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Abstract
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The Role of Shell effects in Nuclear Reactions:

Multinucleon-Transfer and Ternary Decay

by Daniele QUERO

The binding energy of magic nuclei results in an enhanced stability. This

"shell-effects" may be taken into account in the computation of the potential

landscape, resulting in deep "valleys" along which the evolution of the system

is more probable. This thesis will show two examples: the reaction Xe + Pb, in

which the stability of the nuclei (neutron shell-closure) in the entrance channel

is exploited to improve the possibility of proton transfer from target to projectile

in order to explore the region of the closed shell N = 126 and a program of

fours different reactions, with the aim of searching evidences of the True Ternary

Fission, trying to take advantage of the possibility of a tripartition (exit channel)

leading to one or more magic nuclei.
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Introduction

In the binding energy of atomic nuclei in their ground state there are large fluc-

tuations depending on the proton and neutron number. When such numbers

approach the magic numbers, namely closed shells, a higher binding energy is

observed which gives rise to an enhanced stability. When this "shell-effect" is

taken into account in the computation of the potential energy of a nucleus in the

macroscopic approximation (namely depending on collective variables), along

with another single particle correlation effect called pairing, deep minima ap-

pear, along which the time evolution of an excited nuclear system is more prob-

able. The existence of these minima may be exploited experimentally both in

entrance and exit channels of a nuclear reaction.

This thesis will show two specific cases: the first is the reaction 136Xe + 208Pb,

in which the stability of the reacting nuclei in the entrance channel, due to neu-

tron shell-closures, is exploited to enhance the possibility of proton transfer

from target to projectile; the second is a campaign of four different reactions car-

ried out with the aim of searching evidences of the True Ternary Fission, namely

the simultaneous tripartition (exit channel) of the intermediate composite nu-

cleus leading to three fragments having magic numbers of protons or neutrons

or both.

The reaction 136Xe + 208Pb allows to collect information about the potential-

ities of the multinucleon transfer (MNT) channel in connection with the pro-

duction of neutron-rich species. The results show a mass distribution with tails

stretching out towards mass asymmetry (production of nuclei heavier than tar-

get). The importance of this study stays in the fact that if MNT works in this
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mass region, it is expected that it may be used to reach the region of super-

heavy nuclei and the region of the predicted Island of Stability. The collision

136Xe + 208Pb has also an interest in astrophysics. It was chosen in order to

explore the region of neutron shell-closure N = 126 which represents the last

known waiting point of the r-process of stellar nucleosynthesis.

The possibility of a ternary decay was suggested in the past by the observa-

tion of mass distributions of fragments both in spontaneous (252Cf) and induced

235U(n, f) fission. The occurrence of events in which the measured masses of two

fragments is definitely lower than the mass of the parent nucleus was taken as

hint of the presence of a third, undetected fragment, thus of the occurrence of a

non binary decay. Swiatecki calculations of energy release in a fission event con-

firms that, under certain circumstances (above a value of the fissility parameter)

decay into more than two fragments is even energetically allowed. The aim of

the campaign of four experiments was to exploit the advantages provided by

a nuclear reaction in order to explore the possibility of ternary decays. Unlike

spontaneous fission, a nuclear reaction would allow to reconstruct masses and

energies through the kinematics thanks to the possibility of detecting the three

fragments. Several shell closures may be found among all the possible tripar-

titions and may favor the decay into three fragments if the excitation energy is

kept low enough allowing the persistence of the shell effects. Hence the choice

of a bombarding energy near the Coulomb barrier height.
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Thesis Layout

A list of abbreviations (1) may help in the understanding of acronyms.

Chapter organization:

• Chapter 1 introduces the dynamical model within which the potential en-

ergy was calculated and marks the role of shell effects;

• Chapter 2 and 3 contain details about the experiments mentioned above

and the results of data analysis performed by the author;

• Chapter 4 provides conclusions and remarks.

An appendix section is attached in order to give helpful and specific details

about different topics concerning this thesis:

• Appendix A, data analysis procedures;

• Appendix B, algorithms and codes developed during the analysis work;

• Appendix C, parameters of the experimental setups.

A Bibliography section follows.



Chapter 1

Interaction Potential Energy

1.1 A Versatile Model

The Potential Energy Surface (PES) and the role played by shell closures rep-

resent the pivot for this thesis, being the link between the two experiments, so

different from each other, discussed in Chapters 2 and 3.

This model appears very agile and capable of describing simultaneously

several competitive processes, such as Deep Inelastic (DI) Collisions, Quasi-Fission

(QF) and Fusion-Fission (FF).

It is clear that a dynamical description of a nuclear reaction cannot follow

all the single particle degrees of freedom (DoF). The strong suit of the model is,

indeed, its dependance on a limited set of bulk (collective) degrees of freedom,

providing a realistic picture of collective behavior and mass transfer. All the

remaining unknown degrees of freedom are treated as a heat bath. Dissipation

is the mechanism to transfer energy between the collective degrees of freedom

and the heat bath. The dynamical equations that couple these DoF describe the

time evolution of the reaction in terms of the chosen variables and their conju-

gate momenta. The dissipation is treated with a friction term and a stochastic

term is used to introduce fluctuations. Friction is due to viscosity of a nuclear

matter fluid.
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Chapter 1. Interaction Potential Energy 5

The choice of the proper degrees of freedom is crucial to describe the reac-

tions and provide an estimate of cross sections. On one side, the number of

degrees of freedom must not be too large in order to have a limited set of cou-

pled differential equations to solve. On the other side, too few variables would

not allow the simultaneous description of many channels.

DI processes dominate when the Coulomb repulsion prevails over nuclear

attraction and Compound Nucleus (CN) formation is quite improbable. In this

case the reaction mechanism depends mainly on nucleus-nucleus interaction

potential, friction forces and nucleon transfer rate at contact point. In DI events

nuclear compenetration is rather short but, nonetheless, the reaction cross sec-

tion is found to be sensitive to nuclear viscosity because of large dynamic de-

formations of the fragments. The kinetic energy of the fragments are almost in-

dependent on the beam energies so these events resemble the fission processes

even though a CN is not formed [4].

Quasi Fission is a mechanism in strong competition with CN formation and

appears when some features of the entrance channel are present. Three main

entrance channel properties have been identified: Coulomb factor Zproj ·Ztarg ≥

1600, low mass asymmetry, or values of the nuclear fissility parameter χ =

Z2/A larger than 0.68 [15]. Also the relative orientation of the two nuclei at

the interaction point appears to be very important when one or both fragments

are deformed in their ground state. QF is the most important mechanism that

prevents the fusion of massive nuclei, useful to produce super-heavy elements

[15]. It is a kind of a transitional mechanism, between deep-inelastic collisions

and Complete Fusion (CF), in which the composite system separates in two

main fragments without forming a CN and a large mass transfer occurs.

In the stochastic model of Zagrebaev and Greiner [2], the chosen degrees of

freedom are the following:



Chapter 1. Interaction Potential Energy 6

Figure 1.1: Schematic explanation of the degrees of freedom chosen for the calculations
[4].

• R, distance between nuclear centers or elongation of mono-nucleus (when

a composite system is formed);

• β1,2, quadrupole deformation of nuclei (representing their shape);

• α = A1−A2

ACN
, mass asymmetry;

• φ1,2, angle of rotation of nuclei in the reaction plane (angle between sym-

metry axis of deformed nuclei and beam direction);

• ϑ, angle between beam axis and the line connecting nuclear centers (or

centroids of composite system).

Fig. 1.1 summarizes, schematically, the degrees of freedom.

Since both neutrons and protons can be exchanged, different fragment species

can be obtained by the same amount of generic nucleons transferred. To be

able to compute the yield of these different products, it is necessary to consider

neutron and proton transfers to be independent, but constrained by the mass

asymmetry above.

Thus, two additional variables are introduced:

• ηN = 2N1−NCN

NCN
, neutron asymmetry in terms of neutron number of one of

the fragments;
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• ηZ = 2Z1−ZCN

ZCN
, proton asymmetry in terms of atomic number of one of the

fragments.

being ACN , NCN , ZCN , respectively, the mass number, the neutron number

and the proton number of the composite system.

The dynamical equations mentioned earlier are in the form of Langevin

Equation [4], similar to those describing Brownian Motion:

µq̈ = −∂V
∂q
− γq̇ +

√
γTΓ(t), (1.1)

where:

• q is a generic DoF, with related inertia parameter µ;

• V is the multidimensional potential energy surface plus centrifugal bar-

rier, so −∂V
∂q

is the driving force;

• γ is the viscosity coefficient associated to q, so −γq̇ is a friction force;

• T =
√

E∗

a
is the nuclear temperature, a measure of the excitation E∗ =

Ecm − TKE − V , TKE is the Total Kinetic Energy of the fragments in exit

channel;

• Γ(t) is Gaussian distributed and takes into account the stochastic diffu-

sion.

The last term in eq. 1.1 represents a stochastic force that, along with the

dissipation term, is responsible of energy dissipation during the interaction. In

the case of total dissipation of energy, the stochastic force drives the evolution

of the system in terms of a path in the potential landscape. Such is the case

of near-barrier collisions, where the probability of CN formation is very small

for massive nuclei and, due to strong dissipation, the evolution is determined

by fluctuations. The low incident (available) energy leads to low excitation and
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temperature so the fluctuations are weak and the most probable paths lie on QF

valley.

Figure 1.2: 3D view of the potential energy surface for the reaction 48Ca+248Cm at
deformation β = 0.1. The two curves with arrows show possible QF paths while the
circles represent the injection point [4].

In Fig.1.2 and1.3 some example of PES are shown. They are obtained by

projection of the multidimensional potential onto hyperplanes of fixed value

of certain degrees of freedom. Arrows represent trajectories (paths) in these

landscapes, i.e. the evolution of the system. The dependence on the reciprocal

orientation of nuclei is showed in Fig.1.4.

The model takes into account a time dependence in order to describe also

reaction times: the potential energy is calculated within the double-folding pro-

cedure at the initial (diabatic, energy exchange allowed) reaction stage, and

within the extended version of the two-center shell model at the adiabatic (no

energy exchange) reaction stage [5]. For the nucleus-nucleus collisions at en-

ergies above the Coulomb barrier the potential energy, after contact, gradu-

ally transforms from a diabatic potential energy into an adiabatic one, namely:

V (. . . DoF . . . , t) = Vdiab[1 − f(t)] + Vadiabf(t) [5]. Here, t is the interaction time
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Figure 1.3: PES for a nuclear system of 120 protons and 182 neutrons at fixed deforma-
tion β = 0.2. Injection points for the 54Cr+248Cm, 58Fe+244Pu, and 64Ni+238U fusion
reactions are shown by the circles. The curves with arrows show QF and complete
fusion trajectories[3].

Figure 1.4: (a) Potential energy of 48Ca+208Pb depending on distance and quadrupole
deformations of both nuclei. (b) Potential energy of 48Ca+238U depending on orienta-
tion of the deformed target[4].
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and f(t) a smoothing function which operates the transformation from diabatic

to adiabatic potential, within a time of the order of 10−21s. Fig. 1.5 shows this

transformation for the potential energy as a simple dependence on R variable.

Figure 1.5: Potential energy for the reaction 48Ca+248Cm in diabatic (dashed curve) and
adiabatic (solid curve) conditions [4].

In the next section, it will be shown how the inclusion of the experimental

binding energies (shell-correction) affect the potential energy and how the latter

has been used for predicting observables in the exit channel.

1.2 The Role of Shell-Effects

To take into account the higher binding energy of nuclei, in entrance or exit

channel, related to occurrence of magic numbers of nucleons (shell-closures), the

so called shell-correction are included in the computation of the PES.

The valleys are produced by the proton and neutron shell and pairing cor-

relation corrections, which have a negative value when the nucleon number is

magic. These shell-effects, result in deep "valleys", in the potential landscape,

along which the evolution of the system is more probable. The valley becomes

much deeper when two magic numbers occur in the same fragment. The exis-

tence of such minima, closely related to mass division leading to magic nuclei,

is not just a feature of the PES but can be considered as a powerful tool to tune

the properties of the entrance channel.
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Figure 1.6: The Segré (or nuclide) chart in which each nucleus is placed according to its
neutron number N and atomic number Z. The black line represents the stable nuclei,
the yellow area includes all known species while the green one is the Terra Incognita,
embracing all those not yet observed nuclei. The arrows show the path of different
stellar nucleosynthesis processes, such as fusion, s-, r-, rp-processes.

The examples provided in these work are related to the exploration of the

Segré Chart (Fig. 1.6), namely the production of nuclei in the so called Terra

Incognita and search for possible true ternary decay in fission and quasi-fission

events, as it will be explained later on.

Among various possibilities, shell-effects may be exploited in the entrance

channel as a "stability enhancer" (Par. 2.1) or, in exit channel, being suggested

as a possible cause of a direct(simultaneous) tripartition (Par. 1.2.2). One of

the strong suits of this kind of study is the (empirically) clear link between the

reaction channel, shell-effects and some observables such as the fragment mass

and Total Kinetic Energy (TKE).

As an example of the importance of these observables, Fig. 1.7 shows how

the valleys in the landscape are related to several mass divisions that can be as-

sociated to specific loci of the Mass-TKE distribution and reaction mechanisms.

The PES shown in figure is related to the reaction 48Ca+248Cm, that led to the
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Figure 1.7: 48Ca+248Cm is the reaction that produced the Livermorium element [22].
It is possible to see the link between the reaction channels, shell-effects and the ob-
servables mass and TKE. In panel a) Adiabatic driving potential for the nuclear system
formed in the collision. The solid lines with arrows show schematically (without fluc-
tuations) the quasi-fission trajectories going to the lead and tin valleys. The dashed
curves correspond to complete fusion (CN formation) and fission processes. Experi-
mental b) and calculated c) mass-energy distribution of reaction fragments in collision
at 203 MeV center-of-mass energy. Different colors in c) indicate the interaction time
of different events (longer for larger mass rearrangement). However, it is clear that QF
and FF cannot be disentangled by means of just mass and TKE observables.
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observation of element 118. It is also shown that the trajectories that could lead

to a CN formation are located at higher values of the potential and several bi-

furcations are possible. This means that the injection point (entrance channel

properties such as mass asymmetry, see also Fig. 1.16) plays an important role

and, also because of fluctuations, the trajectories may overcome the barriers to

reach the CN valley (if existent) or may even tunnel through. The potential en-

ergy surface is therefore the playground where to explore the possible reaction

paths.

It is interesting to note that, looking at the M-TKE distribution, the case of

QF leads to an almost symmetric mass division that would be indistinguishable

from the symmetric mass division that can arise if FF would appear. The only

possibility to disentangle the two mechanisms is to use other observables, such

as gamma emission [30].

1.2.1 Exploration of the Terra Incognita

The Segré chart of nuclides (Fig. 1.6) can be explored by means of several

channels: due to the curvature of the stability line, with fusion reactions it is

possible to reach the proton-rich side of the map, medium-heavy nuclei fission

can produce neutron-rich species of medium mass while there is no certainty

about production channels for heavy and super-heavy neutron-rich nuclei.

The production of the unknown nuclei in this so-called Terra Incognita (the

green area in the chart) is the mean to study topics of great interest in nuclear

physics and astrophysics, such as:

• the search for Island of Stability, a return of stability predicted around

N=184 and Z=114-126 (next shell-closures);

• the stellar nucleosynthesis of heavy elements, "How were the heavy elements

from iron to uranium made?" is considered the third among the “The 11
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Greatest Unanswered Questions of Physics” (Discover Magazine [1]). A

possible answer would be the r-process, whose path lies deeply in the Terra

Incognita (Fig. 1.6);

• the study of the quenching of shell closure in nuclei with large neutron

excess.

In order to fill the ”blank region” of the nuclear map, largely extended in

the neutron-rich side, multinucleon transfer process in low energy collisions of

heavy nuclei has been proposed [2]. In the DI collisions of heavy ions the en-

ergy of relative motion is quickly transformed into the internal excitation of the

projectile-like (PLF) and target-like (TLF) fragments which afterward de-excite

by evaporation of light particles (mostly neutrons). At a first glance, this does

not seem of any help for the production of neutron-rich nuclei. However, if the

Total Kinetic Energy Lost (TKEL) is kept low, the primary reaction fragments

might not be very much excited (eq. 1.3) and will descend to their ground

states after evaporation of a few neutrons, thus remaining far from the stability

line.

TKEL = Ecm − TKE (1.2)

E∗frag = TKEL+Qgg (1.3)

It has been shown experimentally that even at low energies (close to the

Coulomb barrier) the cross sections for transfer of several protons and neutrons

are still rather high [7], and this kind of reactions could be considered as an

alternative way for the production of exotic nuclei.

The satisfactory agreement (Fig. 1.8 and Fig. 1.9) between experimental

data and calculation, within the model [4] proposed by V. Zagrebaev and W.

Greiner, gave confidence in obtaining reliable estimations of the cross section
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Figure 1.8: Angular and energy integrated cross sections for proton and neu- tron trans-
fer in the reaction 58Ni+208Pb @ Elab = 328.4MeV . Experimental data (open circles) are
from [7].

Figure 1.9: Mass distribution of the projectile-like fragments with Z = 30, 32 and 34
formed in the collision 82Se+238U @ Elab = 500MeV . The experimental data are from
[8].
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Figure 1.10: M-TKE distribution of the reaction 238U+248Cm, calculated within Zagre-
baev and Greiner model [6]. The majority of events are Quasi-Elastic type, but there
is the possibility to reach super heavy-fragments in transfers that increase the mass
asymmetry. The circle shows that super-heavy species, close to the center of the Island
of Stability, can be reached in these processes.

of near-barrier multinucleon transfer reactions producing heavy neutron-rich

species. It is clear that an appropriate choice of colliding partners (thus the

tuning of the injection point) is quite important for the production of nuclei in

a specific region. Moreover, shell effects play a very important role in the mass

rearrangement both in Fusion-Fission and Deep Inelastic processes, and may

possibly help in the production of neutron-rich species.

An example of calculation conducted within this model [6] is shown in Fig.

1.10, a M-TKE distribution of fragments from the reaction 238U+248Cm. The

most populated area lies around masses of projectile and target coming from

Quasi-Elastic or Deep Inelastic reactions, but it is noticeable the possibility of

massive transfer leading to strongly asymmetric final configurations, thus to

super-heavy nuclei: the masses inside the circle in figure are in a region close to

the center of Island of Stability.
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Figure 1.11: Mass-mass distribution of the collinear fragments, detected in coincidence,
in the spontaneous decay of 252Cf [11]. The black solid line refers to masses summing
up to 225 u, some mass is missing: a hint that the fragments may not come from binary
decay. The two most populated spots represent fragments summing up to 252 u mass,
coming from binary fission.

1.2.2 True Ternary Decay

The expression "Ternary Fission", referring to the break up of the nucleus into

three fragments, was often used in cases where the third fragment is much

lighter (up to 30 mass units) than the other two [9, 10]. The break up into three

fragments having similar masses is defined as a "True Ternay Fission" (TTF) and

has been recently reported in the spontaneous fission of 252Cf [11]. TTF decay

occurs dominantly in a collinear geometry and when the three fragments have

strong connection with shell closures (it was previously called Collinear Cluster

Tripartition). Fig. 1.11 shows the mass-mass distribution of the collinear frag-

ments, detected in coincidence, in the spontaneous decay of 252Cf. There are

events in which the masses of the two fragments does not sum up to the mass

of the parent nucleus (252 u). For instance, the black solid line shows events

with masses summing up to 225 u. Since there is a substantial missing mass,

this can be taken as a hint that the fragments may not come from binary decay.
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Fig. 1.12 shows, on the other hand, similar features also in induced fission of

236U (neutron bombarding of 235U).

Figure 1.12: Mass-mass distribution of the collinear fragments, detected in coincidence,
in the reaction n + 235U [11]. The two most populated spots represent fragments sum-
ming up to 252 u mass, coming from binary fission. The distribution shows also the
possibility of events in which the sum of masses of the two fragments is less than 235
u.

It is known that a heavy nucleus generally fissions into two fragments rather

than into three or more, even though division into three or more fragments

would release more energy. Fig. 1.13 shows the results of calculations made

by Swiatecki [12], within the Liquid Drop Model: the energy release for fission

into n equal fragments depends on the fissility parameter χ. Clearly, a triparti-

tion becomes exothermic for χ ≥ 0.426, and from χ = 0.611 onwards its energy

gain is greater than in binary fission. With increasing charge (fissility parame-

ter), fission into even more than three fragments becomes energetically favored

and it is clear that the height of the fission barrier rather than the energy release

determines the yield of the process.

Diehl and Greiner, on the basis of a two and three center shell model, built a

potential energy surfaces [13] depending on different shape parameters. With

a more complex parametrization of the shapes they were able to study the paths

in the PES bringing to prolate (three fragments aligned) or oblate (equilateral
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Figure 1.13: Decay energy of an ideal, electrically charged liquid drop vs. the fissility
parameter. The parameter n gives the number of equally sized fragments obtained in
the decay process [12].

triangle) configurations of the three nascent fragments and to provide an expla-

nation of the lower ternary decay probability.

On the ternary fission path, the system comes across two barriers and the

second one is more than three times higher than the liquid drop barriers for

the binary fission path. An increase in the charge brings to a gradual reduction

of this second barrier, which eventually disappears. At this point the choice

of the fission mode falls on dynamical effects. With increasing nucleus mass,

calculated barriers for ternary fission are only slightly higher than those for

binary fission [13], while increasing temperature has the effect of reducing the

surface tension of the liquid drop, resulting in decreasing barriers (Fig. 1.14).

Barrier height calculations, for binary and ternary fission, were also per-

formed by Royer and Mignen [14], within the rotational liquid drop model at

finite temperature and including the nuclear proximity energy as a function of

the temperature of the nucleus. For larger masses, both barriers reach gradually



Chapter 1. Interaction Potential Energy 20

Figure 1.14: Barrier heights (in MeV) for symmetric binary and ternary fission of nuclei
along the β stability valley as a function of temperature and mass number.

similar values as in [13].

Three-body decay may also be explored in quasi-fission, taking advantage

of the fact that this process is strongly influenced by the shell closures of the

emerging fragments [15]. The idea of ternary fission driven by shell effects was

also proposed by Zagrebaev and Greiner [16]. Their potential surfaces, can

describe an enormous set of experimental data on the Mass-TKE distributions

of binary reactions between heavy nuclei leading to quasi-fission, and can pos-

sibly predict decay paths leading to three, similarly massive, fragment decay.

These decays are due to shell-effects.

A reported case is the one of 248Cm [16], in which a tripartition channel

appears along with binary decays. Very recent calculations based on a macro-

scopic approach [17] show how a ternary fission path emerges from shell cor-

rection on a macroscopic liquid drop potential.

Theoretical studies were also conducted about 252Cf, using a 3 cluster model,

searching for all possible geometrical configuration leading to a tripartition of

the type A1 > A2 > A3. As visible in Fig. 1.15 strong shell effects produce
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Figure 1.15: Potential energy as a function of charge number of ternary fssion of 252Cf
[18, 19].

minima, in the potential energy, when fragments are magic nuclei, i.e. have

shell-closures [18, 19]. Again, collinear configurations appear to increase the

probability of emission of a heavy third fragment (such as 48Ca, 50Ca, 54Ti, and

60Cr) while an equatorial configuration may be preferred for light nuclei.

Three-body decay are also predicted for giant nuclear systems where no

fusion is possible at all. This is the case of the collision 238U+238U [20] where

the potential energy may have minima corresponding to three fragments in the

final state. These minima, and relative final configurations, are shown in the

potential landscape in Fig. 1.16.

Lastly, ternary fission is also an extremely important ingredient of the r-

process nucleo-synthesis, being competitive with β-delayed fission [21] for

heavy nuclei having Z2/A > 30.5.
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Figure 1.16: Potential energy surface for the collinear tripartition of 242Cf vs. the charge
of the three fragments (courtesy of M. Balasubramaniam).
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Xe + Pb LNL Experiment

2.1 Scientific Motivation

The exploration of the unknown regions of the Segré map (Fig. 1.6) and search

for the predicted, so-called Island of Stability centered at N = 184, Z = 114-

120, represent some of the most interesting topics in nuclear physics. Quan-

tities such as half-lives and masses (binding energies) are extremely important

also for nuclear astrophysics investigations and for the understanding of the

r-process: the last "waiting point" of the rapid neutron capture process, corre-

sponding to the closed neutron shell N = 126, lies indeed deeply in the Terra

Incognita. Aside from the astrophysical interest, the study of the structural

properties of exotic neutron-rich nuclei would also contribute to the discussion

of the quenching of shell effects in nuclei with large neutron excess.

Concerning their production, there are three known possibilities: the multi-

nucleon transfer reactions [2], fusion reactions with neutron rich radioactive

nuclei and rapid neutron capture process. On one hand, the last two chan-

nels look unfeasible because of low intensity of currently available radioactive

beams and low neutron fluxes, for example in working nuclear reactors. On

the other hand, the low energy multi-nucleon transfer reactions, along with the

quasi-fission processes [22] offer a more feasible ground for the production of

neutron-rich nuclei, even by means of stable beams, with cross sections of the

23
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order of few mb or µb [23]. Emblematic is the collision 136Xe + 208Pb at energies

close to the Coulomb barrier, already explored in a preliminary experiment in

2012 in Dubna [23] with beam energies of 700, 870 and 1020 MeV and Target-

Like Fragment identification via catcher-foil activity analysis. The reaction was

then re-proposed in 2014 in Legnaro, exploiting the PRISMA setup.

Both Xe and Pb nuclei have a closed neutron shell, respectively N = 82 and

N = 126; because of this, proton transfer from Pb to Xe might be favorable,

allowing the exploration of the closed shell N = 126 (Fig. 2.1).

Figure 2.1: Schematic representation of (only proton transfer along neutron closed shell
N = 126 in the low-energy collisions 136Xe + 208Pb. Black squares indicate stable nuclei,
red color stands for β+, blue for β− and yellow for α instability.

The bombarding energy in the center of mass (CM) reference frame was

then set to 526 MeV, slightly above the coulomb barrier (422 MeV in the Bass

parametrization [24] and would result in an advantage: equations 1.3 show

how a low bombarding energy leads to a low TKEL thus to a low excitation

energy, increasing the probability of fragment survival against neutron evapo-

ration or fission. As mentioned above, the stabilizing role of neutron shell clo-

sure in 136Xe and 208Pb might favor proton transfer from target to projectile and

lead to the formation of well bound fragments in the exit channel, with reaction
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Q-values distributed around zero (Fig. 2.2). As an example, the Q-values for

two possible reactions are provide below:

• Q(136Xe + 208Pb→ 140Ce+204Pt) = 1:5 MeV;

• Q(136Xe + 208Pb→ 142Nd+202Os) = -8.3 MeV.

Figure 2.2: Q-value distribution in the ground state for all possible mass transfers in
the reaction 136Xe + 208Pb (Qgg = MP +MT −MTLF −MPLF ). The red line represents
the mean values while the black line the maximum ones [23]. For largely asymmet-
ric transfers the Q-values are negative while the distribution is around zero for more
symmetric configurations.

The results of the previous experiment [23] show possible transfers up to

about 20 nucleons. Furthermore, there is a good agreement with cross section

calculations [2] in the region of interest (A ∼ 200 and Qgg ∼ 0) and the yield

is even underestimated of up to a factor 2 in the region of super-asymmetric

fragments, meaning that the model has good prediction capabilities and, most

importantly, this production channel has a great potential in terms of explo-

ration of the super-heavy region in the Segré chart.

Mass-TKE distributions of the products can be measured by using a kine-

matic method, namely by measuring the Time Of Flight (TOF) of two fragments

in coincidence along with the momentum and mass number conservation laws.

In this way the mass and energy distribution of primary fragments is obtained.

The results of the experiment held at Laboratori Nazionali di Legnaro with the
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PRISMA setup represents a step forward, for the possibility of atomic number

identification of one of the fragments. The atomic number of the partner frag-

ment can be derived indirectly using the fact that that emission of light charged

particles (such as proton or alpha) has a nearly zero probability for this type of

reactions. Each step of the analysis will be discussed separately in Appendix A

while a setup overview, results and considerations will be shown in the further

sections.

2.2 Experimental Setup

The experimental setup consists of two setups coupled together: the magnetic

spectrometer PRISMA and a second arm (which will be referred to as "TOF"

arm) also including a Bragg chamber. The ensemble, also called "modernized

PRISMA", is shown in Fig. 2.3 as a schematic drawing of two arms placed at

45◦ and 52◦, respectively. Fig. 2.4 is a 3D view of the apparatus, with examples

of fragment trajectories. Position sensitive detectors and TOF spectrometers

are exploited in order to evaluate velocity vectors and produce mass-energy

distributions, as done by using the spectrometer CORSET [23]. As it will be

shown later, the fragments primary masses and kinetic energies, after proper

corrections, are obtained by using two body kinematics, making use of veloc-

ity vectors of the secondary fragments (namely, after neutron evaporation). In

PRISMA, the atomic number can be evaluated with the use of E-∆E telescopes

in one arm, and by Bragg peak analysis in the other arm. As a single arm,

PRISMA is capable of measuring the fragment mass by means of the trajectory

reconstruction in the known magnetic field.

PRISMA is a magnetic, large acceptance, spectrometer for heavy ions, in-

stalled at Legnaro National Laboratory of INFN [25]. The principal features of

the spectrometer are its large solid angle (80 msr) and momentum acceptance
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Figure 2.3: View of the modernized PRISMA setup. PRISMA arm is placed at 45◦ with
respect to beam direction while the TOF arm is placed at 52◦. The mass distributions
of primary fragments are obtained by using the entrance detectors: PRISMA MCP (po-
sition sensitive, as Stop), CORSET MCP (Start) and a circular PPAC (position sensitive,
Stop).

Figure 2.4: 3D sketch of PRISMA with some fragment trajectories. The transport is
operated by magnetic optical elements .



Chapter 2. Xe + Pb LNL Experiment 28

(±10%). The spectrometer is capable of rotation around the target in the angu-

lar range from 30◦ to 130◦. With this very large acceptance, it is unfeasible to

use complex magnetic elements to correct the optical aberrations and the best

solution was to use of a simplified magnetic element configuration.

The included detectors are:

• a rectangular shaped, pass through, Micro-Channel Plate (MCP) entrance

detector (area 76×100mm2) capable of rotation, placed 25 cm from the

target, providing X, Y (with 1 mm resolution) and a time signals [26];

• a set of focal plane detectors (area 100×13 cm2) [27], consisting of:

– an array of ten multi-wire Parallel Plate Avalanche Counter (PPAC)

detectors (area 10×13 cm2), placed at 300 cm from the dipole exit,

providing X, Y position (1 mm and 2 mm resolution respectively) on

the focal plane, and a time signal;

– an array 10×4 of split-anode Ionization Chambers (IC) (100×13×25

cm3) working as E-∆E telescope.

The TOF arm consists in the following cascade of detectors:

• A pass through MCP-based START detector (4×2 cm2), taken from a CORSET

setup (thus referred as "CORSET MCP"), not sensitive to the position hit

by the fragment;

• A pass through circular PPAC (10×10 cm2) with 1 mm resolution

• A Bragg chamber providing signals corresponding to the energy of the

fragment (area below Bragg curve) and to the Bragg Peak (area below the

peak).

The Bragg Chamber was not used during the experiment.

Tables C.1 and C.2 show the main specification parameters of the setup.
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2.3 Results and Discussion

TOF data along with position information are used to measure the velocity

vector of each fragment. Therefore event-by-event it is possible to apply the

momentum conservation law and mass number conservation law to obtain the

mass and energy distribution of primary fragments. The term “primary” stands

for fragments before emission of neutrons, which in principle occurs before the

detection of “secondary” fragments. Since the emission of few neutrons does

not affect sensibly (due to the ratio between neutron and fragment masses) the

velocity vector (direction and modulus) of the emitting (secondary) fragment

the reconstruction method allows to obtain the primary masses with the hy-

pothesis that the velocity of the primary fragments is conserved after neutron

evaporation.

Figure 2.5: Kinematic Diagram, useful to tell if an event is FMT binary or a sequential
fission. (a) V|| = Vcm, a FMT binary event; (b) V|| > Vcm, (sequential) fission of a fragment
and the secondary fragment emitted forward is detected; (c) V|| < Vcm, similar to the
previous but the secondary fragment emitted backward is detected [23].

Along with the two masses and TKE, many other useful quantities can be

evaluated from the raw data. Some examples are the folding angle (both in

center of mass and laboratory reference frame) and the projections of velocity

vectors onto the reaction plane (Vpar) and orthogonally to it (Vper), see also App.

A. These two projections are an extremely useful probe in the search for binary
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Full Momentum Transfer (FMT) events, for which Vpar is distributed around the

center of mass velocity and Vper around zero.

Fig. 2.5 shows a kinematic diagram explaining how the value of Vpar can

be used to tell three different cases:

(a) Vpar = Vcm, a FMT binary event for which the kinematic reconstruct is well

interpreted;

(b) Vpar > Vcm, the case in which (sequential) fission of a (usually target-like)

fragment occurs and the secondary fragment emitted forward is detected,

leading to a misinterpretation of the velocities;

(c) Vpar < Vcm, similar to the previous but the secondary fragment emitted back-

ward is detected.

Figure 2.6: Vpar - Vper matrix. The black circle represents the gate used to select the
binary, full momentum transfer events.

Fig. 2.6 is the experimental Vpar - Vper matrix. The most populated spot

lies in region with Vper distributed around zero and Vpar around the center of
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mass velocity (1.39 cm/ns in this reaction) and a gate around this spot is used

to select the FMT events.

Figure 2.7: M-TKE distribution of primary fragments in the reaction 136Xe + 208Pb @
Ecm = 526 MeV. The right Y axis shows the TKEL (eq. 1.3). A significant part of the
event has large energy dissipation.

The M-TKE distribution in Fig. 2.7 is obtained after the application of the

mentioned gate (see A for detailed analysis steps). A significant part of the

event has large energy dissipation. It is interesting to notice that for a fixed

value of TKEL several masses can be produced, suggesting that the mass rear-

rangement may depend also on other observables.

The quasi-elastic peaks are centered around the masses of projectile and tar-

get (136 and 208 u, respectively) and around the center-of-mass energy of 526

MeV, as remarked by the markers in Fig. 2.8 and 2.9. Primary mass distribu-

tion was already published in [28].

Among the aims of the experiment there is the observation of species along

the closed shell N=126, such as 202Os (and companion 142Nd)), thus a particular

attention will be put on this mass value.
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Figure 2.8: Mass distribution of primary fragments. The red mark-
ers highlight the masses of projectile and target. Data already pub-
lished in [28].

Figure 2.9: TKE distribution of primary fragments. The red marker highlights the bom-
barding energy in the Center of Mass reference frame (526 MeV).
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Eq. 1.3 gives the definition of TKEL, which represent the amount of energy

dissipated during the reaction. Quasi Elastic (QE) collision would have a TKEL

∼25 MeV, DI collision usually have values smaller than 50 MeV, while multi-

nucleon transfers may be interested by larger values. Fig. 2.10 represents the

TKEL distribution. A gaussian fit in the Elastic and QE zone is used to mark

the value (60 MeV) beyond which there damped collisions are located.

Figure 2.10: TKEL distribution (1.3). A gaussian fit in the Elastic and QE zone is used
to mark the value (60 MeV) beyond which damped collisions appear.

Fig. 2.11 shows the effects of window selections in the TKEL distribution

(Fig. 2.10) on primary TLF mass distribution in particular the ranges 80-90 MeV

(black line), 90-100 MeV (red line), 100-110 MeV (blue line) and 110-120 MeV

(green line). The marks show the position of the peaks: 204, 202, 201 and 200 u

respectively. The aimed mass (A = 202) is produced in events with a dissipation

in the range 90-110 MeV.

It is important to notice the contribution, even in such damped events, to

the production of symmetrical masses. It is very unlikely that these fragments

were formed in fusion-fission processes: the TKE value predicted by Viola sys-

tematics for the symmetric case should be 321 MeV, lower than all TKE values
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measured (Fig. 2.7) and the large value of the Coulomb factor for the couple

Xe and Pb makes it difficult for the fusion to happen.

Figure 2.11: Primary TLF mass distributions obtained after window selection in TKEL
distribution. The ranges 80-90 MeV (black line), 90-100 MeV (red line), 100-110 MeV
(blue line) and 110-120 MeV (green line) are related to mass distributions peaked on
204, 202, 201 and 200 u respectively. There is a mark on half the mass of CN to show
the possibility of production of symmetric fragments.

This kind of selection was performed over the TKEL distribution, ranging

from -45 to 165 MeV. Each selection led to a TLF mass distribution whose cen-

troid and width are schematically shown in the plot of Fig. 2.12. Fig. 2.13

represents the trend of the yield of TLF mass distributions depending on TKEL

window, the mass related to the each window is shown. Colored lines show the

change in the trend in the mass region of interest: the graph shows an increment

of events with respect to the trend of the red line. This means that in this region

the shell effects, in particular due to neutro shell closures, are sensibly affecting

the mass transfer. A similar effect was already observed in other systems [29].

In order to provide further evidences about the production of mass 202, the

results of the analysis of PRISMA Ionization Chamber data will follow. The
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Figure 2.12: TLF mass distribution peaks and FWHMs depending on the choice of the
TKEL window. There is a change in the trend around the mass 202 u.

Figure 2.13: Trend of the yield of TLF mass distributions depending on TKEL window.
Red line shows that there is a change in the trend in the mass region of interest, a
signature of shell effects.
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setup is designed to accept mostly PLFs and, among the possibilities, the ∆E

stage is considered to be played by the first section of the IC (App. A.3.1).

Figure 2.14: E-∆E matrix concerning the PLFs flying in PRISMA arm, the ∆E stage is
considered to be played by the first section of the IC (App. A.3.1). The black contour
delimits the area in which it is possible to find the PLFs of interest. Elastic events
overlap with other channels.

Fig. 2.14 shows the E-∆E matrix concerning the PLFs flying in PRISMA

arm. The black contour delimits the area in which it is possible to find the PLFs

of interest, as it will be shown. By applying a gate (the black contour) on the

E-∆E matrix and a cut on TKEL distribution (values greater than 80 MeV), the

result in Fig. 2.15 is obtained.

At this point, by looking at the PLF M-TKEL matrix for such damped events

(TKEL > 80 MeV) in Fig. 2.16, there is a noticeable presence of events in the area

with M > 140. If a gate is applied (black contour in the matrix), the distribution

in Fig. 2.17 is the result. The red curve superimposed on the distribution of PLF
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Figure 2.15: E-DeltaE matrix obtained by application of the black contour gate and a
cut on TKEL distribution (TKEL > 80 MeV), in this way it is possible to discard elastic
and QE events.
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Figure 2.16: M-TKEL matrix of the projectile-like fragments in
very damped events (TKEL > 80 MeV). The area in the black con-
tour contains events around the aimed mass.
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masses is a gaussian fit, the centroid is found to be 142 u. As stressed before, a

mass of 142 u could belong to 142Nd, product of a 6-proton transfer from 208Pb

(becoming 202Os) to 136Xe.

Figure 2.17: Mass distribution of PLF after application of gates on
E-∆E (Fig. 2.14) and M-TKEL (Fig. 2.16) matrices. The red curve
is a gaussian fit with a centroid in 142 u.

N Z TLF Product
a) 0 6 202Os
b) 1 5 202Ir
c) 2 4 202Pt
d) 3 3 202Au
e) 4 2 202Hg
f) 5 1 202Tl

Table 2.1: All possible configurations of 6 nucleon transfers, including at least one
proton, leading to elements different from the projectile and target.

The resolution of the IC does not allow to identify the charge of the detected

fragments, thus the production of 142Nd (and 202Os) is just one among six pos-

sible 6-nucleon transfers, involving at least one proton.
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NRO127 JYFL Experiment

3.1 Scientific Motivation

The aim of the experiment, carried out at JYFL laboratories, was to explore

the possibility of simultaneous ternary decays in reactions induced at energies

around the Coulomb barrier. Unlike spontaneous fission, a nuclear reaction

would allow to reconstruct masses and energies through the kinematics thanks

to the possibility to detect all the fragments.

The following reactions were explored in order to study both ternary and

binary decay (the latter to be used as reference):

37Cl +208 Pb→245 Es @Ebomb = 195MeV,

37Cl +205 T l→242 Cf @Ebomb = 195MeV,

40Ar +205 T l→245 Es @Ebomb = 193MeV,

40Ar +208 Pb→248 Fm @Ebomb = 193MeV.

The bombarding energies were chosen according to the Coulomb barrier

expected for the specific entrance channel. Relevant information are showed in

tab. 3.1, where VB is the height of the barrier in the Bass parametrization [24]

and the excitation energy is evaluated as the sum of Qfus (fusion Q-value) and

ECM (available energy in CM reference).

40
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MeV MeV MeV MeV MeV deg
Reaction Elab ECM VB Qfus E∗CN θgrazing

37Cl + 208Pb 195 165.6 154.0 -119.9 45.7 103.2
37Cl + 205Tl 195 165.2 152.4 -115.0 50.2 99.9
40Ar + 205Tl 193 161.5 160.2 -125.2 36.3 132.9
40Ar + 208Pb 193 161.5 161.8 -126.2 35.3 141.1

Table 3.1: Table of the most relevant quantities concerning the reactions. E∗CN = Qfus+
ECM .

For all the above reactions, several shell closures may favor the decay into

three fragments if the excitation energy is kept low enough allowing the per-

sistence of the shell effects, hence the choice of a bombarding energy near the

Coulomb barrier height. Shell effects should be also considered from the reac-

tion time point of view: nucleon transfer may be more facilitated by starting

from nuclei without shell closures. In other words, the relation between reac-

tion time and nucleons rearrangements is a crucial point. Thus, the comparison

between the different reactions may provide further information on the mass

transfer probability (toward closed shells) in relation to the characteristics of

the entrance channel.

Similarly to other experiments aimed at the construction of a M-TKE dis-

tribution, also in this case the observables of choice for these reactions are the

velocity vectors of the fragments.

It is possible to detect the binary fragments traveling in forward directions

by placing two arms of a time of flight spectrometer symmetrically around the

beam at the folding angle prescribed for symmetric decay by Viola systematics

(Fig. A.1 Appendix A.1). Asymmetric decays are detected anyway thanks to

detector openings.

Concerning the ternary decay, the configuration chosen for the setup allows

the detection of (almost) only in-plane kinematics. Because of the available de-

tectors (described in the following section), it was possible to detect the velocity
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vectors of only two out of three fragments, namely the ones in forward direc-

tions, while the third fragment (backward) would have been detected with its

energy in silicon detectors. Fig. 3.1, 3.2, 3.3 [33] show the expected in-plane

3-body kinematics for the reaction 37Cl + 208Pb→ 132Sn + 65Cu + 48Ca: two frag-

ments, with different masses, are detected at forward angles, at a folding angle

smaller than the one of the binary fission, and the third fragment at a backward

angle.

Figure 3.1: Kinematics plot for symmetric fission and for a typical 3-body decay of
interest. 132Sn vs. 65Cu [33].

Figure 3.2: Kinematics plot for symmetric fission and for a typical 3-body decay of
interest. 132Sn vs. 48Ca [33].

The geometrical configuration and triple coincidence logic, along with a

proper analysis of the kinematics, allows to remove ternary coincidences com-

ing from sequential decays, since the angular distribution is squeezed in the
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Figure 3.3: Kinematics plot for symmetric fission and for a typical 3-body decay of
interest. 65Cu vs. 48Ca [33].

forward hemisphere, because of center of mass motion boost. There is, thus,

almost no possibility that by kinematics or energy range a the detection of two

out of three fragments in the forward hemisphere can be misidentified as com-

ing from a sequential 3-body decay. Fig. 3.4 shows a typical sequential 3-body

decay velocity diagram and in Fig. 3.5 is depicted the optimal detection geom-

etry that allows to identify unequivocally a true ternary decay.

Figure 3.4: Velocity diagram for a 3-body sequential fission.

Energy - angle correlations further help in disentangling direct from sequen-

tial ternary decay. Fig. 3.6 shows angular correlation of a possible 3-body final

state in terms of the energy of the third fragment [33]: clearly, looking for

the heavier ones at angles around 40◦, would force the third fragment in very

backward angles with unequivocally high energy. The latter information is of



Chapter 3. NRO127 JYFL Experiment 44

Figure 3.5: Proposed detection geometry for the binary and ternary decays.

paramount importance also from technical point view, namely for the dynami-

cal range setting of the silicon detectors.

Figure 3.6: Angular correlation of three (132Sn, 65Cu, and 48Ca) fragments in terms of
48Ca energy [33].

Another important signature of a true three body decay would be the obser-

vation of multiple kinematics solutions (Fig. 3.7, 3.8).
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Figure 3.7: Double kinematics energy solution for 132Sn for a fixed energy of 48Ca [33].

Figure 3.8: Double kinematics energy solution for 132Sn for a fixed energy of 48Ca [33].
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Fig. 3.9 shows the angular correlation of fragments of a direct binary decay

in the reaction 37Cl + 208Pb (see also App. A.1 and B.2). The black rectangle

represents the angular coverage of the detectors placed at 65◦ and -65◦ in order

to detect binary fission fragments: it is clear how binary decay cannot pollute

the data collected by detectors placed at 40◦ and -40◦.
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Figure 3.9: Angular correlation of fragments of a binary decay
(App. A.1 and B.2) in the reaction 37Cl + 208Pb, showing where
to find a fragment once the angle of the other is fixed. Colored
curves represent the correlation for some fixed value of the frag-
ment mass ratio r. The black rectangle represents the angular cov-
erage of the detectors placed at 65◦ and -65◦.
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3.2 Experimental Setup

The key feature of the setup developed and used for this experiment is its small

size, simplicity and portability. The setup consists of:

• a four arms Time of Flight MCP based spectrometer, CORSET (CORrela-

tion SETup), each including:

– Start Detector (3×2.2 and 2.2×2.2 cm2 sensitive area) providing a tim-

ing signal;

– Stop Detector (8.6×6.9 cm2 sentive area) providing a timing signal

and two coordinate signals (X and Y of the point hit by a particle);

• silicon detectors, used for energy measurement of charged particles:

– six with a thickness of 300 µm, 5×5 cm2, in the backward hemisphere;

– three 20 µm, covered by a 1 cm diameter circular collimator, used as

∆E stage of as many telescopes, in the backward hemisphere;

– three 50 µm, covered by a 1 cm diameter circular collimator and alu-

minum foil absorber, used as beam monitors.

CORSET is a mass spectrometer used for measuring TOFs in coincidence.

The four arms of the present version were placed symmetrically around the

beam line and working in coincidence two-by-two (see Fig. 3.10): the one at 65◦

(arm 0) with the one at -65◦ (arm 3), the one at 40◦ (arm 1) with the one at -40◦

(arm 2). The reason of this choice lies in the necessity of measuring both binary

and (expected to be) ternary decays, which are interested by different output

angles in the laboratory reference frame. In other words, the most external

ones were used to detect binary decay, the other two to detect ternary events.

The silicon detectors coupled with CORSET are placed at very backward

angles with respect to the beam line, i.e. where the third particle is expected to



Chapter 3. NRO127 JYFL Experiment 48

Figure 3.10: Detailed overview of the setup used in the experiment [33]. The four
CORSET arms are placed at -65◦, -40◦, 40◦ and 65◦ respectively. Start and Stop detectors
are fixed in order to have a 18 cm distance in arm 0 and 3 and 22 cm in arm 1 and 2.
The telescopes are placed at backward angles 109.5◦, 127.5◦, 145.5◦, −154.5◦, −136.5◦,
−118.5◦ respectively from Tel. 0 to 5.

be observed: 109.5◦, 127.5◦, 145.5◦, −154.5◦, −136.5◦, −118.5◦ respectively from

Tel. 0 to 5.

Each TOF arm consists of a MCP based Start (ST) and position sensitive

Stop detector (SP). The first consists of a conversion foil, an accelerating grid,

an electrostatic mirror and a chevron MCP assembly. The second is composed

of a conversion entrance foil, a chevron assembly of two MCPs and coordinate

system. The distance between start and stop is fixed during the mounting and

affects the final mass resolution. The covered solid angle, thus the rate of parti-

cle impinging on the detector, depends on the distance between target and Stop

detector. The chosen distances are showed in Tab. C.5. The TOF is found as

difference in time between the timing signals coming from ST and SP detectors.

The backward silicon detector are used both in single and in E-∆E combi-

nation: while the thick detectors are placed almost symmetrically around the
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Figure 3.11: Photograph of the actual setup and scattering chamber mounted at JYFL,
taken during the mounting phase. On the right it is noticeable the end of the beam
pipeline. A target holder is placed in the center. Clockwise from the pipe there are:
three silicon detectors, TOF arms from 0 to 3, three silicon detectors.
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beam line, only one side is equipped with the thin ones, namely detectors from

3 to 5 (see Fig. and Tab. C.6). Where present, the ∆E stage function is performed

by 20 µm thick Ortec silicon detectors. The large size and small distances of the

E detectors allow to cover a larger solid angle, thus a larger angular range, but

on the other hand it worsen the angular resolution, see Tab. C.6.

Three 50 µm silicon detectors plus 30 µm aluminum absorbers, installed

around the beam line, were used for online and offline monitoring of beam

properties and, possibly, for cross section evaluation by ratio to Rutherford scat-

tering of projectile on target. Tables in App. C show the main parameters of the

setup.

3.3 Results and Discussion

3.3.1 Binary Decay

In this section the results of the analysis (see App. A, A.3.5 for the analysis

procedure) on binary decay data (from arm 0 and arm 3 at−65◦ and 65◦ respec-

tively) will be shown.

This analysis can be considered as a parallel, separate experiment concern-

ing reactions nowadays still not explored and serve as a reference for the ternary

decay analysis, as it will be shown in Par.3.3.2.

The experimental Vpar-Vper matrix for the reaction 37Cl + 208Pb is reported in

panel a) of Fig. 3.12, along with the FMT events gate. It is important to notice

the shape of the graph, typical for binary decay (see also Fig. 2.6)The matrix is

populated by binary events with a central, more populated, spot given by FMT

events having Vpar ∼ Vcm and Vper ∼ 0, while all data around can be interpreted

as prescribed in App. A.3.5.

After the application of the gate on the matrix, as stressed also in Par. 2.3

and App. A.3.5, the M-TKE distribution of panel b) is obtained.
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Figure 3.12: a) Experimental Vpar-Vper matrix for the reaction 37Cl + 208Pb @Elab = 195
MeV. The Black curve represents the gate applied for the selection of FMT events. b)
Experimental M-TKE matrix for the same reaction. Quasi-Elastic loci are present on the
sides, the fission fragment area is centred around the mass of the symmetric division
of Compound Nucleus and energy prescribed by Viola systematics A.1.

The following figures show the data concerning the remaining reactions.

Figure 3.13: a) Experimental Vpar-Vper matrix for the reaction 40Ar + 208Pb @Elab = 193
MeV. b) Experimental M-TKE matrix for the same reaction.
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Figure 3.14: a) Experimental Vpar-Vper matrix for the reaction 37Cl + 205Tl @Elab = 195
MeV. b) Experimental M-TKE matrix for the same reaction.

Figure 3.15: a) Experimental Vpar-Vper matrix for the reaction 40Ar + 205Tl @Elab = 193
MeV. b) Experimental M-TKE matrix for the same reaction.
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3.3.2 Ternary Decay

The measured quantities, mostly related to the kinematics of the reactions, al-

low to perform several tests in order to rule out possible interpretations of data

as non-ternary decay. In Appendix A.3.6 these tests are discussed in slightly

more detail.

In the first steps of the analysis signatures of ternary decay will be searched

in the measurement of only two fragments in CORSET arms 1 and 2 (at −40◦

and 40◦ respectively).

Results follow below with a detailed explanation. In the next sections, data

coming from preliminary measurement runs performed in June 2017 (discussed

in [34]) and February 2018 are shown together as they consistently overlap. A

detailed description is provided for the results of 37Cl + 208Pb, while is omitted

for the other reactions since the analysis methods are the same. It as to be men-

tioned that the best results are those from the reaction 40Ar + 208Pb, because of

their match with the simulations appears to be better than the other reactions.

3-body Interpretation of the Kinematics of Two Fragments

Fig. 3.16 shows the Vpar-Vper matrix obtained using the velocities measured

through CORSET arms 1 and 2 during the reaction Cl + Pb. By comparison

with Fig. 3.12, panel a), it is clear that there is a deep difference which can be

considered as a hint of the non-binary nature of these events.

The kind of structure found for binary decays is absent in Fig. 3.16 that, in

turn, shows the presence of many loci at several values of Vpar/Vcm > 1 (but

also including Vpar/Vcm ∼ 1) and a wide Vper distribution. Each of these loci is

related to a region of the velocity matrix.

Fig. 3.17 shows the velocity matrix of fragments measured by CORSET arms

1 and 2. The colored contours represent the areas related to a specific locus of



Chapter 3. NRO127 JYFL Experiment 54

Figure 3.16: Vpar-Vper matrix obtained using the velocities measured through CORSET
arms 1 and 2, in 37Cl + 208Pb. Many loci at several values of Vpar/Vcm > 1 are present,
suggesting the non-binary nature of the events.
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Figure 3.17: Distribution of the velocities measured in CORSET arms 1 and 2, in 37Cl +
208Pb. Several loci can be noticed and are related to the ones in Vpar-Vper matrix in Fig.
3.16. The link between the areas is marked by the color system of the contours.
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the Vpar-Vper matrix in Fig.3.16. Area #1 and #2 represent events caught in ran-

dom coincidence, respectively elastic scattering and sequential fission. Area

#3 contains ternary decays (according to the present interpretation). Other ob-

servables relevant to distinguish between 2- and 3-body decays are the relative

angle between the velocity vectors of the detected fragments.

Fig. 3.18 represents the distribution of relative angles (between fragment 1

and 2 velocity vectors). In a binary, full momentun transfer reaction, a distribu-

tion centered at 180◦ is expected. The three peaks are directly linked to the loci

in Vpar-Vper matrix (thus in V1-V2 matrix), from right to left:

1. a peak linked to the rightmost area in Vpar-Vper matrix (ternary events);

2. a peak linked to the central area in Vpar-Vper matrix (sequential fission/ran-

dom);

3. a peak linked to the leftmost area in Vpar-Vper matrix (elastic/random).

It is clear that the events under investigation do not present a 180◦ angle

between the velocity vectors but rather a smaller relative angle, less than 100◦,

definitely not compatible with a binary decay.

It is important to notice that the above date are not corrected for the energy

loss of the fragments in target and start detector because of the lack of mass

measurements. The absence of these corrections affects the velocity vector in

its modulus and its orientation in the CM reference frame, so that is why the

random elastic component does not appear centred on Vpar/Vcm = 1 in Vpar-Vper

matrix and 180◦ in the relative angle distribution.

In order to exclude another possible misinterpretation, the velocities above

mentioned were assumed as the velocities of particles evaporated from a Com-

pound Nucleus. Fig. 3.19 shows the reconstruction of the energy spectra in the

in the left panel there is the conversion of velocity into alpha particle energy, in

the right panel velocity into proton energy.
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Figure 3.18: Angle between the velocities of fragment 1 and 2 in CM reference frame
in 37Cl + 208Pb. In a binary, FMT reaction this angle should be distributed around
180◦ due to momentum conservation law. The red line marks the peak linked to the
supposed-to-be ternary events.

Figure 3.19: Data concerning reaction 37Cl + 208Pb. Left panel: conversion of measured
velocity into alpha particle energy. Right panel: conversion of measured velocity into
proton energy.
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It is possible to notice that the peak of "hypothetical" alpha particle energy is

placed below 10 MeV and for the protons it is near 2 MeV. These values are not

compatible with the peaks of the Maxwellian distribution of alpha and proton

evaporated from the 245Es.

Moreover, such emissions would be inaccessible from the energy point of

view because of the low excitation energy (see Tab. 3.1). A statistical model

code LILITA simulation confirmed the presence of only neutron evaporation

and allowed to exclude the possibility of alpha and proton emission from a

compound nucleus obtainable by the fusion of chlorine and carbon (target back-

ing), again because of incompatibility in the energy spectra peak.

Inclusion of the Third Particle

Figure 3.20 shows the energy spectra of fragments detected by the silicon de-

tectors in the backward hemisphere. Beside the fact that only few events are

detected in coincidence with arm 1 and 2, it can be noted that a large density

of events is above 20 MeV and up to 80 MeV, while the events having energy

below 10 MeV fall under the so-called "pedestal" (electronic noise). Such energy

range is compatible with the kinematic prediction of a 1-step ternary decay in

which a fragment flies in backward direction.

However it must be acknowledged the abundant 2-fragments coincidence

in arm 1 and 2 with respect to the triple coincidence, the ones including the

silicon detectors. One of the reasons could be the small solid angle coverage.

Using energy and momentum conservation laws, it is possible to build a

system of three second degree equations in the variables M1, M2 and M3 [34]

in order to make an estimate of masses (see App. A.3.6). A restraining condi-

tion on the total mass was not among the equations used to evaluate fragment

masses so, because of error propagation, Mtot may be different from the com-

pound nucleus mass. Only the cases in whichMtot > 200 (Tab. 3.2) were chosen
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Figure 3.20: Energy spectra measured in 37Cl + 208Pb by backward silicon detectors
(see App.C.2.2). High energy fragments have been detected.

in order to cut too low M1 values. According to a rough estimate, the mass

resolution for each fragment should not be smaller than 7 u. It is interesting to

note how the heaviest fragment goes mostly in backward directions, a feature

confirmed by the simulations, as it will be shown in the next section.

Comparison with Simulations

The successive step is the comparison between measured quantities and cal-

culations. A direct three-body decay simulation code, based on conservation

laws, produces quantities such as velocities, angles (in laboratory and CM ref-

erence frame) etc. , once entrance and exit channel are specified: projectile,

target and beam energy; mass and atomic numbers of the three final fragments

(the "tripartition"). The code solves the equation of 3-body direct decay only in

plane providing all kinematic quantities, exploiting also a Q-value database for
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MeV u u u u
E3 M1 M2 M3 Mtot

4.86 65 40 101 206
5.11 50 53 103 206
5.46 46 52 111 209
5.51 22 76 111 209
5.86 39 101 78 218
5.93 27 66 128 221
5.98 48 40 114 202
6.34 34 76 110 220
6.95 61 42 103 206
8.79 26 60 136 222

MeV u u u u
E3 M1 M2 M3 Mtot

9.00 64 42 112 218
16.71 87 17 109 213
18.62 23 116 114 253
20.39 14 92 98 204
25.11 8 131 106 245
25.13 10 103 122 235
31.23 25 85 108 218
50.90 18 128 98 244
75.54 10 110 125 245

Table 3.2: A selection of results of the mass reconstruction in 37Cl + 208Pb.

all possible configurations involving at least two doubly magic final fragments

having A3 ≥ A2 ≥ A1.

As it was already stressed in Fig. 3.18, the distribution of fragments 1 and

2 relative angle in CM frame appears to be far from 180◦ (typical for binary

decay). The comparison between the relative angle spectrum for events in gate

#3 (ternary events, Fig. 3.17) and the calculations will be discussed below.

Fig. 3.21 shows the experimental distribution of relative angles (in red) and

the calculated one (black). They do not match at a first glance, but it has to

be taken into account the fact that the calculated spectrum contains all possi-

ble triples having at least two doubly magic nuclei and each triple counts with

the same weight, including those with a heavy fragment flying in forward di-

rections. To understand which one contributes a selection, triple by triple, is

needed.

Fig. 3.22 shows six tripartitions, chosen because of their good match with

experimental data. It has to be noted that all those configurations have light

fragments flying in forward directions, with the third, heavier one going back-

ward. In most cases, the two light fragments are doubly magic, with the only

exception of 132Sn, and quite similar masses. The resemblance in the shape is

visible, even considering the absence of energy loss corrections.
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Figure 3.21: Superposition of experimental spectrum (red) of relative angles in CM
reference frame, measured in Cl + Pb, with the calculated one (black). Latter includes
all possible triples having A3 ≥ A2 ≥ A1 and two doubly magic nuclei, including those
with a heavy fragment flying in forward directions.

In Fig.3.23 there is the relative angle - Vpar matrix, to compare experimental

and calculated data. The resemblance confirms the similarities noticed in Fig.

3.22.

Another comparison is carried out between the measured velocity matrix

V1-V2 and the homologue calculated data. In Fig. 3.24 calculated velocities are

represented by black curves, well matching experimental data. It has to be

remarked the absence of energy loss corrections that would shift the matrix

data slightly towards the top-right corner and would improve the matching of

the data.
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Figure 3.22: In red: experimental distribution of relative angles, measured in 37Cl +
208Pb. In black: calculated distribution for indicated triple. Doubly magic nuclei are
highlighted in blue characters. Most triples have light, doubly magic nuclei flying
forwards and the heaviest backwards.

Figure 3.23: Left panel: experimental relative angle - Vpar matrix measured in 37Cl +
208Pb. Right panel: calculated one (with no intensity).
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Figure 3.24: Distribution of the velocities measured in CORSET arms 1 and 2, in 37Cl
+ 208Pb. The black curves are calculated velocities, well overlapping the experimantal
data.
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Other Reactions Results

The following figures refer to results of 40Ar + 208Pb data analysis.

Figure 3.25: Vpar-Vper matrix obtained using the velocities in arms 1 and 2, 40Ar + 208Pb.

Figure 3.26: Distribution of the velocities measured in arms 1 and 2, 40Ar + 208Pb.
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Figure 3.27: Angle between the velocities of fragment 1 and 2 CM reference frame in
40Ar + 208Pb.

Figure 3.28: Data concerning reaction 40Ar + 208Pb. Left panel: conversion of measured
velocity into alpha particle energy. Right panel: conversion of measured velocity into
proton energy.
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Figure 3.29: Energy spectra measured in 40Ar + 208Pb by silicon detectors in backward
angles (see App. C.2.2).

MeV u u u u
E3 M1 M2 M3 Mtot

8.62 75 36 88 199
9.37 84 20 96 200

38.81 112 10 105 227

Table 3.3: A selection of results of the mass reconstruction in 40Ar + 208Pb.

Slightly less data, with respect to 37Cl + 208Pb, were collected during 40Ar +

208Pb reaction. This is the cause of a reduced number of events showing coin-

cidence between the TOF arms and the silicon detectors but, on the other side,

the agreement between experimental data and simulations appears to be better

than the other three reactions (Fig. 3.31).
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Figure 3.30: Experimental (red) and calculated (black) relative angles distributions in
CM reference frame, measured in 40Ar + 208Pb.

Figure 3.31: Experimental distribution (red) of relative angles, measured in 40Ar +
208Pb and calculated distribution (black) for indicated triple. Magic nuclei in blue char-
acters. The agreement with simulations appears to be better for this reaction.
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Figure 3.32: Left panel: experimental relative angle - Vpar matrix measured in 40Ar +
208Pb. Right panel: calculated one (with no intensity).

Figure 3.33: Distribution of the velocities measured in CORSET arms 1 and 2, in 40Ar
+ 208Pb. The black curves are calculated velocities, well overlapping the experimantal
data.
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The following figures refer to results of 37Cl + 205Tl data analysis.

Figure 3.34: Vpar-Vper matrix obtained using the velocities in arms 1 and 2, 37Cl + 205Tl.

Figure 3.35: Distribution of the velocities in arms 1 and 2, 37Cl + 205Tl.
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Figure 3.36: Angle between the velocities of fragment 1 and 2 CM reference frame in
37Cl + 205Tl.

Figure 3.37: Data concerning reaction 37Cl + 205Tl. Left panel: conversion of measured
velocity into alpha particle energy. Right panel: conversion of measured velocity into
proton energy.
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Figure 3.38: Energy spectra measured in 37Cl + 205Tl by silicon detectors in backward
angles (see App. C.2.2).
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Figure 3.39: Experimental (red) and calculated (black) relative angles distributions in
CM reference frame, measured in 37Cl + 205Tl.

Figure 3.40: Experimental distribution (red) of relative angles, measured in 37Cl + 205Tl
and calculated distribution (black) for indicated triple. Magic nuclei in blue characters.
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Figure 3.41: Left panel: experimental relative angle - Vpar matrix measured in 37Cl +
205Tl. Right panel: calculated one (with no intensity).

Figure 3.42: Distribution of the velocities measured in CORSET arms 1 and 2, in 37Cl
+ 205Tl. The black curves are calculated velocities, well overlapping the experimantal
data.
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The following figures refer to results of 40Ar + 205Tl data analysis.

Figure 3.43: Vpar-Vper matrix obtained using the velocities in arms 1 and 2, 40Ar + 205Tl.

Figure 3.44: Distribution of the velocities in arms 1 and 2, 40Ar + 205Tl.
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Figure 3.45: Angle between the velocities of fragment 1 and 2 CM reference frame in
40Ar + 205Tl.

Figure 3.46: Data concerning reaction 40Ar + 205Tl. Left panel: conversion of measured
velocity into alpha particle energy. Right panel: conversion of measured velocity into
proton energy.
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Figure 3.47: Energy spectra measured in 40Ar + 205Tl by silicon detectors in backward
angles (see App. C.2.2).

Figure 3.48: Experimental (red) and calculated (black) relative angles distributions in
CM reference frame, measured in 40Ar + 205Tl.
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Figure 3.49: Experimental distribution (red) of relative angles, measured in 40Ar + 205Tl
and calculated distribution (black) for indicated triple. Magic nuclei in blue characters.
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Figure 3.50: Left panel: experimental relative angle - Vpar matrix measured in 40Ar +
205Tl. Right panel: calculated one (with no intensity).

Figure 3.51: Distribution of the velocities measured in CORSET arms 1 and 2, in 40Ar
+ 205Tl. The black curves are calculated velocities, well overlapping the experimantal
data.
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Summary and Conclusions

4.1 Xe + Pb LNL Experiment

Fig. 2.11 shows how different values of TKEL are linked to different TLF mass

distributions: the more the energy dissipation, the bigger the mass transfer. The

masses of interest appear to produced in very damped events, namely with

TKEL > 80 MeV.

It is interesting to note the trend shown in Fig. 2.13. The plot is obtained by

rebinning of the TKEL distribution, with the adjoint of information about the

TLF peak corresponding to each TKEL bin. It is noticeable a change in the slope

of the spectrum near the mass value 202 u, meaning that the production of TLF

around mass 202 is enhanced by shell effects.

Even if there are evidences from the point of view of a specific mass produc-

tion, the use of E-∆E telescope separation is needed for atomic number evalua-

tion. As showed in Chap. 2.3, the IC analysis allows to confirm the production

of PLFs of masses around 142 (Fig. 2.17), corresponding to 202u TLFs. This

is clearly a confirmation of what found before but the only visible and usable

"banana" in the E-∆E matrix is the one of Fig. 2.15. Thus, because of this low

resolution, it is not possible to tell if protons or neutrons are transferred.

These low resolution results still allow to acknowledge the potentiality of

the multinucleon transfer channel: the observed persistence of shell effects for

79
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magic numbers N = 82, 126 makes this channel interesting for the production

of nuclei in the Terra Incognita, in particular in the region of the r-process and

possibly near or inside the Island of Stability. The research may continue by

exploring reactions involving different choices of colliding nuclei: heavier, in

order to reach the region of super heavy nuclei in the Segré Chart or lighter, in

order to extend the study to other closed shells. Another interesting possibility

would be the exploitation of neutron-rich radioactive ion beams to be provided

at SPES facility at LNL.

4.2 NRO127 JYFL Experiment

The use of two supplementary CORSET arms at 65◦ along with the ones at

40◦ allowed the observation of pure binary fission decays that may serve as

a reference for the type of events. The clear difference between the Vpar-Vper

matrices (Fig. 3.12, 3.13, 3.15, 3.14 vs. Fig. 3.16, 3.25, 3.34, 3.43), in each of the

four reactions, represents the first hint of the occurrence of non-binary decays,

detected by CORSET arm 1 and 2. This hint is confirmed by the further steps of

the analysis.

It has been excluded the possibility of confusing these events with proton or

alpha evaporation, from both CN and target backing, through considerations

about energy distribution of this hypothetical particles (see Fig. 3.19, 3.28, 3.37,

3.46).

Ulterior trust in support of the ternary nature of the events detected in arm

1 and arm 2 is provided by the analysis of other observables such as the relative

angle and Vpar. Fig. 3.18, 3.27, 3.36, 3.45 show the distribution of the relative

angle measured in CM reference frame. By application of gates on Vpar-Vper,

which automatically select regions in V1-V2 matrices in Fig. 3.17, 3.26, 3.35, 3.44,

it is possible to find that the relative angle distribution is peaked at ∼ 96◦ with
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negligible differences in the four reactions. In the case of binary decay, this

angle should distribute around 180◦, and around 120◦ in the case of perfectly

symmetric tripartition. Such a small angle suggests the occurrence of a tripar-

tition with two fragments sensibly lighter than the third one, with the heaviest

emitted backwards.

A comparison with simulations confirms the latter assumption.

A simulation code was used to produce velocities and angles of the three

fragments for each possible initial and final configuration involving at least two

doubly magic nuclei. The choice of restricting the analysis only to tripartitions

involving two doubly magic nuclei is suggested by the analogy in spontaneous

binary fission, in which only one fragment is usually doubly magic. Extending

this concept to ternary fission, it is reasonable to figure out a decay with two

doubly magic nuclei and the third one taking away the remaining mass. If

ternary decay is favored by this condition, it should be less likely in cases where

the mass of the CN can be split into three magic fragments, e.g. 252−258Cf.

It should be noted that only for the system Cl + Tl it is possible, by mass

conservation, a tripartition into two doubly magic nuclei plus a single magic

one.

In Fig. 3.22, 3.31, 3.40, 3.49 it is clear how the experimental relative angle

distribution is more well reproduced by calculations involving two light, dou-

bly magic nuclei having similar masses and flying in CORSET arm 1 and 2. The

only exception is represented by the case of 132Sn (doubly magic, flying back-

ward) having as companions a light doubly magic nucles and a light non-magic

nucleus. From this comparison it seems that:

• the experimental distribution matches with the above discussed configu-

rations;

• the experimental distribution may be reproduced by a superposition of

all cases, each with a different weight (this is a work in progress).
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The comparison between the measured matrix V1-V2 and the homologue cal-

culated data in Fig. 3.24, 3.33, 3.42, 3.51 represents another confirmation of how

well experimental and calculated data match.

Considering the few events in which the third fragment was detected, it is

possible to assert that is mostly the heaviest one to fly in backward direction.

However, several technical problems arose concerning the energy measurement

of the third fragment, ranging from few MeV to 100 MeV and this, along with

a small solid angle coverage, brought to rough mass estimates, reported in Tab.

3.2 and 3.3 (no available date for 40Ar + 205Tl and 37Cl + 205Tl reactions). The best

solution to overcome these difficulties would be the implementation of two (or

more) ulterior CORSET arms, to be placed at backward angles in substitution

of the silicon detectors. In this way, it would be possible not only to exploit the

high time resolution of MCP based detectors but also the possibility of mea-

suring three velocities instead of two plus one energy. Another path to follow

could be the study of a possible tripartition of 252−258Cf , in order to prove the

hypothesis according to which a final configuration of two doubly magic nuclei

plus a non magic one is more favorable than three doubly magic fragments.



Appendix A

Data Analysis

This Appendix has the purpose of showing, in a summary, all the relevant anal-

ysis processes studied or developed by the author. Further, in Appendix B are

also showed some related original code, developed during the three years of

PhD school.

All geometrical calculations, such as evaluation of plane or line equations,

intersections etc. or other, less relevant, details will be omitted in order to

clearly show the analysis method in its general form.

A.1 Preliminary Calculations: Angular Correlation

The Viola Systematics [31, 32] is a powerful and solid instrument in nuclear

fission analysis and simulations. Viola et al. found an empirical law which

shows how the Total Kinetic Energy of fission fragments depend linearly on

the Coulomb parameter Z2
CN/A

1/3
CN , where ZCN and ACN refer to the atomic and

mass number of the fissioning nucleus, both in case of induced fission (thus a

compound nucleus is formed) and spontaneous fission. A1/3
CN is proportional to

the nuclear radius. The meaning of the systematics is that the primary respon-

sible for the TKE of fission fragments is their electrostatic repulsion.

TKEs = 0.1189
Z2

CN

A
1/3
cn

+ 7.3MeV (A.1)

83
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The equation A.1 stands for the case of strictly symmetrical separation while

the following can be used if the system separates in fragments having masses

A and ACN − A respectively:

TKE = TKEsA
−5/3
cn 28/3 A(ACN − A)

A1/3 + (Acn− A)1/3
. (A.2)

Knowing the available energy and applying the momentum conservation

law, it is possible to simulate the 2-body kinematics in the Centre of Mass ref-

erence frame: the two fragments are emitted back to back and no direction is

preferred. By addigng the Centre of Mass motion (no motion in spontaneous

fission) to the relative one, for each exit angle with respect to the beam in the

Centre of Mass reference frame, it is possible to evaluate the angle in the Labo-

ratory frame and thus build a correlation curve as the one in Fig A.1.
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Figure A.1: Example of the angular correlation curve produced by the code in App. B,
applying Viola systematics.
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If the total mass is known and the mass ratio of the fragments is provided,

the fragment masses are unambiguously found by:

r = m0/m1 (A.3)

m1 = Acn/(r + 1) (A.4)

m0 = Acn −m1 (A.5)

Then eq. A.5 can be used to find the TKE, which will be redistributed ac-

cordingly to the mass ratio. Thus, the velocity of the fragments in the CM frame

of reference are:

V 0
cm =

√
TKE/0.5183/m0/(r + 1) (A.6)

V 1
cm = V 0

cmr (A.7)

If the bombarding energy (equal to zero in the case of spontaneous fission)

is known, such is also the velocity of the centre of mass. In the centre of mass

frame, the exit angles of the fragments with respect to an arbitrary axis (for

example the beam) are always supplementary because of momentum conser-

vation:

θ1cm = 180− θ0cm; (A.8)

Fixing one immediately gives the other and the corresponding angle in lab-

oratory frame depends only on the centre of mass motion:

θilab = arctan(
V i
cm sin(θicm)

VCM + V i
cm cos(θicm)

); (A.9)

In this way, it is possible to build a curve of the exit angle in lab frame of the

fragments in coincidence. This curve is of paramount usefulness in the prelim-

inary phases of an experiment, allowing to predict where to put the detectors,
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in an experimental environment, in order to detect fission fragments in coinci-

dence. This also applies to elastic scattering.

In order to perform such prediction, a code in C language was written by

the author. Fig. shows an example output of the program. In appendix B more

details are shown about the tool developed by the author.

A.2 Detectors Calibration

This section will shortly explain the usual calibration techniques.

A.2.1 Time Calibration

The time calibration consists in the calibration of both TAC (Time to Amplitude

Converter) and TDC (Time to Digital Converter) electronic modules. A Time

Calibrator module (aka “Pulser”) is plugged into the TACs and TDCs, provid-

ing a series of equally distant (in time) peaks used for the evaluation of the slope

of the linear calibration. Since the position information is extracted from time

measurements, the TDC channels X, Y, Start and Stop are separately calibrated

and their slope is used to convert position raw data in time. The further step

is to provide the differences X-Stop and Y-Stop, still measured as time, which

will be calibrated as shown in A.2.2. Times of Flight (TOFs) may be measured

by the difference Stop-Start (TDC channels) or by means of a TAC, which out-

put is plugged into an ADC (most suitable choice if an ADC offering more bits

than the TDC is available). In both cases, the difference Sp-St from TDC and the

output of TAC+ADC chain provide a spectrum in which a known peak may be
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used to find the intercept of the linear calibration:

intercept(ns) = KNOWNTIME(ns)− centroid(arb.un.)× slope(ns/arb.un.)

(A.10)

Usually the known peak is the one related to elastic scattering of the pro-

jectile on target and specific calibration runs are conducted using the detectors

in “single” coincidence logic. Another, less preferable or backup, option is to

use, whenever possible, elastic scattering peaks of both projectile and target to

perform a 2-point linear calibration.

A.2.2 Position Calibration

The position-sensitive detectors are calibrated in order to extract the fragments

position from raw data. This calibration is based on the well-known position

(along X and Y axis) of at least two points on the detector surface: in many cases

a wire mask with some known positions is put in front of the sensitive area (e.g.

a metal cross in front of PRISMA entrance MCP or a plastic reticule in front of

CORSET Stop) while in absence of this tool the edges (size of the detector) are

used. Since position information is obtained in a delay lines system of the stop

MCP, this data are essentially time measurement: a preliminary time calibra-

tion with a pulser A.10 is needed also for X and Y data. Then, another linear

regression produces the calibration parameters that convert the time measure-

ments in mm. In many cases the middle step of converting raw data in time can

be skipped if the slopes obtained during the TDC calibration appear to be very

similar to each other.
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A.2.3 PRISMA Ionization Chamber Calibration

The Ionization Chamber in PRISMA setup is used for Z identification of PLFs.

The latter do not need an absolute energy calibration since it is based on qualita-

tive analysis of E-βE matrix, the recognition of the so-called "bananas": the most

populated “banana” refers to elastic and quasi-elastic scattering then, moving

up or down in the matrix, the other "bananas" refer to higher or lower Z val-

ues respectively; two successive “bananas” differ for one charge unit. For this

purpose, since the IC sensitive component is the segmented anode, the calibra-

tion just serves as alignment of data coming from each section. The resulting

E-βE matrix remains in arbitrary units but, nonetheless, allows the qualitative

analysis.

A.3 Analysis

A.3.1 PRISMA Ionization Chamber

After the alignment calibration it is possible, through several logics, to treat

the IC as a set of ten E-DE telescopes. Since the IC consists of a 10 × 4 array

of sensitive pads, the easiest possibilities are to take the first section of each

telescope or the sum of the first two as a βE stage and, of course, the sum of

the four as E. In this way, the E-βE matrix can be provided and qualitatively

analysed in order to find “bananas” and their link to the mass distribution.

A.3.2 TOF-TOF Analysis

This kind of analysis is performed if the experimental setup consists of two (or

more) CORSET-like arm having each a Start and a Stop detector thus the Time

of Flight is defined by the difference in time between Stop and Start signals.

This kind of analysis was performed for NRO127 Experiment (3).
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Laboratory Frame of reference

In order to perform the geometrical calculations the lead to the velocity eval-

uation, it is necessary to choose and fix the laboratory frame of reference. The

frame origin is arbitrarily fixed in the centre of the target, the beam line corre-

sponds to the Z axis, X and Y axis are respectively vertical and horizontal (with

respect to the lab) axis. The needed geometrical quantities are:

• Angular position of the arms;

• Tilt angles of the detectors (if different from zero);

• Distances between Start Detectors and Target;

• Distance between Stop Detector and Start Detector of each arm.

From those quantities above it is possible to evaluate all useful information,

such as the position of the centre of each target, the equation of the plane rep-

resenting the start detectors, the absolute position of the particle impinging the

stop detectors and the equation of their trajectories as will be shown in detail

further. An example is given in the schematic view of the detectors (projec-

tion onto X-Z axis) shown in Fig. A.2, representing the layouts of CORSET-like

setups in different experiment.

Flight Paths

In order to evaluate the velocity vector (thus the trajectory) of the fragments in

the laboratory frame, it is necessary the evaluation of times of flight and flight

paths. Since the geometrical concept of the arms is identical, the arm index

“i” in the following formulas means that the equations can be applied to each

arm separately. The position (Hi), in laboratory frame, of the fragment hitting

a STOP detector are given by the following equations, where Xstop and Y stop

are the coordinates of the fragment onto the detecting surface:
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ARM0 ARM1
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Figure A.2: Schematic view of a CORSET or CORSET-like setup. The black, bold lines
represent the central axis of each arm, with the detectors placed perpendicularly to
them. The red lines are an example of fragment trajectories originating from the target
and hitting the Stop after passing through Start. Ci represents the center of the stop
detector, while Ti the center of the start detector.

Hi(x) = Ci(x) + Y stopi (A.11)

Hi(y) = Ci(y) +Xstopi cos θi (A.12)

Hi(z) = Ci(z) +Xstopi sin θi (A.13)

θ0 < 0 < θ1 (A.14)

which are transformation from coordinates on the detector surface to 3D

Cartesian coordinates in laboratory reference frame, Ci represents the center of

the stop detector. These transformations plus the knowledge of the geometry

allow to evaluate the (linear) trajectory fo the fragment from target to STOP

detector, being assumed that the fragment velocity vector direction is not sen-

sitively affected while emerging from the target, after the reaction took place,

and passing through the start detector: because of the small thickness of target

and detector foils it is possible to neglect the straggling. The flight path of the

fragment flying in the arm is then the distance between the intersection of the
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trajectory with the START detector (hi) and the hit point on stop detector:

Li =
√

(Hi(x)− hi(x))2 + (Hi(y)− hi(y))2 + (Hi(z)− hi(z))2 (A.15)

the polar and azimuthal angles defining the direction are:

ϑi = arccos
Hi(z)√

H2
i (x) +H2

i (y) +H2
i (z)

(A.16)

ϕi = arctan
Hi(y)

Hi(x)
(A.17)

Velocity Calculation

The velocity modulus of the fragment in each arm is immediately obtained,

being tofi the actual time of flight between start and stop detector in the i-th

arm:

Vi =
Li

tofi
(A.18)

A.3.3 TOF-DTSP Analysis

This kind of analysis is performed if the experimental setup consists of one

CORSET-like arm (namely TOF arm) and a DTSP (Delta Stop) arm, having the

latter only a Stop detector. The Time of Flight in the DTSP arm is evaluate

exploiting the TOF in TOF arm and difference in time between the stop signals,

hence the name DTSP.

Laboratory Frame of reference

In order to perform the geometrical calculations the lead to the velocity eval-

uation, it is necessary to choose and fix the laboratory frame of reference. The
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frame origin is arbitrarily fixed in the centre of the target, the beam line corre-

sponds to the Z axis, X and Y axis are respectively vertical and horizontal (with

respect to the lab) axis. The needed geometrical quantities are:

• Angular position of the arms;

• Tilt angles of the detectors (if different from zero);

• Distances between Start Detector and Target, between Stop and Start De-

tector (TOF arm);

• Distance between Stop Detector and Target (DTSP arm).

An example is given in the schematic view of the detectors (projection onto

X-Z axis) shown in Fig. 2.3 and 2.3: the PRISMA and Bragg arms are located

respectively at 45◦ and 52◦ with respect to the beam (Z) axis, the PRISMA MCP

is tilted by 45◦ so it is parallel to the beam axis and the TOF arm PPAC is per-

pendicular to the line at 52◦ with respect to the beam axis (Fig A.3).

CT

QT

CP

TOF ARM PRISMA ARM

θT

θP

TARGET

Figure A.3: Schematic view of PRISMA setup, based on one TOF arm and one
(PRISMA) DTSP arm. The black, bold lines represent the central axis of each arm,
TOF arm Stop is perpendicular to the axis while PRISMA MCP is tilted and parallel to
the beam. The red lines are an example of fragment trajectories originating from the
target and hitting the Stop after passing through Start. Ci represents the center of the
stop detector, while Ti the center of the start detector.
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Flight Paths

In order to evaluate the velocity vector (thus the trajectory) of the fragments in

the laboratory frame, it is necessary the evaluation of times of flight and flight

paths. The position, in laboratory frame, of the fragment hitting the Stop de-

tector of TOF arm are given by the equations A.11, A.12, A.13 and the flight

paths and angles are the same as stressed in A.15, A.16, A.17. The DTSP Arm

provides only Stop information so, reasonably, the flight path is the line con-

joining the hit point on STOP surface (HDTSP , which coordinate are obtained

again by transformations refeq:hittof1, A.12, A.13) and the origin of the frame

of reference, assuming that the fragment velocity vector direction is not sensi-

tively affected while emerging from the target after the reaction took place:

LDTSP =
√
H2

DTSP (x) +H2
DTSP (y) +H2

DTSP (z) (A.19)

ϑDTSP = arccos
HDTSP (z)

LDTSP

(A.20)

ϕDTSP = arctan
HDTSP (y)

HDTSP (x)
(A.21)

Velocity Calculation

The velocity modulus of the fragment in TOF arm is immediately obtained,

having the actual time of flight between start and stop detector in this arm: see

eq. A.18. The time of flight of the fragment in DTSP arm is calculated event by

event by means of the following formula:

tofDTSP = tofTOF +

√
h2TOF (x) + h2TOF (y) + h2TOF (z)

VTOF

−DTSP (A.22)

Where
√

h2
TOF (x)+h2

TOF (y)+h2
TOF (z)

VTOF
is the time of flight of the fragment flying

from the target to the START in TOF arm and DTSP is the time between the two
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stop signals. Once tofDTSP is known, the velocity modulus of the fragment in

DTSP arm is simply given by:

VDTSP =
LDTSP

tofDTSP

(A.23)

A.3.4 Quantities in Centre of Mass Reference Frame

Since the bombarding energy, thus the velocity of centre of mass, is known as

a reaction parameter, it is possible to evaluate, without ambiguity, the velocity

vectors (modulus and direction) in the CM frame of reference.

The fragments have velocity in the CM frame given by:

~V CM
i = ~V lab

i + ~VCM (A.24)

where the velocity direction of the centre of mass is the beam direction and

the modulus is:

VCM =
MprojVproj
Mproj +Mtar

(A.25)

V1lab

V0lab

V1cm

V0cm

θ1lab θ1cm

θ0lab θ0cm

BEAM

Figure A.4: Triangle of velocity vectors of a binary reaction. Using simple trigonomet-
ric formulas it is possible to transfor velocities and angles from laboratory reference
frame to CM frame.

Fig. A.4 shows the triangle of velocity vectors in a binary FMT reaction:

angles and velocities in the CM frame are obtained by simple trigonometric
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considerations. The angle defining the fragment velocity direction in the CM

frame is given by:

tanϑi(CM) =
Vi(lab) sinϑi(lab)

Vi(lab) cosϑ(lab)i − VCM i

(A.26)

while its modulus is:

Vi(CM) =
Vi(lab) sinϑi(lab)

sinϑi(CM)
(A.27)

The folding angle Ψ is equal to the sum of the angles corresponding to the

two fragments and is equal to 180◦ in the case of FMT binary events, thus being

another probe in the search of the latter.

A.3.5 Binary Reaction Analysis

Vpar-Vper Test for Binary Decay

Once both velocity vectors are fully evaluated, a useful 2D distribution can be

built; namely the V|| vs. V⊥ matrix, being respectively the projections of the ve-

locity vectors on and orthogonally to the reaction plane (the plane orthogonal to

the angular momentum axis). These projections are the results of the following

formulas:

V|| =
u0w1 + u1w0

u0 + u1
(A.28)

V⊥ =
u0u1 sin(ϕ0 − ϕ1)√

u20 + u21 − 2u0u1 cos(ϕ0 − ϕ1)
(A.29)

Being
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ui = Vi sinϑi (A.30)

wi = Vi cosϑi (A.31)

As stressed in Chapters 2 and 3, for full momentum transfer (FMT) binary

reactions, V|| is equal to Vcm while V⊥, should be around zero. In the case of

sequential fission of a fragment (usually the target-like one), V|| deviates from

Vcm and only two cases can occur:

(a) if the detected sequential fission fragment is the one flying forward in the

frame of reference of the fissioning fragment, V|| is greater than Vcm;

(b) if the detected sequential fission fragment is the one flying backward in the

frame of reference of the TLF, V|| is lower than Vcm.

The three possibilities are schematically pictured in the kinematic diagram

in Fig. 2.5. The evaluation of energy and masses of the fragments is based

on the assumption that the analyzed reaction is a binary one. The V|| vs. V⊥

matrix is therefore, clearly, a powerful tool to filter the events and discard the

sequential fission cases.

Angular Correlations

The relative velocity of the fragments and the angle between their velocity vec-

tors are useful quantities, mostly for correlation test. The angle between frag-

ment trajectories is calculated using the scalar product:

~V0 · ~V1 = V0V1 cosϑrel = V0(x)V1(x) + V0(y)V1(y) + V0(z)V1(z) (A.32)
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Where the cartesian coordinates are obtained by transformation of spherical

coordinates, which are computed in each event. The relative velocity is calcu-

lated by means of Carnot’s Theorem:

Vrel =
√
V 2
0 + V 2

1 − 2V0V1 cosϑrel. (A.33)

Mass and Energy Calculations

In a full momentum transfer binary reaction, the masses of the two reaction

products can be obtained using the momentum conservation law and the mass

conservation law:

Mproj
~Vproj = M0

~V0 +M1
~V1Mproj +Mtar = M0 +M1+ 3pre (A.34)

where Mproj , Mtar adn 3pre are the mass of projectile, the mass of target and

the multiplicity of preequilibrium neutrons respectively. Projecting A.34 onto

the beam axis results in:

MprojVproj = M0V0 cosϑ0 +M1V1 cosϑ1 0 = M0V0 sinϑ0 +M1V1 sinϑ1 (A.35)

-

Solving the system of eq. A.35 and A.34 knowing Vi and ϑi from the previ-

ous calculations, the masses of the fragments are:

M0 =
(Mproj +Mtar− 3pre)V1 sinϑ1

V0 sinϑ0 + V1 sinϑ1

(A.36)

M1 = Mproj +Mtar− 3pre −M0 (A.37)
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The Total Kinetic Energy is defined as the sum of the kinetic energy of the

fragments in the exit channel, evaluated in the CM frame:

TKE = 0.5183M0V
2
0 (CM) + 0.5183M1V

2
1 (CM) (A.38)

where the factor 0.5183 is a modification to the classical kinetic energy for-

mula, applied in order to match masses in atomic units and velocities in cm/ns

into energies in MeV. The Total Kinetic Energy Loss (TKEL) is, on the other

hand the difference between the available kinetic energy in CM frame and the

TKE of the fragments: TKEL = ECM −TKE, where ECM (the bombarding en-

ergy in the CM frame) is the available energy. Since the excitation energy of the

fragments is given by eq. 1.3, the TKEL can be considered as a rough measure

of excitation energy in reactions with Q-value near zero.

Energy Loss Corrections

After the first mass-velocity extraction, a correction for energy loss in both tar-

get and start detectors has to be done. This correction, again, is based on the

assumption that the interaction with thin start detectors and target layers do

not affect sensibly the direction of the fragment. At each step i of the recursive

algorithm, the masses M i
0,1 are re-calculated using the kinematic formulas A.36

and A.37, V i
0,1 are obtained by means of the correction:

V i+1
0,1 = V 0

0,1 + δV i
0,1. (A.39)

where V 0
0,1 are the velocities calculated from measured TOFs and flight paths

and δV i
0,1 are the i-th estimation of the velocity correction. The latter quantity is

related to the energy loss, ∆E, of the fragment passing through matter which

is difference between the fragment energy before and after passing through

an absorber. The measured velocity provides the final energy while the initial
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one is obtained by means range extrapolation: The range of an ion (Aion, Zion)

passing through an absorber (Atar, Ztar) is a function of its kinetic energy:

R(E) =

∫ Ei

0

1

(−dE/dx)
dE (A.40)

which is known as set of points once a numerical integration of stopping

power data is done. Given the final energyEf and its related rangeR(Ef ) = Rf ,

the range related to the initial energy would be Ri = R(Ei) = Rf +T where T is

the thickness of the absorber and the initial energyEi is found by extrapolation.

In appendix B a pseudo code shows the details of the algorithm developed

during data analysis.

Since only the fragment mass is known, its atomic number is assumed to be

the one of a stable nucleus having the measured mass Aion:

Zs =
Aion(1 + 0.0077A

−1/3
ion )

2 + 0.0154A
2/3
ion

. (A.41)

The formula A.41 provides Z of a nucleus of given Aion, on the stability line

through an interpolation of the latter [35]. OnceEf and i are found, ∆E is given

by

∆E = Ei − Ef = 0.5183M(V 2
i − V 2

f ), (A.42)

being Vi − Vf = δV . Solving the 2nd-degree equation A.42 for δV and dis-

carding the negative solution (with no physical meaning):

δV =

√
V 2
f −

∆E

0.5183M
− Vf . (A.43)

Once the correction δV i
0,1 is evaluated, the velocity (eq. A.39) is used in the

formulas A.36 and A.37 to re-calculate a new approximation of the masses. This

approximation M i
0,1 is used as starting value for the successive step, in which
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a new correction δV i+1
0,1 is calculated and added again to V 0

0,1. The loop stops

when |M i+1
1 −M i

1| < tol. A chosen tolerance tol=0.01 is reached after a number

of steps in the range 1-5. The correction is applied event-by-event taking into

account the exit angle ϑi (with respect to the beam axis) of each fragment, which

extends the thickness of each absorber by a factor 1/ cosϑi.

In appendix B are shown ore details about the tool developed by the author.

A.3.6 Ternary Reaction Analysis

Data Filtering for Ternay Decay through Pattern Spectra

In the analysis of data containing both binary and (to be confirmed) ternary

events, a first discrimination can be performed using pattern concept. When sig-

nals from several detectors are received by the Data Acquisition, a coincidence

unit can perform logic operations such as AND or OR. By taking as example

the experiment reported in Chapter 3, the CORSET arm where put in coinci-

dence two by two (0-3 and 1-2): the AND between their timing signal can be

considered as a TRIGGER for the acquisition. This AND signal can be, in turn,

acquired through a TDC thus obtaining a "time" spectra which can be referred

as a counting events, showing a peak of reasonably binary event and a back-

ground that can be discarded. The same goes for ternary events, by computing

and acquiring the AND of three signals, in the experiment namely the signal

from the the two inner arms and the OR of the fast signals coming from back-

ward silicon telescopes: in this way is considered as ternary an event with TOF

signals and at least one energy signal from backward. An example is given in

Fig. A.5. The discrimination is performed by cutting the data outside the peak.
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Figure A.5: Time spectra of triple coincidences. The background, related to random
triple coincidences, can be discarded while the peak (highlighted in the right panel)
contains all the "true" triple coincidences.

Vpar-Vper Test for Ternary Decay

After the gate applied on the ternary coincidence spectrum, it is possible to look

at quantities which are strictly related to binary events, namely V|| and V⊥. Fig.

shows a typical V|| − V⊥ matrix in which it is possible to recognize FMT binary

events and ternary, but sequential, events (see par. 2.3 and A.3.5). Anomalies

in the matrix can be interpreted as possible clues of non-binary, non-sequential

decays. In par. 3.3.2 it is shown how different gates on this matrix are used to

explore the anomalies, by looking at the corresponding areas in the coincidence

matrix of the velocities of fragments detected by CORSET. For binary cases, it is

possible to refer to the previous section about binary fission in the same reaction

and section 2.3.

Test for Evaporated Particles

A further check consists in assuming that the most forward CORSET arms de-

tected protons and alpha particles evaporated from the Compound Nucleus.

Starting from this assumption, it is possible to compute the energy distribu-

tion of the particles/fragments and compare it to the Maxwellian distribution,

typical for evaporation events.
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Ternary Decay Mass Reconstruction

Once an event is assumed to be a true ternary decay, exploiting some mea-

sured quantities it is possible to reconstruct the masses of the three fragments

by solving a system of three equations, derived from energy and momentum

conservation laws.

The system would contain nine unknown quantities and only three equa-

tions, meaning that six quantities must be measured.

In the experiment of Chap. 3, V1,2, ϑ1,2, E3 and ϑ3 are measured, leaving the

three masses evaluable by solving the system.

In the specific case also a recursive correction on energy loss was performed

on fragments 1 and 2, of the same typ as in par. A.3.5. Moreover, since the E

detector in the E-∆E assembly, covers a wide angular range (see par. 3.2), it

was also included an algorithm which searches the ϑ3 value in this range which

minimize the difference |Mproj +Mtar −M1 −M2 −M3|.

Details on the equations follow [34].

Energy conservation law is:

Ep = E1 + E2 + E3 −Q ,

or, M1(V
2
1 + 2) +M2(V

2
2 + 2) + 2(E3 − Ep −Mp −Mt +M3) = 0.(A.44)

The momentum conservation along the perpendicular to the beam direction

is:

MpVp sin 00 = M1V1 sin θ1 +M2V2 sin θ2 +M3V3 sin θ3 ,

or, M1 =
−M2V2 sin θ2 −

√
2M3E3 sin θ3

V1 sin θ1
. (A.45)
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The momentum conservation along the beam direction is:

MpVp = M1V1 cos θ1 +M2V2 cos θ2 +M3

√
2E3

M3

cos θ3. (A.46)

Using equation A.45 in the equation A.46, the expression for mass M2 is:

M2 =
MpVp sin θ1 −

√
2M3E3 sin(θ1 − θ3)

V2 sin(θ1 − θ2)
(A.47)

Using equation A.47 into equation A.45, the result is

M1 =
−MpVp sin θ1 sin θ2 +

√
2M3E3 sin θ2 sin(θ1 − θ3)−

√
2M3E3 sin θ3 sin(θ1 − θ2)

V1 sin θ1 sin(θ1 − θ2)
.

(A.48)

Now using equation A.47 and A.48 into equation A.44, the result is

M3 α +
√
M3 β + γ = 0, (A.49)

where,

α = 2V1V2 sin θ1 sin(θ1 − θ2),

β =
√

2E3 V2(V
2
1 + 2){sin θ2 sin(θ1 − θ3)− sin θ3 sin(θ1 − θ2)}

−
√

2E3 V1(V
2
2 + 2) sin θ1 sin(θ1 − θ3),

γ = Mp Vp sin θ1 {V1(V 2
2 + 2) sin θ1 − V2(V 2

1 + 2) sin θ2}

+2V1V2 sin θ1 sin(θ1 − θ2)(E3 − Ep −Mp −Mt).

The solution of equation A.49 is:

M3 =
β2 − 2αγ ±

√
β4 − 4αβ2γ

2α2
, (A.50)

• M1 is calculated from equation A.48 by using equation A.50.
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• M2 is calculated from equation A.47 by using equation A.50.

• M3 is calculated equation A.50.



Appendix B

Developed Tools and Relative

Pseudo Code

The following are pseudo codes explaining in slightly more details the algo-

rithms developed by the author.

B.1 Eloss Code

Getting the initial energy:

double dq_Eloss_get_initial_energy (

double Ef, // mesured final energy of fragment

double Aion, double Zion, //A and Z of fragment

double Atar, double Ztar, T) //A, Z, thickness of absorber

{

Open_range_data (Atar, Ztar); // ascending order in energy and range

while (E<=Ef){

search range date since the closest value to Ef is found

}

Rf = linear interpolation to find the range value related to Ef

Ri = Rf + T;
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while (R<=Ri){

search range date since the closest value to Ri is found

}

Ei = linear interpolation to find the energy value related to Ri

return Ei;

}

Getting velocity correction:

double dq_velocity_correction (

double measured_E, \\ Measured energy

double theta, double V, \\exit angle in lab frame, velocity of

fragment

double Aion, double Atar0, double Ztar0 ...) \\parameters

identifying the ion and several absorbers

{

Interpolate the stability line

Use Aion to estimate Zion using the interpolated stability line

//assuming that the ion having mass Aion would have the atomic

number of the most stable species having this mass

The following block is repeated for each absorber, starting from the last and

going backward. For each absorber, the final energy equals the initial energy of

the previous step. In the first step, Ef = measuredE .

Ei = Ef

while (diff > 0){

Q2 = charge state projection (Ei); //evaluation of charge

state using Schwietz-Grande mean charge state formula

(ref..)

Ei = dq_Eloss_get_initial_energy (Ef, Aion, Zion, Atar, Ztar,

T/cos (theta) );
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diff = fabs(Q1-Q2);

Q1 = Q2;

e = Ei;

}

The routine tries to find the initial energy taking into account the charge

state, which depends on initial energy. Starting from the zero step approxima-

tion of Ei = Ef , the charge state is evaluated and then Ei is evaluated. At this

point everything is repeated starting from the new vale of the initial energy,

leading to another evaluation of charge state. The routine continues until two

successive evaluations of charge-state are equal, usually it takes 1 to 3 itera-

tions. After the last absorber (first from the point of view of the fragment) the

correction on velocity can be evaluated.

DE = Ef - measured_E;

//Velocity correction

DV = sqrt( V*V + DE/(0.5183*Aion) ) - V;

return DV;

}

B.2 Viola Systematics and prediction of Laboratory

correlation angles of Fission fragments

void labangles (

double r, //mass ratio of the fragments

double Ap, double At, //masses of proj. and target

double Ebomb) //bombarding energy
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{

take in input the mass ratio r;

evaluate the masses of the fragments;

evaluate TKE;

evaluate fragment velocities in CM frame;

for (thetaCM_0 = 0.; thetaCM_0 <= 180.; thetaCM_0+=0.5){

thetaCM_1 = 180. - thetaCM_0;

evaluate both angle in lab frame using the CM motion;

print angles to file;

}

plot;



Appendix C

Main Experimental Setup

Parameters

C.1 Xe+Pb Setup

C.1.1 PRISMA Arm

PRISMA arm was placed at 45◦ with respect to the beam axis, with the entrance

MCP tilted by 45◦, thus being parallel to the beam.

Component Distance(mm)
Target - MCP 250

MCP - Quadrupole 250
Quadruple - Dipole 600
Dipole - MWPPAC 3285

PPAC - IC 720

Table C.1: Table of PRISMA arm component distances.

Component Size(mm2) Sections
Entrance MCP 76× 100 1

PPAC 1000× 130 10× 1
IC window 1000× 130 10× 1

IC area 1000× 1060 10× 4

Table C.2: Table of PRISMA arm component sizes.
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C.1.2 TOF Arm

TOF arm was placed at 52◦ with respect to the beam axis and perpendicular to

the radius at this angle.

Component Distance(mm)
CORSET MCP - Target 67
Bragg PPAC - Target 884.5

Table C.3: Table of the TOF arm component distances.

Component Size(mm2) Sections
Entrance MCP 2.2×2.2 1
circular PPAC 100× 100 1

Table C.4: Table of TOF arm component sizes.
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C.2 NRO127 Setup

C.2.1 CORSET

deg cm cm cm2 cm2

arm θ Start-target Stop-Start Start size Stop size
0 -65 8 18 3×2.2 8.6×6.9
1 -40 8.5 22 2.2×2.2 8.6×6.9
2 40 8.5 22 2.2×2.2 8.6×6.9
3 65 8 18 3×2.2 8.6×6.9

Table C.5: Table of the CORSET parameters.

C.2.2 Silicon Detectors

∆E detectors are collimated by means of 1 cm diameter diaphragm. E detectors

size is 5×5 cm2.

deg cm cm µm µm deg
Tel. θ E-targ. ∆E-targ. E thickn. ∆E thickn. Ang. range

0 109.5 27 n/a 300 n/a 10.5
1 127.5 27 n/a 300 n/a 10.5
2 145.5 27.5 n/a 300 n/a 10.3
3 -154.5 21.7 15.8 300 20 3.6
4 -136.5 22 16.1 300 20 3.6
5 -118.5 22 16.1 300 20 3.6

Table C.6: Table of the telescope parameters.

deg cm µm
monitor θ mon-beam thickness

0 8.6 9.7 50
1 8.6 9.8 50
2 8.7 9.9 50

Table C.7: Table of the monitor parameters.
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