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Abstract 
 

Among marine organism, Porifera have proven to be a rich source of new 

metabolites. Sponge are sessile organisms, therefore lacking any physical defence 

against predators. To make up to this lack, they produce species-specific molecules, 

known as secondary metabolites, which may play a key role in interspecific 

competition, defense against predators and reproduction processes. Secondary 

metabolites of marine origins are interesting molecules, often characterised by 

complex and unusual structures, which have shown to have a broad spectrum of 

pharmacological activities, such as anti-inflammatory, antiviral, antibiotic and 

anticancer. These compounds are hence considered promising lead compounds in 

drug discovery. Recently, many marine natural products have been approved, and 

others are in clinical trials. Due to the small amount isolated from the marine source, 

the evaluation of the biological activity of these compounds is often limited. Many 

alternatives have been considered to solve this issue. The total or semi-synthesis of 

these compound represents a valide alternative to provide greater amounts of the 

metabolites of interest, allowing to gain a better insight in their biological activity. 

Currently, the number of synthetic or semi-synthetic drugs is indeed strongly 

increasing.  

This research field forms the backdrop to my PhD work, aimed to the identification 

and structural elucidation of new bioactive marine natural products and to the 

synthesis of analogues with improved biological activities. The main topic of my 

reseach activity was the total synthesis of hybrid peptide/polyketide compounds of 

marine origins. Simultaneously, I was involved in the analysis of the chemical 
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content of the Caribbean sponge Smenospongia conulosa and the Mediterranean 

sponge Geodia cydonium. 

The analysis of the lipofilic extract of the Caribbean sponge S. aurea led to the 

isolation, in 2013, of two hybrid peptide/polyketide compounds: smenamide A and 

B. Although both compounds possess a cytotoxic activity at nanomolar levels, 

smenamide A resulted more active blocking the cell proliferation through a pro-

aapoptotic mechanism. Therefore the total synthesis of smenamide A and its 

analogues was undertaken in order to provide greater amount of the compounds 

needed to confirm the structure of the compound, determine the absolute 

configuration at C-16, that remained undetermined until the end of the synthetic 

project, and to further investigate the cytotoxic activity. The total synthesis resulted 

in the preparation of 16-epi- and ent-smenamide A, two synthetic analogues of 

smenamide A. 

In order to investigate the role of the structural determining-features of smenamides 

family, eight shorter-chain analogues of the synthetic 16-epi-smenamide A have 

been designed and prepared. The evaluation of the antiproliferative activity of 16-

epi-smenamide A, together with its analogues, is now in progress. 

On the other hand, the analysis of the organic extracts of the Caribbean sponge 

Smenospongia conulosa and the Mediterranean sponge Geodia cydonium led to the 

identification of two new hybrid peptide/polyketide compounds, conulothiazole A 

and B, and an active fraction, respectively.  

The evaluation of the biological activity of conulothiazoles could not be carried out 

because of the low amount isolated from the marine source.  

As for G. cydonium active fraction, it showed an antiproliferative activity on three 

humar cancer breast cell lines (MCF-7, MDA-MB-231 and MDA-MB-468). The 
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use of LC-HRMS, LC-HRMS/MS coupled with a bioinformatic techniques, e.g. 

Molecular Networking, as a novel dereplication strategy allowed to identify most 

of the metabolites contained in this fraction. In addition, the evaluation of the 

metabolomic profiling and the cytokine levels of the three cancer cell lines after 

treatment with the active fraction showed that the latter participates in the 

modulation of several metabolites in pro- or anti-tumor processes. Further studies 

are necessary in order to understand the mechanism of action of each compound 

contained in this fraction, as well as the evaluation of the possible synergistic effect 

of a pool of compounds. 

 

 

 

  



 

INTRODUCTION 

 

Since the dawn of time natural products have been used as a remedy to relieve their 

pains. The first humans nourished themselves not only with meat, but also roots, 

berries, herbs and wild fruits. By eating them, they accidentally discovered their 

healing benefits. Ancient apothecaries learned several techniques in order to 

prepare, store and make use of medicinal herbs. They used them as a panacea, only 

basing their uses on empirical evidences. 

Extremely relevant is the example of aloe species, widely described by the Greek 

physician Dioscoride, in his play De materia medica. Among the remarkable 

benefits of these plants, it is possible to cite: healing of plagues and wounds, 

protection and relief towards burns, itching and cutaneous inflammation. In 

addition, it is worth to mention nettle, also known as "green gold", which is a potent 

anti-inflammatory, stimulator of microcirculation, with antiseptic and elasticising 

properties especially when used in combination with olive oil.  

However, it is only in eighteenth century that, through the manipulation of the 

organic extracts from natural sources, scientists isolated the first chemical pure 

compounds. With the introduction of new isolation and purification techniques an 

increasing number of these compounds have been identified, prompting researchers 

to study cells and organisms from which they derive from, identifying similarities 

and differences.  

Primary metabolism is the ensemble of chemical reactions by which some 

substances, known as primary metabolites, are produced. Carbohydrates, amino 

acids, nucleic acids and fatty acids are primary metabolites. They are essential for 

cell survival. Secondary metabolites, on the other hand, regulate other functions and 
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they vary from species to species. They are part of specialised characteristics of a 

cell, and participate in interspecific competition, defense against predators and 

promotion of reproduction processes. 

Secondary metabolites are characterised by peculiar and complex structure, which 

brings about several different biological activities. 

Currently, about 42% of compounds used in therapy are natural substances or their 

derivatives. Among them, it is worth to cite some molecules with anti-inflammatory 

(e.g. acetylsalicylic acid), bronchodilator (e.g ephedrine), cardiotonic (e.g digoxin 

and digitoxin) and anticancer (e.g vincristine, vinblastine, taxol) activities. 

Therefore, modern pharmaceutical discovery programs owe much to natural 

products. Pharmaceutical companies are always looking for new drugs for the 

treatment of life-threatening diseases, in particular cancer. Despite the cancer death 

rate has significantly dropped since 1991,1 cancer still is the leading cause of death 

in 21 States. In particular, because of the increasing of drug resistance against 

common anticancer therapies, new chemotherapeutic agents are urgently required. 

Moreover, the incidence of new types of cancer, such as glioblastoma, increases 

rapidly2. In the latest 50 years, thanks to advances in technologies (in particular 

scuba diving) researchers have quickly turned their attention to the marine 

environment, thus beginning the “blue chemistry Age". Marine natural products 

(MNPs)3 are interesting molecules characterised by complex and unusual molecular 

skeletons, as well as a great structural diversity. Due to the greater genetic 

heterogeneity of marine organisms, this structural variability results in a variety of 

biological activities. 
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As reported recently,3 a wide range of molecules with cytotoxic, antimicrobial and 

antiviral activities have been isolated. Therefore, MNPs are largely recognized as 

one of the most prolific source of therapeutics. 

From a practical point of view, there are many problems concerning the isolation 

of new MNPs. The main difficulty of developing drugs from a marine source 

resides in the sustainable supply from the natural source.4 

For instance, Porifera and Tunicates, source of many bioactive compounds, are 

sessile organisms, the collection of which can only be performed by hand using 

scuba diving or with the aid of submarines equipped with robotic arms. In addition, 

the chemical composition of organic extracts can deeply vary within samples of the 

same species when collected in different places or at different moments. Moreover, 

due to the exiguous amounts of these compounds isolated from the marine source, 

the study of their biological activity is more complicated. Nevertheless, the interest 

for this kind of molecules remains high, pushing the researchers to find solutions 

for the supply. Among the alternatives, of great importance are aquaculture 

(massive growth of the organisms in a controlled area) and production of 

metabolites of interest through cell cultures. Recent studies have shown that 

secondary metabolites are often produced by the microbial symbionts of the 

sponges.5 Since the microbial fauna is largely unculturable, chemical synthesis 

represents a valid alternative. 

Organic synthesists aim to the construction of natural or designed molecules whose 

primary element is carbon with the purpose of synthetising in the laboratory natural 

products occurring from the living world.6 Organic synthesis sinks its roots in 1828, 

when German chemist Friedrich Wöhler performed the serendipitous synthesis of 

urea from ammonium isocyanate.7  
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Chemical synthesis is fundamental to provide larger quantities of the desired natural 

compound needed to further investigate its biological activity. Several to hundred 

grams are instead required for preclinical and clinical development of a drug. 

Synthesis is also extremely useful to determine the absolute stereochemistry of 

stereogenic centers when this cannot be achieved by spectroscopical tools or 

derivatization methods such as Marfey’s method.8 Moreover, synthetic analogues 

can be prepared in order to perform SAR (structure–activity relationship) studies 

aiming to improve the bioactivity and reduce the toxic side effects.  

Although most of the drugs currently approved are natural products, the number of 

synthetic or semi-synthetic drugs is increasing thanks to their production cost, time 

effectiveness and easy quality control. 

Among drugs of marine origins currently produced via synthesis, it is worth to 

mention Trabectedin (Yondelis®), a tetrahydroisoquinoline alkaloid isolated from 

the Caribbean tunicate Ecteinascidia turbinata.9 It has been approved as anti-

neoplastic drug for the treatment of soft tissue sarcoma and, in combination with 

pegylated liposomal doxorubicin, for patients with platinum-refractory ovarian 

cancer. Trabectedin is now produced synthetically. 

Ziconotide (Prialt®) is a synthetic non-opioid analgesic drug, equivalent of the 25-

amino acid peptide -conotoxin MVIIA, originally isolated from the venom of the 

marine snail Conus magus.10 It is used in symptomatic management of severe 

chronic pain in patients with cancer or AIDS, for whom intrathecal (IT) therapy is 

warranted, and who are intolerant of or refractory to treatment with morphine and 

systemic analgesics.  

Brentuximab vedotin (ADCETRIS®)11 is a cysteine-linked antibody-drug conjugate 

(ADC) in which the chimeric monoclonal anti-CD30 antibody (obtained by 
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recombinant DNA technology), is covalently linked to the monomethylauristatin E 

(MMAE). The latter is a semi-synthetic analogue of the marine cytotoxic peptide 

dolastatin-10, isolated from the mollusk Dolabella auricularia. ADCETRIS® is 

actually used in the treatment of Hodgkin’s lymphoma (HL) and systemic 

anaplastic large cell lymphoma (ALCL).  

The present research project is focused on the study of Caribbean and 

Mediterranean marine sponges in order to discover novel anticancer lead molecules 

and to design and prepare their synthetic or semi-synthetic analogues. 

More precisely, during my PhD I was involved in the study of the chemical 

composition of the organic extracts of the Caribbean sponges Smenospongia aurea 

and conulosa and the Mediterranean sponge Geodia cydonium. 

Four hybrid polyketide/peptide (PKS/NRPS) compounds have been previously 

isolated by our group from the organic extract of S. aurea.12,13 Among these 

compounds, smenamide A showed a potent cytotoxic activity at nanomolar 

concentrations on a non-small-cell lung cancer (NSCLC) cell line, known as Calu-

1. As part of my PhD project,  a strategy to prepare synthetic derivatives has been 

set up. The stereoselective total synthesis resulted in the preparation of two 

analogues of smenamide A: 16-epi- and ent-smenamide A.14 

A different approach was instead used for the study of the chemical content of the 

Mediterranean sponge G. cydonium. A bioguided fractionation of the cytotoxic 

organic extract of the sponge was performed. This procedure allowed the 

identification of one antiproliferative fraction acting with an apoptotic mechanism 

against MCF-7, MDA-MB231, and MDA-MB468 breast cancer cell lines.15 

Interestingly, no activity was observed on the normal breast cell line (MCF-10A) 
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used as control. Such a result opens up the possibility of using this fraction for 

therapeutic purposes. 

The results obtained during my PhD have been divided in two sections: 

 The main project of my research activity, which resulted in the total 

synthesis of 16-epi- and ent-smenamide A, two new hybrid PKS/NRPS 

compounds. 

 Simultaneously, I analysed the chemical composition of two marine 

sponges, S. conulosa and G. cydonium.  
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The results achieved during my Ph.D. have been reported in four publications on 

peer-rewied journals. 

 

1. A. Caso, A. Mangoni, G. Piccialli, V. Costantino, and V. Piccialli, Studies 

toward the Synthesis of Smenamide A, an Antiproliferative Metabolite from 

Smenospongia aurea: Total Synthesis of ent-Smenamide A and 16-epi-

Smenamide A, ACS Omega, 2017, 2(4), 1477–1488. Impact Factor: * 

2. G. Esposito, G. Della Sala, R. Teta, A. Caso, M.L. Bouguet-Kondracki, J.R. 

Pawlik, A. Mangoni, V. Costantino, Chlorinated thiazole containing 

polyketide-peptides from the Caribbean sponge Smenospongia conulosa: 

structure elucidation on microgram scale. Eur. J. Org. Chem. 2016, 16, 

2871–2875. Impact Factor: 2.834 (2016). 

3. S. Costantini, E. Guerriero, R. Teta, F. Capone, Caso, A. Sorice, G. 

Romano, A. Ianora, N. Ruocco, A. Budillon, V. Costantino, M. Costantini, 

Evaluating the effects of an organic extract from the mediterranean sponge 

Geodia cydonium on human breast cancer cell lines, Int J Mol Sci.,2017, 

18(10). pii: E2112. Impact Factor:3.226 (2016).  

4. A. Caso, I. Laurenzana, D. Lamorte, S. Trino, G. Esposito, V. Piccialli , and 

V. Costantino, Smenamide-A-analogues: a case-example of the application 

of the functional-analogues strategy to design and study complex natural 

lead compounds, Mar. Drugs, 2018, accepted. Impact Factor:3.503 (2016).  

 

* The first volume of this paper was published in December 2015. The value of its impact factor 

has not yet been disclosed. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Costantini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Guerriero%20E%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Teta%20R%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Capone%20F%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Caso%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sorice%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Romano%20G%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ianora%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ruocco%20N%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Budillon%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Costantino%20V%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/?term=Costantini%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28991212
https://www.ncbi.nlm.nih.gov/pubmed/28991212
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Chapter 1 

Structural elucidation techniques 

Before the introduction of spectroscopy, structural determination of new chemical 

compounds was carried out through degradative methods and/or derivatisation of 

functional groups. The main problem of degradative techniques is the total loss of 

the sample. As regards derivatisation methods, these can change sample 

composition, may not be quantitative or give by-products, and reduce amount of 

the analyte. Considering that natural products are often isolated in very exiguous 

amounts, these techniques are evidently unsuitable for structural elucidation of 

micrograms of compounds.  

The introduction of highly sensitive and non-degradative methodologies marks a 

turning point in the field of structural determination, allowing the elucidation of 

submilligrams samples.  

Structural elucidation of each molecule described in thesis has been accomplished 

through spectroscopic techniques, mostly NMR spectroscopy and mass 

spectrometry (MS), but also IR and CD spectroscopy. The absolute stereochemistry 

of amino acids has been established by using Marfey’s method. The specific 

rotation of each chiral compound has been determined by measuring the optical 

rotation at the sodium D line (589 nm). 

 

1.1 Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful, high sensitive 

and non-destructive analytical tool used for the identification of the carbon-
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hydrogen framework of an organic compound. It allows structure elucidation, 

qualitative and quantitative analysis of single molecules or mixtures of compounds.   

NMR experiments involve the nuclei of atoms: the chemical environment of a 

specific nucleus is determined getting information about that nucleus. When the 

sample is placed in a magnetic field, it is excited by radio waves. Therefore, the 

nuclei get into nuclear magnetic resonance, and it is detected with sensitive 

detectors (Figure 1). 

 

Figure 1.1. Scheme of a NMR spectrometer. 

 

Subatomic particles (protons, neutrons and electrons) can be imagined as spinning 

around their axes. In some cases, these spins are paired against each other and the 

nucleus of the atom has no overall spin. However, in some atoms (such as 1H 

and 13C) the nucleus has an overall spin.  

The rules for determining the net spin of a nucleus are the following: 

1. If the number of neutrons and the number of protons are both even, then the 

nucleus has NO spin. 

2. If the number of neutrons plus the number of protons is odd, then the 

nucleus has a half-integer spin (i.e. 1/2, 3/2, 5/2) 

https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
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3. If the number of neutrons and the number of protons are both odd, then the 

nucleus has an integer spin (i.e. 1, 2, 3) 

Therefore, what is important is the overall spin, I. Particularly useful isotopes 

are 1H, 13C, 19F and 31P, all of which have spin I = 1/2. 

A spinning charge generates a magnetic field (Figure 2). The resulting spin-magnet 

has a magnetic moment (μ) proportional to the spin.             

 

Figure 1.2. A spinning charged particule generate a magnetic field. 

 

Since spin I has have 2I + 1 possible orientations, a nucleus with spin 1/2 will have 

2 possible orientations. In the absence of an external magnetic field, these 

orientations are of equal energy. When a magnetic field is applied, these nuclei align 

themselves with or against the magnetic field (Bo) and the energy levels split. Each 

level is characterized by a magnetic quantum number, m (Figure 1.3).  

 

Figure 1.3. Spin energy states. 

 

In particular, irradiation with electromagnetic radiation allow the low energy state 

to flip over to the high-energy state. The difference in energy between the two spin 

states is dependent on the external magnetic field strength, and is always very 

small. The stronger is the magnetic field (Bo), the larger is the difference in energy 
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of the two energy states. For nuclei with spin 1/2 the energy difference between the 

two spin states at a given magnetic field strength is proportional to their magnetic 

moments. 

When the radiation cease, a free induction decay (FID) is produced because of the 

nuclei relaxation. The FID is transformed through the Fourier transform to give the 

peaks of the NMR spectrum. The Fourier transform is a mathematic transformation 

that allows to write a time-dependent function in the frequency domain. 

The use of mono and two-dimensional NMR experiments represented a 

fundamental tool for the structural determination of each compound described in 

this thesis. 

 

1.1.1 One-dimensional NMR experiments 

A single nucleus is analysed in a one-dimensional NMR esperiment. In a 1D NMR 

spectrum the intensity is expressed as a function of the frequency. It is a two-

dimesional chart but it is defined as one-dimensional because it involves only one 

dimension “frequency”.  

The most common one-dimensional NMR experiments concern 1H and 13C.  

As for 1H spectra, since protons all have the same magnetic moment we might 

expect no difference in their resonance signals. Fortunately, they behave differently 

in the NMR experiment. This phenomenon can be explained by electrons shelding. 

Electrons are indeed charged particles, hence they response to the external magnetic 

field (Bo) generating a secondary field. The latter, opposing to Bo, shields the 

nucleus from the applied magnetic field. Therefore, to achieve resonance and then 

absorption of rf energy, Bo must be increased. 
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Based on its chemical environment, each proton resonates at a specific chemical 

shift (expressed in parts per million, ppm). This means that it is differently located 

in the proton spectrum. 

Although the 1H NMR spectroscopy is a powerful tool in the field of structural 

determination, it can not provide information for those molecules composed by big 

portions lacking carbon-hydrogen bonds.  

13C NMR experiments can provide the missing information. It is worth noting that 

13C isotope is only 1.1% abundant and the nucleus is fifty-fold less sensitive than a 

proton in a NMR experiment. For these reasons high concentrated samples are 

required. Moreover, the spectra are complicated by the large one-bond coupling 

between and 1H. Protons bonded to a 13C atom split its NMR signals from 130 to 

270 Hz, further complicating the spectrum. The issue has been solved thanks to the 

use of the high-field pulse technology in combination with broad-

band heteronuclear decoupling of all protons. Several acquisitions are accumulated 

in each experiment in order to provide a stronger signal. Also, thanks to the 

decoupling irradiation the sensitivity of carbon nuclei bonded to protons is 

enhanced.  

 

1.1.2 Two-dimensional NMR experiments 

In addition to 1D experiments, two-dimensional experiments have been recorded 

and analysed in order to complete the resonance assignment of each molecule.  

A two-dimensional NMR spectrum is a three-dimensional chart in which two 

frequencies are expressed as function of the intensity.  

https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/nmr/nmr2.htm#decoupl
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Considering that, in a NMR experiment, frequencies derive from the Fourier 

transformation of a time-dependent function, the simultaneous acquisition of two 

temporal functions is required to obtain a 2D spectrum.  

Although the nuclei resonate in crowded regions of the spectra, a remarkably easier 

interpretation characterises 2D spectra (signals’ superimposition is much less 

frequent in two dimensions than in one). Their easier interpretation and shorter 

acquisition times make 2D experiments superior than the one-dimensionals. 

Two kinds of two-dimensional experiments can be mentioned: homonuclear and 

heteronuclear experiments. A 2D experiment is defined as homonuclear if the two 

frequencies refer to the same nucleus. Vice versa, in a heteronuclear experiment the 

correlation peaks between two different nuclei are observed. 

The COSY (Correlation SpettroscopY) experiment was the first two-dimensional 

NMR experiment invented. It is simple and still widely used today in its various 

versions (COSY, DQF-COSY, COSY-b, COSY-90). The analysis of a COSY 

spectrum provides information about homonuclear correlations of protons between 

them to 2 or 3 bonds (scalar spin-spin coupling). 

The HSQC (Heteronuclear Single Quantum Coherence)1 experiment is a 2D 

heteronuclear correlation experiment detecting correlation peaks between 13C and 

1H nuclei directly bonded each other through the direct coupling constant 1J C-H. 

The HMBC (Heteronuclear Multiple Bond Correlation)2 experiment is a long-range 

heteronuclear experiment acquired in reverse detection. In a HMBC spectrum 

correlations between 1H and 13C through two (2JCH) or three bonds (3JCH) are 

visible. This experiment allows the identification of the correlations between 

quaternary carbons (not visible in the HSQC spectrum) with protons close to them. 
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However, not all of the correlation peaks expected from the structure of a molecule 

are present in many HMBC spectra. Since 2,3JCH can very different to each other, 

the optimization of the experiment for each type of coupling is required. 

 

1.2. Methods for the determination of relative/absolute configurations 

Since most of the natural compounds have one or more chiral centers, the 

determination of their relative and absolute configuration is fundamental for their 

structural characterization. The knowledge of the stereochemistry of a molecule 

allows to trace back to its three-dimensional structure and its role in the interaction 

with the biological systems, e.g. the SAR studies of synthetic molecules which are 

designed and prepared in order to improve the drug-receptor interaction and, then, 

their biological activity in comparison with the natural lead compounds. 

The determination of the relative configuration of the chiral centers can be achieved 

evaluating NMR data such as the values of chemical shifts (δ), coupling constants 

(J) and NOE effects.  

The chemical environment of a proton influences its chemical shift, hence protons 

of two diastereomers show different values. 

Many information about the relative stereochemistry of an organic molecule can be 

obtained studying the coupling constants values (JH-H). The application of Karplus 

law The application of Karplus law allows to calculate both homonuclear, 3JH-H, 

and heteronuclear, 3JC-H constants values. These values depend on the dihedral 

angle θ between the coupled atoms.3 When θ is approximately 90°, the 3JH-H values 

are very small, about 0-1.5 Hz, whereas the values increase considerably when θ is 

between 0° or 180°. In addition, the axial-axial relationship between two protons of 

a six terms cycle (3Ja-a~ 9-13 Hz) can be distinguished in comparison with the axial-
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equatorial (3Ja-e ~ 5-8 Hz) and the equatorial-equatorial (3Je-e ~ 2.5 Hz). As a 

consequence, the cis-trans relationship between the protons of a double bond (3Jcis 

~ 6-12 Hz, 3Jtrans ~ 14-20 Hz) can be determined. 

Moreover, the study of homonuclear couplings between neighboring protons 

(dipolar couplings) can provide further information about the relative configuration 

of a chiral center. Dipolar coupling involves nuclei which are close in space, and 

not coupled through bonds, as in scalar coupling.  

Exploiting the dipolar coupling, the spatial relationship between the substituents of 

a molecule can be established through the evaluation of the NOE effect (Nuclear 

Overhauser Enchancements)4.  

When a proton HA, nearby located to another, HB, undergo irradiation, a variation 

of the signal intensity of HB can be observed. This phenomenon is known as NOE 

effect. Generally, an increasing of the signal intensity (positive NOE) is observed 

for small organic molecules, while a decreasing is observed for macromolecules 

(negative NOE). Since the increase in intensity is small, normally the NOE is 

measured using the difference spectra (NOE difference): two spectra are recorded 

with and without irradiation. In the difference spectrum, deriving from the two 

original spectra, only the protons showing NOE effect, can be detected. 

Since this experiment involves a pair of protons at a time, nowadays it is often 

replaced by a single two-dimensional experiment, called NOESY (Nuclear 

Overhauser Effect SpectroscopY). The latter is a 2D NMR homonuclear correlation 

experiment which is able to provide information about dipolar couplings of each of 

the pairs of protons of the molecule at the same time. It shows the presence of a 

NOE effect between two protons, suggesting hence that they are close in space. 
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In addition to NOESY, the ROESY (Rotating-frame Overhauser SpectroscopY) 

experiment can be performed: it detects the ROE effect. Since the latter is related 

to dipolar coupling between nuclei, and depends on the geometric distance between 

the nuclei, it is similar to NOE. But while NOE effect can be positive or negative, 

depending on the size of the molecules, ROE effect is always positive. For this 

reason, the ROESY experiment is particularly useful in the analysis of medium-

sized molecules, which would show a NOE effect close to zero.  

 

1.3 Mass spectrometry 

Mass spectrometry (MS) is a powerful analytical technique used to identify 

unknown compounds, elucidate their structure and chemical properties, and also to 

quantify known materials within a sample.  

The principle underlying a MS experiment is the conversion of a sample into 

gaseous ions, each of which is characterised by a specific mass-to-charge ratio (m/z 

ratio) and relative abundance. The ions that arise from the ionisation process are 

then separated on the basis of their m/z ratio and revealed by a detector. 

A molecule is converted in ions losing an electron: a radical cation is formed 

(molecule ion). The latter is subjected to fragmentation giving in part molecules 

and/or neutral radicals (not detected by the instrument), and in part cations and/or 

cations radicals (fragment ions). 

The ionisation of the sample is then the key step of the whole experiment. The 

sam0ple, which can be solid, liquid or gaseous, is introduced into a vacuum 

chamber through an appropriate introduction system. The molecules may already 

exist in solution as ions, or they can undergo ionization in situ after volatilization 

or by other methods in the ion source. According to their m/z ratio, the gaseous ions 

http://context.reverso.net/traduzione/inglese-italiano/underlying
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obtained are separated in the analyzer and collected by the detector. An electrical 

signal, proportional to the number of ions present, is generated. It is recorded as a 

function of the m/z ratio by the data processing system records and converted into 

the mass spectrum. 

As result of the experiment a graph, named as mass spectrum, is obtained in which 

is the representation of the relative abundance of the ions according to their m/z 

ratio.  

Mass spectrometry is a high sensitive tool allowing the determination of the 

molecular mass of compound and its molecular formula, even if only sub-

milligrams of the molecule are available. 

A mass spectrometer is composed by an ion source, (in which the sample is 

ionized), a mass analyser (where ions are separated on the basis of their m/z ratio) 

and a detector. Many types of ion sources, mass analysers and detectors exist. 

Hereinafter only the methods used for the realisation of this thesis work will be 

described. 

Each molecule described in this thesis have been analyzed by ESI (Electrospray 

Ionization) mass spectrometry (Figure 1.4) through an Orbitrap system. 

 

Figure 1.4. ESI mass spectrometry. 
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A solution of the sample, dissolved in a polar and volatile solvent such as H2O, 

CH3OH and CH3CN, is nebulized at atmospheric pressure inside the ionization 

chamber through a needle held at high electrical potential. 

Therefore, a spray of droplets is formed. The droplets are positively charged 

because of the presence of an electric field. Once the ions are created, it is the role 

of the “ion lens” (which consists of a capillary maintained under vacuum and in a 

negative potential) to extract ions from the source efficiently and focus them as they 

pass through the mass spectrometer accelerating them towards the analyser. 

It is worth to mention a kind of mass spectrometry known as tandem mass (MS/MS) 

spectrometry. During or after ionization, the molecules may indeed undergo 

fragmentation. If the fragmentation does not occur spontaneously, this can be 

induced letting the ions to collide with gas molecules. Since each molecule has a 

specific fragmentation pattern, the analysis of the fragments provides information 

about its the structure. In this case, a second analyzer is used to measure the mass 

of the fragments.  

In some cases, the formation of multiple-charged ions can be observed. This 

happens for molecules with high molecular weight such as proteins. The formation 

of multiple-charged ions facilitates the analysis of this kind of molecules because 

the m/z ratio of the ions is reduced, and therefore easier to measure. 

The mass spectrometer used for the experiments performed in this project was 

equipped with an Orbitrap analyzer, a new type of mass analyzer introduced by 

Makarov.5 The LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer 

is a Fourier Transform Mass Spectrometer (FTMS) in which the most advanced Ion 

Trap and Fourier Transform technologies are combined.  

https://www.thermofisher.com/order/catalog/product/IQLAAEGAAPFADBMAOK
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Figure 1.5. Ion trajectories in an Orbitrap mass spectrometer. 

 

In a Orbitrap analyzer (Figure 1.5) a central electrode, and a pair of bell-shaped 

external electrodes which surrounded it, generate electric fields in order to capture 

and confine the ions. The ions orbit around the central electrode and oscillate back 

and forth down the center axis with periodic motion. Through a Fast Fourier 

Transformation (FFT), the device receives the frequencies of these axial oscillations 

and, therefore, the m/z relations of the ions. 

 

 

1.4. Infrared Spectroscopy 

Infrared spectroscopy is a conservative analytical technique based on the interaction 

between the matter and the infrared light. The most interesting region of IR 

radiations have a wavelength range from 4000 and 400 cm-1. However, near 

(14290-4000 cm-1) and far (700-200 cm-1) infrared regions are also considered 

suitable to contribute to the determination of the structure of a molecule. 

As a consequence of the hitting of a molecule by IR radiations, an absorption of 

energy, converted in vibrational energy, is observed. Therefore, such a technique 

can be defined as a vibrational spectroscopy. 
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Molecular vibrations can be classified in fundamental and non-fundamental. Two 

kinds of fundamental vibration can essentially be observed in a molecule:  

stretching and bending vibrations. The stretching vibration involves the continuous 

change, in terms of interatomic distance, along the axis of the bond between two 

atoms. The bending vibration concerns indeed the variation of the angle between 

two bonds. Stretching vibrations can be symmetric and asymmetric, whereas four 

different bending vibrations can be observed: scissoring and rocking (in-plane 

bendings), wagging and twisting (out of the plane bendings).  

Non-fundamental vibrations appears as a consequence of fundamental vibrations. 

Generally, IR spectroscopy is not sufficient to reveal the structure of a molecule, 

but it can provide useful information to be used in combination with other 

spectroscopic data. Although the IR spectrum is characteristic of each molecule, 

certain functional groups show typical bands in specific regions of the spectrum, 

independently from the whole structure of the molecule.  

The infrared spectrum is a graph in which the absorption bands of the functional 

groups are represented as a function of the wavelength. 

 

1.5. Circular Dichroism 

Circular dichroism (CD) is the physical phenomenon whereby a chiral molecule 

can differently absorb both components, left- and right-handed, of circularly 

polarised light at a given wavelength. Circular dichroism ΔA is then the difference in 

terms of absorbance of the left (AL) and right (AR) circularly polarised light: 

ΔA = AL - AR 

CD spectroscopy is a spectroscopic technique, which measures the CD of the 

molecules over a range of wavelengths. It is widely used to determine the three-
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dimensional structure of chiral organic molecules of all types and sizes, but mostly 

of macromolecules such as proteins. Such a technique can provide information about 

absolute configurations, conformations, reaction mechanisms, etc. 

The presence of at least one chromophore in the structure of the molecule is required 

to observe a differential absorbance. If the molecule does not have a chromophore, this 

can be introduced through derivatisation methods. 

A CD spectrum is a graph in which circular dichroism (ΔA) is represented as a function 

of wavelength. A circular dichroism signal can be positive or negative.  

Since asymmetric electromagnetic radiations are used, CD spectroscopy can 

distinguish between enantiomers. The CD of pure enantiomers differs in sign, but not 

in magnitude. Any relation between the absolute configuration of an enantiomer and 

the sign of its electronic circular dichroism (ECD) can be established: CD depends on 

details of the electronic and geometric molecular structure. However, nowadays the 

ECD can be predicted through electronic structure calculations allowing the assignment 

of the absolute configuration by simply comparison of experimental and computed CD 

spectra. 

 

1.6. Marfey’s Method 

Marfey’s method6 is one of the most used analytical approaches for determining the 

regiochemistry of enantiomeric amino acid residues in natural products. This is a 

derivative method, whereby the natural compound undergo acid hydrolysis to 

deliver the amino acid residues, the configuration of which is undetermined. The 

amino acid residues are then derivatised with a chiral reactive, the 1-fluoro-2,4-

dinitrophenyl-5-L-alaninammide (L-FDAA) (Figure 1.6) and analysed by LC-MS 

analysis. The LC-MS retention times of the derivatised amino acids deriving from 
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the peptide are compared with retention times of the corresponding standards D and 

L amino acid derivatised with the same reagent. 

When the standard amino acids are commercially available, the analysis is quite 

easy and consists of the following steps: 

 Hydrolysis of the peptide with 6N HCl 

 Derivatization of hydrolysed amino acids with L-FDAA 

 Derivatization of both D and L standards amino acids with L-FDAA. If the 

steric D series standard is not commercially available, or is too expensive, the L-

aminoacid under study can be derivatised with L and D-FDAA. 

 LC/MS analysis of derivatised samples and comparison of respective 

retention times. 

  

Figure 1.6. L-FDAA structure. 

 

For non-proteinogenic amino acids, for which the corresponding commercially 

standards are not available, a modified Marfey’s method, known as "Method of 

Marfey Advanced", has been set up.7 

This method, based on the elution order of the L-FDAA-amino acids, was tested on 

a series of proteinogenic and non-proteinogenic amino acids showing that the L-

FDAA-L-amino acid is almost invariably eluted through a C18 column before its 

corresponding L-FDAA-D-enantiomer. 
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Several NMR and UV measurements allowed to understand the mechanism of 

elution of the L-FDAA-derivatised amino acids of L and D steric series through a 

C18 column. 

The more hydrophobic substituents present at the α-carbon of non-proteinogenic 

amino acids were observed to form cis or trans rearrangements with the substituent 

at the α-carbon of L-FDAA. For D-(amino acid)-L-FDAA stereoisomers essentially 

cis rearrangements have been observed. This makes them more hydrophobic and 

then strongly retained by the C18 phase. They show indeed greater retention times 

compared to the less hydrophobic L-(aminoacid)-L-FDAA stereoisomers, which 

are preferentially involved in trans type rearrangements (Figure 1.7).  

 

 

 

  

Figure 1.7. Plausible conformations of the L- and D-amminoacids derivatives during separation 

by Marfey’s method. 

 

This method, overcoming the limits of Marfey’s method, allowed to establish the 

configuration at α-carbon of unconventional amino acids. 

In conclusion, the configuration of a non-proteinogenic amino acid can be 

determined as described below: 
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 An aliquot of amino acid is derivatised with L-FDAA 

 An aliquot of amino acid is derivatised with D-FDAA 

 Analysis of the LC/MS retention times. 

 

1.7 Conclusion 

In this chapter, the main techniques used for the structural determination of the 

molecules described in my thesis have been discussed. 

Among the spectroscopic techniques, NMR and MS provided valuable data about 

the isolated and synthesised compounds. 

The determination of absolute configuration of amino acids in PK/NRP compounds 

was carried out by using Marfey’s method. 
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PART 1 

 

Total synthesis of new hybrid PKS/NRPS 

compounds, in the frame of the anticancer 

drug discovery 

 



 

Chapter 2 

Total synthesis of 16-epi- and ent-smenamide A, 

two analogues of the cytotoxic smenamide A 
 

2.1 Cancer and bioactive natural products 

Cancer is a generic term to define a group of diseases involving abnormal cell 

growth. Such a disease, also know as malignant tumour or neoplasm, arises without 

obvious causes from pre-existing body cells. It has no purposeful function, and it 

has the tendency to independent and uncontrolled growth.  

Compared with benign tumours, in which the mass of abnormal tissue remains 

confined to its original location, a malignant tumour invades adjoining parts of the 

body and spreads to other organs, through the cardiovascular system and other 

channels. The latter process is known as metastasizing.  

Cancer cells are defined as abnormal because they have undergone one or more of 

the following alterations: 

 hypertrophy:  the increase in size of individual cells; 

 hyperplasia: the increase in number of the cells; 

 anaplasia: the regression of the cells towards a more primitive or 

undifferentiated type. 

Neoplasms arises from the transformation of normal cells into cancer cells through 

a multistage process which, starting as a pre-cancerous lesion, leads to a malignant 

tumour. Only in 5–10% of cases the development of tumours can be attributed to 

genetic defects,1 whereas the remaining 90–95% sink their roots in external causes, 

such as the environmental factors and lifestyle. Environmental factors do not only 

https://en.wikipedia.org/wiki/Cell_growth
https://en.wikipedia.org/wiki/Cell_growth
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include pollution, but every causative factor which is not genetically inherited.2 

Three categories of external factor can be cited: physical carcinogens (e.g. 

ultraviolet and ionizing radiation), chemical carcinogens [e.g. asbestos, components 

of tobacco, aflatoxin (a food contaminant), and arsenic (a drinking water 

contaminant)] and biological carcinogens (e.g. infections caused by viruses, 

bacteria, or parasites).  

In normal tissues, there is a delicate balance between the cell growth and 

proliferation and the replacing of dead or damaged cells. The body must continually 

regulate this balance to support own proper development and maintain healthy 

homeostasis of mature tissues. 

In malignant tumours the regulation of the balance is compromised: a continuous 

proliferation of cells occurs, whereas apoptosis processes fail. This phenomenon 

can be traced back to the occurrence of genetic alterations. The incidence of several 

genetic mutations causes the accumulation of many errors which can give birth to 

a cancerogenic process. Some of these mutations are hereditary, while others are 

caused by external factors. 

The genetic events underlying these mutations are essentially two: 

 activation of proto-oncogenes into oncogenes. Proto-oncogenes positively 

control the cell cycle through the regulation of cell division, apoptosis and 

differentiation. When they become oncogenes, normal cell division is 

disrupted and malignant changes occurs.  

 inactivation of tumour suppressor genes. In normal conditions, cells possess 

genes which have the ability to suppress malignant alterations (tumor 

suppressor). Mutations in these genes can trigger the carcinogenic process. 
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As for therapeutical approaches, many treatments are used in the fight against 

cancer. The choice of a specific treatment depends on the type of cancer and its 

stage of development. Among the most common anti-cancer approaches it is worth 

to cite surgery, chemotherapy, and radiotherapy. The surgery is a medical procedure 

by which a surgeon removes and/or examines the tumor mass. Radiation therapy is 

a treatment in which high doses of radiation are used in order to kill cancer cells 

and shrink tumours. Chemotherapy is indeed a treatment involving the use of drugs 

to kill the cancer. Some patients with cancer undergo only one treatment, but most 

patients have a combination of treatments such as surgery with chemotherapy 

and/or radiation therapy.  

The efficacy of chemotherapy depends on the selectivity of the drug against cancer 

cells. The greater the biological differences between healthy and tumor cells are, 

the more the effectiveness of the treatment is.  As these differences are minimal, 

there is no anticancer drug which does not cause serious toxic side effects. 

Therefore, the anticancer chemotherapy is severely limited by the drugs toxicity.  

One of the most daunting features of cancer is its biological diversity which occurs 

not only in different types of tumours but also in the same population. Moreover, 

cancer cells develop very fast cells resistance against common anticancer therapies. 

Despite this seemingly catastrophic scenario, the chances of cancer survival have 

significantly increased in the last decade thanks to the early diagnosis and the 

efficiency of the therapies currently available.  

Since cancer is a constantly evolving disease, the research of safe and effective 

chemotherapeutic agents is a formidable challenge.  
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In the frame of the constant anticancer research, natural products, with their unusual 

and often complex structures, have shown a broad spectrum of pharmacological 

activities. 

Among natural anticancer molecules it is worth to mention vinca alkaloids derived 

from the periwinkle plant Catharanthus roseus, also known as Vinca Rosea. The 

cytotoxic effect of this class of compounds is due to their capability to bind to 

tubulin.3 Tubulin is a cytoplasmic protein which plays a key role during cell 

division: its polymerised form constitutes the “spindle fibers”, also called 

microtubules. The formation of microtubules is a crucial step during cellular 

mitosis, because it provides cells with both the structure and flexibility needed for 

division and replication. Without microtubules, cells cannot divide. The vinca 

alkaloids mechanism exert their mechanism by blocking tubulin polymerisation and 

then the assembly of microtubules. Since the mitotic spindle can not be created, the 

cell consequently stops in metaphase during mitosis.  

The taxanes represent another class of anticancer natural products. Compared with 

vinca alkaloids, they show the opposite mechanism of action: they prevent from the 

disassembly of the microtubules and the mitotic spindle. Paclitaxel, the progenitor 

of taxanes family, was isolated for the first time from the bark of Taxus brevifolia4. 

It is a promoter of tubulin polymerisation. In particular, it bonds the tubulin which 

constitutes the microtubules, stabilising them and preventing them from 

disassembly. Therefore, a morphological alteration is created that leads the tumor 

cell to undergo apoptosis (programmed cell death mechanism). Docetaxel, the 

semi-synthetic analogue of Paclitaxel, was shown to have a slightly different 

mechanism of action. It binds to tubulin, giving rise to different-size microtubules 

in comparison with those induced by Paclitaxel. Moreover, it shows a much longer 

https://en.wikipedia.org/wiki/Catharanthus_roseus
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residence time in the cell. Cabazitaxel is another antineoplastic drug belonging to 

taxanes family, the action of which is based on the breaking of the microtubular 

network. It binds to tubulin and facilitates its polimerisation, stabilizing at the same 

time the microtubules. This process leads to the inhibition of their disassembly, and 

consequentially to the block of both mitosis and interphase cellular functions. 

Although plants are still the main source of bioactive compounds, marine organisms 

and their symbiont microorganisms represent a new prolific source of new bioactive 

molecules.  

In 2007 trabectedin has been approved the first marine anticancer drug with the 

name of Yondelis®. Three years later, auristatin E, a semi-synthetic derivative of 

the cytotoxic marine depsipeptide dolastatin-10, was approved, in combination with 

a monoclonal antibody, for the treatment of Hodgkin's lymphoma.5,6 

Among marine organisms it is worth to cite marine sponges, from which the most 

part of the MNPs have been isolated. An example is the nucleoside analogue Ara-

C, approved since 1969 as anticancer drugs. The latter is a synthetic derivative of a 

compound isolated from the Caribbean sponge Cryptotethia crypta. Recently, 

Eribuline mesylate, a synthetic analogue of halichondrin B (isolated from the 

Japanese sponge Halichondria okadai), has been approved for the treatment of 

metastatic breast cancer.  

My thesis work perfectly matches with this wide research line aiming to the 

isolation and structural determination of new molecules to be used as lead 

compounds in the anticancer drug discovery. Several new hybrid 

peptide/polyketide compounds isolated by my research group.7,8,9 In addition, many 

synthetic analogues have been designed and prepared in order to detected the 



33 
 

 

pharmacophore of this class of compound and further investigate their biological 

activity.10,11 

 

2.2 Smenamides A and B, two cytotoxic secondary metabolites from the 

marine sponge Smenospongia aurea 

Marine sponges are considered one of the most productive sources of novel 

scaffolds to be used as leads in the anticancer drug research. The analysis of the 

organic extract of the Caribbean sponge S. aurea (order Dictyoceratida, family 

Thorectidae) led to the isolation of two new hybrid peptide/polyketide compounds, 

namely smenamide A and B (Figure 2.1).7 

 

Figure 2.1. Structures of smenamide A (1) and B (2). 

 

Although smenamides have no structural analogues in the field of marine natural 

products, they share some structural features with several compounds of 

cyanobacterial origin. The unusual N-methylacetamido function and the 

dolapyrrolidone terminus are typical of dolastatins-15,12 while the chlorovinyl 

moiety is common in some cyanobacterial metabolites, such as jamaicamides, 

isolated from Lyngbia majuscula.13 

Smenamides only differ in the configuration of the C-13 double bond, which was 

determined as E in smenamide A. Both compounds were shown to have a potent 

cytotoxic activity at nanomolar concentrations on the Calu-1 lung cancer cell line 

(Figure 2.2).  
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Figure 2.2. MTT assay of smenamides A and B. Evaluation by MTT assay of Calu-1 cell viability 

after 72 h of treatment with (A) compound 1 and (B) compound 2. ** P < 0.0005. 

 

In particular, smenamide A exerts its cytotoxic activity through a clear pro-

apoptotic mechanism in a dose-dependent way (Figure 2.3). 

 

 

Figure 2.3. Evaluation of pro-apoptotic activity of smenamides using the Annexin-V FITC/PI assay. 

(A) The percentage of apoptosis for cells treated for 72 h with compound 1 at 1, 10, 50, and 100 nM 

was, respectively, 4%, 4%, 40%, and 80%; the remaining cells remained viable. (B) The percentage 

of apoptosis for cells treated for 72 h with compound 2 at 1, 10, 50, and 100 nM was, respectively, 

6%, 6%, 23%, 40%; the remaining cells remained viable except at concentration of 100 nM, where 

47% of cells were necrotic. ** P < 0.0005, * P < 0.001. 

  

In lights of the promising biological activity of smenamide A, a flexible synthetic 

route was planned in order to prepare synthetic analogues aiming to confirm its 

structure, determine the configuration at C-16 -which was undetermined before the 

synthetic project was carried out- and further investigate the cytotoxic activity. 
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2.3. Towards the synthesis of smenamide A: total synthesis of 16-epi- and ent-

smenamide A 

Smenamides are two intriguing molecules belonging to the class of hybrid 

peptide/polyketide compounds. The latter are mixed biogenesis molecules, 

biosynthetically derived from amino acids and short carboxylic acids, showing 

many biological activities (antibiotic, immunosuppressive, antifungal and 

cytotoxic). The skeleton of this class of molecules consists of two main building 

blocks: a peptide and a polyketide moiety. Once the disconnection between the two 

moieties has been identified, the asymmetric total synthesis of these compounds 

can be achieved through the parallel synthesis of the two fragments and their final 

coupling. 

The total synthesis of 16-epi- and ent-smenamide A is a case-example of the 

synthetic approach to this class of compounds. 

 

2.4 Previous stereochemical studies on smenamide A 

Despite the small amount of smenamide A isolated from the natural source, it was 

nevertheless possible to determine its structure using spectrometric and one- and 

two-dimensional spectroscopic techniques. The chemical shifts of the carbon nuclei 

were obtained from the two-dimensional NMR spectra, therefore the one-

dimensional 13C NMR spectra were not recorded. 

The positive ion mode high-resolution ESI mass spectrum of smenamide A (Figure 

2.4) showed the presence of the [M + H]+ and [M + Na]+ pseudomolecular ion peaks 

at m/z 501.2508 and 523.2326, respectively. Both ions show an isotopic peak M + 

2, whose intensity is about 32%, suggesting the presence in the molecule of a 
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chlorine atom, then confirmed by the peak at m/z 487.2557 corresponding to [M-

HCl+Na]+ ion peak. 

 

Figura 2.4. High-resolution ESI mass spectrum of smenamide A. 

 

The molecular formula C28H37ClN2O4 is in perfect agreement with these data. 

The analysis of the proton spectrum (Figure 2.5) showed the presence of five 

aromatic protons (belonging to a mono-substituted benzene), three olefinic protons, 

an amino acidic -proton and five methyl signals (one O-methyl, one N-methyl, 

one acetyl methyl, one olefinic methyl, and one aliphatic methyl). 

 

 

Figura 2.5. 1H NMR spectrum of smenamide A (1) (CD3OD, 700 MHz). 
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Smenamide A possess two double bonds, whose configurations have been 

determined through the analysis of the ROESY spectrum (Figure 2.6). 

 

 

Figure 2.6. 2D ROESY spectrum of smenamide A (CD3OD, 700 MHz).  

 

The presence of the correlation peak between protons H3-14 and H-16, and the 

absence of a correlation peak between H3-14 and H-15, showed the E configuration 

of the double bond between C-13 and C-15 (Figure 2.7). At the same time, the 

presence of the correlation peak between the protons H-21 and H-19a and the 

absence of a correlation peak between H-21 and H2-22 allowed to determine as Z 

the configuration of the double bond between C-20 and C-21. 
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Figure 2.7. Main correlation peaks provided ROESY 2D NMR spectrum of smenamide A 

allowing the assignment of the configuration of the two double bonds of the molecule. 

 

Smenamide A contains two chiral centers, at C-8 and C-16. The absolute 

configuration of C-8 carbon was determined by using Marfey’s method (Figure 

2.8).14 A small amount of smenamide A (5 μg) was suspended in 300 μL of ozone-

saturated CH3OH at -78 ° C for 5 minutes.  

The sample was dried under N2 stream to remove ozone, then treated with 6N HCl 

and heated in a sealed glass tube at 180 ° C for 2 hours. The residual HCl fumes 

were removed under vacuum. The hydrolysate was then dissolved in (CH3CH2)3N 

/acetone (2: 3, 100 μL) and the solution was treated with 100 μL of 1% 1-fluoro-

2,4-dinitrophenyl-5-L-alaninamide (L-FDAA ) in CH3CN/acetone (1: 2). The vial 

was heated to 50 ° C for 1 hour. The mixture was dried, and the resulting L-FDAA-

Phe derivative was re-dissolved in CH3CN/H2O (5:95, 500 μL) for LC-MS analysis. 

An authentic L-Phe standard was treated with L-FDAA and D-FDAA, as described 

above, to give respectively the L-FDAA-L-Phe and D-FDAA-L-Phe standards used 

in the subsequent LC-MS analysis.  
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Figure 2.8. Ozonolysis, hydrolysis and detivatisation of smenamide A with L-FDAA. 

 

Marfey’s derivatives were analyzed by high-resolution LC-MS. A 5 μm Kinetex 

C18 column (50 × 2.10 mm), maintained at 25 ° C, was eluted at 200 μL min-1 with 

H2O and CH3CN, using the following elution gradient: CH3CN 5% for 3 minutes, 

from 5 to 60% CH3CN over 20 minutes and CH3CN 90% 5 minutes. The retention 

times of the L-FDAA-L-Phe and D-FDAA-L-Phe standards were determined as 

17.32 and 18.60 minutes, respectively, on the basis of the extracted-ion 

chromatograms at m/z 418.1357. The retention time (17.36 min), measured in the 

same way, of L-FDAA-Phe sample deriving from smenamide A, allowed to 

determine as L the absolute configuration of the phenylalanine residue of 

smenamide A (figure 2.9). 

 



40 
 

 

 

Figure 2.9. High resolution LC-MS analysis of Marfey’s derivative from smenamide A. Extracted-

ion chromatograms at m/z 418.1357 of authentic 1-fluoro-2,4-dinitrophenyl-5-alanine amide L-

phenilalanine (L-FDAA-L-Phe), authentic D-FDAA-L-Phe and L-FDAA-Phe from smenamide A. 

 

As for the absolute configuration at the C-16, the spectrometric and spectroscopic 

tools available were not sufficient to determine it. Therefore, this configuration 

remained undetermined until the end of the synthetic project. 

In conclusion, the total synthesis of smenamide A was planned to solve the problem 

of the scarce amount of natural product isolated from S. aurea, with the aim of 

deepening the knowledge about its mechanism of action, the pharmacological 

activity, the structure-activity relationships and the stereochemistry. 

 

2.5. Synthetic strategy 

2.5.1 Retrosynthetic analysis 

Smenamide A is a small but densely functionalised molecule in which a N-

methylacetamido western terminus, a chlorovinyl moiety and a pyrrolinone subunit 

are present.  
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From a retrosynthetic point of view, the molecule can be disconnected in two 

building blocks: the acid (3) and the pyrrolinone moiety (4), corresponding to the 

polyketide and to the peptide portions of the molecule, respectively (Figure 2.10).  

 

 

Figure 2.10. Retrosynthetic analysis of smenamide A 

 

Fragment 3 can be further simplified by the cleavage of the two carbon-carbon 

double bonds and the C-24/N bond, leading to the fully protected triol 5 (C-15/C-

24). The protecting groups were chosen so as that the timing of their removal 

coincided with that of the introduction of the three main functionalities of the 

molecule. The presence, in compound 5, of a methyl at position 16 suggests a 
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further disconnection between the C-20 and the C-22, revealing the aldehyde 6 (C-

15/C-20) which can be easily traced back to citronellene. As the configuration at C-

16 was unknown, the S enantiomer of citronellene was arbitrarily chosen. The 

protected bromalcohol 7 was recognized as the functionalized form of the 

remaining C-22/C-24 structural fragment. The entire carbon backbone of the 

polyketidic moiety 3 was eventually build up through two Wittig reactions, one of 

which is E-selective (generating the E C-13/C-15 double bond), and a Grignard 

reaction (generating the C-20/C-21 bond). 

As for the synthesis of the dolapyrrolidinone unit, a racemisation free approach was 

used in order to avoid the racemisation at C-8.15 It is indeed known that this 

stereogenic center is prone to racemisation.16 Fragment 4 was synthesised from 

Meldrum acid and Boc-L-phenylalanine acid. The final coupling was accomplished 

via activation of 3 as pentafluorophenyl ester (Andrus’ protocol) and its couling 

with fragment 4. 

 

2.5.2 Synthesis of the polyketide moiety 

The S enantiomer of the commercially available citronellene, was selected as the 

chiral precursor for the synthesis of the polyketide moiety (3). S-citronellene, 

suitably degraded and functionalised, provided the C15/C20 portion of the 

molecule. 
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Figure 2.11. Preparation of the fully protected triol 5. 

 

 The chemoselective epoxidation of the tri-substituted double bond, followed by an 

acid-catalyzed opening of the resulting epoxide and the subsequent benzoylation of 

the secondary alcohol function afforded benzoate 8, as a 1: 1 mixture of two 

diastereomers (82 % over three steps). The terminal double bond underwent 

dihydroxylation with OsO4 (cat.)/NMO,17 and the resulting diol was cleaved with 

sodium periodate to give the C-15 aldehyde. The latter was reduced with sodium 

borohydride and the corresponding primary alcohol was protected with the TBDPS 

group18 affording silylether 9 (50% over four steps). Aldehyde 10 was prepared 

through removal of the benzoate under reductive conditions with lithium aluminum 

hydride and cleavage of the resulting diol. Aldehyde 10 was then reacted with 

Grignard reactive 11, previously prepared from the commercially available 
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bromoalcohol 7, affording secondary alcohol 12 as a mixture of two diastereomers 

in a 1:1 ratio (72% over three steps). The latter allowed the extension of the skeleton 

of the molecule from C-20 to C-24 the extension of the skeleton of the molecule 

from C-20 to C-24. The conversion of alcohol 12 into the corresponding benzyl 

ether, using sodium hydride, benzyl bromide and tetrabutylammonium iodide 

(TBAI) as the catalyst, resulted in the fully protected triol 5 (Figure 2.11). 

The choice of protecting groups required particular attention. A protecting group is 

introduced into a molecule to mask a functionality in order to make it inactive in 

the subsequent reactions. In this case it was necessary to choose orthogonal 

protecting groups, which can be installed or removed under different conditions, 

without interfering with each other. The selected groups are benzoyl (Bz), benzyl 

(Bn), terzbutildimethylsilyl (TBS) and terzbutildiphenylsilyl (TBDPS). 

The introduction of the N-methylacetamido function was carried out in three steps 

(Figure 2.12). The removal of the TBS group with CH3COOH/THF/H2O (3: 1: 1), 

followed by tosylation of the delivered alcohol with TsCl and treatment of tosyl 

derivative with an excess of methylamine (40% solution in water)19 afforded 

secondary amine 13. The latter was left to react with AcCl/triethylamine giving the 

desired amide (14) as a 1: 1 mixture of two rotamers (53% over four steps). The 

hydrogenolysis of the benzylether 14 (H2/Pd(OH)), followed by oxidation of the 

secondary alcohol with the TPAP(cat.)/NMO system, according to Ley’s method,20 

provided ketone 15 required for the following Wittig olefination (79% over two 

steps). 

 

 

 



45 
 

 

 

Figure 2.12 Installation of the N-methylacetamido function. 

 

A crucial issue of the whole synthetic plan was the installation of the Z-chlorovinyl 

function. Some synthetic procedures have been reported for the construction of that 

function in related substances,21 but relatively few methods have been described for 

the stereoselective preparation of chloroolefins. Paige et al.22 exploited the 

palladium-mediated regio- and stereospecific silylstannation of a terminal alkyne23 

to ensure the stereoselectivity of the process. Unfortunately, this strategy, although 

very elegant, resulted in a moderate yield (42%), and similar results were obtained 

by others (45−51% yields).24 Therefore, we envisioned that this approach could 

neither provide any advantage in terms of the overall efficiency of the synthesis nor 

reduce the necessity of chromatographic purifications. The Wittig olefination, on 

the other hand, has been reported as a good, easy, and efficient method to generate 

a chlorovinyl function. 21a 

Therefore, the Wittig reaction was first tested on the model compound 16 (Figure 

2.13) obtained from the catalytic oxidation of alcohol 12 under Ley’s conditions 

(90%). The phosphonium salt 17 was prepared by reaction of iodochloromethane 

and triphenylphosphine.21a 
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Figure 2.13. Installation of the chlorovinyl moiety. 

 

As reported in literature, the Wittig olefination was conducted with nBuLi as the 

base in THF at -78 °C.21c,d Despite the mass recovery was satisfactory, in addition 

to the expected chlorovinyl derivatives 18 (1: 1 mixture of geometric isomers), this 

process also afforded a large amount of product 19, with a methylene function 

instead of the chlorovinyl moiety (Figure 2.13). The use of a slightly modified 

procedure, involving the use of potassium tert-butoxide as the base,21a  in a range of 

temperature between 0 and 25 °C, led to the desired products both in the reaction 

on the model  ketone 16 (18, 76%), and the intermediate 15 (20 and 21, in a 3: 2 

ratio in favor of the desired Z isomer, 83%). It is worth highlighting that only traces 

of the by-product with the methylene function are obtained with this procedure. 

Compounds 20 and 21 were easily separated by column chromatography. The 

analysis of the data provided by the ROESY spectrum allowed the assignment of 

configuration of the double bond in each isomer.  
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Finally, the introduction of the α,β-unsaturated acid function was addressed (Figure 

2.14). The removal of the TBDPS group in compound 20 with tetrabutylammonium 

fluoride (TBAF) in THF, followed by the oxidation of alcohol 22 with 

TPAP(cat.)/NMO, afforded aldehyde 23, which was applied for  the subsequent E-

selective Wittig olefination without further purification. Thus, aldehyde 23 was 

reacted with Ph3P=CH(Me)CO2Et leading to the synthesis of the α,β-unsaturated 

ester 24, which was eventually hydrolyzed to acid 3 by treatment with hydrated 

lithium hydroxide (53% over four steps). 

 

 

Figure 2.14. Preparation of the α,β-unsaturated ester 24. 

 

2.5.3 Preparation of the peptide moiety and final coupling 

The synthesis of the pyrrolidinone portion 4 (57% overall yield) is depicted in 

Figure 2.15. The reaction of (S)-Boc-Phenylalanine with Meldrum acid, followed 

by reflux of the crude in ethyl acetate over 30 minutes, gave the Boc-protected 

tetramic acid 25. The latter was methylated according to Mitsunobu conditions,25 

and the removal of the protecting group Boc gave the desired compound 4. 
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 The optical rotation measured for this product is in perfect agreement with the 

value reported in the literature ([α]D = -62.3; lit. -63);26 this confirmed its high 

enantiomeric purity. 

 

 

Figure 2.15. Synthesis of the pyrrolidinone unit 24. 

 

Finally, the two building blocks 3 and 4 were coupled by using Andrus protocol27 

(Figure 20). The acid portion 3 was activated as pentafluorophenil ester 26 by 

reaction with C6F5OH/DCC (82%). Intermediate 26 was coupled with an excess of 

the lithium imidate, deriving by reaction from pyrrolinone 4 with nBuLi. The 

reaction proceeded smoothly, affording product 27  in 91% yield. 
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Figure 2.16. Final coupling. 

 

Unfortunately, the proton spectrum of 27 did not match that of natural smenamide 

A. In particular, the shape and value of the chemical shifts of H-15 vinyl proton 

signals, adjacent to the C-16 stereogenic center, were different (Figure 2.16). This 

suggested that compound 27 was the epimer at C-16 of smenamide A and, 

consequently, the natural smenamide A should possess the R configuration at C-16. 

 

 

Figure 2.17. 1H NMR spectra of 16-epi-smenamide A and natural smenamide A. 

 

At this point, in order to confirm the structure of smenamide A the synthesis of the 

ent-smenamide A was carried out (figure 2.17). Two enantiomers show the same 

NMR spectrum, therefore the proton spectra of 29 and natural smenamide A should 
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perfectly match. Starting from (R)-Boc-phenylalanine, (R)-pirrolinone 28 (47%) 

was obtained. The latter was coupled, following the Andrus method, with 

pentafluorophenilester 26 to give ent-smenamide A 29 (88%). 

 

Figure 2.18. Synthesis of ent-smenamide A. 

The comparison between the proton spectra of both compounds, which perfectly 

match, confirmed the R absolute configuration at C-16 (Figure 2.18). Furthermore, 

as expected, natural smenamide A and ent-smenamide A show specular CD spectra 

(for more details see Experimental section). 

 

Figure 2.19. 1H NMR spectra of ent-smenamide A and natural smenamide A. 
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2.6. Conclusions 

The total syntheses of ent- and 16-epi-smenamide A was accomplished with a 2.6% 

and 2.5% overall yield, respectively, in 23 steps. The total synthesis of these two 

compounds confirmed the structure of natural smenamide A, and the assignment of 

the R absolute configuration to the C-16 carbon, which remained undetermined 

before the synthetic project was carried out. The evaluation of the antiproliferative 

activity of ent- and 16-epi-smenamide A is in progress in collaboration with the 

IRCCS CROB (Scientific Institute of Hospitalization and Care- Basilicata 

Oncological Center) of Rionero in Vulture (PZ). 

 

2.7. Experimental section 

2.7.1 Generals  

All reagents and anhydrous solvents were purchased (Aldrich and Fluka) at the 

highest commercial quality and used without further purification. Where necessary, 

flame-dried and argon-charged glassware was used. Reactions were monitored by 

thin-layer chromatography carried out on precoated silica gel plates (Merck 60, 

F254, 0.25 mm thick). Merck silica gel (Kieselgel 40, particle size 0.063-0.200 mm) 

was used for column chromatography. MgSO4 was used as a drying agent for 

aqueous work-up. NMR experiments were performed on a Varian Unity Inova 

spectrometers at 400, 500 and 700 MHz spectrometers in CDCl3. Proton chemical 

shifts were referenced to the residual CHCl3 signal (7.26 ppm). 13C-NMR chemical 

shifts were referenced to the solvent (77.0 ppm). Abbreviations for signal coupling 

are as follows: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad. IR 

spectra were recorded neat on Perkin Elmer spectrum 100R spectrophotometer and 

are reported in cm-1. Optical rotations were measured using a Jasco P-2000 
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polarimeter at the sodium D line. ECD spectra were recorded using a Jasco J-710 

spectropolarimeter. HRMS spectra were recorded by infusion on Thermo LTQ 

Orbitrap XL mass spectrometer equipped with an Electrospray source in the 

positive mode using MeOH as the solvent. 

 

2.7.2 Experimental procedures 

Determination of the absolute coinfiguration at C-8 of smenamide A by using 

Marfey’s method. 

 

Figure 2.20. Ozonolysis, hydrolysis and derivatization of smenamide A with l-enantiomer of 

Marfey’s reagent. 

A small amount of smenamide A (5 µg) was suspended in ozone-saturated MeOH 

(300 μL) at -78 °C for 5 min (Figure 2.20). The sample was dried under a N2 stream 

to remove ozone, then treated with 6N HCl and heated in a sealed glass tube at 180 

°C for 2 h. The residual HCl fumes were removed in vacuo. 

The hydrolysate was dissolved in Et3N/acetone (2:3, 100 µL) and the solution was 

treated with 100 µL of 1% 1-fluoro-2,4-dinitrophenyl-5-l-alaninamide (L-FDAA) 

in CH3CN/acetone (1:2). The vial was heated at 50 °C for 1 h. The mixture was 
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dried, and the resulting L-FDAA-Phe derivative was redissolved in CH3CN/H2O 

(5:95, 500 μL) for LC-MS analysis. An authentic L-Phe standard was treated with 

L-FDAA and D-FDAA as described above to give, respectively, the L-FDAA-L-Phe 

and D-FDAA-L-Phe standards used in the subsequent LC-MS analysis. 

Marfey’s derivatives were analyzed by LC-HRESIMS. A 5 μm Kinetex C18 

column (50 × 2.10 mm), maintained at 25 °C, was eluted at 200 μL min−1 with H2O 

and CH3CN, using a gradient elution. The gradient program was as follows: 5% 

CH3CN 3 min, 5-60% CH3CN over 20 min, 90% CH3CN 5 min. Mass spectra were 

acquired in positive ion detection mode and the data were analyzed using the suite 

of programs Xcalibur. The retention times of L-FDAA-L-Phe and D-FDAA-L-Phe 

standards were determined as 17.32 min and 18.60 min, respectively, on the basis 

of the extracted-ion chromatograms at m/z 418.1357. The retention time, measured 

in the same way for the L-FDAA-Phe sample obtained from smenamide A, was 

17.36 min, and was indicative of the L configuration of Phe residue in smenamide 

A (Figure 2.21). 
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Figure 2.21. HR-ESI-MS-HPLC analysis of Marfey’s derivative from smenamide A. Extracted-ion 

chromatograms at m/z 418.1357 of authentic 1-fluoro-2,4-dinitrophenyl-5-alanine amide L-

phenilalanine (L-FDAA-L-Phe), authentic D-FDAA-L-Phe and L-FDAA-Phe from smenamide A. 

 

Benzoate 8 

 

According to a literature procedure,28 commercially available (Sigma Aldrich, e.e. 

≥ 98.5 %) β-citronellene (10 mL, 7.6 g, 54.9 mmol) was converted into the 

corresponding 6,7-epoxide (8.44 g, 100%), a smelling colourless oil. To a flask 

containing the crude epoxide in 1,4-dioxane-H2O (34 mL, 2:1), conc. H2SO4 (3 

drops) was added. After 1h solid NaHCO3 was added portionwise until the 

effervescence cheased. The mixture was concentrated in vacuo and partitioned 

between water and EtOAc (3 x 20 mL). The organic phase was dried and evaporated 

in vacuo to give diol 30 (8.22 g, 87%) as a colourless oil. An analytically pure 

sample of this compound was obtained by chromatography over silica gel 
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(hexane/EtOAc, 7:3) for characterization. Mixture of two diastereomers, IR (neat) 

max: 3410,  2957,  2927,  2858, 1699, 1640, 1454, 1378, 1271, 1167, 1069, 995, 

911, 713 cm-1; 1H-NMR (400 MHz, CDCl3):  5.76-5.61 (2H, m, 2 x H-15), 4.97 

(2H, bd, J= 18.0, vinyl proton), 4.93, (2H, bd, J= 11.0, vinyl proton), 3.35 (2H, bt, 

J=9.2, 2 x H-20), 2.14 (2H, m, 2 x H-16), 1.89 (bs, 2 x OH), 1.204, 1.203, 1.153, 

1.147 (3H each, all s, 2 x C(CH3)2), 1.02, 1.01 (3H each, both d, J=6.7, 2 x H3-17); 

13C-NMR (100 MHz, CDCl3):  144.5, 144.3, 113.0, 112.8, 78.9, 78.5, 73.4, 73.3, 

38.0, 37.8, 33.7, 33.4, 29.4, 29.2, 26.5, 23.1, 20.6, 20.2; HRMS (ESI) m/z calcd for 

C10H20NaO2 [M+Na]+ 195.1361, found 195.1348. 

To a stirred solution of diol 30 (7.34 g, 42.6 mmol) in pyridine (20 mL), benzoyl 

chloride (0.052, 6 mL) was added. After 2.5 h water (8 mL) was added and the 

mixture stirred for 15 min in a water bath and then taken to dryness. The residue 

was taken up in CHCl3 (50 mL) and washed with a satd. aq. NaHCO3 solution and 

water. The organic phase was dried, filtered and evaporated in vacuo. Purification 

over silica gel (hexane/EtOAc, 9:1) gave benzoate 8 (11.0 g, 94%), mixture of two 

diastereomers. IR (neat) max: 3482, 2974, 2929, 1718, 1704, 1452, 1275, 1177, 

1113, 1070, 1027, 711 cm-1; 1H-NMR: (400 MHz, CDCl3):  8.07 (4H, d, J=7.1, 

ArH), 7.57 (2H, t, J=7.5, ArH), 7.46 (4H, t, J=7.6, ArH), 5.71-5.55 (2H, m, 2xH-

15), 5.12-5.02 (2H, m), 5.01-4.87 (4H, m),2.22-2.04 (2H, m), 1.94 (2H, bs, 2xOH), 

1.85-1.58 (4H, m), 1.43-1.29 (4H, m), 1.26 (12H, s, 2 x C(CH3)2), 0.96 (6H, d, 

J=6.9, H3-17); 13C-NMR (100 MHz, CDCl3):  166.63, 166.60, 144.2, 144.0, 133.0, 

130.1, 129.6, 128.4, 113.2, 112.9, 80.7, 80.3, 72.7, 37.8, 37.6, 33.0, 32.7, 27.4, 27.2, 

26.5, 25.1, 20.6, 20.0; HRMS (ESI) m/z calcd for C17H25O3 [M+H]+ 277.1798, 

found 277.1788. 
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Silylether 9 

 

To a stirred solution of benzoate 8 (7.93 g, 28.7 mmol) in acetone/water (120 mL, 

5:1) OsO4 (369 mg, 14.5 mmol, 5 mol%) was added. After 2 hours the reaction was 

quenced by addition of solid Na2S2O5 (720 mg, 2.9 mmol) and the reaction mixture 

was stirred for further 30 min. Acetone was evaporated under reduced pressure and 

the resulting aqueous suspension was extracted with EtOAc (3 x 50 mL). The 

organic phase was dried and evaporated in vacuo to give diol 31 (8.71 g) as a 

colourless oil. An analytically pure sample of this compound was obtained by 

chromatography over silica gel (CHCl3/CH3OH, 9:1) for characterization. Mixture 

of four diastereomers, IR (neat) max: 3400, 2971, 2932, 1716, 1701, 1452, 1278, 

1177, 1115, 1071, 1017, 712 cm-1; 1H-NMR: (400 MHz, CDCl3):  8.05 (4H, d, 

J=7.5, ArH), 7.57 (2H, t, J=7.8, ArH), 7.44 (4H, t, J=7.6, ArH), 5.05 (2H, m, 2xH-

20), 3.77-3.37 (6H, overlapped m’s), 2.55 (bs, OH’s), 1.26, 1.25 (6H each, both s, 

2x C(CH3)2), 0.89, 0.88, 0.863, 0.858 (3H each, d’s, J=6.7, 4 x H3-17); 13C-NMR 

(100 MHz, CDCl3): δ 167.0, 166.9, 166.76, 166.73, 133.2, 133.1, 130.02, 129.99, 

129.94, 129.91, 129.68, 129.67, 128.48, 128.47, 80.8, 80.5, 80.3, 80.2, 76.0, 75.6, 

75.3, 74.9, 72.65, 72.62, 72.5, 65.0, 64.6, 64.50, 64.46, 35.7, 35.4, 35.3, 35.1, 29.7, 

29.3, 29.2, 28.6, 27.0, 26.9, 26.8, 26.7, 26.0, 25.95, 25.88, 25.84, 25.73, 25.66, 
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25.62, 25.57, 15.5, 15.3, 14.6, 14.5; HRMS (ESI) m/z calcd for C17H26NaO5 

[M+Na]+ 333.1678, found 333.1663. 

To a stirred solution of diol 31 (8.69 g, 29.0 mmol) in acetone/water (180 mL, 5:1) 

at 0°C, sodium periodate (12.35 g, 58.0 mmol) was added. After a few minutes a 

large amount of a white solid precipitated. After 4 h the reaction mixture was 

filtered under vacuum and the precipitate was carefully washed with acetone. The 

solvent was evaporated in vacuo and the aqueous suspension was extracted with 

EtOAc (3 x 30 mL). The organic layer was dried and concentrated in vacuo to give 

aldehyde 32 as a colourless oil (5.54 g) that was applied to next step without further 

purification. 

To a stirred solution of aldehyde 32 (5.52 g, 20.0 mmol) in methanol (70 mL) at 

0°C, NaBH4 (376 mg, 9.9 mmol) was added in portions. After 1h the reaction was 

quenched by dropwise addition of CH3COOH (3.5 mL). Then, the reaction mixture 

was concentrated in vacuo, treated with a satd. aq. solution of NaHCO3 (30 mL) 

and extracted with EtOAc (3 x 30 mL). The organic phase was dried and evaporated 

under reduced pressure to to give crude 33 (5.29 g). An analytically pure sample of 

this compound was obtained by chromatography over silica gel (CHCl3/CH3OH, 

9:1) for characterization. Mixture of two diastereomers, IR (neat) max: 3400, 2972, 

2930, 1716, 1699, 1451, 1277, 1177, 1113, 1070, 1027, 711 cm-1; 1H-NMR: (400 

MHz, CDCl3):  8.07 (4H, d, J=7.1, ArH), 7.57 (2H, t, J=7.5, ArH), 7.46 (4H, t, 

J=7.6, ArH), 5.11-5.04 (2H, m, 2xH-20), 3.53-3.36 (4H, m, 2 x H2-15), 1.91-1.11 

(10H, m), 1.28 (12H, s, 2 x C(CH3)2), 0.92, 0.90 (3H each, both d, J=6.9, 2 x H3-

17); 13C-NMR (100 MHz, CDCl3):  166.8, 166.7, 133.06, 133.08, 130.0, 129.6, 

128.4, 80.7, 80.4, 72.64, 72.57, 67.9, 67.6, 35.43, 35.39, 29.7, 29.4, 26.9, 26.1, 
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25.43, 25.39, 16.7, 16.3; HRMS (ESI) m/z calcd for C16H24NaO4 [M+Na]+ 

303.1572, found 303.1561. 

To a stirred solution of alcohol 33 (5.29 g, 19.0 mmol) in DMF (19 mL) were 

sequentially added imidazole (1.56 g, 23 mmol) and tert-butyldiphenylsilyl 

chloride (6.32 g, 5.88 mL, 23 mmol), at rt. After 40 min, DMF was evaporated in 

vacuo and the residue was taken up in CHCl3 and washed with brine. The organic 

phase was dried, concentrated in vacuo and purified by chromatography over silica 

gel (hexane/EtOAc, 95:5) to give TBDPS ether 9 (7.54 g, 50% over four steps). 

Mixture two diastereomers, IR (neat) max : 3485, 2960, 2931, 2858, 1715, 1602, 

1588, 1472, 1452, 1428, 1275, 1112, 1071, 824, 806, 741, 703 cm-1; 1H-NMR: (400 

MHz, CDCl3):  8.07 (4H, d, J=7.1, ArH), 7.67-7.29 (26H, overlapped m’s, ArH), 

5.07 (2H, d, J=8.7, 2 x H-20), 3.44 (4H, m, 2 x H2-15), 2.00-1.46 (10H, m), 1.27, 

1.26 (6H each, both s, 2 x C(CH3)2), 1.00, 0.97 (9H each, both s, 2 x C(CH3)3), 0.91 

(6H, d, J=6.5, 2 x H3-17); 13C-NMR (100 MHz, CDCl3):  166.6, 135.6, 133.9, 

133.0, 130.1, 129.7, 129.5, 128.4, 127.5, 80.8, 80.6, 72.7, 68.7, 68.4, 35.7, 35.5, 

29.8, 29.6, 27.3, 27.0, 26.8, 26.7, 26.6, 26.5, 25.16, 25.11, 19.23, 19.18, 17.0, 16.6; 

HRMS (ESI) m/z calcd for C32H42NaO4Si [M+Na]+ 541.2750, found 541.2733. 

Aldehyde 10 

 

 

To a stirred solution of silyl ether 9 (7.54 g, 14.5 mmol) in dry Et2O (50 mL) at 0°C, 

LAlH4 (762 mg, 20.1 mmol) was added in portions. The mixture was allowed to 

warm to room temperature over 1h and then quenched by dropwise addition of wet 
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ethyl ether and then water. After all inorganic materials were precipitated, the solid 

was filtered and washed with EtOAc (3 x 20 mL). The organic phase was dried, 

concentrated in vacuo and purified by chromatography on silica gel (hexane 

/EtOAc, 85/15) to give diol 34 (5.71 g, 95%) as a colourless oil. Mixture of two 

diastereomers, IR (neat) max : 3412, 2958, 2931, 2858, 1472, 1461, 1428, 1388, 

1112, 1075, 702 cm-1; 1H-NMR: (400 MHz, CDCl3):  7.66 (8H, d, J=6.5, ArH), 

7.45-7.33 (12H, m, ArH), 3.57 (4H, m), 3.42 (2H, m), 1.75-1.61 (4H, m), 1.19, 1.18, 

1.14, 1.12 (3H each, all s, 2 x C(CH3)2), 0.95, 0.92 (3H each, both d, J=6.7, 2 x H3-

17), 13C-NMR (100 MHz, CDCl3):  135.6, 134.0, 129.5, 127.6, 79.1, 78.7, 73.1, 

68.9, 68.5, 35.7, 35.6, 30.4, 30.3, 29.07, 29.02, 26.9, 26.49, 26.45, 23.17, 23.15, 

19.3, 17.1, 16.8; HRMS (ESI) m/z calcd for C25H38NaO3Si [M+Na]+ 437.2488, 

found 437.2473. 

To a stirred solution of diol 34 (4.83 g, 11.6 mmol) in acetone/water 5:1 (57 mL) at 

0°C, sodium periodate (4.98 g, 23.2 mmol) was added. After a few minutes a large 

amount of a white solid precipitated. After 4 h the reaction mixture was filtrated 

under vacuum and the precipitate was carefully washed with acetone. The solvent 

was evaporated in vacuo and the aqueous suspension was extracted with EtOAc (3 

x 30 mL). The organic layer was dried and concentrated in vacuo to give aldehyde 

10 as a colourless oil (4.34 g) that was applied to the next step without further 

purification. 1H-NMR (400 MHz, CDCl3):  9.74 (1H, s, CHO), 7.66 4H, d, J=7.1, 

ArH), 7.46-7.34 (6H, m, ArH), 3.50 (2H, m, H2-15), 2.47-2.31 (2H, m, H2-19), 1.87-

1.75 (1H, m), 1.75-1.61 (1H, m), 1.55-1.43 (1H, m), 1.06 (9H, s, C(CH3)3), 0.92 

(3H, d, J=6.7, H3-17). 
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Alcohol 12 

 

To a suspension of magnesium turnings (583 mg, 24.0 mmol) in anhydrous THF 

(30 mL) a catalytic amount of iodine was added. After 10 min (3-bromopropoxy)-

tert-butyldimethylsilane (4.56 g, 4.17 mL, 18.0 mmol) in THF (20 mL) was slowly 

added at rt, under argon. During the addition, the temperature was maintained at 

30-35 °C. After the addition was completed, the reaction mixture was stirred at 

40°C for 1h. To the above solution, crude aldehyde 10 (4.34 g, 12.2 mmol) in THF 

(10 mL) was dropwise added. After the addition was completed, the reaction 

mixture was stirred for 1h at room temperature. Then, the reaction mixture was 

treated with a satd. aq. NH4Cl solution (50 mL) and extracted with EtOAc. The 

organic phase was washed with brine, dried, concentrated in vacuo and purified by 

chromatography on silica gel (hexane-EtOAc, 95:5) to give alcohol 12 (4.83 g, 75 

%) as a colourless oil. Mixture of two diastereomers, IR (neat) max: 3420, 2954, 

2930, 2858, 1472, 1464, 1428, 1389, 1256, 1111, 1007, 835, 777, 740, 702 cm-1; 

1H-NMR: (400 MHz, CDCl3):  7.70 (8H, d, J=7.0, ArH), 7.47-7.35 (12H, m, ArH), 

3.69 (4H, bt, J=5.2), 3.63-3.53 (4H, m), 3.53-3.45 (2H, m, H-20), 2.45 (2H, bs, 

2xOH), 1.77-1.54 (8H, m), 1.54-1.34 (8H, m), 1.34-1.13 (2H, m), 1.09, 0.94 (18H 

each, both s, 2 x C(CH3)3), 0.970 (3H, d, J=6.6, H3-17), 0.965 (3H, d, J=6.6, H3-

17); 13C-NMR (100 MHz, CDCl3): δ 135.6, 134.0, 129.4, 127.5, 71.73, 71.66, 68.8, 

68.7, 63.5, 35.8, 34.8, 34.7, 34.6, 34.4, 29.2, 29.15, 29.09, 29.07, 26.8, 25.9, 19.3, 

18.2, 16.9, -5.4; HRMS (ESI) m/z calcd for C31H53O3Si2 [M+H]+ 529.3528, found 

529.3506. 
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Fully protected triol 5 

 

To a stirred solution of alcohol 12 (1.93 g, 3.66 mmol) in anhydrous THF (40 mL), 

under argon, sodium hydride (60% dispersion in mineral oil, 292.8 mg, 7.32 mmol) 

was added. After stirring at reflux for 5 min, benzyl bromide (0.790 mL, 6.59 mmol) 

was added, followed by TBAI (20 mol%, 271 mg, 0.732 mmol). The reaction was 

stirred at at 50 °C for 24 h. After cooling to room temperature, the reaction mixture 

was diluted with EtOAc (50 mL) and quenched by carfeul addition of a satd. aq. 

NaHCO3 solution (50 mL). Phases were separated and the aqueous layer was 

extracted with EtOAc (2 x 50 mL). The combined organic phases were washed with 

water (50 mL) and brine (50 mL), dried, and concentrated in vacuo. Purification by 

column chromatography on silica gel (hexane-EtOAc, 95:5) gave fully protected 

triol 5 (2.05 g, 91%) as a colourless oil. Mixture of two diastereomers, IR (neat) 

max: 2955, 2929, 2858, 1472, 1473, 1463, 1428, 1388, 1255, 1112, 1095, 835, 776, 

738, 701 cm-1; 1H-NMR: (400 MHz, CDCl3):  7.67 (8H, d, J=7.3, ArH), 7.45-7.28 

(22H, m, ArH), 4.48 (4H, d, J = 3.3, OCH2Ph), 3.60 (4H, bt, J= 6.0,2 x H2-24), 3.52 

(2H, m, 2 x Ha-15), 3.45 (2H, m, 2 x Hb-15), 3.36 (2H, m, 2 x H-20), 1.71-1.10 

(18H, overlapped m’s), 1.05 (18H, s, 2 x C(CH3)3), 0.93 (6H, bd, J=6.6, 2 x H3-17), 

0.05 (12H, s, 2 x Si(CH3)2); 
13C-NMR (100 MHz, CDCl3):  139.0, 135.6, 134.0, 

129.5, 128.3, 127.7, 127.5, 127.3, 79.1, 70.73, 70.68, 68.8, 63.3, 35.95, 35.91, 31.3, 

31.2, 30.0, 29.9, 28.82, 28.80, 28.61, 28.56, 26.9, 26.0, 19.3, 18.3, 16.9, -5.3; 

HRMS (ESI) m/z calcd for C38H58NaO3Si2 [M+Na]+ 641.3822, found 641.3804. 
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Amine 13 

 

To a flask containing compound 5 (2.05 g, 3.32 mmol) at rt, a premixed solution of 

AcOH/THF/H2O (3:1:1, 34 mL) was added. After 4 h the reaction was quenced 

with a satd. aq. NaHCO3 solution (20 mL) and extracted with EtOAc. The organic 

phase was washed with water, dried, filtered and concentrated in vacuo. Purification 

by column chromatography over silica gel (hexane-EtOAc, 9:1) afforded alcohol 

35 (1.52 g, 91%) as a colourless oil. Mixture of two diastereomers, IR (neat) max: 

3400, 2930, 2857, 1455, 1428, 1389, 1112, 1066, 824, 739, 701 cm-1; 1H-NMR: 

(400 MHz, CDCl3),  7.67 (8H, d, J=6.8, ArH), 7.44-7.30 (12H, m, ArH), 7.32 

(10H, m, ArH), 4.51 (2H, m, OCH2Ph), 4.47 (2H, m, OCH2Ph), 3.62 (4H, t, J=5.2, 

OCH2), 3.55-3.43 (4H, m), 3.43-3.36 (2H, m, 2 x H-20), 1.90 (2H, bs, 2 x OH), 

1.70-1.40 (16H, overlapped m’s, 8 x CH2), 1.28-1.09 (2H, m), 1.06, (18H each, s, 

2 x C(CH3)3), 0.93 (6H, bd, J=6.6, 2 x H3-17); 13C-NMR (100 MHz, CDCl3):  

138.6, 135.6, 134.0, 129.5, 128.3, 127.8, 127.6, 79.11, 79.06, 70.86, 70.82, 68.78, 

68.74, 63.1. 35.9, 35.8, 30.9, 30.7, 30.25, 30.16, 28.7, 28.5; 26.9, 19.3, 16.88, 16.83; 

HRMS (ESI) m/z calcd for C32H44NaO3Si [M+Na]+ 527.2957, found 527.2953. 

To a stirred solution of alcohol 35 (763 mg, 1.51 mmol) in dry CH2Cl2 (12 mL) at 

0 °C DMAP (111 mg, 0.906 mmol), p-toluensulfonyl chloride (345 mg, 1.81 mmol) 

and triethylamine (230.8 mg, 0. 318 mL, 1.51 mmol) were added in sequence. After 

4.5 h the suspension was diluted with Et2O (30 mL) and stirred for 30 min. Then 
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the precipitate was removed by filtration. The organic phase was washed with a 

10% CuSO4 solution (2 x 100 mL), a 10% NaHCO3 solution (2 x 100 mL) and brine 

(100 mL). The combined organic phases were dried, filtered and concentrated in 

vacuo to give tosylate 36 (946 mg) as a colourless oil. An analytically pure sample 

of this compound was obtained by chromatography over silica gel (hexane/EtOAc, 

7:3) for characterization. Mixture of two diastereomers, IR (neat) max: 2960, 2929, 

2857, 1455, 1428, 1361, 1261, 1176, 1111, 1028, 814, 740, 702, 664 cm-1; 1H-NMR: 

(400 MHz, CDCl3):  7.83 (4H, d, J =7.9, ArH), 7.74 (8H, d, J =7.9, ArH), 7.50-

7.39, 7.39-7.27 (overall 26H, m’s, ArH), 4.52 (2H, A part of an apparent AB system 

further coupled, dd, J = 11.5, 3.7, OCH2Ph), 4.43 (2H, B part of an apparent AB 

system further coupled, bd, J = 11.5,), 4.08 (4H, bd, J=5.9), 3.56 (4H, m), 3.37 (2H, 

bs, 2 x H-20), 2.45 (6H, s, 2 x CH3PhSO3-), 1.90-1.10 (18H, overlapped m’s), 1.13 

(18H, s, 2 x C(CH3)3), 0.99 (6H, d, J=6.7, 2 x H3-17); 13C-NMR (100 MHz, CDCl3): 

 144.7, 138.8, 135.7, 134.0, 133.3, 129.9, 129.6, 128.4, 127.9, 127.76, 127.70, 

78.3, 77.5, 70.92, 70.90, 70.86, 70.82, 68.8, 36.00, 35.9, 31.1, 31.0, 29.7, 29.6, 28.7, 

28.6, 27.0, 24.92, 24.88, 21.6, 19.4, 17.0; HRMS (ESI) m/z calcd for 

C39H50NaO5SSi [M+Na]+ 681.3046, found 681.3037. 

To a solution of tosylate 36 (946 mg, 1.43 mmol) in CHCl3 (22.8 mL) methylamine 

(40% solution in water, 22.8  mL) was added. The mixture was vigorously stirred 

for 2 days at room temperature and then poured into a separatory funnel. The 

organic phase was separated and the water phase was extracted with CHCl3 (2 x 50 

mL). The combined organic phases were dried and concentrated in vacuo. 

Purification by silica gel chromatography (CHCl3/CH3OH, 8:2) gave amine 13 (562 

mg, 72% over two steps) as a colourless oil. Mixture of two diastereomers, IR (neat) 

max: 2959, 2928, 2855, 1456, 1428, 1261, 1112, 800, 740, 702, 667 cm-1; 1H-NMR 
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(400 MHz, CDCl3):  7.68 (8H, d, J =7.8, ArH), 7.45-7.35 (12H, m, ArH), 7.33 

(10H, m, ArH), 4.51 (2H, apparent dd, J=11.5, 4.7, OCH2Ph), 4.49 (2H, apparent 

dd, J=11.5, 1.9, OCH2Ph), 3.56-3.43 (4H, m, OCH2TBDPS), 3.37 (2H, bs, 2 x H-

20), 2.58 (4H, bs, 2 x H2-24), 2.43 (6H, s, 2 x H3-27), 1.71-1.08 (18H, overlapped 

m’s), 1.07 (18H, s, 2 x C(CH3)3), 0.94 (6H, d, J=6.5, 2 x H3-17); 13C-NMR (100 

MHz, CDCl3):  138.9, 135.5, 134.0, 129.4, 128.2, 127.7, 127.5, 127.3, 79.0, 70.8, 

70.7, 68.8, 52.1, 36.3, 35.9, 35.8, 31.45, 31.36, 31.1, 31.0, 28.7, 28.6, 26.8, 25.6, 

25.5, 19.2, 16.8; HRMS (ESI) m/z calcd for C33H48NO2Si [M+H]+ 518.3449, found 

518.3434. 

Amide 14 

 

To a stirred solution of amine 13 (526 mg, 1.02 mmol) in CH2Cl2 (3.5 mL) at 0 °C, 

excess Et3N (0.720 mL, 5.15 mmol) was added, followed by dropwise addition of 

acetyl chloride (160 mg, 0.15 mL, 2.04 mmol). After 30 min the reaction mixture 

was diluted with CH2Cl2 and a few drops of water were added. The reaction mixture 

was washed with a satd. aq. NaHCO3 solution and brine. The combined organic 

phases were dried and concentrated in vacuo to give amide 14 (511.7 mg, 90 %) as 

a colourless oil. An analytically pure sample of this compound was obtained by 

chromatography over silica gel (CHCl3/CH3OH, 95:5) for characterization. Mixture 

of two diastereomers, IR (neat) max2955, 2925, 2858, 1632, 1465, 1455, 1261, 

1112, 803, 739, 701 cm-1; 1H-NMR (400 MHz, CDCl3, mixture of rotamers):  7.67 

(8H, d, J=7.1, ArH), 7.46-7.23 (12H, m, ArH), 4.58-4.39 (4H, m, OCH2Ph), 3.57-

3.43 (m), 3.42-3.32 (m), 3.23 (2H, t, J=7.1, H2-24), 2.93 (1.5 H, s, H3-27), 2.89 (1.5 



65 
 

 

H, s, H3-27), 2.06 (1.5 H, s, H3-26), 2.05 (1.5 H, s, H3-26), 1.74-0.98 (18H, 

overlapped m’s), 1.07 (18H, s, 2 x C(CH3)3), 0.94 (6H, bd, J=6.4, 2 x H3-17); 13C-

NMR (100 MHz, CDCl3):  170.3, 138.9, 138.6, 135.5, 133.93, 133.88, 129.45, 

129.41, 128.3, 128.2, 127.6, 127.5, 127.3, 78.89, 78.87, 78.68, 78.62, 70.92, 70.86, 

70.82, 68.73, 68.67, 68.65, 50.8, 47.3, 35.87, 35.85, 35.81, 35.77, 33.0, 31.2, 31.1, 

31.0, 30.9, 30.81, 30.78, 30.69, 28.70, 28.66, 28.58, 28.56, 26.8, 24.15, 24.11, 23.0, 

22.9, 21.8, 21.2, 19.2, 16.8; HRMS (ESI) m/z calcd for C35H49NNaO3Si [M+Na]+ 

582.3379, found 582.3369. 

Alcohol 37 

 

Amide 14 (511 mg, 0.91 mmol) and Pd(OH)2/C (274 mg 20% w/w) were suspended 

in EtOH (14 mL). The mixture was hydrogenated at atmospheric pressure for 2 

days. Then, the reaction mixture was filtered over celite and the filtrate was dried 

under reduced pressure to give alcohol 37 (371 mg, 87%) a a colourless oil. An 

analytically pure sample of this compound was obtained by chromatography over 

silica gel (CHCl3/CH3OH, 98:2) for characterization. Mixture of two diastereomers, 

IR (neat) max: 3416, 2931, 2858, 1631, 1472, 1456, 1428, 1261, 1112, 824, 741, 

703 cm-1; 1H-NMR (400 MHz, CDCl3, mixture of rotamers):  7.66 (8H, d, J=6.9, 

ArH), 7.46-7.31 (12H, m, ArH), 3.59-3.39 (6H, m, 2x H-20 and 2 x H2-15), 3.25 

(4H, bt, J=7.6, 2 x H2-24), 2.95 (1.5H, s, H3-27), 2.89 (1.5H, s, H3-27), 2.07 (1.5H, 

s, H3-26), 2.04 (1.5H, s, H3-26), 1.80-1.08 (18H, overlapped multiplets, 8 x CH2 

and 2 x CH), 1.05 (18H, s, 2 x C(CH3)3), 0.92 (3H, d, J=6.4, H3-16), 0.91 (3H, d, J 

= 6.4, H3-17); 13C-NMR (100 MHz, CDCl3):  170.6, 170.4, 135.5, 133.95, 133.90, 
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129.5, 129.4, 127.5, 71.7, 71.6, 71.5, 68.8, 68.7, 68.6, 50.8, 47.4, 36.0, 35.73, 35.68, 

35.6, 35.0, 34.1, 33.9, 33.8, 33.1, 29.07, 29.02, 26.8, 24.55, 24.50, 23.46, 23.43, 

21.8, 21.2, 19.2, 16.85, 16.79, 16.76; HRMS (ESI) m/z calcd for C28H44NO3Si 

[M+H]+ 470.3085, found 470.3067. 

Ketone 15 

 

To a stirred solution of alcohol 37 (368 mg, 0.79 mmol) in CH2Cl2 (55 mL), N-

methylmorpholine-N-oxide (138 mg, 1.18 mmol) and powdered 4Å molecular 

sieves (392 mg) were added under argon. After 10 min TPAP (13.8 mg, 0.039 mmol, 

5 mol %) was added. After 2.5 h, the reaction mixture was filtered through a short 

silica gel plug (CHCl3/EtOAc, 8:2) and the filtrate was concentrated under reduced 

pressure. Purification by column chromatography over silica gel (hexane-EtOAc, 

6:4) afforded ketone 15 (335 mg, 91%) as a colourless oil. [α]D 20 =+2.7 (c=1.0, 

CHCl3); IR (neat) max: 2958, 2924, 2854, 1715, 1651, 1462, 1367, 1261, 1111, 800, 

704 cm-1; 1H-NMR (400 MHz, CDCl3, mixture of rotamers):  7.65 (8H, d, J=7.2, 

ArH), 7.46-7.33 (12H, m, ArH), 3.52-3.40 (4H, m, 2 x H2-15), 3.34 (0.6 H, t, J=7.1, 

H2-24), 3.24 (0.4 H, t, J=7.4, H2-24), 2.96 (1.8 H, s, H3-27), 2.90 (1.2 H, s, H3-27), 

2.48-2.28 (8H, m, H2-22 and H2-19), 2.08 (1.2 H, s, H3-26), 2.05 (1.8 H, s, H3-26), 

1.86-1.20 (18H, overlapped multiplets, 8 x CH2 and 2 x CH), 1.05 (18H, s, 2 x 

C(CH3)3), 0.90 (6H, bd, J = 6.5, 2 x H3-17); 13C-NMR (100 MHz, CDCl3):  210.5, 

209.7, 170.6, 170.4, 135.5, 133.8, 129.51, 129.48, 127.5, 68.43, 68.39, 49.8, 46.6, 

40.5, 40.4, 39.5, 38.6, 35.8, 35.2, 33.0, 27.1, 27.0, 26.8, 21.9, 21.7, 21.1, 19.2, 

16.6HRMS (ESI) m/z calcd for C28H42NO3Si [M+H]+ 468.2928, found 468.2913. 
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Ketone 16 

 

To a stirred solution of alcohol 12 (102.3 mg, 0.194 mmol) in CH2Cl2 (0.5 mL) N-

methylmorpholine-N-oxide (34 mg, 0.291 mmol) and powdered 4 Å molecular 

sieves (94 mg) were added under argon. After 10 min stirring, TPAP (3.4 mg, 0.0097 

mmol, 5 mol %) was added. After 2.5 hours, the reaction mixture was filtered 

through a short silica gel plug eluting with CH2Cl2/EtOAc (8:2) and concentrated 

in vacuo. Purification by preparative TLC (hexane-EtOAc, 8:2) afforded ketone 16 

(91.8 mg, 90%) as a colourless oil. [α]D 20 = –1.8 (c=1.0, CHCl3); IR (neat) max: 

2957, 2930, 2858, 1717, 1472, 1464, 1428, 1389, 1257, 1112, 836, 777, 740, 702 

cm-1; 1H-NMR (400 MHz, CDCl3):  7.68 (8H, d, J=6.6, ArH), 7.47-7.36 (12H, m, 

ArH), 3.63 (4H, bt, J=6.3), 3.51 (4H, m), 2.47 (2H, t, J=7.3), 2.41 (2H, m), 1.08 

(9H, s, C(CH3)3), 0.94 (3H, d, J=6.7, H3-17), 0.91 (9H, s, C(CH3)3), 0.06 (6H, s, 

Si(CH3)2); 
 13C-NMR (100 MHz, CDCl3):  211.0, 135.6, 133.8, 129.5, 127.6, 68.5, 

62.2, 40.5, 38.9, 35.3, 27.2, 26.86, 26.82, 25.9, 19.3, 18.3, 16.7, -5.4; HRMS (ESI) 

m/z calcd for C31H51O3Si2 [M+H]+ 527.3371, found 527.3379. 

Phosphonium salt 17 

 

(Chloromethyl)triphenylphosphonium iodide 17 was prepared by a modification of 

the reported procedure,21 starting from triphenylphosphine (31.44 g, 120 mmol) and 

chloroiodomethane (25 g, 10.3 mL, 142 mmol). In particular, the Widmer condenser 

was replaced by a double jacketed condenser. After 4h the process was stopped by 
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filtering the reaction mixture under argon to give compound 17 (14.23 g, 27%) as a 

light yellow powder. This compound could be stored in a dessiccator without 

decomposition for several months. Crystallization from ethanol gave 12.55 g (24%) 

of 17 as white crystals. Mp 186-187 (dec.) [lit. 185-187 (dec.)2]; 1H-NMR: (400 

MHz, DMSO-d6)  8.01-7.75 (15H, m, ArH), 6.08 (2H, d, J=6.8); 13C-NMR (100 

MHz, DMSO-d6):  135.6, 134.0 (d, J=10.2), 130.3 (d, J=12.6), 116.1 (d, J=88.2), 

32.0 (d, J=55.4). 

Wittig reaction on model ketone 16 using nBuLi as the base 

 

To a stirred suspension of (chloromethyl)triphenylphosphonium iodide (338 mg, 

0.772 mmol) in THF (10 mL), at -78°C, under argon, nBuLi (0.362 mL, 0.579 

mmol, 1.0 M sol. in hexane) was added dropwise. The white suspension became a 

red-orange solution. After one hour at -78°C, a solution of ketone 16 (101.4 mg, 

0.193 mmol) in dry THF (1.3 mL) was added via cannula, and the mixture was 

allowed to reach room temperature. After 2h the reaction was quenched with a satd. 

aq. NH4Cl solution (10 mL) and extracted with EtOAc (3 x 15 mL). The organic 

phase was washed with brine, dried and evaporated under reduced pressure to give 

a mixture of compounds 18 and 19 (171.5 mg, 18:19, 1:1, 1H-NMR analysis), as a 

colourless oil. 
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Wittig reaction on model ketone 16 using tert-BuOK as the base 

To a stirred suspension of (chloromethyl)triphenylphosphonium iodide (137 mg, 

0.31 mmol) in THF (3.5 mL), at 0°C, under argon, tert-BuOK (0.314 mL, 0.314 

mmol, 1.0 M sol. in THF) was added dropwise.21 The solution became immediately 

yellow. After 30 min at 0°C, a solution of ketone 16 (82.8 mg, 0.157 mmol) in dry 

THF (1.0 mL plus 0.2 mL rinse) was added and the mixture was allowed to reach 

room temperature. After 4h, the reaction was quenched with a satd. aq. NH4Cl 

solution (10 mL) and extracted with Et2O (3 x 15 mL). The organic phase was 

washed with brine, dried and evaporated under reduced pressure. Purification by 

preparative TLC (hexane/EtOAc, 8:2) gave compounds 18 (66.5 mg, 76%, 1.8:1 

mixture of diastereomers, 1H-NMR analysis), as a colourless oil. 1H-NMR (400 

MHz, CDCl3): mixture of two diastereomers,  7.72 -7.27 (ArH), 5.78, 5.74 (both 

s, vinyl proton), 3.63 -3.55, 3.52-3.45 (both m, 2 x OCH2), 2.29-2.04 (m, H2-19 and 

H2-22), 1.71-1.51 (m), 1.06, 0.89 (both s, 2 x C(CH3)3), 0.041 (m, (CH3)2Si); HRMS 

(ESI) m/z calcd for 559.3189 [M+H]+, found 559.3178. 

Chlorovinyl derivative 20 

 

 

To a stirred suspension of (chloromethyl)triphenylphosphonium iodide (128 mg, 

0.292 mmol) in THF (5 mL), at 0°C, under argon, tert-BuOK (0.281 mL, 0.7281 

mmol, 1.0 M sol. in THF) was added dropwise.21 The solution became immediately 

yellow. After 30 min at 0°C, a solution of ketone 15 (45.5 mg, 0.097 mmol) in dry 

THF (1.0 mL plus 1.0 mL rinse) was added and the mixture was allowed to reach 

room temperature. After 4h, the reaction was quenched with a satd. aq. NH4Cl 

solution (10 mL) and extracted with Et2O (3 x 20 mL). The organic phase was 
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washed with brine, dried and evaporated under reduced pressure. Separation by 

column chromatography over silica gel (hexane-EtOAc, 8:2) gave compounds 20 

(19.6 mg, 40.4%) and 21 (20.5 mg, 42.3%) as colourless oils. Compound 20. [α]D 

20 = –1.6 (c= 0.23, CHCl3); IR (neat) max: 2955, 2930, 2858, 1652, 1428, 1112, 

824, 798, 741, 703 cm-1; 1H-NMR: (400 MHz, CDCl3, mixture of rotamers):  7.65 

(4H, d, J=6.9, ArH), 7.45-7.34 (6H, m, ArH), 5.81 (0.5H, s, vinyl proton), 5.75 

(0.5H, s, vinyl proton), 3.48 (2H, bt, J=5.6, H2-15), 3.37, 3.25 (1H each, both t, 

J=7.6, H2-24), 2.97 (1.5H, s, H3-27), 2.90 (1.5H, s, H3-27), 2.24-2.13 (2H, m), 2.13-

1.95 (5H, overlapped signals including a singlet at 2.07 for H3-26), 1.77-1.53 (4H, 

m), 1.34-1.13 (1H, m), 1.06 (9H, s, C(CH3)3), 0.91 (3H, d, J=6.6, H3-17); 13C-NMR 

(100 MHz, CDCl3):  170.4, 170.3, 142.1, 141.4, 135.6, 133.89, 133.81, 129.59, 

129.54, 127.6, 113.0, 112.3, 68.5, 68.4, 50.5, 47.1, 36.0, 35.2, 33.1, 32.25, 32.22, 

31.05, 30.99, 27.5, 27.3, 26.9, 25.8, 24.7, 21.9, 21.2, 19.3, 16.6; HRMS (ESI) m/z 

calcd for C29H42ClNNaO2Si [M+Na]+ 522.2566, found 522.2541. Compound 21. 

[α]D
20 = –1.4 (c=0.6, CHCl3); IR (neat) max: 2958, 2931, 2858, 1627, 1428, 1112, 

823, 802, 742, 703 cm-1; 1H-NMR (400 MHz, CDCl3): mixture of rotamers,  7.66 

(4H, d, J=7.5, ArH), 7.45-7.34 (6H, m, ArH), 5.80 (1H, s, vinyl proton), 3.50 (2H, 

m, H2-15), 3.32 (0.6 H, t, J=7.7, H2-24), 3.21 (0.4 H, t, J=7.7, H2-24), 2.94 (1.8 H, 

s, H3-27), 2.89 (1.2 H, s, H3-27), 2.21 (2H, m), 2.10-2.02 (5H, overlapped signals 

including a singlet at 2.06 for H3-26), 1.77-1.56 (4H, m), 1.31-1.15 (1H, m), 1.05 

(9H, s, C(CH3)3), 0.95 (3H, d, J=6.6, H3-17); 13C-NMR (100 MHz, CDCl3):  170.4, 

170.3, 142.05, 141.5, 135.6, 134.0, 133.9, 129.5, 127.6, 112.9, 112.3, 68.6, 68.5, 

50.2, 47.2, 36.1, 35.7, 33.1, 32.0, 31.7, 30.3, 27.7, 27.5, 26.9, 26.2, 25.2, 21.9, 21.2, 

19.3, 16.6; HRMS (ESI) m/z calcd for C29H42ClNNaO2Si [M+Na]+ 522.2566, found 

522.2562. 
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Alcohol 22 

 

To a solution of 20 (47.2 mg, 0.094 mmol) in THF (6.7 mL), TBAF (0.142 mL, 

0.142 mmol, 1.0 M solution in THF) was added dropwise, at 0°C. The reaction 

mixture was allowed to reach room temperature and stirred for 1h. Then, the 

reaction was quenced with a satd. aq. solution of NH4Cl (2 mL). The phases were 

separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The 

combined organic phases were dried and evaporated in vacuo. Purification by 

column chromathography over silica gel (CHCl3/CH3OH, 99:1) gave alcohol 22 

(21.4 mg, 87%) as colourless oil. [α]D
20 = –63.4 (c=1.5, CHCl3); IR (neat) max: 

3410, 2953, 2927, 2858, 1634, 1489, 1456, 1404, 1046, 795 cm-1; 1H-NMR: (400 

MHz, CDCl3, mixture of rotamers):  5.86 (0.4H, s, vinyl proton), 5.82 (0.6H, s, 

vinyl proton), 3.46 (2H, t, J=5.3), 3.42-3.24 (2H, m’s), 2.99 (1.8 H, s, H3-27), 2.89 

(1.2 H, s, H3-27), 2.27-2.02 (7H, overlapped signals including two singlets at 2.09 

and 2.07 for H3-26), 1.78-1.52 (4H, m), 1.30-1.15 (1H, m), 0.93, 0.91 (overall 3H, 

overlapped d’s, both J=6.0, H3-17); 13C-NMR (100 MHz, CDCl3):  170.6, 170.4, 

142.0, 141.3, 113.2, 112.6, 67.8, 67.7, 50.5, 47.3, 36.1, 35.2, 33.2, 32.3, 32.2, 31.1, 

31.0, 27.4, 27.3, 25.8, 24.6, 21.9, 21.2, 16.44, 16.38; HRMS (ESI) m/z calcd for 

C13H25ClNO2 [M+H]+ 262.1568, found 262.1564. 

Aldehyde 23 

 



72 
 

 

To a stirred solution of alcohol 22 (16.2 mg, 0.062 mmol) in CH2Cl2 (0.3 mL) N-

methylmorpholine-N-oxide (10.87 mg, 0.093 mmol) and powdered 4 Å molecular 

sieves (31 mg) were added under argon. After 10 min, TPAP (1.1 mg, 0.003 mmol, 

5 mol %) was added. After 2 h the reaction mixture was filtrated through a short 

silica gel plug eluting with CHCl3/EtOAc (8:2) and concentrated under reduced 

pressure to yield aldehyde 23 (13.7 mg) as a colourless oil, that was applied to the 

next step without further purification. 

Ethyl ester 24 

 

To a stirred solution of the aldehyde 23 (13.7, 0.053 mmol) in anhydrous toluene 

(0.4 mL), at 80° C, under argon, (carboethoxyethylidene)triphenylphosphorane 

(40.8 mg, 0.106 mmol) was added all at once. After 6 h, the reaction mixture was 

concentrated under reduced pressure. Purification by column chromatography over 

silica gel (CHCl3/CH3OH, 95:5) afforded ethyl ester 24 (16.3 mg, 76% over two 

steps) as a colorless oil. [α]D
20 = +127.4 (c=0.5, CHCl3); IR (neat) max: 2957, 2927, 

2858, 1707, 1651, 1596, 1459, 1424, 1373, 1262, 1122 cm-1; 1H-NMR (400 MHz, 

CDCl3, mixture of rotamers):  6.49 (1H, d, J=10.1, H-15), 5.82 (0.5H, s, vinyl 

proton), 5.76 (0.5H, s, vinyl proton), 4.18 (2H, q, J=7.0, OCH2CH3), 3.37, 3.27 (1H 

each, both t, J=7.6, H2-24), 2.99 (1.5H, s, H3-27), 2.91 (1.5H, s, H3-27), 2.46 (1H, 

m, H-16), 2.18 (2H, m), 2.09 (1.5H, s, H3-26), 2.08 (1.5H, s, H3-26), 2.01 (2H, t, 

J=8.6), 1.83 (1.5H, d, J=1.2, H3-14), 1.82 (1.5H, d, J=1.2, H3-14), 1.30 (3H, t, J=7.0, 

OCH2CH3), 1.02 (1.5H, d, J=6.6, H3-17), 1.00 (1.5H, d, J=6.6, H3-17); 13C-NMR 

(100 MHz, CDCl3)  170.5, 170.3, 168.3, 168.2, 146.9, 146.6, 141.6, 140.8, 132.1, 



73 
 

 

132.0, 131.94, 131.91, 128.5, 128.4, 127.2, 127.0, 113.4, 112.7, 60.6, 60.5, 50.4, 

47.1, 36.0, 34.7, 34.6, 33.1, 32.7, 27.4, 27.3, 25.7, 24.6, 21.9, 21.3, 20.01, 19.98, 

14.3, 12.63, 12.61; HRMS (ESI) m/z calcd for C18H30ClNNaO3 [M+Na]+ 366.1812, 

found 366.1802. 

Pentafluorophenyl ester 26. 

 

To a solution of 3 (4.5 mg, 0.014 mmol) in EtOAc (0.130 mL), at 0°C, 

pentafluorophenol (4.0 mg, 0.022 mmol) and DCC (4.5 mg, 0.22 mmol) were 

added. The reaction mixture was stirred for 1 hour at 0°C and 3h at rt, and 

evaporated under reduced pressure. Purification by preparative TLC 

(CHCl3/CH3OH, 95:5) gave pentafluorophenyl ester 26 (5.5 mg, 82%) as a 

colourless oil. IR (neat) max: 2962, 2917, 2949, 1683, 1626, 1521, 1261, 

1096,1022, 801, 760 cm-1; 1H-NMR: (400 MHz, CDCl3, mixture of rotamers):  

6.85 (1H, d, J=10.1, H-15), 5.86 (0.5H, s, vinyl proton), 5.80 (0.5H, s, vinyl proton), 

3.39, 3.29 (1H each, both t, J=7.7, H2-24), 3.00 (1.5H, s, H3-27), 2.92 (1.5H, s, H3-

27), 2.58 (1H, m, H-16), 2.20 (2H, m), 2.09 (1.5H, s, H3-26), 2.08 (1.5H, s, H3-26), 

2.07 (2H, t, J=8.5), 1.97 (1.5H, d, J=1.2, H3-14), 1.96 (1.5H, d, J=1.2, H3-14), 1.10 

(1.5H, d, J=6.8, H3-17), 1.08 (1.5H, d, J=6.8, H3-17); 13C-NMR (100 MHz, CDCl3): 

 152.4, 152.0, 141.3, 140.6, 124.4, 124.2, 113.7, 113.0, 50.4, 49.1, 47.1, 36.0, 34.5, 

34.4, 33.9, 33.3, 33.1, 32.74, 32.68, 27.31, 27.29, 25.8, 25.6, 24.9, 24.6, 21.9, 21.3, 

19.67, 19.64, 12.7; HRMS (ESI) m/z calcd for C22H26ClF5NO3 [M+H]+ 482.1516, 

found 482.1499. 
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Pyrrolinone 25 

 

To a stirred solution of Meldrum’s acid (1.60 g, 11.1 mmol) and DMAP (1.57 g, 

12.9 mmol) in CH2Cl2 (60 mL), at 0° C, Boc-(L)-Phe-OH (2.44 g, 9.21 mmol) was 

added followed by EDC·HCl (1.76 g, 11.1 mmol). The yellow mixture was stirred 

overnight at rt, then poured into EtOAc (200 mL) and sequentially washed with 

brine (2 x 100 mL), 5% citric acid solution (3 x 300 mL) and again brine (1 x 300 

mL). The organic phase was refluxed for 1 h. and evaporated under reduced 

pressure to gave compound 25 (2.69 g) that was applied to the next step without 

further purification. 

Pyrrolinone 4 

 

To a stirred solution of pyrrolinone 25 (1.0 g, 3.46 mmol) and triphenylphospine 

(1.36 g, 5.19 mmol) in CH2Cl2 (20 mL), at 0° C, under argon, CH3OH (0.21 mL, 

5.19 mmol) and DIAD (1.0 mL, 5.19 mmol) were added. The reaction mixture was 

allowed to warm to rt and after 6 h concentrated in vacuo. Purification by column 

chromatography over silica gel (hexane/EtOAc, 6:4) gave Boc-protected 

pyrrolinone 38 (621 mg, 57% over three steps) as a colourless oil. [α]D
20 = +203.3 

(c=1.0, CH3OH); IR (neat) max: 2980, 2940, 1779, 1733, 1705, 1634, 1456, 1319, 

1246, 1152, 1094, 1073, 981, 848, 808, 757, 701, 667 cm-1; 1H-NMR: (400 MHz, 
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CDCl3):  7.11-7.00 (3H, m, ArH), 6.87 (2H, d, J=7.1, ArH), 4.66 (1H, s, H-10), 

4.52 (1H, bdd, J=5.0, 3.0, H-8), 3.62 (3H, s, OCH3), 3.31 (1H, dd, J=13.8, 5.1, Ha-

7), 2.98 (1H, dd, J=13.8, 3.0, Hb-7), 1.48 (9H, s, C(CH3)3); 
13C-NMR (100 MHz, 

CDCl3)  175.6, 168.0, 148.8, 133.5, 128.9, 127.6, 126.4, 94.5, 81.8, 59.5, 57.7, 

34.7, 27.6. HRMS (ESI) m/z calcd for C17H22NO4 [M+H]+ 304.1543, found 

304.1532. 

To a stirred solution of 38 (212 mg, 0.66 mmol) in CH2Cl2 (2.5 mL) TFA (2.5 mL) 

was added. After 30 min the reaction mixture was evaporated in vacuo. Residual 

TFA was removed by evaporation with toluene (3 x 1.5 mL) to give pyrrolinone 4 

(144 mg, quant.) as a white waxy solid. Mp 84-85 (EtOAc/hexane) [lit. 103-1043]; 

[α]D
20 = –62.3 (c=1.0, CHCl3) [lit. -63.0 (c=1.0, CHCl3)

26]; IR (neat) max: 3238, 

3030, 2939, 2848, 1683, 1623, 1497, 1455, 1365, 1344, 1232, 989, 806, 700 cm-1; 

1H-NMR: (400 MHz, CDCl3):  7.32-7.20 (3H, m, ArH), 7.14 (2H, d, J=7.1, ArH), 

5.6 (br s, NH), 5.04 (1H, s, H-10), 4.33 (1H, m, H-8), 3.83 (3H, s, OCH3), 3.17 (1H, 

dd, J=13.7, 3.4, Ha-7), 2.78 (1H, dd, J=13.7, 7.6, Hb-7); 13C-NMR (100 MHz, 

CDCl3)  177.2, 173.7, 136.3, 129.1, 128.4, 126.8, 94.0, 58.4, 58.1, 38.3. HRMS 

(ESI) m/z calcd for C12H14NO2 [M+H]+ 204.1019, found 204.1011. 

16-epi-smenamide 27 

 

To a stirred solution of pyrrolinone 4 (9.9 mg, 0.049 mmol) in THF (0.1 mL) at -

78°C, nBuLi (0.020 mL, 0.033 mmol, 1.6 M sol. in hexane) was added dropwise. 

After 15 min, a solution of pentafluorophenyl ester 26 (1.5 mg, 0.0031 mmol) in 

THF (0.1 mL) was added via syringe. After 2h, the reaction was quenced with a 
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satd. aq. NH4Cl solution (1 mL) and extracted with EtOAc (3 x 10 mL). The organic 

phase was washed with water (6 mL) and brine (6 mL), dried and concentrated in 

vacuo. The crude was subjected to reversed-phase HPLC separation [column Luna 

(Phenomenex) C18, 250 × 4.6 mm, 5 μm; eluent A: H2O; eluent B: CH3CN; 

gradient: 50→100% B, over 35 min, flow rate 1 mL min–1], to give 16-epi-

smenamide A (tR=17.5 min, 1.3 mg, 84%) as a colourless oil. [α]D 20 = 86.9 (c=0.1, 

CHCl3); IR (neat) νmax: 2958,  2928,  2857,  1731, 1631, 1455, 1308, 1245, 

1197,1024, 965, 807, 753,708 cm-1; 1H-NMR: (400 MHz, CD3OD, mixture of 

rotamers):  7.26-7.20 (3H, m, H-3, H-4, H-5), 6.99 (2H, m, H-2, H-6), 6.00 (0.5H, 

s, H-21), 5.97 (0.5H, s, H-21), 5.41 (1H, bdd, J=10.0, 1.5, H-15), 5.40 (1H, bdd, 

J=10.0, 1.5, H-15), 5.03 (0.5H, s, H-10), 5.02 (0.5H, s, H-10), 5.00 (1H, m, H-8), 

3.96 (3H, s, OCH3), 3.46-3.33 (3H, overlapped m’s), 3.19 (1H, dd, J=14.0, 2.4), 

3.03 (1.5H, s, H3-27), 2.89 (1.5H, s, H3-27), 2.44 (1H, m), 2.32-2.13 (3H, 

overlapped m’s), 2.13-2.02 (4H, overlapped signals including a singlet at 2.07 for 

H3-26), 1.81-1.60 (5H, overlapped signals including two doublets for H3-14 at 

1.714 and 1.708, both J=1.3), 1.60-1.50 (1H, m), 1.39-1.27 (1H, m), 0.99 (1.5H, d, 

J=7.1, H3-17), 0.98 (1.5H, d, J=7.1, H3-17); 13C NMR (126 MHz, CD3OD) δ 180.0, 

143.2, 143.0, 142.6, 142.2, 135.6, 133.2, 130.9, 129.2, 128.2, 114.2, 114.0, 95.4, 

60.6, 59.5, 51.5, 36.6, 36.2, 36.1, 34.7, 33.6, 33.4, 33.22 33.17, 28.2, 28.0, 26.6, 

25.7, 21.7, 21.1, 20.3, 20.2, 14.3, 14.2; HRMS (ESI) m/z calcd for C28H38ClN2O4 

[M+H]+ 501.2515, found 501.2493. 

ent-smenamide 29 
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To a stirred solution of pyrrolinone 28 (9.9 mg, 0.049 mmol) in THF (0.1 mL) at -

78°C, nBuLi (0.20 mL, 0.033 mmol, 1.6 M sol. in hexane) was added dropwise. 

After 15 min, a solution of pentafluorophenyl ester 26 (1.5 mg, 0.0031 mmol) in 

THF (0.1 mL) was added via syringe. After 2h, the reaction was quenced with a 

satd. aq. NH4Cl solution (1 mL) and extracted with EtOAc (3 x 10 mL). The organic 

phase was washed with water (6 mL) and brine (6 mL), dried and concentrated in 

vacuo. The crude was subjected to reversed-phase HPLC separation [column Luna 

(Phenomenex) C18, 250 × 4.6 mm, 5 μm; eluent A: H2O; eluent B: CH3CN; 

gradient: 50→100% B, over 35 min, flow rate1 mL min–1], to give ent-smenamide 

A 29 (tR = 18.5 min, 1.4 mg, 88%) as a colourless oil. [α]D 20 = –9.8 (c=0.1, CHCl3); 

IR (neat) max: 2958, 2923, 2853, 1729, 1631, 1455, 1306, 1205, 1132, 1026, 802 

cm-1; 1H- and 13C-NMR see Table 1. HRMS (ESI) m/z calcd for C28H38ClN2O4 

[M+H]+ 501.2515, found 501.2495.  
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2.8 Supplementary spectroscopic data 

 

 

Figure 2.22. 1H NMR spectrum of compound 30 (CDCl3, 400 MHz) 

 

 

Figure 2.23. 13C NMR spectrum of compound 30 (CDCl3, 100 MHz) 
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Figure 2.24. 1H NMR spectrum of compound 8 (CDCl3, 400 MHz) 
 

 

Figure 2.25. 13C NMR spectrum of compound 8 (CDCl3, 100 MHz) 
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Figure 2.26. 1H NMR spectrum of compound 31 (CDCl3, 400 MHz) 

 

 

 

Figure 2.27. 13C NMR spectrum of compound 31 (CDCl3, 100 MHz) 
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Figure 2.28. 1H NMR spectrum of compound 33 (CDCl3, 400 MHz) 

 

 

 

Figure 2.29. 13C NMR spectrum of compound 33 (CDCl3, 100 MHz) 
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Figure 2.30. 1H NMR spectrum of compound 9 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.31. 13C NMR spectrum of compound 9 (CDCl3, 100 MHz) 
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Figure 2.32. 1H NMR spectrum of compound 34 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.33. 13C NMR spectrum of compound 34 (CDCl3, 100 MHz) 

 



84 
 

 

 

 

 

 

 

 

Figure 2.34. 1H NMR spectrum of compound 10 (CDCl3, 400 MHz) 
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Figure 2.35. 1H NMR spectrum of compound 12 (CDCl3, 400 MHz) 

 

 

 

Figure 2.36. 13C NMR spectrum of compound 12 (CDCl3, 100 MHz) 
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Figure 2.37. 1H NMR spectrum of compound 5 (CDCl3, 400 MHz) 

 

 

 

 

 

 

Figure 2.38. 13C NMR spectrum of compound 5 (CDCl3, 100 MHz) 

 

 



87 
 

 

 

 

 

 

Figure 2.39. 1H NMR spectrum of compound 35 (CDCl3, 400 MHz) 

 

 

 

 

 

Figure 2.40. 13C NMR spectrum of compound 35 (CDCl3, 100 MHz) 
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Figure 2.41. 1H NMR spectrum of compound 36 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.42. 13C NMR spectrum of compound 36 (CDCl3, 100 MHz) 
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Figure 2.43. 1H NMR spectrum of compound 13 (CDCl3, 400 MHz) 

 

 

 

Figure 2.44. 13C NMR spectrum of compound 13 (CDCl3, 100 MHz) 
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Figure 2.45. 1H NMR spectrum of compound 14 (CDCl3, 400 MHz) 

 

 

 

Figure 2.46. 13C NMR spectrum of compound 14 (CDCl3, 100 MHz) 
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Figure 2.47. 1H NMR spectrum of compound 37 (CDCl3, 400 MHz) 

 

 

 

Figure 2.48. 13C NMR spectrum of compound 37 (CDCl3, 100 MHz) 
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Figure 2.49. 1H NMR spectrum of compound 15 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.50. 13C NMR spectrum of compound 15 (CDCl3, 100 MHz) 
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Figure 2.51. 1H NMR spectrum of compound 16 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.52. 13C NMR spectrum of compound 16 (CDCl3, 100 MHz) 
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Figure 2.53. 1H NMR spectrum of compound 17 (DMSO, 400 MHz) 

 

 

 

 

 

Figure 2.54. 13C NMR spectrum of compound 17 (DMSO, 100 MHz) 
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Figure 2.55. 1H NMR spectrum of compounds 18 (CDCl3, 400 MHz) 
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 Figure 2.56. 1H NMR spectrum of compound 20 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.57. 13C NMR spectrum of compound 20 (CDCl3, 100 MHz) 
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Figure 2.58. 1H NMR spectrum of compound 21 (CDCl3, 400 MHz) 

 

 

 

 

 

Figure 2.59. 13C NMR spectrum of compound 21 (CDCl3, 100 MHz) 

 



98 
 

 

 

 

Figure 2.60. 1H NMR spectrum of compound 22 (CDCl3, 400 MHz) 

 

 

 

 

 

Figure 2.61. 13C NMR spectrum of compound 22 (CDCl3, 100 MHz) 
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Figure 2.62. 1H NMR spectrum of compound 24 (CDCl3, 400 MHz) 

 

 

 

Figure 2.63. 13C NMR spectrum of compound 24 (CDCl3, 100 MHz) 
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Figure 2.64. 1H NMR spectrum of compound 26 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.65. 13C NMR spectrum of compound 26 (CDCl3, 400 MHz) 

 

 

 



101 
 

 

 

 

Figure 2.66. 1H NMR spectrum of compound 4 (CDCl3, 400 MHz) 

 

 

 

 

Figure 2.67. 13C NMR spectrum of compound 4 (CDCl3, 100 MHz) 
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Figure 2.68. 1H NMR spectrum of compound 27 (CD3OD, 500 MHz) 

 

 

 

 

Figure 2.69. 13C NMR spectrum of compound 27 (CD3OD, 125 MHz) 
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Figure 2.70. 1H NMR spectrum of compound 29 (CD3OD, 700 MHz) 

 

 

 

Figure 2.71. 13C NMR spectrum of compound 29 (CD3OD, 175 MHz) 
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Figure 2.72. ECD spectra of natural smenamide A (solid red line) and ent-smenamide A (29) 

(dashed blue line). 
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Table 2.1. NMR data of natural smenamide A and ent-smenamide A. 
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Chapter 3 

Synthesis and biological activity of eight 

smenamide A-functional analogues 

 

As part of a broad research project focused on the study of the chemistry of marine 

natural products and their synthetic or semi-synthetic derivatives, a flexible 

synthetic route, aimed to the synthesis of new bioactive compounds, was planned. 

Smenamide A is a hybrid peptide/polyketide (PKS/NRPS) compound possessing a 

promising cytotoxic activity against the Calu-1 lung cancer cell line.1 Recently, two 

synthetic derivatives of the natural compound, namely 16-epi- and ent-smenamide 

A, were synthesised starting from the commercially available S-citronellene.2 With 

the aim of gaining a better insight into the cytotoxic activity of smenamides family, 

eight shorter-chain synthetic analogues of the 16-epi- series have been designed and 

prepared.3 

 

3.1 Synthesis of eight smenamide A-analogues of the 16-epi- series and their 

biological activity 

Smenamides are small but highly functionalised organic molecules, the structure of 

which contains a N-methylacetamido western function, a chlorovinyl moiety and a 

pyrrolinone eastern terminal. In order to investigate the role of the three main 

functionalities of the molecules in the biological activity, eight chorter-chain (8-15) 

analogues of 16-epi-smenamide A were designed and prepared (Figure 3.1). 
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Although they are simplified analogues, they retain the main structural features of 

the natural lead compound 1. They were indeed thought as "functional-analogues”. 

 

 

Figure 3.1. Structures of compounds 7-15.  

 

 

Compound 8, truncated in position 18, consists essentially of the dolapyrrolidinone 

subunit. It was prepared in order to probe the role of the pyrrolinone moiety, 

whereas compounds 9-15 were prepared to simulate the polyketide portion, and, 

more precisely, the role of the chlorine atom and the stereochemistry of C 20-21 

double bond. Thanks to the flexible synthetic approach, all eight functional 

analogues were easily prepared. The activation of 2,4-dimethyl-2-pentenoic acid as 

pentafluorophenyl ester (16) and its subsequent coupling with the 
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dolapyrrolidinone subunit (17), previously synthesized2 afforded derivative 8 

(Figure 3.2) in high yield (85 %). 

 

 
Figure 3.2. Preparation of dolapyrrolidinone derivative 8. 

 

As for compounds 9-15 they have been prepared according to the reported 

procedure,2 starting from the chiral S-citronellene, commercially available. S-

citronellene, properly oxidised and degraded, provided the carbon backbone of 

C15-C20 aldehyde, which was further manipulated affording ketone 18. The latter 

is a versatile intermediate, the modification of which allowed the introduction of 

the desired functionalities: the chlorovinyl and the methylene moieties, and the -

unsaturated ethyl ester function (Figure 3.3). 

 

Figure 3.3. Ketone18 as a versatile intermediate. 

 

Compounds 9-13 were prepared as depicted in Figure 3.4. For the installation of the 

chlorovinyl function, we took advantage of one of the most useful C-C formation 

reactions: the Wittig reaction. Ketone 18 was reacted with the proper phosphonium 
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salt, (chloromethyl)triphenylphosphonium iodide, previously synthesized,2 to get 

the chlorovinyl derivatives 9 and 10, possessing the opposite configuration of the 

double bond. Since an unstabilised ylide was used, the process afforded both 

stereoisomers Z and E in ratio 3:2, respectively. 9 and 10 were then acetylated in 

classic conditions (Ac2O/Pyr) to give the corresponding acetyl derivatives 11 and 

12. Moreover, a further modification of 9 through an oxidation under Ley’s 

conditions (TPAP(cat)/NMO) afforded the corresponding aldehyde 21, which was 

used in the subsequent Wittig reaction with the stabilized ylide, 

(carbethoxyethylidene)triphenylphosphorane, commercially available. The last 

reaction led to the synthesis of the -unsaturated ethyl ester 13, bearing the same 

C 13-15 double bond configuration of the natural smenamide A (1). 

 

 

Figure 3.4. Preparation of compounds 9-13. 

 

Finally, methylene derivative 14 was prepared by using the same procedure 

described above for compounds 9 and 10, using the proper phosphonium salt 

(Figure 3.5). Ketone 18 was let to react with methylenetriphenylphosphorane, 
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commercially available, to give compound 22, which was deprotected with TBAF 

affording compound 14. Finally, acetylation of 14 with Ac2O/Pyr afforded 

compound 15 (Figure 3.5). 

 

 

Figure 3.5. Preparation of compounds 14 and 15. 

 

3.2. In vitro evaluation of the antiproliferative activity  

Smenamide A was shown to have a cytotoxic activity against the Calu-1 lung cancer 

cell line, blocking the proliferation of the cancer cells through a clear pro-apoptotic 

mechanism.1 Therefore, the antiproliferative activity of 16-epi-smenamide A, 

together with its analogues (8-15), will be evaluated in collaboration with the 

IRCCS CROB (Scientific Institute of Hospitalization and Care- Basilicata 

Oncological Center) of Rionero in Vulture (PZ)3 by MTS cell viability assays on 

SKM-M1 and RPMI-8226 (multiple myeloma) cell lines. 

 

3.3 Conclusions 

Eight shorter-chain synthetic analogues (8-15) of 16-epi-smenamide A have been 

prepared in order to expand the knowledge on the antiproliferative activity of 

smenamides family. The evaluation of their antiproliferative activity is in progress. 
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3.4. Experimental section 

3.4.1 Generals  

All reagents and anhydrous solvents were purchased (Aldrich and Fluka) at the 

highest commercial quality and used without further purification. Where necessary, 

flame-dried and argon-charged glassware was used. The reactions were monitored 

using thinlayer chromatography (TLC) carried out on precoated silica gel plates 

(Merck 60, F254, 0.25 mm thick). Merck silica gel (Kieselgel 40, particle size 

0.063−0.200 mm) was used for the column chromatography. MgSO4 was used as a 

drying agent for aqueous workup. Nuclear magnetic resonance (NMR) experiments 

were performed using Varian Unity Inova spectrometers at 400, 500, and 700 MHz 

in CDCl3. Proton chemical shifts were referenced to the residual CHCl3 signal (7.26 

ppm). 13C NMR chemical shifts were referenced to the solvent (77.0 ppm). 

Abbreviations for signal coupling are as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet, and b = broad. Optical rotations were measured using a 

JASCO P-2000 polarimeter at the sodium D line. HRMS spectra were recorded by 

infusion on a Thermo LTQ Orbitrap XL mass spectrometer equipped with an 

electrospray source in the positive mode using MeOH as the solvent. 

 

3.4.2 Experimental procedures 

 

 Compound 8. To a solution of 2,4-dimethyl-2-pentenoic acid (114 mg, 0.889 

mmol) in EtOAc (4.0 mL), pentafluorophenol (188.2 mg, 1.02 mmol) and DCC 

(210.5 mg, 1.02 mmol) were added at 0 °C. The reaction mixture was stirred for 1 



114 
 

 

h at 0 °C and 3 h at rt and evaporated under reduced pressure to give 16 (185,9 mg, 

0.632 mmol) that was used in the next step without further purification. 1H-NMR: 

(400 MHz, CDCl3):  6.90 (1H, d, J=9.75), 2.8-2.6 (1H, m), 1.95 (3H, s), 1.07 (6H, 

d, J=6.6). 

To a stirred solution of pyrrolinone 17 (126.6 mg, 0.624 mmol)5 in THF (5.0 mL), 

nBuLi (0.390 mL, 0.632 mmol, 1.6 M soln in hexane) was added dropwise at −78 

°C. After 15 min, a solution of pentafluorophenyl ester 16 (183.45 mg, 0.624 mmol) 

in THF (0.1 mL) was added via syringe. After 2 h, the reaction was quenched with 

a saturated aqueous NH4Cl solution (5 mL) and extracted with EtOAc (3 × 15 mL). 

The organic phase was washed with water (15 mL) and brine (15 mL), dried, and 

concentrated in vacuo. The crude was purified by preparative TLC (CHCl3/CH3OH, 

98:2) to give 8 (166.2 mg, 0.530 mmol, 85%) as a colourless oil. [α]D
20 = –63.4 

(c=1.5, CHCl3); 
1H-NMR: (400 MHz, CDCl3):  7.23-7.17 (3H, m, ArH), 7.0-6.9 

(2H, m, ArH), 5.62 (1H, d, J=9.47), 5.01-4.96 (1H, m), 4.84 (1H, s), 3.87 (3H, s, 

OCH3),  3.39 (1H, dd, J=14.1, 5.4, Ha-7), 3.15 (1H, dd, J=14.1, 2.0, Hb-7), 2.68-

2.54 (1H, m), 1.8 (3H, s), 0.99 (6H, d, J=6.5); 13C-NMR (100 MHz, CDCl3):  

177.2, 171.3, 168.8, 145.2, 134.4, 129.8, 129.4, 128.1, 127.0, 94.8, 59.1, 58.3, 33.9, 

27.4, 21.9, 21.5, 13.3; HRMS (ESI) m/z calcd for C13H25ClNO2 [M+H]+ 262.1568, 

found 262.1566. 

Compound 9 

 

A mixture of compounds 19 and 20 was prepared as previously described [4]. Pure 

19 and 20 were obtained by silica gel chromatography (hexane-EtOAc, 1:2). 
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Deprotection of 19, as reported [5] afforded alcohol 9 as a colourless oil. [α]D
20 = –

63.4 (c=1.5, CHCl3); 
1H-NMR: (400 MHz, CDCl3, mixture of rotamers):  5.86 

(0.4H, s, vinyl proton), 5.82 (0.6H, s, vinyl proton), 3.46 (2H, t, J=5.3), 3.42-3.24 

(2H, m’s), 2.99 (1.8 H, s, H3-27), 2.89 (1.2 H, s, H3-27), 2.27-2.02 (7H, overlapped 

signals including two singlets at 2.09 and 2.07 for H3-26), 1.78-1.52 (4H, m), 1.30-

1.15 (1H, m), 0.93, 0.91 (overall 3H, overlapped d’s, both J=6.0, H3-17); 13C-NMR 

(100 MHz, CDCl3):  170.6, 170.4, 142.0, 141.3, 113.2, 112.6, 67.8, 67.7, 50.5, 

47.3, 36.1, 35.2, 33.2, 32.3, 32.2, 31.1, 31.0, 27.4, 27.3, 25.8, 24.6, 21.9, 21.2, 

16.44, 16.38; HRMS (ESI) m/z calcd for C13H25ClNO2 [M+H]+ 262.1568, found 

262.1566. 

Compound 10 

 

To a solution of 20 (3.9 mg, 0.008 mmol) in THF (0.6 mL), TBAF (0.012 mL, 0.012 

mmol, 1.0 M solution in THF) was added dropwise at 0 °C. The reaction mixture 

was allowed to reach RT and stirred for 1 h. Then, the reaction was quenched with 

a saturated aqueous solution of NH4Cl (0.5 mL). The phases were separated, and 

the aqueous layer was extracted using EtOAc (3 × 3 mL). The combined organic 

phases were dried and evaporated in vacuo. The crude was subjected to HPLC 

separation [column Ascentis (Supelco) Si, 25 cm  4.6 mm, 5 µm; eluent: n-

hexane/isopropanol 7:3, flor rate 1 mL min-1] to give alcohol 10 (tR=14.5 min, 1.0 

mg, x %) as a colorless oil. [α]D
20 = +12.13 (c = 0.13 ; CHCl3); 

1H NMR (400 MHz, 

CDCl3, mixture of rotamers):  δ 5.83 (0.4H, s, vinyl proton), 5.81 (0.6H, s, vinyl 

proton), 3.50 (2H, bt, J=5.7), 3.34, 3.26 (1H each, both t, uno dei due non è proprio 
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un tripletto,  J=7.49, H2-24), 2.98 (1.8H, s, H3-27), 2.91 (1.2H, s, H3-27), 2.31-2.17 

(2H, m), 2.11-2.05 (-H, overlapped signals including a singlet at 2.08 for H3-26); 

1.75-1.53 (-H, questo segnale a circa 1.57 è l’acqua???); 1.29-1.19 (1H, m), 0.98, 

0.96 (overall 3H, overlapped doublets, both J=6.10, H3-17); 13C NMR (100 MHz, 

CDCl3):  170.7, 170.5, 142.0, 141.4, 113.0, 112.5, 67.9, 50.2, 47.4, 35.7, 35.6, 

33.2, 32.2, 31.7, 30.33, 30.28, 27.6, 27.5, 26.2, 25.2, 21.9, 16.4; HRMS (ESI) m/z 

calcd for C13H25ClNO2 [M + H]+ 262.1568; found 262.1566. 

Compound 11 

  

To a stirred solution of alcohol 9 (1.4 mg, 0.005 mmol) in pyridine (0.6 mL), excess 

acetic anhydride (0.4 mL) was added at rt. After 2h the reaction mixture was 

evaporated under reduced pressure. The crude was subjected to HPLC separation 

[column Ascentis Si (Supelco), 25 cm x 4.6 mm, 5 µm; eluent: n-

hexane/isopropanol 75:25, flow rate 1 mLmin-1] to give acetyl derivative 11 as a 

colourless oil (1.5 mg, 0.0047 mmol, 95%). [α]D
20 = + 5.1 (c = 0.12, CHCl3); 

1H-

NMR: (400 MHz, CDCl3, mixture of rotamers):  5.87 (0.4H, s, vinyl proton), 5.82 

(0.6H, s, vinyl proton), 3.98-3.85 (2H, m), 3.39 (1.2 H, t, J=6.7, H2-24), 3.29 (0.8 

H, t, J=6.7, H2-24), 3.00 (1.8 H, s, H3-27), 2.93 (1.2H, s, H3-27), 2.27-2.03 (10H, 

overlapped signals including singlets at 2.10, 2.09 and 2.07 for acetates), 1.80-1.54 

(4H, m), 1.57-1.47 (1H, m), 1.31-1.21 (1H, m), 0.95, 0.93 (overall 3H, overlapped 

d’s, both J=6.0, H3-17); 13C-NMR (100 MHz, CDCl3):  141.9, 141.7, 141.3, 141.0, 

113.5, 112.7, 68.92, 68.83, 50.5, 47.2, 36.0, 33.2, 32.12, 32.11, 32.09, 32.08, 31.31, 
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31.29, 31.27, 31.26, 27.45, 27.40, 27.38, 25.8, 24.7, 21.2, 20.9, 16.7; HRMS (ESI) 

m/z calcd for C15H27ClNO3 [M+H]+ 304.1674, found 304.1669. 

Compound 12 

 

To a stirred solution of alcohol 10 (1.2 mg, 0.004 mmol) in pyridine (0.5 mL), 

excess acetic anhydride (0.4 mL) was added at rt. After 2h the reaction mixture was 

evaporated under reduced pressure. The crude was subjected to HPLC separation 

[column Ascentis Si (Supelco), 25 cm x 4.6 mm, 5 µm; eluent: n-

hexane/isopropanol 75:25, flow rate 1 mLmin-1] to give acetyl derivative 12 as a 

colourless oil (1.0 mg, 0.003 mmol, 75%). [α]D
20 = +12.88 (c = 0.06 ; CHCl3); 

1H-

NMR: (500 MHz, CDCl3, mixture of rotamers):  5.83 (0.4H, s, vinyl proton), 5.82 

(0.6H, s, vinyl proton), 3.99-3.88 (2H, m), 3.34 (1.2 H, t, J=7.6, H2-24), 3.26 (0.8 

H, t, J=7.6, H2-24), 2.98 (1.8 H, s, H3-27), 2.91 (1.2 H, s, H3-27), 2.27-2.20 (3H, 

m,), 2.10-2.03 (7H, overlapped signals including singlets at 2.08, 2.07 and 2.06 for 

acetates), 1.85-1.45 (5H, m), 1.32-1.23 (1H, m), 0.99, 0.98 (overall 3H, overlapped 

d’s, both J=6.0, H3-17); 13C-NMR (100 MHz, CDCl3):  171.4, 171.3, 170.6, 141.7, 

141.0, 113.24, 112.7, 112.6, 69.0, 68.9, 50.2, 47.2, 36.2, 33.2, 32.44, 32.40, 31.7, 

30.5, 27.5, 27.4, 26.1, 25.2, 22.0, 21.1 16.7; HRMS (ESI) m/z calcd for 

C15H27ClNO3 [M + H]+ 304.1674; found 304.1671. 

Compound 13 
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Compound 13 was prepared from alcohol 9 as previously described [4]. [α]D
20 = 

+127.4 (c = 0.5, CHCl3); IR (neat) νmax: 2957, 2927, 2858, 1707, 1651, 1596, 1459, 

1424, 1373, 1262, 1122 cm−1; 1H NMR (400 MHz, CDCl3, mixture of rotamers): δ 

6.49 (1H, d, J = 10.1, H-15), 5.82 (0.5H, s, vinyl proton), 5.76 (0.5H, s, vinyl 

proton), 4.18 (2H, q, J = 7.0, OCH2CH3), 3.37, 3.27 (1H each, both t, J = 7.6, H2-

24), 2.99 (1.5H, s, H3-27), 2.91 (1.5H, s, H3-27), 2.46 (1H, m, H-16), 2.18 (2H, m), 

2.09 (1.5H, s, H3-26), 2.08 (1.5H, s, H3-26), 2.01 (2H, t, J = 8.6), 1.83 (1.5H, d, J = 

1.2, H3-14), 1.82 (1.5H, d, J = 1.2, H3-14), 1.30 (3H, t, J = 7.0, OCH2CH3), 1.02 

(1.5H, d, J = 6.6, H3-17), 1.00 (1.5H, d, J = 6.6, H3-17); 13C NMR (100 MHz, 

CDCl3) δ 170.5, 170.3, 168.3, 168.2, 146.9, 146.6, 141.6, 140.8, 132.1, 132.0, 

131.94, 131.91, 128.5, 128.4, 127.2, 127.0, 113.4, 112.7, 60.6, 60.5, 50.4, 47.1, 

36.0, 34.7, 34.6, 33.1, 32.7, 27.4, 27.3, 25.7, 24.6, 21.9, 21.3, 20.01, 19.98, 14.3, 

12.63, 12.61; HRMS (ESI) m/z calcd for C18H30ClNNaO3 [M + Na]+ 366.1812; 

found 366.1802.  

Compound 22 

 

To a stirred suspension of methylenetriphenylphosphorane (6.6 mg, 0.024 mmol) 

in THF (0.5 mL), nBuLi (0.015 mL, 0.024 mmol, 1.6 M sol. in hexane) was added 

dropwise at 0 °C under argon. After 30 min at 0 °C, a solution of ketone 18 (5.5 

mg, 0.012 mmol) in dry THF (0.3 + 0.3 mL rinse) was added, and the mixture was 

allowed to reach rt. After 4 h, the reaction was quenched with a saturated aqueous 

NH4Cl solution (2 mL) and extracted using Et2O (3× 5 mL). The organic phase was 

washed with brine, dried, and evaporated under reduced pressure. The crude was 
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purified by preparative TLC (chloroform/methanol 95:5) affording compounds 22 

as a colourless oil. 1H NMR: δ 7.66 (4H, J=6.9, ArH), 7.44-7.35 (6H, m, ArH), 4.76 

(0.5H, s, methylene proton), 4.72 (0.5H, s, methylene proton), 4.71 (1H, s, 

methylene protons), 3.53-3.44 (2H, m), 3.34, 3.23 (1H each, both t, J=7.6, H2-24), 

2.96 (1.5H, s, H3-27), 2.90 (1.5H, s, H3-27), 2.07 (3H, s, H3-26), 2.05-1.92 (4H, m), 

1.74-1.56 (4H, m), 1.32-1.17 (1H, m), 1.05 (9H, s, C(CH3)3), 0.93 (3H, d, J=6.5, 

H3-17); 13C NMR (100 MHz, CDCl3): δ 170.4, 149.2, 148.4, 135.6, 134.0, 133.9, 

129.52, 129.48, 109.5, 108.9, 68.8, 68.7, 50.5, 47.4, 36.1, 35.4, 33.45, 33.38, 33.2, 

32.8, 31.2, 29.7, 26.9, 26.1, 25.3, 21.9, 21.2, 19.3, 16.7; HRMS (ESI) m/z calcd for 

C29H43NO2Si [M + H]+ 466.3136; found 466.3124. 

Compound 14 

 

To a solution of 22 (5.4 mg, 0.012 mmol) in THF (0.8 mL), TBAF (0.017 mL, 0.017 

mmol, 1.0 M solution in THF) was added at 0 °C. The reaction mixture was allowed 

to reach rt and stirred for 1 h. Then, the reaction was quenched with a satd. aq. 

solution of NH4Cl (1 mL). The phases were separated, and the aqueous layer was 

extracted with EtOAc (3 x 5 mL). The combined organic phases were dried and 

evaporated in vacuo. The crude was subjected to HPLC separation [column 

Ascentis Si (Supelco), 25 cm x 4.6 mm, 5 µm; eluent: ethyl acetate/isopropanol 9:1, 

flow rate 1 mLmin-1] to give alcohol 14 (1.9 mg, 0.008 mmol, 70%) as a colourless 

oil. [α]D
20 = + 7.24 (c = 0.07 ; CHCl3); 

1H NMR (400 MHz, CDCl3, mixture of 

rotamers): δ 4.79 (0.5 H, s, methylene proton), 4.75 (1.5H, bs, methylene protons), 

3.54-3.43 (2H, m), 3.41-3.30 (1H, m, H2-24), 3.27 (1H, t, J=7.4, H2-24), 2.99 (1.5H, 
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s, H3-27), 2.92 (1.5H, s, H3-27), 2.12 1.98 (overall 7H, including singlets at 2.09 

and 2.07 for H3-26), 1.75-1.50 (4H, m), 1.32-1.19 (1H, m), 0.95, 0.93 (overall 3H, 

overlapped d’s, J=6.5, H3-17); 13C NMR (100 MHz, CDCl3): δ 170.6, 150.8???, 

148.8, 148.3, 109.6, 109.2, 68.14, 68.10, 50.4, 47.5, 36.3, 35.4, 33.4, 33.2, 33.1, 

33.0, 32.1, 31.08, 31.03, 29.7, 26.0, 25.1, 21.3, 16.6, 16.5; HRMS (ESI) m/z calcd 

for C13H26NO2 [M + H]+ 228.1958; found 228.1956. 

Compound 15 

 

To a stirred solution of alcohol 14 (1.5 mg, 0.006 mmol) in pyridine (0.2 mL), 

excess acetic anhydride (0.2 mL) was added at rt. After 2h the reaction mixture was 

evaporated under reduced pressure. The crude was subjected to HPLC separation 

[column Ascentis Si (Supelco), 25 cm x 4.6 mm, 5 µm; eluent: n-

hexane/isopropanol 75:25, flow rate 1 mLmin-1] to give acetyl derivative 15 as a 

colourless oil (1.0 mg, 0.004 mmol, 62%). [α]D
20 = + 13.63 (c = 0.07 ; CHCl3); 

1H 

NMR (400 MHz, CDCl3, mixture of rotamers): δ 4.78 (0.5H, s, methylene proton), 

4.75 (0.5H, s, methylene proton), 4.74 (1H, s, methylene protons), 3.99-3.84 (2H, 

m), 3.36, 3.26 (1H each, both t, J=7.6, H2-24), 2.98 (1.5H, s, H3-27), 2.92 (1.5H, s, 

H3-27), 2.12-1.96 (10H, overlapped signals including singlets at 2.09, 2.08 and 2.06 

for acetates) 1.82-1.60 (4H, m), 1.34-1.22 (1H, m), 0.95, 0.94 (overall 3H, 

overlapped d’s, J=6.5, H3-17); 13C NMR (175 MHz, CDCl3): δ 170.42, 171.36, 

170.6, 141.7, 141.05, 113.24, 112.6, 112,65, 69.0, 68.9, 50.2, 47.1, 36.2, 33.2, 

32.42, 32.40, 31.9, 31.7, 30.5, 27.45, 27.39, 26.1, 25.2, 22.0, 21.4, 21.0, 16.7;  

HRMS (ESI) m/z calcd for C15H27NO3 [M + H]+ 270.2063; found 270.2061. 
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3.6 Supplementary spectroscopic data 

 

 

 

 

 

Figure 3.6. 1H NMR spectrum of compound 16 (CDCl3, 400 MHz). 

 

  



122 
 

 

 

Figure 3.7. 1H NMR spectrum of compound 8 (CDCl3, 400 MHz). 

 

 

Figure 3.8. 13C NMR spectrum of compound 8 (CDCl3, 100 MHz). 
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Figure 3.9. 1H NMR spectrum of compound 10 (CDCl3, 400 MHz). 

 

 

Figure 3.10. 13C NMR spectrum of compound 10 (CDCl3, 100 MHz). 
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Figure 3.11. 1H NMR spectrum of compound 11 (CDCl3, 400 MHz). 

 

 

Figure 3.12. 13C NMR spectrum of compound 11 (CDCl3, 100 MHz). 
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Figure 3.13. 1H NMR spectrum of compound 12 (CDCl3, 400 MHz) 

 

 

Figure 3.14. 13C NMR spectrum of compound 12 (CDCl3, 100 MHz) 

 

 

 



126 
 

 

 

Figure 3.15. 1H NMR spectrum of compound 22 (CDCl3, 400 MHz).  

 

Figure 3.16. 13C NMR spectrum of compound 22 (CDCl3, 100 MHz). 
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Figure 3.17. 1H NMR spectrum of compound 14 (CDCl3, 400 MHz). 

 

Figure 3.18. 13C NMR spectrum of compound 14 (CDCl3, 100 MHz). 
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Figure 3.19. 1H NMR spectrum of compound 15 (CDCl3, 400 MHz). 

 

 

Figure 3.20. 13C NMR spectrum of compound 15 (CDCl3, 100 MHz). 
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PART 2 

 

Isolation and structural determination of 

new bioactive metabolites from marine 

sources 

 





 

Chapter 4 

Conulothiazoles A and B, two chlorinated 

peptide/polyketide metabolites from the marine 

sponge Smenospongia conulosa 

 

In an attempt to identify new bioactive metabolites to be used as lead compounds 

in the anticancer drug discovery, the study of the chemical composition of the 

Caribbean sponges of Smenospongia genus (Demospongiae, Dictyoceratida, 

Thorectidae), in particular S. aurea and conulosa, was carried out.  

    

Figure 4.1. Smenospongia aurea and conulosa sponges, respectively. 

 

The chemical analysis of the organic extract of S. aurea led to the isolation of four 

chlorinated PKS/NRPS compounds, namely smenamide A (1) and B (2), and 

smenothiazole A (3) and B (4), the structure of which is depicted in Figure 4.2. 
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Figure 4.2. Structures of smenamide A (1) and B (2), and smenothiazole A (3) and B (4). 

 

Both smenamides and smenothiazoles showed an interesting cytotoxic activity at 

nanomolar concentrations. More precisely, smenamides were shown to exert their 

cytotoxic activity against Calu-1 lung cancer cells,1 whereas smenothiazoles have 

shown a certain selectivity against ovarian cancer cells.2 

In lights of the captivating chemical content of S. aurea, its congeneric species, S. 

conulosa, was studied. The in-depth analysis revealed the presence in the organic 

extract of two additional chlorinated NRP/PK derivatives (Figure 4.3): 

conulothiazoles A (5) and B (6).3 

 

4.1 Isolation of conulothiazoles A and B 

A specimen of the sponge S. conulosa was collected by Scuba along the coasts of 

Little Inagua (Bahamas) in 2013, during one of Prof. J. Pawlik expeditions. After 

collection, it was immediately frozen and stored at −20 °C until it arrived to the 

Department of Pharmacy, in the laboratory of Prof. Costantino. The sample, 

properly homogenized, was subjected to several extractions using CH3OH, 

mixtures of CH3OH /CHCl3 and CHCl3. The methanol extract was partitioned 

between water and butanol with the aim of separating the lipophilic metabolites, 
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including compounds 5 and 6, from hydrophilic molecules such as proteins, 

carbohydrates and nucleic acids, which instead split up into the aqueous phase. The 

butanol phase was combined with the chloroform extracts and concentrated under 

vacuum obtaining a crude extract, then subjected to reverse phase chromatography 

on silica gel RP-18. Fraction A5 (MeOH/H2O 9:1) of the column chromatography 

was shown to be the fraction of interest, containing compounds 5 and 6. Due to the 

high content in known alkaloids, fraction A5 undergone an acid partition between 

chloroform, methanol and acidic water (1% v/v of acetic acid), in order to remove 

the alkaloids from the organic phase. The latter was hence subjected to two 

subsequent reverse phase HPLC separations, affording 5 (225 μg) and 6 (47 μg) as 

pure compounds (Figure 4.3).  

 

Figure 4.3. Structures of conulothiazoles A (5) and B (6). 

 

4.2 Structural determination of compound 5 and 6 

The structural elucidation of natural compounds, which are often isolated and 

purified in exiguous amounts, is undoubtedly the most fascinating aspect of the 

work of natural products chemists. The interest towards natural products increased 

in parallel with the technological progress and the development of new powerful 

analytical tools. The combined use of the most modern spectroscopic (NMR, IR, 

UV) and spectrometric (MS) techniques led to the isolation of conulothiazoles A 

(5) and B (6). Despite the small amount of the compounds isolated from the sponge, 

it was possible to record a complete series of two-dimensional homonuclear and 
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heteronuclear NMR spectra (COSY, HSQC, HMBC), which allowed the complete 

assignment of its structure. All 13C chemical shifts were assigned using the 2D 

NMR spectra, therefore one-dimensional NMR 13C spectra were not recorded. 

The positive ion mode high-resolution ESI mass spectrum of conulothiazole A 

(Figure 4.4) showed the presence of a [M + Na]+ pseudomolecular ion peak at m/z 

411.1270 and a M+2 isotopic peak, whose intensity (38%) suggested the presence 

in the structure of the molecule of both a chlorine (37Cl , 32%) and a sulfur atom 

(34S, 4%). These data are in perfect agreement with the molecular formula, which 

was determined as C21H25ClN2OS. 

 

Figure 4.4. Positive ion mode high-resolution ESI MS spectrum of compound 5. 

 

From the molecular formula it was possible to establish the number of 

unsaturations, which is equal to 10. 

The analysis of the 1H NMR spectrum (Figure 4.5) of 5, evidenced a certain 

similarity of this compound with the smenothiazole A (3, Figure 4.2). Both 

compounds share indeed a benzyl-vinyl chloride function and a thiazole ring.  
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These data were confirmed by the analysis of 13C NMR spectrum and by the main 

correlation peaks provided by the homonuclear and heteronuclear 2D-NMR spectra 

(Table 4.1 and Figure 4.6). 

The elucidation of central portion of the molecule could not be determined by the 

comparison with known compounds, and instead required a detailed analysis of 

one- and two-dimensional NMR spectra. 

The presence of an α-methyl, α,β-unsaturated amide function was demonstrated by 

the analysis of the HMBC spectrum (Figure 4.14), in which three correlations peaks 

of the methyl singlet (H3-8) at δ1.83 with the carbonyl carbon at δ 172.3 (C-6) and 

with the two olefinic carbons at δ 132.5 (C-7) and 137.7 (C-9) are present. This 

function is directly linked to a carbon chain constituted by three methylene groups, 

as confirmed by the vicinal couplings in the COSY spectrum (Figure 4.11). The 

allylic coupling of protons at δ 2.20 (H2-12) with the proton H-14 at (δ 6.02) 

allowed to demonstrate that the chlorovinyl function is linked to the three 

methylene-chain.  

The correlations peaks of the methyl protons at δ1.63 (H3-5) with the proton at δ 

5.39 (H-4) in the COSY spectrum suggested the presence of a single α-amino acid 

CH, deriving from an alanine residue [δH5.39 (H-4) and δC48.9 (C-4)]. The presence 

in the HMBC spectrum of two correlation peaks of proton H-4 at δ 5.39 with both 

carbon C-3 at δ 176.7 of the thiazole ring and the carbonyl carbon at δ 172.3 (C-6), 

allowed to understand that the thiazole ring was directly linked to the alanine-

derived residue.  

At that point, the only possible connection between the polyketide and the peptide 

moiety of the molecule was an amide bond between the carbonyl carbon C-6 (δ 

172.3) and the amino group at δ 48.9 (C-4). 
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These data completed the determination of planar structure of conulothiazole A (5, 

Figure 4.3). 

 

 

Pos. δH [mult., J (Hz)] δC (mult.) COSY HMBC 

1 7.71 (d, 3.4)  142.9 (CH) 2  

2 7.48 (d, 3.3) 120.5 (CH) 1 1, 3 

3 - 176.7 (C)   

4 5.39 (quartet, 7.1)   48.9 (CH) 5 3, 5, 6 

5 1.63 (d, 7.1)   20.9 (CH3) 4 3, 4 

6 - 172.3 (C)   

7 - 132.5 (C)   

8 1.83 (br. s)   12.8 (CH3) 9, 10 6, 7, 9 

9 6.34 (t of quartets, 7.4, 1.4) 137.7 (CH) 8, 10 6, 8 

10 2.16 (quartet, 7.5)   29.1 (CH2) 8, 9, 11 7, 9, 11, 12 

11 1.55 (quintet, 7.7)   27.2 (CH2) 12 9, 10, 12, 13 

12 2.20 (br. t, 7.9)   30.5 (CH2) 11, 14 10, 11, 13, 14, 15 

13 - 143.5 (C)   

14 6.02 (br. s) 115.4 (CH) 12, 15 12, 13, 15 

15 3.42 (br. s)   42.0 (CH2) 14, 17/21 12, 13, 14, 16, 17/21 

16 - 139.9 (C)   

17/21 7.19 (br. d, 7.8) 130.1 (CH) 15, 18/20 15, 19, 21/17 

18/20 7.28 (br. t, 7.8) 129.7 (CH) 17/21, 19 16, 20/18 

19 7.20 (br. t, 7.8) 127.7 (CH) 18/20 17/21 

 

Table 4.1. NMR data of conulothiazole A (5) (700 MHz, CD3OD. 

 

 

The molecular formula C22H27ClN2OS of compound 6 was established by the 

analysis of the high resolution ESI mass spectrum (Figure 4.5), in which a [M+Na]+ 

pseudomolecular ion peak at m/z 425.1426. In comparison with conulothiazole A 

(5) (Figure 4.3), the molecular formula of 6 accounts for 14 additional amu. This 

suggested the presence in compound 6 of an additional methyl group, which was 

indeed confirmed by the analysis of 1H NMR spectrum of compound 6 (Figure 4.15 

and table 4.2). 
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Figure 4.5. Positive ion mode high-resolution ESI MS spectrum of compound 6. 

 

As for conulothiazole A (5), a full set of homonuclear and heteronuclear two-

dimensional NMR spectra were recorded to elucidate the planar structure of 

compound 6. The only difference, from the spectroscopic point of view, between 

compounds 5 and 6 resides in the presence in the COSY spectrum (Figure 4.16) of 

a correlation between methyl protons H3-22 (δ 1.01) with the allylic methine proton 

H-10 (δ 2.47), and the absence of the allylic methylene proton signal at δ 2.16 (H2-

10), which allowed to understand that the additional methyl group is located in 

position 10. These data confirmed the structure of conulothiazole B (6). 
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Pos.  δH [mult., J (Hz)] δC (mult.) COSY HMBC 

1  7.71 (d, 3.4)  145.3 (CH) 2  

2  7.48 (d, 3.3) 120.5 (CH) 1 1, 3 

3  - 176.8 (C)   

4  5.40 (quartet, 7.1)   49.3 (CH) 5 3, 5, 6 

5  1.64 (d, 7.2)   21.7 (CH3) 4 3, 4 

6  - 172.3 (C)   

7  - 131.6 (C)   

8  1.84 (d, 1.4)   13.6 (CH3) 9 6, 7, 9 

9  6.14 (dq, 9.8, 1.4) 144.2 (CH) 8, 10 8 

10  2.47 (dddq, 9.8, 7.9, 5.9, 6.7)   34.4 (CH2) 9, 11a, 11b, 22  

11 a 1.48 (dddd, 13.2, 10.7, 5.9, 

5.9) 

  35.5 (CH2) 10,11b,12a, 12b 13 

 b 1.38 (dddd, 13.2, 10.7, 7.9, 

5.5) 

 10, 11a, 12a, 

12b 

10, 12, 13 

12 a 2.15 (ddd, 13.2, 10.7, 5.9)   29.8 (CH2) 11a, 11b, 12b, 14 11, 13, 14, 

15 

 b 2.10 (ddd, 13.2, 10.7, 5.5)  11a, 11b, 12a, 14 10, 13, 14, 

15 

13  - 143.8 (C)   

14  5.99 (br. s) 115.5 (CH) 12a, 12b, 15 12, 13, 15 

15 

 

3.40 (br. s)   42.5 (CH2) 14, 17/21, 18/20 
12, 13, 14, 

16, 17/21 

16  - 140.3 (C)   

17/21 
 

7.17 (br. d, 7.8) 130.5 (CH) 15, 18/20 
15, 19, 

21/17 

18/20  7.27 (br. t, 7.2) 129.9 (CH) 15, 17/21, 19 16, 20/18 

19  7.20 (br. t, 7.0) 127.7 (CH) 17/21, 18/20  

22  1.01 (d, 6.7)   20.4 (CH3) 10 9, 10, 11 

Table 4.2. NMR data of conulothiazole B (6) (700 MHz, CD3OD). 

 

 

4.3 Stereostructural determination of the two double bonds of conulothiazole 

A and B 

The correlations peaks present in the NOESY spectrum (Figure 4.12) allowed the 

assignment of the configuration of the two double bonds of compound 5 and 6. The 

configuration of both double bonds in conulothiazole A was determined as E, 

thanks to the presence in the NOESY spectrum of the correlation peaks between the 
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proton H-14 (δ 6.02) and the protons H2-15 (δ 3.42) and between protons H3-8  (δ 

1.83) and the protons H2-10 (δ 2.16). 

Conulothiazole B (6) possess the same configuration at both double bonds of 

conoulothiazole A (5). The configurations were determined as E through the 

analysis of ROESY spectrum (Figure 4.6 and Figure 4.17). 

 

 

Figure 4.6. The most significant correlations provided by the COSY, HMBC, and 

NOESY/ROESY 2D NMR spectra of conulothiazoles A (5) and B (6). 

 

4.4 Determination of the absolute configuration of the amino acid residues of 

conulothiazoles A and B 

As for smenamide A (chapter 1, paragraph 2.4), the absolute configuration of the 

amino acid residues of both compound 5 and 6 was determined by using a modified 

procedure of Marfey’s method. The sample was subjected to ozonolysis prior to 

hydrolysis with HCl to prevent racemisation which is reported to occur during 

hydrolysis at the carbon in α position to a thiazole ring (Figure 4.7). 
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Figure 4.7. Ozonolysis, hydrolysis and derivatization of conulothiazole A (5) with L-enantiomer 

of Marfey’s reagent. 

 

The absolute configuration of the alanine residue of conulothiazole A (5) and B (6) 

was determined as S for both compounds, on the basis of the retention times of their 

respective Marfey’s derivatives (Figure 4.8). 

 

 

 

Figure 4.8. HR-ESI-MS-HPLC analysis of Marfey’s derivatives from conulothiazole A (5) and B 

(6). Extracted-ion chromatograms at m/z 342.1044 of (a) authentic L-1-fluoro-2-4-dinitrophenyl-5-

alanine amide L-alanine (L-FDAA-L-Ala); (b) authentic D-FDAA-L-Ala; (c) L-FDAA-Ala from 

5; and (d) L-FDAA-Ala from 6. 
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4.5 Biogenetic studies 

The biogenetic studies on these new metabolites were carried out in collaboration 

with the research group of Prof. Alfonso Mangoni. Since I was not directly involved 

in this part of the project, I will only discuss the most significant results.  

Although smenamides, smenothiazoles and conulothiazoles do not have analogues 

in the field of natural products, they share some structural features with different 

known molecules, belonging to the class of hybrid peptides/polyketides compounds 

(Figure 4.9). 

 

Figure 4.9. Structural analogies of Smenospongia metabolites with cyanobacteria metabolites. 

 

The dolapyrrolidinone eastern terminus of smenamides is also present in dolastatin-

15 (a depsipeptide of probable cyanobacterial origin isolated for the first time from 

the sea hare Dolabella auricolaria) and in other cyanobacterial metabolites, known 

as mycapolyols A–F.4 The chlorovinyl function, present in the structure of all the 
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three smenamides, smenothiazoles and conulothiazoles, is an intriguing structural 

feature shared with jamaicamides, isolated from the cyanobacterium Lyngbia 

majuscula5 ( recently renamed as Moorea producens).6 Moreover, the peptide 

moiety of both smenothiazole A and B (3 and 4, respectively, Figure 4.2) is very 

similar to the eastern part of apramide G.7  

The secondary metabolites isolated from sponges can be either produced through 

the secondary metabolism of the sponge itself or through the symbiotic relationship 

of the sponge with microorganisms, such as bacteria or cyanobacteria. Although it 

has not yet been possible to establish whether compounds 1-6 (Figure 4.2 and 4.3), 

isolated from Smenospongia aurea and conulosa, are produced in one or the other 

way, comparable amounts of smenamides (1 and 2, Figure 4.2) were found in three 

samples of S. aurea collected in different moments and in different geographical 

areas. This observation, strengthened by the structural similarity of the smenamides 

with products of the metabolism of cyanobacteria, suggests their probable 

cyanobacterial origin. 

Recently, biogenetic studies were performed in order to detect the presence in the 

metagenome of S. aurea of cyanobacterial sequences.3 PCR experiments were 

performed by using the metagenome of the sponge as a template, while specific 

primers were used to reveal the presence of 16S rRNA cyanobacterial sequences. 

The production of clear bands of the expected length of 670 bp, confirmed the 

presence of cyanobacteria in S. aurea. Therefore, a gene library of the 16S rRNA 

sequences was build up from amplicons and 24 clones were sequenced. Except for 

three sequences not related to cyanobacteria, all the sequences match at 99% and 

were assigned to the Candidatus Synechococcus spongiarum, a "sponge-specific" 

line of unicellular symbiont cyanobacteria. The latter are considered the most 
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prevalent and widespread symbiotic cyanobacteria in tropical and temperate reef 

sponges.8 

Despite the presence of Ca. Synechococcus spongiarum in S. aurea was confirmed, 

this is not a sufficient condition to affirm that this cyanobacterium is the real 

producer of compounds 1-4 (Figure 4.2).  The isolation of metagenomic DNA from 

a complex and heterogeneous matrix, including marine sponges tissues, is a delicate 

procedure which involves the risk of overlooking underrepresented microbial taxa 

present among the symbiont microorganisms of the sponge. Morever, the genome 

of Ca. Synechococcus spongiarum from the sponge Carteriospongia foliascens was 

recently sequenced,9 providing no clue with the presence of NRPS or PKS 

pathways.10 This evidence further weakened the hypothesis according to which 

Synechococcus spongiarum may be the  real producer of smenamides (1, 2) and 

smenothiazoles (3, 4). 

Envisioning different approaches to metagenomic screening in order to detect the 

microbial source of these compounds, cell separation has emerged as a valid 

alternative approach.11,12,13 The latter was shown to be valuable technique used for 

the identification of symbionts microorganism producing secondary metabolites 

and the isolation of the relevant biosynthetic gene clusters. 

Therefore, a cell separation, using density gradient centrifugation (to prepare 

fractions enriched with bacteria of different cell densities), was performed on a 

freshly collected sample of S. conulosa, in order to gain a preliminary idea of the 

cellular distribution of the chlorinated peptide/polyketide hybrids of interest. 

The cell fractions were analysed by high resolution LC-MS revealing that these 

metabolites are mainly localised in two high-density fractions. In addition, the 

microscopically examination of these fractions showed that they are principally 
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constituted by a highly enriched population of large filamentous and branched green 

microorganisms, which could represent the producers of our compounds. 

Moreover, the unicellular cyanobacterium Synechococcus spongiarum  is mostly 

localized in low-density cell fractions. The latter evidence allows the exclusion of 

this bacterium as the producer of the chlorinated compounds from Smenospongia 

spp. 

Further studies are in progress to gain a better insight in the biogenesis of these 

metabolites, using the metagenomic DNA from the filamentous cell fractions, and 

to identify and isolate their biosynthetic gene clusters, with the future perspetive of 

heterologous expression. 

 

4.6 Conclusions 

The analysis of the lipophilic extract of the Caribbean sponge Smenospongia 

conulosa led to the isolation of two new hybrid peptide/polyketide compounds, 

conulothiazoles A (5) and B (6). Despite the scarce amount of these compounds 

isolated from the marine source, a full set of one- and two-dimensional NMR 

spectra were recorded, which allowed the structural elucidation of the molecule. 

The absolute configuration of the amino acidic  carbon of the alanine residue of 

both molecules was established by using Marfey’s method. Recent biogenetic 

studies on the metagenome of S. aurea showed the presence of Ca Synechococcus 

spongiarum as symbiont bacterium of the sponge. Unfortunately, further studies 

demonstrated that this microorganism is not the real producer of the chlorinated 

compounds isolated from S. aurea. Due to the little amount of these metabolites 

isolated from the sponge, the evaluation of their cytotoxic activity was not carried 
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out in order to avoid the massive collection of the sponge preserving the marine 

ecosystem. 

 

4.7 Experimental section 

4.7.1 Collection  

A sample (615 g wet weight) from the sponge Smenospongia conulosa (Order 

Dictyoceratida, Family Thorectidae) was collected on 10 July 2013 at 15 m depth 

by Scuba-diving along the coast of Little Inagua Island, Bahamas (GPS coordinates 

21°27.041' N 73°03.483' W) during a ship-board research expedition. The sample 

(a relatively small portion of a much larger sponge) was excised with a sharp scalpel 

to minimally affect the remaining sponge tissue and allow recovery and regrowth. 

After collection, the sample was unambiguously identified onboard using a web-

based photographic and taxonomic key, The Sponge Guide 

(www.spongeguide.org), with subsequent confirmation by sponge taxonomist Dr. 

Sven Zea. The sample was frozen immediately after collection and stored at −20 °C 

until extraction. A voucher specimen of the organism is stored at Dipartimento di 

Farmacia, Università degli Studi di Napoli “Federico II” with the reference number 

24713.  

  

4.7.2 Extraction and Isolation  

The sponge (615 g wet weight) was homogenized and extracted with MeOH (4 × 4 

L), MeOH and CHCl3 in different ratios (2:1, 1:1, 1:2) and then with CHCl3 (2 × 4 

L). The MeOH extracts were partitioned between H2O and n-BuOH; the BuOH 

layer was combined with the CHCl3 extracts and concentrated in vacuo. The total 

organic extract (15.31 g) was chromatographed on a column packed with RP-18 
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silica gel. The fraction eluted with MeOH/H2O (9:1, 293.5 mg) was partitioned into 

a two-phase system composed of H2O (160 mL), MeOH (260 mL), CHCl3 (140 

mL), and AcOH (5 mL); (see chapter 4) the organic layer, containing 

conulothiazoles, was subjected to reversed-phase HPLC separation [column 250 × 

10 mm, 10 μm, Luna (Phenomenex) C18; eluent A: H2O; eluent B: MeOH; 

gradient: 55→100% B, over 60 min, flow rate 5 mL min–1], thus affording a fraction 

(tR = 31 min) containing conulothiazole A and a fraction (tR = 33 min) containing 

the conulothiazole B. The two fractions were each separated on reversed-phase 

HPLC [C18, 5 μm, 250 × 4.6 mm; eluent A: H2O; eluent B: ACN; gradient: 

50→100% B, over 35 min, flow rate 1 mL min–1], which gave 36 µg of pure 

conulothiazole A  (tR = 20 min) and 41 µg of pure conulothiazole B (tR = 22 min). 

The weights were determined using an NMR quantitation method (QSCS)14
 based 

on integration of solvent 13C satellite peaks.  A solution of pyridine in CD3OD (1.47 

mg/600µL) was used as external calibration. 

 

4.7.3 Conulothiazole A (5) 

Colorless amorphous solid, UV (MeOH): λmax (ε) 244 nm (15900) 216 nm 

(50900); HRESIMS (positive ion mode, MeOH) m/z 411.1270 [M+Na]+ (calcd. for 

C21H25ClN2NaOS+ 411.1268); MS isotope pattern: M (100%), M + 1 (24%, calcd. 

22.7%), M + 2 (39%, calcd. 38.0%), M + 3 (8.3%, calcd. 8.3%); 1H and 13C NMR: 

see Table 5.1. 

 

4.7.4 Conulothiazole B (6)  

Colorless amorphous solid, UV (MeOH): λmax (ε): 244 nm (15600), 215 nm 

(48200); HRESIMS (positive ion mode, MeOH) m/z 425.1426 [M+Na]+ (calcd. for 
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C22H27ClN2NaOS+ 425.1425); MS isotope pattern: M (100%), M+1 (24%, calcd. 

23.8%), M+2 (38%, calcd. 39.2%), M+3 (11%, calcd. 8.7%); 1H and 13C NMR: see 

Table 5.2.  

 

4.7.5 Ozonolysis and Hydrolysis 

 A small amount of compound 5 (4 µg) or 6 (4 µg) was separately suspended in 

ozone-saturated MeOH (300 μL) at  –78 °C for 5 min. The samples were dried 

under a N2 stream to remove ozone, then treated with 6 N HCl and heated in a sealed 

glass tube at 180 °C for 2 h. The residual HCl fumes were removed in vacuo. 

 

4.7.6 Marfey’s Derivatization with D- and L-FDAA  

The hydrolysate of 5 or 6 was dissolved in TEA/acetone (2:3, 100 µL) and the 

solution was treated with 100 µL of 1% 1-fluoro-2,4-dinitrophenyl-5-l-alaninamide 

(L-FDAA) in ACN/acetone (1:2). The vial was heated at 50 °C for 1 h. The mixture 

was dried, and the resulting L-FDAA-Ala derivatives were redissolved in 

ACN/H2O (5:95, 500 μL) for LC-MS analysis. An authentic L-Ala standard was 

treated with L-FDAA and D-FDAA as described above and yielded, respectively, 

the L-FDAA-L-Ala and D-FDAA-L-Ala standards used in the subsequent LC-MS 

analysis. 

 

4.7.7 High-resolution LC-MS Analysis of Marfey's derivatives  

Marfey’s derivatives were analyzed by LC-HRESIMS. A 5 μm Kinetex C18 

column (50 × 2.10 mm), maintained at 25 °C was eluted at 200 μL min−1 with H2O 

and CH3CN, using a gradient elution. The gradient program was as follows: 5% 

CH3CN 3 min, 5–60% MeOH over 20 min, 90% CH3CN 5 min. Mass spectra were 
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acquired in positive ion detection mode and the data were analyzed using the suite 

of programs Xcalibur. The retention times of L-FDAA-L-Ala and D-FDAA-L-Ala 

standards were determined as 15.36 and 16.37 min, respectively, on the basis of the 

extracted-ion chromatograms at m/z 342.1044. The retention times measured in the 

same way for the L-FDAA-Ala samples obtained from compounds 5 and 6 were, 

respectively, 15.32 min and 15.31 min, and were indicative of the L configuration 

of Ala in both compounds. 
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4.8 Supplementary spectroscopic data 

 

 Figure 4.10. 1H NMR spectrum of conulothiazole A (5) (CD3OD, 700MHz). 

 

Figure 4.11. COSY spectrum of conulothiazole A (5) (CD3OD, 700MHz). 
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Figure 4.12. NOESY spectrum of conulothiazole A (5) (CD3OD, 700MHz). 
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Figure 4.13. HSQC spectrum of conulothiazole A (5) (CD3OD, 700MHz). 
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Figure 4.14. HMBC spectrum of conulothiazole A (5) (CD3OD, 700MHz). 
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Figure 4.15. 1H NMR spectrum of conulothiazole B (6) (CD3OD, 700MHz). 

 

 

Figure 4.16. COSY spectrum of conulothiazole B (6) (CD3OD, 700MHz). 
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Figure 4.17. ROESY spectrum of conulothiazole B (6) (CD3OD, 700MHz). 
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Figure 4.18. HSQC spectrum of conulothiazole B (6) (CD3OD, 700MHz). 
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Figure 4.19. HMBC spectrum of conulothiazole B (6) (CD3OD, 700MHz). 
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Chapter 5 

Evaluation of the antiproliferative activity of the 

organic extract of Geodia cydonium 

 

It is well known that marine sponges are one the of most prolific source of bioactive 

compounds, with about 4851 metabolites identified to date which correspond to 

nearly 30% of MNPs so far discovered.1 Currently, several studies have been 

conducted on most of the marine sponges, except for the Mediterranean sponge 

Geodia cydonium (Demospongiae, Astrophorida, Geodidae), for which only 

studies leading to the isolation of steroidal ketones have been reported.2  

 

Figure 5.1. A specimen of the Mediterranean sponge Geodia cydonium. 

 

A recent study3 on G. cydonium showed the anti-inflammatory effect of its 

methanol extract on human breast cancer MCF-7 cell line. Since inflammatory 

processes are often involved in the development, progression and metastasis of 

malignant tumours, the present study aimed to the evaluation of the anticancer 
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activity of the organic extract of G. cydonium.4 Since this was a multidisciplinary 

project, it was carried out in collaboration with the Istituto Nazionale per lo Studio 

e la cura dei Tumori “Fondazione G. Pascale”,  the “Stazione Zoologica Anton 

Dohrn”, the Department of Biology of University of Naples Federico II, and the 

Institute of Biomolecular Chemistry-CNR. As for my contribution to this project, I 

was involved in the analysis of the chemical content of the methanol extract of the 

sponge and its purification, as well as in the dereplication strategy. More precisely, 

the methanol extract of the sponge was subjected to chromatography and the three 

most abundant fractions obtained were tested on MCF-7, MDA-MB231 and MDA-

MB468 human breast cancer cell lines. Fraction 3 (Figure 5.3) was shown to have 

an antiproliferative activity on all of three cell lines, without interfering with the 

cell proliferation of the MCF-10A normal breast cell line, used as a control. Cellular 

studies were then carried out to understand whether the fraction is able to induce 

apoptosis and/or to block the cell cycle. Moreover, metabolomic studies have been 

performed on the cells treated with the fraction 3 in order to identify the metabolic 

pathways modulated by this fraction, whereas the increasing/decreasing of 

cytokines levels were analysed to evaluate the role of the active fraction in anti- or 

pro-inflammatory processes. Finally, the combined use of high resolution LC-MS, 

tandem mass spectrometry (MS/MS) and the molecular networking technique 

allowed to indentify the known as well as the new metabolites present in the fraction 

of interest. 

 

5.1 Bioguided fractionation of G. cydonium extracts 

A sample of the Mediterranean sponge G. cydonium  was collected on July 2015 at 

20 m depth by Scuba in the “Parco Sommerso di Baia” (Gulf of Naples, Italy). After 
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collection, the sponge was immediately frozen and stored at -20 °C until its arrive 

to the Department of Pharmacy. The sponge (509 g, wet weigh) was properly 

homogenized and extracted with CH3OH, mixtures of CH3OH/CH3Cl and CH3Cl. 

The methanol extract was partitioned between water and butanol. The butanol phase 

was then combined with the chloroform extracts and concentrated under vacuum 

obtaining a crude extract (3.9 g). The latter was then subjected to Droplet 

CounterCorrent Chromatography (DCCC) using CH3Cl/CH3OH/H2O (7:13:8) in 

the ascending mode. 6 mL fractions were collected and combined on the basis of 

their similar TLC profile. The most abundant fractions (fraction 1, 2 and 3) were 

tested on MCF-7, MDA-MB231 and MDA-MB468 human breast cancer cell lines 

and on MCF-10A normal breast cell line. Data showed that only fraction 3 has an 

antiproliferative activity on all the three cancer cell lines, while it has no effects on 

the healthy breast cell line. 

 

5.2 Combined use of LC-HRMS, LC-HRMS/MS and molecular networking 

as a novel dereplication strategy 

Molecular networking was recently introduced as a captivating dereplication 

strategy, allowing the identification of known metabolites as well as new 

compounds, which are present in an organic extract.5 The latter are analysed by LC-

HRMS and LC-HRMS/MS and the data obtained are used to generate a molecular 

network using the Global Natural Product Social Molecular Network (GNPS).6 

More precisely, the mass spectra obtained from one or more LC-HRMS/MS 

analyses are compared pairwise. Moreover, each spectrum is compared with 

MS/MS spectra of all of the natural compounds present in GNPS libraries. As a 
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result, a two-dimensional network is obtained, in which a node represents a single 

molecule, and each node is related to another through an edge. 

The molecular network obtained from the active fraction 3 is depicted in Figure 5.2. 

The network is characterized by six clusters, which are in turn constituted by two 

to thirteen nodes. 

 

 

Figure 5.2. (Left) Two-dimensional molecular network of the active fraction from the sponge 

Geodia cydonium. In the clusters indicated with (a–f), nodes are labeled with parent m/z ratio 

[M+H]+ ions; edge thickness is related to cosine similarity score; (Right) Liquid chromatography-

high resolution mass spectrometry (LC-HRMS) profile of the active fraction; the most abundant ions 

are represented by colored bold contour squares. 

 

Although molecular networking significantly reduces the dereplication efforts, a 

more traditional approach, based on the search against databases of marine natural 

compounds, is required when the molecular formula found does not match any 

compound name. A match within GNPS’ libraries gives indeed valuable 

information on the structure of the molecule but sometimes does not allow 

immediately the identification of a compound. Moreover, even though the MS/MS 
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spectra libraries contain a large number of known natural compounds, this number 

is still limited.  

Therefore, the results obtained from the molecular network of fraction 3 combined 

with the search of the traditional databases (Metlin at https://metlin.scripps.edu/ and 

MarinLit at http://pubs.rsc.org/marinlit/) gave the following information. Cluster 

a), consisting of thirteen nodes (Figure 5.2), was shown to contain nucleosides and 

nucleobases. Data obtained show the presence in this cluster of methyladenosine 

(m/z 282) and methyladenine (m/z 150), which were in turn connected to two nodes 

(m/z 268 and m/z 136 respectively). Although these compounds were also 

recognized by GNPS as methyladenosine and methyladenine, they possess a mass 

difference of 14 amu (atomic mass unit) with the library compounds, which 

indicates a missing methyl group. To confirm the identity of these compounds the 

HRMS spectra were analysed. Their molecular formulas were determined as 

C10H13O4N5 and C5H5N5, therefore confirming the identity of the compounds as 

adenosine and adenine, respectively. In addition, HRMS/MS spectra were recorded, 

confirming the characteristic fragmentation pattern of these nucleosides.7 More 

specifically, by cleavage of the glycosidic bonds, protonated bases (adenine and 

methyladenine) and a sugar moiety as the neutral fragment are obtained. According 

to LC-HRMS, the relative abundance of methyladenosine is 20-fold higher than 

adenosine, whereas methyladenine is double than adenine.  

Cluster b) contained instead two nodes: one with m/z 166 corresponded to 

phenylalanine, as confirmed also by the molecular formula. The second node (m/z 

132) was a compound related to pipecolinic acid (C6H11O2N) but with 2 additional 

amu. The molecular formula C6H14O2N for the [M+H]+ pseudomolecular ion peak 

was consistent with a molecule  possessing two more hydrogens than pipecolinic 

http://pubs.rsc.org/marinlit/
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acid. This evidence suggested the presence in the compound of an open ring, 

corresponding therefore to a leucine. Both amino acids were found in comparable 

amounts in the active fraction, with Phe more abundant than Leu.  

GNPS6 identified the node with m/z 190.0498 in cluster c) as 5-aminosalycilic acid 

(5-asa). The compound actually had 36 amu more than 5-asa, corresponding to an 

additional C3 unit. The molecule containing 3 carbon atoms more as well as 3 

additional unsaturations, could not be therefore 5-asa. The molecule was then 

identified as 3-hydroxyquinaldic acid (3-HQA) in Metlin. A further confirmation 

was provided by the analysis of the HRMS/MS spectrum of the molecule, in which 

the ions at m/z 172.0390 and 144.0440 were present, showing the loss of water and 

formic acid (HCOOH), but not the loss of ammonia as expected by 5-asa.  

Finally, cluster d) included phosphatidylethanolamine (PE) and its analogues, while 

clusters e) and f) comprised unknown molecules, the structure of which could not 

be determined due to the small amount of the networked compounds. 

Each of the molecules found in the active fraction 3 was shown to be involved in 

one or more biological functions. Nucleosides (methyladenine and 

methyladenosine) and nucleotides (adenine and adenosine), found in cluster a), are 

essential metabolites of the living cells and are involved in fundamental biological 

processes, such as the synthesis of nucleic acids. Moreover, it is well known the 

antiviral, anticancer, vasodilator, muscle relaxant, and hypertensive activity of 

many marine nucleosides, which makes them promising lead compounds in drug 

design.8 The amino acids, such as leucine and phenylalanine found in cluster b), are 

molecules that are frequently found in the organic extracts of marine organisms, 

occurring both in the free-state and as basic structural units of proteins and peptides. 

Many marine amino acids derivatives and peptides possess captivating biological 
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activities, including a high specificity against cancer cell lines.9 3-HQA in cluster 

c) was identified as one of the two key chromophores (together with quinoxalinic 

acid) in many bisintercalator natural products of marine origin (such as thiocoraline, 

triostin, SW-163 and echinomycin/quinomycin),10 which are able to bind to duplex 

DNA by insertion between the bases allowing the proper placement of the peptidic 

core into the DNA minor groove.11 As for phosphatidylethanolamine (PE), present 

to cluster d), it belongs to the family of phospholipids and glycolipids that are the 

main constituents of sponge cell membranes, 12,13 and were shown to have immune-

modulating and antitumor activity.14,15 

 

5.3 Biological studies 

The biological studies on the three most abundant fractions obtained from the 

purification of the methanol extract of G. cydonium were performed in 

collaboration with the SC Farmacologia Sperimentale of Istituto Nazionale per lo 

Studio e la cura dei Tumori “Fondazione G. Pascale”,  the Department of Biology 

and Evolution of Marine Organisms (Stazione Zoologica Anton Dohrn), the 

Department of Biology of University of Naples Federico II, and the Bio-Organic 

Chemistry Unit of the Institute of Biomolecular Chemistry-CNR. Here the main 

results of these activities are reported. 

The antiproliferative activity of the three most abundant fractions obtained from the 

DCCC of the methanol extracts of G. cydonium was evaluated on three breast 

cancer (MCF-7, MDA-MB231, and MDA-MB468) cell lines through the 

sulforhodamine B (SRB) assay. After 24 and 48 hour of treatment, two of the three 

fractions (fraction 1 and 2) were not able to block cell proliferation in all three 

cancer cell lines. Fraction 3 blocked instead the cell proliferation in all three cancer 
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cell lines. The half minimal (50%) Inhibitory Concentration (IC50) of fraction 3 

were calculated for each cell line after 24 and 48 h: 

 MCF-7 cells: 72 and 67 g/mL after 24 and 48 h, respectively (Figure 5.3a); 

 MDA-MB231 cells: 73 and 44 g/ml after 24 and 48 h, respectively (Figure 

5.3b); 

 MDA-MB468 cells: 80 and 70 g/ml after 24 and 48 h, respectively (Figure 

5.3c). 

IC50 values are lower after 48 h than those observed after 24 h. 

 

Figure 5.3. Cell proliferation. Cell viability rate (CR) related to breast cancer cells: (a) MCF-7; (b) 

MDA-MB231; and (c) MDA-MB468, after treatment with fraction 3 for 24 (blue line) and 48 (red 

line) hours. 

 

On the basis of the results showed above, the Muse Annexin V and Dead Cell 

Assay was performed using the IC50 obtained after 48 h of treatment,  in order to 

evaluate the pro-apoptotic mechanism of the active fraction 3. An increase in the 

number of apoptotic cells (51.2% for MCF-7, 63.1% for MDA-MB231 and 56.6% 

for MDA-MB468 cell line) respect to the control (untreated cells), as shown in 

Table 5.1. 
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 LIVE (%) APOPTOSIS (%) DEAD (%) 

MCF-7 UNTREATED 94.8±2.4 3.8±2.6 1.4±0.8 

MCF-7 TREATED 47.8±1.8 51.2±1.1 0.9±0.4 

MDA-MB231 UNTREATED 97.7±3.2 2.1±2.3 0 

MDA-MB231 TREATED 36.4±3.9 63.1±2.5 0 

MDA-MB468 UNTREATED 96.3±2.4 3.5±2.3 0.30±0.05 

MDA-MB468 TREATED 38.7±3.2 56.6±3.1 3.9±0.9 

Table 5.1. Apoptosis. Percentage of live, apoptotic and dead cells expressed as mean ± 

standard deviation by the Muse Annexin V and Dead Cell assay in MCF-7, MDA-

MB231 and MDA-MB468 cells at IC50 concentration after 48h of treatment.  Untreated 

cells were used as the control. 

 

The difference in percentage of apoptotic cells revealed that the three cancer cell 

lines respond differently to the apoptosis assay. This phenomenon may be due to 

the different nature of cell lines. These differences in the percentage of apoptotic 

cells for the three breast cancer cell lines may be attributed to their different nature. 

MCF-7 cells are indeed estrogen-receptor-positive, while MDA-MB231 and MDA-

MB468 cells are estrogen-receptor-negative. In addition, MCF-7 cell line possess 

the wild-type tp53, a gene that codes for the protein  p53, which is a transcription 

factor that regulates the cell cycle acting as a tumour suppressor. The triple-negative 

human breast cancer cells, MDA-MB231 and MDA-MB468, have instead a 

mutated p53 gene, expressing therefore a more malignant phenotype.16,17 

To gain a better insight in the cell death mechanism the mRNA expression of some 

genes involved in the intrinsic (p53, Bax, p38 and caspase-3) and extrinsic 

(caspase-3 and caspase-8) pathways involved in the apoptotic process was 

evaluated through the RT-qPCR analysis (Figure 5.4). 

The expression of p53, Bax, p38, caspase-3 and caspase-8 increased significantly 

after 48 hour of treatment with fraction 3 in all the three breast cancer cell lines, 

indicating that both intrinsic and extrinsic pathways are involved in the apoptotic 

process.  
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Figure 5.4. RT-qPCR analysis: mRNA fold changes were evaluated as ratios between the expression 

levels of five genes in three breast cancer cell lines, MCF-7, MDA-MB231 and MDA-MB468, after 

treatment with the active fraction compared to the control (untreated cells). 

 

Cell cycle analysis was performed with the aim of understanding whether the active 

fraction was able to block the cell cycle. The effects of fraction 3 on the cell cycle 

were evaluated by treatment of the tumour cells with the IC50 obtained after 48 h. 

Negligible effects were observed for all the three cell lines (see Table 5.2), 

suggesting that the active fraction was able to induce apoptosis without interfering 

with the progression of the cell cycle. 

 

 G0/G1 S M 

MCF7 UNTREATED  51.7±2.3 17.3±2.7 30.7±1.7 

MCF7 TREATED  45.3±2.1 14.2±3.4 31.2±2.3 

MDAMB231 UNTREATED 59.1±3.2 16.9±3.9 21.8±2.4 

MDAMB231 TREATED  63.7±1.4 15.2±4.3 18.8±2.3 

MDAMB468 UNTREATED 47.1±3.9 16.9±4.5 33.7±1.8 

MDAMB468 TREATED  39.2±4.9 14.2±2.9 39.1±2.2 

Table 5.2. Cell percentages in the different cell cycle phases (G0/G1, S, G2 and M) 

expressed as mean ± standard deviation after Muse Cell cycle assay in MCF-7, MDA-

MB231 and MDA-MB468 cells at IC50 concentration after 48h of treatment. Untreated 

cells were used as the control. 
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Further studies were performed through 1H NMR analysis of the polar extracts of 

MCF-7, MDA-MB231 and MDA-MB468 cells before and after treatment with 

fraction 3 in order to identify the metabolomic pathways modulated by the active 

fraction. The Orthogonal Projections to Latent Structures discriminant analysis 

(OPLS-DA) revealed that the spectra recorded for the three cell lines clustered in 

different groups (Figure 5.5a). As depicted in Figures 5.5b-d (variable importance 

in projection (VIP) score plots), each of the cell lines showed statistically different 

proton signals and metabolites after treatment respect to the control (untreated 

cells). Fraction 3 essentially modulated the metabolites involved in glycolysis and 

in the metabolism of lipids and amino acids. More precisely, the level of lactate 

increased after treatment in all three cell lines whereas the levels of alpha- and beta-

glucose, choline, glycerophosphocholine, glutamine, glutamate and lipids 

decreased. A decreasing in the level of other metabolites differently decreased in 

the three cell lines: proline in MCF-7 cells, threonine in MDA-MB231 cells, 

asparagine and lysine in MDA-MB468 cells, while glycine in both MDA-MB231 

and MDA-MB468 cell lines. It is well known the key role of the glucose as a 

bioenergetic support in the development of most tumours. Cancer cells are indeed 

haracterised by a greater consumption of glucose through a different glycolysis 

pathway in comparison with normal cells, in which the pyruvate obtained by 

glycolysis is converted to lactate.18 The deprivation of glucose in cancer cells can 

therefore induce their death.19,20  

Fraction 3 was able to induce a decrease in glucose levels and an increase in lactate, 

that is turn due to the unbalanced conversion of glucose to lactate, in all three breast 

cancer cells. Since glutamine, glycine and glutamate originate from glycolysis 

intermediates,  a decrease in their levels may be correlated to a decrease of glucose. 
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In addition, lower levels of choline were observed after treatment of the three cancer 

cell lines with the active sponge fraction. Choline is an essential molecule in the 

formation of cellular membrane, being the head group of 80% of phospholipids 

(phosphatidylcholine and sphingomyelin) in the extrarnal part of the membrane. 

The alteration of choline metabolism is considered a metabolic marker associated 

to oncogenesis and tumor progression.21 Choline levels decreased after treatment, 

suggesting that fraction 3 was able to block tumour progression. 

 

  
(a) (b) 

  
 

Figure 5.5. OPLS-DA plot. (a) OPLS-DA and variable importance in projection (VIP) 

analysis where the metabolites increased or decreased in the endo-metabolome of (b) 

MCF-7, (c) MDA-MB231 and (d) MDA-MB468 cells after treatment with the active 

fraction from the sponge Geodia cydonium, compared to untreated cells.  
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Oncogenesis and tumour progression are often related to inflammatory processes. 

The methanol extract of G. cydonium, from which fraction 3 was obtained, 

previously showed an anti-inflammatory activity on the human breast cancer MCF-

7 cell line.3 Further studies were therefore carried out in order the establish whether 

fraction 3 was also able to modulate cytokines levels. After incubation of MCF-7, 

MDA-MB231 and MDA-MB468 cells with the IC50 of the active fraction obtained 

after 48 h, the cytokines levels were evaluated in the cellular supernatants (Figure 

5.6). Data showed that the levels of the pro-inflammatory cytokines VEGF, 

CXCL10, and IL-8 decreased. These three cytokines were shown to be related to 

tumours development.22,23,24 Moreover, a slight increase in levels of IL-4 and IL-10 

was observed. IL-4 and IL-10 are anti-inflammatory cytokines  which were proven 

to be involved in antitumor response.25 These data are in agreement with the 

previous results showing that the methanol extract of the sponge induced decrease 

in  pro-inflammatory cytokine levels in MCF-7 human breast cancer cell line.3 

 

Figure 5.6. Cytokine levels in breast cancer cells. Scheme reporting the cytokines 

modulated by the active fraction  obtained from the sponge Geodia cydonium. In 

particular, anti-inflammatory cytokines that are increased after treatment are reported in 

red and pro-inflammatory and pro-angiogenic cytokines that are decreased after treatment 

are reported in green. 

 

5.4 Conclusions 

The chromatografic purification of the methanol extract of the Mediterranean 

sponge G. cydonium yielded three most abundant fractions (fractions 1-3), which 
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were tested on three human breast cancer cell lines (MCF-7, MDA-MB231 and 

MDA-MB468). Among them, only fraction 3 was able to block the proliferation of 

the three cancer cell lines, but without interfering with the progression of the cell 

cycle. Moreover, this fraction showed any effect on the healty MCF-10A breast cell 

line. The combined use of LC-HRMS, LC-HRMS/MS and molecular networking 

as a dereplication strategy allowed to identify most of the compounds contained in 

the active fraction. These metabolites were shown to be involved in pro- or anti-

tumor processes, as confirmed by the analysis of the metabolomic profiling and 

cytokine levels observed in the three cancer cell lines after treatment with the active 

fraction. These results open up the possibility to use it for therapeutic purposes. 

Further studies are necessary to understand the mechanism of action of each 

compound present in fraction 3 and to evaluate the possible synergistic effect of a 

pool of compounds.  

 

5.5 Experimental section 

5.5.1  Collection, extraction, and separation 

A sample of the sponge Geodia cydonium (Order Tetractinellida, Family 

Geodiidae) was collected on July 2015 at 20 m depth by scuba diving in the “Parco 

Sommerso di Baia” (Gulf of Naples, Italy). After collection, the sample was 

immediately frozen and stored at −20 °C until extraction. The sponge (509 g wet 

weight) was homogenized and extracted with MeOH (2 × 2 L), MeOH and CHCl3 

in different ratios (2:1, 1:1, 1:2) and then with CHCl3 (2 × 2 L). The MeOH extracts 

were partitioned between H2O and n-BuOH; the BuOH layer was combined with 

the CHCl3 extracts and concentrated in vacuo. The resulting organic extract (3.9 g) 

was chromatographed by DCCC using CHCl3/CH3OH/H2O (7:13:8) in the 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=597812
http://www.marinespecies.org/aphia.php?p=taxdetails&id=131664
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ascending mode; 6 mL fractions were collected and combined in ten fractions on 

the basis of their similar TLC retention times. The most abundant fractions were 

tested to evaluate their antiproliferative activity on three human breast cancer cell 

lines, MDA-MB231, MDA-MB468 and MCF-7, and the normal human breast 

epithelial cell line MCF-10A.  

5.5.2 LC-HRMS and LC-HRMS/MS and Molecular Networking Analyses 

Experiments were performed using a Thermo LTQ Orbitrap XL high-resolution 

ESI mass spectrometer coupled to an Agilent model 1100 LC system, which 

included a solvent reservoir, in-line degasser, binary pump, and refrigerated 

autosampler. A 5 μm Kinetex C18 column (50 × 2.1 mm), maintained at 25 °C, was 

operated using a gradient elution of H2O and MeOH running at 200 μL/mim. The 

gradient program was as follows: 10% MeOH for 5 min, 10%-100% MeOH over 

25 min, 100% MeOH for 13 min. All the mass spectra were recorded in the positive-

ion mode. MS parameters were a spray voltage of 4.8 kV, a capillary temperature 

of 285 °C, a sheath gas rate of 32 units N2 (ca. 320 mL/min), and an auxiliary gas 

rate of 15 units N2 (ca. 150 mL/min). Data were collected in the data-dependent 

acquisition (DDA) mode, in which the first and second most intense ions of a full-

scan mass spectrum were subjected to tandem mass spectrometry (MS/MS) 

analysis. MS/MS scans were obtained for selected ions with CID fragmentation, 

isolation width 2.0, normalized collision energy 36, Activation Q 0.250, and 

activation time 30 ms. Mass data were analyzed using the Thermo Xcalibur 

software. 

A molecular network was created using the online workflow at GNPS. The data 

was then clustered with MS-Cluster with a parent mass tolerance of 2.0 Da and a 

MS/MS fragment ion tolerance of 0.5 Da to create consensus spectra. Further, 
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consensus spectra that contained less than 2 spectra were discarded. A network was 

then created where edges were filtered to have a cosine score above 0.6 and more 

than 6 matched peaks. Further edges between two nodes were kept in the network 

if and only if each of the nodes appeared in each other's respective top 10 most 

similar nodes. For dereplication purposes the spectra in the network were then 

searched against GNPS' spectral libraries. All matches kept between network 

spectra and library spectra were required to have a score above 0.6 and at least 6 

matched peaks. Analog search was enabled against the library with a maximum 

mass shift of 100.0 Da. The data were then imported into Cytoscape 3.2.1 

(http://www.cytoscape.org/) and displayed as a network of nodes and edges. The 

network was organized with the preferred layout plug-in. 

 

5.5.3 Cell culture 

Three human breast cancer cell lines, MDA-MB231, MDA-MB468 and MCF-7, all 

derived from adenocarcinoma metastasis and on normal human breast epithelial 

cells MCF-10A were used. In particular, MCF-7 and MCF-10A cells were 

expanded at 37oC in a humidified atmosphere of 5% CO2 in culture medium 

DMEM (Dulbecco’s Modified Eagle’s Medium, Lonza), whereas MDA-MB-231 

and MDA-MB-468 in RPMI 1640 (Lonza), supplemented with FBS (Invitrogen, 

Camarillo, CA, USA) at 10%, Penicillin/Streptomycin 100x (Euroclone, Devon, 

UK), Glutamax 100x (Invitrogen) non-essential amino acids 100x (Invitrogen). 

Moreover, in the case of MCF-10A the DMEM was supplemented also with human 

insulin 10µg /mL (Life Technologies Corporation, Carlsbad, CA, USA), human 

epidermal growth factor 20ng/mL (Life Technologies), and hydrocortisone 

0.5µg/mL (Sigma-Aldrich) according to the procedure reported in Rothwell et al. 
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(2014), while for MDA-MB468 the medium was implanted with Ham’s F-12 

medium (1:1 mixture). Phosphate buffer (PBS phosphate buffered saline Ca2+ and 

Mg2+ free) and trypsin (Ca2+ and Mg2+ free) were supplied by Euroclone. Finally, 

the cells were kept in an incubator at a humidified atmosphere of 95% air and 5% 

CO2 at 37°C. 

 

5.5.4 Cell treatment and cell proliferation assay 

Cell proliferation of cancer cells was assessed in the presence and absence of the 

methanol extract from G. cydonium by colorimetric assay with sulforhodamine B 

(SRB, Sigma Aldrich). This extract was first dissolved in dimethyl sulfoxide 

(DMSO 100mM, Sigma-Aldrich) at concentrations < 0.1%, so as not to induce toxic 

effects on cells. Thus, a stock solution (100 mg/mL) and its serial dilutions had a 

final concentration of DMSO of 0.05%.  

Cancer cells were plated in 96 well tissue culture plates at a concentration of 15x103 

cells per well and allowed to attach for 24h. Cells were then treated with different 

concentrations of the methanol extract (2.5 µg/mL, 5 µg/mL, 10 µg/mL, 25 µg/mL, 

50 µg/mL, 100 µg/mL, 200 µg/mL) and incubated for 24h and 48h. These 

concentrations were selected on the basis of a recent paper.3  After 48h of treatment, 

cells were fixed with trichloroacetic acid (Sigma Aldrich, St. Louis, MO, USA) for 

1h at 4°C.  Subsequently they were stained for 30 min with 0.4% (wt/vol) 

sulforhodamine B (SRB, Sigma Aldrich) dissolved in 1% acetic acid. The number 

of viable cells was directly proportional to the amount of protein bound-dye which 

was then solubilized with 10mM Tris base solution (pH10.5) and measured at 

540nm using the ELISA fluorometric assay (Bio-Rad, Hercules, CA, USA; 
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Microplate Reader). All experiments were performed in duplicate and repeated 

three times. The IC50 was assessed from the dose-response curves. 

 

5.5.5 Apoptosis evaluation  

After counting, 3 x 105 cells were harvested and washed twice with ice-cold PBS. 

Cells were labeled with an Annexin V and Dead Cell Assay kit according to the 

manufacturer’s instructions (Merck Millipore, Darmstadt, Germany).  The kit 

detects the externalization of phosphatidylserine (PS) in apoptotic cells using 

fluorescently-labeled Annexin V in combination with the dead cell marker 7-

aminoactinomycin D (7-AAD). We identified four populations of cells: (1) viable 

cells that did not undergo detectable apoptosis: Annexin V (-) and dead cell marker 

(-); (2) early apoptotic cells: Annexin V (+) and dead cell marker (-); (3) late 

apoptotic cells: Annexin V (+) and dead cell marker (+); and (4) cells that died via 

non-apoptotic pathways: Annexin V (-) and dead cell marker (+). Cells were 

counted using the Muse™ Cell Analyzer (Merck Millipore) and analyzed using a 

software provided by Merck Millipore. 

 

5.5.6 Cell cycle assay 

1x106 cells were counted for the Muse™ Cell Cycle Assay that consisted in the use 

of the nuclear DNA intercalating stain RNAse A and propidium iodide (PI) in a 

proprietary formulation. The latter was used to discriminate cells in different phases 

of the cell cycle, based on differential DNA content in the presence of RNAse to 

increase the specificity of DNA staining. After treatment with the active G. 

cydonium fraction, cells were washed with Phosphate buffered saline (PBS) and 

centrifuged. The supernatant was removed and 1mL of ice cold 70% ethanol was 



179 
 

 

added to the re-suspended cell pellet. Samples were capped and frozen at -20°C for 

at least 3h prior to staining. Ethanol-fixed cells were washed with PBS and 

incubated with 200μL of Muse™ Cell Cycle Reagent for 30 min at room 

temperature, in the dark. After staining, cells were processed for cell cycle analysis. 

 

5.5.7 Extraction of the polar fractions in untreated and treated cancer cells 

All cancer cell lines were plated in cell culture flasks (~2x106cells/flask) and treated 

with the active fraction at the IC50 concentration obtained after 48h treatment. After 

incubation time (48h), cellular supernatants were collected and stored at -80 °C for 

further investigation. Cell pellets obtained by trypsin digestion were washed twice 

in Phosphate buffered saline and deuterated water (PBS-D2O) and refrigerated at -

80 °C. Subsequently they were re-suspended in 170µL of H2O and 700µL of 

methanol and were sonicated for 30 s. 350µL of chloroform was added and cell 

pellets were shaken on ice in an orbital shaker for 10 min. H2O/chloroform (350µL, 

1:1, v/v) was added to each cell suspension and centrifuged at 10,000 rpm for 10 

min at 4°C. Thereafter, the aqueous (polar) and lipophilic (apolar) phases were 

collected separately and evaporated by SpeedVac system.  

 

5.5.8 1H-NMR Metabolomic Analysis of the cellular polar fractions 

A 600-MHz BrukerAvance DRX spectrometer with a TCI probe was used to 

acquire 1H spectra on the cellular polar fractions. They were dissolved in 630 µLof 

PBS-D2O with the pH adjusted to 7.20, and 70 µL of sodium salt of 3-

(trimethylsilyl)-1-propanesulfonic acid (1% in D2O) used as the internal standard.  

All 1H-NMR spectra were acquired at 300 K with the excitation sculpting pulse 

sequence to suppress water resonance. A double-pulsed field gradient echo was 
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used, with a soft square pulse of 4 ms at the water resonance frequency and with 

gradient pulses of 1 ms duration, adding 128 transients of 64 k complex points, with 

an acquisition time of 4 s/transient. Time domain data were all zero-filled to 256 k 

complex points and an exponential amplification of 0.6 Hz was applied prior to 

Fourier transformation. 

 

5.5.9 Statistical and Pathway Analysis 

The spectral 0.50–8.60 ppm region of 1H-NMR spectra was integrated in buckets 

of 0.04 ppm by the AMIX package (Bruker, Biospin GmbH, Rheinstetten, 

Germany). The water resonance region (4.5–5.2 ppm) was excluded during the 

analysis and the bucketed region was normalized to the total spectrum area using 

Pareto scaling. Orthogonal Projections to Latent Structures discriminant analysis 

(OPLS-DA) was used to compare the spectra obtained on the polar phases from 

three breast cancer cell lines before and after treatment because OPLS-DA can more 

effectively cope with chemical shift variation in full-resolution 1H NMR datasets26 

without requiring binning or alignment steps. Pathway analysis on the metabolites 

that were modulated after treatment was performed using Metabo Analyst tool.27  

 

5.5.10 Bio-Plex Assay 

Several cytokines, chemokines, and growth factors levels were evaluated 

concurrently with the Bio-Plex assay that containing dyed microspheres conjugated 

with a monoclonal antibody highly specific for a target protein. The method was 

carried out according to the manufacturer’s instructions (Bio-Plex Bio- Rad) to 

assess the cytokines levels. The Bio-Plex Pro Human Cytokine 27-Plex 

Immunoassay has been used on supernatants of the three lines of human breast 
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cancer after treatment with sponge extract concentrations. This panel consists of: 

IL-1𝛽, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, CCL2, CCL11, CXCL10, CXCL8, IFN-

𝛾, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, basic FGF, G-CSF, GM-CSF, 

MIP-1𝛼, MIP-1𝛽, PDGF-𝛽𝛽, RANTES, TNF-𝛼, and VEGF. Protein levels were 

determined using a Bio-Plex array reader (Luminex, Austin, TX, USA) that 

quantifies multiplex immunoassays in a 96-well format with very small fluid 

volumes. The analyte level was calculated using a standard curve, with software 

provided by the manufacturer (Bio-Plex Manager Software). A Bio-Plex array 

reader (Luminex, Austin, TX, USA) that quantifies multiplex immunoassays in a 

96-well format with very small fluid volumes, has been used for protein level 

determination. The levels of the analytes were calculated using a standard curve, 

with the Bio-Plex Manager Software provided by the manufacturer.  
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Conclusion 

 

Today the synthesis of new bioactive compounds is the key step of the biomedical 

research, enabling chemists and biologists to advance their researches to higher 

levels. During my PhD I pursued both the advanced synthesis of new compounds 

and the investigation of pharmacological properties of new metabolites isolated 

from marine sponges. 

The asymmetric convergent total syntheses of 16-epi- and ent-smenamide A, two 

structural analogues of the cytotoxic smenamide A, were carried out in 23 steps 

with a 2.5% and 2.6% overall yield, respectively. Afterwards, eight shorter-chain 

“functional analogues” of 16-epi-smenamide A were designed and prepared using 

a flexible synthetic route in order to gain a better insight in the biological activity 

of smenamides family.  

On the other hand, I was involved in the study of the chemical composition of two 

marine sponges, the Caribbean Smenospongia conulosa and the Mediterranean 

Geodia cydonium. Two new chlorinated compounds, namely conulothiazole A and 

B, were isolated from the organic extract of S. conulosa. At the same time, using a 

novel dereplication strategy, involving the use of LC-HRMS and LC-HRMS/MS 

coupled with a bioinformatic technique, e.g. Molecular Networking, an active 

subfraction of the organic extract of G. cydonium was identified. This fraction 

showed moderate antiproliferative activity on three human breast cancer cell lines 

(MCF-7, MDA-MB-231 and MDA-MB-468) and no toxicity on the healty MCF-

10A human breast cell line. 
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Although the study of the chemical composition of marine organisms is an 

intruiguing research field, I was totally fascinated by the challenges posed by the 

total synthesis, “the endeavour of synthesizing the molecules of living nature in the 

laboratory”.1 
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