible transformation between the 

trans-planar form III of sPP, obtained by stretching, and the helical form II, 

formed by releasing the tension. For less crystalline samples, with higher 4-

methyl-1-pentene concentration, the elastic recovery is not associated to any 

polymorphic transitions and has a pure entropic origin, as in conventional 

elastomers. 
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Figure 1.44. X-ray powder diffraction profiles of as-prepared samples (A) and samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPP4M1P copolymers of Table 1.5 prepared with the catalyst 1 of Chart 1. The 200 and 020 reflections at 2 = 12 and 16°, respectively, of form I of 

sPP are indicated. 
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The POM images of the samples of sPP4M1P copolymers crystallized from 

the melt at cooling rate of 2.5 °C/min of Figure 1.44B, aged at room 

temperature for one week in order to achieve the complete crystallization and 

improve the birefringence, are shown in Figure 1.45. For low comonomer 

content very small open-multifaceted aggregates together with bow-tie and 

granular crystals appear (Figure 1.45A,A‟). As the comonomer content 

increases, the morphology is characterized by the presence of granular crystals 

and also by small bow-tie and needle crystals, more visible at higher 

magnification (Figure 1.45B,B‟-C,C‟). Only the sample sPP4MP1P-4 shows 

mainly a “salt and pepper” granular morphology because of the higher 

comonomer content (15.4 mol% of 4-methyl-1-pentene). Sample sPP4MP1P-5 

with 20.5 mol% of 4-methyl-1-pentene (not shown) do not show birefringence 

even after long aging time probably because of the too low crystallinity 

achieved after aging (profile e of Figure 1.44B).  
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sPP4M1P-1, 1.9 mol% of 4MP 

  

       A            A' 
sPP4M1P-2, 4 mol% of 4MP 

  

       B            B' 
sPP4M1P-3, 12.9 mol% of 4MP 

  

       C            C' 
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sPP4M1P-4, 15.2 mol% of 4MP 

  

       D            D' 

Figure 1.45. POM images of samples sPP4M1P-1 with 1.9 mol% of 4-methyl-1-pentene (A,A’), 

sPP4M1P-2 with 4 mol% of 4-methyl-1-pentene (B,B’), sPP4M1P-3 with 12.9 mol% of 4-

methyl-1-pentene (C,C’) and sPP4M1P-4 with 15.2 mol% of 4-methyl-1-pentene (D,D’). 

 

1.6.5. Crystal morphology of copolymers of sPP with 1-hexene and 1-

octene  

The X-ray powder diffraction profiles of as-prepared samples of syndiotactic 

propylene-1-hexene (sPPHe) and syndiotactic propylene-1-octene copolymer 

samples (sPPOt) are reported in Figure 1.46A and Figure 1.47A, respectively. 

The X-ray powder diffraction profiles of samples crystallized from the melt at 

2.5 °C/min of sPPHe and sPPOt copolymers are shown in parts B of Figures 

1.46 and 1.47, respectively.
146

 These data indicate that both as-prepared and 

melt-crystallized samples are all crystallized in the helical form I of sPP,
146

 as 

indicated by the presence of the 200 and 010 reflections at 2θ = 12° and 16°, 

respectively, of form I.
1,109

 The absence in all the diffraction profiles of the 211 

reflection at 2θ = 18.8°, typical of the ordered fully antichiral form I of sPP 

with perfect alternation of right- and left handed helical chains along both axes 

of the orthorhombic unit cells,
97-101

 indicates that all samples are crystallized in 

modifications close to the fully disordered form I with disorder in the 

positioning of right- and left-handed helical chains in the orthorhombic lattice.
 

1,97,109
 The presence of a weak reflection at 2θ = 17° in the diffraction profiles a 

of Figure 1.46A and 1.47A of as-prepared samples indicates that a small 

amount of crystals of form II of sPP is also present in samples with low 

comonomer contents. The Bragg distances of 200 and 010 reflections of form I 

are basically constant at the values of form I of the sPP homopolymer in all 

copolymer samples regardless of the comonomer concentration, indicating that 

hexene and octene units are mainly excluded from crystals of sPP.
146 
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The crystallinity decreases with increasing comonomer concentrations, and 

for hexene or octene contents higher than 18-20 mol% both as-prepared and 

melt-crystallized samples are basically amorphous with traces of crystals of 

form I.
146

 The samples sPPHe6-sPPHe8 with hexene concentration higher than 

9 mol % and the samples sPPOt4-sPPOt9 with octene content higher than 4 

mol% are amorphous soon after the cooling from the melt of the compression-

molded samples and slowly crystallize in several days by aging at room 

temperature.
146

 Traces of crystallinty of form I of sPP is still present up to a 

concentration of comonomers of 20-26 mol%.
146

  

The presence of the branched comonomers, however, influences the 

polymorphic behavior when the samples are stretched at high deformations.
146

 

They destabilize the trans-planar conformation of sPP chains and at relatively 

high concentrations (higher than 5-6 mol%) prevents the crystallization of both 

the trans-planar form III and the trans-planar mesophase.
146

 At low 

concentrations of hexene or octene (in the range 1-2 mol%) the behavior of 

these copolymers is similar to that of sPP; that is, the stable helical form I of the 

melt-crystallized samples transforms into the trans-planar form III by stretching 

at high deformations.
146

 For hexene or octene concentrations in the range 3-5 

mol% the stretching produces transformation of the helical form I into the 

trans-planar mesophase.
146

 Finally, for hexene and octene concentrations higher 

than 5-6 and 3 mol%, respectively, the helical form I transforms by stretching at 

high deformation into a different mesomorphic form, characterized by chains in 

the ordered 2/1 helical conformation and disorder in the lateral packing of the 

chains.
146

 Therefore, high concentrations of hexene or octene units stabilize the 

helical conformation of the chains, but the high content of constitutional defects 

prevents the formation of the ordered crystalline form I by stretching and the 

helical mesophase crystallize at high deformations.
146 

All samples exhibit good elastic properties (data not shown). For hexene or 

octene concentrations lower than 2 mol% the elastic properties are associated 

with the reversible transformation between the trans-planar form III of sPP, 

obtained by stretching, and the helical form II, formed by releasing the tension 

(data not shown). For less crystalline samples with hexene and octene 

concentrations higher than 5-6 mol% and 3 mol%, respectively, that crystallize 

only in helical forms in fibers stretched at high deformations,
146

 no phase 

transformations occur during deformation and relaxation (data not shown) and 

the elastic recovery has a pure entropic origin, as in conventional elastomers. 
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Figure 1.46. X-ray powder diffraction profiles of as-prepared (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPPHe copolymers of Table 1.6 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical form 

I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated. 
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Figure 1.47. X-ray powder diffraction profiles of as-prepared (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPPOt copolymers of Table 1.7 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical form 

I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated. 
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The POM images of the samples of sPPHe and sPPOc copolymers 

crystallized from the melt at cooling rate of 2.5 °C/min of Figures 1.46B and 

1.47B, aged at room temperature in order to achieve the complete 

crystallization and improve the birefringence, are shown in Figures 1.48 and 

1.49, respectively. For very low hexene concentration, a complex morphology 

characterized by the presence of a mixture of few small open multi-faceted 

aggregates, bundles of rod-like lamellae, bow-tie and needle-like crystals, has 

been observed (Figure 1.48A,A‟). As hexene content increases, open multi-

faceted aggregates disappear ,while bow-tie crystals become thinner and thinner 

until they disappear completely in samples with the highest 1-hexene content 

(Figure 1.48A,A‟-E,E‟). In fact, POM images of samples sPPHe-5 and sPPHe-6 

(Figure 1.48D,D‟ and Figure 1.48E,E‟, respectively) show mainly needle-like 

morphology. Samples sPPHe-7 and sPPHe8 do not show birefringence even 

after long aging time probably because too low crystallinity is achieved after 

aging.  

In the case of sPPOt copolymers, needle-like morphology seems to prevail 

regardless of octene concentration (Figure 1.49). Only the sample sPPOt-1 with 

1.9 mol% of octene shows few bigger bow-tie crystals (Figure 1.49A,A‟), while 

in POM images at high magnification of the sample sPPOt-2 with 2.7 mol% of 

octene some bigger bundles of rod-like lamellae can be observed (Figure 

1.49B,B‟). POM images of samples sPPOt-4, sPPOt-6 and sPPOt-7 (Figures 

1.49C,C‟, D,D‟ E,E‟, respectively) cooled from the melt at 2.5°C/min and aged 

at room temperature for 20-60 days in order to achieve the complete 

crystallization show only needle-like morphology. In all samples the needle 

crystals become thinner and smaller as octene content increases (Figure 1.49 

B,B‟-E,E‟). Sample sPPOt-8 with 18.8 mol% of octene does not show 

birefringence even after long aging time probably because a too low 

crystallinity is achieved after aging. In sPPOc copolymers the bigger octene 

units prevent formation of the big aggregates that have been observed in sPPHe 

copolymers at the same comonomer concentration (Figure 1.48). 
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sPPHe-1, 1.7 mol% of 1-hexene 

  

       A            A' 
sPPHe-2, 3 mol% of 1-hexene 

  

       B            B' 
sPPHe-3, 3.9 mol% of 1-hexene 

  

      C           C' 
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sPPHe-5, 6.4 mol% of 1-hexene 

  

       D            D' 
sPPHe-6, 9 mol% of 1-hexene 

  

       E            E' 

Figure 1.48. POM images of samples sPPHe-1 with 1.7 mol% of 1-hexene (A,A’), sPPHe-2 

with 3 mol% of 1-hexene (B,B’), sPPHe-3 with 3.9 mol% of 1-hexene (C,C’) sPPHe-5 with 6.4 

mol% of 1-hexene (D,D’) and sPPHe-6 with 9 mol% of 1-hexene (E,E’). 
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sPPOt-1, 1.9 mol% of 1-octene 

  

       A            A' 
sPPOt-2, 2.7 mol% of 1-octene 

  

       B            B' 
sPPOt-4, 4 mol% of 1-octene 

  

       C            C' 
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sPPOt-6, 6.1 mol% of 1-octene 

  

       D            D' 
sPPOt-7, 9.3 mol% of 1-octene 

  

       E            E' 

Figure 1.49. POM images of samples sPPOt-1 with 1.9 mol% of 1-octene (A,A’), sPPOt-2 with 

2.7 mol% of 1-octene (B,B’), sPPOt-4 with 4 mol% of 1-octene (C,C’) sPPOt-6 with 6.1 mol% 

of 1-octene (D,D’) and sPPOt-7 with 9.3 mol% of 1-octene (E,E’). 
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1.6.6. Crystal morphology of copolymers of sPP with 1-dodecene, 1-

octadecene and 1-eicosene 

Copolymers of sPP with branched comonomers as 1-dodecene (C12), 1-

octadecene (C18) and 1-eicosene (C20) are still able to crystallize in form I of 

sPP as indicated by the presence of 200 and 020 reflections at 2 = 12 and 16°, 

respectively, in the diffraction profiles of Figures 1.50A, 1.51A and 1.52A, 

respectively. The weak reflection at 2 = 17° in the diffraction profiles of the 

as-prepared samples indicates the presence of small amount of crystals of form 

II of sPP.  

These copolymers show a similar crystallization behavior from the melt and 

similar morphology of crystals. All samples crystallize from the melt in the 

form I of sPP, as demonstrated by the diffraction profiles of Figures 1.50B, 

1.51B and 1.52B. All samples show good elastic properties (data not shown). 

For 1-dodecene, 1-octadecene and 1-eicosene concentrations lower than 5, 5 

and 3 mol% respectively the elastic properties are associated with the reversible 

transformation between the polymorphic forms of sPP with chains in trans-

planar conformation, obtained by stretching, and the helical forms, formed by 

releasing the tension. (data not shown). For less crystalline samples, with higher 

comonomer concentrations no phase transformations occur during deformation 

and relaxation (data not shown) and the elastic recovery has a pure entropic 

origin, as in conventional elastomers. 
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Figure 1.50. X-ray powder diffraction profiles of as-prepared (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPPC12 copolymers of Table 1.8 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical 

form I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated. 
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Figure 1.51. X-ray powder diffraction profiles of as-prepared (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPPC18 copolymers of Table 1.9 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical 

form I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated. 
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Figure 1.52. X-ray powder diffraction profiles of as-prepared (A) and selected samples crystallized from the melt at cooling rate of 2.5 °C/min (B) of 

sPPC20 copolymers of Table 1.10 prepared with the catalyst 1 of Chart 1. The 200 and 010 reflections at 2 = 12 and 16°, respectively, of the helical 

form I, and the 110 reflection at 2 = 17° of the helical form II of sPP are indicated. 
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The POM images of the samples of sPPC12, sPPC18 and sPPC20 

copolymers crystallized from the melt at cooling rate of 2.5 °C/min of Figures 

1.50B, 1.51B and 1.52B, in some cases aged at room temperature in order to 

achieve the complete crystallization and improve the birefringence, are shown 

in Figures 1.53, 1.54 and 1.55, respectively. For very low dodecene 

concentrations, morphology characterized by the presence of few small open 

multi-faceted aggregates, bow-tie aggregates, bundles of rod-like lamellae over 

the less evident needle crystals network has been observed (Figure 1.53A,A‟). 

As dodecene content increases, open multi-faceted aggregates disappear while 

bow-tie crystals become thinner and thinner (Figures 1.53B,B‟-C,C‟) until they 

disappear completely in samples with the highest dodecene content (Figures 

1.53D,D‟-E,E‟).  
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sPPC12-1, 0.8 mol% of 1-dodecene 

  

       A            A' 
sPPC12-2, 1.8 mol% of 1-dodecene 

  

       B            B' 
sPPC12-3, 2.7 mol% of 1-dodecene 

  

       C            C' 
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sPPC12-4, 4.2 mol% of 1-dodecene 

  

       D            D' (aged) 
sPPC12-5, 6 mol% of 1-dodecene 

  

       E            E' (aged) 

Figure 1.53. POM images of samples sPPC12-1 with 0.8 mol% of 1-dodecene (A,A’), sPPC12-

2 with 1.8 mol% of 1-dodecene (B,B’), sPPC12-3 with 2.7 mol% of 1-dodecene (C,C’) sPPC12-

4 with 4.2 mol% of 1-dodecene (D,D’) and sPPC12-5 with 6 mol% of 1-dodecene (E,E’). 

 

Similar morphologies have been observed in sPPC18 copolymers. In this 

case the correlation with the composition is less clear than in sPPC12 

copolymers. When the 1-octadecene content is lower than 1 mol% open multi-

faceted aggregates, bow-tie aggregates, bundles of rod-like lamellae over the 

less evident needle crystals network are clearly visible (Figures 1.54A,A‟-

B,B‟). As octadecene increases a “salt and pepper” morphology with few small 

and thin needle crystals more visible at high magnification has been observed 

(Figures 1.54C,C‟). Further decrease of octadecene content leads to the 

appearance of a clear thick needle crystals network (Figures 1.54D,D‟). 

Sample sPPC18C_iAc does not crystallize from the melt and no 

birefringence has been observed even after long aging time. 

 



122 
 

sPPC18-a_iAc, 0.7 mol% of 1-octadecene 

  

       A            A' 
CA-sPPC18-4_iAc, 0.9 mol% of 1-octadecene 

  

       B            B' 
sPPC18-2_iAc, 2.8 mol% of 1-octadecene 

  

       C            C' 
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CA-sPPC18-12_iAc, 4.2 mol% of 1-octadecene 

  

       D            D' 

Figure 1.54. POM images of samples sPPC18-a_iAc with 0.7 mol% of 1-octadecene (A,A’), 

CA-sPPC18-4_iAc with 0.9 mol% of 1-octadecene (B,B’), sPPC18-2_iAc with 2.8 mol% of 1-

octadecene (C,C’) and CA-sPPC18-12_iAc with 4.2 mol% of 1-octadecene (D,D’). 

 

Samples of copolymers of sPP with 1-eicosene are an exemplary case of the 

general effect of comonomer content on morphology of sPP and its copolymers 

observed in all samples discussed above. When comonomer concentration is 

lower than 1 mol%, bundles of rod lamellae, bow-tie and open multi-faceted 

aggregates are clearly visible over the less evident needle crystals network 

(Figures 1.55A,A‟-B,B‟). These space filled superstructures completely 

disappear for comonomer content around 4 mol% and only needle-like 

morphology remains (Figure 1.55C,C‟). In particular, in the sample sPPC20-

5_iEE with 3.9 mol% of 1-eicosene the needle-like crystals form a dense 

network (Figure 1.55C,C‟). Finally, sample sPPC20-6_iEE does not crystallize 

from the melt and no birefringence has been observed even after long aging 

time. 
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sPPC20-2_iEE, 0.7 mol% of 1-eicosene 

  

       A            A' 
sPPC20-3_iEE, 1.6 mol% of 1-eicosene 

  

       B            B' 
sPPC20-5_iEE, 3.9 mol% of 1-eicosene 

  

       C            C' 

Figure 1.55. POM images of samples sPPC20-2_iEE with 0.74 mol% of 1-eicosene (A,A’), 

sPPC20-3_iEE with 1.61 mol% of 1-eicosene (B,B’), sPPC20-5_iEE with 3.9 mol% of 1-

eicosene (C,C’). 
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As in sPPs samples of different stereoregularity, also in for copolymers of 

sPP, this analysis has shown that, in addition to the superstructures observed for 

low comonomer content, that is, bundles of rod-like lamellae and bow-tie 

aggregates, which are observed in thinner regions of the films, also needle-like 

birefringent entities are always present in thicker regions of the films of all 

samples, regardless of stereoregularity. This is shown in Figure 1.56, where 

POM images recorded in thick regions of the films of all samples with a 

comonomer content in the range 0.7-3.2 mol% are reported. For all copolymers, 

from ethylene to 1-eicosene comonomers, at any comonomer concentration the 

morphology reveals an interwoven crystalline structure embedded in the 

amorphous matrix. This morphology is in agreement with the observed 

elastomeric behavior of all copolymers of sPP. 
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sPPET(3), 2.6 mol% of ethylene       sPPBu-1, 3.2 mol% of 1-butene 

  

       A            B 
sPP4M1P-1, 1.8 mol% of 4MP           sPPHe-1, 1.7 mol% of 1-hexene 

  

       C            D 
sPPOt-1, 1.9 mol% of 1-octene          sPPC12-1, 0.8 mol% of 1-dodecene 

  

       E            F 
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sPPC18-a_iAc, 0.7 mol% of C18     sPPC20-1_iEE, 0.7 mol% of C20 

  

       G            H 

Figure 1.56. Comparison of POM images of samples sPPEt(3) with 2.6 mol% of ethylene (A), 

sPPBu-1 with 3.2 mol% of 1-butene (B), sPP4M1P-1 with 1.8 mol% of 4-methyl-1-pentene (C), 

sPPHe-1 with 1.7 mol% of 1-hexene (D), sPPOt-1 with 1.9 mol% of 1-octene (E), sPPC12-1 

with 0.8 mol% of 1-dodecene (F), sPPC18-a_iAc with 0.7 mol% of 1-octadecene (G), sPPC20-

1_iEE with 0.7 mol% of 1-eicosene (N). 
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1.6.7. Comparison between effects of stereodefects and constitutional 

defects on morphology of sPP 

In the previous sections the influence of the presence of comonomers and 

their concentration on the crystal morphologies observed in random copolymers 

of sPP has been discussed. For low comonomer contents superstructures such as 

open multi-faceted aggregates and bow-tie crystals have been observed, 

together with the interwoven morphology formed by bundle-like and needle-

like crystals. For high comonomer contents the space filled superstructures 

completely disappear and only the needle-like interwoven morphology remains. 

The comonomer concentration at which the bigger aggregates, such as the 

bundles of rod lamellae and bow-tie crystals, are still visible and at which they 

disappear leaving only needle-like crystals, depends on the size of the 

comonomeric units and on their possible inclusion or exclusion into crystals of 

form I or form II of sPP. In general, the comonomer concentration at which 

bigger aggregates disappear decreases with increasing size of comonomer unit. 

In this section the role played by the type of comonomer (short or branched 

comonomer), and then by the type of defect (stereodefect or constitutional 

defect) on the morphology will be discussed. A comparison of POM images at 

the same magnification of samples of sPP homopolymer of different 

stereoregularity with the total concentration of stereodefects in the range 2.6-

3.8% and samples of different sPP copolymers with comonomer concentration 

in the similar range of 2.6-4 mol%, is shown in Figure 1.57. Excluding the 

sample sPP4 with concentrations of rrrr pentad of 92.5% and total steric 

defects of 3.4% showing rare star structures, in copolymers with short 

comonomers, such as ethylene and butene, the presence of the ethylene or 

butene constitutional defects exerts the same influence of stereodefects on the 

morphology of sPP. In fact similar structures such as bow-tie and bundle 

crystals, in addition to the interwoven needle-like morphology, have been 

observed in samples of homopolymers sPP3, sPP5 and sPP6 with total 

concentration of defects of 2.6, 3.5 and 3.8%, respectively (Table 1.1), and 

copolymers sPPEt(3) and sPPBu-1 with 2.6 mol% of ethylene and 3.1 mol% of 

butene, respectively (Figure 1.57A,C,D,E,F).  
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sPP3, [total defects] = 2.6 mol%         sPP4, [total defects] = 3.4 mol% 

  

       A            B 
sPP5, [total defects] = 3.5 mol%        sPP6, [total defects] = 3.8 mol% 

  

       C            D 
sPPEt(3), 2.6 mol% of ethylene        sPPBu-1, 3.2 mol% of 1-butene 

  

       E            F 
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sPP4M1P-2, 4 mol% of 4M1P              sPPHe-2, 3 mol% of 1-hexene 

  

       G            H 
sPPOt-3, 3.1 mol% of 1-octene          sPPC12-3, 2.7 mol% of C12 

  

       I           L 
sPPC18-2_iAc, 2.8 mol% of C18     sPPC20-5_iEE, 3.9 mol% of C20 

  

       M            N 

Figure 1.57. Comparison of POM images of samples sPP3 with [total defects] =2.6% (A), 

sPP4 with [total defects] =3.4 mol% (B), sPP5 with [total defects] =3.5 mol% (C), sPP6 with 

[total defects] =3.8 mol% (D), sPPEt(3) with 2.6 mol% of ethylene (E), sPPBu-1 with 3.2 mol% 

of 1-butene (F), sPP4M1P-2 with 4 mol% of 4-methyl-1-pentene (G), sPPHe-2 with 3 mol% of 

1-hexene (H), sPPOt-2 with 3.1 mol% of 1-octene (I), sPPC12-3 with 2.7 mol% of 1-dodecene 

(L), sPPC18-2_iAc with 2.8 mol% of 1-octadecene (M), sPPC20-5_iEE with 3.9 mol% of 1-

eicosene (N). 
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In copolymers with comonomers longer than 1-butene, such as 4-methyl-1-

pentene, 1-hexene, 1-octene and 1-dodecene, with the same comonomer 

concentration in the range 2.6-4 mol% only needle crystals and some slightly 

bigger bundle-like crystals, have been observed (Figure 1.57G-N). This is due 

to the presence of longer comonomers that are always excluded from crystals of 

form I and form II and that slow down the crystallization kinetics avoiding the 

formation of bigger structures. This is also proved by the fact that in 

copolymers with the longest comonomers, that is 1-octadecene and 1-eicosene, 

“salt and pepper” and needle-like morphologies without bundles or bigger 

structures have been observed already at relatively low comonomer 

concentrations.  

 

1.6.8. Concluding remarks on the analysis of crystal morphology 

The influence of steric and constitutional defects on structure and 

mechanical properties of sPP and random copolymers based on sPP has been 

already discussed in literature and in previous sections.
1,109-128,134-

138,140,142,143,146,155
 The crystallinity, the mechanical properties and the nature of 

elastic behavior (enthalpic or entropic) depend on the concentration of 

stereodefects (m diad and mm triad) in sPP with different stereoregularity or on 

the type and concentration of constitutional defects (comonomeric units) in sPP 

random copolymers. The presence of steric defects affects the degree of 

crystallinity and in turn the occurrence of the polymorphic transitions during 

deformation and relaxation. For high concentrations of stereodefects very low 

crystallinity is achieved and formation of the trans-planar form III at high 

deformation is prevented. Therefore, the elastic behavior observed in poorly 

syndiotactic samples is mainly entropic.
134-138 

In random copolymers of sPP, the presence of constitutional defects affects 

the conformational transition since high concentration of ethylene stabilizes the 

trans-planar conformation, while high concentration of long and branched 

comonomers stabilizes the helical conformation. In any case, high 

concentration of comonomeric units prevents occurrence of the polymorphic 

transitions between trans-planar form III and the helical form II during 

deformation and relaxation. Therefore, in these materials the enthalpic 

contribution to the elasticity becomes negligible with increasing comonomer 

concentration.  

In poorly crystalline samples, where all polymorphic transformations are 

prevented because of the high concentration of defects, the small crystalline 
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domains in the amorphous matrix act as physical knots of the elastomeric 

lattice, preventing the viscous flow of the amorphous chains. Since the 

molecular weights of the samples are very high, the amorphous chains, in turn, 

are highly entangled and connect as tie-chains the small crystalline domains. 

They act as spring between the crystals being well-oriented and in extended 

conformation in the stretched state, and return in the disordered coil 

conformation when the tension is removed. The result is a complex network 

made of rigid knots (crystals) and flexible tie-chains that accounts for the elastic 

behavior of these samples even at high defect concentration. According to this 

structural model, these materials necessarily show mechanical properties of 

more or less flexibility, elasticity and strength that depend on the size and 

stability of knots (crystals) and length and entanglement density of tie-chains. 

This in turn depend on the degree of crystallinity and on the properties of the 

amorphous phase in term of packing length.
158

 With increasing concentration of 

molecular defects (streodefects or constitutional defects) and decreasing 

crystallinity, size and stability of crystals decreases and the length of tie-chains 

increases. If in these materials the space-filled spherulites, typical of high 

crystalline polymers, are replaced by thin and elongated crystals, and if the 

amorphous tie-chains connecting these crystals are highly entangled, it is 

expected that the resulting network acts as an elastomeric network with 

development of elastic properties. 

The study of the morphology reported in this chapter was, indeed, aimed at 

verifying the existence of such elastomeric network in sPP and copolymers of 

sPP and at finding evidences of the presence of small and thin crystals 

organized in an interwoven morphology acting as knots of the network. In 

addition, the study of the rheology of these materials could provide information 

about the entanglement density of the amorphous phase to support the 

hypothesis of a classic entropic contribution to the elasticity.  

We have found that in sPPs and in copolymers of sPP with low defect 

concentrations (stereodefects or constitutional defects) crystals are organized in 

relatively big aggregates, such as bundles of rod lamellae, bow-tie and open 

multi-faceted aggregates, along with smaller needle crystals, but very big space-

filled spherulitic superstructures are never observed. This morphology is in 

agreement with the ductility and flexibility of these materials notwithstanding 

the high degrees of crystallinity, and the relatively high mechanical strength. 

These crystalline aggregates are not able to fill the space as in the case of 

completely impinged spherulites of highly crystalline polymers (as isotactic 
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polypropylene), probably due to the properties of the amorphous chains 

connecting the crystals that fill and occupy the available space between the 

crystals. This morphology, in particular the presence of irregular open 

aggregates and of the interwoven structure made by needle-type crystals, is also 

in agreement with the idea that the crystalline aggregates actively participate to 

the elasticity of sPP and its copolymers, locally acting as microscopic engines 

through the activation of reversible phase transformations during deformation 

and elastic recovery providing an enthalpic contribution to the elasticity, and 

with presence of an entropic contribution to the elasticity provided by the 

elastomeric network formed even in the presence of relatively big crystalline 

aggregates. 

With increasing defect concentration in sPP and its copolymers 

(stereodefects or constitutional defects) we have found that the open crystalline 

aggregates (bundles of rod lamellae, bow-tie and open multi-faceted 

aggregates) are replaced by small and elongated needle-type crystals organized 

in an interwoven structure where thin and elongated crystals are connected by 

long amorphous tie-chains. This structure resembles a dense elastomeric 

network where small and thin crystals act as efficient knots of the network. This 

morphology accounts for the elastomeric properties shown by sPP and its 

copolymers when the concentration of defects is very high and crystallinity is 

very low. 

 

1.7. Crystallization kinetics of sPP and copolymers 

The different morphologies observed in sPPs of different stereoregularity and 

in copolymers of sPP with different comonomers may also be a result of 

different kinetics of crystallization and growth mechanisms induced by the 

presence of different types and concentration of defects. To verify this 

hypothesis a study of the crystallization kinetics in non-isothermal conditions, 

similar to the conditions used for the crystallization of the thin films prepared 

for the observation of the crystal morphology by POM, has been carried out by 

DSC measurements. The aim is to correlate the observed crystal morphology 

with the crystallization kinetics. All samples have been crystallized from the 

melt in DSC by cooling to room temperature at low cooling rate of 2.5 °C/min 

and the kinetics of the crystallization has been determined by evaluating the rate 

of crystallinity increase during crystallization time and treated with the Avrami 

model.  
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Samples of sPP homopolymers and copolymers have been heated at heating 

rate of 40 °C/min up to a temperature 20-30°C higher than the melting 

temperature Tm of the sample, kept at that temperature for 2-3 minutes, and then 

slowly cooled to room temperature at 2.5 °C/min. From the exothermic peaks 

observed in the cooling scans the evolution of the degree of crystallinity with 

time x'(t-t0) normalized for the total crystallinity achieved at the time tend 

corresponding to the end of crystallization has been evaluated as: 
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where 

 t0 is the time corresponding to the onset of crystallization (incipient 

crystallization), that is, the incubation time necessary to form stable 

nuclei; 

 tend is the time at the end of crystallization; 

 dQ/dt is the heat flow released during the cooling scans; 

 ΔH(t-t0) is the crystallization enthalpy evaluated from t0 up to a time t; 

 ΔHtot is the total crystallization enthalpy, evaluated from t0 up to tend. 

 

We define the degree of crystallinity x'(t-t0) normalized for the total 

crystallinity achieved at the end of crystallization as apparent crystallinity 

whose values are comprised between 0 and 100%. 

When crystallinity is plotted as a function of time a S-shaped curve is 

obtained. At the beginning the apparent crystallinity is zero, then it start 

increasing at the incubation time t0 and rapidly increase up to the value of 100% 

is reached at tend. The kinetics curves have been fitted by using the Avrami 

approach.  

It is well known that the Avrami equation in the original formulation: 

 

x(t) = 1 - exp(-K t 
n
) 

 

gives the fraction of material crystallized after a the time t at a given 

crystallization temperature Tc. This equation was derived for isothermal 
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crystallization kinetics following the assumptions that: nucleation rate is either 

zero (i.e. crystallization occurs due to the growth of pre-existing nuclei) or 

constant; isotropical growth rate is proportional to either time t or to semi-

crystallization time t1/2 (depending whether the devitrification is interface or 

diffusion controlled).
159,160 

Nevertheless, since many processes involving 

nucleation and growth occur in non-isothermal conditions, many attempts to fit 

the Avrami equation to non-isothermal experiments are reported in literature.
161

  

In the application of the Avrami equation in non-isothermal crystallizations, 

the evaluated Avrami constants K and n could deviate from the real values. 

Under non-isothermal conditions, indeed, both the growth rate and the 

nucleation rate are no longer constant during the transformation. In general they 

are rapidly varying functions of temperature and in principle their functional 

dependence on temperature is quite different.
162  

However, the kinetics curves have been described using the following 

modified Avrami equation: 

 

)])()2(ln(exp1)['1(')(' 0000
nn ttkxxttx    (1.2) 

 

where: 

 x'0 is the crystallinity at the incipient crystallization time t0, 

 x'(t-t0) is the crystallinity developed at time t after the incubation time t0 

 k is the Avrami constant; 

 n is the Avrami exponent. 

 

The reciprocal of k is the semi-crystallization time t1/2: 

 

k
t

1
2/1     (1.3) 

 

If crystallinity develops from a complete amorphous or melted sample at t0, 

then x'0 = 0. This equation has been used for a rough evaluation of the Avrami 

constants. The value of the Avrami exponent n reflects the nucleation rate 

and/or the growth morphology. Generally, values of the Avrami exponent equal 

to 1, 2, 3 in case of heterogeneous nucleation, or equal to 2, 3, 4 in case of 

homogeneous nucleation, correspond to growth in 1, 2, 3 dimensions 

respectively. This means to assume nucleation rate equal to 0 in the first case, 
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constant in the second case. Values of Avrami exponents equal to 4 correspond 

to heterogeneous nucleation and growth in 3 dimensions. Not integer values of 

the Avrami exponent or values lower than 1 are attributable, for example, to the 

factors discussed above due to non-isothermal conditions: different mechanisms 

controlling the crystallisation process, a time dependent nucleation rate, 

possibility of simultaneous grain growth of the crystallized region during 

crystallization, impingement effect, which is important especially at the final 

stage of crystallization, if the anisotropy of the crystals is sufftciently high.
160b 

 

 

1.7.1. Crystallization kinetics of sPP of different stereoregularity 

The DSC curves recorded during cooling from the melt at cooling rate of 2.5 

°C/min of samples of sPP of different stereoregularity, with rrrr pentad 

concentration in the range 96-60%, that crystallize from the melt (see Figure 

1.31), are reported in Figures 1.58A-1.69A. The corresponding crystallization 

kinetics curves, evaluated from the crystallization exotherms with the equation 

1.1, and the fitting of these curves with the equation 1.2 are reported in Figures 

1.58B-1.69B. The melt is achieved by heating at fast heating rate of 40 °C/min 

and the corresponding heating curves are also shown in Figures 1.58A-1.69A. 

Sample sPP12 does not crystallize from the melt and only the DSC curves are 

reported in Figure 1.69. The X-ray diffraction profiles of the samples 

crystallized in DSC after the cooling scans from the melt of Figures 1.58A-

1.69A are reported in Figure 1.70. The diffraction profiles of thin films of the 

same samples of sPP crystallized from the melt in the same conditions by 

cooling at 2.5 °C/min, prepared for POM experiments of Figure 1.32-1.35, have 

already been shown in Figure 1.31C. Both data of Figure 1.70 and 1.31C show 

that that all samples cooled from the melt at 2.5 °C/min, used for the study of 

the crystallization kinetics or observed by POM, are crystallized in form I of 

sPP. Samples sPP12-sPP17 with rrrr pentad concentration lower than 60% do 

not crystallize from the melt, but they crystallize in form I by aging at room 

temperature.
134-138

 The kinetics of crystallization form the amorphous phase of 

these stereoirregular samples have been reported in the literature,
137,138

 

therefore, these samples were not considered for the study of the kinetics of 

melt-crystallization with the Avrami model.  

The melting (Tm) and crystallization (Tc) temperatures, and the melting 

(ΔHm) and crystallization (ΔHc) enthalpies for all samples are reported in the 

Table 1.11. Since the heating is performed at 40 °C/min the values of melting 

temperature and enthalpy are not significant. Figures 1.71A,B reports the 
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crystallization temperature (Tc) and enthalpy (ΔHc) as a function of rrrr pentad 

concentration. As expected, both crystallization temperature and crystallization 

enthalpy decrease with decreasing stereoregulrity.  

From the interpolation of the experimental data of Figures 1.58B-1.62B with 

the Avrami equation 1.2, the kinetic parameters, as the Avrami exponent n, the 

incipient crystallization time t0, the semi-crystallization time t1/2, defined as the 

time required for the crystallization of 50% of the crystallizable materials once 

crystallization has begun (starting from the incipient crystallization time t0 = 0), 

and the total time (t1/2 + t0) required to achieve 50% of the apparent 

crystallinity, have been evaluated. All the kinetic parameters are reported in 

Table 1.11. The values of the semi-crystallization time are also reported in 

Figure 1.71C as a function of the stereoregularity. 

The values of Avrami exponent n are always included in the range 2-4. 

Higher values, in the range 3-4, have been observed in the most stereoregular 

samples (sRDG-2-1, sPP2 and sPP3) and, quite surprisingly, in the most 

defective samples (sPP9 and sPP10). These values are consistent with growth of 

crystals in 3 dimensions with homogeneous nucleation (n = 4), and crystals 

growth in 2 dimensions with homogeneous nucleation or in 3 dimensions with 

heterogeneous nucleation (n = 3). Lower values of n in the range 2-2.5 have 

been observed for all other samples and indicate crystals growth in 2 

dimensions with heterogeneous nucleation or in 1 dimension with 

homogeneous nucleation.  

Finally, the data of Table 1.11 and Figure 1.71C indicate that the values of 

semi-crystallization time t1/2 are relatively low ( 100-200 s) in more 

stereoregular samples with [rrrr] higher than 85%, and much higher ( 300-500 

s) in samples with rrrr content lower than 80%.  
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Figure 1.58. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sRDG-2-

1 ([rrrr]=95.5%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.59. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP2 

([rrrr]=95%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.60. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP3 

([rrrr]=94.2%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.61. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP4 

([rrrr]=92.5%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.62. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP5 

([rrrr]=91.5%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.63. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP6 

([rrrr]=90.7%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B).   
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Figure 1.64. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP7 

([rrrr]=88.6%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.65. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP8 

([rrrr]=87%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.66. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP9 

([rrrr]=78%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.67. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP10 

([rrrr]=74.8%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.68. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP11 

([rrrr]=70.6%) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.69. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sample sPP12 

([rrrr]=60.1%). 
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Figure 1.70. X-ray powder diffraction profiles of samples of sPP of different stereoregularity 

crystallized from the melt in DSC by cooling at 2.5 °C/min cooling rate (curves b of Figures 

1.58A-1.68A and 1.69). 
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Table 1.11. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of the apparent 

crystallinity (t1/2 + t0) of samples of sPP of different stereoregularity indicated as concentration of rrrr pentad. 

 

Samples [rrrr] (%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sRDG-2-1 95.5 149.9 -94.5 108.9 37 4 129.7 232 362 

sPP2 95 149.8 -93.4 110.4 44.8 3.5 119.5 204 324 

sPP3 94.2 147.1 -88.02 108.6 46.9 3.1 155.1 180 336 

sPP4 92.5 142.9 -90.4 106.8 51.5 2.5 209.8 169 379 

sPP5 91.5 158.2 -65.6 111.5 39.8 2.1 100 178 278 

sPP6 90.7 125.9 -134.3 106.2 48.2 2.2 187.5 124 311 

sPP7 88.6 127.9 -70 98.8 43.8 2.6 159.6 168 328 

sPP8 87 147.2 --64.5 104.6 30.9 2.1 144.6 277 421 

sPP9 78 127.8 -61.6 80.2 31.8 4 567.9 472 1040 

sPP10 74.8 116.7 -64.3 75 31.9 4 562.8 394 957 

sPP11 70.6 113.5 -34.6 60.4 6.2 2 72.7 366 438 

sPP12 60.1 86 -37.2 / / / / / / 
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Figure 1.71. Crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) and semi-

crystallization time (t1/2) (C) of samples of sPP of different stereoregularity as a function of 

rrrr pentad content.  
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1.7.2. Crystallization kinetics of copolymers of sPP with ethylene  

The DSC curves recorded during heating at 40 °C/min cooling from the melt 

at cooling rate of 2.5 °C/min of samples of sPPET copolymers with different 

ethylene content, the corresponding crystallization kinetics curves evaluated 

from the crystallization exotherms with the equation 1.1, and the fitting of these 

curves with the equation 1.2, are reported in Figures 1.72-1.78. Sample sPPET-

3 presents multiple exothermic and endothermic peaks, indicating that the 

sample is probably partially degradated. Therefore, only the DSC curves are 

reported in Figure 1.73 and no evaluation of the crystallization kinetics has 

been attempted. The X-ray diffraction profiles of the samples crystallized in the 

DSC after the cooling scan of Figures 1.72A-1.78A are reported in Figure 1.79. 

The diffraction profiles of thin films crystallized from the melt in the same 

conditions at 2.5 °C/min for the POM observation have been shown in Figure 

1.37C. These data indicate that all samples crystallize from the melt in the form 

I of sPP and for ethylene contents higher than 6-7 mol% in mixture with 

crystals of form II.
142c

 

Table 1.12 reports the melting (Tm) and crystallization (Tc) temperatures, and 

the melting (ΔHm) and crystallization (ΔHc) enthalpies for all sPPET samples, 

whereas the values of crystallization temperature and enthalpy are reported in 

Figure 1.80A,B as a function of ethylene content. Since the heating is 

performed at 40 °C/min the values of melting temperature and enthalpy are not 

significant. Both crystallization temperature and enthalpy decrease with the 

decreasing of ethylene concentration. Some deviations have been observed for 

the samples sPPET-3, sPPET-4 and sPPET-9 with 2.6, 6.3, 13.2 mol% of 

ethylene, respectively, that appear partially degradated.  

The parameters evaluated from the interpolation of the experimental data of 

Figures Figures 1.72A-1.78A with the Avrami equation 1.2, that is, the Avrami 

exponent n, the incipient crystallization time t0, the semi-crystaliization time t1/2 

and the time required to achieve 50% of total apparent crystallinity (t1/2 + t0) are 

reported in Table 1.12 . The values of Avrami exponent n are for almost all 

samples included in the range 1-2. Only the sample with the lowest ethylene 

content (AK-sPPET-2) shows the highest value of n (n = 2.7), indicating three-

dimensional growth for heterogeneous nucleation or two-dimensional growth in 

case of homogeneous nucleation. Lower values of n (in the range 1-1.8) 

consistent with heterogeneous nucleation and growth in 1 direction have been 

observed for all other samples. The sample AK-sPPET-2 shows the lowest 
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value of the semi-crystallization time t1/2 (140 s), while much higher values 

have been observed in the other samples (220-300 s) (Figure 1.80C). 
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Figure 1.72. DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the AK-sPPEt-2 (1.9 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using the equation 1.1 and interpolation with Avrami equation 1.2 

(B). 
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Figure 1.73. DSC curves recorded during heating at 40°C/min from room temperature up to 

160°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPET-3 (2.6 

mol% of ethylene). The multiple melting and crystallization peaks are due to thermal 

degradation. 
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Figure 1.74. DSC curves recorded during heating at 40°C/min from room temperature up to 

140°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPET-4 (6.3 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.75. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPET-6 (8.5 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.76. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPEt-8 (9.8 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.77. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPEt-9 (13.2 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.78. DSC curves recorded during heating at 40°C/min from room temperature up to 

110°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPEt-10 (14.3 

mol% of ethylene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 

  



149 
 

5 10 15 20 25 30 35 40

In
te

n
si

ty
 (

a.
u

.)

2 (deg)

PPET(10)
14.3mol% ethylene

PPET(9)
13.2 mol% ethylene

PPET(8)
9.8mol% ethylene

PPET(6)
8.5mol% ethylene

PPET(4)
6.3mol% ethylene

PPET(3)
2.6mol% ethylene

AK-sPPET-2
1.9 mol% ethylene

 
Figure 1.79. X-ray powder diffraction profiles of samples of sPPET copolymers of different 

ethylene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling rate 

(curves b of Figures 1.72A-1.78A).  
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Table 1.12. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of the apparent 

crystallinity (t1/2 + t0) for all sPPET copolymers with different ethylene content. 

 

Sample (mol% ethylene) Tm
I
 (°C) Tm

II
 (°C)

b 
ΔHm

I
 (J/g) Tc

I
 (°C) Tc

II 
(°C) ΔHc

I
 (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

AK-sPPEt-2 1.9 134 / -57.3 90.7 / 28.4 2.7 145 147 292 

sPPEt-3
a 

2.6 70.1 135 -50.3 97.6 58.9 28.4 / / / / 

sPPEt-4
 a
 6.3 66.2 122 -11.5 96.6 86 27 1.8 159 303 462 

sPPEt-6 8.5 105.9 / -75.3 87.6 / 22.6 1 194 148 342 

sPPEt-8 9.8 108 / -58.8 82.7 / 19.4 1.4 252 170 429 

sPPEt-9
 a
 13.2 99.5 64.2 -46.9 72.8 / 8.8 1.7 114 308 422 

sPPEt-10 14.3 93.3 / -41.8 74.5 / 9.3 1 264 226 490 
a
) The sample shows multiple esothermic and endothermic peaks. The main peaks are indicated as Tm

I
 e Tc

I
, whereas the secondary peaks are 

indicated as Tm
II
 e Tc

II
. 
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Figure 1.80. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPET copolymers as a function of ethylene content. 
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1.7.3. Crystallization kinetics of copolymers of sPP with 1-butene  

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPBu copolymers with 

different 1-butene content, the corresponding crystallization kinetics curves 

evaluated from the crystallization exotherms with the equation 1.1, and the 

fitting of these curves with the equation 1.2, are reported in Figures 1.81-1.88. 

The X-ray diffraction profiles of the samples crystallized in the DSC after the 

cooling scan of Figures 1.81A-1.88A are reported in Figure 1.89. The 

diffraction profiles of thin films crystallized from the melt in the same 

conditions at 2.5 °C/min for the POM observation have already been shown in 

Figure 1.41B. As discussed in the secion 1.8, sPPBu samples are crystallized in 

disordered modifications of form I of sPP up to a content of 1-butene of 60-70 

mol%,
140,143

 and in structures similar to form I of sPB for contents of 1-butene 

higher than 70 mol% (Figure 1.89).
140

 Samples with butene content higher than 

30 mol% are amorphous just after cooling the melt but crystallize by aging at 

room temperature for several days (cold-crystallization).
143g

 Therefore, for 

samples sPPBu-7, sPPBu-9, sPPBu-11 and sPPBu-12 only the DSC curves are 

reported in Figure 1.85-1.88. For these samples, the kinetics of cold-

crystallization evaluated from the degree of crystallinity determined from the 

WAXS profiles recorded at different aging times has been reported in ref 143g. 

The values of apparent crystallinity, evaluated as: 

  ( )

 (   )
   

 (  ) 

with xc(t) the X-ray diffraction crystallinity at the aging time t and x(end) the 

maximum crystallinity achieved upon aging, are reported in Figure 1.90 as a 

function of the aging time. Also the values of crystallinity developed by cold-

crystallization have been interpolated with the Avrami equation 1.2 as shown 

by the fitting of Figure 1.90B. 

Table 1.13 reports the melting (Tm) and crystallization (Tc) temperatures, and 

the melting (ΔHm) and crystallization (ΔHc) enthalpies for all sPPBu samples, 

whereas Figures 1.91A,B show the values of crystallization temperature (Tc) 

and enthalpy (ΔHc) as a function of 1-butene content. The values of melting 

temperature and enthalpy reported in the Table 1.13 are not significant since the 

heating scans have been performed at 40°C/min. Both crystallization 

temperature and enthalpy decrease with decreasing of butene concentration in 

samples crystallizing from the melt.  
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The values of kinetic parameters evaluated from the interpolation of the 

experimental data of Figures 1.81-1.85 and the cold-crystallization data of 

Figure 1.90 with the Avrami equation 1.2, that is, the Avrami exponent n, the 

incipient crystallization time t0, the semi-crystaliization time t1/2 and the time 

required to achieve 50% of apparent crystallinity (t1/2 + t0), are also reported in 

Table 1.13. The values of Avrami exponent n are always included in the range 

1-4. The sample with the lowest 1-butene content (sPPBu-1) exhibits n = 4, 

indicating three-dimensional growth for homogeneous nucleation. Lower values 

of n in the range 2.2-2.7, consistent with heterogeneous nucleation and growth 

in 2 directions or with homogeneous nucleation and growth in one direction, 

have been observed in samples with 1-butene content in the range 6-18 mol% 

(sPPBu-2, sPPBu-4, sPPBu-6). Samples with higher 1-butene concentration that 

crystallize upon aging display values of n lower than 1 (n in the range 1.1-1.9), 

probably indicating one-dimensional growth with heterogeneous nucleation. 

The semi-crystallization time t1/2 reported in Figure 1.91C only for samples 

crystallizing from the melt are quite similar. Higher t1/2 values have been 

observed in samples sPPBu-1 and sPPBu-6 (222 s and 295 s respectively), 

while lower values have been observed in samples sPPBu-2 and sPPBu-4 (130-

183 s) (Figure 1.91C). In samples that crystallize upon aging, longer values of 

t1/2 of the order of magnitude of days, have been evaluated from WAXS 

analysis. 
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Figure 1.81. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-1 (3.2 

mol% of 1-butene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.82. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-2 (6.1 

mol% of 1-butene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.83. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-4 (11.2 

mol% of 1-butene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.84. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-6 (18.2 

mol% of 1-butene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 



155 
 

30 50 70 90 110
D

S
C

 e
x
o

T (°C)

87.2°C

heating

cooling

a

b

 

Figure 1.85. DSC curves recorded during heating at 40°C/min from room temperature up to 

110°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-7 (31.5 

mol% of 1-butene). 
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Figure 1.86. DSC curves recorded during heating at 40°C/min from room temperature up to 

90°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-9 (51.7 

mol% of 1-butene). 
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Figure 1.87. DSC curves recorded during heating at 40°C/min from room temperature up to 

80°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-11 (69.9 

mol% of 1-butene). 
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Figure 1.88. DSC curves recorded during heating at 40°C/min from room temperature up to 

80°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPBu-12 (89 

mol% of 1-butene). 
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Figure 1.89. X-ray powder diffraction profiles of samples of sPPBu copolymers of different 

butene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling rate 

(curves b of Figures 1.81A-1.84A and 1.85-1.88.).  
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Figure 1.90. Degree of crystallinity (A) and apparent crystallnity (B) as a function of aging 

time of samples sPPBu-7 (31.5 mol% of 1-butene), sPPBu-9 (51.7 mol% of 1-butene), sPPBu-

11 (69.9 mol% of 1-butene), sPPBu-12 (89 mol% of 1-butene). The data have been evaluated by 

using the WAXS profile of ref 143g: The fitting of the kinetic curves with Avrami equation is 

also shown in B.  
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Table 1.13. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of apparent 

crystallinity (t1/2 + t0) for sPPBu copolymers with different 1-butene content. 

 

Sample (mol % of 1-butene) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPBu-1 3.2 132.7 -82.6 98 43.3 4 141 222 363 

sPPBu-2 6.1 124 -84.6 94.4 38.3 2.5 199 130 329 

sPPBu-4 11.2 113.2 -82.2 78.2 37.5 2.7 289 183 472 

sPPBu-6 18.2 102 -66.3 56.3 25 2.2 99 295 395 

sPPBu-7
a
 31.5 87.2 -51.9 / / 1.9 0 7×10

3 
7×10

3 

sPPBu-9
a
 51.7 74 -33.2 / / 1.1 0 44×10

3 
44×10

3 

sPPBu-11
a
 69.9 63.9 -35.6 / / 1.8 0 32×10

4 
32×10

4 

sPPBu-12
a
 89 61.3 -29.1 / / 1.7 0 141×10

5 
141×10

5 

a
) The kinetics parameters of these samples have been obtained by interpolation of crystallinity data evaluated fromWAXS analysis. 
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Figure 1.91. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPBu coplymers as a function of 1-butene content.  
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1.7.4. Crystallization kinetics of copolymers of sPP with 4-methyl-1-

pentene 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPP4M1P copolymers with 

different 4-methyl-1-pentene content, the corresponding crystallization kinetics 

curves evaluated from the crystallization exotherms with the equation 1.1, and 

the fitting of these curves with the equation 1.2, are reported in Figures 1.92-

1.96. The X-ray diffraction profiles of the samples crystallized in the DSC after 

the cooling scan of Figures 1.92A-1.96A are reported in Figure 1.97. All 

samples crystallize from the melt in form I of sPP. Similar data have been 

reported for thin films crystallized from the melt in the same conditions at 2.5 

°C/min for the POM observation in Figure 1.44B. The sample sPP4M1P-6 does 

not crystallize from the melt but crystallize upon aging at room temperature and 

therefore only the DSC curves are reported in Figure 1.96.  

The values of the melting and crystallization temperatures and enthalpies for 

all sPP4M1P samples are reported in Table 1.14, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.98A,B as a 

function of 4-methyl-1-pentene content. Also in this case, the crystallization 

temperature and the crystallization enthalpy decrease with decreasing 

comonomer concentration. 

Table 1.14 also reports the kinetics parameters evaluated from the 

interpolation of the experimental data of Figure 1.92B-1.96B with Avrami 

equation 1.2, that is, the Avrami exponent n, the incipient crystallization time t0, 

the semi-crystaliization time t1/2 and the time required to achieve 50% of the 

total apparent crystallinity (t1/2 + t0) for all samples. The values of Avrami 

exponent n are quite similar for all samples and are always included in the 

range 1.6-2.5. Samples sPP4M1P-1 (1.8 mol% of 4-methyl-1-pentene), 

sPP4M1P-4 (12.9 mol% of 4-methyl-1-pentene) and sPP4M1P-5 (15.2 mol% of 

4-methyl-1-pentene) show n values equal or higher than 2, indicating 

heterogeneous nucleation with growth in 2 dimensions or homogeneous 

nucleation with one-dimensional growth. Only the sample sPP4M1P-2 (4 mol% 

of 4-methyl-1-pentene) exhibits a value of n lower than 1 indicating 

heterogeneous nucleation with growth in one dimension. The semi-

crystallization time t1/2 reported in Figure 1.98C increases with increasing 

comonomer content from the value of 123s of the sample sPP4M1P-1 to the 

value of 267s of the sample sPP4M1P-5 (Figure 1.98C).  
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Figure 1.92. DSC curves recorded during heating at 40°C/min from room temperature up to 

190°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPP4M1P-1 (1.8 

mol% of 4-methyl-1-pentene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.93. DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPP4M1P-2 (4 

mol% of 4-methyl-1-pentene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.94. DSC curves recorded during heating at 40°C/min from room temperature up to 

150°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPP4M1P-4 

(12.9 mol% of 4-methyl-1-pentene) (A). Degree of apparent crystallinity as a function of time 

and temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.95. DSC curves  recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPP4M1P-5 

(15.2 mol% of 4-methyl-1-pentene) (A). Degree of apparent crystallinity as a function of time 

and temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.96. DSC curves recorded during heating at 40°C/min from room temperature up to 

110°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPP4M1P-6 

(20.5 mol% of 4-methyl-1-pentene). 
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Figure 1.97. X-ray powder diffraction profiles of samples of sPP4M1P copolymers of different 

4-methyl-1-pentene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min 

cooling rate (curves b of Figures 1.92A-1.95A and 1.96).  
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Table 1.14. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of the apparent 

crystallinity (t1/2+t0) for all sPP4M1P copolymers with different 4-methyl-pentene (4M1P) content. 

 

Samples 4M1P (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2 (s) t1/2+t0 (s) 

sPP-4MP-1 1.8 138 -102.9 105.4 47.3 2.5 134.8 123.3 258.1 

sPP-4MP-2 4.0 129.9 -92.7 96.2 42.5 1.6 361.8 153.8 515.6 

sPP-4MP-4 12.9 120.1 -74.5 88 30.6 2.4 242.2 169.1 411.3 

sPP-4MP-5 15.2 102 -50.8 65.8 16.8 2 391.7 267.3 659 

sPP-4MP-6 20.5 92.6 -39.5 / / / / / / 
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Figure 1.98. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPP4M1P copolymers as a function of 4-methyl-1-

pentene content.   
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1.7.5. Crystallization kinetics of copolymers of sPP with 1-hexene 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPHe copolymers with 

different 1-hexene content, the corresponding crystallization kinetics curves 

evaluated from the crystallization exotherms with the equation 1.1, and the 

fitting of these curves with the equation 1.2, are reported in Figures 1.99-1.103. 

The X-ray diffraction profiles of the samples crystallized in the DSC after the 

cooling scans of Figures 1.99-1.103 are reported in Figure 1.104. All samples 

crystallize from the melt in form I of sPP. Similar data have been reported for 

thin films crystallized from the melt in the same conditions at 2.5 °C/min for 

the POM observation in Figure 1.46B.  

The sample sPPHe-6 with 9 mol% of hexene does not crystallize from the 

melt but crystallize upon aging at room temperature (cold-crystallization) and 

therefore only the DSC curves are reported for this sample in Figure 1.103. The 

values of crystallinity and apparent crystallinity as a function of aging time for 

the sample sPPHe-6 have been evaluated from WAXS profiles recorded during 

aging reported in ref 146, and are reported in Figure 1.105 as a function of the 

aging time. Also the values of crystallinity developed by cold-crystallization for 

the sample sPPHe-6 have been interpolated with the Avrami equation 1.2, as 

shown by the fitting of Figure 1.105B. 

The values of the melting and crystallization temperatures and enthalpies for 

all sPPHe samples are reported in Table 1.15, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.106A,B as a 

function of hexene content. Also in this case, the crystallization temperature 

and the crystallization enthalpy decrease with decreasing comonomer content.  

The kinetics parameters evaluated from the interpolation of the experimental 

data of Figures 1.99B-1.102B and 1.105B with Avrami equation 1.2 are also 

reported in Table 1.15. The values of Avrami exponent n are very low, in the 

range 0.6-2.4. Only the samples sPPHe-1 (1.7 mol% of 1-hexene) and sPPHe-3 

(3.9 mol% of 1-hexene) show n values close to 2, indicating heterogeneous 

nucleation with growth in 2 dimensions or homogeneous nucleation with one-

dimensional growth. The other samples exhibit values of n lower than 1 

indicating heterogeneous nucleation with growth in one dimension. The 

samples sPPHe-6 (9 mol% of 1-hexene) displays a very low n value. This value 

has been obtained byy interpolation of WAXS data and it is probably not 

reliable. The semi-crystallization time t1/2 reported in Figure 1.106C initially 

decreases with increasing comonomer content from the value of 220 s of the 



167 
 

sample sPPHe-1 to the value of 134 s of the sample sPPHe-3, then increases 

again up to 180 s for the last sample sPPHe-5 (6.4 mol% of 1-hexene). The 

value of t1/2 of the sample sPPHe-6 has been evaluated from WAXS analysis 

(Figure 1.105) and confirms that crystallinity develop by cold-crystallization in 

several days (Figure 1.106C).  
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Figure 1.99. DSC curves recorded during heating at 40°C/min from room temperature up to 

155°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPHe-1 (1.7 

mol% of 1-hexene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.100. DSC curves recorded during heating at 40°C/min from room temperature up to 

155°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPHe-2 (3 

mol% of 1-hexene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.101. DSC curves recorded during heating at 40°C/min from room temperature up to 

150°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPHe-3 (3.9 

mol% of 1-hexene) (A). Degree of apparente crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.102. DSC curves recorded during heating at 40°C/min from room temperature up to 

120°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPHe-5 (6.4 

mol% of 1-hexene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.103. DSC curves recorded during heating at 40°C/min from room temperature up to 

100°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPHe-6 (9 

mol% of 1-hexene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.104. X-ray powder diffraction profiles of samples of sPPHe copolymers of different 1-

hexene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling rate 

(curves b of Figures 1.99A-1.102A and 1.103).  
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Figure 1.105 Degree of crystallinity (A) and apparent crystallnity (B) as a function of aging 

time of sample sPPHe-6 (9 mol% of 1-hexene). The data have been evaluated by using the 

WAXS profile of ref 146. The fitting of the kinetic curves with Avrami equation is also shown in 

B.  
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Table 1.15. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0)and time required to achieve 50% of the total 

apparent crystallinity (t1/2 + t0) for all sPPHe copolymers with different 1-hexene content. 

 

Sample 1-hexene (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPHe-1 1.7 130.6 -88.3 103.2 35 2.4 188 220 408 

sPPHe-2 3 120.8 -88.7 98 30.1 1.6 167 178 345 

sPPHe-3 3.9 116.7 -71.1 86.3 30.2 1.9 183 134 317 

sPPHe-5 6.4 95.5 -49.9 62.4 12 1.5 205 182 387 

sPPHe-6
a
 9 84 -36.3 / / 0.6 0 34×10

3 
34×10

3 

a
) The kinetic parameters of this sample have been evaluated from WAXS analysis. 
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Figure 1.106. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and half-crystallization time (t1/2) (C) of sPPHe copolymers as a function of 1-hexene content.  
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1.7.6. Crystallization kinetics of copolymers of sPP with 1-octene 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPOt copolymers with 

different 1-octene content, the corresponding crystallization kinetics curves 

evaluated from the crystallization exotherms with the equation 1.1, and the 

fitting of these curves with the equation 1.2, are reported in Figures 1.107-

1.112. The X-ray diffraction profiles of the samples crystallized in the DSC 

after the cooling scans of Figures 1.106A-1.109A and 1.110-1.111 are reported 

in Figure 1.113. All samples crystallize from the melt in form I of sPP. Similar 

data have been reported for thin films crystallized from the melt in the same 

conditions at 2.5 °C/min for the POM observation in Figure 1.47B. The samples 

sPPOt-7 and sPPOt-8 do not crystallize from the melt but cold-crystallize upon 

aging at room temperature and, therefore, only the DSC curves are reported in 

Figures 1.111 and 1.112. The values of crystallinity and apparent crystallinity 

as a function of aging time for the samples sPPOt-7 and sPPOt-8 have been 

evaluated from the WAXS profiles reported in ref 146 recorded during aging, 

and are reported in Figure 1.114 as a function of the aging time. Also the values 

of crystallinity developed by cold-crystallization for the sample sPPOt-7 and 

sPPOt-8 have been interpolated with the Avrami equation 1.2, as shown by the 

fitting of Figure 1.114B. 

The values of the melting and crystallization temperatures and enthalpies for 

all sPPOc samples are reported in Table 1.16, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.115A,B as a 

function of octene content. Also in this case, the crystallization temperature and 

the crystallization enthalpy decrease with decreasing comonomer content.  

The kinetics parameters evaluated from the interpolation of the experimental 

data of Figures 1.107B-1.110B and 1.114B with the Avrami equation 1.2 are 

also reported in Table 1.16. The sample sPPOt-1 (1.9 mol% of 1-octene) shows 

two crystallization peaks in the DSC cooling scan of Figure 1.107A, 

corresponding to two crystallization processes characterized by different rates; 

the first process occurring at T ≈ 104°C characterized by Avrami exponent n = 

2, corresponding to a two-dimensional growth with heterogenous nucleation or 

one-dimensional growth with homogeneous nucleation, and semi-crystallization 

time t1/2 = 130 s, is followed by a slower second crystallization process at T ≈ 

92°C with n = 4, corresponding to growth in 3 dimensions with homogeneous 

nucleation, and t1/2 = 207 s (Figure 1.107). However, multiple crystallization 

peaks may also indicate that the sample has undergone partial degradation at 
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high temperature. Samples sPPOt-2 (2.7 mol% of 1-octene) and sPPOt-6 (6.1 

mol% of 1-octene) show n ≈ 3 (three-dimensional growth in case of 

heterogenous nucleation or two-dimesional growth in case of homogenous 

nucleation), while other samples exhibit n values lower than 1 (heterogeneous 

nucleation and one-dimensional growth). The values of semi-crystallization 

time t1/2 reported in Figure 1.115C increases with increasing 1-octene content 

and long t1/2 times have been obtained from WAXS analysis in samples sPPOt7 

(9.3 mol% of 1-octene) and sPPOt8 (18.8 mol% of 1-octene) that cold-

crystallize upon aging (Figure 1.115C). 
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Figure 1.107. DSC curves recorded during heating at 40°C/min from room temperature up to 

155°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-1 (1.9 

mol% of 1-octene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B).  
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Figure 1.108. DSC curves recorded during heating at 40°C/min from room temperature up to 

155°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-2 (2.7 

mol% of 1-octene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.109. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-4 (4 

mol% of 1-octene) (A). Degree of apparent crystallinity as a function of time and temperature 

evaluated from DSC curves using equation 1.1 and interpolation with Avrami equation 1.2 (B). 
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Figure 1.110. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-6 

(6.1mol% of 1-octene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.111. DSC curves recorded during heating at 40°C/min from room temperature up to 

100°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-7 (9.3 

mol% of 1-octene). 
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Figure 1.112. DSC curves recorded during heating at 40°C/min from room temperature up to 

100°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPOt-8 (18.8 

mol% of 1-octene). 
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Figure 1.113.. X-ray powder diffraction profiles of samples of sPPOc copolymers of different 

1-octene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling rate 

(curves b of Figures 1.107A-1.110A and 1.111-1.112). 
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Figure 1.114. Degree of crystallinity (A) and apparent crystallnity (B) as a function of aging 

time of samples sPPOt-7 (9.3 mol% of 1-octene) and sPPOt-8 (18.8 mol% of 1-octene). The 

data have been evaluated by using the WAXS profile of ref 146. The fitting of the kinetic curves 

with Avrami equation is also shown in B.  
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Table 1.16. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of the total 

apparent crystallinity (t1/2+t0) for all sPPOt copolymers with different 1-octene content. 

  

Samples 1-octene (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPOt-1
a 

1.9 138.6 -76.5 
104.4 

92 
43.7 

2 

4 
177 

130 

207 

307 

384 

sPPOt-2 2.7 130 -63 78 24 3.3 189.5 214 404 

sPPOt-4 4 106 -54.9 43.3 11.9 1.6 405.5 550 955 

sPPOt-6 6.1 94.8 -67.4 51.2 5.6 2.7 44 515 559 

sPPOt-7
b
 9.3 70.8 -31.7 / / 1.4 36000 115×10

3 
151×10

3 

sPPOt-8
 b
 18.8 74.7 -25 / / 1.4 64800 140×10

3 
205×10

3 

a
) This sample seems to have two different nucleation process. 

b
) The kinetic parameters of this sample have been evaluated from WAXS analysis. 
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Figure 1.115. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPOt copolymers as a function of 1-octene content.  
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1.7.7. Crystallization kinetics of copolymers of sPP with 1-dodecene 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPC12 copolymers with 

different 1-dodecene content, the corresponding crystallization kinetics curves 

evaluated from the crystallization exotherms with the equation 1.1, and the 

fitting of these curves with the equation 1.2, are reported in Figures 1.116-

1.120. The X-ray diffraction profiles of the samples crystallized in the DSC 

after the cooling scans of Figures 1.116A-1.120A are reported in Figure 1.121. 

All samples crystallize from the melt in form I of sPP. Similar data have been 

reported for thin films crystallized from the melt in the same conditions at 2.5 

°C/min for the POM observation in Figure 1.50B. 

The values of the melting and crystallization temperatures and enthalpies for 

all sPPC12 samples are reported in Table 1.17, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.122A,B as a 

function of 1-dodecene content. Also in this case, the crystallization 

temperature and the crystallization enthalpy decrease with decreasing 

comonomer content.  

Table 1.17 also reports all kinetics parameters evaluated from the 

interpolation of the experimental data of Figures 1.116B-1.120B with the 

Avrami equation 1.2. Only the sample sPPC12-1 (0.8 mol% of 1-dodecene) 

shows an Avrami exponent of ≈ 3 indicating three-dimensional growth with 

heterogeneous nucleation or two-dimensional growth with homogeneous 

nucleation. The other samples, that is sPPC12-2 (1.8 mol% of 1-dodecene), 

sPPC12-3 (2.7 mol% of 1-dodecene) and sPPC12-5 (6 mol% of 1-dodecene), 

exhibit n values around 2 (two-dimensional growth and hetrogenous nucleation 

or one-dimensional growth with homogeneous nucleation), while n value lower 

than 2 (one-dimensional growth with heterogeneous nucleation) has been 

observed in sample sPPC12-4 (4.2 mol% of 1-dodecene). Similar values of 

semi-crystallization time t1/2, reported in Figure 1.122C as a function of 

dodecene content, have been observed in samples with low and intermediate 

comonomer concentrations (113-135 s), while a higher value has been observed 

in the sample with the highest 1-dodecene content (234 s) (Table 1.17 and 

Figure 1.122C). 
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Figure 1.116. DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC12-1 (0.8 

mol% of 1-dodecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.117. DSC curves recorded during heating at 40°C/min from room temperature up to 

170°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC12-2 (1.8 

mol% of 1-dodecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.118. DSC curves recorded during heating at 40°C/min from room temperature up to 

160°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC12-3 (2.7 

mol% of 1-dodecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.119. DSC curves recorded during heating at 40°C/min from room temperature up to 

150°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC12-4 (4.2 

mol% of 1-dodecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.120. DSC curves recorded during heating at 40°C/min from room temperature up to 

120°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC12-5 (6 

mol% of 1-dodecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.121. X-ray powder diffraction profiles of samples of sPPC12 copolymers of different 

1-dodecene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling 

rate (curves b of Figures 1.116A-1.120A). 
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Table 1.17. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve the 50% of the total 

apparent crystallinity (t1/2+t0) for all sPPC12 copolymers with different 1-dodecene content. 

 

Samples 1-dodecene (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPC12-1 0.8 137.9 -147.6 107.6 51.7 2.9 227 135 362 

sPPC12-2 1.8 132.6 -98.3 100.3 44.6 2.1 142 113 255 

sPPC12-3 2.7 126 -75.3 95.4 31.8 2 120 119 239 

sPPC12-4 4.2 110 -74.3 79.3 22.1 1.7 198 124 322 

sPPC12-5 6 97.9 -49 62.6 14.2 2 154 234 388 
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Figure 1.122. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPC12 copolymers as a function of 1-dodecene 

content.  
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1.7.8. Crystallization kinetics of copolymers of sPP with 1-octadecene. 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPC18 copolymers with 

different 1-octadecene concentration, the corresponding crystallization kinetics 

curves evaluated from the crystallization exotherms with the equation 1.1, and 

the fitting of these curves with the equation 1.2, are reported in Figures 1.123-

1.127. The X-ray diffraction profiles of the samples crystallized in the DSC 

after the cooling scans of Figures 1.123A-1.127A are reported in Figure 1.128. 

All samples crystallize from the melt in form I of sPP. Similar data have been 

reported for thin films crystallized from the melt in the same conditions at 2.5 

°C/min for the POM observation in Figure 1.51B. 

The values of the melting and crystallization temperatures and enthalpies for 

all sPPC18 samples are reported in Table 1.18, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.129A,B as a 

function of 1-octadecene content. Also in this case, the crystallization 

temperature and the crystallization enthalpy decrease with decreasing 

comonomer content. 

The values of the kinetics parameters evaluated from the interpolation of the 

experimental data of Figures Figures 1.123B-1.127B with the Avrami equation 

1.2 are also eported in Table 1.18. The sample with the lowest 1-octadecene 

content (sPPC18a_iAc, 0.7 mol% of 1-octadecene) displays the highest value of 

Avrami exponent (n = 4) that indicates homogeneous nucleation and three-

dimensional growth. Samples CA-sPPC18-4_iAc (0.9 mol% of 1-octadecene) 

and CA-sPPC18-12_iAc (1.7 mol% of 1-octadecene) show values of n ≈ 3 

indicating three-dimensional growth with heterogeneous nucleation or two-

dimensional growth with homogeneous nucleation. Samples sPPC18-2_iAc 

(2.8 mol% of 1-octadecene) and sPPC18c_iAc (5.5mol% of 1-octadecene) 

exhibit n values in the range 2-3 that may indicate two-dimensional growth with 

heterogeneous nucleation or one-dimensional growth with homogeneous 

nucleation. The values of semi-crystallization time t1/2 are reported in Figure 

1.129C. Very different values of t1/2 have been observed, from the lowest value 

of the sample CA-sPPC18-4_iAc (183 s) to the highest value of the sample 

sPPC18-2_iAc (518 s).  
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Figure 1.123 DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC18-a_iAc 

(0.7 mol% of 1-octadecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.124 DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the CA-sPPC18-

4_iAc (0.9 mol% of 1-octadecene) (A). Degree of apparent crystallinity as a function of time 

and temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.125 DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC18-2_iAc 

(2.8 mol% of 1-octadecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.126 DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the CA-sPPC18-

12_iAc (4.2 mol% of 1-octadecene) (A). Degree of apparent crystallinity as a function of time 

and temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.127 DSC curves recorded during heating at 40°C/min from room temperature up to 

100°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC18-c_iAc 

(5.5 mol% of 1-octadecene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B).  
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Figure 1.128. X-ray powder diffraction profiles of samples of sPPC18 copolymers of different 

1-octadecene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling 

rate (curves b of Figures 1.123A-1.127A).  
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Table 1.18. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), Avrami 

exponent n, semi-crystallization time (t1/2), incipient crystallization time (t0) and time required to achieved 50% of the total 

apparent crystallinity (t1/2+t0) for all sPPC18 copolymers with different 1-octadecene content. 

 

Samples 1-octadecene (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPC18a_iAc 0.7 132.7 -74.6 108.8 43.7 4 123 275 398 

CA_sPPC18-4_iAc 0.9 129.3 -53.7 88.8 31.1 3.5 145 183 327 

sPPC18-2_iAc 2.8 112.5 -31 87.8 15.5 2.5 142 518 660 

CA_sPPC18-12_iAc 4.2 97.4 -38.2 41.8 14.1 2.8 41 325 366 

sPPC18c_iAc 5.5 68.7 -25.1 54.3 / 2.4 53 469 522 
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Figure 1.129. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPC18 copolymers as a function of 1-octadecene 

content.  
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1.7.9. Crystallization kinetics of copolymers of sPP with 1-eicosene 

The DSC curves recorded during heating at 40 °C/min and cooling from the 

melt at cooling rate of 2.5 °C/min of samples of sPPC20 copolymers with 

different 1-eicosene concentration, the corresponding crystallization kinetics 

curves evaluated from the crystallization exotherms with the equation 1.1, and 

the fitting of these curves with the equation 1.2, are reported in Figures 1.130-

1.132. The X-ray diffraction profiles of the samples crystallized in the DSC 

after the cooling scans of Figures 1.130A-1.132A are reported in Figure 1.133. 

All samples crystallize from the melt in form I of sPP. Similar data have been 

reported for thin films crystallized from the melt in the same conditions at 2.5 

°C/min for the POM observation in Figure 1.52B. 

The values of the melting and crystallization temperatures and enthalpies for 

all sPPC20 samples are reported in Table 1.19, whereas the values of 

crystallization temperature and enthalpy are reported in Figure 1.134A,B as a 

function of 1-eicosene content. Also in this case, the crystallization temperature 

and the crystallization enthalpy decrease with decreasing comonomer content. 

Table 1.19 also reports all kinetics parameters evaluated from the 

interpolation of the experimental data of Figures Figures 1.130B-1.132B with 

the Avrami equation 1.2. The values of semi-crystallization time t1/2 are 

reported in Figure 1.134C. The samples sPPC20-2_iEE and sPPC20-3_iEE, 

with 0.7 and 1.6 mol% of 1-eicosene respectively, show very similar and high 

values of Avrami exponent (n ≈ 4 corresponding to three dimensional growth 

with homogeneous nucleation) and also similar values of t1/2 (≈ 200 s) (Figure 

1.134C). The sample sPPC20-5_iEE with 3.9 mol% of 1-eicosene exhibits n 

value of 3, corresponding to three-dimensional growth with heterogeneous 

nucleation or two-dimensional growth with homogeneous nucleation, and 

slightly higher value of t1/2 (350 s). 
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Figure 1.130. DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC20-2_iEE 

(0.7 mol% of 1-eicosene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.131. DSC curves recorded during heating at 40°C/min from room temperature up to 

180°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC20-3_iEE 

(1.6 mol% of 1-eicosene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B). 
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Figure 1.132. DSC curves recorded during heating at 40°C/min from room temperature up to 

130°C (a) and successive cooling to room temperature at 2.5°C/min (b) of the sPPC20-5_iEE 

(3.9 mol% of 1-eicosene) (A). Degree of apparent crystallinity as a function of time and 

temperature evaluated from DSC curves using equation 1.1 and interpolation with Avrami 

equation 1.2 (B).  
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Figure 1.133. X-ray powder diffraction profiles of samples of sPPC20 copolymers of different 

1-eicosene concentrations crystallized from the melt in DSC by cooling at 2.5 °C/min cooling 

rate (curves b of Figures 1.130A-1.132A). 
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Table 1.19. Melting temperature (Tm) and enthalpy (ΔHm), crystallization temperature (Tc) and enthalpy (ΔHc), semi-

crystallization time (t1/2), incipient crystallization time (t0) and time required to achieve 50% of the total apparent crystallinity 

(t1/2+t0) for all sPPC20 copolymers with different 1-eicosene content. 

 

Samples 1-eicosene (mol%) Tm (°C) ΔHm (J/g) Tc (°C) ΔHc (J/g) n t0 (s) t1/2(s) t1/2+t0(s) 

sPPC20-2_iEE 0.7 139.2 -88.1 97.2 31.6 4.1 90 200 290 

sPPC20-3_iEE 1.6 126 -68.2 86.9 31.9 4 153 206 359 

sPPC20-5_iEE 3.9 102.8 -75.9 65.9 17 3.2 61 351 412 
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Figure 1.134. Values of crystallization temperature (Tc) (A), crystallization enthalpy (ΔHc) (B) 

and semi-crystallization time (t1/2) (C) of sPPC20 copolymers reported as a function of 1-

eicosene content.  
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1.7.10. Concluding remarks on the analysis of crystallization kinetics  

It is well known that the Avrami equation provides more reliable indications 

of the mechanisms of nucleation and growth when it is applied in isothermal 

conditions. However, assuming that not integer values of the Avrami exponents 

are due to the factors discussed in section 1.14, the analysis of crystallization 

kinetics by using the Avrami approach in non-isothermal conditions has 

provided a rough indication of the influence of the stereo- and constitutional 

defects on the crystallization of the sPP and its random copolymers. In fact, the 

values of Avrami exponents approximated to the nearest integer number, 

generally, decrease with increasing concentration of defects (Table 1.20). 

Although the value of the Avrami exponent is not directly related to the type 

and size of the final crystalline aggregate, the biggest aggregates, as bow-tie, 

bundles and other rare and irregular crystals have generally been observed in 

samples with the highest n value (Figure 1.125). In samples of sPP with 

different stereoregularity, n initially decreases from 4 to 2 with increasing 

concentration of stereodefects, according with the presence of a complex 

morphology, where bundles and bow-tie crystals, star structures and open 

irregular aggregates suggest a crystal growth in more than one dimension 

(Figure 1.125). The value of n = 4 observed in less stereoregular samples (sPP9 

and sPP10 with [rrrr] =78 and 74.8% respectively) should be confirmed by 

additional measurements in isothermal conditions.  

In copolymers of sPP with ethylene the highest observed value of n is 3 in 

the sample AK-sPPET-2 (1.9 mol% of ethylene) showing bow-tie crystals. In 

samples with higher concentration of ethylene Avrami exponent n = 1 has been 

observed, indicating one-dimensional growth according with the observed 

needle/granular morphology (Figure 1.126). 

Copolymers of sPP with1-butene display n values bigger than those observed 

for sPPEt copolymers. This is probably related to the co-crystallization of 

propene and butene comonomeric units and the almost complete inclusion of 

butene units in the crystals of form I of sPP. The decrease of the Avrami 

exponent from the value of 4, observed in the sample with the lowest butene 

content, displaying the largest bow-tie aggregates (Figure 1.127), to the value of 

2, observed in samples sPPBu-6 and sPPBu-7, and 1 for the sample sPPBu-9, is 

consistent with the changes observed in crystals morphology and the presence 

of thinner and thinner aggregates (Figure 1.127), that suggest lower tendency to 

branching.  
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Table 1.20. Avrami exponent n, semi-crystallization time (t1/2) of all samples of sPP of different 

stereoregularity and all random copolymers of sPP. 

Sample 
Stereoregularity or mol% 

comonomer 
n t1/2(s) 

sRDG-2-1 95.5 4 232 

sPP2 95.0 4 204 

sPP3 94.2 3 180 

sPP4 92.5 3 169 

sPP5 91.5 2 178 

sPP6 90.7 2 124 

sPP7 88.6 3 168 

sPP8 87.0 2 277 

sPP9 78.0 4 472 

sPP10 74.8 4 394 

sPP11 70.6 2 366 

AK-sPPEt-2 1.9 3 147 

sPPEt-4  6.3 2 303 

sPPEt-6 8.5 1 148 

sPPEt-8 9.8 1 170 

sPPEt-9  13.2 2 308 

sPPEt-10 14.3 1 226 

sPPBu-1 3.2 4 222 

sPPBu-2 6.1 3 130 

sPPBu-4 11.2 3 183 

sPPBu-6 18.2 2 295 

sPPBu-7 31.5 2 7×103 

sPPBu-9a 51.7 1 44×103 

sPPBu-11a 69.9 2 32×104 

sPPBu-12a 89 2 141×105 

sPP-4MP-1 1.8 3 123.3 

sPP-4MP-2 4.0 2 153.8 

sPP-4MP-4 12.9 2 169.1 

sPP-4MP-5 15.2 2 267.3 

sPPHe-1 1.7 2 220 

sPPHe-2 3 2 178 

sPPHe-3 3.9 2 134 

sPPHe-5 6.4 2 182 

sPPHe-6a 9 1 34×103 

sPPOt-1b 1.9 2, 4 130, 207 

sPPOt-2 2.7 3 214 

sPPOt-4 4 2 550 

sPPOt-6 6.1 3 515 

sPPOt-7a 9.3 1 115×103 

sPPOt-8 a 18.8 1 140×103 

sPPC12-1 0.8 3 135 

sPPC12-2 1.8 2 113 

sPPC12-3 2.7 2 119 

sPPC12-4 4.2 2 124 

sPPC12-5 6 2 234 

sPPC18a_iAc 0.7 4 275 

CA_sPPC18-4_iAc 0.9 4 183 

sPPC18-2_iAc 2.8 3 518 

CA_sPPC18-12_iAc 4.2 3 325 

sPPC18c_iAc 5.5 2 469 

sPPC20-2_iEE 0.7 4 200 

sPPC20-3_iEE 1.6 4 206 

sPPC20-5_iEE 3.9 3 351 
a
) The kinetic parameters of this sample have been evaluated from WAXS analysis. 

b
) This 

sample seems to have two different nucleation process. 
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sPP2, [rrrr] =95%, n=4, t1/2= 205 s       sPP4, [rrrr] =92.5%, n=3, t1/2= 169 s      sPP5, [rrrr] =91.5%, n=2, t1/2= 178 s 

           
 

   sPP6, [rrrr] =90.7%, n=2, t1/2= 124 s     sPP9, [rrrr] =78%, n=4 , t1/2= 472 s        sPP11, [rrrr] =70.6%, n=2, t1/2= 366 s 

       
 
Figure 1.125. Comparison of POM images of samples of sPP with the indicated [rrrr] pentad concentration and the corresponding Avrami exponent n and 

semi-crystallization time t1/2.  
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AK-sPPEt-2, 1.9 mol% of ethylene            PPET(4) 6.3 mol% of ethylene                   PPET(8) 9.8 mol% of ethylene 

n=3, t1/2= 147 s                                        n=2, t1/2= 303 s                                         n=1, t1/2= 170 s 

       

Figure 1.126. Comparison of POM images of samples of sPPET with the indicated ethylene content and the corresponding Avrami exponent n and semi-

crystallization time t1/2. 
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sPPBu-1, 3.2 mol% of 1-butene            sPPBu-4 11.2 mol% of 1-butene                 sPPBu-6 18.2 mol% of 1-butene 

n=4, t1/2= 222 s                                        n=3, t1/2= 130 s                                    n=2, t1/2= 170 s 

       
 

sPPBu-7, 31.5 mol% of 1-butene            sPPBu-9 51.7 mol% of 1-butene                 sPPBu-12 89 mol% of 1-butene 

                 n=2, t1/2= 7×10
3s                                        n=1, t1/2= 44×10

3 s                                    n=2, t1/2= 141×10
5 s 

       
Figure 1.127. Comparison of POM images of samples of sPPBu with the indicated 1-butene content and the corresponding Avrami exponent n and semi-

crystallization time t1/2. 
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For further increase of butene content, increase of the Avrami exponent n to 

the values of 2 has been observed (sample sPPBu-12 with 89 mol% of butene), 

corresponding to the crystallization of form I of sPB and formation of slightly 

thicker crystals (Figure 1.127). 

Not many differences have been observed in crystal morphology of random 

copolymers of sPP with 4-methyl-pentene. Correspondingly similar n values 

have been observed in all samples (n = 2) according with the co-existence of 

different types of slightly bigger aggregates in addition to the interwoven 

network (Figure 1.128). Only the sample with the lowest concentration of 4-

methyl-1-pentene displays n = 3 (Figure 1.128). Probably in this sample the low 

comonomer content allows for the three- or two-dimensional growth of crystals 

which is prevented for higher comonomer concentrations. 

All sPPHe copolymers exhibit n = 2 according with the observed similar 

morphology (Figure 1.128). For sPPOt copolymers values of n comprised 

between 2 and 1 have been observed, according with the similar morphology of 

thin and elongated crystals (Figure 1.129). Only in the case of the samples with 

the low octene concentrations higher values of n, in the range 3-4, have been 

observed according with the observation of thicker crystals (Figure 1.129). 

Samples of copolymers with long comonomers (1-dodecene, 1-octadecene 

and 1-eicosene) exhibit crystalline aggregates very similar to those observed in 

more stereoregular sPPs (Figures 1.129 and 1.130). When the comonomer 

content is very low Avrami exponents n = 3, in the sample sPPC12-1, and n = 

4, in the samples sPPC18a_iAc, CA-sPPC18-4_iAc, sPPC20-2_iEE and sPP20-

3_iEE, have been observed according with the formation of thicker aggregates 

and the observed morphology, which seems to suggest a three-dimensional 

growth (Figures 1.129 and 1.130). Moreover, the values of n remain high also 

in sPPC18 and sPPC20 samples with higher comonomer content (n = 3 in 

samples sPPC18-2_iAc, CA-sPPC18-12_iAc and sPPC20-5_iEE) (Figure 

1.130). This could be due to the very low values of the glass transition 

displayed by these samples, which induces a higher chain mobility, allowing a 

three- or two-dimensional crystal growth. 
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  sPP4M1P-1 1.8 mol% of 4M1P            sPP4M1P-4 12.9 mol% of 4M1P            sPP4M1P-5 15.2 mol% of 4M1P 

n=3, t1/2= 123 s                                        n=2, t1/2= 169 s                                           n=2, t1/2= 267s 

       
 

   sPPHe-1, 1.7 mol% of 1-hexene            sPPHe-3, 3.9 mol% of 1-hexene                sPPHe-6, 9 mol% of 1-hexene 

n=2, t1/2= 220 s                                        n=2, t1/2= 134 s                                    n=1, t1/2= 34×10
3
 s 

       
Figure 1.128. Comparison of POM images of samples of sPP4M1P and sPPHe with the indicated comonomer content and the corresponding Avrami 

exponent n and semi-crystallization time t1/2.  
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    sPPOt-1, 1.9 mol% of 1-octene            sPPOt-2, 2.7 mol% of 1-octene                sPPOt-4, 4 mol% of 1-octene 

               n=4/2, t1/2= ???/ s                                        n=3, t1/2= 214 s                                           n=2, t1/2= 550 s 

       
 

sPPC12-1, 0.8 mol% of 1- dodecene      sPPC12-3, 2.7 mol% of 1-dodecene         sPPC12-4, 4.2 mol% of 1-dodecene 

               n=3, t1/2= 135 s                                        n=3, t1/2= 119 s                                           n=2, t1/2= 124 s 

       
Figure 1.129. Comparison of POM images of samples of sPPOt and sPPC12 with the indicated comonomer content and the corresponding Avrami 

exponent n and semi-crystallization time t1/2.  
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CA-sPPC18-4_iAc, 0.9 mol% of C18         sPPC18-2_iAc, 2.8 mol% of C18         CA-sPPC18-12_iAc, 4.2 mol% of C18 

               n=4, t1/2= 183 s                                        n=3, t1/2= 518 s                                           n=3, t1/2= 325 s 

       
 

      sPPC20-1_iEE, 0.7 mol% of C20             sPPC20-3_iEE, 1.6 mol% of C20          sPPC20-5_iEE, 3.9 mol% of C20 

               n=4, t1/2= 200 s                                        n=3, t1/2= 206 s                                           n=3, t1/2= 351 s 

       
Figure 1.130. Comparison of POM images of samples of sPPC18 and sPPC20 with the indicated comonomer content and the corresponding Avrami 

exponent n and semi-crystallization time t1/2. 
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1.8. Study of the crystal morphology by atomic force microscopy. 

The correlation between morphology and mechanical properties has been 

studied in deep by Atomic Force Microscopy (AFM) and Small Angle X-ray 

Scattering (SAXS). These two techniques allow to investigate more in detail the 

inner structure of the crystalline aggregates described in previous sections. 

AFM measurements have been performed at room temperature, according with 

the procedure already described in section 1.5, on melt-crystallized thin films of 

samples of random copolymers of sPP with ethylene (sPPET) and 1-butene 

(sPPBu) selected from Tables 1.3 and 1.4. The observed morphology has been 

compared with the morphology of one sample of sPP of high steroregularity 

(sample sRDG-2-1, Table 1.1). 

X-ray powder diffraction profiles of compression-molded samples of the sPP 

homopolymer and of sPPET and sPPBu copolymers analyzed by AFM are 

shown in Figures 1.131 and 1.132. The diffraction profiles of the samples as 

cooled from the melt (Figures 1.131A and 1.132A) and of the samples aged at 

room temperature (Figures 1.131B and 1.132B) are reported. The diffraction 

profiles of the aged samples are similar to those of thin films used for the POM 

experiments shown in Figure 1.37C for sPPET and Figure 1.41B for sPPBu. 

For most of the samples the AFM images are recorded soon after the cooling 

from the melt, as explained in the experimental section 1.5, whereas for 

samples with high butene concentrations that crystallize by aging (Figure 

1.132B), the AFM images are recorded also after long aging at room 

temperature.  

The AFM images of compression-molded samples of the sPP homopolymer 

(sample sRDG-2-1) are reported in Figure 1.133, whereas those of the sPPET 

and sPPBu copolymers are shown in Figures 1.134 – 1.137 (for sPPET 

samples) and in Figures 1.138-1.145 (for sPPBu samples). 

In the sPP homopolymer and in both sPPET and sPPBu copolymers with 

low concentration of comonomeric units the lamellar morphology typical of 

semi-crystalline polymers, with bundles of nearly parallel and stacked lamellae 

radiating from a nucleus, has been observed (Figures 1.133 – 1.135 and 1.138 – 

1.139). At low magnifications the boundaries of spherulites are also apparent 

(Figures 1.133C,C‟ – 1.135C,C‟ and Figures 1.138C,C).  

The lamellar morphology becomes more and more disordered with 

increasing comonomer concentration. In samples AK-sPPEt-15, sPPBu-4 and 

sPPBu-6 with 11.9 mol% of ethylene, 11.2 and 18.2 mol% of 1-butene 

respectively, indeed, smaller and thiner lamellae still radiating from a nucleus 
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are randomly oriented (Figures 1.136, 1.140-1.141) and only small bundles of 

parallel lamellae are visible (Figures 1.140B,B‟ - 1.141B,B‟).  

The samples AK-sPPEt-25 with the highest ethylene concentration of 27.5 

mol% is amorphous after cooling from the melt (profile h of Figure 1.131A) 

and does not crystallize after aging (profile h of Figure 1.131B). Accordingly, 

the AFM images of these samples of Figure 1.137 are featurless.  

Samples of copolymers sPPBu-7, sPPBu-9, sPPBu-11, sPPBu-12 with 31.5, 

51.7, 69.9 and 89 mol% of 1-butene respectively do not crystallize from the 

melt in bulk samples (profiles e-h of Figure 1.132A) but crystallize upon aging 

at room temperature (profiles e-h of Figure 1.132B).
143g

 Samples sPPBu11 and 

sPPBu12, in particular, crystallize in structures similar to that of form I of sPB 

(Figure 1.132B curves g,h).
140

 Nevertheless, when cooled from the melt in thin 

film for the AFM experiments the samples sPPBu-7 and sPPBu-11 display very 

short and irregular randomly oriented crystalline lamellae already soon after the 

cooling (Figures 1.142A,A‟ and 1.144). Little or no improvement of this 

disordered morphology has been observed after aging at room temperature 

(Figure 1.142 B,B‟-C,C‟). Only the images of the non aged samples, recorded 

soon after the cooling, are reported for the samples sPPBu9, sPPBu11 and 

sPPBu12 (Figures 1.143 - 1.145).  

For samples sPPBu-9 and sPPBu-12 the AFM images are featurless or not 

well-resoved (Figures 1.143 and 1.145) so that no evident morphology has been 

observed, even after long aging time. This is also due to the extremely high 

roughness and stickiness of these samples that has hindered the acquisition of 

well resolved AFM images.  
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Figure 1.131. X-ray powder diffraction profiles of as-prepared compression-moulded films slowly cooled from the melt (A) and aged at room 

temperature (B) of the sPP homopolymer (sRDG-2-1) and of selecets samples of sPPET copolymers of Table 1.3. The X-ray powder diffraction profiles 

of similar thin films used for the POM experiments have also been shown in Figure 1.37C. 
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Figure 1.132. X-ray powder diffraction profiles of as-prepared compression-moulded films slowly cooled from the melt (A) and aged at room 

temperature (B) of samples of sPPBu copolymers of Table 1.4. The X-ray powder diffraction profiles of similar thin films used for the POM experiments 

have also been shown in Figure 1.41B.  
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sRDG-2-1, [rrrr] = 95.5%, [total defects] = 0.7% 

      

    A      A' 
 

   
    B      B' 
 

   

   C      C' 
 

Figure 1.133. AFM height (A,B,C) and phase images (A’,B’,C’) of the thin film of the sample 

sRDG-2-1 with 0.7 mol% of total defects collected in tapping mode at room temperature with 

different scan sizes of 1 (A,A’), 2.5 (B,B’) and 5 (C,C’) μm. 
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AK-sPPEt-2, 1.9 mol% of ethylene 

     

    A      A' 
 

     

   B      B' 
 

 

    C      C' 
 

Figure 1.134. AFM height (A,B,C) and phase images (A’,B’,C’) of the thin film of the sample 

AK-sPPEt-2 with 1.9 mol% of ethylene collected in tapping mode at room temperature with 

different scan sizes of 500 nm (A,A’), 1 (B,B’) and 5 (C,C’) μm. 
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AK-sPPEt-10, 8.3 mol% of ethylene 

     

    A      A' 
 

     

    B      B' 
 

Figure 1.135. AFM height (A, B) and phase images (A’, B’) of the thin film of the sample AK-

sPPEt-10 with 8.3 mol% of ethylene collected in tapping mode at room temperature with 

different scan sizes of 1 (A,A’)and 5 (B,B’) μm. 
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AK-sPPEt-15, 11.9 mol% of ethylene 

 

  A          A' 
 

 

    B           B' 
 

Figure 1.136. AFM height (A,B) and phase images (A’,B’) of the thin film of the sample AK-

sPPEt-15 with 11.9 mol% of ethylene collected in tapping mode at room temperature with 

different scan sizes of 2 (A,A’) and 5 (B,B’) μm. 
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AK-sPPEt-25, 27.5 mol% of ethylene 

v  

  A          A' 
 

Figure 1.137. AFM height (A) and phase images (A’) of the thin film of the sample AK-sPPEt-

25 with 27.5 mol% of ethylene collected in tapping mode at room temperature with scan size of 

2 μm. 

  



216 
 

sPPBu-1, 3.2 mol% of 1-butene 

     

  A          A' 
 

       

  B          B' 
 

Figure 1.138. AFM height (A,B) and phase images (A’, B’) of the thin film of the sample 

sPPBu-1 with 3.2 mol% of 1-butene collected in tapping mode at room temperature with 

different scan sizes of 2.5 (A,A’) and 5 (B,B’) μm. 
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sPPBu-2, 6.1 mol% of 1-butene 

 

  A          A' 
 

 

  B          B' 
 

Figure 1.139. AFM height (A,B) and phase images (A’,B’) of the thin film of the sample sPPBu-

2 with 6.1 mol% of 1-butene collected in tapping mode at room temperature with different scan 

sizes of 1.7 (A,A’) and 5 (B,B’) μm. 
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sPPBu-4, 11.2 mol% of 1-butene 

      

  A          A' 
 

      

  B          B' 
 

Figure 1.140. AFM height (A,B) and phase images (A’,B’) of the thin film of the sample sPPBu-

4 with 11.2 mol% of 1-butene collected in tapping mode at room temperature with different 

scan sizes of 2.4 (A,A’) and 5 (B,B’) μm. 
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sPPBu-6, 18.2 mol% of 1-butene 

      

  A          A' 
 

      

  B           B' 
 

      

  C           C' 
 

Figure 1.141. AFM height (A,B,C) and phase images (A’,B’,C’) of the thin film of the sample 

sPPBu-6 with 18.2 mol% of 1-butene collected in tapping mode at room temperature with 

different scan sizes of 1.5 (A,A’,) 2.5 (B,B’) and 5 (C,C’)μm. 
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sPPBu-7, 31.5 mol% of 1-butene 

   

  A          A' 
 

      

  B          B' 
 

     

  C           C' 
 

Figure 1.142. AFM height (A,B,C) and phase images (A’,B’,C’) of the as-crystallized (A,A’) 

and aged (B,B’,C,C’) thin film of the sample sPPBu-7 with 31.5 mol% of 1-butene collected in 

tapping mode at room temperature with different scan sizes of 700 nm (A,A’,) 1.7 (B,B’) and 5 

(C,C’)μm. 
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sPPBu-9, 51.7 mol% of 1-butene 

      

  A          A' 
Figure 1.143. AFM height (A) and phase images (A’) of the thin film of the sample sPPBu-9 

with 51.7 mol% of 1-butene recorded soon after the cooling from the melt in tapping mode at 

room temperature with scan size of 1.5 μm. 

 

sPPBu-11, 69.9 mol% of 1-butene 

       

  A        A' 

 

A'' 
Figure 1.144. AFM height (A), amplitude (A’) and phase images (A’’) of the thin film of the 

sample sPPBu-11 with 69.9 mol% of 1-butene recorded soon after the cooling from the melt in 

tapping mode at room temperature with scan size of 1 μm. 
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sPPBu-12, 89 mol% of 1-butene 

      

A      A' 
 

Figure 1.145. AFM height (A) and phase images (A’) of the thin film of the sample sPPBu-12 

with 89 mol% of 1-butene recorded soon after the cooling from the melt in tapping mode at 

room temperature with scan size of 1 μm. 
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1.9. Study of the crystal morphology by Small Angle X-ray Scattering. 

In parallel to the AFM analysis, SAXS experiments have been performed on 

the same samples of sPP and sPPET and sPPBu copolymers for a better 

evaluation of the influence of the composition on the morphological parameters 

such as the lamellar thicknesses. 

Aged compression moulded films of the sPP homopolymer (sample sRDG-

2-1), sPPEt and sPPBu copolymers of Figures 1.131B and 1.132B have been 

analyzed at room temperature, in the molten state and soon after the cooling 

from the melt down to room temperature. The SAXS data have been collected 

using a Kratky compact camera in the slit collimation configuration, attached to 

a conventional X-ray source (CuKα, wavelength λ =1.5418 Å). The range of 

values of the analyzed scattering vector s is 0.01 nm
-1

 ≤ s ≤ 0.9 nm
-1

, where s = 

2π sin θ/λ and 2θ is the scattering angle. The zero position of the primary beam 

has been evaluated from the maximum of the height intensity profile of the 

detector recorded placing a Zinc absorber in front of the X-ray source and 

placing an orizhontal slit 20 m width and without beamstop. The intensity of 

the primary beam has been evaluated by measuring the counts per 60 seconds 

placing a vertical slit in fronto of the detector. Then, the scattering of the 

sample is measured removing the Zinc absorber and placing the beamstop and a 

orizhontal slit 100 m width in front of the detector. Finally, after the 

measurement of the scattering from the sample, the background is measured 

recording the SAXS profile of the empty sample holder and is subtracted from 

the scattering of the sample. 

After the subtraction of the background, the slit smeared data have been 

deconvoluted using a home-made QT/C++ program to obtain the corresponding 

pinhole scattering (desmeared) intensity distribution in absolute units.
163

 The 

desmeared data have been processed with the MATLAB program 

correlation_gui developed in Prof. Thurn-Albrecht‟s group.
163 

 

1.9.1. Basic Formalism Describing the Relation between Real-Space 

Structure and Scattering Intensity in a SAXS Experiment. 

The following section presents a short overview of the basic concepts of 

SAXS analysis/theory, as described in the ref 163. 

In SAXS experiments, the incident X-ray beam with wavelength  and flux 

J0 irradiates a sample. The scattered beam with flux J is detected as a function 

of the scattering angle 2 at a certain distance from the sample. Note that the 

term Intensity is generally used to denote a flux J in units of energy per unit area 
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and per unit time. More precisely, an incident plane wave with flux J0 is 

scattered by the electrons in the sample. The scattered spherical waves interfere 

with each other, resulting in an angle-dependent flux J of scattered radiation. 

The flux J0 of the incident plane wave corresponds to the energy transmitted per 

unit area and per unit time and the flux J of the scattered radiation to the energy 

transmitted per unit solid angle per unit time. Now the differential scattering 

cross section or scattered intensity is defined as the ratio between the flux J of 

the scattered beam and the flux J0 of the incident beam: 

                                            ( ⃗)  
  

  
 

 

  
                                                (1.4) 

where (⃗s) is the scattering vector defined as the difference between the wave 

vector (⃗k) of the scattered beam and the wave vector (⃗k0) of the incident beam 

                                            ⃗   
 

  
( ⃗⃗   ⃗⃗ )                                             (1.5) 

The absolute value of the scattering vector is  

                                          | ⃗|  
 

 
                                                        (1.6) 

An alternative parameter often used as scattering vector is q = 2s. 

The flux J of the scattered radiation is the square of the amplitude A of the 

scattered wave field. 

                                    ( ⃗)  | ( ⃗)|   ( ⃗)   ( ⃗)                           (1.7) 

A(⃗s) can be calculated as the sum of the amplitudes of the scattered waves 

originating from N scattering centers in the sample.  

                                   ( ⃗)      ∑       ⃗  ⃗ 
                                         (1.8) 

Where A0 is the amplitude of the incident beam and be = re[(1+cos
2
2)/2]

1/2
 

is the scattering length of an electron with re the radius of an electron re = 

2.81810
−15

 m and p = (1+cos
2
2)/2 is the polarization factor, which is 

approximately 1 for small angles (2 ≤ 8°), and therefore be  re.  

At the length scales investigated in small angle scattering experiments a 

continous electron density ρ(⃗r) is used to describe the structure of the sample 

instead of single scattering centers. Therefore, the sum in Equation 1.8 can be 

replaced by an integral. 

                                     ( ⃗)      ∫  ( ⃗)
 

 
      ⃗  ⃗  ⃗                         (1.9) 
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That is to say that the amplitude is proportional to the Fourier transform of 

the electron density ρ(⃗r).  

In an experiment, a time-averaged intensity I(⃗s) is measured, which in an 

equilibrium system is equivalent to the ensemble average: 

             ( ⃗)  
 ( ⃗)

  
   

| ( ⃗)| 

|  | 
     |  ∫  ( ⃗)

 

 
      ⃗  ⃗  ⃗|           (1.9a) 

 

If g(⃗r) is the three dimensional electron density correlation function: 

 

            ( ⃗)    ( ⃗ ) ( ⃗   ⃗)    ⃗⃗⃗⃗  
 

 
∫  ( ⃗ ) ( ⃗   ⃗)
 

 
   ⃗⃗⃗            (1.10) 

Then: 

                                   ( ⃗)    
  ∫  ( ⃗)

 

 
      ⃗  ⃗  ⃗                           (1.11) 

That is to say that the intensity I(⃗s) is proportional to the Fourier transform 

of the three-dimensional electron density correlation function g(⃗r). 

In SAXS experiments the fluctuations of the electron density are more 

significant that the electron density it self. Therefore ρ(⃗r) can be replaced by 

the deviation from the average electron density: 

                                               ( ⃗)   ( ⃗)                                          (1.12) 

leading to: 

                           ( ⃗)     ( ⃗ )  ( ⃗   ⃗)    ⃗⃗⃗⃗  +                         (1.13) 

Finally, the absolute intensity Iabs(⃗s) is defined as the intensity normalized 

to the scattering of a single electron and to the irradiated volume. It describes 

the scattering power of a material per volume in units of [e.u./nm
3
]. 

                           ( ⃗)  
 

  
  

  

  
( ⃗)  ∫  ( ⃗)      ⃗  ⃗  ⃗

 

 
                          (1.14) 

The morphology of semicrystalline polymers is generally described with the 

lamellar two-phase system consisting of crystalline and amorphous phases with 

different electron densities and with sharp boundaries between them. A model 

of lamellar stacks where crystalline layers of thickness dc alternate with 

amorphous layers of thickness da and with an avareged periodicity L, is 
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generally accepted (Figure 1.146A). This structure gives rise to a peak in the 

scattering intensity at a scattering vector sp from which the average long period 

L = 1/sp can be determined.  

Typically, the lateral dimensions of the lamellar stacks in the sample are 

large compared to the interlamellar distance L; therefore, only the electron 

density distribution along the normal of the lamellar stacks, here denoted as z-

direction, changes within the relevant length scale of a SAXS experiment (1 –

100 nm) (Figure 1.146B). Hence, g(⃗r) reduces to the one-dimensional 

correlation function K(z). 

                                          ( )     (  )  (    )                         (1.15) 

Inserting the equation 1.15 into the equation 1.14 leads to 

                                      ( ⃗)  ∫  ( )
 

     
      ⃗  ⃗                              (1.16) 

After integration over x and y with δ(t) = 
 

  
∫        
 

  
 

                            ( ⃗)   (  ) (  ) ∫  ( )
 

  
                              (1.17) 

As the lamellar stacks are isotropically distributed inside the sample, the 

intensity in ±sz direction is distributed over the surface of a sphere with radius sz 

                                ( ⃗)  
 

    
 ∫  ( )

 

  
                                     (1.18) 

The reverse Fourier transform gives 

                         ( )  ∫         ( ) 
         

 

  
                                (1.19) 

Since K(z) and Iabs(s) are both even function (f(x) = f(-x)), the Fourier 

transform becomes a cosine transform: 

                          ( )   ∫         ( )    (    )   
 

 
                       (1.20) 

that means that the one-dimensional correlation function K(z) can be calculated 

directly from I(s). The correlation function K(z) for an ideal lamellar stacks is 

shown in Figure 1.147A. The “self-correlation triangle” centered at the origin, 

reflects the electron density correlation within a lamella (Figure 147A). For a 

two-phase system, the maximum Q at z = 0 is  
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                                      ( )                                          (1.21) 

It depends only on the volume fractions of the two phases 𝜙c and 𝜙a and the 

electron density difference ∆ρ= ρc-ρa, that is Q does not depend on the detailed 

structure. Therefore, it is called invariant. 

From the maximum at the origin, K(z) decreases linearly to a minimum 

value, namely, the baseline B, with the value  

                                                     𝜙 
     

  

    
                              (1.22) 

 

If the crystallinity is smaller than 50% (𝜙c ≤ 0.5), this minimum position 

corresponds to the crystalline thickness dc. Otherwise, it corresponds to the 

amorphous thickness da and 𝜙c has to be replaced by 𝜙a = (1−𝜙c), in 

accordance with Babinet‟s principle. 

The slope of K(z) at the origin is 

                                           
  

  
  

   

 
    

   

 
                                   (1.23) 

with Oac as the specific inner surface per unit volume of the interfaces between 

crystalline and amorphous regions. 

                                                          
 

 
 

   

  
                                     (1.24) 

The second maximum in K(z) is located at the long period L. The 

crystallinity and the square of the electron density then follow by: 

                                                       𝜙  
  

 
 

 

   
                                   (1.25) 

 

                                                
 

  (    )
 

(   ) 

 
                              (1.26) 
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Figure 1.146. Scheme of the ideal lamellar structure of a semicrystalline polymer (A), 

consisting of crystalline lamellae with thickness dc and amorphous regions with thickness da 

alternating along the z-direction with periodicity L=dc+da and corresponding electron density 

difference along the z-direction (B). 

 

 

Figure 1.147. Correlation function for an ideal lamellar stack (A) and effect of deviations from 

ideality (B). 
 

In a real system, deviations from the ideal structure exist, for example, 

variations of the lamellar and crystalline thicknesses or diffuse interphases. 

Figure 147B illustrates this case. Around the origin, K(z) is flattened. The first 

minimum does not necessarily reach the value of the baseline anymore. In 

addition, higher order maxima of K(z) are damped due to the thickness 

variations of the crystalline and amorphous phase, leading to an overestimated 

long period.
164

 

Another way of analyzing SAXS data of a lamellar two-phase system is the 

interface distribution function K''(z) (IDF) established by Ruland.
165

 For an 

ideal lamellar two-phase system, the second derivative of the one-dimensional 

correlation function K′′(z) has only contributions ( -functions) at positions that 

correspond to the distance of any two interphases, with the first three giving the 

structure parameters da, dc, and L. Figure 1.148 shows the correlation function 

and the first and second derivative K′(z) and K′′(z). Deviations from an ideal 
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lamellar structure, for example, varying amorphous and crystalline thicknesses, 

lead to a broadening of the  -peaks (Figure 1.148). 

 

Figure 1.148. Correlation function K(z) for an ideal lamellar stack and the first and second 

derivatives K′(z) and K′′(z). Deviations from the ideal lamellar structure lead to a broadening 

(dotted line) of the  -Peaks (arrows). 

 

 

K′′(z) can be calculated directly from Iabs(s) using the common expression for 

the Fourier transform of derivatives:
166

  

                                     [   ( )]  (    )  [ ( )]                            (1.27) 

                                   ( )      ∫       
 

  
( )                          (1.28) 

The triangular shape of K(z) around the origin leads to a  -function for K′′(z) 

at z = 0, which gives a constant contribution in reciprocal space for s → ∞, 

which has to be subtracted:
167
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                                                ( ) 
                                 (1.29) 

This means that for for s → ∞ it is assumed that the experimental SAXS 

intensity responds to the Porod law:
168 

                                           Iabs(s) = Ps
−4

                                                (1.29a) 

The Porod parameter P is related to the specific inner surface Oac and the 

electron density difference Δ : 

                                                        
     

 

   
                                         (1.30) 

A decrease of I(s) ∝ s
−4

 is characteristic for a two-phase system with sharp 

boundaries.
168

 After subtracting the contribution at z = 0, Equation 1.28 yields: 

               ( )     ∫ [          ( ) 
        ( )] 

       
 

  
     (1.31) 

The inverse Fourier transform: 

             [          ( ) 
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                      (1.32) 

Since K′′(z) is an even function the latter equation is equivalent to 

     [          ( ) 
        ( )]   ∫

   ( )

   

 

 
   (   )                     (1.33) 

With s4Iabs(s) being an even function, the Equation 1.33 becomes: 

   ( )      ∫ [          ( ) 
        ( )]    (    )   

 

 
        (1.34) 

For an ideal system, K′ ′ (z=0) as defined in Equation 1.34 is zero, 

corresponding to the fact that there are no interfaces with zero distance, as they 

would occur, for example, at the edges of lamellar crystals. For laterally 

extended lamellae, this contribution is negligible also in a real lamellar 

system.169 The scattering intensity Iabs(s) is measured in absolute unitsas defined 

in Equation 1.14. In addition to scattering, absorption takes place in the sample, 

following the Lambert–Beer law170 as it does for visible light. For SAXS, the 

transmitted and the scattered beams are attenuated by the same amount. The 

transmission measured for the primary beam can therefore be used to correct 
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the scattering signal Iexp(s) for absorption effects. The absorption factor A is the 

ratio of the primary beam intensity with and without the sample. 

                                                   
   (      )

   (          )
                                    (1.35) 

                                                    ( )         ( )                             (1.36) 

Absorption also needs to be taken into account when subtracting the 

background Iexp,BG(s), caused, for example by the empty sample holder. This 

is the last step by which the experimental data have to be corrected before 

calculating the correlation function or the IDF. 

                                    ( )          ( )         ( )                          (1.37) 

1.9.2. Modeling the Interface Distribution Function for a 1D Lamellar 

Stack. 

In an ideal lamellar structure the IDF has maxima or minima corresponding 

to the distance of interfaces between the two ideal crystalline and amorphous 

phases. In particular, there is a first maximum at da value, followed by a second 

maximum at dc value (Figiure 1.148). A minimum follows these maxima at 

position r = L = dc + da, which corresponds to the interface between couples of 

consecutive layers. Other maxima and minima are present at longer distances r 

corresponding to all possible third close interfaces (r = dc + da + dc and r = da 

+ dc + da), fourth close interfaces etc. 

Deviations from an ideal lamellar structure, for example, varying amorphous 

and crystalline thicknesses, lead to a broadening of the  -peaks (Figure 1.148). 

Thus, K′′(z) can be described as a sum of distribution functions, where hc(z) 

denotes the distribution of crystalline thicknesses and ha(z) the distribution of 

amorphous thicknesses. hac(z) is the distribution of the long period that is, one 

amorphous plus one crystalline thickness. Higher order distributions are defined 

analogously.  

Therefore, in experimental cases the IDF must show two maxima at r = la 

and lc and a minimum at r = lc +la and it is not always possible to determine 

accurately the position of minima and/or maxima among more distant 

interfaces. Moreover, the nonideality of a real semicrystalline polymer can lead 

to a broadening and overlapping of the peaks in K′′(z), which makes it difficult 

to extract the correct structure parameters simply from the peak positions. The 
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one-dimensional paracrystalline stack has been suggested as an analytical 

model for the semicrystalline structure.
169,171,172

 The procedure adopted by Prof. 

Thurn-Albrecht allows simulating and modeling the measured IDF based on 

this model. A simulated IDF K''Sim(z) is introduced: 

   
   ( )  

     
 

 
(  ( )    ( )      ( )      ( )      ( )    ) (1.38) 

for which ha(z) and hc(z) are taken to be normalized Gaussian functions, that is, 

the thicknesses da,c have a Gaussian distribution with width 𝜎a,c 

                                                ( )  
 

√      
 
 

(      )
 

     
 

                              (1.39) 

Higher order distributions haca(z) are assumed to be convolutions ( ) of ha(z) 

and hc(z), here the order of indices is irrelevant. Every Gaussian function has 

two free parameters (da,c and 𝜎a,c); that is, all together, the model function has 

four free parameters. The cosine transform of K''(z) (Eq. 1.33) is approximated 

by the real part ℜ of the Fourier transform of K'' (Sim(z)) 

                                        ̃  
   ( )  ℜ( [   

   ( )]                           (1.40) 

The calculation is simplified by the fact that the Fourier transform of a 

Gaussian function is again a Gaussian function 

           [ ( )]   ̃( )  ∫  ( )                    

  
               (1.41) 

and that the convolutions become products. The sum in Equation 1.38 can be 

represented as a geometric series and an analytical expression is obtained for 

 ̃''Sim(s), which can be fitted to the experimental data (for details, see ref 163): 

                    ̃  
   ( )      [          ( ) 

        ( )]             (1.42) 

Finally, the calculation of K''Sim(z) is realized by a cosine transform of 

 ̃′′Sim(s). For the Fourier transform of the experimental data, it is necessary to 

multiply the right side of Equation 1.42, that is,     [          ( ) 
  

      ( )], abbreviated     [        ( )] with a window function: 

                                                 ( )                                               (1.43) 
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to suppress contributions due to noise, which become very strong at high s due 

to the multiplication with s
4
. Therefore, to compare the measurement with the 

simulation, both are multiplied with  (s). This procedure is equivalent to a 

convolution of K''(z) and K''Sim(z) with  (z) in real space, resulting in a certain 

broadening of both. Typical values for 𝜎 are in the range between 1 and 2 nm. 

In addition, taking into account the finite resolution of the measuring 

instrument, the simulated  ̃ ′′Sim(s) has to be convoluted with a resolution 

function 

                                                  ( )  
 

√    
 
 

  

   
 
                                (1.44) 

For the data shown in next section, a value of 𝜎A = 0.00325 nm
−1

 was 

assumed. The final expression of the simulation function, in the following 

abbreviated with  ̃′′Sim,final(s), is then 

                           ̃           ( )   ( )  ( ̃  
   ( ) ( ))                    (1.45) 

The approach to take the real part ℜ of the Fourier transformation   as an 

approximation of the cosine transformation leads to an additional contribution 

for K′′Sim(z) at small z. The light gray area in Figure 1.149 illustrates the 

additional contribution. One, therefore, has to make sure that this additional 

contribution is small. Here it has been adopted the criterion that the integrated 

contribution of the Gaussian function h 
a(z) (convoluted with the window 

function): 

                       
 ( )   ( ̃ ( ) ( ))  

 

√  √(  
     )

 
 

(    ) 

   
     

          (1.46) 

for negative z is smaller than 5% of the whole area underneath h 
a (z). 
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Figure 1.149. Gaussian function (black line) with nonzero values for z ≤ 0 (dark gray area). 

Calculating the real part of the Fourier transformation instead of a cosine transformation leads 

to an additional contribution (light gray area) for h(z ≥ 0). 

 

Since the calculation of the IDF is realized by a discrete cosine transform 

(DCT) applied to the discrete data points from the experiment, the s-range, over 

which experimental data are measured, sets the resolution with which the IDF is 

determined. For a given highest scattering vector smax, the IDF is calculated 

with a distance between the data points Δz = 1/smax. For a reliable analysis, Δz 

should be smaller than the scale of the smallest features to be determined, that 

is, da or dc, whatever is smaller. Then the corresponding contribution in the IDF 

will be well-resolved. In reciprocal space, this requires that smax is in the Porod 

range for which Iabs(s) = Ps
−4

. If a smaller smax is chosen, small-scale features in 

the IDF and also the correlation function are effectively averaged out with a 

resolution corresponding to 1∕smax. 

In the next section the calculation of K''(z) will be demonstrated step by step 

only for the sample of the sPP homopolymer, as an example of the complete 

procedure. For all other samples of sPPET and sPPBu copolymers onlyy the 

results will be shown. 
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1.9.3. SAXS analysis on the sPP homopolymer sample. 

SAXS desmeared profiles of the compression-moulded sample and aged at 

room temperature of the sPP homopolymer sRDG-2-1 recorded at 25 °C, after 

heating at 180 °C where the sample is melted and after successive cooling down 

to 25 °C allowing crystallization of the sample, are reported in Figures 1.150. 

The SAXS data have been recorded following the procedure described in 

sections 1.5 and at the beginning of the section 1.9. The corresponding WAXS 

profiles, recorded in separated experiments on compression molded films soon 

after the cooling from the melt and after aging at room temperature are reported 

in Figures 1.131A and B (profiles a), respectivey. Therefore, the SAXS profile 

of the sample sRDG-2-1 labeled 25°C start of Figure 1.150 corresponds to the 

WAXS diffraction profile a of Figure 1.131B of the compression-molded and 

aged sample. The SAXS profile labeled 25°C end of Figure 1.150 recorded 

soon after the cooling from the melt, corresponds to the WAXS diffraction 

profile a of Figure 1.131A of the as-prepared non-aged compression-molded 

sample.  

The calculation of the interface distribution function (IDF), K′′(z), followed 

by the modeling of the data by the simulated IDF, K′′Sim,final(s), in the reciprocal 

space is demonstrated in detail on the SAXS data of the sample sRDG-2-1 at 

room temperature before melting (Figure 1.151) and after melting and 

successive crystallization by cooling from 180 °C down to 25 °C (Figure 

1.152).  

The scattering intensity Iabs(s) is measured in absolute units and describes the 

scattering power of the sample per volume in units of [e.u.∕nm
3
]. For real data, 

the intensity contains, in addition, a constant contribution from thermal density 

fluctuations within the amorphous phase c2 and a contribution proportional to s
2
 

from the amorphous halo. The latter term is often negligible. Thus, for large s: 

                                               ( )          
                                 (1.47) 

To determine P, c1 and c2, the expression in Equation 1.47 is fitted to the 

data in the range of high values of the scattering vectors s and, as explained 

above, under the side condition K''(0) = 0: 

   ( )         ∫ [  (    ( )    ) 
     

 ]             
    

 
                   (1.48) 

As the scattered intensity at s = 0 is not measurable, an extrapolation is 

required. The window function          on the other hand, avoids truncation 

effects at large s due to the finite interval [0, smax] and suppresses noise. As 
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shown in Figures 1.151A and 1.152A and by Equation 1.47, a range of s large 

enough is needed to determine c2 correctly.  

The value of the scattering vector s* corresponding to the maximum SAXS 

intensity has been evaluated from the Lorentz corrected profiles Is
2
(s) corrected 

by subtraction of the background,
173

 shown in Figures 1.151B and 1.152B. 

From both the Lorentz-corrected profiles of the sample at room temperature 

before melting (Figure 1.151B) and after melting and crystallization (Figure 

1.152B) a similar value of s* ≈ 0.08 nm
-1

 has been evaluated. The experimental 

Lorentz-corrected profiles have been fitted with a Gaussian curve (red curves in 

Figures 1.151B and 1.152B) for a better evaluation of the maxima.  

The correlation functions K(z) are then calculated from the cosine transform 

of the intensity I(s) (Eq.1.20) and are reported in Figures 1.151C and 1.152C 

for the data at room temperature before melting and after melting and 

crystallization, respectively. 

The Interface Distribution Functions (IDF) K′′(z) are finally obtained 

performing the discrete cosine transform (DCT) of the function 16π
3
[P-Iabss

4
]ω 

(cf. Eq. 1.34). The profiles of the function 16π
3
[P-Iabss

4
]ω are shown in Figures 

1.151D and 1.152D as black lines, whereas the profiles of the IDF evaluated 

from the transform of the scattering data are shown in Figure 1.151E and 

1.152E as black curves. For the simulation, the values of the Porod constant, 

here P = 0.876 and 0.368 e.u.∕nm
7
, was taken from the corresponding fit and for 

the window function a width of σ = 1.0 nm has been always chosen, that is, the 

same value as used during the calculation of the IDF (Figure 1.151E and 

1.152E, black curves) from the scattering data. For the resolution function A(s), 

a value of σA=0.00325 nm
−1

 has been taken. The four parameters da, dc, σa, and 

σc are obtained from the fitting. The resulting model functions 16π
3
[P-Iabss

4
]ω 

are shown in Figures 1.151D and 1.152D as red curves.  

The experimental IDF functions of Figures 1.151E and 1.152E (black 

curves) show a broad maximum followed by and a clear minimum. As 

explained above (Figure 1.148), the first broad maximum should be composed 

of two maxima corresponding to the two interphase distances da and dc, whereas 

the position of the minimum clearly corresponds to the long period L = da + dc. 

Therefore, the position of the first maximum should correspond to da or dc and 

it is, in principle, difficult to distinguish between da and dc. However, we 

assume that the peak position of the first maximum in Figures 1.151E and 

1.152E corresponds to dc , which is, therefore, lower than da, and, then, we 

calculate da from the long period L determined from the position of the 



237 
 

minimum, as da = L - dc. The values of the parameters da, dc and L determined 

from the experimental IDF of Figures 1.151E and 1.152E are reported in Tables 

1.21 and 1.22 and are indicated as da(IDF), dc(IDF) and L(IDF). 

In a final step, the simulated IDF is calculated according to the Eq. 1.38. The 

profiles of the simulated IDF are shown in Figures 1.151E,F and 1.152E,F (red 

curves), in comparison with the IDF evaluated from the experimental data 

(black curves). The simulated IDF is composed of the contributions of the 

thicknesses distributions and the first three contributions ha, hc, and −2hac are 

shown in Figure 1.151F and 1.152F, for the aged sample at room temperature, 

before melting and after melting and crystallization, respectively, as blue, pink 

and green dashed lines. It is apparent that, the amorphous and crystalline peaks 

in the IDF profiles strongly overlap due to the crystallinity of approximately 

50% (measured by WAXS). This is an example where it is impossible to obtain 

the crystalline and amorphous thicknesses simply from the peak position of 

K′′(z). The separation into crystalline and amorphous contributions is only 

possible with the help of the simulation. However, it is also woth noting that 

one of the two distributions of thicknesses (corresponding to the thicknesses of 

amorphous or crystalline phases) is much broader (the blue curves in Figures 

1.151F and 1.152F) than the other (red curves in in Figures 1.151F and 1.152F). 

This difference may be used to discriminate between the amorphous and 

crystalline contributions to the simulated IDF. 

In general, to assign the two peaks of the IDF to the amorphous and 

crystalline contributions, additional information (e.g., about crystallinity) is 

needed. In the cases of the esamples of sPP homopolmer and of sPPET and 

sPPBu copolymers analyzed by SAXS, the crystallinity degree (xc) has been 

determined from the WAXS profiles of Figures 1.131 and 1.132 by the ratio 

between the crystalline diffraction area (Ac) and the area of the whole 

diffraction profiles (At), xc = (Ac/At)100. The area of the crystalline diffraction 

Ac has been evaluated by subtracting the area of the amorphous halo from the 

area of the whole diffraction profiles At. However, the determination of 

crystallinity by WAXS is not always reliable, in particular when crystals 

contains high degrees of structural disorder, as in the case of sPP (see section 

1.2), which is further increased in copolymers for the presence of constitutional 

defects. This uncertainty has serious consequences in samples of sPP 

homopolymers or sPPET and sPPBu copolymers with low comonomer 

concentrations for which the values of the degree of crystallinity are 

approximately around 50% (Figures 1.131 and 1.132), producing the overlap of 



238 
 

the amorphous and crystalline peaks in the IDF and preventing the assignment 

of the two peaks of the IDF to the amorphous and crystalline contributions. 

With the help of the simulation and determination of the simulated IDF a 

reliable choice may be assumed. Since the simulated IDF can be described as a 

sum of distribution functions of crystalline thicknesses hc, of amorphous 

thicknesses ha and of the values of the long period hac (Eq. 1.38), each 

distribution being characterized by a width c, a and ac, we assume that the 

distribution of thicknesses hi with lower width i corresponds to that of the 

crystalline thickness hc. This allows for the the assignment of the two peaks of 

the IDF to the amorphous and crystalline thichness dc and da.  

For the sample of the sPP homopolymer sRDG-2-1, a value of crystallinity 

xc = 61% has been evaluated for both the as-prepared compression-molded 

samples (from the diffraction profile a of Figure 1.131A) and for the sample 

crystallized from the melt and aged at room temperature (from the diffraction 

profile a of Figure 1.131B) (Table 1.21 and 1.22). From this value of 

crystallinity, the values of parameters dc = 4.59 nm, da = 6.39 nm, L = 10.98 nm, 

σc = 0.64 nm, σa = 3.56 nm, reported in Table 1.21 and in Figure 1.151E,F, have 

been obtained for the compression-molded and aged film (before melting) of 

the sample sRGD-2-1, and the parameters dc = 3.62 nm, da = 6.58 nm, L = 

10.22 nm, σc = 0.50 nm, σa = 3.62 nm, reported in Table 1.22 and in Figure 

1.152E,F, have been obtained for the as-crystallized sample soon after the 

cooling from the melt.  

The three contributions ha, hc, and −2hac have been calculated by replacing 

the value of dc, da, σa, σc resulting from the fitting function in the following 

equations: 

                             (     )  
 

√  (  
     )

 
 

(    ) 

   
                             (1.49) 

                             (     )  
 

√  (  
     )

 
 

(    )
 

   
                              (1.50) 

                  (       )  
 

√  ((  
     ) (  

     ))
 
 

(  (     )) 

   
            (1.51) 

 The profiles of the three thickness distributions ha, hc, and −2hac as 

contributions of the IDF are shown in Figures 1.151F and 1.152F. As 

mentioned above, it is apparent that the distributions of the amorphous 

thicknesses ha (blue curves in Figures 1.151F and 1.152F) are reasonably much 

broader than those of the crystalline thicknesses (red curves in Figures 1.151F 

and 1.152F).  
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The values of L, dc and da evaluated from the modeled function and the 

simulated IDF have been compared with those evaluated from the Lorentz-

corrected profiles (Figures 1.151B and 1.152B) and the correlation functions 

(Figures 1.151C and 1.152C). The parameters evaluated from the Lorentz-

corrected profiles are defined with a * in the symbols (L*), whereas the 

parameters evaluated form the correlation function are defined as L(cofun), 

dc(cofun) and da(cofun). 

The values of the long period L* have been calculated as L* = 1/s* from the 

positions of maxima of the Lorentz-corrected profiles s* of Figure 1.151B and 

1.152B and are reported in the Tables 1.21 and 1.22 for the compression-

molded and aged film of the sample sRDG-2-1 and for the as-crystallized 

sample cooled from the melt, respectively. From the correlation functions K(z) 

of Figure 1.151C and 1.152C, the value of the long period L(cofun) has been 

evaluated from the positions of first maximum of K(z). According to the Eq. 

1.23, from the slope of K(z) at the origin the difference of the electronic 

densities of the two crystalline and amorphous phases has been evaluated. The 

information content of K(z) is strongly limited due to the absence of the 

baseline and, as mentioned above, the uncertainty of the crystallinity, in 

particular when it is approximately around 50%. This makes it impossible to 

distinguish da from dc. In addition, the information about the thickness 

distributions is hidden. Only the long period could be extracted from K(z). 

However, in general, it is possible to evaluate the values of dc and da, besides 

the long period, from the first correlation triangle at the origin of the correlation 

function (Figures 1.151C and 1.152C). In particular, the short side of the 

rectangle triangle, or the intersection point between the segment interpolating 

the first part of K(z) at the origin (the hypotenuse of the triangle) and the 

tangent to the minimum of K(z), gives the value of the minimum layer thickness 

dmin of the biphasic model, da or dc and corresponds to the crystalline thickness 

dc, if the degree of crystallinity evaluated by a different technique (for instance 

DSC or WAXS) is less than 50%, to the thickness of the amorphous layers da if 

the degree of crystallinity is higher than 50%. Since, from the simulated IDF 

the values of dc results lower than da, we assume, for analogy with the IDF 

results, that the minimum thickness evaluated from the triangle of the 

correlation functions corresponds to the crystalline thickness dc(cofun) (Figures 

1.151C and 1.152C), even though the degrees of crystallinity have been 

evaluated from the WAXS profiles a of Figures 1.131A and B slightly higher 
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than 50%. Then, the value of da(cofun) has been calculated as L(cofun) - 

dc(cofun).  
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Figure 1.150. SAXS intensity profiles of the sPP homopolymer sample sRDG-2-1 with 0.7 

mol% of total defects recorded at room temperature for a compression-moulded melt-

crystallized film aged at room temperature (black curve), recorded after heating at 180 °C 

where the sample is melted (red curve) and soon after the successive cooling from the melt to 

room temperature allowing crystallization (blue curve). 
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Figure 1.151. A) SAXS intensity profiles of the aged compression molded film of the sample of sPP homopolymer sRDG-2-1 recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.152. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPP homopolymer sRDG-2-1 recorded soon after 

the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to 

density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the 

position of the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are 

shown. The values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, 

are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF 

function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single 

contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves).  
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All values of the parameters evaluated from the Lorentz corrected profiles 

(s* and L*), from the experimental IDF (L(IDF), dc(IDF) and da(IDF)), from the 

simulated IDF (L, dc, da and the widths of thicknesses distributions c and a) 

and from the correlation function (L(cofun), dc(cofun) and da(cofun)), are 

reported in Tables 1.21 and 1.22, for the compression-molded and aged film of 

the sample sRDG-2-1 and for the sample as-cooled from the melt, respectively. 

For both samples, the values of parameters evaluated from the experimental and 

simulated IDFs are very similar. Moreover, the values of the long period 

evaluated from the Lorentz-corrected profiles (L*) and the correlation functions 

(L(cofun)) are only slighlty higher than the value evaluated from the modeled 

function and the simulated IDF (L), while the values of the thicknesses of the 

crystalline layers dc and dc(cofun) are very similar. Furthermore, only a slight 

difference in the thickness of the crystalline (dc) and amorphous (da) layers and 

in the long period L between the aged (Figure 1.151) and the as-crystallized 

sample (Figure 1.152) has been observed. The higher value of dc and, 

correspondingly, the lower value of da observed in the aged sample are probably 

due to secondary crystallization phenomena occurring during aging at room 

temperature. The aging also produces a higher contrast as suggested from the 

higher ∆ρ evaluated on the aged sample. 
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1.9.4. SAXS analysis on sPPET random copolymers. 

The same analysis has been performed on random copolymers sPPET. For 

each sample the SAXS profiles of compression-molded samples aged at room 

temperature recorded 25 °C, at 180 °C in the melt and after cooling from the 

melt are reported. Then the SAXS analysis with the modeling of the IDF on 

SAXS data at room temperature before and after melting is shown (Figures 

1.153-1.174). The corresponding WAXS profiles, collected in separated 

experiments on compression molded films soon after the cooling from the melt 

and after aging at room temperature are reported in Figures 1.131A and B, 

respectively. The values of the degree of crystallinity evaluated form the 

diffraction profiles of Figures 1.131 are reported in Tables 1.21 and 1.22. 

Values of crystallinity approximately around 50% have been obtained for all 

samples of sPPET copolymers with ethylene content up to 2.4 mol%. For these 

samples the analysis of the SAXS data and of the simulated IDF suffers of the 

same ambiguity to distinguish dc from da, as in the case of the sPP 

homopolymer. The crystallinity decreases with increasing ethylene 

concentration and for high ethylene content the crystallinity is clearly lower 

than 50% (Tables 1.21 and 1.22). 

The SAXS profiles of samples of sPPET copolymers with low ethylene 

concentration up to 2.4 mol% are very similar and are shown in Figures 1.153-

1.164. A well-defined peak is visible in the SAXS profiles of the aged samples 

recorded before melting (black curves in Figures 1.153, 1.156, 1.159 and 

1.162). Since all samples with low ethylene concentrations crystallize from the 

melt (Figure 1.131A), the SAXS peak reappears after the cooling from the melt 

(blue curves in Figures 1.153, 1.156, 1.159 and 1.162). The Lorentz corrected 

SAXS profiles, the correlation functions K(z) and the experimental and 

simulated IDF of the four sPPET samples with ethylene concentrations up to 

2.4 mol% are shown in the Figures 1.154-1.155, 1.157-1.158, 1.160-1.161 and 

1.163-1.164. The values of the morphological parameters evaluated from the 

Lorentz corrected SAXS profiles (s* and L*), the correlation functions K(z) 

(dc(cofun), da(cofun) and L(cofun)), the experimental IDF (dc(IDF), da(IDF) and 

L(IDF)), and the simulated IDF (dc, da and L), are reported in Tables 1.21 and 

1.22 for the aged compression-molded samples and for the samples as-

crystallized from the melt by cooling from the melt to room temperature, 

respectively. 

As in the homopolymer sRDG-2-1, L* and L(cofun) are slightly higher than 

L and this difference become more evident in the as-crystallized samples. On 
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the contrary the values of dc(cofun) are similar to those of dc and dc(IDF) for all 

samples before and after melting.  

As in the case of the sample of the sPP homopolymer, higher values of the 

thickness of the crystalline dc phase and of the long period L have been obtained 

for the aged samples (Table 1.21) compared to those of the as-crystallized 

samples (Table 1.22) of sPPET copolymers with ethylene concentration up to 

2.4 mol%, whereas the the values of the thickness of the amorphous phase da on 

average remain nearly constant. This is probably due to secondary 

crystallization phenomena occurring during aging at room temperature.  
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Figure 1.153. SAXS intensity profiles of the sample of sPPET copolymer RDG-2-41 with 0.4 

mol% of ethylene recorded at room temperature for a compression-molded melt-crystallized 

film aged at room temperature (black curve), recorded after heating at 180 °C where the 

sample is melted (red curve) and soon after the successive cooling from the melt to room 

temperature allowing crystallization (blue curve). 

 



246 
 

0.01 0.1 1
10

1

10
2

10
3

10
4

10
5

10
6

In
te

n
si

ty
 (

e.
u

./
n

m
3
)

 Sample

 Porod-Fit

s (nm
-1

)

A

 
0.0 0.1 0.2 0.3

0

200

400

600

800

In
te

n
si

ty
*
s2

 (
e.

u
./

n
m

5
)

s (nm
-1
)

 Sample

 Interpolation

s* = 0.0755 nm
-1

T = 25°C (start)

B

 
0 5 10 15 20 25 30

-20

0

20

40

60

dc= 4.11 nm

K
(z

) 
(e

.u
./

n
m

6
)

z (nm)

L= 11.75 nm

85.21
)(


dz

zdK
C

 

 

0.0 0.1 0.2 0.3 0.4 0.5
-150

-100

-50

0

50

100

150

(P
-I

*
s4

)*
G

 (
e.

u
./

n
m

7
)

 calculated from the desmeared data

 calculated from the fit

s (nm
-1

)

D

 
0 5 10 15 20 25 30

-4

-2

0

2

4

6

8

10

12

L(IDF) = 10.55 nm

dc(IDF) = 3.92 nm

L = 10.6 nm

K
''(

z)
 (

e.
u
./

n
m

8
)

 calculated from the desmeared data

 calculated from the fit

z (nm)

dc = 3.98 nm

E

 
0 5 10 15 20 25 30

-8

-6

-4

-2

0

2

4

6

8

10

12
dc = 3.98 nm

da = 6.62 nm

K
''(

z)
 (

e.
u

./
n

m
8
)

 experimental

 simulated

 ha

 hc

 -2hac

z (nm)

L = 10.6 nm

F

 

Figure 1.154. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer RDG-2-41 with 0.4 mol% of ethylene 

recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of 

the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The 

values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are 

indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function 

calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single 

contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.155. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer RDG-2-41 with 0.4 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod 

scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the 

experimental data to evaluate the position of the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the 

correlation triangle at the origin are shown. The values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of 

the correlation triangle, respectively, are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.156. SAXS intensity profiles of the sample of sPPET copolymer RDG-2-40 with 1.7 

mol% of ethylene recorded at room temperature for a compression-molded melt-crystallized 

film aged at room temperature (black curve), recorded after heating at 180 °C where the 

sample is melted (red curve) and soon after the successive cooling from the melt to room 

temperature allowing crystallization (blue curve). 
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Figure 1.157. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer RDG-2-40 with 1.7 mol% of ethylene 

recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of 

the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The 

values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are 

indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function 

calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single 

contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.158. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer RDG-2-40 with 1.7 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod 

scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the 

experimental data to evaluate the position of the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the 

correlation triangle at the origin are shown. The values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of 

the correlation triangle, respectively, are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.159. SAXS intensity profiles of the sample of sPPET copolymer AK-sPPEt-2 with 1.9 

mol% of ethylene recorded at room temperature for a compression-molded melt-crystallized 

film aged at room temperature (black curve), recorded after heating at 180 °C where the 

sample is melted (red curve) and soon after the successive cooling from the melt to room 

temperature allowing crystallization (blue curve). 
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Figure 1.160. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer AK-sPPEt-2 with 1.9 mol% of ethylene 

recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of 

the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The 

values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are 

indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function 

calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single 

contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.161. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer AK-sPPEt-2 with 1.9 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod 

scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the 

experimental data to evaluate the position of the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the 

correlation triangle at the origin are shown. The values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of 

the correlation triangle, respectively, are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.162. SAXS intensity profiles of the sample of sPPET copolymer RDG-2-42 with 2.4 

mol% of ethylene recorded at room temperature for a compression-molded melt-crystallized 

film aged at room temperature (black curve), recorded after heating at 180 °C where the 

sample is melted (red curve) and soon after the successive cooling from the melt to room 

temperature allowing crystallization (blue curve). 
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Figure 1.163. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer RDG-2-42 with 2.4 mol% of ethylene 

recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of 

the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The 

values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are 

indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function 

calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single 

contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.164. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer RDG-2-42 with 2.4 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod 

scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the interpolation of the 

experimental data to evaluate the position of the peak s*. C) Correlation function K(z). The slope of initial part of the function at the origin and the 

correlation triangle at the origin are shown. The values of L and dc, evaluated from the position of the first maximum of K(z) and from the short side of 

the correlation triangle, respectively, are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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For samples of sPPET copolymers with ethylene contents higher than 2.4 

mol%, a less intense peak shifted to lower values s is observed in the SAXS 

profiles (Figures 1.165-1.174). Moreover the high intensity at low values of s 

(see Figures 1.165, 1.168, 1.171 and 1.174) hinders the SAXS analysis, in 

particular the evaluation of the correlation function and the modeling of the 

IDF, preventing the evaluation of the morphological parameters (see Figures 

1.166A-F and 1.167A-F for the sample AK-sPPEt-10 with 8.3 mol% of 

ethylene). In fact, reasonable values of the thickness d and width of the 

distribution of the thicknesses σ have been obtained only for one of the two 

phases, while very low value of thickness d and high value of the distribution 

wodth σ have been obtained for the other phase, resulting in difficulty to 

distinguish dc from da. The assumption that the crystalline contribution is 

characterized by the lowest value of the width of the distribution of the 

thicknesses σ leads to a very broad distribution of the thicknesses of the 

amorphous layers (Figures 1.166F and 1.167F). This could be consistent with 

the high comonomer content and the low degree of crystallinity of these 

samples. On the contrary, the assumption that the lower value of the thickness 

corresponds to da and, therefore, the value of L lower than in more crystalline 

samples appear contradictory, but could be explained with the presence of two 

different amorphous phases. The intra-lamellar amorphous phase consisting 

only of the amorphous layers alternating with crystalline layers in the model of 

Figure 1.146A is detected by the modeled IDF, but an extra-lamellar 

amorphous phase consisting of amorphous phase not organized in any 

morphological superstructure but only diffused in the matrix, may be also 

present. Nevertheless, the presence of a minimum at ≈ 9 - 10 nm in the 

experimental IDF evaluated from the experimental data (Figures 1.166E,F and 

1.167 E,F, black curves) suggest that the system is more complex and cannot be 

treated as shown above for the sPP homopolymer and sPPET copolymers with 

lower ethylene concentrations. 

The evaluation of the maximum in the Lorentz-corrected profiles is also 

difficult (Figures 1.166B and 1.167B for the sample AK-sPPEt-10 with 8.3 

mol% of ethylene) because the maximum is not well-defined. A rough values of 

s* and L*, therefore, have been obtained by hypothesizing the presence of a 

correlation peak and building it with a Gaussian function centered at the value 

of s* corresponding to the maximum of the supposed peak (Figures 1.166B and 

1.167B).  
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Figure 1.165.SAXS intensity profiles of the sample of sPPET copolymer AK-sPPEt-10 with 8.3 

mol% of ethylene recorded at room temperature for a compression-molded melt-crystallized 

film aged at room temperature (black curve), recorded after heating at 180 °C where the 

sample is melted (red curve) and soon after the successive cooling from the melt to room 

temperature allowing crystallization (blue curve). 
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Figure 1.166. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer AK-sPPEt-10 with 8.3 mol% of 

ethylene recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the Gaussian function that simulates the correlation peak to evaluate 

the position of the peak s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of 

the simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated 

IDF (continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.167. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer AK-sPPEt-10 with 8.3 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature. The red line represents the Porod fit and gives the sum of the Porod 

scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the Gaussian function 

that simulates the correlation peak to evaluate the position of the peak s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from 

I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function 

(red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF 

(dashed curves). 
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For these reasons, for the sPPET samples with high ethylene concentrations 

the original desmeared SAXS data have been treated before the processing with 

the program correlation_gui.
163

. 

The SAXS desmeared data Iobs(s) have been extrapolated to s = 0 using the 

Debye−Bueche equation:
173 

 
 

c

sB

A
sI 2222

obs

1





    (1.52) 

where A and B are fitting parameters, while c2 has been determined 

according with equation 1.47.  

The use of the Debye-Bueche function at low values of s is justified by the 

fact that at distances r >> L (and therefore q << 2πq
*
) the X-ray scattering 

includes contributions from motifs (the lamellar stacks) characterized by 

correlation fading away with the distance r according with the exponential law 

exp (-r/ξ), where ξ is a correlation distance.
174

 It has been demonstrated that the 

scattering intensity of these stacks has a dependence on s of the type indicated 

by the Equation 1.52.
174

 Since the minimum experimental accessible value of s 

is 0.01 nm
-1

, the precise determination of the correlation distance ξ would be 

affected by a too large error, so the parameters A and B of Equation 1.52 are 

treated as adjustable parameters which best reproduce the SAXS intensity in the 

region at values of s around s* and slightly lower than s*. The resulting Debye- 

Bueche functions that fit the experimental SAXS profiles at low values of s are 

shown in Figures 1.168A and B for the aged and as-crystallized samples of the 

copolymer AK-sPPEt-10 with 8.3 mol% of ethylene, along with the Porod 

finctions that fit the experimental profiles at high values of s. 

The resulting corrected SAXS profile consists at low s of the Debye-Bueche 

profile that fits the experimental SAXS profile at values of s around s* and 

slightly lower than s*, the experimental profile at values of s around s* and 

slightly higher than s* and the Porod function the fits the experimental profile 

at high values of s. The SAXS profiles corrected for the Debye-Bueche function 

for the aged and the as-crystallized samples of the copolymer AK-sPPEt-10 

with 8.3 mol% of ethylene are shown in Figures 1.169A and 1.170A. Starting 

from the these corrected Debye-Bueche SAXS profiles, the procedure for the 

calculations of the correlation function, the IDF and the simulated IDF has been 

repeated. The results for the the aged and the as-crystallized samples of the 

copolymer AK-sPPEt-10 with 8.3 mol% of ethylene are reported in Figures 

1.169B-F and 1.170B-F. 
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It is apparent from Figures 1.169 and 1.170 and from the comparison with 

the data of Figures 1.166 and 1.167, obtained without the Debye-Bueche 

correction, that starting from the Debye-Bueche corrected SAXS profiles it has 

been possible to obtain reasonable and much better Lorentz corrected profiles 

(Figures 1.169B and 1.170B), correlation funtions K(z) (Figures 1.169C and 

1.170C) and experimental and simulated IDF (Figures 1.169E,F and 1.170E,F). 

In particular, correlation peak is more visible in the Lorentz corrected profiles 

(Figures 1.169C and 1.170C) from which the values of s* and L* have been 

evaluated. Moreover, a minimum and a broad maximum are now clearly 

present in the correlation function of both aged and as-crystallized samples 

(Figures 1.169C and 1.170C), from which it is possible to evaluate dc and L, 

respectively, (and da = L - dc). Finally, the experimental IDF presents a 

minimum, besides the clear broad maximum (Figures 1.169E and 1.170E), from 

which it has been possible to evaluated L and dc, respectively, (and da = L - dc), 

and the simulated IDF show the same features and more reasonable 

contributions of distributions of thicknesses (Figures 1.169F and 1.170F). All 

the parameters so obtained for the sample AK-sPPEt-10 with 8.3 mol% of 

ethylene, s* and L* (from the Lorentz corrected profiles), dc(cofun), da(cofun) 

and L(cofun) (from the correlation function), dc(IDF), da(IDF) and L(IDF) 

(from the experimental IDF), and dc, da and L (from the simulated IDF) are 

reported in Table 1.21 and 1.22. 
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Figure 1.168. Experimental SAXS intensity profiles (black curves) of the sample of sPPET 

copolymer AK-sPPEt-10 with 8.3 mol% of ethylene recorded at room temperature for a 

compression-molded melt-crystallized film aged at room temperature (A) and recorded after 

melting at 180 °C and successive cooling from the melt to room temperature allowing 

crystallization (B). The red line represents the Porod function that fits the experimental profiles 

at high values of s. The blue lines represent the Debye-Bueche function that fits the 

experimental profile at values s around the correlation peak s* and slightly lower than s*. 
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Figure 1.169. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer AK-sPPEt-10 with 8.3 mol% of 

ethylene recorded at room temperature after correction for the Debye-Bueche function at low values of s (black curve). The red line represents the Porod 

fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The black dashed 

curve represents the original Lorentz-corrected intensity profile, the blue curve represents the Lorentz-corrected profile after the Debye-Bueche 

correction. C) Correlation function K(z). The slope of K(z) at the origin and the values of L and dc are indicated. D) Function 16π
3
[P-Iabss

4
]ω as 

calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) (black line), and 

simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the distributions of thicknesses 

hc, ha and hac to the IDF (dashed curves). 
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Figure 1.170. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer AK-sPPEt-10 with 8.3 mol% of 

ethylene recorded soon after the cooling from the melt at room temperature, after correction for the Debye-Bueche function at low values of s (black 

curve). The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The black dashed curve represents the original Lorentz-corrected intensity profile, the blue curve represents the 

Lorentz-corrected profile after the Debye-Bueche correction and the red dashed curve represents the interpolation of the blue curve for a better 

evaluation of the position of the peak s*. C) Correlation function K(z). The slope of K(z) at the origin and the values of L and dc are indicated. D) 

Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from 

I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 



266 
 

The sample AK-sPPEt-15 with 11.9 mol% of ethylene show a weak peak 

only in the SAXS profile of the aged compression molded film (Figure 1.171, 

black curve). The sample does not crystallize from the melt and no peaks are 

observed in the SAXS profile recorded soon after the cooling from the melt 

(Figure 1.171, blue curve). Therefore, the SAXS analysis and the modeling of 

the IDF have been performed only on the SAXS profile recorded at room 

temperature before melting (Figure 1.172). Even in this case the low intensity 

of the peak has prevented a correct evaluation of the morphological parameters 

(Figures 1.172A-F), therefore, a correction of the SAXS profile with the Debye-

Bueche function at low values of s has been performed. The results are shown 

in Figures 1.173A-F. Also in this case the correction with the Debye-Bueche 

function produces an improvement of data with better correlation function and 

IDF that present clear minima and maxima, from which reasonable values of dc, 

da and L have been determined (Table 1.21).  
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Figure 1.171. SAXS intensity profiles of the sample of sPPET copolymer AK-sPPEt-15 with 

11.9 mol% of ethylene recorded at room temperature for a compression-molded melt-

crystallized film aged at room temperature (black curve), recorded after heating at 180 °C 

where the sample is melted (red curve) and soon after the successive cooling from the melt to 

room temperature (blue curve). 
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Figure 1.172. A) SAXS intensity profiles of the aged compression molded film of the sample of sPPET copolymer AK-sPPEt-15 with 11.9 mol% of 

ethylene recorded at room temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density 

fluctuations. B) Lorentz-corrected SAXS intensity profile. The red curve represents the Gaussian function that simulates the correlation peak to evaluate 

the position of the peak s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of 

the simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated 

IDF (continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.173. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample of sPPET copolymer AK-sPPEt-15 with 11.9 mol% 

of ethylene recorded soon after the cooling from the melt at room temperature, after correction for the Debye-Bueche function at low values of s (black 

curve). The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The black dashed curve represents the original Lorentz-corrected intensity profile, the blue curve represents the 

Lorentz-corrected profile after the Debye-Bueche correction and the red dashed curve represents the interpolation of the blue curve for a better 

evaluation of the position of the peak s*. C) Correlation function K(z). The slope of K(z) at the origin and the values of L and dc are indicated. D) 

Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from 

I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves).  
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The sample AK-sPPEt-25 does not crystallize from the melt and remains 

completely amorphous even after long aging time (Figure 1.131A,B curves h) 

because of the high ethylene content. For this reason no peaks in both SAXS 

profiles collected before and after the melting are observed (Figure 1.174) and 

therefore SAXS analysis has not been performed on this sample. 
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Figure 1.174. SAXS intensity profiles of the sample of sPPET copolymer AK-sPPEt-25 with 

27.5 mol% of ethylene recorded at room temperature for a compression-molded melt-

crystallized film aged at room temperature (black curve), recorded after heating at 180 °C 

where the sample is melted (red curve) and soon after the successive cooling from the melt to 

room temperature (blue curve). 
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Table 1.21. Values of the degree of crystallinity xc and morphological parameters evaluated from the analysis of the SAXS profiles recorded at room 

temperature of compression-molded melt-crystallized film aged at room temperature of samples of the sPP homopolymer sRDG-2-1 and sPPET 

copolymers of the indicated ethylene concentration (defects content). The values of the Porod costant (P), scattering vector corresponding to the 

maximum of the Lorentz-corrected profiles (s*), Long period (L), thickness of the crystalline lamellae (dc) and of the amorphous layers (da) evaluated 

from the Lorentz-corrected profiles (L*), from the correlation functions K(z) (L(cofun), dc(cofun) and da(cofun)), from the experimental IDF (L(IDF), 

dc(IDF) and da(IDF)) and from the simulated IDF (L, dc and da), slope of the first part of K(z) at the origin (dK/dz) and electron density difference (∆ρ) 

are reported. The widths of the distributions of thicknesses of crystalline lamellae (c), thicknesses of amorphous phase (a) evaluated from the 

simulated IDF are also reported. 

Sample 

Defects 

content 

(mol%) 

xc 

(%)a 
P 

(e.u./nm7) 
s*  

(nm-1) 
L* 

(nm) 

L 

(IDF) 

(nm) 

dc 

(IDF) 

(nm) 

da 

(IDF) 

(nm) 

dc 
(nm) 

σc 

(nm) 
da 

(nm) 
σa 

(nm) 
L 

(nm) 

L 

(cofun) 

(nm) 

dc 

(cofun) 

(nm) 

da 

(cofun) 

(nm) 

dK/dz ∆ρ 

sRDG-2-1 0.7 45 0.876 0.078 12.82 10.25 4.52 5.73 4.59 0.64 6.39 3.56 10.98 12.05 4.40 7.65 -76 29 

RDG-2-41 0.4 41 0.260 0.075 13.33 10.55 3.92 6.63 3.98 0.50 6.62 3.91 10.60 11.75 4.11 7.64 -21.85 15 

RDG-2-40 1.7 40 0.433 0.081 12.35 9.34 3.62 5.72 3.76 0.50 6.33 3.40 10.09 11.45 3.84 7.61 -34.60 19 

AK-sPPEt-2 1.9 40 0.551 0.084 11.90 9.34 3.31 6.03 3.90 0.50 6.19 3.32 10.09 11.45 3.90 7.55 -44.74 21 

RDG-2-42 2.4 39 0.437 0.082 12.19 9.04 3.62 5.42 3.76 0.50 6.04 3.48 9.8 11.75 3.84 7.91 -34.66 18 

AK-sPPEt-10 8.3 29 0.389 0.058 17.24 10.36 3.05 7.31 3.39 0.50 6.01 6.06 9.4 10.6 3.96 6.64 -28.67 16 

AK-sPPEt-15 11.9 25 0.688 0.067 14.92 10.97 2.60 8.37 2.92 0.50 9.27 6.38 12.19 12.5 3.66 8.84 -45.76 24 
a) evaluated from WAXS profiles 
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Table 1.22. Values of the degree of crystallinity xc and morphological parameters evaluated from the analysis of the SAXS profiles recorded at room 

temperature of as-prepared compression-molded melt-crystallized film of samples of the sPP homopolymer sRDG-2-1 and sPPET copolymers of the 

indicated ethylene concentration (defects content). The values of the Porod costant (P), scattering vector corresponding to the maximum of the Lorentz-

corrected profiles (s*), Long period (L), thickness of the crystalline lamellae (dc) and of the amorphous layers (da) evaluated from the Lorentz-corrected 

profiles (L*), from the correlation functions K(z) (L(cofun), dc(cofun) and da(cofun)), from the experimental IDF (L(IDF), dc(IDF) and da(IDF)) and from 

the simulated IDF (L, dc and da), slope of the first part of K(z) at the origin (dK/dz) and electron density difference (∆ρ) are reported. The widths of the 

distributions of thicknesses of crystalline lamellae (c), thicknesses of amorphous phase (a) evaluated from the simulated IDF are also reported. 

Sample 
Defects 
content 

(mol%) 

xc 

(%)a 

P 

(e.u./nm7) 
s* (nm-1) 

L* 

(nm) 

L 
(IDF) 

(nm) 

dc 
(IDF) 

(nm) 

da 
(IDF) 

(nm) 

dc 

(nm) 

σc 

(nm) 

da 

(nm) 

σa 

(nm) 

L 

(nm) 

L 
(cofun) 

(nm) 

dc 
(cofun) 

(nm) 

da 
(cofun) 

(nm) 

dK/dz ∆ρ 

sRDG-2-1 0.7 45 0.368 0.082 12.19 10.25 3.49 6.76 3.62 0.50 6.58 3.62 10.22 11.70 3.78 7.92 -27.74 17 

RDG-2-41 0.4 41 0.474 0.085 11.76 10.85 3.01 7.84 3.28 0.50 6.30 3.66 9.58 11.75 3.60 8.15 -33.85 18 

RDG-2-40 1.7 40 0.490 0.079 12.66 10.85 3.31 7.54 3.40 0.50 6.24 3.68 9.64 11.75 3.60 8.15 -37.07 19 

AK-sPPEt-2 1.9 40 0.326 0.080 12.50 9.64 3.16 6.48 3.38 0.50 6.44 3.81 9.82 11.45 3.66 7.79 -23.79 15 

RDG-2-42 2.4 39 0.498 0.077 12.99 9.94 3.31 6.63 3.43 0.50 6.79 4.03 10.22 12.40 3.78 8.62 -36.48 19 

AK-sPPEt-10 8.3 29 0.165 0.062 16.13 12.19 2.74 9.45 3.04 0.50 10.60 6.52 13.64 12.80 3.75 9.05 -11.57 13 

AK-sPPEt-15 11.9 25 / / /    / / / / / / / / / / 
a) evaluated from WAXS profiles 
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Tables 1.21 and 1.22 report the morphological parameters of all analyzed 

samples. For samples AK-sPPEt-10 and AK-sPPEt-15 only the parameters 

calculated on the SAXS profiles corrected with the Debye-Bueche function are 

reported. The values of the long period, the thickness of the crystalline lamellae 

and of the amorphous layers, evaluated from all the Lorentz corrected profiles, 

the correlation functions and the experimental and simulated IDF are reported 

in Figures 1.175-1.177 as a function of ethylene content. The values of the long 

period evaluated from the experimental and simulated IDF and from the 

correlation function are very similar in both aged and as-crystallized samples. 

In particular, they show the same behavior with increasing ethylene content. In 

fact, for aged samples, starting from the homopolymer, a slight decrease of long 

period is observed with increasing ethylene concentration up to 8.3 mol% 

(Figures 1.175A, 1.177A,A‟ and Table 1.21). With further increase of ethylene 

concentration a strong increase of the long period is observed (for the sample 

AK-sPPEt-15, 11.9 mol% of ethylene) (Figures 1.175A and 1.177A,A‟). A 

similar trend is visible in the as-prepared melt-crystallized samples (Table 1.22 

and Figure 1.176A): after some oscillations around an average constant value, 

an increase of the long period is observed when the comonomer content is 

higher than 2 mol% (Figures 1.176A and 1.177B,B‟, Table 1.22).  

The values of the long period evaluated from the maximum of the Lorentz 

corrected SAXS profiles are higher than those evaluated from K(z) and IDF and 

show a less regular trend with increasing ethylene content (Figures 1.175A, 

1.176A). Because of the difficulty in the determination of s* in less crystalline 

samples, these values are less reliable. 

The thickness of crystalline lamellae dc of sPPET copolymers is, as 

expected, lower than that of the homopolymer. It slightly decreases with 

increasing ethylene content in the melt-crystallized and aged samples (Figures 

1.175B and 1.177A,A‟), whereas it seems nearly constant for the as-crystallized 

samples (Figures 1.176B and 1.177B,B‟), in particular when evaluated from the 

correlation function (Figure 1.177B‟). As a consequence, the thickness of the 

amorphous layers da show changes with the ethylene concentration similar as 

that of the long period: for aged samples da slight decreases with increasing 

ethylene concentration up to 8.3 mol% of ethylene and then increases for higher 

ethylene concentration (Figures 1.175B and 1.177A,A‟, Table 1.21). For the as-

prepared melt-crystallized samples (Table 1.22), the amorphous thickness is 

nearly constant for low ethylene concentrations and then increases for ethylene 

content higher than 2 mol% (Figures 1.176B and 1.177B,B‟, Table 1.22). 
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The comparison between Figures 1.177A and 1.177B and between Figures 

1.177A‟ and 1.177B‟ shows, as already mentioned before, that aged samples 

have values of all morphological parameters higher than those of as-prepared 

melt-crystallized samples, probably because of the occurrence of secondary 

crystallization during aging. A comparison between Figures 1.177A and 

1.177A‟and between Figures 1.177B and 1.177B‟, instead, shows again that the 

morphological parameters evaluated from the correlation function are similar to 

those evaluated from the simulated and experimental IDF.  

Even though some slight differences in the trends of L, dc and da with the 

ethylene concentration have been observed for aged and as-crystallized 

samples, a clear obtained result is that at low ethylene concentration, up to 8 

mol% for the aged samples and 2-3 mol% for the as-crystallized samples, the 

thickness of crystalline lamellae decreases with increasing ethylene 

concentration, while the thickness of the amorphous layers does not increase 

but, even, decrease (or it is nearly constant) with the increase of ethylene 

content (Figure 1.177A,A‟ and B). Correspondingly, the long period also 

decreases (Figure 1.177A,A‟) or it is nearly constant (Figure 1.177B,B‟) with 

increasing ethylene content. Only at high ethylene concentration (higher than to 

8 mol% for the aged samples and higher than 2-3 mol% for the as-crystallized 

samples) a clear increase of the amorphous thickness and of long period occurs 

(Figure 1.177). The decrease of crystalline thickness is in agreement with the 

decrease of crystallinity with increasing ethylene concentration due to the 

presence of ethylene defects and increasing disorder in the crystalline phase. 

Moreover, it is worth recalling that ethylene units are only partially included 

into the crystals of sPP and an appreciable amount of ethylene units is also 

included in the noncrystalline phase of the copolymers.
142b

 Therefore, most of 

the constitutional defects could be segregated in the extra-lamellar amorphous 

phase consisting of amorphous phase not organized in the lamellar stacks, and 

therefore, not visible by the modeling of the SAXS data. This could explain the 

result that, even though the fraction of the total amorphous phase, as evaluated 

by WAXS profiles, clearly increases with increasing ethylene content, the 

thickness of the amorphous layer in the model of lamellar stacks decreases. 

Only at high ethylene content also the fraction of amorphous phase in between 

the crystalline lamellae (in the lamellar stacks) increases, with corresponding 

increase of amorphous thickness and long period. 

This result is in agreement with the results of the study of morphology of 

stereodefective sPP samples (Figures 1.32-1.36) and of copolymers of sPP with 
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ethylene (Figures 1.38-1.40) and other comonomers (Figures 1.56 and 1.57) by 

POM, that have revealed an interwoven morphology formed by bundle-like and 

needle-like crystals aggregates embedded in an amorphous matrix. In this 

morphology that explains the elastic properties of these materials even at high 

defects (stereodefects or comonomeric units) concentrations, the fraction of 

amorphous phase in the stacks of these thin crystals is necessarily lower than 

that of the matrix. 
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Figure 1.175. A) Average values of the long period L () evaluated from the simulated IDF, 

L(IDF) () evaluated from the experimental IDF, L(cofun) () evaluated from the correlation 

function, L* ()  evaluated from the maximum s* of the Lorentz-corrected SAXS profile of the 

aged compression-molded samples of sPPET copolymers as a function of ethylene 

concentration. B) Average values of the of thickness of crystalline lamellae dc (), dc (IDF) 

(), and dc(cofun) (), and amorphous layers da (), da(IDF) () and da(cofun) (), 

evaluated from the simulated IDF (dc, da), from the experimental IDF (dc (IDF), da (IDF)) and 

from the correlation function (dc(cofun), da(cofun)) of the aged samples of sPPET copolymers 

as a function of ethylene concentration (B). The morphological parameters of the homopolymer 

sRDG-2-1 (ethylene content =0) are also reported as a reference. 
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Figure 1.176. A) Average values of the long period L () evaluated from the simulated IDF, 

L(IDF) () evaluated from the experimental IDF, L(cofun) () evaluated from the correlation 

function, L* ()  evaluated from the maximum s* of the Lorentz-corrected SAXS profile of the 

as-prepared melt-crystallized samples of sPPET copolymers as a function of ethylene 

concentration. B) Average values of the of thickness of crystalline lamellae dc (), dc(IDF) 

(), and dc(cofun) (), and amorphous layer da (), da(IDF) () and da(cofun) (), 

evaluated from the simulated IDF (dc, da), from the experimental IDF (dc(IDF), da(IDF)) and 

from the correlation function (dc(cofun), da(cofun)) of the as-prepared melt-crystallized samples 

of sPPET copolymers as a function of ethylene concentration (B). The morphological 

parameters of the homopolymer sRDG-2-1 (ethylene content =0) are also reported as a 

reference. 
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Figure 1.177. Average values of the long period L (), thickness of crystalline lamellae dc (), thickness of amorphous layers da () evaluated from 

the simulated IDF (A,B), from the correlation function (A’,B’) and from the experimental IDF (A’’,B’’) of the aged compression-molded (A,A’) and as-

prepared melt-crystallized (B,B’) samples of sPPET copolymers as a function of ethylene concentration. 

..  
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1.9.5. SAXS analysis on sPPBu random copolymers. 

SAXS measurements have also been performed on the same samples of 

random copolymers of sPP with 1-butene already analyzed with AFM and 

POM, according with the procedure presented in section 1.5. For each sample 

the SAXS profiles of compression-molded samples aged at room temperature 

recorded 25 °C, at 180 °C in the melt and after cooling from the melt are 

reported. Then, the SAXS analysis with the modeling of the IDF on SAXS data 

at room temperature before and after melting is shown in Figures 1.178-1.197. 

The corresponding WAXS profiles, collected in separated experiments on 

compression molded films soon after the cooling from the melt and after aging 

at room temperature are reported in Figures 1.132A and B, respectively. The 

values of the degree of crystallinity evaluated form the diffraction profiles of 

Figures 1.132 are reported in Tables 1.21 and 1.22. Values of crystallinity 

approximately around 50% have been obtained for the sample of the sPPBu 

copolymer with 3.2 mol% of 1-butene. For this sample the analysis of the 

SAXS data and of the simulated IDF suffers of the same ambiguity to 

distinguish dc from da, as in the case of the sPP homopolymer and sPPEt 

copolymers. Then, the crystallinity generally decreases with increasing butene 

content in both aged and melt-crystallized samples and it is always lower than 

50%. Samples with butene content higher than 30 mol% do not crystallize from 

the melt but crystallize upon aging at room temperature. No significant increase 

of crystallinity has been observed upon aging in samples with low butene 

content. For aged compression-molded samples a small decrease of the 

crystallinity is observed with increasing butene concentrations up to a minimum 

of 30% observed in sample with 18.2 mol% of 1-butene and then a slight 

increase is observed in samples with butene content higher than 60 mol%, 

because of the crystallization of the form I of sPB. (Tables 1.23 and 1.24).  

Because of the low amount of samples available, the SAXS profiles of the 

first two samples with 3.2 mol% and 6.3 mol% of butene have been collected 

on compression-molded samples using a SAXSLAB‟s GANESHA Instrument. 

This instrument presents several advantages with respect to the Kratky camera. 

The first one is the low amount of samples required. Then, the point collimation 

avoids the desmearing procedure at the end of the measurement. Finally, the 

high intensity of the source and the sensitivity of the detector allow obtaining 

SAXS 2D patterns and the corresponding 1D profile with high resolution in less 

time. Moreover, it is also possible to measure in different configurations such as 

ESAXS, SAXS, MAXS and WAXS. These SAXS data have been collected in 



279 
 

the q range of 0.007-0.25 Å with a distance sample-detector of 1050 mm. On 

the other hand, the intensity in arbitrary units introduces some difficulties in the 

SAXS analysis with the program correlation_gui. The 2D SAXS patterns 

recorded on the aged samples with 3.2 mol% and 6.3 mol% of butene at room 

temperature, in the melt and after cooling from the melt, and the corresponding 

SAXS profiles are shown in Figures 1.178 and 1.181. A well-defined peak is 

visible in the SAXS profiles of the aged samples recorded before melting (black 

curves in Figures 1.178D and 1.181D). Since all samples with low butene 

concentrations crystallize from the melt (Figure 1.132A), the SAXS peak 

reappears after the cooling from the melt (blue curves in Figures 1.178D and 

1.181D). In particular, the sample sPPBu-1 with 3.2 mol% of 1-butene exhibits 

a more intense peak after the cooling from the melt. 

For the modeling of the SAXS profiles and the calculation of the simulated 

IDF with the procedure described for the sPP homopolymer, the scattering 

vector q (Å
-1

) is transformed in s (nm
-1

). Then, because of the limited explored 

SAXS range, the tail of the SAXS profiles is not long enough for a correct 

evaluation of the Porod range. Therefore an additional WAXS measurement has 

been performed and the first data points (until s = 0.90 nm
-1

) of the WAXS 

profiles have been patched to the tail of the SAXS profiles. Two examples of 

the resulting profiles are shown in Figures 1.178E and 1.181E.  

The Lorentz corrected SAXS profiles, the correlation functions K(z) and the 

experimental and simulated IDF of the two sPPBu samples with 1-butene 

concentrations of 2.3 and 6.3 mol% are shown in the Figures 1.179, 1.180, 

1.182 and 1.183. The values of the morphological parameters evaluated from 

the Lorentz corrected SAXS profiles (s* and L*), the correlation functions K(z) 

(dc(cofun), da(cofun) and L(cofun)), the experimental IDF (dc(IDF), da(IDF) and 

L(IDF)), and the simulated IDF (dc, da and L), are reported in Tables 1.23 and 

1.24 for the aged compression-molded samples and for the samples as-

crystallized from the melt by cooling from the melt to room temperature, 

respectively. Since these SAXS profiles have been collected in arbitrary units, 

the evaluated Porod constant has no meaning. Similarly, the slope of the first 

part of the correlation function at the origin was not evaluated. 

Unlike the homopolymer sRDG-2-1 and the sPPEt copolymers, all 

morphological parameters evaluated from the SAXS profiles of the melt-

crystallized samples sPPBu1 and sPPBu-2 are higher than those evaluated from 

the SAXS profiles of the corresponding aged samples. 
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Figure 1.178. SAXS 2D patterns (A-C) and corresponding one-dimensional profiles (D) of the sample sPPBu-1 with 3.2 mol% of 1-butene recorded at 

room temperature for a compression-molded melt-crystallized film aged at room temperature (A,D black curve), recorded after heating at 150 °C where 

the sample is melted (B, D red curve), and soon after the successive cooling from the melt to room temperature allowing crystallization (C, D blue 

curve). SAXS intensity profile of the same aged sample as a function of s (nm
-1

) with longer tail resulting from the addition of several data points 

belonging to the WAXS profiles (E). 
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Figure 1.179. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-1 with 3.2 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.180. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample sPPBu-1 with 3.2 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.181. SAXS 2D patterns (A-C) and corresponding one-dimensional profiles (D) of the sample sPPBu-2 with 6.3 mol% of 1-butene recorded at 

room temperature for a compression-molded melt-crystallized film aged at room temperature (A,D black curve), recorded after heating at 150 °C where 

the sample is melted (B, D red curve), and soon after the successive cooling from the melt to room temperature allowing crystallization (C, D blue 

curve). SAXS intensity profile of the same aged sample as a function of s (nm
-1

) with longer tail resulting from the addition of several data points 

belonging to the WAXS profiles (E). 
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Figure 1.182. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-2 with 6.3 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.183. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample sPPBu-2 with 6.3 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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The SAXS profiles of the melt-crystallized and aged sample sPPBu-4 with 

11.2 mol% of 1-butene are shown in Figure 1.184. A peak is visible in the 

SAXS profiles recorded before melting (black curve in Figure 1.184) and also 

after melting and cooling from the melt to room temperature (blue curve in 

Figure 1.184), as expected since this sample still crystallizes from the melt 

(Figure 1.132A). The SAXS analysis performed on the aged melt-crystallized 

sample and the melt-crystallized sample as cooled from the melt are shown in 

Figures 1.185 and 1.186 and the resulting calculated morphological parameters 

are reported in Tables 1.23 and 1.24. Unlike the first two samples of the series, 

this sample exhibit slightly higher values of long period and thicknesses of 

amorphous and crystalline layers after aging at room temperature. 
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Figure 1.184. SAXS intensity profiles of the sample of sPPBu-4 with 11.2 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 150 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature allowing 

crystallization (blue curve). 
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Figure 1.185. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-4 with 11.2 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.186. A) SAXS intensity profiles of the as-prepared compression-molded film of the sample sPPBu-4 with 11.2 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the interpolation of the experimental data to evaluate the position of the peak s*. C) 

Correlation function K(z). The slope of initial part of the function at the origin and the correlation triangle at the origin are shown. The values of L and 

dc, evaluated from the position of the first maximum of K(z) and from the short side of the correlation triangle, respectively, are indicated. D) Function 

16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) 

(black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous curves) and single contributions of the 

distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Samples sPPBu-6, sPPBu-7, sPPBu-9 with 18.2, 31.5, 51.7 mol% of 1-

butene, respectively, do not crystallize from the melt but crystallize upon aging 

at room temperature of several days. The aging time necessary for the complete 

crystallization increases with increasing butene concentration.
143

  

The sample sPPBu-6 with 18.2 mol% of butene shows a slight peak only in 

the SAXS profile collected before melting, as shown in Figure 1.187 (black 

curve). Therefore the SAXS analysis has been performed only on this profile 

(see Figure 1.188). Because of the high intensity observed at low values of s, 

the SAXS profile has been corrected with the Debye-Beuche equation, as 

described in section 1.9.4 for sPPET copolymers with high ethylene content 

(see Figure 1.189). Although the shape of the IDF and simulated IDF (K''(z) and 

K''sim(z)) and the resulting morphological parameters do not significantly 

change (Figures 1.188E,F and 1.189E,F), this procedure improves the shape of 

the Lorentz-corrected profile (Figure 1.189B) and of the correlation function 

(Figure 1.189C), allowing the evaluation of the morphological parameters also 

from the correlation function. 

No peak has been observed in the SAXS profiles of samples sPPBu-7 and 

sPPBu-9 with 31.5 and 51.7 mol% of 1-butene, respectively, as shown in 

Figures 1.190 and 1.191. These samples crystallize only upon long aging time. 

The aging time at the time of the measurements was probably not enough to 

observe some peaks in the SAXS profiles. Moreover, as expected, no peaks 

have been observed in the SAXS profiles of the samples as-cooled from the 

melt. All SAXS profiles perfectly overlap to the SAXS profiles recorded in the 

melt (Figures 1.190 and 1.191), which confirms that the sample are in the 

amorphous state. Therefore no SAXS analysis on has been performed on these 

samples. 

 

 

 



290 
 

0.01 0.1 1
10

2

10
3

10
4

10
5

10
6

10
7

In
te

n
si

ty
 (

e.
u
./

n
m

3
)

 25°C start

 135°C

 25°C end

s (nm
-1

)  
Figure 1.187.SAXS intensity profiles of the sample of sPPBu-6 with 18.2 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 135 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature (blue curve). 
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Figure 1.188. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-6 with 18.2 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the Gaussian function that simulates the correlation peak to evaluate the position of the peak 

s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) 

Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous 

curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.189. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-6 with 18.2 mol% of butene recorded at room 

temperature after correction for the Debye-Bueche function at low values of s (black curve). The red line represents the Porod fit and gives the sum of 

the Porod scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The black curve represents the original 

Lorentz-corrected intensity profile, the blue curve represents the Lorentz-corrected profile after the Debye-Bueche correction and the red curve 

represents the interpolation of the blue curve for a better evaluation of the position of the peak s*. C) Correlation function K(z). The slope of K(z) at the 

origin and the values of L and dc are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves).  
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Figure 1.190. SAXS intensity profiles of the sample of sPPBu-7 with 31.5 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 125 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature (blue curve). 
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Figure 1.191. SAXS intensity profiles of the sample of sPPBu-9 with 51.7 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 100 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature (blue curve). 
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Samples sPPBu-11 and sPPBu-12 with 69.9 and 89 mol% of 1-butene, 

respectively, do not crystallize from the melt but crystallize upon aging in the 

form I of sPB.
143

 (Figure 1.132B). Accordingly, the SAXS profiles of the 

compression-molded samples aged at room temperature of Figures 1.192 and 

1.195 (black curves), whereas no peaks are present in the profiles of the 

samples after melting and cooling to room temperature without aging (blues 

curves of Figures 1.192 and 1.195). A more intense and defined peak has been 

observed in the SAXS profile of the sample sPPBu11. The SAXS analyses of 

these two samples are shown in Figures 1.193 and 1.196. As for the sample 

sPPBu-6 with 18.2 mol% of butene, the high intensity at low values of s has 

prevented a correct evaluation of the correlation function (Figure 1.193C and 

1.196C) and, in particular for sample sPPBu12, the modeling of the IDF (Figure 

1.196E,F) and the evaluation of the morphological parameters. Therefore, the 

SAXS analyses have been repeated after correction of the SAXS profiles at low 

s values with the Debye-Bueche function. The results are shown in Figures 

1.194 and 1.197 and the evaluated morphological parameters are reported in 

Table 1.23. 
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Figure 1.192. SAXS intensity profiles of the sample of sPPBu-11 with 69.9 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 85 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature (blue curve). 
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Figure 1.193. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-11 with 69.9 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the Gaussian function that simulates the correlation peak to evaluate the position of the peak 

s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) 

Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous 

curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.194. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-11 with 69.9 mol% of butene recorded at room 

temperature after correction for the Debye-Bueche function at low values of s (black curve). The red line represents the Porod fit and gives the sum of 

the Porod scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The black curve represents the original 

Lorentz-corrected intensity profile, the blue curve represents the Lorentz-corrected profile after the Debye-Bueche correction and the red dashed curve 

represents the interpolation of the blue curve for a better evaluation of the position of the peak s*. C) Correlation function K(z). The slope of K(z) at the 

origin and the values of L and dc are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the 

simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF 

(continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves).  
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Figure 1.195. SAXS intensity profiles of the sample of sPPBu-12 with 89 mol% of butene 

recorded at room temperature for a compression-molded melt-crystallized film aged at room 

temperature (black curve), recorded after heating at 80 °C where the sample is melted (red 

curve) and soon after the successive cooling from the melt to room temperature (blue curve). 
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Figure 1.196. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-12 with 89 mol% of butene recorded at room 

temperature. The red line represents the Porod fit and gives the sum of the Porod scattering and a background due to density fluctuations. B) Lorentz-

corrected SAXS intensity profile. The red curve represents the Gaussian function that simulates the correlation peak to evaluate the position of the peak 

s*. C) Correlation function K(z). D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). The red curve is the result of the simulation. E) 

Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) Experimental and simulated IDF (continuous 

curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed curves). 
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Figure 1.197. A) SAXS intensity profiles of the aged compression molded film of the sample sPPBu-12 with 89 mol% of butene recorded at room 

temperature after correction for the Debye-Bueche function at low values of s (black curve). The red line represents the Porod fit and gives the sum of 

the Porod scattering and a background due to density fluctuations. B) Lorentz-corrected SAXS intensity profile. The black curve represents the original 

Lorentz-corrected intensity profile and the blue curve represents the Lorentz-corrected profile after the Debye-Bueche correction. C) Correlation 

function K(z). The slope of K(z) at the origin and the values of L and dc are indicated. D) Function 16π
3
[P-Iabss

4
]ω as calculated from I(s) (black line). 

The red curve is the result of the simulation. E) Experimental IDF function calculated from I(s) (black line), and simulated IDF function (red curve). F) 

Experimental and simulated IDF (continuous curves) and single contributions of the distributions of thicknesses hc, ha and hac to the IDF (dashed 

curves). 
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Tables 1.23 and 1.24 report the morphological parameters of all analyzed 

samples of sPPBu copolymers. For samples sPPBu6, sPPBu11 and sPPBu12 

only the parameters calculated on the SAXS profiles corrected with the Debye-

Bueche function are reported. The values of the long period, the thickness of 

the crystalline lamellae and of the amorphous layers, evaluated from the 

Lorentz corrected profiles, the correlation functions and the experimental and 

simulated IDF are reported in Figures 1.198 and 1.199 as a function of 1-butene 

content.  

For the aged compression-molded samples, the long period and the thickness 

of the amorphous layers exhibit similar behavior with increasing butene 

content, as shown in Figure 1.198 A,C, and 1.199A-C. Starting from the 

homopolymer a decrease of L and da is observed in the first two samples 

sPPBu-1 (3.2 mol% of 1-butene) and sPPBu-2 (6.3 mol% of 1-butene). As the 

comonomer content further increases up to 20 mol% of butene a slight decrease 

of L and da (regardless of the method of evaluation) occurs, whereas a strong 

increase of L and da for high butene concentration, in correspondence of the 

samples sPPBu-11 andsPPBu-12 with 69.9 and 89 mol% of 1-butene, 

respectively, has been observed. The thickness of the crystalline lamellae also 

decreases with increasing butene content for low butene concentrations up to 20 

mol%, then a slight increase of dc for the samples sPPBu-11 and sPPBu-12 with 

69.9 and 89 mol% of butene is observed (see Figures 1.198B and 1.199A-C). It 

is worth noting that a small decrease of the crystalline thickness occurs, 

whereas a strong increase of the amorphous thickness and of the long period is 

observed at high butene concentrations. 

The same trend has been observed in as-prepared melt-crystallized samples 

in the range of butene concentrations for which the samples crystallize upon 

cooling from the melt. The long period and the thickness of the amorphous 

layers decrease with increasing butene concentration starting from the 

homopolymer, as shown in Figures 1.198A‟,C‟ and 1.199A‟-C‟. The thickness 

of the crystalline lamellae also decreases with the butene concentration and 

only that of the sample with 3.2 mol% of butene dc seems to be higher than that 

of the homopolymer. For this sample the IDF gives two maxima corresponding 

to two different thicknesses of 2.7 nm and 4.6 nm (Figure 1.180E,F and Table 

1.24), that cannot correspond to dc and da because the long period evaluated 

from the minimum of the IDF is higher (9.75 nm) than their sum. On the other 

hand the simulated IDF gives a single maxima corresponding to a crystalline 
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thickness of 3.80 nm (Figure 1.180E,F and Table 1.24), in agreement with the 

value obtained from the correlation function (Figure 1.180C and Table 1.24).  

A comparison between Figures 1.199A-C and 1.199A‟-C‟ shows, as 

mentioned before, that the morphological parameters evaluated from the 

correlation function are similar to those evaluated from the simulated and 

experimental IDF.  

All these data show that generally all morphological parameters decrease 

with increasing 1-butene concentration in samples that crystallize from the melt 

or upon aging in the form I of sPP. A small decrease of the crystalline thickness 

also occurs at high butene concentrations, when the samples crystallize upon 

aging at room temperature in form I of sPB, whereas correspondingly, for these 

samples a strong increase of the amorphous thickness and of the long period is 

observed. This is probably related to the fact that the crystallinity of these 

samples is very low and that, in the crystalline morphology of form I of sPB 

most of the amorphous phase is inside the lamellar stacks, resulting in high 

values of long period (20 nm), higher than that of analogous samples of sPPET 

copolymers of similar degrees crystallinity (12 nm, Tables 1.21 and 1.22). 

It would be interesting to compare the morphological parameters evaluated 

by the analysis of the SAXS profiles with those that can be evaluated from the 

AFM images reported in the section 1.8 (Figure 1.133 for the sPP homopolymer 

sample, Figures 1.134 - 1.137, for sPPET samples and Figures 1.138 -1.145 for 

sPPBu copolymers). In particular, the thickness of the crystalline lamellae and a 

periodicity of the lamellar stacks can be determined from the AFM images that 

show bundles of nearly parallel and stacked lamellae radiating from a nucleus, 

or, for high defect concentration smaller and thinner randomly oriented 

lamellae still radiating from a nucleus (see Figures 1.136, 1.140-1.141). 

The values of the thickness of the crystalline lamellae for sPPET copolymers 

measured from the AFM images are similar to those evaluated from the SAXS 

data (Tables 1.22). In the case of sPPBu copolymers the values of crystalline 

lamellae evaluated from AFM are slightly higher than those determined by 

SAXS analysis, probably due to resulting low resolution of the AFM images 

because of the too sticky samples.  
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Table 1.23. Values of the degree of crystallinity xc and morphological parameters evaluated from the analysis of the SAXS profiles recorded at room 

temperature of compression-molded melt-crystallized film aged at room temperature of samples of the sPP homopolymer sRDG-2-1 and sPPBu 

copolymers of the indicated butene concentration (defects content). The values of the Porod costant (P), scattering vector corresponding to the maximum 

of the Lorentz-corrected profiles (s*), Long period (L), thickness of the crystalline lamellae (dc) and of the amorphous layers (da) evaluated from the 

Lorentz-corrected profiles (L*), from the correlation functions K(z) (L(cofun), dc(cofun) and da(cofun)), from the experimental IDF (L(IDF), dc(IDF) and 

da(IDF)) and from the simulated IDF (L, dc and da), slope of the first part of K(z) at the origin (dK/dz) and electron density difference (∆ρ) are reported. 

The widths of the distributions of thicknesses of crystalline lamellae (c), thicknesses of amorphous phase (a) evaluated from the simulated IDF are also 

reported. 

Sample 

Defects 

content 

(mol%) 

xc 

(%)a 
P 

(e.u./nm7) 
s* 

(nm-1) 
L* 

(nm) 

dc 

(IDF) 

(nm) 

da 

(IDF) 

(nm) 

L 

(IDF) 

(nm) 

dc 
(nm) 

σc 

(nm) 
da 

(nm) 
σa 

(nm) 
L 

(nm) 

dc 

(cofun) 

(nm) 

da 

(cofun) 

(nm) 

L 

(cofun) 

(nm) 

dK/dz ∆ρ 

sRDG-2-1 0.7 45 0.876 0.078 12.82 4.52 5.73 10.25 4.58 0.64 6.39 3.56 10.97 4.40 7.65 12.05 -76 29 

sPPBu-1 3.2 44 / 0.094 10.64 2.44 6.09 8.53 2.91 0.50 5.93 3.16 8.84 3.57 5.57 9.14 / / 

sPPBu-2 6.3 42 / 0.092 10.87 2.74 5.79 8.53 3.20 0.50 5.56 2.98 8.76 3.51 5.63 9.14 / / 

sPPBu-4 11.2 41 1.053 0.105 9.52 2.41 5.12 7.53 2.90 0.50 5.03 3.14 7.93 3.27 6.07 9.34 -63.94  

sPPBu-6 18.2 39 0.919 0.071 14.08 2.31 4.39 6.70 2.80 0.50 4.32 3.46 7.12 3.23 5.3 8.53 -55.16  

sPPBu-11 69.9 28 1.028 0.067 14.93 2.44 8.23 10.67 2.79 0.50 11.57 6.44 14.36 3.84 11.76 15.6 -63.99  

sPPBu-12 89 32 2.020 0.051 19.61 2.44 8.53 10.97 2.86 0.50 17.74 9.11 20.60 3.96 8.14 12.10 -132.72  
a) evaluated from WAXS profiles 
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Table 1.24. Values of the degree of crystallinity xc and morphological parameters evaluated from the analysis of the SAXS profiles recorded at room 

temperature of as-prepared compression-molded melt-crystallized film of samples of the sPP homopolymer sRDG-2-1 and sPPBu copolymers of the 

indicated butene concentration (defects content). The values of the Porod costant (P), scattering vector corresponding to the maximum of the Lorentz-

corrected profiles (s*), Long period (L), thickness of the crystalline lamellae (dc) and of the amorphous layers (da) evaluated from the Lorentz-corrected 

profiles (L*), from the correlation functions K(z) (L(cofun), dc(cofun) and da(cofun)), from the experimental IDF (L(IDF), dc(IDF) and da(IDF)) and from 

the simulated IDF (L, dc and da), slope of the first part of K(z) at the origin (dK/dz) and electron density difference (∆ρ) are reported. The widths of the 

distributions of thicknesses of crystalline lamellae (c), thicknesses of amorphous phase (a) evaluated from the simulated IDF are also reported.  

Sample 
Defects 
content 

(mol%) 

xc 

(%)a 

P 

(e.u./nm7) 

s* 

(nm-1) 

L* 

(nm) 

dc (IDF) 

(nm) 

da 
(IDF) 

(nm) 

L 
(IDF) 

(nm) 

dc 

(nm) 

σc 

(nm) 

da 

(nm) 

σa 

(nm) 

L 

(nm) 

dc 
(cofun) 

(nm) 

da 
(cofun) 

(nm) 

L 
(cofun) 

(nm) 

dK/dz ∆ρ 

sRDG-2-1 0.7 45 0.368 0.082 12.19 3.49 6.76 10.25 3.62 0.50 6.58 3.62 10.22 3.78 7.92 11.70 -27.74 17 

sPPBu-1 3.2 44 / 0.087 11.49 2.74/4.60 7.01 9.75 3.80 1.47 6.09 2.42 9.89 4.05 6.31 10.36 /  

sPPBu-2 6.3 42 / 0.088 11.36 3.04 6.1 9.14 3.35 0.51 6.22 3.15 9.57 3.72 6.34 10.06 /  

sPPBu-4 11.2 41 0.352 0.11 9.09 2.71 4.22 6.93 2.92 0.50 4.30 2.31 7.22 3.21 4.93 8.14 -17.98 12 

sPPBu-6 18.2 39 / / / / / / / / / / / / / / / / 

sPPBu-11 69.9 0 / / / / / / / / / / / / / / / / 

sPPBu-12 89 0 / / / / / / / / / / / / / / / / 
a) evaluated from WAXS profiles 
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Figure 1.198. Average values of the long period L () evaluated from the simulated IDF, L(IDF) () evaluated from the experimental IDF, L(cofun) 

() evaluated from the correlation function, L* () evaluated from maximum s* of the Lorentz-corrected SAXS profile, of the aged compression-

molded melt-crystallized (A) and as-prepared melt-crystallized compression-molded (A’) samples of sPPBu copolymers as a function of 1-butene 

concentration. Average values of the of thickness of crystalline lamellae (B,B’) and amorphous layers (C,C’), dc and da () evaluated from the simulated 

IDF, dc(IDF) and da(IDF) () evaluated from the experimental IDF, dc(cofun)and da(cofun) () evaluated from the correlation function, of the aged 

(B,C) and melt-crystallized (B’,C’) compression-molded samples of sPPBu copolymers as a function of 1-butene concentration. The morphological 

parameters of the homopolymer sRDG-2-1 (ethylene content =0) are also reported as a reference. 
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Figure 1.199. Average values of the long period L (), thickness of crystalline lamellae dc (), thickness of amorphous layers da () evaluated from 

the simulated IDF (A,A’), from the experimental IDF (B,B’) and from the correlation function (C,C’) of the aged compression-molded (A,B,C) and as-

prepared melt-crystallized (A’,B’,C’) samples of sPPBu copolymers as a function of 1-butene concentration. 
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1.9.6. Concluding remarks on SAXS and AFM analysis. 

The results of the AFM and SAXS analysis on sPP-based copolymers are in 

good agreement and in according with the morphology observed by optical 

microscopy. In the case of sPPEt copolymer the decrease of crystalline 

thickness is in agreement with the decrease of crystallinity with increasing 

ethylene concentration due to the presence of ethylene defects and increasing 

disorder in the crystalline phase (Figura 1.200A). However, even though the 

fraction of the total amorphous phase clearly increases with increasing ethylene 

content (Figure 1.200A), the thickness of the amorphous layer in the model of 

lamellar stacks, evaluated by SAXS, decreases. Only at high ethylene content 

also the fraction of amorphous phase in between the crystalline lamellae (in the 

lamellar stacks) increases, with corresponding increase of amorphous thickness 

and long period. This can be explained recalling that ethylene units are only 

partially included into the crystals of sPP and an appreciable amount of 

ethylene units is also included in the noncrystalline phase of the copolymers. 

Therefore, most of the constitutional defects could be segregated in the extra-

lamellar amorphous phase consisting of amorphous phase not organized in the 

lamellar stacks, and therefore, not visible by the modeling of the SAXS data.  

The increasing disorder in the crystalline phase and the probable segregation 

of the constitutional defects in the extra-lamellar amorphous phase are in 

agreement with the lamellar morphology evidenced by AFM, characterized by 

bundles of nearly parallel and stacked lamellae radiating from a nucleus for low 

defect concentrations, and smaller and thinner randomly oriented lamellae still 

radiating from a nucleus for high defect concentration. These data suggest that 

the model of the perfectly alternated lamellar stacks is not a realistic model for 

the description of these disordered systems with high defect concentration and 

low crystallinity. 

In the case of sPPBu copolymers all morphological parameters, crystalline 

and amorphous thicknesses and long period, decrease with increasing 1-butene 

concentration in samples that crystallize from the melt or upon aging in the 

form I of sPP. A small decrease of the crystalline thickness also occurs at high 

butene concentrations, when the samples crystallize upon aging at room 

temperature in form I of sPB, whereas correspondingly, for these samples a 

strong increase of the amorphous thickness and of the long period is observed.  

The similar change of all morphological parameters evaluated by SAXS 

reflects the change of crystallinity with increasing butene concentration (Figure 
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1.200B). This suggests that the periodicity at nanometric scale changes as the 

variations occurring at atomic scale. This could be due to the fact that butene is 

regularly partitioned between crystalline and amorphous phase due to the 

complete co-crystallization of propylene and butene units in the syndiotactic 

copolymers. Therefore, although butene units are always included in the unit 

cell at any concentration, a fraction of butene units is always incorporated in the 

amorphous fraction. This results in similar changes of crystalline and 

amorphous thicknesses. Only when the sample crystallizes in form I of sPB a 

strong increase of the long period is obtained, probably because most of the 

amorphous phase is included in the lamellar stacks. 

These results are in agreement with the results of the study of morphology of 

of these copolymers of sPP by POM, that have revealed an interwoven 

morphology formed by bundle-like and needle-like crystals aggregates 

embedded in an amorphous matrix. In this morphology that explains the elastic 

properties of these materials even at high defects (stereodefects or 

comonomeric units) concentrations, the fraction of amorphous phase in the 

stacks of these thin crystals is necessarily lower than that of the matrix. 
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Figure 1.200. Values of crystallinity of compression-molded melt-crystallized samples aged at 

room temperature of sPPET (A) and sPPBu (B) copolymers as a function of comonomer 

concentration. 

 

 

 

  



309 
 

References Chapter I 

1) C. De Rosa, F. Auriemma, Prog. Polym. Sci. 2006, 31, 145. 

2) G. Natta, I. Pasquon I, P. Corradini, M. Peraldo, M. Pegoraro, A. Zambelli, Rend Accad Naz 

Lincei 1960, 28,539; Chem. Abstr. 1960, 55, 8923i.  

3) A. Zambelli, C. Tosi, Adv Polym Sci 1974, 15, 31. 

4) G. Natta, I. Pasquon, A. Zambelli, J. Am. Chem. Soc. 1962, 84, 1488. A. Zambelli, G. Natta, 

I. Pasquon, J. Polym. Sci. Part C 1963, 4, 411. 

5) Y. Doi, S. Suzuki, K. Soga, Makromol. Chem. Rapid Commun 1985, 6(10), 639. 

6) A. Zambelli, G. Natta, I. Pasquon, R. Signorini, J. Polym. Sci. 1967, C16, 2485. 

7) A. Zambelli, I. Pasquon, R. Signorini, G. Natta, Makromol. Chem. 1968, 112, 160. 

8) Y. Doi, M. Jakada, T. Keii, Makromol. Chem. 1979, 180, 57. 

9) G. Natta, E. Lombardi, A. L. Segre, A. Zambelli, A. Marinangeli, Chim Ind (Milan) 1965, 

47, 378. 

10) A. Zambelli, M. G. Giongo, G. Natta, Makromol. Chem. 1968, 112, 183. 

11) A. Zambelli, P. Locatelli, G. Bajo, F. A. Bovey, Macromolecules 1975, 8, 687. 

12) A. Zambelli, G. Gatti, Macromolecules 1978, 11, 485. 

13) A. Zambelli, P. Locatelli, E. Rigamonti, Macromolecules 1979, 12, 156. 

14) A. Zambelli, G. Bajo, E. Rigamonti, Makromol. Chem. 1978, 179, 1249. 

15) A. Zambelli, P. Locatelli, G. Bajo, Macromolecules 1979, 12, 154. 

16) P. Locatelli, M. C. Sacchi, E. Rigamonti, A. Zambelli, Macromolecules 1984, 17, 123. 

17) A. Zambelli, P. Longo, S. Terenghi, D. Recupero, G. Zannoni, J. Mol. Catal A: Chem 2000, 

152, 25. 

18) A. Zambelli, C. Tosi, M. C. Sacchi, Macromolecules 1972, 5, 649.  

19) A. Zambelli, P. Locatelli, G. Zannoni, F. A. Bovey, Macromolecules 1978, 11, 923. 

20) A: Zambelli, C. Wolfsgruber, G. Zannoni, F. A. Bovey, Macromolecules 1974, 7, 750. 

21) a) P. Ammendola, X. Shijng, A. Grassi, A. Zambelli, Gazz. Chim. Ital. 1988, 118, 769. b) 

A. Grassi, P. Ammendola, P. Longo, E. Albizzati, L. Resconi, R. Mazzocchi, Gazz. Chim. Ital. 

1988, 118, 539. c) A. Zambelli, P. Ammendola, Prog. Polym. Sci. 1991, 16, 203. 

22) A. Zambelli, I. Sessa, F. Grisi, R. Fusco, P. Accomazzi, Macromol. Rapid. Commun. 2001, 

22, 297. 

23) A. Zambelli, A. Lety, C. Tosi, I. Pasquon, Makromol. Chem. 1968, 115, 73. 

24) S. Cesca, Macromol Rev 1975, 10, 1. 

25) C. J. Carman, C. E. Wilkes, Rubber Chem Techonol 1971, 44, 781. 

26) J. A. Ewen, J. Am. Chem. Soc. 1984, 106, 6355.  

27) W. Kaminsky, K. Kulper, H. H. Brintzinger, F. R. W. Wild, Angew. Chem. 1985, 97, 507. 

Angew, Chem, Int Ed Engl 1985, 24, 507. 

28) H. Sinn, W. Kaminsky, H. J. Vollmer, R. Woldt, Angew. Chem. Int. Ed. Engl 1980, 92, 396. 



310 
 

29) (a) J. A. Ewen, R. L. Jones, A. Razavi, J. D. Ferrara, J .Am. Chem. Soc. 1988, 110, 6255. (b) 

A. Razavi, J. A. Ewen, US patent 5,334,677. (c) J. A. Ewen, A. Razavi, US patent 5,476,914. 

(d) A. Razavi, J. A. Ewen, US patent 6184326. (e) A. Razavi, J. A. Ewen, US patent 4,892,851. 

30) J. A. Ewen, M. J. Elder, R. L. Jones, S. Curtis, H. N. Cheng, In Catalytic Olefin 

Polymerization, T. Keii, K. Soga editors New York: Elsevier, 1989. p. 271. 

31) a) A. Razavi, D. Baekelmans, V. Bellia, Y. De Brauwer, K. Hortmann, M. Lambrecht, O. 

Miserque, L. Peters, M. Slawinsky, S. Van Belle, in: Progress and Development of Catalytic 

Olefin Polymerisation, T. Sano, T. Uozumi, H. Nakatani, M. Terano, Eds., Technology and 

Education Publishers, Tokyo 2000, p. 176. b) A. Razavi, J. J. Ferrara, J. Organomet. Chem. 

1992, 435, 299. c) A. Razavi, J. L. Atwood, J. Organomet. Chem. 1993, 459, 117. d) A. Razavi, 

U. Thewalt, J. Organomet. Chem. 1993, 445, 111. e) A. Razavi, L. Peters, L. Nafpliotis, 

D.Vereecke, K. DenDaw, Macromol. Symp. 1995, 89, 345. f) A. Razavi, J. L. Atwood, J. 

Organomet. Chem. 1996, 520, 115. g) A. Razavi, D. Vereecke, L. Peters, K. Den Daw, L. 

Nafpliotis, J. L. Atwood, in: „„Ziegler Catalysts‟‟,G. Fink, R. Mulhaupt, H. H. Brintzinger, Eds., 

Springer-Verlag, Berlin 1993. h) R. Kleinschmidt, M. Reffke, G. Fink, Macromol. Rapid 

Commun. 1999, 20, 284. 

32) K. Mislow, M. Raban, Top. Stereochem. 1967, 1, 1. 

33) L. Cavallo, G. Guerra, M. Vacatello, P. Corradini, Macromolecules 1991, 24, 1784. 

34) L. A. Castonguay, A. K. Rappé, J. Am. Chem. Soc. 1992, 114, 5832. 

35) H. Kawamura-Kuribayashi, N. Koga, K. Morokuma, J. Am. Chem. Soc. 1992, 114, 8687. 

36) T. Yu, J. C. W. Chien, J. Polym. Sci.: Part A: Polym. Chem. 1995, 33, 1085. 

37) Y. Van der Leek, K. Angermund, M. Reffke, R. Kleinschmidt, R. Goretzki, G. Fink, Chem. 

Eur. J. 1997, 3, 585.. 

38) L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100, 1253. 

39) H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M. Waymouth, Angew. Chem., 

Int. Ed. Engl. 1995, 34, 1143. 

40) P. Corradini, L. Cavallo, G. Guerra, In: Scheirs J, Kaminsky W editors. Metallocene-based 

polyolefins. Chichester: Wiley, 2000, vol.2, p. 3. 

41) P. Longo, A. Proto, A. Grassi, P. Ammendola, Macromolecules 1991, 24, 4624. 

42) J. A. Ewen, M. J. Elder, R. L. Jones, L. Haspelagh, J. L. Atwood, S. G. Bott, K. Robinson, 

Makromol. Chem., Macromol. Symp. 1991, 48/49, 253. 

43) G. Balbontin, D. Dainelli, M. Galimberti, G. Paganetto, Macromol. Chem. 1992, 193, 693. 

44) H. G. Alt, A. Koppl, Chem Rev 2000, 100, 1205. 

45) A. Razavi, L. Peters, L. Nafpliotis, J. L. Atwood, In: Soga K, Terano M, editors, Catalyst 

design for tailor-made polyolefins. Tokyo: Kodansha, 1994 (supplement).  

46) W. A. Herrmann, J. Rohrmann, E. Herdtweck, W. Spaleck, A. Winter, Angew. Chem., Int. 

Ed. Engl. 1989, 28, 1511. 

47) T. Shiomura, M. Kohno, N. Inoue, T. Asanuma, R. Sugimoto, T. Iwatani, O. Uchida, S. 

Kimura, S. Harima, H. Zenkoh, E. Tanaka, Macromol. Symp. 1996, 101, 289. 

48) S. A. Miller, J. E. Bercaw, 217th American Chemical Society National Meeting Poster 

INOR 151; Anaheim, CA; 1999. 

49) a) A. Razavi, V. Bellia, Y. De Brauwer, K. Hortmann, L. Peters, S. Sirole, S. Van Belle, U. 

Thewalt, Macromol Symp 2004, 213,157. b) A. Razavi, V. Bellia, Y. De Brauwer, K. 



311 
 

Hortmann, L. Peters, S. Sirole, S. Van Belle, U. Thewalt, Macromol Chem Phys 2004, 205, 

347. 

50) E. Albizzati, L. Resconi, A. Zambelli, Eur. Pat. Appl. 387609 (Himont Inc.), 1991; 

Chem.Abstr. 1991, 114, 62980a.  

51) F. Grisi, P. Longo, A. Zambelli, J. A. Ewen, J. Mol. Catal. A Chem. 1999, 140, 225. 

52) a) L. Oliva, P. Longo, A. Zambelli, Macromolecules 1996, 29, 6383. b) A. Borriello, V. 

Busico, R. Cipullo, J. C. Chadwick, O. Sudmeijer, Macromol. Rapid Commun. 1996, 17, 589. 

53) a) T. A. Herztog, L. Zubris, J. E. Bercaw, J. Am. Chem. Soc. 1996, 118, 11988; b) D. 

Veghini; J. E. Bercaw, Polym. Prepr. 1998, 39, 210; c) D. Veghini, L. M. Henling, T. J. 

Burkhardt, J. E. Bercaw, J. Am. Chem. Soc. 1999, 121, 564. 

54) a) J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. 

W. Knight, S. Y. Lais, Eur Pat Appl 0416815, 1990 (Dow Chemical Company). b) J. C. 

Stevens, Stud Surf Sci Catal 1994, 89, 277. 

55) J. Okuda, In Metalorganic catalysts for synthesis and polymerization, W. Kaminsky editor 

Berlin: Springer, 1999. p. 200. 

56) A. L. McKnight, R. M. Waymouth, Chem. Rev. 1998, 98, 2587. 

57) L. Resconi, In Metallocene Catalysts, W. Kaminsky, J. Scheirs editors, New York: Wiley. 

1999. p. 467. 

58) L. Resconi, I. Camurati, C. Grandini, M. Rinaldi, N. Mascellani, O. Traverso, J. 

Organomet. Chem. 2002, 664, 5. 

59) J. A. M. Canich, US Patent 5504169 (Exxon), 1996. J. A. M. Canich, US Patent 5026798 

(Exxon), 1991. 

60) J. Okuda, F. J. Schattenmann, S. Wokadlo, W. Massa, Organometallics 1995, 14, 789. 

61) T. Shiomura, T. Asakura, N. Inoue, Macromol. Rapid Commun. 1996, 17, 9. T. Shiomura, 

T. Asakura, T. Sunaga, Macromol. Rapid Commun. 1997, 18, 169. 

62) H. Hagihara, T. Shiono, T. Ikeda, Macromolecules 1997, 30, 4783. H. Hagihara, T. Shiono, 

T. Ikeda, Macromolecules 1998, 31, 3184. 

63) A. Razavi, V. Bellia, Y. De Brauwer, K. Hortmann, M. Lambrecht, O. Miserque, L. Peters, 

S. Van Belle, In Metalorganic Catalysts for Synthesis and Polymerization, W. Kaminsky editor 

Berlin: Springer-Verlag, 1999. A. Razavi, Eur. Pat. Appl. 96111127,5 (Atofina). A. Razavi, 

PCT/EP97/036449 (Atofina), Int Appl WO 98/02469, 1998. B. Haveaux, T. Coupin, 

PCT/EP99/00371 (Atofina), Int Appl WO 99/37711, 1999.  

64) A. Razavi, U. Thewalt, J. Organomet. Chem. 2001, 621, 267. A. Razavi, (Atofina) 

PCT/EP00/08883, Int Appl WO 01/19877, 2001. 

65) A. Razavi, V. Bellia, Y. De Brauwer, K. Hortmann, L. Peters, S. Sirole, S. Van Belle, V. 

Marine, J. Lopez, J. Organomet. Chem. 2003, 684, 206.  

66) V. Busico, R. Cipullo, F. Cutillo, G. Talarico, A. Razavi, Macromol. Chem. Phys. 2003, 

204, 1269. 

67) C. Grandini, I. Camurati, S. Guidotti, N. Mascellari, L. Resconi, I. E. Nifant‟ev, I. A. 

Kashulin, P. V. Ivchenko, P. Mercandelli, A. Sironi, Organometallics 2004, 23, 344. 

68) L. Resconi, S. Guidotti, G. Baruzzi, C. Grandini, I. E. Nifant‟ev, I. A. Kashulin, P. V. 

Ivchenko, PCT Int Appl WO 01/53360 (Basell: Italy), 2001. 

69) L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc. 1995, 117, 6414. 



312 
 

70) M. Brookhart, L. K. Johnson, C. M. Killian, S. Mecking, J. Tempel, Polym. Prepr. Am. 

Chem. Soc., Div. Polym. Chem. 1996, 37, 254. 

71) S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169. 

72) C. Pellecchia, A. Zambelli, Macromol. Rapid Commun.1996, 17, 333. 

73) C. Pellecchia, A. Zambelli, M. Mazzeo, D. Pappalardo, J. Mol. Catal. A: Chem. 1998, 128, 

229. 

74) C. Pellecchia, A. Zambelli, L. Oliva, D. Pappalardo, Macromolecules 1996, 29, 6990. 

75) B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am. Chem. Soc. 1998, 120, 4049. 

76) G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. 

Solan, A. J. P. White, D. J. Williams, Chem.Commun. 1998, 849. 

77) B. L. Small, M. Brookhart, Polym. Prepr. Am. Chem. Soc., Div. Polym.Chem 1998, 39, 213.  

78) B. L. Small, M. Brookhart, Macromolecules 1999, 32, 2120. 

79) C. Pellecchia, M. Mazzeo, D. Pappalardo, Macromol. Rapid Commun. 1998, 19, 651. 

80) J. Tian, G. W. Coates, Angew. Chem., Int. Ed. 2000, 39, 3626. 

81) J. Tian, P. D. Hustad, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 5134. 

82) P. D. Hustad, J. Tian, G. W. Coates, J. Am. Chem. Soc. 2002, 124, 3614. 

83) T. Fujita, Y. Tohi, M. Mitani, S. Matsui, J. Saito,M. Nitabaru, K. Sugi, H. Makio, T. 

Tsutsui, (Mitsui Chemicals Inc.), EP 0874005, 1998, [Chem. Abstr. 1998, 129, 331166]. 

Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Tanaka, H.; Fujita, T. Chem. Lett. 1999, 

1263-1264. Matsui, S.; Tohi, Y.; Mitani, M.; Saito, J.; Makio, H.; Tanaka, H.; Nitabaru, M.; 

Nakano, T.; Fujita, T. Chem. Lett. 1999, 1065-1066. Matsui, S.; Mitani, M.; Saito, J.; 

Matsukawa, N.; Tanaka, H.; Nakano, T.; Fujita, T. Chem. Lett. 2000, 554-555. 

84) S. Matsui, M. Mitani, J. Saito, Y. Tohi, H. Makio, N. Matsukawa, Y. Takagi, K. Tsuru, M. 

Nitabaru, T. Nakano, H. Tanaka, N. Kashiwa, T. Fujita J. Am. Chem. Soc. 2001, 123, 6847. 

85) S. Matsui, T. Fujita, Catal. Today 2001, 66, 63. 

86) (a) S. Matsui, Y. Inoue, T. Fujita, J. Synth. Org. Chem. Jpn. 2001, 59, 232. (b) M. Mitani, 

R. Furuyama, J-I. Mohri, J. Saito, S. Ishii, H. Terao, T. Nakano, H. Tanaka, T. Fujita, J. Am. 

Chem. Soc. 2003, 125, 4293. 

87) N. Matsukawa, S. Matsui, M. Mitani, J. Saito, K. Tsuru, N. Kashiwa, T. Fujita, J. Mol. 

Catal. A-Chem. 2001, 169, 99. 

88) J. Saito, M. Mitani, J. Mohri, Y. Yoshida, S. Matsui, S. Ishii, S. Kojoh, N. Kashiwa, T. 

Fujita, Angew. Chem., Int. Ed. 2001, 40, 2918. 

89) M. Mitani, Y. Yoshida, J. Mohri, K. Tsuru, S. Ishii, S. Kojoh, T. Matsugi, J. Saito, N. 

Matsukawa, S. Matsui, T. Nakano, H. Tanaka, N. Kashiwa, T. Fujita (Mitsui Chemicals Inc.), 

PCT Int. Appl. WO 2001055231 (Chem. Abstr. 2001, 135, 137852). 

90) J. Saito, M. Mitani, M. Onda, J. I. Mohri, S. I. Ishii, Y. Yoshida, T. Nakano, H. Tanaka, T. 

Matsugi, S. I. Kojoh, N. Kashiwa, T. Fujita Macromol. Rapid Commun. 2001, 22, 1072. 

91) A. Grassi, A. Zambelli, L. Resconi, E. Albizzati, R. Mazzocchi, Macromolecules 1988, 21, 

617.  

92) G. Natta G, P. Corradini, P. Ganis, Makromol Chem 1960, 39, 238. 

93) G. Natta, P. Corradini, P. Ganis, J. Polym. Sci. 1962, 58, 1191. 



313 
 

94) G. Natta, M. Peraldo, G. Allegra, Makromol Chem 1964, 75, 215. 

95) P. Corradini, G. Natta, P. Ganis, P. A. Temussi, J. Polym. Sci. Part C 1967, 16, 2477. 

96) a) B. Pirozzi, R. Napolitano, Eur. Polym. J. 1992, 28, 703. b) P. Corradini, R. Napolitano, 

V. Petraccone, B. Pirozzi, A. Tuzi, Macromolecules 1982, 15, 1207. c) R. Napolitano, B. 

Pirozzi, Polymer 1997, 38, 4847. d) P. Corradini, C. De Rosa, G. Guerra, B. Pirozzi, V. 

Venditto, Gazz. Chim. It. 1992, 122, 305. 

97) B. Lotz, A. J. Lovinger, R. E. Cais, Macromolecules 1988, 21, 2375. 

98) A. J. Lovinger, B. Lotz, D. D. Davis, Polymer 1990, 31, 2253. 

99) A. J. Lovinger, D. D. Davis, B. Lotz, Macromolecules 1991, 24, 552. 

100) A. J. Lovinger, B. Lotz, D. D. Davis, F. J. Padden, Macromolecules 1993, 26, 3494. A. J. 

Lovinger, B. Lotz, D. D. Davis, Polym. Prepr. Am. Chem. Soc. 1992, 33, 552. 

101) A. J. Lovinger, B. Lotz, D. D. Davis, M. Schumacher, Macromolecules 1994, 27, 6603. 

102) W. Stocker, M. Schumacher, S. Graff, J. Lang, J. C. Wittmann, A. J. Lovinger, B. Lotz, 

Macromolecules 1994, 27, 6948. 

103) M. Schumacher, A. J. Lovinger, P. Agarwal, J. C. Wittmann, B. Lotz, Macromolecules 

1994, 27, 6956. 

104) B. Lotz, J. C. Wittmann, A. J. Lovinger, Polymer 1996, 37, 4979. 

105) A. J. Lovinger, B. Lotz, J. Polym. Sci. Polym. Phys. Ed. 1997, 35, 2523. 

106) J. Zhang, D. Yang, A. Thierry, J. C. Wittmann, B. Lotz, Macromolecules 2001, 34, 6261. 

107) Y. Chatani, H. Maruyama, K. Noguchi, T. Asanuma, T. Shiomura, J. Polym. Sci., Part C 

1990, 28, 393. 

108) Y. Chatani, H. Maruyama, T. Asanuma, T. Shiomura, J. Polym. Sci., Polym. Phys. 1991, 

29, 1649. 

109) C. De Rosa, P. Corradini, Macromolecules 1993, 26, 5711. 

110) C. De Rosa, F. Auriemma, P. Corradini, Macromolecules 1996, 29, 7452. 

111) C. De Rosa, F. Auriemma, V. Vinti, Macromolecules 1997, 30, 4137. 

112) C. De Rosa, F. Auriemma, V. Vinti, Macromolecules 1998, 31, 7430. 

113) C. De Rosa, F. Auriemma, V. Vinti, M. Galimberti, Macromolecules 1998, 31, 6206. 

114) F. Auriemma, C. De Rosa, P. Corradini, Macromolecules 1993, 26, 5719. 

115) F. Auriemma, C. De Rosa, P. Corradini, Rend. Fis. Acc. Lincei 1993, 4, 287. 

116) F. Auriemma, R. Born, H. W. Spiess, C. De Rosa, P. Corradini, Macromolecules 1995, 28, 

6902. 

117) F. Auriemma, R. H. Lewis, H. W. Spiess, C. De Rosa, Macromol. Chem. Phys. 1995, 196, 

4011. 

118) F. Auriemma, C. De Rosa, O. Ruiz de Ballesteros, P. Corradini, Macromolecules 1997, 30, 

6586. 

119) F. Auriemma, C. De Rosa, O. Ruiz de Ballesteros, V. Vinti, J. Polym. Sci., Polym. Phys. 

1998, 36, 395. 



314 
 

120) B. Lotz, C. Mathieu, A. Thierry, A. J. Lovinger, C. De Rosa, O. Ruiz de Ballesteros, F. 

Auriemma, Macromolecules 1998, 31, 9253. 

121) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, Polymer 2001, 42, 9729. 

122) C. De Rosa, O. Ruiz de Ballesteros, M. Santoro, F. Auriemma, Polymer 2003, 44, 6267. 

123) C. De Rosa, O. Ruiz de Ballesteros, M. Santoro, F. Auriemma, Macromolecules 2004, 37, 

1816. 

124) C. De Rosa, O. Ruiz de Ballesteros, F. Auriemma, Macromolecules 2004, 37, 7724. 

125) F. Auriemma, O. Ruiz de Ballesteros, C. De Rosa, Macromolecules 2001, 34, 4485. 

126) C. De Rosa, M. C. Gargiulo, F. Auriemma, O. Ruiz de Ballesteros, A. Razavi, 

Macromolecules 2002, 35, 9083. 

127) F. Auriemma, C. De Rosa, J. Am. Chem. Soc. 2003, 125, 13143. 

128) a) F. Auriemma, C. De Rosa, Macromolecules 2003, 36, 9396. b) F. Auriemma, C. De 

Rosa, S. Esposito, G. R. Mitchell, Ang. Chem. Intern. Ed. 2007, 46, 4325. 

129) S. Rastogi, D. La Camera, F. van der Burgt, A. E. Terry, S. Z. D. Cheng, Macromolecules 

2001, 34, 7730. 

130) T. Nakaoki, Y. Ohira, H. Hayashi, F. Horii, Macromolecules 1998, 31, 2705. 

131) V. Vittoria, L. Guadagno, A. Comotti, R. Simonutti, F. Auriemma, C. De Rosa, 

Macromolecules 2000, 33, 6200. 

132) a) Y. Ohira, F. Horii, T. Nakaoki, Macromolecules 2000, 33, 1801. b) T. Nakaoki, T. 

Yamanaka, Y. Ohira, F. Horii, Macromolecules 2000, 33, 2718. c) Y. Ohira, F. Horii, T. 

Nakaoki, Macromolecules 2000, 33, 5566. d) Y. Ohira, F. Horii, T. Nakaoki, Macromolecules 

2001, 34, 1655. e) T. Nakaoki, Y. Ohira, F. Horii, Polymer 2001, 42, 4555. 

133) a) C. De Rosa, In Materials Chirality, Topics in Stereochemistry. M. M. Green, R. J. M. 

Nolte, E. W. Meijer editors, Hoboken: John Wiley & Sons Inc. 2003. vol. 24, p. 71. b) C. De 

Rosa, F. Auriemma, Crystals and Crystallinity in Polymers, Wiley, 2014. 

134) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, Chem. Mater. 2006, 18, 3523.  

135) C. De Rosa, F. Auriemma, F.; Ruiz de Ballesteros, O. Phys. Rev. Lett. 2006, 96 (16), 

167801. 

136) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, L. Resconi, A. Fait, E. Ciaccia, I. 

Camurati, J. Am. Chem. Soc. 2003, 125, 10913. 

137) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, Macromolecules 2003, 36, 7607. 

138) C. De Rosa, F. Auriemma, O. Ruiz de Ballesteros, Macromolecules 2004, 37, 1422. 

139) A. Peterlin, In Encyclopedia of Polymer Science and Engeneering. New York: Wiley. 

1987. vol. 10, p 26. 

140) C. De Rosa, F. Auriemma, I. Orlando, G. Talarico, L. Caporaso, Macromolecules 2001, 

34, 1663. 

141) a) M. Kakugo, Macromol. Symp. 1995, 89, 545. b) N. Naga, K. Mizunuma, H. Sadatoshi, 

M. Kakugo, Macromolecules 1997, 30, 2197. c) N. Naga, K. Mizunuma, H. Sadatoshi, M. 

Kakugo, Polymer 2000, 41, 203.  

142) a) C. De Rosa, F. Auriemma, V. Vinti, A. Grassi, M. Galimberti, Polymer 1998, 39, 6219. 

b) C. De Rosa, F. Auriemma, G. Talarico, V. Busico, L. Caporaso, D. Capitani, 

Macromolecules 2002, 35, 1314. c) C. De Rosa, F. Auriemma, E. Fanelli, G. Talarico, D. 



315 
 

Capitani, Macromolecules 2003, 36, 1850. d) C. De Rosa, F. Auriemma, Adv. Mat. 2005, 17, 

1503. e) C. De Rosa, F. Auriemma, Polymer 2006, 47, 2179. f) C. De Rosa, F. Auriemma, 

Macromolecules 2006, 39, 249. 

143) a) C. De Rosa, G. Talarico, L. Caporaso, F. Auriemma, O. Fusco, M. Galimberti, 

Macromolecules 1998, 31, 9109. b) C. De Rosa, F. Auriemma, L. Caporaso, G. Talarico, D. 

Capitani, Polymer 2000, 41, 2141. c) B. Zhang, D. Yang, C. De Rosa, S. Yan, Macromolecules 

2002, 35, 4646. d) C. De Rosa, F. Auriemma, L. Caliano, G. Talarico, M. Corradi, 

Macromolecules 2008, 41, 5301. e) C. De Rosa, F. Auriemma, M. Corradi, L. Caliano, G. 

Talarico, Macromolecules 2008, 41, 8712. f) C. De Rosa, F. Auriemma, L. Caliano, M. Corradi, 

Macromol. Mater. Eng. 2008, 293, 810. g) C. De Rosa, F. Auriemma, M. Corradi, L. Caliano, 

O. Ruiz de Ballesteros, R. Di Girolamo, Macromolecules 2009, 42, 4728. h) S. Jiang, H. Li, C. 

De Rosa, F. Auriemma, S. Yan, Macromolecules 2010, 43, 1449. 

144) E. D. Schwerdtfeger, S. A. Miller, Macromolecules 2007, 40, 5662. 

145) J. Arranz-Andrés, J. L. Guevara, T. Velilla, R. Quijada, R. Benavente, E. Pérez, M. L. 

Cerrada, Polymer 46, 12287 (2005). 

146) C. De Rosa, F. Auriemma, R. Di Girolamo, G. Giusto, O. Ruiz de Ballesteros 

Macromolecules 2010, 43, 9802. 

147) S. Jungling, R. Mulhaupt, D. Fisher, F. Langhauser, Ang. Makromol. Chem. 1995, 229, 93.  

148) R. Thomann, J. Kressler, R. Mulhaupt, Macromol. Chem. Phys. 1997, 198, 1271. R. 

Thomann, J. Kressler, R. Mulhaupt, Polymer 1998, 39, 1907.  

149) G. Hauser, J. Schmidtke, G. Strobl, Macromolecules 1998, 31, 6250. 

150) S. M. Graef, U. M. Wahner, A. J. Van Reenen, R. Brull, R. D. Sanderson, H. Pasch, J. 

Polym. Sci., Part A, 2002, 40, 128. 

151) C. De Rosa, V. Venditto, G. Guerra, B. Pirozzi, P. Corradini, Macromolecules 1991, 24, 

5645. 

152) C. De Rosa, V. Venditto, G. Guerra, P. Corradini, Makromol. Chem. 1992, 193, 1351. 

153) C. De Rosa, G. Guerra, A. Grassi, Macromolecules 1996, 29, 471. 

154) B. Zhang, D. Yang, C. De Rosa, S. Yan, J. Petermann Macromolecules 2001, 34, 5221. 

155) C. De Rosa, F. Auriemma, Polymer. Chem. 2011, 2, 2155. 

156) J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook; John Wiley: New York, 

1999. 

157) R. Thomann, C. Wang, J. Kressler, S. Jüngling, R. Mülhaupt, Polymer 1995, 36, 3795. 

158) N. Ahmad, R. Di Girolamo, F. Auriemma, C. De Rosa, N. Grizzuti, Macromolecules 

2013, 46, 7940. 

159) M. Avrami, J. Chem. Phys. 1939, 7, 1103; J. Chem. Phys. 1940, 8, 212; J. Chem. Phys. 

1941, 9, 177. 

160) a) A. N. Kolmogorov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 1937, 3, 555. b) A. M. Johnson, 

R. F. Mehl, Trans. Am. Inst. Min. Engrs 1939, 135, 417. c) N. X. Sun, X. D. Liu, K. Lu, Scripta 

Materialia, 1996, 34, 1201. 

161) I. Shina, R. K. Mandal Trans. Ind. Inst. Metals 2008, 61, 131. I. Shina, R. K. Mandal J. 

Non-Cryst. Solids 2009, 355, 361. 

162) D. W. Henderson, J. Thermal Analysis, 1979, 15, 325. 



316 
 

163) A. Seidlitz, T. Thurn-Albrecht, Small-angle X-ray scattering for morphological analysis of 

semicrystalline polymers, in Polymer Morphology: Principles, Characterization, and 

Processing, Wiley, 2016. 

164) C. Santa Cruz, N. Stribeck, H. G. Zachmann, F. J. Baltá Calleja, Macromolecules 1991, 

24, 5980. 

165) W. Ruland, Colloid Polym Sci 1977, 255, 417. 

166) T. Butz, Fourier Transformation for Pedestrians. Springer; 2006. 

167) G. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and 

Behavior, Berlin Heidelberg: Springer-Verlag, 2007. 

168) G. Porod, Colloid Polym Sci, 1951, 124(2), 83. 

169) T. Thurn-Albrecht, G. Strobl, Macromolecules, 1995, 28, 5827. 

170) R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford 

University Press, 2000. 

171) O. Glatter, O. Kratky, Small Angle X-Ray Scattering. London:Academic Press, 1982. 

172) R. Hosemann, S. N. Bagchi, Direct Analysis of Diffraction by Matter. Amsterdam: North-

Holland, 1962. 

173) D. Debye and A. M. Beuche, J. Appl. Phys, 1949, 20, 518. 

174) C. G. Vonk, J. Appl. Cryst., 1975, 8, 340. 

 



CHAPTER II 

Ethylene-Propylene Elastomers 

2.1 Ethylene-propylene random copolymers 
The relationships between microstructure, crystallinity and elastic properties 

of sPP and sPP-based copolymers and of semicrystalline block copolymers 
discussed in the chapters I and II, have been compared with those of 
conventional and commercial rubbers based on ethylene-propylene random 
copolymers (EPM). 

EPM are elastomers based on ethylene and propene with ethylene content in 
the range 45 - 75 wt%. These polymeric materials and their derivatives are one 
of the most widely used synthetic rubbers for their properties and versatility. 
Amorphous or low crystalline grades have excellent low temperature flexibility 
with glass transition temperature of about -60°C. They are appreciable for their 
excellent resistance to heat, oxidation, ozone and weather aging due to their 
stable, saturated polymer backbone structure. As non-polar elastomers, they 
have good electrical resistivity, as well as resistance to polar solvents, such as 
water, acids, alkalies, phosphate esters and many ketones and alcohols. Heat 
aging resistance up to 130°C can be obtained with properly selected sulfur 
acceleration systems and heat resistance at 160°C can be obtained with 
peroxide cured compounds. Compression set resistance is good, particularly at 
high temperatures, if sulfur donor or peroxide cure systems are used.1  

The versatility of EPM is due to the possibility to tailor their physical 
properties controlling the microstructure through different polymerization 
strategies. In fact, depending on the ethylene/propene ratio, the presence of a 
third monomer and/or fillers, different degree of crystallinity, crystallization 
behavior, thermal, mechanical and viscoelastic properties can be obtained.  

Ethylene-propene copolymers were first synthesized by Giulio Natta and 
coworkers using stereospecific catalytic systems.2 Based on the observation that 
“the exceptional properties of natural rubber are due to the fact that it hardly 
crystallizes”, Natta and his coworkers developed the idea of introducing defects 
in the ordered chains of linear crystalline polymers, such as polyethylene (PE), 
to induce elastic properties. It is well known that PE does not show elastic 
properties notwithstanding the high flexibility of the chain because of his 
exceptional ability to crystallize. According to the Natta’s idea, the controlled 
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incorporation of constitutional defects, as comonomeric units, in PE hinders the 
crystallization, keeping at the same time the high flexibility of the chains.2  

One of the monomers used for introducing defects and controlled disorder is 
propene. In fact, besides the insertion of the ethylene unit, four different modes 
of insertion of propene are possible: 1,2 with re and si face or 2,1 with re and si 
face. The five different monomer insertions can be considered as five different 
repeating units present in the macromolecular chain (Figure 2.1).3 Therefore, 
depending on the distribution and placement of propene units in the PE chains 
different degrees of disorder can be obtained (Figure 2.2). The presence of all 
the four possible modes of propene insertions is related to the stereoselectivity 
and regioselectivity of the Ziegler-Natta catalyst used in polymerization.3  

 

 
Figure 2.1. Schematic representation of five different modes of insertion of monomers 

ethylene and propene in the M-P bond, where M is the metallic center of the catalyst and P 
represents the growing chain.3 
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Figure 2.2. Constitutional sequences and different configurations of propene units in 

ethylene-propene copolymers.3 

 

2.1.1 Ethylene-propene-diene random terpolymers (EPDM) and fillers 
A saturated ethylene-propene copolymer can be crosslinked by using 

peroxides. However, a sulphur based vulcanization is beneficial to achieve 
better properties of the rubber and avoid side reactions promoted by the 
contemporary presence of radicals and tertiary carbon atoms, that leads to 
polymer degradation.3 To allow a sulphur based vulcanization, double bonds 
have to be introduced in the macromolecular chain of an ethylene-propene 
copolymer. This is realized by introducing a diene as third co-monomer in the 
EPM copolymer, resulting in the EPDM terpolymer. 

Three dienes have been used so far in the manufacture of EPDM: 
• 5-ethylidene-2-norbornene (ENB) 
• dicyclopentadiene (DCPD) 
• 1,4-hexadiene (1,4-HD) 
Their structures are shown in Figure 2.3. In these dienes, the double bond A 

inside the ring is reactive in polymerization, whereas the double bond B is 
unreactive (or very little reactive) in polymerization and is reactive in 
vulcanization.  
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Figure 2.3. The main dienes used as termonomer in the production of EPDM. Double bond 

A is inserted in the polymer backbone and is highly reactive in polymerization. Double bond B 
is in the side chain and is not reactive or has a very low reactivity in polymerization, but it is 
reactive in vulcanization with a sulphur cure system.3 

 
5-ethylidene-2-norbornene (ENB) is a bicyclic nonconjugated diene. It presents 
two chiral centers: the two bridgehead carbon atoms 1 and 4 (Figure 2.4). For 
each E and Z isomers arising from the placement of the methyl group, there are 
two enantiomers, R,R or S,S (Figure 2.4).  
 

 
Figure 2.4. 5-ethylidene-2-norbornene presents two chiral centers: the two bridgehead carbon 
atoms 1 and 4. Structures A and A’ correspond to the E or Z (S,S) isomer; analogously B and 
B’ correspond to the E or Z (R,R) configuration. 

 

ENB is industrially prepared in two steps: 
1) Diels-Alder reaction between cyclopentadiene and 1,3-butadiene to give 

the endo-5-vinyl-2-norbornene and the exo-5-vinyl-2-norbornene in an isomeric 
mixture (Figure 2.5). 
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2) Catalytic isomerization promoted by a base of the endo and exo-5-vinyl-2-
norbornene to give the (E) and (Z)-5-ethylidene-2-norbornene (Figure 2.6). 

Therefore, the result is a mixture of 4 isomers and the isomeric composition 
depends on the synthetic approach used for its preparation. 

 

 
Figure 2.5. Diels-Alder reaction between cyclopentadiene and 1,3-butadiene to give endo 

or exo 5-vinyl-2-norbornene. 

 

 
Figure 2.6. Isomerization of 5-vinyl-norbornene to 5-ethylidene-2-norbornene. 
 
As mentioned before, the double bond that reacts in polymerization (double 

bond A in Figure 2.3) is that inside the ring. The addition of ENB during 
terpolymerization with ethylene and propylene may in principle occur through 
2,3 or 3,2 insertion and with exo or endo addition. Therefore, many different 
situations may occur for the insertion of ENB in the growing chain. A different 
reactivity of the isomers (E-R,R / E-S,S / Z-R,R / Z-S,S) is generally not 
observed whatever the steric hindrance of the catalyst is.3  

(endo TS*)

(exo TS*)

endo - 5 - vinyl - 2 - norbornene

exo - 5 - vinyl - 2 - norbornene

endo

exo

E Z
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ENB may undergo reactions promoted by cationic catalysts. This is a 
relevant aspect because the catalytic systems most applied on industrial scale as 
the vanadium based catalysts, contain components with a known cationic 
catalytic capability. Catalytic side reactions can bring to the formation of 
branching of the polymer, presence of gels oligomers of the diene and 
broadening of molecular mass distribution. Similar side reaction can occur with 
other dienes.3 

 
2.1.2 Curing agents and commercial fillers and their effect on 
mechanical properties of EPDM 
Many applications of EPDM require a curing process in order to produce a 

crosslinked rubber. EPDM can be cured with sulphur and peroxide, depending 
on the requirements of the application. Peroxide cured rubbers are used for high 
temperature applications, in part due to the strong carbon-carbon cross‐links, 
while sulphur-cured EPDM generally exhibit higher tear and tensile strength.1 
Curing by use of sulfur alone is a slow process, so curative agents are added to 
aid in curing. In sulfur curing systems, sulfur is first typically activated by zinc 
oxide and an accelerator. Accelerators, such as 2‐mercaptobenzothiazole, speed 
up the sulfur curing process and act by forming an adduct with sulfur making it 
a more active species.1  

Besides curative agents, non-curative ingredients are generally added for 
improving processing and mechanical performances. Non‐curative agents are 
ingredients that will not participate directly in the curing of EPDM rubber. 
These ingredients include the processing aides, antioxidants, and fillers. 
Processing aides are petroleum based oils that are added to help when the 
polymer is cured inside a mold. The oils prevent the rubber from sticking to the 
mold surface, which could otherwise cause defects in the product or hinder its 
removal from the mold. Antioxidants are compounds that protect the final 
rubber product from degradation caused by heat, oxygen, ozone, UV radiation, 
etc. The antioxidants act by scavenging the radicals that are caused by the 
sources of degradation.4 Reinforcing fillers include carbon blacks, silica and 
resins, which increase the strength of vulcanized rubber more than tenfold.5-7 

Filling carbon blacks in elastomers and plastics also reduces the cost of the 
end product and modifies the electrical and optical properties of the polymer 
matrix.8,9  

Reinforcement of rubber by carbon blacks has been intensively studied.10-13 
It is generally accepted that the reinforcement of elastomers and the 
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improvement of other properties are associated with the chemical and physical 
interactions between the polymer matrix and carbon blacks.12-19 When the 
uncured EPDM is blended well with carbon black for a period of time, EPDM 
chains have a certain probability to contact with carbon black, and entangle or 
trap in the voids of carbon black aggregates. As shown in Figure 2.7, the rubber 
chains become highly immobilized and localized, and form a rubber shell, 
surrounding the carbon lack particles.13 Figure 2.8 shows that those carbon 
black particles, whose surfaces were covered by entangled EPDM chains can be 
considered as physical cross-links.12 The physical crosslinking hinders the 
mobility of rubber chains and restrains the deformation of rubber. Hence, it is 
understandable that development of a large polymer-filler interface is the most 
important factor for the degree of reinforcement provided by filler. Therefore, 
the surface area of carbon black is of great importance for the density of the 
physical cross-linking. As the surface area of carbon black increases, the 
number of rubber chains entangling with carbon black aggregates as well as that 
of the cross-links climbs up.12,19  

  
Figure 2.7. Scheme of the interaction of rubber chains with carbon black: (a) The 

entanglement of EPDM chains on carbon black; (b) The interface between carbon black and 
EPDM matrix.12,13 

 

a) b) 
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Figure 2.8. Scheme of the physical network structure in a carbon black filled elastomers.12  

 
2.2 Catalytic systems used for the synthesis of EPM and EPDM 
Three families of catalytic systems have been used so far for the preparation 

of EPDM: Titanium based catalysts, Vanadium based catalysts and Single 
Center Catalyst (metallocene or constrained geometry). Titanium based EPM 
grades were commercially available, but they are not anymore industrially 
produced. Vanadium based catalysts are largely applied for industrial 
production of EPDM. In the family of SCC, only those based on a constrained 
geometry have found application on a commercial scale for EPDM production.  

 
2.2.1 Titanium based catalysts 
The components of a typical Ziegler-Natta catalytic system are TiCl4 

supported on MgCl2, a chlorinated aluminum alkyl (C2H5)3Al2Cl3, (C2H5)2AlCl 
as cocatalyst and optionally aromatic esthers as electron donors. Titanium 
catalysts are well active at high and very high T, and also for long times (> 1 
hour), however only for EPM. In fact they do not convert dienes also at higher 
temperature. As reported by Natta and coworkers, ethylene-propene random 
copolymers produced with this catalytic system generally show a product of the 
reactivity ratios r1r2 higher than 1,20 indicating a blocky microstructure where 
ethylene and propene are not randomly distributed along the chain but form 
longer alternated ethylene and propylene sequencies. These catalysts are highly 
isospecific in the homopolymerization of propene and also in the case of EPM 
copolymers the sequences of propylene units are generally isotactic. However, 
for both iPP homopolymer and propylene-ethylene copolymers the different 
types of catalyst sites present on the surfaces of the heterogeneous Ziegler-
Natta catalyst lead to mixtures of macromolecules having different molecular 
mass, different stereoregularities and non random distributions of comonomeric 
units. The comonomers are rather segregated in a fraction or more irregular 
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blocks. These EPM samples can be generally fractionated with conventional 
methods of extraction with boiling solvents in different fractions characterized 
by macromolecules having different composition, which reflect the different 
crystallinities and melting behavior.  

Figure 2.9 shows the 13C NMR spectra of two ethylene-propene random 
copolymers prepared with titanium based catalyst. The resonances Sαβ and Sβγ 
typical of 2,1 secondary propene units are not present, indicating a primary 1,2 
insertion of propene.21 The spectrum A of the sample with lower ethylene 
concentration shows a high intensity of the resonance of the methyl carbon in 
the isotactic mmmm pentad, indicating that this catalytic system remains 
isospecific also in the presence of ethylene. This seems no longer true in the 
case of the sample with higher ethylene concentration (spectrum B of Figure 
2.9).21 

 
Figure 2.9. 13C NMR spectra of two ethylene-propene random copolymers containing 16.7 

and 53.8 mol % of ethylene, respectively.21 

Because of the non-random distribution of stereodefects and comonomeric 
units along the chains and their preferential segregation in blocks, ethylene or 
propylene sequences (depending on the composition) may be long enough to 
crystallize. This results in EP copolymers with physical properties different (for 
example a high melting temperature) from those of copolymers of similar 
composition but prepared with Vanadium-based catalysts or metallocene 
catalysts that produce more uniform and random distribution of comonomers 
and shorter ethylene or propene sequences. 
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2.2.2 Vanadium based catalysts 
The homogeneous vanadium-based catalysts are of great importance and 

used commercially for the production of ethylene-propylene-diene (EPDM) 
rubber.22,23 As discussed in the first chapter, this catalytic system comprises a 
variety of vanadium compounds, as VCl4 or V(III)-β-diketonates 
(V(acetylacetonate)3), an alkyl aluminum halide (typically Al(C2H5)2Cl) and a 
Lewis base (e.g. anisole).24-26 The precursors vanadium compounds are soluble 
in hydrocarbons and the oxidation state of vanadium is at least 3.27 The catalytic 
systems are thermolabile and quickly decompose at room temperature 
producing poorly characterized precipitates containing Al, V(II) and Cl,27,28 
unable to promote polymerization. Therefore the polymerization has to be 
performed either at low temperature, or in the presence of a component able to 
continuously re-oxidate V(II) to a higher oxidation state during polymerization 
(for instance a chlorinated ester). This expedient is used for the commercial 
production of ethylene-propylene and ethylene-propylene-diene rubbers.22  

These catalysts are soluble in aliphatic and aromatic hydrocarbons, in 
particular in solvents for industrial processes and remain active in 
polymerization for short time, less than 1 hour. Despite their critical stability at 
high temperature and a lower activity compared to other catalysts, they show 
the lowest decrease of catalytic activity in the presence of ENB, although the 
chlorinated aluminum alkyls promoter are powerful cationic catalysts for the 
diene. As discussed for sPP, regio and stereospecifity are not high for these 
catalysts: once a secondary 2,1 insertion of propene occasionally occurs, the 2,1 
insertion tends to be maintained and sequences of secondary insertion much 
longer than the sequences of primary insertion are obtained. The sequences of 
secondary insertion lead to monomer sequences with a prevailingly syndiotactic 
arrangement.  

The product of the reactivity ratios r1r2 is generally in the range 0.1-1, 
indicating a random distribution of ethylene and propene units in the chain. The 
possible presence of dienes does not affect the product of the reactivity ratios.3 
These catalysts introduce the highest degree of disorder in propene sequences 
allowing the contemporary presence of stereoirregularities and 
regioirregularities. As a result, the microstructure of the samples is rather 
complex for the presence of many different defects and the crystallinity that 
eventually develops from sequences of ethylene long enough is always very 
low due to the presence stereo- and regio-defects along with comonomeric 
propene units. The complex microstructure is demonstrated by the 13CNMR 
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spectrum of a sample of EPM prepared with Vanadium catalyst shown in 
Figure 2.10. The region of the Sαγ, Sαδ and Sαγ resonances in the region 34.5-
39.0 ppm is, in particular, complex. Moreover, six broad resonances are 
observed at higher fields, corresponding to both sequence and tacticity effects. 
In the Sβγ, Sβδ and Sββ region (24-28 ppm), the effects of ethylene-propylene 
sequence placement and propylene tacticity are, therefore, mixed together. 
From the data in this region it is difficult to extract separate information on 
tacticity and sequence placements. Finally, the methyl region is also complex 
because many different types of methyl carbons belonging to different 
constitutional and confirgurational sequences are all squeezed into the 19.5-
22.0 ppm region.29  

 

 
Figure 2.10. 13C NMR spectrum of an ethylene-propene copolymer containing 40 mol % of 

ethylene prepared with a Vanadium catalyst.29 

 
2.2.3 Metallocene catalysts 
As discussed in the first chapter, stereorigid zirconocenes and titanocenes 

with C2 symmetry, such as rac-ethane(indenyl)2MCl2 (with M = Zr or Ti), in 
combination with methylaluminoxane (MAO),30 produce isotactic 
polypropylene31-32 (Chart 2.1). 
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Chart 2.1 

 
The catalytic site is pseudo-tetrahedral and cationic (Figure 2.11), with two 

indenyl ligands at two coordination sites and the growing polymer chain and a 
propene molecule at the two remaining coordination sites. The aromatic ligands 
are in the (R,R) or (S,S) configurations. Catalyst precursors are usually racemic 
mixtures of (R,R) and (S,S) species (rac-complex), and should be free of the 
(R,S) species (meso-complex) which is non-enantioselective. According to the 
chain migratory insertion mechanism,33,34 the two sites occupied by the growing 
chains and the olefin are the active sites because after each insertion the 
growing chain will reside at the coordination site previously occupied by the 
monomer. The C2 symmetry ensures the equivalence of the two active sites, 
which are homotopic. As a result, chain propagation is expected to be isotactic 
and site-controlled, with occasional rr stereodefects.35  

 
Figure 2.11. Model of the active site in a C2 symmetric catalyst precursor rac-

ethane(indenyl)2ZrCl2. The active site is represented by the cation [(R,R)-Me2C(1-Ind)2Mt(iso-
Butyl)]+ (Mt=Zr), with a re h2-coordinated propene molecule and the iso-butyl group 
simulating a growing polypropylene chain.36  

 
Alumoxane or a Boron compounds are generally used as cocatalysts to 

promote the formation of the cationic complex. 
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In copolymerization of propene with ethylene, metallocene catalysts show 
high activity and sufficient stabillity at high temperature, but strong decrease of 
catalytic activity in the presence of a diene is observed.3  

 
2.2.4 Half-metallocenes, "constrained geometry" catalysts 
Constrained geometry (CG) catalysts of general formula 

Me2Si(Me4Cp)(NR)MtX2 (Chart 2.2), with Mt = Ti or Zr, R = alkyl, X = alogen 
or alkyl37,38 have been described in the first chapter. The absence of a second 
Cp ring and the short bridge results in a very open environment of the transition 
metal, allowing a much easier insertion of bulky monomers compared with bis-
Cp systems. This feature is of special importance in the copolymerizations of 
ethylene with higher 1-alkenes.35  

 
Chart 2.2 

These catalysts are able to promote atactic propene sequences with some 
regioirregularity although to a minor extent with respect to Vanadium based 
catalysts and show high activity even at high temperatures. Figure 2.12 shows 
13C NMR spectra of five EP copolymer samples synthesized with a CG 
catalyst.39 The presence of regiodefects due to head-to-head propene units is 
clearly indicated by the resonances of Sαβ, Tγγ, Tγδ, and Tβγ and Sβγ.39 The 
spectra also show resonances similar to those present in the spectra of 
Vanadium-based EPM samples,29,40 and indicate a random distribution of 
comonomers but with ethylene or propene sequences slightly longer than thos 
of vanadium-based samples. 

N

Me2Si MtX2

R
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Figure 2.12. 13C NMR spectra of EPM copolymers prepared with CGC catalyst. 

Attributions are reported in the table on the right.39 

 
2.3 Crystallinity and physical properties of EPM and EPDM 
Commercial EPM and EPDM grades are almost amorphous. Small level of 

crystallinity generally arises from crystallization of ethylene sequences.  
EPM with ethylene content between 80 and 40 mol% are amorphous at room 

temperature,41,42 but despite the irregular constitution, are able to crystallize at 
low temperatures or by stretching at room temperature.41-53 In EP copolymers, 
propylene units are included in the crystalline lattice of the orthorhombic form 
of PE (lattice parameters a = 7.42 Å, b = 4.95 Å, and c (chain axis) = 2.54 Å 
(Figure 2.13),54 inducing large disorder and decrease of degree of crystallinity. 
Accurate X-ray diffraction measurements have indicated that the dimension of 
the a-axis of the unit cell of PE increases almost linearly with increasing 
propylene content, whereas the b and c-axes practically retain the dimensions of 
the unit cell of the PE homopolymer. For propylene content around 25%, the 
a/b ratio approaches the value of √ 3 and the unit cell becomes 
pseudohexagonal.41,43-49 In particular, the X-ray diffraction pattern of a 
stretched sample of an ethylene–propylene terpolymer with a low amount of 
diene (< 2 mol %), containing 75 mol % ethylene, could be interpreted in terms 
of an orthorhombic unit cell with parameters ao = 8.66 Å, bo = 5.0 Å, and 
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co(chain axis) = 2.54 Å (subscript “o” stands for orthorhombic); the unit cell is 
actually pseudohexagonal with ao/bo = √3.41  

 
Figure 2.13. Model of the crystal structure of the orthorhombic from of PE.  

 
The relationship between orthorhombic (ao, bo) and hexagonal (ah, bh) unit 

cell parameters is illustrated in Figure 2.14. The parameters of the hexagonal 
unit cell are ah = bh = 5 Å, whereas the ch-axis coincides with the orthorhombic 
co parameter (subscript “h” stands for hexagonal).  

 

 
Figure 2.14. Relationship between orthorhombic (ao, bo) and hexagonal (ah, bh) unit cell 

parameters in the structure of polyethylene. Chains of ethylene–propylene copolymers for 
propylene content close to 25% pack in a pseudohexagonal unit cell, with orthorhombic lattice 
parameters in the ratio ao/bo = √3. 

 
The X-ray fiber diffraction pattern of a stretched sample of EP copolymer in 

the pseudohexagonal form is shown in Figure 2.15.55 The presence of the three 
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narrow diffraction peaks on the equator indicates a hexagonal lattice packing of 
chains with axis ah = 4.94 Å and a long range order in the pseudo-hexagonal 
arrangement of chain axes. The well-defined layer lines indicate the nearly 
trans-planar conformation of the chains with periodicity c = 2.54 Å. The 
broadness of all the nonequatorial peaks and the diffuse nature of the diffraction 
halos along the layer lines indicates that a large amount of disorder is present in 
the pseudo-hexagonal packing of chains and that the coherent length of the 
ordered bundles of chains should be of the order of a few tens angstroms.55 

 

 
Figure 2.15. X-ray fiber diffraction pattern (A) and corresponding profiles read along the 

equator, the first and the second layer lines (B) of a fiber of a sample of EP copolymer with an 
ethylene content of 75 mol % stretched at room temperature at 750% deformation.55  

 
The comparison between the experimental X-ray diffraction pattern in 

Figure 2.15 and the calculated Fourier transforms of various model structures 
has allowed clarification of several aspects concerning the nature of disorder 
that characterizes the mesomorphic pseudohexagonal form of ethylene–
propylene copolymers.55 Three limit ordered models, shown in Figure 2.16, 
were considered as possible ideal arrangements of EP chains in the 
mesomorphic bundles. In Figure 2.16A and B,B’, the chains are arranged as in 
the orthorhombic54 and monoclinic56 polymorphs of PE, respectively. In Figure 
2.16C and C’, the chains are arranged as in the triclinic form of long-chain 
paraffins.57 These models were chosen as reference, “ideal” limit ordered 
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structures, and disordered models were built starting from the ordered models 
introducing different kinds of disorder.  

 

 
Figure 2.16. Projections in the ab-plane of the limit ordered orthorhombic (A), monoclinic 

(B,B’), and triclinic (C,C’) ideal model structures considered in the Fourier transform 
calculations for the pseudohexagonal form of EP copolymers.55,58 The numbers indicate the 
fractional z coordinate of the backbone carbon atoms. α, β, γ, and δ layers indicate different 
kinds of boco layers of chains piled along the ao lattice direction. The regular alternation of α 
and β layers along ao characterizes the orthorhombic form (A), the regular succession along ao 
of α layers or β layers produces the monoclinic form (B,B’), and the regular succession of γ or δ 
layers gives the triclinic form (C,C’).55 

 
Possible structural disorders are the conformational disorder, consisting of 

small displacements from the trans-planar state of the backbone torsion angles 
close to the propylene units; translational intermolecular disorder along the 
chain axis; rotational intermolecular disorder around the chain axis; and 
disorder in the stacking of ordered layers of chains along one lattice direction 
(stacking faults).55 In the ordered models, the regular alternation of α and β 
layers along ao characterizes the orthorhombic form (Figure 2.16A); the regular 
succession along ao of α layers or β layers produces the monoclinic form 
(Figure 2.16B,B’) and the regular succession of γ or δ layers gives the triclinic 
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form (Figure 2.16C,C’). Structural disorder may develop, for instance, by 
defects in the regular succession of these boco layers of chains along ao. 
Therefore, disordered models of the structure of the mesomorphic 
pseudohexagonal form may be characterized by small aggregates of EP 
copolymer chains characterized by a statistical succession along the ao-axis of 
the different boco layers of chains of the kind in Figure 2.16 (α, β, γ, and δ 
layers), according to orthorhombic-like (Figure 2.16A), monoclinic-like (Figure 
2.16B’), and triclinic-like (Figure 2.16C,C’) ideal models, with probabilities po, 
pm, and pt, respectively.55,58 

A comparison between the experimental X-ray diffraction profile along the 
first layer line and the diffraction profiles calculated for disordered models of 
structure characterized by the succession of boco layers of chains along ao 
according to orthorhombic-like (Figure 2.16A), monoclinic-like (Figure 
2.16B,B’), and triclinic-like (Figure 2.16C,C’) ideal models, with probabilities 
po, pm and pt, respectively, is reported in Figure 2.17.55,58 

 

 
Figure 2.17. (a) Experimental X-ray fiber diffraction profile along the first layer line (l = 1) 

of a stretched sample of EP copolymer in the pseudohexagonal mesomorphic form (solid line).55 
The dashed line indicates the contribution of the amorphous phase. (b–f) X-ray diffraction 
profiles along the first layer line calculated for small aggregates of EP copolymer chains, 
where consecutive boco layers of four to six chains of the kind shown in Figure 2.16 are faced 
along the axis ao according to orthorhombic-like (Figure 2.16A), monoclinic-like (Figure 
2.16B,B’), and triclinic-like (Figure 2.16C,C’) models, with probabilities po, pm, and pt, 
respectively.55,58 
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In all disordered models, a good agreement with the experimental intensity 

distribution data has been obtained, indicating that short-range correlations 
between the chains similar to those present in the orthorhombic, monoclinic, 
and triclinic models are present in the small aggregates of the mesomorphic 
form.55 These correlations rapidly fade away as the interchain distances 
increase. In other terms, the mesomorphic form of EP copolymers may be 
described as aggregates of clusters of chains arranged as in the orthorhombic-, 
monoclinic-, or even triclinic-like structures, to form larger bundles, in a 
mosaiclike structure, as schematically shown in Figure 2.18.58,59 The 
interference between different clusters in the mesomorphic aggregate would 
produce only a background on nonequatorial layer lines.55 For all the 
considered models, the ratio between the integrated intensity of the main peaks 
on the first layer line and on the equator I(l = 1)/I(l = 0) is nearly equal to 0.1 
and is lower than the experimental value of about 0.18.55 A better agreement 
has been obtained by introducing propylene units in the crystals and 
conformational disorder consisting in small displacements from the trans-planar 
conformation of the backbone torsion angles close to the propylene units. The 
presence of conformational disorder introduces some waviness in the chains 
and the experimental ratio I(l = 1)/I(l = 0) has been reproduced with an average 
amplitude of the wave of Δ = 0.5 Å for a copolymer with 25 mol % of 
propylene comonomer.55 This implies deviations of the torsion angles smaller 
than �±20° from strictly 180° and deviations of the valence angles of �±2° 
from the common value of 112°, and substantially unaltered mean chain 
periodicity. The presence of the conformational disorder in the 
pseudohexagonal form of ethylene-propylene copolymers is a clear 
consequence of the constitutional disorder and of the inclusion of the methyl 
groups in the crystalline regions. The structure of the pseudohexagonal form is 
characterized by the following structural features: 

1) Long-range positional order is maintained only for the positioning of the 
chain axes, which are placed at the nodes of a pseudohexagonal lattice. This 
long-range order accounts for the position and intensity of the reflections 
observed on the equator of the X-ray fiber diffraction patterns. 

(2) The chains are essentially in trans-planar conformation. The methyl 
groups of the propylene units are included in the crystals and necessarily 
introduce some conformational disorder that consists in small deviations of the 
backbone torsion angles close to the pendant methyl groups from 180°. These 
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deviations from the trans state alleviate intramolecular and intermolecular 
strains and are easily digested in the pseudohexagonal lattice of EP copolymers. 
The portions of chain in the crystalline aggregates remain still extended, with a 
mean periodicity close to 2.5 Å, even in the presence of conformational defects, 
which introduce some waviness in the chains. Conformational disorder 
accounts for the experimental ratio between the integrated intensities of the 
main peaks on the first layer line and on the equator. 

(3) Local correlations between neighboring chains similar to ideal 
orthorhombic- and monoclinic-like structures shown in Figure 2.16A, B, and B' 
are retained at short-range distances, up to few tens of angstroms (two to three 
times the lattice parameters). In other terms, on a local scale, the chains are 
arranged according to the orthorhombic-, monoclinic-, or triclinic-like models 
in Figure 2.16. 

(4) Disorder in the relative heights of chains along the c-axis is present 
(translational disorder along c), as indicated by the broadness of nonequatorial 
diffraction peaks along the ξ-direction.55,58,59 

(5) Disorder in the relative orientation of the chains around the chain axes is 
present (rotational disorder), as indicated by the presence of diffuse scattering 
subtending the Bragg reflections along the layer lines. The correlation in the 
relative angular position of couples of chains with respect to their “ideal” 
relative arrangement decreases with increasing their distance.55,58,59 The 
comparison of experimental and calculated X-ray diffraction intensities of 
bundles of EP copolymer chains indicated that the range of angular 
displacement disorder of chains about their axis is very small. 
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Figure 2.18. Mosaiclike structure of crystalline microaggregates of EP copolymer chains in 

the mesomorphic pseudohexagonal form. In the different ordered domains, enclosed in the 
dashed lines, the chains are locally packed as in the orthorhombic-, monoclinic-, and triclinic-
like model structures in Figure 2.16. The different domains are arranged in a mosaic structure 
so that long-range positional order of chain axes placed at nodes of a pseudohexagonal lattice 
is maintained. The unit cells of orthorhombic-, monoclinic-, and triclinicordered models are 
shown as continuous lines, whereas the hexagonal lattice is shown as dotted lines.59 

 
The small-sized crystals of the mesophase that includes large amounts of 

structural disorder play an important role in the elasticity of EP copolymers.60-62 
These small crystals form upon stretching and melt when the tension is 
released, or, for some particular compositions of the copolymers, are present in 
the bulk material as residual crystallinity. These crystals act as physical knots of 
the elastomeric network. Since they are highly interconnected via the entangled 
amorphous chains (tie chains), the formation of crystalline knots prevents 
viscous flow during application of tensile stress and ensures the recovery of the 
initial dimensions of the sample, upon releasing the tension.63 
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2.4 Aim of the study of crystallinity in EPM and EPDM  
In this section the role played by crystals in the mechanical behavior of 

several commercial EPM and EPDM grades is analyzed. The first series of 
samples consists of EPM copolymers and EPDM terpolymers with different 
ethylene and diene content without filler (Table 2.1). The second series of 
samples consists of terpolymers with the same ethylene and diene content but 
different types and amount of commercial fillers (Table 2.2). 

EPDM terpolymers with high ethylene contents (higher than 78-80 wt%) are 
generally crystalline whereas EPDM samples with ethylene concentration in the 
range 60-70 wt% appear amorphous in the undeformed state.41,42,50,51,64 
However, crystallization of ethylene sequences may occur during deformation. 
Small crystals can form upon stretching, acting as physical knots in the 
elastomeric network, resulting in increase of tensile strength of the rubber. In 
this chapter a study of the Stress-Induced Crystallization (SIC) in EPM 
copolymers and EPDM terpolymers of different ethylene concentrations is 
reported. Moreover, the possible presence of crystallinity in the underformed 
state (faint or crypto crystallinity) is analyzed in detail with different 
techniques of structural analysis in different length scales. The influence of 
ethylene content and of different commercial fillers on the SIC and on the 
presence of crystallinity in the underformed state is also analyzed. For 
comparison, ethylene/propylene copolymers prepared with different catalysts 
and with similar ethylene content are also analyzed.  

 
2.5 Materials and methods 
The analyzed samples includes EPDM terpolymers and EPM copolymers 

with ethylene concentration in the range 44-78 wt% provided by the company 
ARLANXEO under the global brand name Keltan®. Ethylene and diene 
contents, the used catalyst, the Mooney viscosity, the average molecular masses 
(Mw and Mn) are reported in Table 2.1. The samples have been synthesized with 
a Vanadium based catalyst, and with the new Keltan ACETM technology, based 
on a half-metallocene catalyst. The samples consist of three copolymers and 
seven terpolymers. Considering the ethylene content as the main difference 
among the samples, and neglecting the presence of the diene, the series can be 
regarded as three sets of samples of different ethylene concentration: the first 
set contains samples with ethylene content in the range 78-70 wt% (samples 
EPM from the pilot plant, K5170P, K5470P, K2070P); the second set includes 
samples with ethylene content in the range 67-64 wt% (samples K6260Q, 
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K5470C, K8570C, K6160D); the third set includes samples with ethylene 
content in the range 52-44 wt% (samples K4450C, K9950C, K3050). The 
sample EPM is not a commercial grade, but it has been synthesized in the pilot 
plant of the c>ompany, therefore several data such as the Mooney viscosity, the 
average molecular masses (Mw and Mn) are not known. All terpolymers contain 
ENB as the third comonomer, except the sample K6160D, which contains 
DCPD (Figure 2.3). 

All these samples of Table 2.1 do not contain fillers except talc in some 
cases (samples in pellet morphology). 
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Table 2.1. Ethylene and diene content (wt%), Mooney viscosity (MU), catalyst, weight average molecular mass (Mw), number average molecular mass 
(Mn) of EPM copolymers and EPDM terpolymers. 

  Copolymers Terpolymers 
Sample EPM(a) K2070P K3050 K5170P K5470P K6260Q K5470C K8570C K6160D(e) K4450C K9950C 
Ethylene content (wt%) 78 73 49 71 70 67 66 66 64 52 44 
Propylene content (wt%) 22 27 51 27.5 25.4 30.2 29.4 29 34.8 43.7 47 
Diene content(b) (wt%) - - - 1.5 4.6 2.8 4.6 5 1.2 4.3 9 
Mooney viscosity ML (1+4) 
125°C (MU) n.a(c) 25 51 59 55 67 55 80 63 46 60 

Catalyst V(d) V V V V V ACE(d) ACE V ACE ACE 
Mw (Kg/mol) n.a 150 175 225 275 275 275 n.a. 250 200 300 
Mn (Kg/mol) n.a 40 80 100 100 100 100 n.a. 60 80 100 

(a): sample from the company pilot plant; 
(b): for all terpolymers the diene is 5-ethylidene-2-norbornene (ENB) (Figure 3.3). Only the sample K6160D contains dicyclopentadiene (DCPD) instead 

of ENB; 
(c): data not available; 
(d): V= Vanadium based catalyst; ACE= ACE catalyst (half-metallocene) patented by ARLANXEO 
(e): the diene is DCPD instead of ENB 
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The structural organization of bulk samples in the undeformed state has been 
studied by Wide (WAXS) and Small Angle (SAXS) X-ray Scattering at 
different temperatures, and Differential Scanning Calorimetry (DSC). 

X-ray powder diffraction patterns have been obtained with an automatic 
Philips diffractometer using Ni-filtered CuKα radiation.  

Small Angle X-ray scattering measurements have been collected at room 
temperature using a Kratky compact camera SAXSess (Anton Paar, Graz, 
Austria) in the slit collimation configuration, attached to a conventional X-ray 
source (CuKα, wavelength λ =1.5418 Å). The scattered radiation was recorded 
on a BAS-MS imaging plate (FUJIFILM) and processed with a digital imaging 
reader Perkin Elmer Cyclone Plus (storage phosphor system).  

Calorimetric measurements have been performed with a differential scanning 
calorimeter DSC Mettler 001 by Mettler Toledo at a scanning rates of 2.5, 10, 
20 °C/min in a flowing N2 atmosphere using liquid N2 to reach temperatures 
below -60°C.  

Unoriented films used for the structural and mechanical analysis have been 
obtained by compression molding. The as-prepared samples have been heated 
at ≈ 100 °C between flat Teflon plates under an hydraulics press at very low 
pressure (< 1 bar), kept at ≈ 100 °C for 5 min, and slowly cooled to room 
temperature (≈ 15 °C/min). 

Mechanical tests have been performed at room temperature on compression-
molded films with an Instron mechanical tester, following the standard test 
method for tensile properties of thin plastic sheeting ASTM D882-83. 
Rectangular specimens 5 mm long, 4 mm wide and 0.5 mm thick have been 
stretched up to the break or up to a given deformation ε = [(Lf − L0)/L0] × 100, 
where L0 and Lf are the initial and final lengths of the specimen, respectively. 
Two benchmarks have been placed on the test specimens and used to measure 
elongation. Values of tension set and elastic recovery have been measured after 
breaking. Ten minutes after breaking, the two pieces of the sample have been fit 
carefully together so that they are in contact over the full area of the break and 
the final total length Lr of the specimen has been obtained by measuring the 
distance between the two benchmarks. The tension set after breaking has been 
calculated as tb = [(Lr − L0)/L0]×100, whereas the elastic recovery has been 
calculated as rb = [(Lf − Lr)/Lr]×100 and the percentage of the total strain (Lf − 
L0) that is recovered after breaking is calculated as Rb = 100×(Lf − Lr)/(Lf − L0) 
= 100×(εb − tb)/εb. In the mechanical tests, the ratio between the drawing rate 
and the initial length was fixed equal to 0.1 mm/(mm×min) for the 
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measurement of Young’s modulus and 10 mm/(mm×min) for the measurement 
of stress−strain curves and the determination of the other mechanical properties 
(stress and strain at break and tension set). The reported values of the 
mechanical properties are averaged over at least five independent experiments.  

The viscoelastic properties have been studied by Dynamic Mechanical 
Thermal Analysis (DMTA) with a TTDMA dynamic mechanical analyzer from 
Triton Technology, in double cantilever bending mode, imposing a frequency 
of 1Hz a displacement amplitude of 0.02mm and heating rate of 2 °C/min. This 
technique allows determining the values of the storage and loss moduli of the 
samples and the damping due to relaxation processes. The storage modulus 
value is a measure of the ability of the material to preserve energy, while the 
loss modulus indicates the energy needed to dissipate energy. 

Possible occurrence of SIC has been analyzed by recording the two 
dimensional WAXS patterns during stretching and after relaxation of the 
specimens to verify whether crystals formed at high deformations melt during 
elastic recovery (reversible SIC). elastic recovery (reversible SIC). Fiber 
diffraction patterns have been collected with Ni-filtered CuKα radiation and 
recorded on a BAS-MS imaging plate (FUJIFILM) using a cylindrical camera 
and processed with a digital imaging reader Perkin Elmer Cyclone Plus (storage 
phosphor system). 

Hysteresys cycles have been performed on stress-relaxed oriented fibers 
using a mechanical tester INSTRON, following the standard test method ASTM 
D412-87. In these cycles stress-relaxed oriented fibers of initial length Lr are 
stretched up to the final length Lf (Lf = 5.5L0 or 5L0), that is, up to the maximum 
length achieved during the stretching of the starting unoriented film used for the 
preparation of the fibers (εmax = 450% or 400%), so that the maximum 
deformation achieved during the first cycle (ε =100(Lf - Lr)/Lr) for each sample 
is numerically equal to the elastic recovery r(εmax) of the unoriented film. For 
each oriented film at least three consecutive hysteresis cycles have been 
recorded; each cycle has been performed 10 min after the end of the previous 
cycle. 

Stress-relaxation tests were performed at room temperature on unoriented 
compression molded films following the procedure described in the standard 
test method ASTM D-2991-84. Instantaneous strains of 50% and 600% were 
applied and the values of stress were recorded as a function of time, while 
keeping constant the deformation.  
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2.6 Study of crystallinity in EPM copolymers and EPDM terpolymers 
The study of the structure of EPM and EPDM samples, in particular the 

presence of crystallinity in the bulk samples in the undeformed state, has been 
performed by a parallel analysis of the wide-angle X-ray diffraction, small-
angle X-ray scattering and calorimetric data. The crystallinity in the 
undeformed state has been compared with the crystallinity that develops during 
deformation by studying the structure that evolves during stretching by X-ray 
fiber diffraction. 

 
2.6.1 Structural characterization  
The X-ray powder diffraction profiles of samples of EPM copolymers and 

EPDM terpolymers of Table 2.1 as received from the company ARLANXEO 
are reported in Figure 2.19. All samples show quite similar WAXS profiles with 
a broad halo centered at 2θ ≈ 19° typical of amorphous EP copolymers. Only 
the sample EPM from the pilot plant, with 78 wt% of ethylene, shows an 
additional crystalline peak at 2θ ≈ 21° typical of PE in pseudohexagonal form. 
In samples K2070P, K5170P and K5470P this peak appears as a weak shoulder 
of the main broad halo at 2θ ≈ 19°. Other small, narrow peaks at 2θ ≈ 9° and 2θ 
≈ 29° are due to additives, in particular talc, as demonstrated by the comparison 
with the diffraction profiles of talc, ZnO and zinc stearate extract from the 
database PDF-ICDD-2014 and reported in Figure 2.20. 

343 
 



5 10 15 20 25 30 35 40

m

l

i

h
g

f

e

d

c

b

K8570C (66wt%E)

K3050 (49wt%E)

K4450C (52wt%E)

K9950C (44wt%E)

In
te

ns
ity

2θ (deg)

K6160D (64wt%E)

K6260Q (67wt%E)

K5470C (66wt%E)

K5470P (70wt%E)

K5170P (71wt%E)

EPM (78wt%E)

K2070P (73wt%E)

21°19°

a

 
Figure 2.19. X-ray powder diffraction profiles of samples of EPM copolymers and EPDM 

terpolymers as received from the company ARLANXEO. 
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Figure 2.20. Main additives present in samples of EPM copolymers and EPDM terpolymers 

of both first and second series. 

 
The possible crystallization of the samples by cooling at low temperatures or 

by annealing has been verified performing WAXS measurements at different 
temperatures on samples with ethylene content in the range 78-64 wt% (first 
and second sets). WAXS profiles of samples EPM and K2070P are reported in 
figure 2.21A and 2.21B, respectively. The samples have been cooled from room 
temperature to -50°C, then heated up to 160°C, cooled again to -50°C and 
finally heated again up to 30°C. It is apparent that for the sample EPM (Figure 
2.21A) during the cooling the reflection at 2θ ≈ 21° already present at room 
temperature become more evident, while a decrease of the amorphous halo at 
2θ ≈ 19° at T = -60 °C is observed (Figure 2.21A). During the heating scan the 
intensity of the crystalline peak becomes lower and lower until it disappears at 
temperatures higher than 55-60 °C and only the amorphous halo can be 
observed (Figure 2.21A). The shift of the 2θ value of the peak of the amorphous 
halo to lower values at higher temperature is due to thermal expansion effects. 
During the second cooling other small peaks probably due to impurity present 
in the sample are visible in addition to the crystalline peak at 2θ ≈ 21°.  

Similar results have been obtained on the sample K2070P (73 wt% of 
ethylene) (Figure 2.21B). The main difference is that the crystalline peak at 2θ 
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≈ 21° at room temperature has intensity much lower than in the sample EPM. 
The intensity of this peak increases and that of the amorphous halo decreases at 
low temperature (T = -50 °C). These data indicate that for both samples, 
crystallinity increases by cooling at low temperature (T = -50 °C), due to the 
crystallization of short ethylene sequences, which are not able to crystallize at 
room temperature.  
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Figure 2.21. WAXS profiles (A,B) recorded at the indicated temperatures and DSC curves 

(A’,B’) recorded during first heating, successive cooling and second heating of the samples 
EPM with 78 wt% of ethylene (A,A’) and K2070P with 73 wt% of ethylene (B,B’). The vertical 
lines on the DSC curves indicate the temperatures of WAXS measurement. 
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The same measurements have been performed on samples of EPDM 
terpolymers (Figure 2.22A-E). A similar behavior has been observed. Because 
of the ethylene content lower than that of the sample K2070P, only a weak peak 
at 2θ ≈ 21° is observed in some samples (K5170P and K5470P, Figure 
2.22A,B), while in the other samples only the amorphous halo is visible. With 
decreasing temperature the amorphous halo becomes lower and a broad peak at 
2θ ≈ 21° can be observed. In all samples this peak becomes less evident as the 
ethylene content decreases. Also in these samples, an increase of crystallinity at 
low temperature is observed, due to the crystallization of short ethylene 
sequences not able to crystallize at room temperature. Then, the small crystals 
formed at T = -50 °C melt during the heating scan.  

In conclusion, from the WAXS analysis it is apparent that all these samples 
show similar crystallization behavior despite the different ethylene content, 
showing very low crystallinity also at low temperatures. 
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Figure 2.22. WAXS profiles (A-E) recorded at the indicated temperatures and DSC curves 

(A’-E’) recorded during first heating, successive cooling and second heating of the samples 
K5170P with 71 wt% of ethylene (A,A’), K5470P with 70 wt% of ethylene (B.B’), K6260Q with 
67 wt% of ethylene (C,C’), K5470C with 66 wt% of ethylene (D,D’), K6160D with 64 wt% of 
ethylene (E,E’). The vertical lines on the DSC curves indicate the temperatures of WAXS 
measurement. 

 

2.6.2 Thermal analysis 
The DSC curves of Figure 2.21 and 2.22 of samples of EPM copolymers and 

EPDM terpolymers, recorded during first heating from -100°C to 180°C, 
successive cooling from the melt to -100°C, and second heating of the melt-
crystallized samples up to 180°C, all recorded at 10 °C/min, are reported for 
comparison in Figure 2.23A-C. The values of melting and crystallization 
temperatures and enthalpies are reported in Table 2.3. 

Samples belonging to the first set with ethylene content in the range 78-70 
wt%, that is EPM, K2070P (copolymers), K5170P and K5470P (terpolymers) 
show well defined melting peak during the first heating (curves a-d of Figure 
2.23A), indicating the presence of crystallinity due to the crystallization of 
ethylene sequence long enough to crystallize at low temperature. For these 
samples, the melting temperature decreases with decreasing ethylene 
concentration (curves a-d of Figure 2.23A). The DSC data of the sample EPM 
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confirm the crystallinity observed with diffraction analysis with a sharp 
endothermic peak at the highest temperature (56 °C). This is due to the highest 
concentration of ethylene and the presence of longer ethylene sequences and, 
therefore, higher melting temperature. The same samples belonging to this first 
set also show clear exothermic peak in the DSC cooling curves a-d of Figure 
2.23B, indicating crystallization by cooling from the melt. The crystallization 
temperature decreases with decreasing ethylene concentration, from 39 °C of 
the sample EPM with the highest ethylene content to nearly 17-20 °C of the 
samples with 70 wt% of ethylene (curves a-d of Figure 2.23B). 

It is worth noting that the copolymer K2070P (73 wt% ethylene) and the 
terpolymers K5170P and K5470P (71 and 70 wt% of ethylene, respectively) 
show clear melting and crystallization peaks in the DSC curves b-d of Figure 
2.23A and C notwithstanding they seem amorphous from the WAXS analysis 
because of the absence of sharp diffraction peaks (profiles b-d of Figure 2.19). 

The DSC curves recorded during the first heating of samples of these first set 
also show a broad endothermic peak at low temperatures (curves a-d of Figure 
2.23A) that can be attributed to the melting of small and imperfect crystals 
formed during the cooling at low temperature (-100 °C) or aging at room 
temperature. This broad endotherm is less evident in the sample EPM (curve a 
of Figure 2.23A) and its enthalpy increase with decreasing ethylene content 
(curves b-d of Figure 2.23A). 

The presence of crystals of different sizes is also demonstrated by the DSC 
cooling curves of Figure 2.23B that show broad exothermic peaks with 
shoulders at low temperature and, in the case of the sample EPM, the cooling 
curve displays two separate peaks at 66 and 39 °C (curve a of Figure 2.23B), 
with the first one at temperature (66 °C) higher than the observed melting 
temperature of 55 °C (curve a of Figure 2.23A). This indicates that first longer 
ethylene sequences form thicker crystals at Tc ≈ 66°C, then shorter sequences 
form thinner crystals at Tc ≈ 39 °C. 

Despite the lower ethylene content and WAXS profiles typical of amorphous 
materials, samples of the second set with ethylene content in the range 67-64 
wt% also show a very broad endothermic peak at low temperatures followed by 
a narrower small peak at higher temperature (curves e-h of Figure 2.23A). The 
latter has enthalpy much lower than those of the main peaks observed in the 
samples of the first set (curves a-d of Figure 2.23A). Also for these samples the 
DSC cooling curves show well defined exothermic peaks that indicate 
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crystallization from the melt at low temperatures in the range -9°C - 18 °C 
(curves e-h of Figure 2.23B).  

The first heating and the cooling scans of the samples K5470C and K8570C 
and are very interesting (curves f,g of Figure 2.23A,B). These samples have an 
ethylene concentration similar to that of the other two samples of the set 
(K6260Q and K6160D) and with only slightly higher content of the diene. 
Nevertheless, they show more defined endothermic peaks and higher 
crystallization temperature (curves f,g of Figure 2.23B) and seem more similar 
to the samples of the first set (curves b-d of Figure 2.23B). This is probably due 
to the presence of longer ethylene sequences formed by the different catalyst 
(ACE) used in the process synthesis. As discussed in paragraph 2.2.4, the CGC-
based EP copolymers, have fewer alternating monomer units and more 
consecutive ethylene units than the vanadium-based EPM samples.  

The samples belonging to the third series (ethylene content in the range 52-
49 wt%) do not show any melting or crystallization peak, therefore they are 
really amorphous and show only the glass transition at low temperatures (nearly 
- 50 °C). 

Data from thermal analysis are in contrast with data from diffraction 
analysis, revealing a crystallinity not detected by WAXS. We call this hidden 
crystallinity as “cryptocrystallinity”. 
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Figure 2.23. DSC curves recorded at 10°C/min during first heating (A), successive cooling (B) and second heating scans (C) of samples of EPM 

copolymers and EPDM terpolymers as received from the company ARLANXEO. 
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Table 2.3. Ethylene and diene concentrations in wt%, glass transition temperature (Tg), melting temperature (Tm
I) and melting enthalpy (ΔHm

I) recorded 
during the first heating, crystallization temperature (Tc) and crystallization enthalpy (ΔHc), melting temperature (Tm

II) and melting enthalpy (ΔHm
II) 

recorded during the second heating and degree of crystallinity (xc
DSC) evaluated from the melting enthalpy ΔHm

I measured from the DSC curves of the 
first heating scans of Figure 2.23A of samples of EPM copolymers and EPDM terpolymers. 

Samples Ethylene 
(wt%) 

Diene 
(wt%) Tg (°C) Tm

I (°C) Tc (°C) Tm
II (°C) ∆Hm

I (J/g) ∆Hc (J/g) ∆Hm
II (J/g) xc

DSC 

EPM 78 0 -35 55.7 39.3 - 66 51.9 -76 74 -66 26 
K2070P 73 0 -45.7 47.9 18.9 25.1 -38 38 -38 13 
K5170P 71 1.5 -45.2 46.1 16.6 21.6 -37 36 -36 12 
K5470P 70 4.6 -39.9 46.6 24.4 28.5 -41 37 -38 14 
K6260Q 67 2.8 -46.2 45 8.5 4.1 -25 25 -29 8 
K8570C 66 5 -40.5 46.7 13.4 24.7 -25 24 -25 8 
K5470C 66 4.6 -40.3 45.3 18.1 21.3 -34 32 -32 11 
K6160D 64 1.2 -50 46.3 -5.3 -8.7 -17 11 -14 6 
K4450C 52 4.3 -58.6 / / / / / / / 
K3050 49 0 -52.9 / / / / / / / 

K9950C 44 9 -43 / / / / / / / 
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The values of the melting temperatures Tm, crystallization temperatures Tc 
and glass transition temperature Tg are reported in Figures 2.24, 2.25 and 2.26 
respectively, as a function of ethylene and diene contents and of the total 
concentration of comonomeric units (ethylene + diene). 

The values of melting temperature as a function of ethylene content (Figure 
2.24A) are almost constant for all samples regardless the ethylene concentration 
and only a strong increase of Tm has been observed for the sample EPM, where 
the highest concentration of ethylene allows crystallization of small crystals of 
PE in pseudohexagonal form, as observed by WAXS. Similar behaviour can be 
observed reporting Tm as a function of diene content (Figure 2.24B). In fact the 
melting temperature decreases from the highest two values observed in the two 
copolymers EPM and K2070P to a constant value of ≈45 °C. Reporting the 
melting temperature as a function of the total concentration of comonomers 
(Figure 2.24C), a small increase of Tm with increasing the total comonomer 
concentration and a strong increase at higher concentration for the crystalline 
sample EPM have been observed.  

The crystallization temperature also increases with increasing ethylene 
content (Figure 2.25A) and with increasing the total concentration of 
comonomers (Figure 2.25C), while no specific correlation between Tc and the 
diene content has been observed (Figure 2.25B). The sample K6160D indicated 
with a blue circle seems to be out of the correlations probably because it 
contains a different diene.  

The correlation of the Tg with ethylene and diene concentrations is less 
evident (Figure 2.26). This is probably due to the difficulty of evaluating the 
exact values of the glass transition temperature from the DSC curves of Figure 
2.23, where the broad melting endotherm and the glass transition are not well 
separated. Therefore, a better evaluation of the Tg has been obtained from 
DMTA measurements. (see section 2.6.4). 
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Figure 2.24 Values of melting temperature (Tm) reported as a function of ethylene content 

(A), diene content (B) and total concentration of propylene and diene comonomeric units (C). 
The sample K6160D with DCPD instead of ENB as third monomer is indicated in the blue 
circle. 
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Figure 2.25 Values of crystallization temperature (Tc) reported as a function of ethylene 

content (A), diene content (B) and total concentration of propylene and diene comonomeric 
units (C). The sample K6160D with DCPD instead of ENB as third monomer is indicated in the 
blue circle. 

357 
 



80 75 70 65 60 55 50 45 40
-65

-60

-55

-50

-45

-40

-35

-30
A

Ethylene content (wt%)

 

 

T g
 (°

C)

0 2 4 6 8 10
-60

-55

-50

-45

-40

-35

-30
B

 

T g
 (°

C)

diene content (wt%)

20 25 30 35 40 45 50 55 60
-60

-55

-50

-45

-40

-35

-30
C

(propene + diene) content (wt%)

T g
 (°

C)

 
Figure 2.26 Values of glass transition temperature (Tg) reported as a function of ethylene 

content (A), diene content (B) and total concentration of comonomeric units (C). 

 
Since crystallinity has been revealed better from DSC than from WAXS 

analysis, the evaluation of the degree of crystallinity has been performed using 
the values of melting enthalpy determined from the DSC curves of Figure 
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2.23A. Because of the broad melting peaks and the overlapping with the glass 
transition, the exact determination of the beginning of the melting endotherm is 
not immediate. As suggested by several methods reported in literature,65 the 
extrapolation of the DSC curve to lower temperature from the melt (above 70 
°C) has been used as the baseline for the melting peak. This curve also 
corresponds to the tangent for the glass transition evaluation. For all samples, 
the melting enthalpy ∆Hm has been evaluated integrating the area below the 
melting peak in the range -38 ÷ 70°C. Only for the sample EPM the range is -30 
÷ 70°C because of the higher Tg of this sample. The index of crystallinity xc

DSC 
has been evaluated as:  

0
m

mDSC
c

H

Hx
∆

∆
=  

where ΔHm
0 = 297 J/g is the thermodinamic melting enthalpy of 100% 

crystalline PE.66 The values of xc
DSC are reported in Table 2.3 and in Figure 

2.27A-C as a function of ethylene and diene contents and total concentration of 
comonomers. The sample EPM has the highest value of crystallinity then that 
decreases with decreasing ethylene concentration. The other three samples with 
high ethylene content (K2070P, K5170P, K5470P) show lower but similar 
values of crystallinity. This indicates that the crystallinity is mainly related to 
the ethylene concentration rather than the diene content. The samples of the 
second set with lower ethylene content (67 - 64 wt%) show similar and very 
low crystallinity (6 - 8%). The sample K5470C, prepared with the catalyst 
ACE, shows instead a slightly higher crystallinity, more similar to that of the 
samples of the first set. This indicates that with the catalyst ACE more 
crystalline samples with lower ethylene concentration can be obtained. This, in 
turn, demonstrates that in samples prepared with the ACE catalyst the 
sequences of ethylene units are longer than those in samples of similar ethylene 
concentration prepared with vanadium-based catalyst, as for example the 
sample K6260Q. However, the other sample prepared with the catalyst ACE 
(K8570C) having ethylene content similar to that of the sample K5470C shows 
lower crystallinity probably due to the higher concentration of diene.  

For EPM and EPDM samples with ethylene contents in the range 78-64 wt% 
DSC experiments with different cooling rates have also been performed. Each 
experiment consists of a first heating scan from -100 to 180 °C at heating rate 
of 10°C/min, a cooling scan from 180 °C to -100 °C with variable cooling rates, 
and a second heating scan from -100 to 180 °C always at heating rate of 
10°C/min. The selected cooling rates are 2.5, 10 and 20°C/min. The cooling 
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scans at the different cooling rates and the successive heating scans of the 
crystallized samples are shown in the Figures 2.28-2.30. For the copolymer 
samples EPM and K2070P with high ethylene content, as expected, the 
crystallization temperature decreases with increasing cooling rate (Figure 
2.28A,B), while the corresponding melting temperature of the samples melt 
crystallized at different cooling rates increases with increasing cooling rate 
(Figure 2.28A’,B’). Moreover, the sample EPM always presents two 
crystallization peaks, because of the coexistence of ethylene sequences of 
different length (Figure 2.28A): the peak at higher temperature corresponds to 
the crystallization of the longer sequences, the peak at lower temperature 
corresponds to the crystallization of shorter sequences. 
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Figure 2.27. Values of the degree of crystallinity evaluated from the first heating scan at 

10°C/min of Figure 2.23A (xc
DSC) (■), evaluated from the DSC cooling scan at 2.5°C/min of 

Figures 2.28-2.30 (xc
1(DSC)) (●) and evaluated from the heating scan of the samples melt-

crystallized at 2.5°C/min of Figures 2.28-2.30 (xc
2(DSC)) (▲) of samples of EPM copolymers 

and EPDM terpolymers, as a function of ethylene content (A), diene content (B) and total 
concentration of comonomeric units (C). 
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Figure 2.28. DSC cooling curves (A,B) recorded at the indicated cooling rates and 

corresponding DSC heating curves (A’,B’) recorded at heating rate of 10 °C/min of samples 
crystallized from the melt at the different cooling rates in A,B of EPM (A,A’) and K2070P 
(B,B’) copolymers. 

 
In the case of EPDM terpolymers, the cooling and corresponding heating 

scans are reported in Figure 2.29 for samples with ethylene content ≈ 70 wt% 
and in Figure 2.30 for samples with ethylene content in the range 67-64 wt%. In 
all samples, regardless the ethylene and diene contents, the crystallization 
temperature decreases and the corresponding melting temperature of the melt-
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crystallized samples increases with increasing cooling rate, as for the 
copolymer samples of Figure 2.28. 

The decrease of Tc with increasing cooling rates is due to supercooling 
effects. On the other hand, crystals formed at higher temperatures at low 
cooling rate should melt at higher temperature, and, instead, a decrease of the 
melting temperature at low cooling rate is observed. This can be explained 
considering that continuous melting and recrystallization phenomena occur 
during the melting of less stable crystals. Crystals formed at low crystallization 
temperatures at higher cooling rates (10 °C - 20 °C/min), indeed, are less stable 
and are subjected to reorganization phenomena during heating, resulting in 
increase of melting temperature. Crystals formed at higher crystallization 
temperatures at low cooling rate of 2.5°C/min are more stable, and, therefore, 
are not (or less) subjected to reorganization phenomena during heating. As a 
result, their melting temperatures are lower. 

The values of the crystallization and melting temperatures and enthalpies and 
the degree of crystallinity xc

1(DSC) calculated using the crystallization enthalpy 
evaluated from the cooling scan at 2.5°C/min of Figures 2.28-2.30, and the 
degree of crystallinity xc

2(DSC) calculated using the melting enthalpy evaluated 
from the heating scans of the samples melt-crystallized at 2.5 °C/min, are 
reported in Table 2.4. The values of crystallinity xc

1(DSC) and xc
2(DSC) are 

also reported in Figure 2.27 in comparison with the values of crystallinity xc
DSC 

of Table 2.3, evaluated from the melting enthalpy ΔHm
I measured from the 

DSC curves of the first heating scans (Figure 2.23A). The values of crystallinity 
xc

1(DSC) and xc
2(DSC) are similar to the values xc

DSC.  
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Figure 2.29. DSC cooling curves (A,B) recorded at the indicated cooling rates and 

corresponding DSC heating curves (A’,B’) recorded at heating rate of 10 °C/min of samples 
crystallized from the melt at the different cooling rates in A,B of samples K5170P (A,A’) and 
K5470P (B,B’). 
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Figure 2.30. DSC cooling curves (A-D) recorded at the indicated cooling rates and 

corresponding DSC heating curves (A’-D’) recorded at heating rate of 10 °C/min of samples 
crystallized from the melt at the different cooling rates in A-D of samples K6260Q (A,A’), 
K5470C (B,B’), K8570C (C,C’), K6160D (D,D’). 
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Table 2.4. Ethylene and diene contents, cooling rates, crystallization temperatures (Tc) and enthalpies (ΔHc), melting temperatures (Tm) and enthalpies (ΔHm), 
degree of crystallinity evaluated from the cooling scan at 2.5°C/min (xc

1(DSC)) and from the successive heating scan (xc
2(DSC)) of samples of EPM copolymers 

and EPDM terpolymers. 

Sample Ethylene content 
(wt%) 

Diene content 
(wt%) Cooling rate Tc (°C) ΔHc (J/g) Tm (°C) ΔHm (J/g) xc1(DSC) xc2(DSC) 

EPM 78 / 
2.5°C/min 56.5, 106.5 52.9 50 59.8 18 20 
10°C/min 40.8, 65 51.4 51 41.8   
20°C/min 37, 58.6 50 51.7 39   

K2070P 73 / 
2.5°C/min 21.5 50 26 38.5 17 13 
10°C/min 24 41 31 40.7   
20°C/min 20.5 40 35 40   

K5170P 71 1.5 
2.5°C/min 20 34 24 34.5 11 11 
10°C/min 17 37 24.2 44   
20°C/min 14 32 28.7 36   

K5470P 70 4.7 
2.5°C/min 27.5 30 30 31.9 10 10 
10°C/min 24.8 38 37 30.6   
20°C/min 21 40 38 25.5   

K6260Q 67 2.8 
2.5°C/min 11.7 24.5 11.7 23.3 8 7.8 
10°C/min 8.7 23.7 8.8 23.6   
20°C/min 4.7 21.5 10.9 22.5   

K5470C 66 4.6 
2.5°C/min 20.6 30 20 33 10 11 
10°C/min 18 39.5 21 32   
20°C/min 11.8 30.2 32.6 29.6   

K8570C 66 5.0 
2.5°C/min 17.7 25 21.6 26 8.4 8.7 
10°C/min 13.4 24 24.7 25   
20°C/min 9 26 27.9 26   

K6160D 64 1.2 
2.5°C/min -3.3 13 -3.4 14 4.3 4.7 
10°C/min -5.3 13 -2.8 14   
20°C/min -8.5 13.3 -5.2 13.5   
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2.6.3 Study of the morphology by Small Angle X-ray Scattering (SAXS) 
The morphology of all EPM and EPDM samples has been studied by Small 

Angle X-ray Scattering to confirm the existence of the cryptocrystallinty found 
by DSC measurements but not visible by WAXS and to verify that these small 
crystals are able to arrange in ordered entities on the nanometer scale. The 
analysis has been performed on compression moulded films of samples of EPM 
copolymers and EPDM terpolymers aged for one month at room temperature to 
allow eventual slow crystallization of the samples. Moreover, for studying the 
possible influence of talc as nucleating agent, the same analysis has been also 
performed on the sample K5470NT that has the same composition as the 
sample K5470P but does not contain talc. 

SAXS profiles of compression molded films aged for one month have been 
collected firstly at room temperature. The range of values of the analyzed 
scattering vector q is 0.1 nm-1 ≤ q ≤ 2 nm-1, where q = 4π sin θ/λ and 2θ is the 
scattering angle. After subtraction for dark current, the empty sample holder, 
and a constant background due to thermal density fluctuations, the slit smeared 
data have been de-convoluted with the primary-beam intensity distribution 
using the SAXSquant 2.0 software to obtain the corresponding pinhole 
scattering (desmeared) intensity distribution. Because of the finite range of 
accessible values of the scattering vector q, the scattering intensity has been 
extrapolated to very low (q = 0) and very high (q = ∞) values of q. In the 
assumption that SAXS intensity probes heterogeneities arising from a simple 
two phase structure at nanometer length scale, the SAXS desmeared data I(q), 
after subtraction of the residual background intensity (approximated as a 
constant Iback) has been extrapolated to high q values with the Porod law:67 

 
I(q) = Kq-4      (1) 
 
in the hypothesis that no diffuse boundary between crystalline and 

amorphous layers occurs, by fitting the experimental intensity data Iobs(q) in the 
high q region (q > 1.2 nm−1) with Equation 2: 
 

( )[ ] 4lim −

∞→
=− qKIqI pbobsq

    (2) 

 
where Kp is a quantity proportional to the Porod constant through a factor K 

due the fact that our intensity is in relative units. In this procedure the value of 
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Kp has been found by selecting of the value of background intensity Iback that 
maximizes the length of Porods’s region.67  

The SAXS desmeared data I(q) have been extrapolated to q = 0 using the 
Debye−Bueche equation (Equation 3).68 

 

( )
( )222

bobs
1 qC

BIqI
+

=−      (3) 

 
where B and C are interpolation parameters. 
Since the samples are isotropic with no preferred orientation of the crystals, 

the total scattered intensity I(q) has been transformed into one-dimensional 
intensity by multiplication for the Lorentz factor equal to 4π(2sinθ/λ)2 = q2/π.67 
The value of the scattering vector q of the maximum SAXS intensity 
(correlation peak) has been evaluated from the Lorentz corrected profiles as q*. 

The desmeared SAXS profiles of selected copolymer samples and the 
corresponding Lorentz corrected profiles are shown in Figure 2.31A and 2.31B, 
respectively. The SAXS profiles of the samples of the first set with ethylene 
concentration in the range 78-70 wt% show well defined correlation peaks. For 
the two copolymers with the highest ethylene contents, EPM (with 78 wt% of 
ethylene, Figure 2.31A,B curve a) and K2070P (with 73 wt% of ethylene, 
Figure 2.31A,B curve b), the correlation peaks are centered at q* = 0.37 and 
0.38 nm-1 respectively. Within this set of samples, changes in the position and 
intensity of the peaks are observed in EPDM terpolymers depending on the 
ethylene content. The SAXS profiles of the first two terpolymers, K5170P and 
K5470P with 71-70 wt% of ethylene show correlation peaks centered at q* = 
0.38 and 0.39 nm-1 respectively (curves c,d of Figure 2.31), as in the case of the 
two copolymers EPM and K2070P, notwithstanding the presence of the third 
monomer. The peak of the sample K5470P without talc, K5470NT, is less 
intense, broad and centered at q* = 0.36 nm-1 (curve e of Figure 2.31). 

SAXS profiles of samples K6260Q with 67 wt% of ethylene and K6160D 
with 64 wt% of ethylene (Figure 2.31A,B curves f, h) belonging to the second 
set of the series (ethylene content in the range 67-64 wt%) show very broad and 
weak correlation peaks centered at lower q values, 0.19 and 0.29 nm-1, 
respectively. Once again, the sample K5470C (66 wt% of ethylene) is an 
exception in the set because of the well-defined peak centered at q* = 0.40 nm-

1, very similar to those observed in SAXS profiles of samples of the first set 
with higher ethylene content. Moreover, SAXS profile of the sample K6260Q 
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(67 wt% of ethylene) shows an additional peak at higher q values probably due 
to impurities derived from the catalytic process (curve f of Figure 2.31B). 

SAXS profiles of samples with lower ethylene content, that is the copolymer 
K3050 (49 wt% of ethylene) and the terpolymers K4450 (52 wt% of ethylene) 
and K9950C (44 wt% of ethylene) (Figure 2.31A,B curves l, i, m, respectively) 
do not show any correlation peak. 

These data indicate that position and intensity of the correlation peak 
decrease within the first set of samples (78-70 wt% of ethylene) going from 
copolymers to terpolymers and further decrease in the second set (76-64 wt% 
ethylene) with decreasing ethylene concentration. No correlation peaks are 
observed for the third set of sample with lower ethylene content (52-44 wt%). 

The WAXS profiles of the same compression-moulded and aged samples 
recorded suimultaneously to the SAXS data of Figure 2.31 are shown in Figure 
2.32A. These data are similar to those reported in Figure 2.19 for the as-
received samples and indicate that only the sample EPM with the highest 
ethylene concentration of 78 wt% is clearly crystalline with the presence of the 
reflection at 2θ ≈ 21° typical of the pseudohexagonal crystalline form of PE 
(profile a of Figure 2.32A). This also indicates that no increase of crystallinity 
upon aging at room temperature is revealed by WAXS. The DSC heating 
curves from room temperature to 180 °C of the same compression-molded 
samples are shown in Figure 2.32C. These data are similar to the DSC curves of 
samples cooled (crystallized) from the melt Figure 2.23C, recorded from -90 °C 
to 180 °C, and indicate that all samples with ethylene concentrations from 78 to 
64 wt% present clear melting endothermic peaks, suggesting presence of 
crystallinity. 

The presence of a correlation peak in the SAXS profiles of Figure 2.31 may 
be attributed to the presence of crystallinity. This is not surprising in the case of 
the sample EPM with the highest ethylene concentration that shows a clear 
Bragg reflection at 2θ ≈ 21° typical of PE in pseudohexagonal crystalline form 
in the WAXS patterns (profiles a of Figures 2.19 and 2.32A and in Figure 
2.21A) and, in part, for samples K2070P, K5170P and K5470P with 73-70 wt% 
of ethylene, that show a weak shoulder of the main broad halo at 2θ ≈ 19° 
typical of amorphous EP copolymers (profiles b-d of Figure 2.19 and 2.32A). 
The presence of a correlation peaks in the SAXS profiles of the other samples 
with lower ethylene concentration (67-64 wt%) (curves f-h of Figure 2.31) that 
appear amorphous from the WAXS profiles (profiles e-h of Figure 2.19 and f-h 
of Figure 2.32A) is instead surprising. However, for these samples the presence 
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of crystallinity has been revealed by the presence of endothermic peaks in the 
DSC heating curves of Figures 2.23A and 2.32C and by the exothermic peaks 
in the DSC cooling scans from the melt of Figure 2.23B. The SAXS data of 
Figure 2.31 indicate that the cryptocrystallinity revealed by DSC analysis and 
not detected by WAXS is surprisingly confirmed by SAXS. 
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Figure 2.31. SAXS intensity profiles (A) and Lorentz-corrected SAXS profiles (B) measured at 
room temperature of compression-moulded samples of EPM copolymers and EPDM 
terpolymers with the indicated concentration of ethylene and diene, aged at room temperature 
for 1 month. 

 

The SAXS data can be, in fact, interpreted in terms of a crystalline lamellar 
morphology (Figure 2.33) that presents large imperfections due to the presence 
of the propene and diene units, with amount of defects increasing with 
increasing propene and diene concentrations. The formation of distorted 
lamellar morphologies is, indeed, typical of copolymers.69 Distorted lamellae 
having small lateral dimensions, large distributions of the thicknesses of the 
crystalline and amorphous layers in the lamellar stacks, the presence of single 
lamellar entities besides a population of periodic arrays of parallel lamellae are 
typical defects, in particular for copolymers.70  
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Figure 2.32. WAXS profiles of aged compression moulded films of sample of EPM copolymers and EPDM terpolymers recorded simultaneously to SAXS 
profiles at room temperature (A) and at 90°C (B). DSC heating curves collected from room temperature to 180°C of aged compression moulded films of sample 
of EPM copolymers and EPDM terpolymers (C). 
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Figure 2.33. Model of lamellar stacks for a two phase system with layers of lamellar crystals of 
thickness lc alternating with layers of amorphous phase of thickness la. The long spacing LB 
corresponds to la+lc. 

 

The small intensity of SAXS scattering in samples with lower ethylene 
content and in particular, the steep increase of the intensity in the low q region 
of the SAXS profiles of samples with ethylene content lower than 70 wt% may 
be associated with the small lateral dimensions of the crystallites and the 
presence of non-negligible amount of extra-lamellar amorphous phase. 

The morphological parameters of crystals of EPM copolymers and EPDM 
terpolymers, in particular the lamellar thickness, have been determined from the 
SAXS data of Figure 2.31. The average values of the lamellar long period LB 
can be evaluated from the position q of the peak maxima (q*) in the Lorentz 
corrected SAXS intensities of Figure 2.31B as LB = 2π/q*. The values of the 
long period have been used for a rough evaluation of the thicknesses of 
crystalline layers lc (defined lc* because it is evaluated from the value of q*) as 
lc* = LB xc/100 with xc the crystallinity index determined from the wide angle 
X-ray powder diffraction profiles of Figure 2.32A.67,69 The thickness of the 
amorphous layers, la*, has been then evaluated as la* = LB - lc*. The 
crystallinity index xc evaluated from the WAXS profiles of Figure 2.32A has 
been determined as the ratio between the crystalline diffraction area (Ac) and the 
area of the whole diffraction profiles (At), xc(WAXS) = (Ac/At)×100. The 
crystalline diffraction area Ac has been evaluated by subtracting the area of the 
amorphous halo from the area of the whole diffraction profiles At. The 

373 
 



diffraction profiles collected at 90°C (Figure 2.32B) for each samples have been 
used as the diffraction profile of the amorphous phase. These diffraction 
profiles of the amorphous phases of each sample were then scaled and 
subtracted to the whole diffraction profiles of the samples at room temperature 
to obtain the crystalline diffraction area Ac.  

The values of long period LB, of thicknesses of crystalline lc* and amorphous 
layers la* are reported in Table 2.5 and in Figure 2.34 as a function of ethylene 
and diene concentrations and of total concentration of comonomers. The values 
of crystallinity xc(WAXS) are also reported in Table 2.5. 
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Table 2.5. Values of the scattering vector corresponding to the maxima of SAXS intensity (q*), long period LB, thickness of crystalline lamellae lc
*, thickness of 

amorphous layers la
* evaluated from the SAXS intensity profiles of Figure 2.31B and degree of crystallinity xc(WAXS) evaluated from the WAXS profiles of 

Figure 2.32A. The value of LB has been evaluated as LB =2π/q*, whereas the values of lc* and la
* have been calculated as lc* = LBxc/100 and la* = LB - lc*. Values 

of long period L, thickness of crystalline lc and amorphous la layers and degree of crystallinity xc(cofun) = lc/L, evaluated from the correlation function γ(z) are 
also reported. 

 

 
 
 
 
 
 

Sample  wt% ethylene wt% diene q* 
(nm-1) 

LB 
(nm) 

xc(WAXS) 
(%) lc* (nm) la* (nm) L (nm) lc (nm) la (nm) xc(cofun) 

(%) 
EPM  78  - 0.37 17.0 16 2.7 14.3 15.7 5.1 10.6 32 
K2070P  73 - 0.38 16.5 12 2.0 14.6 16.5 4.1 12.4 25 
K5170P  71 1.5 0.38 16.5 10 1.7 14.9 17.4 3.7 13.7 21 
K5470P  70 4.6 0.39 16.1 8 1.3 14.8 15.3 3.8 11.5 25 
K5470NT  70 4.6 0.36 17.5 6 1.0 16.4 18.1 4.2 13.9 23 
K6260Q  67 2.8 0.19 33.1 5 1.7 31.4 27.5 3.4 24.1 12 
K5470C  66 4.6 0.40 15.7 6 0.9 14.8 16.0 3.4 12.6 21 
K6160D  64 1.2 0.29 21.7 3 0.6 21.0 23.6 5.3 18.3 22 
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It is apparent from Figure 2.34A that the long spacing LB slightly decreases 
from the value of 17 nm of the most crystalline sample EPM (78 wt% of 
ethylene) to the values of 16.5 nm of the copolymer K2070P (73 wt% of 
ethylene) and the first terpolymer K5170P (71 wt% of ethylene) to 16.1 nm of 
the terpolymer K5470P (70 wt% of ethylene). The sample K5470NT shows LB 
value higher than that of the sample K5470P notwithstanding the same 
concentration of ethylene and diene. The samples with lower ethylene contents 
K6260Q (67 wt% of ethylene) and K6160D (64 wt% of ethylene) show the 
highest LB values (33.1 and 21.7 nm respectively), while the LB value of the 
sample K5470C with 66 wt% of ethylene is lower (15.7 nm) and very similar to 
the values of samples of the first group. The samples with lowest ethylene 
content do not show any correlation peak in SAXS profile, therefore the 
evaluation of morphological parameter is not possible.  

The thickness of the crystalline layers lc* decreases with decreasing ethylene 
concentration (Figure 2.34A) from the value of 2.7 nm of the sample EPM (78 
wt% of ethylene) to about 2-1.0 nm of the copolymers K2070P (73 wt% of 
ethylene) and terpolymers K5170P(71 wt% of ethylene) and K5470P (70 wt% 
of ethylene) and K5470NT (70 wt% of ethylene). The different values of LB and 
lc* in the sample K5470NT with respect to the sample K5470P, despite the 
same composition, may be explained with the absence of talc, which probably 
acts as nucleating agent in sample K5470P and in all other samples. In samples 
with ethylene contents in the range 67-64 wt%, lc* further decreases down to 
the lowest values of 0.9 and 0.6 nm for samples K5470C and K6160D, 
respectively. The thickness of the amorphous layers la* increases from the value 
of 14.3 nm of the sample EPM (78 wt% of ethylene) to the values of 14.6-14.9 
nm of samples of copolymer K2070P (73 wt% of ethylene) and terpolymers 
K5170P (71 wt% of ethylene) and K5470P (70 wt% of ethylene), according 
with the decrease of crystallinity. The sample K5470NT show a la* value higher 
than that of the sample K5470P despite the same composition. This value along 
with the lower lc* and higher LB seems to confirm the nucleating capacity of 
talc. In this sample talc is absent, therefore cristallinity and lc* are lower than in 
the same sample with talc (K5470P), while LB is higher because of the higher 
value of la*. The maximum value of la* of 31.4 nm is observed in the sample 
K6260Q (67 wt% of ethylene). The sample K5470C (66 wt% of ethylene) is 
again an exception in the group, since the value of la* is 14.8 nm, very similar 
to samples with the highest ethylene content. The sample K6160D (64 wt% of 
ethylene) show higher la* value according with the lower ethylene content, but 
lower than that of the sample K6260Q.  
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Figure 2.34. Average values of the long period LB (), and of thickness of crystalline lamellae 
lc

*() and amorphous layer la* (▲) of melt-crystallized compression molded samples of EPM 
copolymers and EPDM terpolymers as a function of ethylene (A), diene (B) and total 
concentration of comonomeric units (C) evaluated from the SAXS data of Figure 2.31A,B. 
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Therefore, the long period is almost constant with the ethylene concentration 
in the first set of samples and then increases due to the increase of la* as a 
consequence of the decrease of crystallinity. The values of morphological 
parameters LB, lc* and la* seem to be not dependent on the diene concentration 
(Figure 2.34B,C). 

As mentioned above, the DSC heating scans of Figure 2.32C of of the melt-
crystallized compression molded and aged samples with ethylene concentration 
from 78 wt% to 66 wt% show rather sharp endothermic peaks (curves a-g of 
Figure 2.32C). Compared to the DSC heating curves of Figure 2.23C of 
samples crystallized from the melt by cooling the melt down to -100 °C, the 
compression-molded sample of Figure 2.32C have been crystallized by cooling 
the melt down to room temperature. Therefore, the endothermic peaks of Figure 
2.32C correspond to the melting of crystals formed at crystallization 
temperatures higher than or close to the room temperature (Figure 2.23B). 
These data, therefore, demonstrate that crystals are already present at room 
temperature. The cooling to -100°C allows only further crystallization and 
formation of smaller crystals melting at temperature lower than room 
temperature (Figures 2.23C), resulting in endothermic peaks in Figure 2.23C 
much broader than those of Figure 2.32C.  

From the melting enthalpies of the DSC curves of Figure 2.32C the degree of 
crystallinity xc

aged(DSC) has been evaluated and compared to the values 
determined from the WAXS profiles xc(WAXS) of the same compression-
molded samples of Figure 2.32A and Table 2.5. The values of crystallinty 
xc(WAXS) and xc

aged(DSC) of the melt-crystallized and aged samples and the 
values of crystallinity of the as-prepared samples xc

DSC of Table 2.4, evaluated 
from the melting enthalpy in the DSC curves of the first heating scans of Figure 
2.23A, are compared in Table 2.6. The values of melting temperatures (Tm

I) and 
melting enthalpies (∆Hm

I) evaluated from the single heating scans of Figure 
2.32C are also reported in Table 2.6. The values of crystallinty xc(WAXS) and 
xc

aged(DSC) are very similar whereas those xc
DSC of the as-prepared samples are 

slightly higher. 
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Table 2.6 Ethylene and diene contents, melting temperature (Tm
I), melting enthalpy (ΔHm

I) and degree of crystallinity (xc
aged) evaluated from the DSC heating 

curves of Figure 2.32C of aged compression molded samples of EPM copolymers and EPDM terpolymers. The degree of crystallinity xc(WAXS) of the aged 
compression-molded samples evaluated from the WAXS profiles of Figure 2.32A and of table 2.5 and the degree of crystallinity xc

DSC of as prepared samples of 
table 2.4, evaluated from the DSC first heating curves of Figure 2.23A, and, are also reported as a comparison. 

 

Samples Ethylene 
(wt%) 

Diene 
(wt%) 

xc(WAXS) 
(%) Tm

I  (°C) ∆Hm
I (J/g) xc

aged(DSC) 
(%) 

xc
DSC (%) (as-prepared, 

from table 2.3  
EPM 78  - 16 50.2; 112 -43 14 26 
K2070P 73  - 12 41.2 -19 6 13 
K5170P 71 1.5 10 40.4 -12 4 12 
K5470P 70 4.6  8 41.5 -20 7 14 
K5470NT 70 4.6  6 39.8 -8 3 8 
K6260Q 67 2.8  5 40.1 -3 1 8 
K5470C 66 4.6 6 43.9 -13 4 11 
K6160D 64 1.2 3 41.6 -2 1 6 
K4450 52 4.3 - - - - - 
K3050 49 - - - - - - 
K9950C 44 9 - - - - - 
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SAXS measurements at different temperatures on samples with ethylene 
concentrations in the range 78-64 wt% have also been performed to verify 
whether the corrlation peaks observed in the SAXS profiles at room 
temperature are really related to the presence of crystallinity or could be 
attributed to some other heterogeneity. In Figure 2.35A,B the SAXS profiles of 
samples of copolymers EPM (78 wt% of ethylene) and K2070P (73 wt% of 
ethylene) recorded at 25°C and at 90°C and after cooling to room temperature 
are reported in Figure 2.35A,B. It is apparent that the correlation peaks 
observed at room temperature for both samples partially disappear at 90 °C and 
reappear after successive cooling to room temperature. This confirms that the 
correlation peaks are really due to the presence of crystals arranged in lamellar 
stacks morphology that melt at 90 °C and that for both samples crystallization 
occurs againg upon cooling (Figure 2.35A,B). After cooling the correlation 
peaks appear less defined and less intense, in particular for the sample K2070P 
(Figure 2.35B), and their position are slightly shifted at lower q* values. This 
indicates higher long period values, probably due to an increase of la values. 
This can be explained with an incomplete crystallization leading to layers of 
lamellar crystals separated by thicker amorphous layers.  
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Figure 2.35. SAXS profiles of samples EPM (A) and K2070P (B) recorded at 25°C (a), after 

heating up to 90 °C (b) and after cooling down to 25 °C (c). 

 

Similar results have been obtained for EPDM terpolymers of the first set of 
the series with ethylene concentration ≈71-70 wt% (Figure 2.36A-C). The 
correlation peak observed in SAXS profiles recorded at room temperature 
disappears at 90°C and reappears after the cooling at 25°C. Also in this case, 
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less defined peaks after heating and cooling and their shift to lower q values, 
heve been observed. The crystallization of these samples, indeed, is complete at 
temperature lower than room temperature (see Figure 2.23, 2.28, 2.29), 
whatever the cooling rate from the melt.  
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Figure 2.36. SAXS profiles of samples K5170P (A), K5470P (B) and K5470PNT (C) recorded 
at 25°C (a), after heating up to 90°C (b) and after cooling down to 25°C (c). 

 
SAXS profiles collected at different temperatures of samples with ethylene 

content in the range 67-64 wt% are showed in Figure 2.37A-C. Also in these 
samples the correlation peaks displayed at room temperature disappear at 90 °C 
and appear again after the cooling, although both peaks, before and after the 
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heating, are very weak. This confirms that, also in this case, the correlation 
peaks are really due to the presence of crystals arranged in lamellar stacks 
morphology.  

The SAXS profile of the sample K6260Q show an additional peak at higher 
q values (Figure 2.37A). This peak does not disappear at 90°C and it is 
probably due to impurities present in the samples. This sample, indeed, is the 
only one synthesized using a slurry process, while all other samples have been 
synthesized in solution. The different synthetic process and the residual 
impurities may explain the presence of this peak also at 150°C (curve b’ in 
Figure 2.37A) and after the cooling from 150°C to 25°C.  

As mentioned above, the sample K5470C is more similar to samples of the 
first set than to samples with similar ethylene content. However, after the 
heating at 90°C and successive cooling to room temperature the correlation 
peak appears much broader than the initial peak (Figure 2.37B). Also in this 
case the reason is that at 25°C the crystallization is not complete because the 
sample crystallizes at temperature lower than that of the samples of the first set. 

Samples with lower ethylene content, that is, the copolymer K3050 (49 wt% 
of ethylene) and the terpolymers K4450 (52 wt% of ethylene) and K9950C (44 
wt% of ethylene), do not show any correlation peak at room temperature, at 
90°C and after cooling at 25°C, indicating these samples are really amorphous 
(Figure 2.38A-C). 
 
 
 
 
 
 
 

382 
 



0.1 1

c)

co
ol

in
g

T = 25°C

In
te

ns
ity

 (a
.u

.)

q (nm-1)

T = 25°C

T = 90°C

he
at

in
g

T=150°C

A

a)

b)

b' )

    0.1 1

co
ol

in
g

T = 25°C

In
te

ns
ity

 (a
.u

.)
q (nm-1)

T = 25°C

T = 90°C

he
at

in
g

B

a)

b)

c)

 

0.1 1

co
ol

in
g

T = 25°CIn
te

ns
ity

 (a
.u

.)

q (nm-1)

T = 25°C

T = 90°C

he
at

in
g

C

a)

b)

c)

 
Figure 2.37. SAXS profiles of samples K6260Q (A), K5470C (B) and K6160D (C) recorded at 
25 °C (a), after heating up to 90 °C (b) and after cooling down to 25 °C (c.) The SAXS profile 
at 150 °C of the sample K6260Q is also reported in A (b’). 
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Figure 2.38. SAXS profiles of samples K3050 (A), K4450 (B) and K9950C (C) recorded at 
25 °C (a) and after heating up to 90 °C (b). 
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The hypothesis that the systems under study can be modeled as stacks of 
laterally extended crystallites, of average thickness lc repeating at average 
distance L and separated by amorphous layers of thickness la (Figure 2.33), 
allows relating the scattering intensity to the one-dimensional correlation of 
electron density γ1(z) defined as:71  

 

( ) ( )( ) ( )( ) ( ) ( ) 222
1 00 ρ−ρρ=ρ−ρρ−ρ=γ zzz    (4) 

 
with ρ(z) the electron density in the direction parallel to the layer normal. The 

function γ1(z), after normalization for the scattering invariant Q (in relative K 
units): 

 

( )∫
∞

π
=

0

2
22

1 dqqqIQ       (5) 

 
corresponds to the normalized correlation of electron density fluctuations 

γ(z), and can be directly obtained by a Fourier transformation of the scattering 
intensity in arbitrary units as:67 
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dqqqIqz

z       (6) 

 

With Ic(q) = I(q) - Iback and Iback found from equation (2). 
The normalized correlation function γ(z) is composed of a sequence of 

contributions due to the correlations within a single layer, next neighboring 
layers, second neighboring layers, etc. The most important part corresponds to 
the “self-correlation triangle” ABC located at the origin (Figure 2.39A), where 
γ(z) assumes its maximum value, that is, γ(0) = 1, then decreases with slope s = 
[ϕc(1 - ϕc)L]-1 up to become negative, with a minimum at γ(zmin) = ϕc/(1 - ϕc) 
where ϕc is the volume fraction of the minority phase. The secondary maximum 
corresponds to the average periodicity L of the layered structure whereas the 
minimum layer thickness in the stacks corresponds to the abscissa of the 
intersection point between the line AD and the horizontal line AC fitting the 
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minimum of γ(z). Since our systems have crystallinity index less than 0.5 (see 
Tables 2.6) the minimum thickness corresponds to the average thickness lc of 
lamellar crystals. It has been checked that the values of linear crystallinity ϕc 
calculated independently as ϕc = lc/L, from the slope s and from the absolute 
minimum of γ(z) are identical within the experimental error. The values of 
crystallinity xc(cofun) = ϕc = lc/L are reported in Table 2.5 in comparison with 
the values xc(WAXS) evaluated from the WAXS profiles of Figure 2.32A. 

The correlation functions γ(z) calculated fom the SAXS profiles of samples 
of EPM copolymers and EPDM terpolymers are reported in Figure 2.39. The 
values of the lc, la and L evaluated from the correlation function are reported in 
Table 2.5 and in Figure 2.40A-C as a function of the ethylene and diene 
concentration and total concentration of comonomers.  
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Figure 2.39. Normalized correlation function of electron density of samples EPM (A), 

K2070P (B), K5170P (C), K5470P (D), K5470NT (E), K6260Q (F), K5470C (G), K6160D (H) 
extracted from SAXS data measured at room temperature of Figure 2.31. The average 
periodicity L of the layer structure and the thickness of the crystalline layer lc are indicated. 
The main self-correlation triangle ABC is indicated in A.  

 
All samples show correlation function typical of the lamellar morphology ( 

Figure 2.33). As in the case of Figure 2.34, the values of long period L and the 
thickness of the amorphous layer la evaluated from the correlation function γ(z) 
are constant for the samples of the first set (ethylene content in the range 78-70 
wt%) and then increase with further decreasing ethylene content, while lc 
remains almost constant (Figure 2.40A). The values of morphological 
parameters L, lc and la seem not to be dependent on the diene concentration 
(Figure 2.40B). 
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Figure 2.40. Average values of the long period L (), and of thicknesses of crystalline lamellae 
lc () and amorphous layer la (▲) of melt-crystallized compression molded and aged samples 
of EPM copolymers and EPDM terpolymers, evaluated from the normalized correlation 
functions of electron density γ(z) of Figures 2.39A-H, as a function of ethylene concentration 
(A), diene concentration (B) and  total amount of comonomeric units (C). 
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A comparison between the morphological parameters evaluated from SAXS 
profiles of Figure 2.31B and those evaluated from the correlation function γ(z) 
of Figures 2.39A-H is reported in Figures 2.41A-C and 2.42A-C as a function 
of ethylene (A), diene (B) and total concentration of comonomers (C). The 
values of the degree of crystallinty evaluated from the WAXS profiles of Figure 
2.32A, xc(WAXS), and from the correlation function xc(cofun), are also 
compared in Figure 2.43A-C. It is apparent that the values of L, lc, la and 
xc(cofun) evaluated from the correlation functions are slightly different from the 
values LB, lc*, la* and xc(WAXS) evaluated from the SAXS data of Figure 
2.31A and WAXS profiles of Figure 2.32A. The difference is probably due to 
the presence of two different amorphous phases. The intra-lamellar amorphous 
phase consisting only of the amorphous layers alternating with crystalline layers 
in the model of Figure 2.33 is detected by the correlation function of electron 
density by construction. On the other hand, an extra-lamellar amorphous phase 
consisting of amorphous phase not organized in any morphological 
superstructure but only diffused in the matrix, may be also present. The signal 
obtained by a SAXS measurement includes both contributions of the intra and 
extra-lamellar amorphous phases. Therefore, the evaluation of the 
morphological parameters and of the degree of crystallinity evaluated from the 
SAXS correlation peak is affected by an error because of the impossibility to 
distinguish the single contributions. As a result, while the values of the long 
period L and LB are quite similar, the values of the thickness of the amorphous 
layers evaluated from the correlation function are slightly lower than those 
evaluated from the SAXS profiles. In particular, a strong difference between LB 
and L and between la* and la is observed in the sample K6260Q. It might be that 
the slurry process and, at the same time, the low amount of ethylene lead to the 
formation of a big amount of extra-lamellar amorphous phase. According with 
the hypothesis of two different amorphous phases, the values of thickness of the 
crystalline layers and of the degree of crystallinity evaluated from the 
correlation function are slightly higher than those evaluated from the SAXS 
profiles because they are based on a lower fraction of amorphous phase.  
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Figure 2.41. Average values of the long period LB () and L () of melt-crystallized 
compression molded and aged samples of EPM copolymers and EPDM terpolymers, evaluated 
from the SAXS data of Figure 2.31B and the normalized correlation functions of electron 
density γ(z) of Figures 2.39A-H, as a function of ethylene concentration (A), diene 
concentration (B) and total amount of comonomeric units (C). 
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Figure 2.42. Average values of thickness of crystalline lamellae lc

* () and lc () and 
amorphous layer la* () and la () of melt-crystallized compression molded and aged samples 
of EPM copolymers and EPDM terpolymers, evaluated from the SAXS data of Figure 2.31B 
and the correlation functions of electron density γ(z) of Figures 2.39A-H, as a function of 
ethylene concentration (A), diene concentration (B), total amount of comonomeric units (C). 
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Figure 2.43. Degree of crystallinity of melt-crystallized compression molded and aged samples 
of EPM copolymers and EPDM terpolymers, evaluated from the SAXS data of Figure 2.31B 
() and the correlation functions of electron density γ(z) () of Figures 2.39A-H, as a function 
of ethylene concentration (A), diene concentration (B), total amount of comonomeric units (C). 
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In conclusion, SAXS analysis indicates that in EPM samples with ethylene 

content in the range 64-78 wt% crystallinity arising from crystallization of 
ethylene sequences is present. This crystallinity is not evident from WAXS data 
but it is revealed by DSC and SAXS measurements. The absence of Bragg 
peaks may be attributed to the small coherent length of the crystals and the high 
degree of structural disorder present in the crystals because of inclusion of 
propene units in the unit cell.41,55  

 
2.6.4 Dynamic Mechanical Thermal Analysis (DMTA) 
A study of the viscoelastic properties of EPM copolymers and EPDM 

terpolymers have been performed by using Dynamic Mechanical Thermal 
Analysis. This analysis have allowed a better evaluation of the glass transition 
(Tg) besides of the evaluation of the conservative (G’) and loss modulus (G’’). 
DMTA measurements have been performed on compression moulded films 1-
1.2 mm thick, 11-12 mm long, with a free length of 5 mm, working in the 
temperature range of –120°C - 80 °C with a cooling rate of 5 °C/min. Bending 
deformation has been applied working in Dual Cantilever at a frequency of 1Hz 
and deformation width of 0.02 mm.  

DMTA curves of all EPM copolymers and EPDM terpolymers are reported 
in Figure 2.44A-M. All samples show high values of the conservative modulus 
G’ at low temperatures in the glassy state (109 Pa). The values of the loss 
modulus G’’ are also high but lower than those of G’. In the glassy region at 
low temperature a slow decrease of both G’ and G’’ with increasing 
temperature occurs. At the glass transition temperature Tg a fast decrease of the 
conservative modulus G’ of 3-4 order of magnitude is observed while the loss 
modulus G’’decreases more slowly and the tanδ curve shows a maximum in 
correspondence of the Tg (Figure 2.44A-M).  

In a typical DMTA curve of semicrystalline polymers, since the glass 
transition involves only the amorphous fraction, the value of the conservative 
modulus G’ generally remains higher than that of the loss modulus with 
increasing temperature, even through the glass transition, because the elastic 
conservative contribution to the elastic modulus prevails and the elastic and 
conservative response of the sample prevails over the dissipative response. In 
these cases at Tg the maximum of tanδ is lower than 1. In the case of amorphous 
polymers, instead, along with the decrease of G’ and G’’ with increasing 
temperature a crossover between G’ and G’’ at temperatures close to the glass 
transition is generally observed and the loss modulus G’’ becomes higher than 
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the conservative modulus G’ because the dissipative contribution to the 
modulus due to the viscous behavior prevails after the Tg and the dissipative 
response of the sample prevails over that conservative. In these cases at Tg the 
maximum of tanδ is higher than 1. With further increase of temperature a 
second crossover between G’ and G’’ is observed and the conservative modulus 
G’ becomes again higher than the loss modulus G’’ achieving the rubbery 
plateau, because in this region the elastic rubbery behavior prevails.  

This general behavior is observed in almost all samples of EPM and EPDM 
of Figure 2.44A-M. In particular, absence of cross over and values of G’ higher 
than G’’ in the whole temperature range have been observed in the samples 
EPM (78 wt% ethylene, Figure 2.44A), K5170P (71 wt% ethylene, Figure 
2.44C), K5470P (70 wt% ethylene, Figure 2.44D), K5470NT (70 wt% ethylene, 
Figure 2.44E), K6260Q (67 wt% ethylene, Figure 2.44F), K5470C (66 wt% 
ethylene, Figure 2.44G), K8570C (66 wt% ethylene, Figure 2.44H) and 
K6160D (64 wt% ethylene, Figure 2.44I) and confirm that these samples are 
semicrystalline, as evidenced by DSC (Figure 2.32C) and SAXS (Figure 2.31) 
and not by WAXS (Figure 2.32A). The sample K2070P (73 wt% ethylene, 
Figure 2.44B) is an exception because it shows the crossover between G’ and 
G’’ but SAXS and DSC data have shown that this sample is crystalline. The 
DMTA curves of samples K3050 (49 wt% ethylene, Figure 2.44L) and K9950C 
(44 wt% ethylene, Figure 2.44M) show the crossover between G’ and G’’ and 
confirm that these samples are really amorphous. 

At high temperatures approaching the rubbery plateau, the presence of 
secondary relaxation phenomena in case of amorphous samples, or the 
occurrence of melting process in case of crystalline samples, produces 
oscillations or additional peaks in the DMTA curves of amorphous and 
crystalline samples, respectively, avoiding the complete achievement of the 
rubbery plateau. In particular, in the curve of tanδ of the samples EPM (Figure 
2.44A), K5170P (Figure 2.44C), K5470P (Figure 2.44D), K5470NT (Figure 
2.44E) and K6260Q (Figure 2.44F), after the peak corresponding to the glass 
transition, a clear peak at higher temperature is present att temperatures (40-50 
°C) similar to the DSC melting endotherm of Figure 2.32C. This suggests that 
the second peak in the tanδ curve probably correspond to the melting of the 
crystalline samples.  
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Figure 2.44. DMTA curves of compression-molded and aged samples EPM with 78 wt% ethylene (A), K2070P with 73 wt% ethylene (B), K5170P with 71 wt% 
ethylene (C), K5470P with 70 wt% ethylene (D), K5470NT with 70 wt% ethylene (E), K6260Q with 67 wt% ethylene (F), K5470C with 66 wt% ethylene (G), 
K8570C with 66 wt% ethylene (H), K6160D with 64 wt% ethylene (I), K3050 with 49 wt% ethylene (L) and K9950C with 44 wt% ethylene (M). 
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The values of G’ and G’’ at the temperatures of -100 °C and 25 °C, the value 
of the glass transition temperature Tg evaluated from the first maximum in the 
tanδ curve, the value of tanδ at the maximum peak corresponding to the glass 
transition temperature and the temperature of the second peak (second 
relaxation) in the tanδ curve are reported in Table 2.7. The values of glass 
transition and melting temperature of Table 2.3, determined from the DSC 
heating curves of Figure 2.23A, are also reported in Table 2.7 for comparison. 
This comparison confirms that the second relaxation peaks in the tanδ curves 
occur at temperatures similar to the melting temperature. Therefore, these 
second peaks can be reasonably attributed to the melting of the samples. 

Figure 2.45 reports the values of G’ and G’’ at room temperature (Figure 
2.45A,B) and at T = -100°C (Figure 2.45C,D) for all EPM copolymers and 
EPDM terpolymers also reported in Table 2.7). No specific dependence of the 
conservative and loss modulus on the ethylene content has been observed. At 
room temperature in the rubbery state the values G’ and G’’ of the more 
crystalline sample EPM are significantly higher than those of the other samples. 
This difference is less evident at -100 °C where all samples show similar G’ and 
G’’ values. 

A comparison between the values of the Tg evaluated from the DSC heating 
curves of Figure 2.23 (Table 2.3) (Tg(DSC) and from the tanδ curve of DMTA 
experiments (Tg(DMTA)) is shown in Figure 2.46. The values determined from 
DMTA are always higher than those evaluated from DSC and no specific 
dependence on the ethylene content is observed. 
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Figure 2.45. Values of the conservative modulus G’ (A,C) and of the loss modulus G’’ (B,D) at 
room temperature (A,B) and at -100°C (C,D) of EPM and EPDM samples. 
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Figure 2.46. Comparison between the values of the glass transition temperatures evaluated 
from DSC (Tg(DSC)) and DMTA measurements (Tg(DMTA)). 

 
As mentioned above, when crossover between G’ and G’’ occurs, G’=G’’ 

and then tanδ = G’’/G’ = 1. Therefore, for amorphous samples in 
correspondence of the Tg, G’’ is higher than G’ and the values of tanδ are 
higher than 1. On the contrary, for crystalline samples the cross-over between 
G’ and G’’ does not occur and the values of tanδ close to the Tg are always 
lower than 1. Hence, the values of tanδ at the maximum peak corresponding to 
the glass transition temperature, higher or lower than 1, can be used for 
individuating amorphous or crystalline (or cryptocrystalline) samples. This 
method is shown in Figure 2.47 for EPM and EPDM samples and confirms that 
the samples EPM (78 wt% ethylene), K5170P (71 wt% ethylene), K5470P (70 
wt% ethylene), K5470NT (70 wt% ethylene), K6260Q (67 wt% ethylene), 
K5470C (66 wt% ethylene), K8570C (66 wt% ethylene) and K6160D (64 wt% 
ethylene) are crystalline, as evidenced by DSC (Figure 2.32C) and SAXS 
(Figure 2.31) and not by WAXS (Figure 2.32A), whereas the samples K3050 
(49 wt% ethylene) and K9950C (44 wt% ethylene) are really amorphous.  
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Figure 2.47. Values of tanδ at the maximum peak corresponding to the glass transition 
temperature. Different colored backgrounds separate crystalline or cryptocrystalline samples 
for which tanδ < 1(blue background) from really amorphous samples for which tanδ > 1 
(yellow background). 
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Table 2.7. Values of conservative modulus (G’) and loss modulus (G’’) at -100 °C and 25 °C, glass transition temperature evaluated from the first maximum in 
the tanδ curves (Tg(DMTA)) and from the DSC heating curves of Figure 2.23A (Table 2.3) (Tg(DSC)), values of tanδ at the maximum peak corresponding to the 
glass transition temperature, temperature of the second peak (second relaxation) in the tanδ curve (TII relaxation), melting temperatures evaluated from DSC 
heating curves of Figure 2.23A (Table 2.3) (Tm

I) and degree of crystallinity evaluated from the SAXS correlation functions (xc(cofun) of EPM and EPDM 
samples. 

Sample  
Ethylene 
content 
(wt%) 

Diene 
content 
(wt%) 

G’ (MPa) G’’(MPa) tanδ Tg(DMTA) 
(°C) 

Tg(DSC) 
(°C) 

xc(cofun) 
(%) 

TII relaxation 
(°C) 

Tm
I  

(°C) 

   25°C -100°C 25°C -100°C       
EPM  78 0 7.16×106 1.90×109 2.05×106 9.20×107 0.3 -34.6 -35 32 56.7 55.7 
K2070P  73 0 2.67×106 1.31×109 5.12×105 6.20×107 2.1 -40 -45.7 25 - 47.9 
K5170P  71 1.5 2.05×106 1.80×109 4.70×105 9.50×107 0.5 -32.7 -45.2 21 40 46.1 
K5470P  70 4.6 3.34×106 1.53×109 5.40×105 9.37×107 0.4 -27.5 -39.9 25 42.4 46.6 
K5470NT  70 4.6 2.66×106 1.82×109 4.81×105 1.04×108 0.6 -27.8 -41.5 23 41 44.5 
K6260Q  67 2.8 1.65×106 1.66×109 3.66×105 1.02×108 0.6 -38.3 -46.2 12 - 45 
K8570C 66 5.0 3.13×106 1.31×109 4.20×105 7.30×107 0.6 -28.5 -40.5 - - 46.7 
K5470C  66 4.6 2.50×106 1.76×109 4.70×105 9.77×107 0.6 -28 -40.3 21 44 45.3 
K6160D  64 1.2 1.76×106 1.65×109 4.53×105 9.07×107 0.7 -38.8 -50 22 - 46.3 
K3050 49 0 2.65×106 1.40×109 6.80×105 1.0×108 1.8 -51.2 -52.9 - - - 
K9950C 48 9 2.82×106 9.95×108 4.09×105 5.50×107 1.5 -32 -43 - - - 

 
 

406 
 



2.6.5 Mechanical properties 
The analysis of the mechanical properties of samples of EPM copolymers 

and EPDM terpolymers has been performed on melt-crystallized compression 
molded films and on compression-molded films aged at room temperature for 
one week. The WAXS profiles of compression molded films, prepared as 
described in the section 2.5, soon after the cooling at room temperature (fresh 
compression-molded) and after aging at room temperature for one week are 
reported in Figure 2.48 A and B, respectively. WAXS profiles of compression-
molded samples aged for one month at room temperature have been already 
reported in Figure 2.32A (recorded simultaneously to the SAXS profiles of 
Figure 2.31). There are no significant differences between WAXS profiles of 
fresh and aged compression molded samples of Figure 2.48A and B. Moreover, 
the WAXS profiles of Figure 2.48 are also similar to those of the compression-
molded and aged samples of Figure 2.32A and those of the as-prepared samples 
of Figure 2.19. Only the sample EPM show a slightly sharper peak at 2θ = 21° 
in the profiles of Figure 2.48 A and B. This indicates that a possible increase of 
crystallinity upon aging is not well revealed by WAXS. Small and sharp extra-
reflections present in the profiles of Figure 2.48 are due to the additives, in 
particular talc as discussed in section 2.6.1. 

Stress-strain curves of fresh and aged compression molded films of EPM and 
EPDM samples are reported in Figure 2.49A-M. The values of the mechanical 
parameters evaluated from stress-strain curves are reported in Table 2.8. All 
samples with ethylene contents in the range 78-66 wt% (Figure 2.49A-H) show 
mechanical properties typical of elastomers: low Young modulus, continuous 
deformation without evident yielding, high ductility with high values of 
deformation at break in the range 1000-2000% and in some cases higher than 
2000%, and remarkable strain hardening. The Young modulus decreases with 
decreasing ethylene concentration (Table 2.8), according to the decrease of 
crystallinity (Figures 2.27 and 2.43 and Tables 2.3-2.6), from the value of 11-15 
MPa of the most crystalline sample EPM with 78 wt% of ethylene to very low 
values, lower than 1 MPa, for the amorphous samples with ethylene 
concentration in the range 55-44 wt% (Table 2.8). The tensile strength is 
generally high thanks to strain-hardening with values of stress at break of 6-12 
MPa for samples with ethylene content in the range 78-64 wt%. 

An increase of modulus and tensile strength and a more defined yielding 
point and similar ductility and flexibility are observed in the samples aged at 
room temperature (dashed curves in Figure 2.49A-H). Almost all EPM and 
EPDM samples, indeed, show higher values of stress at any strain after aging. 
In the case of samples K2070P (73 wt% ethylene) and K6160D (64 wt% 
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ethylene) (Figures 2.49 B and I, respectively) a slight increase of deformation at 
break is also observed after aging. Samples with low ethylene content (55-
44wt%) show stress-strain curves typical of soft materials with very low values 
of stress and strain at break. For these samples no improvement of mechanical 
properties is observed upon aging. The compression moulded film of sample 
K9950C with 44 wt% ethylene shrinks upon aging, therefore the corresponding 
stress-strain curve could not be recorded. 
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Figure 2.48. X-ray powder diffraction profiles of fresh (A) and aged at room temperature for 
one week (B) compression molded films of samples of EPM copolymers and EPDM 
terpolymers. 
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Figure 2.49. Stress-strain curves of fresh (continuous curves) and aged (dashed curves) compression molded films of samples EPM with 78 wt% ethylene (A), 
K2070P with 73 wt% ethylene (B), K5170P with 71 wt% ethylene (C), K5470P with 70 wt% ethylene (D), K5470NT with 70 wt% ethylene (E), K6260Q with 67 
wt% ethylene (F), K5470C with 66 wt% ethylene (G), K8570C with 66 wt% ethylene (H), K6160D with 64 wt% ethylene (I), K4450 with 52 wt% ethylene (L), 
K3050 with 49 wt% ethylene (M) and K9950C with 44 wt% ethylene (N). 
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A comparison of the stress-strain curves of fresh and aged compression 
molded film of all samples is shown in Figure 2.50. As expected, the most 
crystalline sample (EPM, 78 wt% of ethylene) shows the highest values of 
modulus and stress at yield.  

As mentioned above, the stress-strain curves of the crystalline samples EPM 
with 78 wt% ethylene, K5170P with 71 wt% ethylene, K5470P with 70 wt% 
ethylene, K5470NT with 70 wt% ethylene, K6260Q with 67 wt% ethylene, 
K5470C with 66 wt% ethylene and K8570C with 66 wt% ethylene show strain-
hardening at high deformation (Figure 2.49A,C-H). The entity of strain-
hardening is different in the various samples, for example it is low in the 
sample K2070P with 73 wt% ethylene (Figure 2.49B) and is absent in the 
amorphous samples with low ethylene content (52-44wt%), K4450 with 52 
wt% ethylene (Figure 2.49L), K3050 with 49 wt% ethylene (Figure 2.49M) and 
K9950C with 44 wt% ethylene (Figure 2.49N). It is known that strain hardening 
in elastomers is often associated with crystallization induced by stretching. 
Therefore, we can hypothesize that strain-hardening in EPM and EPDM sample 
could be due to the stress-induced crystallization (SIC). In particular, initially 
crystalline samples show strain-hardening and hence further crystallization 
occurs by stretching at high deformation, whereas initially amorphous samples 
with low ethylene content in the range 52-44wt% are also not able to crystallize 
upon stretching. This hypothesis will be demonstrated in the next section by 
analysis of the X-ray diffraction patterns recorded during deformation. This 
results in improvement of strength upon deformation and in a remarkable 
ductility of samples with ethylene concentration in the range 78-64 wt% as 
initial crystals and those that develop during deformation create an efficient 
elastomeric network preventing viscous flow. 

Within this general behavior some differences in the mechanical properties 
of the samples may be due to the different molecular mass. In particular, the 
sample K2070P with 73 wt% ethylene shows lower deformation at break and 
strength (Figure 2.49B) probably due to the lower molecular mass and less 
amount of SIC. 

Slight differences have been also observed in the stress-strain curves of 
samples of the second set with similar ethylene concentration of 64-67 wt% 
(Figure 2.49F-I). The samples K6260Q (67 w% of ethylene, Figure 2.49F) and 
K6160D (64 w% of ethylene, Figure 2.49I) show very high deformation at 
break (3000-4000%) and low strain-hardening probably due to low SIC and 
some viscous flow at high deformation. Moreover, they show a defined yielding 
point due probably to the presence of initial crystallinity. The other two samples 
belonging to the same set with similar ethylene content, K5470C (66 w% of 
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ethylene, Figure 2.49G) and K8570C (66 wt% of ethylene, Figure 2.49H) show 
mechanical properties more similar to samples with higher ethylene 
concentration with strong strain-hardening and high strength. This behavior 
may be related, as discussed above, to the fact that these samples have been 
prepared with the catalyst ACE that produces chains with non-random 
distribution of comonomers and formation of longer ethylene sequences with 
less ethylene concentration. As a result, these two samples show stress-strain 
curves similar to samples with higher ethylene content.  

After aging at room temperature all samples show higher values of modulus, 
stress at yield and at break. In some cases, as for the samples K2070P (Figure 
2.49B) and K6160D (Figure 2.49I) aging also produces a slight increase of 
deformation at break. As a matter of fact, no great differences between stress-
strain curves of fresh and aged samples can be observed.  

Finally, as shown in the comparison of Figure 2.50C,D, samples with low 
ethylene content (52-44wt%) show stress-strain curves with very low values of 
stress and strain at break in both fresh and aged samples, and therefore, no 
improvement of mechanical properties is observed upon aging. 
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Figure 2.50. Stress-strain curves of fresh (A,C) and aged (B,D) compression molded films of samples with ethylene content in the range 78-64 wt% (A,B) and 
52-44 wt% (C,D). 
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Table 2.8. Values of Young’s modulus (E), stress (σb) and strain (ɛb) at break, stress (σy) and strain (ɛy) at the yield point, tension set at break (tb) of fresh and 
aged compression molded films of EPM copolymers and EPDM terpolymers. 

Sample Ethylene 
(wt%) 

Diene 
(wt%) E (MPa) εb (%) σb (MPa) εy (%) σy(MPa) tb (%) 

   fresh aged fresh aged fresh aged fresh aged fresh aged fresh aged 

EPM  78  - 11±2 14±1 1410±230 1824±195 6.6±1.4 8.3±0.8 19±2 22±7 1.8±0.1 2.4±0.1 390±8 360±17 

K2070P  73 - 3.1±0.2 3±1 945±75 1990±200 2.0±0.1 2.1±0.2 38±2 110±8 1.0±0.1 1.2±0.1 103±17 100±0.01 

K5170P  71 1.5 2.4±0.2 4.0±0.2 2340±380 2215±150 6.7±1.2 8.0±0.8 38±4 40±1 0.8±0.1 1.1±0.1 90±3 80±10 

K5470P  70 4.6 3.3±0.3 5.0 ±0.3 1410±90 1200±50 12.0±2.5 9.0±0.8 35±5 26±2 1.1±0.1 1.2±0.1 85±7 102±3 

K5470NT  70 4.6 2.6±0.2 4.0±0.2 1730±105 1670±103 9±1 10±1 34±2 36±1 0.81±0.05 1.0±0.1 82±5 57±4 

K6260Q  67 2.8 0.7±0.2 2.0±0.4 3500±380 3000±430 3.0±0.4 5.0±0.9 102±7 67±1 0.50±0.02 40±2 110±7 40±1 

K5470C  66 4.6 3.3±0.3 4.0±0.2 1760±190 1586±110 9.0±0.5 8.0±0.2 40±3 35±3 0.80±0.05 1.1±0.1 80±5 79±1 

K8570C 66 5.0 1.7±0.8 2.4±0.1 1700±100 1610±70 7.4±0.9 8±2 19.0±0.1 29±2 0.45±0.04 0.8±0.1 50±10 41±0.2 

K6160D  64 1.2 1.1±0.1 1.5±0.1 3850±730 4610±490 1.0±0.1 1.2±0.3 140±25 160±25 0.60±0.02 0.6±0.1 180±7 50±4 

K4450 52 4.3 0.6±0.1 0.7±0.1 130±11 141±17 0.40±0.03 0.3±0.1 - - - - 17.0±0.2 - 

K3050 49 - 0.25±0.03 0.4±0.1 120±18 105±15.5 0.30±0.02 0.2±0.1 - - - - 25±3 - 

K9950C 44 9.0 0.75±0.08 - 194±21 - 0.60±0.08 - - - - - 17±3/ - 
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The mechanical parameters evaluated from the stress-strain curves of fresh 
and aged samples of EPM copolymers and EPDM terpolymers are reported in 
Figure 2.51 as a function of ethylene concentration. Different colors have been 
used in background to mark different range of ethylene content.  

Fresh samples in blue region (ethylene content in the range 78-70 wt%) 
show similar values of strain at break εb, except the sample K2070P with 73 
wt% of ethylene that shows lower strain at break probably because of the lower 
molecular mass (Figure 2.51A). The two fresh samples in the pink region 
(K6260Q and K6160D, with 67 and 64 wt% of ethylene, respectively) show the 
highest values of εb, while the samples K5470C and K8570C displays εb values 
similar to samples in the blue region (Figure 2.51A), indicating that ACE 
catalyst provides ethylene sequences with length comparable to samples with 
higher ethylene content. Samples in the yellow zone show similar and very low 
values of strain and stress at break (Figure 2.51A,B). A similar trend is 
observed after aging at room temperature, with the exception of the sample 
K2070P, which shows much higher values of strain at break εb. 

The samples of the blue region show the highest values of strength with 
higher values of the stress at break (Figure 2.51B), which is almost constant in 
this range except the sample K2070P with 73 wt% of ethylene, which shows 
lower stress at break because of the low strain-hardening probably due to the 
low molecular mass that prevents deformation at high strain. The stress at break 
decreases with decreasing ethylene concentration (Figure 2.51B), moving from 
the blue region to the pink and then to the yellow regions of the plot of Figure 
2.51B. Similar trend is observed for aged samples. Analogously, the Young 
modulus decrease with decreasing ethylene concentration (Figure 2.51F), from 
the value of 11-15 MPa of the most crystalline sample EPM to very low values, 
lower than 1 MPa, for the amorphous samples with ethylene concentration in 
the range 55-44 wt%, according to the decrease of crystallinity (Figures 2.27 
and 2.43 and Tables 2.3-2.6). 

The strain at yield increases and the stress at yield decreases with decreasing 
ethylene content (Figure 2.51C,D) (moving from the blue region to the pink 
region of Figure 2.51C,D). The same trend is observed in the aged samples. The 
yellow region is not showed because the samples with lower ethylene content 
do not show any yielding point. 

All samples show relatively low values of tension set at break (Table 2.8 and 
(Figure 2.51E), compared to the high values of the achieved deformation at 
breaking (higher than 1000%), indicating elastic recovery after breaking. The 
tension set at break decreases with decreasing ethylene content (Figure 2.51E). 
The most crystalline sample EPM with 78 wt% ethylene shows the highest 
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value of tension set (390% and 360% for the fresh and aged samples, 
respectively), due to the non-negligible irreversible plastic deformation that the 
sample experiences upon stretching. A fast decrease of the tension set is 
observed already for small decrease of ethylene concentration and all samples 
with ethylene content in the range 73-64% show similar low values of tension 
set, lower than 100% (Table 2.8 and Figure 2.51E). Therefore, in this range of 
ethylene concentration, between the two vertical dashed lines in Figure 2.51E, 
the presence of initial crystallinity, the occurrence of strain-hardening and the 
low values of tension set give the best elastic properties associated with 
remarkable strength. For amorphous samples with further lower ethylene 
concentration in the range 44-55 wt%, the tension set further decreases to 
values close to zero.  

The same behavior is observed after aging. In particular, in the case of the 
samples K6260Q and K6160D with 67 and 64 wt% of ethylene, that present in 
the fresh specimens slightly higher values of tension set of 110 and 180%, 
respectively, a decrease of the tension set to values of 40 and 50%, similar to 
those of the other samples, is observed.  
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Figure 2.51. Values of strain ɛb (A) and stress σb (B) at break, strain ɛy (C) and stress σy (D) at 
yeld point, tension set at break tb (E), percentage of the deformation ε which is recovered after 
removing the tension from deformation ε R(ε) (E) and Young’s modulus E (F) of fresh (■) and 
aged (■) compression molded films of EPM copolymers and EPDM terpolymers. 

 
The elastic behavior of EPM and EPDM samples has been better 

investigated performing mechanical cycles of stretching and relaxation on 
oriented stress-relaxed fibers and recording the corresponding stress-strain 
curves. Oriented fibers of EPM copolymers and EPDM terpolymers have been 
prepared by stretching compression-molded films of initial length L0 up to the 
final length Lf comprised in the range 7.8L0-25L0 (ε = 680% - 2400%) and then 
removing the tension allowing the relaxation of the fibers up to the relaxed 
length Lr. The values of the maximum deformation ε achieved in the 
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preparation of fibers and the corresponding values of tension set t(ε), elastic 
recovery r(ε) and percentage of the deformation ε which is recovered R(ε) 
measured after releasing the tension are reported in Table 2.9. It is apparent that 
the achieved deformation is almost completely recovered after removing the 
tension, even when the deformation is very high (higher than 2000%), the 
percentage of recovered deformation R being 80-90% for samples with ethylene 
concentration in the range 70-64 wt% (Table 2.9 and Figure 2.51E), indicating 
a perfect elastic behavior. The recovered deformation increases with decreasing 
ethylene concentration, from 51% of the most crystalline sample EPM up to 
nearly 90% for the sample with 67-64 wt% (Table 2.9 and Figure 2.51E).  

The stress-strain hysteresis cycles, composed of the curves recorded during 
the stretching and the successive relaxation at controlled rate, of stress-relaxed 
oriented fibers are reported in Figure 2.52. In these cycles stress-relaxed 
oriented fibers of initial length Lr are stretched up to the maximum length 
achieved during the stretching of the starting unoriented film used for the 
preparation of the fibers (εmax in the range 680 to 2400%), so that the maximum 
deformation achieved during the first cycle (ε =100(Lf - Lr)/Lr) for each sample 
is numerically equal to the elastic recovery r(ε) of the unoriented film reported 
in Table 2.9. For each oriented film at least three consecutive hysteresis cycles 
have been recorded; each cycle has been performed 10 min after the end of the 
previous cycle. The values of tension set and the values of percentage of 
dissipated energy during each cycle are reported in Table 2.9.  

It is apparent from Figure 2.52 and Table 2.9 that the values of tension set 
measured in the mechanical cycles are very low and decrease after the first 
cycle (Table 2.9), indicating a perfect elastic recovery, the hysteresis curves 
successive to the first cycle being nearly coincident. Furthermore the stress-
strain curves of all stress-relaxed fibers present non null hysteresis (Figure 
2.52), the values of the percentage of dissipated energy being lower than 70% 
for the first cycle, and tend to decrease for the successive cycles, achieving 
values lower than 60%. These data indicate that, regardless of the value of 
maximum deformation ε achieved for the preparation of the stress-relaxed 
fibers, all fiber samples show good elastic properties in a non trivial 
deformation range comprised between 85 and 700%. The good elastic behavior 
of the unoriented films is, therefore, improved in the oriented fibers. This is due 
to the fact that, while the unoriented films experience irreversible plastic 
deformation during stretching because of the small crystallinity, the stress-
relaxed fibers are stretched in a deformation range without undergoing further 
plastic deformation.  
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A strong difference between stress-strain hysteresis cycles of the most 
crystalline sample EPM and of the other samples can be observed in Figure 
2.52A,A’ and B,B’. As demonstrated by X-ray fiber diffraction reported in next 
section, stretching induces orientation of crystals of pseudo-hexagonal form of 
PE already present in the undeformed state of the sample EPM. This orientation 
is partially lost after releasing the tension but residual crystallinity is present in 
the stress-relaxed fibers. As a result, stress-relaxed fibers of the sample EPM 
show values of stress higher than those of the stress-relaxed fibers of all other 
samples in both first and successive hysteresis cycles. This effect is even more 
evident when hysteresis cycles of sample EPM are compared with those of 
samples with ethylene content in the range 73-70wt% (Figure 2.52B,B’). 
Although the undeformed films of these samples show similar values of stress 
and strain at break (Figure 2.49A-E), the mechanical behavior of stress-relaxed 
fibers is different. All samples with 73-70 wt % of ethylene appear amorphous 
or very low crystalline in the undeformed state (see next section) but crystallize 
upon stretching. After releasing the tension a partial melting of crystals formed 
upon stretching occurs and the residual crystallinity after relaxation is lower 
than in the sample EPM. This transformation is reversible. The continuous 
crystallization and melting phenomena occurring during stretching and 
relaxation allow development of good elastic properties associated with a 
remarkable strength. The mechanical strength of these samples is lower than 
that of the sample EPM that, however, shows less elasticity.  

A comparison of first and successive hysteresis cycles of stress-relaxed 
fibers of all samples, excluded the sample EPM, is shown in Figure 2.52C, C’. 
Stress-relaxed fibers of samples K6260Q and K6160D with 67 and 64 wt% of 
ethylene, respectively, show higher elastic recovery than samples with ethylene 
content in the range 73-70 wt%. Also in this case, the stress-strain curves of 
stress-relaxed fibers of the sample K5470C are similar to the curves of samples 
with higher ethylene content.  
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Figure 2.52. Stress-strain hysteresis cycles of stress-relaxed fibers of EPM and EPDM samples with ethylene content in the range 78-64 wt%. The first 
hysteresis cycle (A,B,C) and curves averaged for at least 2 cycles successive to the first one (A’,B’,C’) are reported. Comparisons among the hysteresis cycles 
of all samples (A,A’), of the more crystalline samples with ethylene content in the range 78-70 wt% (B,B’) and of all samples excluded the sample EPM (C,C’) 
are shown.  
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Table 2.9. Values of the maximum deformation ε achieved during stretching of unoriented compression-molded films for the preparation of fibers, values of 
tension set (ts(ε)), elastic recovery (r(ε)) and percentage of the deformation ε which is recovered (R(ε)) measured after releasing the tension from the 
deformation ε for the preparation of the stress-relaxed fibers, and values of tension set (ts), elastic recovery (r) and percentage of dissipated energy (Ediss) 
measured after I, II and III cycle in the hysteresis stress-strain curves of Figure 2.52 of stress-relaxed fibers of the samples EPM and EPDM. 

 

Sample 
Ethylene 
content 
(wt%) 

Diene 
content 
(wt%) 

ε (%) ts(ε) (%) r(ε) (%) R(ε) (%) tsI cycle (%) rI cycle (%) tsII-III cycles 
(%) 

rI-II cycles 
(%) 

EdissI cycle 
(%) 

EdissI-II cycles 
(%) 

EPM 78 / 1000 495 ± 23 85 ± 4 51 ± 2 18 ± 2 57 ± 6 1. 6 ± 0.8 54 ± 27 71 ± 2 58 ± 2 

K2070P 73 / 680 160 ± 24 200 ± 30 76 ± 10 43 ± 5 110 ± 13 < 1 110 53 ± 3 37 ± 2 

K5170P 71 1.5 1450 210 ± 4 400 ± 8 86 ± 2 76 ± 21 184 ± 50 4 ± 2 173 ± 87 59 ± 2 43 ± 2 

K5470P 70 4.6 800 137 ± 15 280 ± 30 83 ± 10 70 ± 5 123 ± 10 < 1 123 60 ± 3 40 ± 5 

K5470NT 70 4.6 1000 175 ± 3  300 ± 5 83 ± 2  70 ± 16 135 ± 30  < 1 135 50 ± 3 30 ± 2 

K6260Q 67 2.8 2400 217 ± 3 682 ± 8 91 ± 1 136 ± 22 235 ± 38 5.3 ± 2.8 217 ± 115 54 ± 5 38 ± 1 

K5470C 66 4.6 1100 176 ± 3 334 ± 6 84 ± 1 63 ± 6 167 ± 16 4.0 ± 1.8 156 ± 70 38 ± 2 36 ± 2 

K6160D 64 1.2 2100 231 ± 12 564 ± 30 89 ± 5 87 ± 20 255 ± 60 7.4 ± 2.1 230 ± 65 54 ± 1 41.0 ± 0.2 
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The stress-strain curves of the stress-relaxed fibers of EPM copolymers and 
EPDM terpolymers that have experienced at least three consecutive hysteresis 
cycles of the kind of Figure 2.52 are reported in Figure 2.53. The Young 
modulus and the stress and strain at break evaluated from the stress-strain tests 
of Figure 2.53 are reported in Table 2.10. It is apparent that the stress-relaxed 
fibers exhibit an increase of mechanical strength and Young’s modulus with 
respect to the corresponding unoriented films (Figure 2.49), regardless of the 
value of the deformation  ε achieved for their preparation. In particular, the 
sample EPM show the highest values of modulus and stress at any strain. In the 
case of the sample K5470C, the relaxed fibers exhibit higher flexibility and 
ductility with respect to the corresponding unoriented films (Figure 2.53C). The 
values of tension set at break of all the oriented fibers are much lower than the 
corresponding unoriented films, indicating a perfect elastic recovery after 
breaking (Figure 2.10).  
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Figure 2.53. Stress-strain curves of stress-relaxed fibers of samples of EPM and EPDM with 
ethylene content in the range 78-64 wt% recorded after having experienced at least three 
hysteresis cycles as in Figure 2.52. 
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Table 2.10. Values of Young’s modulus (E), stress (σb) and strain (ɛb) at break, stress (σy) and strain (ɛy) at the yield point, tension set at break (tb) of stress-
relaxed fibers of EPM copolymers and EPDM terpolymers. 

Sample Ethylene 
content (wt%) 

Diene content 
(wt%) E (MPa) εb (%) σb (MPa) εy (%) σy(MPa) tb (%) 

EPM 78 / 34 ± 5 140 ± 45 32 ± 1 15 ± 1 4.9 ± 0.6 10 ± 1 

K2070P 73 / 4.6 ± 1.3 925 ± 230 5 ± 1 53 ± 3 1.8 ± 0.5 9 ± 5 

K5170P 71 1.5 4.5 ± 0.7 1140 ± 110 8 ± 2 50 ± 3 1.8 ± 0.5 < 1 

K5470P 70 4.6 6.5 ± 0.5 1300 ± 500 24 ± 1 40 ± 8 2.0 ± 0.1 10 ± 2 

K5470NT 70 4.6 6.4 ± 0.4 1420 ± 70 16 ± 1 37 ± 5 1.4 ± 0.4 10 ± 6 

K6260Q 67 2.8 2.4 ± 0.6 2450 ± 200 11 ± 2 60 ± 10 0.8 ± 0.1 12 ± 4 

K5470C 66 4.6 3.3 ± 0.3 6540 ± 800 17.1 ± 0.5 330 ± 15 1.4 ± 0.1 9 ± 1 

K6160D 64 1.2 1.1 ± 0.1 2700 ± 450 6 ± 1 59 ± 9 0.8 ± 0.1 28 ± 8 
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2.6.6 Stress Induced Crystallization (SIC) 
Stress Induced Crystallization (SIC) is a well known phenomenon occurring 

in many elastomers. SIC was discovered in 1925 by Katz,72 who was the first to 
show the X-ray diffraction pattern of a uniaxially stretched sample of natural 
rubber (NR).73 The general molecular mechanism proposed for SIC involves 
the formation of crystals upon stretching and the complete or partial melting of 
these crystals during relaxation (Figure 2.54). In fact, stretching induces 
alignment of chains along the stretching direction and forces the chains to 
assume more extended conformations (Figure 2.54B) starting from the 
disordered random coil conformation they assume in the undeformed state 
(Figure 2.54A). In these conditions crystallization can take place even though 
the starting sample is completely amorphous. (Figure 2.54C). New crystallites 
oriented along the stretching direction form, providing an increase of tensile 
strength of the elastomer. This generally results in observation of strong strain-
herdening at high deformation in the stress-strain curves of elastomers. When 
the tensile stress is removed, the elastic recovery of the material is associated 
generally with the loose of orientation of crystals formed upon stretching 
followed by partial or complete melting (Figure 2.54D). This mechanism also 
occurs in crosslinked elastomers, as in natural rubber cured with peroxides or 
sulphur.  

 

 
Figure 2.54. Scheme of SIC and melting upon releasing the tension. 
 
As reported in the case of natural rubber, the crystallization under stress has 

been studied with many different experimental techniques, in particular, volume 
change,74-77 stress-relaxation,76 transmission electron microscopy,78,79 
differential scanning calorimetry,80 birefringence,63,81 nuclear magnetic 
resonance,82,83 or Raman spectroscopy.84 The present section will be focused on 
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studies of SIC by using Wide Angle X-ray Diffraction. In the next section, a 
correlation between the occurrence of SIC and the results of stress-relaxation 
experiments will be presented.  

Figure 2.55 shows the X ray fiber diffraction patterns of samples of NR 
recorded during stretching and relaxation.85 The sample of NR is initially 
amorphous as indicated by the broad halo in the diffraction profile recorded at 
zero strain. The occurrence of SIC during stretching can be clearly seen from 
the appearance of several reflections in the bidimensional X-ray diffractions 
pattens recorded during deformation (strain ≠ 0). During the recovery 
(stress→0) these reflections gradually disappear and only the amorphous halo is 
visible when the stress is totally removed.  

More complex and detailed mechanisms have been proposed during the 
years for SIC in NR for a better understanding of the relationships between the 
outstanding mechanical properties of NR and SIC. Nevertheless, the general 
model depicted in Figure 2.55 is enough for a non trivial correlation of 
mechanical properties and crystallization induced by stretching not only in NR, 
but also in other elastomers, such as EPM and EPDM rubbers. 

 
Figure 2.55. Stress-strain curve and corresponding diffraction patterns recorded 
simultaneously for a vulcanized NR (1.5phr sulfur).85 

 
X-ray fiber diffraction patterns have been recorded during deformation and 

after releasing the tension of all samples of EPM copolymers and EPDM 
terpolymers. Rectangular specimens cut from fresh compression moulded films 
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have been analysed before stretching and after stretching up to different degree 
of deformation (ε = 500% and ε = εmax) without controlling the stretching rate 
and after releasing the tension. The diffraction patterns of the relaxed fibers 
have been recorded several hours after the release of the tension.  

Since in samples of the third set (ethylene content in the range 52-44 wt%) 
viscous flow occurs during deformation, this analysis has been performed only 
on samples belonging to the first and second set, with ethylene concentration in 
the range 78-64 wt%. 

For each deformation of all samples the bidimensional X-ray diffraction 
pattern, the equatorial profile and the equatorial profile integrated over the 
azimuthal coordinate are reported. Equatorial profiles have been evaluated 
reading the intensity along the equatorial line of the bidimensional patterns with 
the digital imaging reader. The integrated profiles have been calculated 
integrating the intensity along the azimuthal coordinate χ of the bidimensional 
patterns by using the software FIT2D (Figure 2.56). On samples stretched at the 
maximum deformation and relaxed an evaluation of the variation in degree of 
crystallinity (Δxc) has been made by comparing the crystallinity achieved upon 
stretching and after relaxation with respect to the crystallinity visible in the 
same unoriented sample before stretching. The evaluation of Δxc has been made 
by comparing integrated profiles of stretched and relaxed samples instead of the 
corresponding equatorial profiles. This method guarantees that also the 
contribution of other non-equatorial reflections possible present visible in the 
diffraction patterns is taken into account. In order to obtain integrated profiles, 
bidimensional patterns have been processed with FIT2D resulting in a three 
dimensional pattern of diffracted intensity as a function of the azimuthal 
coordinate χ and the radial distance from the center of the fiber pattern (Figure 
2.56B). For each value of the radial distance the intensity is averaged over the 
azimuthal coordinate and the result is reported as a one dimensional profile as a 
function of the radial distance (Figure 2.56C). After the transformation of radial 
distance in the Bragg angle 2θ a monodimensional profile of the Intensity as a 
function of 2θ is obtained (Figure 2.56D). 

 

428 
 



 
Figure 2.56. Scheme of the procedure used to calculate the integrated diffracted intensity 
profiles as a function of 2θ. The intensity along the azimuthal coordinate χ is read (A); a 3D 
pattern of diffracted intensity as a function of the azimuthal coordinate χ and the radial 
distance from the center of the fiber pattern is obtained (B); for each value of the radial 
distance the intensity is averaged over the azimuthal coordinate giving the monodimensional 
intensity profile as a function of the radial distance (C); after the transformation of the radial 
distance in 2θ, the final integrated profile of Intensity as a function of 2θ is obtained (D). 

 
In order to eliminate the background a baseline has been subtracted from the 

integrated profile (Figure 2.57A). The degree of crystallinity of the fibers 
stretched at the various deformations has been evaluated from the integrated 
diffraction profiles. To this end, the integrated diffraction profile of the 
amorphous phase should be subtracted from the integrated diffraction profiles 
obtained at each degree of deformation to obtain the crystalline diffraction area 
Ac. The degree of crystallinity could be then evaluated by the ratio between the 
crystalline diffraction area (Ac) and the area of the whole diffraction profiles 
(At), xc = (Ac/At)×100. For most of the analyzed samples, in particular those with 
ethylene concentrations lower than 78 wt% (in the range 73-64 wt%), the 
diffraction profile of the amorphous phase is not easily distinguishable from the 
whole diffraction profile of the un-stretched samples, even though the presence 
of cryptocrystallinity in these sample in the unoriented specimens has been 
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demonstrated by DSC and SAXS. For this reason, the integrated profile of the 
unstretched sample (after subtraction of the baseline (Figure 2.57A)) has been 
subtracted to the integrated profiles of fibers stretched at the different 
deformations and of relaxed fibers (Figure 2.57B,C), instead of subtracting the 
diffraction profile of the amorphous phase. This procedure allows evaluating 
the excess of crystallinity in the stretched fibers with respect to the unstretched 
samples. Since it is not clear if the unstretched samples are really amorphous or 
show faint crystallinity, the so evaluated degree of crystallinity is not an 
absolute value, but it is rather an evaluation of the eventual increase of 
crystallinity Δxc during stretching, that is, the increase of crystallinity observed 
in the stretched fibers from that of the unstretched state. 

 
Figure 2.57. Scheme of the procedure used to calculate the increase of crystallinity Δxc 
achieved upon stretching. 

 
The bidimensional X-ray diffraction patterns, and the corresponding 

equatorial and integrated profiles, of the undeformed samples (at ε = 0%) and of 
fibers stretched at the maximum deformation (ε = εmax) and after releasing the 
tension (relaxed), of all samples of EPM copolymers and EPDM terpolymers 
are shown in Figures 2.58-2.66. The sample EPM is clearly already crystalline 
in the undeformed state, as already shown in diffraction profiles of as-prepared 
samples of Figures 2.19 and of compression-moulded samples cooled from the 
melt of Figures 2.32A and 2.48. In fact, the X-ray diffraction pattern of the 
undeformed sample at ε = 0% (Figure 2.58A) shows the typical reflection of the 
pseudo-hexagonal form of PE at 2θ = 21°, as also evident in the equatorial 
profile of Figure 2.58B where the equatorial reflection at 2θ ≈ 21° is clearly 
visible on the broad amorphous halo at 2θ ≈ 18-19°. Stretching produces 
orientation of crystals of the pseudo-hexagonal form, as indicated by the 
polarization of the reflection 2θ = 21° on the equator at deformation of 500% 
(Figure 2.58B,B’), while other weak reflections appear on the equator at 2θ = 
25.7 and 35.7°, corresponding to the hexagonal form of PE, and on the first 
layer line, corresponding to the trans-planar periodicity of PE (2.5 Å) (Figure 
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2.58B). With increasing deformation up to ε = 1500%, improvement of 
orientation of crystals is observed with increase of polarization of equatorial 
reflections and increase of the intensity and sharpness of the reflection at 2θ = 
21° (Figure 2.78C,D). Correspondingly, a polarization of the amorphous halo at 
2θ = 18-19° close to the equator and a decrease of its intensity are observed 
(Figure 2.78B-D). This indicates that crystals of the pseudo-hexagonal form of 
PE already present in the unstretched sample are improved upon stretching and, 
probably, further crystallization seems to occur at high deformation. 

After releasing the tension, only a slight decrease of the degree of orientation 
of crystals achieved upon stretching has been observed (Figure 2.58E), as 
indicated by the broadening of the equatorial reflections along the azimuthal 
coordinate. Melting of crystals upon relaxation seems not to occur. This is 
confirmed by the presence in the patterns of Figure 2.58E,E’ of all equatorial 
reflections observed in the diffraction patterns of the stretched sample and by 
the fact that the intensity of the amorphous halo at 2θ ≈ 18-19° does not 
increase after relaxation.  
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EPM, 78 wt% of ethylene 

     
10 15 20 25 30 35 40

35.3°

18.6°

In
ten

sit
y 

(a
.u

.)
2θ (deg)

20.6°

A'

 

    
10 15 20 25 30 35 40

35.7°25.7°

20.4°

In
ten

sit
y 

(a
.u

.)

2θ (deg)

B'

 

    
10 15 20 25 30 35 40

In
te

ns
ity

 (a
.u

.) 20.5°

26° 36.1°

2θ (deg)

C'

 
 

B ε = 500% 

ε = 1000% C 

A ε = 0% 

432 
 



    
10 15 20 25 30 35 40

In
ten

sit
y 

(a
.u

.) 20.4°

25.6° 35.8°

2θ (deg)

D'

 

    
10 15 20 25 30 35 40

In
ten

sit
y 

(a
.u

.) 20.7°

26° 36.1°

2θ (deg)

E'

 

Figure 2.58. X-ray fiber diffraction patterns (A-E), and corresponding equatorial profiles (A’-
E’), of the sample EPM (78 wt% of ethylene) recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 
1000% (C,C’), ε = 1500% (D,D’) and after releasing the tension (E,E’). 

 
Figures 2.59-2.62 show the X-ray fiber diffraction patterns (A-D), and the 

equatorial (A’-D’) and integrated (A’’-D’’) profiles of samples belonging to 
the first set of samples (ethylene content in the range 73-70 wt%). As 
mentioned in the discussion of the WAXS profiles of as-prepared samples 
(Figure 2.19) and of compression-molded samples cooled from the melt 
(Figures 2.32A and 2.48), all samples appear amorphous in the undeformed 
state from the analysis of the WAXS data. In fact, a broad halo at 2θ ≈ 18-19° 
can be observed in X-ray diffraction patterns and the corresponding equatorial 
and integrated profiles of the undeformed samples at ε = 0% (Figures 2.59-
2.62A, A’, A’’). The equatorial profiles are, indeed, very similar to all WAXS 
profiles recorded at room temperature of compression-molded samples of 
Figures 2.32A and 2.48A,B.  

In all samples, the diffraction patterns of fibers stretched at relatively low 
deformation (at ε = 500%) of Figure 2.59B,B’-2.62B,B’ show that the broad 

ε = 1500% D 

relaxed E 
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amorphous halo becomes less evident and the typical equatorial reflection of 
the pseudohexagonal form of PE at 2θ = 20.5-21° already appears. With 
increasing degree of deformation (at ε = εmax) the reflection at 2θ = 20.5-21° 
becomes sharper and more intense (Figure 2.59-2.62C,C’). This indicates that 
in these samples crystallization of the pseudohexagonal form of PE occurs 
during stretching. Therefore, stress-induced crystallization (SIC) takes place 
either whether the undeformed samples are really amorphous or whether they 
present initial not visible cryptocrystallinity. In the latter case, stretching 
induces improvement of the initial cryptocrystallinity and/or further 
crystallization. At the maximum degree of deformation (at ε = εmax) a high 
orientation of crystals of pseudohexagonal form is achieved, as indicated by the 
strong polarization of the reflection at 2θ = 21° on the equator (Figure 2.59-
2.62C,C’). In the case of the sample K5170P with 71 wt% of ethylene the 
broad amorphous halo has still high intensity on the equator at ε = 500% 
(Figure 2.60B). This indicates that for this sample lower amount of SIC occurs 
upon stretching.  

The occurrence of crystallization in these samples, or further crystallization 
with respect to the unstretched samples, is also clearly demonstrated by the 
comparison of the integrated profiles of fibers stretched at ε = εmax (Figures 
2.59C’’-2.62C’’) and those of the undeformed samples (ε = 0, Figures 2.59A’’-
2.62A’’). A direct comparison between integrated profiles of fibers stretched at 
εmax and of unstretched samples is shown in Figures 2.59C’’-2.62C’’. It is 
apparent that the integrated profiles of the unstretched samples show a main 
peak at 2θ = 18.9-19.3° and a very weak peak at 2θ = 41-42°, while the 
integrated profiles of the stretched samples show a main peak at slightly higher 
values of 2θ, 2θ = 19.3-20°, and a second weak peak at 2θ ≈ 45°. Therefore, 
the cryptocrystallinity hidden in the unstretched samples, not visible from the 
WAXS pattern and the integrated profiles (Figures 2.59-2.62A,A’,A’’), 
develops more clearly in the stretched fibers and evidenced by the increase of 
diffracted intensity at 2θ ≈ 20° and 45° in the integrated profiles of Figures 
2.59C’’-2.62C’’).  

The values of crystallinity increment Δxc with respect to crystallinity 
eventually present in the unstretched samples, evaluated as described above 
(Figure 2.57), are very similar for the samples of the first set with ethylene 
contents in the range 73-70 wt%, that is the copolymer K2070P with 73 wt% of 
ethylene (Δxc = 16%) and the terpolymers K5170P with 71 wt% of ethylene 
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(Δxc = 15%), K5470P with 70 wt% of ethylene (Δxc = 17%) and K5470NT 
with 70 wt% of ethylene (Δxc = 16%). 

After releasing the tension from the maximum deformation, the intensity of 
the broad amorphous halo at 2θ ≈ 18-19° increases (Figure 2.59D-2.62D) and 
reappears in the equatorial profiles of Figures 2.59D’-2.62D’as a shoulder of 
the main peak. This indicates that a partial melting of the crystals formed upon 
stretching, and a decrease of the orientation of the remaining crystals, occur 
after removing the tension and upon relaxation of the fibers. The amount of 
melting and of the loss of crystal orientation is different in the various samples. 
The integrated profiles of the relaxed samples and the corresponding integrated 
profiles of the unstretched samples are more similar but they do not coincide 
perfectly because the main crystalline reflection at 2θ ≈ 19-20° is still present 
in the integrated profiles of the relaxed fibers (Figures 2.59D’’-2.62D’’), 
indicating that a residual crystallinity is still present upon relaxation. The 
residual crystallinity increment in the sample K2070P (Δxc = 10%) is higher 
than in the terpolymers K5170P, K5470P and K5470NT, which show similar 
values of Δxc. (5-6%).  
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K2070P, 73 wt% of ethylene 
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Figure 2.59. X-ray fiber diffraction patterns (A-D) of sample K2070P (73 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 800% (C,C’) and after releasing the tension (D, D’). 
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K5170P, 71 wt% of ethylene 
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Figure 2.60. X-ray fiber diffraction patterns (A-D) of sample K5170P (71 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 2600% (C,C’) and after releasing the tension (D, D’). 
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K5470P, 70 wt% of ethylene 
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Figure 2.61. X-ray fiber diffraction patterns (A-D) of sample K5470P (70 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 1000% (C,C’) and after releasing the tension (D, D’). 
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K5470NT,70 wt% of ethylene 
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Figure 2.62. X-ray fiber diffraction patterns (A-D) of sample K5470NT (70 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 1500% (C,C’) and  after releasing the tension (D, D’).  
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A similar behavior has been observed for samples of the second set with 
ethylene concentration in the range 67-64 wt%, even though different amount 
of SIC occurs depending on ethylene concentration. The X-ray diffraction 
patterns and the equatorial and integrated profiles of these samples are shown 
in Figures 2.63-2.66. Also for this case, all the undeformed samples appear 
amorphous or with not evident cryptocrystallinity, as indicated by the presence 
of the broad halo at 2θ ≈ 18-19° in the diffraction patterns and the equatorial 
profiles of Figures 2.63A,A’-2.66A.A’. In all samples the appearance of the 
reflection at 2θ = 20-21° and its polarization on the equator of the diffraction 
patterns of fibers of Figures 2.63B,B’-2.66B,B’ indicate that SIC occurs by 
stretching already at low deformations of ε = 500%. At this low deformation 
the broad amorphous halo is still present in the diffraction patterns and 
equatorial profiles of samples K6260Q with 67 wt% of ethylene (Figure 
2.63B,B’) and K6160D with 64 wt% of ethylene (Figure 2.66B,B’), whereas it 
is less evident in the diffraction patterns and equatorial profiles of samples 
K8570C with 66 wt% of ethylene (Figure 2.64B,B’) and K5470C with 66 wt% 
of ethylene (Figure 2.65B,B’). The samples K6260Q and K6160D show the 
broad halo also at the highest deformation, notwithstanding the very high 
values of εmax (Figure 2.63C,C’ and 2.66C,C’). This indicates that different 
amounts of SIC occur in these samples, the samples K6260Q and K6160D with 
67 and 64 wt% of ethylene, respectively, show lower SIC than the samples 
K8570C and K5470C both with 66 wt% of ethylene. This is confirmed by the 
comparison of integrated profiles of stretched and unstretched samples in 
Figures 2.63C’’-2.66C’’. In fact for the samples K6260Q and K6160D the 
integrated profile of the fiber stretched at the maximum deformation present 
only an additional small peak at 2θ≈19° with respect to the profiles of the 
unstretched samples (Figure 2.63C’’ and 2.66C’’). On the contrary, samples 
K8570C and K5470C both with 66 wt% of ethylene at the highest deformation 
show diffraction patterns (Figures 2.64C’’ and 2.65C’’) similar to those of 
stretched samples with higher ethylene concentrations (Figures 2.59-2.62).  

The value of crystallinity increment Δxc with respect to crystallinity 
eventually present in the unstretched samples, evaluated from the integrated 
profiles, is Δxc = 16% for both samples K8570C and K5470C, which is higher 
than the values evaluated for samples K6260Q and K6160D (Δxc = 12% and 
10%, respectively). 

A slight different behavior of these samples has been observed also after 
removing the tension. In all samples melting of crystals developed upon 
stretching and loss of their orientation occur upon relaxation but different 
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amounts of crystals melt in the different samples. In the case of samples 
samples K6260Q and K6160D, crystals formed upon stretching melt almost 
completely upon releasing the tension. The diffraction patterns and equatorial 
profiles of Figures 2.63D,D’,D’’ and 2.66D,D’D’’ of the relaxed fibers of these 
samples are, indeed, very similar to those of the unstretched samples (Figure 
2.63A and 2.66A). The intensity of the broad halo at 2θ ≈ 18-19° increases, 
while the main reflection of the pseudohexagonal form at 2θ ≈ 21° disappears 
(Figures 2.63D and 2.66D). The integrated profiles of the relaxed fibers and of 
the unstretched samples are very similar and very low values of residual 
crystallinity increment of Δxc = 3% and 1% have been evaluated for the 
samples K6260Q and K6160D, respectively (Figures 2.63D’’ and 2.66D’’), 
indicating almost complete melting of crystals upon relaxation. In the case of 
samples K8570C and K5470C only partial melting of crystals and a decrease of 
crystal orientation is observed upon releasing the tension (Figures 2.64D’’ and 
2.65D’’). The values of the residual crystallinity increment are, indeed, Δxc = 
4% and 5% for the samples K8570C and K5470C, respectively, which are 
slightly higher than those in samples K6260Q and K6160D. 

All these differences among the samples belonging to this set of samples are 
due to the different molecular structure of these samples, in term of different 
distribution of comonomeric units along the chain. SIC depends on the 
presence and on the length of crystallizable ethylene sequences. As already 
discussed, with the same ethylene concentration in the copolymer chains, ACE 
catalyst allows obtaining ethylene sequences longer than those produced by 
Vanadium based catalyst. Samples K8570C and K5470C are presumably 
characterized by chains with ethylene sequences longer than those in the chains 
of samples K6260Q and K6160D, even though the ethylene concentration is 
basically the same in the four samples. This results in higher amount of SIC in 
samples K8570C and K5470C, which show crystallinity increment Δxc very 
similar to the values exhibited by samples of the first group with higher 
ethylene concentrations.  

It is worth noting that difference in SIC can explain differences in the 
mechanical properties among the samples. A more complete discussion about 
the relationships between SIC and mechanical properties will be presented in 
section 2.6.8. 
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K6260Q, 67 wt% of ethylene 
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Figure 2.63. X-ray fiber diffraction patterns (A-D) of sample K6260Q (67 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 4000% (C,C’) and after releasing the tension (D, D’). 
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K8570C, 66 wt% of ethylene 
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Figure 2.64. X-ray fiber diffraction patterns (A-D) of sample K8570C (66 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 1500% (C,C’) and after releasing the tension (D, D’). 
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K5470C, 66 wt% of ethylene 
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Figure 2.65. X-ray fiber diffraction patterns (A-D) of sample K5470C (66 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 1700% (C,C’) and after releasing the tension (D, D’). 
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K6160D, 64 wt% of ethylene 
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Figure 2.66. X-ray fiber diffraction patterns (A-D) of sample K6160D (64 wt% of ethylene) and corresponding equatorial (A’-D’) and integrated (A’’-D’’) 
profiles recorded at ε = 0% (A,A’), ε = 500% (B,B’), ε = 3000% (C,C’) and after releasing the tension (D, D’). 
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A comparison of WAXS powder profiles recorded on compression moulded 
films of all samples (Figures 2.32A and 2.48A,B) with X-ray diffraction 
patterns and the corresponding equatorial and integrated profiles recorded 
before stretching (ε=0%) (Figures 2.58-2.66A,A’,A’’) may help to individuate 
the real structure existing at room temperature in the most crystalline samples. 
In fact, the average position of the maximum in the diffraction profile is at 
values of 2θ ≈ 19° in the most crystalline samples with the highest ethylene 
content (78-70 wt%) belonging to the first set. Then, the position of the 
maximum decreases up to 2θ ≈ 18.5° in less crystalline samples of the second 
set (ethylene content in the range 67-64 wt%) and a further decrease up to 2θ ≈ 
18° is observed in the really amorphous samples belonging to the third set 
(ethylene content in the range 52-44 wt%). This might confirm that the broad 
halo observed in all WAXS profiles at room temperatures and in that of the 
unstretched state of samples of the first and second sets does not correspond to 
a real amorphous halo but include the contributions of an amorphous phase and 
of a crystalline disordered phase (the mesomorphic hexagonal form of PE). 
Therefore, only the WAXS profiles of the samples with the lowest ethylene 
content (52-44 wt%) correspond to the profiles of the real amorphous phase. 
Further indication may come from the comparison of WAXS profiles of 
samples K8570C and K5470C (Figures 2.64 and 2.65) with those of the 
samples K6260Q and K6160D (Figures 2.63 and 2.66): the position of the 
diffraction peak of the samples K8570C and K5470C with 66 wt% of ethylene 
(Figures 2.64 and 2.65) is slightly shifted to values of 2θ comparable with the 
values observed for the peak positions of the samples with higher ethylene 
concentration (78-70 wt%) (Figures 2.58-2.62), which are the most crystalline 
samples as clearly demonstrated by DSX and SAXS data. These considerations 
confirm that the parameters Δxc defined as a crystallinity increment is really a 
relative increment of the degree of crystallinity with respect to the undeformed 
sample and does not represent an absolute value of crystallinity. 

The values of the crystallinity increment Δxc for all samples in the stretched 
and relaxed state are reported in Table 2.11 and in Figures 2.67 as a function of 
ethylene content and total concentration of comonomeric units. Δxc  in both 
stretched and unstretched state decreases with decreasing ethylene content and 
increasing total concentration of comonomeric units. This also indicates that 
the presence of the diene does not influence the SIC. 
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Figure 2.67. Values of crystallinity increment Δxc evaluated after stretching and after releasing 
the tension reported as a function of ethylene (A) and total concentration of comonomeric units 
(B). 
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Table 2.11.Ethylene content (wt%), diene content (wt%), total concentration of comonomeric units (propene + diene) (wt%) and 
values of the crystallinty increment Δxc (%) evaluated in the stretched and relaxed state of samples of EPM and EPDM. 

Sample Ethylene 
content (wt%) 

Diene content 
(wt%) 

Total concentration of 
comonomeric units (wt%) 

Δxc  after stretching Δxc  after relaxing 

K2070P 73 / 27 16 10 

K5170P 71 1.5 29 15 5 

K5470P 70 4.6 30 17 6 

K5470NT 70 4.6 30 16 6 

K6260Q 67 2.8 33 12 3 

K8570C 66 5 34 16 4 

K5470C 66 4.6 34 16 5 

K6160D 64 1.2 36 10 1 
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2.6.7 Stress-relaxation 
Stress-relaxation experiments have been performed on specimens cut from 

fresh compression moulded films. The samples have been quickly deformed up 
to the constant deformations of 50% and 600% and the values of the stress 
necessary to maintain the constant deformation have been recorded for 7250s. 
The specimens have thickness of 0.70 mm, width of 5 mm and lengths of 15 
mm for the test at 50% deformation, and 10 mm for the test at 600% 
deformation. Samples have been stretched up to the constant deformation εcost 
of 50% and 600% at deformation rates of 450 mm/min and 720 mm/min, 
respectively. The stress necessary to maintain the constant deformation 
decreases over time due to the relaxation of the sample. The relative drop of 
the applied load has been evaluated for all samples by using the equation: 
 
σin−σfin

σin
× 100 = ∆σ

σin
× 100     (1) 

 
where σin and σfin are the stress measured at the beginning and at the end (after 
7250s) of the experiment, respectively.  

Stress-relaxation curves have been modeled in term of the Maxwell model 
(an elastic spring and dash-pot in series), for which the viscoelastic behavior of 
a material after application of a deformation is represented as a decay of the 
stress over the time and described with a single relaxation time τ: 
 

σ(𝑡𝑡) = σ0exp �− 𝑡𝑡
𝜏𝜏
�      (2) 

 
with σ0 the stress applied at t = 0 s and τ the relaxation time. According to this 
model upon application of a constant deformation the initial stress σo decays 
over time with exponential law. The relaxation time is the time needed for the 
initial stress σo to decrease by 1/e, that is, 37% of σo; the shorter the relaxation 
time, the more rapid the stress relaxation. 

More realistic material responses can be modeled using models composed 
of more Maxwell elements in series. For the analyzed samples of EPM and 
EPDM the stress-relaxation experiments have been modeled with two 
relaxation times τ1 and τ2 corresponding to two Maxell models connected in 
series, according to the equation: 
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σ(𝑡𝑡) = σ01exp �− 𝑡𝑡
𝜏𝜏1
� + σ02exp �− 𝑡𝑡

𝜏𝜏2
�   (3) 

 
Equation (3) can be rearranged in the form: 
 

σ(𝑡𝑡) = σ0 �φ1exp �− 𝑡𝑡
𝜏𝜏1
� + φ2exp �− 𝑡𝑡

𝜏𝜏2
��   (4) 

 
with σ0 = σ01 + σ02 and 𝜑𝜑1  =  σ01

σ0
;  𝜑𝜑2  =  σ02

σ0
 ; 𝜑𝜑1 + 𝜑𝜑2 = 1  

 
In other words the parameters φ1 e φ2 represent the relative weight of the 

two hypothesized relaxation mechanisms to the experimental phenomenon of 
stress-relaxation of our samples  

The stress-relaxation curves of samples of EPM and EPDM with ethylene 
concentrations in the range 78-70 wt%, obtained imposing the constant 
deformation of εcost= 50% and 600%, are reported in Figures 2.68-2.72, in 
linear (Figures 2.68A,B-2.72A,B) and logarithmic Figures 2.68A’,B’-
2.72A’B’) scales. The experimental data have been fitted with the equation (4) 
(blue curves). The experimental values of stress and of the drop of the stress 
and the values of the parameters of equation 4 that give the best fit are reported 
in the Tables 2.12-2.13. 

With the exception of sample EPM, in all samples the drop of stress is 
unexpectedly higher in experiments performed at εcost= 50% than in 
experiments performed at εcost= 600% (Figure 2.69-2-72). This is due to the 
occurrence of stress induced crystallization (SIC) at the high deformation of 
600%. In the previous section it has been demonstrated that SIC occurs already 
at ε=500%, therefore when samples are stretched up to εcost= 600% crystals 
formed upon stretching act as physical knots in the elastomeric network 
preventing the viscous flow and limiting the drop of stress in the stress-
relaxation. This is also confirmed by the results obtained on the sample EPM 
(78 wt% of ethylene). In this case, as expected, the load drop is higher in the 
experiments performed at εcost= 600% than in those performed at εcost= 50% 
(Figure 2.68). The reason is that in this already crystalline sample, as discussed 
in the previous section, further crystallization under stretching (SIC) does not 
occur. This sample is already crystalline in the undeformed state and stretching 
produces only a better orientation of crystals in pseudohexagonal form of PE 
already present before stretching. 
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Figure 2.68. Stress relaxation curves of sample EPM (78 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.69. Stress relaxation curves of sample K2070P (73 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.70. Stress relaxation curves of sample K5170P (71 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B). 
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Figure 2.71. Stress relaxation curves of sample K5470P (70 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.72. Stress relaxation curves of sample K5470NT (70 wt% of ethylene) obtained at 
εcost= 50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
 

Figures 2.73-2.76 report stress-relaxation curves of samples with ethylene 
concentration in the range 67-64 wt%. Also for these samples the drop of stress 
Δσ/σin is higher in experiments performed at εcost= 50% than in experiments 
performed at εcost= 600%. In particular, the loss of stress at 50% deformation is 
very high for samples K6260Q with 67% of ethylene and K6160D with 64% of 
ethylene (95% and 85% respectively). These samples, however, show much 
lower loss of stress of nearly 60% at the higher deformation of 600%. The 
samples K8570C and K5470C show value of load drop similar to the samples 
of the first set with higher ethylene content even in measurements at εcost= 
50%.  

This different behavior depends on the occurrence of SIC and different 
amount of SIC. In samples K8570C and K5470C the amount of SIC is higher 
than in samples K6260Q and K6160D, therefore they show similar properties 
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of samples of the first set (78-70 wt% of ethylene). However, a deformation of 
600% is enough to trigger SIC also in sample K6260Q and K6160D. The 
results is a lower drop of stress observed in experiments performed at εcost= 
600% also in these two samples, as in the other samples of the first and second 
sets. 
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Figure 2.73. Stress relaxation curves of sample K6260Q (67 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.74. Stress relaxation curves of sample K8570C (66 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.75. Stress relaxation curves of sample K5470C (66 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
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Figure 2.76. Stress relaxation curves of sample K6160D (64 wt% of ethylene) obtained at εcost= 
50% (A,A’) and 600% (B,B’) as a function of time in linear (A,B) and in logarithmic (A’,B’) 
scales. The fitting curve according with the equation 4 is also reported (blue curve in A,B).  
 

The stress-relaxation curves of samples with ethylene concentration in the 
range 52-44 wt% recorded only at εcost= 50% are reported in Figures 2.77-2.79. 
The measurements have been performed only at low deformation because at 
high deformation these samples show viscous flow. The loss of stress is very 
high and close to 100% in samples K4450 and K3050 while a lower value of 
85% is observed in sample K9950C probably due to the higher molecular mass 
of this sample. 
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Figure 2.77. Stress relaxation curves of sample K4450 (52 wt% of ethylene) obtained at εcost= 
50% (A,A’) as a function of time in linear (A) and in logarithmic (A’) scales. The fitting curve 
according with the equation 4 is also reported (blue curve in A).  
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Figure 2.78. Stress relaxation curves of sample K3050 (49 wt% of ethylene) obtained at εcost= 
50% (A,A’) as a function of time in linear (A) and in logarithmic (A’) scales. The fitting curve 
according with the equation 4 is also reported (blue curve in A).  
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Figure 2.79. Stress relaxation curves of sample K9950C (44 wt% of ethylene) obtained at εcost= 
50% (A,A’) as a function of time in linear (A) and in logarithmic (A’) scales. The fitting curve 
according with the equation 4 is also reported (blue curve in A).  
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It is worth noting that the experimental data are well fitted with equation (4) 

(blue curve). This means that the stress-relaxation of these samples can be 
easily interpreted with a model consisting of two Maxwell models connected in 
series. The stress decays over the time with two relaxation times τ1 and τ2 and, 
therefore, the whole relaxation is a results of the relaxation of two components 
that decay with different times and mechanisms. The values of the parameters 
evaluated from the stress-relaxation experiments of all samples at εcost= 50% 
and 600% (initial and final values of stress and the relative drop of the stress) 
are reported in Table 2.12 and in Figure 2.80. The values of parameters of 
equation 4 that fit the experimental data (relaxation times τ1 and τ2, initial stress 
σo and weights of the two relaxation mechanisms ϕ1 and ϕ2) are reported in 
Table 2.13 and Figure 2.81.  

From this analysis it is possible to conclude that in semicrystalline samples 
of the first and second sets, with ethylene concentration in the range 78-64 
wt%, at both deformations, the first component relaxes more slowly, in times of 
the order of magnitude of τ1 ≈ 104 s (Figure 2.81B), with a weight of 80% of the 
total relaxation (Figure 2.81C), whereas the second component relaxes more 
rapidly, in time of the order of magnitude of τ2 ≈ 102 s (Figure 2.81D), with a 
weight of 20% of the total relaxation (Figure 2.81C).  

The sample K6260Q shows a different behavior because it shows very high 
load drop at deformation of 50% (Figures 2.73A and 2.80) and values of 
relaxation times τ1 and τ2 much smaller than those of the other samples (Figure 
2.81B,D). Moreover, the slower component affects for about the 30% of the 
load drop in experiments at εcost= 50%, while values of the relaxation times 
similar to those of other samples are observed in measurements at εcost= 600% 
(Figure 2.81C). The values of τ2 are similar for all samples of these sets at both 
deformations εcost= 50% and εcost = 600%, while the longer relaxation times τ1 

evaluated in experiments at εcost = 600% are twice of those evaluated in 
experiments at εcost= 50%.  

In the amorphous samples belonging to the third set with ethylene 
concentration in the range 52-44 wt%, the drop of stress is close to 100% (εcost= 
50%) except in the sample K9950C, and both the relaxation times τ1 and τ2 are 
two order of magnitude lower than those of samples with higher ethylene 
content (101 and 102 respectively). 
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Table 2.12.Values of initial stress (σin), final stress (σfin), relative drop of stress (Δσ/σin) evaluated form the experiments of stress-
relaxation at constant deformations of εcost= 50% and 600% of EPM and EPDM samples. 
 

Sample  
Ethylene 
content 
(wt%) 

Diene 
content 
(wt%) 

σin (MPa) σfin (MPa) Δσ/σin (%) 

   εcost= 50% εcost= 600% εcost= 50% εcost= 600% εcost= 50% εcost= 600% 
EPM  78 0 2.23 ± 0.05 2.52 ± 0.12 1.04 ± 0.04 1.07 ± 0.12 54 ± 2 57 ± 2 
K2070P  73 0 1.05 ± 0.03 1.57 ± 0.07 0.45 ± 0.03 0.71 ± 0.03 57 ± 1 54 ± 4 
K5170P  71 1.5 1.09 ± 0.04 1.68 ± 0.1 0.56 ± 0.01 0.96 ± 0.04 49 ± 4 43 ± 6 
K5470P  70 4.6 1.35 ± 0.03  2.13 ± 0.01 0.66 ± 0.02 1.15 ± 0.06 51 ± 3 46 ± 3 
K5470NT  70 4.6 0.99 ± 0.09 2.74 ± 0.02 0.51 ± 0.03 1.33 ± 0.07 48 ± 6 51 ± 6 
K6260Q  67 2.8 0.57 ± 0.01 0.92 ± 0.03 0.03 0.39 ± 0.07 95 ± 1 56 ± 4 
K8570C 66 5.0 0.81 ± 0.07 1.80 ± 0.09 0.39 ± 0.06 1.09 ± 0.07 52 ± 1 40 ± 4 
K5470C  66 4.6 1.05 ± 0.01 1.76 ± 0.06 0.54 ± 0.01 1.01 ± 0.05 48 ± 2 43 ± 2 
K6160D  64 1.2 0.63 ± 0.08 0.86 ± 0.09 0.09 ± 0.01 0.38 ± 0.06 86 ± 1 57 ± 3 
K4450 52 4.3 0.36 ± 0.05 / 0 / 100 / 
K3050 49 0 0.33 ± 0.01 / 0 / 100 / 
K9950C 44 9 0.67 ± 0.04 / 0.10 ± 0.01 / 85 ± 4 / 
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Table 2.13. Values of parameters of equation 4 based on the model composed of two Maxell models connected in series that fit the 
experimental stress-relaxation curves at εcost= 50% and 600% of EPM and EPDM samples: applied stress (σ0), relaxation times (τ1 
and τ2), and relative weight of the first relaxation mechanisms φ1 (φ2 = 1 - φ1). 
 

Sample 
Ethylene 
content 
(wt%) 

Diene 
content 
(wt%) 

σ0= σ1+ σ2 (MPa) τ1 (s) φ1 τ2 (s) 

   εcost=50% εcost=600% εcost=50% εcost=600% εcost=50% εcost=600% εcost=50% εcost=600% 
EPM 78 0 1.63 1.57 34828 43927 0.77 0.78 536 525 
K2070P 73 0 0.76 1.04 29637 44382 0.74 0.79 460 483 
K5170P 71 1.5 0.85 1.25 37964 57593 0.79 0.86 480 464 
K5470P 70 4.6 1.02 1.53 34578 59829 0.77 0.84 480 540 
K5470NT 70 4.6 1.09 1.80 48784 65772 0.79 0.81 474 303 
K6260Q 67 2.8 0.22 0.66 7906 83689 0.27 0.64 150 227 
K8570C 66 5.0 0.59 1.34 39558 83399 0.78 0.87 471 543 
K5470C 66 4.6 0.79 1.29 42803 68234 0.80 0.85 427 484 
K6160D 64 1.2 0.28 0.57 17534 43631 0.46 0.75 199 335 
K4450 52 4.3 0.14 / 236 / 0.21 / 25 / 
K3050 49 0 0.14 / 112 / 0.21 / 14 / 
K9950C 44 9 0.32 / 29683 / 0.40 / 148 / 
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Figure 2.80. Values of the relative drop of stress (Δσ/σin) evaluated from stress-relaxation 
curves at constant deformatuions εcost= 50% (red) and 600% (blue) for all samples of EPM 
copolymers and EPDM terpolymers. 
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Figure 2.81. Values of applied stress σ0 (A), relaxation time τ1 (B), relative weight of the first 
relaxation mechanisms φ1 (φ2 = 1 - φ1) (C), relaxation time τ2 (D), calculated from the fitting of 
stress-relaxation curves at εcost= 50% (red) and 600% (blue) for all samples of EPM 
copolymers and EPDM terpolymers. 
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2.6.8 Relationships between SIC and mechanical properties 
In this section a more detailed correlation between mechanical properties and 

SIC already introduced in sections 2.6.5 and 2.6.6 will be presented. 
It is well-known that SIC influences mechanical properties of materials such 

as tensile strength, ductility, ability to relax when stress is applied and then 
removed (elastic recovery) or in experiments of stress-relaxation or creep. In 
many natural and synthetic elastomers, crystallinity may develop upon 
stretching providing higher tensile strength/strain hardening without using 
fillers or vulcanization/curing processes. At the same time they improve the 
entanglement effect acting as physical knots in the elastomeric network 
preventing viscous flow of the chains during stretching. This generally results 
in improvement of ductility and elastic recovery. In the case of EPM and 
EPDM samples, all differences in the mechanical behavior observed for 
samples of the three sets analyzed in this work are due to the occurrence of SIC 
and its entity.  

Figure 2.82 shows a comparison between stress-strain curves of the 
crystalline sample EPM (78 wt% of ethylene) and one of the three copolymers 
belonging to the first group (K5470NT, 70 wt% of ethylene) and the 
corresponding X-ray diffraction patterns recorded during deformation. As 
discussed in section 2.6.6 the sample EPM is already crystalline in the 
undeformed state and stretching produce only orientation of these crystals of 
pseudohexagonal form of PE. The sample K5470NT, instead, is initially 
amorphous or shows faint crystallinity, but further crystallization occurs during 
stretching via SIC. The two samples show great differences in modulus and 
stress at yield, the crystalline sample EPM having higher modulus and yield 
stress, but they display similar stress at break and ductility thanks to occurrence 
of SIC in the sample K5470NT. As a matter of fact, the sample K5470NT 
shows stress at break even slightly higher than the crystalline sample EPM, 
even though it is initially nearly amorphous. 
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Figure 2.82 Comparison of stress-strain curves and corresponding X-ray diffraction patterns 
recorded during stretching of the copolymer EPM (78 wt% of ethylene, red curve) and the 
terpolymer K5470NT (70 wt% of ethylene, blue curve). 

 
Figure 2.83 shows a comparison between stress-strain curves and 

corresponding X-ray diffraction patterns recorded during deformation of 
samples K5470NT (with 70 wt% of ethylene) and K6160D (with 64 wt% of 
ethylene). Both samples initially appear amorphous or contain the discussed 
cryptocrystallinity. Crystallization occurs upon stretching but the entity of SIC 
is higher in the sample K5470NT (belonging to the first set of samples) than in 
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sample K6160D (belonging to the second set of samples), as demonstrated by 
X-ray diffraction patterns and the corresponding values of the crystallinity 
increment Δxc shown in the section 2.6.6. The difference in the amount of SIC 
has been explained in the section 2.6.6 in terms of difference of ethylene 
content and, hence, difference in the lengths of ethylene sequences, between 
samples belonging to the first set (having ethylene content in the range 78-70 
wt%) and samples belonging to the second set (with 67-64 wt% of ethylene). 
The two samples show big differences in ductility and tensile strength due to 
different amounts of SIC. Without (or with small) SIC the mechanical 
properties do not improve during deformation. 

SIC in elastomers may be a reversible phenomenon. Also for the samples of 
EPDM, when the tension is removed after deformation at a maximum strain, a 
partial melting of crystals formed upon stretching and a partial loss of crystal 
orientation have been observed, correspondingly to the elastic recovery (see 
section 2.2.6). Nevertheless, a residual crystallinity remains in stress-relaxed 
fibers. The residual crystallinity, as evaluated in section 2.6.6, is related to 
ethylene concentration (Figure 2.67A,B). Since crystals act as physical knots in 
the elastomeric network, the residual crystallinity also influence the elastic 
recovery and the mechanical properties of stress-relaxed fibers. In the section 
2.6.5 it has been demonstrated that the tension set ts(ε) decreases and the 
percentage of the deformation ε which is recovered after removing the tension 
R(ε) from deformation ε increases with decreasing ethylene concentration 
(Table 2.9 and Figure 2.51E). The amount of elastic recovery is related to the 
presence of initial crystallinity and of residual crystallinity after relaxation. In 
sample EPM with 78 wt% of ethylene the residual crystallinity, similar to the 
initial crystallinity, is very high, so that the tension set is high and R(ε) is low. 
A fast decrease of the tension set is observed already for small decrease of 
ethylene concentration and all samples with ethylene content in the range 73-
64% show similar low values of tension set and high values of elastic recovery 
(Table 2.9 and Figure 2.51E). Therefore, in this range of ethylene 
concentration, between the two vertical dashed lines in Figure 2.51E, the 
presence of initial crystallinity the occurrence of strain-hardening and the low 
values of tension set give the best elastic properties associated with remarkable 
strength. 
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Figure 2.83 Comparison of stress-strain curves and corresponding X-ray diffraction patterns 
recorded during stretching of the terpolymer K5470NT (70 wt% of ethylene, blue curve) and the 
terpolymer K6160D (64 wt% of ethylene, green curve).  
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A comparison between stress-strain hysteresis cycles of samples EPM (78 
wt% of ethylene) and K5470NT (70 wt% of ethylene) is shown in Figure 2.84. 
Although the undeformed films of these samples show similar values of stress 
and strain at break (Figure 2.49A,E), but different values of yield stress due to 
the different initial crystallinity, the mechanical behavior of stress-relaxed 
fibers is different. The sample K5470NT, and all samples with 73-70 wt % of 
ethylene, appears amorphous or very low crystalline in the undeformed state but 
crystallizes upon stretching. After releasing the tension a partial melting of 
crystals formed upon stretching occurs and the residual crystallinity after 
relaxation is lower than that in the sample EPM. This transformation is 
reversible. The continuous crystallization and melting phenomena occurring 
during stretching and relaxation allow development of good elastic properties 
associated with a remarkable strength. The mechanical strength of the sample 
K5470NT is lower than that of the sample EPM that, however, shows less 
elasticity. 

A comparison of first and successive hysteresis cycles of stress-relaxed 
fibers of sample K5470NT (70 wt% of ethylene) and K6160D (64 wt% of 
ethylene) is shown in Figure 2.85. The residual crystallinity evaluated from X-
ray diffraction patterns is lower in the sample K6160D (and in all samples of 
the second set, except samples K5470C and K8570C). Therefore, as discussed 
in section 2.6.5, stress-relaxed fibers of samples K6260Q and K6160D with 67 
and 64 wt% of ethylene, respectively, show higher elastic recovery than 
samples with ethylene content in the range 73-70 wt%.  

In section 2.6.7 the influence of SIC on stress-relaxation experiments has 
also been discussed. The main effect of SIC has been observed in the drop of 
stress occurring at different values of the constant deformation εcost. The drop of 
stress is unexpectedly lower in experiments performed at εcost= 600% than in 
experiments performed at εcost= 50% (Figure 2.69-2-72). This is due to the 
occurrence of stress induced crystallization (SIC) at the high deformation of 
600%. Crystals formed upon stretching at high deformation act as physical 
knots in the elastomeric network preventing the viscous flow and limiting the 
drop of stress in the stress-relaxation.  
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Figure 2.84. Comparison of stress-strain hysteresis cycles of stress-relaxed fibers and 
corresponding X-ray diffraction patterns recorded during stretching and relaxation of the 
copolymer EPM (78 wt% of ethylene, red curve) and the terpolymer K5470NT (70 wt% of 
ethylene, blue curve). 

 

480 
 



 
Figure 2.85 Comparison of stress-strain hysteresis cycles of stress-relaxed fibers and 
corresponding X-ray diffraction patterns recored during stretching and relaxation of samples 
K5470NT (70 wt% of ethylene, blue curve) and K6160D (64 wt% of ethylene, green curve).  

 
 
 
 
 

481 
 



2.7 Conclusions 
In this chapter the relationships among composition, initial crystallinity, 

stress induced crystallization, residual crystallinity after relaxation and physical 
properties of EPM copolymers and EPDM terpolymers have been analyzed.  

EPDM terpolymers with high ethylene contents (higher than 78-80 wt%) are 
generally crystalline, with crystallinity arising from crystallization of ethylene 
sequences in the polymorphic forms of polyethylene (PE). EPDM samples with 
ethylene concentration in the range 60-70 wt% appear instead amorphous in the 
undeformed state, if analyzed by classic wide-angle X-ray diffraction (WAXS). 
However, the possible presence of crystallinity in the underformed state in these 
copolymers, even when not visible through WAXS (faint or crypto 
crystallinity), has been analyzed in detail with different techniques of structural 
analysis in different length scales. In particular, analysis by small-angle X-ray 
diffraction scattering (SAXS) has surprisingly revealed the presence of a 
correlation peaks in samples with low ethylene concentration (67-64 wt%) that 
appear amorphous from the WAXS profiles. For these samples the presence of 
crystallinity has also been revealed by the presence of endothermic and 
exothermic peaks in the DSC heating and cooling curves. Therefore, SAXS and 
DSC data indicate the presence of a cryptocrystallinity in the undeformed state 
of these samples, surprisingly not detected by WAXS but revealed by SAXS. 
This result also indicate that, depending on the catalyst used for the synthesis, 
these samples are characterized by ethylene sequences long enough to 
crystallize even in the presence of a so high concentration of propylene units. 

Crystallization further occurs during deformation and the Stress-Induced 
Crystallization (SIC) in EPM copolymers and EPDM terpolymers has been 
studied and correlated with the ethylene concentrations and the presence of 
initial crystallinity in the undeformed state. We found that initial crystallinity, 
SIC and residual crystallinity after elastic recovery are influenced by the 
ethylene concentration and distribution of comonomers along the chains and, in 
particular, by the length of ethylene sequences, which, in turn, is defined by the 
used catalyst. Hence, different microstructures induced by different catalysts 
produce different degrees of crystallinity and SIC, and consequent different 
mechanical properties and elastic behavior. 

This study is an exemplary case of how the properties of targeted materials 
can be retro-designed by tailoring the microstructure by controlling the 
polymerization through the rational choice of catalysts and condition of 
polymerization.   
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