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CA: contrast agent;  

cHANPs: crosslinked hyaluronic acid nanoparticles;  

DOSY: diffusion-ordered nmr spectroscopy;  

DSC: differential scanning calorimetry;  

DVS: divinyl sulphone;  

EE: encapsulation efficacy;  

EMA: european medicines agency;  

FDA: food and drug administration;  

Gd: gadolinium;  

Gd-DTPA: diethylenetriaminepentaacetic acid gadolinium(iii) dihydrogen salt 

hydrate;  

HA: hyaluronic acid;  

HA NPs: hyaluronic acid nanoparticles;  

HLB: hydrophilic-lipophilic balance;  

HyCoS: hybrid core-shell;  

ICP-MS: inductively coupled plasma mass spectrometry;  

IR: inversion recovery;  

ITC: isothermal titration calorimetry;  

LC: loading capability;  

MLS: multiple light scattering;  

MRI: magnetic resonance imaging;  
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NaOH: sodium hydroxyde pellets;  

NMR: nuclear magnetic resonance;  

NMRD: nuclear magnetic relaxation dispersion;  

NPs: nanoparticles;  

NSF: nephrogenic systemic fibrosis;  

PC: continuous phase;  

PD: dispersed phase; 

PET: positron emission tomography;  

S80: sorbitan monooleate (span® 80);  

SBM: solomon-bloembergen-morgan;  

SEM: scanning electron microscopy;  

SR: saturation recovery; 

T85: polyoxyethylenesorbitan trioleate (tween® 85);  

TEM: transmission electron microscopy; 

W/O: water in oil.   
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Cancer and cardiovascular diseases are silent killers which cause 

million deaths worldwide every year and this number is expected to triple by 

2035.  

Current diagnostic techniques cannot easily, safely, and effectively detect these 

human body lesions in the early stage, nor can they characterize the lesion 

features. 

In this context, the biological application of nanoparticles is a rapidly developing 

area of nanotechnology that raises new possibilities in the diagnosis and treatment 

of  pathologies. Recently, rational design of a new class of contrast agents (CAs), 

based on biopolymers (hydrogels), have received considerable attention in 

Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been 

adopted to improve relaxivity without chemical modification of the commercial 

CAs, however, understanding the MRI enhancement mechanism remains a 

challenge. Here, in order to develop a safe and more efficient MRI CA for 

imaging applications, the basic principles ruling biopolymer-CAs interactions are 

investigated to better understand their influence on the relaxometric properties of 

the CA by adopting a multidisciplinary experimental approach. In addition, the 

effect of the hydration of the hydrogel structure on the relaxometric properties, 

called Hydrodenticity, is used to develop Gadolinium-based polymer nanovectors 

with improved MRI relaxation time. The experimental results indicate that the   



vi 
 

entrapment of metal chelates in hydrogel nanostructures offers a versatile 

platform for developing different high performing CAs for diseases diagnosis. 
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1. Diagnostic imaging in clinical practice  

Historically, our understanding of the different pathologies has been mainly based on 

postmortem examinations of human body or analysis of resected surgical specimens 

from patients. In recent years, there have been many advances in the pathogenesis and 

diagnosis of diseases and nowadays, imaging technology allows to look directly inside 

the human body
1
. 

Imaging science is a dynamic filed and, for more than 50 years, the purpose of 

scientists is to provide a non-invasively approach to visualize anatomical details using 

different energy forms. Initially, imaging innovation was primarily driven by technical 

advances in order to improve image quality and have led to greater use imaging as an 

important tool at all stages of the pathological process, from prevention to post-

treatment follow-up.  In current clinical practice, in fact, several imaging modalities, 

invasive and noninvasive, are available to provide structural and functional information 

to clinicians about tissue and organ physiology. Of these, only  Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), Single-photon Emission Computed 

Tomography (SPECT) and Positron Emission Tomography (PET) are capable of 

providing 3D data of pathologies anywhere in the human body
2
. Undoubtedly, 

available structural and functional imaging techniques have improved diagnostic 

accuracy, but the choice and applicability of each imaging technique depend not only 

on its diagnostic efficacy, but also on the type of questions being asked. In addition, the 

these diagnostic modalities do not inform clearly on the cellular and molecular 

processes that drive the development of specific pathologies and each of the imaging 

techniques has advantages and limitations in terms of radiation exposure, 

reproducibility, sensitivity, resolution and costs. 

The main benefits, limitations and risks associated with four different types of imaging 

techniques are reported below.  
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1.1 Magnetic Resonance Imaging (MRI)  

MRI is a non-invasive imaging modality that able to acquire 3D tomographical 

information at high spatial and temporal resolution in whole tissue samples (i.e. human 

soft tissues, animals). In contrast to the other medical imaging methods, which expose 

patients to ionizing radiation, MRI uses strong non-ionizing electromagnetic fields in 

the radio frequency range, offers an excellent spatial resolution, is operator 

independent and provides 3D data
3, 4

.  It is mainly used for analysis of heart, brain, and 

nervous system.   Owing to its higher intrinsic soft-tissue contrast, MRI has distinct 

advantages for the detection of distant metastases, especially in the skeleton, the brain, 

soft tissues, and the liver. Compared to other imaging techniques (i.e., nuclear 

medicine techniques), it shows low sensitivity and long acquisition time. Moreover, 

MRI’s susceptibility to artifacts of motion and organ pulsation means that it has certain 

limitations for the detection of specific pathologies.                                  

                               During MRI scans, it is often required the use of contrast 

media, also called contrast agents (CAs), chemical substances injected into the body, in 

order to improve the quality of the MRI analysis and obtain more accurately report on 

abnormality present. 

 

 1.2 Computed Tomography (CT)  

This diagnostic technique uses X-ray to provide cross-sectional, 3D images of internal 

organs, bone, soft tissue and blood vessels. It provides a high temporal and spatial 

resolution and allows to view anatomical details and identify a wide range of disorders 

including carcinomas (lung, liver, kidney, and pancreas), vascular disease, pulmonary 

embolism, skeletal abnormalities, and children-specific conditions, such as congenital 

malformations (heart, kidneys and blood vessels) 5, 6
. CT scan can also have a role in 

the determination of surgeries and it can be performed with or without administration 
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of contrast agents (CAs).  Currently, the technical limits of CT is represented by poor 

soft tissue contrast. In addition, unlike MRI, CT exposes patients to high radiation dose   
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and the iodinated CAs utilized for enhancing a specific part of an organ. The radiation 

dose depends on multiple factors (i.e. volume scanned, patient build, scanning time and 

desired resolution)
5
 and creates ions and hydroxyl radicals in the body that interact 

with DNA critically damaging chromosomes. Furthermore, the intravascular 

administration of these agents involves allergic or toxic reactions for patients
7
.  

 

 1.3 Positron Emission Tomography (PET)  

Unlike CT or MRI, which show anatomic detail, Positron Emission Tomography 

(PET) is a nuclear imaging technique and provides quantitative in vivo assessment of 

physiological and biological phenomena. This modality necessitates the injection of a 

small quantity of radioisotopes used as tracers
8
. PET agents provide a better functional 

assessment of diseases than tracers used in current nuclear imaging modalities and one 

of the most used PET agents, for understanding the pathological stages of vascular 

lesion in vivo, is 2-deoxy-2-
18

F-fluoro-D-glucose (
18

F-FDG), a synthetic molecule that 

competes with glucose for uptake into metabolically active cells (ie. inflammatory 

cells), but is not metabolized
9
. The advantage of PET over other imaging modalities, 

such as SPECT (Single Photon Emission Computed Tomography), is represented by 

high spatial resolution and contrast resolution and superior sensitivity that allow 

detection of picomolar tracer concentrations in the arteries
10

. Unfortunately, limited 

spatial resolution (~ 2 mm) means that images must be coregistered with CT or MRI 

for precise anatomical localization of 
18

F-FDG uptake.  

 

 

 1.4 Single Photon Emission Computed Tomography 

(SPECT)  

Single Photon Emission Computed Tomography (SPECT) is a non-invasive nuclear 

imaging technique that provides tomographic images of the distribution of intravenous   
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radiolabeled molecules (radioactive tracers) to detect and track overtime molecular 

changes in the central nervous, cardiovascular, respiratory, and skeletal systems with a 

high degree of confidence
11

.                                           

The radiotracers used in SPECT applications have long half-lives (from a few hours to 

a few days)  and emit gamma rays. On the basis of specific application being 

investigated, different type of radiotracers can be used: Technetium-99m (
99m

Tc, T1/2 

= 6.0 h), Indium-111 (
111

In , T1/2 = 67.3 h), Iodine-123 (
123

I, T1/2=13.3 h) and 

Thallium-201(
201

Tl, T1/2 = 72.9 h)
12

.                              

   Unlike PET, SPECT does not require higher infrastructure cost, but PET 

scans offer a higher spatial resolution and accuracy than SPECT scans (spatial 

resolution: 10 mm). Despite these limitations, SPECT represents the modality of 

choice in cardiac field.  

 

1.5 Imaging and future trends  

The significant improvements in image quality and speed have evolved directly from 

technological advances in the design and construction of new and more efficient 

machines for diagnosis, but spatial resolution represents the main limitation for almost 

of imaging modalities, while sensitivity is limited by radiation dose or other safety 

considerations.  

Nowadays, imaging focus has been moved to contrast agents/probes/biomarkers that 

target specific biological processes. Continuing developments in molecular biology and 

nanotechnology, however, have expanded the area of imaging applications with the 

aim of providing a diagnose diseases earlier (before symptoms are obvious in 

preclinical stages) and more precisely. Moreover, additional structural and functional 

information to clinicians about the site of interest allow delivering the right treatment 

to the patient at the right time. 
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In this context, MRI technology plays a key role and represents the unique technique 

for molecular imaging applications that combines excellent soft tissue discrimination, 

high spatial resolution,  outstanding signal to noise ratio and short imaging times   
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without the use of ionizing radiation.  Nevertheless, this imaging modality is limited by 

its low sensitivity and requires the use of CAs to display clearly the site of interest. 

Next sections highlight the latest knowledge about the role of CAs in MRI applications 

and future research directions based on nanotechnology approaches in diseases 

diagnosis. 

 

2. MRI and Contrast Agents 

In order to improve the sensitivity of MRI by increasing the contrast of the target from 

the background, intravenous administration of diagnostic pharmaceutical compounds, 

as known as contrast agents (CAs), is often required during MRI scans. MRI CA are 

generally categorized as T1 (longitudinal relaxation time) and T2 (transverse relaxation 

time) CA based on their magnetic properties and relaxation mechanisms. Gadolinium 

(Gd
3+

) chelates are effective for increasing T1 relaxation rate (1/T1) and commonly 

used as T1 CA, generating a positive image contrast. Superparamagnetic iron oxide 

nanoparticles (SPIONs) are more effective for increasing T2 relaxation rate (1/T2) and 

commonly used as T2 CA, producing negative image contrast. To date, the majority of 

MRI CA used in clinical practice are Gd
3+ 

chelates, with over 10 million contrast-

enhanced MRI scans on an annual basis, because of their high paramagnetism, 

favorable properties in term of relaxation enhancement, relatively high stability, and 

inertness in the body
13

. They include non-specific extracellular CAs and organ-specific 

CAs, mostly liver-specific CAs. Gadolinium chelates are the most widely used 

extracellular as non-specific contrast agents
14

. 

Gd is a powerful paramagnetic ion with seven unpaired electrons and influences the 

relaxation of nearby water protons. Free ion Gd
3+

 is acutely toxic in vivo owing to its 

tendency to precipitate and be deposited in tissues (primarily in the liver), which 

prolongs its half-life
15-17

; the binding to a chelate complex makes the ion chemically 

inert. After chelation, the rate of renal excretion of the Gd complex is increased several 

times compared with free Gd
18

. These agents differ in a number of properties 

(magnetic properties and biodistribution), some of which may significantly impact   
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their clinical utility, particularly for specific applications
19

. In addition, they can be 

classified into four main categories according to their biochemical structure 

(macrocyclic or linear) and to their charge (ionic or non-ionic)
20

. Despite differences 

among the chelating molecules, they appear to have remarkably similar diagnostic 

efficacies and safety profiles
14

. 

Currently, seven Gadolinium based contrast agents (GBCAs) are approved for clinical 

use in the international market by the U.S. Food and Drug Administration (FDA): 

gadopentetate dimeglumine (gadolinium diethylene triamine pentaacetic acid (Gd-

DTPA), Magnevist®; gadodiamide (gadolinium diethylene triamine penta-acetic acid 

bis-methylamide (GD-DTPA-BMA), OmniScan®; Gadoteridol (Gadolinium-1,4,7- tris 

(carboxymethyl)-10-(2' hydroxypropyl)-1, 4, 7 -10-tetraazacyclododecane (Gd-

HPD03A]), ProHance®; gadoterate meglumine (gadolinium-tetraazacyclododecane 

tetra acetic acid (Gd-DOTA), Dotarem®; gadobenate dimeglumine, gadoversetamide, 

(OptiMARK, Covidien, Dublin, Ireland); gadobutrol
21

.  

They work by altering the intrinsic longitudinal (T1) relaxation times of the water 

protons in the various soft tissues where the agents distribute
22

. These agents are 

characterized by the relaxivity (r1, for T1 contrast agents) which is defined as the 

change in relaxation rate (R1 = 1/T1 in units of s
-1

) of solvent water protons upon 

addition of CA, normalized to the concentration of contrast agent ([CA] in units of 

mM)
23

. This effect includes inner-sphere (from water molecules directly coordinated to 

the Gd) and outer-sphere contributions (from nearby, H-bonded waters) and it is 

described by the Solomon-Bloembergen-Morgan (SBM)
24

 equation. Thus, high 

relaxivity of a CA is critical for effective contrast-enhanced MRI and it is not a 

constant, but depends on various parameters such as applied field, temperature, the 

hydration state of the molecule and the molecular size.  

Current MRI agents require injection of gram quantities of Gd in order to obtain 

satisfactory contrast in the resulting image. For clinical use, the recommended dose for 

GBCAs is typically 0.1–0.3 mmol/kg
14

. Potential advantages of using Gd chelates at 

higher doses include better lesion enhancement, delineation and detectability of cancer 

pathology. With such large doses required for reasonable image enhancement, current 
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contrast agents are limited to targeting sites where they can be expected to accumulate 

in high concentrations, such as in the bloodstream. In addition, their effectiveness 

remains limited owing to nephrotoxic effects, lack of tissue specificity, low relaxivity 

and short circulation half-lives. These agents have historically been considered safe, 

well tolerated when used at recommended dosing levels and linked to the occurrence of 

nephrogenic systemic fibrosis (NSF) in renal impaired patients
25-27

, but, recently, 

McDonald and coworkers have reported results about progressive Gd deposition in the 

brain, bone and kidneys after repeated intravenous administration of CAs
28, 29

. As a 

result, the Food and Drug Administration (FDA) has alarmed the medical community 

and has recommended healthcare professionals to limit the use of Gd-based CAs unless 

necessary and to report any possible related side effects. Also the European Medicines 

Agency (EMA) confirms recommendations to restrict the use of some linear Gd agents 

used in MRI body scans and to suspend the authorisations of others. 

 

3. Next generation of CAs 

Despite the valuable role of the CAs for MRI, these latest results confirm the need to 

have a biocompatible system able to boost a clinical relevant Gd-chelate without its 

chemical modification. 

Ideally, the next generation agents will be site-specific; much higher relaxivities will 

be required to account for the decrease in concentration that accompanies increased 

tissue specificity. 

There have been significant efforts to design and develop novel GBCAs with high 

relaxivity, low toxicity and specific site binding. The relaxivity of the diagnostic 

pharmaceutical compounds can be increased by proper chemical modification. 

According to SBM theory, it is needed to design a ligand that will enable the complex 

to have a greater number of inner-sphere water molecules (q); an optimally short water 

residence life time (τm); and a slow tumbling rate (τr) while maintaining sufficient 

thermodynamic stability. Indeed, it has been demonstrated that the relaxivity of a Gd 

complex will increase upon slowing down its molecular tumbling (increasing its   
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molecular weight) insofar as its water residence time is close to optimal. Considering 

the aforementioned properties, current commercial CAs have several disadvantages. 

They have only one coordinated water molecule and fast tumbling rates due to their 

small size
30

.  In addition, the toxicity of Gd
3+

 can be reduced by increasing the agents’ 

thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic 

properties. Moreover, the increasing knowledge in the field of genomic and biology 

provides an opportunity for designing site-specific CAs. According to these parameters 

and by exploiting the versatile properties of nano- and bio-materials several 

nanostructured CAs with enhanced relaxivity have been investigated.  

 

4. Nanomedicine and nanocarriers for diagnostic 

applications  

Nanotechnology is defined as the use of materials and structures with novel properties 

and functions obtained from their size which ranges from 1 to 100 nm. Nanomedicine 

is the medical application of nanotechnology and it is a science based on the design 

and development of therapeutics and/or diagnostic vectors on the nanoscale
31

.                  

The main goal of nanomedicine is to delivery agents in a specific and efficient way to 

the site of interest. In general, this can be achieved by different ways of administration, 

such as oral, nasal, transdermal, and intravenous.                                        

Factors that determine nanomaterial design and characterization include size and 

shape, blood half-life, controlled drug release and active targeting of nanovectors
32

. In 

addition, the efficacy of the pharmaceutical compound can be improved and side 

effects reduced by encapsulation or association to some type of nanovector. Indeed, 

through advances made in nanotechnology and materials science, researchers are now 

creating a new generation of CAs that are capable of providing more sensitive and 

specific informations.  In fact, nanoscale manipulation in combination with traditional 

diagnostic methods, provides new sensitive, specific, reproducible and cost effective 

methods for diagnosis of different types of pathology.  
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Extensive libraries of nanostructures, composed of an assortment of different sizes, 

shapes, and materials, and with various chemical and surface properties, have already 

been constructed. The field of nanotechnology is under constant and rapid growth and 

new additions continue to supplement these libraries. Several nanocarriers have been 

approved for clinical use and they are currently used to diagnosis various types of 

cancers
33

. Furthermore, there are several formulations, which are now in various stages 

of clinical trials
34

. 

Clinical aspects related to the use of nano- and biomaterials such as polymer 

nanoparticles, block copolymers structures and liposomes for MRI applications are 

reported below. In addition, taking into account that multimodal imaging techniques 

have a huge impact on the early diagnosis, the design of novel nanocarriers with multi-

modal imaging characteristics is also of great interest and requires the integration in a 

single system of complementary imaging functionalities. The main examples of 

nanovectors which combine MRI with other diagnostic techniques, such as Optical 

Imaging and Positron Emission Tomography (PET), are set out with a particular focus 

on nanoparticle-based multimodal PET/MRI probes
35

. 

  

4.1 Polymer Nanoparticles  

Nanostructured materials have been shown to have some advantages over conventional 

CAs. In this field, Polymeric Nanoparticles (PNPs) have attracted considerable interest 

over the last years due to their properties that can be modulated depending on the 

particular application
36

. Advantages of PNPs as nanovectors include controlled release, 

the ability to combine therapy and imaging (theranostics) in just one particle, 

protection of active molecules and its specific targeting, facilitating improvements in 

the therapeutic index
37

. 

Several hydrophilic polymers, such as Hyaluronic Acid (HA), Chitosan (CS) and 

Dextran are widely used to manufacture PNPs for medical applications. Among them 

HA and its derivatives have been investigated for the development of several carrier 

systems for cancer diagnosis, staging and therapy
38

. HA salts have also been used in   
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combination with CS for drug delivery and diagnostic applications. In this context, 

Chen and coworkers
39

 report a very interesting example of nanotheranostic system in 

which disease diagnosis and therapy are combined. This nanocarrier has a yolk-shell 

structure with a radioluminescent yolk based on Gd2O3:Eu nanospheres, an up 

conversion luminescent in a silica shell, and a coating constituted by HA/CS 

combination for pH-triggered drug release. The deposition of the polymeric 

combination HA/CS is performed in layer-by-layer manner by alternating addition of 

the particles in HA and CS solutions. The resulting system is also able to act as dual 

T1/T2 MRI agents. Mitoxantrone (MTX), selected as anticancer model drug, is loaded 

in the empty area between the core and the shell. The in vitro MTX release from the 

nanocarrier is studied in PBS (pH 7.4) and in acidic conditions (pH 5.0) and, 

interestingly, a marked difference is noted. The drug release occurs with a faster 

kinetic in acidic conditions and it may be favorable in cancer therapy, taking into 

account that in tumors and in endosomes an acidic environment is present. The 

usefulness of the combination HA/CS is also well documented for different bio-

applications
38

. Particularly marked results have been achieved by Courant et al.
40

. Their 

goal is to develop a new and straightforward synthesis of high-relaxivity Gd-NPs for 

MRI applications, with optimized nanoparticle production characteristics, Gd-loading, 

and relaxivity at the same time. They choose to encapsulate a low-risk CA: 

gadolinium-tetraazacyclododecanetetraacetic acid (also known as Gd-DOTA). Because 

of its hydrophilic nature, the encapsulation of Gd-DOTA is made in a hydrophilic 

polymer matrix. For biocompatibility reasons, CH and HA are chosen as polymer 

matrix. A spectacular boost in relaxation rate is found in Gd-DOTA-loaded PNPs. 

Furthermore, recently, Torino et al.
41

 have coupled a flow focused nanoprecipitation to 

an efficient crosslinking reaction based on Divinyl Sulfone (DVS) to entrap the 

relevant clinical gadolinium-diethylenetriaminepentaacetic acid (also known as Gd-

DTPA) in crosslinked Hyaluronic Acid Nanoparticles (cHANPs) able to increase its 

relaxometric properties without the chemical modification of the chelate. Authors 

hypothesize that Gd-chelate modifies the affinity of the polymer solution shifting the 

supersaturation to a low degree and leads to a slow heterogeneous nucleation followed 
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by the growth of produced nuclei into large or aggregated particles. These specific 

interactions induce flow perturbation, causing an uncontrolled size variation and 

formation of aggregated morphologies. Subsequently, the macrocyclic molecules have 

been firmly entrapped within the hydrogel matrix, using a crosslinking reaction 

simultaneously occurring with the nanoprecipitation. Investigations related to the 

addition of the DVS in the middle channels or into the side channels have attributed to 

the hydrogel nanoparticles some peculiar properties responsible for the modulation of 

the release behaviour and swelling properties. In vitro MRI results prove that using the 

flexible platform it is possible to take advantages from the strong interference detected 

by the presence of Gd-DTPA producing Gd-entrapped NPs with enhanced MRI 

properties. This observation is crucial to lead potentially to a significant reduction of 

administration dosage on clinical usage of T1 contrast agents and to gain advantages in 

the imaging modalities based on nanotechnologies. Indeed, the nanoparticles (NPs) are 

widely used for the improvement of imaging techniques and all the tunability features 

reported for this system can potentially reduce limitation linked to a fast clearance 

from the bloodstream and low detection due to the dependence on the concentration. 

The proposed approaches aim to overcome some drawbacks of the traditional 

procedures for the production of NPs such as high polydispersity, expensive and time-

consuming purification/recovery steps. Furthermore, results present the effective 

strategy to dose all species and to control property the entrapment of CAs within the 

hydrogel nanostructures that influences MRI performances in the signal intensity and, 

potentially, the tissue specificity. Then, the same authors propose a high versatile 

microfluidic platform to design, in a one-step strategy, PEGylated cHANPs entrapping 

a magnetic resonance imaging CA and a dye for multimodal imaging applications
42

. 

Clinically relevant biomaterials are shaped in the form of spherical NPs through a 

microfluidic flow focusing approach. A comparison between post processing and 

simultaneous PEGylation is reported to evaluate the potentiality of the chemical 

decoration of the cHANPs in microfluidics. An accurate control of the NPs in terms of 

size, PEGylation and loading is obtained. Furthermore, in vitro cell viability is reported 

and their ability to boost the magnetic resonance imaging signal up to 6 times is also 
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confirmed. The proposed microfluidic approach reveals its ability to overcome several 

limitations of the traditional processes and to become an easy-to-use platform for 

imaging applications
42

. All these results drive to the conclusions that the hydration of 

the hydrogel structure can be used to control the relaxometric properties of Gd-DTPA. 

In particular, this concept is explained for the first time by Torino et al.
43

 and called 

Hydrodenticity. The ability to tune the hydrogel structure is proved through a 

microfluidic flow-focusing approach able to produce cHANPs, analyzed regarding the 

crosslink density and mesh size, and connected to the characteristic correlation times of 

the Gd-DTPA. Hydrodenticity explains the boosting (12-times) of the Gd-DTPA 

relaxivity by tuning hydrogel structural parameters, potentially enabling the reduction 

of the administration dosage as approved for clinical use
43, 44

. 

To date, 1H MRI has been widely used in clinical diagnosis, but in recent years, 

researchers have focused on exploring alternative MRI atoms. Among them, the 19F 

atom, as the most promising imaging nucleus, owns several unique features such as 

100% natural isotopic abundance, low background 19F in the human body, relatively 

high sensitivity (83% of protons) and a broad range of chemical shifts. Given that the 

19F element present in the human body exists in bones and teeth, low doses of 

fluorinated agents are required for performing 19F MRI
45

. 

It has been proved that structure of a fluorinated agent is of crucial importance for 

achieving satisfactory MRI performance. Preferably, a 19F MRI agent shall display a 

high fluorine content, high signal-to-noise resonance spectrum, short T1 and long T2. 

To this end, various types of 19F MRI agents have been developed and manufactured 

in the form of delivery vectors for MRI. For example, Wang et al.
46

 prepare 19F 

moiety loaded nanocomposites with an organic fluorescent core via a facile strategy by 

encapsulating organic dyes with oleylamine-functionalized polysuccinimide and 

1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES). The aggregation of organic 

fluorescent dyes in the core results in significant fluorescence for optical imaging, 

while the 19F moieties on PDTES allow for simultaneous 19F MRI. Moreover, the 

nanocomposites exhibit high water dispersibility and excellent biocompatibility. These 
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properties make them promising for both cell imaging and in vivo imaging 

applications. 

Among other biomaterials, silica nanostructures have earned a key role in the MRI 

field. Indeed, in contrast to many other nanomaterials, silica NPs do not acquire any 

special property from their sub-micrometer size, except for the corresponding increase 

in surface area. What makes silica NPs fascinating from a nanotechnology point of 

view is their well-defined and tunable structures (i.e., size, morphology and porosity) 

and surface chemistry. By introducing new functional groups via well-established 

siloxane chemistry, it is possible to modify the silica surface to impart new properties 

to the particles, such as diagnostic and therapeutic capabilities. Moreover, silica NPs 

are effectively “transparent” in the sense that they do not absorb light in the near-

infrared (NIR), visible and ultraviolet regions, or interfere with magnetic fields. In 

addition, silica NPs are inexpensive, easy to prepare, relatively chemically inert, 

biocompatible, and water dispersible. A fundamental use of silica particles has been 

reported by Decuzzi et al.
47

. In their work, they demonstrate enhanced efficiency of 

Gd-based CAs (Gd-CAs) by confining them within the nanoporous structure of 

intravascularly-injectable Silicon Micro Particles (SiMPs). Enhancement in efficiency 

is shown for three different Gd-CAs: Magnevist (MAG), a clinically-used Gd
3+

 

polyaminocarboxylate complex, and two carbon nanostructure-based lipophilic agents, 

Gadofullerenes (GFs) and Gadonanotubes (GNTs). The GFs have a single Gd
3+

 ion 

encapsulated by a spherical fullerene cage of ~0.7 nm in diameter. The external 

fullerene cage, which prevents the leakage of the Gd
3+

 ions, can be chemically 

functionalized to provide solubility and biocompatibility. Even after functionalization, 

the GFs exist as aggregates in solution. The GNTs are nanoscale carbon capsules 

(derived from full-length single-walled carbon nanotubes) with a length of 20-80 nm 

and a diameter of about 1.4 nm, which are internally loaded with Gd
3+

 ion clusters. 

Within the GNTs, the Gd
3+

 ions are present in the form of clusters (<10 Gd
3+

 ions per 

cluster), and each GNT contains approximately 50 to 100 Gd
3+

 ions. The Gd
3+

 clusters 

are stable and the Gd
3+

 ions do not leak from the nanocapsules under physiological 

conditions. Because of the hydrophobic nature of their external carbon shealth, the 
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GNTs exist in the form of bundles. In this work, a homogeneous dispersion of GNTs 

(debundled GNTs) is prepared using Na0/THF reduction. 

As assessed in the introduction, multimodal imaging is becoming the new perspective 

into the fields of clinical and preclinical imaging, and nanomedicine represents a valid 

field of application to support its development. Here, it is report a successful example, 

developed by the author of this chapter, to combine boosted MRI with Optical Imaging 

or PET. This is the only case available providing multimodal imaging with improved 

relaxometric properties and without the chemical modification of the chelate. In 

particular, core-shell polymeric NPs are obtained, which can be encapsulated with both 

Gd-DTPA and a dye for Dual Imaging applications through a complex coacervation 

that exploits an innovative double crosslinking to improve the stability of the 

nanostructure overcoming the interference of the Gd-DTPA in the coacervation 

process
48

. Furthermore, the adjustment of the process parameters, the coacervation and 

chemical reaction kinetic promote the interpolation of the hydrophobic core with the 

hydrophilic shell, controlling the water exchange and, consequently, the relaxation rate 

T1, enhancing the MRI signal at reduced concentration compared to the relevant 

clinical CAs. Finally, process conditions able to develop a pH-sensitive behavior of the 

Hybrid Core-Shell (HyCoS) NPs have been identified. 

Further investigations are required to highlight the benefits and the drawbacks of this 

behavior and to consider the system as an effective and safe platform for theranostic 

nanomedicine. Further developments of this project have been the upgrade of the 

designed nanosystem to the trimodal applications and in vivo tests. In particular, a 

study of HyCoS NPs with the Fluorodeoxyglucose (
18

F-FDG) is planned for PET-MRI 

applications
49

. 

 

4.2 Block Copolymers  

 Polymers containing a mixture of repeat units are known as copolymers and they 

occupy an extensive research area and they are well known in, size, and chemical 

composition
50

. For this reason the interest in the synthesis and characterization of   
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copolymers the biomaterials field thanks to their ability to generate nanostructures 

particularly in aqueous solution by varying their architecture is increased enormously 

in the last years thanks also to advances in polymer chemistry. Therefore, the synthetic 

nature of copolymers allows the design of interfaces containing various biochemically 

active functional groups. Among them, Block Copolymers (BCPs) are a specific type 

of copolymer system such that each monomer is homopolymerized to create 

chemically distinct domains. 

A broad range of functional BCPs with tailored properties and organic and also 

inorganic components are now accessible especially for pharmaceutical or diagnostic 

applications
51, 52

. 

An increased number of reports on the synthesis, structures, properties and applications 

of copolymers have been published in the last years
53

. A vast majority of di- and tri-

block copolymers are used for the creation of nanosystems loaded with imaging agents, 

not only to protect these agents from degradation or inactivation in vivo but also to 

optimize dosage and efficacy. These molecules can be physically encapsulated into 

polymer assemblies or covalently conjugated onto polymer chains. Moreover, as 

known, the polymer carriers with surface bioconjugation is the key to prolong the 

bioavailabiliy of the encapsulated active molecules. 

Particularly remarkable are the data reported by Xiao et al.
54

 about a new 

Gadolinium(III)-copolymer (ACL-A2-DOTA-Gd), developed as a potential liver MRI 

contrast agent. ACL-A2-DOTA-Gd consists of a poly (aspartic acid-co-leucine) unit 

bound with Gd-DOTA via the linkage of ethylenediamine. In vitro experiments show 

that new complex is biodegradability, biocompatibility and its relaxivity is 2.4 times 

higher than the clinical Gd-DOTA. In vivo MRI study and biodistribution in rats 

confirm that Gadolinium(III)-copolymers are mainly accumulated in the liver with a 

long time-window. 

Hou et al. 
55

, instead, report a novel approach to synthesize poly(ethylene glycol) 

(PEG)-based Gd-NPs with small size (7 nm) and high relaxivity. They construct a 

pentablock copolymer through two sequential atom transfer radical polymerization 

(ATRP) reactions. The nanostructure consists of a Gd chelates-conjugated block in the 
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center and PEG-terminated segments at both ends. In this way, the interactions of Gd 

chelates with proteins are shielded by the hydrated PEG segments. In vitro and in vivo 

studies demonstrate that the relaxivity is 20 times higher than commercial CA. 

Then, Cao and coworkers
56

 synthesize a new type of triblock polymeric micelle based 

on biocompatible poly(glycerol) (PG) and poly(caprolactone) (PCL) for tumor-targeted 

MRI in vivo. Gadolinium chelates (such as Gd-DOTA) and folic acid (FA) molecules 

are conjugated to PG block through efficient click chemistry reaction and the final 

structure is T-micelle (PCL-PG-PCL-g-DOTA(Gd)+FA) of 250 nm. T-micelles exhibit 

a higher longitudinal relaxivity (r1) and show significant targeting specificity to tumor 

cells. The capability of T-micelle as an MRI CA for contrasting tumor tissue in vivo is 

evaluated in vivo on tumour-bearing mice at different time points. The results indicate 

that FA functionalized T-micelle could provide efficient contrast effect at the tumor 

region through targeting specificity. 

Luo et al.
57

, have successfully synthesized an amphiphilic poly(aminoethyl ethylene 

phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer by ring-opening polymerization 

reaction, which contains hydrophobic PLLA and hydrophilic PAEEP segments with 

good biocompatibility and biodegradability. Oleylamine-coated Fe3O4 magnetic 

nanoparticles (OAM-MNPs) are encapsulated in the PAEEP-PLLA copolymer 

nanoparticles, while the molecules of lactoferrin (Lf) are conjugated for glioma tumor 

targeting. The results indicate strong, long-lasting, tumor targeting, and contrast-

enhanced MRI ability of Lf-MPAEEP-PLLA-NPs owing to the selectively 

accumulation in brain glioma tissue. 

Another interesting strategy for the development of new contrast reagents is the 

synthesis of amphiphilic Gadolinium(III) complexes that can form spontaneously 

micelles. Jeong and colleagues
58

 synthesize biocompatible amphiphilic derivatives of 

DOTA with hydrophobic alkyl chains, whose gadolinium(III) are incorporated into 

DOTA of micelles via ethylenediamine. To prepare the micelle-formed MRI contrast 

agent with Gd, hydrophilic (mPEG) and hydrophobic moieties (hexadecylamine) are 

conjugated with the PHEA backbone. PEG chains, being exposed to the external 

aqueous phase. The final structure (PHEA-mPEG-C16-ED-DOTA-Gd) has an average 
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diameter of 180 nm and can be used for the detection of liver lesion. In vitro 

experiments show that this nanovector give better imaging contrast than commercial 

contrast agent at low concentration of Gadolinium. Therefore, when solution of PHEA-

mPEG-C16-ED-DOTA-Gd is intravenously injected into a rabbit, the T1-weighted 

image of the liver in an animal model shows prolonged intravascular duration time of 

about 30 min. 

With the rapid development of polymer synthetic and nano-techniques, stimuli-

responsive block copolymers and corresponding assemblies are created one after 

another and used for targeted delivery of drugs and imaging/contrast agents to tumor 

sites. These vehicles are able to react to internal environmental changes, such as 

temperature, ionic strength, light, pH level, pressure, and so on or external stimuli 

(light and electromagnetic field) exhibiting reversible or irreversible changes in 

chemical structures and physical properties
59

. 

In particular, the measurement of pH in vivo has received considerable attention 

because, in presence of solid tumors, it provides the potential not only for early 

detection and diagnosis of tumors but also for monitoring the efficacy of the treatment 

plan used to combat the disease
60

. The non-invasive measurement of pH is based on 

MRI. Gao and coworkers
61

 are one of the first groups to prepare a stimuli-responsive 

BCPs by encapsulation of iron oxide NPs in a pH-responsive diblock copolymer, 

consisting of poly(ethylene oxide) (PEO) as the hydrophilic, biocompatible segment 

and a poly(β-amino ester) (PAE) as the pH-sensitive segment. When the pH is low 

(<7.0), the transverse relaxivity (r2) of the imaging agent increases due to the release 

of the iron oxide nanoparticles from the core of the micelles. Subsequently, Okada et 

al.
62

, develop a different approach to prepare a pH-responsive system by attaching Gd-

chelates to a poly(methacrylic acid) (PMAA). MRI in vitro studies indicate that the 

relaxivity of the contrast agent increases of two times when the environmental pH is 

acid. Also Zhu et al.
63

. design a pH-responsive MRI CA that demonstrates significant 

changes in term of relaxivity upon changes in the environmental pH at physiological 

relevant values. Recently, to enhance the stability of polymeric micelles, Hu et al.
64

 

report the fabrication of cross-linked micellar structure, which covalently labelled with 
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DOTA(Gd) and green-emitting fluorophores within pH-responsive cores, serving as a 

dual-modality MR/fluorescence imaging agents. The acidic pH-triggered turn-on and 

enhancement of signal intensities for both imaging modalities are declared. Compared 

with non-cross-linked diblock precursor, this system shows better MR and 

fluorescence imaging performance due to structural stability. Subsequently, the same 

group develops a novel theranostic polyprodrug platform with synergistic 

imaging/chemotherapy capability consisting of hyperbranched cores conjugated with 

reduction-activatable prodrugs (an anticancer agent) and MRI CA (Gd complex), and 

hydrophilic coronas functionalized with guanidine residues
65

. The hyperbranched cores 

avoid the potential interactions between anticancer agent and blood components and 

serve as the embedding matrix for MR contrast agents to weaken MR background 

signals. Upon cellular internalization, the synergistic turn-on of therapeutic potency 

and enhanced diagnostic imaging in response to tumor milieu are achieved. 

Mouffouk et al.
66

, for example, report the development of a smart CA composed of pH-

sensitive micelles containing a hydrophobic Gd(III) complex with the aim of 

specifically detecting cancer by MRI. This vector (35–40 nm) consists of pH-sensitive 

polymeric micelles formed by self-assembly of a diblock copolymer 

poly(ethyleneglycol-b-trimethylsilyl methacrylate) (PEG-b-PTMSMA), loaded with 

the hydrophobic complex tetraaquodichloro(4,4’-di-t-butyl-2,2’-bipyridine) 

Gadolinium(III) chloride (tBuBipyGd) and decorated with a specific monoclonal 

antibody (mAb) against the human MUC1 protein, which is more expressed in many 

epithelial cancers and a specific targeting vector in preclinical and clinical trials. This 

system is able to amplify the MRI signal chemically and at the same time has the 

ability to remain silent during circulation; in fact, the CA remained in the “off state,” 

being activated only upon micelle disruption in an acidic medium represented by 

tumour microenvironment. In fact, the extracellular pH of most tumor tissues is weakly 

acidic (pH 6.5), which is lower than that of normal tissues (pH 7.2) and this 

discrepancy is usually used as the trigger factor. Finally, the conjugation of a specific 

biomolecule to smart agents increases significantly their affinity toward cancer cells. 
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Other stimuli-responsive BCPs are extensively studied. Tsai et al.
67

, for example, 

develop a core-shell structure composed by poly(HEMA-co-histidine)-g-PLA and 

diblock copolymer PEG–PLA with functional moiety. The inner core of poly(HEMA-

co-histidine)-g-PLA exhibits pH stimulate to enable intracellular drug delivery, while 

the outer shell PEG-b-PLA with functional moiety Cy5.5 for biodistribution diagnosis 

and folate for cancer specific targeting. The nanospheres has an average diameter of 

200 nm. From drug release study, a change in pH destroy the inner core to lead a 

significant drug release from mixed micelles. Cellular uptake of folate–micelles is 

found to be higher than that of non-folate–micelles. In vivo study reveal that specific 

targeting of folate–micelles exhibit cancer targeting and efficiency expression on tumor 

growth, indicating that multifunctional micelles prepared from poly(HEA-co-

histidine)-g-PLA and folate–PEG–PLA have great potential in cancer chemotherapy 

and diagnosis. 

Concomitantly, additional and promising technologies in nanomedicine are currently 

under investigation such as multimodal imaging, which combines two or more 

diagnostic strategies into one procedure and nanotheranostics, which integrates both 

therapeutic and diagnostic capabilities into one single nanoplatform. 

Locatelli et al.
68

, for example, report a nanocarrier system for dual PET/MRI imaging. 

In this case hydrophilic superparamagnetic maghemite NPs are synthesized and coated 

with a lipophilic organic ligand and the entrapped into polymeric NPs made of 

biodegradable poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) copolymer 

(PLGA-b-PEG-COOH). Moreover, the surface of NPs show active sites (COOH) that 

allow a modification with 2,2’-(7-(4-((2-aminoethyl) amino)-1-carboxy-4-oxobutyl)-

1,4,7-triazonane-1,4-diyl) diacetic acid (NODA) to chelate 
68

Ga for PET imaging. 

Zhang and coworker
69

, instead, realize a copolymer-based single-photon emission 

computed tomography/magnetic resonance (SPECT/MR) dual-modality imaging agent 

that can be labeled with technetium-99m (
99

mTc) and Gd simultaneously. The 

copolymer P(VLA-co-VNI-co-V2DTPA) (pVLND2) is synthesized by radical 

copolymerization reaction and based on asialoglycoprotein receptor (ASGPR) targeting 

agent for hepatic tissue. 
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An example of theranostic polymer platform is developed by Porsch et al.
70

. In this 

work, they report the use of natural isotope 
19

F as an efficient alternative to the 

conventional imaging costrast agents, because this nucleus is not intrinsic to the body, 

thus enabling MRI images with great spatial selectivity against a zero background and 

synthesize fluorinated NPs loaded with doxorubicin (Dox). The NPs are formed by 

self-assembly of amphiphilic BCPs with fluorinated elements incorporated in the 

hydrophilic corona and anticancer drug in the hydrophobic core. Experimental data 

show that the nanovector has a controllable drug release kinetics, are detectable by 
19

F-

MRIand toxic for breast cancer cells. 

Recently, Koziolova and colleagues
71

 evaluate the influence of molecular weight and 

dispersity of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates with 

Dox on their biodistribution is studied using two complementary imaging methods 

PET and Fluorescence Imaging (FI). The HPMA copolymers are synthesized by RAFT 

polymerization and functionalized with a chelator for further radiolabelling with 

Zirconium-89(
89

Zr; t1/2 = 78.4 h) prior to in vivo and ex vivo studies. PET/Optical 

Imaging studies indicate that dispersity and molecular weight of the HPMA polymer 

carriers have a significant influence on the in vivo fate of the polymer conjugates and 

thanks to presence of anticancer drug bound show higher cytotoxicity and cellular 

uptake in vitro. 

 

4.3 Liposomes  

 Liposomes are structures composed of hydrophobic head groups and hydrophilic tail 

groups. They can be prepared by adding lipids in organic solution, which is slowly 

evaporated to produce a thin film. The film is then hydrated with a desired aqueous 

buffer and sonicated. Liposomes are generally nano-scaled structures and can be 

further size refined by passage through physical membrane pores of known size 

(extrusion). Liposomes are typically characterised by their size, shape and lamellarity. 

They may be composed of a single bilayer (unilamellar), a few bilayers (oligolamellar), 

or multiple bilayers (multilamellar). Due to their aqueous cavity and “tunable” bilayer,   
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liposomes have traditionally been used as drug delivery vehicles, encapsulating water-

soluble drugs within the aqueous cavity in order to improve drug pharmacokinetics 
72

.  

Zou et al.
73

  for example, report an amphiphilic MRI-traceable liposome NPs 

encapsulating Gd-DOTA for in vivo inner ear visualization through MRI. They design 

these multifunctional NPs through the film hydration method that allows the 

encapsulation of Gd-DOTA inside the hydrophilic core of the NPs. They observe 

acceptable relaxivity values allowing visible signal characteristics for MRI. In vivo 

studies demonstrate that these systems are efficiently taken up by the inner ear after 

both transtympanic and intracochlear injection. The latter shows better NPs distribution 

throughout the inner ear, including the cochlea and vestibule, and induced stronger 

MRI signals on T1-weighted images. 

Bui et al.
74

 produce lipid NPs containing phospholipids that express Gd-chelate or 

DTPA by incorporating DTPA-PE into the lipid core of the NPs and then adding Gd
3+

 

to preformed NPs (for binding to Gd
3+

 as Gd-DTPA-PE chelate). They also add 10-

mole percentage of lipid conjugated to mPEG-PE to lipid nanoparticles in order to 

increase the bound water on the lipid nanoparticle surface, thereby increasing the MRI 

contrast. In this case, the following nanoparticle system shows an higher longitudinal 

relaxivity (33-fold) than the current FDA approved Gd-chelated CAs. In addition, 

intravenous administration of these Gd-LNP at only 3% of the recommended clinical 

Gd dose produce MRI signal-to-noise ratios of greater than 300 times in all 

vasculatures. 

Kamaly and collegues
72

 synthesize a bimodal imaging liposome for cell labeling and 

tumour imaging. The lipid molecules are able to bear both fluorophore and CA on the 

same structure, thereby representing a useful probe for both MRI and fluorescence 

microscopy utility. Very briefly, they conjugate a rhodamine moiety onto a DOTA-

bearing C-18 dialkyl lipid and complex Gd into the molecule to obtain the bimodal 

lipid Gd DOTA Rhoda DSA 1. The lipid is used to label IGROV-1 human ovarian 

carcinoma cells and to image xenograft tumours in mice. The new paramagnetic and 

fluorescent lipid proved to be a valuable probe to obtain anatomical information, 

through MRI, and liposome biodistribution, through ex vivo fluorescence microscopy. 
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Kono et al.
75

 synthesize multi-functional pegylated liposomes having both highly 

thermosensitive polymers and newly synthesized Gd-chelate-attached dendron lipid  

(G3-DL-DOTA-Gd) with a compact conformation. The multifunctional liposomes 

show temperature-responsive drug release and MR imaging functions. In particular, 

authors load liposomes with Dox and tested the stability of the nanostructures, showing 

that liposomes are able to retain Dox below physiological temperature but release it 

immediately above 40°C. As far as the MRI properties, the developed liposomes 

exhibit the ability to shorten the longitudinal relaxation time with a relaxivity (5.5 mM
-

1
s

-1
) higher than that of free Gd-DOTA (4.6 mM

-1
s

-1
).  

In addition, Na and co-worker
76

  report dual functional liposomes co-encapsulating 

Dox and Gd as therapeutic and diagnostic carriers. They measure MR relaxivity and 

cellular uptake showing that the liposomes can entrap 3.6 mM of Dox and 1.9 mM of 

Gd. Although the low relaxivity (5.5 mM
-1

s
-1

) compared to that of MRbester
®
 due to 

limited water diffusion across the liposome membrane, the surface charge induced 

good cellular uptake, allowing a higher accumulation of Gd into cells than MRbester
®
. 

Additionally, Dox is more easily internalized to the nucleus compared to Doxil
®
. 

Li et al.
77

, instead, prepare fluorescent and paramagnetic liposomes for early tumor 

diagnosis by incorporating a RGD-coupled-lipopeptide, synthesized using a cyclic 

RGD peptide headgroup coupled to palmitic acid anchors via a KGG tripeptide spacer, 

into lipid bilayers. As far as the paramagnetic liposomes, they adopted the thin film 

hydration method and hydrated the lipid film with commercial Gd-DTPA as MRI 

contrast agent. In vivo MRI scanning demonstrate that the signal enhancement in tumor 

after injection of RGD-targeted liposomes is significantly higher than non-targeted 

liposomes and pure Gd-DTPA. In addition, biodistribution study also show specific 

tumor targeting of RGD-targeted paramagnetic liposomes in vivo, proving them an 

effective means for noninvasive diagnosis of early tumor. 

Liao et al.
78

 design a core-shell NPs system composed of a PLGA core and a 

paramagnetic liposome shell for simultaneous MRI and targeted therapeutics. They 

encapsulate Dox within biocompatible and FDA-approved PLGA NPs, and DTPA-Gd 

is conjugated to the amphiphilic octadecyl-quaternized lysine-modified chitosan 
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(OQLCS). The paramagnetic liposome shell is based on Gd-DTPA-conjugated OQLCS 

(Gd-DTPA-OQLCS), folate-conjugated OQLCS (FA-OQLCS), and PEGylated 

OQLCS (PEG-OQLCS). Briefly, the carboxyl groups of DTPA used as a chelating 

agent are combined with the amino groups of OQLCS. Then Gd is incorporated into 

the complex. As a result, the NPs show paramagnetic properties with an approximately 

3-fold enhancement in the longitudinal relaxivity (r1 = 14.381 mM−1s−1) compared to 

the commercial Gd-DTPA complex and exceptional antitumor effects without systemic 

toxicity. 

Another remarkable example as reported by Gianolio et al.
79

. They prepare pH-

responsive Gd-DO3Asa-loaded liposomes which maintain the pH responsiveness of 

the unbound paramagnetic complex, and their relaxivities are markedly affected by the 

magnetic field strength, exhibiting a steep change in the relaxivity in the pH range 5-

7.5. Moreover, they provide a ratiometric method for measurement of the pH based on 

a comparison of the relaxation effects at different magnetic fields, offering an 

alternative tool for accessing measurement of the pH without prior knowledge of the 

concentration of the paramagnetic agent. 

Subsequently, Hossann et al.
80

 investigate formulations of 6 clinically approved CAs 

encapsulated into thermosensitive liposomes (TLs): 

 

(1) Gd-DTPA (Magnograf
®)

 from Marotrast GmbH, Jena, Germany; 

(2) Gd-BOPTA (Multihance
®
) from Bracco Imaging Deutschland GmbH 

(Konstanz, Germany); 

(3) Gd-DOTA (Dotarem
®
) from Guerbet GmbH (Sulzbach/Taunus, Germany); 

(4) Gd-BT-DO3A (Gadovist™) from Bayer Vital GmbH (Leverkusen, Germany); 

(5) Gd-DTPA-BMA (Omniscan™) from GE Healthcare Buchler GmbH & Co. 

KG (Braunschweig, Germany); 

(6) Gd-HP-DO3A (Prohance®) from Bracco Imaging Deutschland GmbH 

(Konstanz, Germany). 
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They observe that Omniscan™ and Prohance
®
 are the most promising candidates to be 

encapsulated into DPPG2-TSL. In particular, Prohance
®
 allows the highest loading 

capability (256 mM) due to the lowest osmolality and yielded the highest relaxivity. 

Omniscan™ is the only formulation that could be stored at 4°C for weeks. The other 

CAs induce phospholipid hydrolysis, which results in unwanted CA leakage, and 

therefore reduce the shelf life of TSL. Nevertheless, Omniscan™ is associated with 

nephrogenic systemic fibrosis (NSF)
81

. 

The Human Serum Albumin (HSA) and Immunglobulin G (IgG) contribute to the 

increase of MRI signal at 30°C by increasing Pd. A high concentration of encapsulated 

CA is a prerequisite to achieve a sufficiently high Δr1 during heat triggered CA release 

combined with a low r1 at 37°C. Hence, the optimal CA is characterized by a non-ionic 

structure and a low contribution to osmolality. 

Cheng et al.
82

, instead, encapsulate Gd within a nanometer-sized stabilized porous 

liposome in order to increase the Gd relaxivity thanks to the porous structure, enabling 

a fast water exchange rate. A further increase in relaxivity (up to 9.9 mM
-1

s
-1

) is 

achieved by attaching large molecular weight dextran to the Gd moiety (Gd-DOTA) 

prior to encapsulation. 

Others authors report further interesting strategies for the development of new 

liposome-complexes. Park and coworker
83

 develop nanohybrid liposomes coated with 

amphiphilic hyaluronic acid-ceramide for targeted delivery of anticancer drug and in 

vivo cancer imaging. Dox, an anticancer drug, and Magnevist, a Gd-based CA for MRI, 

are loaded into this nanohybrid liposomal formulation. They find that in vitro release 

and in vivo clearance of Dox as well as cellular uptake from the nanohybrid liposome 

is enhanced than that from conventional liposome, thanks to the prolonged circulation 

of the nanohybrid liposome in the blood stream and to the HA–CD44 receptor 

interactions. 

Another example is reported by Smith and Kong
84

. In this case, it is evaluated the 

stability of liposomes with Gd-loaded in presence of serum. The authors assemble 

crosslinkable liposomes composed of diyne-containing lipids, conjugate the liposome 

surface to DTPA-chitosan-g-C18 and then crosslink the liposome via UV irradiation. 
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The particles are mixed with Gd to enhance the quality of MRI contrast. They 

demonstrate that the crosslinking strategy after the adsorption of the polymer fastener 

allows stabilizing the thermodynamically favorable association between liposome and 

DTPA-chitosan-g-C18. In the end, they observe that CS-coated crosslinked liposomes 

are more effective than non-crosslinked liposomes in terms of stability, showing 

reduced liposome degradation and chitosan desorption. 

Concomitant, Gu et al.
85

 develop novel Gd-loaded liposomes guided by GBI-10 

aptamer for enhanced tumor MRI. They conjugate GBI-10, as targeting ligand, onto 

the liposome surface and the so obtained system shows an accumulation of Gd at the 

periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-

C is overexpressed. This novel design strategy, obtained by simply replacing the 

aptamers with other kinds of aptamers, can be applied to a variety of target cells with 

high efficiency and specificity. 

Silva et al.
86

 synthesize and incorporate complexes of Gd with aliphatic chain ligands 

of N-alkyl-N-methylglucamine series into liposomes in order to enhance MRI contrast. 

The presence of two aliphatic chains is conceived to reduce the local rotational motion 

of the Gd-complexes after incorporation in the liposomal bilayer. They show that the 

incorporation into liposomes is accompanied by an increase of the vesicle zeta 

potential and in relaxation effectiveness (r1 up to 15 mM
-1

s
-1

) compared to commercial 

Gd-DTPA, presumably because of the slower molecular rotation due to the elevated 

molecular weight and incorporation in liposomes. 

Xiao et al.
87

  report liposomes loaded with Sorafenib (SF) and commercial Gd-based 

CA (Gd-DTPA) for theranostic applications. Thin film hydration method is used to 

prepare liposomes exhibiting spherical shapes or ellipsoidal shapes, uniform particle 

size distribution (around 180 nm), negative zeta potential, high encapsulation 

efficiency and drug loading. As far as the longitudinal relaxivity, they achieve a value 

of 3.2 mM
-1

s
-1

, slightly lower than the commercial CA (4.5 mM
-1

s
-1

) and the MRI test 

show longer imaging time and higher signal enhancement at the tumor tissue. 

Furthermore, they demonstrate in vivo antitumor efficacy of the developed SF/Gd-

liposomes on hepatocellular carcinoma (HCC) in mice. To sum up, the authors show 
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that SF/Gd liposomes could be promising nano-carriers for MRI-guided in vivo 

visualization of the delivery and HCC treatment. 

In the end, Tian et al. synthesize Gd-DTPA-loaded mannosylated liposomes (M-Gd-

NL) and test their ability to target macrophages in Acute Pancreatitis (AP) and 

discriminate between mild and severe AP. Lipid film-based method is used to 

synthesize DSPE-PEG2000-Man liposomes encapsulating DPPE-DTPA-Gd, with size 

around 100 nm. In vitro tests show efficient bind and readily release of Gd-DTPA into 

macrophages, resulting in enhanced MRI ability. Indeed, M-Gd-NL show a 

longitudinal relaxivity 1.8-1.9 higher than Gd-DTPA, as a consequence of the 

embedding of DPPE-DTPA-Gd into the bilayer of liposomes, which slowed down the 

tumbling motion of Gd complexes. As far as the safety profile, M-Gd-NL do not show 

any severe organ toxicity in rats, thus proving to be promising nanocarriers for clinical 

use and for the early detection of AP. 

 

5. Aim of work 

The large variety of systems now available in the nanometric scale represents a clear 

advantage in diagnostic and therapy of some of the most challenging human 

pathologies. In this context, the following thesis project has been focused on the design 

and synthesis of new CAs for MRI applications.                                                       

Initially, the basic principles ruling biopolymer-CA interactions are clearly highlighted 

in the perspective of their influence on the relaxometric properties of the CA by 

adopting a multidisciplinary experimental approach. HA
88

 is used as a model polymer 

because of its biocompatibility and high hydrophilicity. 

In this theoretical framework, the peculiar effect of Hydrodenticity on the polymer 

conformation and the formation of the stable water compartments responsible for the 

enhancement of the MRI signal is introduced and discussed. Then, the acquired 

knowledge about polymer-CA systems to apply the concept of Hydrodenticity to the 

design of Gd-based polymer NPs with enhanced relaxometric properties. Thus, the 

development of the nanomaterial drug carriers, based on biopolymer nanoparticles,   
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physically and chemically characterizations of interactions between hydrophilic 

biopolymers and Gd-based CAs, and possible medical applications (lymphoma and 

atherosclerosis diseases) are reported here.  
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CHAPTER I  

Impact of water dynamics on 
relaxometric properties of Gd-DTPA. 
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1. Introduction 

Recently, rational design of a new class of CAs, based on biopolymers (hydrogels), 

have received considerable attention in MRI diagnostic field and several strategies 

have been adopted to improve relaxivity without chemical modification of the 

commercial CAs. As reported by Port et al. 
89

, rigidification of Gd-based CAs would be 

favourable to an increase in the relaxivity of the metal chelate since the presence of the 

ligand around the Gd ion induces a shortening of the residence lifetime of the inner-

sphere water molecules (τM) 
89-91

. In addition, they hypothesized that the presence of a 

rigid coordination cage of a chelate should limit its intramolecular conformational 

motions, which distorts the ligand field at the metal centre due to solvent molecules 

collisions, thus influencing the electronic relaxation times (τS1 and τS2) 
89

. To assess the 

rigidification strategy, Port synthetized a constrained derivative of Gd-PCTA12, Gd-

cyclo-PCTA12, in which one ethylene bridge connecting two nitrogen atoms of the 

triamine block is replaced by a cyclohexylene bridge, and the impact of rigidification 

was studied by comparing the physicochemical and relaxometric properties of both 

gadolinium MRI contrast agents, Gd-PCTA12 and Gd-cyclo-PCTA12. 

Other experimental approaches studied by Decuzzi et al. 
47, 92, 93

 proved that 

geometrical confinement could limit the mobility of water molecules and thereby 

enhance the relaxation response of Gd-based CAs without its chemical modification. In 

particular, they observed that nanometric pores of silica microparticles increase the 

rotational correlation time (τR) of Gd-DTPA (inner-sphere effect), which cannot tumble 

freely being adsorbed on the walls of the 100 nm pores. At the same time, it also 

increases the diffusion correlation time (τD) for water molecules (outer-sphere effect), 

which are geometrically confined and forced to interact longer with Gd-DTPA 

adsorbed to the inner pore surface 
93

. Through the confinement strategy, a poor 

increment of the relaxivity can be obtained without modifying the chemical structure of 

the CA. 

As advancement of the geometrical confinement, in some more recent works, Courant 

et al. 
40

 and Callewaert et al. 
94

, showed that biocompatible hydrophilic hydrogels can 
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be exploited to produce high water content nanoparticles (NPs) encapsulating the metal 

chelate. Inside the hydrogel, which creates a favourable aqueous environment for Gd-

based CAs 
88, 95-97

, the rotational motion of the encapsulated CA (Gd-DOTP, Gd-

DOTA and Gd-DTPA) is restricted and its magnetic properties are amplified. 

In our recently published works 
98, 99

, we have initially analysed the impact that 

hydrophilic biopolymer networks have on the relaxivity of Gd-based CAs and 

explained the role of the water in the interaction between polymers and metal chelates. 

This concept, called “Hydrodenticity”, has been the subject of further investigations as 

reported by Russo et al. 
43

. In a still previous work published by Russo and co-worker 

41
, crosslinked Hyaluronic Acid NanoParticles (cHANPs) containing a Gd chelate (Gd-

DTPA), are synthesized through a microfluidic platform that allows a high degree of 

control over particle synthesis, enabling the production of monodisperse particles as 

small as 35 nm for MRI applications. The relaxivity (r1) achieved with the cHANPs is 

12-times higher than Gd-DTPA. Within cHANPs, the properties of Hydrodenticity can 

be modulated to obtain desired mesh size, crosslink density, hydrophilicity and loading 

capability, as reported by Russo et al. 
42, 43

. Moreover, they proved that an increase of 

the crosslinking degree of biopolymer can induce the enhancement of relaxivity by 

restricting molecular tumbling while maintaining the switching property 
100

 and 

allowing easy access of water throughout the structure, which is a key feature in MRI 

CAs. The possibility to adopt a unique platform to tune the hydrogel structural 

parameters and, consequently, increase the relaxivity of a metal chelate without any 

chemical modification, could have a great impact on the clinical outcome. In fact, 

thanks to their improved relaxometric properties, cHANPs could ensure a brighter 

contrast with a lower amount of metal chelate, thus enabling the potential reduction of 

the administration dosage as approved for clinical use. 

In a further work 
101

, we reported an efficient way to produce Hybrid Core-Shell 

(HyCoS) NPs composed of a Chitosan core and a shell of HA with improved 

relaxometric properties (up to 5-times than the commercial CA). Subsequently, the 

same nanosystem is used to develop a new nanoprobe for simultaneous Positron 
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Emission Tomography (PET)/MRI acquisitions as reported in our more recent 

publication 
102

. 

Based on the above reported works, it has been finally demonstrated that the polymer 

architecture affects some characteristic parameters of the metal chelate and tunes its 

relaxometric properties 
40, 43, 92, 103-105

. Moreover, it is clear that crosslinked biopolymers 

can have a significant role to overcome the limitations of clinically relevant CAs 

without their chemical modification and as a compound in the design of advanced 

nanostructures with improved safety profile and switchable relaxometric properties. 

Indeed, it is known that the functional properties as well as the swelling behaviour of 

hydrogels are influenced by the hydration degree, which can be likely modulated by 

changing the chemical composition of the system 
106-112

. 

Here, we aim to highlight the basic principles ruling biopolymer-CA interactions in the 

perspective of their influence on the relaxometric properties of the CA by adopting a 

multidisciplinary experimental approach. HA 
88

 is used as a model polymer because of 

its biocompatibility and high hydrophilicity. We characterize, physically and 

chemically, the interactions between hydrophilic biopolymers and Gd-based CAs. In 

this theoretical framework, the peculiar effect of Hydrodenticity on the polymer 

conformation and the formation of the stable water compartments responsible for the 

enhancement of the MRI signal is introduced and discussed.  

 

2. Experimental Section 

2.1 Materials 

All chemicals used are of analytical reagent grade quality and are employed as 

received. Divinyl sulfone (DVS, 118.15 Da), Diethylenetriaminepentaacetic acid 

gadolinium(III) dihydrogen salt hydrate (Gd-DTPA, 547.57 Da) and Sodium hydroxide 

pellets (NaOH).                                Sodium Hyaluronate, with an average molecular 

weight of 850 kDa (purity 99%; Hyasis® 850P) and 42 kDa, is respectively supplied 

by Novozymes Biopharma and Bohus Biotech (Sweden) as dry powder and used 

without purification.  
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Magnevist
® 

(Bracco Imaging, Italy), a contrast agent commercially available, is used in 

this study. The water is purified by distillation, deionization, and reserve osmosis 

(Milli-Q Plus) and systematically used for sample preparation, purification and 

analysis. All experiments are repeated in triplicate and conducted at room temperature, 

25°C. 

2.2 Isothermal Titration Calorimetry  

Titration experiments are performed by using a Nano ITC Low Volume calorimeter 

(TA Instruments). CA and polymer are prepared in double-distilled filtered water 

without any additives. The sample cell (700 µL) and the syringe (50 µL) are filled with 

aqueous solutions of HA and Gd-DTPA respectively. Syringe Gd-DTPA concentration 

is fixed at 1.5 mM, while different HA concentrations in the sample cell are tested, 

ranging from 0.3 to 0.7% w/v. The measurements are performed at 25 °C and at fixed 

stirring rate of 200 rpm. Fifty Injections, each of 1 μL of Gd-DTPA, are delivered in 

intervals of 500 s. The concentration of polymer is expressed as the mass of the repeat 

unit (unit mol/L).          Data analysis and processing to provide ITC and enthalpy 

change (ΔH) profiles is carried out using the NanoAnalyze (TA instruments) and the 

OriginPro software. 

2.3 NMR 
1
H NMR spectra are recorded at 25 °C with Varian Agilent NMR spectrometer 

operating at 600 MHz to observe chemical interactions between polymer and chelating 

agent (DTPA). The NMR samples consisted of water solution of HA-DTPA at 

different molar ratios (HA/DTPA ranging from 0 to 0.5), with 10% v/v D2O. 

Diffusion-ordered NMR Spectroscopy (DOSY) are also performed and the z-gradient 

strengths (Gz) is varied in 20 steps from 500 to 32500 G/cm (maximum strength). The 

gradient pulse duration (δ) and the diffusion delay (Δ) are kept costant, 2 ms for δ and 

ranging from 7 to 1000 ms for Δ. After Fourier transformation and baseline correction, 

DOSY spectra are processed and analysed using Varian software VNMRJ (Varian by 

Agilent Technologies, Italy) in order to obtain the values of water self-diffusion 

coefficient.  
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2.4 Differential Scanning Calorimetry 

For all measurements the HA/water solution (Mw = 42 kDa) is used. The aqueous 

solutions are prepared in a concentration range of polymer 0.3–0.7% w/v. Next, Gd-

DTPA is added as CA at different molar ratio HA/Gd-DTPA (from 1:0.25 to 1:3) and 

stirred for 12 h. The hydrated polymer samples, with and without CA, are sealed at 

room temperature in a Tzero hermetic pans prior to analysis. DSC measurements are 

performed in a TA Instruments’ Q20
TM

 calorimeter on samples between 5 and 10 mg. 

The samples are cooled down from 25°C to -50°C followed by heating scan up to 

25°C. The same heating and cooling rate are 10°C/min for all runs. Samples are tested 

in triplicate to ensure reproducibility. For DSC and ITC measurements, we used low 

molecular weight HA (42 kDa) to highlight better the energetic contributions of 

different components without exceeding the maximum scale of the instruments. 

2.5 Time-Domain Relaxometry  
The spin-lattice relaxation times (T1) are measured in a Bruker Minispec (mq 60) 

bench-top relaxometer operating at 60 MHz for protons (magnetic field strength: 1.41 

T). Measurements are taken at 37°C, and before NMR measurements, the tube is 

placed into the NMR probe for about 15 min for thermal equilibration. Experiments are 

made using water solutions of Gd-DTPA (from 0 to 0.1 mM) and HA (0.3, 0.5 and 

0.7% w/v) crosslinked with DVS (DVS/HA weight percentage ratio equal to 1:8). T1 

values are determined by both saturation (SR) and inversion recovery (IR) pulse 

sequences. The relaxation recovery curves are fitted using a multi-exponential model. 

Relaxivities, r1, are calculated from the slope of the regression line of 1/T1 [s
-1

] versus 

concentration [mM] with a least-squares method.  
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3. Results and Discussion 

3.1 Diffusive mixing time in Hydrodynamic Flow Focusing approach 

The polymer conformation can be modified by the affinity with the solvent solution 
113, 

114
. Furthermore, the addition of a solute can still induce a change in the polymer 

conformation. In our previous work, we proved that the  relaxivity of CAs can be 

modulated combining them with macromolecules or polymers 
98

. Therefore, the 

understanding of the interaction between polymers and CAs in aqueous solution could 

be critical to tune the relaxometric properties of CAs. We aim to show how the 

presence of the Gd-DTPA in the aqueous solution can influence the behaviour of the 

polymer matrix and, on the other side, how these adjustments of the polymer 

conformation can govern the characteristic correlation times of the Gd-DTPA 
41, 43, 98

. 

To investigate thermodynamic interactions between polymer and contrast agent, HA 

and Gd-DTPA respectively, are selected to be tested by Isothermal Titration 

Calorimetry (ITC). We aim to take advantage of the molecular interactions that are 

accompanied by some level of heat exchange between the interacting system and its 

surrounding medium; indeed, these interactions can be evaluated, at constant 

temperature, through the ITC. Basic principles of this technique have been widely 

discussed elsewhere 
115, 116

 

Titration experiments are conducted injecting a solution of Gd-DTPA in the ITC cell 

containing the polymer solution. Different HA concentrations, ranging from 0.3 to 

0.7% w/v, are tested and more representative results are reported in Figure 1 (peaks 

above the baseline represent exothermic phenomena while peaks below the baseline 

represent endothermic phenomena). It is clear that significant enthalpy variations are 

obtained in the titration experiments (Figure 1A-C) and can be associated with the 

water-mediated interaction between the Gd-chelate and the polymer, which induces 

changes in polymer chains’ conformation. Since Figure 1A-C show ITC thermograms 

varying the HA concentration in the sample cell, a wide range of Gd-DTPA/HA molar 

ratios is examined and the relative energetic contribution and enthalpy values are 

calculated by integrating peaks of the experimental curves and are reported in Figure 
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1D. Simple dilution of Gd-DTPA in water (Figure 1 bis) exhibits only small constant 

exothermic peaks over the whole experiment. 

In Figure 1, it is worth noting that the energetic contribution decreases as the Gd-

DTPA/HA molar ratio increases; thus, the higher is the concentration of HA in the 

sample cell, the higher is the Gd-DTPA concentration needed to observe endothermic 

peaks. It can also be observed that the endothermic contribution exceeds the 

exothermic one at the recurrent Gd-DTPA/HA ratio approximatively equal to 0.5 

through all the experiments at different HA concentrations in the sample cell. It means 

that a specific energetic contribution is needed to induce the adjustment of the polymer 

conformation. Then, when the Gd-DTPA/HA molar ratio equals 0.5, the endothermic 

peaks start slightly increasing until reaching a plateau, which corresponds to the 

thermodynamic equilibrium established within the ternary system (polymer-CA-water). 

The measured energetic variation reflects the conformational changes of polymer 

chains due to the presence of the CA in solution and leads to the formation of stable 

sub-domains in which a balanced exchange of water molecules occurs between the 

polymer, the CA and the bulk. 

The attainment of this thermodynamic equilibrium derives from a water-mediated 

interaction occurring between HA and Gd-DTPA. As both hydrophilic components, 

HA and Gd-DTPA interact with the water by forming hydrogen bonds and by 

coordinating water molecules. This competitive behaviour generates a measurable heat 

that reflects the change in polymer chains conformation and the exchange of bound 

water molecules with the bulk, thereby, bringing the system to a more stable 

configuration. In our previous paper 
43

, we preliminary showed how this equilibrium is 

able to affect the relaxometric properties of the system, as an effect of the new concept 

of Hydrodenticity, which will be further explained in the following paragraphs.  
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Figure 1. Titration curves of Gd-DTPA into aqueous polymer 

solutions at 25 °C. Calorimetric traces (heat flow against time) for 

(a) 0.3% w/v HA, (b) 0.5% w/v HA and (c) 0.7% w/v HA. In (d) it 

is reported the normalized enthalpy vs Gd-DTPA/HA molar ratio 

for Gd-DTPA in 0.3% w/v HA (red circles), in 0.5% w/v HA (blue 

triangles) and in 0.7% w/v HA (magenta diamonds). The curves 

were shifted vertically for clarity; y-offset were set at 2 (red 

circles), 0 (blue triangles) and -10 (magenta diamonds).  
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Figure 1 bis. Titration curve of Gd-DTPA solution injected into 

water at 25 °C. 
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3.2 NMR study of DTPA interactions and water mobility in polymer solution  

Since previous ITC measurements reported by Gouin et al. 
117

 have shown no binding 

energy between free Gd
3+

 ions and HA, we hypothesize that polymer conformational 

changes are mainly induced by the presence of the chelating macromolecule, DTPA. 

NMR spectroscopy is used to confirm this hypothesis. NMR spectra are calculated for 

HA and DTPA solutions. We use only the DTPA without the metal ion since we are 

mostly interested in examining interactions between the polymer and the chelating 

macromolecule. 

Considering the spectra of the only DTPA and HA (Figure 2A-B), whose characteristic 

peaks are circled in blue and red respectively, the observations of DTPA/HA solutions 

at different molar ratios are reported (Figure 2C-I). The molar ratio ranges from 2 to 

100 and is obtained by decreasing the HA concentration from 150 to 10 µM. 

In Figure 2, it can be observed that the characteristic DTPA peak at 3.50 ppm (s, 2 H, 

CH2–COOH) is influenced by the presence of HA in solution. In fact, it seems to shift 

and reduce its intensity far more than the other peaks by increasing the HA 

concentration. As an example, the shift is evident by comparing Figure 2I, where the 

DTPA peak is highlighted in blue, with Figure 2C, where the signal is dramatically 

reduced. 

It results that an interaction between the two components of the system exists and 

generates changes in the NMR spectrum of the solution. 

Through NMR-DOSY, instead, we investigate how the presence of both HA and Gd-

DTPA can affect the mobility of water molecules. 

Figure 3 shows the normalized time-dependent self-diffusion coefficient of water in 

both polymer solutions (Figure 3A) and polymer-CA solutions (Figure 3B). For short 

diffusion delays, the measured self-diffusion coefficient D is nearly equal to the free 

self-diffusion coefficient D0 of water at 25°C (2.5·10
-9

 m
2
/s), since the molecules travel 

over a short distance and only few of them feel the surrounding macromolecules. As 

the diffusion time increases, more water molecules go through these restrictions and 

the self-diffusion coefficient reaches a plateau value.  
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We can hypothesize that the presence of Gd-DTPA compete with those HA-molecular 

sites beared by water molecules and that are responsible for polymer hydration and 

hydrogel formation. As highlighted with ITC results, the polymer conformation can be 

modified by the presence of Gd-DTPA, which could interplay with the water 

molecules and with the formation of hydrogen bonding. NMR-DOSY measurements 

are carried out to assess these hypothesized changes in water mobility. It can be 

observed that, in the case of the ternary system, the diffusivity of water beyond 

decreases, suggesting that the polymer-CA combination affects the water mobility 

more than the polymer itself. 

Figure 3A clearly shows that the water diffusion behaviour is affected by the polymer 

concentration. In particular, the diffusion coefficient decreases at increasing polymer 

concentration. Besides, Figure 3B shows the additional contribution of the CA to the 

water mobility. In fact, the presence of Gd-DTPA, even at relatively low 

concentrations (5 - 30 µM), can further reduce the value of the water self-diffusion 

coefficient for both short and long diffusion times. 

It is worth noting that low Gd-DTPA concentrations are chosen (Figure 3B) because 

Gd-DTPA is highly paramagnetic and it can interfere with NMR measurements 
118, 119

, 

while the HA concentrations (0.1 - 3% w/v) are slightly higher than those used in the 

ITC experiments to highlight and make more evident the differences in diffusion 

behaviour between samples. In particular, as illustrated in Figure 3B, a fixed polymer 

concentration of 1% w/v is selected to show the effect of CA on the diffusion of water 

molecules. 

A data comparison between ITC and NMR spectra confirms the hypothesized 

fundamental properties behind the concept of Hydrodenticity: the ability of Gd-DTPA 

to induce changes in polymer conformation and in water mobility. 
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Figure 2. (a) 
1
H NMR spectrum and chemical structure of DTPA; 

(b) 
1
H NMR spectrum and chemical structure of DTPA; (c – i) 

1
H 

NMR spectra of DTPA/HA solutions at different molar ratios, 

from DTPA/HA = 2 to DTPA/HA = 100. Characteristic peaks of 

DTPA and HA are highlighted in blue and red respectively.  
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Figure 3. (a) Normalized time dependent water self-diffusion 

coefficient in 0.1% w/v HA (squares), 1% w/v HA (triangles), 2% 

w/v HA (flipped triangles), 3% w/v HA (diamonds). (b) 

Normalized time dependent water self-diffusion coefficient in 1% 

w/v HA (triangles), 5 μM Gd-DTPA in 1% w/v HA (flipped 

triangles) and 30 μM Gd-DTPA in 1% w/v HA (stars). 
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3.3 Water dynamics within hydrated polymer matrix containing Gd-DTPA   

To analyse further the role of water mobility in the Hydrodenticity, a study of the 

dynamics and behaviour of water molecules is needed. Within hydrated polymer 

matrices (hydrogels), containing metal chelates, water molecules mediate polymer-CA 

interactions and, therefore, play a dual role: on one hand, the amount of absorbed water 

120, 121
 and its interaction with the hydrogel structure affects the chain motion of the 

hydrophilic polymer; on the other, the mobility of water molecules in the polymer 

matrix is responsible for the relaxometric properties of the CA. 

We investigate the water dynamics in water-HA systems, with and without Gd-DTPA, 

using the Differential Scanning Calorimetry (DSC). We focus on the thermal effects 

that the polymer (Figure 4A) and the CA (Figure 4B) have on the water dynamics. 

According to the literature, indeed, the crystallization of water changes with the 

polymer concentration and with the hydration degree 
111

. 

In Figure 4, thermograms of water-polymer systems at different HA concentrations 

(0.3 - 0.7% w/v) are displayed. We can observe that, during the cooling phase, the 

crystallization peaks shift to lower temperatures and lower enthalpy values. As 

expected, the enthalpy, given as the peak area, reaches its maximum value at the 

highest HA concentration (0.7% w/v). 

Figure 4B shows a comparison of melting (Tm) and crystallization (Tc) temperatures 

between HA solutions with and without Gd-DTPA (concentration range: 60 - 200 µM). 

It can be noted that the transition properties remained unaffected in presence of the 

CA, suggesting that the influence of the polymer on the thermal behaviour of water is 

predominant with respect to the CA at the selected concentration. 
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Figure 4. (a) DSC thermograms of HA at different concentrations 

(0.3, 0.5 and 0.7% w/v). (b) Melting (Tm) and crystallization (Tc) 

temperatures for free Gd-DTPA in water and HA solutions with 

and without CA.  
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3.4 Relaxation times, rates and relaxivity of the polymer matrix  

The existence of a water-mediated interaction between Gd-DTPA and HA, observed 

through ITC, NMR and DSC, and the effect of the polymer conformation on the 

characteristic correlation time of the metal chelate could explain the boosting of the 

relaxivity in the studied systems. 

Relaxometric properties are investigated by means of time-domain relaxometry on two 

different systems: non-crosslinked and crosslinked polymer matrix (0.5% w/v HA) 

containing Gd-DTPA. 

In the latter case, rheological and chemical-physical properties of polysaccharide can 

be modulated by changing the crosslinker (DVS) concentration, as known as 

crosslinking density. In fact, thanks to the presence of hydrophilic groups in the 

skeleton of HA, hydrogel is able to uptake a large amount of water. Under these 

conditions, water is in an abnormal aggregate state that influences the relaxivity of 

hydrated Gd-DTPA. 

Figure 5 shows the results of relaxometric measurements for the hydrogel system 

(0.5% w/v HA) studied by loading different concentration of Gd-DTPA. The hydrogel 

system is analysed and compared to the free Gd-DTPA solution. In particular, we 

display the increment in percentage of the paramagnetic relaxation as a function of Gd-

DTPA concentration. The increment in percentage of the relaxation enhancement has 

been calculated as follows (Equation 1): 

   

  (1) 

We find that the stronger is the interaction between Gd-DTPA and HA, the better is the 

MRI enhancement. Moreover, the crosslinked system is much more efficient than the 

non-crosslinked one. Indeed, in the crosslinked system, since the enhancement reaches 

a plateau at Gd-DTPA/HA molar ratio equal to 2.5 (i.e. at 300 µM of Gd-DTPA in 

0.5% w/v HA water solution), it is not necessary to overload the system with Gd-

DTPA in order to achieve higher relaxation. It is worth noting that, for both studies, 

with and without crosslinker, the Gd-DTPA concentration of 200 μM seems to 
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represent a threshold for the maximum effect of the hydrogel on the Gd-DTPA 

relaxation mechanism. 

 

 

 

 

Figure 5. Increment in longitudinal relaxation rate, R1, at different 

contrast agent concentrations (from 0 to 1 mM) for: free Gd-DTPA 

in water (black squares); Gd-DTPA in 0.5% w/v HA solution (blue 

filled triangles); Gd-DTPA in 0.5% w/v HA crosslinked with DVS 

(blue empty triangles). The R1 increment is calculated in 

percentage with respect to the corresponding R1 of Gd-DTPA in 

water. A fast increment in R1 is observed until a Gd-DTPA 

concentration equal to 300 µM. For higher Gd-DTPA 

concentrations, the R1 increment reaches a plateau. 
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Figure 6. Formation mechanism affects hydrogel network 

structure: schematic representation of: formation of a hydrogel of 

hyaluronic acid in water (top); complex HA-Gd-DTPA structure 

(middle); crosslinked hydrogel network containing the contrast 

agent (bottom). 
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Figure 6 displays a schematic representation of the hydrogel network formation, even 

in presence of the crosslinking agent, and its influence on the polymer conformation. 

We hypothesize that the boosting of Gd-DTPA relaxivity in a hydrogel matrix is due to 

a proper complexation between the polymer and the CA in solution, mediated by the 

water and further amplified by the addition of a crosslinker. It is confirmed that the 

reached equilibrium among osmotic pressure and elastodynamic forces of the polymer 

meshes and hydration degree of the CA in the matrix are able to tune finely the 

relaxometric properties of the metal chelates in the ternary system. The overall 

ensemble of these phenomena is defined as Hydrodenticity  
43

. 

 

4. Theory of the gado-mesh formation  

This work reports the use of polymer hydrogels for boosting the relaxivity of clinical 

relevant CAs. 

Results show that a spontaneous complexation exists between HA and Gd-DTPA due 

to thermodynamic interactions as demonstrated by both calorimetric and NMR 

measurements. It is already known that, in an aqueaous polymer solution, solvent 

affinity can alter polymer conformation by inducing a local solvation of the structure 

that influences the number of available conformations of the polymer chains. 

Moreover, the introduction of another soluble ionic component, such as Gd-DTPA, in 

the system can induce further changes in polymer conformation, detectable via diverse 

thermodynamic approaches 
122-125

. Based on our findings, we prove for the first time 

that these conformational changes, induced by the metal chelate, contribute to an 

increase in CA’s relaxivity. 

In order to tune the MRI enhancement, we exploit the versatile structural 

characteristics of HA. In fact, the high porosity of the hydrogel, which shows a mesh-

like structure, is controlled by varying the density of covalent crosslinking 
126, 127

. 

Moreover, the presence of negatively charged groups and the degree of crosslinking   
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influence water adsorption capacity and, thus, the relaxometric properties of the ternary 

system 
106

. 

Therefore, the presence of the hydrogel matrix can greatly amplify the magnetic 

properties of the encapsulated Gd-DTPA, suggesting a strong outer-sphere and second-

sphere contribution to the relaxivity. 

Based on these observations, we hypothesyze that increased relaxivity is mainly related 

to the creation of water domains or clusters (water compartments) around the CA 

within the polymer matrix. In fact, biopolymer systems contain intermolecular cavities 

that can be considered as molecular nano-domains in which various self-assembly 

processes can be implemented in principle 
128

. The formation of peculiar structures 

within these cavities can be associated with thermodynamic transitions and it is a 

characteristic of many metallopolymeric systems 
129, 130

. 

The sub-nanostructures, here defined “Gado-meshes”, are generated from a three-way 

interaction between HA, Gd-DTPA and water. The entrapment of the CA inside the 

hydrophilic matrix of HA results in a reduction of the rotational tumbling rate, due to 

an increase of the effective viscosity of the aqueous solution into the hydrogel matrix.  

At the same time, multiple CA-water interaction pathways occur between the 

exchangeable protons of the water molecules coordinated by the CA and the other 

water molecules freely moving within the hydrogel mesh or bonded to the polymer 

chains 
93, 105, 131

. 

Our “Gado-mesh” consists of highly relaxing Gd-water compartments spontaneously 

generated within the hydrogel matrix by the combination of these multiple physico-

chemical interactions. The so created nanostructure is composed of different water 

layers departing from the polymer chains that surround the Gd-molecules. It is known, 

in fact, that hydrated polysaccharides, such as HA, are characterized by the presence of 

multiple water layers, contiguous regions of variable water density within a 

polyelectrolyte solution 
132

, differing in their physical properties depending on the 

distance from the polysaccharide chain 
133

. The hydration process of HA generates: the 

“bound water layer”, which is the water fractions closely associated with the polymer 

matrix; the “unbound water layer”, made by the water molecules which are not directly   
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interacting with the polymer; and the “free water layer”, which resembles dynamics of 

pure water. In addition, the developed polymer network can be dependent not only on 

the water layers organization but also on other solute species, such as Gd-DTPA, 

altering the bound water layer with non-negligible effect on the HA conformation and 

dynamic 
134

. In the “Gado-mesh”, Gd-DTPA has a competitive behaviour with the 

respect of HA, similar to the cation shielding of the HA due to the presence of salts 
135

, 

and interposes itself between the water molecules around the HA, altering the bound 

water layer and generating water compartments with high MRI enhancing properties. 

The “Gado-mesh” influences the τR, τD and τM times through the action of the 

Hydrodenticity, whose effect is magnified by the crosslinking. Hydrodenticity, hence, 

refers to the status of the hydrated Gd-DTPA with the coordination water subjected to 

osmotic pressure deriving from elastodynamics equilibrium of swollen gels 
43, 136-141

. 

We hypothesize that the attainment of this equilibrium is reached when the normal 

energetic stability of the meshes is compromised by the presence of the Gd-DTPA and 

evolves to a new spontaneous equilibrium involving the formation of 

nanocompartments, so called “Gado-Meshes”, in which water is in an abnormal 

aggregate state that influences the relaxivity. Water molecules in the hydrogel matrix 

that are subjected to the effect of Hydrodenticity, are able to change their water 

dynamics and can mediate the hydrogel conformation and the physical and 

relaxometric properties of the metal chelate. 

 

5. Conclusion 

The properties of Hydrodenticity and its application to the nanomedicine field is 

reported. The explanation of this concept take place through several key aspects 

underlying biopolymer-CA’s interactions mediated by the water. A multidisciplinary 

approach is used: changes in polymer conformation and thermodynamic interactions of 

CAs and polymers in aqueous solutions are detected by isothermal calorimetric (ITC) 

measurements and later, these interactions are investigated at molecular level using 

NMR to better understand the involved the phenomena. Water molecular dynamics of   
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these systems is also studied by means of Differential Scanning Calorimetry (DSC). In 

order to observe relaxometric properties variations, it is monitored the MRI 

enhancement of the examined structures over all the experiments. 

The study of polymer-CA solutions reveals that thermodynamic interactions between 

biopolymers and CAs could be used to improve MRI Gd-based CA efficiency.             

In conclusion, this work proves that a new generation of more efficient CAs can be 

developed by exploiting the affinity between CAs and biopolymers. It can be done 

using biocompatible and clinical relevant CAs without their chemical modification as 

approved in the clinical practice.   
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Hyaluronic Acid Nanoparticles: 
water-mediated nanostructures for 
enhanced MRI 
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1. Introduction 

Conventional drug preparations suffer from certain limitations like high dose and low 

availability, instability, and so on. As indicated in introduction section, an ideal 

nanocarrier for drug delivery applications should fit the following profile: 

biodegradable and biocompatible, able to recognize the target site, optimal biophysico-

chemical properties for drug loading, long circulation time, favorable therapeutic index 

and amenable to cost-effective scale-up for commercialization. The incorporation of 

these properties in one nanocarrier is the primary objective of nanomedicine
31

. 

In recent years, the scientific research has focused on biopolymers, biomolecules that 

are produced by living organisms (green plants, animals, bacteria and fungi)
142

. 

Characteristics such as biocompatibility, biodegradation and non-cytotoxicity make 

these material excellent candidates to be used in biomedical applications, in particular, 

to the development of therapeutic and diagnostic carriers.  

The main biopolymers used in biomedical field are collagen, chitin, chitosan (CS) and 

hyaluronic acid (HA)
143

. 

 HA, in particular,  has been extensively investigated in drug delivery applications, 

especially with the aim to treat cancer
88, 144

. As is well known, this is a biocompatible, 

biodegradable, non-toxic and non-inflammatory linear polysaccharide with high 

molecular weight made of repeating disaccharide units of D-glucuronic acid and N-

acetylglucosamine linked by β(1,4) and β(1,3)  glucosidic bonds
88, 145

. In physiological 

condition, it is widely distributed in extracellular matrix in the form of a sodium 

hyaluronate and shows negative charge
145

. In addition, due to its high capacity in 

retaining water, HA-based hydrogels are promising materials not only for tissue 

engineering but also nanomedicine
146

. Its short lifetime, however, necessitates 

chemical modifications and physical processing to improve its stability and maintain 

native biological functions
147, 148

. Physically crosslinked hydrogels have the advantages 

of  forming hydrogels without the addition of crosslinking agents, but they also have 

limitations in terms of pore size, chemical functionalization, and degradation time. 

Chemical crosslinking, instead, allows to realize a 3D-network with desirable   
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mechanical properties based on the nature of the chemical reagents and controllable 

degradation time
149

. An example of chemical crosslinking agent is represented by 

divinyl sulfone (DVS), which reacts with hydroxyl group on the backbone of HA to 

create intramolecular and intermolecular network
150-152

. 

Thus, chemically crosslinked networks have permanent junctions and these 

modifications can be introduced to provide a biomaterial with the desired functional 

properties
145

. In addition, the use of these biopolymers on nanoscale size allows further 

to optimize their properties depending on the specific application. In the end, in order 

to achieve the properties of interest, the mode of preparation plays a vital role and 

different techniques are currently available for HA-based micro- and nano- particles 

production. Among them, emulsification process has been greatly exploring
153

. Many 

products based on emulsions are widely used in pharmaceutical field as precursors to 

prepare carriers for diagnostic and drug delivery applications. Several scientific works 

report particles based on HA, prepared by water-in-oil (W/O) emulsion process, where 

the reaction take place within the aqueous droplets (containing HA) that are dispersed 

in a continuous organic phase with the aid of oil-soluble surfactants
154

.  

Yun and colleagues, for example, produce HA crosslinked microspheres (5–20 µm) for 

gene delivery application using a W/O microemulsion system as template, DVS as the 

crosslinker and an isooctane as continuous phase
155, 156

.  

Different hydrophilic HA NPs, instead, have been obtained using a diamine, 

2,2′(ethylenedioxy)bis(ethylamine), for cross-linking of the HA linear chains
157, 158

.  

In addition, also radical polymerization of HA (methacrylate groups are added to HA 

to obtain HA-glycidyl methacrylate conjugates) in an inverse emulsion of water in 

hexanes is made
159

. Then crosslinked HA particles (200–500 nm) are prepared  

dispersing the aqueous solution of thiolated HA in hexanes containing a surfactant 

mixture composed by different emulsifiers, such as Span 65, Span 80, and Tween 80. 

In this case, the resulting particles are loaded with siRNA and selectively endocytosed 

by cells expressing CD44 receptors on the surface. The release of siRNA in 

intracellular environment allow to silence the target genes
160

.  



- 57 - 
 

Further nanogels based on HA have been obtained by photochemical crosslinking of 

polymer confined in nanoemulsion
161

. HA chains, containing polymerizable 

methacrylate groups, are confined within W/O emulsion where the water droplets act 

as nanoreactors of the photopolymerization process mediated by UV.  Subsequently, 

intravenous docetaxel (DCT) delivery have been realized by Cho et al.
162

. In this case, 

HA conjugated with ceramide and Pluronic 85 (P85) give self-assembled nanoparticles 

(140 nm). In particular, P85 is added to provide stability to the micellar structure
163

, in 

fact, this copolymer is known for its low micellization and solubilization capacity to 

hydrophobic drugs. Thus, this type of delivery system depends on the copolymer 

type
162

. However, taking into account that the residues of oil and surfactant are 

prohibited for medical treatment and, often it is  difficult to completely remove these 

components from the final product, production processes without the use of oil and 

surfactant are performed by Fakhari and colleagues
164

.They synthesize crosslinked HA 

NPs via carbodiimide chemistry. In this case, EDC activates carboxyl groups available 

on HA and provides reactive intermediates (O-acylisourea derivatives) that react with 

two primary amines of adipic acid dihydrazide, forming a peptide bond resulting in the 

neighboring HA chains being chemically cross-linked.  

Then, two sequential additions of acetone are performed to break the strong hydrogen 

bonding between HA chains and HA-water molecules to release carboxyl groups for 

the cross-linking reaction is reached.  After the consumption of carboxyl groups by 

adipic acid dihydrazide, the cross-linked HA polymer chains become less soluble 

(hydrophilic) inducing transformation from coils to globules. 

As described in the Chapter I, several scientific works have been demonstrated that the 

polymer architecture affects some characteristic parameters of the metal chelate and 

tunes its relaxometric properties 
40, 43, 92, 103-105

. In fact, rational design of a new class of 

CAs, based on biopolymers (hydrogels), have received considerable attention in MRI 

diagnostic field and several strategies have been adopted to improve relaxivity without 

chemical modification of the commercial CAs.  

Moreover, it is clear that crosslinked biopolymers can have a significant role to 

overcome the limitations of clinically relevant CAs without their chemical   
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modification and as a compound in the design of advanced nanostructures with 

improved safety profile and switchable relaxometric properties. Indeed, it is known 

that the functional properties as well as the swelling behaviour of hydrogels are 

influenced by the hydration degree, which can be likely modulated by changing the 

chemical composition of the system 
106-112

. 

In this context, HA 
88

 is chosen and used as a model polymer because of its 

biocompatibility and high hydrophilicity and, the acquired knowledge about polymer-

CA interaction (see Chapter I) is applied to the concept of Hydrodenticity in order to 

obtain Gd-based polymer NPs with enhanced relaxometric properties. 

Here, it is reported a method based on single emulsion system (w/o) which has been 

developed to prepare HA-based NPs with a well-defined structure for MRI 

applications. The polymer chains are confined in the aqueous droplets of a water-in-oil 

nanoemulsion and crosslinked by chemical reactive (DVS) in the droplets as 

nanoreactors. The control of emulsion size distribution and stability are obtained by a 

careful choice of the emulsion composition and emulsification process. The conditions 

of the crosslinking reaction are modulated by changing the concentration, time of 

reaction and modality of addition of the DVS. The properties of the resulting NPs are 

analyzed using a combination of chemical-physical technique.  
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2. Experimental Section 

2.1 Materials 

All chemicals used are of analytical reagent grade quality and are employed as 

received. Sorbitan monooleate (Span
® 

80) (S80), Polyoxyethylenesorbitan trioleate 

(Tween
® 

85) (T85), Mineral oil (light oil, 0.8 gr/cm at 25°C), Divinyl sulfone (DVS, 

118.15 Da), Diethylenetriaminepentaacetic acid gadolinium(III) dihydrogen salt 

hydrate (Gd-DTPA, 547.57 Da), Sodium hydroxide pellets (NaOH), Acetone and 

Ethanol are purchased from Sigma Aldrich Chemical (Italy). Sodium Hyaluronate, 

with an average molecular weight of 850 kDa (purity 99%; Hyasis® 850P) and 42 

kDa, is respectively supplied by Novozymes Biopharma and Bohus Biotech (Sweden) 

as dry powder and used without purification. 

Magnevist
® 

(Bracco Imaging, Italy), a contrast agent commercially available, is used in 

this study. The water is purified by distillation, deionization, and reserve osmosis 

(Milli-Q Plus) and systematically used for sample preparation, purification and 

analysis. All experiments are repeated in triplicate and conducted at room temperature, 

25°C. 

 

2.2 Emulsion preparation 

The emulsions are prepared at different water to oil (W/O) ratio (10/90 and 20/80 v/v). 

Mineral oil is used as oil phase (or continuous phase, PC) and W/O emulsions are made 

by varying the concentration of surfactants for the PC and water phase (or dispersed 

phase, PD) and the concentration of NaOH (from 0 to 0.2 M) for the PD in order to 

obtain emulsion systems. In particular, a pair of non-ionic surfactants, Span-80 (S80) 

and Tween-85 (T85), are used to prepare mixtures with a range from 4.3 to 7.65 of 

HLB values. Depending on the initial HLB to be used, mixtures of S80 and T85 are 

pre-dissolved in the appropriate S80/T85 mass ratios (from 50/50 to 75/25) in PC and 

PD, respectively. PD containing T85 and NaOH, is added dropwise to PC and W/O 

emulsions are prepared using a high-shear homogenizer (Silverson L5M-A, Silverson   
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Machines Ltd, Waterside, UK). Homogenization of the Emulsion is performed from 

5000 to 7000 rpm for 10 min at room temperature (25°C). 

2.3 Temporal emulsion stability determination  

The stability of emulsions is evaluated, at regular time intervals, by visual observation, 

measuring the height of the phase separated by creaming in centrimeters as a function 

of the time. In addition, an optical characterization of emulsion stability made is using 

a Turbiscan (Turbiscan LabThermo) by static multiple light scattering (MLS), sending 

a light beam from an electroluminescent diode (λ=880 nm) through a cylindrical glass 

cell containing the sample. The emulsion sample without dilution is placed in a 

cylindrical glass cell and two synchronous optical sensors receive the light transmitted 

through the sample (180° from the incident light) and the light backscattered by the 

droplets in the sample (45° from the incident light). The optical reading head scans the 

height of the sample in the cell (about 40 mm), by acquiring transmission and 

backscattering data every 40 μm. Transmitted and backscattered light are monitored as 

a function of time and cell height for a period of 24 hours at an interval of 30 min at 

25°C. 

2.4 Preparation of DVS-crosslinked nanoparticles  

Based on these preliminary results, PD/PC ratio in all samples is set at 10/90 v/v. In 

particular, for the preparation of cross-linked NPs, HA powder (Mw = 850 kDa) is 

dissolved at different concentrations (from 0.1 to 0.5% w/v) under alkalyn condition 

(NaOH ranging from 0 to 0.2 M) by vigorous stirring at room temperature for 4 hours 

until a homogenous solution is obtained. Mineral oil and S80 (from 0.5 to 2% w/v) are 

separately mixed by stirring. PD is added drop-wise in the PC without stirring and all 

the components are completely mixed by homogenization at various times (5-15 

minutes) and speeds (5000 - 7000 rpm). Then, the cross-linking agent (DVS) is added 

to the final emulsion (40 ml), which is kept in agitation on a laboratory tube rotator for 

24 hours in order to obtain a homogeneous DVS distribution in the PD. To test DVS 

activity, various conditions of crosslinking reaction are explored: (1) at different DVS 

concentrations (from 0.01 to 0.5% v/v); (2) at three starting times of reaction   
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(beginning, during and post homogenization) and (3) at different temperatures (4 and 

25°C). 

The best experimental conditions for production of crosslinked HA-NPs are reported in 

Table 1. 

 

 

 

 

 

. 

Pd / Pc 
a)
 HA 

b)
 

[% w/v] 
NaOH 

[M] 
DVS

 c)
 

[% v/v] 
Span-80 
[% w/v] 

10 / 90 

0.1 
0 

0.1 
0.2 

0.045 1 0.25 
0 

0.1 
0.2 

0.5 
0 

0.1 
0.2 

a)
 Pd is the volume of the disperse phase, Pc is the volume of the continuous 

phase; 
b)

 Hyaluronic Acid;
 c)

 Divinyl Sulfone 

 

 

Table 1. Experimental conditions for production of HA-NPs  
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2.5 Loading of HA NPS with Contrast agents   

After identifying the protocol to obtain NPs, Gd-DTPA is chosen as CA and mixed in 

the PD before homogenization. Gd-loaded HA NPs (HA-Gd NPs) are prepared using 

different HA/CA mass ratios (1:1, 1:2 and 1:5). DVS are added post homogenization to 

the batch at room temperature using the same procedure reported above. 

2.6 Collection of the nanoparticles    

Recovery of the NPs and their separation from W/O emulsion system is made using 

dialysis and/or ultracentrifugation. For dialysis method, the obtained emulsion is 

placed in a pre-washed cellulose membrane tubing (Spectra/Por
®
 Dialysis Tubing, cut-

off of 25 kDa). Organic impurities (Mineral oil and S80) are removed dialyzing first 

against solvents as acetone and/or ethanol, and gradually against water. Dialyzing 

solutions are changed at regular time intervals. In the case of ultracentrifugation, 1 ml 

of the emulsion is added to 5 ml of ethanol and mixed for 2 hours. Then, this mix is 

centrifuged with an ultracentrifuge (Beckman-Coulter OPTIMA MAX-XP) at 55000 

rpm for 20 min at 15°C. The resulting pellet is washed twice and resuspended in 

MilliQ water. The second step of ultracentrifugation (70000 rpm, 10 min, 15°C) is 

applied to the pellet in order to obtain purified NPs. 

2.7 Characterization of the nanoparticles     

The chemical modifications of polymer by DVS are identified by infrared spectroscopy 

(Thermo). The characteristic peaks for DVS are: 1310 cm-1 (S=O asymmetric 

stretching vibrations), 1130 cm-1 (S=O symmetric stretching vibrations) and 794 cm-1 

(S−C stretching vibrations) and through the ether bond at 1255 cm-1 (C−O−C 

stretching vibrations). 

To determine size distribution of NPs, dynamic light scattering (DLS) are performed 

using a Zetasizer S-90 1000 HS (Malvern Instruments, UK). 

All samples are diluted (1:10) with deionized water to prevent the effects of multiple 

scattering. The measurement temperature is set at 25°C. The morphology and size of 

NPs are investigated using a ULTRA PLUS field emission Scanning Electron 

microscope (FE-SEM Carl Zeiss, Oberkochen, Germany) and a Transmission Electron   
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microscopy (TEM, TECNAI). In the first case, the samples are coated with gold (7 

nm).                            

2.8 Determination of Gadolinium loading by ICP-MS      

The quantitative determination of loaded Gd in HA NPs is assessed by ICP-MS 

(NexION 350, Perkin Elmer) without any previous digestion processes. For all 

examinations, purified NP suspensions are used. The non-encapsulated Gd-complexes 

are separated from the NPs by high speed centrifugation (55000 rpm, 20 min, 15 °C). 

2.9  MRI Testing      

To explore the potential of Gd-loaded HA NPs as MRI contrast agent, MRI in vitro test 

is performed at two different magnetic fields, 1.5 T and 3 T MR (Philips Achieva) 

using Sense Head 8 coil. The T1-weighted MR images of HA NPs, unloaded and 

loaded with Gd-DTPA at different concentrations using an inversion recovery 

sequence are measured with the following parameters: TR = 2500 ms; TE = 12 ms; TI 

= 50, 100, 200, 400, 800, 1100, 1800 ms; FOV= 180x146 mm; slice thickness = 4 mm, 

acquisition matrix = 360x292. 

The signal intensity of the samples is measured on the obtained T1-weighted MR 

images and compared to Gd-DTPA. 

2.10 NMR dispersion measurements       

The proton 1/T1 NMRD profiles are measured using a fast-field-cycling Stelar 

SmarTracer relaxometer over a continuum of magnetic field strengths from 0.00024 to 

0.25 T (which correspond to 0.01 - 10 MHz proton Larmor frequencies). The 

uncertainty of these measurements is less than 1%. Additional data points in the range 

15 - 70 MHz are obtained using a Stelar Relaxometer and a Bruker WP80 NMR 

electromagnet adapted to variable-field measurements (15 - 80 MHz proton Larmor 

frequency). 

 

2.11 In vivo tests and cytoxicity evaluation of HA-based Nanoparticles 

After excluding the toxicity in vitro, animal experiments are carried out and, a total of 

9 mice (body weight about 20 g, C57 - Balb/c mice model) are used. Unloaded and   
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loaded HA NPs are prepared using physiological saline solution and Magnevist
®
 is 

used as control. In each solution, the final Gd concentration is the same.                      

The NPs formulations (final volume: 200 µl) are injected into the tail veins of mice. 

All studies are performed with mice under general anesthesia, obtained with an 

intraperitoneal injection of tribromoethanol solution at a final concentration of 12.5 

mg/mL and administered at a dose of about 250 mg/kg. Once anesthetized, mice were 

prepared for venous cannulation by bathing the whole tail in tap water warmed at 39 

°C to obtain proper vasodilation. A lab-made catheter, consisting of a 30 G needle 

mounted on a polyethylene tube, is delicately advanced in one of the lateral caudal 

veins, until blood could be seen in the tube. Hence, two-three drops of surgical glue 

were spilled on the needle /tail interface area and let dry. The tube is flushed with 20 

µL of a heparinized solution and the tip of the tube is closed to avoid further bleeding. 

The mice are then positioned on magnetic compatible bedding within a head coil and 

the baseline acquisition was performed. Then, 200 µL of the CA solution are slowly 

injected, following any eventual reaction of the mouse or any change in the respiratory 

pattern. Acquisition are performed every 10 minutes till one hour post injection, and 

then after 3, 6, 8 and 24 hr.         

Images are taken using the PET/MRI 3T Siemens instrumentation applying an 

Inversion Recovery (IR) sequence (VOF= 100x75 mm; slice thickness=1.2 mm without 

GAP, contiguous slice, acquisition matrix=192x144; Averages: 6; Turbo spin-echo; 

Sequence duration: 10 minutes -36 seconds; Signal to Noise Ratio: 1; Spatial 

Resolution: 0.5 x 0.5; TR: 550; TE: 11). A basal acquisition has been conducted for all 

subjects before the injection protocol. The DICOM files of each acquisition were 

stored on an external unit. The files were imported in dedicated software for imaging 

analysis (OsiriX© Lite, Pixmeo SARL, Bernex, Switzerland). A circular region of 

interest (ROI) of about 2 mm
2
 is drawn and then saved, to be used in the analysis of all 

images. The anatomic areas studied are: renal cortices and medullas, the urinary 

bladder, the salivary glands. The mean intensity obtained for each organ (IO) is 

normalized to the mean muscle intensity (IM) applying the formula: IOnorm = IO/IM, 
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and the result was used to calculate the percentage of contrast enhancement (% CE) 

according to Corbin et al.
190

 % CE = (Ipost – Ipre) / Ipre * 100.  

After the MRI scans, in order to analyze the quantitative distribution of the HA NPs in 

vivo, the mice are sacrificed at different time points (2 hr, 4 hr, 24 hr, 48 hr and 40 

days) after injection. The blood, heart, spleen, lungs and liver are collected and 

immediately washed twice with physiological saline solution. Experiments have been 

repeated in triplicate. Quantitative analysis has been made by digesting and 

homogenizing the organ with nitric acid at 100°C for at least 3 hr. Later, NPS are 

resuspended in a solution of deionized (DI) water at a concentration of 150,000 

particles/mL. All data are collected and processed using the Syngistix Nano 

Application Module.  

 

3. Results and Discussion 

3.1 Case study: production of polymer particles based on Hydrodenticity  

Recent recommendations from Food and Drug Administration (FDA) and European 

Medicine Agency (EMA) about the Gd deposition in the brain and other tissues have 

highlighted the importance to design polymer biocompatible NPs with enhanced 

relaxivity without chemical modification of the clinical relevant CAs 
28, 165

. Thus, 

crosslinked NPs formed by HA, a biodegradable, biocompatible, non-toxic, non-

immunogenic and non-inflammatory linear polysaccharide 
166

, could represent a 

successful candidate among nanovectors for MRI applications 
38

. Indeed, in the last 

decades, it is undisputed the growing research interest toward the therapeutic action of 

HA and in developing new diagnostic tools based on this polymer 
38

. In this work, 

starting from the above-presented results, we aim to apply the Hydrodencity in the 

design of biocompatible hydrogel nanostructures to obtain improved relaxometric 

properties. We propose a concrete example of the concept of Hydrodenticity applied to 

the production of crosslinked HA NPs for MRI, loaded with Gd-DTPA. An emulsion-

based method is used to obtain stable W/O nanoemulsions as templates.  
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3.2 Study of emulsion stability 

Stable W/O emulsions are prepared by stirring appropriate amounts of oil phase 

(Mineral oil) and aqueous phase containing different concentrations of Span-80 (S80) 

or S80 with Tween-85 (S80/T85). The pH, ranging from 12 to 14 is adjusted by adding 

appropriate amounts of NaOH from a stock solution (0.2 M). Further details are 

reported in the Materials and Method Section. As expected, in the absence of any 

surfactant, W/O emulsions prepared in the same conditions split very rapidly in two 

phases due to their unfavourable thermo-dynamic state. Visual comparison, 

turbidimetry and backscattering are successfully used to study emulsion stability 

(Figure 7 and 8) 
167

.  

 

 

 

 

Figure 7. Photografic image of the appearance of 

emulsions at 25 °C by the effect of increasing 

concentration of surfactants and NaOH [(a) 0 M; (b) 0.1 M; 

(c) 0.2 M] on stability of W/O (10/90 and 20/80) emulsion 

after 12 h. 
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 Figure 8. Trasmission and backscattering spectra of W/O 

(10/90) emulsion (total volume, 20 ml; 5000 rpm, 10 min) 

with 1% w/v of S80 without (a) and with (b) 0.2 M NaOH.  
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Comparing emulsions obtained at different W/O ratio, 10:90 and 20:80, but at same 

concentration of surfactant, the stability is more extended for emulsions with lower 

water content. In particular, a formulation 10/90 W/O volume ratio containing S80 (1% 

w/v) and T85 (0.5 % w/v) resulted the more stable. However, even though the stability 

of the emulsion is crucial to reduce polydispersity, an alkaline environment (addition 

of NaOH) is necessary for the crosslinking reaction to take place. Indeed, Balazs and 

Leshchiner 
168

 showed that the crosslinking reaction starts shortly after addition of 

DVS (5 - 10 min) and, that, 1 hour is sufficient for the completion of the reaction.
169, 170

 

On the basis of these requirements, to conduct the experimental campaign, we select 

the formulation with S80 (1% w/v) and NaOH (0.2 M) as the optimal trade-off to 

obtain an emulsion stable for at least 3 hours (Figure 7 and 8), enough for the DVS to 

react. 

3.3 Preparation of DVS-crosslinked nanoparticles with and without CA  

The exploitation of the best process conditions to design biocompatible nanostructures 

based on Hydrodenticity and control their relaxation parameters for MRI application is 

reported. In particular, the effect of the homogenization, HA concentration and the role 

of the crosslinking reaction is analysed. Different experimental parameters and 

conditions are tested and details are reported in the Materials and Methods section. A 

preliminary mixing is performed at 5000 or 7000 rpm for 10 min, by keeping constant 

the temperature at 25 °C. A 5000 rpm speed is preferred to avoid and uncontrolled 

increasing of the temperature. 

After the homogenization, a crosslinking reaction is performed at high pH values (12 - 

14) and creates sulfonyl bis-ethyl linkages between the hydroxyl groups of HA 
171

. 

This crosslinking method has the advantage of occurring at room temperature, which 

limits the degradation of HA in alkaline solutions. Even though the starting material 

DVS is highly reactive and toxic, the biocompatibility of the HA-DVS hydrogels are 

confirmed by histological analysis 
172

. 

In our protocol, a study of the modalities of injection of the crosslinking agent at 

different steps of the homogenization process has shown that only when DVS is added 

after the homogenization step spherical NPs are obtained. On the contrary, when the   
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addition of the crosslinker is performed at any time point during the homogenization 

phase, a shear stress behavior of the polymer phase, interfering with the formation of 

that particles, is observed (Figure 9). 

 

 

 

 

Figure 9. Optimization of HA NPs synthesis. SEM images of 

crosslinked nanoparticles (0.5% w/v HA; 18 µL (0.045% v/v) 

of DVS; 40 mL of W/O (10/90) emulsion; 5000 rpm, 10 min, 

RT, using high-shear homogenizer) under various conditions: 

HA’s concentration, (a) 0,5% w/v; (b) 0,25% w/v and (c) 

0,1% w/v. Start of reaction, (d) during, (e) end and (f) after 

homogenization. DVS’s concentration: (g) 18 µL and (h) 

200 µL (0.5% v/v). 
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The best experimental condition for production of crosslinked NPs is reached at 

0.045% v/v DVS (Table 1). 

Based on these results and using the same process conditions, loaded NPs are obtained 

by adding the CA in the water phase of the emulsion. Among several FDA approved 

CAs, we have chosen to encapsulate a Gd chelated, Gd-DTPA (9.13 mM). 

3.4 Purification and characterization of HA-NPs  

Ultracentrifugation (UC) and dialysis are performed to purify HA NPs. Dynamic Light 

Scattering (DLS) measurements are made on aqueous dilute NP suspension (1:10). The 

smaller NPs’ size without CA (217.57 ± 34.65 nm) is obtained at 0.25% w/v of HA 

solution. At higher polymer concentration (0.5% w/v) particle size is higher (401.67± 

77,65 nm), while the formulation with 0.1% w/v HA shows a reverse phenomenon 

with larger particles (760.15 ± 86 nm), probably due to less stability of the nuclei that 

tend to coalesce. When Gd-DTPA is added to the process, the particle size at HA 

0.25% w/v is slightly increased (258.77 ± 15.65 nm) for the same process conditions. 

After purification, NPs are investigated by electron microscopy techniques (SEM and 

TEM). The morphology of the NPs observed revealed that the particles are spherical in 

shape and monodisperse (Figure 10). 

In addition, to confirm that the crosslinking reaction is successfully completed, IR 

analysis are performed. The chemical modifications of HA are identified in IR spectra 

of the HA NPs by the presence of characteristic peaks for DVS that appear between 

1384 and 1280 cm-1, which are attributed to the sulfone group (vSO2=1350, 1310 cm-

1). 

Loading Capability (LC) and Encapsulation Efficiency (EE) is determined through 

ICP-MS by comparing the theoretical amount initially used to prepare the particles and 

the Gd encapsulated in the system after ultracentrifugation. The higher encapsulation 

results for 0.25 % w/v HA (1:2 w/w HA/Gd-DTPA ratio). Results show that probably 

ionic nature of Gd-DTPA impacts on its encapsulation. The zeta potential value of the 

0.25% HA-NPs, with and without CA, indicate that they had a negatively charged 

surface (-37.4 ± 1.34 mV and -31.8 ± 0.88 mV, respectively), due to the carboxylic 

group of HA.  
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Figure 10. SEM images of crosslinked HA nanoparticles 

(0.5% w/v of HA; 1% w/v of S80; 0.045% v/v of DVS) 

without (a) and with (b) contrast agent. 
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3.5 Relaxivity studies  

T1 and T2 measurements at 60 MHz (1.5 Tesla) and 120 MHz (3 Tesla): Relaxivity 

and relaxation times are measured for both unloaded and loaded NPs and compared 

with free Gd-DTPA solution. Measurements are performed on a 120 MHz (3 Tesla) 

MRI system and on a 60 MHz (1.5 T) benchtop relaxometer. 

Relaxivity results obtained at 120 MHz are presented on a per millimolar Gd basis in 

Figure 11a and show a maximum r1 of 33.3 s-1mM-1 (i.e. 10 times higher compared to 

free Gd-DTPA). Even though all the proposed formulations of Gd-DTPA-loaded HA 

nanostructures show an increase of the r1 signal, as reported in Figure 11a, the highest 

boosting of the relaxivity is provided by the NPs obtained using the formulation at 

0.25% HA and 1:2 w/w HA/Gd-DTPA (Figure 11 A-C). 

T1 relaxation time distributions at 37°C and 60 MHz are investigated for loaded and 

unloaded NPs (HA at 0.25% w/v) as well as for free Gd-DTPA solution (Figure 11 D). 

Compared to the 200 µM free Gd-DTPA solution, which shows a broad distribution 

around 1000 ms, NPs loaded with 200 µM Gd-DTPA exhibit an excellent T1 

distribution with a sharp peak centered below 500 ms. Gd concentration within loaded 

NPs was determined through Inductively Coupled Plasma Mass Spectrometry (ICP-

MS). 

Loaded NPs perform far better even compared to the unloaded ones, whose distribution 

appears to be broad and centered around 2800 ms. 

It is worth mentioning that, compared to T1 distribution for bulk water (3600 ms), 

unloaded NPs’ distribution shows that a slight contribution to the longitudinal 

relaxivity is ascribable to the crosslinked polymer nanostructure, which is able by itself 

to tune the water mobility for a non-nanostructured material. The contribution, 

therefore, to the overall relaxivity is further enhanced in the ternary system, thanks to 

the water-mediated interaction between the polymer and metal chelate.  
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Figure 11. (a) Relaxivity values r1 determined at magnetic field 

strengths of 3T for different set of HA-NPs with respect to free 

Gd-DTPA in water. (b) Longitudinal relaxation rate (1/T1) versus 

Gd-DTPA concentration for free Gd-DTPA in water and for HA-

NPs at different polymer concentrations loaded with Gd-DTPA. (c) 

T1-weighted images of Gd-DTPA, unloaded (used as control) and 

HA-NPs at different polymer concentrations loaded with Gd-

DTPA. All samples are imaged at 3T, 25°C, using standard spin 

echo (SE) sequence. (d) Distribution of longitudinal relaxation 

times of (T1) of 200 μM Gd-DTPA in water (squares), unloaded 

0.25% HA-NPs (circles) and 0.25% HA-NPs loaded with 200 μM 

Gd-DTPA (triangles). 
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3.6 Modeling of NMR dispersion: NMRD profile   

The NMRD profiles as function of the static magnetic field of the aqueous solutions of 

Gd-DTPA and loaded and unloaded NPs (Figure 12) are set up in order to establish the 

effects caused by Hydrodenticity functionalities on the parameters that determine the 

observed relaxivities. The longitudinal relaxation rates are recorded at 37°C as a 

function of resonance frequency and according to NP Gd-loading obtained by ICP-MS. 

The NMRD experimental curve for free Gd-DTPA shows a plateau in longitudinal 

relaxivity at low fields and significantly decreases as the applied magnetic field 

increases starting from 1 MHz. Conversely, longitudinal relaxivity (r1) for loaded NPs 

(HA at 0.25% w/v) is characterized by the presence of a low-field plateau and a 

gradual increase starting from 10 MHz, reaching a “dispersion peak” between 60 and 

70 MHz. The same peak and trend in the high field region (20 – 70 MHz) is observed 

for both at 25°C and 37°C. As a control, unloaded NPs do not exhibit increase in 

relaxivity in this field region, confirming that the nanohydrogel structure containing 

Gd-DTPA contributes to slowing the chelator's tumbling motion and allows water 

exchange thanks to its hydrophilic properties, as hypothesized in the concept of 

Hydrodenticity. 
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Figure 12. NMRD profiles showing relaxivity of Gd-DTPA in 

water (squares), unloaded 0.25% HA-NPs (circles), Gd-loaded 

0.25% HA-NPs at 25°C (triangles) and 37°C (flipped triangles).   
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3.7 In vivo analysis and cytotoxicity evaluation of HA NPs 

In vivo MRI analysis has been conducted on 3T MRI instrumentation for all subjects 

before the injection protocol as reported in the experimental section.                          

Figure 13 and 14 show the coronal view MRI images of a mouse (C57 - Balb/c murine 

model) injected with CA (Gd-DTPA, 800 µM) and loaded HA NPs (99 µM) 

respectively.                                     

It is no observed adverse effects during the experiments and, considering the renal 

excretion of the CA, the kidney appear lighter than other tissues. In particular, the 

bladder becomes lighter after 6 min from injection and remains high to 1 h. After this 

time, the signal strength of the whole mice body tends to the normality.                                      

In the case of loaded HA NPs injection, the signal intensity in the kidney immediately 

increases. The enhanced signal intensity is detectable after 3 min and remains visible 

to 1 h after intravenous injection.                              

It is also important to notice that MRI signal in the kidneys,  in the case of loaded HA 

NPs compared to the free CA, has the higher persistence (Figure 15).                  

The accumulation of the metal within the organs is measured by ICP-MS, after 

homogenization and digestion as reported in the Experimental Section of this chapter. 

Further evaluations are under investigation. These preliminary in vivo tests show there 

is an enhancement of the MRI signal and confirm the stability of HA NPs.  
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Figure 13. In vivo coronal view MRI images of a mouse after 

intravenous injection of  Gd-DTPA (800 µM). Qualitative 

Image Analysis for bladder at different time intervals: A) 

before injection of Gd-DTPA; B) after 6 minutes and C) after 

30 minutes from injection of Gd-DTPA. 
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Figure 14. In vivo coronal view MRI images of a mouse after 

intravenous injection of  loaded HA NPs  (99 µM). Qualitative 

Image Analysis for bladder at different time intervals: A) 

before injection of loaded HA NPs; B) after 6 minutes and C) 

after 60 minutes from injection of loaded HA NPs.  
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Figure 15. Biodistribution for kidney and bladder of  CA and 

loaded HA NPs at different concentration after 1 h form 

injection.  
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4. Conclusion 

The optimal conditions to combine a CA with a hydrophilic biopolymer are identified 

and applied to the nanoscale in order to produce nanostructures of biomedical interest 

with high relaxivity. In particular, stable crosslinked HA NPs encapsulating Gd-DTPA 

are successfully prepared using a method that exploits the use of W/O nanoemulsions 

as templates. The aqueous emulsion droplets are shown to provide a good environment 

for the formation of the NPs and seemed to limit efficiently their size. NPs collected 

from the emulsion droplets using a purification procedure showed a size of about 200 

nm and spherical shape. The conditions of the herein presented protocol to produce 

these biocompatible NPs offer advantages for the encapsulation of a broad-spectrum of 

biomolecules and provide a potential synthetic route to design a wide range of highly 

efficient nanostructured MRI CAs, letting the surface available for possible 

functionalization. In conclusion, this work proves that a new generation of more 

efficient CAs can be developed. It can be done using biocompatible and clinical 

relevant CAs without their chemical modification as approved in the clinical practice. 

Furthermore, the size of the resulting NPs is in a range that makes them suitable for 

delivery to cells and certain tissues and further increase in relaxivity can be potentially 

achieved by tuning the system to the most efficient structure by choosing the correct 

biopolymer-CA combination and optimizing concentration and crosslinking degree of 

the structure. From a biomedical point of view, the possibility to tune relaxometric 

properties of CAs by controlling hydrogel structural parameters can pave the way to 

new advancements in the design of nanovectors for diagnosis and therapy. In addition, 

preliminary studies about toxicity, in vivo biodistribution and MRI acquisition 

highlight the powerful effect of the produced nanostructures for application in clinical 

imaging. 

Despite the promising achievements, further studies are needed to carry out a deeper 

investigation and a full validation our intriguing hypothesis.  



- 81 - 
 

 

 

 

 

 

 

 

 

 
CHAPTER III  

Functionalized HA NPs: the case 

study of a B-cell lymphoma. 
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1.  Introduction 

 

Cancer is the most common cause of death in industrialized countries
173

 and, in certain 

cases, the patient remains asymptotic. Actually, the choice of the right therapeutic 

approach is subject to an accurate and reliable diagnosis in order to identify the 

primary site of tumour and potential dissemination of the disease to distant sites in the 

body
174

. In this context, diagnostic radiology and nuclear medicine studies play 

important roles in clinical management of cancer
175

. 

In particular, in the case of lymphoma neoplasms, which expression is variable, the 

diagnose from imaging is difficult
176

. 

In particular, lymphomas are lymphoproliferative diseases composed by malignant B 

and T cells, which arise predominantly in the lymphoid tissues during the course of 

normal development
177

. The most common form of lymphomas, Non-Hodgkin 

Lymphomas (NHLs), can originate from T cells, or more frequently, very distinct 

malignancies like classical Hodgkin lymphoma (cHL) and multiple myeloma (MM) 

arise from B lymphocytes with various stages of differentiation. Therefore, the early 

detection of this pathology affects the therapy of patients
178

.        

The pivotal role of techniques such as CT and MRI are undoubtedly first-line 

modalities to be employed in patients affected by cancer. However, they rely on 

anatomical landmarks (i.e. morphological alterations due to the tumour) to identify 

tumour involvement and this leaves the clinicians with a grey area of cases that require 

further investigations (i.e. PET imaging)
179

.  

Conventional imaging with CT
5
, in the case of lymphoma, shows the technical limits 

of CT are: (1) limited accuracy at inizial staging for assessing lymphoma in small 

nodes (< to 1.5 cm), bone marrow, or various extranodal sites; (2) inability to 

differentiate active disease within a residual mass; and (3) limited ability to assess 

early response to treatment although more aggresive, but also potentially more toxic 

treatment
5, 180

. As a result of these limitations, several  lesions seen on PET images may 

not be visible on CT examinations and, overall, PET examinations are more sensitive 

in these  evaluation. In fact, unlike CT, which shows anatomic details, 
18

F-FDG PET 
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can play a significant role in the staging of patients with lymphoma 
181

. In fact, high-

grade tumours demonstrate greater metabolic activity (and greater 
18

F-FDG 

accumulation) than low grade tumours. Unfortunately, variable aggressiveness and 

makes it difficult to diagnose them from imaging. In addition, the future goal of 

imaging consists of optimal staging method for non-invasively lymphoma detection. 

In this scenario, MRI is recently emerged for monitoring of pathological progression 

and evaluation efficacy of treatments
3, 4, 182, 183

. MRI’s susceptibility to artifacts of 

motion and organ pulsation means that it has certain limitations for the detection, for 

example, of lymph node metastases, particularly in the thorax and diaphragm region, 

leading to reduced diagnostic accuracy (79% to 82%). In addition, the lack of 

metabolic information in borderline large lesions ≤ 1 cm in diameter constitutes a 

disadvantage versus multimodal imaging in dignity assessment
184

.               

An interesting strategy to increase the degree of information resulting from the MRI 

analysis could be to associate CAs with nanovectors for diagnostic purpose. In fact, if 

designed appropriately, these nanovectors may act as a drug vehicle able to target 

tumor cells protecting the active molecules from inactivation during their transport. 

The physico-chemical characteristics (particle size, surface charge, surface coating, 

stability) of the NPs allow the redirection and the concentration of the marker at the 

site of interest. Indeed, nanovectors with ligand-decorated surface enhance selective 

cellular uptake (‘active targeting’)
185

. 

Currently, even if in vitro studies has received considerable attention in recent years 

the clinical translation of NPs remain laborious.In particular, MNPs functionalized 

with anti-CD20 antibodies, are made and tested on two murine cell lines. The results 

indicate that receptor recognition ability of the antibody (< 95%) is retained after 

conjugation with MNPs proving that anti-CD20-MNPs can be used for sensitive 

detection of cancer cells.  

Kozlowska et al.
186

, instead, synthesize liposomes loaded with Gd ions using different 

membrane-incorporated chelating lipids and functionalized with monoclonal anti-

CD138 (syndecan-1) antibody for multiple myeloma and non Hodgkin’s lymphoma 

diagnosis. In this case, the use of the polychelating amphiphilic polymer increases both 
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the Gd content and the longitudinal relaxivity of the Gd-loaded liposomes as compared 

to commercial CA (Gd-DTPA). 

To selectively target site-specific markers, several approaches have been used, and 

among these, mimotopes are particularly interesting. Mimotopes are amino-acidic 

sequences that are able to mimic the three-dimensional structure of the original 

antigenic epitope
187

. In addition, these molecules can be conjugated to a variety of 

nanostructures, as recently reported by Torino et al.
188

,  and act as vehicles for 

therapeutic and/or  diagnostic agents with extreme specificity. 

An example of mimotope is represented by peptide A20-36 (pA20-36) that binds the 

Ig-BCR of B-cell lymphoma (A20) cells
189

. 

In this context, the current section reports the use of biocompatible HA-based NPs, 

produced as indicated in Chapter II, that are conjugated with pA20-36 for in vitro and 

in vivo evaluations. In vivo experiments are performed in accordance with the 

European guidelines of the2010/63/EU Directive on the protection of animals used 

inscientific studies, after Italian Ministry of Health approval, Protocol no. 49/2015-PR 

e n° 50/201. 

 

2. Experimental Section 

2.1 Materials 

EDC (N-(3Dimethylaminopropyl)-N′-ethylcarbodiimide, MW=191.70), NHS (N-

Hydroxysuccinimide, MW=115.09), Streptavidin (1mg/ml), QuantiProTM BCA assay 

kit, the WST-1 assay and Plasma from human P953 are purchased from Sigma Aldrich 

Co. Cy7- PEG1KDa-NH2, and Fitc-PEG1KDa-NH2 are purchased from Nanocs Inc. 

Peptide pA20-36 (amino acids sequence: EYVNCDNLVGNCVIRG, MW=1922, 1 

mg/ml) and peptide pA20-S (amino acids sequence: DQEWCKTISFEPCLEN, 

MW=1067, 1 mg/ml) are purchased from CASLO ApS.   

Polystirene NPs are purchased by Thermo and used fo PEG-FITC quantification.  
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2.2 Functionalization of HA NPs 

The strategy of NPs functionalization provides the following steps: 1) chemical 

modification of HA NPs; 2) covalent binding of proteins (Indirect Conjugation) 

and/or peptides (Direct Conjugation); 3) formation of “HA NPs-Protein-Peptide” or 

“HA NPs-Peptide” conjugates; 4) characterization of the products and analysis of 

critical control points. 

The reactions are schematically represented in figure 16. 

 

 

 

Figure 16. Representation of strategy to conjugate the NPs 

with selected peptides. 

 

2.2.1Quantification of carboxyl groups on the surface of crosslinked HA NPs 

Back tritation method is performed to directly quantify carboxylic groups on the 

surface of particles. 0.1 mg/ml of NPs are dispersed in NaOH solution (20 ml of 0.01 

M ) and HCl is used as the tritant agent. The molar concentration of carboxylic sites 

are obtained from difference in concentration at equivalent point between HCl and 

NaOH.  
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2.2.2 Direct conjugation of HA NPs 

Unloaded and loaded NPs, produced as indicated in Chapter III, are centrifuged, 

collected and characterised by SEM analysis. The surface of the NPs has been 

activated using an amidation reaction with EDC (0.02 M) and NHS (0.01 M) for 10 

minutes in water solution on rotary shaker
145

. The peptides, pA20-S and pA20-36 

(500µl), previously deactivated with TEA, is added directly to the reaction. Reactions 

are kept in agitation by a rotating shaker for 4 hours and, finally a further purification 

is carried out to remove the excess of peptides. The collected material is resuspended 

in PBS solution. 

2.2.3 Indirect conjugation streptavidin-biotin-peptide 

The surface of the NPs has been activated using an amidation reaction with EDC (0.02 

M) and NHS (0.01 M) for 10 minutes in water solution on rotary shaker
145

. Then, the 

samples are centrifuged at 70,000 rpm, 15° C, 10 minutes and the resulting pellets are 

resuspended in PBS solution. 

Subsequently, the STR protein (1.5 mg/ml) is added and allowed to react overnight on 

rotary shaker. After removal of the excess reagents by ultracentrifugation method, the 

pA20-36 (150 µg/mL) to be conjugated is added to the resulting pellets. In addition, it 

is also tested the peptide A20-S as negative control and pA20-36 at the same 

concentration reported above of. The reaction is conducted for 4 hours on rotary 

shaker, and finally a further purification is carried out to remove the excess of peptides. 

The collected material is resuspended in PBS solution.  

 

2.2.4 Bicinchoninic Acid Assay 

The bicinchoninic acid assay (BCA assay, sensitivity: 0.5 µg/ml), also known as the 

Smith assay, is used for quantitation of total protein in a sample, in this case allows to 

measure the concentration of the peptide on the surface of the HA NPs. It is based on 

the principle that under alkaline conditions the copper Cu
+2

 ions form a complex with 

peptide bonds of proteins and are reduced to Cu
+1

. In addition, the presence of a 

specific chemical compound (purple colour) allows to quantify the amount of protein 

present in the sample of interest. The intensity variation is determined by absorbance   
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spectrophotometer measurement at 562 nm (enspire Multimode Plate Reader 

PerkinElmer).150 µL of the HA NPs suspension are reacted with equal amount of 

working reagent solution and the mixture is incubated at 37°C for 2 h. The results are 

compared with a bovine serum albumin (BSA) calibration curve and the concentration 

value is then extrapolated by a straight line of calibration built using BSA samples of 

known concentration (0 - 40 µg/mL). All measurements are performed in triplicate. 

2.2.5 Cell Lines 

A20 is a murine cell line derived from a spontaneously arising tumor in an aged 

BALB/c mouse. It pathologically mimics the characteristics of human diffuse large B-

cell lymphoma
211

. The 5T33 murine myeloma (5T33MM) cells are used as control. 

The cell lines are kindly provided by Prof C. Palmieri (University of Catanzaro, Italy). 

The cell lines are grown in suspension culture with Roswell Park Memorial Institute 

(RPMI) 1640 medium (Gibco), supplemented with 10% fetal bovine serum (FBS; 

Gibco), 50 units/mL penicillin, 50 μg/mL streptomycin and 2 mM L-glutamine at 37°C 

in a 5% CO2 atmosphere. 

 

2.2.6 PEGylation 

Moreover, direct PEGylation of NPs surface is obtained by the formation of an amide 

bond between the their -COOH groups and the -NH2 end groups of the PEG, which is 

labeled with various fluorophores (ie. Cy7 or FITC). In particular, PEG1kDa or 

PEG2kDa labeled are used for these experiments.              

The first step of process provides the activation of the carboxylic groups due to the 

contact between sample (500 µL)  and a solution of EDC (0.02 M) and NHS (0.01 M) 

for 10 minutes in water solution on rotary shaker. After this, a NH₂ -PEG-Dye (1 

mg/ml) is added (4h, at RT, slight rotation). Two washing are carried out  by 

ultracentrifugation (70,000 rpm, 15°C, 10 min) and, finally, the pellet is resuspended in 

a phosphate buffer (pH 6.8). The amount of PEG conjugated to NPs is determined by 

spectrofluorimetric (enspire Multimode Plate Reader PerkinElmer). All measurements 

are performed in triplicate.   
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3. Results and Discussion 

3.1 Functionalization of HA NPs 

Nanomedicine govern the ways in which engineered nanomaterials interact with 

human environment. In particular, the surface modification of the NPs play a key role 

in biomedical sciences. Several clinical results have suggested that the presence of 

specific recognition chemical moieties reduces not only the side effect, especially in 

oncological field, but also enhances the efficacy of nanovectors.                     

For this reason, here, it is reported an example of functionalization of loaded HA NPs 

with specific biomarker (pA20-36) for lymphoma target. In addition, a further 

bioconjugation, mediated by PEG, is explored. 

3.1.1Quantification of carboxyl groups on the surface of crosslinked HA NPs 

The first step for the NPs functionalization is represented by evaluation of the number 

of -COOH groups presented on the surface of the NPs through the application of back 

titration.  

In Figure 17 is showed the graphical representation of the equivalence point obtained 

by titration (HCl-NaOH). The results report that the presence of -COOH groups is 

about 26 nmol/ml of NPs solution. 

 

Figure 17. Representation of the equivalence point obtained 

by back titration.  
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3.1.2 Direct conjugation with peptide pA20-36 and pA20-S 

In the case of direct conjugation with pA20-36 and pA20-S, the results show that HA 

NPs have maintained their stable morphology post reaction.  

 

 

 

Figure 18. Morphological and Optical characterization of  

pA20-S-HA NPs. A) SEM characterization and B) TEM 

image. 

 

3.1.3 Indirect conjugation with peptide pA20-36 

HA NPs are subjected also to indirect conjugation. Also in this case, the results show 

that the morphology of nanovectors is preserved. Here, it is reported SEM analysis of 

intermediate of reaction mediated by STR protein (Figure 19). As it is showed in figure 

19 C, after only 12 h of reaction the presence of STR coating is visible. Moreover, it is 

possible to notice the presence of outer coating, in particular by TEM analysis (Figure 

19 D). 
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Figure 19. SEM images of indirect conjugation with STR 

protein. A) uncoated  HA NPs (control); B) HA NPs after 1 h 

of STR reaction; C) HA NPs after 12 h of STR reaction; D) 

TEM image post indirect conjugation. 

 

The concentration of pA20-36 on the surface of the HA NPs is evaluated by BCA 

assay (Figure 20). In the case of indirect conjugation, a double quantification is 

performed (the conjugation with the streptavidin and conjugation with the peptide).  

In the case of STR conjugation, the yield of process is about 50% while the 

conjugation of peptide reports a yield of 80%. 

In the case of direct conjugation, the yield of process is about 70%.  
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Figure 20. Calibration mediated by BSA (range 0 - 40 µg/ml). 

  

3.1.4 PEGylation 

In order to reduce interactions between HA NPs and intra/extracellular components, 

the surface of nanovectors has been coated with PEG, a polymer composed by 

repeating ethylene ether units. In this way, these nanomaterials are protected from the 

the attack by immune system and can circulate in the blood vessels for long time 

allowing their use in drug-delivery and imaging applications.                                    

In this case, after PEGylation reaction, HA NPs have maintained their structural 

integrity as shown SEM, TEM and STED images (Figura 21) .  
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Figure 21. Morphological and Optical characterization of HA 

NPs after their functionalization with NH2–PEG(2kDa)-FITC: 

A) SEM image; B) TEM image and C) Confocal microscope 

image. 

  

 

 

The amount of PEG-FITC conjugated to NPs surface is evaluated by the 

spectrofluorimeter. Polystyrene NPs are used as model (concentration range: 1-150 

µg/ml). The calibration curve for Polystirene NPs is reported in Figure 22, while in 

Figure 23 is reported the calibration for  NH2-PEG(2kDa)-FITC. 

The results obtained by the spectrofluorimeter analysis show that the final yield of the 

PEGylation process is about 65% w/v. This value can be explained on the basis of 

volumetric and steric effects of this polymer.   

A B C 



- 93 - 
 

 

 

 

 

 

Figure 22. Calibration mediated by Polystirene NPs (range 0-

150 µg/ml).  
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Figure 23. NH2-PEG(2kDa)-FITC: Calibration line in the 

range 0-80 nmol/ml.  
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4. Conclusions 

In this section, it is proved that the HA NPs can be successfully functionalized and 

PEGylated without compromising their structure and stability. In fact, the presence of 

carboxylic group on the the surface allows to functionalize these nanovectors with 

suitable biomarkers in order to ensure the tissue specificity and the action of CA. In 

conclusion, the new nanoprobe allows to detect in vivo a speficic pathology, as 

lymphoma, leveraging on active targeting. Further analysis about these nanovectors are 

under investigation, in particular for MRI applications.  
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CHAPTER IV 

Emerging use of nanoparticles in 

diagnosis of atherosclerosis disease  
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1. Introduction 

Cardiovascular disease continues to be the leading cause of death in the Western 

world
192

 and it is caused mainly by atherosclerosis. It is a multifactorial systemic 

disease characterized by arterial wall thickening and rigidity and the formation of the 

characteristic plaques that developed simultaneously in medium and large-sized 

arteries, inducing a blood flow reduction with different complications
193

.  

This inflammatory pathology that has origins in childhood and occurs decades before 

the disease becomes clinically apparent (cardiac arrest, acute myocardial infarction or 

stroke)
194, 195

. The pathogenesis of atherosclerosis has been the subject of many 

scientific works and the major players involved in this process are endothelial cells, 

inflammatory and immune cells (mainly macrophages and T cells), and intimal smooth 

muscle cells (SMCs)
196, 197

. For many years it was believed that the disease was only 

characterized by a passive accumulation of cholesterol in the vessel wall, but, 

nowadays, it is known that the evolution of the lesion is much more complex and not 

fully clarified. In addition, the degree of luminal stenosis is only indirect indicator of 

atherosclerotic process
198

.  At the beginning, our understanding of the atherosclerotic 

pathology is mainly based on postmortem examinations of human coronary arteries or 

analysis of resected surgical specimens from patients who underwent carotid 

endarterectomy.  

In recent years, several imaging techniques, invasive and noninvasive, are available to 

detect and display different characteristics of atherosclerotic lesions of clinical 

interest
5
. The choice and applicability of each imaging technique depend not only on 

its diagnostic efficacy but also on the type of questions being asked. Unfortunately, 

these imaging modalities, neither characterize nor correlate the image parameters with 

histopathological lesion types, which are more clinically relevant. Most of the standard 

imaging modalities characterize some of the morphological and functional features of 

the vascular lesion, but a quantitative evaluation of atherosclerotic disease during its 

natural history and following therapeutic interventions are necessary for understanding   



- 98 - 
 

the stabilization or progression of the disease and for selecting suitable medical or 

surgical interventions. 

In addition, current therapeutic approaches treat atherosclerosis systemically, not 

locally, which is often associated with decreased efficacy and increased side effects. 

Nanoparticle mediated, targeted delivery of diagnostic agents or therapeutic 

compounds to specific molecules, cells, or tissues represents an innovative approach 

for the diagnosis and treatment of atherosclerosis. Nanoencapsulation in combination 

with targeted delivery may enhance stability and bioavailability of pharmaceutical 

agents, improve their pharmacokinetics, increase detection sensitivity and therapeutic 

efficacy.   

2. Advances in targeting strategies for 

nanoparticles in atherosclerosis imaging 

As described previously, MRI represents the unique technique that combines excellent 

soft tissue discrimination with high spatial resolution without the use of ionizing 

radiation. Nevertheless, this imaging modality is limited by its low sensitivity and 

requires the use of CAs to display the damaged site clearly. This restriction may be 

overcome with a noninvasive molecular imaging approach, considered an in vivo 

equivalent to immunohistochemical techniques and based on a signal imaging element 

encapsulated or conjugated to a carrier that transports a ligand that is then recognized 

by the target molecule. In fact, this strategy can facilitate early diagnosis, has the 

potential to image the pathophysiological process of the disease before the onset of 

symptoms and can be applied to follow the efficacy of therapy. In this scenario, the 

advantage of MRI resides in its ability to provide not only anatomical but also 

functional information quantifying specific biological processes within a single 

imaging modality.  

A variety of molecular targets has so far been successfully employed in preclinical 

models of CVD to identify typical features associated with plaques that are prone to 

rupture. Actually, plaque rupture represents a key process in the initiation of ardiac 

arrest, acute myocardial infarction or stroke syndrome, but given the complexity and 
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heterogeneous nature of the plaques, it could not be identified a biomarker that is able 

to discriminate between patient that needs monitoring (stable plaque) and patient at risk 

of clinical events (unstable plaque).            

Examples of biomarkers are shown below: cell adhesion molecules (VCAM 1 or E-

selectin)
199

, extracellular matrix, lipoproteins, smooth muscle cells, macrophages, 

phosphatidylserine and αVβ3 integrin
200, 201

.  

At first, the CAs were conjugated with monoclonal antibodies or specific peptides, but 

excellent results are then obtained with NPs that combine a high binding affinity for 

the target zone with the capacity to transport a sufficient amount of a CA. The most 

widely employed NPs are: superparamagnetic iron oxide (SPIO), micelles, liposomes 

dendrimers and polymeric nanoparticles
201-203

. In this section will discuss the recent 

progress in targeting strategies for nanoparticles focused on the recent innovative 

works for nanomedicine.  

 

2.1 Superparamagnetic Iron Oxide Nanoparticles (SPIONs)   

Several MRI strategies to display the atherosclerotic lesions were successfully 

developed using NPs platform
204, 205

. In effect, their chemical, physical and 

pharmacokinetic characteristics and the ability to transport high payloads make them 

highly suited to cellular and molecular imaging of atherosclerotic lesions.  

Generally, two categories of contrast agents are used for molecular MR imaging of 

atherosclerotic plaques: superparamagnetic iron oxide nanoparticles (SPIONs) and 

nanoparticles that incorporate gadolinium (Gd) chelates
202, 206

. SPIONs represent the 

main platform used and are composed of an iron oxide core formed by magnetite 

(Fe3O4) and/or maghemite (γFe2O3) and coated with a polysaccharide, synthetic 

polymer, or monomer, which make them water soluble, prevent their aggregation and 

improve biocompatibility
207

. Moreover, the combination “core-shell” influences the 

pharmacodynamic and pharmacokinetic features of the final product. Passive targeting 

of these nanocarriers dependent on the control of parameters such as the surface charge 

and hydrodynamic radius that affect circulation time of the nanoparticles, accessibility 

to tissues, opsonization, and so on. Differently, active targeting takes advantage of 
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nanoparticle’ surface modifications with monoclonal antibodies or peptides
207

. 

Generally, the term SPIO can be used to refer to: standard SPIO (SSPIO, 60-150 nm), 

ultrasmall SPIO (USPIO, <50 nm), monocrystalline iron oxide nanoparticles 

(MION,~30 nm) and cross-linked iron oxide (CLIO)
208

. Phagocytic cells of 

reticuloendothelial system (RES) take up injected SPIONs spontaneously by   
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endocytosis or phagocytosis allowing a rapid accumulation of these particles at the 

level of the lesion of interest
209

. This system have been characterized as MRI contrast 

agents for the imaging of the plaque inflammation, which represents one the most of 

the features of high-risk atherosclerotic plaques
204

. In particular, Ruehm and 

coworkers
209

 demonstrated that in hyperlipidemic rabbits there is an accumulation of 

USPIOs in plaques with high macrophage content and that this phenomenon induced 

MR signal changes. For this reason, Kooi and colleagues
210

 investigated the detection 

of macrophages in human atherosclerotic plaque. The results showed that the use of a 

USPIO agent, Sinerem® (Guerbet; Ferumoxtran-10), accumulated mainly in 

macrophages in human atherosclerotic lesions prone to rupture, it induced significant 

decrease of signal T2* images obtained 24 hours after intravenous administration but 

not in the images obtained after 72 hours (washout phenomenon). This information 

suggested that USPIO-enhanced MRI is as a promising method for the in vivo 

differentiation between low- and high-risk plaques and additional studies conducted by 

Trivedi et al.
211

 confirmed these preliminary results, suggesting furthermore that there 

is a process of accumulation and excretion of USPIOs. A representative example of a 

study, in which MRI is used to monitor the target site accumulation of USPIOs, is 

published by Tang and colleagues
212

. In summary, the researchers explored whether 

there is a difference in the degree of inflammation between asymptomatic and 

symptomatic patients.The results suggested that one inflamed symptomatic vascular 

bed can be increase the risk of other arterial vessels to become inflamed. Finally, 

preclinical (atheromatous rabbits and ApoE knockout mice) and clinical studies of 

Sinerem® for noninvasive MRI assessment of atherosclerotic plaque inflammation are 

summarized by Tang et al.
213

. 

An example of active targeting, for development of a non-invasive method to detect 

vulnerable plaque prior rupture in vivo, is reported by Smith et al.
214

. In this 

investigation SPIONs consisting of an iron oxide core coated with dextran and 

conjugated to a cellular protein, Annexin V, that recognizes apoptotic cells by specific 

molecular interaction with Phosphatidyl Serine (PS). They tested in two rabbit models 

of atherosclerosis and MRI was performed with a 4.7 T small animal MRI system. The 
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results were confirmed by further histological investigation and vascular targeting by 

the system, SPIONs-Annexin V, was atheroma-specific. In addition, the administered 

dose was significantly lower than the particles without target in the same animal 

model. Therefore, the presence of a biomarker, as Annexin V, can provide additional 

support for the diagnosis of vulnerable plaque. 

Nahrendorf et al.
199

, instead, functionalized MION with linear peptide (VHPKQHR) 

for targeting of the vascular cell adhesion molecule-1 (VCAM-1), which is a biomarker 

expressed at early stages and progression of atherosclerotic lesions. Even in this case, 

the conducted studies in animal models showed that the anatomical area of interest 

became dark (hypointense signal) after the injection of the nanoparticles. Kang and 

colleagues
215

 prepared similar system using CLIO nanoparticles with E-selectin 

antibody fragments to detect E-selectin in endothelial cells. The expression of this 

molecule is induced by an inflammatory cytokine (interleukin-1β) and, as expected, a 

high decrease in T2* signal is present in the treated mice with interleukin-1β compared 

to mice not treated. 

Many research groups have long studied the use of these carriers based on the models 

mentioned above in atherosclerosis detection and several scientific works are reported 

in the literature
216

, but none is currently approved for clinical diagnostic evaluation and 

there are not others in clinical development. 

 

2.2 Polymeric Nanoparticles                         

The strategy to prepare PNs with imaging functionality is to incorporate materials or 

functional groups with some characteristic that makes them a new promising tool for 

the diagnostic. Generally, the CA can be covalently conjugated or physically 

encapsulated within polymeric matrix
41, 43, 49, 217

. In the first case, the molecules with 

imaging properties are connected to polymeric backbone and there may be 

nonhomogeneous distribution and poor loading efficiency of CA on the polymer 

surface. Conversely, in the latter case, the system offers high loading efficiency and 

homogenous distribution of contrast media within the polymeric matrix. Initial 

characterization of polymeric nanoparticles containing gadolinium chelate (Gd-DTPA)   
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as CA for enhanced MRI is reported by Doiron et al.
218

. In this work a water-in-oil-in-

oil double emulsion solvent evaporation technique was used to encapsulate the CA in a 

poly(lactide-co-glycolide) (PLGA) or polylactide-poly(ethylene glycol) (PLA-PEG) 

particle for the transport of MRI agent for the detection of staged atherosclerosis. 

PLGA particles showed negative zeta potentials, while PLA-PEG particles had neutral 

zeta potentials. In vitro experiment showed that cytotoxicity of these particles on 

human umbilical vein endothelial cells (HUVEC) was minimal, while MRI in vitro 

experiment demonstrated that the relaxivity of the PLGA particles is similar to that of 

unencapsulated Gd-DTPA. Recently, Zhang and colleagues
219

 have successfully 

synthesized using water in oil in water method and characterized a new type of 

delivery system based on PLGA. In this case, (Gd)-loaded PLGA nanoparticles show 

on the surface a specific peptide sequence (Arg-GlyAsp-Ser, RGDS) for the detection 

of thrombus at the molecular level. The results of in vitro experiments suggest that 

these molecular probes can be used for detection of thrombus with a longitudinal 

relaxation similar to commercial CAs. 

Recently, our group is focused on the use of biomaterials to improve the healthcare 

services in the field of atherosclerosis diagnosis. Russo et al.
41

, for example, report a 

new Hyaluronic Acid (HA) nanoprobe (35 nm), obtained by a controlled and 

continuous microfluidic process, which entraps CAs for MRI. In a subsequent work, 

the impact that hydrophilic biopolymer networks have on the relaxivity of Gd-based 

CAs has been analysed and the concept of “Hydrodenticity” has been defined to 

describe the ability of these biopolymers to enhance the properties of the metal chelate, 

as reported by Russo et al
43

. Vecchione et al.
49

, instead, describe a core-shell 

architecture for multimodal imaging applications obtained by a modified complex 

coacervation. The relaxivity of Gd-DTPA nanoconstructs is more than four times 

higher than the relaxivity measured for free Gd-DTPA in solution. 

 

2.3 Micelles          

Micelles are self-assembled nanostructures composed by amphiphilic molecules (lipid 

or polymer). They can be made mainly by a hydrophobic core and externally a   
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hydrophilic surface, characteristics that allow encapsulating therapeutic or diagnostic 

agents within the micelles. A first in vitro study is conducted by Lipinski et al.
220

 that 

evaluated the uptake of micelles linked to specific antibody (immunomicelles) for 

macrophages and containing Gd-DTPA micelles, and a murine model of 

Apolipoprotein E knockout (ApoE KO) is used for ex vivo imaging of lesions. The 

micelles (size <100 nm) are made by lipid monolayers and the results of the 

experiments demonstrated that the immunomicelles are taken up by the macrophages 

compared to untargeted micelle and both micelles and immunomicelles are superior 

CAs compared to the others used in clinical practice. This enhancement is related to 

the content of macrophages, which is associated with plaques vulnerable to rupture. A 

limitation for this study is represented by long acquisition time. A similar approach 

was published by Mulder and coworkers
221

. The obtained results in this work are 

consistent with previously findings that show uptake of immunomicelles in cultured 

macrophages and in ex vivo atherosclerotic aorta
220

. Subsequently, Briley-Saebo et 

al.
222

 conducted a study using micelles containing Gd and antibody (murine or human) 

that bind oxidation-specific epitopes (OSE). The aim of this work was to obtain a non-

invasive in vivo imaging of atherosclerotic plaques rich of OSE by the use of MRI. 

Also in this case, the results show that the active targeting allows to obtain a significant 

signal enhancement using micelles containing a specific antibody and a good 

identification of atherosclerotic lesions. In another work
223

, the same authors changed 

the model previously adopted in order to evaluate the in vivo MRI efficacy of 

manganese (Mn(II)) as molecular imaging probe for OSE. Mn is a paramagnetic metal 

ion, endogenous, and bio-compatible and DTPA is used as the chelating agent. The 

intracellular accumulation in intraplaque macrophages of targeted bio-compatible Mn-

micelles and de-metallation resulting in free Mn resulted in significant efficacy of 

contrast-enhanced MR imaging, allowing the visualization of atherosclerotic lesion 

through a non-invasive method. 

 

2.4 Liposomes                        

Two approaches have been used to prepare liposome-based CAs: (1) encapsulation of   
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the contrast agent into the liposome and (2) chemical conjugation of the MRI probe to 

the liposome membrane. An example of liposomes used for delivery to atherosclerotic 

tissue has been reported by Maiseyeu et al.
224

, where Gd-decorated liposomes enriched 

with phosphatidylserine (PS) were used for imaging of accumulated macrophages at 

atherosclerotic site in ApoE -/- knockout mouse models. This approach allowed a 

significant enhancement of atherosclerotic plaque in vivo for molecular 

characterization of high-risk plaques. Based on similar rationale of macrophage 

activity in atherosclerotic lesions, Resen et al.
225

 and Mulder and coworkers
226

 have 

reported the development and contrast-enhanced targeted MR imaging of vascular 

disease associated inflammation using Gd-liposomes.  

Kozlowska et al.
186

, instead, synthesize liposomes loaded with Gd ions using different 

membrane-incorporated chelating lipids and functionalized with monoclonal anti-

CD138 (syndecan-1) antibody for multiple myeloma and non Hodgkin’s lymphoma 

diagnosis. In this case, the use of the polychelating amphiphilic polymer increases both 

the Gd content and the longitudinal relaxivity of the Gd-loaded liposomes as compared 

to commercial CA (Gd-DTPA). 

 

2.5 Dendrimers                            

Dendrimers are a highly significant class of nanosystems that exhibits many attractive 

characteristics and plays an important roles not only as drug delivery carriers, but also 

as imaging agents
227

. In more detail, they are nano-sized structures characterized by a 

controllable multibranched three-dimensional arrangement, globular shape, high 

functionality, small size and low polydispersity
228

. These structures offer three points 

for modification with diagnostic agents: the core, the branching zone and the branch 

extremities
229

. Therefore, active molecules may be encapsulated into the interior area 

or chemically/physically linked onto the nanovector surface.
230

. Their 

pharmacokinetics and pharmacodynamics features are not very clear and thus remain 

to be explored for their bioapplication
228

. In addition, the composition and size of 

dendrimer-based MR imaging agents influences their behavior. The pioneers in this 

field are Kobayashi et al.
231

 that conducted a study about optimization of the   
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performance of dendrimer-based MRI agents in vivo in comparison to Gd-[DTPA] 

using the poly (amido amine) (PAMAM) and diaminobutane core polyaminoamine 

(DAB) for the preparation of MRI contrast agents. They observed that dendrimer-based 

MRI contrast agents are quickly excreted by the kidneys and also able to visualize 

vascular structures better than Gd-DTPA due to less extravasation. Therefore, these 

structures are retained in the body for a prolonged time. Recently, Nguyen and 

colleagues
232

 have synthesized, characterized, and evaluated the MR efficacy of 

manganese (Mn) dendrimers targeted to OSE in murine models. Considering that 

dendrimers can be easily modified to allow for the addition of contrast agents and 

antibodies for targeted delivery, PAMAM-based dendrimers were chosen for their 

ability to load large amounts of Mn and DTPA is chosen as chelating agent. The results 

demonstrated that the administration of the targeted dendrimers allow to obtain a 

significant enhancement of vascular lesions in comparison to untargeted dendrimers. 

The analysis was only qualitative because the observed MR imaging signal did not 

correlate with the histological presence of OSE. 

  

3. Conclusion 

Despite the progress in primary and secondary prevention and the growth of the 

knowledge base of atherosclerosis pathology, the incidence of myocardial infarction 

and stroke continues to remain high. Nowadays, the nanotechnology and the design of 

nanoscale devices seem to be a promising avenue for improving cardiovascular 

outcomes. The examples reported in this work include the use of NPs for MRI as tool 

for non-invasively evaluating atherosclerotic plaques, but their application in 

atherosclerotic field is very limited so far. A future goal in this field is represented by 

the combination of disease-specific biomarkers linked to the suitable carriers with MRI 

imaging modality in order to improve diagnosis and therapy of the atherosclerotic 

lesion. Therefore, it is essential to broaden our current understanding of distinct stages 

of pathological process for the development of novel diagnostic approaches based on   



- 107 - 
 

these concepts. In the end, potentially harmful effects of these new methodologies must 

be borne in mind.  
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CHAPTER V 

Application of HA NPs in 

atherosclerosis field: preliminary 

results  
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1.  Introduction 

In contrast with conventional imaging approaches, molecular imaging allows to 

evaluate biological features of atherosclerotic plaques in vivo by ensuring prevention, 

screening, diagnosis, and treatment of vascular disorders .                        

Nowadays, as explained in the Chapter IV, imaging tools for early detection of clinical 

atheroma based on the plaque biology are lacking. In fact, despite there is a wide 

knowledge concerning the use of nanotechnologies in cardiovascular disease, the use 

of nanovectors for imaging applications in clinical practice remains limited, not only 

for safety iussess, but also for the heterogeneous nature of atherosclerotic plaques 

which does not allow for a proper segregation the different types of patients. In 

addition, it is known that the old generation of NPs is nonspecific and, actually there is 

no commercialized product, without considering that several studies conducted in 

murine models have significantly highlight that there are different anatomies of 

vascular disease compared to humans. 

In this context, therefore, the combination of specific peptides and nanostructures 

becomes a key factor to interact and/or overcome the biological barriers.  

Unlike other macromolecules, peptides are small entity with higher specificity and 

affinity for target sites and with limited steric constraints. In addition, they can be 

synthesized in the laboratory using different methods, thereby supporting the early 

detection of pathology, moreover due to the high surface area to volume ratio of 

nanovectors, several copies of the ligands can be conjugated. Not for nothing, recently, 

the use of phage display tecnology is under investigation in order to identify new and 

specific peptides ligand for pathology process
1, 2

. 

This technique allows to the synthesized more libraries of heterogenous bacteriophage, 

(viruses that infect bacterial cells) using recombinant DNA technology. The advantage 

of phage display consists principally of binding partner of the peptide sequence that is 

known.  
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Here, it is reported the development of a new probe for molecular imaging 

investigation of cardiovascular disease through the biological knowledge that drive 

plaque progression. 

The experimental design and preliminary studies performed on human atherosclerotic 

plaque and HA NPs are given below.  

 

2. Experimental design 

The ability to functionalize the surface of nanovectors with targeting ligands play a key 

role in real-time diagnosis of vascular diseases. A variety of targeting peptides for 

atheroma have been already tested preclinically, but the search of new and performing 

biomarkers is necessary in order to discriminate a patient at risk from a patient which 

instead only needs to be monitored over time. For this reason, it is decided to test the 

versatility of HA NPs, selecting a suitable peptide,  for MRI imaging of cardiovascular 

disease. 

From a bioengineering perspective, the first step of experimetal design (see Figure 24 

for schematic representation) of new probe consists of selection an appropriate peptide, 

took from random peptide libraries selected based on interaction with specific epitopes, 

able to recognise the site of interest. This process provides for the application of phage 

display tecnology
3
, introduced by Smith and Parmley. Phage-panning procedure for 

selection of peptides with vascular endothelium cellular binding specificity uses an 

M13 random peptide phage display library. After this procedure, different clones are 

chosen for further characterizations. ELISA test are made to confirm specific binding 

between cell line and peptide in vitro. Then, the lead clone with the highest specificity 

is selected, expanded and sequenced to determine the targeting peptide sequence. 

The second part of strategy (Figure 25) provides that loaded HA NPs, synthesized as 

reported in the Chapter III, are conjugated with identified peptide using conventional 

functionalization strategy (amidation reaction). After this step, chemical-physical 

characterizations, relaxation measurements and in vitro/in vivo evaluations are   
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performed in order to establish not only safety but also potential diagnostic 

effectiveness of new probe. 

Finally, the probe is tested for ex-vivo esperiments using human carotid 

endarterectomy (CEA) speciem in order to evaluate diagnostic efficay and at the same 

time the immunohistochemistry of biological sample. 

The effective binding between tissue and probe is also evaluated by electron 

microscope analysis. Special attention is given to the ultrastructural morphology of 

these tissue. 

It is already known, the phage display technology is a laborious method and time-

consuming and, actually, the process of peptide selection is under development. 

For this reason, in this chapter, it is possible to report only preliminary studies 

concerning the manipulation of ex-vivo human tissues for electron microscope analysis 

(Figure 26).  
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Figure 24. Phage display. Principles of protocol used for 

selecting sequences that have affinity to specific biomarker.  
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Figure 25. Experimental design of ex-vivo human plaque 

stage. The markers on human carotid plaque are detected by 

peptide, which are bound to the HA NPs, thereby making these 

plaques “MRI visible. Concomitant immunohistochemistry is 

performed.  
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Figure 26. Human carotid endarterectomy (CEA) speciem 

before electron microscopy analysis.  
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3. Experimental section 

3.1 Materials and methods 

Fibrous and atheromatous plaques are selected from human carotid obtained after 

endarterectomy. This surgical procedure is used to reduce the risk of stroke by 

correcting stenosis in the carotid artery. The surface area of these plaques appears 

yellowish. All the samples (postoperatively) are immediately immersed in 

physiological solution  (4°C, 2 hours) and, then tissue slices fixed following the 

protocols reported below. 

On the basis of analysis, different thikness of cross-sectional slices are cut from each 

lesion. 

All investigated subjects are men (average age of 65 years). 

All procedures are carried out according to EU directives and reviewed by local ethical 

committee. 

 

3.2 Electron Microscopy analysis 

For transmission electron microscopy (TEM), all tissue slices (1 mm x 1 mm) are fixed 

in 0,5% of glutaraldehyde and 4% of paraformaledhyde in 0.1 M Na cacodylate buffer, 

pH 7.4, overnight at 4°C, followed by rinsing in buffer (3 washes, 4°C, 10 minutes). 

Samples are postfixed in osmium tetroxide (4%) and potassium ferrocyanide (2%) for 

1 h at 4°C. This step is followed by three quick changes of 0.1 M Na cacodylate buffer 

over a total of 5 minutes and three quick washes with water solution (4°C, 5 minutes). 

Addition of uranyl acetate (4%) for over-night at 4°C. Three quick washes with water 

solution (4°C, 5 minutes). Treatment with 0.15% tannic acid in water for 3 minutes at 

4°C. Three quick washes with water solution (4°C, 5 minutes). After this, the samples 

are dehydrated and embedded schedule generally 

employed is as follows: 30, 50 and 70%, 1 hour at 4°C; 95% (twice) and 100% (three 

times) EtOH, 1 hour at 4°C; 1:2 Epon:EtOH, 2 hour; 1:1 Epon:EtOH overnight, 2:1 

Epon:EtOH, Epon and two further changes (3 hours), Epon overnight, Epon further 

changes (3 hours), before embedding. The polymerization process is performed at   
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70°C for 72 hours. Ultrathin Cryo-ultramicotome (Leica) sections (80nm) are obtained 

using a diamond knife and collected on copper grids (300 Meshes). All sections are 

analyzed with a TEM ( TECNAI G
2
20 FEI). 

For scanning electron microscopy (Field Emission, FE SEM, Ultraplus Zeiss), small 

tissue blocks of the region of interest are analyzed. All samples are treated according to 

the same protocol reported above for TEM analysis. Here, after the dehydration steps, 

critical point drying (CPD Leica) procedure is applied in order to preserve  the surface 

structure of  samples for next analysis.  Finally, the samples are coated with 20 nm of 

gold using sputter coater and visualized at SEM. 

 

3.3 Nanoparticles investigation 

Different chemical reagents, used during protocols preparation for electron microscopy 

analysis, are tested on unloaded HA NPs in order to estabilish if their morfology and 

stability are preserved during the ex-vivo experiments. 

In particular, 5 aliquotos (500 µl) of unloaded HA NPs in water solution are incubated 

for 1 hour with the following substances:  sodyum cacodylate (0.1 M), Gluteraldehyde 

(2,5% v/v), osmium tetroxide (1% v/v) and paraformadehyde (4% v/v).  

Then, three quick washes with water solution (RT, 5 minutes) are performed. 

The resulting samples are filtered, coating with 10 nm of gold and observed at SEM. 

 

4. Results and discussion 

Atherosclerotic process is activated by alterations of endothelial cells. Thus, it is 

necessary the use of the microscopy in order to visualize the whole intimal surface and 

for better understanding the physiopathology of this disease. 

In this work, scanning microscopy analysis is performed on the luminal surface of the 

human carotid vessel wall (Figure 27). The examination shows that endothelial layer is 

preserved even if it is possible to notice non regular architecture. Several platelets and 

leukocytes adhering to endothelium (Figure 28) and collagen fibrils (Figure 29) are 

visible in all samples.   
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Figure 27. Scanning electron image of trasversal section of 

human carotid artery shows how the wall thickness varies in 

the same tissue. 

 

 

 

Figure 28. Scanning electron image of the surface of 

endothelium. Platetels and leukocytes adhering to endothelium 

are visible. 
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Figure 29. Scanning electron image of subendothelial surface. 

Fibrous cap formed by fibrin proteins and collagen fibrils are 

visible. 
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TEM analysis, instead, show the presence of a high number of macrophage foam cell 

and lipid droplets in all samples investigated (Figure 30). 

 

 

 

 

Figure 30. Transmission electron microscopy showing a 

macrophage foam cell and lipid droplets. 

 

 

 

There are no morphologic alterations of unloaded HA NPs after treatment 

with the principal chemical reagents used during preparation process for 

microscopy analysis (Figure 31).   
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Figure 31. Scanning electron image of unloaded HA NPs 

tested with chemical reagents for 1 hour at RT: A) HA NPs 

control; B) Paraformadehyde (4% v/v); C) Gluteraldehyde 

(2,5% v/v); D) osmium tetroxide (1% v/v) and E) sodyum 

cacodylate (0.1 M).  
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5. Conclusion 

In conclusion, here, it is  report the use of phage display technology to identify 

peptides specific able to target vascular endothelial cells, in particular unstable plaques.  

Further chracterization studies are needed to find and investigate the binding 

specificity of lead peptide to human aterosclerotic tissue and the future application of a 

new probe in the clinical practice. 

Actually, the experimental design has been defined and preliminary tests on biological 

sample and nanovectors are performed. The correlation between the ultrastructural of 

vessel wall and endothelial dysfunction remains to be established. 
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Main Conclusions and Future 
Perspectives  
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Despite the progress in primary and secondary prevention and the growth of the 

knowledge base of pathological processes, the incidence of many diseases to remain 

high. The use of CAs is enormeously increased in the diagnostic practice bacause they 

contribute to better disease detection and characterization, monitoring and thus 

guidance of disease management.                         

Although pharmaceutical coumpounds are widely used in clinical practice, they have 

certain limitations for which have received special attention in the last year. Nowadays, 

the nanotechnology and the design of nanoscale devices seem to be a promising avenue 

for improving clinical outcomes.                            

Contrast media specifically designed for MRI applications are still under development 

and there is a number of technologies involved in the development of nanocarrier 

including in its chemical, physical and biological properties. Despite several efforts 

towards nanocarriers, to choose the most adequate nanocarrier is not obvious for a 

variety of reasons that can simultaneously affect the biodistribution and target of 

nanocarriers. However, there remains a gap between technological advances and 

clinical applications. In this sense, the future prospects of nanotechnology and 

nanomedicine are very promising.                   

However, as stated above, the major challenge consists of development of an 

appropriate paramagnetic CA which shows the following properties: low toxicity, high 

relaxivity and long half-lives, high availability, chemical stability, high magnetic 

moment, and capability for binding the ligands to NPs. In this context, biopolymer-

based CAs can satisfy the required properties. The biological properties of HA, for 

example, make it an ideal candidate to create nanovectors for medical applications, 

although, in order to achieve this, the nanosystems need to be refined to allow an 

enhanced longevity in the physiological environment.  

In particular, in this work is proved that a new generation of more efficient MRI CAs 

can be developed. It can be done using biocompatible and clinical relevant CAs 

without their chemical modification as approved in the clinical practice. The optimal 

conditions to combine a CA with a hydrophilic biopolymer are identified and applied 

to the nanoscale in order to produce nanostructures of biomedical interest with high 
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relaxivity. In particular, stable crosslinked HA NPs encapsulating Gd-DTPA are 

successfully prepared using a method that exploits the use of W/O nanoemulsions as 

templates.                           

The aqueous emulsion droplets are shown to provide a good environment for the 

formation of the NPs and seemed to limit efficiently their size. NPs collected from the 

emulsion droplets using a purification procedure show a size of about 200 nm and 

spherical shape. In addition, WST-1 assay is successfully carried out, proving their 

non-cytotoxicity for murine fibroblast cells.                                              

Thus, the conditions of the herein presented protocol to produce these biocompatible 

NPs offer advantages for the encapsulation of a broad-spectrum of biomolecules and 

provide a potential synthetic route to design a wide range of highly efficient 

nanostructured MRI CAs, letting the surface available for possible functionalization. 

Development of biomarkers for early detection of the most common illnesses (from 

oncology to cardiology)  is another important topic for research using nanotechnology. 

A future goal in this field is represented by the combination of disease-specific 

biomarkers linked to the suitable carriers with MRI imaging modality in order to 

improve diagnosis of specific body lesions. Therefore, it is essential to broaden our 

current understanding of distinct stages of pathological process for the development of 

novel diagnostic approaches based on these concepts.  

In particular, the development of the nanovectors reported in this work includes their 

use for MRI as tool for non-invasively evaluating lymphoma and atherosclerotic 

plaques, but their application in in their respective fields is very limited so far. 

However, from a biomedical point of view, the possibility to tune relaxometric 

properties of CAs by controlling hydrogel structural parameters can pave the way to 

new advancements in the design of nanovectors for diagnosis and therapy. In addition, 

this approach can be easily applied to other types of  hydrophilic polysaccharides and 

further used to design biocompatible NPs with a potential application as drug delivery 

carriers in MRI applications. In the end, potentially harmful effects of these new 

methodologies must be borne in mind. This involves detailed risk assessment of 

products before their use.  



125 
 

References 

1. Laal, M., Innovation Process in Medical Imaging. World Congress on 
Administrative and Political Sciences 2013, 81, 60-64. 
2. Frangioni, J. V., New technologies for human cancer imaging. Journal of 
Clinical Oncology 2008, 26 (24), 4012-4021. 
3. Mansfield, P., Snapshot magnetic resonance imaging (nobel lecture). 
Angewandte Chemie-International Edition 2004, 43 (41), 5456-5464. 
4. Caravan, P.;  Ellison, J. J.;  McMurry, T. J.; Lauffer, R. B., Gadolinium(III) 
chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical 
Reviews 1999, 99 (9), 2293-2352. 
5. Sandfort, V.;  Lima, J. A. C.; Bluemke, D. A., Noninvasive Imaging of 
Atherosclerotic Plaque Progression: Status of Coronary Computed Tomography 
Angiography. Circulation. Cardiovascular imaging 2015, 8 (7), e003316-e003316. 
6. Wilson, G. T.;  Gopalakrishnan, P.; Tak, T., Noninvasive cardiac imaging with 
computed tomography. Clinical medicine & research 2007, 5 (3), 165-71. 
7. Barsanti, C.;  Lenzarini, F.; Kusmic, C., Diagnostic and prognostic utility of non-
invasive imaging in diabetes management. World Journal of Diabetes 2015, 6 (6), 792-
806. 
8. Griffeth, L. K., Use of PET/CT scanning in cancer patients: technical and 
practical considerations. Proceedings (Baylor University. Medical Center) 2005, 18 (4), 
321-30. 
9. Yun, M. J.;  Jang, S.;  Cucchiara, A.;  Newberg, A. B.; Alavi, A., F-18 FDG uptake 
in the large arteries: A correlation study with the atherogenic risk factors. Seminars in 
Nuclear Medicine 2002, 32 (1), 70-76. 
10. Sun, Z.-H.;  Rashmizal, H.; Xu, L., Molecular imaging of plaques in coronary 
arteries with PET and SPECT. Journal of Geriatric Cardiology 2014, 11 (3), 259-273. 
11. Adak, S.;  Bhalla, R.;  Raj, K. K. V.;  Mandal, S.;  Pickett, R.; Luthra, S. K., 
Radiotracers for SPECT imaging: current scenario and future prospects. Radiochimica 
Acta 2012, 100 (2), 95-107. 
12. Sogbein, O. O.;  Pelletier-Galarneau, M.;  Schindler, T. H.;  Wei, L. H.;  Wells, R. 
G.; Ruddy, T. D., New SPECT and PET Radiopharmaceuticals for Imaging 
Cardiovascular Disease. Biomed Research International 2014. 
13. Zhou, Z. X.; Lu, Z. R., Gadolinium-based contrast agents for magnetic 
resonance cancer imaging (vol 5, pg 1, 2013). Wiley Interdisciplinary Reviews-
Nanomedicine and Nanobiotechnology 2013, 5 (2), 190-190. 
14. Bellin, M. F., MR contrast agents, the old and the new. European Journal of 
Radiology 2006, 60 (3), 314-323. 
15. Shellock, F. G.; Kanal, E., Safety of magnetic resonance imaging contrast 
agents. Jmri-Journal of Magnetic Resonance Imaging 1999, 10 (3), 477-484. 



126 
 

16. Mathurdevre, R.; Lemort, M., BIOPHYSICAL PROPERTIES AND CLINICAL-
APPLICATIONS OF MAGNETIC-RESONANCE-IMAGING CONTRAST AGENTS. British 
Journal of Radiology 1995, 68 (807), 225-247. 
17. Tweedle, M. F.;  Wedeking, P.; Kumar, K., BIODISTRIBUTION OF 
RADIOLABELED, FORMULATED GADOPENTETATE, GADOTERIDOL, GADOTERATE, AND 
GADODIAMIDE IN MICE AND RATS. Investigative Radiology 1995, 30 (6), 372-380. 
18. Chang, C. A., MAGNETIC-RESONANCE-IMAGING CONTRAST AGENTS - DESIGN 
AND PHYSICOCHEMICAL PROPERTIES OF GADODIAMIDE. Investigative Radiology 
1993, 28, S21-S27. 
19. Oliveira, I. S.;  Hedgire, S. S.;  Li, W. E.;  Ganguli, S.; Prabhakar, A. M., Blood 
pool contrast agents for venous magnetic resonance imaging. Cardiovascular 
Diagnosis and Therapy 2016, 6 (6), 508-518. 
20. Geraldes, C.; Laurent, S., Classification and basic properties of contrast agents 
for magnetic resonance imaging. Contrast Media & Molecular Imaging 2009, 4 (1), 1-
23. 
21. Pierre, V. C.;  Allen, M. J.; Caravan, P., Contrast agents for MRI: 30+years and 
where are we going? Journal of Biological Inorganic Chemistry 2014, 19 (2), 127-131. 
22. Xiao, Y. D.;  Paudel, R.;  Liu, J.;  Ma, C.;  Zhang, Z. S.; Zhou, S. K., MRI contrast 
agents: Classification and application (Review). International Journal of Molecular 
Medicine 2016, 38 (5), 1319-1326. 
23. Toth, E.;  Helm, L.; Merbach, A. E., Relaxivity of MRI contrast agents. Contrast 
Agents I: Magnetic Resonance Imaging 2002, 221, 61-101. 
24. Bloembergen, N.;  Purcell, E. M.; Pound, R. V., RELAXATION EFFECTS IN 
NUCLEAR-MAGNETIC-RESONANCE ABSORPTION. Resonances : a Volume in Honor of 
the 70th Birthday of Nicolaas Bloembergen 1990, 411-444. 
25. Rogosnitzky, M.; Branch, S., Gadolinium-based contrast agent toxicity: a 
review of known and proposed mechanisms. Biometals 2016, 29 (3), 365-376. 
26. Weller, A.;  Barber, J. L.; Olsen, O. E., Gadolinium and nephrogenic systemic 
fibrosis: an update. Pediatric Nephrology 2014, 29 (10), 1927-1937. 
27. Do, C.;  Barnes, J. L.;  Tan, C.; Wagner, B., Type of MRI contrast, tissue 
gadolinium, and fibrosis. American journal of physiology. Renal physiology 2014, 307 
(7), F844-55. 
28. McDonald, R. J.;  McDonald, J. S.;  Kallmes, D. F.;  Jentoft, M. E.;  Murray, D. L.;  
Thielen, K. R.;  Williamson, E. E.; Eckel, L. J., Intracranial Gadolinium Deposition after 
Contrast-enhanced MR Imaging. Radiology 2015, 275 (3), 772-782. 
29. Kanda, T.;  Ishii, K.;  Kawaguchi, H.;  Kitajima, K.; Takenaka, D., High Signal 
Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR 
Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast 
Material. Radiology 2014, 270 (3), 834-841. 
30. Raymond, K. N., Next generation, high relaxivity gadolinium MRI agents. 
Abstracts of Papers of the American Chemical Society 2004, 227, U145-U146. 



127 
 

31. Acharya, A., A Prospective Combination of Nanotechnology and Medicine: 
Nanomedicine. International Journal of Advanced Biotechnology and Research 2017, 8 
(2), 915-920. 
32. Sen Gupta, A., Role of particle size, shape, and stiffness in design of 
intravascular drug delivery systems: insights from computations, experiments, and 
nature. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2016, 8 
(2), 255-270. 
33. Vieira, D. B.; Gamarra, L. F., Advances in the use of nanocarriers for cancer 
diagnosis and treatment. Einstein-Sao Paulo 2016, 14 (1), 99-103. 
34. Din, F. U.;  Aman, W.;  Ullah, I.;  Qureshi, O. S.;  Mustapha, O.;  Shafique, S.; 
Zeb, A., Effective use of nanocarriers as drug delivery systems for the treatment of 
selected tumors. International Journal of Nanomedicine 2017, 12, 7291-7309. 
35. Biffi, S.;  Voltan, R.;  Rampazzo, E.;  Prodi, L.;  Zauli, G.; Secchiero, P., 
Applications of nanoparticles in cancer medicine and beyond: optical and multimodal 
in vivo imaging, tissue targeting and drug delivery. Expert Opinion on Drug Delivery 
2015, 12 (12), 1837-1849. 
36. Patel, T.;  Zhou, J. B.;  Piepmeier, J. M.; Saltzman, W. M., Polymeric 
nanoparticles for drug delivery to the central nervous system. Advanced Drug Delivery 
Reviews 2012, 64 (7), 701-705. 
37. Zhong, Y. A.;  Meng, F. H.;  Deng, C.; Zhong, Z. Y., Ligand-Directed Active 
Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. 
Biomacromolecules 2014, 15 (6), 1955-1969. 
38. Tripodo, G.;  Trapani, A.;  Torre, M. L.;  Giammona, G.;  Trapani, G.; 
Mandracchia, D., Hyaluronic acid and its derivatives in drug delivery and imaging: 
recent advances and challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400-416. 
39. Chen, H. Y.;  Qi, B.;  Moore, T.;  Wang, F. L.;  Colvin, D. C.;  Sanjeewa, L. D.;  
Gore, J. C.;  Hwu, S. J.;  Mefford, O. T.;  Alexis, F.; Anker, J. N., Multifunctional Yolk-in-
Shell Nanoparticles for pH-triggered Drug Release and Imaging. Small 2014, 10 (16), 
3364-3370. 
40. Courant, T.;  Roullin, V. G.;  Cadiou, C.;  Callewaert, M.;  Andry, M. C.;  
Portefaix, C.;  Hoeffel, C.;  de Goltstein, M. C.;  Port, M.;  Laurent, S.;  Vander Elst, L.;  
Muller, R.;  Molinari, M.; Chuburu, F., Hydrogels Incorporating GdDOTA: Towards 
Highly Efficient Dual T1/T2 MRI Contrast Agents. Angewandte Chemie-International 
Edition 2012, 51 (36), 9119-9122. 
41. Russo, M.;  Bevilacqua, P.;  Netti, P. A.; Torino, E., A Microfluidic Platform to 
design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI. 
Scientific Reports 2016, 6. 
42. Russo, M.;  Grimaldi, A. M.;  Bevilacqua, P.;  Tammaro, O.;  Netti, P. A.; Torino, 
E., PEGylated crosslinked hyaluronic acid nanoparticles designed through a 
microfluidic platform for nanomedicine. Nanomedicine 2017, 12 (18), 2211-2222. 



128 
 

43. Russo, M.;  Ponsiglione, A. M.;  Forte, E.;  Netti, P. A.; Torino, E., 
Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked 
hyaluronic acid nanoparticles. Nanomedicine 2017, 12 (18), 2199-2210. 
44. Ponsiglione, A. M.;  Russo, M.;  Netti, P. A.; Torino, E., Impact of biopolymer 
matrices on relaxometric properties of contrast agents. Interface Focus 2016, 6 (6). 
45. Srinivas, M.;  Heerschap, A.;  Ahrens, E. T.;  Figdor, C. G.; de Vries, I. J. M., F-19 
MRI for quantitative in vivo cell tracking. Trends in Biotechnology 2010, 28 (7), 363-
370. 
46. Wang, K. W.;  Peng, H.;  Thurecht, K. J.; Whittaker, A. K., Fluorinated POSS-Star 
Polymers for F-19 MRI. Macromolecular Chemistry and Physics 2016, 217 (20), 2262-
2274. 
47. Gizzatov, A.;  Stigliano, C.;  Ananta, J. S.;  Sethi, R.;  Xu, R.;  Guven, A.;  
Ramirez, M.;  Shen, H. F.;  Sood, A.;  Ferrari, M.;  Wilson, L. J.;  Liu, X. W.; Decuzzi, P., 
Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon 
nanoconstructs for MR imaging of cancer. Cancer Lett. 2014, 352 (1), 97-101. 
48. Vecchione, D.;  Grimaldi, A. M.;  Forte, E.;  Bevilacqua, P.;  Netti, P. A.; Torino, 
E., Hybrid Core-Shell (HyCoS) Nanoparticles produced by Complex Coacervation for 
Multimodal Applications. Scientific Reports 2017, 7. 
49. Vecchione, D.;  Aiello, M.;  Cavaliere, C.;  Nicolai, E.;  Netti, P. A.; Torino, E., 
Hybrid core shell nanoparticles entrapping Gd-DTPA and F-18-FDG for simultaneous 
PET/MRI acquisitions. Nanomedicine 2017, 12 (18), 2223-2231. 
50. Tsitsilianis, C.;  Gotzamanis, G.; Iatridi, Z., Design of "smart" segmented 
polymers by incorporating random copolymers as building blocks. European Polymer 
Journal 2011, 47 (4), 497-510. 
51. van Nostrum, C. F., Covalently cross-linked amphiphilic block copolymer 
micelles. Soft Matter 2011, 7 (7), 3246-3259. 
52. Epps, T. H.; O'Reilly, R. K., Block copolymers: controlling nanostructure to 
generate functional materials - synthesis, characterization, and engineering. Chemical 
Science 2016, 7 (3), 1674-1689. 
53. Feng, H. B.;  Lu, X. Y.;  Wang, W. Y.;  Kang, N. G.; Mays, J. W., Block 
Copolymers: Synthesis, Self-Assembly, and Applications. Polymers 2017, 9 (10). 
54. Xiao, Y.;  Xue, R.;  You, T. Y.;  Li, X. J.; Pei, F. K., A new biodegradable and 
biocompatible gadolinium (III) -polymer for liver magnetic resonance imaging contrast 
agent. Magnetic Resonance Imaging 2015, 33 (6), 822-828. 
55. Hou, S. J.;  Tong, S.;  Zhou, J.; Bao, G., Block copolymer-based gadolinium 
nanoparticles as MRI contrast agents with high T-1 relaxivity. Nanomedicine 2012, 7 
(2), 211-218. 
56. Cao, Y.;  Liu, M.;  Kuang, Y.;  Zu, G. Y.;  Xiong, D. S.; Pei, R. J., A poly(epsilon-
caprolactone)-poly(glycerol)-poly(epsilon-caprolactone) triblock copolymer for 
designing a polymeric micelle as a tumor targeted magnetic resonance imaging 
contrast agent. Journal of Materials Chemistry B 2017, 5 (42), 8408-8416. 



129 
 

57. Luo, B. H.;  Wang, S. Q.;  Rao, R.;  Liu, X. H.;  Xu, H. B.;  Wu, Y.;  Yang, X. L.; Liu, 
W., Conjugation Magnetic PAEEP-PLLA Nanoparticles with Lactoferrin as a Specific 
Targeting MRI Contrast Agent for Detection of Brain Glioma in Rats. Nanoscale 
Research Letters 2016, 11. 
58. Jeong, S. Y.;  Kim, H. J.;  Kwak, B. K.;  Lee, H. Y.;  Seong, H.;  Shin, B. C.;  Yuk, S. 
H.;  Hwang, S. J.; Cho, S. H., Biocompatible Polyhydroxyethylaspartamide-based 
Micelles with Gadolinium for MRI Contrast Agents. Nanoscale Research Letters 2010, 
5 (12), 1970-1976. 
59. Ge, Z. S.; Liu, S. Y., Functional block copolymer assemblies responsive to 
tumor and intracellular microenvironments for site-specific drug delivery and 
enhanced imaging performance. Chemical Society Reviews 2013, 42 (17), 7289-7325. 
60. Kato, Y.;  Ozawa, S.;  Miyamoto, C.;  Maehata, Y.;  Suzuki, A.;  Maeda, T.; Baba, 
Y., Acidic extracellular microenvironment and cancer. Cancer Cell International 2013, 
13. 
61. Gao, G. H.;  Im, G. H.;  Kim, M. S.;  Lee, J. W.;  Yang, J.;  Jeon, H.;  Lee, J. H.; Lee, 
D. S., Magnetite-Nanoparticle-Encapsulated pH-Responsive Polymeric Micelle as an 
MRI Probe for Detecting Acidic Pathologic Areas. Small 2010, 6 (11), 1201-1204. 
62. Okada, S.;  Mizukami, S.; Kikuchi, K., Application of a Stimuli-Responsive 
Polymer to the Development of Novel MRI Probes. Chembiochem 2010, 11 (6), 785-
787. 
63. Zhu, L. P.;  Yang, Y.;  Farquhar, K.;  Wang, J. J.;  Tian, C. X.;  Ranville, J.; Boyes, 
S. G., Surface Modification of Gd Nanoparticles with pH-Responsive Block Copolymers 
for Use As Smart MRI Contrast Agents. Acs Applied Materials & Interfaces 2016, 8 (7), 
5040-5050. 
64. Hu, J. M.;  Liu, T.;  Zhang, G. Y.;  Jin, F.; Liu, S. Y., Synergistically Enhance 
Magnetic Resonance/Fluorescence Imaging Performance of Responsive Polymeric 
Nanoparticles Under Mildly Acidic Biological Milieu. Macromolecular Rapid 
Communications 2013, 34 (9), 749-758. 
65. Hu, X. L.;  Liu, G. H.;  Li, Y.;  Wang, X. R.; Liu, S. Y., Cell-Penetrating 
Hyperbranched Polyprodrug Amphiphiles for Synergistic Reductive Milieu-Triggered 
Drug Release and Enhanced Magnetic Resonance Signals. Journal of the American 
Chemical Society 2015, 137 (1), 362-368. 
66. Mouffouk, F.;  Simao, T.;  Dornelles, D. F.;  Lopes, A. D.;  Sau, P.;  Martins, J.;  
Abu-Salah, K. M.;  Alrokayan, S. A.;  da Costa, A. M. R.; dos Santos, N. R., Self-
assembled polymeric nanoparticles as new, smart contrast agents for cancer early 
detection using magnetic resonance imaging. International Journal of Nanomedicine 
2015, 10, 63-76. 
67. Tsai, H. C.;  Chang, W. H.;  Lo, C. L.;  Tsai, C. H.;  Chang, C. H.;  Ou, T. W.;  Yen, 
T. C.; Hsiue, G. H., Graft and diblock copolymer multifunctional micelles for cancer 
chemotherapy and imaging. Biomaterials 2010, 31 (8), 2293-2301. 
68. Locatelli, E.;  Gil, L.;  Israel, L. L.;  Passoni, L.;  Naddaka, M.;  Pucci, A.;  Reese, 
T.;  Gomez-Vallejo, V.;  Milani, P.;  Matteoli, M.;  Llop, J.;  Lellouche, J. P.; Franchini, M. 



130 
 

C., Biocompatible nanocomposite for PET/MRI hybrid imaging. International Journal 
of Nanomedicine 2012, 7, 6021-6033. 
69. Zhang, P.;  Guo, Z. D.;  Zhang, D. L.;  Liu, C.;  Chen, G. B.;  Zhuang, R. Q.;  Song, 
M. L.;  Wu, H.; Zhang, X. Z., A Novel Copolymer-Based Functional SPECT/MR Imaging 
Agent for Asialoglycoprotein Receptor Targeting. Molecular Imaging 2016, 15. 
70. Porsch, C.;  Zhang, Y. N.;  Ostlund, A.;  Damberg, P.;  Ducani, C.;  Malmstrom, 
E.; Nystrom, A. M., In Vitro Evaluation of Non-Protein Adsorbing Breast Cancer 
Theranostics Based on 19F-Polymer Containing Nanoparticles. Particle & Particle 
Systems Characterization 2013, 30 (4), 381-390. 
71. Koziolova, E.;  Goel, S.;  Chytil, P.;  Janouskova, O.;  Barnhart, T. E.;  Cai, W. B.; 
Etrych, T., A tumor-targeted polymer theranostics platform for positron emission 
tomography and fluorescence imaging. Nanoscale 2017, 9 (30), 10906-10918. 
72. Kamaly, N.; Miller, A. D., Paramagnetic Liposome Nanoparticles for Cellular 
and Tumour Imaging. International Journal of Molecular Sciences 2010, 11 (4), 1759-
1776. 
73. Zou, J.;  Sood, R.;  Ranjan, S.;  Poe, D.;  Ramadan, U. A.;  Kinnunen, P. K. J.; 
Pyykko, I., Manufacturing and in vivo inner ear visualization of MRI traceable liposome 
nanoparticles encapsulating gadolinium. Journal of Nanobiotechnology 2010, 8. 
74. Bui, T.;  Stevenson, J.;  Hoekman, J.;  Zhang, S. R.;  Maravilla, K.; Ho, R. J. Y., 
Novel Gd Nanoparticles Enhance Vascular Contrast for High-Resolution Magnetic 
Resonance Imaging. Plos One 2010, 5 (9). 
75. Kono, K.;  Nakashima, S.;  Kokuryo, D.;  Aoki, I.;  Shimomoto, H.;  Aoshima, S.;  
Maruyama, K.;  Yuba, E.;  Kojima, C.;  Harada, A.; Ishizaka, Y., Multi-functional 
liposomes having temperature-triggered release and magnetic resonance imaging for 
tumor-specific chemotherapy. Biomaterials 2011, 32 (5), 1387-1395. 
76. Na, K.;  Lee, S. A.;  Jung, S. H.; Shin, B. C., Gadolinium-based cancer 
therapeutic liposomes for chemotherapeutics and diagnostics. Colloids and Surfaces 
B-Biointerfaces 2011, 84 (1), 82-87. 
77. Li, W.;  Su, B.;  Meng, S. Y.;  Ju, L. X.;  Yan, L. H.;  Ding, Y. M.;  Song, Y.;  Zhou, 
W.;  Li, H. Y.;  Tang, L.;  Zhao, Y. M.; Zhou, C. C., RGD-targeted paramagnetic liposomes 
for early detection of tumor: In vitro and in vivo studies. European Journal of 
Radiology 2011, 80 (2), 598-606. 
78. Liao, Z. Y.;  Wang, H. J.;  Wang, X. D.;  Zhao, P. Q.;  Wang, S.;  Su, W. Y.; Chang, 
J., Multifunctional Nanoparticles Composed of A Poly(DL-lactide-coglycolide) Core and 
A Paramagnetic Liposome Shell for Simultaneous Magnetic Resonance Imaging and 
Targeted Therapeutics. Advanced Functional Materials 2011, 21 (6), 1179-1186. 
79. Gianolio, E.;  Porto, S.;  Napolitano, R.;  Baroni, S.;  Giovenzana, G. B.; Aime, S., 
Relaxometric Investigations and MRI Evaluation of a Liposome-Loaded pH-Responsive 
Gadolinium(III) Complex. Inorganic Chemistry 2012, 51 (13), 7210-7217. 
80. Hossann, M.;  Wang, T. T.;  Syunyaeva, Z.;  Wiggenhorn, M.;  Zengerle, A.;  
Issels, R. D.;  Reiser, M.;  Lindner, L. H.; Peller, M., Non-ionic Gd-based MRI contrast 



131 
 

agents are optimal for encapsulation into phosphatidyldiglycerol-based 
thermosensitive liposomes. Journal of Controlled Release 2013, 166 (1), 22-29. 
81. Thomsen, H. S.;  Morcos, S. K.;  Almen, T.;  Bellin, M. F.;  Bertolotto, M.;  
Bongartz, G.;  Clement, O.;  Leander, P.;  Heinz-Peer, G.;  Reimer, P.;  Stacul, F.;  van 
der Molen, A.; Webb, J. A. W., Nephrogenic systemic fibrosis and gadolinium-based 
contrast media: updated ESUR Contrast Medium Safety Committee guidelines. 
European Radiology 2013, 23 (2), 307-318. 
82. Cheng, Z. L.;  Al Zaki, A.;  Jones, I. W.;  Hall, H. K.;  Aspinwall, C. A.; Tsourkas, 
A., Stabilized porous liposomes with encapsulated Gd-labeled dextran as a highly 
efficient MRI contrast agent. Chemical Communications 2014, 50 (19), 2502-2504. 
83. Park, J. H.;  Cho, H. J.;  Yoon, H. Y.;  Yoon, I. S.;  Ko, S. H.;  Shim, J. S.;  Cho, J. H.;  
Kim, K.;  Kwon, I. C.; Kim, D. D., Hyaluronic acid derivative-coated nanohybrid 
liposomes for cancer imaging and drug delivery. Journal of Controlled Release 2014, 
174, 98-108. 
84. Smith, C. E.;  Shkumatov, A.;  Withers, S. G.;  Yang, B. X.;  Glockner, J. F.;  
Misra, S.;  Roy, E. J.;  Wong, C. H.;  Zimmerman, S. C.; Kong, H., A Polymeric Fastener 
Can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic 
Resonance Imaging. Acs Nano 2013, 7 (11), 9599-9610. 
85. Gu, M. J.;  Li, K. F.;  Zhang, L. X.;  Wang, H.;  Liu, L. S.;  Zheng, Z. Z.;  Han, N. Y.;  
Yang, Z. J.; Fan, T. Y., In vitro study of novel gadolinium-loaded liposomes guided by 
GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic 
resonance imaging. International Journal of Nanomedicine 2015, 10, 5187-5204. 
86. Silva, S. R.;  Duarte, E. C.;  Ramos, G. S.;  Kock, F. V. C.;  Andrade, F. D.;  
Frezard, F.;  Colnago, L. A.; Demicheli, C., Gadolinium(III) Complexes with N-Alkyl-N-
methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast 
Agents. Bioinorganic Chemistry and Applications 2015. 
87. Xiao, Y. A.;  Liu, Y. J.;  Yang, S. M.;  Zhang, B.;  Wang, T. Q.;  Jiang, D. D.;  Zhang, 
J.;  Yu, D. X.; Zhang, N., Sorafenib and gadolinium co-loaded liposomes for drug 
delivery and MRI-guided HCC treatment. Colloids and Surfaces B-Biointerfaces 2016, 
141, 83-92. 
88. Necas, J.;  Bartosikova, L.;  Brauner, P.; Kolar, J., Hyaluronic acid (hyaluronan): 
a review. Veterinarni Medicina 2008, 53 (8), 397-411. 
89. Port, M.;  Raynal, I.;  Elst, L. V.;  Muller, R. N.;  Dioury, F.;  Ferroud, C.; Guy, A., 
Impact of rigidification on relaxometric properties of a tricyclic tetraazatriacetic 
gadolinium chelate. Contrast Media & Molecular Imaging 2006, 1 (3), 121-127. 
90. Jaszberenyi, Z.;  Sour, A.;  Toth, E.;  Benmelouka, M.; Merbach, A. E., Fine-
tuning water exchange on Gd-III poly(amino carboxylates) by modulation of steric 
crowding. Dalton Transactions 2005,  (16), 2713-2719. 
91. Ruloff, R.;  Toth, E.;  Scopelliti, R.;  Tripier, R.;  Handel, H.; Merbach, A. E., 
Accelerating water exchange for Gd-III chelates by steric compression around the 
water binding site. Chemical Communications 2002,  (22), 2630-2631. 



132 
 

92. Ananta, J. S.;  Godin, B.;  Sethi, R.;  Moriggi, L.;  Liu, X.;  Serda, R. E.;  
Krishnamurthy, R.;  Muthupillai, R.;  Bolskar, R. D.;  Helm, L.;  Ferrari, M.;  Wilson, L. J.; 
Decuzzi, P., Geometrical confinement of gadolinium-based contrast agents in 
nanoporous particles enhances T-1 contrast. Nature Nanotechnology 2010, 5 (11), 
815-821. 
93. Sethi, R.;  Ananta, J. S.;  Karmonik, C.;  Zhong, M.;  Fung, S. H.;  Liu, X.;  Li, K.;  
Ferrari, M.;  Wilson, L. J.; Decuzzi, P., Enhanced MRI relaxivity of Gd3+-based contrast 
agents geometrically confined within porous nanoconstructs. Contrast Media & 
Molecular Imaging 2012, 7 (6), 501-508. 
94. Callewaert, M.;  Roullin, V. G.;  Cadiou, C.;  Millart, E.;  Van Gulik, L.;  Andry, M. 
C.;  Portefaix, C.;  Hoeffel, C.;  Laurent, S.;  Vander Elst, L.;  Muller, R.;  Molinari, M.; 
Chuburu, F., Tuning the composition of biocompatible Gd nanohydrogels to achieve 
hypersensitive dual T-1/T-2 MRI contrast agents. Journal of Materials Chemistry B 
2014, 2 (37), 6397-6405. 
95. Berezin, M. Y., Nanotechnology for Biomedical Imaging and Diagnostics: From 
Nanoparticle Design to Clinical Applications. Wiley: 2015. 
96. Zhu, W.; Artemov, D., Biocompatible blood pool MRI contrast agents based on 
hyaluronan. Contrast Media & Molecular Imaging 2011, 6 (2), 61-68. 
97. Dash, M.;  Chiellini, F.;  Ottenbrite, R. M.; Chiellini, E., Chitosan-A versatile 
semi-synthetic polymer in biomedical applications. Progress in Polymer Science 2011, 
36 (8), 981-1014. 
98. Ponsiglione, A. M.;  Russo, M.;  Netti, P. A.; Torino, E., Impact of biopolymer 
matrices on relaxometric properties of contrast agents. Interface Focus 2016, 6 (6), 
20160061 - 20160061. 
99. Russo, M.;  Bevilacqua, P.;  Netti, P. A.; Torino, E., Commentary on "A 
Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs) 
for Enhanced MRI". Molecular Imaging 2017, 16. 
100. Okada, S.;  Mizukami, S.; Kikuchi, K., Switchable MRI contrast agents based on 
morphological changes of pH-responsive polymers. Bioorganic & Medicinal Chemistry 
2012, 20 (2), 769-774. 
101. Vecchione, D.;  Grimaldi, A.;  Forte, E.;  Bevilacqua, P.;  Netti, P.; Torino, E., 
Hybrid Core-Shell (HyCoS) Nanoparticles produced by Complex Coacervation for 
Multimodal Applications. Sci. Rep. 2017, 7, 45121. 
102. Vecchione, D.;  Aiello, M.;  Cavaliere, C.;  Nicolai, E.;  Netti, P. A.; Torino, E., 
Hybrid core shell nanoparticles entrapping Gd-DTPA and 18F-FDG for simultaneous 
PET/MRI acquisitions. Nanomedicine 2017, 12 (18), 2223-2231. 
103. Wood, M. L.; Hardy, P. A., Proton relaxation enhancement. J. Magn. Reson. 
Imaging 1993, 3 (1), 149-156. 
104. Li, Y.;  Beija, M.;  Laurent, S.;  vander Elst, L.;  Muller, R. N.;  Duong, H. T. T.;  
Lowe, A. B.;  Davis, T. P.; Boyer, C., Macromolecular Ligands for Gadolinium MRI 
Contrast Agents. Macromolecules 2012, 45 (10), 4196-4204. 



133 
 

105. Courant, T.;  Roullin, G. V.;  Cadiou, C.;  Callewaert, M.;  Andry, M. C.;  
Portefaix, C.;  Hoeffel, C.;  de Goltstein, M. C.;  Port, M.;  Laurent, S.;  Vander Elst, L.;  
Muller, R. N.;  Molinari, M.; Chuburu, F., Biocompatible nanoparticles and gadolinium 
complexes for MRI applications. Comptes Rendus Chimie 2013, 16 (6), 531-539. 
106. Pasqui, D.;  De Cagna, M.; Barbucci, R., Polysaccharide-Based Hydrogels: The 
Key Role of Water in Affecting Mechanical Properties. Polymers 2012, 4 (3), 1517-
1534. 
107. Sierra-Martin, B.; Fernandez-Barbero, A., Multifunctional hybrid nanogels for 
theranostic applications. Soft Matter 2015, 11 (42), 8205-8216. 
108. Raemdonck, K.;  Demeester, J.; De Smedt, S., Advanced nanogel engineering 
for drug delivery. Soft Matter 2009, 5 (4), 707-715. 
109. Pal, K.;  Banthia, A. K.; Majumdar, D. K., Polymeric Hydrogels: Characterization 
and Biomedical Applications. Designed Monomers and Polymers 2009, 12 (3), 197-
220. 
110. Davies, G.-L.;  Kramberger, I.; Davis, J. J., Environmentally responsive MRI 
contrast agents. Chemical Communications 2013, 49 (84), 9704-9721. 
111. Panagopoulou, A.;  Vazquez Molina, J.;  Kyritsis, A.;  Monleon Pradas, M.;  
Valles Lluch, A.;  Gallego Ferrer, G.; Pissis, P., Glass Transition and Water Dynamics in 
Hyaluronic Acid Hydrogels. Food Biophysics 2013, 8 (3), 192-202. 
112. Vázquez, B.;  San Roman, J.;  Peniche, C.; Cohen, M. E., Polymeric hydrophilic 
hydrogels with flexible hydrophobic chains. Control of the hydration and interactions 
with water molecules. Macromolecules 1997, 30 (26), 8440-8446. 
113. Budkov, Y. A.;  Kolesnikov, A.;  Georgi, N.; Kiselev, M., A flexible polymer chain 
in a critical solvent: Coil or globule? EPL (Europhysics Letters) 2015, 109 (3), 36005. 
114. Flory, P. J., Thermodynamics of high polymer solutions. The Journal of 
chemical physics 1942, 10 (1), 51-61. 
115. Martinez, J. C.;  Cobos, E. S.;  Luque, I.;  Murciano-Calles, J.;  Ruiz-Sanz, J.; 
Iglesias-Bexiga, M., Isothermal titration calorimetry: thermodynamic analysis of the 
binding thermograms of molecular recognition events by using equilibrium models. 
INTECH Open Access Publisher: 2013. 
116. Kabiri, M.; Unsworth, L. D., Application of Isothermal Titration Calorimetry for 
Characterizing Thermodynamic Parameters of Biomolecular Interactions: Peptide Self-
Assembly and Protein Adsorption Case Studies. Biomacromolecules 2014, 15 (10), 
3463-3473. 
117. Gouin, S.; Winnik, F. M., Quantitative assays of the amount of 
diethylenetriaminepentaacetic acid conjugated to water-soluble polymers using 
isothermal titration calorimetry and colorimetry. Bioconjugate Chemistry 2001, 12 (3), 
372-377. 
118. Strain, S. M.;  Fesik, S. W.; Armitage, I. M., Structure and metal-binding 
properties of lipopolysaccharides from heptoseless mutants of Escherichia coli 
studied by 13C and 31P nuclear magnetic resonance. J. Biol. Chem. 1983, 258 (22), 
13466-13477. 



134 
 

119. Prudencio, M.;  Rohovec, J.;  Peters, J. A.;  Tocheva, E.;  Boulanger, M. J.;  
Murphy, M. E.;  Hupkes, H. J.;  Kosters, W.;  Impagliazzo, A.; Ubbink, M., A caged 
lanthanide complex as a paramagnetic shift agent for protein NMR. Chemistry-A 
European Journal 2004, 10 (13), 3252-3260. 
120. Yoshida, H.;  Hatakeyama, T.; Hatakeyama, H., CHARACTERIZATION OF WATER 
IN POLYSACCHARIDE HYDROGELS BY DSC. Journal of Thermal Analysis and Calorimetry 
1993, 40 (2), 483-489. 
121. Yoshida, H.;  Hatakeyama, T.; Hatakeyama, H., EFFECT OF WATER ON THE 
MAIN CHAIN MOTION OF POLYSACCHARIDE HYDROGELS. Acs Symposium Series 1992, 
489, 217-230. 
122. Diao, Y.;  Whaley, K. E.;  Helgeson, M. E.;  Woldeyes, M. A.;  Doyle, P. S.;  
Myerson, A. S.;  Hatton, T. A.; Trout, B. L., Gel-Induced Selective Crystallization of 
Polymorphs. Journal of the American Chemical Society 2012, 134 (1), 673-684. 
123. Shogbon, C. B.;  Brousseau, J.-L.;  Zhang, H.;  Benicewicz, B. C.; Akpalu, Y. A., 
Determination of the molecular parameters and studies of the chain conformation of 
polybenzimidazole in DMAc/LiCl. Macromolecules 2006, 39 (26), 9409-9418. 
124. Tao, Z. Molecular Dynamics Simulation Study of PEO-based Polymer 
Electrolytes in Aqueous Solution. Vanderbilt University, 2008. 
125. Teraoka, I., Polymer solutions: an Introduction to Physical Properties. 2002. 
126. Shetye, S. P.;  Godbole, A.;  Bhilegaokar, S.; Gajare, P., Hydrogels: 
Introduction, Preparation, Characterization and Applications. International Journal of 
Research Methodologies 2015, 1 (1). 
127. Tondera, C.;  Wieduwild, R.;  Röder, E.;  Werner, C.;  Zhang, Y.; Pietzsch, J., In 
Vivo Examination of an Injectable Hydrogel System Crosslinked by Peptide–
Oligosaccharide Interaction in Immunocompetent Nude Mice. Advanced Functional 
Materials 2017, 27 (15). 
128. Mikhailov, O. V., Molecular nanotechnologies of gelatin-immobilization using 
macrocyclic metal chelates. Nano reviews 2014, 5. 
129. Riess, G., Micellization of block copolymers. Progress in Polymer Science 2003, 
28 (7), 1107-1170. 
130. Pomogailo, A. D., Polymer-Immobilised Clusters of the Platinum Group 
Metals. Platinum Metals Review 1994, 38 (2), 60-70. 
131. Aime, S.;  Frullano, L.; Crich, S. G., Compartmentalization of a gadolinium 
complex in the apoferritin cavity: A route to obtain high relaxivity contrast agents for 
magnetic resonance imaging. Angewandte Chemie-International Edition 2002, 41 (6), 
1017-+. 
132. Vogler, E. A., Role of water in biomaterials. Biomaterials Science, 2nd 
edn.(Elsevier Academic Press, San Diego, 2004) pp 2004, 59. 
133. Průšová, A.;  Šmejkalová, D.;  Chytil, M.;  Velebný, V.; Kučerík, J., An 
alternative DSC approach to study hydration of hyaluronan. Carbohydrate polymers 
2010, 82 (2), 498-503. 



135 
 

134. Ivanov, D.; Neamtu, A., MOLECULAR DYNAMICS EVALUATION OF 
HYALURONAN INTERACTIONS WITH DIMETHYLSILANEDIOL IN AQUEOUS SOLUTION. 
Revue Roumaine De Chimie 2013, 58 (2-3), 229-238. 
135. Guillaumie, F.;  Furrer, P.;  Felt-Baeyens, O.;  Fuhlendorff, B. L.;  Nymand, S.;  
Westh, P.;  Gurny, R.; Schwach-Abdellaoui, K., Comparative studies of various 
hyaluronic acids produced by microbial fermentation for potential topical ophthalmic 
applications. Journal of Biomedical Materials Research Part A 2010, 92A (4), 1421-
1430. 
136. Velasco, D.;  Tumarkin, E.; Kumacheva, E., Microfluidic Encapsulation of Cells 
in Polymer Microgels. Small 2012, 8 (11), 1633-1642. 
137. Peppas, N. A.;  Huang, Y.;  Torres-Lugo, M.;  Ward, J. H.; Zhang, J., 
Physicochemical, foundations and structural design of hydrogels in medicine and 
biology. Annual Review of Biomedical Engineering 2000, 2, 9-29. 
138. Johnson, D. L., Elastodynamics of gels. The Journal of Chemical Physics 1982, 
77 (3), 1531-1539. 
139. Strom, A.;  Larsson, A.; Okay, O., Preparation and physical properties of 
hyaluronic acid-based cryogels. Journal of Applied Polymer Science 2015, 132 (29). 
140. Utech, S.; Boccaccini, A. R., A review of hydrogel-based composites for 
biomedical applications: enhancement of hydrogel properties by addition of rigid 
inorganic fillers. Journal of Materials Science 2016, 51 (1), 271-310. 
141. Phinikaridou, A.;  Andia, M. E.;  Protti, A.;  Indermuehle, A.;  Shah, A.;  Smith, 
A.;  Warley, A.; Botnar, R. M., Noninvasive MRI Evaluation of Endothelial Permeability 
in Murine Atherosclerosis Using an Albumin-Binding Contrast Agent. Circulation 2012, 
CIRCULATIONAHA. 112.092098. 
142. Laurent, T. C., The chemistry, biology and medical applications of hyaluronan 
and its derivatives - Introduction. Chemistry, Biology and Medical Applications of 
Hyaluronan and Its Derivatives 1998, 72, 1-2. 
143. Sionkowska, A., Current research on the blends of natural and synthetic 
polymers as new biomaterials: Review. Progress in Polymer Science 2011, 36 (9), 
1254-1276. 
144. Kogan, G.;  Soltes, L.;  Stern, R.; Gemeiner, P., Hyaluronic acid: a natural 
biopolymer with a broad range of biomedical and industrial applications. 
Biotechnology Letters 2007, 29 (1), 17-25. 
145. Schante, C. E.;  Zuber, G.;  Herlin, C.; Vandamme, T. F., Chemical modifications 
of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical 
applications. Carbohydrate Polymers 2011, 85 (3), 469-489. 
146. Khunmanee, S.;  Jeong, Y.; Park, H., Crosslinking method of hyaluronic-based 
hydrogel for biomedical applications. Journal of Tissue Engineering 2017, 8. 
147. Sahiner, N.; Ja, X. Q., One-step synthesis of hyaluronic acid-based (sub)micron 
hydrogel particles: Process optimization and preliminary characterization. Turkish 
Journal of Chemistry 2008, 32 (4), 397-409. 



136 
 

148. Laurent, T. C.; Fraser, J. R. E., HYALURONAN. Faseb Journal 1992, 6 (7), 2397-
2404. 
149. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A 
review. Journal of Advanced Research 2015, 6 (2), 105-121. 
150. Shimojo, A. A. M.;  Pires, A. M. B.;  Lichy, R.; Santana, M. H. A., The 
Performance of Crosslinking with Divinyl Sulfone as Controlled by the Interplay 
Between the Chemical Modification and Conformation of Hyaluronic Acid. Journal of 
the Brazilian Chemical Society 2015, 26 (3), 506-512. 
151. Ibrahim, S.;  Kang, Q. K.; Ramamurthi, A., The impact of hyaluronic acid 
oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-
crosslinked hyaluronic acid hydrogels. Journal of Biomedical Materials Research Part A 
2010, 94A (2), 355-370. 
152. Collins, M. N.; Birkinshaw, C., Physical properties of crosslinked hyaluronic 
acid hydrogels. Journal of Materials Science-Materials in Medicine 2008, 19 (11), 
3335-3343. 
153. Bibette, J.;  Calderon, F. L.; Poulin, P., Emulsions: basic principles. Reports on 
Progress in Physics 1999, 62 (6), 969-1033. 
154. Oh, J. K.;  Lee, D. I.; Park, J. M., Biopolymer-based microgels/nanogels for drug 
delivery applications. Progress in Polymer Science 2009, 34 (12), 1261-1282. 
155. Yun, Y. H.;  Goetz, D. J.;  Yellen, P.; Chen, W. L., Hyaluronan microspheres for 
sustained gene delivery and site-specific targeting. Biomaterials 2004, 25 (1), 147-157. 
156. Sahiner, N., Colloidal nanocomposite hydrogel particles. Colloid and Polymer 
Science 2007, 285 (4), 413-421. 
157. Maroda, M.;  Bodnar, M.;  Berko, S.;  Bako, J.;  Eroes, G.;  Csanyi, E.;  Szabo-
Revesz, P.;  Hartmann, J. F.;  Kemeny, L.; Borbely, J., Preparation and investigation of a 
cross-linked hyaluronan nanoparticles system. Carbohydrate Polymers 2011, 83 (3), 
1322-1329. 
158. Bodnar, M.;  Daroczi, L.;  Batta, G.;  Bako, J.;  Hartmann, J. F.; Borbely, J., 
Preparation and characterization of cross-linked hyaluronan nanoparticles. Colloid 
and Polymer Science 2009, 287 (8), 991-1000. 
159. Prata, J. E.;  Barth, T. A.;  Bencherif, S. A.; Washburn, N. R., Complex Fluids 
Based on Methacrylated Hyaluronic Acid. Biomacromolecules 2010, 11 (3), 769-775. 
160. Lee, H.;  Mok, H.;  Lee, S.;  Oh, Y.-K.; Park, T. G., Target-specific intracellular 
delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled 
Release 2007, 119 (2), 245-252. 
161. Messager, L.;  Portecop, N.;  Hachet, E.;  Lapeyre, V.;  Pignot-Paintrand, I.;  
Catargi, B.;  Auzely-Velty, R.; Ravaine, V., Photochemical crosslinking of hyaluronic 
acid confined in nanoemulsions: towards nanogels with a controlled structure. Journal 
of Materials Chemistry B 2013, 1 (27), 3369-3379. 
162. Cho, H.-J.;  Yoon, H. Y.;  Koo, H.;  Ko, S.-H.;  Shim, J.-S.;  Lee, J.-H.;  Kim, K.;  
Kwon, I. C.; Kim, D.-D., Self-assembled nanoparticles based on hyaluronic acid-



137 
 

ceramide (HA-CE) and Pluronic (R) for tumor-targeted delivery of docetaxel. 
Biomaterials 2011, 32 (29), 7181-7190. 
163. Mu, C.-F.;  Balakrishnan, P.;  Cui, F.-D.;  Yin, Y.-M.;  Lee, Y.-B.;  Choi, H.-G.;  
Yong, C. S.;  Chung, S.-J.;  Shim, C.-K.; Kim, D.-D., The effects of mixed MPEG-
PLA/Pluronic (R) copolymer micelles on the bioavailability and multidrug resistance of 
docetaxel. Biomaterials 2010, 31 (8), 2371-2379. 
164. Fakhari, A.;  Quang, P.;  Thakkar, S. V.;  Middaugh, C. R.; Berkland, C., 
Hyaluronic Acid Nanoparticles Titrate the Viscoelastic Properties of Viscosupplements. 
Langmuir 2013, 29 (17), 5123-5131. 
165. Boyken, J.;  Frenzel, T.;  Lohrke, J.;  Jost, G.; Pietsch, H., Gadolinium 
Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to 
Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig 
Study With High Similarity to Clinical Conditions. Invest. Radiol. 2018, 53 (5), 278-285. 
166. Jin, Y.-J.;  Ubonvan, T.; Kim, D.-D., Hyaluronic acid in drug delivery systems. 
Journal of Pharmaceutical Investigation 2010, 40 (spc), 33-43. 
167. Mengual, O.;  Meunier, G.;  Cayre, I.;  Puech, K.; Snabre, P., TURBISCAN MA 
2000: multiple light scattering measurement for concentrated emulsion and 
suspension instability analysis. Talanta 1999, 50 (2), 445-456. 
168. Balazs, E. A.; Leshchiner, A., Cross-linked gels of hyaluronic acid and products 
containing such gels. Google Patents: 1987. 
169. Sahiner, N.; Jia, X., One-Step Synthesis of Hyaluronic Acid-Based (Sub) micron 
Hydrogel Particles: Process Optimization and Preliminary Characterization. Turkish 
Journal of Chemistry 2008, 32 (4). 
170. Collins, M. N.; Birkinshaw, C., Investigation of the swelling behavior of 
crosslinked hyaluronic acid films and hydrogels produced using homogeneous 
reactions. Journal of Applied Polymer Science 2008, 109 (2), 923-931. 
171. Quignard, F.;  Di Renzo, F.; Guibal, E., From Natural Polysaccharides to 
Materials for Catalysis, Adsorption, and Remediation. Carbohydrates in Sustainable 
Development I: Renewable Resources for Chemistry and Biotechnology 2010, 294, 
165-197. 
172. Oh, E. J.;  Kang, S.-W.;  Kim, B.-S.;  Jiang, G.;  Cho, I. H.; Hahn, S. K., Control of 
the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. 
Journal of Biomedical Materials Research Part A 2008, 86A (3), 685-693. 
173. Jiang, W. G.;  Sanders, A. J.;  Katoh, M.;  Ungefroren, H.;  Gieseler, F.;  Prince, 
M.;  Thompson, S. K.;  Zollo, M.;  Spano, D.;  Dhawan, P.;  Sliva, D.;  Subbarayan, P. R.;  
Sarkar, M.;  Honoki, K.;  Fujii, H.;  Georgakilas, A. G.;  Amedei, A.;  Niccolai, E.;  Amin, 
A.;  Ashraf, S. S.;  Ye, L.;  Helferich, W. G.;  Yang, X.;  Boosani, C. S.;  Guha, G.;  Ciriolo, 
M. R.;  Aquilano, K.;  Chen, S.;  Azmi, A. S.;  Keith, W. N.;  Bilsland, A.;  Bhakta, D.;  
Halicka, D.;  Nowsheen, S.;  Pantano, F.; Santini, D., Tissue invasion and metastasis: 
Molecular, biological and clinical perspectives. Seminars in Cancer Biology 2015, 35, 
S244-S275. 



138 
 

174. Stella, G. M.;  Senetta, R.;  Cassenti, A.;  Ronco, M.; Cassoni, P., Cancers of 
unknown primary origin: current perspectives and future therapeutic strategies. 
Journal of Translational Medicine 2012, 10. 
175. Kircher, M. F.;  Hricak, H.; Larson, S. M., Molecular imaging for personalized 
cancer care. Molecular Oncology 2012, 6 (2), 182-195. 
176. Frampas, E., Lymphoma: some basic concepts a radiologist should know. 
Journal De Radiologie Diagnostique Et Interventionnelle 2013, 94 (2), 135-149. 
177. Tian, Y. F.;  Ahn, H.;  Schneider, R. S.;  Yang, S. N.;  Roman-Gonzalez, L.;  
Melnick, A. M.;  Cerchietti, L.; Singh, A., Integrin-specific hydrogels as adaptable tumor 
organoids for malignant B and T cells. Biomaterials 2015, 73, 110-119. 
178. van Krieken, J. H., New developments in the pathology of malignant 
lymphoma: a review of the literature published from January to April 2017. Journal of 
Hematopathology 2017, 10 (1), 25-33. 
179. Johnson, S. A.;  Kumar, A.;  Matasar, M. J.;  Schoder, H.; Rademaker, J., 
Imaging for Staging and Response Assessment in Lymphoma. Radiology 2015, 276 (2), 
322-337. 
180. Li, Z.;  Tan, S. R.;  Li, S.;  Shen, Q.; Wang, K. H., Cancer drug delivery in the 
nano era: An overview and perspectives (Review). Oncology Reports 2017, 38 (2), 611-
624. 
181. Gallamini, A.; Borra, A., Role of PET in Lymphoma. Current Treatment Options 
in Oncology 2014, 15 (2), 248-261. 
182. Caravan, P., Strategies for increasing the sensitivity of gadolinium based MRI 
contrast agents. Chemical Society Reviews 2006, 35 (6), 512-523. 
183. Tardif, J.-C.;  Lesage, F.;  Harel, F.;  Romeo, P.; Pressacco, J., Imaging 
Biomarkers in Atherosclerosis Trials. Circulation-Cardiovascular Imaging 2011, 4 (3), 
319-333. 
184. Schmidt, G.;  Dinter, D.;  Reiser, M. F.; Schoenberg, S. O., The Uses and 
Limitations of Whole-Body Magnetic Resonance Imaging. Deutsches Arzteblatt 
International 2010, 107 (22), 383-389. 
185. Shen, Z. Q.;  Nieh, M. P.; Li, Y., Decorating Nanoparticle Surface for Targeted 
Drug Delivery: Opportunities and Challenges. Polymers 2016, 8 (3). 
186. Kozlowska, D.;  Biswas, S.;  Fox, E. K.;  Wu, B.;  Bolster, F.;  Edupuganti, O. P.;  
Torchilin, V.;  Eustace, S.;  Botta, M.;  O'Kennedy, R.; Brougham, D. F., Gadolinium-
loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for 
human multiple myeloma and non Hodgkin's lymphoma (human Burkitt's lymphoma). 
Rsc Advances 2014, 4 (35), 18007-18016. 
187. Knittelfelder, R.;  Riemer, A. B.; Jensen-Jarolim, E., Mimotope vaccination - 
from allergy to cancer. Expert Opinion on Biological Therapy 2009, 9 (4), 493-506. 
188. Torino, E.;  Auletta, L.;  Vecchione, D.;  Orlandella, F. M.;  Salvatore, G.;  
Iaccino, E.;  Fiorenza, D.;  Grimaldi, A. M.;  Sandomenico, A.;  Albanese, S.;  Sarnataro, 
D.;  Gramanzini, M.;  Palmieri, C.;  Scala, G.;  Quinto, I.;  Netti, P. A.;  Salvatore, M.; 
Greco, A., Multimodal imaging for a theranostic approach in a murine model of B-cell 



139 
 

lymphoma with engineered nanoparticles. Nanomedicine-Nanotechnology Biology 
and Medicine 2018, 14 (2), 483-491. 
189. Palmieri, C.;  Falcone, C.;  Iaccino, E.;  Tuccillo, F. M.;  Gaspari, M.;  Trimboli, F.;  
De Laurentiis, A.;  Luberto, L.;  Pontoriero, M.;  Pisano, A.;  Vecchio, E.;  Fierro, O.;  
Panico, M. R.;  Larobina, M.;  Gargiulo, S.;  Costa, N.;  Dal Piaz, F.;  Schiavone, M.;  
Arra, C.;  Giudice, A.;  Palma, G.;  Barbieri, A.;  Quinto, I.; Scala, G., In vivo targeting 
and growth inhibition of the A20 murine B-cell lymphoma by an idiotype-specific 
peptide binder. Blood 2010, 116 (2), 226-238. 
190. Corbin, I. R.;  Li, H.;  Chen, J.;  Lund-Katz, S.;  Zhou, R.;  Glickson, J. D.; Zheng, 
G., Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast 
agents. Neoplasia 2006, 8 (6), 488-498. 
191. Martucci, N. M.;  Migliaccio, N.;  Ruggiero, I.;  Albano, F.;  Cali, G.;  Romano, S.;  
Terracciano, M.;  Rea, I.;  Arcari, P.; Lamberti, A., Nanoparticle-based strategy for 
personalized B-cell lymphoma therapy. International Journal of Nanomedicine 2016, 
11, 6089-6101. 
192. Lloyd-Jones, D. M., Cardiovascular Risk Prediction Basic Concepts, Current 
Status, and Future Directions. Circulation 2010, 121 (15), 1768-1777. 
193. Falk, E., Pathogenesis of atherosclerosis. Journal of the American College of 
Cardiology 2006, 47 (8), C7-C12. 
194. Muntendam, P.;  McCall, C.;  Sanz, J.;  Falk, E.;  Fuster, V.; High Risk Plaque, I., 
The BioImage Study: Novel approaches to risk assessment in the primary prevention 
of atherosclerotic cardiovascular disease-study design and objectives. American Heart 
Journal 2010, 160 (1), 49-U73. 
195. Davies, J. R.;  Rudd, J. H.; Weissberg, P. L., Molecular and metabolic imaging of 
atherosclerosis. Journal of Nuclear Medicine 2004, 45 (11), 1898-1907. 
196. Libby, P.;  Ridker, P. M.; Hansson, G. K., Progress and challenges in translating 
the biology of atherosclerosis. Nature 2011, 473 (7347), 317-325. 
197. Moore, K. J.; Tabas, I., Macrophages in the Pathogenesis of Atherosclerosis. 
Cell 2011, 145 (3), 341-355. 
198. Saba, L.;  Anzidei, M.;  Marincola, B. C.;  Piga, M.;  Raz, E.;  Bassareo, P. P.;  
Napoli, A.;  Mannelli, L.;  Catalano, C.; Wintermark, M., Imaging of the Carotid Artery 
Vulnerable Plaque. Cardiovascular and Interventional Radiology 2014, 37 (3), 572-585. 
199. Nahrendorf, M.;  Jaffer, F. A.;  Kelly, K. A.;  Sosnovik, D. E.;  Aikawa, E.;  Libby, 
P.; Weissleder, R., Noninvasive vascular cell adhesion molecule-1 imaging identifies 
inflammatory activation of cells in atherosclerosis. Circulation 2006, 114 (14), 1504-
1511. 
200. van Tilborg, G. A. F.;  Vucic, E.;  Strijkers, G. J.;  Cormode, D. P.;  Mani, V.;  
Skajaa, T.;  Reutelingsperger, C. P. M.;  Fayad, Z. A.;  Mulder, W. J. M.; Nicolay, K., 
Annexin A5-Functionalized Bimodal Nanoparticles for MRI and Fluorescence Imaging 
of Atherosclerotic Plaques. Bioconjugate Chemistry 2010, 21 (10), 1794-1803. 
201. Briley-Saebo, K. C.;  Cho, Y. S.;  Shaw, P. X.;  Ryu, S. K.;  Mani, V.;  Dickson, S.;  
Izadmehr, E.;  Green, S.;  Fayad, Z. A.; Tsimikas, S., Targeted Iron Oxide Particles for In 



140 
 

Vivo Magnetic Resonance Detection of Atherosclerotic Lesions With Antibodies 
Directed to Oxidation-Specific Epitopes. Journal of the American College of Cardiology 
2011, 57 (3), 337-347. 
202. Mulder, W. J. M.;  Strijkers, G. J.;  Van Tilborg, G. A. F.;  Cormode, D. P.;  Fayad, 
Z. A.; Nicolay, K., Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active 
Materials for Multimodality Imaging. Accounts of Chemical Research 2009, 42 (7), 
904-914. 
203. Weissleder, R.;  Nahrendorf, M.; Pittet, M. J., Imaging macrophages with 
nanoparticles. Nature Materials 2014, 13 (2), 125-138. 
204. Sanz, J.; Fayad, Z. A., Imaging of atherosclerotic cardiovascular disease. Nature 
2008, 451 (7181), 953-957. 
205. Leuschner, F.; Nahrendorf, M., Molecular Imaging of Coronary Atherosclerosis 
and Myocardial Infarction Considerations for the Bench and Perspectives for the 
Clinic. Circulation Research 2011, 108 (5), 593-606. 
206. Briley-Saebo, K. C.;  Mulder, W. J. M.;  Mani, V.;  Hyafil, F.;  Amirbekian, V.;  
Aguinaldo, J. G. S.;  Fisher, E. A.; Fayad, Z. A., Magnetic resonance imaging of 
vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging 
probes. Journal of Magnetic Resonance Imaging 2007, 26 (3), 460-479. 
207. Thorek, D. L. J.;  Chen, A.;  Czupryna, J.; Tsourkas, A., Superparamagnetic iron 
oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering 
2006, 34 (1), 23-38. 
208. Ma, H. L.;  Xu, Y. F.;  Qi, X. R.;  Maitani, Y.; Nagai, T., Superparamagnetic iron 
oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution, and 
applications in detecting liver cancers. International Journal of Pharmaceutics 2008, 
354 (1-2), 217-226. 
209. Ruehm, S. G.;  Corot, C.;  Vogt, P.;  Kolb, S.; Debatin, J. F., Magnetic resonance 
imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron 
oxide in hyperlipidemic rabbits. Circulation 2001, 103 (3), 415-422. 
210. Kooi, M. E.;  Cappendijk, V. C.;  Cleutjens, K.;  Kessels, A. G. H.;  Kitslaar, P.;  
Borgers, M.;  Frederik, P. M.;  Daemen, M.; van Engelshoven, J. M. A., Accumulation of 
ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques 
can be detected by in vivo magnetic resonance imaging. Circulation 2003, 107 (19), 
2453-2458. 
211. Trivedi, R. A.;  Mallawarachi, C.;  U-King-Im, J.-M.;  Graves, M. J.;  Horsley, J.;  
Goddard, M. J.;  Brown, A.;  Wang, L.;  Kirkpatrick, P. J.;  Brown, J.; Gillard, J. H., 
Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to 
label plaque macrophages. Arteriosclerosis Thrombosis and Vascular Biology 2006, 26 
(7), 1601-1606. 
212. Tang, T. Y.;  Howarth, S. P. S.;  Miller, S. R.;  Graves, M. J.;  U-King-Im, J.-M.;  
Trivedi, R. A.;  Li, Z. Y.;  Walsh, S. R.;  Brown, A. P.;  Kirkpatrick, P. J.;  Gaunt, M. E.; 
Gillard, J. H., Comparison of the inflammatory burden of truly asymptomatic carotid 
atheroma with atherosclerotic plaques contralateral to symptomatic carotid stenosis: 



141 
 

an ultra small superparamagnetic iron oxide enhanced magnetic resonance study. 
Journal of Neurology Neurosurgery and Psychiatry 2007, 78 (12), 1337-1343. 
213. Tang, T. Y.;  Muller, K. H.;  Graves, M. J.;  Li, Z. Y.;  Walsh, S. R.;  Young, V.;  
Sadat, U.;  Howarth, S. P. S.; Gillard, J. H., Iron Oxide Particles for Atheroma Imaging. 
Arteriosclerosis Thrombosis and Vascular Biology 2009, 29 (7), 1001-1008. 
214. Smith, B. R.;  Heverhagen, J.;  Knopp, M.;  Schmalbrock, P.;  Shapiro, J.;  
Shiomi, M.;  Moldovan, N. I.;  Ferrari, M.; Lee, S. C., Localization to atherosclerotic 
plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide 
nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). 
Biomedical Microdevices 2007, 9 (5), 719-727. 
215. Kang, H. W.;  Torres, D.;  Wald, L.;  Weissleder, R.; Bogdanov, A. A., Targeted 
imaging of human endothelial-specific marker in a model of adoptive cell transfer. 
Laboratory Investigation 2006, 86 (6), 599-609. 
216. Alam, S. R.;  Stirrat, C.;  Richards, J.;  Mirsadraee, S.;  Semple, S. I. K.;  Tse, G.;  
Henriksen, P.; Newby, D. E., Vascular and plaque imaging with ultrasmall 
superparamagnetic particles of iron oxide. Journal of Cardiovascular Magnetic 
Resonance 2015, 17. 
217. Srikar, R.;  Upendran, A.; Kannan, R., Polymeric nanoparticles for molecular 
imaging. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2014, 
6 (3), 245-267. 
218. Doiron, A. L.;  Chu, K.;  Ali, A.; Brannon-Peppas, L., Preparation and initial 
characterization of biodegradable particles containing gadolinium-DTPA contrast 
agent for enhanced MRI. Proceedings of the National Academy of Sciences of the 
United States of America 2008, 105 (45), 17232-17237. 
219. Zhang, Y.;  Zhou, J.;  Guo, D. J.;  Ao, M.;  Zheng, Y. Y.; Wang, Z. G., Preparation 
and characterization of gadolinium-loaded PLGA particles surface modified with RGDS 
for the detection of thrombus. International Journal of Nanomedicine 2013, 8, 3745-
3756. 
220. Lipinski, M. J.;  Amirbekian, V.;  Frias, J. C.;  Aguinaldo, J. G. S.;  Mani, V.;  
Briley-Saebo, K. C.;  Fuster, V.;  Fallon, J. T.;  Fisher, E. A.; Fayad, Z. A., MRI to detect 
atherosclerosis with gadolinium-containing immunomicelles targeting the 
macrophage scavenger receptor. Magnetic Resonance in Medicine 2006, 56 (3), 601-
610. 
221. Mulder, W. J. M.;  Strijkers, G. J.;  Briley-Saboe, K. C.;  Frias, J. C.;  Aguinaldo, J. 
G. S.;  Vucic, E.;  Amirbekian, V.;  Tang, C.;  Chin, P. T. K.;  Nicolay, K.; Fayad, Z. A., 
Molecular imaging of macrophages in antherosclerotic plaques using bimodal PEG-
micelles. Magnetic Resonance in Medicine 2007, 58 (6), 1164-1170. 
222. Briley-Saebo, K. C.;  Shaw, P. X.;  Mulder, W. J. M.;  Choi, S.-H.;  Vucic, E.;  
Aguinaldo, J. G. S.;  Witztum, J. L.;  Fuster, V.;  Tsimikas, S.; Fayad, Z. A., Targeted 
molecular probes for imaging atherosclerotic lesions with magnetic resonance using 
antibodies that recognize oxidation-specific epitopes. Circulation 2008, 117 (25), 
3206-3215. 



142 
 

223. Briley-Saebo, K. C.;  Nguyen, T. H.;  Saeboe, A. M.;  Volkova, E. R.;  Wiesner, P.; 
Witztum, In Vivo Detection of Oxidation-Specific Epitopes in Atherosclerotic Lesions 
Using Biocompatible Manganese Molecular Magnetic Imaging Probes (vol 59, pg 616, 
2012). Journal of the American College of Cardiology 2012, 59 (11), 1043-1043. 
224. Maiseyeu, A.;  Mihai, G.;  Kampfrath, T.;  Simonetti, O. P.;  Sen, C. K.;  Roy, S.;  
Rajagopalan, S.; Parthasarathy, S., Gadolinium-containing phosphatidylserine 
liposomes for molecular imaging of atherosclerosis. Journal of Lipid Research 2009, 50 
(11), 2157-2163. 
225. Rensen, P. C. N.;  Gras, J. C. E.;  Lindfors, E. K.;  van Dijk, K. W.;  Jukema, J. W.;  
van Berkel, T. J. C.; Biessen, E. A. L., Selective targeting of liposomes to macrophages 
using a ligand with high affinity for the macrophage scavenger receptor class A. 
Current drug discovery technologies 2006, 3 (2), 135-44. 
226. Mulder, W. J. M.;  Douma, K.;  Koning, G. A.;  Van Zandvoort, M. A.;  Lutgens, 
E.;  Daemen, M. J.;  Nicolay, K.; Strijkers, G. J., Liposome-enhanced MRI of neointimal 
lesions in the ApoE-KO mouse. Magnetic Resonance in Medicine 2006, 55 (5), 1170-
1174. 
227. Sevenson, S.; Tomalia, D. A., Dendrimers in biomedical applications-
reflections on the field. Advanced Drug Delivery Reviews 2012, 64, 102-115. 
228. Yu, M. M.;  Jie, X.;  Xu, L.;  Chen, C.;  Shen, W. L.;  Cao, Y. N.;  Lian, G.; Qi, R., 
Recent Advances in Dendrimer Research for Cardiovascular Diseases. 
Biomacromolecules 2015, 16 (9), 2588-2598. 
229. Abbasi, E.;  Aval, S. F.;  Akbarzadeh, A.;  Milani, M.;  Nasrabadi, H. T.;  Joo, S. 
W.;  Hanifehpour, Y.;  Nejati-Koshki, K.; Pashaei-Asl, R., Dendrimers: synthesis, 
applications, and properties. Nanoscale Research Letters 2014, 9. 
230. Hegde, A. R.;  Rewatkar, P. V.;  Manikkath, J.;  Tupally, K.;  Parekh, H. S.; 
Mutalik, S., Peptide dendrimer-conjugates of ketoprofen: Synthesis and ex vivo and in 
vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. 
European Journal of Pharmaceutical Sciences 2017, 102, 237-249. 
231. Kobayashi, H.; Brechbiel, M. W., Dendrimer-based macromolecular MRI 
contrast agents: characteristics and application. Molecular imaging 2003, 2 (1), 1-10. 
232. Nguyen, T. H.;  Bryant, H.;  Shapsa, A.;  Street, H.;  Mani, V.;  Fayad, Z. A.;  
Frank, J. A.;  Tsimikas, S.; Briley-Saebo, K. C., Manganese G8 Dendrimers Targeted to 
Oxidation-Specific Epitopes: In Vivo MR Imaging of Atherosclerosis. Journal of 
Magnetic Resonance Imaging 2015, 41 (3), 797-805. 

  



143 
 

Publications along three years 

- Chapter 

Enza Torino, Franca De Sarno, Alfonso Maria Ponsiglione. Bioinspired Materials for 

Diagnostic Imaging Applications. Advances in Polymers for Biomedical Applications. 

ISBN: 978-1-53613-613-5. 

 

- Abstract 

Franca De Sarno, Anna Maria Grimaldi, Alfonso Maria Ponsiglione, Paolo Antonio 

Netti, Enza Torino. Polymer nanostructures based on Hydrodenticity for boosted T 1 

relaxivity. 5
th
 International Conference on Nanotechnology in Medicine (NANOMED 

2018), 26-28 June, Manchester, UK. 

Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino. Gadolinium-Based 

Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents. 

20
th
International Conference on Nanomedicine and Nanoscience (ICNN 2018), 3-4 

May, Rome, Italy. urn:dai:10.1999/1307-6892/92403 

Franca De Sarno, Paolo Antonio Netti, Enza Torino Nanoparticulate Probes for 

Molecular MRI of Atherosclerosis. V CONGRESSO GRUPPO NAZIONALE DI 

BIOINGEGNERIA(GNB 2016), 20-22 June, Naples, Italy. 

 

- Papers: 

Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino. Emerging Use of 

Nanoparticles in Diagnosis of Atherosclerosis Disease: A Review. AIP Conference 

Proceedings (2018). 

 



144 
 

Franca De Sarno, Alfonso Maria Ponsiglione, Anna Maria Grimaldi, Ernesto Forte, 

Paolo Antonio Netti, Enza Torino. Water-mediated nanostructures for enhanced 

MRI: impact of water dynamics on relaxometric properties of Gd-DTPA.  Under 

submission  

Franca De Sarno, Alfonso Maria Ponsiglione, Anna Maria Grimaldi, Paolo Antonio 

Netti, Enza Torino. Effect of crosslinking agent to design nanostructured hydrogels 

with improved relaxometric properties.  Under submission   



145 
 

 Communications to Congress/Conferences: 

- Poster 

Franca De Sarno, Anna Maria Grimaldi, Alfonso Maria Ponsiglione, Paolo Antonio 

Netti, Enza Torino. Polymer nanostructures based on Hydrodenticity for boosted T 1 

relaxivity. 5
th
 International Conference on Nanotechnology in Medicine (NANOMED 

2018), 26-28 June, Manchester, UK. 

Yogita Patil-Senl, Vikesh Chhabria, Waqar Ahmed, Tim Mercer, Alfonso Maria 

Ponsiglione, Franca De Sarno, Enza Torino. Lipid coated Magnetic Nanoparticles for 

Targeted Drug Delivery and Hyperthermia. 3
th
 International Symposium on 

Nanoparticles/Nanomaterials and Applications (ISN
2
A 2018), 22-25 January, 

Caparica, Portugal.           

                    

Enza Torino, Paolo,Bevilacqua, Franca De Sarno, Ernesto Forte, Anna Maria 

Grimaldi, Alfonso Maria Ponsiglione, Eugenia Romano, Maria Russo, Donatella 

Vecchione, Paolo Antonio Netti. Design of Nanostructures to Improve Properties of 

Paramagnetic Contrast Agents. IV International Conference on Nanotechnology in 

Medicine 7-9 November 2016 Warsaw, Poland. 

 

Franca De Sarno, Paolo Antonio Netti, Enza Torino. Design of nanoparticle probe for 

MRI detection of atherosclerotic plaque. V Congresso Gruppo Nazionale di 

Bioingegneria(GNB 2016), 20-22 June, Naples, Italy. 

- Oral Presentation 

Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino. Gadolinium-Based 

Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents. 

20
th
International Conference on Nanomedicine and Nanoscience (ICNN 2018), 3-4 

May, Rome, Italy.   



146 
 

Project Activities 

This Research activity has been developed in the framework of the project: 

- “CeSMeMo – PONa3_00173”. This Project focuses on the development of 

biomedical products, in particular nanosystems for diagnostics and therapy.  

 

Collaborations 

- IRCCS SDN Gianturco Street, 113, 80143, Naples 

SDN, Diagnostics and Nuclear Research Institute, is an integrated group of specialist 

clinics in diagnostic laboratory and imaging. In vivo MRI analysis are performed in 

this Diagnostic Center. 

Other Activities 

- Award at StartCup Campania with the project “POP-up”, 13
th
October 2017, 

Naples, Italy. 

- Premio Nazionale Innovazione (PNI 2017) with the project “POP-up”, 12 30
t 

November – 1
th
 December,Naples, Italy  

- Best Practice with the project “POP-up”, 12 – 13
th
 December,Salerno, Italy  

POP-up is an entrepreneurial initiative aimed at the production and distribution of 

a medical device for the Pelvic Organ Prolapse (POP) in women. POP is a disease 

that seriously compromises the quality of life of patients and currently the applied 

therapy is of a surgical type through the insertion of polypropylene mesh, with not 

always favorable results. The device, patented in 2014, is designed for 

postoperative use and can also be used as urodynamic test prior to surgery to 

improve clinical outcomes.   


